xref: /linux/kernel/cgroup/cgroup.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 			       struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 					      struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 	if (CGROUP_SUBSYS_COUNT == 0)
240 		return false;
241 
242 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244 
245 /**
246  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247  * @cgrp: the cgroup of interest
248  *
249  * The default hierarchy is the v2 interface of cgroup and this function
250  * can be used to test whether a cgroup is on the default hierarchy for
251  * cases where a subsystem should behave differnetly depending on the
252  * interface version.
253  *
254  * The set of behaviors which change on the default hierarchy are still
255  * being determined and the mount option is prefixed with __DEVEL__.
256  *
257  * List of changed behaviors:
258  *
259  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260  *   and "name" are disallowed.
261  *
262  * - When mounting an existing superblock, mount options should match.
263  *
264  * - Remount is disallowed.
265  *
266  * - rename(2) is disallowed.
267  *
268  * - "tasks" is removed.  Everything should be at process granularity.  Use
269  *   "cgroup.procs" instead.
270  *
271  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
272  *   recycled inbetween reads.
273  *
274  * - "release_agent" and "notify_on_release" are removed.  Replacement
275  *   notification mechanism will be implemented.
276  *
277  * - "cgroup.clone_children" is removed.
278  *
279  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
280  *   and its descendants contain no task; otherwise, 1.  The file also
281  *   generates kernfs notification which can be monitored through poll and
282  *   [di]notify when the value of the file changes.
283  *
284  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285  *   take masks of ancestors with non-empty cpus/mems, instead of being
286  *   moved to an ancestor.
287  *
288  * - cpuset: a task can be moved into an empty cpuset, and again it takes
289  *   masks of ancestors.
290  *
291  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292  *   is not created.
293  *
294  * - blkcg: blk-throttle becomes properly hierarchical.
295  *
296  * - debug: disallowed on the default hierarchy.
297  */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 	return cgrp->root == &cgrp_dfl_root;
301 }
302 
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 			    gfp_t gfp_mask)
306 {
307 	int ret;
308 
309 	idr_preload(gfp_mask);
310 	spin_lock_bh(&cgroup_idr_lock);
311 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 	spin_unlock_bh(&cgroup_idr_lock);
313 	idr_preload_end();
314 	return ret;
315 }
316 
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 	void *ret;
320 
321 	spin_lock_bh(&cgroup_idr_lock);
322 	ret = idr_replace(idr, ptr, id);
323 	spin_unlock_bh(&cgroup_idr_lock);
324 	return ret;
325 }
326 
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 	spin_lock_bh(&cgroup_idr_lock);
330 	idr_remove(idr, id);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 }
333 
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 	return cgrp->nr_populated_csets;
337 }
338 
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 	return cgrp->dom_cgrp != cgrp;
342 }
343 
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 	/*
348 	 * Root isn't under domain level resource control exempting it from
349 	 * the no-internal-process constraint, so it can serve as a thread
350 	 * root and a parent of resource domains at the same time.
351 	 */
352 	return !cgroup_parent(cgrp);
353 }
354 
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 	/* mixables don't care */
359 	if (cgroup_is_mixable(cgrp))
360 		return true;
361 
362 	/* domain roots can't be nested under threaded */
363 	if (cgroup_is_threaded(cgrp))
364 		return false;
365 
366 	/* can only have either domain or threaded children */
367 	if (cgrp->nr_populated_domain_children)
368 		return false;
369 
370 	/* and no domain controllers can be enabled */
371 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 		return false;
373 
374 	return true;
375 }
376 
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 	/* thread root should be a domain */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* a domain w/ threaded children is a thread root */
385 	if (cgrp->nr_threaded_children)
386 		return true;
387 
388 	/*
389 	 * A domain which has tasks and explicit threaded controllers
390 	 * enabled is a thread root.
391 	 */
392 	if (cgroup_has_tasks(cgrp) &&
393 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 		return true;
395 
396 	return false;
397 }
398 
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 	/* the cgroup itself can be a thread root */
403 	if (cgroup_is_threaded(cgrp))
404 		return false;
405 
406 	/* but the ancestors can't be unless mixable */
407 	while ((cgrp = cgroup_parent(cgrp))) {
408 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 			return false;
410 		if (cgroup_is_threaded(cgrp))
411 			return false;
412 	}
413 
414 	return true;
415 }
416 
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 	struct cgroup *parent = cgroup_parent(cgrp);
421 	u16 root_ss_mask = cgrp->root->subsys_mask;
422 
423 	if (parent) {
424 		u16 ss_mask = parent->subtree_control;
425 
426 		/* threaded cgroups can only have threaded controllers */
427 		if (cgroup_is_threaded(cgrp))
428 			ss_mask &= cgrp_dfl_threaded_ss_mask;
429 		return ss_mask;
430 	}
431 
432 	if (cgroup_on_dfl(cgrp))
433 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 				  cgrp_dfl_implicit_ss_mask);
435 	return root_ss_mask;
436 }
437 
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_ss_mask;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	return cgrp->root->subsys_mask;
453 }
454 
455 /**
456  * cgroup_css - obtain a cgroup's css for the specified subsystem
457  * @cgrp: the cgroup of interest
458  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459  *
460  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
461  * function must be called either under cgroup_mutex or rcu_read_lock() and
462  * the caller is responsible for pinning the returned css if it wants to
463  * keep accessing it outside the said locks.  This function may return
464  * %NULL if @cgrp doesn't have @subsys_id enabled.
465  */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 					      struct cgroup_subsys *ss)
468 {
469 	if (ss)
470 		return rcu_dereference_check(cgrp->subsys[ss->id],
471 					lockdep_is_held(&cgroup_mutex));
472 	else
473 		return &cgrp->self;
474 }
475 
476 /**
477  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest
480  *
481  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
482  * or is offline, %NULL is returned.
483  */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 						     struct cgroup_subsys *ss)
486 {
487 	struct cgroup_subsys_state *css;
488 
489 	rcu_read_lock();
490 	css = cgroup_css(cgrp, ss);
491 	if (css && !css_tryget_online(css))
492 		css = NULL;
493 	rcu_read_unlock();
494 
495 	return css;
496 }
497 
498 /**
499  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500  * @cgrp: the cgroup of interest
501  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502  *
503  * Similar to cgroup_css() but returns the effective css, which is defined
504  * as the matching css of the nearest ancestor including self which has @ss
505  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
506  * function is guaranteed to return non-NULL css.
507  */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 							struct cgroup_subsys *ss)
510 {
511 	lockdep_assert_held(&cgroup_mutex);
512 
513 	if (!ss)
514 		return &cgrp->self;
515 
516 	/*
517 	 * This function is used while updating css associations and thus
518 	 * can't test the csses directly.  Test ss_mask.
519 	 */
520 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 		cgrp = cgroup_parent(cgrp);
522 		if (!cgrp)
523 			return NULL;
524 	}
525 
526 	return cgroup_css(cgrp, ss);
527 }
528 
529 /**
530  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531  * @cgrp: the cgroup of interest
532  * @ss: the subsystem of interest
533  *
534  * Find and get the effective css of @cgrp for @ss.  The effective css is
535  * defined as the matching css of the nearest ancestor including self which
536  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
537  * the root css is returned, so this function always returns a valid css.
538  *
539  * The returned css is not guaranteed to be online, and therefore it is the
540  * callers responsiblity to tryget a reference for it.
541  */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 					 struct cgroup_subsys *ss)
544 {
545 	struct cgroup_subsys_state *css;
546 
547 	do {
548 		css = cgroup_css(cgrp, ss);
549 
550 		if (css)
551 			return css;
552 		cgrp = cgroup_parent(cgrp);
553 	} while (cgrp);
554 
555 	return init_css_set.subsys[ss->id];
556 }
557 
558 /**
559  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  * The returned css must be put using css_put().
568  */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 					     struct cgroup_subsys *ss)
571 {
572 	struct cgroup_subsys_state *css;
573 
574 	rcu_read_lock();
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css && css_tryget_online(css))
580 			goto out_unlock;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	css = init_css_set.subsys[ss->id];
585 	css_get(css);
586 out_unlock:
587 	rcu_read_unlock();
588 	return css;
589 }
590 
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 	css_get(&cgrp->self);
595 }
596 
597 /**
598  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599  * is responsible for taking the css_set_lock.
600  * @cgrp: the cgroup in question
601  */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 	int count = 0;
605 	struct cgrp_cset_link *link;
606 
607 	lockdep_assert_held(&css_set_lock);
608 
609 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 		count += link->cset->nr_tasks;
611 
612 	return count;
613 }
614 
615 /**
616  * cgroup_task_count - count the number of tasks in a cgroup.
617  * @cgrp: the cgroup in question
618  */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 	int count;
622 
623 	spin_lock_irq(&css_set_lock);
624 	count = __cgroup_task_count(cgrp);
625 	spin_unlock_irq(&css_set_lock);
626 
627 	return count;
628 }
629 
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 	struct cgroup *cgrp = of->kn->parent->priv;
633 	struct cftype *cft = of_cft(of);
634 
635 	/*
636 	 * This is open and unprotected implementation of cgroup_css().
637 	 * seq_css() is only called from a kernfs file operation which has
638 	 * an active reference on the file.  Because all the subsystem
639 	 * files are drained before a css is disassociated with a cgroup,
640 	 * the matching css from the cgroup's subsys table is guaranteed to
641 	 * be and stay valid until the enclosing operation is complete.
642 	 */
643 	if (cft->ss)
644 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 	else
646 		return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649 
650 /**
651  * for_each_css - iterate all css's of a cgroup
652  * @css: the iteration cursor
653  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654  * @cgrp: the target cgroup to iterate css's of
655  *
656  * Should be called under cgroup_[tree_]mutex.
657  */
658 #define for_each_css(css, ssid, cgrp)					\
659 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
660 		if (!((css) = rcu_dereference_check(			\
661 				(cgrp)->subsys[(ssid)],			\
662 				lockdep_is_held(&cgroup_mutex)))) { }	\
663 		else
664 
665 /**
666  * for_each_e_css - iterate all effective css's of a cgroup
667  * @css: the iteration cursor
668  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669  * @cgrp: the target cgroup to iterate css's of
670  *
671  * Should be called under cgroup_[tree_]mutex.
672  */
673 #define for_each_e_css(css, ssid, cgrp)					    \
674 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
675 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
676 						   cgroup_subsys[(ssid)]))) \
677 			;						    \
678 		else
679 
680 /**
681  * do_each_subsys_mask - filter for_each_subsys with a bitmask
682  * @ss: the iteration cursor
683  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684  * @ss_mask: the bitmask
685  *
686  * The block will only run for cases where the ssid-th bit (1 << ssid) of
687  * @ss_mask is set.
688  */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
690 	unsigned long __ss_mask = (ss_mask);				\
691 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
692 		(ssid) = 0;						\
693 		break;							\
694 	}								\
695 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
696 		(ss) = cgroup_subsys[ssid];				\
697 		{
698 
699 #define while_each_subsys_mask()					\
700 		}							\
701 	}								\
702 } while (false)
703 
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp)				\
706 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 		if (({ lockdep_assert_held(&cgroup_mutex);		\
708 		       cgroup_is_dead(child); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
723 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
724 		if (({ lockdep_assert_held(&cgroup_mutex);		\
725 		       (dsct) = (d_css)->cgroup;			\
726 		       cgroup_is_dead(dsct); }))			\
727 			;						\
728 		else
729 
730 /*
731  * The default css_set - used by init and its children prior to any
732  * hierarchies being mounted. It contains a pointer to the root state
733  * for each subsystem. Also used to anchor the list of css_sets. Not
734  * reference-counted, to improve performance when child cgroups
735  * haven't been created.
736  */
737 struct css_set init_css_set = {
738 	.refcount		= REFCOUNT_INIT(1),
739 	.dom_cset		= &init_css_set,
740 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
741 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
742 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
743 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
744 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
745 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
746 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
748 
749 	/*
750 	 * The following field is re-initialized when this cset gets linked
751 	 * in cgroup_init().  However, let's initialize the field
752 	 * statically too so that the default cgroup can be accessed safely
753 	 * early during boot.
754 	 */
755 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
756 };
757 
758 static int css_set_count	= 1;	/* 1 for init_css_set */
759 
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 	return cset->dom_cset != cset;
763 }
764 
765 /**
766  * css_set_populated - does a css_set contain any tasks?
767  * @cset: target css_set
768  *
769  * css_set_populated() should be the same as !!cset->nr_tasks at steady
770  * state. However, css_set_populated() can be called while a task is being
771  * added to or removed from the linked list before the nr_tasks is
772  * properly updated. Hence, we can't just look at ->nr_tasks here.
773  */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 	lockdep_assert_held(&css_set_lock);
777 
778 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780 
781 /**
782  * cgroup_update_populated - update the populated count of a cgroup
783  * @cgrp: the target cgroup
784  * @populated: inc or dec populated count
785  *
786  * One of the css_sets associated with @cgrp is either getting its first
787  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
788  * count is propagated towards root so that a given cgroup's
789  * nr_populated_children is zero iff none of its descendants contain any
790  * tasks.
791  *
792  * @cgrp's interface file "cgroup.populated" is zero if both
793  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794  * 1 otherwise.  When the sum changes from or to zero, userland is notified
795  * that the content of the interface file has changed.  This can be used to
796  * detect when @cgrp and its descendants become populated or empty.
797  */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 	struct cgroup *child = NULL;
801 	int adj = populated ? 1 : -1;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	do {
806 		bool was_populated = cgroup_is_populated(cgrp);
807 
808 		if (!child) {
809 			cgrp->nr_populated_csets += adj;
810 		} else {
811 			if (cgroup_is_threaded(child))
812 				cgrp->nr_populated_threaded_children += adj;
813 			else
814 				cgrp->nr_populated_domain_children += adj;
815 		}
816 
817 		if (was_populated == cgroup_is_populated(cgrp))
818 			break;
819 
820 		cgroup1_check_for_release(cgrp);
821 		TRACE_CGROUP_PATH(notify_populated, cgrp,
822 				  cgroup_is_populated(cgrp));
823 		cgroup_file_notify(&cgrp->events_file);
824 
825 		child = cgrp;
826 		cgrp = cgroup_parent(cgrp);
827 	} while (cgrp);
828 }
829 
830 /**
831  * css_set_update_populated - update populated state of a css_set
832  * @cset: target css_set
833  * @populated: whether @cset is populated or depopulated
834  *
835  * @cset is either getting the first task or losing the last.  Update the
836  * populated counters of all associated cgroups accordingly.
837  */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 	struct cgrp_cset_link *link;
841 
842 	lockdep_assert_held(&css_set_lock);
843 
844 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 		cgroup_update_populated(link->cgrp, populated);
846 }
847 
848 /*
849  * @task is leaving, advance task iterators which are pointing to it so
850  * that they can resume at the next position.  Advancing an iterator might
851  * remove it from the list, use safe walk.  See css_task_iter_skip() for
852  * details.
853  */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 				    struct task_struct *task)
856 {
857 	struct css_task_iter *it, *pos;
858 
859 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 		css_task_iter_skip(it, task);
861 }
862 
863 /**
864  * css_set_move_task - move a task from one css_set to another
865  * @task: task being moved
866  * @from_cset: css_set @task currently belongs to (may be NULL)
867  * @to_cset: new css_set @task is being moved to (may be NULL)
868  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869  *
870  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
871  * css_set, @from_cset can be NULL.  If @task is being disassociated
872  * instead of moved, @to_cset can be NULL.
873  *
874  * This function automatically handles populated counter updates and
875  * css_task_iter adjustments but the caller is responsible for managing
876  * @from_cset and @to_cset's reference counts.
877  */
878 static void css_set_move_task(struct task_struct *task,
879 			      struct css_set *from_cset, struct css_set *to_cset,
880 			      bool use_mg_tasks)
881 {
882 	lockdep_assert_held(&css_set_lock);
883 
884 	if (to_cset && !css_set_populated(to_cset))
885 		css_set_update_populated(to_cset, true);
886 
887 	if (from_cset) {
888 		WARN_ON_ONCE(list_empty(&task->cg_list));
889 
890 		css_set_skip_task_iters(from_cset, task);
891 		list_del_init(&task->cg_list);
892 		if (!css_set_populated(from_cset))
893 			css_set_update_populated(from_cset, false);
894 	} else {
895 		WARN_ON_ONCE(!list_empty(&task->cg_list));
896 	}
897 
898 	if (to_cset) {
899 		/*
900 		 * We are synchronized through cgroup_threadgroup_rwsem
901 		 * against PF_EXITING setting such that we can't race
902 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
903 		 */
904 		WARN_ON_ONCE(task->flags & PF_EXITING);
905 
906 		cgroup_move_task(task, to_cset);
907 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
908 							     &to_cset->tasks);
909 	}
910 }
911 
912 /*
913  * hash table for cgroup groups. This improves the performance to find
914  * an existing css_set. This hash doesn't (currently) take into
915  * account cgroups in empty hierarchies.
916  */
917 #define CSS_SET_HASH_BITS	7
918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
919 
920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
921 {
922 	unsigned long key = 0UL;
923 	struct cgroup_subsys *ss;
924 	int i;
925 
926 	for_each_subsys(ss, i)
927 		key += (unsigned long)css[i];
928 	key = (key >> 16) ^ key;
929 
930 	return key;
931 }
932 
933 void put_css_set_locked(struct css_set *cset)
934 {
935 	struct cgrp_cset_link *link, *tmp_link;
936 	struct cgroup_subsys *ss;
937 	int ssid;
938 
939 	lockdep_assert_held(&css_set_lock);
940 
941 	if (!refcount_dec_and_test(&cset->refcount))
942 		return;
943 
944 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
945 
946 	/* This css_set is dead. unlink it and release cgroup and css refs */
947 	for_each_subsys(ss, ssid) {
948 		list_del(&cset->e_cset_node[ssid]);
949 		css_put(cset->subsys[ssid]);
950 	}
951 	hash_del(&cset->hlist);
952 	css_set_count--;
953 
954 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
955 		list_del(&link->cset_link);
956 		list_del(&link->cgrp_link);
957 		if (cgroup_parent(link->cgrp))
958 			cgroup_put(link->cgrp);
959 		kfree(link);
960 	}
961 
962 	if (css_set_threaded(cset)) {
963 		list_del(&cset->threaded_csets_node);
964 		put_css_set_locked(cset->dom_cset);
965 	}
966 
967 	kfree_rcu(cset, rcu_head);
968 }
969 
970 /**
971  * compare_css_sets - helper function for find_existing_css_set().
972  * @cset: candidate css_set being tested
973  * @old_cset: existing css_set for a task
974  * @new_cgrp: cgroup that's being entered by the task
975  * @template: desired set of css pointers in css_set (pre-calculated)
976  *
977  * Returns true if "cset" matches "old_cset" except for the hierarchy
978  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
979  */
980 static bool compare_css_sets(struct css_set *cset,
981 			     struct css_set *old_cset,
982 			     struct cgroup *new_cgrp,
983 			     struct cgroup_subsys_state *template[])
984 {
985 	struct cgroup *new_dfl_cgrp;
986 	struct list_head *l1, *l2;
987 
988 	/*
989 	 * On the default hierarchy, there can be csets which are
990 	 * associated with the same set of cgroups but different csses.
991 	 * Let's first ensure that csses match.
992 	 */
993 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
994 		return false;
995 
996 
997 	/* @cset's domain should match the default cgroup's */
998 	if (cgroup_on_dfl(new_cgrp))
999 		new_dfl_cgrp = new_cgrp;
1000 	else
1001 		new_dfl_cgrp = old_cset->dfl_cgrp;
1002 
1003 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1004 		return false;
1005 
1006 	/*
1007 	 * Compare cgroup pointers in order to distinguish between
1008 	 * different cgroups in hierarchies.  As different cgroups may
1009 	 * share the same effective css, this comparison is always
1010 	 * necessary.
1011 	 */
1012 	l1 = &cset->cgrp_links;
1013 	l2 = &old_cset->cgrp_links;
1014 	while (1) {
1015 		struct cgrp_cset_link *link1, *link2;
1016 		struct cgroup *cgrp1, *cgrp2;
1017 
1018 		l1 = l1->next;
1019 		l2 = l2->next;
1020 		/* See if we reached the end - both lists are equal length. */
1021 		if (l1 == &cset->cgrp_links) {
1022 			BUG_ON(l2 != &old_cset->cgrp_links);
1023 			break;
1024 		} else {
1025 			BUG_ON(l2 == &old_cset->cgrp_links);
1026 		}
1027 		/* Locate the cgroups associated with these links. */
1028 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1029 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1030 		cgrp1 = link1->cgrp;
1031 		cgrp2 = link2->cgrp;
1032 		/* Hierarchies should be linked in the same order. */
1033 		BUG_ON(cgrp1->root != cgrp2->root);
1034 
1035 		/*
1036 		 * If this hierarchy is the hierarchy of the cgroup
1037 		 * that's changing, then we need to check that this
1038 		 * css_set points to the new cgroup; if it's any other
1039 		 * hierarchy, then this css_set should point to the
1040 		 * same cgroup as the old css_set.
1041 		 */
1042 		if (cgrp1->root == new_cgrp->root) {
1043 			if (cgrp1 != new_cgrp)
1044 				return false;
1045 		} else {
1046 			if (cgrp1 != cgrp2)
1047 				return false;
1048 		}
1049 	}
1050 	return true;
1051 }
1052 
1053 /**
1054  * find_existing_css_set - init css array and find the matching css_set
1055  * @old_cset: the css_set that we're using before the cgroup transition
1056  * @cgrp: the cgroup that we're moving into
1057  * @template: out param for the new set of csses, should be clear on entry
1058  */
1059 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1060 					struct cgroup *cgrp,
1061 					struct cgroup_subsys_state *template[])
1062 {
1063 	struct cgroup_root *root = cgrp->root;
1064 	struct cgroup_subsys *ss;
1065 	struct css_set *cset;
1066 	unsigned long key;
1067 	int i;
1068 
1069 	/*
1070 	 * Build the set of subsystem state objects that we want to see in the
1071 	 * new css_set. while subsystems can change globally, the entries here
1072 	 * won't change, so no need for locking.
1073 	 */
1074 	for_each_subsys(ss, i) {
1075 		if (root->subsys_mask & (1UL << i)) {
1076 			/*
1077 			 * @ss is in this hierarchy, so we want the
1078 			 * effective css from @cgrp.
1079 			 */
1080 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1081 		} else {
1082 			/*
1083 			 * @ss is not in this hierarchy, so we don't want
1084 			 * to change the css.
1085 			 */
1086 			template[i] = old_cset->subsys[i];
1087 		}
1088 	}
1089 
1090 	key = css_set_hash(template);
1091 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1092 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1093 			continue;
1094 
1095 		/* This css_set matches what we need */
1096 		return cset;
1097 	}
1098 
1099 	/* No existing cgroup group matched */
1100 	return NULL;
1101 }
1102 
1103 static void free_cgrp_cset_links(struct list_head *links_to_free)
1104 {
1105 	struct cgrp_cset_link *link, *tmp_link;
1106 
1107 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1108 		list_del(&link->cset_link);
1109 		kfree(link);
1110 	}
1111 }
1112 
1113 /**
1114  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115  * @count: the number of links to allocate
1116  * @tmp_links: list_head the allocated links are put on
1117  *
1118  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119  * through ->cset_link.  Returns 0 on success or -errno.
1120  */
1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1122 {
1123 	struct cgrp_cset_link *link;
1124 	int i;
1125 
1126 	INIT_LIST_HEAD(tmp_links);
1127 
1128 	for (i = 0; i < count; i++) {
1129 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1130 		if (!link) {
1131 			free_cgrp_cset_links(tmp_links);
1132 			return -ENOMEM;
1133 		}
1134 		list_add(&link->cset_link, tmp_links);
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * link_css_set - a helper function to link a css_set to a cgroup
1141  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142  * @cset: the css_set to be linked
1143  * @cgrp: the destination cgroup
1144  */
1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1146 			 struct cgroup *cgrp)
1147 {
1148 	struct cgrp_cset_link *link;
1149 
1150 	BUG_ON(list_empty(tmp_links));
1151 
1152 	if (cgroup_on_dfl(cgrp))
1153 		cset->dfl_cgrp = cgrp;
1154 
1155 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1156 	link->cset = cset;
1157 	link->cgrp = cgrp;
1158 
1159 	/*
1160 	 * Always add links to the tail of the lists so that the lists are
1161 	 * in choronological order.
1162 	 */
1163 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1164 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1165 
1166 	if (cgroup_parent(cgrp))
1167 		cgroup_get_live(cgrp);
1168 }
1169 
1170 /**
1171  * find_css_set - return a new css_set with one cgroup updated
1172  * @old_cset: the baseline css_set
1173  * @cgrp: the cgroup to be updated
1174  *
1175  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176  * substituted into the appropriate hierarchy.
1177  */
1178 static struct css_set *find_css_set(struct css_set *old_cset,
1179 				    struct cgroup *cgrp)
1180 {
1181 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1182 	struct css_set *cset;
1183 	struct list_head tmp_links;
1184 	struct cgrp_cset_link *link;
1185 	struct cgroup_subsys *ss;
1186 	unsigned long key;
1187 	int ssid;
1188 
1189 	lockdep_assert_held(&cgroup_mutex);
1190 
1191 	/* First see if we already have a cgroup group that matches
1192 	 * the desired set */
1193 	spin_lock_irq(&css_set_lock);
1194 	cset = find_existing_css_set(old_cset, cgrp, template);
1195 	if (cset)
1196 		get_css_set(cset);
1197 	spin_unlock_irq(&css_set_lock);
1198 
1199 	if (cset)
1200 		return cset;
1201 
1202 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1203 	if (!cset)
1204 		return NULL;
1205 
1206 	/* Allocate all the cgrp_cset_link objects that we'll need */
1207 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1208 		kfree(cset);
1209 		return NULL;
1210 	}
1211 
1212 	refcount_set(&cset->refcount, 1);
1213 	cset->dom_cset = cset;
1214 	INIT_LIST_HEAD(&cset->tasks);
1215 	INIT_LIST_HEAD(&cset->mg_tasks);
1216 	INIT_LIST_HEAD(&cset->dying_tasks);
1217 	INIT_LIST_HEAD(&cset->task_iters);
1218 	INIT_LIST_HEAD(&cset->threaded_csets);
1219 	INIT_HLIST_NODE(&cset->hlist);
1220 	INIT_LIST_HEAD(&cset->cgrp_links);
1221 	INIT_LIST_HEAD(&cset->mg_preload_node);
1222 	INIT_LIST_HEAD(&cset->mg_node);
1223 
1224 	/* Copy the set of subsystem state objects generated in
1225 	 * find_existing_css_set() */
1226 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1227 
1228 	spin_lock_irq(&css_set_lock);
1229 	/* Add reference counts and links from the new css_set. */
1230 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1231 		struct cgroup *c = link->cgrp;
1232 
1233 		if (c->root == cgrp->root)
1234 			c = cgrp;
1235 		link_css_set(&tmp_links, cset, c);
1236 	}
1237 
1238 	BUG_ON(!list_empty(&tmp_links));
1239 
1240 	css_set_count++;
1241 
1242 	/* Add @cset to the hash table */
1243 	key = css_set_hash(cset->subsys);
1244 	hash_add(css_set_table, &cset->hlist, key);
1245 
1246 	for_each_subsys(ss, ssid) {
1247 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1248 
1249 		list_add_tail(&cset->e_cset_node[ssid],
1250 			      &css->cgroup->e_csets[ssid]);
1251 		css_get(css);
1252 	}
1253 
1254 	spin_unlock_irq(&css_set_lock);
1255 
1256 	/*
1257 	 * If @cset should be threaded, look up the matching dom_cset and
1258 	 * link them up.  We first fully initialize @cset then look for the
1259 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1260 	 * to stay empty until we return.
1261 	 */
1262 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1263 		struct css_set *dcset;
1264 
1265 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1266 		if (!dcset) {
1267 			put_css_set(cset);
1268 			return NULL;
1269 		}
1270 
1271 		spin_lock_irq(&css_set_lock);
1272 		cset->dom_cset = dcset;
1273 		list_add_tail(&cset->threaded_csets_node,
1274 			      &dcset->threaded_csets);
1275 		spin_unlock_irq(&css_set_lock);
1276 	}
1277 
1278 	return cset;
1279 }
1280 
1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1282 {
1283 	struct cgroup *root_cgrp = kf_root->kn->priv;
1284 
1285 	return root_cgrp->root;
1286 }
1287 
1288 static int cgroup_init_root_id(struct cgroup_root *root)
1289 {
1290 	int id;
1291 
1292 	lockdep_assert_held(&cgroup_mutex);
1293 
1294 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1295 	if (id < 0)
1296 		return id;
1297 
1298 	root->hierarchy_id = id;
1299 	return 0;
1300 }
1301 
1302 static void cgroup_exit_root_id(struct cgroup_root *root)
1303 {
1304 	lockdep_assert_held(&cgroup_mutex);
1305 
1306 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1307 }
1308 
1309 void cgroup_free_root(struct cgroup_root *root)
1310 {
1311 	kfree(root);
1312 }
1313 
1314 static void cgroup_destroy_root(struct cgroup_root *root)
1315 {
1316 	struct cgroup *cgrp = &root->cgrp;
1317 	struct cgrp_cset_link *link, *tmp_link;
1318 
1319 	trace_cgroup_destroy_root(root);
1320 
1321 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1322 
1323 	BUG_ON(atomic_read(&root->nr_cgrps));
1324 	BUG_ON(!list_empty(&cgrp->self.children));
1325 
1326 	/* Rebind all subsystems back to the default hierarchy */
1327 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1328 
1329 	/*
1330 	 * Release all the links from cset_links to this hierarchy's
1331 	 * root cgroup
1332 	 */
1333 	spin_lock_irq(&css_set_lock);
1334 
1335 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1336 		list_del(&link->cset_link);
1337 		list_del(&link->cgrp_link);
1338 		kfree(link);
1339 	}
1340 
1341 	spin_unlock_irq(&css_set_lock);
1342 
1343 	if (!list_empty(&root->root_list)) {
1344 		list_del(&root->root_list);
1345 		cgroup_root_count--;
1346 	}
1347 
1348 	cgroup_exit_root_id(root);
1349 
1350 	mutex_unlock(&cgroup_mutex);
1351 
1352 	kernfs_destroy_root(root->kf_root);
1353 	cgroup_free_root(root);
1354 }
1355 
1356 /*
1357  * look up cgroup associated with current task's cgroup namespace on the
1358  * specified hierarchy
1359  */
1360 static struct cgroup *
1361 current_cgns_cgroup_from_root(struct cgroup_root *root)
1362 {
1363 	struct cgroup *res = NULL;
1364 	struct css_set *cset;
1365 
1366 	lockdep_assert_held(&css_set_lock);
1367 
1368 	rcu_read_lock();
1369 
1370 	cset = current->nsproxy->cgroup_ns->root_cset;
1371 	if (cset == &init_css_set) {
1372 		res = &root->cgrp;
1373 	} else if (root == &cgrp_dfl_root) {
1374 		res = cset->dfl_cgrp;
1375 	} else {
1376 		struct cgrp_cset_link *link;
1377 
1378 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1379 			struct cgroup *c = link->cgrp;
1380 
1381 			if (c->root == root) {
1382 				res = c;
1383 				break;
1384 			}
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 
1389 	BUG_ON(!res);
1390 	return res;
1391 }
1392 
1393 /* look up cgroup associated with given css_set on the specified hierarchy */
1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1395 					    struct cgroup_root *root)
1396 {
1397 	struct cgroup *res = NULL;
1398 
1399 	lockdep_assert_held(&cgroup_mutex);
1400 	lockdep_assert_held(&css_set_lock);
1401 
1402 	if (cset == &init_css_set) {
1403 		res = &root->cgrp;
1404 	} else if (root == &cgrp_dfl_root) {
1405 		res = cset->dfl_cgrp;
1406 	} else {
1407 		struct cgrp_cset_link *link;
1408 
1409 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410 			struct cgroup *c = link->cgrp;
1411 
1412 			if (c->root == root) {
1413 				res = c;
1414 				break;
1415 			}
1416 		}
1417 	}
1418 
1419 	BUG_ON(!res);
1420 	return res;
1421 }
1422 
1423 /*
1424  * Return the cgroup for "task" from the given hierarchy. Must be
1425  * called with cgroup_mutex and css_set_lock held.
1426  */
1427 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1428 				     struct cgroup_root *root)
1429 {
1430 	/*
1431 	 * No need to lock the task - since we hold css_set_lock the
1432 	 * task can't change groups.
1433 	 */
1434 	return cset_cgroup_from_root(task_css_set(task), root);
1435 }
1436 
1437 /*
1438  * A task must hold cgroup_mutex to modify cgroups.
1439  *
1440  * Any task can increment and decrement the count field without lock.
1441  * So in general, code holding cgroup_mutex can't rely on the count
1442  * field not changing.  However, if the count goes to zero, then only
1443  * cgroup_attach_task() can increment it again.  Because a count of zero
1444  * means that no tasks are currently attached, therefore there is no
1445  * way a task attached to that cgroup can fork (the other way to
1446  * increment the count).  So code holding cgroup_mutex can safely
1447  * assume that if the count is zero, it will stay zero. Similarly, if
1448  * a task holds cgroup_mutex on a cgroup with zero count, it
1449  * knows that the cgroup won't be removed, as cgroup_rmdir()
1450  * needs that mutex.
1451  *
1452  * A cgroup can only be deleted if both its 'count' of using tasks
1453  * is zero, and its list of 'children' cgroups is empty.  Since all
1454  * tasks in the system use _some_ cgroup, and since there is always at
1455  * least one task in the system (init, pid == 1), therefore, root cgroup
1456  * always has either children cgroups and/or using tasks.  So we don't
1457  * need a special hack to ensure that root cgroup cannot be deleted.
1458  *
1459  * P.S.  One more locking exception.  RCU is used to guard the
1460  * update of a tasks cgroup pointer by cgroup_attach_task()
1461  */
1462 
1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1464 
1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1466 			      char *buf)
1467 {
1468 	struct cgroup_subsys *ss = cft->ss;
1469 
1470 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1471 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1472 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1473 
1474 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1475 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1476 			 cft->name);
1477 	} else {
1478 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1479 	}
1480 	return buf;
1481 }
1482 
1483 /**
1484  * cgroup_file_mode - deduce file mode of a control file
1485  * @cft: the control file in question
1486  *
1487  * S_IRUGO for read, S_IWUSR for write.
1488  */
1489 static umode_t cgroup_file_mode(const struct cftype *cft)
1490 {
1491 	umode_t mode = 0;
1492 
1493 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1494 		mode |= S_IRUGO;
1495 
1496 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1497 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1498 			mode |= S_IWUGO;
1499 		else
1500 			mode |= S_IWUSR;
1501 	}
1502 
1503 	return mode;
1504 }
1505 
1506 /**
1507  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508  * @subtree_control: the new subtree_control mask to consider
1509  * @this_ss_mask: available subsystems
1510  *
1511  * On the default hierarchy, a subsystem may request other subsystems to be
1512  * enabled together through its ->depends_on mask.  In such cases, more
1513  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1514  *
1515  * This function calculates which subsystems need to be enabled if
1516  * @subtree_control is to be applied while restricted to @this_ss_mask.
1517  */
1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1519 {
1520 	u16 cur_ss_mask = subtree_control;
1521 	struct cgroup_subsys *ss;
1522 	int ssid;
1523 
1524 	lockdep_assert_held(&cgroup_mutex);
1525 
1526 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1527 
1528 	while (true) {
1529 		u16 new_ss_mask = cur_ss_mask;
1530 
1531 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1532 			new_ss_mask |= ss->depends_on;
1533 		} while_each_subsys_mask();
1534 
1535 		/*
1536 		 * Mask out subsystems which aren't available.  This can
1537 		 * happen only if some depended-upon subsystems were bound
1538 		 * to non-default hierarchies.
1539 		 */
1540 		new_ss_mask &= this_ss_mask;
1541 
1542 		if (new_ss_mask == cur_ss_mask)
1543 			break;
1544 		cur_ss_mask = new_ss_mask;
1545 	}
1546 
1547 	return cur_ss_mask;
1548 }
1549 
1550 /**
1551  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552  * @kn: the kernfs_node being serviced
1553  *
1554  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555  * the method finishes if locking succeeded.  Note that once this function
1556  * returns the cgroup returned by cgroup_kn_lock_live() may become
1557  * inaccessible any time.  If the caller intends to continue to access the
1558  * cgroup, it should pin it before invoking this function.
1559  */
1560 void cgroup_kn_unlock(struct kernfs_node *kn)
1561 {
1562 	struct cgroup *cgrp;
1563 
1564 	if (kernfs_type(kn) == KERNFS_DIR)
1565 		cgrp = kn->priv;
1566 	else
1567 		cgrp = kn->parent->priv;
1568 
1569 	mutex_unlock(&cgroup_mutex);
1570 
1571 	kernfs_unbreak_active_protection(kn);
1572 	cgroup_put(cgrp);
1573 }
1574 
1575 /**
1576  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577  * @kn: the kernfs_node being serviced
1578  * @drain_offline: perform offline draining on the cgroup
1579  *
1580  * This helper is to be used by a cgroup kernfs method currently servicing
1581  * @kn.  It breaks the active protection, performs cgroup locking and
1582  * verifies that the associated cgroup is alive.  Returns the cgroup if
1583  * alive; otherwise, %NULL.  A successful return should be undone by a
1584  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1585  * cgroup is drained of offlining csses before return.
1586  *
1587  * Any cgroup kernfs method implementation which requires locking the
1588  * associated cgroup should use this helper.  It avoids nesting cgroup
1589  * locking under kernfs active protection and allows all kernfs operations
1590  * including self-removal.
1591  */
1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1593 {
1594 	struct cgroup *cgrp;
1595 
1596 	if (kernfs_type(kn) == KERNFS_DIR)
1597 		cgrp = kn->priv;
1598 	else
1599 		cgrp = kn->parent->priv;
1600 
1601 	/*
1602 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1603 	 * active_ref.  cgroup liveliness check alone provides enough
1604 	 * protection against removal.  Ensure @cgrp stays accessible and
1605 	 * break the active_ref protection.
1606 	 */
1607 	if (!cgroup_tryget(cgrp))
1608 		return NULL;
1609 	kernfs_break_active_protection(kn);
1610 
1611 	if (drain_offline)
1612 		cgroup_lock_and_drain_offline(cgrp);
1613 	else
1614 		mutex_lock(&cgroup_mutex);
1615 
1616 	if (!cgroup_is_dead(cgrp))
1617 		return cgrp;
1618 
1619 	cgroup_kn_unlock(kn);
1620 	return NULL;
1621 }
1622 
1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1624 {
1625 	char name[CGROUP_FILE_NAME_MAX];
1626 
1627 	lockdep_assert_held(&cgroup_mutex);
1628 
1629 	if (cft->file_offset) {
1630 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1631 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1632 
1633 		spin_lock_irq(&cgroup_file_kn_lock);
1634 		cfile->kn = NULL;
1635 		spin_unlock_irq(&cgroup_file_kn_lock);
1636 
1637 		del_timer_sync(&cfile->notify_timer);
1638 	}
1639 
1640 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1641 }
1642 
1643 /**
1644  * css_clear_dir - remove subsys files in a cgroup directory
1645  * @css: taget css
1646  */
1647 static void css_clear_dir(struct cgroup_subsys_state *css)
1648 {
1649 	struct cgroup *cgrp = css->cgroup;
1650 	struct cftype *cfts;
1651 
1652 	if (!(css->flags & CSS_VISIBLE))
1653 		return;
1654 
1655 	css->flags &= ~CSS_VISIBLE;
1656 
1657 	if (!css->ss) {
1658 		if (cgroup_on_dfl(cgrp))
1659 			cfts = cgroup_base_files;
1660 		else
1661 			cfts = cgroup1_base_files;
1662 
1663 		cgroup_addrm_files(css, cgrp, cfts, false);
1664 	} else {
1665 		list_for_each_entry(cfts, &css->ss->cfts, node)
1666 			cgroup_addrm_files(css, cgrp, cfts, false);
1667 	}
1668 }
1669 
1670 /**
1671  * css_populate_dir - create subsys files in a cgroup directory
1672  * @css: target css
1673  *
1674  * On failure, no file is added.
1675  */
1676 static int css_populate_dir(struct cgroup_subsys_state *css)
1677 {
1678 	struct cgroup *cgrp = css->cgroup;
1679 	struct cftype *cfts, *failed_cfts;
1680 	int ret;
1681 
1682 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1683 		return 0;
1684 
1685 	if (!css->ss) {
1686 		if (cgroup_on_dfl(cgrp))
1687 			cfts = cgroup_base_files;
1688 		else
1689 			cfts = cgroup1_base_files;
1690 
1691 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1692 		if (ret < 0)
1693 			return ret;
1694 	} else {
1695 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1696 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1697 			if (ret < 0) {
1698 				failed_cfts = cfts;
1699 				goto err;
1700 			}
1701 		}
1702 	}
1703 
1704 	css->flags |= CSS_VISIBLE;
1705 
1706 	return 0;
1707 err:
1708 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1709 		if (cfts == failed_cfts)
1710 			break;
1711 		cgroup_addrm_files(css, cgrp, cfts, false);
1712 	}
1713 	return ret;
1714 }
1715 
1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1717 {
1718 	struct cgroup *dcgrp = &dst_root->cgrp;
1719 	struct cgroup_subsys *ss;
1720 	int ssid, i, ret;
1721 
1722 	lockdep_assert_held(&cgroup_mutex);
1723 
1724 	do_each_subsys_mask(ss, ssid, ss_mask) {
1725 		/*
1726 		 * If @ss has non-root csses attached to it, can't move.
1727 		 * If @ss is an implicit controller, it is exempt from this
1728 		 * rule and can be stolen.
1729 		 */
1730 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1731 		    !ss->implicit_on_dfl)
1732 			return -EBUSY;
1733 
1734 		/* can't move between two non-dummy roots either */
1735 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1736 			return -EBUSY;
1737 	} while_each_subsys_mask();
1738 
1739 	do_each_subsys_mask(ss, ssid, ss_mask) {
1740 		struct cgroup_root *src_root = ss->root;
1741 		struct cgroup *scgrp = &src_root->cgrp;
1742 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1743 		struct css_set *cset;
1744 
1745 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1746 
1747 		/* disable from the source */
1748 		src_root->subsys_mask &= ~(1 << ssid);
1749 		WARN_ON(cgroup_apply_control(scgrp));
1750 		cgroup_finalize_control(scgrp, 0);
1751 
1752 		/* rebind */
1753 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1754 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1755 		ss->root = dst_root;
1756 		css->cgroup = dcgrp;
1757 
1758 		spin_lock_irq(&css_set_lock);
1759 		hash_for_each(css_set_table, i, cset, hlist)
1760 			list_move_tail(&cset->e_cset_node[ss->id],
1761 				       &dcgrp->e_csets[ss->id]);
1762 		spin_unlock_irq(&css_set_lock);
1763 
1764 		/* default hierarchy doesn't enable controllers by default */
1765 		dst_root->subsys_mask |= 1 << ssid;
1766 		if (dst_root == &cgrp_dfl_root) {
1767 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1768 		} else {
1769 			dcgrp->subtree_control |= 1 << ssid;
1770 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1771 		}
1772 
1773 		ret = cgroup_apply_control(dcgrp);
1774 		if (ret)
1775 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1776 				ss->name, ret);
1777 
1778 		if (ss->bind)
1779 			ss->bind(css);
1780 	} while_each_subsys_mask();
1781 
1782 	kernfs_activate(dcgrp->kn);
1783 	return 0;
1784 }
1785 
1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1787 		     struct kernfs_root *kf_root)
1788 {
1789 	int len = 0;
1790 	char *buf = NULL;
1791 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1792 	struct cgroup *ns_cgroup;
1793 
1794 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1795 	if (!buf)
1796 		return -ENOMEM;
1797 
1798 	spin_lock_irq(&css_set_lock);
1799 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1800 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1801 	spin_unlock_irq(&css_set_lock);
1802 
1803 	if (len >= PATH_MAX)
1804 		len = -ERANGE;
1805 	else if (len > 0) {
1806 		seq_escape(sf, buf, " \t\n\\");
1807 		len = 0;
1808 	}
1809 	kfree(buf);
1810 	return len;
1811 }
1812 
1813 enum cgroup2_param {
1814 	Opt_nsdelegate,
1815 	Opt_memory_localevents,
1816 	Opt_memory_recursiveprot,
1817 	nr__cgroup2_params
1818 };
1819 
1820 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1821 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1822 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1823 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1824 	{}
1825 };
1826 
1827 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1828 {
1829 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1830 	struct fs_parse_result result;
1831 	int opt;
1832 
1833 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1834 	if (opt < 0)
1835 		return opt;
1836 
1837 	switch (opt) {
1838 	case Opt_nsdelegate:
1839 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1840 		return 0;
1841 	case Opt_memory_localevents:
1842 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1843 		return 0;
1844 	case Opt_memory_recursiveprot:
1845 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1846 		return 0;
1847 	}
1848 	return -EINVAL;
1849 }
1850 
1851 static void apply_cgroup_root_flags(unsigned int root_flags)
1852 {
1853 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1854 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1855 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1856 		else
1857 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1858 
1859 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1860 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861 		else
1862 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1863 
1864 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1865 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1866 		else
1867 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1868 	}
1869 }
1870 
1871 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1872 {
1873 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1874 		seq_puts(seq, ",nsdelegate");
1875 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1876 		seq_puts(seq, ",memory_localevents");
1877 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1878 		seq_puts(seq, ",memory_recursiveprot");
1879 	return 0;
1880 }
1881 
1882 static int cgroup_reconfigure(struct fs_context *fc)
1883 {
1884 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1885 
1886 	apply_cgroup_root_flags(ctx->flags);
1887 	return 0;
1888 }
1889 
1890 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1891 {
1892 	struct cgroup_subsys *ss;
1893 	int ssid;
1894 
1895 	INIT_LIST_HEAD(&cgrp->self.sibling);
1896 	INIT_LIST_HEAD(&cgrp->self.children);
1897 	INIT_LIST_HEAD(&cgrp->cset_links);
1898 	INIT_LIST_HEAD(&cgrp->pidlists);
1899 	mutex_init(&cgrp->pidlist_mutex);
1900 	cgrp->self.cgroup = cgrp;
1901 	cgrp->self.flags |= CSS_ONLINE;
1902 	cgrp->dom_cgrp = cgrp;
1903 	cgrp->max_descendants = INT_MAX;
1904 	cgrp->max_depth = INT_MAX;
1905 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1906 	prev_cputime_init(&cgrp->prev_cputime);
1907 
1908 	for_each_subsys(ss, ssid)
1909 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1910 
1911 	init_waitqueue_head(&cgrp->offline_waitq);
1912 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1913 }
1914 
1915 void init_cgroup_root(struct cgroup_fs_context *ctx)
1916 {
1917 	struct cgroup_root *root = ctx->root;
1918 	struct cgroup *cgrp = &root->cgrp;
1919 
1920 	INIT_LIST_HEAD(&root->root_list);
1921 	atomic_set(&root->nr_cgrps, 1);
1922 	cgrp->root = root;
1923 	init_cgroup_housekeeping(cgrp);
1924 
1925 	root->flags = ctx->flags;
1926 	if (ctx->release_agent)
1927 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1928 	if (ctx->name)
1929 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1930 	if (ctx->cpuset_clone_children)
1931 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1932 }
1933 
1934 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1935 {
1936 	LIST_HEAD(tmp_links);
1937 	struct cgroup *root_cgrp = &root->cgrp;
1938 	struct kernfs_syscall_ops *kf_sops;
1939 	struct css_set *cset;
1940 	int i, ret;
1941 
1942 	lockdep_assert_held(&cgroup_mutex);
1943 
1944 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1945 			      0, GFP_KERNEL);
1946 	if (ret)
1947 		goto out;
1948 
1949 	/*
1950 	 * We're accessing css_set_count without locking css_set_lock here,
1951 	 * but that's OK - it can only be increased by someone holding
1952 	 * cgroup_lock, and that's us.  Later rebinding may disable
1953 	 * controllers on the default hierarchy and thus create new csets,
1954 	 * which can't be more than the existing ones.  Allocate 2x.
1955 	 */
1956 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1957 	if (ret)
1958 		goto cancel_ref;
1959 
1960 	ret = cgroup_init_root_id(root);
1961 	if (ret)
1962 		goto cancel_ref;
1963 
1964 	kf_sops = root == &cgrp_dfl_root ?
1965 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1966 
1967 	root->kf_root = kernfs_create_root(kf_sops,
1968 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1969 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1970 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1971 					   root_cgrp);
1972 	if (IS_ERR(root->kf_root)) {
1973 		ret = PTR_ERR(root->kf_root);
1974 		goto exit_root_id;
1975 	}
1976 	root_cgrp->kn = root->kf_root->kn;
1977 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1978 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1979 
1980 	ret = css_populate_dir(&root_cgrp->self);
1981 	if (ret)
1982 		goto destroy_root;
1983 
1984 	ret = rebind_subsystems(root, ss_mask);
1985 	if (ret)
1986 		goto destroy_root;
1987 
1988 	ret = cgroup_bpf_inherit(root_cgrp);
1989 	WARN_ON_ONCE(ret);
1990 
1991 	trace_cgroup_setup_root(root);
1992 
1993 	/*
1994 	 * There must be no failure case after here, since rebinding takes
1995 	 * care of subsystems' refcounts, which are explicitly dropped in
1996 	 * the failure exit path.
1997 	 */
1998 	list_add(&root->root_list, &cgroup_roots);
1999 	cgroup_root_count++;
2000 
2001 	/*
2002 	 * Link the root cgroup in this hierarchy into all the css_set
2003 	 * objects.
2004 	 */
2005 	spin_lock_irq(&css_set_lock);
2006 	hash_for_each(css_set_table, i, cset, hlist) {
2007 		link_css_set(&tmp_links, cset, root_cgrp);
2008 		if (css_set_populated(cset))
2009 			cgroup_update_populated(root_cgrp, true);
2010 	}
2011 	spin_unlock_irq(&css_set_lock);
2012 
2013 	BUG_ON(!list_empty(&root_cgrp->self.children));
2014 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2015 
2016 	kernfs_activate(root_cgrp->kn);
2017 	ret = 0;
2018 	goto out;
2019 
2020 destroy_root:
2021 	kernfs_destroy_root(root->kf_root);
2022 	root->kf_root = NULL;
2023 exit_root_id:
2024 	cgroup_exit_root_id(root);
2025 cancel_ref:
2026 	percpu_ref_exit(&root_cgrp->self.refcnt);
2027 out:
2028 	free_cgrp_cset_links(&tmp_links);
2029 	return ret;
2030 }
2031 
2032 int cgroup_do_get_tree(struct fs_context *fc)
2033 {
2034 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2035 	int ret;
2036 
2037 	ctx->kfc.root = ctx->root->kf_root;
2038 	if (fc->fs_type == &cgroup2_fs_type)
2039 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2040 	else
2041 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2042 	ret = kernfs_get_tree(fc);
2043 
2044 	/*
2045 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2046 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2047 	 */
2048 	if (!ret && ctx->ns != &init_cgroup_ns) {
2049 		struct dentry *nsdentry;
2050 		struct super_block *sb = fc->root->d_sb;
2051 		struct cgroup *cgrp;
2052 
2053 		mutex_lock(&cgroup_mutex);
2054 		spin_lock_irq(&css_set_lock);
2055 
2056 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2057 
2058 		spin_unlock_irq(&css_set_lock);
2059 		mutex_unlock(&cgroup_mutex);
2060 
2061 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2062 		dput(fc->root);
2063 		if (IS_ERR(nsdentry)) {
2064 			deactivate_locked_super(sb);
2065 			ret = PTR_ERR(nsdentry);
2066 			nsdentry = NULL;
2067 		}
2068 		fc->root = nsdentry;
2069 	}
2070 
2071 	if (!ctx->kfc.new_sb_created)
2072 		cgroup_put(&ctx->root->cgrp);
2073 
2074 	return ret;
2075 }
2076 
2077 /*
2078  * Destroy a cgroup filesystem context.
2079  */
2080 static void cgroup_fs_context_free(struct fs_context *fc)
2081 {
2082 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2083 
2084 	kfree(ctx->name);
2085 	kfree(ctx->release_agent);
2086 	put_cgroup_ns(ctx->ns);
2087 	kernfs_free_fs_context(fc);
2088 	kfree(ctx);
2089 }
2090 
2091 static int cgroup_get_tree(struct fs_context *fc)
2092 {
2093 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 	int ret;
2095 
2096 	cgrp_dfl_visible = true;
2097 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2098 	ctx->root = &cgrp_dfl_root;
2099 
2100 	ret = cgroup_do_get_tree(fc);
2101 	if (!ret)
2102 		apply_cgroup_root_flags(ctx->flags);
2103 	return ret;
2104 }
2105 
2106 static const struct fs_context_operations cgroup_fs_context_ops = {
2107 	.free		= cgroup_fs_context_free,
2108 	.parse_param	= cgroup2_parse_param,
2109 	.get_tree	= cgroup_get_tree,
2110 	.reconfigure	= cgroup_reconfigure,
2111 };
2112 
2113 static const struct fs_context_operations cgroup1_fs_context_ops = {
2114 	.free		= cgroup_fs_context_free,
2115 	.parse_param	= cgroup1_parse_param,
2116 	.get_tree	= cgroup1_get_tree,
2117 	.reconfigure	= cgroup1_reconfigure,
2118 };
2119 
2120 /*
2121  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2122  * we select the namespace we're going to use.
2123  */
2124 static int cgroup_init_fs_context(struct fs_context *fc)
2125 {
2126 	struct cgroup_fs_context *ctx;
2127 
2128 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2129 	if (!ctx)
2130 		return -ENOMEM;
2131 
2132 	ctx->ns = current->nsproxy->cgroup_ns;
2133 	get_cgroup_ns(ctx->ns);
2134 	fc->fs_private = &ctx->kfc;
2135 	if (fc->fs_type == &cgroup2_fs_type)
2136 		fc->ops = &cgroup_fs_context_ops;
2137 	else
2138 		fc->ops = &cgroup1_fs_context_ops;
2139 	put_user_ns(fc->user_ns);
2140 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2141 	fc->global = true;
2142 	return 0;
2143 }
2144 
2145 static void cgroup_kill_sb(struct super_block *sb)
2146 {
2147 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2148 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2149 
2150 	/*
2151 	 * If @root doesn't have any children, start killing it.
2152 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2153 	 * cgroup_mount() may wait for @root's release.
2154 	 *
2155 	 * And don't kill the default root.
2156 	 */
2157 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2158 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2159 		percpu_ref_kill(&root->cgrp.self.refcnt);
2160 	cgroup_put(&root->cgrp);
2161 	kernfs_kill_sb(sb);
2162 }
2163 
2164 struct file_system_type cgroup_fs_type = {
2165 	.name			= "cgroup",
2166 	.init_fs_context	= cgroup_init_fs_context,
2167 	.parameters		= cgroup1_fs_parameters,
2168 	.kill_sb		= cgroup_kill_sb,
2169 	.fs_flags		= FS_USERNS_MOUNT,
2170 };
2171 
2172 static struct file_system_type cgroup2_fs_type = {
2173 	.name			= "cgroup2",
2174 	.init_fs_context	= cgroup_init_fs_context,
2175 	.parameters		= cgroup2_fs_parameters,
2176 	.kill_sb		= cgroup_kill_sb,
2177 	.fs_flags		= FS_USERNS_MOUNT,
2178 };
2179 
2180 #ifdef CONFIG_CPUSETS
2181 static const struct fs_context_operations cpuset_fs_context_ops = {
2182 	.get_tree	= cgroup1_get_tree,
2183 	.free		= cgroup_fs_context_free,
2184 };
2185 
2186 /*
2187  * This is ugly, but preserves the userspace API for existing cpuset
2188  * users. If someone tries to mount the "cpuset" filesystem, we
2189  * silently switch it to mount "cgroup" instead
2190  */
2191 static int cpuset_init_fs_context(struct fs_context *fc)
2192 {
2193 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2194 	struct cgroup_fs_context *ctx;
2195 	int err;
2196 
2197 	err = cgroup_init_fs_context(fc);
2198 	if (err) {
2199 		kfree(agent);
2200 		return err;
2201 	}
2202 
2203 	fc->ops = &cpuset_fs_context_ops;
2204 
2205 	ctx = cgroup_fc2context(fc);
2206 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2207 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2208 	ctx->release_agent = agent;
2209 
2210 	get_filesystem(&cgroup_fs_type);
2211 	put_filesystem(fc->fs_type);
2212 	fc->fs_type = &cgroup_fs_type;
2213 
2214 	return 0;
2215 }
2216 
2217 static struct file_system_type cpuset_fs_type = {
2218 	.name			= "cpuset",
2219 	.init_fs_context	= cpuset_init_fs_context,
2220 	.fs_flags		= FS_USERNS_MOUNT,
2221 };
2222 #endif
2223 
2224 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2225 			  struct cgroup_namespace *ns)
2226 {
2227 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2228 
2229 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2230 }
2231 
2232 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2233 		   struct cgroup_namespace *ns)
2234 {
2235 	int ret;
2236 
2237 	mutex_lock(&cgroup_mutex);
2238 	spin_lock_irq(&css_set_lock);
2239 
2240 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2241 
2242 	spin_unlock_irq(&css_set_lock);
2243 	mutex_unlock(&cgroup_mutex);
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2248 
2249 /**
2250  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2251  * @task: target task
2252  * @buf: the buffer to write the path into
2253  * @buflen: the length of the buffer
2254  *
2255  * Determine @task's cgroup on the first (the one with the lowest non-zero
2256  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2257  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2258  * cgroup controller callbacks.
2259  *
2260  * Return value is the same as kernfs_path().
2261  */
2262 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2263 {
2264 	struct cgroup_root *root;
2265 	struct cgroup *cgrp;
2266 	int hierarchy_id = 1;
2267 	int ret;
2268 
2269 	mutex_lock(&cgroup_mutex);
2270 	spin_lock_irq(&css_set_lock);
2271 
2272 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2273 
2274 	if (root) {
2275 		cgrp = task_cgroup_from_root(task, root);
2276 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2277 	} else {
2278 		/* if no hierarchy exists, everyone is in "/" */
2279 		ret = strlcpy(buf, "/", buflen);
2280 	}
2281 
2282 	spin_unlock_irq(&css_set_lock);
2283 	mutex_unlock(&cgroup_mutex);
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(task_cgroup_path);
2287 
2288 /**
2289  * cgroup_migrate_add_task - add a migration target task to a migration context
2290  * @task: target task
2291  * @mgctx: target migration context
2292  *
2293  * Add @task, which is a migration target, to @mgctx->tset.  This function
2294  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2295  * should have been added as a migration source and @task->cg_list will be
2296  * moved from the css_set's tasks list to mg_tasks one.
2297  */
2298 static void cgroup_migrate_add_task(struct task_struct *task,
2299 				    struct cgroup_mgctx *mgctx)
2300 {
2301 	struct css_set *cset;
2302 
2303 	lockdep_assert_held(&css_set_lock);
2304 
2305 	/* @task either already exited or can't exit until the end */
2306 	if (task->flags & PF_EXITING)
2307 		return;
2308 
2309 	/* cgroup_threadgroup_rwsem protects racing against forks */
2310 	WARN_ON_ONCE(list_empty(&task->cg_list));
2311 
2312 	cset = task_css_set(task);
2313 	if (!cset->mg_src_cgrp)
2314 		return;
2315 
2316 	mgctx->tset.nr_tasks++;
2317 
2318 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2319 	if (list_empty(&cset->mg_node))
2320 		list_add_tail(&cset->mg_node,
2321 			      &mgctx->tset.src_csets);
2322 	if (list_empty(&cset->mg_dst_cset->mg_node))
2323 		list_add_tail(&cset->mg_dst_cset->mg_node,
2324 			      &mgctx->tset.dst_csets);
2325 }
2326 
2327 /**
2328  * cgroup_taskset_first - reset taskset and return the first task
2329  * @tset: taskset of interest
2330  * @dst_cssp: output variable for the destination css
2331  *
2332  * @tset iteration is initialized and the first task is returned.
2333  */
2334 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2335 					 struct cgroup_subsys_state **dst_cssp)
2336 {
2337 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2338 	tset->cur_task = NULL;
2339 
2340 	return cgroup_taskset_next(tset, dst_cssp);
2341 }
2342 
2343 /**
2344  * cgroup_taskset_next - iterate to the next task in taskset
2345  * @tset: taskset of interest
2346  * @dst_cssp: output variable for the destination css
2347  *
2348  * Return the next task in @tset.  Iteration must have been initialized
2349  * with cgroup_taskset_first().
2350  */
2351 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2352 					struct cgroup_subsys_state **dst_cssp)
2353 {
2354 	struct css_set *cset = tset->cur_cset;
2355 	struct task_struct *task = tset->cur_task;
2356 
2357 	while (&cset->mg_node != tset->csets) {
2358 		if (!task)
2359 			task = list_first_entry(&cset->mg_tasks,
2360 						struct task_struct, cg_list);
2361 		else
2362 			task = list_next_entry(task, cg_list);
2363 
2364 		if (&task->cg_list != &cset->mg_tasks) {
2365 			tset->cur_cset = cset;
2366 			tset->cur_task = task;
2367 
2368 			/*
2369 			 * This function may be called both before and
2370 			 * after cgroup_taskset_migrate().  The two cases
2371 			 * can be distinguished by looking at whether @cset
2372 			 * has its ->mg_dst_cset set.
2373 			 */
2374 			if (cset->mg_dst_cset)
2375 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2376 			else
2377 				*dst_cssp = cset->subsys[tset->ssid];
2378 
2379 			return task;
2380 		}
2381 
2382 		cset = list_next_entry(cset, mg_node);
2383 		task = NULL;
2384 	}
2385 
2386 	return NULL;
2387 }
2388 
2389 /**
2390  * cgroup_taskset_migrate - migrate a taskset
2391  * @mgctx: migration context
2392  *
2393  * Migrate tasks in @mgctx as setup by migration preparation functions.
2394  * This function fails iff one of the ->can_attach callbacks fails and
2395  * guarantees that either all or none of the tasks in @mgctx are migrated.
2396  * @mgctx is consumed regardless of success.
2397  */
2398 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2399 {
2400 	struct cgroup_taskset *tset = &mgctx->tset;
2401 	struct cgroup_subsys *ss;
2402 	struct task_struct *task, *tmp_task;
2403 	struct css_set *cset, *tmp_cset;
2404 	int ssid, failed_ssid, ret;
2405 
2406 	/* check that we can legitimately attach to the cgroup */
2407 	if (tset->nr_tasks) {
2408 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2409 			if (ss->can_attach) {
2410 				tset->ssid = ssid;
2411 				ret = ss->can_attach(tset);
2412 				if (ret) {
2413 					failed_ssid = ssid;
2414 					goto out_cancel_attach;
2415 				}
2416 			}
2417 		} while_each_subsys_mask();
2418 	}
2419 
2420 	/*
2421 	 * Now that we're guaranteed success, proceed to move all tasks to
2422 	 * the new cgroup.  There are no failure cases after here, so this
2423 	 * is the commit point.
2424 	 */
2425 	spin_lock_irq(&css_set_lock);
2426 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2427 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2428 			struct css_set *from_cset = task_css_set(task);
2429 			struct css_set *to_cset = cset->mg_dst_cset;
2430 
2431 			get_css_set(to_cset);
2432 			to_cset->nr_tasks++;
2433 			css_set_move_task(task, from_cset, to_cset, true);
2434 			from_cset->nr_tasks--;
2435 			/*
2436 			 * If the source or destination cgroup is frozen,
2437 			 * the task might require to change its state.
2438 			 */
2439 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2440 						    to_cset->dfl_cgrp);
2441 			put_css_set_locked(from_cset);
2442 
2443 		}
2444 	}
2445 	spin_unlock_irq(&css_set_lock);
2446 
2447 	/*
2448 	 * Migration is committed, all target tasks are now on dst_csets.
2449 	 * Nothing is sensitive to fork() after this point.  Notify
2450 	 * controllers that migration is complete.
2451 	 */
2452 	tset->csets = &tset->dst_csets;
2453 
2454 	if (tset->nr_tasks) {
2455 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2456 			if (ss->attach) {
2457 				tset->ssid = ssid;
2458 				ss->attach(tset);
2459 			}
2460 		} while_each_subsys_mask();
2461 	}
2462 
2463 	ret = 0;
2464 	goto out_release_tset;
2465 
2466 out_cancel_attach:
2467 	if (tset->nr_tasks) {
2468 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2469 			if (ssid == failed_ssid)
2470 				break;
2471 			if (ss->cancel_attach) {
2472 				tset->ssid = ssid;
2473 				ss->cancel_attach(tset);
2474 			}
2475 		} while_each_subsys_mask();
2476 	}
2477 out_release_tset:
2478 	spin_lock_irq(&css_set_lock);
2479 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2480 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2481 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2482 		list_del_init(&cset->mg_node);
2483 	}
2484 	spin_unlock_irq(&css_set_lock);
2485 
2486 	/*
2487 	 * Re-initialize the cgroup_taskset structure in case it is reused
2488 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2489 	 * iteration.
2490 	 */
2491 	tset->nr_tasks = 0;
2492 	tset->csets    = &tset->src_csets;
2493 	return ret;
2494 }
2495 
2496 /**
2497  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2498  * @dst_cgrp: destination cgroup to test
2499  *
2500  * On the default hierarchy, except for the mixable, (possible) thread root
2501  * and threaded cgroups, subtree_control must be zero for migration
2502  * destination cgroups with tasks so that child cgroups don't compete
2503  * against tasks.
2504  */
2505 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2506 {
2507 	/* v1 doesn't have any restriction */
2508 	if (!cgroup_on_dfl(dst_cgrp))
2509 		return 0;
2510 
2511 	/* verify @dst_cgrp can host resources */
2512 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2513 		return -EOPNOTSUPP;
2514 
2515 	/* mixables don't care */
2516 	if (cgroup_is_mixable(dst_cgrp))
2517 		return 0;
2518 
2519 	/*
2520 	 * If @dst_cgrp is already or can become a thread root or is
2521 	 * threaded, it doesn't matter.
2522 	 */
2523 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2524 		return 0;
2525 
2526 	/* apply no-internal-process constraint */
2527 	if (dst_cgrp->subtree_control)
2528 		return -EBUSY;
2529 
2530 	return 0;
2531 }
2532 
2533 /**
2534  * cgroup_migrate_finish - cleanup after attach
2535  * @mgctx: migration context
2536  *
2537  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2538  * those functions for details.
2539  */
2540 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2541 {
2542 	LIST_HEAD(preloaded);
2543 	struct css_set *cset, *tmp_cset;
2544 
2545 	lockdep_assert_held(&cgroup_mutex);
2546 
2547 	spin_lock_irq(&css_set_lock);
2548 
2549 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2550 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2551 
2552 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2553 		cset->mg_src_cgrp = NULL;
2554 		cset->mg_dst_cgrp = NULL;
2555 		cset->mg_dst_cset = NULL;
2556 		list_del_init(&cset->mg_preload_node);
2557 		put_css_set_locked(cset);
2558 	}
2559 
2560 	spin_unlock_irq(&css_set_lock);
2561 }
2562 
2563 /**
2564  * cgroup_migrate_add_src - add a migration source css_set
2565  * @src_cset: the source css_set to add
2566  * @dst_cgrp: the destination cgroup
2567  * @mgctx: migration context
2568  *
2569  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2570  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2571  * up by cgroup_migrate_finish().
2572  *
2573  * This function may be called without holding cgroup_threadgroup_rwsem
2574  * even if the target is a process.  Threads may be created and destroyed
2575  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2576  * into play and the preloaded css_sets are guaranteed to cover all
2577  * migrations.
2578  */
2579 void cgroup_migrate_add_src(struct css_set *src_cset,
2580 			    struct cgroup *dst_cgrp,
2581 			    struct cgroup_mgctx *mgctx)
2582 {
2583 	struct cgroup *src_cgrp;
2584 
2585 	lockdep_assert_held(&cgroup_mutex);
2586 	lockdep_assert_held(&css_set_lock);
2587 
2588 	/*
2589 	 * If ->dead, @src_set is associated with one or more dead cgroups
2590 	 * and doesn't contain any migratable tasks.  Ignore it early so
2591 	 * that the rest of migration path doesn't get confused by it.
2592 	 */
2593 	if (src_cset->dead)
2594 		return;
2595 
2596 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2597 
2598 	if (!list_empty(&src_cset->mg_preload_node))
2599 		return;
2600 
2601 	WARN_ON(src_cset->mg_src_cgrp);
2602 	WARN_ON(src_cset->mg_dst_cgrp);
2603 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2604 	WARN_ON(!list_empty(&src_cset->mg_node));
2605 
2606 	src_cset->mg_src_cgrp = src_cgrp;
2607 	src_cset->mg_dst_cgrp = dst_cgrp;
2608 	get_css_set(src_cset);
2609 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2610 }
2611 
2612 /**
2613  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2614  * @mgctx: migration context
2615  *
2616  * Tasks are about to be moved and all the source css_sets have been
2617  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2618  * pins all destination css_sets, links each to its source, and append them
2619  * to @mgctx->preloaded_dst_csets.
2620  *
2621  * This function must be called after cgroup_migrate_add_src() has been
2622  * called on each migration source css_set.  After migration is performed
2623  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2624  * @mgctx.
2625  */
2626 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2627 {
2628 	struct css_set *src_cset, *tmp_cset;
2629 
2630 	lockdep_assert_held(&cgroup_mutex);
2631 
2632 	/* look up the dst cset for each src cset and link it to src */
2633 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2634 				 mg_preload_node) {
2635 		struct css_set *dst_cset;
2636 		struct cgroup_subsys *ss;
2637 		int ssid;
2638 
2639 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2640 		if (!dst_cset)
2641 			return -ENOMEM;
2642 
2643 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2644 
2645 		/*
2646 		 * If src cset equals dst, it's noop.  Drop the src.
2647 		 * cgroup_migrate() will skip the cset too.  Note that we
2648 		 * can't handle src == dst as some nodes are used by both.
2649 		 */
2650 		if (src_cset == dst_cset) {
2651 			src_cset->mg_src_cgrp = NULL;
2652 			src_cset->mg_dst_cgrp = NULL;
2653 			list_del_init(&src_cset->mg_preload_node);
2654 			put_css_set(src_cset);
2655 			put_css_set(dst_cset);
2656 			continue;
2657 		}
2658 
2659 		src_cset->mg_dst_cset = dst_cset;
2660 
2661 		if (list_empty(&dst_cset->mg_preload_node))
2662 			list_add_tail(&dst_cset->mg_preload_node,
2663 				      &mgctx->preloaded_dst_csets);
2664 		else
2665 			put_css_set(dst_cset);
2666 
2667 		for_each_subsys(ss, ssid)
2668 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2669 				mgctx->ss_mask |= 1 << ssid;
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 /**
2676  * cgroup_migrate - migrate a process or task to a cgroup
2677  * @leader: the leader of the process or the task to migrate
2678  * @threadgroup: whether @leader points to the whole process or a single task
2679  * @mgctx: migration context
2680  *
2681  * Migrate a process or task denoted by @leader.  If migrating a process,
2682  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2683  * responsible for invoking cgroup_migrate_add_src() and
2684  * cgroup_migrate_prepare_dst() on the targets before invoking this
2685  * function and following up with cgroup_migrate_finish().
2686  *
2687  * As long as a controller's ->can_attach() doesn't fail, this function is
2688  * guaranteed to succeed.  This means that, excluding ->can_attach()
2689  * failure, when migrating multiple targets, the success or failure can be
2690  * decided for all targets by invoking group_migrate_prepare_dst() before
2691  * actually starting migrating.
2692  */
2693 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2694 		   struct cgroup_mgctx *mgctx)
2695 {
2696 	struct task_struct *task;
2697 
2698 	/*
2699 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2700 	 * already PF_EXITING could be freed from underneath us unless we
2701 	 * take an rcu_read_lock.
2702 	 */
2703 	spin_lock_irq(&css_set_lock);
2704 	rcu_read_lock();
2705 	task = leader;
2706 	do {
2707 		cgroup_migrate_add_task(task, mgctx);
2708 		if (!threadgroup)
2709 			break;
2710 	} while_each_thread(leader, task);
2711 	rcu_read_unlock();
2712 	spin_unlock_irq(&css_set_lock);
2713 
2714 	return cgroup_migrate_execute(mgctx);
2715 }
2716 
2717 /**
2718  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2719  * @dst_cgrp: the cgroup to attach to
2720  * @leader: the task or the leader of the threadgroup to be attached
2721  * @threadgroup: attach the whole threadgroup?
2722  *
2723  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2724  */
2725 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2726 		       bool threadgroup)
2727 {
2728 	DEFINE_CGROUP_MGCTX(mgctx);
2729 	struct task_struct *task;
2730 	int ret = 0;
2731 
2732 	/* look up all src csets */
2733 	spin_lock_irq(&css_set_lock);
2734 	rcu_read_lock();
2735 	task = leader;
2736 	do {
2737 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2738 		if (!threadgroup)
2739 			break;
2740 	} while_each_thread(leader, task);
2741 	rcu_read_unlock();
2742 	spin_unlock_irq(&css_set_lock);
2743 
2744 	/* prepare dst csets and commit */
2745 	ret = cgroup_migrate_prepare_dst(&mgctx);
2746 	if (!ret)
2747 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2748 
2749 	cgroup_migrate_finish(&mgctx);
2750 
2751 	if (!ret)
2752 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2753 
2754 	return ret;
2755 }
2756 
2757 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2758 					     bool *locked)
2759 	__acquires(&cgroup_threadgroup_rwsem)
2760 {
2761 	struct task_struct *tsk;
2762 	pid_t pid;
2763 
2764 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2765 		return ERR_PTR(-EINVAL);
2766 
2767 	/*
2768 	 * If we migrate a single thread, we don't care about threadgroup
2769 	 * stability. If the thread is `current`, it won't exit(2) under our
2770 	 * hands or change PID through exec(2). We exclude
2771 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2772 	 * callers by cgroup_mutex.
2773 	 * Therefore, we can skip the global lock.
2774 	 */
2775 	lockdep_assert_held(&cgroup_mutex);
2776 	if (pid || threadgroup) {
2777 		percpu_down_write(&cgroup_threadgroup_rwsem);
2778 		*locked = true;
2779 	} else {
2780 		*locked = false;
2781 	}
2782 
2783 	rcu_read_lock();
2784 	if (pid) {
2785 		tsk = find_task_by_vpid(pid);
2786 		if (!tsk) {
2787 			tsk = ERR_PTR(-ESRCH);
2788 			goto out_unlock_threadgroup;
2789 		}
2790 	} else {
2791 		tsk = current;
2792 	}
2793 
2794 	if (threadgroup)
2795 		tsk = tsk->group_leader;
2796 
2797 	/*
2798 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2799 	 * If userland migrates such a kthread to a non-root cgroup, it can
2800 	 * become trapped in a cpuset, or RT kthread may be born in a
2801 	 * cgroup with no rt_runtime allocated.  Just say no.
2802 	 */
2803 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2804 		tsk = ERR_PTR(-EINVAL);
2805 		goto out_unlock_threadgroup;
2806 	}
2807 
2808 	get_task_struct(tsk);
2809 	goto out_unlock_rcu;
2810 
2811 out_unlock_threadgroup:
2812 	if (*locked) {
2813 		percpu_up_write(&cgroup_threadgroup_rwsem);
2814 		*locked = false;
2815 	}
2816 out_unlock_rcu:
2817 	rcu_read_unlock();
2818 	return tsk;
2819 }
2820 
2821 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2822 	__releases(&cgroup_threadgroup_rwsem)
2823 {
2824 	struct cgroup_subsys *ss;
2825 	int ssid;
2826 
2827 	/* release reference from cgroup_procs_write_start() */
2828 	put_task_struct(task);
2829 
2830 	if (locked)
2831 		percpu_up_write(&cgroup_threadgroup_rwsem);
2832 	for_each_subsys(ss, ssid)
2833 		if (ss->post_attach)
2834 			ss->post_attach();
2835 }
2836 
2837 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2838 {
2839 	struct cgroup_subsys *ss;
2840 	bool printed = false;
2841 	int ssid;
2842 
2843 	do_each_subsys_mask(ss, ssid, ss_mask) {
2844 		if (printed)
2845 			seq_putc(seq, ' ');
2846 		seq_puts(seq, ss->name);
2847 		printed = true;
2848 	} while_each_subsys_mask();
2849 	if (printed)
2850 		seq_putc(seq, '\n');
2851 }
2852 
2853 /* show controllers which are enabled from the parent */
2854 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2855 {
2856 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2857 
2858 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2859 	return 0;
2860 }
2861 
2862 /* show controllers which are enabled for a given cgroup's children */
2863 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2864 {
2865 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2866 
2867 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2868 	return 0;
2869 }
2870 
2871 /**
2872  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2873  * @cgrp: root of the subtree to update csses for
2874  *
2875  * @cgrp's control masks have changed and its subtree's css associations
2876  * need to be updated accordingly.  This function looks up all css_sets
2877  * which are attached to the subtree, creates the matching updated css_sets
2878  * and migrates the tasks to the new ones.
2879  */
2880 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2881 {
2882 	DEFINE_CGROUP_MGCTX(mgctx);
2883 	struct cgroup_subsys_state *d_css;
2884 	struct cgroup *dsct;
2885 	struct css_set *src_cset;
2886 	int ret;
2887 
2888 	lockdep_assert_held(&cgroup_mutex);
2889 
2890 	percpu_down_write(&cgroup_threadgroup_rwsem);
2891 
2892 	/* look up all csses currently attached to @cgrp's subtree */
2893 	spin_lock_irq(&css_set_lock);
2894 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2895 		struct cgrp_cset_link *link;
2896 
2897 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2898 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2899 	}
2900 	spin_unlock_irq(&css_set_lock);
2901 
2902 	/* NULL dst indicates self on default hierarchy */
2903 	ret = cgroup_migrate_prepare_dst(&mgctx);
2904 	if (ret)
2905 		goto out_finish;
2906 
2907 	spin_lock_irq(&css_set_lock);
2908 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2909 		struct task_struct *task, *ntask;
2910 
2911 		/* all tasks in src_csets need to be migrated */
2912 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2913 			cgroup_migrate_add_task(task, &mgctx);
2914 	}
2915 	spin_unlock_irq(&css_set_lock);
2916 
2917 	ret = cgroup_migrate_execute(&mgctx);
2918 out_finish:
2919 	cgroup_migrate_finish(&mgctx);
2920 	percpu_up_write(&cgroup_threadgroup_rwsem);
2921 	return ret;
2922 }
2923 
2924 /**
2925  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2926  * @cgrp: root of the target subtree
2927  *
2928  * Because css offlining is asynchronous, userland may try to re-enable a
2929  * controller while the previous css is still around.  This function grabs
2930  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2931  */
2932 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2933 	__acquires(&cgroup_mutex)
2934 {
2935 	struct cgroup *dsct;
2936 	struct cgroup_subsys_state *d_css;
2937 	struct cgroup_subsys *ss;
2938 	int ssid;
2939 
2940 restart:
2941 	mutex_lock(&cgroup_mutex);
2942 
2943 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2944 		for_each_subsys(ss, ssid) {
2945 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2946 			DEFINE_WAIT(wait);
2947 
2948 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2949 				continue;
2950 
2951 			cgroup_get_live(dsct);
2952 			prepare_to_wait(&dsct->offline_waitq, &wait,
2953 					TASK_UNINTERRUPTIBLE);
2954 
2955 			mutex_unlock(&cgroup_mutex);
2956 			schedule();
2957 			finish_wait(&dsct->offline_waitq, &wait);
2958 
2959 			cgroup_put(dsct);
2960 			goto restart;
2961 		}
2962 	}
2963 }
2964 
2965 /**
2966  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2967  * @cgrp: root of the target subtree
2968  *
2969  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2970  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2971  * itself.
2972  */
2973 static void cgroup_save_control(struct cgroup *cgrp)
2974 {
2975 	struct cgroup *dsct;
2976 	struct cgroup_subsys_state *d_css;
2977 
2978 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2979 		dsct->old_subtree_control = dsct->subtree_control;
2980 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2981 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2982 	}
2983 }
2984 
2985 /**
2986  * cgroup_propagate_control - refresh control masks of a subtree
2987  * @cgrp: root of the target subtree
2988  *
2989  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2990  * ->subtree_control and propagate controller availability through the
2991  * subtree so that descendants don't have unavailable controllers enabled.
2992  */
2993 static void cgroup_propagate_control(struct cgroup *cgrp)
2994 {
2995 	struct cgroup *dsct;
2996 	struct cgroup_subsys_state *d_css;
2997 
2998 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2999 		dsct->subtree_control &= cgroup_control(dsct);
3000 		dsct->subtree_ss_mask =
3001 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3002 						    cgroup_ss_mask(dsct));
3003 	}
3004 }
3005 
3006 /**
3007  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3008  * @cgrp: root of the target subtree
3009  *
3010  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3011  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3012  * itself.
3013  */
3014 static void cgroup_restore_control(struct cgroup *cgrp)
3015 {
3016 	struct cgroup *dsct;
3017 	struct cgroup_subsys_state *d_css;
3018 
3019 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3020 		dsct->subtree_control = dsct->old_subtree_control;
3021 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3022 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3023 	}
3024 }
3025 
3026 static bool css_visible(struct cgroup_subsys_state *css)
3027 {
3028 	struct cgroup_subsys *ss = css->ss;
3029 	struct cgroup *cgrp = css->cgroup;
3030 
3031 	if (cgroup_control(cgrp) & (1 << ss->id))
3032 		return true;
3033 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3034 		return false;
3035 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3036 }
3037 
3038 /**
3039  * cgroup_apply_control_enable - enable or show csses according to control
3040  * @cgrp: root of the target subtree
3041  *
3042  * Walk @cgrp's subtree and create new csses or make the existing ones
3043  * visible.  A css is created invisible if it's being implicitly enabled
3044  * through dependency.  An invisible css is made visible when the userland
3045  * explicitly enables it.
3046  *
3047  * Returns 0 on success, -errno on failure.  On failure, csses which have
3048  * been processed already aren't cleaned up.  The caller is responsible for
3049  * cleaning up with cgroup_apply_control_disable().
3050  */
3051 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3052 {
3053 	struct cgroup *dsct;
3054 	struct cgroup_subsys_state *d_css;
3055 	struct cgroup_subsys *ss;
3056 	int ssid, ret;
3057 
3058 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3059 		for_each_subsys(ss, ssid) {
3060 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3061 
3062 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3063 				continue;
3064 
3065 			if (!css) {
3066 				css = css_create(dsct, ss);
3067 				if (IS_ERR(css))
3068 					return PTR_ERR(css);
3069 			}
3070 
3071 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3072 
3073 			if (css_visible(css)) {
3074 				ret = css_populate_dir(css);
3075 				if (ret)
3076 					return ret;
3077 			}
3078 		}
3079 	}
3080 
3081 	return 0;
3082 }
3083 
3084 /**
3085  * cgroup_apply_control_disable - kill or hide csses according to control
3086  * @cgrp: root of the target subtree
3087  *
3088  * Walk @cgrp's subtree and kill and hide csses so that they match
3089  * cgroup_ss_mask() and cgroup_visible_mask().
3090  *
3091  * A css is hidden when the userland requests it to be disabled while other
3092  * subsystems are still depending on it.  The css must not actively control
3093  * resources and be in the vanilla state if it's made visible again later.
3094  * Controllers which may be depended upon should provide ->css_reset() for
3095  * this purpose.
3096  */
3097 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3098 {
3099 	struct cgroup *dsct;
3100 	struct cgroup_subsys_state *d_css;
3101 	struct cgroup_subsys *ss;
3102 	int ssid;
3103 
3104 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3105 		for_each_subsys(ss, ssid) {
3106 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3107 
3108 			if (!css)
3109 				continue;
3110 
3111 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3112 
3113 			if (css->parent &&
3114 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3115 				kill_css(css);
3116 			} else if (!css_visible(css)) {
3117 				css_clear_dir(css);
3118 				if (ss->css_reset)
3119 					ss->css_reset(css);
3120 			}
3121 		}
3122 	}
3123 }
3124 
3125 /**
3126  * cgroup_apply_control - apply control mask updates to the subtree
3127  * @cgrp: root of the target subtree
3128  *
3129  * subsystems can be enabled and disabled in a subtree using the following
3130  * steps.
3131  *
3132  * 1. Call cgroup_save_control() to stash the current state.
3133  * 2. Update ->subtree_control masks in the subtree as desired.
3134  * 3. Call cgroup_apply_control() to apply the changes.
3135  * 4. Optionally perform other related operations.
3136  * 5. Call cgroup_finalize_control() to finish up.
3137  *
3138  * This function implements step 3 and propagates the mask changes
3139  * throughout @cgrp's subtree, updates csses accordingly and perform
3140  * process migrations.
3141  */
3142 static int cgroup_apply_control(struct cgroup *cgrp)
3143 {
3144 	int ret;
3145 
3146 	cgroup_propagate_control(cgrp);
3147 
3148 	ret = cgroup_apply_control_enable(cgrp);
3149 	if (ret)
3150 		return ret;
3151 
3152 	/*
3153 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3154 	 * making the following cgroup_update_dfl_csses() properly update
3155 	 * css associations of all tasks in the subtree.
3156 	 */
3157 	ret = cgroup_update_dfl_csses(cgrp);
3158 	if (ret)
3159 		return ret;
3160 
3161 	return 0;
3162 }
3163 
3164 /**
3165  * cgroup_finalize_control - finalize control mask update
3166  * @cgrp: root of the target subtree
3167  * @ret: the result of the update
3168  *
3169  * Finalize control mask update.  See cgroup_apply_control() for more info.
3170  */
3171 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3172 {
3173 	if (ret) {
3174 		cgroup_restore_control(cgrp);
3175 		cgroup_propagate_control(cgrp);
3176 	}
3177 
3178 	cgroup_apply_control_disable(cgrp);
3179 }
3180 
3181 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3182 {
3183 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3184 
3185 	/* if nothing is getting enabled, nothing to worry about */
3186 	if (!enable)
3187 		return 0;
3188 
3189 	/* can @cgrp host any resources? */
3190 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3191 		return -EOPNOTSUPP;
3192 
3193 	/* mixables don't care */
3194 	if (cgroup_is_mixable(cgrp))
3195 		return 0;
3196 
3197 	if (domain_enable) {
3198 		/* can't enable domain controllers inside a thread subtree */
3199 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3200 			return -EOPNOTSUPP;
3201 	} else {
3202 		/*
3203 		 * Threaded controllers can handle internal competitions
3204 		 * and are always allowed inside a (prospective) thread
3205 		 * subtree.
3206 		 */
3207 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3208 			return 0;
3209 	}
3210 
3211 	/*
3212 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3213 	 * child cgroups competing against tasks.
3214 	 */
3215 	if (cgroup_has_tasks(cgrp))
3216 		return -EBUSY;
3217 
3218 	return 0;
3219 }
3220 
3221 /* change the enabled child controllers for a cgroup in the default hierarchy */
3222 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3223 					    char *buf, size_t nbytes,
3224 					    loff_t off)
3225 {
3226 	u16 enable = 0, disable = 0;
3227 	struct cgroup *cgrp, *child;
3228 	struct cgroup_subsys *ss;
3229 	char *tok;
3230 	int ssid, ret;
3231 
3232 	/*
3233 	 * Parse input - space separated list of subsystem names prefixed
3234 	 * with either + or -.
3235 	 */
3236 	buf = strstrip(buf);
3237 	while ((tok = strsep(&buf, " "))) {
3238 		if (tok[0] == '\0')
3239 			continue;
3240 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3241 			if (!cgroup_ssid_enabled(ssid) ||
3242 			    strcmp(tok + 1, ss->name))
3243 				continue;
3244 
3245 			if (*tok == '+') {
3246 				enable |= 1 << ssid;
3247 				disable &= ~(1 << ssid);
3248 			} else if (*tok == '-') {
3249 				disable |= 1 << ssid;
3250 				enable &= ~(1 << ssid);
3251 			} else {
3252 				return -EINVAL;
3253 			}
3254 			break;
3255 		} while_each_subsys_mask();
3256 		if (ssid == CGROUP_SUBSYS_COUNT)
3257 			return -EINVAL;
3258 	}
3259 
3260 	cgrp = cgroup_kn_lock_live(of->kn, true);
3261 	if (!cgrp)
3262 		return -ENODEV;
3263 
3264 	for_each_subsys(ss, ssid) {
3265 		if (enable & (1 << ssid)) {
3266 			if (cgrp->subtree_control & (1 << ssid)) {
3267 				enable &= ~(1 << ssid);
3268 				continue;
3269 			}
3270 
3271 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3272 				ret = -ENOENT;
3273 				goto out_unlock;
3274 			}
3275 		} else if (disable & (1 << ssid)) {
3276 			if (!(cgrp->subtree_control & (1 << ssid))) {
3277 				disable &= ~(1 << ssid);
3278 				continue;
3279 			}
3280 
3281 			/* a child has it enabled? */
3282 			cgroup_for_each_live_child(child, cgrp) {
3283 				if (child->subtree_control & (1 << ssid)) {
3284 					ret = -EBUSY;
3285 					goto out_unlock;
3286 				}
3287 			}
3288 		}
3289 	}
3290 
3291 	if (!enable && !disable) {
3292 		ret = 0;
3293 		goto out_unlock;
3294 	}
3295 
3296 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3297 	if (ret)
3298 		goto out_unlock;
3299 
3300 	/* save and update control masks and prepare csses */
3301 	cgroup_save_control(cgrp);
3302 
3303 	cgrp->subtree_control |= enable;
3304 	cgrp->subtree_control &= ~disable;
3305 
3306 	ret = cgroup_apply_control(cgrp);
3307 	cgroup_finalize_control(cgrp, ret);
3308 	if (ret)
3309 		goto out_unlock;
3310 
3311 	kernfs_activate(cgrp->kn);
3312 out_unlock:
3313 	cgroup_kn_unlock(of->kn);
3314 	return ret ?: nbytes;
3315 }
3316 
3317 /**
3318  * cgroup_enable_threaded - make @cgrp threaded
3319  * @cgrp: the target cgroup
3320  *
3321  * Called when "threaded" is written to the cgroup.type interface file and
3322  * tries to make @cgrp threaded and join the parent's resource domain.
3323  * This function is never called on the root cgroup as cgroup.type doesn't
3324  * exist on it.
3325  */
3326 static int cgroup_enable_threaded(struct cgroup *cgrp)
3327 {
3328 	struct cgroup *parent = cgroup_parent(cgrp);
3329 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3330 	struct cgroup *dsct;
3331 	struct cgroup_subsys_state *d_css;
3332 	int ret;
3333 
3334 	lockdep_assert_held(&cgroup_mutex);
3335 
3336 	/* noop if already threaded */
3337 	if (cgroup_is_threaded(cgrp))
3338 		return 0;
3339 
3340 	/*
3341 	 * If @cgroup is populated or has domain controllers enabled, it
3342 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3343 	 * test can catch the same conditions, that's only when @parent is
3344 	 * not mixable, so let's check it explicitly.
3345 	 */
3346 	if (cgroup_is_populated(cgrp) ||
3347 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3348 		return -EOPNOTSUPP;
3349 
3350 	/* we're joining the parent's domain, ensure its validity */
3351 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3352 	    !cgroup_can_be_thread_root(dom_cgrp))
3353 		return -EOPNOTSUPP;
3354 
3355 	/*
3356 	 * The following shouldn't cause actual migrations and should
3357 	 * always succeed.
3358 	 */
3359 	cgroup_save_control(cgrp);
3360 
3361 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3362 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3363 			dsct->dom_cgrp = dom_cgrp;
3364 
3365 	ret = cgroup_apply_control(cgrp);
3366 	if (!ret)
3367 		parent->nr_threaded_children++;
3368 
3369 	cgroup_finalize_control(cgrp, ret);
3370 	return ret;
3371 }
3372 
3373 static int cgroup_type_show(struct seq_file *seq, void *v)
3374 {
3375 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3376 
3377 	if (cgroup_is_threaded(cgrp))
3378 		seq_puts(seq, "threaded\n");
3379 	else if (!cgroup_is_valid_domain(cgrp))
3380 		seq_puts(seq, "domain invalid\n");
3381 	else if (cgroup_is_thread_root(cgrp))
3382 		seq_puts(seq, "domain threaded\n");
3383 	else
3384 		seq_puts(seq, "domain\n");
3385 
3386 	return 0;
3387 }
3388 
3389 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3390 				 size_t nbytes, loff_t off)
3391 {
3392 	struct cgroup *cgrp;
3393 	int ret;
3394 
3395 	/* only switching to threaded mode is supported */
3396 	if (strcmp(strstrip(buf), "threaded"))
3397 		return -EINVAL;
3398 
3399 	/* drain dying csses before we re-apply (threaded) subtree control */
3400 	cgrp = cgroup_kn_lock_live(of->kn, true);
3401 	if (!cgrp)
3402 		return -ENOENT;
3403 
3404 	/* threaded can only be enabled */
3405 	ret = cgroup_enable_threaded(cgrp);
3406 
3407 	cgroup_kn_unlock(of->kn);
3408 	return ret ?: nbytes;
3409 }
3410 
3411 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3412 {
3413 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3414 	int descendants = READ_ONCE(cgrp->max_descendants);
3415 
3416 	if (descendants == INT_MAX)
3417 		seq_puts(seq, "max\n");
3418 	else
3419 		seq_printf(seq, "%d\n", descendants);
3420 
3421 	return 0;
3422 }
3423 
3424 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3425 					   char *buf, size_t nbytes, loff_t off)
3426 {
3427 	struct cgroup *cgrp;
3428 	int descendants;
3429 	ssize_t ret;
3430 
3431 	buf = strstrip(buf);
3432 	if (!strcmp(buf, "max")) {
3433 		descendants = INT_MAX;
3434 	} else {
3435 		ret = kstrtoint(buf, 0, &descendants);
3436 		if (ret)
3437 			return ret;
3438 	}
3439 
3440 	if (descendants < 0)
3441 		return -ERANGE;
3442 
3443 	cgrp = cgroup_kn_lock_live(of->kn, false);
3444 	if (!cgrp)
3445 		return -ENOENT;
3446 
3447 	cgrp->max_descendants = descendants;
3448 
3449 	cgroup_kn_unlock(of->kn);
3450 
3451 	return nbytes;
3452 }
3453 
3454 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3455 {
3456 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3457 	int depth = READ_ONCE(cgrp->max_depth);
3458 
3459 	if (depth == INT_MAX)
3460 		seq_puts(seq, "max\n");
3461 	else
3462 		seq_printf(seq, "%d\n", depth);
3463 
3464 	return 0;
3465 }
3466 
3467 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3468 				      char *buf, size_t nbytes, loff_t off)
3469 {
3470 	struct cgroup *cgrp;
3471 	ssize_t ret;
3472 	int depth;
3473 
3474 	buf = strstrip(buf);
3475 	if (!strcmp(buf, "max")) {
3476 		depth = INT_MAX;
3477 	} else {
3478 		ret = kstrtoint(buf, 0, &depth);
3479 		if (ret)
3480 			return ret;
3481 	}
3482 
3483 	if (depth < 0)
3484 		return -ERANGE;
3485 
3486 	cgrp = cgroup_kn_lock_live(of->kn, false);
3487 	if (!cgrp)
3488 		return -ENOENT;
3489 
3490 	cgrp->max_depth = depth;
3491 
3492 	cgroup_kn_unlock(of->kn);
3493 
3494 	return nbytes;
3495 }
3496 
3497 static int cgroup_events_show(struct seq_file *seq, void *v)
3498 {
3499 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3500 
3501 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3502 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3503 
3504 	return 0;
3505 }
3506 
3507 static int cgroup_stat_show(struct seq_file *seq, void *v)
3508 {
3509 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3510 
3511 	seq_printf(seq, "nr_descendants %d\n",
3512 		   cgroup->nr_descendants);
3513 	seq_printf(seq, "nr_dying_descendants %d\n",
3514 		   cgroup->nr_dying_descendants);
3515 
3516 	return 0;
3517 }
3518 
3519 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3520 						 struct cgroup *cgrp, int ssid)
3521 {
3522 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3523 	struct cgroup_subsys_state *css;
3524 	int ret;
3525 
3526 	if (!ss->css_extra_stat_show)
3527 		return 0;
3528 
3529 	css = cgroup_tryget_css(cgrp, ss);
3530 	if (!css)
3531 		return 0;
3532 
3533 	ret = ss->css_extra_stat_show(seq, css);
3534 	css_put(css);
3535 	return ret;
3536 }
3537 
3538 static int cpu_stat_show(struct seq_file *seq, void *v)
3539 {
3540 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3541 	int ret = 0;
3542 
3543 	cgroup_base_stat_cputime_show(seq);
3544 #ifdef CONFIG_CGROUP_SCHED
3545 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3546 #endif
3547 	return ret;
3548 }
3549 
3550 #ifdef CONFIG_PSI
3551 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3552 {
3553 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3554 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3555 
3556 	return psi_show(seq, psi, PSI_IO);
3557 }
3558 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3562 
3563 	return psi_show(seq, psi, PSI_MEM);
3564 }
3565 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3566 {
3567 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3568 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3569 
3570 	return psi_show(seq, psi, PSI_CPU);
3571 }
3572 
3573 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3574 					  size_t nbytes, enum psi_res res)
3575 {
3576 	struct psi_trigger *new;
3577 	struct cgroup *cgrp;
3578 
3579 	cgrp = cgroup_kn_lock_live(of->kn, false);
3580 	if (!cgrp)
3581 		return -ENODEV;
3582 
3583 	cgroup_get(cgrp);
3584 	cgroup_kn_unlock(of->kn);
3585 
3586 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3587 	if (IS_ERR(new)) {
3588 		cgroup_put(cgrp);
3589 		return PTR_ERR(new);
3590 	}
3591 
3592 	psi_trigger_replace(&of->priv, new);
3593 
3594 	cgroup_put(cgrp);
3595 
3596 	return nbytes;
3597 }
3598 
3599 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3600 					  char *buf, size_t nbytes,
3601 					  loff_t off)
3602 {
3603 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3604 }
3605 
3606 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3607 					  char *buf, size_t nbytes,
3608 					  loff_t off)
3609 {
3610 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3611 }
3612 
3613 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3614 					  char *buf, size_t nbytes,
3615 					  loff_t off)
3616 {
3617 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3618 }
3619 
3620 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3621 					  poll_table *pt)
3622 {
3623 	return psi_trigger_poll(&of->priv, of->file, pt);
3624 }
3625 
3626 static void cgroup_pressure_release(struct kernfs_open_file *of)
3627 {
3628 	psi_trigger_replace(&of->priv, NULL);
3629 }
3630 #endif /* CONFIG_PSI */
3631 
3632 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3633 {
3634 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3635 
3636 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3637 
3638 	return 0;
3639 }
3640 
3641 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3642 				   char *buf, size_t nbytes, loff_t off)
3643 {
3644 	struct cgroup *cgrp;
3645 	ssize_t ret;
3646 	int freeze;
3647 
3648 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3649 	if (ret)
3650 		return ret;
3651 
3652 	if (freeze < 0 || freeze > 1)
3653 		return -ERANGE;
3654 
3655 	cgrp = cgroup_kn_lock_live(of->kn, false);
3656 	if (!cgrp)
3657 		return -ENOENT;
3658 
3659 	cgroup_freeze(cgrp, freeze);
3660 
3661 	cgroup_kn_unlock(of->kn);
3662 
3663 	return nbytes;
3664 }
3665 
3666 static int cgroup_file_open(struct kernfs_open_file *of)
3667 {
3668 	struct cftype *cft = of->kn->priv;
3669 
3670 	if (cft->open)
3671 		return cft->open(of);
3672 	return 0;
3673 }
3674 
3675 static void cgroup_file_release(struct kernfs_open_file *of)
3676 {
3677 	struct cftype *cft = of->kn->priv;
3678 
3679 	if (cft->release)
3680 		cft->release(of);
3681 }
3682 
3683 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3684 				 size_t nbytes, loff_t off)
3685 {
3686 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3687 	struct cgroup *cgrp = of->kn->parent->priv;
3688 	struct cftype *cft = of->kn->priv;
3689 	struct cgroup_subsys_state *css;
3690 	int ret;
3691 
3692 	/*
3693 	 * If namespaces are delegation boundaries, disallow writes to
3694 	 * files in an non-init namespace root from inside the namespace
3695 	 * except for the files explicitly marked delegatable -
3696 	 * cgroup.procs and cgroup.subtree_control.
3697 	 */
3698 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3699 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3700 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3701 		return -EPERM;
3702 
3703 	if (cft->write)
3704 		return cft->write(of, buf, nbytes, off);
3705 
3706 	/*
3707 	 * kernfs guarantees that a file isn't deleted with operations in
3708 	 * flight, which means that the matching css is and stays alive and
3709 	 * doesn't need to be pinned.  The RCU locking is not necessary
3710 	 * either.  It's just for the convenience of using cgroup_css().
3711 	 */
3712 	rcu_read_lock();
3713 	css = cgroup_css(cgrp, cft->ss);
3714 	rcu_read_unlock();
3715 
3716 	if (cft->write_u64) {
3717 		unsigned long long v;
3718 		ret = kstrtoull(buf, 0, &v);
3719 		if (!ret)
3720 			ret = cft->write_u64(css, cft, v);
3721 	} else if (cft->write_s64) {
3722 		long long v;
3723 		ret = kstrtoll(buf, 0, &v);
3724 		if (!ret)
3725 			ret = cft->write_s64(css, cft, v);
3726 	} else {
3727 		ret = -EINVAL;
3728 	}
3729 
3730 	return ret ?: nbytes;
3731 }
3732 
3733 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3734 {
3735 	struct cftype *cft = of->kn->priv;
3736 
3737 	if (cft->poll)
3738 		return cft->poll(of, pt);
3739 
3740 	return kernfs_generic_poll(of, pt);
3741 }
3742 
3743 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3744 {
3745 	return seq_cft(seq)->seq_start(seq, ppos);
3746 }
3747 
3748 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3749 {
3750 	return seq_cft(seq)->seq_next(seq, v, ppos);
3751 }
3752 
3753 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3754 {
3755 	if (seq_cft(seq)->seq_stop)
3756 		seq_cft(seq)->seq_stop(seq, v);
3757 }
3758 
3759 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3760 {
3761 	struct cftype *cft = seq_cft(m);
3762 	struct cgroup_subsys_state *css = seq_css(m);
3763 
3764 	if (cft->seq_show)
3765 		return cft->seq_show(m, arg);
3766 
3767 	if (cft->read_u64)
3768 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3769 	else if (cft->read_s64)
3770 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3771 	else
3772 		return -EINVAL;
3773 	return 0;
3774 }
3775 
3776 static struct kernfs_ops cgroup_kf_single_ops = {
3777 	.atomic_write_len	= PAGE_SIZE,
3778 	.open			= cgroup_file_open,
3779 	.release		= cgroup_file_release,
3780 	.write			= cgroup_file_write,
3781 	.poll			= cgroup_file_poll,
3782 	.seq_show		= cgroup_seqfile_show,
3783 };
3784 
3785 static struct kernfs_ops cgroup_kf_ops = {
3786 	.atomic_write_len	= PAGE_SIZE,
3787 	.open			= cgroup_file_open,
3788 	.release		= cgroup_file_release,
3789 	.write			= cgroup_file_write,
3790 	.poll			= cgroup_file_poll,
3791 	.seq_start		= cgroup_seqfile_start,
3792 	.seq_next		= cgroup_seqfile_next,
3793 	.seq_stop		= cgroup_seqfile_stop,
3794 	.seq_show		= cgroup_seqfile_show,
3795 };
3796 
3797 /* set uid and gid of cgroup dirs and files to that of the creator */
3798 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3799 {
3800 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3801 			       .ia_uid = current_fsuid(),
3802 			       .ia_gid = current_fsgid(), };
3803 
3804 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3805 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3806 		return 0;
3807 
3808 	return kernfs_setattr(kn, &iattr);
3809 }
3810 
3811 static void cgroup_file_notify_timer(struct timer_list *timer)
3812 {
3813 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3814 					notify_timer));
3815 }
3816 
3817 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3818 			   struct cftype *cft)
3819 {
3820 	char name[CGROUP_FILE_NAME_MAX];
3821 	struct kernfs_node *kn;
3822 	struct lock_class_key *key = NULL;
3823 	int ret;
3824 
3825 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3826 	key = &cft->lockdep_key;
3827 #endif
3828 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3829 				  cgroup_file_mode(cft),
3830 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3831 				  0, cft->kf_ops, cft,
3832 				  NULL, key);
3833 	if (IS_ERR(kn))
3834 		return PTR_ERR(kn);
3835 
3836 	ret = cgroup_kn_set_ugid(kn);
3837 	if (ret) {
3838 		kernfs_remove(kn);
3839 		return ret;
3840 	}
3841 
3842 	if (cft->file_offset) {
3843 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3844 
3845 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3846 
3847 		spin_lock_irq(&cgroup_file_kn_lock);
3848 		cfile->kn = kn;
3849 		spin_unlock_irq(&cgroup_file_kn_lock);
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 /**
3856  * cgroup_addrm_files - add or remove files to a cgroup directory
3857  * @css: the target css
3858  * @cgrp: the target cgroup (usually css->cgroup)
3859  * @cfts: array of cftypes to be added
3860  * @is_add: whether to add or remove
3861  *
3862  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3863  * For removals, this function never fails.
3864  */
3865 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3866 			      struct cgroup *cgrp, struct cftype cfts[],
3867 			      bool is_add)
3868 {
3869 	struct cftype *cft, *cft_end = NULL;
3870 	int ret = 0;
3871 
3872 	lockdep_assert_held(&cgroup_mutex);
3873 
3874 restart:
3875 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3876 		/* does cft->flags tell us to skip this file on @cgrp? */
3877 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3878 			continue;
3879 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3880 			continue;
3881 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3882 			continue;
3883 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3884 			continue;
3885 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3886 			continue;
3887 		if (is_add) {
3888 			ret = cgroup_add_file(css, cgrp, cft);
3889 			if (ret) {
3890 				pr_warn("%s: failed to add %s, err=%d\n",
3891 					__func__, cft->name, ret);
3892 				cft_end = cft;
3893 				is_add = false;
3894 				goto restart;
3895 			}
3896 		} else {
3897 			cgroup_rm_file(cgrp, cft);
3898 		}
3899 	}
3900 	return ret;
3901 }
3902 
3903 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3904 {
3905 	struct cgroup_subsys *ss = cfts[0].ss;
3906 	struct cgroup *root = &ss->root->cgrp;
3907 	struct cgroup_subsys_state *css;
3908 	int ret = 0;
3909 
3910 	lockdep_assert_held(&cgroup_mutex);
3911 
3912 	/* add/rm files for all cgroups created before */
3913 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3914 		struct cgroup *cgrp = css->cgroup;
3915 
3916 		if (!(css->flags & CSS_VISIBLE))
3917 			continue;
3918 
3919 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3920 		if (ret)
3921 			break;
3922 	}
3923 
3924 	if (is_add && !ret)
3925 		kernfs_activate(root->kn);
3926 	return ret;
3927 }
3928 
3929 static void cgroup_exit_cftypes(struct cftype *cfts)
3930 {
3931 	struct cftype *cft;
3932 
3933 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3934 		/* free copy for custom atomic_write_len, see init_cftypes() */
3935 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3936 			kfree(cft->kf_ops);
3937 		cft->kf_ops = NULL;
3938 		cft->ss = NULL;
3939 
3940 		/* revert flags set by cgroup core while adding @cfts */
3941 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3942 	}
3943 }
3944 
3945 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3946 {
3947 	struct cftype *cft;
3948 
3949 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3950 		struct kernfs_ops *kf_ops;
3951 
3952 		WARN_ON(cft->ss || cft->kf_ops);
3953 
3954 		if (cft->seq_start)
3955 			kf_ops = &cgroup_kf_ops;
3956 		else
3957 			kf_ops = &cgroup_kf_single_ops;
3958 
3959 		/*
3960 		 * Ugh... if @cft wants a custom max_write_len, we need to
3961 		 * make a copy of kf_ops to set its atomic_write_len.
3962 		 */
3963 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3964 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3965 			if (!kf_ops) {
3966 				cgroup_exit_cftypes(cfts);
3967 				return -ENOMEM;
3968 			}
3969 			kf_ops->atomic_write_len = cft->max_write_len;
3970 		}
3971 
3972 		cft->kf_ops = kf_ops;
3973 		cft->ss = ss;
3974 	}
3975 
3976 	return 0;
3977 }
3978 
3979 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3980 {
3981 	lockdep_assert_held(&cgroup_mutex);
3982 
3983 	if (!cfts || !cfts[0].ss)
3984 		return -ENOENT;
3985 
3986 	list_del(&cfts->node);
3987 	cgroup_apply_cftypes(cfts, false);
3988 	cgroup_exit_cftypes(cfts);
3989 	return 0;
3990 }
3991 
3992 /**
3993  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3994  * @cfts: zero-length name terminated array of cftypes
3995  *
3996  * Unregister @cfts.  Files described by @cfts are removed from all
3997  * existing cgroups and all future cgroups won't have them either.  This
3998  * function can be called anytime whether @cfts' subsys is attached or not.
3999  *
4000  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4001  * registered.
4002  */
4003 int cgroup_rm_cftypes(struct cftype *cfts)
4004 {
4005 	int ret;
4006 
4007 	mutex_lock(&cgroup_mutex);
4008 	ret = cgroup_rm_cftypes_locked(cfts);
4009 	mutex_unlock(&cgroup_mutex);
4010 	return ret;
4011 }
4012 
4013 /**
4014  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4015  * @ss: target cgroup subsystem
4016  * @cfts: zero-length name terminated array of cftypes
4017  *
4018  * Register @cfts to @ss.  Files described by @cfts are created for all
4019  * existing cgroups to which @ss is attached and all future cgroups will
4020  * have them too.  This function can be called anytime whether @ss is
4021  * attached or not.
4022  *
4023  * Returns 0 on successful registration, -errno on failure.  Note that this
4024  * function currently returns 0 as long as @cfts registration is successful
4025  * even if some file creation attempts on existing cgroups fail.
4026  */
4027 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4028 {
4029 	int ret;
4030 
4031 	if (!cgroup_ssid_enabled(ss->id))
4032 		return 0;
4033 
4034 	if (!cfts || cfts[0].name[0] == '\0')
4035 		return 0;
4036 
4037 	ret = cgroup_init_cftypes(ss, cfts);
4038 	if (ret)
4039 		return ret;
4040 
4041 	mutex_lock(&cgroup_mutex);
4042 
4043 	list_add_tail(&cfts->node, &ss->cfts);
4044 	ret = cgroup_apply_cftypes(cfts, true);
4045 	if (ret)
4046 		cgroup_rm_cftypes_locked(cfts);
4047 
4048 	mutex_unlock(&cgroup_mutex);
4049 	return ret;
4050 }
4051 
4052 /**
4053  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4054  * @ss: target cgroup subsystem
4055  * @cfts: zero-length name terminated array of cftypes
4056  *
4057  * Similar to cgroup_add_cftypes() but the added files are only used for
4058  * the default hierarchy.
4059  */
4060 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4061 {
4062 	struct cftype *cft;
4063 
4064 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4065 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4066 	return cgroup_add_cftypes(ss, cfts);
4067 }
4068 
4069 /**
4070  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4071  * @ss: target cgroup subsystem
4072  * @cfts: zero-length name terminated array of cftypes
4073  *
4074  * Similar to cgroup_add_cftypes() but the added files are only used for
4075  * the legacy hierarchies.
4076  */
4077 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4078 {
4079 	struct cftype *cft;
4080 
4081 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4082 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4083 	return cgroup_add_cftypes(ss, cfts);
4084 }
4085 
4086 /**
4087  * cgroup_file_notify - generate a file modified event for a cgroup_file
4088  * @cfile: target cgroup_file
4089  *
4090  * @cfile must have been obtained by setting cftype->file_offset.
4091  */
4092 void cgroup_file_notify(struct cgroup_file *cfile)
4093 {
4094 	unsigned long flags;
4095 
4096 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4097 	if (cfile->kn) {
4098 		unsigned long last = cfile->notified_at;
4099 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4100 
4101 		if (time_in_range(jiffies, last, next)) {
4102 			timer_reduce(&cfile->notify_timer, next);
4103 		} else {
4104 			kernfs_notify(cfile->kn);
4105 			cfile->notified_at = jiffies;
4106 		}
4107 	}
4108 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4109 }
4110 
4111 /**
4112  * css_next_child - find the next child of a given css
4113  * @pos: the current position (%NULL to initiate traversal)
4114  * @parent: css whose children to walk
4115  *
4116  * This function returns the next child of @parent and should be called
4117  * under either cgroup_mutex or RCU read lock.  The only requirement is
4118  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4119  * be returned regardless of their states.
4120  *
4121  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4122  * css which finished ->css_online() is guaranteed to be visible in the
4123  * future iterations and will stay visible until the last reference is put.
4124  * A css which hasn't finished ->css_online() or already finished
4125  * ->css_offline() may show up during traversal.  It's each subsystem's
4126  * responsibility to synchronize against on/offlining.
4127  */
4128 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4129 					   struct cgroup_subsys_state *parent)
4130 {
4131 	struct cgroup_subsys_state *next;
4132 
4133 	cgroup_assert_mutex_or_rcu_locked();
4134 
4135 	/*
4136 	 * @pos could already have been unlinked from the sibling list.
4137 	 * Once a cgroup is removed, its ->sibling.next is no longer
4138 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4139 	 * @pos is taken off list, at which time its next pointer is valid,
4140 	 * and, as releases are serialized, the one pointed to by the next
4141 	 * pointer is guaranteed to not have started release yet.  This
4142 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4143 	 * critical section, the one pointed to by its next pointer is
4144 	 * guaranteed to not have finished its RCU grace period even if we
4145 	 * have dropped rcu_read_lock() inbetween iterations.
4146 	 *
4147 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4148 	 * dereferenced; however, as each css is given a monotonically
4149 	 * increasing unique serial number and always appended to the
4150 	 * sibling list, the next one can be found by walking the parent's
4151 	 * children until the first css with higher serial number than
4152 	 * @pos's.  While this path can be slower, it happens iff iteration
4153 	 * races against release and the race window is very small.
4154 	 */
4155 	if (!pos) {
4156 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4157 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4158 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4159 	} else {
4160 		list_for_each_entry_rcu(next, &parent->children, sibling,
4161 					lockdep_is_held(&cgroup_mutex))
4162 			if (next->serial_nr > pos->serial_nr)
4163 				break;
4164 	}
4165 
4166 	/*
4167 	 * @next, if not pointing to the head, can be dereferenced and is
4168 	 * the next sibling.
4169 	 */
4170 	if (&next->sibling != &parent->children)
4171 		return next;
4172 	return NULL;
4173 }
4174 
4175 /**
4176  * css_next_descendant_pre - find the next descendant for pre-order walk
4177  * @pos: the current position (%NULL to initiate traversal)
4178  * @root: css whose descendants to walk
4179  *
4180  * To be used by css_for_each_descendant_pre().  Find the next descendant
4181  * to visit for pre-order traversal of @root's descendants.  @root is
4182  * included in the iteration and the first node to be visited.
4183  *
4184  * While this function requires cgroup_mutex or RCU read locking, it
4185  * doesn't require the whole traversal to be contained in a single critical
4186  * section.  This function will return the correct next descendant as long
4187  * as both @pos and @root are accessible and @pos is a descendant of @root.
4188  *
4189  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4190  * css which finished ->css_online() is guaranteed to be visible in the
4191  * future iterations and will stay visible until the last reference is put.
4192  * A css which hasn't finished ->css_online() or already finished
4193  * ->css_offline() may show up during traversal.  It's each subsystem's
4194  * responsibility to synchronize against on/offlining.
4195  */
4196 struct cgroup_subsys_state *
4197 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4198 			struct cgroup_subsys_state *root)
4199 {
4200 	struct cgroup_subsys_state *next;
4201 
4202 	cgroup_assert_mutex_or_rcu_locked();
4203 
4204 	/* if first iteration, visit @root */
4205 	if (!pos)
4206 		return root;
4207 
4208 	/* visit the first child if exists */
4209 	next = css_next_child(NULL, pos);
4210 	if (next)
4211 		return next;
4212 
4213 	/* no child, visit my or the closest ancestor's next sibling */
4214 	while (pos != root) {
4215 		next = css_next_child(pos, pos->parent);
4216 		if (next)
4217 			return next;
4218 		pos = pos->parent;
4219 	}
4220 
4221 	return NULL;
4222 }
4223 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4224 
4225 /**
4226  * css_rightmost_descendant - return the rightmost descendant of a css
4227  * @pos: css of interest
4228  *
4229  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4230  * is returned.  This can be used during pre-order traversal to skip
4231  * subtree of @pos.
4232  *
4233  * While this function requires cgroup_mutex or RCU read locking, it
4234  * doesn't require the whole traversal to be contained in a single critical
4235  * section.  This function will return the correct rightmost descendant as
4236  * long as @pos is accessible.
4237  */
4238 struct cgroup_subsys_state *
4239 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4240 {
4241 	struct cgroup_subsys_state *last, *tmp;
4242 
4243 	cgroup_assert_mutex_or_rcu_locked();
4244 
4245 	do {
4246 		last = pos;
4247 		/* ->prev isn't RCU safe, walk ->next till the end */
4248 		pos = NULL;
4249 		css_for_each_child(tmp, last)
4250 			pos = tmp;
4251 	} while (pos);
4252 
4253 	return last;
4254 }
4255 
4256 static struct cgroup_subsys_state *
4257 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4258 {
4259 	struct cgroup_subsys_state *last;
4260 
4261 	do {
4262 		last = pos;
4263 		pos = css_next_child(NULL, pos);
4264 	} while (pos);
4265 
4266 	return last;
4267 }
4268 
4269 /**
4270  * css_next_descendant_post - find the next descendant for post-order walk
4271  * @pos: the current position (%NULL to initiate traversal)
4272  * @root: css whose descendants to walk
4273  *
4274  * To be used by css_for_each_descendant_post().  Find the next descendant
4275  * to visit for post-order traversal of @root's descendants.  @root is
4276  * included in the iteration and the last node to be visited.
4277  *
4278  * While this function requires cgroup_mutex or RCU read locking, it
4279  * doesn't require the whole traversal to be contained in a single critical
4280  * section.  This function will return the correct next descendant as long
4281  * as both @pos and @cgroup are accessible and @pos is a descendant of
4282  * @cgroup.
4283  *
4284  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4285  * css which finished ->css_online() is guaranteed to be visible in the
4286  * future iterations and will stay visible until the last reference is put.
4287  * A css which hasn't finished ->css_online() or already finished
4288  * ->css_offline() may show up during traversal.  It's each subsystem's
4289  * responsibility to synchronize against on/offlining.
4290  */
4291 struct cgroup_subsys_state *
4292 css_next_descendant_post(struct cgroup_subsys_state *pos,
4293 			 struct cgroup_subsys_state *root)
4294 {
4295 	struct cgroup_subsys_state *next;
4296 
4297 	cgroup_assert_mutex_or_rcu_locked();
4298 
4299 	/* if first iteration, visit leftmost descendant which may be @root */
4300 	if (!pos)
4301 		return css_leftmost_descendant(root);
4302 
4303 	/* if we visited @root, we're done */
4304 	if (pos == root)
4305 		return NULL;
4306 
4307 	/* if there's an unvisited sibling, visit its leftmost descendant */
4308 	next = css_next_child(pos, pos->parent);
4309 	if (next)
4310 		return css_leftmost_descendant(next);
4311 
4312 	/* no sibling left, visit parent */
4313 	return pos->parent;
4314 }
4315 
4316 /**
4317  * css_has_online_children - does a css have online children
4318  * @css: the target css
4319  *
4320  * Returns %true if @css has any online children; otherwise, %false.  This
4321  * function can be called from any context but the caller is responsible
4322  * for synchronizing against on/offlining as necessary.
4323  */
4324 bool css_has_online_children(struct cgroup_subsys_state *css)
4325 {
4326 	struct cgroup_subsys_state *child;
4327 	bool ret = false;
4328 
4329 	rcu_read_lock();
4330 	css_for_each_child(child, css) {
4331 		if (child->flags & CSS_ONLINE) {
4332 			ret = true;
4333 			break;
4334 		}
4335 	}
4336 	rcu_read_unlock();
4337 	return ret;
4338 }
4339 
4340 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4341 {
4342 	struct list_head *l;
4343 	struct cgrp_cset_link *link;
4344 	struct css_set *cset;
4345 
4346 	lockdep_assert_held(&css_set_lock);
4347 
4348 	/* find the next threaded cset */
4349 	if (it->tcset_pos) {
4350 		l = it->tcset_pos->next;
4351 
4352 		if (l != it->tcset_head) {
4353 			it->tcset_pos = l;
4354 			return container_of(l, struct css_set,
4355 					    threaded_csets_node);
4356 		}
4357 
4358 		it->tcset_pos = NULL;
4359 	}
4360 
4361 	/* find the next cset */
4362 	l = it->cset_pos;
4363 	l = l->next;
4364 	if (l == it->cset_head) {
4365 		it->cset_pos = NULL;
4366 		return NULL;
4367 	}
4368 
4369 	if (it->ss) {
4370 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4371 	} else {
4372 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4373 		cset = link->cset;
4374 	}
4375 
4376 	it->cset_pos = l;
4377 
4378 	/* initialize threaded css_set walking */
4379 	if (it->flags & CSS_TASK_ITER_THREADED) {
4380 		if (it->cur_dcset)
4381 			put_css_set_locked(it->cur_dcset);
4382 		it->cur_dcset = cset;
4383 		get_css_set(cset);
4384 
4385 		it->tcset_head = &cset->threaded_csets;
4386 		it->tcset_pos = &cset->threaded_csets;
4387 	}
4388 
4389 	return cset;
4390 }
4391 
4392 /**
4393  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4394  * @it: the iterator to advance
4395  *
4396  * Advance @it to the next css_set to walk.
4397  */
4398 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4399 {
4400 	struct css_set *cset;
4401 
4402 	lockdep_assert_held(&css_set_lock);
4403 
4404 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4405 	while ((cset = css_task_iter_next_css_set(it))) {
4406 		if (!list_empty(&cset->tasks)) {
4407 			it->cur_tasks_head = &cset->tasks;
4408 			break;
4409 		} else if (!list_empty(&cset->mg_tasks)) {
4410 			it->cur_tasks_head = &cset->mg_tasks;
4411 			break;
4412 		} else if (!list_empty(&cset->dying_tasks)) {
4413 			it->cur_tasks_head = &cset->dying_tasks;
4414 			break;
4415 		}
4416 	}
4417 	if (!cset) {
4418 		it->task_pos = NULL;
4419 		return;
4420 	}
4421 	it->task_pos = it->cur_tasks_head->next;
4422 
4423 	/*
4424 	 * We don't keep css_sets locked across iteration steps and thus
4425 	 * need to take steps to ensure that iteration can be resumed after
4426 	 * the lock is re-acquired.  Iteration is performed at two levels -
4427 	 * css_sets and tasks in them.
4428 	 *
4429 	 * Once created, a css_set never leaves its cgroup lists, so a
4430 	 * pinned css_set is guaranteed to stay put and we can resume
4431 	 * iteration afterwards.
4432 	 *
4433 	 * Tasks may leave @cset across iteration steps.  This is resolved
4434 	 * by registering each iterator with the css_set currently being
4435 	 * walked and making css_set_move_task() advance iterators whose
4436 	 * next task is leaving.
4437 	 */
4438 	if (it->cur_cset) {
4439 		list_del(&it->iters_node);
4440 		put_css_set_locked(it->cur_cset);
4441 	}
4442 	get_css_set(cset);
4443 	it->cur_cset = cset;
4444 	list_add(&it->iters_node, &cset->task_iters);
4445 }
4446 
4447 static void css_task_iter_skip(struct css_task_iter *it,
4448 			       struct task_struct *task)
4449 {
4450 	lockdep_assert_held(&css_set_lock);
4451 
4452 	if (it->task_pos == &task->cg_list) {
4453 		it->task_pos = it->task_pos->next;
4454 		it->flags |= CSS_TASK_ITER_SKIPPED;
4455 	}
4456 }
4457 
4458 static void css_task_iter_advance(struct css_task_iter *it)
4459 {
4460 	struct task_struct *task;
4461 
4462 	lockdep_assert_held(&css_set_lock);
4463 repeat:
4464 	if (it->task_pos) {
4465 		/*
4466 		 * Advance iterator to find next entry. We go through cset
4467 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4468 		 * the next cset.
4469 		 */
4470 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4471 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4472 		else
4473 			it->task_pos = it->task_pos->next;
4474 
4475 		if (it->task_pos == &it->cur_cset->tasks) {
4476 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4477 			it->task_pos = it->cur_tasks_head->next;
4478 		}
4479 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4480 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4481 			it->task_pos = it->cur_tasks_head->next;
4482 		}
4483 		if (it->task_pos == &it->cur_cset->dying_tasks)
4484 			css_task_iter_advance_css_set(it);
4485 	} else {
4486 		/* called from start, proceed to the first cset */
4487 		css_task_iter_advance_css_set(it);
4488 	}
4489 
4490 	if (!it->task_pos)
4491 		return;
4492 
4493 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4494 
4495 	if (it->flags & CSS_TASK_ITER_PROCS) {
4496 		/* if PROCS, skip over tasks which aren't group leaders */
4497 		if (!thread_group_leader(task))
4498 			goto repeat;
4499 
4500 		/* and dying leaders w/o live member threads */
4501 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4502 		    !atomic_read(&task->signal->live))
4503 			goto repeat;
4504 	} else {
4505 		/* skip all dying ones */
4506 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4507 			goto repeat;
4508 	}
4509 }
4510 
4511 /**
4512  * css_task_iter_start - initiate task iteration
4513  * @css: the css to walk tasks of
4514  * @flags: CSS_TASK_ITER_* flags
4515  * @it: the task iterator to use
4516  *
4517  * Initiate iteration through the tasks of @css.  The caller can call
4518  * css_task_iter_next() to walk through the tasks until the function
4519  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4520  * called.
4521  */
4522 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4523 			 struct css_task_iter *it)
4524 {
4525 	memset(it, 0, sizeof(*it));
4526 
4527 	spin_lock_irq(&css_set_lock);
4528 
4529 	it->ss = css->ss;
4530 	it->flags = flags;
4531 
4532 	if (it->ss)
4533 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4534 	else
4535 		it->cset_pos = &css->cgroup->cset_links;
4536 
4537 	it->cset_head = it->cset_pos;
4538 
4539 	css_task_iter_advance(it);
4540 
4541 	spin_unlock_irq(&css_set_lock);
4542 }
4543 
4544 /**
4545  * css_task_iter_next - return the next task for the iterator
4546  * @it: the task iterator being iterated
4547  *
4548  * The "next" function for task iteration.  @it should have been
4549  * initialized via css_task_iter_start().  Returns NULL when the iteration
4550  * reaches the end.
4551  */
4552 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4553 {
4554 	if (it->cur_task) {
4555 		put_task_struct(it->cur_task);
4556 		it->cur_task = NULL;
4557 	}
4558 
4559 	spin_lock_irq(&css_set_lock);
4560 
4561 	/* @it may be half-advanced by skips, finish advancing */
4562 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4563 		css_task_iter_advance(it);
4564 
4565 	if (it->task_pos) {
4566 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4567 					  cg_list);
4568 		get_task_struct(it->cur_task);
4569 		css_task_iter_advance(it);
4570 	}
4571 
4572 	spin_unlock_irq(&css_set_lock);
4573 
4574 	return it->cur_task;
4575 }
4576 
4577 /**
4578  * css_task_iter_end - finish task iteration
4579  * @it: the task iterator to finish
4580  *
4581  * Finish task iteration started by css_task_iter_start().
4582  */
4583 void css_task_iter_end(struct css_task_iter *it)
4584 {
4585 	if (it->cur_cset) {
4586 		spin_lock_irq(&css_set_lock);
4587 		list_del(&it->iters_node);
4588 		put_css_set_locked(it->cur_cset);
4589 		spin_unlock_irq(&css_set_lock);
4590 	}
4591 
4592 	if (it->cur_dcset)
4593 		put_css_set(it->cur_dcset);
4594 
4595 	if (it->cur_task)
4596 		put_task_struct(it->cur_task);
4597 }
4598 
4599 static void cgroup_procs_release(struct kernfs_open_file *of)
4600 {
4601 	if (of->priv) {
4602 		css_task_iter_end(of->priv);
4603 		kfree(of->priv);
4604 	}
4605 }
4606 
4607 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4608 {
4609 	struct kernfs_open_file *of = s->private;
4610 	struct css_task_iter *it = of->priv;
4611 
4612 	if (pos)
4613 		(*pos)++;
4614 
4615 	return css_task_iter_next(it);
4616 }
4617 
4618 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4619 				  unsigned int iter_flags)
4620 {
4621 	struct kernfs_open_file *of = s->private;
4622 	struct cgroup *cgrp = seq_css(s)->cgroup;
4623 	struct css_task_iter *it = of->priv;
4624 
4625 	/*
4626 	 * When a seq_file is seeked, it's always traversed sequentially
4627 	 * from position 0, so we can simply keep iterating on !0 *pos.
4628 	 */
4629 	if (!it) {
4630 		if (WARN_ON_ONCE((*pos)))
4631 			return ERR_PTR(-EINVAL);
4632 
4633 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4634 		if (!it)
4635 			return ERR_PTR(-ENOMEM);
4636 		of->priv = it;
4637 		css_task_iter_start(&cgrp->self, iter_flags, it);
4638 	} else if (!(*pos)) {
4639 		css_task_iter_end(it);
4640 		css_task_iter_start(&cgrp->self, iter_flags, it);
4641 	} else
4642 		return it->cur_task;
4643 
4644 	return cgroup_procs_next(s, NULL, NULL);
4645 }
4646 
4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4648 {
4649 	struct cgroup *cgrp = seq_css(s)->cgroup;
4650 
4651 	/*
4652 	 * All processes of a threaded subtree belong to the domain cgroup
4653 	 * of the subtree.  Only threads can be distributed across the
4654 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4655 	 * They're always empty anyway.
4656 	 */
4657 	if (cgroup_is_threaded(cgrp))
4658 		return ERR_PTR(-EOPNOTSUPP);
4659 
4660 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4661 					    CSS_TASK_ITER_THREADED);
4662 }
4663 
4664 static int cgroup_procs_show(struct seq_file *s, void *v)
4665 {
4666 	seq_printf(s, "%d\n", task_pid_vnr(v));
4667 	return 0;
4668 }
4669 
4670 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4671 {
4672 	int ret;
4673 	struct inode *inode;
4674 
4675 	lockdep_assert_held(&cgroup_mutex);
4676 
4677 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4678 	if (!inode)
4679 		return -ENOMEM;
4680 
4681 	ret = inode_permission(inode, MAY_WRITE);
4682 	iput(inode);
4683 	return ret;
4684 }
4685 
4686 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4687 					 struct cgroup *dst_cgrp,
4688 					 struct super_block *sb)
4689 {
4690 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4691 	struct cgroup *com_cgrp = src_cgrp;
4692 	int ret;
4693 
4694 	lockdep_assert_held(&cgroup_mutex);
4695 
4696 	/* find the common ancestor */
4697 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4698 		com_cgrp = cgroup_parent(com_cgrp);
4699 
4700 	/* %current should be authorized to migrate to the common ancestor */
4701 	ret = cgroup_may_write(com_cgrp, sb);
4702 	if (ret)
4703 		return ret;
4704 
4705 	/*
4706 	 * If namespaces are delegation boundaries, %current must be able
4707 	 * to see both source and destination cgroups from its namespace.
4708 	 */
4709 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4710 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4711 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4712 		return -ENOENT;
4713 
4714 	return 0;
4715 }
4716 
4717 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4718 				     struct cgroup *dst_cgrp,
4719 				     struct super_block *sb, bool threadgroup)
4720 {
4721 	int ret = 0;
4722 
4723 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4724 	if (ret)
4725 		return ret;
4726 
4727 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4728 	if (ret)
4729 		return ret;
4730 
4731 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4732 		ret = -EOPNOTSUPP;
4733 
4734 	return ret;
4735 }
4736 
4737 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4738 				  char *buf, size_t nbytes, loff_t off)
4739 {
4740 	struct cgroup *src_cgrp, *dst_cgrp;
4741 	struct task_struct *task;
4742 	ssize_t ret;
4743 	bool locked;
4744 
4745 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4746 	if (!dst_cgrp)
4747 		return -ENODEV;
4748 
4749 	task = cgroup_procs_write_start(buf, true, &locked);
4750 	ret = PTR_ERR_OR_ZERO(task);
4751 	if (ret)
4752 		goto out_unlock;
4753 
4754 	/* find the source cgroup */
4755 	spin_lock_irq(&css_set_lock);
4756 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4757 	spin_unlock_irq(&css_set_lock);
4758 
4759 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4760 					of->file->f_path.dentry->d_sb, true);
4761 	if (ret)
4762 		goto out_finish;
4763 
4764 	ret = cgroup_attach_task(dst_cgrp, task, true);
4765 
4766 out_finish:
4767 	cgroup_procs_write_finish(task, locked);
4768 out_unlock:
4769 	cgroup_kn_unlock(of->kn);
4770 
4771 	return ret ?: nbytes;
4772 }
4773 
4774 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4775 {
4776 	return __cgroup_procs_start(s, pos, 0);
4777 }
4778 
4779 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4780 				    char *buf, size_t nbytes, loff_t off)
4781 {
4782 	struct cgroup *src_cgrp, *dst_cgrp;
4783 	struct task_struct *task;
4784 	ssize_t ret;
4785 	bool locked;
4786 
4787 	buf = strstrip(buf);
4788 
4789 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4790 	if (!dst_cgrp)
4791 		return -ENODEV;
4792 
4793 	task = cgroup_procs_write_start(buf, false, &locked);
4794 	ret = PTR_ERR_OR_ZERO(task);
4795 	if (ret)
4796 		goto out_unlock;
4797 
4798 	/* find the source cgroup */
4799 	spin_lock_irq(&css_set_lock);
4800 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4801 	spin_unlock_irq(&css_set_lock);
4802 
4803 	/* thread migrations follow the cgroup.procs delegation rule */
4804 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4805 					of->file->f_path.dentry->d_sb, false);
4806 	if (ret)
4807 		goto out_finish;
4808 
4809 	ret = cgroup_attach_task(dst_cgrp, task, false);
4810 
4811 out_finish:
4812 	cgroup_procs_write_finish(task, locked);
4813 out_unlock:
4814 	cgroup_kn_unlock(of->kn);
4815 
4816 	return ret ?: nbytes;
4817 }
4818 
4819 /* cgroup core interface files for the default hierarchy */
4820 static struct cftype cgroup_base_files[] = {
4821 	{
4822 		.name = "cgroup.type",
4823 		.flags = CFTYPE_NOT_ON_ROOT,
4824 		.seq_show = cgroup_type_show,
4825 		.write = cgroup_type_write,
4826 	},
4827 	{
4828 		.name = "cgroup.procs",
4829 		.flags = CFTYPE_NS_DELEGATABLE,
4830 		.file_offset = offsetof(struct cgroup, procs_file),
4831 		.release = cgroup_procs_release,
4832 		.seq_start = cgroup_procs_start,
4833 		.seq_next = cgroup_procs_next,
4834 		.seq_show = cgroup_procs_show,
4835 		.write = cgroup_procs_write,
4836 	},
4837 	{
4838 		.name = "cgroup.threads",
4839 		.flags = CFTYPE_NS_DELEGATABLE,
4840 		.release = cgroup_procs_release,
4841 		.seq_start = cgroup_threads_start,
4842 		.seq_next = cgroup_procs_next,
4843 		.seq_show = cgroup_procs_show,
4844 		.write = cgroup_threads_write,
4845 	},
4846 	{
4847 		.name = "cgroup.controllers",
4848 		.seq_show = cgroup_controllers_show,
4849 	},
4850 	{
4851 		.name = "cgroup.subtree_control",
4852 		.flags = CFTYPE_NS_DELEGATABLE,
4853 		.seq_show = cgroup_subtree_control_show,
4854 		.write = cgroup_subtree_control_write,
4855 	},
4856 	{
4857 		.name = "cgroup.events",
4858 		.flags = CFTYPE_NOT_ON_ROOT,
4859 		.file_offset = offsetof(struct cgroup, events_file),
4860 		.seq_show = cgroup_events_show,
4861 	},
4862 	{
4863 		.name = "cgroup.max.descendants",
4864 		.seq_show = cgroup_max_descendants_show,
4865 		.write = cgroup_max_descendants_write,
4866 	},
4867 	{
4868 		.name = "cgroup.max.depth",
4869 		.seq_show = cgroup_max_depth_show,
4870 		.write = cgroup_max_depth_write,
4871 	},
4872 	{
4873 		.name = "cgroup.stat",
4874 		.seq_show = cgroup_stat_show,
4875 	},
4876 	{
4877 		.name = "cgroup.freeze",
4878 		.flags = CFTYPE_NOT_ON_ROOT,
4879 		.seq_show = cgroup_freeze_show,
4880 		.write = cgroup_freeze_write,
4881 	},
4882 	{
4883 		.name = "cpu.stat",
4884 		.flags = CFTYPE_NOT_ON_ROOT,
4885 		.seq_show = cpu_stat_show,
4886 	},
4887 #ifdef CONFIG_PSI
4888 	{
4889 		.name = "io.pressure",
4890 		.seq_show = cgroup_io_pressure_show,
4891 		.write = cgroup_io_pressure_write,
4892 		.poll = cgroup_pressure_poll,
4893 		.release = cgroup_pressure_release,
4894 	},
4895 	{
4896 		.name = "memory.pressure",
4897 		.seq_show = cgroup_memory_pressure_show,
4898 		.write = cgroup_memory_pressure_write,
4899 		.poll = cgroup_pressure_poll,
4900 		.release = cgroup_pressure_release,
4901 	},
4902 	{
4903 		.name = "cpu.pressure",
4904 		.seq_show = cgroup_cpu_pressure_show,
4905 		.write = cgroup_cpu_pressure_write,
4906 		.poll = cgroup_pressure_poll,
4907 		.release = cgroup_pressure_release,
4908 	},
4909 #endif /* CONFIG_PSI */
4910 	{ }	/* terminate */
4911 };
4912 
4913 /*
4914  * css destruction is four-stage process.
4915  *
4916  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4917  *    Implemented in kill_css().
4918  *
4919  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4920  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4921  *    offlined by invoking offline_css().  After offlining, the base ref is
4922  *    put.  Implemented in css_killed_work_fn().
4923  *
4924  * 3. When the percpu_ref reaches zero, the only possible remaining
4925  *    accessors are inside RCU read sections.  css_release() schedules the
4926  *    RCU callback.
4927  *
4928  * 4. After the grace period, the css can be freed.  Implemented in
4929  *    css_free_work_fn().
4930  *
4931  * It is actually hairier because both step 2 and 4 require process context
4932  * and thus involve punting to css->destroy_work adding two additional
4933  * steps to the already complex sequence.
4934  */
4935 static void css_free_rwork_fn(struct work_struct *work)
4936 {
4937 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4938 				struct cgroup_subsys_state, destroy_rwork);
4939 	struct cgroup_subsys *ss = css->ss;
4940 	struct cgroup *cgrp = css->cgroup;
4941 
4942 	percpu_ref_exit(&css->refcnt);
4943 
4944 	if (ss) {
4945 		/* css free path */
4946 		struct cgroup_subsys_state *parent = css->parent;
4947 		int id = css->id;
4948 
4949 		ss->css_free(css);
4950 		cgroup_idr_remove(&ss->css_idr, id);
4951 		cgroup_put(cgrp);
4952 
4953 		if (parent)
4954 			css_put(parent);
4955 	} else {
4956 		/* cgroup free path */
4957 		atomic_dec(&cgrp->root->nr_cgrps);
4958 		cgroup1_pidlist_destroy_all(cgrp);
4959 		cancel_work_sync(&cgrp->release_agent_work);
4960 
4961 		if (cgroup_parent(cgrp)) {
4962 			/*
4963 			 * We get a ref to the parent, and put the ref when
4964 			 * this cgroup is being freed, so it's guaranteed
4965 			 * that the parent won't be destroyed before its
4966 			 * children.
4967 			 */
4968 			cgroup_put(cgroup_parent(cgrp));
4969 			kernfs_put(cgrp->kn);
4970 			psi_cgroup_free(cgrp);
4971 			if (cgroup_on_dfl(cgrp))
4972 				cgroup_rstat_exit(cgrp);
4973 			kfree(cgrp);
4974 		} else {
4975 			/*
4976 			 * This is root cgroup's refcnt reaching zero,
4977 			 * which indicates that the root should be
4978 			 * released.
4979 			 */
4980 			cgroup_destroy_root(cgrp->root);
4981 		}
4982 	}
4983 }
4984 
4985 static void css_release_work_fn(struct work_struct *work)
4986 {
4987 	struct cgroup_subsys_state *css =
4988 		container_of(work, struct cgroup_subsys_state, destroy_work);
4989 	struct cgroup_subsys *ss = css->ss;
4990 	struct cgroup *cgrp = css->cgroup;
4991 
4992 	mutex_lock(&cgroup_mutex);
4993 
4994 	css->flags |= CSS_RELEASED;
4995 	list_del_rcu(&css->sibling);
4996 
4997 	if (ss) {
4998 		/* css release path */
4999 		if (!list_empty(&css->rstat_css_node)) {
5000 			cgroup_rstat_flush(cgrp);
5001 			list_del_rcu(&css->rstat_css_node);
5002 		}
5003 
5004 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5005 		if (ss->css_released)
5006 			ss->css_released(css);
5007 	} else {
5008 		struct cgroup *tcgrp;
5009 
5010 		/* cgroup release path */
5011 		TRACE_CGROUP_PATH(release, cgrp);
5012 
5013 		if (cgroup_on_dfl(cgrp))
5014 			cgroup_rstat_flush(cgrp);
5015 
5016 		spin_lock_irq(&css_set_lock);
5017 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5018 		     tcgrp = cgroup_parent(tcgrp))
5019 			tcgrp->nr_dying_descendants--;
5020 		spin_unlock_irq(&css_set_lock);
5021 
5022 		/*
5023 		 * There are two control paths which try to determine
5024 		 * cgroup from dentry without going through kernfs -
5025 		 * cgroupstats_build() and css_tryget_online_from_dir().
5026 		 * Those are supported by RCU protecting clearing of
5027 		 * cgrp->kn->priv backpointer.
5028 		 */
5029 		if (cgrp->kn)
5030 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5031 					 NULL);
5032 	}
5033 
5034 	mutex_unlock(&cgroup_mutex);
5035 
5036 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5037 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5038 }
5039 
5040 static void css_release(struct percpu_ref *ref)
5041 {
5042 	struct cgroup_subsys_state *css =
5043 		container_of(ref, struct cgroup_subsys_state, refcnt);
5044 
5045 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5046 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5047 }
5048 
5049 static void init_and_link_css(struct cgroup_subsys_state *css,
5050 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5051 {
5052 	lockdep_assert_held(&cgroup_mutex);
5053 
5054 	cgroup_get_live(cgrp);
5055 
5056 	memset(css, 0, sizeof(*css));
5057 	css->cgroup = cgrp;
5058 	css->ss = ss;
5059 	css->id = -1;
5060 	INIT_LIST_HEAD(&css->sibling);
5061 	INIT_LIST_HEAD(&css->children);
5062 	INIT_LIST_HEAD(&css->rstat_css_node);
5063 	css->serial_nr = css_serial_nr_next++;
5064 	atomic_set(&css->online_cnt, 0);
5065 
5066 	if (cgroup_parent(cgrp)) {
5067 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5068 		css_get(css->parent);
5069 	}
5070 
5071 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5072 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5073 
5074 	BUG_ON(cgroup_css(cgrp, ss));
5075 }
5076 
5077 /* invoke ->css_online() on a new CSS and mark it online if successful */
5078 static int online_css(struct cgroup_subsys_state *css)
5079 {
5080 	struct cgroup_subsys *ss = css->ss;
5081 	int ret = 0;
5082 
5083 	lockdep_assert_held(&cgroup_mutex);
5084 
5085 	if (ss->css_online)
5086 		ret = ss->css_online(css);
5087 	if (!ret) {
5088 		css->flags |= CSS_ONLINE;
5089 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5090 
5091 		atomic_inc(&css->online_cnt);
5092 		if (css->parent)
5093 			atomic_inc(&css->parent->online_cnt);
5094 	}
5095 	return ret;
5096 }
5097 
5098 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5099 static void offline_css(struct cgroup_subsys_state *css)
5100 {
5101 	struct cgroup_subsys *ss = css->ss;
5102 
5103 	lockdep_assert_held(&cgroup_mutex);
5104 
5105 	if (!(css->flags & CSS_ONLINE))
5106 		return;
5107 
5108 	if (ss->css_offline)
5109 		ss->css_offline(css);
5110 
5111 	css->flags &= ~CSS_ONLINE;
5112 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5113 
5114 	wake_up_all(&css->cgroup->offline_waitq);
5115 }
5116 
5117 /**
5118  * css_create - create a cgroup_subsys_state
5119  * @cgrp: the cgroup new css will be associated with
5120  * @ss: the subsys of new css
5121  *
5122  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5123  * css is online and installed in @cgrp.  This function doesn't create the
5124  * interface files.  Returns 0 on success, -errno on failure.
5125  */
5126 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5127 					      struct cgroup_subsys *ss)
5128 {
5129 	struct cgroup *parent = cgroup_parent(cgrp);
5130 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5131 	struct cgroup_subsys_state *css;
5132 	int err;
5133 
5134 	lockdep_assert_held(&cgroup_mutex);
5135 
5136 	css = ss->css_alloc(parent_css);
5137 	if (!css)
5138 		css = ERR_PTR(-ENOMEM);
5139 	if (IS_ERR(css))
5140 		return css;
5141 
5142 	init_and_link_css(css, ss, cgrp);
5143 
5144 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5145 	if (err)
5146 		goto err_free_css;
5147 
5148 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5149 	if (err < 0)
5150 		goto err_free_css;
5151 	css->id = err;
5152 
5153 	/* @css is ready to be brought online now, make it visible */
5154 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5155 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5156 
5157 	err = online_css(css);
5158 	if (err)
5159 		goto err_list_del;
5160 
5161 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5162 	    cgroup_parent(parent)) {
5163 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5164 			current->comm, current->pid, ss->name);
5165 		if (!strcmp(ss->name, "memory"))
5166 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5167 		ss->warned_broken_hierarchy = true;
5168 	}
5169 
5170 	return css;
5171 
5172 err_list_del:
5173 	list_del_rcu(&css->sibling);
5174 err_free_css:
5175 	list_del_rcu(&css->rstat_css_node);
5176 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5177 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5178 	return ERR_PTR(err);
5179 }
5180 
5181 /*
5182  * The returned cgroup is fully initialized including its control mask, but
5183  * it isn't associated with its kernfs_node and doesn't have the control
5184  * mask applied.
5185  */
5186 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5187 				    umode_t mode)
5188 {
5189 	struct cgroup_root *root = parent->root;
5190 	struct cgroup *cgrp, *tcgrp;
5191 	struct kernfs_node *kn;
5192 	int level = parent->level + 1;
5193 	int ret;
5194 
5195 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5196 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5197 		       GFP_KERNEL);
5198 	if (!cgrp)
5199 		return ERR_PTR(-ENOMEM);
5200 
5201 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5202 	if (ret)
5203 		goto out_free_cgrp;
5204 
5205 	if (cgroup_on_dfl(parent)) {
5206 		ret = cgroup_rstat_init(cgrp);
5207 		if (ret)
5208 			goto out_cancel_ref;
5209 	}
5210 
5211 	/* create the directory */
5212 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5213 	if (IS_ERR(kn)) {
5214 		ret = PTR_ERR(kn);
5215 		goto out_stat_exit;
5216 	}
5217 	cgrp->kn = kn;
5218 
5219 	init_cgroup_housekeeping(cgrp);
5220 
5221 	cgrp->self.parent = &parent->self;
5222 	cgrp->root = root;
5223 	cgrp->level = level;
5224 
5225 	ret = psi_cgroup_alloc(cgrp);
5226 	if (ret)
5227 		goto out_kernfs_remove;
5228 
5229 	ret = cgroup_bpf_inherit(cgrp);
5230 	if (ret)
5231 		goto out_psi_free;
5232 
5233 	/*
5234 	 * New cgroup inherits effective freeze counter, and
5235 	 * if the parent has to be frozen, the child has too.
5236 	 */
5237 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5238 	if (cgrp->freezer.e_freeze) {
5239 		/*
5240 		 * Set the CGRP_FREEZE flag, so when a process will be
5241 		 * attached to the child cgroup, it will become frozen.
5242 		 * At this point the new cgroup is unpopulated, so we can
5243 		 * consider it frozen immediately.
5244 		 */
5245 		set_bit(CGRP_FREEZE, &cgrp->flags);
5246 		set_bit(CGRP_FROZEN, &cgrp->flags);
5247 	}
5248 
5249 	spin_lock_irq(&css_set_lock);
5250 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5251 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5252 
5253 		if (tcgrp != cgrp) {
5254 			tcgrp->nr_descendants++;
5255 
5256 			/*
5257 			 * If the new cgroup is frozen, all ancestor cgroups
5258 			 * get a new frozen descendant, but their state can't
5259 			 * change because of this.
5260 			 */
5261 			if (cgrp->freezer.e_freeze)
5262 				tcgrp->freezer.nr_frozen_descendants++;
5263 		}
5264 	}
5265 	spin_unlock_irq(&css_set_lock);
5266 
5267 	if (notify_on_release(parent))
5268 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5269 
5270 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5271 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5272 
5273 	cgrp->self.serial_nr = css_serial_nr_next++;
5274 
5275 	/* allocation complete, commit to creation */
5276 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5277 	atomic_inc(&root->nr_cgrps);
5278 	cgroup_get_live(parent);
5279 
5280 	/*
5281 	 * On the default hierarchy, a child doesn't automatically inherit
5282 	 * subtree_control from the parent.  Each is configured manually.
5283 	 */
5284 	if (!cgroup_on_dfl(cgrp))
5285 		cgrp->subtree_control = cgroup_control(cgrp);
5286 
5287 	cgroup_propagate_control(cgrp);
5288 
5289 	return cgrp;
5290 
5291 out_psi_free:
5292 	psi_cgroup_free(cgrp);
5293 out_kernfs_remove:
5294 	kernfs_remove(cgrp->kn);
5295 out_stat_exit:
5296 	if (cgroup_on_dfl(parent))
5297 		cgroup_rstat_exit(cgrp);
5298 out_cancel_ref:
5299 	percpu_ref_exit(&cgrp->self.refcnt);
5300 out_free_cgrp:
5301 	kfree(cgrp);
5302 	return ERR_PTR(ret);
5303 }
5304 
5305 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5306 {
5307 	struct cgroup *cgroup;
5308 	int ret = false;
5309 	int level = 1;
5310 
5311 	lockdep_assert_held(&cgroup_mutex);
5312 
5313 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5314 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5315 			goto fail;
5316 
5317 		if (level > cgroup->max_depth)
5318 			goto fail;
5319 
5320 		level++;
5321 	}
5322 
5323 	ret = true;
5324 fail:
5325 	return ret;
5326 }
5327 
5328 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5329 {
5330 	struct cgroup *parent, *cgrp;
5331 	int ret;
5332 
5333 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5334 	if (strchr(name, '\n'))
5335 		return -EINVAL;
5336 
5337 	parent = cgroup_kn_lock_live(parent_kn, false);
5338 	if (!parent)
5339 		return -ENODEV;
5340 
5341 	if (!cgroup_check_hierarchy_limits(parent)) {
5342 		ret = -EAGAIN;
5343 		goto out_unlock;
5344 	}
5345 
5346 	cgrp = cgroup_create(parent, name, mode);
5347 	if (IS_ERR(cgrp)) {
5348 		ret = PTR_ERR(cgrp);
5349 		goto out_unlock;
5350 	}
5351 
5352 	/*
5353 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5354 	 * that @cgrp->kn is always accessible.
5355 	 */
5356 	kernfs_get(cgrp->kn);
5357 
5358 	ret = cgroup_kn_set_ugid(cgrp->kn);
5359 	if (ret)
5360 		goto out_destroy;
5361 
5362 	ret = css_populate_dir(&cgrp->self);
5363 	if (ret)
5364 		goto out_destroy;
5365 
5366 	ret = cgroup_apply_control_enable(cgrp);
5367 	if (ret)
5368 		goto out_destroy;
5369 
5370 	TRACE_CGROUP_PATH(mkdir, cgrp);
5371 
5372 	/* let's create and online css's */
5373 	kernfs_activate(cgrp->kn);
5374 
5375 	ret = 0;
5376 	goto out_unlock;
5377 
5378 out_destroy:
5379 	cgroup_destroy_locked(cgrp);
5380 out_unlock:
5381 	cgroup_kn_unlock(parent_kn);
5382 	return ret;
5383 }
5384 
5385 /*
5386  * This is called when the refcnt of a css is confirmed to be killed.
5387  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5388  * initate destruction and put the css ref from kill_css().
5389  */
5390 static void css_killed_work_fn(struct work_struct *work)
5391 {
5392 	struct cgroup_subsys_state *css =
5393 		container_of(work, struct cgroup_subsys_state, destroy_work);
5394 
5395 	mutex_lock(&cgroup_mutex);
5396 
5397 	do {
5398 		offline_css(css);
5399 		css_put(css);
5400 		/* @css can't go away while we're holding cgroup_mutex */
5401 		css = css->parent;
5402 	} while (css && atomic_dec_and_test(&css->online_cnt));
5403 
5404 	mutex_unlock(&cgroup_mutex);
5405 }
5406 
5407 /* css kill confirmation processing requires process context, bounce */
5408 static void css_killed_ref_fn(struct percpu_ref *ref)
5409 {
5410 	struct cgroup_subsys_state *css =
5411 		container_of(ref, struct cgroup_subsys_state, refcnt);
5412 
5413 	if (atomic_dec_and_test(&css->online_cnt)) {
5414 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5415 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5416 	}
5417 }
5418 
5419 /**
5420  * kill_css - destroy a css
5421  * @css: css to destroy
5422  *
5423  * This function initiates destruction of @css by removing cgroup interface
5424  * files and putting its base reference.  ->css_offline() will be invoked
5425  * asynchronously once css_tryget_online() is guaranteed to fail and when
5426  * the reference count reaches zero, @css will be released.
5427  */
5428 static void kill_css(struct cgroup_subsys_state *css)
5429 {
5430 	lockdep_assert_held(&cgroup_mutex);
5431 
5432 	if (css->flags & CSS_DYING)
5433 		return;
5434 
5435 	css->flags |= CSS_DYING;
5436 
5437 	/*
5438 	 * This must happen before css is disassociated with its cgroup.
5439 	 * See seq_css() for details.
5440 	 */
5441 	css_clear_dir(css);
5442 
5443 	/*
5444 	 * Killing would put the base ref, but we need to keep it alive
5445 	 * until after ->css_offline().
5446 	 */
5447 	css_get(css);
5448 
5449 	/*
5450 	 * cgroup core guarantees that, by the time ->css_offline() is
5451 	 * invoked, no new css reference will be given out via
5452 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5453 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5454 	 * guarantee that the ref is seen as killed on all CPUs on return.
5455 	 *
5456 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5457 	 * css is confirmed to be seen as killed on all CPUs.
5458 	 */
5459 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5460 }
5461 
5462 /**
5463  * cgroup_destroy_locked - the first stage of cgroup destruction
5464  * @cgrp: cgroup to be destroyed
5465  *
5466  * css's make use of percpu refcnts whose killing latency shouldn't be
5467  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5468  * guarantee that css_tryget_online() won't succeed by the time
5469  * ->css_offline() is invoked.  To satisfy all the requirements,
5470  * destruction is implemented in the following two steps.
5471  *
5472  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5473  *     userland visible parts and start killing the percpu refcnts of
5474  *     css's.  Set up so that the next stage will be kicked off once all
5475  *     the percpu refcnts are confirmed to be killed.
5476  *
5477  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5478  *     rest of destruction.  Once all cgroup references are gone, the
5479  *     cgroup is RCU-freed.
5480  *
5481  * This function implements s1.  After this step, @cgrp is gone as far as
5482  * the userland is concerned and a new cgroup with the same name may be
5483  * created.  As cgroup doesn't care about the names internally, this
5484  * doesn't cause any problem.
5485  */
5486 static int cgroup_destroy_locked(struct cgroup *cgrp)
5487 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5488 {
5489 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5490 	struct cgroup_subsys_state *css;
5491 	struct cgrp_cset_link *link;
5492 	int ssid;
5493 
5494 	lockdep_assert_held(&cgroup_mutex);
5495 
5496 	/*
5497 	 * Only migration can raise populated from zero and we're already
5498 	 * holding cgroup_mutex.
5499 	 */
5500 	if (cgroup_is_populated(cgrp))
5501 		return -EBUSY;
5502 
5503 	/*
5504 	 * Make sure there's no live children.  We can't test emptiness of
5505 	 * ->self.children as dead children linger on it while being
5506 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5507 	 */
5508 	if (css_has_online_children(&cgrp->self))
5509 		return -EBUSY;
5510 
5511 	/*
5512 	 * Mark @cgrp and the associated csets dead.  The former prevents
5513 	 * further task migration and child creation by disabling
5514 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5515 	 * the migration path.
5516 	 */
5517 	cgrp->self.flags &= ~CSS_ONLINE;
5518 
5519 	spin_lock_irq(&css_set_lock);
5520 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5521 		link->cset->dead = true;
5522 	spin_unlock_irq(&css_set_lock);
5523 
5524 	/* initiate massacre of all css's */
5525 	for_each_css(css, ssid, cgrp)
5526 		kill_css(css);
5527 
5528 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5529 	css_clear_dir(&cgrp->self);
5530 	kernfs_remove(cgrp->kn);
5531 
5532 	if (parent && cgroup_is_threaded(cgrp))
5533 		parent->nr_threaded_children--;
5534 
5535 	spin_lock_irq(&css_set_lock);
5536 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5537 		tcgrp->nr_descendants--;
5538 		tcgrp->nr_dying_descendants++;
5539 		/*
5540 		 * If the dying cgroup is frozen, decrease frozen descendants
5541 		 * counters of ancestor cgroups.
5542 		 */
5543 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5544 			tcgrp->freezer.nr_frozen_descendants--;
5545 	}
5546 	spin_unlock_irq(&css_set_lock);
5547 
5548 	cgroup1_check_for_release(parent);
5549 
5550 	cgroup_bpf_offline(cgrp);
5551 
5552 	/* put the base reference */
5553 	percpu_ref_kill(&cgrp->self.refcnt);
5554 
5555 	return 0;
5556 };
5557 
5558 int cgroup_rmdir(struct kernfs_node *kn)
5559 {
5560 	struct cgroup *cgrp;
5561 	int ret = 0;
5562 
5563 	cgrp = cgroup_kn_lock_live(kn, false);
5564 	if (!cgrp)
5565 		return 0;
5566 
5567 	ret = cgroup_destroy_locked(cgrp);
5568 	if (!ret)
5569 		TRACE_CGROUP_PATH(rmdir, cgrp);
5570 
5571 	cgroup_kn_unlock(kn);
5572 	return ret;
5573 }
5574 
5575 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5576 	.show_options		= cgroup_show_options,
5577 	.mkdir			= cgroup_mkdir,
5578 	.rmdir			= cgroup_rmdir,
5579 	.show_path		= cgroup_show_path,
5580 };
5581 
5582 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5583 {
5584 	struct cgroup_subsys_state *css;
5585 
5586 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5587 
5588 	mutex_lock(&cgroup_mutex);
5589 
5590 	idr_init(&ss->css_idr);
5591 	INIT_LIST_HEAD(&ss->cfts);
5592 
5593 	/* Create the root cgroup state for this subsystem */
5594 	ss->root = &cgrp_dfl_root;
5595 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5596 	/* We don't handle early failures gracefully */
5597 	BUG_ON(IS_ERR(css));
5598 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5599 
5600 	/*
5601 	 * Root csses are never destroyed and we can't initialize
5602 	 * percpu_ref during early init.  Disable refcnting.
5603 	 */
5604 	css->flags |= CSS_NO_REF;
5605 
5606 	if (early) {
5607 		/* allocation can't be done safely during early init */
5608 		css->id = 1;
5609 	} else {
5610 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5611 		BUG_ON(css->id < 0);
5612 	}
5613 
5614 	/* Update the init_css_set to contain a subsys
5615 	 * pointer to this state - since the subsystem is
5616 	 * newly registered, all tasks and hence the
5617 	 * init_css_set is in the subsystem's root cgroup. */
5618 	init_css_set.subsys[ss->id] = css;
5619 
5620 	have_fork_callback |= (bool)ss->fork << ss->id;
5621 	have_exit_callback |= (bool)ss->exit << ss->id;
5622 	have_release_callback |= (bool)ss->release << ss->id;
5623 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5624 
5625 	/* At system boot, before all subsystems have been
5626 	 * registered, no tasks have been forked, so we don't
5627 	 * need to invoke fork callbacks here. */
5628 	BUG_ON(!list_empty(&init_task.tasks));
5629 
5630 	BUG_ON(online_css(css));
5631 
5632 	mutex_unlock(&cgroup_mutex);
5633 }
5634 
5635 /**
5636  * cgroup_init_early - cgroup initialization at system boot
5637  *
5638  * Initialize cgroups at system boot, and initialize any
5639  * subsystems that request early init.
5640  */
5641 int __init cgroup_init_early(void)
5642 {
5643 	static struct cgroup_fs_context __initdata ctx;
5644 	struct cgroup_subsys *ss;
5645 	int i;
5646 
5647 	ctx.root = &cgrp_dfl_root;
5648 	init_cgroup_root(&ctx);
5649 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5650 
5651 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5652 
5653 	for_each_subsys(ss, i) {
5654 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5655 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5656 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5657 		     ss->id, ss->name);
5658 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5659 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5660 
5661 		ss->id = i;
5662 		ss->name = cgroup_subsys_name[i];
5663 		if (!ss->legacy_name)
5664 			ss->legacy_name = cgroup_subsys_name[i];
5665 
5666 		if (ss->early_init)
5667 			cgroup_init_subsys(ss, true);
5668 	}
5669 	return 0;
5670 }
5671 
5672 static u16 cgroup_disable_mask __initdata;
5673 
5674 /**
5675  * cgroup_init - cgroup initialization
5676  *
5677  * Register cgroup filesystem and /proc file, and initialize
5678  * any subsystems that didn't request early init.
5679  */
5680 int __init cgroup_init(void)
5681 {
5682 	struct cgroup_subsys *ss;
5683 	int ssid;
5684 
5685 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5686 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5687 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5688 
5689 	cgroup_rstat_boot();
5690 
5691 	/*
5692 	 * The latency of the synchronize_rcu() is too high for cgroups,
5693 	 * avoid it at the cost of forcing all readers into the slow path.
5694 	 */
5695 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5696 
5697 	get_user_ns(init_cgroup_ns.user_ns);
5698 
5699 	mutex_lock(&cgroup_mutex);
5700 
5701 	/*
5702 	 * Add init_css_set to the hash table so that dfl_root can link to
5703 	 * it during init.
5704 	 */
5705 	hash_add(css_set_table, &init_css_set.hlist,
5706 		 css_set_hash(init_css_set.subsys));
5707 
5708 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5709 
5710 	mutex_unlock(&cgroup_mutex);
5711 
5712 	for_each_subsys(ss, ssid) {
5713 		if (ss->early_init) {
5714 			struct cgroup_subsys_state *css =
5715 				init_css_set.subsys[ss->id];
5716 
5717 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5718 						   GFP_KERNEL);
5719 			BUG_ON(css->id < 0);
5720 		} else {
5721 			cgroup_init_subsys(ss, false);
5722 		}
5723 
5724 		list_add_tail(&init_css_set.e_cset_node[ssid],
5725 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5726 
5727 		/*
5728 		 * Setting dfl_root subsys_mask needs to consider the
5729 		 * disabled flag and cftype registration needs kmalloc,
5730 		 * both of which aren't available during early_init.
5731 		 */
5732 		if (cgroup_disable_mask & (1 << ssid)) {
5733 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5734 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5735 			       ss->name);
5736 			continue;
5737 		}
5738 
5739 		if (cgroup1_ssid_disabled(ssid))
5740 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5741 			       ss->name);
5742 
5743 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5744 
5745 		/* implicit controllers must be threaded too */
5746 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5747 
5748 		if (ss->implicit_on_dfl)
5749 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5750 		else if (!ss->dfl_cftypes)
5751 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5752 
5753 		if (ss->threaded)
5754 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5755 
5756 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5757 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5758 		} else {
5759 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5760 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5761 		}
5762 
5763 		if (ss->bind)
5764 			ss->bind(init_css_set.subsys[ssid]);
5765 
5766 		mutex_lock(&cgroup_mutex);
5767 		css_populate_dir(init_css_set.subsys[ssid]);
5768 		mutex_unlock(&cgroup_mutex);
5769 	}
5770 
5771 	/* init_css_set.subsys[] has been updated, re-hash */
5772 	hash_del(&init_css_set.hlist);
5773 	hash_add(css_set_table, &init_css_set.hlist,
5774 		 css_set_hash(init_css_set.subsys));
5775 
5776 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5777 	WARN_ON(register_filesystem(&cgroup_fs_type));
5778 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5779 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5780 #ifdef CONFIG_CPUSETS
5781 	WARN_ON(register_filesystem(&cpuset_fs_type));
5782 #endif
5783 
5784 	return 0;
5785 }
5786 
5787 static int __init cgroup_wq_init(void)
5788 {
5789 	/*
5790 	 * There isn't much point in executing destruction path in
5791 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5792 	 * Use 1 for @max_active.
5793 	 *
5794 	 * We would prefer to do this in cgroup_init() above, but that
5795 	 * is called before init_workqueues(): so leave this until after.
5796 	 */
5797 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5798 	BUG_ON(!cgroup_destroy_wq);
5799 	return 0;
5800 }
5801 core_initcall(cgroup_wq_init);
5802 
5803 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5804 {
5805 	struct kernfs_node *kn;
5806 
5807 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5808 	if (!kn)
5809 		return;
5810 	kernfs_path(kn, buf, buflen);
5811 	kernfs_put(kn);
5812 }
5813 
5814 /*
5815  * proc_cgroup_show()
5816  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5817  *  - Used for /proc/<pid>/cgroup.
5818  */
5819 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5820 		     struct pid *pid, struct task_struct *tsk)
5821 {
5822 	char *buf;
5823 	int retval;
5824 	struct cgroup_root *root;
5825 
5826 	retval = -ENOMEM;
5827 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5828 	if (!buf)
5829 		goto out;
5830 
5831 	mutex_lock(&cgroup_mutex);
5832 	spin_lock_irq(&css_set_lock);
5833 
5834 	for_each_root(root) {
5835 		struct cgroup_subsys *ss;
5836 		struct cgroup *cgrp;
5837 		int ssid, count = 0;
5838 
5839 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5840 			continue;
5841 
5842 		seq_printf(m, "%d:", root->hierarchy_id);
5843 		if (root != &cgrp_dfl_root)
5844 			for_each_subsys(ss, ssid)
5845 				if (root->subsys_mask & (1 << ssid))
5846 					seq_printf(m, "%s%s", count++ ? "," : "",
5847 						   ss->legacy_name);
5848 		if (strlen(root->name))
5849 			seq_printf(m, "%sname=%s", count ? "," : "",
5850 				   root->name);
5851 		seq_putc(m, ':');
5852 
5853 		cgrp = task_cgroup_from_root(tsk, root);
5854 
5855 		/*
5856 		 * On traditional hierarchies, all zombie tasks show up as
5857 		 * belonging to the root cgroup.  On the default hierarchy,
5858 		 * while a zombie doesn't show up in "cgroup.procs" and
5859 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5860 		 * reporting the cgroup it belonged to before exiting.  If
5861 		 * the cgroup is removed before the zombie is reaped,
5862 		 * " (deleted)" is appended to the cgroup path.
5863 		 */
5864 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5865 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5866 						current->nsproxy->cgroup_ns);
5867 			if (retval >= PATH_MAX)
5868 				retval = -ENAMETOOLONG;
5869 			if (retval < 0)
5870 				goto out_unlock;
5871 
5872 			seq_puts(m, buf);
5873 		} else {
5874 			seq_puts(m, "/");
5875 		}
5876 
5877 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5878 			seq_puts(m, " (deleted)\n");
5879 		else
5880 			seq_putc(m, '\n');
5881 	}
5882 
5883 	retval = 0;
5884 out_unlock:
5885 	spin_unlock_irq(&css_set_lock);
5886 	mutex_unlock(&cgroup_mutex);
5887 	kfree(buf);
5888 out:
5889 	return retval;
5890 }
5891 
5892 /**
5893  * cgroup_fork - initialize cgroup related fields during copy_process()
5894  * @child: pointer to task_struct of forking parent process.
5895  *
5896  * A task is associated with the init_css_set until cgroup_post_fork()
5897  * attaches it to the target css_set.
5898  */
5899 void cgroup_fork(struct task_struct *child)
5900 {
5901 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5902 	INIT_LIST_HEAD(&child->cg_list);
5903 }
5904 
5905 static struct cgroup *cgroup_get_from_file(struct file *f)
5906 {
5907 	struct cgroup_subsys_state *css;
5908 	struct cgroup *cgrp;
5909 
5910 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5911 	if (IS_ERR(css))
5912 		return ERR_CAST(css);
5913 
5914 	cgrp = css->cgroup;
5915 	if (!cgroup_on_dfl(cgrp)) {
5916 		cgroup_put(cgrp);
5917 		return ERR_PTR(-EBADF);
5918 	}
5919 
5920 	return cgrp;
5921 }
5922 
5923 /**
5924  * cgroup_css_set_fork - find or create a css_set for a child process
5925  * @kargs: the arguments passed to create the child process
5926  *
5927  * This functions finds or creates a new css_set which the child
5928  * process will be attached to in cgroup_post_fork(). By default,
5929  * the child process will be given the same css_set as its parent.
5930  *
5931  * If CLONE_INTO_CGROUP is specified this function will try to find an
5932  * existing css_set which includes the requested cgroup and if not create
5933  * a new css_set that the child will be attached to later. If this function
5934  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5935  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5936  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5937  * to the target cgroup.
5938  */
5939 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5940 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5941 {
5942 	int ret;
5943 	struct cgroup *dst_cgrp = NULL;
5944 	struct css_set *cset;
5945 	struct super_block *sb;
5946 	struct file *f;
5947 
5948 	if (kargs->flags & CLONE_INTO_CGROUP)
5949 		mutex_lock(&cgroup_mutex);
5950 
5951 	cgroup_threadgroup_change_begin(current);
5952 
5953 	spin_lock_irq(&css_set_lock);
5954 	cset = task_css_set(current);
5955 	get_css_set(cset);
5956 	spin_unlock_irq(&css_set_lock);
5957 
5958 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5959 		kargs->cset = cset;
5960 		return 0;
5961 	}
5962 
5963 	f = fget_raw(kargs->cgroup);
5964 	if (!f) {
5965 		ret = -EBADF;
5966 		goto err;
5967 	}
5968 	sb = f->f_path.dentry->d_sb;
5969 
5970 	dst_cgrp = cgroup_get_from_file(f);
5971 	if (IS_ERR(dst_cgrp)) {
5972 		ret = PTR_ERR(dst_cgrp);
5973 		dst_cgrp = NULL;
5974 		goto err;
5975 	}
5976 
5977 	if (cgroup_is_dead(dst_cgrp)) {
5978 		ret = -ENODEV;
5979 		goto err;
5980 	}
5981 
5982 	/*
5983 	 * Verify that we the target cgroup is writable for us. This is
5984 	 * usually done by the vfs layer but since we're not going through
5985 	 * the vfs layer here we need to do it "manually".
5986 	 */
5987 	ret = cgroup_may_write(dst_cgrp, sb);
5988 	if (ret)
5989 		goto err;
5990 
5991 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5992 					!(kargs->flags & CLONE_THREAD));
5993 	if (ret)
5994 		goto err;
5995 
5996 	kargs->cset = find_css_set(cset, dst_cgrp);
5997 	if (!kargs->cset) {
5998 		ret = -ENOMEM;
5999 		goto err;
6000 	}
6001 
6002 	put_css_set(cset);
6003 	fput(f);
6004 	kargs->cgrp = dst_cgrp;
6005 	return ret;
6006 
6007 err:
6008 	cgroup_threadgroup_change_end(current);
6009 	mutex_unlock(&cgroup_mutex);
6010 	if (f)
6011 		fput(f);
6012 	if (dst_cgrp)
6013 		cgroup_put(dst_cgrp);
6014 	put_css_set(cset);
6015 	if (kargs->cset)
6016 		put_css_set(kargs->cset);
6017 	return ret;
6018 }
6019 
6020 /**
6021  * cgroup_css_set_put_fork - drop references we took during fork
6022  * @kargs: the arguments passed to create the child process
6023  *
6024  * Drop references to the prepared css_set and target cgroup if
6025  * CLONE_INTO_CGROUP was requested.
6026  */
6027 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6028 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6029 {
6030 	cgroup_threadgroup_change_end(current);
6031 
6032 	if (kargs->flags & CLONE_INTO_CGROUP) {
6033 		struct cgroup *cgrp = kargs->cgrp;
6034 		struct css_set *cset = kargs->cset;
6035 
6036 		mutex_unlock(&cgroup_mutex);
6037 
6038 		if (cset) {
6039 			put_css_set(cset);
6040 			kargs->cset = NULL;
6041 		}
6042 
6043 		if (cgrp) {
6044 			cgroup_put(cgrp);
6045 			kargs->cgrp = NULL;
6046 		}
6047 	}
6048 }
6049 
6050 /**
6051  * cgroup_can_fork - called on a new task before the process is exposed
6052  * @child: the child process
6053  *
6054  * This prepares a new css_set for the child process which the child will
6055  * be attached to in cgroup_post_fork().
6056  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6057  * callback returns an error, the fork aborts with that error code. This
6058  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6059  */
6060 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6061 {
6062 	struct cgroup_subsys *ss;
6063 	int i, j, ret;
6064 
6065 	ret = cgroup_css_set_fork(kargs);
6066 	if (ret)
6067 		return ret;
6068 
6069 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6070 		ret = ss->can_fork(child, kargs->cset);
6071 		if (ret)
6072 			goto out_revert;
6073 	} while_each_subsys_mask();
6074 
6075 	return 0;
6076 
6077 out_revert:
6078 	for_each_subsys(ss, j) {
6079 		if (j >= i)
6080 			break;
6081 		if (ss->cancel_fork)
6082 			ss->cancel_fork(child, kargs->cset);
6083 	}
6084 
6085 	cgroup_css_set_put_fork(kargs);
6086 
6087 	return ret;
6088 }
6089 
6090 /**
6091  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6092  * @child: the child process
6093  * @kargs: the arguments passed to create the child process
6094  *
6095  * This calls the cancel_fork() callbacks if a fork failed *after*
6096  * cgroup_can_fork() succeded and cleans up references we took to
6097  * prepare a new css_set for the child process in cgroup_can_fork().
6098  */
6099 void cgroup_cancel_fork(struct task_struct *child,
6100 			struct kernel_clone_args *kargs)
6101 {
6102 	struct cgroup_subsys *ss;
6103 	int i;
6104 
6105 	for_each_subsys(ss, i)
6106 		if (ss->cancel_fork)
6107 			ss->cancel_fork(child, kargs->cset);
6108 
6109 	cgroup_css_set_put_fork(kargs);
6110 }
6111 
6112 /**
6113  * cgroup_post_fork - finalize cgroup setup for the child process
6114  * @child: the child process
6115  *
6116  * Attach the child process to its css_set calling the subsystem fork()
6117  * callbacks.
6118  */
6119 void cgroup_post_fork(struct task_struct *child,
6120 		      struct kernel_clone_args *kargs)
6121 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6122 {
6123 	struct cgroup_subsys *ss;
6124 	struct css_set *cset;
6125 	int i;
6126 
6127 	cset = kargs->cset;
6128 	kargs->cset = NULL;
6129 
6130 	spin_lock_irq(&css_set_lock);
6131 
6132 	/* init tasks are special, only link regular threads */
6133 	if (likely(child->pid)) {
6134 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6135 		cset->nr_tasks++;
6136 		css_set_move_task(child, NULL, cset, false);
6137 	} else {
6138 		put_css_set(cset);
6139 		cset = NULL;
6140 	}
6141 
6142 	/*
6143 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6144 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6145 	 * frozen state.
6146 	 */
6147 	if (unlikely(cgroup_task_freeze(child))) {
6148 		spin_lock(&child->sighand->siglock);
6149 		WARN_ON_ONCE(child->frozen);
6150 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6151 		spin_unlock(&child->sighand->siglock);
6152 
6153 		/*
6154 		 * Calling cgroup_update_frozen() isn't required here,
6155 		 * because it will be called anyway a bit later from
6156 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6157 		 * from the frozen state and back.
6158 		 */
6159 	}
6160 
6161 	spin_unlock_irq(&css_set_lock);
6162 
6163 	/*
6164 	 * Call ss->fork().  This must happen after @child is linked on
6165 	 * css_set; otherwise, @child might change state between ->fork()
6166 	 * and addition to css_set.
6167 	 */
6168 	do_each_subsys_mask(ss, i, have_fork_callback) {
6169 		ss->fork(child);
6170 	} while_each_subsys_mask();
6171 
6172 	/* Make the new cset the root_cset of the new cgroup namespace. */
6173 	if (kargs->flags & CLONE_NEWCGROUP) {
6174 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6175 
6176 		get_css_set(cset);
6177 		child->nsproxy->cgroup_ns->root_cset = cset;
6178 		put_css_set(rcset);
6179 	}
6180 
6181 	cgroup_css_set_put_fork(kargs);
6182 }
6183 
6184 /**
6185  * cgroup_exit - detach cgroup from exiting task
6186  * @tsk: pointer to task_struct of exiting process
6187  *
6188  * Description: Detach cgroup from @tsk.
6189  *
6190  */
6191 void cgroup_exit(struct task_struct *tsk)
6192 {
6193 	struct cgroup_subsys *ss;
6194 	struct css_set *cset;
6195 	int i;
6196 
6197 	spin_lock_irq(&css_set_lock);
6198 
6199 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6200 	cset = task_css_set(tsk);
6201 	css_set_move_task(tsk, cset, NULL, false);
6202 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6203 	cset->nr_tasks--;
6204 
6205 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6206 	if (unlikely(cgroup_task_freeze(tsk)))
6207 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6208 
6209 	spin_unlock_irq(&css_set_lock);
6210 
6211 	/* see cgroup_post_fork() for details */
6212 	do_each_subsys_mask(ss, i, have_exit_callback) {
6213 		ss->exit(tsk);
6214 	} while_each_subsys_mask();
6215 }
6216 
6217 void cgroup_release(struct task_struct *task)
6218 {
6219 	struct cgroup_subsys *ss;
6220 	int ssid;
6221 
6222 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6223 		ss->release(task);
6224 	} while_each_subsys_mask();
6225 
6226 	spin_lock_irq(&css_set_lock);
6227 	css_set_skip_task_iters(task_css_set(task), task);
6228 	list_del_init(&task->cg_list);
6229 	spin_unlock_irq(&css_set_lock);
6230 }
6231 
6232 void cgroup_free(struct task_struct *task)
6233 {
6234 	struct css_set *cset = task_css_set(task);
6235 	put_css_set(cset);
6236 }
6237 
6238 static int __init cgroup_disable(char *str)
6239 {
6240 	struct cgroup_subsys *ss;
6241 	char *token;
6242 	int i;
6243 
6244 	while ((token = strsep(&str, ",")) != NULL) {
6245 		if (!*token)
6246 			continue;
6247 
6248 		for_each_subsys(ss, i) {
6249 			if (strcmp(token, ss->name) &&
6250 			    strcmp(token, ss->legacy_name))
6251 				continue;
6252 			cgroup_disable_mask |= 1 << i;
6253 		}
6254 	}
6255 	return 1;
6256 }
6257 __setup("cgroup_disable=", cgroup_disable);
6258 
6259 void __init __weak enable_debug_cgroup(void) { }
6260 
6261 static int __init enable_cgroup_debug(char *str)
6262 {
6263 	cgroup_debug = true;
6264 	enable_debug_cgroup();
6265 	return 1;
6266 }
6267 __setup("cgroup_debug", enable_cgroup_debug);
6268 
6269 /**
6270  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6271  * @dentry: directory dentry of interest
6272  * @ss: subsystem of interest
6273  *
6274  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6275  * to get the corresponding css and return it.  If such css doesn't exist
6276  * or can't be pinned, an ERR_PTR value is returned.
6277  */
6278 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6279 						       struct cgroup_subsys *ss)
6280 {
6281 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6282 	struct file_system_type *s_type = dentry->d_sb->s_type;
6283 	struct cgroup_subsys_state *css = NULL;
6284 	struct cgroup *cgrp;
6285 
6286 	/* is @dentry a cgroup dir? */
6287 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6288 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6289 		return ERR_PTR(-EBADF);
6290 
6291 	rcu_read_lock();
6292 
6293 	/*
6294 	 * This path doesn't originate from kernfs and @kn could already
6295 	 * have been or be removed at any point.  @kn->priv is RCU
6296 	 * protected for this access.  See css_release_work_fn() for details.
6297 	 */
6298 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6299 	if (cgrp)
6300 		css = cgroup_css(cgrp, ss);
6301 
6302 	if (!css || !css_tryget_online(css))
6303 		css = ERR_PTR(-ENOENT);
6304 
6305 	rcu_read_unlock();
6306 	return css;
6307 }
6308 
6309 /**
6310  * css_from_id - lookup css by id
6311  * @id: the cgroup id
6312  * @ss: cgroup subsys to be looked into
6313  *
6314  * Returns the css if there's valid one with @id, otherwise returns NULL.
6315  * Should be called under rcu_read_lock().
6316  */
6317 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6318 {
6319 	WARN_ON_ONCE(!rcu_read_lock_held());
6320 	return idr_find(&ss->css_idr, id);
6321 }
6322 
6323 /**
6324  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6325  * @path: path on the default hierarchy
6326  *
6327  * Find the cgroup at @path on the default hierarchy, increment its
6328  * reference count and return it.  Returns pointer to the found cgroup on
6329  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6330  * if @path points to a non-directory.
6331  */
6332 struct cgroup *cgroup_get_from_path(const char *path)
6333 {
6334 	struct kernfs_node *kn;
6335 	struct cgroup *cgrp;
6336 
6337 	mutex_lock(&cgroup_mutex);
6338 
6339 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6340 	if (kn) {
6341 		if (kernfs_type(kn) == KERNFS_DIR) {
6342 			cgrp = kn->priv;
6343 			cgroup_get_live(cgrp);
6344 		} else {
6345 			cgrp = ERR_PTR(-ENOTDIR);
6346 		}
6347 		kernfs_put(kn);
6348 	} else {
6349 		cgrp = ERR_PTR(-ENOENT);
6350 	}
6351 
6352 	mutex_unlock(&cgroup_mutex);
6353 	return cgrp;
6354 }
6355 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6356 
6357 /**
6358  * cgroup_get_from_fd - get a cgroup pointer from a fd
6359  * @fd: fd obtained by open(cgroup2_dir)
6360  *
6361  * Find the cgroup from a fd which should be obtained
6362  * by opening a cgroup directory.  Returns a pointer to the
6363  * cgroup on success. ERR_PTR is returned if the cgroup
6364  * cannot be found.
6365  */
6366 struct cgroup *cgroup_get_from_fd(int fd)
6367 {
6368 	struct cgroup *cgrp;
6369 	struct file *f;
6370 
6371 	f = fget_raw(fd);
6372 	if (!f)
6373 		return ERR_PTR(-EBADF);
6374 
6375 	cgrp = cgroup_get_from_file(f);
6376 	fput(f);
6377 	return cgrp;
6378 }
6379 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6380 
6381 static u64 power_of_ten(int power)
6382 {
6383 	u64 v = 1;
6384 	while (power--)
6385 		v *= 10;
6386 	return v;
6387 }
6388 
6389 /**
6390  * cgroup_parse_float - parse a floating number
6391  * @input: input string
6392  * @dec_shift: number of decimal digits to shift
6393  * @v: output
6394  *
6395  * Parse a decimal floating point number in @input and store the result in
6396  * @v with decimal point right shifted @dec_shift times.  For example, if
6397  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6398  * Returns 0 on success, -errno otherwise.
6399  *
6400  * There's nothing cgroup specific about this function except that it's
6401  * currently the only user.
6402  */
6403 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6404 {
6405 	s64 whole, frac = 0;
6406 	int fstart = 0, fend = 0, flen;
6407 
6408 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6409 		return -EINVAL;
6410 	if (frac < 0)
6411 		return -EINVAL;
6412 
6413 	flen = fend > fstart ? fend - fstart : 0;
6414 	if (flen < dec_shift)
6415 		frac *= power_of_ten(dec_shift - flen);
6416 	else
6417 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6418 
6419 	*v = whole * power_of_ten(dec_shift) + frac;
6420 	return 0;
6421 }
6422 
6423 /*
6424  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6425  * definition in cgroup-defs.h.
6426  */
6427 #ifdef CONFIG_SOCK_CGROUP_DATA
6428 
6429 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6430 
6431 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6432 static bool cgroup_sk_alloc_disabled __read_mostly;
6433 
6434 void cgroup_sk_alloc_disable(void)
6435 {
6436 	if (cgroup_sk_alloc_disabled)
6437 		return;
6438 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6439 	cgroup_sk_alloc_disabled = true;
6440 }
6441 
6442 #else
6443 
6444 #define cgroup_sk_alloc_disabled	false
6445 
6446 #endif
6447 
6448 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6449 {
6450 	if (cgroup_sk_alloc_disabled)
6451 		return;
6452 
6453 	/* Socket clone path */
6454 	if (skcd->val) {
6455 		/*
6456 		 * We might be cloning a socket which is left in an empty
6457 		 * cgroup and the cgroup might have already been rmdir'd.
6458 		 * Don't use cgroup_get_live().
6459 		 */
6460 		cgroup_get(sock_cgroup_ptr(skcd));
6461 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6462 		return;
6463 	}
6464 
6465 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6466 	if (in_interrupt())
6467 		return;
6468 
6469 	rcu_read_lock();
6470 
6471 	while (true) {
6472 		struct css_set *cset;
6473 
6474 		cset = task_css_set(current);
6475 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6476 			skcd->val = (unsigned long)cset->dfl_cgrp;
6477 			cgroup_bpf_get(cset->dfl_cgrp);
6478 			break;
6479 		}
6480 		cpu_relax();
6481 	}
6482 
6483 	rcu_read_unlock();
6484 }
6485 
6486 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6487 {
6488 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6489 
6490 	cgroup_bpf_put(cgrp);
6491 	cgroup_put(cgrp);
6492 }
6493 
6494 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6495 
6496 #ifdef CONFIG_CGROUP_BPF
6497 int cgroup_bpf_attach(struct cgroup *cgrp,
6498 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6499 		      struct bpf_cgroup_link *link,
6500 		      enum bpf_attach_type type,
6501 		      u32 flags)
6502 {
6503 	int ret;
6504 
6505 	mutex_lock(&cgroup_mutex);
6506 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6507 	mutex_unlock(&cgroup_mutex);
6508 	return ret;
6509 }
6510 
6511 int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *old_prog,
6512 		       struct bpf_prog *new_prog)
6513 {
6514 	struct bpf_cgroup_link *cg_link;
6515 	int ret;
6516 
6517 	if (link->ops != &bpf_cgroup_link_lops)
6518 		return -EINVAL;
6519 
6520 	cg_link = container_of(link, struct bpf_cgroup_link, link);
6521 
6522 	mutex_lock(&cgroup_mutex);
6523 	/* link might have been auto-released by dying cgroup, so fail */
6524 	if (!cg_link->cgroup) {
6525 		ret = -EINVAL;
6526 		goto out_unlock;
6527 	}
6528 	if (old_prog && link->prog != old_prog) {
6529 		ret = -EPERM;
6530 		goto out_unlock;
6531 	}
6532 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
6533 out_unlock:
6534 	mutex_unlock(&cgroup_mutex);
6535 	return ret;
6536 }
6537 
6538 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6539 		      enum bpf_attach_type type)
6540 {
6541 	int ret;
6542 
6543 	mutex_lock(&cgroup_mutex);
6544 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6545 	mutex_unlock(&cgroup_mutex);
6546 	return ret;
6547 }
6548 
6549 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6550 		     union bpf_attr __user *uattr)
6551 {
6552 	int ret;
6553 
6554 	mutex_lock(&cgroup_mutex);
6555 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6556 	mutex_unlock(&cgroup_mutex);
6557 	return ret;
6558 }
6559 #endif /* CONFIG_CGROUP_BPF */
6560 
6561 #ifdef CONFIG_SYSFS
6562 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6563 				      ssize_t size, const char *prefix)
6564 {
6565 	struct cftype *cft;
6566 	ssize_t ret = 0;
6567 
6568 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6569 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6570 			continue;
6571 
6572 		if (prefix)
6573 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6574 
6575 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6576 
6577 		if (WARN_ON(ret >= size))
6578 			break;
6579 	}
6580 
6581 	return ret;
6582 }
6583 
6584 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6585 			      char *buf)
6586 {
6587 	struct cgroup_subsys *ss;
6588 	int ssid;
6589 	ssize_t ret = 0;
6590 
6591 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6592 				     NULL);
6593 
6594 	for_each_subsys(ss, ssid)
6595 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6596 					      PAGE_SIZE - ret,
6597 					      cgroup_subsys_name[ssid]);
6598 
6599 	return ret;
6600 }
6601 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6602 
6603 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6604 			     char *buf)
6605 {
6606 	return snprintf(buf, PAGE_SIZE,
6607 			"nsdelegate\n"
6608 			"memory_localevents\n"
6609 			"memory_recursiveprot\n");
6610 }
6611 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6612 
6613 static struct attribute *cgroup_sysfs_attrs[] = {
6614 	&cgroup_delegate_attr.attr,
6615 	&cgroup_features_attr.attr,
6616 	NULL,
6617 };
6618 
6619 static const struct attribute_group cgroup_sysfs_attr_group = {
6620 	.attrs = cgroup_sysfs_attrs,
6621 	.name = "cgroup",
6622 };
6623 
6624 static int __init cgroup_sysfs_init(void)
6625 {
6626 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6627 }
6628 subsys_initcall(cgroup_sysfs_init);
6629 
6630 #endif /* CONFIG_SYSFS */
6631