1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_skip(struct css_task_iter *it, 219 struct task_struct *task); 220 static int cgroup_destroy_locked(struct cgroup *cgrp); 221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 222 struct cgroup_subsys *ss); 223 static void css_release(struct percpu_ref *ref); 224 static void kill_css(struct cgroup_subsys_state *css); 225 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 226 struct cgroup *cgrp, struct cftype cfts[], 227 bool is_add); 228 229 /** 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 231 * @ssid: subsys ID of interest 232 * 233 * cgroup_subsys_enabled() can only be used with literal subsys names which 234 * is fine for individual subsystems but unsuitable for cgroup core. This 235 * is slower static_key_enabled() based test indexed by @ssid. 236 */ 237 bool cgroup_ssid_enabled(int ssid) 238 { 239 if (CGROUP_SUBSYS_COUNT == 0) 240 return false; 241 242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 243 } 244 245 /** 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 247 * @cgrp: the cgroup of interest 248 * 249 * The default hierarchy is the v2 interface of cgroup and this function 250 * can be used to test whether a cgroup is on the default hierarchy for 251 * cases where a subsystem should behave differnetly depending on the 252 * interface version. 253 * 254 * The set of behaviors which change on the default hierarchy are still 255 * being determined and the mount option is prefixed with __DEVEL__. 256 * 257 * List of changed behaviors: 258 * 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 260 * and "name" are disallowed. 261 * 262 * - When mounting an existing superblock, mount options should match. 263 * 264 * - Remount is disallowed. 265 * 266 * - rename(2) is disallowed. 267 * 268 * - "tasks" is removed. Everything should be at process granularity. Use 269 * "cgroup.procs" instead. 270 * 271 * - "cgroup.procs" is not sorted. pids will be unique unless they got 272 * recycled inbetween reads. 273 * 274 * - "release_agent" and "notify_on_release" are removed. Replacement 275 * notification mechanism will be implemented. 276 * 277 * - "cgroup.clone_children" is removed. 278 * 279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 280 * and its descendants contain no task; otherwise, 1. The file also 281 * generates kernfs notification which can be monitored through poll and 282 * [di]notify when the value of the file changes. 283 * 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 285 * take masks of ancestors with non-empty cpus/mems, instead of being 286 * moved to an ancestor. 287 * 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes 289 * masks of ancestors. 290 * 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 292 * is not created. 293 * 294 * - blkcg: blk-throttle becomes properly hierarchical. 295 * 296 * - debug: disallowed on the default hierarchy. 297 */ 298 bool cgroup_on_dfl(const struct cgroup *cgrp) 299 { 300 return cgrp->root == &cgrp_dfl_root; 301 } 302 303 /* IDR wrappers which synchronize using cgroup_idr_lock */ 304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 305 gfp_t gfp_mask) 306 { 307 int ret; 308 309 idr_preload(gfp_mask); 310 spin_lock_bh(&cgroup_idr_lock); 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 312 spin_unlock_bh(&cgroup_idr_lock); 313 idr_preload_end(); 314 return ret; 315 } 316 317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 318 { 319 void *ret; 320 321 spin_lock_bh(&cgroup_idr_lock); 322 ret = idr_replace(idr, ptr, id); 323 spin_unlock_bh(&cgroup_idr_lock); 324 return ret; 325 } 326 327 static void cgroup_idr_remove(struct idr *idr, int id) 328 { 329 spin_lock_bh(&cgroup_idr_lock); 330 idr_remove(idr, id); 331 spin_unlock_bh(&cgroup_idr_lock); 332 } 333 334 static bool cgroup_has_tasks(struct cgroup *cgrp) 335 { 336 return cgrp->nr_populated_csets; 337 } 338 339 bool cgroup_is_threaded(struct cgroup *cgrp) 340 { 341 return cgrp->dom_cgrp != cgrp; 342 } 343 344 /* can @cgrp host both domain and threaded children? */ 345 static bool cgroup_is_mixable(struct cgroup *cgrp) 346 { 347 /* 348 * Root isn't under domain level resource control exempting it from 349 * the no-internal-process constraint, so it can serve as a thread 350 * root and a parent of resource domains at the same time. 351 */ 352 return !cgroup_parent(cgrp); 353 } 354 355 /* can @cgrp become a thread root? should always be true for a thread root */ 356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 357 { 358 /* mixables don't care */ 359 if (cgroup_is_mixable(cgrp)) 360 return true; 361 362 /* domain roots can't be nested under threaded */ 363 if (cgroup_is_threaded(cgrp)) 364 return false; 365 366 /* can only have either domain or threaded children */ 367 if (cgrp->nr_populated_domain_children) 368 return false; 369 370 /* and no domain controllers can be enabled */ 371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 372 return false; 373 374 return true; 375 } 376 377 /* is @cgrp root of a threaded subtree? */ 378 bool cgroup_is_thread_root(struct cgroup *cgrp) 379 { 380 /* thread root should be a domain */ 381 if (cgroup_is_threaded(cgrp)) 382 return false; 383 384 /* a domain w/ threaded children is a thread root */ 385 if (cgrp->nr_threaded_children) 386 return true; 387 388 /* 389 * A domain which has tasks and explicit threaded controllers 390 * enabled is a thread root. 391 */ 392 if (cgroup_has_tasks(cgrp) && 393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 394 return true; 395 396 return false; 397 } 398 399 /* a domain which isn't connected to the root w/o brekage can't be used */ 400 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 401 { 402 /* the cgroup itself can be a thread root */ 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 406 /* but the ancestors can't be unless mixable */ 407 while ((cgrp = cgroup_parent(cgrp))) { 408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 409 return false; 410 if (cgroup_is_threaded(cgrp)) 411 return false; 412 } 413 414 return true; 415 } 416 417 /* subsystems visibly enabled on a cgroup */ 418 static u16 cgroup_control(struct cgroup *cgrp) 419 { 420 struct cgroup *parent = cgroup_parent(cgrp); 421 u16 root_ss_mask = cgrp->root->subsys_mask; 422 423 if (parent) { 424 u16 ss_mask = parent->subtree_control; 425 426 /* threaded cgroups can only have threaded controllers */ 427 if (cgroup_is_threaded(cgrp)) 428 ss_mask &= cgrp_dfl_threaded_ss_mask; 429 return ss_mask; 430 } 431 432 if (cgroup_on_dfl(cgrp)) 433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 434 cgrp_dfl_implicit_ss_mask); 435 return root_ss_mask; 436 } 437 438 /* subsystems enabled on a cgroup */ 439 static u16 cgroup_ss_mask(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_ss_mask; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 return cgrp->root->subsys_mask; 453 } 454 455 /** 456 * cgroup_css - obtain a cgroup's css for the specified subsystem 457 * @cgrp: the cgroup of interest 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 459 * 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 461 * function must be called either under cgroup_mutex or rcu_read_lock() and 462 * the caller is responsible for pinning the returned css if it wants to 463 * keep accessing it outside the said locks. This function may return 464 * %NULL if @cgrp doesn't have @subsys_id enabled. 465 */ 466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 467 struct cgroup_subsys *ss) 468 { 469 if (ss) 470 return rcu_dereference_check(cgrp->subsys[ss->id], 471 lockdep_is_held(&cgroup_mutex)); 472 else 473 return &cgrp->self; 474 } 475 476 /** 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest 480 * 481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 482 * or is offline, %NULL is returned. 483 */ 484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 485 struct cgroup_subsys *ss) 486 { 487 struct cgroup_subsys_state *css; 488 489 rcu_read_lock(); 490 css = cgroup_css(cgrp, ss); 491 if (css && !css_tryget_online(css)) 492 css = NULL; 493 rcu_read_unlock(); 494 495 return css; 496 } 497 498 /** 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 500 * @cgrp: the cgroup of interest 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 502 * 503 * Similar to cgroup_css() but returns the effective css, which is defined 504 * as the matching css of the nearest ancestor including self which has @ss 505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 506 * function is guaranteed to return non-NULL css. 507 */ 508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 509 struct cgroup_subsys *ss) 510 { 511 lockdep_assert_held(&cgroup_mutex); 512 513 if (!ss) 514 return &cgrp->self; 515 516 /* 517 * This function is used while updating css associations and thus 518 * can't test the csses directly. Test ss_mask. 519 */ 520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 521 cgrp = cgroup_parent(cgrp); 522 if (!cgrp) 523 return NULL; 524 } 525 526 return cgroup_css(cgrp, ss); 527 } 528 529 /** 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest 533 * 534 * Find and get the effective css of @cgrp for @ss. The effective css is 535 * defined as the matching css of the nearest ancestor including self which 536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 537 * the root css is returned, so this function always returns a valid css. 538 * 539 * The returned css is not guaranteed to be online, and therefore it is the 540 * callers responsiblity to tryget a reference for it. 541 */ 542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 543 struct cgroup_subsys *ss) 544 { 545 struct cgroup_subsys_state *css; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 rcu_read_lock(); 575 576 do { 577 css = cgroup_css(cgrp, ss); 578 579 if (css && css_tryget_online(css)) 580 goto out_unlock; 581 cgrp = cgroup_parent(cgrp); 582 } while (cgrp); 583 584 css = init_css_set.subsys[ss->id]; 585 css_get(css); 586 out_unlock: 587 rcu_read_unlock(); 588 return css; 589 } 590 591 static void cgroup_get_live(struct cgroup *cgrp) 592 { 593 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 594 css_get(&cgrp->self); 595 } 596 597 /** 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 599 * is responsible for taking the css_set_lock. 600 * @cgrp: the cgroup in question 601 */ 602 int __cgroup_task_count(const struct cgroup *cgrp) 603 { 604 int count = 0; 605 struct cgrp_cset_link *link; 606 607 lockdep_assert_held(&css_set_lock); 608 609 list_for_each_entry(link, &cgrp->cset_links, cset_link) 610 count += link->cset->nr_tasks; 611 612 return count; 613 } 614 615 /** 616 * cgroup_task_count - count the number of tasks in a cgroup. 617 * @cgrp: the cgroup in question 618 */ 619 int cgroup_task_count(const struct cgroup *cgrp) 620 { 621 int count; 622 623 spin_lock_irq(&css_set_lock); 624 count = __cgroup_task_count(cgrp); 625 spin_unlock_irq(&css_set_lock); 626 627 return count; 628 } 629 630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 631 { 632 struct cgroup *cgrp = of->kn->parent->priv; 633 struct cftype *cft = of_cft(of); 634 635 /* 636 * This is open and unprotected implementation of cgroup_css(). 637 * seq_css() is only called from a kernfs file operation which has 638 * an active reference on the file. Because all the subsystem 639 * files are drained before a css is disassociated with a cgroup, 640 * the matching css from the cgroup's subsys table is guaranteed to 641 * be and stay valid until the enclosing operation is complete. 642 */ 643 if (cft->ss) 644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 645 else 646 return &cgrp->self; 647 } 648 EXPORT_SYMBOL_GPL(of_css); 649 650 /** 651 * for_each_css - iterate all css's of a cgroup 652 * @css: the iteration cursor 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 654 * @cgrp: the target cgroup to iterate css's of 655 * 656 * Should be called under cgroup_[tree_]mutex. 657 */ 658 #define for_each_css(css, ssid, cgrp) \ 659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 660 if (!((css) = rcu_dereference_check( \ 661 (cgrp)->subsys[(ssid)], \ 662 lockdep_is_held(&cgroup_mutex)))) { } \ 663 else 664 665 /** 666 * for_each_e_css - iterate all effective css's of a cgroup 667 * @css: the iteration cursor 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 669 * @cgrp: the target cgroup to iterate css's of 670 * 671 * Should be called under cgroup_[tree_]mutex. 672 */ 673 #define for_each_e_css(css, ssid, cgrp) \ 674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 675 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 676 cgroup_subsys[(ssid)]))) \ 677 ; \ 678 else 679 680 /** 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask 682 * @ss: the iteration cursor 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 684 * @ss_mask: the bitmask 685 * 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of 687 * @ss_mask is set. 688 */ 689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 690 unsigned long __ss_mask = (ss_mask); \ 691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 692 (ssid) = 0; \ 693 break; \ 694 } \ 695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 696 (ss) = cgroup_subsys[ssid]; \ 697 { 698 699 #define while_each_subsys_mask() \ 700 } \ 701 } \ 702 } while (false) 703 704 /* iterate over child cgrps, lock should be held throughout iteration */ 705 #define cgroup_for_each_live_child(child, cgrp) \ 706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 707 if (({ lockdep_assert_held(&cgroup_mutex); \ 708 cgroup_is_dead(child); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in preorder */ 713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* walk live descendants in postorder */ 722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 724 if (({ lockdep_assert_held(&cgroup_mutex); \ 725 (dsct) = (d_css)->cgroup; \ 726 cgroup_is_dead(dsct); })) \ 727 ; \ 728 else 729 730 /* 731 * The default css_set - used by init and its children prior to any 732 * hierarchies being mounted. It contains a pointer to the root state 733 * for each subsystem. Also used to anchor the list of css_sets. Not 734 * reference-counted, to improve performance when child cgroups 735 * haven't been created. 736 */ 737 struct css_set init_css_set = { 738 .refcount = REFCOUNT_INIT(1), 739 .dom_cset = &init_css_set, 740 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 748 749 /* 750 * The following field is re-initialized when this cset gets linked 751 * in cgroup_init(). However, let's initialize the field 752 * statically too so that the default cgroup can be accessed safely 753 * early during boot. 754 */ 755 .dfl_cgrp = &cgrp_dfl_root.cgrp, 756 }; 757 758 static int css_set_count = 1; /* 1 for init_css_set */ 759 760 static bool css_set_threaded(struct css_set *cset) 761 { 762 return cset->dom_cset != cset; 763 } 764 765 /** 766 * css_set_populated - does a css_set contain any tasks? 767 * @cset: target css_set 768 * 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady 770 * state. However, css_set_populated() can be called while a task is being 771 * added to or removed from the linked list before the nr_tasks is 772 * properly updated. Hence, we can't just look at ->nr_tasks here. 773 */ 774 static bool css_set_populated(struct css_set *cset) 775 { 776 lockdep_assert_held(&css_set_lock); 777 778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 779 } 780 781 /** 782 * cgroup_update_populated - update the populated count of a cgroup 783 * @cgrp: the target cgroup 784 * @populated: inc or dec populated count 785 * 786 * One of the css_sets associated with @cgrp is either getting its first 787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 788 * count is propagated towards root so that a given cgroup's 789 * nr_populated_children is zero iff none of its descendants contain any 790 * tasks. 791 * 792 * @cgrp's interface file "cgroup.populated" is zero if both 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 794 * 1 otherwise. When the sum changes from or to zero, userland is notified 795 * that the content of the interface file has changed. This can be used to 796 * detect when @cgrp and its descendants become populated or empty. 797 */ 798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 799 { 800 struct cgroup *child = NULL; 801 int adj = populated ? 1 : -1; 802 803 lockdep_assert_held(&css_set_lock); 804 805 do { 806 bool was_populated = cgroup_is_populated(cgrp); 807 808 if (!child) { 809 cgrp->nr_populated_csets += adj; 810 } else { 811 if (cgroup_is_threaded(child)) 812 cgrp->nr_populated_threaded_children += adj; 813 else 814 cgrp->nr_populated_domain_children += adj; 815 } 816 817 if (was_populated == cgroup_is_populated(cgrp)) 818 break; 819 820 cgroup1_check_for_release(cgrp); 821 TRACE_CGROUP_PATH(notify_populated, cgrp, 822 cgroup_is_populated(cgrp)); 823 cgroup_file_notify(&cgrp->events_file); 824 825 child = cgrp; 826 cgrp = cgroup_parent(cgrp); 827 } while (cgrp); 828 } 829 830 /** 831 * css_set_update_populated - update populated state of a css_set 832 * @cset: target css_set 833 * @populated: whether @cset is populated or depopulated 834 * 835 * @cset is either getting the first task or losing the last. Update the 836 * populated counters of all associated cgroups accordingly. 837 */ 838 static void css_set_update_populated(struct css_set *cset, bool populated) 839 { 840 struct cgrp_cset_link *link; 841 842 lockdep_assert_held(&css_set_lock); 843 844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 845 cgroup_update_populated(link->cgrp, populated); 846 } 847 848 /* 849 * @task is leaving, advance task iterators which are pointing to it so 850 * that they can resume at the next position. Advancing an iterator might 851 * remove it from the list, use safe walk. See css_task_iter_skip() for 852 * details. 853 */ 854 static void css_set_skip_task_iters(struct css_set *cset, 855 struct task_struct *task) 856 { 857 struct css_task_iter *it, *pos; 858 859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 860 css_task_iter_skip(it, task); 861 } 862 863 /** 864 * css_set_move_task - move a task from one css_set to another 865 * @task: task being moved 866 * @from_cset: css_set @task currently belongs to (may be NULL) 867 * @to_cset: new css_set @task is being moved to (may be NULL) 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 869 * 870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 871 * css_set, @from_cset can be NULL. If @task is being disassociated 872 * instead of moved, @to_cset can be NULL. 873 * 874 * This function automatically handles populated counter updates and 875 * css_task_iter adjustments but the caller is responsible for managing 876 * @from_cset and @to_cset's reference counts. 877 */ 878 static void css_set_move_task(struct task_struct *task, 879 struct css_set *from_cset, struct css_set *to_cset, 880 bool use_mg_tasks) 881 { 882 lockdep_assert_held(&css_set_lock); 883 884 if (to_cset && !css_set_populated(to_cset)) 885 css_set_update_populated(to_cset, true); 886 887 if (from_cset) { 888 WARN_ON_ONCE(list_empty(&task->cg_list)); 889 890 css_set_skip_task_iters(from_cset, task); 891 list_del_init(&task->cg_list); 892 if (!css_set_populated(from_cset)) 893 css_set_update_populated(from_cset, false); 894 } else { 895 WARN_ON_ONCE(!list_empty(&task->cg_list)); 896 } 897 898 if (to_cset) { 899 /* 900 * We are synchronized through cgroup_threadgroup_rwsem 901 * against PF_EXITING setting such that we can't race 902 * against cgroup_exit()/cgroup_free() dropping the css_set. 903 */ 904 WARN_ON_ONCE(task->flags & PF_EXITING); 905 906 cgroup_move_task(task, to_cset); 907 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 908 &to_cset->tasks); 909 } 910 } 911 912 /* 913 * hash table for cgroup groups. This improves the performance to find 914 * an existing css_set. This hash doesn't (currently) take into 915 * account cgroups in empty hierarchies. 916 */ 917 #define CSS_SET_HASH_BITS 7 918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 919 920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 921 { 922 unsigned long key = 0UL; 923 struct cgroup_subsys *ss; 924 int i; 925 926 for_each_subsys(ss, i) 927 key += (unsigned long)css[i]; 928 key = (key >> 16) ^ key; 929 930 return key; 931 } 932 933 void put_css_set_locked(struct css_set *cset) 934 { 935 struct cgrp_cset_link *link, *tmp_link; 936 struct cgroup_subsys *ss; 937 int ssid; 938 939 lockdep_assert_held(&css_set_lock); 940 941 if (!refcount_dec_and_test(&cset->refcount)) 942 return; 943 944 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 945 946 /* This css_set is dead. unlink it and release cgroup and css refs */ 947 for_each_subsys(ss, ssid) { 948 list_del(&cset->e_cset_node[ssid]); 949 css_put(cset->subsys[ssid]); 950 } 951 hash_del(&cset->hlist); 952 css_set_count--; 953 954 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 955 list_del(&link->cset_link); 956 list_del(&link->cgrp_link); 957 if (cgroup_parent(link->cgrp)) 958 cgroup_put(link->cgrp); 959 kfree(link); 960 } 961 962 if (css_set_threaded(cset)) { 963 list_del(&cset->threaded_csets_node); 964 put_css_set_locked(cset->dom_cset); 965 } 966 967 kfree_rcu(cset, rcu_head); 968 } 969 970 /** 971 * compare_css_sets - helper function for find_existing_css_set(). 972 * @cset: candidate css_set being tested 973 * @old_cset: existing css_set for a task 974 * @new_cgrp: cgroup that's being entered by the task 975 * @template: desired set of css pointers in css_set (pre-calculated) 976 * 977 * Returns true if "cset" matches "old_cset" except for the hierarchy 978 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 979 */ 980 static bool compare_css_sets(struct css_set *cset, 981 struct css_set *old_cset, 982 struct cgroup *new_cgrp, 983 struct cgroup_subsys_state *template[]) 984 { 985 struct cgroup *new_dfl_cgrp; 986 struct list_head *l1, *l2; 987 988 /* 989 * On the default hierarchy, there can be csets which are 990 * associated with the same set of cgroups but different csses. 991 * Let's first ensure that csses match. 992 */ 993 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 994 return false; 995 996 997 /* @cset's domain should match the default cgroup's */ 998 if (cgroup_on_dfl(new_cgrp)) 999 new_dfl_cgrp = new_cgrp; 1000 else 1001 new_dfl_cgrp = old_cset->dfl_cgrp; 1002 1003 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1004 return false; 1005 1006 /* 1007 * Compare cgroup pointers in order to distinguish between 1008 * different cgroups in hierarchies. As different cgroups may 1009 * share the same effective css, this comparison is always 1010 * necessary. 1011 */ 1012 l1 = &cset->cgrp_links; 1013 l2 = &old_cset->cgrp_links; 1014 while (1) { 1015 struct cgrp_cset_link *link1, *link2; 1016 struct cgroup *cgrp1, *cgrp2; 1017 1018 l1 = l1->next; 1019 l2 = l2->next; 1020 /* See if we reached the end - both lists are equal length. */ 1021 if (l1 == &cset->cgrp_links) { 1022 BUG_ON(l2 != &old_cset->cgrp_links); 1023 break; 1024 } else { 1025 BUG_ON(l2 == &old_cset->cgrp_links); 1026 } 1027 /* Locate the cgroups associated with these links. */ 1028 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1029 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1030 cgrp1 = link1->cgrp; 1031 cgrp2 = link2->cgrp; 1032 /* Hierarchies should be linked in the same order. */ 1033 BUG_ON(cgrp1->root != cgrp2->root); 1034 1035 /* 1036 * If this hierarchy is the hierarchy of the cgroup 1037 * that's changing, then we need to check that this 1038 * css_set points to the new cgroup; if it's any other 1039 * hierarchy, then this css_set should point to the 1040 * same cgroup as the old css_set. 1041 */ 1042 if (cgrp1->root == new_cgrp->root) { 1043 if (cgrp1 != new_cgrp) 1044 return false; 1045 } else { 1046 if (cgrp1 != cgrp2) 1047 return false; 1048 } 1049 } 1050 return true; 1051 } 1052 1053 /** 1054 * find_existing_css_set - init css array and find the matching css_set 1055 * @old_cset: the css_set that we're using before the cgroup transition 1056 * @cgrp: the cgroup that we're moving into 1057 * @template: out param for the new set of csses, should be clear on entry 1058 */ 1059 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1060 struct cgroup *cgrp, 1061 struct cgroup_subsys_state *template[]) 1062 { 1063 struct cgroup_root *root = cgrp->root; 1064 struct cgroup_subsys *ss; 1065 struct css_set *cset; 1066 unsigned long key; 1067 int i; 1068 1069 /* 1070 * Build the set of subsystem state objects that we want to see in the 1071 * new css_set. while subsystems can change globally, the entries here 1072 * won't change, so no need for locking. 1073 */ 1074 for_each_subsys(ss, i) { 1075 if (root->subsys_mask & (1UL << i)) { 1076 /* 1077 * @ss is in this hierarchy, so we want the 1078 * effective css from @cgrp. 1079 */ 1080 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1081 } else { 1082 /* 1083 * @ss is not in this hierarchy, so we don't want 1084 * to change the css. 1085 */ 1086 template[i] = old_cset->subsys[i]; 1087 } 1088 } 1089 1090 key = css_set_hash(template); 1091 hash_for_each_possible(css_set_table, cset, hlist, key) { 1092 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1093 continue; 1094 1095 /* This css_set matches what we need */ 1096 return cset; 1097 } 1098 1099 /* No existing cgroup group matched */ 1100 return NULL; 1101 } 1102 1103 static void free_cgrp_cset_links(struct list_head *links_to_free) 1104 { 1105 struct cgrp_cset_link *link, *tmp_link; 1106 1107 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1108 list_del(&link->cset_link); 1109 kfree(link); 1110 } 1111 } 1112 1113 /** 1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1115 * @count: the number of links to allocate 1116 * @tmp_links: list_head the allocated links are put on 1117 * 1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1119 * through ->cset_link. Returns 0 on success or -errno. 1120 */ 1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1122 { 1123 struct cgrp_cset_link *link; 1124 int i; 1125 1126 INIT_LIST_HEAD(tmp_links); 1127 1128 for (i = 0; i < count; i++) { 1129 link = kzalloc(sizeof(*link), GFP_KERNEL); 1130 if (!link) { 1131 free_cgrp_cset_links(tmp_links); 1132 return -ENOMEM; 1133 } 1134 list_add(&link->cset_link, tmp_links); 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * link_css_set - a helper function to link a css_set to a cgroup 1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1142 * @cset: the css_set to be linked 1143 * @cgrp: the destination cgroup 1144 */ 1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1146 struct cgroup *cgrp) 1147 { 1148 struct cgrp_cset_link *link; 1149 1150 BUG_ON(list_empty(tmp_links)); 1151 1152 if (cgroup_on_dfl(cgrp)) 1153 cset->dfl_cgrp = cgrp; 1154 1155 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1156 link->cset = cset; 1157 link->cgrp = cgrp; 1158 1159 /* 1160 * Always add links to the tail of the lists so that the lists are 1161 * in choronological order. 1162 */ 1163 list_move_tail(&link->cset_link, &cgrp->cset_links); 1164 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1165 1166 if (cgroup_parent(cgrp)) 1167 cgroup_get_live(cgrp); 1168 } 1169 1170 /** 1171 * find_css_set - return a new css_set with one cgroup updated 1172 * @old_cset: the baseline css_set 1173 * @cgrp: the cgroup to be updated 1174 * 1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1176 * substituted into the appropriate hierarchy. 1177 */ 1178 static struct css_set *find_css_set(struct css_set *old_cset, 1179 struct cgroup *cgrp) 1180 { 1181 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1182 struct css_set *cset; 1183 struct list_head tmp_links; 1184 struct cgrp_cset_link *link; 1185 struct cgroup_subsys *ss; 1186 unsigned long key; 1187 int ssid; 1188 1189 lockdep_assert_held(&cgroup_mutex); 1190 1191 /* First see if we already have a cgroup group that matches 1192 * the desired set */ 1193 spin_lock_irq(&css_set_lock); 1194 cset = find_existing_css_set(old_cset, cgrp, template); 1195 if (cset) 1196 get_css_set(cset); 1197 spin_unlock_irq(&css_set_lock); 1198 1199 if (cset) 1200 return cset; 1201 1202 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1203 if (!cset) 1204 return NULL; 1205 1206 /* Allocate all the cgrp_cset_link objects that we'll need */ 1207 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1208 kfree(cset); 1209 return NULL; 1210 } 1211 1212 refcount_set(&cset->refcount, 1); 1213 cset->dom_cset = cset; 1214 INIT_LIST_HEAD(&cset->tasks); 1215 INIT_LIST_HEAD(&cset->mg_tasks); 1216 INIT_LIST_HEAD(&cset->dying_tasks); 1217 INIT_LIST_HEAD(&cset->task_iters); 1218 INIT_LIST_HEAD(&cset->threaded_csets); 1219 INIT_HLIST_NODE(&cset->hlist); 1220 INIT_LIST_HEAD(&cset->cgrp_links); 1221 INIT_LIST_HEAD(&cset->mg_preload_node); 1222 INIT_LIST_HEAD(&cset->mg_node); 1223 1224 /* Copy the set of subsystem state objects generated in 1225 * find_existing_css_set() */ 1226 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1227 1228 spin_lock_irq(&css_set_lock); 1229 /* Add reference counts and links from the new css_set. */ 1230 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1231 struct cgroup *c = link->cgrp; 1232 1233 if (c->root == cgrp->root) 1234 c = cgrp; 1235 link_css_set(&tmp_links, cset, c); 1236 } 1237 1238 BUG_ON(!list_empty(&tmp_links)); 1239 1240 css_set_count++; 1241 1242 /* Add @cset to the hash table */ 1243 key = css_set_hash(cset->subsys); 1244 hash_add(css_set_table, &cset->hlist, key); 1245 1246 for_each_subsys(ss, ssid) { 1247 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1248 1249 list_add_tail(&cset->e_cset_node[ssid], 1250 &css->cgroup->e_csets[ssid]); 1251 css_get(css); 1252 } 1253 1254 spin_unlock_irq(&css_set_lock); 1255 1256 /* 1257 * If @cset should be threaded, look up the matching dom_cset and 1258 * link them up. We first fully initialize @cset then look for the 1259 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1260 * to stay empty until we return. 1261 */ 1262 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1263 struct css_set *dcset; 1264 1265 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1266 if (!dcset) { 1267 put_css_set(cset); 1268 return NULL; 1269 } 1270 1271 spin_lock_irq(&css_set_lock); 1272 cset->dom_cset = dcset; 1273 list_add_tail(&cset->threaded_csets_node, 1274 &dcset->threaded_csets); 1275 spin_unlock_irq(&css_set_lock); 1276 } 1277 1278 return cset; 1279 } 1280 1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1282 { 1283 struct cgroup *root_cgrp = kf_root->kn->priv; 1284 1285 return root_cgrp->root; 1286 } 1287 1288 static int cgroup_init_root_id(struct cgroup_root *root) 1289 { 1290 int id; 1291 1292 lockdep_assert_held(&cgroup_mutex); 1293 1294 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1295 if (id < 0) 1296 return id; 1297 1298 root->hierarchy_id = id; 1299 return 0; 1300 } 1301 1302 static void cgroup_exit_root_id(struct cgroup_root *root) 1303 { 1304 lockdep_assert_held(&cgroup_mutex); 1305 1306 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1307 } 1308 1309 void cgroup_free_root(struct cgroup_root *root) 1310 { 1311 kfree(root); 1312 } 1313 1314 static void cgroup_destroy_root(struct cgroup_root *root) 1315 { 1316 struct cgroup *cgrp = &root->cgrp; 1317 struct cgrp_cset_link *link, *tmp_link; 1318 1319 trace_cgroup_destroy_root(root); 1320 1321 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1322 1323 BUG_ON(atomic_read(&root->nr_cgrps)); 1324 BUG_ON(!list_empty(&cgrp->self.children)); 1325 1326 /* Rebind all subsystems back to the default hierarchy */ 1327 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1328 1329 /* 1330 * Release all the links from cset_links to this hierarchy's 1331 * root cgroup 1332 */ 1333 spin_lock_irq(&css_set_lock); 1334 1335 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1336 list_del(&link->cset_link); 1337 list_del(&link->cgrp_link); 1338 kfree(link); 1339 } 1340 1341 spin_unlock_irq(&css_set_lock); 1342 1343 if (!list_empty(&root->root_list)) { 1344 list_del(&root->root_list); 1345 cgroup_root_count--; 1346 } 1347 1348 cgroup_exit_root_id(root); 1349 1350 mutex_unlock(&cgroup_mutex); 1351 1352 kernfs_destroy_root(root->kf_root); 1353 cgroup_free_root(root); 1354 } 1355 1356 /* 1357 * look up cgroup associated with current task's cgroup namespace on the 1358 * specified hierarchy 1359 */ 1360 static struct cgroup * 1361 current_cgns_cgroup_from_root(struct cgroup_root *root) 1362 { 1363 struct cgroup *res = NULL; 1364 struct css_set *cset; 1365 1366 lockdep_assert_held(&css_set_lock); 1367 1368 rcu_read_lock(); 1369 1370 cset = current->nsproxy->cgroup_ns->root_cset; 1371 if (cset == &init_css_set) { 1372 res = &root->cgrp; 1373 } else if (root == &cgrp_dfl_root) { 1374 res = cset->dfl_cgrp; 1375 } else { 1376 struct cgrp_cset_link *link; 1377 1378 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1379 struct cgroup *c = link->cgrp; 1380 1381 if (c->root == root) { 1382 res = c; 1383 break; 1384 } 1385 } 1386 } 1387 rcu_read_unlock(); 1388 1389 BUG_ON(!res); 1390 return res; 1391 } 1392 1393 /* look up cgroup associated with given css_set on the specified hierarchy */ 1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1395 struct cgroup_root *root) 1396 { 1397 struct cgroup *res = NULL; 1398 1399 lockdep_assert_held(&cgroup_mutex); 1400 lockdep_assert_held(&css_set_lock); 1401 1402 if (cset == &init_css_set) { 1403 res = &root->cgrp; 1404 } else if (root == &cgrp_dfl_root) { 1405 res = cset->dfl_cgrp; 1406 } else { 1407 struct cgrp_cset_link *link; 1408 1409 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1410 struct cgroup *c = link->cgrp; 1411 1412 if (c->root == root) { 1413 res = c; 1414 break; 1415 } 1416 } 1417 } 1418 1419 BUG_ON(!res); 1420 return res; 1421 } 1422 1423 /* 1424 * Return the cgroup for "task" from the given hierarchy. Must be 1425 * called with cgroup_mutex and css_set_lock held. 1426 */ 1427 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1428 struct cgroup_root *root) 1429 { 1430 /* 1431 * No need to lock the task - since we hold css_set_lock the 1432 * task can't change groups. 1433 */ 1434 return cset_cgroup_from_root(task_css_set(task), root); 1435 } 1436 1437 /* 1438 * A task must hold cgroup_mutex to modify cgroups. 1439 * 1440 * Any task can increment and decrement the count field without lock. 1441 * So in general, code holding cgroup_mutex can't rely on the count 1442 * field not changing. However, if the count goes to zero, then only 1443 * cgroup_attach_task() can increment it again. Because a count of zero 1444 * means that no tasks are currently attached, therefore there is no 1445 * way a task attached to that cgroup can fork (the other way to 1446 * increment the count). So code holding cgroup_mutex can safely 1447 * assume that if the count is zero, it will stay zero. Similarly, if 1448 * a task holds cgroup_mutex on a cgroup with zero count, it 1449 * knows that the cgroup won't be removed, as cgroup_rmdir() 1450 * needs that mutex. 1451 * 1452 * A cgroup can only be deleted if both its 'count' of using tasks 1453 * is zero, and its list of 'children' cgroups is empty. Since all 1454 * tasks in the system use _some_ cgroup, and since there is always at 1455 * least one task in the system (init, pid == 1), therefore, root cgroup 1456 * always has either children cgroups and/or using tasks. So we don't 1457 * need a special hack to ensure that root cgroup cannot be deleted. 1458 * 1459 * P.S. One more locking exception. RCU is used to guard the 1460 * update of a tasks cgroup pointer by cgroup_attach_task() 1461 */ 1462 1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1464 1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1466 char *buf) 1467 { 1468 struct cgroup_subsys *ss = cft->ss; 1469 1470 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1471 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1472 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1473 1474 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1475 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1476 cft->name); 1477 } else { 1478 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1479 } 1480 return buf; 1481 } 1482 1483 /** 1484 * cgroup_file_mode - deduce file mode of a control file 1485 * @cft: the control file in question 1486 * 1487 * S_IRUGO for read, S_IWUSR for write. 1488 */ 1489 static umode_t cgroup_file_mode(const struct cftype *cft) 1490 { 1491 umode_t mode = 0; 1492 1493 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1494 mode |= S_IRUGO; 1495 1496 if (cft->write_u64 || cft->write_s64 || cft->write) { 1497 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1498 mode |= S_IWUGO; 1499 else 1500 mode |= S_IWUSR; 1501 } 1502 1503 return mode; 1504 } 1505 1506 /** 1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1508 * @subtree_control: the new subtree_control mask to consider 1509 * @this_ss_mask: available subsystems 1510 * 1511 * On the default hierarchy, a subsystem may request other subsystems to be 1512 * enabled together through its ->depends_on mask. In such cases, more 1513 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1514 * 1515 * This function calculates which subsystems need to be enabled if 1516 * @subtree_control is to be applied while restricted to @this_ss_mask. 1517 */ 1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1519 { 1520 u16 cur_ss_mask = subtree_control; 1521 struct cgroup_subsys *ss; 1522 int ssid; 1523 1524 lockdep_assert_held(&cgroup_mutex); 1525 1526 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1527 1528 while (true) { 1529 u16 new_ss_mask = cur_ss_mask; 1530 1531 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1532 new_ss_mask |= ss->depends_on; 1533 } while_each_subsys_mask(); 1534 1535 /* 1536 * Mask out subsystems which aren't available. This can 1537 * happen only if some depended-upon subsystems were bound 1538 * to non-default hierarchies. 1539 */ 1540 new_ss_mask &= this_ss_mask; 1541 1542 if (new_ss_mask == cur_ss_mask) 1543 break; 1544 cur_ss_mask = new_ss_mask; 1545 } 1546 1547 return cur_ss_mask; 1548 } 1549 1550 /** 1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1552 * @kn: the kernfs_node being serviced 1553 * 1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1555 * the method finishes if locking succeeded. Note that once this function 1556 * returns the cgroup returned by cgroup_kn_lock_live() may become 1557 * inaccessible any time. If the caller intends to continue to access the 1558 * cgroup, it should pin it before invoking this function. 1559 */ 1560 void cgroup_kn_unlock(struct kernfs_node *kn) 1561 { 1562 struct cgroup *cgrp; 1563 1564 if (kernfs_type(kn) == KERNFS_DIR) 1565 cgrp = kn->priv; 1566 else 1567 cgrp = kn->parent->priv; 1568 1569 mutex_unlock(&cgroup_mutex); 1570 1571 kernfs_unbreak_active_protection(kn); 1572 cgroup_put(cgrp); 1573 } 1574 1575 /** 1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1577 * @kn: the kernfs_node being serviced 1578 * @drain_offline: perform offline draining on the cgroup 1579 * 1580 * This helper is to be used by a cgroup kernfs method currently servicing 1581 * @kn. It breaks the active protection, performs cgroup locking and 1582 * verifies that the associated cgroup is alive. Returns the cgroup if 1583 * alive; otherwise, %NULL. A successful return should be undone by a 1584 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1585 * cgroup is drained of offlining csses before return. 1586 * 1587 * Any cgroup kernfs method implementation which requires locking the 1588 * associated cgroup should use this helper. It avoids nesting cgroup 1589 * locking under kernfs active protection and allows all kernfs operations 1590 * including self-removal. 1591 */ 1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1593 { 1594 struct cgroup *cgrp; 1595 1596 if (kernfs_type(kn) == KERNFS_DIR) 1597 cgrp = kn->priv; 1598 else 1599 cgrp = kn->parent->priv; 1600 1601 /* 1602 * We're gonna grab cgroup_mutex which nests outside kernfs 1603 * active_ref. cgroup liveliness check alone provides enough 1604 * protection against removal. Ensure @cgrp stays accessible and 1605 * break the active_ref protection. 1606 */ 1607 if (!cgroup_tryget(cgrp)) 1608 return NULL; 1609 kernfs_break_active_protection(kn); 1610 1611 if (drain_offline) 1612 cgroup_lock_and_drain_offline(cgrp); 1613 else 1614 mutex_lock(&cgroup_mutex); 1615 1616 if (!cgroup_is_dead(cgrp)) 1617 return cgrp; 1618 1619 cgroup_kn_unlock(kn); 1620 return NULL; 1621 } 1622 1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1624 { 1625 char name[CGROUP_FILE_NAME_MAX]; 1626 1627 lockdep_assert_held(&cgroup_mutex); 1628 1629 if (cft->file_offset) { 1630 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1631 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1632 1633 spin_lock_irq(&cgroup_file_kn_lock); 1634 cfile->kn = NULL; 1635 spin_unlock_irq(&cgroup_file_kn_lock); 1636 1637 del_timer_sync(&cfile->notify_timer); 1638 } 1639 1640 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1641 } 1642 1643 /** 1644 * css_clear_dir - remove subsys files in a cgroup directory 1645 * @css: taget css 1646 */ 1647 static void css_clear_dir(struct cgroup_subsys_state *css) 1648 { 1649 struct cgroup *cgrp = css->cgroup; 1650 struct cftype *cfts; 1651 1652 if (!(css->flags & CSS_VISIBLE)) 1653 return; 1654 1655 css->flags &= ~CSS_VISIBLE; 1656 1657 if (!css->ss) { 1658 if (cgroup_on_dfl(cgrp)) 1659 cfts = cgroup_base_files; 1660 else 1661 cfts = cgroup1_base_files; 1662 1663 cgroup_addrm_files(css, cgrp, cfts, false); 1664 } else { 1665 list_for_each_entry(cfts, &css->ss->cfts, node) 1666 cgroup_addrm_files(css, cgrp, cfts, false); 1667 } 1668 } 1669 1670 /** 1671 * css_populate_dir - create subsys files in a cgroup directory 1672 * @css: target css 1673 * 1674 * On failure, no file is added. 1675 */ 1676 static int css_populate_dir(struct cgroup_subsys_state *css) 1677 { 1678 struct cgroup *cgrp = css->cgroup; 1679 struct cftype *cfts, *failed_cfts; 1680 int ret; 1681 1682 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1683 return 0; 1684 1685 if (!css->ss) { 1686 if (cgroup_on_dfl(cgrp)) 1687 cfts = cgroup_base_files; 1688 else 1689 cfts = cgroup1_base_files; 1690 1691 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1692 if (ret < 0) 1693 return ret; 1694 } else { 1695 list_for_each_entry(cfts, &css->ss->cfts, node) { 1696 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1697 if (ret < 0) { 1698 failed_cfts = cfts; 1699 goto err; 1700 } 1701 } 1702 } 1703 1704 css->flags |= CSS_VISIBLE; 1705 1706 return 0; 1707 err: 1708 list_for_each_entry(cfts, &css->ss->cfts, node) { 1709 if (cfts == failed_cfts) 1710 break; 1711 cgroup_addrm_files(css, cgrp, cfts, false); 1712 } 1713 return ret; 1714 } 1715 1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1717 { 1718 struct cgroup *dcgrp = &dst_root->cgrp; 1719 struct cgroup_subsys *ss; 1720 int ssid, i, ret; 1721 1722 lockdep_assert_held(&cgroup_mutex); 1723 1724 do_each_subsys_mask(ss, ssid, ss_mask) { 1725 /* 1726 * If @ss has non-root csses attached to it, can't move. 1727 * If @ss is an implicit controller, it is exempt from this 1728 * rule and can be stolen. 1729 */ 1730 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1731 !ss->implicit_on_dfl) 1732 return -EBUSY; 1733 1734 /* can't move between two non-dummy roots either */ 1735 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1736 return -EBUSY; 1737 } while_each_subsys_mask(); 1738 1739 do_each_subsys_mask(ss, ssid, ss_mask) { 1740 struct cgroup_root *src_root = ss->root; 1741 struct cgroup *scgrp = &src_root->cgrp; 1742 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1743 struct css_set *cset; 1744 1745 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1746 1747 /* disable from the source */ 1748 src_root->subsys_mask &= ~(1 << ssid); 1749 WARN_ON(cgroup_apply_control(scgrp)); 1750 cgroup_finalize_control(scgrp, 0); 1751 1752 /* rebind */ 1753 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1754 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1755 ss->root = dst_root; 1756 css->cgroup = dcgrp; 1757 1758 spin_lock_irq(&css_set_lock); 1759 hash_for_each(css_set_table, i, cset, hlist) 1760 list_move_tail(&cset->e_cset_node[ss->id], 1761 &dcgrp->e_csets[ss->id]); 1762 spin_unlock_irq(&css_set_lock); 1763 1764 /* default hierarchy doesn't enable controllers by default */ 1765 dst_root->subsys_mask |= 1 << ssid; 1766 if (dst_root == &cgrp_dfl_root) { 1767 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1768 } else { 1769 dcgrp->subtree_control |= 1 << ssid; 1770 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1771 } 1772 1773 ret = cgroup_apply_control(dcgrp); 1774 if (ret) 1775 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1776 ss->name, ret); 1777 1778 if (ss->bind) 1779 ss->bind(css); 1780 } while_each_subsys_mask(); 1781 1782 kernfs_activate(dcgrp->kn); 1783 return 0; 1784 } 1785 1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1787 struct kernfs_root *kf_root) 1788 { 1789 int len = 0; 1790 char *buf = NULL; 1791 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1792 struct cgroup *ns_cgroup; 1793 1794 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1795 if (!buf) 1796 return -ENOMEM; 1797 1798 spin_lock_irq(&css_set_lock); 1799 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1800 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1801 spin_unlock_irq(&css_set_lock); 1802 1803 if (len >= PATH_MAX) 1804 len = -ERANGE; 1805 else if (len > 0) { 1806 seq_escape(sf, buf, " \t\n\\"); 1807 len = 0; 1808 } 1809 kfree(buf); 1810 return len; 1811 } 1812 1813 enum cgroup2_param { 1814 Opt_nsdelegate, 1815 Opt_memory_localevents, 1816 Opt_memory_recursiveprot, 1817 nr__cgroup2_params 1818 }; 1819 1820 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1821 fsparam_flag("nsdelegate", Opt_nsdelegate), 1822 fsparam_flag("memory_localevents", Opt_memory_localevents), 1823 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1824 {} 1825 }; 1826 1827 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1828 { 1829 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1830 struct fs_parse_result result; 1831 int opt; 1832 1833 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1834 if (opt < 0) 1835 return opt; 1836 1837 switch (opt) { 1838 case Opt_nsdelegate: 1839 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1840 return 0; 1841 case Opt_memory_localevents: 1842 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1843 return 0; 1844 case Opt_memory_recursiveprot: 1845 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1846 return 0; 1847 } 1848 return -EINVAL; 1849 } 1850 1851 static void apply_cgroup_root_flags(unsigned int root_flags) 1852 { 1853 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1854 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1855 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1856 else 1857 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1858 1859 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1860 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1861 else 1862 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1863 1864 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1865 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1866 else 1867 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1868 } 1869 } 1870 1871 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1872 { 1873 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1874 seq_puts(seq, ",nsdelegate"); 1875 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1876 seq_puts(seq, ",memory_localevents"); 1877 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1878 seq_puts(seq, ",memory_recursiveprot"); 1879 return 0; 1880 } 1881 1882 static int cgroup_reconfigure(struct fs_context *fc) 1883 { 1884 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1885 1886 apply_cgroup_root_flags(ctx->flags); 1887 return 0; 1888 } 1889 1890 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1891 { 1892 struct cgroup_subsys *ss; 1893 int ssid; 1894 1895 INIT_LIST_HEAD(&cgrp->self.sibling); 1896 INIT_LIST_HEAD(&cgrp->self.children); 1897 INIT_LIST_HEAD(&cgrp->cset_links); 1898 INIT_LIST_HEAD(&cgrp->pidlists); 1899 mutex_init(&cgrp->pidlist_mutex); 1900 cgrp->self.cgroup = cgrp; 1901 cgrp->self.flags |= CSS_ONLINE; 1902 cgrp->dom_cgrp = cgrp; 1903 cgrp->max_descendants = INT_MAX; 1904 cgrp->max_depth = INT_MAX; 1905 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1906 prev_cputime_init(&cgrp->prev_cputime); 1907 1908 for_each_subsys(ss, ssid) 1909 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1910 1911 init_waitqueue_head(&cgrp->offline_waitq); 1912 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1913 } 1914 1915 void init_cgroup_root(struct cgroup_fs_context *ctx) 1916 { 1917 struct cgroup_root *root = ctx->root; 1918 struct cgroup *cgrp = &root->cgrp; 1919 1920 INIT_LIST_HEAD(&root->root_list); 1921 atomic_set(&root->nr_cgrps, 1); 1922 cgrp->root = root; 1923 init_cgroup_housekeeping(cgrp); 1924 1925 root->flags = ctx->flags; 1926 if (ctx->release_agent) 1927 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1928 if (ctx->name) 1929 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1930 if (ctx->cpuset_clone_children) 1931 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1932 } 1933 1934 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1935 { 1936 LIST_HEAD(tmp_links); 1937 struct cgroup *root_cgrp = &root->cgrp; 1938 struct kernfs_syscall_ops *kf_sops; 1939 struct css_set *cset; 1940 int i, ret; 1941 1942 lockdep_assert_held(&cgroup_mutex); 1943 1944 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1945 0, GFP_KERNEL); 1946 if (ret) 1947 goto out; 1948 1949 /* 1950 * We're accessing css_set_count without locking css_set_lock here, 1951 * but that's OK - it can only be increased by someone holding 1952 * cgroup_lock, and that's us. Later rebinding may disable 1953 * controllers on the default hierarchy and thus create new csets, 1954 * which can't be more than the existing ones. Allocate 2x. 1955 */ 1956 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1957 if (ret) 1958 goto cancel_ref; 1959 1960 ret = cgroup_init_root_id(root); 1961 if (ret) 1962 goto cancel_ref; 1963 1964 kf_sops = root == &cgrp_dfl_root ? 1965 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1966 1967 root->kf_root = kernfs_create_root(kf_sops, 1968 KERNFS_ROOT_CREATE_DEACTIVATED | 1969 KERNFS_ROOT_SUPPORT_EXPORTOP | 1970 KERNFS_ROOT_SUPPORT_USER_XATTR, 1971 root_cgrp); 1972 if (IS_ERR(root->kf_root)) { 1973 ret = PTR_ERR(root->kf_root); 1974 goto exit_root_id; 1975 } 1976 root_cgrp->kn = root->kf_root->kn; 1977 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1978 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1979 1980 ret = css_populate_dir(&root_cgrp->self); 1981 if (ret) 1982 goto destroy_root; 1983 1984 ret = rebind_subsystems(root, ss_mask); 1985 if (ret) 1986 goto destroy_root; 1987 1988 ret = cgroup_bpf_inherit(root_cgrp); 1989 WARN_ON_ONCE(ret); 1990 1991 trace_cgroup_setup_root(root); 1992 1993 /* 1994 * There must be no failure case after here, since rebinding takes 1995 * care of subsystems' refcounts, which are explicitly dropped in 1996 * the failure exit path. 1997 */ 1998 list_add(&root->root_list, &cgroup_roots); 1999 cgroup_root_count++; 2000 2001 /* 2002 * Link the root cgroup in this hierarchy into all the css_set 2003 * objects. 2004 */ 2005 spin_lock_irq(&css_set_lock); 2006 hash_for_each(css_set_table, i, cset, hlist) { 2007 link_css_set(&tmp_links, cset, root_cgrp); 2008 if (css_set_populated(cset)) 2009 cgroup_update_populated(root_cgrp, true); 2010 } 2011 spin_unlock_irq(&css_set_lock); 2012 2013 BUG_ON(!list_empty(&root_cgrp->self.children)); 2014 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2015 2016 kernfs_activate(root_cgrp->kn); 2017 ret = 0; 2018 goto out; 2019 2020 destroy_root: 2021 kernfs_destroy_root(root->kf_root); 2022 root->kf_root = NULL; 2023 exit_root_id: 2024 cgroup_exit_root_id(root); 2025 cancel_ref: 2026 percpu_ref_exit(&root_cgrp->self.refcnt); 2027 out: 2028 free_cgrp_cset_links(&tmp_links); 2029 return ret; 2030 } 2031 2032 int cgroup_do_get_tree(struct fs_context *fc) 2033 { 2034 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2035 int ret; 2036 2037 ctx->kfc.root = ctx->root->kf_root; 2038 if (fc->fs_type == &cgroup2_fs_type) 2039 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2040 else 2041 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2042 ret = kernfs_get_tree(fc); 2043 2044 /* 2045 * In non-init cgroup namespace, instead of root cgroup's dentry, 2046 * we return the dentry corresponding to the cgroupns->root_cgrp. 2047 */ 2048 if (!ret && ctx->ns != &init_cgroup_ns) { 2049 struct dentry *nsdentry; 2050 struct super_block *sb = fc->root->d_sb; 2051 struct cgroup *cgrp; 2052 2053 mutex_lock(&cgroup_mutex); 2054 spin_lock_irq(&css_set_lock); 2055 2056 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2057 2058 spin_unlock_irq(&css_set_lock); 2059 mutex_unlock(&cgroup_mutex); 2060 2061 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2062 dput(fc->root); 2063 if (IS_ERR(nsdentry)) { 2064 deactivate_locked_super(sb); 2065 ret = PTR_ERR(nsdentry); 2066 nsdentry = NULL; 2067 } 2068 fc->root = nsdentry; 2069 } 2070 2071 if (!ctx->kfc.new_sb_created) 2072 cgroup_put(&ctx->root->cgrp); 2073 2074 return ret; 2075 } 2076 2077 /* 2078 * Destroy a cgroup filesystem context. 2079 */ 2080 static void cgroup_fs_context_free(struct fs_context *fc) 2081 { 2082 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2083 2084 kfree(ctx->name); 2085 kfree(ctx->release_agent); 2086 put_cgroup_ns(ctx->ns); 2087 kernfs_free_fs_context(fc); 2088 kfree(ctx); 2089 } 2090 2091 static int cgroup_get_tree(struct fs_context *fc) 2092 { 2093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2094 int ret; 2095 2096 cgrp_dfl_visible = true; 2097 cgroup_get_live(&cgrp_dfl_root.cgrp); 2098 ctx->root = &cgrp_dfl_root; 2099 2100 ret = cgroup_do_get_tree(fc); 2101 if (!ret) 2102 apply_cgroup_root_flags(ctx->flags); 2103 return ret; 2104 } 2105 2106 static const struct fs_context_operations cgroup_fs_context_ops = { 2107 .free = cgroup_fs_context_free, 2108 .parse_param = cgroup2_parse_param, 2109 .get_tree = cgroup_get_tree, 2110 .reconfigure = cgroup_reconfigure, 2111 }; 2112 2113 static const struct fs_context_operations cgroup1_fs_context_ops = { 2114 .free = cgroup_fs_context_free, 2115 .parse_param = cgroup1_parse_param, 2116 .get_tree = cgroup1_get_tree, 2117 .reconfigure = cgroup1_reconfigure, 2118 }; 2119 2120 /* 2121 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2122 * we select the namespace we're going to use. 2123 */ 2124 static int cgroup_init_fs_context(struct fs_context *fc) 2125 { 2126 struct cgroup_fs_context *ctx; 2127 2128 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2129 if (!ctx) 2130 return -ENOMEM; 2131 2132 ctx->ns = current->nsproxy->cgroup_ns; 2133 get_cgroup_ns(ctx->ns); 2134 fc->fs_private = &ctx->kfc; 2135 if (fc->fs_type == &cgroup2_fs_type) 2136 fc->ops = &cgroup_fs_context_ops; 2137 else 2138 fc->ops = &cgroup1_fs_context_ops; 2139 put_user_ns(fc->user_ns); 2140 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2141 fc->global = true; 2142 return 0; 2143 } 2144 2145 static void cgroup_kill_sb(struct super_block *sb) 2146 { 2147 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2148 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2149 2150 /* 2151 * If @root doesn't have any children, start killing it. 2152 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2153 * cgroup_mount() may wait for @root's release. 2154 * 2155 * And don't kill the default root. 2156 */ 2157 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2158 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2159 percpu_ref_kill(&root->cgrp.self.refcnt); 2160 cgroup_put(&root->cgrp); 2161 kernfs_kill_sb(sb); 2162 } 2163 2164 struct file_system_type cgroup_fs_type = { 2165 .name = "cgroup", 2166 .init_fs_context = cgroup_init_fs_context, 2167 .parameters = cgroup1_fs_parameters, 2168 .kill_sb = cgroup_kill_sb, 2169 .fs_flags = FS_USERNS_MOUNT, 2170 }; 2171 2172 static struct file_system_type cgroup2_fs_type = { 2173 .name = "cgroup2", 2174 .init_fs_context = cgroup_init_fs_context, 2175 .parameters = cgroup2_fs_parameters, 2176 .kill_sb = cgroup_kill_sb, 2177 .fs_flags = FS_USERNS_MOUNT, 2178 }; 2179 2180 #ifdef CONFIG_CPUSETS 2181 static const struct fs_context_operations cpuset_fs_context_ops = { 2182 .get_tree = cgroup1_get_tree, 2183 .free = cgroup_fs_context_free, 2184 }; 2185 2186 /* 2187 * This is ugly, but preserves the userspace API for existing cpuset 2188 * users. If someone tries to mount the "cpuset" filesystem, we 2189 * silently switch it to mount "cgroup" instead 2190 */ 2191 static int cpuset_init_fs_context(struct fs_context *fc) 2192 { 2193 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2194 struct cgroup_fs_context *ctx; 2195 int err; 2196 2197 err = cgroup_init_fs_context(fc); 2198 if (err) { 2199 kfree(agent); 2200 return err; 2201 } 2202 2203 fc->ops = &cpuset_fs_context_ops; 2204 2205 ctx = cgroup_fc2context(fc); 2206 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2207 ctx->flags |= CGRP_ROOT_NOPREFIX; 2208 ctx->release_agent = agent; 2209 2210 get_filesystem(&cgroup_fs_type); 2211 put_filesystem(fc->fs_type); 2212 fc->fs_type = &cgroup_fs_type; 2213 2214 return 0; 2215 } 2216 2217 static struct file_system_type cpuset_fs_type = { 2218 .name = "cpuset", 2219 .init_fs_context = cpuset_init_fs_context, 2220 .fs_flags = FS_USERNS_MOUNT, 2221 }; 2222 #endif 2223 2224 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2225 struct cgroup_namespace *ns) 2226 { 2227 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2228 2229 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2230 } 2231 2232 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2233 struct cgroup_namespace *ns) 2234 { 2235 int ret; 2236 2237 mutex_lock(&cgroup_mutex); 2238 spin_lock_irq(&css_set_lock); 2239 2240 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2241 2242 spin_unlock_irq(&css_set_lock); 2243 mutex_unlock(&cgroup_mutex); 2244 2245 return ret; 2246 } 2247 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2248 2249 /** 2250 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2251 * @task: target task 2252 * @buf: the buffer to write the path into 2253 * @buflen: the length of the buffer 2254 * 2255 * Determine @task's cgroup on the first (the one with the lowest non-zero 2256 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2257 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2258 * cgroup controller callbacks. 2259 * 2260 * Return value is the same as kernfs_path(). 2261 */ 2262 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2263 { 2264 struct cgroup_root *root; 2265 struct cgroup *cgrp; 2266 int hierarchy_id = 1; 2267 int ret; 2268 2269 mutex_lock(&cgroup_mutex); 2270 spin_lock_irq(&css_set_lock); 2271 2272 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2273 2274 if (root) { 2275 cgrp = task_cgroup_from_root(task, root); 2276 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2277 } else { 2278 /* if no hierarchy exists, everyone is in "/" */ 2279 ret = strlcpy(buf, "/", buflen); 2280 } 2281 2282 spin_unlock_irq(&css_set_lock); 2283 mutex_unlock(&cgroup_mutex); 2284 return ret; 2285 } 2286 EXPORT_SYMBOL_GPL(task_cgroup_path); 2287 2288 /** 2289 * cgroup_migrate_add_task - add a migration target task to a migration context 2290 * @task: target task 2291 * @mgctx: target migration context 2292 * 2293 * Add @task, which is a migration target, to @mgctx->tset. This function 2294 * becomes noop if @task doesn't need to be migrated. @task's css_set 2295 * should have been added as a migration source and @task->cg_list will be 2296 * moved from the css_set's tasks list to mg_tasks one. 2297 */ 2298 static void cgroup_migrate_add_task(struct task_struct *task, 2299 struct cgroup_mgctx *mgctx) 2300 { 2301 struct css_set *cset; 2302 2303 lockdep_assert_held(&css_set_lock); 2304 2305 /* @task either already exited or can't exit until the end */ 2306 if (task->flags & PF_EXITING) 2307 return; 2308 2309 /* cgroup_threadgroup_rwsem protects racing against forks */ 2310 WARN_ON_ONCE(list_empty(&task->cg_list)); 2311 2312 cset = task_css_set(task); 2313 if (!cset->mg_src_cgrp) 2314 return; 2315 2316 mgctx->tset.nr_tasks++; 2317 2318 list_move_tail(&task->cg_list, &cset->mg_tasks); 2319 if (list_empty(&cset->mg_node)) 2320 list_add_tail(&cset->mg_node, 2321 &mgctx->tset.src_csets); 2322 if (list_empty(&cset->mg_dst_cset->mg_node)) 2323 list_add_tail(&cset->mg_dst_cset->mg_node, 2324 &mgctx->tset.dst_csets); 2325 } 2326 2327 /** 2328 * cgroup_taskset_first - reset taskset and return the first task 2329 * @tset: taskset of interest 2330 * @dst_cssp: output variable for the destination css 2331 * 2332 * @tset iteration is initialized and the first task is returned. 2333 */ 2334 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2335 struct cgroup_subsys_state **dst_cssp) 2336 { 2337 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2338 tset->cur_task = NULL; 2339 2340 return cgroup_taskset_next(tset, dst_cssp); 2341 } 2342 2343 /** 2344 * cgroup_taskset_next - iterate to the next task in taskset 2345 * @tset: taskset of interest 2346 * @dst_cssp: output variable for the destination css 2347 * 2348 * Return the next task in @tset. Iteration must have been initialized 2349 * with cgroup_taskset_first(). 2350 */ 2351 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2352 struct cgroup_subsys_state **dst_cssp) 2353 { 2354 struct css_set *cset = tset->cur_cset; 2355 struct task_struct *task = tset->cur_task; 2356 2357 while (&cset->mg_node != tset->csets) { 2358 if (!task) 2359 task = list_first_entry(&cset->mg_tasks, 2360 struct task_struct, cg_list); 2361 else 2362 task = list_next_entry(task, cg_list); 2363 2364 if (&task->cg_list != &cset->mg_tasks) { 2365 tset->cur_cset = cset; 2366 tset->cur_task = task; 2367 2368 /* 2369 * This function may be called both before and 2370 * after cgroup_taskset_migrate(). The two cases 2371 * can be distinguished by looking at whether @cset 2372 * has its ->mg_dst_cset set. 2373 */ 2374 if (cset->mg_dst_cset) 2375 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2376 else 2377 *dst_cssp = cset->subsys[tset->ssid]; 2378 2379 return task; 2380 } 2381 2382 cset = list_next_entry(cset, mg_node); 2383 task = NULL; 2384 } 2385 2386 return NULL; 2387 } 2388 2389 /** 2390 * cgroup_taskset_migrate - migrate a taskset 2391 * @mgctx: migration context 2392 * 2393 * Migrate tasks in @mgctx as setup by migration preparation functions. 2394 * This function fails iff one of the ->can_attach callbacks fails and 2395 * guarantees that either all or none of the tasks in @mgctx are migrated. 2396 * @mgctx is consumed regardless of success. 2397 */ 2398 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2399 { 2400 struct cgroup_taskset *tset = &mgctx->tset; 2401 struct cgroup_subsys *ss; 2402 struct task_struct *task, *tmp_task; 2403 struct css_set *cset, *tmp_cset; 2404 int ssid, failed_ssid, ret; 2405 2406 /* check that we can legitimately attach to the cgroup */ 2407 if (tset->nr_tasks) { 2408 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2409 if (ss->can_attach) { 2410 tset->ssid = ssid; 2411 ret = ss->can_attach(tset); 2412 if (ret) { 2413 failed_ssid = ssid; 2414 goto out_cancel_attach; 2415 } 2416 } 2417 } while_each_subsys_mask(); 2418 } 2419 2420 /* 2421 * Now that we're guaranteed success, proceed to move all tasks to 2422 * the new cgroup. There are no failure cases after here, so this 2423 * is the commit point. 2424 */ 2425 spin_lock_irq(&css_set_lock); 2426 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2427 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2428 struct css_set *from_cset = task_css_set(task); 2429 struct css_set *to_cset = cset->mg_dst_cset; 2430 2431 get_css_set(to_cset); 2432 to_cset->nr_tasks++; 2433 css_set_move_task(task, from_cset, to_cset, true); 2434 from_cset->nr_tasks--; 2435 /* 2436 * If the source or destination cgroup is frozen, 2437 * the task might require to change its state. 2438 */ 2439 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2440 to_cset->dfl_cgrp); 2441 put_css_set_locked(from_cset); 2442 2443 } 2444 } 2445 spin_unlock_irq(&css_set_lock); 2446 2447 /* 2448 * Migration is committed, all target tasks are now on dst_csets. 2449 * Nothing is sensitive to fork() after this point. Notify 2450 * controllers that migration is complete. 2451 */ 2452 tset->csets = &tset->dst_csets; 2453 2454 if (tset->nr_tasks) { 2455 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2456 if (ss->attach) { 2457 tset->ssid = ssid; 2458 ss->attach(tset); 2459 } 2460 } while_each_subsys_mask(); 2461 } 2462 2463 ret = 0; 2464 goto out_release_tset; 2465 2466 out_cancel_attach: 2467 if (tset->nr_tasks) { 2468 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2469 if (ssid == failed_ssid) 2470 break; 2471 if (ss->cancel_attach) { 2472 tset->ssid = ssid; 2473 ss->cancel_attach(tset); 2474 } 2475 } while_each_subsys_mask(); 2476 } 2477 out_release_tset: 2478 spin_lock_irq(&css_set_lock); 2479 list_splice_init(&tset->dst_csets, &tset->src_csets); 2480 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2481 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2482 list_del_init(&cset->mg_node); 2483 } 2484 spin_unlock_irq(&css_set_lock); 2485 2486 /* 2487 * Re-initialize the cgroup_taskset structure in case it is reused 2488 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2489 * iteration. 2490 */ 2491 tset->nr_tasks = 0; 2492 tset->csets = &tset->src_csets; 2493 return ret; 2494 } 2495 2496 /** 2497 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2498 * @dst_cgrp: destination cgroup to test 2499 * 2500 * On the default hierarchy, except for the mixable, (possible) thread root 2501 * and threaded cgroups, subtree_control must be zero for migration 2502 * destination cgroups with tasks so that child cgroups don't compete 2503 * against tasks. 2504 */ 2505 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2506 { 2507 /* v1 doesn't have any restriction */ 2508 if (!cgroup_on_dfl(dst_cgrp)) 2509 return 0; 2510 2511 /* verify @dst_cgrp can host resources */ 2512 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2513 return -EOPNOTSUPP; 2514 2515 /* mixables don't care */ 2516 if (cgroup_is_mixable(dst_cgrp)) 2517 return 0; 2518 2519 /* 2520 * If @dst_cgrp is already or can become a thread root or is 2521 * threaded, it doesn't matter. 2522 */ 2523 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2524 return 0; 2525 2526 /* apply no-internal-process constraint */ 2527 if (dst_cgrp->subtree_control) 2528 return -EBUSY; 2529 2530 return 0; 2531 } 2532 2533 /** 2534 * cgroup_migrate_finish - cleanup after attach 2535 * @mgctx: migration context 2536 * 2537 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2538 * those functions for details. 2539 */ 2540 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2541 { 2542 LIST_HEAD(preloaded); 2543 struct css_set *cset, *tmp_cset; 2544 2545 lockdep_assert_held(&cgroup_mutex); 2546 2547 spin_lock_irq(&css_set_lock); 2548 2549 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2550 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2551 2552 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2553 cset->mg_src_cgrp = NULL; 2554 cset->mg_dst_cgrp = NULL; 2555 cset->mg_dst_cset = NULL; 2556 list_del_init(&cset->mg_preload_node); 2557 put_css_set_locked(cset); 2558 } 2559 2560 spin_unlock_irq(&css_set_lock); 2561 } 2562 2563 /** 2564 * cgroup_migrate_add_src - add a migration source css_set 2565 * @src_cset: the source css_set to add 2566 * @dst_cgrp: the destination cgroup 2567 * @mgctx: migration context 2568 * 2569 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2570 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2571 * up by cgroup_migrate_finish(). 2572 * 2573 * This function may be called without holding cgroup_threadgroup_rwsem 2574 * even if the target is a process. Threads may be created and destroyed 2575 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2576 * into play and the preloaded css_sets are guaranteed to cover all 2577 * migrations. 2578 */ 2579 void cgroup_migrate_add_src(struct css_set *src_cset, 2580 struct cgroup *dst_cgrp, 2581 struct cgroup_mgctx *mgctx) 2582 { 2583 struct cgroup *src_cgrp; 2584 2585 lockdep_assert_held(&cgroup_mutex); 2586 lockdep_assert_held(&css_set_lock); 2587 2588 /* 2589 * If ->dead, @src_set is associated with one or more dead cgroups 2590 * and doesn't contain any migratable tasks. Ignore it early so 2591 * that the rest of migration path doesn't get confused by it. 2592 */ 2593 if (src_cset->dead) 2594 return; 2595 2596 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2597 2598 if (!list_empty(&src_cset->mg_preload_node)) 2599 return; 2600 2601 WARN_ON(src_cset->mg_src_cgrp); 2602 WARN_ON(src_cset->mg_dst_cgrp); 2603 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2604 WARN_ON(!list_empty(&src_cset->mg_node)); 2605 2606 src_cset->mg_src_cgrp = src_cgrp; 2607 src_cset->mg_dst_cgrp = dst_cgrp; 2608 get_css_set(src_cset); 2609 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2610 } 2611 2612 /** 2613 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2614 * @mgctx: migration context 2615 * 2616 * Tasks are about to be moved and all the source css_sets have been 2617 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2618 * pins all destination css_sets, links each to its source, and append them 2619 * to @mgctx->preloaded_dst_csets. 2620 * 2621 * This function must be called after cgroup_migrate_add_src() has been 2622 * called on each migration source css_set. After migration is performed 2623 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2624 * @mgctx. 2625 */ 2626 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2627 { 2628 struct css_set *src_cset, *tmp_cset; 2629 2630 lockdep_assert_held(&cgroup_mutex); 2631 2632 /* look up the dst cset for each src cset and link it to src */ 2633 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2634 mg_preload_node) { 2635 struct css_set *dst_cset; 2636 struct cgroup_subsys *ss; 2637 int ssid; 2638 2639 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2640 if (!dst_cset) 2641 return -ENOMEM; 2642 2643 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2644 2645 /* 2646 * If src cset equals dst, it's noop. Drop the src. 2647 * cgroup_migrate() will skip the cset too. Note that we 2648 * can't handle src == dst as some nodes are used by both. 2649 */ 2650 if (src_cset == dst_cset) { 2651 src_cset->mg_src_cgrp = NULL; 2652 src_cset->mg_dst_cgrp = NULL; 2653 list_del_init(&src_cset->mg_preload_node); 2654 put_css_set(src_cset); 2655 put_css_set(dst_cset); 2656 continue; 2657 } 2658 2659 src_cset->mg_dst_cset = dst_cset; 2660 2661 if (list_empty(&dst_cset->mg_preload_node)) 2662 list_add_tail(&dst_cset->mg_preload_node, 2663 &mgctx->preloaded_dst_csets); 2664 else 2665 put_css_set(dst_cset); 2666 2667 for_each_subsys(ss, ssid) 2668 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2669 mgctx->ss_mask |= 1 << ssid; 2670 } 2671 2672 return 0; 2673 } 2674 2675 /** 2676 * cgroup_migrate - migrate a process or task to a cgroup 2677 * @leader: the leader of the process or the task to migrate 2678 * @threadgroup: whether @leader points to the whole process or a single task 2679 * @mgctx: migration context 2680 * 2681 * Migrate a process or task denoted by @leader. If migrating a process, 2682 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2683 * responsible for invoking cgroup_migrate_add_src() and 2684 * cgroup_migrate_prepare_dst() on the targets before invoking this 2685 * function and following up with cgroup_migrate_finish(). 2686 * 2687 * As long as a controller's ->can_attach() doesn't fail, this function is 2688 * guaranteed to succeed. This means that, excluding ->can_attach() 2689 * failure, when migrating multiple targets, the success or failure can be 2690 * decided for all targets by invoking group_migrate_prepare_dst() before 2691 * actually starting migrating. 2692 */ 2693 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2694 struct cgroup_mgctx *mgctx) 2695 { 2696 struct task_struct *task; 2697 2698 /* 2699 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2700 * already PF_EXITING could be freed from underneath us unless we 2701 * take an rcu_read_lock. 2702 */ 2703 spin_lock_irq(&css_set_lock); 2704 rcu_read_lock(); 2705 task = leader; 2706 do { 2707 cgroup_migrate_add_task(task, mgctx); 2708 if (!threadgroup) 2709 break; 2710 } while_each_thread(leader, task); 2711 rcu_read_unlock(); 2712 spin_unlock_irq(&css_set_lock); 2713 2714 return cgroup_migrate_execute(mgctx); 2715 } 2716 2717 /** 2718 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2719 * @dst_cgrp: the cgroup to attach to 2720 * @leader: the task or the leader of the threadgroup to be attached 2721 * @threadgroup: attach the whole threadgroup? 2722 * 2723 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2724 */ 2725 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2726 bool threadgroup) 2727 { 2728 DEFINE_CGROUP_MGCTX(mgctx); 2729 struct task_struct *task; 2730 int ret = 0; 2731 2732 /* look up all src csets */ 2733 spin_lock_irq(&css_set_lock); 2734 rcu_read_lock(); 2735 task = leader; 2736 do { 2737 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2738 if (!threadgroup) 2739 break; 2740 } while_each_thread(leader, task); 2741 rcu_read_unlock(); 2742 spin_unlock_irq(&css_set_lock); 2743 2744 /* prepare dst csets and commit */ 2745 ret = cgroup_migrate_prepare_dst(&mgctx); 2746 if (!ret) 2747 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2748 2749 cgroup_migrate_finish(&mgctx); 2750 2751 if (!ret) 2752 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2753 2754 return ret; 2755 } 2756 2757 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2758 bool *locked) 2759 __acquires(&cgroup_threadgroup_rwsem) 2760 { 2761 struct task_struct *tsk; 2762 pid_t pid; 2763 2764 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2765 return ERR_PTR(-EINVAL); 2766 2767 /* 2768 * If we migrate a single thread, we don't care about threadgroup 2769 * stability. If the thread is `current`, it won't exit(2) under our 2770 * hands or change PID through exec(2). We exclude 2771 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2772 * callers by cgroup_mutex. 2773 * Therefore, we can skip the global lock. 2774 */ 2775 lockdep_assert_held(&cgroup_mutex); 2776 if (pid || threadgroup) { 2777 percpu_down_write(&cgroup_threadgroup_rwsem); 2778 *locked = true; 2779 } else { 2780 *locked = false; 2781 } 2782 2783 rcu_read_lock(); 2784 if (pid) { 2785 tsk = find_task_by_vpid(pid); 2786 if (!tsk) { 2787 tsk = ERR_PTR(-ESRCH); 2788 goto out_unlock_threadgroup; 2789 } 2790 } else { 2791 tsk = current; 2792 } 2793 2794 if (threadgroup) 2795 tsk = tsk->group_leader; 2796 2797 /* 2798 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2799 * If userland migrates such a kthread to a non-root cgroup, it can 2800 * become trapped in a cpuset, or RT kthread may be born in a 2801 * cgroup with no rt_runtime allocated. Just say no. 2802 */ 2803 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2804 tsk = ERR_PTR(-EINVAL); 2805 goto out_unlock_threadgroup; 2806 } 2807 2808 get_task_struct(tsk); 2809 goto out_unlock_rcu; 2810 2811 out_unlock_threadgroup: 2812 if (*locked) { 2813 percpu_up_write(&cgroup_threadgroup_rwsem); 2814 *locked = false; 2815 } 2816 out_unlock_rcu: 2817 rcu_read_unlock(); 2818 return tsk; 2819 } 2820 2821 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2822 __releases(&cgroup_threadgroup_rwsem) 2823 { 2824 struct cgroup_subsys *ss; 2825 int ssid; 2826 2827 /* release reference from cgroup_procs_write_start() */ 2828 put_task_struct(task); 2829 2830 if (locked) 2831 percpu_up_write(&cgroup_threadgroup_rwsem); 2832 for_each_subsys(ss, ssid) 2833 if (ss->post_attach) 2834 ss->post_attach(); 2835 } 2836 2837 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2838 { 2839 struct cgroup_subsys *ss; 2840 bool printed = false; 2841 int ssid; 2842 2843 do_each_subsys_mask(ss, ssid, ss_mask) { 2844 if (printed) 2845 seq_putc(seq, ' '); 2846 seq_puts(seq, ss->name); 2847 printed = true; 2848 } while_each_subsys_mask(); 2849 if (printed) 2850 seq_putc(seq, '\n'); 2851 } 2852 2853 /* show controllers which are enabled from the parent */ 2854 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2855 { 2856 struct cgroup *cgrp = seq_css(seq)->cgroup; 2857 2858 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2859 return 0; 2860 } 2861 2862 /* show controllers which are enabled for a given cgroup's children */ 2863 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2864 { 2865 struct cgroup *cgrp = seq_css(seq)->cgroup; 2866 2867 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2868 return 0; 2869 } 2870 2871 /** 2872 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2873 * @cgrp: root of the subtree to update csses for 2874 * 2875 * @cgrp's control masks have changed and its subtree's css associations 2876 * need to be updated accordingly. This function looks up all css_sets 2877 * which are attached to the subtree, creates the matching updated css_sets 2878 * and migrates the tasks to the new ones. 2879 */ 2880 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2881 { 2882 DEFINE_CGROUP_MGCTX(mgctx); 2883 struct cgroup_subsys_state *d_css; 2884 struct cgroup *dsct; 2885 struct css_set *src_cset; 2886 int ret; 2887 2888 lockdep_assert_held(&cgroup_mutex); 2889 2890 percpu_down_write(&cgroup_threadgroup_rwsem); 2891 2892 /* look up all csses currently attached to @cgrp's subtree */ 2893 spin_lock_irq(&css_set_lock); 2894 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2895 struct cgrp_cset_link *link; 2896 2897 list_for_each_entry(link, &dsct->cset_links, cset_link) 2898 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2899 } 2900 spin_unlock_irq(&css_set_lock); 2901 2902 /* NULL dst indicates self on default hierarchy */ 2903 ret = cgroup_migrate_prepare_dst(&mgctx); 2904 if (ret) 2905 goto out_finish; 2906 2907 spin_lock_irq(&css_set_lock); 2908 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2909 struct task_struct *task, *ntask; 2910 2911 /* all tasks in src_csets need to be migrated */ 2912 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2913 cgroup_migrate_add_task(task, &mgctx); 2914 } 2915 spin_unlock_irq(&css_set_lock); 2916 2917 ret = cgroup_migrate_execute(&mgctx); 2918 out_finish: 2919 cgroup_migrate_finish(&mgctx); 2920 percpu_up_write(&cgroup_threadgroup_rwsem); 2921 return ret; 2922 } 2923 2924 /** 2925 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2926 * @cgrp: root of the target subtree 2927 * 2928 * Because css offlining is asynchronous, userland may try to re-enable a 2929 * controller while the previous css is still around. This function grabs 2930 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2931 */ 2932 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2933 __acquires(&cgroup_mutex) 2934 { 2935 struct cgroup *dsct; 2936 struct cgroup_subsys_state *d_css; 2937 struct cgroup_subsys *ss; 2938 int ssid; 2939 2940 restart: 2941 mutex_lock(&cgroup_mutex); 2942 2943 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2944 for_each_subsys(ss, ssid) { 2945 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2946 DEFINE_WAIT(wait); 2947 2948 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2949 continue; 2950 2951 cgroup_get_live(dsct); 2952 prepare_to_wait(&dsct->offline_waitq, &wait, 2953 TASK_UNINTERRUPTIBLE); 2954 2955 mutex_unlock(&cgroup_mutex); 2956 schedule(); 2957 finish_wait(&dsct->offline_waitq, &wait); 2958 2959 cgroup_put(dsct); 2960 goto restart; 2961 } 2962 } 2963 } 2964 2965 /** 2966 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2967 * @cgrp: root of the target subtree 2968 * 2969 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2970 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2971 * itself. 2972 */ 2973 static void cgroup_save_control(struct cgroup *cgrp) 2974 { 2975 struct cgroup *dsct; 2976 struct cgroup_subsys_state *d_css; 2977 2978 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2979 dsct->old_subtree_control = dsct->subtree_control; 2980 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2981 dsct->old_dom_cgrp = dsct->dom_cgrp; 2982 } 2983 } 2984 2985 /** 2986 * cgroup_propagate_control - refresh control masks of a subtree 2987 * @cgrp: root of the target subtree 2988 * 2989 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2990 * ->subtree_control and propagate controller availability through the 2991 * subtree so that descendants don't have unavailable controllers enabled. 2992 */ 2993 static void cgroup_propagate_control(struct cgroup *cgrp) 2994 { 2995 struct cgroup *dsct; 2996 struct cgroup_subsys_state *d_css; 2997 2998 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2999 dsct->subtree_control &= cgroup_control(dsct); 3000 dsct->subtree_ss_mask = 3001 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3002 cgroup_ss_mask(dsct)); 3003 } 3004 } 3005 3006 /** 3007 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3008 * @cgrp: root of the target subtree 3009 * 3010 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3011 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3012 * itself. 3013 */ 3014 static void cgroup_restore_control(struct cgroup *cgrp) 3015 { 3016 struct cgroup *dsct; 3017 struct cgroup_subsys_state *d_css; 3018 3019 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3020 dsct->subtree_control = dsct->old_subtree_control; 3021 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3022 dsct->dom_cgrp = dsct->old_dom_cgrp; 3023 } 3024 } 3025 3026 static bool css_visible(struct cgroup_subsys_state *css) 3027 { 3028 struct cgroup_subsys *ss = css->ss; 3029 struct cgroup *cgrp = css->cgroup; 3030 3031 if (cgroup_control(cgrp) & (1 << ss->id)) 3032 return true; 3033 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3034 return false; 3035 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3036 } 3037 3038 /** 3039 * cgroup_apply_control_enable - enable or show csses according to control 3040 * @cgrp: root of the target subtree 3041 * 3042 * Walk @cgrp's subtree and create new csses or make the existing ones 3043 * visible. A css is created invisible if it's being implicitly enabled 3044 * through dependency. An invisible css is made visible when the userland 3045 * explicitly enables it. 3046 * 3047 * Returns 0 on success, -errno on failure. On failure, csses which have 3048 * been processed already aren't cleaned up. The caller is responsible for 3049 * cleaning up with cgroup_apply_control_disable(). 3050 */ 3051 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3052 { 3053 struct cgroup *dsct; 3054 struct cgroup_subsys_state *d_css; 3055 struct cgroup_subsys *ss; 3056 int ssid, ret; 3057 3058 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3059 for_each_subsys(ss, ssid) { 3060 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3061 3062 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3063 continue; 3064 3065 if (!css) { 3066 css = css_create(dsct, ss); 3067 if (IS_ERR(css)) 3068 return PTR_ERR(css); 3069 } 3070 3071 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3072 3073 if (css_visible(css)) { 3074 ret = css_populate_dir(css); 3075 if (ret) 3076 return ret; 3077 } 3078 } 3079 } 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * cgroup_apply_control_disable - kill or hide csses according to control 3086 * @cgrp: root of the target subtree 3087 * 3088 * Walk @cgrp's subtree and kill and hide csses so that they match 3089 * cgroup_ss_mask() and cgroup_visible_mask(). 3090 * 3091 * A css is hidden when the userland requests it to be disabled while other 3092 * subsystems are still depending on it. The css must not actively control 3093 * resources and be in the vanilla state if it's made visible again later. 3094 * Controllers which may be depended upon should provide ->css_reset() for 3095 * this purpose. 3096 */ 3097 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3098 { 3099 struct cgroup *dsct; 3100 struct cgroup_subsys_state *d_css; 3101 struct cgroup_subsys *ss; 3102 int ssid; 3103 3104 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3105 for_each_subsys(ss, ssid) { 3106 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3107 3108 if (!css) 3109 continue; 3110 3111 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3112 3113 if (css->parent && 3114 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3115 kill_css(css); 3116 } else if (!css_visible(css)) { 3117 css_clear_dir(css); 3118 if (ss->css_reset) 3119 ss->css_reset(css); 3120 } 3121 } 3122 } 3123 } 3124 3125 /** 3126 * cgroup_apply_control - apply control mask updates to the subtree 3127 * @cgrp: root of the target subtree 3128 * 3129 * subsystems can be enabled and disabled in a subtree using the following 3130 * steps. 3131 * 3132 * 1. Call cgroup_save_control() to stash the current state. 3133 * 2. Update ->subtree_control masks in the subtree as desired. 3134 * 3. Call cgroup_apply_control() to apply the changes. 3135 * 4. Optionally perform other related operations. 3136 * 5. Call cgroup_finalize_control() to finish up. 3137 * 3138 * This function implements step 3 and propagates the mask changes 3139 * throughout @cgrp's subtree, updates csses accordingly and perform 3140 * process migrations. 3141 */ 3142 static int cgroup_apply_control(struct cgroup *cgrp) 3143 { 3144 int ret; 3145 3146 cgroup_propagate_control(cgrp); 3147 3148 ret = cgroup_apply_control_enable(cgrp); 3149 if (ret) 3150 return ret; 3151 3152 /* 3153 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3154 * making the following cgroup_update_dfl_csses() properly update 3155 * css associations of all tasks in the subtree. 3156 */ 3157 ret = cgroup_update_dfl_csses(cgrp); 3158 if (ret) 3159 return ret; 3160 3161 return 0; 3162 } 3163 3164 /** 3165 * cgroup_finalize_control - finalize control mask update 3166 * @cgrp: root of the target subtree 3167 * @ret: the result of the update 3168 * 3169 * Finalize control mask update. See cgroup_apply_control() for more info. 3170 */ 3171 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3172 { 3173 if (ret) { 3174 cgroup_restore_control(cgrp); 3175 cgroup_propagate_control(cgrp); 3176 } 3177 3178 cgroup_apply_control_disable(cgrp); 3179 } 3180 3181 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3182 { 3183 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3184 3185 /* if nothing is getting enabled, nothing to worry about */ 3186 if (!enable) 3187 return 0; 3188 3189 /* can @cgrp host any resources? */ 3190 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3191 return -EOPNOTSUPP; 3192 3193 /* mixables don't care */ 3194 if (cgroup_is_mixable(cgrp)) 3195 return 0; 3196 3197 if (domain_enable) { 3198 /* can't enable domain controllers inside a thread subtree */ 3199 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3200 return -EOPNOTSUPP; 3201 } else { 3202 /* 3203 * Threaded controllers can handle internal competitions 3204 * and are always allowed inside a (prospective) thread 3205 * subtree. 3206 */ 3207 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3208 return 0; 3209 } 3210 3211 /* 3212 * Controllers can't be enabled for a cgroup with tasks to avoid 3213 * child cgroups competing against tasks. 3214 */ 3215 if (cgroup_has_tasks(cgrp)) 3216 return -EBUSY; 3217 3218 return 0; 3219 } 3220 3221 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3222 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3223 char *buf, size_t nbytes, 3224 loff_t off) 3225 { 3226 u16 enable = 0, disable = 0; 3227 struct cgroup *cgrp, *child; 3228 struct cgroup_subsys *ss; 3229 char *tok; 3230 int ssid, ret; 3231 3232 /* 3233 * Parse input - space separated list of subsystem names prefixed 3234 * with either + or -. 3235 */ 3236 buf = strstrip(buf); 3237 while ((tok = strsep(&buf, " "))) { 3238 if (tok[0] == '\0') 3239 continue; 3240 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3241 if (!cgroup_ssid_enabled(ssid) || 3242 strcmp(tok + 1, ss->name)) 3243 continue; 3244 3245 if (*tok == '+') { 3246 enable |= 1 << ssid; 3247 disable &= ~(1 << ssid); 3248 } else if (*tok == '-') { 3249 disable |= 1 << ssid; 3250 enable &= ~(1 << ssid); 3251 } else { 3252 return -EINVAL; 3253 } 3254 break; 3255 } while_each_subsys_mask(); 3256 if (ssid == CGROUP_SUBSYS_COUNT) 3257 return -EINVAL; 3258 } 3259 3260 cgrp = cgroup_kn_lock_live(of->kn, true); 3261 if (!cgrp) 3262 return -ENODEV; 3263 3264 for_each_subsys(ss, ssid) { 3265 if (enable & (1 << ssid)) { 3266 if (cgrp->subtree_control & (1 << ssid)) { 3267 enable &= ~(1 << ssid); 3268 continue; 3269 } 3270 3271 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3272 ret = -ENOENT; 3273 goto out_unlock; 3274 } 3275 } else if (disable & (1 << ssid)) { 3276 if (!(cgrp->subtree_control & (1 << ssid))) { 3277 disable &= ~(1 << ssid); 3278 continue; 3279 } 3280 3281 /* a child has it enabled? */ 3282 cgroup_for_each_live_child(child, cgrp) { 3283 if (child->subtree_control & (1 << ssid)) { 3284 ret = -EBUSY; 3285 goto out_unlock; 3286 } 3287 } 3288 } 3289 } 3290 3291 if (!enable && !disable) { 3292 ret = 0; 3293 goto out_unlock; 3294 } 3295 3296 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3297 if (ret) 3298 goto out_unlock; 3299 3300 /* save and update control masks and prepare csses */ 3301 cgroup_save_control(cgrp); 3302 3303 cgrp->subtree_control |= enable; 3304 cgrp->subtree_control &= ~disable; 3305 3306 ret = cgroup_apply_control(cgrp); 3307 cgroup_finalize_control(cgrp, ret); 3308 if (ret) 3309 goto out_unlock; 3310 3311 kernfs_activate(cgrp->kn); 3312 out_unlock: 3313 cgroup_kn_unlock(of->kn); 3314 return ret ?: nbytes; 3315 } 3316 3317 /** 3318 * cgroup_enable_threaded - make @cgrp threaded 3319 * @cgrp: the target cgroup 3320 * 3321 * Called when "threaded" is written to the cgroup.type interface file and 3322 * tries to make @cgrp threaded and join the parent's resource domain. 3323 * This function is never called on the root cgroup as cgroup.type doesn't 3324 * exist on it. 3325 */ 3326 static int cgroup_enable_threaded(struct cgroup *cgrp) 3327 { 3328 struct cgroup *parent = cgroup_parent(cgrp); 3329 struct cgroup *dom_cgrp = parent->dom_cgrp; 3330 struct cgroup *dsct; 3331 struct cgroup_subsys_state *d_css; 3332 int ret; 3333 3334 lockdep_assert_held(&cgroup_mutex); 3335 3336 /* noop if already threaded */ 3337 if (cgroup_is_threaded(cgrp)) 3338 return 0; 3339 3340 /* 3341 * If @cgroup is populated or has domain controllers enabled, it 3342 * can't be switched. While the below cgroup_can_be_thread_root() 3343 * test can catch the same conditions, that's only when @parent is 3344 * not mixable, so let's check it explicitly. 3345 */ 3346 if (cgroup_is_populated(cgrp) || 3347 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3348 return -EOPNOTSUPP; 3349 3350 /* we're joining the parent's domain, ensure its validity */ 3351 if (!cgroup_is_valid_domain(dom_cgrp) || 3352 !cgroup_can_be_thread_root(dom_cgrp)) 3353 return -EOPNOTSUPP; 3354 3355 /* 3356 * The following shouldn't cause actual migrations and should 3357 * always succeed. 3358 */ 3359 cgroup_save_control(cgrp); 3360 3361 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3362 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3363 dsct->dom_cgrp = dom_cgrp; 3364 3365 ret = cgroup_apply_control(cgrp); 3366 if (!ret) 3367 parent->nr_threaded_children++; 3368 3369 cgroup_finalize_control(cgrp, ret); 3370 return ret; 3371 } 3372 3373 static int cgroup_type_show(struct seq_file *seq, void *v) 3374 { 3375 struct cgroup *cgrp = seq_css(seq)->cgroup; 3376 3377 if (cgroup_is_threaded(cgrp)) 3378 seq_puts(seq, "threaded\n"); 3379 else if (!cgroup_is_valid_domain(cgrp)) 3380 seq_puts(seq, "domain invalid\n"); 3381 else if (cgroup_is_thread_root(cgrp)) 3382 seq_puts(seq, "domain threaded\n"); 3383 else 3384 seq_puts(seq, "domain\n"); 3385 3386 return 0; 3387 } 3388 3389 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3390 size_t nbytes, loff_t off) 3391 { 3392 struct cgroup *cgrp; 3393 int ret; 3394 3395 /* only switching to threaded mode is supported */ 3396 if (strcmp(strstrip(buf), "threaded")) 3397 return -EINVAL; 3398 3399 /* drain dying csses before we re-apply (threaded) subtree control */ 3400 cgrp = cgroup_kn_lock_live(of->kn, true); 3401 if (!cgrp) 3402 return -ENOENT; 3403 3404 /* threaded can only be enabled */ 3405 ret = cgroup_enable_threaded(cgrp); 3406 3407 cgroup_kn_unlock(of->kn); 3408 return ret ?: nbytes; 3409 } 3410 3411 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3412 { 3413 struct cgroup *cgrp = seq_css(seq)->cgroup; 3414 int descendants = READ_ONCE(cgrp->max_descendants); 3415 3416 if (descendants == INT_MAX) 3417 seq_puts(seq, "max\n"); 3418 else 3419 seq_printf(seq, "%d\n", descendants); 3420 3421 return 0; 3422 } 3423 3424 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3425 char *buf, size_t nbytes, loff_t off) 3426 { 3427 struct cgroup *cgrp; 3428 int descendants; 3429 ssize_t ret; 3430 3431 buf = strstrip(buf); 3432 if (!strcmp(buf, "max")) { 3433 descendants = INT_MAX; 3434 } else { 3435 ret = kstrtoint(buf, 0, &descendants); 3436 if (ret) 3437 return ret; 3438 } 3439 3440 if (descendants < 0) 3441 return -ERANGE; 3442 3443 cgrp = cgroup_kn_lock_live(of->kn, false); 3444 if (!cgrp) 3445 return -ENOENT; 3446 3447 cgrp->max_descendants = descendants; 3448 3449 cgroup_kn_unlock(of->kn); 3450 3451 return nbytes; 3452 } 3453 3454 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3455 { 3456 struct cgroup *cgrp = seq_css(seq)->cgroup; 3457 int depth = READ_ONCE(cgrp->max_depth); 3458 3459 if (depth == INT_MAX) 3460 seq_puts(seq, "max\n"); 3461 else 3462 seq_printf(seq, "%d\n", depth); 3463 3464 return 0; 3465 } 3466 3467 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3468 char *buf, size_t nbytes, loff_t off) 3469 { 3470 struct cgroup *cgrp; 3471 ssize_t ret; 3472 int depth; 3473 3474 buf = strstrip(buf); 3475 if (!strcmp(buf, "max")) { 3476 depth = INT_MAX; 3477 } else { 3478 ret = kstrtoint(buf, 0, &depth); 3479 if (ret) 3480 return ret; 3481 } 3482 3483 if (depth < 0) 3484 return -ERANGE; 3485 3486 cgrp = cgroup_kn_lock_live(of->kn, false); 3487 if (!cgrp) 3488 return -ENOENT; 3489 3490 cgrp->max_depth = depth; 3491 3492 cgroup_kn_unlock(of->kn); 3493 3494 return nbytes; 3495 } 3496 3497 static int cgroup_events_show(struct seq_file *seq, void *v) 3498 { 3499 struct cgroup *cgrp = seq_css(seq)->cgroup; 3500 3501 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3502 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3503 3504 return 0; 3505 } 3506 3507 static int cgroup_stat_show(struct seq_file *seq, void *v) 3508 { 3509 struct cgroup *cgroup = seq_css(seq)->cgroup; 3510 3511 seq_printf(seq, "nr_descendants %d\n", 3512 cgroup->nr_descendants); 3513 seq_printf(seq, "nr_dying_descendants %d\n", 3514 cgroup->nr_dying_descendants); 3515 3516 return 0; 3517 } 3518 3519 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3520 struct cgroup *cgrp, int ssid) 3521 { 3522 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3523 struct cgroup_subsys_state *css; 3524 int ret; 3525 3526 if (!ss->css_extra_stat_show) 3527 return 0; 3528 3529 css = cgroup_tryget_css(cgrp, ss); 3530 if (!css) 3531 return 0; 3532 3533 ret = ss->css_extra_stat_show(seq, css); 3534 css_put(css); 3535 return ret; 3536 } 3537 3538 static int cpu_stat_show(struct seq_file *seq, void *v) 3539 { 3540 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3541 int ret = 0; 3542 3543 cgroup_base_stat_cputime_show(seq); 3544 #ifdef CONFIG_CGROUP_SCHED 3545 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3546 #endif 3547 return ret; 3548 } 3549 3550 #ifdef CONFIG_PSI 3551 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3552 { 3553 struct cgroup *cgrp = seq_css(seq)->cgroup; 3554 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3555 3556 return psi_show(seq, psi, PSI_IO); 3557 } 3558 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3559 { 3560 struct cgroup *cgrp = seq_css(seq)->cgroup; 3561 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3562 3563 return psi_show(seq, psi, PSI_MEM); 3564 } 3565 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3566 { 3567 struct cgroup *cgrp = seq_css(seq)->cgroup; 3568 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3569 3570 return psi_show(seq, psi, PSI_CPU); 3571 } 3572 3573 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3574 size_t nbytes, enum psi_res res) 3575 { 3576 struct psi_trigger *new; 3577 struct cgroup *cgrp; 3578 3579 cgrp = cgroup_kn_lock_live(of->kn, false); 3580 if (!cgrp) 3581 return -ENODEV; 3582 3583 cgroup_get(cgrp); 3584 cgroup_kn_unlock(of->kn); 3585 3586 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3587 if (IS_ERR(new)) { 3588 cgroup_put(cgrp); 3589 return PTR_ERR(new); 3590 } 3591 3592 psi_trigger_replace(&of->priv, new); 3593 3594 cgroup_put(cgrp); 3595 3596 return nbytes; 3597 } 3598 3599 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3600 char *buf, size_t nbytes, 3601 loff_t off) 3602 { 3603 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3604 } 3605 3606 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3607 char *buf, size_t nbytes, 3608 loff_t off) 3609 { 3610 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3611 } 3612 3613 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3614 char *buf, size_t nbytes, 3615 loff_t off) 3616 { 3617 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3618 } 3619 3620 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3621 poll_table *pt) 3622 { 3623 return psi_trigger_poll(&of->priv, of->file, pt); 3624 } 3625 3626 static void cgroup_pressure_release(struct kernfs_open_file *of) 3627 { 3628 psi_trigger_replace(&of->priv, NULL); 3629 } 3630 #endif /* CONFIG_PSI */ 3631 3632 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3633 { 3634 struct cgroup *cgrp = seq_css(seq)->cgroup; 3635 3636 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3637 3638 return 0; 3639 } 3640 3641 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3642 char *buf, size_t nbytes, loff_t off) 3643 { 3644 struct cgroup *cgrp; 3645 ssize_t ret; 3646 int freeze; 3647 3648 ret = kstrtoint(strstrip(buf), 0, &freeze); 3649 if (ret) 3650 return ret; 3651 3652 if (freeze < 0 || freeze > 1) 3653 return -ERANGE; 3654 3655 cgrp = cgroup_kn_lock_live(of->kn, false); 3656 if (!cgrp) 3657 return -ENOENT; 3658 3659 cgroup_freeze(cgrp, freeze); 3660 3661 cgroup_kn_unlock(of->kn); 3662 3663 return nbytes; 3664 } 3665 3666 static int cgroup_file_open(struct kernfs_open_file *of) 3667 { 3668 struct cftype *cft = of->kn->priv; 3669 3670 if (cft->open) 3671 return cft->open(of); 3672 return 0; 3673 } 3674 3675 static void cgroup_file_release(struct kernfs_open_file *of) 3676 { 3677 struct cftype *cft = of->kn->priv; 3678 3679 if (cft->release) 3680 cft->release(of); 3681 } 3682 3683 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3684 size_t nbytes, loff_t off) 3685 { 3686 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3687 struct cgroup *cgrp = of->kn->parent->priv; 3688 struct cftype *cft = of->kn->priv; 3689 struct cgroup_subsys_state *css; 3690 int ret; 3691 3692 /* 3693 * If namespaces are delegation boundaries, disallow writes to 3694 * files in an non-init namespace root from inside the namespace 3695 * except for the files explicitly marked delegatable - 3696 * cgroup.procs and cgroup.subtree_control. 3697 */ 3698 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3699 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3700 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3701 return -EPERM; 3702 3703 if (cft->write) 3704 return cft->write(of, buf, nbytes, off); 3705 3706 /* 3707 * kernfs guarantees that a file isn't deleted with operations in 3708 * flight, which means that the matching css is and stays alive and 3709 * doesn't need to be pinned. The RCU locking is not necessary 3710 * either. It's just for the convenience of using cgroup_css(). 3711 */ 3712 rcu_read_lock(); 3713 css = cgroup_css(cgrp, cft->ss); 3714 rcu_read_unlock(); 3715 3716 if (cft->write_u64) { 3717 unsigned long long v; 3718 ret = kstrtoull(buf, 0, &v); 3719 if (!ret) 3720 ret = cft->write_u64(css, cft, v); 3721 } else if (cft->write_s64) { 3722 long long v; 3723 ret = kstrtoll(buf, 0, &v); 3724 if (!ret) 3725 ret = cft->write_s64(css, cft, v); 3726 } else { 3727 ret = -EINVAL; 3728 } 3729 3730 return ret ?: nbytes; 3731 } 3732 3733 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3734 { 3735 struct cftype *cft = of->kn->priv; 3736 3737 if (cft->poll) 3738 return cft->poll(of, pt); 3739 3740 return kernfs_generic_poll(of, pt); 3741 } 3742 3743 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3744 { 3745 return seq_cft(seq)->seq_start(seq, ppos); 3746 } 3747 3748 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3749 { 3750 return seq_cft(seq)->seq_next(seq, v, ppos); 3751 } 3752 3753 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3754 { 3755 if (seq_cft(seq)->seq_stop) 3756 seq_cft(seq)->seq_stop(seq, v); 3757 } 3758 3759 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3760 { 3761 struct cftype *cft = seq_cft(m); 3762 struct cgroup_subsys_state *css = seq_css(m); 3763 3764 if (cft->seq_show) 3765 return cft->seq_show(m, arg); 3766 3767 if (cft->read_u64) 3768 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3769 else if (cft->read_s64) 3770 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3771 else 3772 return -EINVAL; 3773 return 0; 3774 } 3775 3776 static struct kernfs_ops cgroup_kf_single_ops = { 3777 .atomic_write_len = PAGE_SIZE, 3778 .open = cgroup_file_open, 3779 .release = cgroup_file_release, 3780 .write = cgroup_file_write, 3781 .poll = cgroup_file_poll, 3782 .seq_show = cgroup_seqfile_show, 3783 }; 3784 3785 static struct kernfs_ops cgroup_kf_ops = { 3786 .atomic_write_len = PAGE_SIZE, 3787 .open = cgroup_file_open, 3788 .release = cgroup_file_release, 3789 .write = cgroup_file_write, 3790 .poll = cgroup_file_poll, 3791 .seq_start = cgroup_seqfile_start, 3792 .seq_next = cgroup_seqfile_next, 3793 .seq_stop = cgroup_seqfile_stop, 3794 .seq_show = cgroup_seqfile_show, 3795 }; 3796 3797 /* set uid and gid of cgroup dirs and files to that of the creator */ 3798 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3799 { 3800 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3801 .ia_uid = current_fsuid(), 3802 .ia_gid = current_fsgid(), }; 3803 3804 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3805 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3806 return 0; 3807 3808 return kernfs_setattr(kn, &iattr); 3809 } 3810 3811 static void cgroup_file_notify_timer(struct timer_list *timer) 3812 { 3813 cgroup_file_notify(container_of(timer, struct cgroup_file, 3814 notify_timer)); 3815 } 3816 3817 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3818 struct cftype *cft) 3819 { 3820 char name[CGROUP_FILE_NAME_MAX]; 3821 struct kernfs_node *kn; 3822 struct lock_class_key *key = NULL; 3823 int ret; 3824 3825 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3826 key = &cft->lockdep_key; 3827 #endif 3828 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3829 cgroup_file_mode(cft), 3830 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3831 0, cft->kf_ops, cft, 3832 NULL, key); 3833 if (IS_ERR(kn)) 3834 return PTR_ERR(kn); 3835 3836 ret = cgroup_kn_set_ugid(kn); 3837 if (ret) { 3838 kernfs_remove(kn); 3839 return ret; 3840 } 3841 3842 if (cft->file_offset) { 3843 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3844 3845 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3846 3847 spin_lock_irq(&cgroup_file_kn_lock); 3848 cfile->kn = kn; 3849 spin_unlock_irq(&cgroup_file_kn_lock); 3850 } 3851 3852 return 0; 3853 } 3854 3855 /** 3856 * cgroup_addrm_files - add or remove files to a cgroup directory 3857 * @css: the target css 3858 * @cgrp: the target cgroup (usually css->cgroup) 3859 * @cfts: array of cftypes to be added 3860 * @is_add: whether to add or remove 3861 * 3862 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3863 * For removals, this function never fails. 3864 */ 3865 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3866 struct cgroup *cgrp, struct cftype cfts[], 3867 bool is_add) 3868 { 3869 struct cftype *cft, *cft_end = NULL; 3870 int ret = 0; 3871 3872 lockdep_assert_held(&cgroup_mutex); 3873 3874 restart: 3875 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3876 /* does cft->flags tell us to skip this file on @cgrp? */ 3877 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3878 continue; 3879 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3880 continue; 3881 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3882 continue; 3883 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3884 continue; 3885 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3886 continue; 3887 if (is_add) { 3888 ret = cgroup_add_file(css, cgrp, cft); 3889 if (ret) { 3890 pr_warn("%s: failed to add %s, err=%d\n", 3891 __func__, cft->name, ret); 3892 cft_end = cft; 3893 is_add = false; 3894 goto restart; 3895 } 3896 } else { 3897 cgroup_rm_file(cgrp, cft); 3898 } 3899 } 3900 return ret; 3901 } 3902 3903 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3904 { 3905 struct cgroup_subsys *ss = cfts[0].ss; 3906 struct cgroup *root = &ss->root->cgrp; 3907 struct cgroup_subsys_state *css; 3908 int ret = 0; 3909 3910 lockdep_assert_held(&cgroup_mutex); 3911 3912 /* add/rm files for all cgroups created before */ 3913 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3914 struct cgroup *cgrp = css->cgroup; 3915 3916 if (!(css->flags & CSS_VISIBLE)) 3917 continue; 3918 3919 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3920 if (ret) 3921 break; 3922 } 3923 3924 if (is_add && !ret) 3925 kernfs_activate(root->kn); 3926 return ret; 3927 } 3928 3929 static void cgroup_exit_cftypes(struct cftype *cfts) 3930 { 3931 struct cftype *cft; 3932 3933 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3934 /* free copy for custom atomic_write_len, see init_cftypes() */ 3935 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3936 kfree(cft->kf_ops); 3937 cft->kf_ops = NULL; 3938 cft->ss = NULL; 3939 3940 /* revert flags set by cgroup core while adding @cfts */ 3941 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3942 } 3943 } 3944 3945 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3946 { 3947 struct cftype *cft; 3948 3949 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3950 struct kernfs_ops *kf_ops; 3951 3952 WARN_ON(cft->ss || cft->kf_ops); 3953 3954 if (cft->seq_start) 3955 kf_ops = &cgroup_kf_ops; 3956 else 3957 kf_ops = &cgroup_kf_single_ops; 3958 3959 /* 3960 * Ugh... if @cft wants a custom max_write_len, we need to 3961 * make a copy of kf_ops to set its atomic_write_len. 3962 */ 3963 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3964 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3965 if (!kf_ops) { 3966 cgroup_exit_cftypes(cfts); 3967 return -ENOMEM; 3968 } 3969 kf_ops->atomic_write_len = cft->max_write_len; 3970 } 3971 3972 cft->kf_ops = kf_ops; 3973 cft->ss = ss; 3974 } 3975 3976 return 0; 3977 } 3978 3979 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3980 { 3981 lockdep_assert_held(&cgroup_mutex); 3982 3983 if (!cfts || !cfts[0].ss) 3984 return -ENOENT; 3985 3986 list_del(&cfts->node); 3987 cgroup_apply_cftypes(cfts, false); 3988 cgroup_exit_cftypes(cfts); 3989 return 0; 3990 } 3991 3992 /** 3993 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3994 * @cfts: zero-length name terminated array of cftypes 3995 * 3996 * Unregister @cfts. Files described by @cfts are removed from all 3997 * existing cgroups and all future cgroups won't have them either. This 3998 * function can be called anytime whether @cfts' subsys is attached or not. 3999 * 4000 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4001 * registered. 4002 */ 4003 int cgroup_rm_cftypes(struct cftype *cfts) 4004 { 4005 int ret; 4006 4007 mutex_lock(&cgroup_mutex); 4008 ret = cgroup_rm_cftypes_locked(cfts); 4009 mutex_unlock(&cgroup_mutex); 4010 return ret; 4011 } 4012 4013 /** 4014 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4015 * @ss: target cgroup subsystem 4016 * @cfts: zero-length name terminated array of cftypes 4017 * 4018 * Register @cfts to @ss. Files described by @cfts are created for all 4019 * existing cgroups to which @ss is attached and all future cgroups will 4020 * have them too. This function can be called anytime whether @ss is 4021 * attached or not. 4022 * 4023 * Returns 0 on successful registration, -errno on failure. Note that this 4024 * function currently returns 0 as long as @cfts registration is successful 4025 * even if some file creation attempts on existing cgroups fail. 4026 */ 4027 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4028 { 4029 int ret; 4030 4031 if (!cgroup_ssid_enabled(ss->id)) 4032 return 0; 4033 4034 if (!cfts || cfts[0].name[0] == '\0') 4035 return 0; 4036 4037 ret = cgroup_init_cftypes(ss, cfts); 4038 if (ret) 4039 return ret; 4040 4041 mutex_lock(&cgroup_mutex); 4042 4043 list_add_tail(&cfts->node, &ss->cfts); 4044 ret = cgroup_apply_cftypes(cfts, true); 4045 if (ret) 4046 cgroup_rm_cftypes_locked(cfts); 4047 4048 mutex_unlock(&cgroup_mutex); 4049 return ret; 4050 } 4051 4052 /** 4053 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4054 * @ss: target cgroup subsystem 4055 * @cfts: zero-length name terminated array of cftypes 4056 * 4057 * Similar to cgroup_add_cftypes() but the added files are only used for 4058 * the default hierarchy. 4059 */ 4060 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4061 { 4062 struct cftype *cft; 4063 4064 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4065 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4066 return cgroup_add_cftypes(ss, cfts); 4067 } 4068 4069 /** 4070 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4071 * @ss: target cgroup subsystem 4072 * @cfts: zero-length name terminated array of cftypes 4073 * 4074 * Similar to cgroup_add_cftypes() but the added files are only used for 4075 * the legacy hierarchies. 4076 */ 4077 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4078 { 4079 struct cftype *cft; 4080 4081 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4082 cft->flags |= __CFTYPE_NOT_ON_DFL; 4083 return cgroup_add_cftypes(ss, cfts); 4084 } 4085 4086 /** 4087 * cgroup_file_notify - generate a file modified event for a cgroup_file 4088 * @cfile: target cgroup_file 4089 * 4090 * @cfile must have been obtained by setting cftype->file_offset. 4091 */ 4092 void cgroup_file_notify(struct cgroup_file *cfile) 4093 { 4094 unsigned long flags; 4095 4096 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4097 if (cfile->kn) { 4098 unsigned long last = cfile->notified_at; 4099 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4100 4101 if (time_in_range(jiffies, last, next)) { 4102 timer_reduce(&cfile->notify_timer, next); 4103 } else { 4104 kernfs_notify(cfile->kn); 4105 cfile->notified_at = jiffies; 4106 } 4107 } 4108 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4109 } 4110 4111 /** 4112 * css_next_child - find the next child of a given css 4113 * @pos: the current position (%NULL to initiate traversal) 4114 * @parent: css whose children to walk 4115 * 4116 * This function returns the next child of @parent and should be called 4117 * under either cgroup_mutex or RCU read lock. The only requirement is 4118 * that @parent and @pos are accessible. The next sibling is guaranteed to 4119 * be returned regardless of their states. 4120 * 4121 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4122 * css which finished ->css_online() is guaranteed to be visible in the 4123 * future iterations and will stay visible until the last reference is put. 4124 * A css which hasn't finished ->css_online() or already finished 4125 * ->css_offline() may show up during traversal. It's each subsystem's 4126 * responsibility to synchronize against on/offlining. 4127 */ 4128 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4129 struct cgroup_subsys_state *parent) 4130 { 4131 struct cgroup_subsys_state *next; 4132 4133 cgroup_assert_mutex_or_rcu_locked(); 4134 4135 /* 4136 * @pos could already have been unlinked from the sibling list. 4137 * Once a cgroup is removed, its ->sibling.next is no longer 4138 * updated when its next sibling changes. CSS_RELEASED is set when 4139 * @pos is taken off list, at which time its next pointer is valid, 4140 * and, as releases are serialized, the one pointed to by the next 4141 * pointer is guaranteed to not have started release yet. This 4142 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4143 * critical section, the one pointed to by its next pointer is 4144 * guaranteed to not have finished its RCU grace period even if we 4145 * have dropped rcu_read_lock() inbetween iterations. 4146 * 4147 * If @pos has CSS_RELEASED set, its next pointer can't be 4148 * dereferenced; however, as each css is given a monotonically 4149 * increasing unique serial number and always appended to the 4150 * sibling list, the next one can be found by walking the parent's 4151 * children until the first css with higher serial number than 4152 * @pos's. While this path can be slower, it happens iff iteration 4153 * races against release and the race window is very small. 4154 */ 4155 if (!pos) { 4156 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4157 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4158 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4159 } else { 4160 list_for_each_entry_rcu(next, &parent->children, sibling, 4161 lockdep_is_held(&cgroup_mutex)) 4162 if (next->serial_nr > pos->serial_nr) 4163 break; 4164 } 4165 4166 /* 4167 * @next, if not pointing to the head, can be dereferenced and is 4168 * the next sibling. 4169 */ 4170 if (&next->sibling != &parent->children) 4171 return next; 4172 return NULL; 4173 } 4174 4175 /** 4176 * css_next_descendant_pre - find the next descendant for pre-order walk 4177 * @pos: the current position (%NULL to initiate traversal) 4178 * @root: css whose descendants to walk 4179 * 4180 * To be used by css_for_each_descendant_pre(). Find the next descendant 4181 * to visit for pre-order traversal of @root's descendants. @root is 4182 * included in the iteration and the first node to be visited. 4183 * 4184 * While this function requires cgroup_mutex or RCU read locking, it 4185 * doesn't require the whole traversal to be contained in a single critical 4186 * section. This function will return the correct next descendant as long 4187 * as both @pos and @root are accessible and @pos is a descendant of @root. 4188 * 4189 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4190 * css which finished ->css_online() is guaranteed to be visible in the 4191 * future iterations and will stay visible until the last reference is put. 4192 * A css which hasn't finished ->css_online() or already finished 4193 * ->css_offline() may show up during traversal. It's each subsystem's 4194 * responsibility to synchronize against on/offlining. 4195 */ 4196 struct cgroup_subsys_state * 4197 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4198 struct cgroup_subsys_state *root) 4199 { 4200 struct cgroup_subsys_state *next; 4201 4202 cgroup_assert_mutex_or_rcu_locked(); 4203 4204 /* if first iteration, visit @root */ 4205 if (!pos) 4206 return root; 4207 4208 /* visit the first child if exists */ 4209 next = css_next_child(NULL, pos); 4210 if (next) 4211 return next; 4212 4213 /* no child, visit my or the closest ancestor's next sibling */ 4214 while (pos != root) { 4215 next = css_next_child(pos, pos->parent); 4216 if (next) 4217 return next; 4218 pos = pos->parent; 4219 } 4220 4221 return NULL; 4222 } 4223 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4224 4225 /** 4226 * css_rightmost_descendant - return the rightmost descendant of a css 4227 * @pos: css of interest 4228 * 4229 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4230 * is returned. This can be used during pre-order traversal to skip 4231 * subtree of @pos. 4232 * 4233 * While this function requires cgroup_mutex or RCU read locking, it 4234 * doesn't require the whole traversal to be contained in a single critical 4235 * section. This function will return the correct rightmost descendant as 4236 * long as @pos is accessible. 4237 */ 4238 struct cgroup_subsys_state * 4239 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4240 { 4241 struct cgroup_subsys_state *last, *tmp; 4242 4243 cgroup_assert_mutex_or_rcu_locked(); 4244 4245 do { 4246 last = pos; 4247 /* ->prev isn't RCU safe, walk ->next till the end */ 4248 pos = NULL; 4249 css_for_each_child(tmp, last) 4250 pos = tmp; 4251 } while (pos); 4252 4253 return last; 4254 } 4255 4256 static struct cgroup_subsys_state * 4257 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4258 { 4259 struct cgroup_subsys_state *last; 4260 4261 do { 4262 last = pos; 4263 pos = css_next_child(NULL, pos); 4264 } while (pos); 4265 4266 return last; 4267 } 4268 4269 /** 4270 * css_next_descendant_post - find the next descendant for post-order walk 4271 * @pos: the current position (%NULL to initiate traversal) 4272 * @root: css whose descendants to walk 4273 * 4274 * To be used by css_for_each_descendant_post(). Find the next descendant 4275 * to visit for post-order traversal of @root's descendants. @root is 4276 * included in the iteration and the last node to be visited. 4277 * 4278 * While this function requires cgroup_mutex or RCU read locking, it 4279 * doesn't require the whole traversal to be contained in a single critical 4280 * section. This function will return the correct next descendant as long 4281 * as both @pos and @cgroup are accessible and @pos is a descendant of 4282 * @cgroup. 4283 * 4284 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4285 * css which finished ->css_online() is guaranteed to be visible in the 4286 * future iterations and will stay visible until the last reference is put. 4287 * A css which hasn't finished ->css_online() or already finished 4288 * ->css_offline() may show up during traversal. It's each subsystem's 4289 * responsibility to synchronize against on/offlining. 4290 */ 4291 struct cgroup_subsys_state * 4292 css_next_descendant_post(struct cgroup_subsys_state *pos, 4293 struct cgroup_subsys_state *root) 4294 { 4295 struct cgroup_subsys_state *next; 4296 4297 cgroup_assert_mutex_or_rcu_locked(); 4298 4299 /* if first iteration, visit leftmost descendant which may be @root */ 4300 if (!pos) 4301 return css_leftmost_descendant(root); 4302 4303 /* if we visited @root, we're done */ 4304 if (pos == root) 4305 return NULL; 4306 4307 /* if there's an unvisited sibling, visit its leftmost descendant */ 4308 next = css_next_child(pos, pos->parent); 4309 if (next) 4310 return css_leftmost_descendant(next); 4311 4312 /* no sibling left, visit parent */ 4313 return pos->parent; 4314 } 4315 4316 /** 4317 * css_has_online_children - does a css have online children 4318 * @css: the target css 4319 * 4320 * Returns %true if @css has any online children; otherwise, %false. This 4321 * function can be called from any context but the caller is responsible 4322 * for synchronizing against on/offlining as necessary. 4323 */ 4324 bool css_has_online_children(struct cgroup_subsys_state *css) 4325 { 4326 struct cgroup_subsys_state *child; 4327 bool ret = false; 4328 4329 rcu_read_lock(); 4330 css_for_each_child(child, css) { 4331 if (child->flags & CSS_ONLINE) { 4332 ret = true; 4333 break; 4334 } 4335 } 4336 rcu_read_unlock(); 4337 return ret; 4338 } 4339 4340 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4341 { 4342 struct list_head *l; 4343 struct cgrp_cset_link *link; 4344 struct css_set *cset; 4345 4346 lockdep_assert_held(&css_set_lock); 4347 4348 /* find the next threaded cset */ 4349 if (it->tcset_pos) { 4350 l = it->tcset_pos->next; 4351 4352 if (l != it->tcset_head) { 4353 it->tcset_pos = l; 4354 return container_of(l, struct css_set, 4355 threaded_csets_node); 4356 } 4357 4358 it->tcset_pos = NULL; 4359 } 4360 4361 /* find the next cset */ 4362 l = it->cset_pos; 4363 l = l->next; 4364 if (l == it->cset_head) { 4365 it->cset_pos = NULL; 4366 return NULL; 4367 } 4368 4369 if (it->ss) { 4370 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4371 } else { 4372 link = list_entry(l, struct cgrp_cset_link, cset_link); 4373 cset = link->cset; 4374 } 4375 4376 it->cset_pos = l; 4377 4378 /* initialize threaded css_set walking */ 4379 if (it->flags & CSS_TASK_ITER_THREADED) { 4380 if (it->cur_dcset) 4381 put_css_set_locked(it->cur_dcset); 4382 it->cur_dcset = cset; 4383 get_css_set(cset); 4384 4385 it->tcset_head = &cset->threaded_csets; 4386 it->tcset_pos = &cset->threaded_csets; 4387 } 4388 4389 return cset; 4390 } 4391 4392 /** 4393 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4394 * @it: the iterator to advance 4395 * 4396 * Advance @it to the next css_set to walk. 4397 */ 4398 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4399 { 4400 struct css_set *cset; 4401 4402 lockdep_assert_held(&css_set_lock); 4403 4404 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4405 while ((cset = css_task_iter_next_css_set(it))) { 4406 if (!list_empty(&cset->tasks)) { 4407 it->cur_tasks_head = &cset->tasks; 4408 break; 4409 } else if (!list_empty(&cset->mg_tasks)) { 4410 it->cur_tasks_head = &cset->mg_tasks; 4411 break; 4412 } else if (!list_empty(&cset->dying_tasks)) { 4413 it->cur_tasks_head = &cset->dying_tasks; 4414 break; 4415 } 4416 } 4417 if (!cset) { 4418 it->task_pos = NULL; 4419 return; 4420 } 4421 it->task_pos = it->cur_tasks_head->next; 4422 4423 /* 4424 * We don't keep css_sets locked across iteration steps and thus 4425 * need to take steps to ensure that iteration can be resumed after 4426 * the lock is re-acquired. Iteration is performed at two levels - 4427 * css_sets and tasks in them. 4428 * 4429 * Once created, a css_set never leaves its cgroup lists, so a 4430 * pinned css_set is guaranteed to stay put and we can resume 4431 * iteration afterwards. 4432 * 4433 * Tasks may leave @cset across iteration steps. This is resolved 4434 * by registering each iterator with the css_set currently being 4435 * walked and making css_set_move_task() advance iterators whose 4436 * next task is leaving. 4437 */ 4438 if (it->cur_cset) { 4439 list_del(&it->iters_node); 4440 put_css_set_locked(it->cur_cset); 4441 } 4442 get_css_set(cset); 4443 it->cur_cset = cset; 4444 list_add(&it->iters_node, &cset->task_iters); 4445 } 4446 4447 static void css_task_iter_skip(struct css_task_iter *it, 4448 struct task_struct *task) 4449 { 4450 lockdep_assert_held(&css_set_lock); 4451 4452 if (it->task_pos == &task->cg_list) { 4453 it->task_pos = it->task_pos->next; 4454 it->flags |= CSS_TASK_ITER_SKIPPED; 4455 } 4456 } 4457 4458 static void css_task_iter_advance(struct css_task_iter *it) 4459 { 4460 struct task_struct *task; 4461 4462 lockdep_assert_held(&css_set_lock); 4463 repeat: 4464 if (it->task_pos) { 4465 /* 4466 * Advance iterator to find next entry. We go through cset 4467 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4468 * the next cset. 4469 */ 4470 if (it->flags & CSS_TASK_ITER_SKIPPED) 4471 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4472 else 4473 it->task_pos = it->task_pos->next; 4474 4475 if (it->task_pos == &it->cur_cset->tasks) { 4476 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4477 it->task_pos = it->cur_tasks_head->next; 4478 } 4479 if (it->task_pos == &it->cur_cset->mg_tasks) { 4480 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4481 it->task_pos = it->cur_tasks_head->next; 4482 } 4483 if (it->task_pos == &it->cur_cset->dying_tasks) 4484 css_task_iter_advance_css_set(it); 4485 } else { 4486 /* called from start, proceed to the first cset */ 4487 css_task_iter_advance_css_set(it); 4488 } 4489 4490 if (!it->task_pos) 4491 return; 4492 4493 task = list_entry(it->task_pos, struct task_struct, cg_list); 4494 4495 if (it->flags & CSS_TASK_ITER_PROCS) { 4496 /* if PROCS, skip over tasks which aren't group leaders */ 4497 if (!thread_group_leader(task)) 4498 goto repeat; 4499 4500 /* and dying leaders w/o live member threads */ 4501 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4502 !atomic_read(&task->signal->live)) 4503 goto repeat; 4504 } else { 4505 /* skip all dying ones */ 4506 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4507 goto repeat; 4508 } 4509 } 4510 4511 /** 4512 * css_task_iter_start - initiate task iteration 4513 * @css: the css to walk tasks of 4514 * @flags: CSS_TASK_ITER_* flags 4515 * @it: the task iterator to use 4516 * 4517 * Initiate iteration through the tasks of @css. The caller can call 4518 * css_task_iter_next() to walk through the tasks until the function 4519 * returns NULL. On completion of iteration, css_task_iter_end() must be 4520 * called. 4521 */ 4522 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4523 struct css_task_iter *it) 4524 { 4525 memset(it, 0, sizeof(*it)); 4526 4527 spin_lock_irq(&css_set_lock); 4528 4529 it->ss = css->ss; 4530 it->flags = flags; 4531 4532 if (it->ss) 4533 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4534 else 4535 it->cset_pos = &css->cgroup->cset_links; 4536 4537 it->cset_head = it->cset_pos; 4538 4539 css_task_iter_advance(it); 4540 4541 spin_unlock_irq(&css_set_lock); 4542 } 4543 4544 /** 4545 * css_task_iter_next - return the next task for the iterator 4546 * @it: the task iterator being iterated 4547 * 4548 * The "next" function for task iteration. @it should have been 4549 * initialized via css_task_iter_start(). Returns NULL when the iteration 4550 * reaches the end. 4551 */ 4552 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4553 { 4554 if (it->cur_task) { 4555 put_task_struct(it->cur_task); 4556 it->cur_task = NULL; 4557 } 4558 4559 spin_lock_irq(&css_set_lock); 4560 4561 /* @it may be half-advanced by skips, finish advancing */ 4562 if (it->flags & CSS_TASK_ITER_SKIPPED) 4563 css_task_iter_advance(it); 4564 4565 if (it->task_pos) { 4566 it->cur_task = list_entry(it->task_pos, struct task_struct, 4567 cg_list); 4568 get_task_struct(it->cur_task); 4569 css_task_iter_advance(it); 4570 } 4571 4572 spin_unlock_irq(&css_set_lock); 4573 4574 return it->cur_task; 4575 } 4576 4577 /** 4578 * css_task_iter_end - finish task iteration 4579 * @it: the task iterator to finish 4580 * 4581 * Finish task iteration started by css_task_iter_start(). 4582 */ 4583 void css_task_iter_end(struct css_task_iter *it) 4584 { 4585 if (it->cur_cset) { 4586 spin_lock_irq(&css_set_lock); 4587 list_del(&it->iters_node); 4588 put_css_set_locked(it->cur_cset); 4589 spin_unlock_irq(&css_set_lock); 4590 } 4591 4592 if (it->cur_dcset) 4593 put_css_set(it->cur_dcset); 4594 4595 if (it->cur_task) 4596 put_task_struct(it->cur_task); 4597 } 4598 4599 static void cgroup_procs_release(struct kernfs_open_file *of) 4600 { 4601 if (of->priv) { 4602 css_task_iter_end(of->priv); 4603 kfree(of->priv); 4604 } 4605 } 4606 4607 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4608 { 4609 struct kernfs_open_file *of = s->private; 4610 struct css_task_iter *it = of->priv; 4611 4612 if (pos) 4613 (*pos)++; 4614 4615 return css_task_iter_next(it); 4616 } 4617 4618 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4619 unsigned int iter_flags) 4620 { 4621 struct kernfs_open_file *of = s->private; 4622 struct cgroup *cgrp = seq_css(s)->cgroup; 4623 struct css_task_iter *it = of->priv; 4624 4625 /* 4626 * When a seq_file is seeked, it's always traversed sequentially 4627 * from position 0, so we can simply keep iterating on !0 *pos. 4628 */ 4629 if (!it) { 4630 if (WARN_ON_ONCE((*pos))) 4631 return ERR_PTR(-EINVAL); 4632 4633 it = kzalloc(sizeof(*it), GFP_KERNEL); 4634 if (!it) 4635 return ERR_PTR(-ENOMEM); 4636 of->priv = it; 4637 css_task_iter_start(&cgrp->self, iter_flags, it); 4638 } else if (!(*pos)) { 4639 css_task_iter_end(it); 4640 css_task_iter_start(&cgrp->self, iter_flags, it); 4641 } else 4642 return it->cur_task; 4643 4644 return cgroup_procs_next(s, NULL, NULL); 4645 } 4646 4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4648 { 4649 struct cgroup *cgrp = seq_css(s)->cgroup; 4650 4651 /* 4652 * All processes of a threaded subtree belong to the domain cgroup 4653 * of the subtree. Only threads can be distributed across the 4654 * subtree. Reject reads on cgroup.procs in the subtree proper. 4655 * They're always empty anyway. 4656 */ 4657 if (cgroup_is_threaded(cgrp)) 4658 return ERR_PTR(-EOPNOTSUPP); 4659 4660 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4661 CSS_TASK_ITER_THREADED); 4662 } 4663 4664 static int cgroup_procs_show(struct seq_file *s, void *v) 4665 { 4666 seq_printf(s, "%d\n", task_pid_vnr(v)); 4667 return 0; 4668 } 4669 4670 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4671 { 4672 int ret; 4673 struct inode *inode; 4674 4675 lockdep_assert_held(&cgroup_mutex); 4676 4677 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4678 if (!inode) 4679 return -ENOMEM; 4680 4681 ret = inode_permission(inode, MAY_WRITE); 4682 iput(inode); 4683 return ret; 4684 } 4685 4686 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4687 struct cgroup *dst_cgrp, 4688 struct super_block *sb) 4689 { 4690 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4691 struct cgroup *com_cgrp = src_cgrp; 4692 int ret; 4693 4694 lockdep_assert_held(&cgroup_mutex); 4695 4696 /* find the common ancestor */ 4697 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4698 com_cgrp = cgroup_parent(com_cgrp); 4699 4700 /* %current should be authorized to migrate to the common ancestor */ 4701 ret = cgroup_may_write(com_cgrp, sb); 4702 if (ret) 4703 return ret; 4704 4705 /* 4706 * If namespaces are delegation boundaries, %current must be able 4707 * to see both source and destination cgroups from its namespace. 4708 */ 4709 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4710 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4711 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4712 return -ENOENT; 4713 4714 return 0; 4715 } 4716 4717 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4718 struct cgroup *dst_cgrp, 4719 struct super_block *sb, bool threadgroup) 4720 { 4721 int ret = 0; 4722 4723 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4724 if (ret) 4725 return ret; 4726 4727 ret = cgroup_migrate_vet_dst(dst_cgrp); 4728 if (ret) 4729 return ret; 4730 4731 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4732 ret = -EOPNOTSUPP; 4733 4734 return ret; 4735 } 4736 4737 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4738 char *buf, size_t nbytes, loff_t off) 4739 { 4740 struct cgroup *src_cgrp, *dst_cgrp; 4741 struct task_struct *task; 4742 ssize_t ret; 4743 bool locked; 4744 4745 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4746 if (!dst_cgrp) 4747 return -ENODEV; 4748 4749 task = cgroup_procs_write_start(buf, true, &locked); 4750 ret = PTR_ERR_OR_ZERO(task); 4751 if (ret) 4752 goto out_unlock; 4753 4754 /* find the source cgroup */ 4755 spin_lock_irq(&css_set_lock); 4756 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4757 spin_unlock_irq(&css_set_lock); 4758 4759 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4760 of->file->f_path.dentry->d_sb, true); 4761 if (ret) 4762 goto out_finish; 4763 4764 ret = cgroup_attach_task(dst_cgrp, task, true); 4765 4766 out_finish: 4767 cgroup_procs_write_finish(task, locked); 4768 out_unlock: 4769 cgroup_kn_unlock(of->kn); 4770 4771 return ret ?: nbytes; 4772 } 4773 4774 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4775 { 4776 return __cgroup_procs_start(s, pos, 0); 4777 } 4778 4779 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4780 char *buf, size_t nbytes, loff_t off) 4781 { 4782 struct cgroup *src_cgrp, *dst_cgrp; 4783 struct task_struct *task; 4784 ssize_t ret; 4785 bool locked; 4786 4787 buf = strstrip(buf); 4788 4789 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4790 if (!dst_cgrp) 4791 return -ENODEV; 4792 4793 task = cgroup_procs_write_start(buf, false, &locked); 4794 ret = PTR_ERR_OR_ZERO(task); 4795 if (ret) 4796 goto out_unlock; 4797 4798 /* find the source cgroup */ 4799 spin_lock_irq(&css_set_lock); 4800 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4801 spin_unlock_irq(&css_set_lock); 4802 4803 /* thread migrations follow the cgroup.procs delegation rule */ 4804 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4805 of->file->f_path.dentry->d_sb, false); 4806 if (ret) 4807 goto out_finish; 4808 4809 ret = cgroup_attach_task(dst_cgrp, task, false); 4810 4811 out_finish: 4812 cgroup_procs_write_finish(task, locked); 4813 out_unlock: 4814 cgroup_kn_unlock(of->kn); 4815 4816 return ret ?: nbytes; 4817 } 4818 4819 /* cgroup core interface files for the default hierarchy */ 4820 static struct cftype cgroup_base_files[] = { 4821 { 4822 .name = "cgroup.type", 4823 .flags = CFTYPE_NOT_ON_ROOT, 4824 .seq_show = cgroup_type_show, 4825 .write = cgroup_type_write, 4826 }, 4827 { 4828 .name = "cgroup.procs", 4829 .flags = CFTYPE_NS_DELEGATABLE, 4830 .file_offset = offsetof(struct cgroup, procs_file), 4831 .release = cgroup_procs_release, 4832 .seq_start = cgroup_procs_start, 4833 .seq_next = cgroup_procs_next, 4834 .seq_show = cgroup_procs_show, 4835 .write = cgroup_procs_write, 4836 }, 4837 { 4838 .name = "cgroup.threads", 4839 .flags = CFTYPE_NS_DELEGATABLE, 4840 .release = cgroup_procs_release, 4841 .seq_start = cgroup_threads_start, 4842 .seq_next = cgroup_procs_next, 4843 .seq_show = cgroup_procs_show, 4844 .write = cgroup_threads_write, 4845 }, 4846 { 4847 .name = "cgroup.controllers", 4848 .seq_show = cgroup_controllers_show, 4849 }, 4850 { 4851 .name = "cgroup.subtree_control", 4852 .flags = CFTYPE_NS_DELEGATABLE, 4853 .seq_show = cgroup_subtree_control_show, 4854 .write = cgroup_subtree_control_write, 4855 }, 4856 { 4857 .name = "cgroup.events", 4858 .flags = CFTYPE_NOT_ON_ROOT, 4859 .file_offset = offsetof(struct cgroup, events_file), 4860 .seq_show = cgroup_events_show, 4861 }, 4862 { 4863 .name = "cgroup.max.descendants", 4864 .seq_show = cgroup_max_descendants_show, 4865 .write = cgroup_max_descendants_write, 4866 }, 4867 { 4868 .name = "cgroup.max.depth", 4869 .seq_show = cgroup_max_depth_show, 4870 .write = cgroup_max_depth_write, 4871 }, 4872 { 4873 .name = "cgroup.stat", 4874 .seq_show = cgroup_stat_show, 4875 }, 4876 { 4877 .name = "cgroup.freeze", 4878 .flags = CFTYPE_NOT_ON_ROOT, 4879 .seq_show = cgroup_freeze_show, 4880 .write = cgroup_freeze_write, 4881 }, 4882 { 4883 .name = "cpu.stat", 4884 .flags = CFTYPE_NOT_ON_ROOT, 4885 .seq_show = cpu_stat_show, 4886 }, 4887 #ifdef CONFIG_PSI 4888 { 4889 .name = "io.pressure", 4890 .seq_show = cgroup_io_pressure_show, 4891 .write = cgroup_io_pressure_write, 4892 .poll = cgroup_pressure_poll, 4893 .release = cgroup_pressure_release, 4894 }, 4895 { 4896 .name = "memory.pressure", 4897 .seq_show = cgroup_memory_pressure_show, 4898 .write = cgroup_memory_pressure_write, 4899 .poll = cgroup_pressure_poll, 4900 .release = cgroup_pressure_release, 4901 }, 4902 { 4903 .name = "cpu.pressure", 4904 .seq_show = cgroup_cpu_pressure_show, 4905 .write = cgroup_cpu_pressure_write, 4906 .poll = cgroup_pressure_poll, 4907 .release = cgroup_pressure_release, 4908 }, 4909 #endif /* CONFIG_PSI */ 4910 { } /* terminate */ 4911 }; 4912 4913 /* 4914 * css destruction is four-stage process. 4915 * 4916 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4917 * Implemented in kill_css(). 4918 * 4919 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4920 * and thus css_tryget_online() is guaranteed to fail, the css can be 4921 * offlined by invoking offline_css(). After offlining, the base ref is 4922 * put. Implemented in css_killed_work_fn(). 4923 * 4924 * 3. When the percpu_ref reaches zero, the only possible remaining 4925 * accessors are inside RCU read sections. css_release() schedules the 4926 * RCU callback. 4927 * 4928 * 4. After the grace period, the css can be freed. Implemented in 4929 * css_free_work_fn(). 4930 * 4931 * It is actually hairier because both step 2 and 4 require process context 4932 * and thus involve punting to css->destroy_work adding two additional 4933 * steps to the already complex sequence. 4934 */ 4935 static void css_free_rwork_fn(struct work_struct *work) 4936 { 4937 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4938 struct cgroup_subsys_state, destroy_rwork); 4939 struct cgroup_subsys *ss = css->ss; 4940 struct cgroup *cgrp = css->cgroup; 4941 4942 percpu_ref_exit(&css->refcnt); 4943 4944 if (ss) { 4945 /* css free path */ 4946 struct cgroup_subsys_state *parent = css->parent; 4947 int id = css->id; 4948 4949 ss->css_free(css); 4950 cgroup_idr_remove(&ss->css_idr, id); 4951 cgroup_put(cgrp); 4952 4953 if (parent) 4954 css_put(parent); 4955 } else { 4956 /* cgroup free path */ 4957 atomic_dec(&cgrp->root->nr_cgrps); 4958 cgroup1_pidlist_destroy_all(cgrp); 4959 cancel_work_sync(&cgrp->release_agent_work); 4960 4961 if (cgroup_parent(cgrp)) { 4962 /* 4963 * We get a ref to the parent, and put the ref when 4964 * this cgroup is being freed, so it's guaranteed 4965 * that the parent won't be destroyed before its 4966 * children. 4967 */ 4968 cgroup_put(cgroup_parent(cgrp)); 4969 kernfs_put(cgrp->kn); 4970 psi_cgroup_free(cgrp); 4971 if (cgroup_on_dfl(cgrp)) 4972 cgroup_rstat_exit(cgrp); 4973 kfree(cgrp); 4974 } else { 4975 /* 4976 * This is root cgroup's refcnt reaching zero, 4977 * which indicates that the root should be 4978 * released. 4979 */ 4980 cgroup_destroy_root(cgrp->root); 4981 } 4982 } 4983 } 4984 4985 static void css_release_work_fn(struct work_struct *work) 4986 { 4987 struct cgroup_subsys_state *css = 4988 container_of(work, struct cgroup_subsys_state, destroy_work); 4989 struct cgroup_subsys *ss = css->ss; 4990 struct cgroup *cgrp = css->cgroup; 4991 4992 mutex_lock(&cgroup_mutex); 4993 4994 css->flags |= CSS_RELEASED; 4995 list_del_rcu(&css->sibling); 4996 4997 if (ss) { 4998 /* css release path */ 4999 if (!list_empty(&css->rstat_css_node)) { 5000 cgroup_rstat_flush(cgrp); 5001 list_del_rcu(&css->rstat_css_node); 5002 } 5003 5004 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5005 if (ss->css_released) 5006 ss->css_released(css); 5007 } else { 5008 struct cgroup *tcgrp; 5009 5010 /* cgroup release path */ 5011 TRACE_CGROUP_PATH(release, cgrp); 5012 5013 if (cgroup_on_dfl(cgrp)) 5014 cgroup_rstat_flush(cgrp); 5015 5016 spin_lock_irq(&css_set_lock); 5017 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5018 tcgrp = cgroup_parent(tcgrp)) 5019 tcgrp->nr_dying_descendants--; 5020 spin_unlock_irq(&css_set_lock); 5021 5022 /* 5023 * There are two control paths which try to determine 5024 * cgroup from dentry without going through kernfs - 5025 * cgroupstats_build() and css_tryget_online_from_dir(). 5026 * Those are supported by RCU protecting clearing of 5027 * cgrp->kn->priv backpointer. 5028 */ 5029 if (cgrp->kn) 5030 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5031 NULL); 5032 } 5033 5034 mutex_unlock(&cgroup_mutex); 5035 5036 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5037 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5038 } 5039 5040 static void css_release(struct percpu_ref *ref) 5041 { 5042 struct cgroup_subsys_state *css = 5043 container_of(ref, struct cgroup_subsys_state, refcnt); 5044 5045 INIT_WORK(&css->destroy_work, css_release_work_fn); 5046 queue_work(cgroup_destroy_wq, &css->destroy_work); 5047 } 5048 5049 static void init_and_link_css(struct cgroup_subsys_state *css, 5050 struct cgroup_subsys *ss, struct cgroup *cgrp) 5051 { 5052 lockdep_assert_held(&cgroup_mutex); 5053 5054 cgroup_get_live(cgrp); 5055 5056 memset(css, 0, sizeof(*css)); 5057 css->cgroup = cgrp; 5058 css->ss = ss; 5059 css->id = -1; 5060 INIT_LIST_HEAD(&css->sibling); 5061 INIT_LIST_HEAD(&css->children); 5062 INIT_LIST_HEAD(&css->rstat_css_node); 5063 css->serial_nr = css_serial_nr_next++; 5064 atomic_set(&css->online_cnt, 0); 5065 5066 if (cgroup_parent(cgrp)) { 5067 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5068 css_get(css->parent); 5069 } 5070 5071 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5072 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5073 5074 BUG_ON(cgroup_css(cgrp, ss)); 5075 } 5076 5077 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5078 static int online_css(struct cgroup_subsys_state *css) 5079 { 5080 struct cgroup_subsys *ss = css->ss; 5081 int ret = 0; 5082 5083 lockdep_assert_held(&cgroup_mutex); 5084 5085 if (ss->css_online) 5086 ret = ss->css_online(css); 5087 if (!ret) { 5088 css->flags |= CSS_ONLINE; 5089 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5090 5091 atomic_inc(&css->online_cnt); 5092 if (css->parent) 5093 atomic_inc(&css->parent->online_cnt); 5094 } 5095 return ret; 5096 } 5097 5098 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5099 static void offline_css(struct cgroup_subsys_state *css) 5100 { 5101 struct cgroup_subsys *ss = css->ss; 5102 5103 lockdep_assert_held(&cgroup_mutex); 5104 5105 if (!(css->flags & CSS_ONLINE)) 5106 return; 5107 5108 if (ss->css_offline) 5109 ss->css_offline(css); 5110 5111 css->flags &= ~CSS_ONLINE; 5112 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5113 5114 wake_up_all(&css->cgroup->offline_waitq); 5115 } 5116 5117 /** 5118 * css_create - create a cgroup_subsys_state 5119 * @cgrp: the cgroup new css will be associated with 5120 * @ss: the subsys of new css 5121 * 5122 * Create a new css associated with @cgrp - @ss pair. On success, the new 5123 * css is online and installed in @cgrp. This function doesn't create the 5124 * interface files. Returns 0 on success, -errno on failure. 5125 */ 5126 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5127 struct cgroup_subsys *ss) 5128 { 5129 struct cgroup *parent = cgroup_parent(cgrp); 5130 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5131 struct cgroup_subsys_state *css; 5132 int err; 5133 5134 lockdep_assert_held(&cgroup_mutex); 5135 5136 css = ss->css_alloc(parent_css); 5137 if (!css) 5138 css = ERR_PTR(-ENOMEM); 5139 if (IS_ERR(css)) 5140 return css; 5141 5142 init_and_link_css(css, ss, cgrp); 5143 5144 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5145 if (err) 5146 goto err_free_css; 5147 5148 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5149 if (err < 0) 5150 goto err_free_css; 5151 css->id = err; 5152 5153 /* @css is ready to be brought online now, make it visible */ 5154 list_add_tail_rcu(&css->sibling, &parent_css->children); 5155 cgroup_idr_replace(&ss->css_idr, css, css->id); 5156 5157 err = online_css(css); 5158 if (err) 5159 goto err_list_del; 5160 5161 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5162 cgroup_parent(parent)) { 5163 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5164 current->comm, current->pid, ss->name); 5165 if (!strcmp(ss->name, "memory")) 5166 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5167 ss->warned_broken_hierarchy = true; 5168 } 5169 5170 return css; 5171 5172 err_list_del: 5173 list_del_rcu(&css->sibling); 5174 err_free_css: 5175 list_del_rcu(&css->rstat_css_node); 5176 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5177 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5178 return ERR_PTR(err); 5179 } 5180 5181 /* 5182 * The returned cgroup is fully initialized including its control mask, but 5183 * it isn't associated with its kernfs_node and doesn't have the control 5184 * mask applied. 5185 */ 5186 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5187 umode_t mode) 5188 { 5189 struct cgroup_root *root = parent->root; 5190 struct cgroup *cgrp, *tcgrp; 5191 struct kernfs_node *kn; 5192 int level = parent->level + 1; 5193 int ret; 5194 5195 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5196 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5197 GFP_KERNEL); 5198 if (!cgrp) 5199 return ERR_PTR(-ENOMEM); 5200 5201 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5202 if (ret) 5203 goto out_free_cgrp; 5204 5205 if (cgroup_on_dfl(parent)) { 5206 ret = cgroup_rstat_init(cgrp); 5207 if (ret) 5208 goto out_cancel_ref; 5209 } 5210 5211 /* create the directory */ 5212 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5213 if (IS_ERR(kn)) { 5214 ret = PTR_ERR(kn); 5215 goto out_stat_exit; 5216 } 5217 cgrp->kn = kn; 5218 5219 init_cgroup_housekeeping(cgrp); 5220 5221 cgrp->self.parent = &parent->self; 5222 cgrp->root = root; 5223 cgrp->level = level; 5224 5225 ret = psi_cgroup_alloc(cgrp); 5226 if (ret) 5227 goto out_kernfs_remove; 5228 5229 ret = cgroup_bpf_inherit(cgrp); 5230 if (ret) 5231 goto out_psi_free; 5232 5233 /* 5234 * New cgroup inherits effective freeze counter, and 5235 * if the parent has to be frozen, the child has too. 5236 */ 5237 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5238 if (cgrp->freezer.e_freeze) { 5239 /* 5240 * Set the CGRP_FREEZE flag, so when a process will be 5241 * attached to the child cgroup, it will become frozen. 5242 * At this point the new cgroup is unpopulated, so we can 5243 * consider it frozen immediately. 5244 */ 5245 set_bit(CGRP_FREEZE, &cgrp->flags); 5246 set_bit(CGRP_FROZEN, &cgrp->flags); 5247 } 5248 5249 spin_lock_irq(&css_set_lock); 5250 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5251 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5252 5253 if (tcgrp != cgrp) { 5254 tcgrp->nr_descendants++; 5255 5256 /* 5257 * If the new cgroup is frozen, all ancestor cgroups 5258 * get a new frozen descendant, but their state can't 5259 * change because of this. 5260 */ 5261 if (cgrp->freezer.e_freeze) 5262 tcgrp->freezer.nr_frozen_descendants++; 5263 } 5264 } 5265 spin_unlock_irq(&css_set_lock); 5266 5267 if (notify_on_release(parent)) 5268 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5269 5270 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5271 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5272 5273 cgrp->self.serial_nr = css_serial_nr_next++; 5274 5275 /* allocation complete, commit to creation */ 5276 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5277 atomic_inc(&root->nr_cgrps); 5278 cgroup_get_live(parent); 5279 5280 /* 5281 * On the default hierarchy, a child doesn't automatically inherit 5282 * subtree_control from the parent. Each is configured manually. 5283 */ 5284 if (!cgroup_on_dfl(cgrp)) 5285 cgrp->subtree_control = cgroup_control(cgrp); 5286 5287 cgroup_propagate_control(cgrp); 5288 5289 return cgrp; 5290 5291 out_psi_free: 5292 psi_cgroup_free(cgrp); 5293 out_kernfs_remove: 5294 kernfs_remove(cgrp->kn); 5295 out_stat_exit: 5296 if (cgroup_on_dfl(parent)) 5297 cgroup_rstat_exit(cgrp); 5298 out_cancel_ref: 5299 percpu_ref_exit(&cgrp->self.refcnt); 5300 out_free_cgrp: 5301 kfree(cgrp); 5302 return ERR_PTR(ret); 5303 } 5304 5305 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5306 { 5307 struct cgroup *cgroup; 5308 int ret = false; 5309 int level = 1; 5310 5311 lockdep_assert_held(&cgroup_mutex); 5312 5313 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5314 if (cgroup->nr_descendants >= cgroup->max_descendants) 5315 goto fail; 5316 5317 if (level > cgroup->max_depth) 5318 goto fail; 5319 5320 level++; 5321 } 5322 5323 ret = true; 5324 fail: 5325 return ret; 5326 } 5327 5328 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5329 { 5330 struct cgroup *parent, *cgrp; 5331 int ret; 5332 5333 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5334 if (strchr(name, '\n')) 5335 return -EINVAL; 5336 5337 parent = cgroup_kn_lock_live(parent_kn, false); 5338 if (!parent) 5339 return -ENODEV; 5340 5341 if (!cgroup_check_hierarchy_limits(parent)) { 5342 ret = -EAGAIN; 5343 goto out_unlock; 5344 } 5345 5346 cgrp = cgroup_create(parent, name, mode); 5347 if (IS_ERR(cgrp)) { 5348 ret = PTR_ERR(cgrp); 5349 goto out_unlock; 5350 } 5351 5352 /* 5353 * This extra ref will be put in cgroup_free_fn() and guarantees 5354 * that @cgrp->kn is always accessible. 5355 */ 5356 kernfs_get(cgrp->kn); 5357 5358 ret = cgroup_kn_set_ugid(cgrp->kn); 5359 if (ret) 5360 goto out_destroy; 5361 5362 ret = css_populate_dir(&cgrp->self); 5363 if (ret) 5364 goto out_destroy; 5365 5366 ret = cgroup_apply_control_enable(cgrp); 5367 if (ret) 5368 goto out_destroy; 5369 5370 TRACE_CGROUP_PATH(mkdir, cgrp); 5371 5372 /* let's create and online css's */ 5373 kernfs_activate(cgrp->kn); 5374 5375 ret = 0; 5376 goto out_unlock; 5377 5378 out_destroy: 5379 cgroup_destroy_locked(cgrp); 5380 out_unlock: 5381 cgroup_kn_unlock(parent_kn); 5382 return ret; 5383 } 5384 5385 /* 5386 * This is called when the refcnt of a css is confirmed to be killed. 5387 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5388 * initate destruction and put the css ref from kill_css(). 5389 */ 5390 static void css_killed_work_fn(struct work_struct *work) 5391 { 5392 struct cgroup_subsys_state *css = 5393 container_of(work, struct cgroup_subsys_state, destroy_work); 5394 5395 mutex_lock(&cgroup_mutex); 5396 5397 do { 5398 offline_css(css); 5399 css_put(css); 5400 /* @css can't go away while we're holding cgroup_mutex */ 5401 css = css->parent; 5402 } while (css && atomic_dec_and_test(&css->online_cnt)); 5403 5404 mutex_unlock(&cgroup_mutex); 5405 } 5406 5407 /* css kill confirmation processing requires process context, bounce */ 5408 static void css_killed_ref_fn(struct percpu_ref *ref) 5409 { 5410 struct cgroup_subsys_state *css = 5411 container_of(ref, struct cgroup_subsys_state, refcnt); 5412 5413 if (atomic_dec_and_test(&css->online_cnt)) { 5414 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5415 queue_work(cgroup_destroy_wq, &css->destroy_work); 5416 } 5417 } 5418 5419 /** 5420 * kill_css - destroy a css 5421 * @css: css to destroy 5422 * 5423 * This function initiates destruction of @css by removing cgroup interface 5424 * files and putting its base reference. ->css_offline() will be invoked 5425 * asynchronously once css_tryget_online() is guaranteed to fail and when 5426 * the reference count reaches zero, @css will be released. 5427 */ 5428 static void kill_css(struct cgroup_subsys_state *css) 5429 { 5430 lockdep_assert_held(&cgroup_mutex); 5431 5432 if (css->flags & CSS_DYING) 5433 return; 5434 5435 css->flags |= CSS_DYING; 5436 5437 /* 5438 * This must happen before css is disassociated with its cgroup. 5439 * See seq_css() for details. 5440 */ 5441 css_clear_dir(css); 5442 5443 /* 5444 * Killing would put the base ref, but we need to keep it alive 5445 * until after ->css_offline(). 5446 */ 5447 css_get(css); 5448 5449 /* 5450 * cgroup core guarantees that, by the time ->css_offline() is 5451 * invoked, no new css reference will be given out via 5452 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5453 * proceed to offlining css's because percpu_ref_kill() doesn't 5454 * guarantee that the ref is seen as killed on all CPUs on return. 5455 * 5456 * Use percpu_ref_kill_and_confirm() to get notifications as each 5457 * css is confirmed to be seen as killed on all CPUs. 5458 */ 5459 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5460 } 5461 5462 /** 5463 * cgroup_destroy_locked - the first stage of cgroup destruction 5464 * @cgrp: cgroup to be destroyed 5465 * 5466 * css's make use of percpu refcnts whose killing latency shouldn't be 5467 * exposed to userland and are RCU protected. Also, cgroup core needs to 5468 * guarantee that css_tryget_online() won't succeed by the time 5469 * ->css_offline() is invoked. To satisfy all the requirements, 5470 * destruction is implemented in the following two steps. 5471 * 5472 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5473 * userland visible parts and start killing the percpu refcnts of 5474 * css's. Set up so that the next stage will be kicked off once all 5475 * the percpu refcnts are confirmed to be killed. 5476 * 5477 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5478 * rest of destruction. Once all cgroup references are gone, the 5479 * cgroup is RCU-freed. 5480 * 5481 * This function implements s1. After this step, @cgrp is gone as far as 5482 * the userland is concerned and a new cgroup with the same name may be 5483 * created. As cgroup doesn't care about the names internally, this 5484 * doesn't cause any problem. 5485 */ 5486 static int cgroup_destroy_locked(struct cgroup *cgrp) 5487 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5488 { 5489 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5490 struct cgroup_subsys_state *css; 5491 struct cgrp_cset_link *link; 5492 int ssid; 5493 5494 lockdep_assert_held(&cgroup_mutex); 5495 5496 /* 5497 * Only migration can raise populated from zero and we're already 5498 * holding cgroup_mutex. 5499 */ 5500 if (cgroup_is_populated(cgrp)) 5501 return -EBUSY; 5502 5503 /* 5504 * Make sure there's no live children. We can't test emptiness of 5505 * ->self.children as dead children linger on it while being 5506 * drained; otherwise, "rmdir parent/child parent" may fail. 5507 */ 5508 if (css_has_online_children(&cgrp->self)) 5509 return -EBUSY; 5510 5511 /* 5512 * Mark @cgrp and the associated csets dead. The former prevents 5513 * further task migration and child creation by disabling 5514 * cgroup_lock_live_group(). The latter makes the csets ignored by 5515 * the migration path. 5516 */ 5517 cgrp->self.flags &= ~CSS_ONLINE; 5518 5519 spin_lock_irq(&css_set_lock); 5520 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5521 link->cset->dead = true; 5522 spin_unlock_irq(&css_set_lock); 5523 5524 /* initiate massacre of all css's */ 5525 for_each_css(css, ssid, cgrp) 5526 kill_css(css); 5527 5528 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5529 css_clear_dir(&cgrp->self); 5530 kernfs_remove(cgrp->kn); 5531 5532 if (parent && cgroup_is_threaded(cgrp)) 5533 parent->nr_threaded_children--; 5534 5535 spin_lock_irq(&css_set_lock); 5536 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5537 tcgrp->nr_descendants--; 5538 tcgrp->nr_dying_descendants++; 5539 /* 5540 * If the dying cgroup is frozen, decrease frozen descendants 5541 * counters of ancestor cgroups. 5542 */ 5543 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5544 tcgrp->freezer.nr_frozen_descendants--; 5545 } 5546 spin_unlock_irq(&css_set_lock); 5547 5548 cgroup1_check_for_release(parent); 5549 5550 cgroup_bpf_offline(cgrp); 5551 5552 /* put the base reference */ 5553 percpu_ref_kill(&cgrp->self.refcnt); 5554 5555 return 0; 5556 }; 5557 5558 int cgroup_rmdir(struct kernfs_node *kn) 5559 { 5560 struct cgroup *cgrp; 5561 int ret = 0; 5562 5563 cgrp = cgroup_kn_lock_live(kn, false); 5564 if (!cgrp) 5565 return 0; 5566 5567 ret = cgroup_destroy_locked(cgrp); 5568 if (!ret) 5569 TRACE_CGROUP_PATH(rmdir, cgrp); 5570 5571 cgroup_kn_unlock(kn); 5572 return ret; 5573 } 5574 5575 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5576 .show_options = cgroup_show_options, 5577 .mkdir = cgroup_mkdir, 5578 .rmdir = cgroup_rmdir, 5579 .show_path = cgroup_show_path, 5580 }; 5581 5582 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5583 { 5584 struct cgroup_subsys_state *css; 5585 5586 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5587 5588 mutex_lock(&cgroup_mutex); 5589 5590 idr_init(&ss->css_idr); 5591 INIT_LIST_HEAD(&ss->cfts); 5592 5593 /* Create the root cgroup state for this subsystem */ 5594 ss->root = &cgrp_dfl_root; 5595 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5596 /* We don't handle early failures gracefully */ 5597 BUG_ON(IS_ERR(css)); 5598 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5599 5600 /* 5601 * Root csses are never destroyed and we can't initialize 5602 * percpu_ref during early init. Disable refcnting. 5603 */ 5604 css->flags |= CSS_NO_REF; 5605 5606 if (early) { 5607 /* allocation can't be done safely during early init */ 5608 css->id = 1; 5609 } else { 5610 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5611 BUG_ON(css->id < 0); 5612 } 5613 5614 /* Update the init_css_set to contain a subsys 5615 * pointer to this state - since the subsystem is 5616 * newly registered, all tasks and hence the 5617 * init_css_set is in the subsystem's root cgroup. */ 5618 init_css_set.subsys[ss->id] = css; 5619 5620 have_fork_callback |= (bool)ss->fork << ss->id; 5621 have_exit_callback |= (bool)ss->exit << ss->id; 5622 have_release_callback |= (bool)ss->release << ss->id; 5623 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5624 5625 /* At system boot, before all subsystems have been 5626 * registered, no tasks have been forked, so we don't 5627 * need to invoke fork callbacks here. */ 5628 BUG_ON(!list_empty(&init_task.tasks)); 5629 5630 BUG_ON(online_css(css)); 5631 5632 mutex_unlock(&cgroup_mutex); 5633 } 5634 5635 /** 5636 * cgroup_init_early - cgroup initialization at system boot 5637 * 5638 * Initialize cgroups at system boot, and initialize any 5639 * subsystems that request early init. 5640 */ 5641 int __init cgroup_init_early(void) 5642 { 5643 static struct cgroup_fs_context __initdata ctx; 5644 struct cgroup_subsys *ss; 5645 int i; 5646 5647 ctx.root = &cgrp_dfl_root; 5648 init_cgroup_root(&ctx); 5649 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5650 5651 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5652 5653 for_each_subsys(ss, i) { 5654 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5655 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5656 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5657 ss->id, ss->name); 5658 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5659 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5660 5661 ss->id = i; 5662 ss->name = cgroup_subsys_name[i]; 5663 if (!ss->legacy_name) 5664 ss->legacy_name = cgroup_subsys_name[i]; 5665 5666 if (ss->early_init) 5667 cgroup_init_subsys(ss, true); 5668 } 5669 return 0; 5670 } 5671 5672 static u16 cgroup_disable_mask __initdata; 5673 5674 /** 5675 * cgroup_init - cgroup initialization 5676 * 5677 * Register cgroup filesystem and /proc file, and initialize 5678 * any subsystems that didn't request early init. 5679 */ 5680 int __init cgroup_init(void) 5681 { 5682 struct cgroup_subsys *ss; 5683 int ssid; 5684 5685 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5686 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5687 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5688 5689 cgroup_rstat_boot(); 5690 5691 /* 5692 * The latency of the synchronize_rcu() is too high for cgroups, 5693 * avoid it at the cost of forcing all readers into the slow path. 5694 */ 5695 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5696 5697 get_user_ns(init_cgroup_ns.user_ns); 5698 5699 mutex_lock(&cgroup_mutex); 5700 5701 /* 5702 * Add init_css_set to the hash table so that dfl_root can link to 5703 * it during init. 5704 */ 5705 hash_add(css_set_table, &init_css_set.hlist, 5706 css_set_hash(init_css_set.subsys)); 5707 5708 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5709 5710 mutex_unlock(&cgroup_mutex); 5711 5712 for_each_subsys(ss, ssid) { 5713 if (ss->early_init) { 5714 struct cgroup_subsys_state *css = 5715 init_css_set.subsys[ss->id]; 5716 5717 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5718 GFP_KERNEL); 5719 BUG_ON(css->id < 0); 5720 } else { 5721 cgroup_init_subsys(ss, false); 5722 } 5723 5724 list_add_tail(&init_css_set.e_cset_node[ssid], 5725 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5726 5727 /* 5728 * Setting dfl_root subsys_mask needs to consider the 5729 * disabled flag and cftype registration needs kmalloc, 5730 * both of which aren't available during early_init. 5731 */ 5732 if (cgroup_disable_mask & (1 << ssid)) { 5733 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5734 printk(KERN_INFO "Disabling %s control group subsystem\n", 5735 ss->name); 5736 continue; 5737 } 5738 5739 if (cgroup1_ssid_disabled(ssid)) 5740 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5741 ss->name); 5742 5743 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5744 5745 /* implicit controllers must be threaded too */ 5746 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5747 5748 if (ss->implicit_on_dfl) 5749 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5750 else if (!ss->dfl_cftypes) 5751 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5752 5753 if (ss->threaded) 5754 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5755 5756 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5757 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5758 } else { 5759 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5760 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5761 } 5762 5763 if (ss->bind) 5764 ss->bind(init_css_set.subsys[ssid]); 5765 5766 mutex_lock(&cgroup_mutex); 5767 css_populate_dir(init_css_set.subsys[ssid]); 5768 mutex_unlock(&cgroup_mutex); 5769 } 5770 5771 /* init_css_set.subsys[] has been updated, re-hash */ 5772 hash_del(&init_css_set.hlist); 5773 hash_add(css_set_table, &init_css_set.hlist, 5774 css_set_hash(init_css_set.subsys)); 5775 5776 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5777 WARN_ON(register_filesystem(&cgroup_fs_type)); 5778 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5779 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5780 #ifdef CONFIG_CPUSETS 5781 WARN_ON(register_filesystem(&cpuset_fs_type)); 5782 #endif 5783 5784 return 0; 5785 } 5786 5787 static int __init cgroup_wq_init(void) 5788 { 5789 /* 5790 * There isn't much point in executing destruction path in 5791 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5792 * Use 1 for @max_active. 5793 * 5794 * We would prefer to do this in cgroup_init() above, but that 5795 * is called before init_workqueues(): so leave this until after. 5796 */ 5797 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5798 BUG_ON(!cgroup_destroy_wq); 5799 return 0; 5800 } 5801 core_initcall(cgroup_wq_init); 5802 5803 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5804 { 5805 struct kernfs_node *kn; 5806 5807 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5808 if (!kn) 5809 return; 5810 kernfs_path(kn, buf, buflen); 5811 kernfs_put(kn); 5812 } 5813 5814 /* 5815 * proc_cgroup_show() 5816 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5817 * - Used for /proc/<pid>/cgroup. 5818 */ 5819 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5820 struct pid *pid, struct task_struct *tsk) 5821 { 5822 char *buf; 5823 int retval; 5824 struct cgroup_root *root; 5825 5826 retval = -ENOMEM; 5827 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5828 if (!buf) 5829 goto out; 5830 5831 mutex_lock(&cgroup_mutex); 5832 spin_lock_irq(&css_set_lock); 5833 5834 for_each_root(root) { 5835 struct cgroup_subsys *ss; 5836 struct cgroup *cgrp; 5837 int ssid, count = 0; 5838 5839 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5840 continue; 5841 5842 seq_printf(m, "%d:", root->hierarchy_id); 5843 if (root != &cgrp_dfl_root) 5844 for_each_subsys(ss, ssid) 5845 if (root->subsys_mask & (1 << ssid)) 5846 seq_printf(m, "%s%s", count++ ? "," : "", 5847 ss->legacy_name); 5848 if (strlen(root->name)) 5849 seq_printf(m, "%sname=%s", count ? "," : "", 5850 root->name); 5851 seq_putc(m, ':'); 5852 5853 cgrp = task_cgroup_from_root(tsk, root); 5854 5855 /* 5856 * On traditional hierarchies, all zombie tasks show up as 5857 * belonging to the root cgroup. On the default hierarchy, 5858 * while a zombie doesn't show up in "cgroup.procs" and 5859 * thus can't be migrated, its /proc/PID/cgroup keeps 5860 * reporting the cgroup it belonged to before exiting. If 5861 * the cgroup is removed before the zombie is reaped, 5862 * " (deleted)" is appended to the cgroup path. 5863 */ 5864 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5865 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5866 current->nsproxy->cgroup_ns); 5867 if (retval >= PATH_MAX) 5868 retval = -ENAMETOOLONG; 5869 if (retval < 0) 5870 goto out_unlock; 5871 5872 seq_puts(m, buf); 5873 } else { 5874 seq_puts(m, "/"); 5875 } 5876 5877 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5878 seq_puts(m, " (deleted)\n"); 5879 else 5880 seq_putc(m, '\n'); 5881 } 5882 5883 retval = 0; 5884 out_unlock: 5885 spin_unlock_irq(&css_set_lock); 5886 mutex_unlock(&cgroup_mutex); 5887 kfree(buf); 5888 out: 5889 return retval; 5890 } 5891 5892 /** 5893 * cgroup_fork - initialize cgroup related fields during copy_process() 5894 * @child: pointer to task_struct of forking parent process. 5895 * 5896 * A task is associated with the init_css_set until cgroup_post_fork() 5897 * attaches it to the target css_set. 5898 */ 5899 void cgroup_fork(struct task_struct *child) 5900 { 5901 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5902 INIT_LIST_HEAD(&child->cg_list); 5903 } 5904 5905 static struct cgroup *cgroup_get_from_file(struct file *f) 5906 { 5907 struct cgroup_subsys_state *css; 5908 struct cgroup *cgrp; 5909 5910 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5911 if (IS_ERR(css)) 5912 return ERR_CAST(css); 5913 5914 cgrp = css->cgroup; 5915 if (!cgroup_on_dfl(cgrp)) { 5916 cgroup_put(cgrp); 5917 return ERR_PTR(-EBADF); 5918 } 5919 5920 return cgrp; 5921 } 5922 5923 /** 5924 * cgroup_css_set_fork - find or create a css_set for a child process 5925 * @kargs: the arguments passed to create the child process 5926 * 5927 * This functions finds or creates a new css_set which the child 5928 * process will be attached to in cgroup_post_fork(). By default, 5929 * the child process will be given the same css_set as its parent. 5930 * 5931 * If CLONE_INTO_CGROUP is specified this function will try to find an 5932 * existing css_set which includes the requested cgroup and if not create 5933 * a new css_set that the child will be attached to later. If this function 5934 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 5935 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 5936 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 5937 * to the target cgroup. 5938 */ 5939 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 5940 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 5941 { 5942 int ret; 5943 struct cgroup *dst_cgrp = NULL; 5944 struct css_set *cset; 5945 struct super_block *sb; 5946 struct file *f; 5947 5948 if (kargs->flags & CLONE_INTO_CGROUP) 5949 mutex_lock(&cgroup_mutex); 5950 5951 cgroup_threadgroup_change_begin(current); 5952 5953 spin_lock_irq(&css_set_lock); 5954 cset = task_css_set(current); 5955 get_css_set(cset); 5956 spin_unlock_irq(&css_set_lock); 5957 5958 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 5959 kargs->cset = cset; 5960 return 0; 5961 } 5962 5963 f = fget_raw(kargs->cgroup); 5964 if (!f) { 5965 ret = -EBADF; 5966 goto err; 5967 } 5968 sb = f->f_path.dentry->d_sb; 5969 5970 dst_cgrp = cgroup_get_from_file(f); 5971 if (IS_ERR(dst_cgrp)) { 5972 ret = PTR_ERR(dst_cgrp); 5973 dst_cgrp = NULL; 5974 goto err; 5975 } 5976 5977 if (cgroup_is_dead(dst_cgrp)) { 5978 ret = -ENODEV; 5979 goto err; 5980 } 5981 5982 /* 5983 * Verify that we the target cgroup is writable for us. This is 5984 * usually done by the vfs layer but since we're not going through 5985 * the vfs layer here we need to do it "manually". 5986 */ 5987 ret = cgroup_may_write(dst_cgrp, sb); 5988 if (ret) 5989 goto err; 5990 5991 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 5992 !(kargs->flags & CLONE_THREAD)); 5993 if (ret) 5994 goto err; 5995 5996 kargs->cset = find_css_set(cset, dst_cgrp); 5997 if (!kargs->cset) { 5998 ret = -ENOMEM; 5999 goto err; 6000 } 6001 6002 put_css_set(cset); 6003 fput(f); 6004 kargs->cgrp = dst_cgrp; 6005 return ret; 6006 6007 err: 6008 cgroup_threadgroup_change_end(current); 6009 mutex_unlock(&cgroup_mutex); 6010 if (f) 6011 fput(f); 6012 if (dst_cgrp) 6013 cgroup_put(dst_cgrp); 6014 put_css_set(cset); 6015 if (kargs->cset) 6016 put_css_set(kargs->cset); 6017 return ret; 6018 } 6019 6020 /** 6021 * cgroup_css_set_put_fork - drop references we took during fork 6022 * @kargs: the arguments passed to create the child process 6023 * 6024 * Drop references to the prepared css_set and target cgroup if 6025 * CLONE_INTO_CGROUP was requested. 6026 */ 6027 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6028 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6029 { 6030 cgroup_threadgroup_change_end(current); 6031 6032 if (kargs->flags & CLONE_INTO_CGROUP) { 6033 struct cgroup *cgrp = kargs->cgrp; 6034 struct css_set *cset = kargs->cset; 6035 6036 mutex_unlock(&cgroup_mutex); 6037 6038 if (cset) { 6039 put_css_set(cset); 6040 kargs->cset = NULL; 6041 } 6042 6043 if (cgrp) { 6044 cgroup_put(cgrp); 6045 kargs->cgrp = NULL; 6046 } 6047 } 6048 } 6049 6050 /** 6051 * cgroup_can_fork - called on a new task before the process is exposed 6052 * @child: the child process 6053 * 6054 * This prepares a new css_set for the child process which the child will 6055 * be attached to in cgroup_post_fork(). 6056 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6057 * callback returns an error, the fork aborts with that error code. This 6058 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6059 */ 6060 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6061 { 6062 struct cgroup_subsys *ss; 6063 int i, j, ret; 6064 6065 ret = cgroup_css_set_fork(kargs); 6066 if (ret) 6067 return ret; 6068 6069 do_each_subsys_mask(ss, i, have_canfork_callback) { 6070 ret = ss->can_fork(child, kargs->cset); 6071 if (ret) 6072 goto out_revert; 6073 } while_each_subsys_mask(); 6074 6075 return 0; 6076 6077 out_revert: 6078 for_each_subsys(ss, j) { 6079 if (j >= i) 6080 break; 6081 if (ss->cancel_fork) 6082 ss->cancel_fork(child, kargs->cset); 6083 } 6084 6085 cgroup_css_set_put_fork(kargs); 6086 6087 return ret; 6088 } 6089 6090 /** 6091 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6092 * @child: the child process 6093 * @kargs: the arguments passed to create the child process 6094 * 6095 * This calls the cancel_fork() callbacks if a fork failed *after* 6096 * cgroup_can_fork() succeded and cleans up references we took to 6097 * prepare a new css_set for the child process in cgroup_can_fork(). 6098 */ 6099 void cgroup_cancel_fork(struct task_struct *child, 6100 struct kernel_clone_args *kargs) 6101 { 6102 struct cgroup_subsys *ss; 6103 int i; 6104 6105 for_each_subsys(ss, i) 6106 if (ss->cancel_fork) 6107 ss->cancel_fork(child, kargs->cset); 6108 6109 cgroup_css_set_put_fork(kargs); 6110 } 6111 6112 /** 6113 * cgroup_post_fork - finalize cgroup setup for the child process 6114 * @child: the child process 6115 * 6116 * Attach the child process to its css_set calling the subsystem fork() 6117 * callbacks. 6118 */ 6119 void cgroup_post_fork(struct task_struct *child, 6120 struct kernel_clone_args *kargs) 6121 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6122 { 6123 struct cgroup_subsys *ss; 6124 struct css_set *cset; 6125 int i; 6126 6127 cset = kargs->cset; 6128 kargs->cset = NULL; 6129 6130 spin_lock_irq(&css_set_lock); 6131 6132 /* init tasks are special, only link regular threads */ 6133 if (likely(child->pid)) { 6134 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6135 cset->nr_tasks++; 6136 css_set_move_task(child, NULL, cset, false); 6137 } else { 6138 put_css_set(cset); 6139 cset = NULL; 6140 } 6141 6142 /* 6143 * If the cgroup has to be frozen, the new task has too. Let's set 6144 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 6145 * frozen state. 6146 */ 6147 if (unlikely(cgroup_task_freeze(child))) { 6148 spin_lock(&child->sighand->siglock); 6149 WARN_ON_ONCE(child->frozen); 6150 child->jobctl |= JOBCTL_TRAP_FREEZE; 6151 spin_unlock(&child->sighand->siglock); 6152 6153 /* 6154 * Calling cgroup_update_frozen() isn't required here, 6155 * because it will be called anyway a bit later from 6156 * do_freezer_trap(). So we avoid cgroup's transient switch 6157 * from the frozen state and back. 6158 */ 6159 } 6160 6161 spin_unlock_irq(&css_set_lock); 6162 6163 /* 6164 * Call ss->fork(). This must happen after @child is linked on 6165 * css_set; otherwise, @child might change state between ->fork() 6166 * and addition to css_set. 6167 */ 6168 do_each_subsys_mask(ss, i, have_fork_callback) { 6169 ss->fork(child); 6170 } while_each_subsys_mask(); 6171 6172 /* Make the new cset the root_cset of the new cgroup namespace. */ 6173 if (kargs->flags & CLONE_NEWCGROUP) { 6174 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6175 6176 get_css_set(cset); 6177 child->nsproxy->cgroup_ns->root_cset = cset; 6178 put_css_set(rcset); 6179 } 6180 6181 cgroup_css_set_put_fork(kargs); 6182 } 6183 6184 /** 6185 * cgroup_exit - detach cgroup from exiting task 6186 * @tsk: pointer to task_struct of exiting process 6187 * 6188 * Description: Detach cgroup from @tsk. 6189 * 6190 */ 6191 void cgroup_exit(struct task_struct *tsk) 6192 { 6193 struct cgroup_subsys *ss; 6194 struct css_set *cset; 6195 int i; 6196 6197 spin_lock_irq(&css_set_lock); 6198 6199 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6200 cset = task_css_set(tsk); 6201 css_set_move_task(tsk, cset, NULL, false); 6202 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6203 cset->nr_tasks--; 6204 6205 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6206 if (unlikely(cgroup_task_freeze(tsk))) 6207 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6208 6209 spin_unlock_irq(&css_set_lock); 6210 6211 /* see cgroup_post_fork() for details */ 6212 do_each_subsys_mask(ss, i, have_exit_callback) { 6213 ss->exit(tsk); 6214 } while_each_subsys_mask(); 6215 } 6216 6217 void cgroup_release(struct task_struct *task) 6218 { 6219 struct cgroup_subsys *ss; 6220 int ssid; 6221 6222 do_each_subsys_mask(ss, ssid, have_release_callback) { 6223 ss->release(task); 6224 } while_each_subsys_mask(); 6225 6226 spin_lock_irq(&css_set_lock); 6227 css_set_skip_task_iters(task_css_set(task), task); 6228 list_del_init(&task->cg_list); 6229 spin_unlock_irq(&css_set_lock); 6230 } 6231 6232 void cgroup_free(struct task_struct *task) 6233 { 6234 struct css_set *cset = task_css_set(task); 6235 put_css_set(cset); 6236 } 6237 6238 static int __init cgroup_disable(char *str) 6239 { 6240 struct cgroup_subsys *ss; 6241 char *token; 6242 int i; 6243 6244 while ((token = strsep(&str, ",")) != NULL) { 6245 if (!*token) 6246 continue; 6247 6248 for_each_subsys(ss, i) { 6249 if (strcmp(token, ss->name) && 6250 strcmp(token, ss->legacy_name)) 6251 continue; 6252 cgroup_disable_mask |= 1 << i; 6253 } 6254 } 6255 return 1; 6256 } 6257 __setup("cgroup_disable=", cgroup_disable); 6258 6259 void __init __weak enable_debug_cgroup(void) { } 6260 6261 static int __init enable_cgroup_debug(char *str) 6262 { 6263 cgroup_debug = true; 6264 enable_debug_cgroup(); 6265 return 1; 6266 } 6267 __setup("cgroup_debug", enable_cgroup_debug); 6268 6269 /** 6270 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6271 * @dentry: directory dentry of interest 6272 * @ss: subsystem of interest 6273 * 6274 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6275 * to get the corresponding css and return it. If such css doesn't exist 6276 * or can't be pinned, an ERR_PTR value is returned. 6277 */ 6278 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6279 struct cgroup_subsys *ss) 6280 { 6281 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6282 struct file_system_type *s_type = dentry->d_sb->s_type; 6283 struct cgroup_subsys_state *css = NULL; 6284 struct cgroup *cgrp; 6285 6286 /* is @dentry a cgroup dir? */ 6287 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6288 !kn || kernfs_type(kn) != KERNFS_DIR) 6289 return ERR_PTR(-EBADF); 6290 6291 rcu_read_lock(); 6292 6293 /* 6294 * This path doesn't originate from kernfs and @kn could already 6295 * have been or be removed at any point. @kn->priv is RCU 6296 * protected for this access. See css_release_work_fn() for details. 6297 */ 6298 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6299 if (cgrp) 6300 css = cgroup_css(cgrp, ss); 6301 6302 if (!css || !css_tryget_online(css)) 6303 css = ERR_PTR(-ENOENT); 6304 6305 rcu_read_unlock(); 6306 return css; 6307 } 6308 6309 /** 6310 * css_from_id - lookup css by id 6311 * @id: the cgroup id 6312 * @ss: cgroup subsys to be looked into 6313 * 6314 * Returns the css if there's valid one with @id, otherwise returns NULL. 6315 * Should be called under rcu_read_lock(). 6316 */ 6317 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6318 { 6319 WARN_ON_ONCE(!rcu_read_lock_held()); 6320 return idr_find(&ss->css_idr, id); 6321 } 6322 6323 /** 6324 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6325 * @path: path on the default hierarchy 6326 * 6327 * Find the cgroup at @path on the default hierarchy, increment its 6328 * reference count and return it. Returns pointer to the found cgroup on 6329 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6330 * if @path points to a non-directory. 6331 */ 6332 struct cgroup *cgroup_get_from_path(const char *path) 6333 { 6334 struct kernfs_node *kn; 6335 struct cgroup *cgrp; 6336 6337 mutex_lock(&cgroup_mutex); 6338 6339 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6340 if (kn) { 6341 if (kernfs_type(kn) == KERNFS_DIR) { 6342 cgrp = kn->priv; 6343 cgroup_get_live(cgrp); 6344 } else { 6345 cgrp = ERR_PTR(-ENOTDIR); 6346 } 6347 kernfs_put(kn); 6348 } else { 6349 cgrp = ERR_PTR(-ENOENT); 6350 } 6351 6352 mutex_unlock(&cgroup_mutex); 6353 return cgrp; 6354 } 6355 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6356 6357 /** 6358 * cgroup_get_from_fd - get a cgroup pointer from a fd 6359 * @fd: fd obtained by open(cgroup2_dir) 6360 * 6361 * Find the cgroup from a fd which should be obtained 6362 * by opening a cgroup directory. Returns a pointer to the 6363 * cgroup on success. ERR_PTR is returned if the cgroup 6364 * cannot be found. 6365 */ 6366 struct cgroup *cgroup_get_from_fd(int fd) 6367 { 6368 struct cgroup *cgrp; 6369 struct file *f; 6370 6371 f = fget_raw(fd); 6372 if (!f) 6373 return ERR_PTR(-EBADF); 6374 6375 cgrp = cgroup_get_from_file(f); 6376 fput(f); 6377 return cgrp; 6378 } 6379 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6380 6381 static u64 power_of_ten(int power) 6382 { 6383 u64 v = 1; 6384 while (power--) 6385 v *= 10; 6386 return v; 6387 } 6388 6389 /** 6390 * cgroup_parse_float - parse a floating number 6391 * @input: input string 6392 * @dec_shift: number of decimal digits to shift 6393 * @v: output 6394 * 6395 * Parse a decimal floating point number in @input and store the result in 6396 * @v with decimal point right shifted @dec_shift times. For example, if 6397 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6398 * Returns 0 on success, -errno otherwise. 6399 * 6400 * There's nothing cgroup specific about this function except that it's 6401 * currently the only user. 6402 */ 6403 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6404 { 6405 s64 whole, frac = 0; 6406 int fstart = 0, fend = 0, flen; 6407 6408 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6409 return -EINVAL; 6410 if (frac < 0) 6411 return -EINVAL; 6412 6413 flen = fend > fstart ? fend - fstart : 0; 6414 if (flen < dec_shift) 6415 frac *= power_of_ten(dec_shift - flen); 6416 else 6417 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6418 6419 *v = whole * power_of_ten(dec_shift) + frac; 6420 return 0; 6421 } 6422 6423 /* 6424 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6425 * definition in cgroup-defs.h. 6426 */ 6427 #ifdef CONFIG_SOCK_CGROUP_DATA 6428 6429 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6430 6431 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6432 static bool cgroup_sk_alloc_disabled __read_mostly; 6433 6434 void cgroup_sk_alloc_disable(void) 6435 { 6436 if (cgroup_sk_alloc_disabled) 6437 return; 6438 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6439 cgroup_sk_alloc_disabled = true; 6440 } 6441 6442 #else 6443 6444 #define cgroup_sk_alloc_disabled false 6445 6446 #endif 6447 6448 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6449 { 6450 if (cgroup_sk_alloc_disabled) 6451 return; 6452 6453 /* Socket clone path */ 6454 if (skcd->val) { 6455 /* 6456 * We might be cloning a socket which is left in an empty 6457 * cgroup and the cgroup might have already been rmdir'd. 6458 * Don't use cgroup_get_live(). 6459 */ 6460 cgroup_get(sock_cgroup_ptr(skcd)); 6461 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6462 return; 6463 } 6464 6465 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6466 if (in_interrupt()) 6467 return; 6468 6469 rcu_read_lock(); 6470 6471 while (true) { 6472 struct css_set *cset; 6473 6474 cset = task_css_set(current); 6475 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6476 skcd->val = (unsigned long)cset->dfl_cgrp; 6477 cgroup_bpf_get(cset->dfl_cgrp); 6478 break; 6479 } 6480 cpu_relax(); 6481 } 6482 6483 rcu_read_unlock(); 6484 } 6485 6486 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6487 { 6488 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6489 6490 cgroup_bpf_put(cgrp); 6491 cgroup_put(cgrp); 6492 } 6493 6494 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6495 6496 #ifdef CONFIG_CGROUP_BPF 6497 int cgroup_bpf_attach(struct cgroup *cgrp, 6498 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6499 struct bpf_cgroup_link *link, 6500 enum bpf_attach_type type, 6501 u32 flags) 6502 { 6503 int ret; 6504 6505 mutex_lock(&cgroup_mutex); 6506 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6507 mutex_unlock(&cgroup_mutex); 6508 return ret; 6509 } 6510 6511 int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *old_prog, 6512 struct bpf_prog *new_prog) 6513 { 6514 struct bpf_cgroup_link *cg_link; 6515 int ret; 6516 6517 if (link->ops != &bpf_cgroup_link_lops) 6518 return -EINVAL; 6519 6520 cg_link = container_of(link, struct bpf_cgroup_link, link); 6521 6522 mutex_lock(&cgroup_mutex); 6523 /* link might have been auto-released by dying cgroup, so fail */ 6524 if (!cg_link->cgroup) { 6525 ret = -EINVAL; 6526 goto out_unlock; 6527 } 6528 if (old_prog && link->prog != old_prog) { 6529 ret = -EPERM; 6530 goto out_unlock; 6531 } 6532 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 6533 out_unlock: 6534 mutex_unlock(&cgroup_mutex); 6535 return ret; 6536 } 6537 6538 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6539 enum bpf_attach_type type) 6540 { 6541 int ret; 6542 6543 mutex_lock(&cgroup_mutex); 6544 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6545 mutex_unlock(&cgroup_mutex); 6546 return ret; 6547 } 6548 6549 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6550 union bpf_attr __user *uattr) 6551 { 6552 int ret; 6553 6554 mutex_lock(&cgroup_mutex); 6555 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6556 mutex_unlock(&cgroup_mutex); 6557 return ret; 6558 } 6559 #endif /* CONFIG_CGROUP_BPF */ 6560 6561 #ifdef CONFIG_SYSFS 6562 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6563 ssize_t size, const char *prefix) 6564 { 6565 struct cftype *cft; 6566 ssize_t ret = 0; 6567 6568 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6569 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6570 continue; 6571 6572 if (prefix) 6573 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6574 6575 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6576 6577 if (WARN_ON(ret >= size)) 6578 break; 6579 } 6580 6581 return ret; 6582 } 6583 6584 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6585 char *buf) 6586 { 6587 struct cgroup_subsys *ss; 6588 int ssid; 6589 ssize_t ret = 0; 6590 6591 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6592 NULL); 6593 6594 for_each_subsys(ss, ssid) 6595 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6596 PAGE_SIZE - ret, 6597 cgroup_subsys_name[ssid]); 6598 6599 return ret; 6600 } 6601 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6602 6603 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6604 char *buf) 6605 { 6606 return snprintf(buf, PAGE_SIZE, 6607 "nsdelegate\n" 6608 "memory_localevents\n" 6609 "memory_recursiveprot\n"); 6610 } 6611 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6612 6613 static struct attribute *cgroup_sysfs_attrs[] = { 6614 &cgroup_delegate_attr.attr, 6615 &cgroup_features_attr.attr, 6616 NULL, 6617 }; 6618 6619 static const struct attribute_group cgroup_sysfs_attr_group = { 6620 .attrs = cgroup_sysfs_attrs, 6621 .name = "cgroup", 6622 }; 6623 6624 static int __init cgroup_sysfs_init(void) 6625 { 6626 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6627 } 6628 subsys_initcall(cgroup_sysfs_init); 6629 6630 #endif /* CONFIG_SYSFS */ 6631