1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ 268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ 319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ 325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ 366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ 377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ 399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ 421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ 439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ 460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ 487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ 571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ 608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ 625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 637 { 638 struct cgroup *cgrp = of->kn->parent->priv; 639 struct cftype *cft = of_cft(of); 640 641 /* 642 * This is open and unprotected implementation of cgroup_css(). 643 * seq_css() is only called from a kernfs file operation which has 644 * an active reference on the file. Because all the subsystem 645 * files are drained before a css is disassociated with a cgroup, 646 * the matching css from the cgroup's subsys table is guaranteed to 647 * be and stay valid until the enclosing operation is complete. 648 */ 649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 651 else 652 return &cgrp->self; 653 } 654 EXPORT_SYMBOL_GPL(of_css); 655 656 /** 657 * for_each_css - iterate all css's of a cgroup 658 * @css: the iteration cursor 659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 660 * @cgrp: the target cgroup to iterate css's of 661 * 662 * Should be called under cgroup_mutex. 663 */ 664 #define for_each_css(css, ssid, cgrp) \ 665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 666 if (!((css) = rcu_dereference_check( \ 667 (cgrp)->subsys[(ssid)], \ 668 lockdep_is_held(&cgroup_mutex)))) { } \ 669 else 670 671 /** 672 * do_each_subsys_mask - filter for_each_subsys with a bitmask 673 * @ss: the iteration cursor 674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 675 * @ss_mask: the bitmask 676 * 677 * The block will only run for cases where the ssid-th bit (1 << ssid) of 678 * @ss_mask is set. 679 */ 680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 681 unsigned long __ss_mask = (ss_mask); \ 682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 683 (ssid) = 0; \ 684 break; \ 685 } \ 686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 687 (ss) = cgroup_subsys[ssid]; \ 688 { 689 690 #define while_each_subsys_mask() \ 691 } \ 692 } \ 693 } while (false) 694 695 /* iterate over child cgrps, lock should be held throughout iteration */ 696 #define cgroup_for_each_live_child(child, cgrp) \ 697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 698 if (({ lockdep_assert_held(&cgroup_mutex); \ 699 cgroup_is_dead(child); })) \ 700 ; \ 701 else 702 703 /* walk live descendants in pre order */ 704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 (dsct) = (d_css)->cgroup; \ 708 cgroup_is_dead(dsct); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in postorder */ 713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* 722 * The default css_set - used by init and its children prior to any 723 * hierarchies being mounted. It contains a pointer to the root state 724 * for each subsystem. Also used to anchor the list of css_sets. Not 725 * reference-counted, to improve performance when child cgroups 726 * haven't been created. 727 */ 728 struct css_set init_css_set = { 729 .refcount = REFCOUNT_INIT(1), 730 .dom_cset = &init_css_set, 731 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 740 741 /* 742 * The following field is re-initialized when this cset gets linked 743 * in cgroup_init(). However, let's initialize the field 744 * statically too so that the default cgroup can be accessed safely 745 * early during boot. 746 */ 747 .dfl_cgrp = &cgrp_dfl_root.cgrp, 748 }; 749 750 static int css_set_count = 1; /* 1 for init_css_set */ 751 752 static bool css_set_threaded(struct css_set *cset) 753 { 754 return cset->dom_cset != cset; 755 } 756 757 /** 758 * css_set_populated - does a css_set contain any tasks? 759 * @cset: target css_set 760 * 761 * css_set_populated() should be the same as !!cset->nr_tasks at steady 762 * state. However, css_set_populated() can be called while a task is being 763 * added to or removed from the linked list before the nr_tasks is 764 * properly updated. Hence, we can't just look at ->nr_tasks here. 765 */ 766 static bool css_set_populated(struct css_set *cset) 767 { 768 lockdep_assert_held(&css_set_lock); 769 770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 771 } 772 773 /** 774 * cgroup_update_populated - update the populated count of a cgroup 775 * @cgrp: the target cgroup 776 * @populated: inc or dec populated count 777 * 778 * One of the css_sets associated with @cgrp is either getting its first 779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 780 * count is propagated towards root so that a given cgroup's 781 * nr_populated_children is zero iff none of its descendants contain any 782 * tasks. 783 * 784 * @cgrp's interface file "cgroup.populated" is zero if both 785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 786 * 1 otherwise. When the sum changes from or to zero, userland is notified 787 * that the content of the interface file has changed. This can be used to 788 * detect when @cgrp and its descendants become populated or empty. 789 */ 790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 791 { 792 struct cgroup *child = NULL; 793 int adj = populated ? 1 : -1; 794 795 lockdep_assert_held(&css_set_lock); 796 797 do { 798 bool was_populated = cgroup_is_populated(cgrp); 799 800 if (!child) { 801 cgrp->nr_populated_csets += adj; 802 } else { 803 if (cgroup_is_threaded(child)) 804 cgrp->nr_populated_threaded_children += adj; 805 else 806 cgrp->nr_populated_domain_children += adj; 807 } 808 809 if (was_populated == cgroup_is_populated(cgrp)) 810 break; 811 812 cgroup1_check_for_release(cgrp); 813 TRACE_CGROUP_PATH(notify_populated, cgrp, 814 cgroup_is_populated(cgrp)); 815 cgroup_file_notify(&cgrp->events_file); 816 817 child = cgrp; 818 cgrp = cgroup_parent(cgrp); 819 } while (cgrp); 820 } 821 822 /** 823 * css_set_update_populated - update populated state of a css_set 824 * @cset: target css_set 825 * @populated: whether @cset is populated or depopulated 826 * 827 * @cset is either getting the first task or losing the last. Update the 828 * populated counters of all associated cgroups accordingly. 829 */ 830 static void css_set_update_populated(struct css_set *cset, bool populated) 831 { 832 struct cgrp_cset_link *link; 833 834 lockdep_assert_held(&css_set_lock); 835 836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 837 cgroup_update_populated(link->cgrp, populated); 838 } 839 840 /* 841 * @task is leaving, advance task iterators which are pointing to it so 842 * that they can resume at the next position. Advancing an iterator might 843 * remove it from the list, use safe walk. See css_task_iter_skip() for 844 * details. 845 */ 846 static void css_set_skip_task_iters(struct css_set *cset, 847 struct task_struct *task) 848 { 849 struct css_task_iter *it, *pos; 850 851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 852 css_task_iter_skip(it, task); 853 } 854 855 /** 856 * css_set_move_task - move a task from one css_set to another 857 * @task: task being moved 858 * @from_cset: css_set @task currently belongs to (may be NULL) 859 * @to_cset: new css_set @task is being moved to (may be NULL) 860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 861 * 862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 863 * css_set, @from_cset can be NULL. If @task is being disassociated 864 * instead of moved, @to_cset can be NULL. 865 * 866 * This function automatically handles populated counter updates and 867 * css_task_iter adjustments but the caller is responsible for managing 868 * @from_cset and @to_cset's reference counts. 869 */ 870 static void css_set_move_task(struct task_struct *task, 871 struct css_set *from_cset, struct css_set *to_cset, 872 bool use_mg_tasks) 873 { 874 lockdep_assert_held(&css_set_lock); 875 876 if (to_cset && !css_set_populated(to_cset)) 877 css_set_update_populated(to_cset, true); 878 879 if (from_cset) { 880 WARN_ON_ONCE(list_empty(&task->cg_list)); 881 882 css_set_skip_task_iters(from_cset, task); 883 list_del_init(&task->cg_list); 884 if (!css_set_populated(from_cset)) 885 css_set_update_populated(from_cset, false); 886 } else { 887 WARN_ON_ONCE(!list_empty(&task->cg_list)); 888 } 889 890 if (to_cset) { 891 /* 892 * We are synchronized through cgroup_threadgroup_rwsem 893 * against PF_EXITING setting such that we can't race 894 * against cgroup_exit()/cgroup_free() dropping the css_set. 895 */ 896 WARN_ON_ONCE(task->flags & PF_EXITING); 897 898 cgroup_move_task(task, to_cset); 899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 900 &to_cset->tasks); 901 } 902 } 903 904 /* 905 * hash table for cgroup groups. This improves the performance to find 906 * an existing css_set. This hash doesn't (currently) take into 907 * account cgroups in empty hierarchies. 908 */ 909 #define CSS_SET_HASH_BITS 7 910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 911 912 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 913 { 914 unsigned long key = 0UL; 915 struct cgroup_subsys *ss; 916 int i; 917 918 for_each_subsys(ss, i) 919 key += (unsigned long)css[i]; 920 key = (key >> 16) ^ key; 921 922 return key; 923 } 924 925 void put_css_set_locked(struct css_set *cset) 926 { 927 struct cgrp_cset_link *link, *tmp_link; 928 struct cgroup_subsys *ss; 929 int ssid; 930 931 lockdep_assert_held(&css_set_lock); 932 933 if (!refcount_dec_and_test(&cset->refcount)) 934 return; 935 936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 937 938 /* This css_set is dead. Unlink it and release cgroup and css refs */ 939 for_each_subsys(ss, ssid) { 940 list_del(&cset->e_cset_node[ssid]); 941 css_put(cset->subsys[ssid]); 942 } 943 hash_del(&cset->hlist); 944 css_set_count--; 945 946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 947 list_del(&link->cset_link); 948 list_del(&link->cgrp_link); 949 if (cgroup_parent(link->cgrp)) 950 cgroup_put(link->cgrp); 951 kfree(link); 952 } 953 954 if (css_set_threaded(cset)) { 955 list_del(&cset->threaded_csets_node); 956 put_css_set_locked(cset->dom_cset); 957 } 958 959 kfree_rcu(cset, rcu_head); 960 } 961 962 /** 963 * compare_css_sets - helper function for find_existing_css_set(). 964 * @cset: candidate css_set being tested 965 * @old_cset: existing css_set for a task 966 * @new_cgrp: cgroup that's being entered by the task 967 * @template: desired set of css pointers in css_set (pre-calculated) 968 * 969 * Returns true if "cset" matches "old_cset" except for the hierarchy 970 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 971 */ 972 static bool compare_css_sets(struct css_set *cset, 973 struct css_set *old_cset, 974 struct cgroup *new_cgrp, 975 struct cgroup_subsys_state *template[]) 976 { 977 struct cgroup *new_dfl_cgrp; 978 struct list_head *l1, *l2; 979 980 /* 981 * On the default hierarchy, there can be csets which are 982 * associated with the same set of cgroups but different csses. 983 * Let's first ensure that csses match. 984 */ 985 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 986 return false; 987 988 989 /* @cset's domain should match the default cgroup's */ 990 if (cgroup_on_dfl(new_cgrp)) 991 new_dfl_cgrp = new_cgrp; 992 else 993 new_dfl_cgrp = old_cset->dfl_cgrp; 994 995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 996 return false; 997 998 /* 999 * Compare cgroup pointers in order to distinguish between 1000 * different cgroups in hierarchies. As different cgroups may 1001 * share the same effective css, this comparison is always 1002 * necessary. 1003 */ 1004 l1 = &cset->cgrp_links; 1005 l2 = &old_cset->cgrp_links; 1006 while (1) { 1007 struct cgrp_cset_link *link1, *link2; 1008 struct cgroup *cgrp1, *cgrp2; 1009 1010 l1 = l1->next; 1011 l2 = l2->next; 1012 /* See if we reached the end - both lists are equal length. */ 1013 if (l1 == &cset->cgrp_links) { 1014 BUG_ON(l2 != &old_cset->cgrp_links); 1015 break; 1016 } else { 1017 BUG_ON(l2 == &old_cset->cgrp_links); 1018 } 1019 /* Locate the cgroups associated with these links. */ 1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1022 cgrp1 = link1->cgrp; 1023 cgrp2 = link2->cgrp; 1024 /* Hierarchies should be linked in the same order. */ 1025 BUG_ON(cgrp1->root != cgrp2->root); 1026 1027 /* 1028 * If this hierarchy is the hierarchy of the cgroup 1029 * that's changing, then we need to check that this 1030 * css_set points to the new cgroup; if it's any other 1031 * hierarchy, then this css_set should point to the 1032 * same cgroup as the old css_set. 1033 */ 1034 if (cgrp1->root == new_cgrp->root) { 1035 if (cgrp1 != new_cgrp) 1036 return false; 1037 } else { 1038 if (cgrp1 != cgrp2) 1039 return false; 1040 } 1041 } 1042 return true; 1043 } 1044 1045 /** 1046 * find_existing_css_set - init css array and find the matching css_set 1047 * @old_cset: the css_set that we're using before the cgroup transition 1048 * @cgrp: the cgroup that we're moving into 1049 * @template: out param for the new set of csses, should be clear on entry 1050 */ 1051 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1052 struct cgroup *cgrp, 1053 struct cgroup_subsys_state **template) 1054 { 1055 struct cgroup_root *root = cgrp->root; 1056 struct cgroup_subsys *ss; 1057 struct css_set *cset; 1058 unsigned long key; 1059 int i; 1060 1061 /* 1062 * Build the set of subsystem state objects that we want to see in the 1063 * new css_set. While subsystems can change globally, the entries here 1064 * won't change, so no need for locking. 1065 */ 1066 for_each_subsys(ss, i) { 1067 if (root->subsys_mask & (1UL << i)) { 1068 /* 1069 * @ss is in this hierarchy, so we want the 1070 * effective css from @cgrp. 1071 */ 1072 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1073 } else { 1074 /* 1075 * @ss is not in this hierarchy, so we don't want 1076 * to change the css. 1077 */ 1078 template[i] = old_cset->subsys[i]; 1079 } 1080 } 1081 1082 key = css_set_hash(template); 1083 hash_for_each_possible(css_set_table, cset, hlist, key) { 1084 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1085 continue; 1086 1087 /* This css_set matches what we need */ 1088 return cset; 1089 } 1090 1091 /* No existing cgroup group matched */ 1092 return NULL; 1093 } 1094 1095 static void free_cgrp_cset_links(struct list_head *links_to_free) 1096 { 1097 struct cgrp_cset_link *link, *tmp_link; 1098 1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1100 list_del(&link->cset_link); 1101 kfree(link); 1102 } 1103 } 1104 1105 /** 1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1107 * @count: the number of links to allocate 1108 * @tmp_links: list_head the allocated links are put on 1109 * 1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1111 * through ->cset_link. Returns 0 on success or -errno. 1112 */ 1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1114 { 1115 struct cgrp_cset_link *link; 1116 int i; 1117 1118 INIT_LIST_HEAD(tmp_links); 1119 1120 for (i = 0; i < count; i++) { 1121 link = kzalloc(sizeof(*link), GFP_KERNEL); 1122 if (!link) { 1123 free_cgrp_cset_links(tmp_links); 1124 return -ENOMEM; 1125 } 1126 list_add(&link->cset_link, tmp_links); 1127 } 1128 return 0; 1129 } 1130 1131 /** 1132 * link_css_set - a helper function to link a css_set to a cgroup 1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1134 * @cset: the css_set to be linked 1135 * @cgrp: the destination cgroup 1136 */ 1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgrp_cset_link *link; 1141 1142 BUG_ON(list_empty(tmp_links)); 1143 1144 if (cgroup_on_dfl(cgrp)) 1145 cset->dfl_cgrp = cgrp; 1146 1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1148 link->cset = cset; 1149 link->cgrp = cgrp; 1150 1151 /* 1152 * Always add links to the tail of the lists so that the lists are 1153 * in chronological order. 1154 */ 1155 list_move_tail(&link->cset_link, &cgrp->cset_links); 1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1157 1158 if (cgroup_parent(cgrp)) 1159 cgroup_get_live(cgrp); 1160 } 1161 1162 /** 1163 * find_css_set - return a new css_set with one cgroup updated 1164 * @old_cset: the baseline css_set 1165 * @cgrp: the cgroup to be updated 1166 * 1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1168 * substituted into the appropriate hierarchy. 1169 */ 1170 static struct css_set *find_css_set(struct css_set *old_cset, 1171 struct cgroup *cgrp) 1172 { 1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1174 struct css_set *cset; 1175 struct list_head tmp_links; 1176 struct cgrp_cset_link *link; 1177 struct cgroup_subsys *ss; 1178 unsigned long key; 1179 int ssid; 1180 1181 lockdep_assert_held(&cgroup_mutex); 1182 1183 /* First see if we already have a cgroup group that matches 1184 * the desired set */ 1185 spin_lock_irq(&css_set_lock); 1186 cset = find_existing_css_set(old_cset, cgrp, template); 1187 if (cset) 1188 get_css_set(cset); 1189 spin_unlock_irq(&css_set_lock); 1190 1191 if (cset) 1192 return cset; 1193 1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1195 if (!cset) 1196 return NULL; 1197 1198 /* Allocate all the cgrp_cset_link objects that we'll need */ 1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1200 kfree(cset); 1201 return NULL; 1202 } 1203 1204 refcount_set(&cset->refcount, 1); 1205 cset->dom_cset = cset; 1206 INIT_LIST_HEAD(&cset->tasks); 1207 INIT_LIST_HEAD(&cset->mg_tasks); 1208 INIT_LIST_HEAD(&cset->dying_tasks); 1209 INIT_LIST_HEAD(&cset->task_iters); 1210 INIT_LIST_HEAD(&cset->threaded_csets); 1211 INIT_HLIST_NODE(&cset->hlist); 1212 INIT_LIST_HEAD(&cset->cgrp_links); 1213 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1282 { 1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1284 1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1286 if (favor && !favoring) { 1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1289 } else if (!favor && favoring) { 1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1292 } 1293 } 1294 1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree_rcu(root, rcu); 1319 } 1320 1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 WARN_ON_ONCE(list_empty(&root->root_list)); 1351 list_del_rcu(&root->root_list); 1352 cgroup_root_count--; 1353 1354 if (!have_favordynmods) 1355 cgroup_favor_dynmods(root, false); 1356 1357 cgroup_exit_root_id(root); 1358 1359 cgroup_unlock(); 1360 1361 cgroup_rstat_exit(cgrp); 1362 kernfs_destroy_root(root->kf_root); 1363 cgroup_free_root(root); 1364 } 1365 1366 /* 1367 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1368 */ 1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1370 struct cgroup_root *root) 1371 { 1372 struct cgroup *res_cgroup = NULL; 1373 1374 if (cset == &init_css_set) { 1375 res_cgroup = &root->cgrp; 1376 } else if (root == &cgrp_dfl_root) { 1377 res_cgroup = cset->dfl_cgrp; 1378 } else { 1379 struct cgrp_cset_link *link; 1380 lockdep_assert_held(&css_set_lock); 1381 1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1383 struct cgroup *c = link->cgrp; 1384 1385 if (c->root == root) { 1386 res_cgroup = c; 1387 break; 1388 } 1389 } 1390 } 1391 1392 /* 1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1394 * before we remove the cgroup root from the root_list. Consequently, 1395 * when accessing a cgroup root, the cset_link may have already been 1396 * freed, resulting in a NULL res_cgroup. However, by holding the 1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1399 * check. 1400 */ 1401 return res_cgroup; 1402 } 1403 1404 /* 1405 * look up cgroup associated with current task's cgroup namespace on the 1406 * specified hierarchy 1407 */ 1408 static struct cgroup * 1409 current_cgns_cgroup_from_root(struct cgroup_root *root) 1410 { 1411 struct cgroup *res = NULL; 1412 struct css_set *cset; 1413 1414 lockdep_assert_held(&css_set_lock); 1415 1416 rcu_read_lock(); 1417 1418 cset = current->nsproxy->cgroup_ns->root_cset; 1419 res = __cset_cgroup_from_root(cset, root); 1420 1421 rcu_read_unlock(); 1422 1423 /* 1424 * The namespace_sem is held by current, so the root cgroup can't 1425 * be umounted. Therefore, we can ensure that the res is non-NULL. 1426 */ 1427 WARN_ON_ONCE(!res); 1428 return res; 1429 } 1430 1431 /* 1432 * Look up cgroup associated with current task's cgroup namespace on the default 1433 * hierarchy. 1434 * 1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1437 * pointers. 1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1439 * - As a bonus returned cgrp is pinned with the current because it cannot 1440 * switch cgroup_ns asynchronously. 1441 */ 1442 static struct cgroup *current_cgns_cgroup_dfl(void) 1443 { 1444 struct css_set *cset; 1445 1446 if (current->nsproxy) { 1447 cset = current->nsproxy->cgroup_ns->root_cset; 1448 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1449 } else { 1450 /* 1451 * NOTE: This function may be called from bpf_cgroup_from_id() 1452 * on a task which has already passed exit_task_namespaces() and 1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1454 * cgroups visible for lookups. 1455 */ 1456 return &cgrp_dfl_root.cgrp; 1457 } 1458 } 1459 1460 /* look up cgroup associated with given css_set on the specified hierarchy */ 1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1462 struct cgroup_root *root) 1463 { 1464 lockdep_assert_held(&css_set_lock); 1465 1466 return __cset_cgroup_from_root(cset, root); 1467 } 1468 1469 /* 1470 * Return the cgroup for "task" from the given hierarchy. Must be 1471 * called with css_set_lock held to prevent task's groups from being modified. 1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1473 * cgroup root from being destroyed. 1474 */ 1475 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1476 struct cgroup_root *root) 1477 { 1478 /* 1479 * No need to lock the task - since we hold css_set_lock the 1480 * task can't change groups. 1481 */ 1482 return cset_cgroup_from_root(task_css_set(task), root); 1483 } 1484 1485 /* 1486 * A task must hold cgroup_mutex to modify cgroups. 1487 * 1488 * Any task can increment and decrement the count field without lock. 1489 * So in general, code holding cgroup_mutex can't rely on the count 1490 * field not changing. However, if the count goes to zero, then only 1491 * cgroup_attach_task() can increment it again. Because a count of zero 1492 * means that no tasks are currently attached, therefore there is no 1493 * way a task attached to that cgroup can fork (the other way to 1494 * increment the count). So code holding cgroup_mutex can safely 1495 * assume that if the count is zero, it will stay zero. Similarly, if 1496 * a task holds cgroup_mutex on a cgroup with zero count, it 1497 * knows that the cgroup won't be removed, as cgroup_rmdir() 1498 * needs that mutex. 1499 * 1500 * A cgroup can only be deleted if both its 'count' of using tasks 1501 * is zero, and its list of 'children' cgroups is empty. Since all 1502 * tasks in the system use _some_ cgroup, and since there is always at 1503 * least one task in the system (init, pid == 1), therefore, root cgroup 1504 * always has either children cgroups and/or using tasks. So we don't 1505 * need a special hack to ensure that root cgroup cannot be deleted. 1506 * 1507 * P.S. One more locking exception. RCU is used to guard the 1508 * update of a tasks cgroup pointer by cgroup_attach_task() 1509 */ 1510 1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1512 1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1514 char *buf) 1515 { 1516 struct cgroup_subsys *ss = cft->ss; 1517 1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1521 1522 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1524 cft->name); 1525 } else { 1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1527 } 1528 return buf; 1529 } 1530 1531 /** 1532 * cgroup_file_mode - deduce file mode of a control file 1533 * @cft: the control file in question 1534 * 1535 * S_IRUGO for read, S_IWUSR for write. 1536 */ 1537 static umode_t cgroup_file_mode(const struct cftype *cft) 1538 { 1539 umode_t mode = 0; 1540 1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1542 mode |= S_IRUGO; 1543 1544 if (cft->write_u64 || cft->write_s64 || cft->write) { 1545 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1546 mode |= S_IWUGO; 1547 else 1548 mode |= S_IWUSR; 1549 } 1550 1551 return mode; 1552 } 1553 1554 /** 1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1556 * @subtree_control: the new subtree_control mask to consider 1557 * @this_ss_mask: available subsystems 1558 * 1559 * On the default hierarchy, a subsystem may request other subsystems to be 1560 * enabled together through its ->depends_on mask. In such cases, more 1561 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1562 * 1563 * This function calculates which subsystems need to be enabled if 1564 * @subtree_control is to be applied while restricted to @this_ss_mask. 1565 */ 1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1567 { 1568 u16 cur_ss_mask = subtree_control; 1569 struct cgroup_subsys *ss; 1570 int ssid; 1571 1572 lockdep_assert_held(&cgroup_mutex); 1573 1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1575 1576 while (true) { 1577 u16 new_ss_mask = cur_ss_mask; 1578 1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1580 new_ss_mask |= ss->depends_on; 1581 } while_each_subsys_mask(); 1582 1583 /* 1584 * Mask out subsystems which aren't available. This can 1585 * happen only if some depended-upon subsystems were bound 1586 * to non-default hierarchies. 1587 */ 1588 new_ss_mask &= this_ss_mask; 1589 1590 if (new_ss_mask == cur_ss_mask) 1591 break; 1592 cur_ss_mask = new_ss_mask; 1593 } 1594 1595 return cur_ss_mask; 1596 } 1597 1598 /** 1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * 1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1603 * the method finishes if locking succeeded. Note that once this function 1604 * returns the cgroup returned by cgroup_kn_lock_live() may become 1605 * inaccessible any time. If the caller intends to continue to access the 1606 * cgroup, it should pin it before invoking this function. 1607 */ 1608 void cgroup_kn_unlock(struct kernfs_node *kn) 1609 { 1610 struct cgroup *cgrp; 1611 1612 if (kernfs_type(kn) == KERNFS_DIR) 1613 cgrp = kn->priv; 1614 else 1615 cgrp = kn->parent->priv; 1616 1617 cgroup_unlock(); 1618 1619 kernfs_unbreak_active_protection(kn); 1620 cgroup_put(cgrp); 1621 } 1622 1623 /** 1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1625 * @kn: the kernfs_node being serviced 1626 * @drain_offline: perform offline draining on the cgroup 1627 * 1628 * This helper is to be used by a cgroup kernfs method currently servicing 1629 * @kn. It breaks the active protection, performs cgroup locking and 1630 * verifies that the associated cgroup is alive. Returns the cgroup if 1631 * alive; otherwise, %NULL. A successful return should be undone by a 1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1633 * cgroup is drained of offlining csses before return. 1634 * 1635 * Any cgroup kernfs method implementation which requires locking the 1636 * associated cgroup should use this helper. It avoids nesting cgroup 1637 * locking under kernfs active protection and allows all kernfs operations 1638 * including self-removal. 1639 */ 1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1641 { 1642 struct cgroup *cgrp; 1643 1644 if (kernfs_type(kn) == KERNFS_DIR) 1645 cgrp = kn->priv; 1646 else 1647 cgrp = kn->parent->priv; 1648 1649 /* 1650 * We're gonna grab cgroup_mutex which nests outside kernfs 1651 * active_ref. cgroup liveliness check alone provides enough 1652 * protection against removal. Ensure @cgrp stays accessible and 1653 * break the active_ref protection. 1654 */ 1655 if (!cgroup_tryget(cgrp)) 1656 return NULL; 1657 kernfs_break_active_protection(kn); 1658 1659 if (drain_offline) 1660 cgroup_lock_and_drain_offline(cgrp); 1661 else 1662 cgroup_lock(); 1663 1664 if (!cgroup_is_dead(cgrp)) 1665 return cgrp; 1666 1667 cgroup_kn_unlock(kn); 1668 return NULL; 1669 } 1670 1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1672 { 1673 char name[CGROUP_FILE_NAME_MAX]; 1674 1675 lockdep_assert_held(&cgroup_mutex); 1676 1677 if (cft->file_offset) { 1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1679 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1680 1681 spin_lock_irq(&cgroup_file_kn_lock); 1682 cfile->kn = NULL; 1683 spin_unlock_irq(&cgroup_file_kn_lock); 1684 1685 del_timer_sync(&cfile->notify_timer); 1686 } 1687 1688 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1689 } 1690 1691 /** 1692 * css_clear_dir - remove subsys files in a cgroup directory 1693 * @css: target css 1694 */ 1695 static void css_clear_dir(struct cgroup_subsys_state *css) 1696 { 1697 struct cgroup *cgrp = css->cgroup; 1698 struct cftype *cfts; 1699 1700 if (!(css->flags & CSS_VISIBLE)) 1701 return; 1702 1703 css->flags &= ~CSS_VISIBLE; 1704 1705 if (!css->ss) { 1706 if (cgroup_on_dfl(cgrp)) { 1707 cgroup_addrm_files(css, cgrp, 1708 cgroup_base_files, false); 1709 if (cgroup_psi_enabled()) 1710 cgroup_addrm_files(css, cgrp, 1711 cgroup_psi_files, false); 1712 } else { 1713 cgroup_addrm_files(css, cgrp, 1714 cgroup1_base_files, false); 1715 } 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) 1718 cgroup_addrm_files(css, cgrp, cfts, false); 1719 } 1720 } 1721 1722 /** 1723 * css_populate_dir - create subsys files in a cgroup directory 1724 * @css: target css 1725 * 1726 * On failure, no file is added. 1727 */ 1728 static int css_populate_dir(struct cgroup_subsys_state *css) 1729 { 1730 struct cgroup *cgrp = css->cgroup; 1731 struct cftype *cfts, *failed_cfts; 1732 int ret; 1733 1734 if (css->flags & CSS_VISIBLE) 1735 return 0; 1736 1737 if (!css->ss) { 1738 if (cgroup_on_dfl(cgrp)) { 1739 ret = cgroup_addrm_files(css, cgrp, 1740 cgroup_base_files, true); 1741 if (ret < 0) 1742 return ret; 1743 1744 if (cgroup_psi_enabled()) { 1745 ret = cgroup_addrm_files(css, cgrp, 1746 cgroup_psi_files, true); 1747 if (ret < 0) { 1748 cgroup_addrm_files(css, cgrp, 1749 cgroup_base_files, false); 1750 return ret; 1751 } 1752 } 1753 } else { 1754 ret = cgroup_addrm_files(css, cgrp, 1755 cgroup1_base_files, true); 1756 if (ret < 0) 1757 return ret; 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset, *cset_pos; 1830 struct css_task_iter *it; 1831 1832 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1833 1834 if (src_root != &cgrp_dfl_root) { 1835 /* disable from the source */ 1836 src_root->subsys_mask &= ~(1 << ssid); 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 /* rebind */ 1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1843 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1844 ss->root = dst_root; 1845 1846 spin_lock_irq(&css_set_lock); 1847 css->cgroup = dcgrp; 1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1850 e_cset_node[ss->id]) { 1851 list_move_tail(&cset->e_cset_node[ss->id], 1852 &dcgrp->e_csets[ss->id]); 1853 /* 1854 * all css_sets of scgrp together in same order to dcgrp, 1855 * patch in-flight iterators to preserve correct iteration. 1856 * since the iterator is always advanced right away and 1857 * finished when it->cset_pos meets it->cset_head, so only 1858 * update it->cset_head is enough here. 1859 */ 1860 list_for_each_entry(it, &cset->task_iters, iters_node) 1861 if (it->cset_head == &scgrp->e_csets[ss->id]) 1862 it->cset_head = &dcgrp->e_csets[ss->id]; 1863 } 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (ss->css_rstat_flush) { 1867 list_del_rcu(&css->rstat_css_node); 1868 synchronize_rcu(); 1869 list_add_rcu(&css->rstat_css_node, 1870 &dcgrp->rstat_css_list); 1871 } 1872 1873 /* default hierarchy doesn't enable controllers by default */ 1874 dst_root->subsys_mask |= 1 << ssid; 1875 if (dst_root == &cgrp_dfl_root) { 1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1877 } else { 1878 dcgrp->subtree_control |= 1 << ssid; 1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1880 } 1881 1882 ret = cgroup_apply_control(dcgrp); 1883 if (ret) 1884 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1885 ss->name, ret); 1886 1887 if (ss->bind) 1888 ss->bind(css); 1889 } while_each_subsys_mask(); 1890 1891 kernfs_activate(dcgrp->kn); 1892 return 0; 1893 } 1894 1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1896 struct kernfs_root *kf_root) 1897 { 1898 int len = 0; 1899 char *buf = NULL; 1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1901 struct cgroup *ns_cgroup; 1902 1903 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1904 if (!buf) 1905 return -ENOMEM; 1906 1907 spin_lock_irq(&css_set_lock); 1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1910 spin_unlock_irq(&css_set_lock); 1911 1912 if (len == -E2BIG) 1913 len = -ERANGE; 1914 else if (len > 0) { 1915 seq_escape(sf, buf, " \t\n\\"); 1916 len = 0; 1917 } 1918 kfree(buf); 1919 return len; 1920 } 1921 1922 enum cgroup2_param { 1923 Opt_nsdelegate, 1924 Opt_favordynmods, 1925 Opt_memory_localevents, 1926 Opt_memory_recursiveprot, 1927 Opt_memory_hugetlb_accounting, 1928 Opt_pids_localevents, 1929 nr__cgroup2_params 1930 }; 1931 1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1933 fsparam_flag("nsdelegate", Opt_nsdelegate), 1934 fsparam_flag("favordynmods", Opt_favordynmods), 1935 fsparam_flag("memory_localevents", Opt_memory_localevents), 1936 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1937 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1938 fsparam_flag("pids_localevents", Opt_pids_localevents), 1939 {} 1940 }; 1941 1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1943 { 1944 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1945 struct fs_parse_result result; 1946 int opt; 1947 1948 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1949 if (opt < 0) 1950 return opt; 1951 1952 switch (opt) { 1953 case Opt_nsdelegate: 1954 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1955 return 0; 1956 case Opt_favordynmods: 1957 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1958 return 0; 1959 case Opt_memory_localevents: 1960 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1961 return 0; 1962 case Opt_memory_recursiveprot: 1963 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1964 return 0; 1965 case Opt_memory_hugetlb_accounting: 1966 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1967 return 0; 1968 case Opt_pids_localevents: 1969 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 1970 return 0; 1971 } 1972 return -EINVAL; 1973 } 1974 1975 static void apply_cgroup_root_flags(unsigned int root_flags) 1976 { 1977 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1978 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1979 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1980 else 1981 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1982 1983 cgroup_favor_dynmods(&cgrp_dfl_root, 1984 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1985 1986 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1987 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1988 else 1989 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1990 1991 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1992 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1993 else 1994 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1995 1996 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 1997 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1998 else 1999 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2000 2001 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2002 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2003 else 2004 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2005 } 2006 } 2007 2008 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2009 { 2010 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2011 seq_puts(seq, ",nsdelegate"); 2012 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2013 seq_puts(seq, ",favordynmods"); 2014 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2015 seq_puts(seq, ",memory_localevents"); 2016 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2017 seq_puts(seq, ",memory_recursiveprot"); 2018 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2019 seq_puts(seq, ",memory_hugetlb_accounting"); 2020 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2021 seq_puts(seq, ",pids_localevents"); 2022 return 0; 2023 } 2024 2025 static int cgroup_reconfigure(struct fs_context *fc) 2026 { 2027 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2028 2029 apply_cgroup_root_flags(ctx->flags); 2030 return 0; 2031 } 2032 2033 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2034 { 2035 struct cgroup_subsys *ss; 2036 int ssid; 2037 2038 INIT_LIST_HEAD(&cgrp->self.sibling); 2039 INIT_LIST_HEAD(&cgrp->self.children); 2040 INIT_LIST_HEAD(&cgrp->cset_links); 2041 INIT_LIST_HEAD(&cgrp->pidlists); 2042 mutex_init(&cgrp->pidlist_mutex); 2043 cgrp->self.cgroup = cgrp; 2044 cgrp->self.flags |= CSS_ONLINE; 2045 cgrp->dom_cgrp = cgrp; 2046 cgrp->max_descendants = INT_MAX; 2047 cgrp->max_depth = INT_MAX; 2048 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2049 prev_cputime_init(&cgrp->prev_cputime); 2050 2051 for_each_subsys(ss, ssid) 2052 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2053 2054 init_waitqueue_head(&cgrp->offline_waitq); 2055 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2056 } 2057 2058 void init_cgroup_root(struct cgroup_fs_context *ctx) 2059 { 2060 struct cgroup_root *root = ctx->root; 2061 struct cgroup *cgrp = &root->cgrp; 2062 2063 INIT_LIST_HEAD_RCU(&root->root_list); 2064 atomic_set(&root->nr_cgrps, 1); 2065 cgrp->root = root; 2066 init_cgroup_housekeeping(cgrp); 2067 2068 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2069 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2070 if (ctx->release_agent) 2071 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2072 if (ctx->name) 2073 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2074 if (ctx->cpuset_clone_children) 2075 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2076 } 2077 2078 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2079 { 2080 LIST_HEAD(tmp_links); 2081 struct cgroup *root_cgrp = &root->cgrp; 2082 struct kernfs_syscall_ops *kf_sops; 2083 struct css_set *cset; 2084 int i, ret; 2085 2086 lockdep_assert_held(&cgroup_mutex); 2087 2088 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2089 0, GFP_KERNEL); 2090 if (ret) 2091 goto out; 2092 2093 /* 2094 * We're accessing css_set_count without locking css_set_lock here, 2095 * but that's OK - it can only be increased by someone holding 2096 * cgroup_lock, and that's us. Later rebinding may disable 2097 * controllers on the default hierarchy and thus create new csets, 2098 * which can't be more than the existing ones. Allocate 2x. 2099 */ 2100 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2101 if (ret) 2102 goto cancel_ref; 2103 2104 ret = cgroup_init_root_id(root); 2105 if (ret) 2106 goto cancel_ref; 2107 2108 kf_sops = root == &cgrp_dfl_root ? 2109 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2110 2111 root->kf_root = kernfs_create_root(kf_sops, 2112 KERNFS_ROOT_CREATE_DEACTIVATED | 2113 KERNFS_ROOT_SUPPORT_EXPORTOP | 2114 KERNFS_ROOT_SUPPORT_USER_XATTR, 2115 root_cgrp); 2116 if (IS_ERR(root->kf_root)) { 2117 ret = PTR_ERR(root->kf_root); 2118 goto exit_root_id; 2119 } 2120 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2121 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2122 root_cgrp->ancestors[0] = root_cgrp; 2123 2124 ret = css_populate_dir(&root_cgrp->self); 2125 if (ret) 2126 goto destroy_root; 2127 2128 ret = cgroup_rstat_init(root_cgrp); 2129 if (ret) 2130 goto destroy_root; 2131 2132 ret = rebind_subsystems(root, ss_mask); 2133 if (ret) 2134 goto exit_stats; 2135 2136 ret = cgroup_bpf_inherit(root_cgrp); 2137 WARN_ON_ONCE(ret); 2138 2139 trace_cgroup_setup_root(root); 2140 2141 /* 2142 * There must be no failure case after here, since rebinding takes 2143 * care of subsystems' refcounts, which are explicitly dropped in 2144 * the failure exit path. 2145 */ 2146 list_add_rcu(&root->root_list, &cgroup_roots); 2147 cgroup_root_count++; 2148 2149 /* 2150 * Link the root cgroup in this hierarchy into all the css_set 2151 * objects. 2152 */ 2153 spin_lock_irq(&css_set_lock); 2154 hash_for_each(css_set_table, i, cset, hlist) { 2155 link_css_set(&tmp_links, cset, root_cgrp); 2156 if (css_set_populated(cset)) 2157 cgroup_update_populated(root_cgrp, true); 2158 } 2159 spin_unlock_irq(&css_set_lock); 2160 2161 BUG_ON(!list_empty(&root_cgrp->self.children)); 2162 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2163 2164 ret = 0; 2165 goto out; 2166 2167 exit_stats: 2168 cgroup_rstat_exit(root_cgrp); 2169 destroy_root: 2170 kernfs_destroy_root(root->kf_root); 2171 root->kf_root = NULL; 2172 exit_root_id: 2173 cgroup_exit_root_id(root); 2174 cancel_ref: 2175 percpu_ref_exit(&root_cgrp->self.refcnt); 2176 out: 2177 free_cgrp_cset_links(&tmp_links); 2178 return ret; 2179 } 2180 2181 int cgroup_do_get_tree(struct fs_context *fc) 2182 { 2183 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2184 int ret; 2185 2186 ctx->kfc.root = ctx->root->kf_root; 2187 if (fc->fs_type == &cgroup2_fs_type) 2188 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2189 else 2190 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2191 ret = kernfs_get_tree(fc); 2192 2193 /* 2194 * In non-init cgroup namespace, instead of root cgroup's dentry, 2195 * we return the dentry corresponding to the cgroupns->root_cgrp. 2196 */ 2197 if (!ret && ctx->ns != &init_cgroup_ns) { 2198 struct dentry *nsdentry; 2199 struct super_block *sb = fc->root->d_sb; 2200 struct cgroup *cgrp; 2201 2202 cgroup_lock(); 2203 spin_lock_irq(&css_set_lock); 2204 2205 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2206 2207 spin_unlock_irq(&css_set_lock); 2208 cgroup_unlock(); 2209 2210 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2211 dput(fc->root); 2212 if (IS_ERR(nsdentry)) { 2213 deactivate_locked_super(sb); 2214 ret = PTR_ERR(nsdentry); 2215 nsdentry = NULL; 2216 } 2217 fc->root = nsdentry; 2218 } 2219 2220 if (!ctx->kfc.new_sb_created) 2221 cgroup_put(&ctx->root->cgrp); 2222 2223 return ret; 2224 } 2225 2226 /* 2227 * Destroy a cgroup filesystem context. 2228 */ 2229 static void cgroup_fs_context_free(struct fs_context *fc) 2230 { 2231 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2232 2233 kfree(ctx->name); 2234 kfree(ctx->release_agent); 2235 put_cgroup_ns(ctx->ns); 2236 kernfs_free_fs_context(fc); 2237 kfree(ctx); 2238 } 2239 2240 static int cgroup_get_tree(struct fs_context *fc) 2241 { 2242 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2243 int ret; 2244 2245 WRITE_ONCE(cgrp_dfl_visible, true); 2246 cgroup_get_live(&cgrp_dfl_root.cgrp); 2247 ctx->root = &cgrp_dfl_root; 2248 2249 ret = cgroup_do_get_tree(fc); 2250 if (!ret) 2251 apply_cgroup_root_flags(ctx->flags); 2252 return ret; 2253 } 2254 2255 static const struct fs_context_operations cgroup_fs_context_ops = { 2256 .free = cgroup_fs_context_free, 2257 .parse_param = cgroup2_parse_param, 2258 .get_tree = cgroup_get_tree, 2259 .reconfigure = cgroup_reconfigure, 2260 }; 2261 2262 static const struct fs_context_operations cgroup1_fs_context_ops = { 2263 .free = cgroup_fs_context_free, 2264 .parse_param = cgroup1_parse_param, 2265 .get_tree = cgroup1_get_tree, 2266 .reconfigure = cgroup1_reconfigure, 2267 }; 2268 2269 /* 2270 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2271 * we select the namespace we're going to use. 2272 */ 2273 static int cgroup_init_fs_context(struct fs_context *fc) 2274 { 2275 struct cgroup_fs_context *ctx; 2276 2277 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2278 if (!ctx) 2279 return -ENOMEM; 2280 2281 ctx->ns = current->nsproxy->cgroup_ns; 2282 get_cgroup_ns(ctx->ns); 2283 fc->fs_private = &ctx->kfc; 2284 if (fc->fs_type == &cgroup2_fs_type) 2285 fc->ops = &cgroup_fs_context_ops; 2286 else 2287 fc->ops = &cgroup1_fs_context_ops; 2288 put_user_ns(fc->user_ns); 2289 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2290 fc->global = true; 2291 2292 if (have_favordynmods) 2293 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2294 2295 return 0; 2296 } 2297 2298 static void cgroup_kill_sb(struct super_block *sb) 2299 { 2300 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2301 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2302 2303 /* 2304 * If @root doesn't have any children, start killing it. 2305 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2306 * 2307 * And don't kill the default root. 2308 */ 2309 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2310 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2311 cgroup_bpf_offline(&root->cgrp); 2312 percpu_ref_kill(&root->cgrp.self.refcnt); 2313 } 2314 cgroup_put(&root->cgrp); 2315 kernfs_kill_sb(sb); 2316 } 2317 2318 struct file_system_type cgroup_fs_type = { 2319 .name = "cgroup", 2320 .init_fs_context = cgroup_init_fs_context, 2321 .parameters = cgroup1_fs_parameters, 2322 .kill_sb = cgroup_kill_sb, 2323 .fs_flags = FS_USERNS_MOUNT, 2324 }; 2325 2326 static struct file_system_type cgroup2_fs_type = { 2327 .name = "cgroup2", 2328 .init_fs_context = cgroup_init_fs_context, 2329 .parameters = cgroup2_fs_parameters, 2330 .kill_sb = cgroup_kill_sb, 2331 .fs_flags = FS_USERNS_MOUNT, 2332 }; 2333 2334 #ifdef CONFIG_CPUSETS 2335 static const struct fs_context_operations cpuset_fs_context_ops = { 2336 .get_tree = cgroup1_get_tree, 2337 .free = cgroup_fs_context_free, 2338 }; 2339 2340 /* 2341 * This is ugly, but preserves the userspace API for existing cpuset 2342 * users. If someone tries to mount the "cpuset" filesystem, we 2343 * silently switch it to mount "cgroup" instead 2344 */ 2345 static int cpuset_init_fs_context(struct fs_context *fc) 2346 { 2347 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2348 struct cgroup_fs_context *ctx; 2349 int err; 2350 2351 err = cgroup_init_fs_context(fc); 2352 if (err) { 2353 kfree(agent); 2354 return err; 2355 } 2356 2357 fc->ops = &cpuset_fs_context_ops; 2358 2359 ctx = cgroup_fc2context(fc); 2360 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2361 ctx->flags |= CGRP_ROOT_NOPREFIX; 2362 ctx->release_agent = agent; 2363 2364 get_filesystem(&cgroup_fs_type); 2365 put_filesystem(fc->fs_type); 2366 fc->fs_type = &cgroup_fs_type; 2367 2368 return 0; 2369 } 2370 2371 static struct file_system_type cpuset_fs_type = { 2372 .name = "cpuset", 2373 .init_fs_context = cpuset_init_fs_context, 2374 .fs_flags = FS_USERNS_MOUNT, 2375 }; 2376 #endif 2377 2378 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2379 struct cgroup_namespace *ns) 2380 { 2381 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2382 2383 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2384 } 2385 2386 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2387 struct cgroup_namespace *ns) 2388 { 2389 int ret; 2390 2391 cgroup_lock(); 2392 spin_lock_irq(&css_set_lock); 2393 2394 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2395 2396 spin_unlock_irq(&css_set_lock); 2397 cgroup_unlock(); 2398 2399 return ret; 2400 } 2401 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2402 2403 /** 2404 * cgroup_attach_lock - Lock for ->attach() 2405 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2406 * 2407 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2408 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2409 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2410 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2411 * lead to deadlocks. 2412 * 2413 * Bringing up a CPU may involve creating and destroying tasks which requires 2414 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2415 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2416 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2417 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2418 * the threadgroup_rwsem to be released to create new tasks. For more details: 2419 * 2420 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2421 * 2422 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2423 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2424 * CPU hotplug is disabled on entry. 2425 */ 2426 void cgroup_attach_lock(bool lock_threadgroup) 2427 { 2428 cpus_read_lock(); 2429 if (lock_threadgroup) 2430 percpu_down_write(&cgroup_threadgroup_rwsem); 2431 } 2432 2433 /** 2434 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2435 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2436 */ 2437 void cgroup_attach_unlock(bool lock_threadgroup) 2438 { 2439 if (lock_threadgroup) 2440 percpu_up_write(&cgroup_threadgroup_rwsem); 2441 cpus_read_unlock(); 2442 } 2443 2444 /** 2445 * cgroup_migrate_add_task - add a migration target task to a migration context 2446 * @task: target task 2447 * @mgctx: target migration context 2448 * 2449 * Add @task, which is a migration target, to @mgctx->tset. This function 2450 * becomes noop if @task doesn't need to be migrated. @task's css_set 2451 * should have been added as a migration source and @task->cg_list will be 2452 * moved from the css_set's tasks list to mg_tasks one. 2453 */ 2454 static void cgroup_migrate_add_task(struct task_struct *task, 2455 struct cgroup_mgctx *mgctx) 2456 { 2457 struct css_set *cset; 2458 2459 lockdep_assert_held(&css_set_lock); 2460 2461 /* @task either already exited or can't exit until the end */ 2462 if (task->flags & PF_EXITING) 2463 return; 2464 2465 /* cgroup_threadgroup_rwsem protects racing against forks */ 2466 WARN_ON_ONCE(list_empty(&task->cg_list)); 2467 2468 cset = task_css_set(task); 2469 if (!cset->mg_src_cgrp) 2470 return; 2471 2472 mgctx->tset.nr_tasks++; 2473 2474 list_move_tail(&task->cg_list, &cset->mg_tasks); 2475 if (list_empty(&cset->mg_node)) 2476 list_add_tail(&cset->mg_node, 2477 &mgctx->tset.src_csets); 2478 if (list_empty(&cset->mg_dst_cset->mg_node)) 2479 list_add_tail(&cset->mg_dst_cset->mg_node, 2480 &mgctx->tset.dst_csets); 2481 } 2482 2483 /** 2484 * cgroup_taskset_first - reset taskset and return the first task 2485 * @tset: taskset of interest 2486 * @dst_cssp: output variable for the destination css 2487 * 2488 * @tset iteration is initialized and the first task is returned. 2489 */ 2490 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2491 struct cgroup_subsys_state **dst_cssp) 2492 { 2493 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2494 tset->cur_task = NULL; 2495 2496 return cgroup_taskset_next(tset, dst_cssp); 2497 } 2498 2499 /** 2500 * cgroup_taskset_next - iterate to the next task in taskset 2501 * @tset: taskset of interest 2502 * @dst_cssp: output variable for the destination css 2503 * 2504 * Return the next task in @tset. Iteration must have been initialized 2505 * with cgroup_taskset_first(). 2506 */ 2507 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2508 struct cgroup_subsys_state **dst_cssp) 2509 { 2510 struct css_set *cset = tset->cur_cset; 2511 struct task_struct *task = tset->cur_task; 2512 2513 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2514 if (!task) 2515 task = list_first_entry(&cset->mg_tasks, 2516 struct task_struct, cg_list); 2517 else 2518 task = list_next_entry(task, cg_list); 2519 2520 if (&task->cg_list != &cset->mg_tasks) { 2521 tset->cur_cset = cset; 2522 tset->cur_task = task; 2523 2524 /* 2525 * This function may be called both before and 2526 * after cgroup_migrate_execute(). The two cases 2527 * can be distinguished by looking at whether @cset 2528 * has its ->mg_dst_cset set. 2529 */ 2530 if (cset->mg_dst_cset) 2531 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2532 else 2533 *dst_cssp = cset->subsys[tset->ssid]; 2534 2535 return task; 2536 } 2537 2538 cset = list_next_entry(cset, mg_node); 2539 task = NULL; 2540 } 2541 2542 return NULL; 2543 } 2544 2545 /** 2546 * cgroup_migrate_execute - migrate a taskset 2547 * @mgctx: migration context 2548 * 2549 * Migrate tasks in @mgctx as setup by migration preparation functions. 2550 * This function fails iff one of the ->can_attach callbacks fails and 2551 * guarantees that either all or none of the tasks in @mgctx are migrated. 2552 * @mgctx is consumed regardless of success. 2553 */ 2554 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2555 { 2556 struct cgroup_taskset *tset = &mgctx->tset; 2557 struct cgroup_subsys *ss; 2558 struct task_struct *task, *tmp_task; 2559 struct css_set *cset, *tmp_cset; 2560 int ssid, failed_ssid, ret; 2561 2562 /* check that we can legitimately attach to the cgroup */ 2563 if (tset->nr_tasks) { 2564 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2565 if (ss->can_attach) { 2566 tset->ssid = ssid; 2567 ret = ss->can_attach(tset); 2568 if (ret) { 2569 failed_ssid = ssid; 2570 goto out_cancel_attach; 2571 } 2572 } 2573 } while_each_subsys_mask(); 2574 } 2575 2576 /* 2577 * Now that we're guaranteed success, proceed to move all tasks to 2578 * the new cgroup. There are no failure cases after here, so this 2579 * is the commit point. 2580 */ 2581 spin_lock_irq(&css_set_lock); 2582 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2583 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2584 struct css_set *from_cset = task_css_set(task); 2585 struct css_set *to_cset = cset->mg_dst_cset; 2586 2587 get_css_set(to_cset); 2588 to_cset->nr_tasks++; 2589 css_set_move_task(task, from_cset, to_cset, true); 2590 from_cset->nr_tasks--; 2591 /* 2592 * If the source or destination cgroup is frozen, 2593 * the task might require to change its state. 2594 */ 2595 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2596 to_cset->dfl_cgrp); 2597 put_css_set_locked(from_cset); 2598 2599 } 2600 } 2601 spin_unlock_irq(&css_set_lock); 2602 2603 /* 2604 * Migration is committed, all target tasks are now on dst_csets. 2605 * Nothing is sensitive to fork() after this point. Notify 2606 * controllers that migration is complete. 2607 */ 2608 tset->csets = &tset->dst_csets; 2609 2610 if (tset->nr_tasks) { 2611 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2612 if (ss->attach) { 2613 tset->ssid = ssid; 2614 ss->attach(tset); 2615 } 2616 } while_each_subsys_mask(); 2617 } 2618 2619 ret = 0; 2620 goto out_release_tset; 2621 2622 out_cancel_attach: 2623 if (tset->nr_tasks) { 2624 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2625 if (ssid == failed_ssid) 2626 break; 2627 if (ss->cancel_attach) { 2628 tset->ssid = ssid; 2629 ss->cancel_attach(tset); 2630 } 2631 } while_each_subsys_mask(); 2632 } 2633 out_release_tset: 2634 spin_lock_irq(&css_set_lock); 2635 list_splice_init(&tset->dst_csets, &tset->src_csets); 2636 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2637 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2638 list_del_init(&cset->mg_node); 2639 } 2640 spin_unlock_irq(&css_set_lock); 2641 2642 /* 2643 * Re-initialize the cgroup_taskset structure in case it is reused 2644 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2645 * iteration. 2646 */ 2647 tset->nr_tasks = 0; 2648 tset->csets = &tset->src_csets; 2649 return ret; 2650 } 2651 2652 /** 2653 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2654 * @dst_cgrp: destination cgroup to test 2655 * 2656 * On the default hierarchy, except for the mixable, (possible) thread root 2657 * and threaded cgroups, subtree_control must be zero for migration 2658 * destination cgroups with tasks so that child cgroups don't compete 2659 * against tasks. 2660 */ 2661 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2662 { 2663 /* v1 doesn't have any restriction */ 2664 if (!cgroup_on_dfl(dst_cgrp)) 2665 return 0; 2666 2667 /* verify @dst_cgrp can host resources */ 2668 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2669 return -EOPNOTSUPP; 2670 2671 /* 2672 * If @dst_cgrp is already or can become a thread root or is 2673 * threaded, it doesn't matter. 2674 */ 2675 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2676 return 0; 2677 2678 /* apply no-internal-process constraint */ 2679 if (dst_cgrp->subtree_control) 2680 return -EBUSY; 2681 2682 return 0; 2683 } 2684 2685 /** 2686 * cgroup_migrate_finish - cleanup after attach 2687 * @mgctx: migration context 2688 * 2689 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2690 * those functions for details. 2691 */ 2692 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2693 { 2694 struct css_set *cset, *tmp_cset; 2695 2696 lockdep_assert_held(&cgroup_mutex); 2697 2698 spin_lock_irq(&css_set_lock); 2699 2700 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2701 mg_src_preload_node) { 2702 cset->mg_src_cgrp = NULL; 2703 cset->mg_dst_cgrp = NULL; 2704 cset->mg_dst_cset = NULL; 2705 list_del_init(&cset->mg_src_preload_node); 2706 put_css_set_locked(cset); 2707 } 2708 2709 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2710 mg_dst_preload_node) { 2711 cset->mg_src_cgrp = NULL; 2712 cset->mg_dst_cgrp = NULL; 2713 cset->mg_dst_cset = NULL; 2714 list_del_init(&cset->mg_dst_preload_node); 2715 put_css_set_locked(cset); 2716 } 2717 2718 spin_unlock_irq(&css_set_lock); 2719 } 2720 2721 /** 2722 * cgroup_migrate_add_src - add a migration source css_set 2723 * @src_cset: the source css_set to add 2724 * @dst_cgrp: the destination cgroup 2725 * @mgctx: migration context 2726 * 2727 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2728 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2729 * up by cgroup_migrate_finish(). 2730 * 2731 * This function may be called without holding cgroup_threadgroup_rwsem 2732 * even if the target is a process. Threads may be created and destroyed 2733 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2734 * into play and the preloaded css_sets are guaranteed to cover all 2735 * migrations. 2736 */ 2737 void cgroup_migrate_add_src(struct css_set *src_cset, 2738 struct cgroup *dst_cgrp, 2739 struct cgroup_mgctx *mgctx) 2740 { 2741 struct cgroup *src_cgrp; 2742 2743 lockdep_assert_held(&cgroup_mutex); 2744 lockdep_assert_held(&css_set_lock); 2745 2746 /* 2747 * If ->dead, @src_set is associated with one or more dead cgroups 2748 * and doesn't contain any migratable tasks. Ignore it early so 2749 * that the rest of migration path doesn't get confused by it. 2750 */ 2751 if (src_cset->dead) 2752 return; 2753 2754 if (!list_empty(&src_cset->mg_src_preload_node)) 2755 return; 2756 2757 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2758 2759 WARN_ON(src_cset->mg_src_cgrp); 2760 WARN_ON(src_cset->mg_dst_cgrp); 2761 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2762 WARN_ON(!list_empty(&src_cset->mg_node)); 2763 2764 src_cset->mg_src_cgrp = src_cgrp; 2765 src_cset->mg_dst_cgrp = dst_cgrp; 2766 get_css_set(src_cset); 2767 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2768 } 2769 2770 /** 2771 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2772 * @mgctx: migration context 2773 * 2774 * Tasks are about to be moved and all the source css_sets have been 2775 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2776 * pins all destination css_sets, links each to its source, and append them 2777 * to @mgctx->preloaded_dst_csets. 2778 * 2779 * This function must be called after cgroup_migrate_add_src() has been 2780 * called on each migration source css_set. After migration is performed 2781 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2782 * @mgctx. 2783 */ 2784 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2785 { 2786 struct css_set *src_cset, *tmp_cset; 2787 2788 lockdep_assert_held(&cgroup_mutex); 2789 2790 /* look up the dst cset for each src cset and link it to src */ 2791 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2792 mg_src_preload_node) { 2793 struct css_set *dst_cset; 2794 struct cgroup_subsys *ss; 2795 int ssid; 2796 2797 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2798 if (!dst_cset) 2799 return -ENOMEM; 2800 2801 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2802 2803 /* 2804 * If src cset equals dst, it's noop. Drop the src. 2805 * cgroup_migrate() will skip the cset too. Note that we 2806 * can't handle src == dst as some nodes are used by both. 2807 */ 2808 if (src_cset == dst_cset) { 2809 src_cset->mg_src_cgrp = NULL; 2810 src_cset->mg_dst_cgrp = NULL; 2811 list_del_init(&src_cset->mg_src_preload_node); 2812 put_css_set(src_cset); 2813 put_css_set(dst_cset); 2814 continue; 2815 } 2816 2817 src_cset->mg_dst_cset = dst_cset; 2818 2819 if (list_empty(&dst_cset->mg_dst_preload_node)) 2820 list_add_tail(&dst_cset->mg_dst_preload_node, 2821 &mgctx->preloaded_dst_csets); 2822 else 2823 put_css_set(dst_cset); 2824 2825 for_each_subsys(ss, ssid) 2826 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2827 mgctx->ss_mask |= 1 << ssid; 2828 } 2829 2830 return 0; 2831 } 2832 2833 /** 2834 * cgroup_migrate - migrate a process or task to a cgroup 2835 * @leader: the leader of the process or the task to migrate 2836 * @threadgroup: whether @leader points to the whole process or a single task 2837 * @mgctx: migration context 2838 * 2839 * Migrate a process or task denoted by @leader. If migrating a process, 2840 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2841 * responsible for invoking cgroup_migrate_add_src() and 2842 * cgroup_migrate_prepare_dst() on the targets before invoking this 2843 * function and following up with cgroup_migrate_finish(). 2844 * 2845 * As long as a controller's ->can_attach() doesn't fail, this function is 2846 * guaranteed to succeed. This means that, excluding ->can_attach() 2847 * failure, when migrating multiple targets, the success or failure can be 2848 * decided for all targets by invoking group_migrate_prepare_dst() before 2849 * actually starting migrating. 2850 */ 2851 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2852 struct cgroup_mgctx *mgctx) 2853 { 2854 struct task_struct *task; 2855 2856 /* 2857 * The following thread iteration should be inside an RCU critical 2858 * section to prevent tasks from being freed while taking the snapshot. 2859 * spin_lock_irq() implies RCU critical section here. 2860 */ 2861 spin_lock_irq(&css_set_lock); 2862 task = leader; 2863 do { 2864 cgroup_migrate_add_task(task, mgctx); 2865 if (!threadgroup) 2866 break; 2867 } while_each_thread(leader, task); 2868 spin_unlock_irq(&css_set_lock); 2869 2870 return cgroup_migrate_execute(mgctx); 2871 } 2872 2873 /** 2874 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2875 * @dst_cgrp: the cgroup to attach to 2876 * @leader: the task or the leader of the threadgroup to be attached 2877 * @threadgroup: attach the whole threadgroup? 2878 * 2879 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2880 */ 2881 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2882 bool threadgroup) 2883 { 2884 DEFINE_CGROUP_MGCTX(mgctx); 2885 struct task_struct *task; 2886 int ret = 0; 2887 2888 /* look up all src csets */ 2889 spin_lock_irq(&css_set_lock); 2890 rcu_read_lock(); 2891 task = leader; 2892 do { 2893 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2894 if (!threadgroup) 2895 break; 2896 } while_each_thread(leader, task); 2897 rcu_read_unlock(); 2898 spin_unlock_irq(&css_set_lock); 2899 2900 /* prepare dst csets and commit */ 2901 ret = cgroup_migrate_prepare_dst(&mgctx); 2902 if (!ret) 2903 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2904 2905 cgroup_migrate_finish(&mgctx); 2906 2907 if (!ret) 2908 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2909 2910 return ret; 2911 } 2912 2913 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2914 bool *threadgroup_locked) 2915 { 2916 struct task_struct *tsk; 2917 pid_t pid; 2918 2919 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2920 return ERR_PTR(-EINVAL); 2921 2922 /* 2923 * If we migrate a single thread, we don't care about threadgroup 2924 * stability. If the thread is `current`, it won't exit(2) under our 2925 * hands or change PID through exec(2). We exclude 2926 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2927 * callers by cgroup_mutex. 2928 * Therefore, we can skip the global lock. 2929 */ 2930 lockdep_assert_held(&cgroup_mutex); 2931 *threadgroup_locked = pid || threadgroup; 2932 cgroup_attach_lock(*threadgroup_locked); 2933 2934 rcu_read_lock(); 2935 if (pid) { 2936 tsk = find_task_by_vpid(pid); 2937 if (!tsk) { 2938 tsk = ERR_PTR(-ESRCH); 2939 goto out_unlock_threadgroup; 2940 } 2941 } else { 2942 tsk = current; 2943 } 2944 2945 if (threadgroup) 2946 tsk = tsk->group_leader; 2947 2948 /* 2949 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2950 * If userland migrates such a kthread to a non-root cgroup, it can 2951 * become trapped in a cpuset, or RT kthread may be born in a 2952 * cgroup with no rt_runtime allocated. Just say no. 2953 */ 2954 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2955 tsk = ERR_PTR(-EINVAL); 2956 goto out_unlock_threadgroup; 2957 } 2958 2959 get_task_struct(tsk); 2960 goto out_unlock_rcu; 2961 2962 out_unlock_threadgroup: 2963 cgroup_attach_unlock(*threadgroup_locked); 2964 *threadgroup_locked = false; 2965 out_unlock_rcu: 2966 rcu_read_unlock(); 2967 return tsk; 2968 } 2969 2970 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2971 { 2972 struct cgroup_subsys *ss; 2973 int ssid; 2974 2975 /* release reference from cgroup_procs_write_start() */ 2976 put_task_struct(task); 2977 2978 cgroup_attach_unlock(threadgroup_locked); 2979 2980 for_each_subsys(ss, ssid) 2981 if (ss->post_attach) 2982 ss->post_attach(); 2983 } 2984 2985 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2986 { 2987 struct cgroup_subsys *ss; 2988 bool printed = false; 2989 int ssid; 2990 2991 do_each_subsys_mask(ss, ssid, ss_mask) { 2992 if (printed) 2993 seq_putc(seq, ' '); 2994 seq_puts(seq, ss->name); 2995 printed = true; 2996 } while_each_subsys_mask(); 2997 if (printed) 2998 seq_putc(seq, '\n'); 2999 } 3000 3001 /* show controllers which are enabled from the parent */ 3002 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3003 { 3004 struct cgroup *cgrp = seq_css(seq)->cgroup; 3005 3006 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3007 return 0; 3008 } 3009 3010 /* show controllers which are enabled for a given cgroup's children */ 3011 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3012 { 3013 struct cgroup *cgrp = seq_css(seq)->cgroup; 3014 3015 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3016 return 0; 3017 } 3018 3019 /** 3020 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3021 * @cgrp: root of the subtree to update csses for 3022 * 3023 * @cgrp's control masks have changed and its subtree's css associations 3024 * need to be updated accordingly. This function looks up all css_sets 3025 * which are attached to the subtree, creates the matching updated css_sets 3026 * and migrates the tasks to the new ones. 3027 */ 3028 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3029 { 3030 DEFINE_CGROUP_MGCTX(mgctx); 3031 struct cgroup_subsys_state *d_css; 3032 struct cgroup *dsct; 3033 struct css_set *src_cset; 3034 bool has_tasks; 3035 int ret; 3036 3037 lockdep_assert_held(&cgroup_mutex); 3038 3039 /* look up all csses currently attached to @cgrp's subtree */ 3040 spin_lock_irq(&css_set_lock); 3041 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3042 struct cgrp_cset_link *link; 3043 3044 /* 3045 * As cgroup_update_dfl_csses() is only called by 3046 * cgroup_apply_control(). The csses associated with the 3047 * given cgrp will not be affected by changes made to 3048 * its subtree_control file. We can skip them. 3049 */ 3050 if (dsct == cgrp) 3051 continue; 3052 3053 list_for_each_entry(link, &dsct->cset_links, cset_link) 3054 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3055 } 3056 spin_unlock_irq(&css_set_lock); 3057 3058 /* 3059 * We need to write-lock threadgroup_rwsem while migrating tasks. 3060 * However, if there are no source csets for @cgrp, changing its 3061 * controllers isn't gonna produce any task migrations and the 3062 * write-locking can be skipped safely. 3063 */ 3064 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3065 cgroup_attach_lock(has_tasks); 3066 3067 /* NULL dst indicates self on default hierarchy */ 3068 ret = cgroup_migrate_prepare_dst(&mgctx); 3069 if (ret) 3070 goto out_finish; 3071 3072 spin_lock_irq(&css_set_lock); 3073 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3074 mg_src_preload_node) { 3075 struct task_struct *task, *ntask; 3076 3077 /* all tasks in src_csets need to be migrated */ 3078 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3079 cgroup_migrate_add_task(task, &mgctx); 3080 } 3081 spin_unlock_irq(&css_set_lock); 3082 3083 ret = cgroup_migrate_execute(&mgctx); 3084 out_finish: 3085 cgroup_migrate_finish(&mgctx); 3086 cgroup_attach_unlock(has_tasks); 3087 return ret; 3088 } 3089 3090 /** 3091 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3092 * @cgrp: root of the target subtree 3093 * 3094 * Because css offlining is asynchronous, userland may try to re-enable a 3095 * controller while the previous css is still around. This function grabs 3096 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3097 */ 3098 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3099 __acquires(&cgroup_mutex) 3100 { 3101 struct cgroup *dsct; 3102 struct cgroup_subsys_state *d_css; 3103 struct cgroup_subsys *ss; 3104 int ssid; 3105 3106 restart: 3107 cgroup_lock(); 3108 3109 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3110 for_each_subsys(ss, ssid) { 3111 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3112 DEFINE_WAIT(wait); 3113 3114 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3115 continue; 3116 3117 cgroup_get_live(dsct); 3118 prepare_to_wait(&dsct->offline_waitq, &wait, 3119 TASK_UNINTERRUPTIBLE); 3120 3121 cgroup_unlock(); 3122 schedule(); 3123 finish_wait(&dsct->offline_waitq, &wait); 3124 3125 cgroup_put(dsct); 3126 goto restart; 3127 } 3128 } 3129 } 3130 3131 /** 3132 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3133 * @cgrp: root of the target subtree 3134 * 3135 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3136 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3137 * itself. 3138 */ 3139 static void cgroup_save_control(struct cgroup *cgrp) 3140 { 3141 struct cgroup *dsct; 3142 struct cgroup_subsys_state *d_css; 3143 3144 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3145 dsct->old_subtree_control = dsct->subtree_control; 3146 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3147 dsct->old_dom_cgrp = dsct->dom_cgrp; 3148 } 3149 } 3150 3151 /** 3152 * cgroup_propagate_control - refresh control masks of a subtree 3153 * @cgrp: root of the target subtree 3154 * 3155 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3156 * ->subtree_control and propagate controller availability through the 3157 * subtree so that descendants don't have unavailable controllers enabled. 3158 */ 3159 static void cgroup_propagate_control(struct cgroup *cgrp) 3160 { 3161 struct cgroup *dsct; 3162 struct cgroup_subsys_state *d_css; 3163 3164 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3165 dsct->subtree_control &= cgroup_control(dsct); 3166 dsct->subtree_ss_mask = 3167 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3168 cgroup_ss_mask(dsct)); 3169 } 3170 } 3171 3172 /** 3173 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3174 * @cgrp: root of the target subtree 3175 * 3176 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3177 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3178 * itself. 3179 */ 3180 static void cgroup_restore_control(struct cgroup *cgrp) 3181 { 3182 struct cgroup *dsct; 3183 struct cgroup_subsys_state *d_css; 3184 3185 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3186 dsct->subtree_control = dsct->old_subtree_control; 3187 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3188 dsct->dom_cgrp = dsct->old_dom_cgrp; 3189 } 3190 } 3191 3192 static bool css_visible(struct cgroup_subsys_state *css) 3193 { 3194 struct cgroup_subsys *ss = css->ss; 3195 struct cgroup *cgrp = css->cgroup; 3196 3197 if (cgroup_control(cgrp) & (1 << ss->id)) 3198 return true; 3199 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3200 return false; 3201 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3202 } 3203 3204 /** 3205 * cgroup_apply_control_enable - enable or show csses according to control 3206 * @cgrp: root of the target subtree 3207 * 3208 * Walk @cgrp's subtree and create new csses or make the existing ones 3209 * visible. A css is created invisible if it's being implicitly enabled 3210 * through dependency. An invisible css is made visible when the userland 3211 * explicitly enables it. 3212 * 3213 * Returns 0 on success, -errno on failure. On failure, csses which have 3214 * been processed already aren't cleaned up. The caller is responsible for 3215 * cleaning up with cgroup_apply_control_disable(). 3216 */ 3217 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3218 { 3219 struct cgroup *dsct; 3220 struct cgroup_subsys_state *d_css; 3221 struct cgroup_subsys *ss; 3222 int ssid, ret; 3223 3224 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3225 for_each_subsys(ss, ssid) { 3226 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3227 3228 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3229 continue; 3230 3231 if (!css) { 3232 css = css_create(dsct, ss); 3233 if (IS_ERR(css)) 3234 return PTR_ERR(css); 3235 } 3236 3237 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3238 3239 if (css_visible(css)) { 3240 ret = css_populate_dir(css); 3241 if (ret) 3242 return ret; 3243 } 3244 } 3245 } 3246 3247 return 0; 3248 } 3249 3250 /** 3251 * cgroup_apply_control_disable - kill or hide csses according to control 3252 * @cgrp: root of the target subtree 3253 * 3254 * Walk @cgrp's subtree and kill and hide csses so that they match 3255 * cgroup_ss_mask() and cgroup_visible_mask(). 3256 * 3257 * A css is hidden when the userland requests it to be disabled while other 3258 * subsystems are still depending on it. The css must not actively control 3259 * resources and be in the vanilla state if it's made visible again later. 3260 * Controllers which may be depended upon should provide ->css_reset() for 3261 * this purpose. 3262 */ 3263 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3264 { 3265 struct cgroup *dsct; 3266 struct cgroup_subsys_state *d_css; 3267 struct cgroup_subsys *ss; 3268 int ssid; 3269 3270 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3271 for_each_subsys(ss, ssid) { 3272 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3273 3274 if (!css) 3275 continue; 3276 3277 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3278 3279 if (css->parent && 3280 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3281 kill_css(css); 3282 } else if (!css_visible(css)) { 3283 css_clear_dir(css); 3284 if (ss->css_reset) 3285 ss->css_reset(css); 3286 } 3287 } 3288 } 3289 } 3290 3291 /** 3292 * cgroup_apply_control - apply control mask updates to the subtree 3293 * @cgrp: root of the target subtree 3294 * 3295 * subsystems can be enabled and disabled in a subtree using the following 3296 * steps. 3297 * 3298 * 1. Call cgroup_save_control() to stash the current state. 3299 * 2. Update ->subtree_control masks in the subtree as desired. 3300 * 3. Call cgroup_apply_control() to apply the changes. 3301 * 4. Optionally perform other related operations. 3302 * 5. Call cgroup_finalize_control() to finish up. 3303 * 3304 * This function implements step 3 and propagates the mask changes 3305 * throughout @cgrp's subtree, updates csses accordingly and perform 3306 * process migrations. 3307 */ 3308 static int cgroup_apply_control(struct cgroup *cgrp) 3309 { 3310 int ret; 3311 3312 cgroup_propagate_control(cgrp); 3313 3314 ret = cgroup_apply_control_enable(cgrp); 3315 if (ret) 3316 return ret; 3317 3318 /* 3319 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3320 * making the following cgroup_update_dfl_csses() properly update 3321 * css associations of all tasks in the subtree. 3322 */ 3323 return cgroup_update_dfl_csses(cgrp); 3324 } 3325 3326 /** 3327 * cgroup_finalize_control - finalize control mask update 3328 * @cgrp: root of the target subtree 3329 * @ret: the result of the update 3330 * 3331 * Finalize control mask update. See cgroup_apply_control() for more info. 3332 */ 3333 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3334 { 3335 if (ret) { 3336 cgroup_restore_control(cgrp); 3337 cgroup_propagate_control(cgrp); 3338 } 3339 3340 cgroup_apply_control_disable(cgrp); 3341 } 3342 3343 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3344 { 3345 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3346 3347 /* if nothing is getting enabled, nothing to worry about */ 3348 if (!enable) 3349 return 0; 3350 3351 /* can @cgrp host any resources? */ 3352 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3353 return -EOPNOTSUPP; 3354 3355 /* mixables don't care */ 3356 if (cgroup_is_mixable(cgrp)) 3357 return 0; 3358 3359 if (domain_enable) { 3360 /* can't enable domain controllers inside a thread subtree */ 3361 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3362 return -EOPNOTSUPP; 3363 } else { 3364 /* 3365 * Threaded controllers can handle internal competitions 3366 * and are always allowed inside a (prospective) thread 3367 * subtree. 3368 */ 3369 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3370 return 0; 3371 } 3372 3373 /* 3374 * Controllers can't be enabled for a cgroup with tasks to avoid 3375 * child cgroups competing against tasks. 3376 */ 3377 if (cgroup_has_tasks(cgrp)) 3378 return -EBUSY; 3379 3380 return 0; 3381 } 3382 3383 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3384 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3385 char *buf, size_t nbytes, 3386 loff_t off) 3387 { 3388 u16 enable = 0, disable = 0; 3389 struct cgroup *cgrp, *child; 3390 struct cgroup_subsys *ss; 3391 char *tok; 3392 int ssid, ret; 3393 3394 /* 3395 * Parse input - space separated list of subsystem names prefixed 3396 * with either + or -. 3397 */ 3398 buf = strstrip(buf); 3399 while ((tok = strsep(&buf, " "))) { 3400 if (tok[0] == '\0') 3401 continue; 3402 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3403 if (!cgroup_ssid_enabled(ssid) || 3404 strcmp(tok + 1, ss->name)) 3405 continue; 3406 3407 if (*tok == '+') { 3408 enable |= 1 << ssid; 3409 disable &= ~(1 << ssid); 3410 } else if (*tok == '-') { 3411 disable |= 1 << ssid; 3412 enable &= ~(1 << ssid); 3413 } else { 3414 return -EINVAL; 3415 } 3416 break; 3417 } while_each_subsys_mask(); 3418 if (ssid == CGROUP_SUBSYS_COUNT) 3419 return -EINVAL; 3420 } 3421 3422 cgrp = cgroup_kn_lock_live(of->kn, true); 3423 if (!cgrp) 3424 return -ENODEV; 3425 3426 for_each_subsys(ss, ssid) { 3427 if (enable & (1 << ssid)) { 3428 if (cgrp->subtree_control & (1 << ssid)) { 3429 enable &= ~(1 << ssid); 3430 continue; 3431 } 3432 3433 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3434 ret = -ENOENT; 3435 goto out_unlock; 3436 } 3437 } else if (disable & (1 << ssid)) { 3438 if (!(cgrp->subtree_control & (1 << ssid))) { 3439 disable &= ~(1 << ssid); 3440 continue; 3441 } 3442 3443 /* a child has it enabled? */ 3444 cgroup_for_each_live_child(child, cgrp) { 3445 if (child->subtree_control & (1 << ssid)) { 3446 ret = -EBUSY; 3447 goto out_unlock; 3448 } 3449 } 3450 } 3451 } 3452 3453 if (!enable && !disable) { 3454 ret = 0; 3455 goto out_unlock; 3456 } 3457 3458 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3459 if (ret) 3460 goto out_unlock; 3461 3462 /* save and update control masks and prepare csses */ 3463 cgroup_save_control(cgrp); 3464 3465 cgrp->subtree_control |= enable; 3466 cgrp->subtree_control &= ~disable; 3467 3468 ret = cgroup_apply_control(cgrp); 3469 cgroup_finalize_control(cgrp, ret); 3470 if (ret) 3471 goto out_unlock; 3472 3473 kernfs_activate(cgrp->kn); 3474 out_unlock: 3475 cgroup_kn_unlock(of->kn); 3476 return ret ?: nbytes; 3477 } 3478 3479 /** 3480 * cgroup_enable_threaded - make @cgrp threaded 3481 * @cgrp: the target cgroup 3482 * 3483 * Called when "threaded" is written to the cgroup.type interface file and 3484 * tries to make @cgrp threaded and join the parent's resource domain. 3485 * This function is never called on the root cgroup as cgroup.type doesn't 3486 * exist on it. 3487 */ 3488 static int cgroup_enable_threaded(struct cgroup *cgrp) 3489 { 3490 struct cgroup *parent = cgroup_parent(cgrp); 3491 struct cgroup *dom_cgrp = parent->dom_cgrp; 3492 struct cgroup *dsct; 3493 struct cgroup_subsys_state *d_css; 3494 int ret; 3495 3496 lockdep_assert_held(&cgroup_mutex); 3497 3498 /* noop if already threaded */ 3499 if (cgroup_is_threaded(cgrp)) 3500 return 0; 3501 3502 /* 3503 * If @cgroup is populated or has domain controllers enabled, it 3504 * can't be switched. While the below cgroup_can_be_thread_root() 3505 * test can catch the same conditions, that's only when @parent is 3506 * not mixable, so let's check it explicitly. 3507 */ 3508 if (cgroup_is_populated(cgrp) || 3509 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3510 return -EOPNOTSUPP; 3511 3512 /* we're joining the parent's domain, ensure its validity */ 3513 if (!cgroup_is_valid_domain(dom_cgrp) || 3514 !cgroup_can_be_thread_root(dom_cgrp)) 3515 return -EOPNOTSUPP; 3516 3517 /* 3518 * The following shouldn't cause actual migrations and should 3519 * always succeed. 3520 */ 3521 cgroup_save_control(cgrp); 3522 3523 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3524 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3525 dsct->dom_cgrp = dom_cgrp; 3526 3527 ret = cgroup_apply_control(cgrp); 3528 if (!ret) 3529 parent->nr_threaded_children++; 3530 3531 cgroup_finalize_control(cgrp, ret); 3532 return ret; 3533 } 3534 3535 static int cgroup_type_show(struct seq_file *seq, void *v) 3536 { 3537 struct cgroup *cgrp = seq_css(seq)->cgroup; 3538 3539 if (cgroup_is_threaded(cgrp)) 3540 seq_puts(seq, "threaded\n"); 3541 else if (!cgroup_is_valid_domain(cgrp)) 3542 seq_puts(seq, "domain invalid\n"); 3543 else if (cgroup_is_thread_root(cgrp)) 3544 seq_puts(seq, "domain threaded\n"); 3545 else 3546 seq_puts(seq, "domain\n"); 3547 3548 return 0; 3549 } 3550 3551 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3552 size_t nbytes, loff_t off) 3553 { 3554 struct cgroup *cgrp; 3555 int ret; 3556 3557 /* only switching to threaded mode is supported */ 3558 if (strcmp(strstrip(buf), "threaded")) 3559 return -EINVAL; 3560 3561 /* drain dying csses before we re-apply (threaded) subtree control */ 3562 cgrp = cgroup_kn_lock_live(of->kn, true); 3563 if (!cgrp) 3564 return -ENOENT; 3565 3566 /* threaded can only be enabled */ 3567 ret = cgroup_enable_threaded(cgrp); 3568 3569 cgroup_kn_unlock(of->kn); 3570 return ret ?: nbytes; 3571 } 3572 3573 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3574 { 3575 struct cgroup *cgrp = seq_css(seq)->cgroup; 3576 int descendants = READ_ONCE(cgrp->max_descendants); 3577 3578 if (descendants == INT_MAX) 3579 seq_puts(seq, "max\n"); 3580 else 3581 seq_printf(seq, "%d\n", descendants); 3582 3583 return 0; 3584 } 3585 3586 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3587 char *buf, size_t nbytes, loff_t off) 3588 { 3589 struct cgroup *cgrp; 3590 int descendants; 3591 ssize_t ret; 3592 3593 buf = strstrip(buf); 3594 if (!strcmp(buf, "max")) { 3595 descendants = INT_MAX; 3596 } else { 3597 ret = kstrtoint(buf, 0, &descendants); 3598 if (ret) 3599 return ret; 3600 } 3601 3602 if (descendants < 0) 3603 return -ERANGE; 3604 3605 cgrp = cgroup_kn_lock_live(of->kn, false); 3606 if (!cgrp) 3607 return -ENOENT; 3608 3609 cgrp->max_descendants = descendants; 3610 3611 cgroup_kn_unlock(of->kn); 3612 3613 return nbytes; 3614 } 3615 3616 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3617 { 3618 struct cgroup *cgrp = seq_css(seq)->cgroup; 3619 int depth = READ_ONCE(cgrp->max_depth); 3620 3621 if (depth == INT_MAX) 3622 seq_puts(seq, "max\n"); 3623 else 3624 seq_printf(seq, "%d\n", depth); 3625 3626 return 0; 3627 } 3628 3629 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3630 char *buf, size_t nbytes, loff_t off) 3631 { 3632 struct cgroup *cgrp; 3633 ssize_t ret; 3634 int depth; 3635 3636 buf = strstrip(buf); 3637 if (!strcmp(buf, "max")) { 3638 depth = INT_MAX; 3639 } else { 3640 ret = kstrtoint(buf, 0, &depth); 3641 if (ret) 3642 return ret; 3643 } 3644 3645 if (depth < 0) 3646 return -ERANGE; 3647 3648 cgrp = cgroup_kn_lock_live(of->kn, false); 3649 if (!cgrp) 3650 return -ENOENT; 3651 3652 cgrp->max_depth = depth; 3653 3654 cgroup_kn_unlock(of->kn); 3655 3656 return nbytes; 3657 } 3658 3659 static int cgroup_events_show(struct seq_file *seq, void *v) 3660 { 3661 struct cgroup *cgrp = seq_css(seq)->cgroup; 3662 3663 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3664 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3665 3666 return 0; 3667 } 3668 3669 static int cgroup_stat_show(struct seq_file *seq, void *v) 3670 { 3671 struct cgroup *cgroup = seq_css(seq)->cgroup; 3672 3673 seq_printf(seq, "nr_descendants %d\n", 3674 cgroup->nr_descendants); 3675 seq_printf(seq, "nr_dying_descendants %d\n", 3676 cgroup->nr_dying_descendants); 3677 3678 return 0; 3679 } 3680 3681 #ifdef CONFIG_CGROUP_SCHED 3682 /** 3683 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3684 * @cgrp: the cgroup of interest 3685 * @ss: the subsystem of interest 3686 * 3687 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3688 * or is offline, %NULL is returned. 3689 */ 3690 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3691 struct cgroup_subsys *ss) 3692 { 3693 struct cgroup_subsys_state *css; 3694 3695 rcu_read_lock(); 3696 css = cgroup_css(cgrp, ss); 3697 if (css && !css_tryget_online(css)) 3698 css = NULL; 3699 rcu_read_unlock(); 3700 3701 return css; 3702 } 3703 3704 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3705 { 3706 struct cgroup *cgrp = seq_css(seq)->cgroup; 3707 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3708 struct cgroup_subsys_state *css; 3709 int ret; 3710 3711 if (!ss->css_extra_stat_show) 3712 return 0; 3713 3714 css = cgroup_tryget_css(cgrp, ss); 3715 if (!css) 3716 return 0; 3717 3718 ret = ss->css_extra_stat_show(seq, css); 3719 css_put(css); 3720 return ret; 3721 } 3722 3723 static int cgroup_local_stat_show(struct seq_file *seq, 3724 struct cgroup *cgrp, int ssid) 3725 { 3726 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3727 struct cgroup_subsys_state *css; 3728 int ret; 3729 3730 if (!ss->css_local_stat_show) 3731 return 0; 3732 3733 css = cgroup_tryget_css(cgrp, ss); 3734 if (!css) 3735 return 0; 3736 3737 ret = ss->css_local_stat_show(seq, css); 3738 css_put(css); 3739 return ret; 3740 } 3741 #endif 3742 3743 static int cpu_stat_show(struct seq_file *seq, void *v) 3744 { 3745 int ret = 0; 3746 3747 cgroup_base_stat_cputime_show(seq); 3748 #ifdef CONFIG_CGROUP_SCHED 3749 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3750 #endif 3751 return ret; 3752 } 3753 3754 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3755 { 3756 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3757 int ret = 0; 3758 3759 #ifdef CONFIG_CGROUP_SCHED 3760 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3761 #endif 3762 return ret; 3763 } 3764 3765 #ifdef CONFIG_PSI 3766 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3767 { 3768 struct cgroup *cgrp = seq_css(seq)->cgroup; 3769 struct psi_group *psi = cgroup_psi(cgrp); 3770 3771 return psi_show(seq, psi, PSI_IO); 3772 } 3773 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3774 { 3775 struct cgroup *cgrp = seq_css(seq)->cgroup; 3776 struct psi_group *psi = cgroup_psi(cgrp); 3777 3778 return psi_show(seq, psi, PSI_MEM); 3779 } 3780 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3781 { 3782 struct cgroup *cgrp = seq_css(seq)->cgroup; 3783 struct psi_group *psi = cgroup_psi(cgrp); 3784 3785 return psi_show(seq, psi, PSI_CPU); 3786 } 3787 3788 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3789 size_t nbytes, enum psi_res res) 3790 { 3791 struct cgroup_file_ctx *ctx = of->priv; 3792 struct psi_trigger *new; 3793 struct cgroup *cgrp; 3794 struct psi_group *psi; 3795 3796 cgrp = cgroup_kn_lock_live(of->kn, false); 3797 if (!cgrp) 3798 return -ENODEV; 3799 3800 cgroup_get(cgrp); 3801 cgroup_kn_unlock(of->kn); 3802 3803 /* Allow only one trigger per file descriptor */ 3804 if (ctx->psi.trigger) { 3805 cgroup_put(cgrp); 3806 return -EBUSY; 3807 } 3808 3809 psi = cgroup_psi(cgrp); 3810 new = psi_trigger_create(psi, buf, res, of->file, of); 3811 if (IS_ERR(new)) { 3812 cgroup_put(cgrp); 3813 return PTR_ERR(new); 3814 } 3815 3816 smp_store_release(&ctx->psi.trigger, new); 3817 cgroup_put(cgrp); 3818 3819 return nbytes; 3820 } 3821 3822 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3823 char *buf, size_t nbytes, 3824 loff_t off) 3825 { 3826 return pressure_write(of, buf, nbytes, PSI_IO); 3827 } 3828 3829 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3830 char *buf, size_t nbytes, 3831 loff_t off) 3832 { 3833 return pressure_write(of, buf, nbytes, PSI_MEM); 3834 } 3835 3836 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3837 char *buf, size_t nbytes, 3838 loff_t off) 3839 { 3840 return pressure_write(of, buf, nbytes, PSI_CPU); 3841 } 3842 3843 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3844 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3845 { 3846 struct cgroup *cgrp = seq_css(seq)->cgroup; 3847 struct psi_group *psi = cgroup_psi(cgrp); 3848 3849 return psi_show(seq, psi, PSI_IRQ); 3850 } 3851 3852 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3853 char *buf, size_t nbytes, 3854 loff_t off) 3855 { 3856 return pressure_write(of, buf, nbytes, PSI_IRQ); 3857 } 3858 #endif 3859 3860 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3861 { 3862 struct cgroup *cgrp = seq_css(seq)->cgroup; 3863 struct psi_group *psi = cgroup_psi(cgrp); 3864 3865 seq_printf(seq, "%d\n", psi->enabled); 3866 3867 return 0; 3868 } 3869 3870 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3871 char *buf, size_t nbytes, 3872 loff_t off) 3873 { 3874 ssize_t ret; 3875 int enable; 3876 struct cgroup *cgrp; 3877 struct psi_group *psi; 3878 3879 ret = kstrtoint(strstrip(buf), 0, &enable); 3880 if (ret) 3881 return ret; 3882 3883 if (enable < 0 || enable > 1) 3884 return -ERANGE; 3885 3886 cgrp = cgroup_kn_lock_live(of->kn, false); 3887 if (!cgrp) 3888 return -ENOENT; 3889 3890 psi = cgroup_psi(cgrp); 3891 if (psi->enabled != enable) { 3892 int i; 3893 3894 /* show or hide {cpu,memory,io,irq}.pressure files */ 3895 for (i = 0; i < NR_PSI_RESOURCES; i++) 3896 cgroup_file_show(&cgrp->psi_files[i], enable); 3897 3898 psi->enabled = enable; 3899 if (enable) 3900 psi_cgroup_restart(psi); 3901 } 3902 3903 cgroup_kn_unlock(of->kn); 3904 3905 return nbytes; 3906 } 3907 3908 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3909 poll_table *pt) 3910 { 3911 struct cgroup_file_ctx *ctx = of->priv; 3912 3913 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3914 } 3915 3916 static void cgroup_pressure_release(struct kernfs_open_file *of) 3917 { 3918 struct cgroup_file_ctx *ctx = of->priv; 3919 3920 psi_trigger_destroy(ctx->psi.trigger); 3921 } 3922 3923 bool cgroup_psi_enabled(void) 3924 { 3925 if (static_branch_likely(&psi_disabled)) 3926 return false; 3927 3928 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3929 } 3930 3931 #else /* CONFIG_PSI */ 3932 bool cgroup_psi_enabled(void) 3933 { 3934 return false; 3935 } 3936 3937 #endif /* CONFIG_PSI */ 3938 3939 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3940 { 3941 struct cgroup *cgrp = seq_css(seq)->cgroup; 3942 3943 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3944 3945 return 0; 3946 } 3947 3948 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3949 char *buf, size_t nbytes, loff_t off) 3950 { 3951 struct cgroup *cgrp; 3952 ssize_t ret; 3953 int freeze; 3954 3955 ret = kstrtoint(strstrip(buf), 0, &freeze); 3956 if (ret) 3957 return ret; 3958 3959 if (freeze < 0 || freeze > 1) 3960 return -ERANGE; 3961 3962 cgrp = cgroup_kn_lock_live(of->kn, false); 3963 if (!cgrp) 3964 return -ENOENT; 3965 3966 cgroup_freeze(cgrp, freeze); 3967 3968 cgroup_kn_unlock(of->kn); 3969 3970 return nbytes; 3971 } 3972 3973 static void __cgroup_kill(struct cgroup *cgrp) 3974 { 3975 struct css_task_iter it; 3976 struct task_struct *task; 3977 3978 lockdep_assert_held(&cgroup_mutex); 3979 3980 spin_lock_irq(&css_set_lock); 3981 set_bit(CGRP_KILL, &cgrp->flags); 3982 spin_unlock_irq(&css_set_lock); 3983 3984 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3985 while ((task = css_task_iter_next(&it))) { 3986 /* Ignore kernel threads here. */ 3987 if (task->flags & PF_KTHREAD) 3988 continue; 3989 3990 /* Skip tasks that are already dying. */ 3991 if (__fatal_signal_pending(task)) 3992 continue; 3993 3994 send_sig(SIGKILL, task, 0); 3995 } 3996 css_task_iter_end(&it); 3997 3998 spin_lock_irq(&css_set_lock); 3999 clear_bit(CGRP_KILL, &cgrp->flags); 4000 spin_unlock_irq(&css_set_lock); 4001 } 4002 4003 static void cgroup_kill(struct cgroup *cgrp) 4004 { 4005 struct cgroup_subsys_state *css; 4006 struct cgroup *dsct; 4007 4008 lockdep_assert_held(&cgroup_mutex); 4009 4010 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4011 __cgroup_kill(dsct); 4012 } 4013 4014 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4015 size_t nbytes, loff_t off) 4016 { 4017 ssize_t ret = 0; 4018 int kill; 4019 struct cgroup *cgrp; 4020 4021 ret = kstrtoint(strstrip(buf), 0, &kill); 4022 if (ret) 4023 return ret; 4024 4025 if (kill != 1) 4026 return -ERANGE; 4027 4028 cgrp = cgroup_kn_lock_live(of->kn, false); 4029 if (!cgrp) 4030 return -ENOENT; 4031 4032 /* 4033 * Killing is a process directed operation, i.e. the whole thread-group 4034 * is taken down so act like we do for cgroup.procs and only make this 4035 * writable in non-threaded cgroups. 4036 */ 4037 if (cgroup_is_threaded(cgrp)) 4038 ret = -EOPNOTSUPP; 4039 else 4040 cgroup_kill(cgrp); 4041 4042 cgroup_kn_unlock(of->kn); 4043 4044 return ret ?: nbytes; 4045 } 4046 4047 static int cgroup_file_open(struct kernfs_open_file *of) 4048 { 4049 struct cftype *cft = of_cft(of); 4050 struct cgroup_file_ctx *ctx; 4051 int ret; 4052 4053 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4054 if (!ctx) 4055 return -ENOMEM; 4056 4057 ctx->ns = current->nsproxy->cgroup_ns; 4058 get_cgroup_ns(ctx->ns); 4059 of->priv = ctx; 4060 4061 if (!cft->open) 4062 return 0; 4063 4064 ret = cft->open(of); 4065 if (ret) { 4066 put_cgroup_ns(ctx->ns); 4067 kfree(ctx); 4068 } 4069 return ret; 4070 } 4071 4072 static void cgroup_file_release(struct kernfs_open_file *of) 4073 { 4074 struct cftype *cft = of_cft(of); 4075 struct cgroup_file_ctx *ctx = of->priv; 4076 4077 if (cft->release) 4078 cft->release(of); 4079 put_cgroup_ns(ctx->ns); 4080 kfree(ctx); 4081 } 4082 4083 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4084 size_t nbytes, loff_t off) 4085 { 4086 struct cgroup_file_ctx *ctx = of->priv; 4087 struct cgroup *cgrp = of->kn->parent->priv; 4088 struct cftype *cft = of_cft(of); 4089 struct cgroup_subsys_state *css; 4090 int ret; 4091 4092 if (!nbytes) 4093 return 0; 4094 4095 /* 4096 * If namespaces are delegation boundaries, disallow writes to 4097 * files in an non-init namespace root from inside the namespace 4098 * except for the files explicitly marked delegatable - 4099 * cgroup.procs and cgroup.subtree_control. 4100 */ 4101 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4102 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4103 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4104 return -EPERM; 4105 4106 if (cft->write) 4107 return cft->write(of, buf, nbytes, off); 4108 4109 /* 4110 * kernfs guarantees that a file isn't deleted with operations in 4111 * flight, which means that the matching css is and stays alive and 4112 * doesn't need to be pinned. The RCU locking is not necessary 4113 * either. It's just for the convenience of using cgroup_css(). 4114 */ 4115 rcu_read_lock(); 4116 css = cgroup_css(cgrp, cft->ss); 4117 rcu_read_unlock(); 4118 4119 if (cft->write_u64) { 4120 unsigned long long v; 4121 ret = kstrtoull(buf, 0, &v); 4122 if (!ret) 4123 ret = cft->write_u64(css, cft, v); 4124 } else if (cft->write_s64) { 4125 long long v; 4126 ret = kstrtoll(buf, 0, &v); 4127 if (!ret) 4128 ret = cft->write_s64(css, cft, v); 4129 } else { 4130 ret = -EINVAL; 4131 } 4132 4133 return ret ?: nbytes; 4134 } 4135 4136 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4137 { 4138 struct cftype *cft = of_cft(of); 4139 4140 if (cft->poll) 4141 return cft->poll(of, pt); 4142 4143 return kernfs_generic_poll(of, pt); 4144 } 4145 4146 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4147 { 4148 return seq_cft(seq)->seq_start(seq, ppos); 4149 } 4150 4151 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4152 { 4153 return seq_cft(seq)->seq_next(seq, v, ppos); 4154 } 4155 4156 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4157 { 4158 if (seq_cft(seq)->seq_stop) 4159 seq_cft(seq)->seq_stop(seq, v); 4160 } 4161 4162 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4163 { 4164 struct cftype *cft = seq_cft(m); 4165 struct cgroup_subsys_state *css = seq_css(m); 4166 4167 if (cft->seq_show) 4168 return cft->seq_show(m, arg); 4169 4170 if (cft->read_u64) 4171 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4172 else if (cft->read_s64) 4173 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4174 else 4175 return -EINVAL; 4176 return 0; 4177 } 4178 4179 static struct kernfs_ops cgroup_kf_single_ops = { 4180 .atomic_write_len = PAGE_SIZE, 4181 .open = cgroup_file_open, 4182 .release = cgroup_file_release, 4183 .write = cgroup_file_write, 4184 .poll = cgroup_file_poll, 4185 .seq_show = cgroup_seqfile_show, 4186 }; 4187 4188 static struct kernfs_ops cgroup_kf_ops = { 4189 .atomic_write_len = PAGE_SIZE, 4190 .open = cgroup_file_open, 4191 .release = cgroup_file_release, 4192 .write = cgroup_file_write, 4193 .poll = cgroup_file_poll, 4194 .seq_start = cgroup_seqfile_start, 4195 .seq_next = cgroup_seqfile_next, 4196 .seq_stop = cgroup_seqfile_stop, 4197 .seq_show = cgroup_seqfile_show, 4198 }; 4199 4200 static void cgroup_file_notify_timer(struct timer_list *timer) 4201 { 4202 cgroup_file_notify(container_of(timer, struct cgroup_file, 4203 notify_timer)); 4204 } 4205 4206 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4207 struct cftype *cft) 4208 { 4209 char name[CGROUP_FILE_NAME_MAX]; 4210 struct kernfs_node *kn; 4211 struct lock_class_key *key = NULL; 4212 4213 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4214 key = &cft->lockdep_key; 4215 #endif 4216 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4217 cgroup_file_mode(cft), 4218 current_fsuid(), current_fsgid(), 4219 0, cft->kf_ops, cft, 4220 NULL, key); 4221 if (IS_ERR(kn)) 4222 return PTR_ERR(kn); 4223 4224 if (cft->file_offset) { 4225 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4226 4227 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4228 4229 spin_lock_irq(&cgroup_file_kn_lock); 4230 cfile->kn = kn; 4231 spin_unlock_irq(&cgroup_file_kn_lock); 4232 } 4233 4234 return 0; 4235 } 4236 4237 /** 4238 * cgroup_addrm_files - add or remove files to a cgroup directory 4239 * @css: the target css 4240 * @cgrp: the target cgroup (usually css->cgroup) 4241 * @cfts: array of cftypes to be added 4242 * @is_add: whether to add or remove 4243 * 4244 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4245 * For removals, this function never fails. 4246 */ 4247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4248 struct cgroup *cgrp, struct cftype cfts[], 4249 bool is_add) 4250 { 4251 struct cftype *cft, *cft_end = NULL; 4252 int ret = 0; 4253 4254 lockdep_assert_held(&cgroup_mutex); 4255 4256 restart: 4257 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4258 /* does cft->flags tell us to skip this file on @cgrp? */ 4259 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4260 continue; 4261 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4262 continue; 4263 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4264 continue; 4265 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4266 continue; 4267 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4268 continue; 4269 if (is_add) { 4270 ret = cgroup_add_file(css, cgrp, cft); 4271 if (ret) { 4272 pr_warn("%s: failed to add %s, err=%d\n", 4273 __func__, cft->name, ret); 4274 cft_end = cft; 4275 is_add = false; 4276 goto restart; 4277 } 4278 } else { 4279 cgroup_rm_file(cgrp, cft); 4280 } 4281 } 4282 return ret; 4283 } 4284 4285 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4286 { 4287 struct cgroup_subsys *ss = cfts[0].ss; 4288 struct cgroup *root = &ss->root->cgrp; 4289 struct cgroup_subsys_state *css; 4290 int ret = 0; 4291 4292 lockdep_assert_held(&cgroup_mutex); 4293 4294 /* add/rm files for all cgroups created before */ 4295 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4296 struct cgroup *cgrp = css->cgroup; 4297 4298 if (!(css->flags & CSS_VISIBLE)) 4299 continue; 4300 4301 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4302 if (ret) 4303 break; 4304 } 4305 4306 if (is_add && !ret) 4307 kernfs_activate(root->kn); 4308 return ret; 4309 } 4310 4311 static void cgroup_exit_cftypes(struct cftype *cfts) 4312 { 4313 struct cftype *cft; 4314 4315 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4316 /* free copy for custom atomic_write_len, see init_cftypes() */ 4317 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4318 kfree(cft->kf_ops); 4319 cft->kf_ops = NULL; 4320 cft->ss = NULL; 4321 4322 /* revert flags set by cgroup core while adding @cfts */ 4323 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4324 __CFTYPE_ADDED); 4325 } 4326 } 4327 4328 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4329 { 4330 struct cftype *cft; 4331 int ret = 0; 4332 4333 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4334 struct kernfs_ops *kf_ops; 4335 4336 WARN_ON(cft->ss || cft->kf_ops); 4337 4338 if (cft->flags & __CFTYPE_ADDED) { 4339 ret = -EBUSY; 4340 break; 4341 } 4342 4343 if (cft->seq_start) 4344 kf_ops = &cgroup_kf_ops; 4345 else 4346 kf_ops = &cgroup_kf_single_ops; 4347 4348 /* 4349 * Ugh... if @cft wants a custom max_write_len, we need to 4350 * make a copy of kf_ops to set its atomic_write_len. 4351 */ 4352 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4353 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4354 if (!kf_ops) { 4355 ret = -ENOMEM; 4356 break; 4357 } 4358 kf_ops->atomic_write_len = cft->max_write_len; 4359 } 4360 4361 cft->kf_ops = kf_ops; 4362 cft->ss = ss; 4363 cft->flags |= __CFTYPE_ADDED; 4364 } 4365 4366 if (ret) 4367 cgroup_exit_cftypes(cfts); 4368 return ret; 4369 } 4370 4371 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4372 { 4373 lockdep_assert_held(&cgroup_mutex); 4374 4375 list_del(&cfts->node); 4376 cgroup_apply_cftypes(cfts, false); 4377 cgroup_exit_cftypes(cfts); 4378 } 4379 4380 /** 4381 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4382 * @cfts: zero-length name terminated array of cftypes 4383 * 4384 * Unregister @cfts. Files described by @cfts are removed from all 4385 * existing cgroups and all future cgroups won't have them either. This 4386 * function can be called anytime whether @cfts' subsys is attached or not. 4387 * 4388 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4389 * registered. 4390 */ 4391 int cgroup_rm_cftypes(struct cftype *cfts) 4392 { 4393 if (!cfts || cfts[0].name[0] == '\0') 4394 return 0; 4395 4396 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4397 return -ENOENT; 4398 4399 cgroup_lock(); 4400 cgroup_rm_cftypes_locked(cfts); 4401 cgroup_unlock(); 4402 return 0; 4403 } 4404 4405 /** 4406 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4407 * @ss: target cgroup subsystem 4408 * @cfts: zero-length name terminated array of cftypes 4409 * 4410 * Register @cfts to @ss. Files described by @cfts are created for all 4411 * existing cgroups to which @ss is attached and all future cgroups will 4412 * have them too. This function can be called anytime whether @ss is 4413 * attached or not. 4414 * 4415 * Returns 0 on successful registration, -errno on failure. Note that this 4416 * function currently returns 0 as long as @cfts registration is successful 4417 * even if some file creation attempts on existing cgroups fail. 4418 */ 4419 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4420 { 4421 int ret; 4422 4423 if (!cgroup_ssid_enabled(ss->id)) 4424 return 0; 4425 4426 if (!cfts || cfts[0].name[0] == '\0') 4427 return 0; 4428 4429 ret = cgroup_init_cftypes(ss, cfts); 4430 if (ret) 4431 return ret; 4432 4433 cgroup_lock(); 4434 4435 list_add_tail(&cfts->node, &ss->cfts); 4436 ret = cgroup_apply_cftypes(cfts, true); 4437 if (ret) 4438 cgroup_rm_cftypes_locked(cfts); 4439 4440 cgroup_unlock(); 4441 return ret; 4442 } 4443 4444 /** 4445 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4446 * @ss: target cgroup subsystem 4447 * @cfts: zero-length name terminated array of cftypes 4448 * 4449 * Similar to cgroup_add_cftypes() but the added files are only used for 4450 * the default hierarchy. 4451 */ 4452 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4453 { 4454 struct cftype *cft; 4455 4456 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4457 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4458 return cgroup_add_cftypes(ss, cfts); 4459 } 4460 4461 /** 4462 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4463 * @ss: target cgroup subsystem 4464 * @cfts: zero-length name terminated array of cftypes 4465 * 4466 * Similar to cgroup_add_cftypes() but the added files are only used for 4467 * the legacy hierarchies. 4468 */ 4469 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4470 { 4471 struct cftype *cft; 4472 4473 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4474 cft->flags |= __CFTYPE_NOT_ON_DFL; 4475 return cgroup_add_cftypes(ss, cfts); 4476 } 4477 4478 /** 4479 * cgroup_file_notify - generate a file modified event for a cgroup_file 4480 * @cfile: target cgroup_file 4481 * 4482 * @cfile must have been obtained by setting cftype->file_offset. 4483 */ 4484 void cgroup_file_notify(struct cgroup_file *cfile) 4485 { 4486 unsigned long flags; 4487 4488 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4489 if (cfile->kn) { 4490 unsigned long last = cfile->notified_at; 4491 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4492 4493 if (time_in_range(jiffies, last, next)) { 4494 timer_reduce(&cfile->notify_timer, next); 4495 } else { 4496 kernfs_notify(cfile->kn); 4497 cfile->notified_at = jiffies; 4498 } 4499 } 4500 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4501 } 4502 4503 /** 4504 * cgroup_file_show - show or hide a hidden cgroup file 4505 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4506 * @show: whether to show or hide 4507 */ 4508 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4509 { 4510 struct kernfs_node *kn; 4511 4512 spin_lock_irq(&cgroup_file_kn_lock); 4513 kn = cfile->kn; 4514 kernfs_get(kn); 4515 spin_unlock_irq(&cgroup_file_kn_lock); 4516 4517 if (kn) 4518 kernfs_show(kn, show); 4519 4520 kernfs_put(kn); 4521 } 4522 4523 /** 4524 * css_next_child - find the next child of a given css 4525 * @pos: the current position (%NULL to initiate traversal) 4526 * @parent: css whose children to walk 4527 * 4528 * This function returns the next child of @parent and should be called 4529 * under either cgroup_mutex or RCU read lock. The only requirement is 4530 * that @parent and @pos are accessible. The next sibling is guaranteed to 4531 * be returned regardless of their states. 4532 * 4533 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4534 * css which finished ->css_online() is guaranteed to be visible in the 4535 * future iterations and will stay visible until the last reference is put. 4536 * A css which hasn't finished ->css_online() or already finished 4537 * ->css_offline() may show up during traversal. It's each subsystem's 4538 * responsibility to synchronize against on/offlining. 4539 */ 4540 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4541 struct cgroup_subsys_state *parent) 4542 { 4543 struct cgroup_subsys_state *next; 4544 4545 cgroup_assert_mutex_or_rcu_locked(); 4546 4547 /* 4548 * @pos could already have been unlinked from the sibling list. 4549 * Once a cgroup is removed, its ->sibling.next is no longer 4550 * updated when its next sibling changes. CSS_RELEASED is set when 4551 * @pos is taken off list, at which time its next pointer is valid, 4552 * and, as releases are serialized, the one pointed to by the next 4553 * pointer is guaranteed to not have started release yet. This 4554 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4555 * critical section, the one pointed to by its next pointer is 4556 * guaranteed to not have finished its RCU grace period even if we 4557 * have dropped rcu_read_lock() in-between iterations. 4558 * 4559 * If @pos has CSS_RELEASED set, its next pointer can't be 4560 * dereferenced; however, as each css is given a monotonically 4561 * increasing unique serial number and always appended to the 4562 * sibling list, the next one can be found by walking the parent's 4563 * children until the first css with higher serial number than 4564 * @pos's. While this path can be slower, it happens iff iteration 4565 * races against release and the race window is very small. 4566 */ 4567 if (!pos) { 4568 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4569 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4570 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4571 } else { 4572 list_for_each_entry_rcu(next, &parent->children, sibling, 4573 lockdep_is_held(&cgroup_mutex)) 4574 if (next->serial_nr > pos->serial_nr) 4575 break; 4576 } 4577 4578 /* 4579 * @next, if not pointing to the head, can be dereferenced and is 4580 * the next sibling. 4581 */ 4582 if (&next->sibling != &parent->children) 4583 return next; 4584 return NULL; 4585 } 4586 4587 /** 4588 * css_next_descendant_pre - find the next descendant for pre-order walk 4589 * @pos: the current position (%NULL to initiate traversal) 4590 * @root: css whose descendants to walk 4591 * 4592 * To be used by css_for_each_descendant_pre(). Find the next descendant 4593 * to visit for pre-order traversal of @root's descendants. @root is 4594 * included in the iteration and the first node to be visited. 4595 * 4596 * While this function requires cgroup_mutex or RCU read locking, it 4597 * doesn't require the whole traversal to be contained in a single critical 4598 * section. This function will return the correct next descendant as long 4599 * as both @pos and @root are accessible and @pos is a descendant of @root. 4600 * 4601 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4602 * css which finished ->css_online() is guaranteed to be visible in the 4603 * future iterations and will stay visible until the last reference is put. 4604 * A css which hasn't finished ->css_online() or already finished 4605 * ->css_offline() may show up during traversal. It's each subsystem's 4606 * responsibility to synchronize against on/offlining. 4607 */ 4608 struct cgroup_subsys_state * 4609 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4610 struct cgroup_subsys_state *root) 4611 { 4612 struct cgroup_subsys_state *next; 4613 4614 cgroup_assert_mutex_or_rcu_locked(); 4615 4616 /* if first iteration, visit @root */ 4617 if (!pos) 4618 return root; 4619 4620 /* visit the first child if exists */ 4621 next = css_next_child(NULL, pos); 4622 if (next) 4623 return next; 4624 4625 /* no child, visit my or the closest ancestor's next sibling */ 4626 while (pos != root) { 4627 next = css_next_child(pos, pos->parent); 4628 if (next) 4629 return next; 4630 pos = pos->parent; 4631 } 4632 4633 return NULL; 4634 } 4635 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4636 4637 /** 4638 * css_rightmost_descendant - return the rightmost descendant of a css 4639 * @pos: css of interest 4640 * 4641 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4642 * is returned. This can be used during pre-order traversal to skip 4643 * subtree of @pos. 4644 * 4645 * While this function requires cgroup_mutex or RCU read locking, it 4646 * doesn't require the whole traversal to be contained in a single critical 4647 * section. This function will return the correct rightmost descendant as 4648 * long as @pos is accessible. 4649 */ 4650 struct cgroup_subsys_state * 4651 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4652 { 4653 struct cgroup_subsys_state *last, *tmp; 4654 4655 cgroup_assert_mutex_or_rcu_locked(); 4656 4657 do { 4658 last = pos; 4659 /* ->prev isn't RCU safe, walk ->next till the end */ 4660 pos = NULL; 4661 css_for_each_child(tmp, last) 4662 pos = tmp; 4663 } while (pos); 4664 4665 return last; 4666 } 4667 4668 static struct cgroup_subsys_state * 4669 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4670 { 4671 struct cgroup_subsys_state *last; 4672 4673 do { 4674 last = pos; 4675 pos = css_next_child(NULL, pos); 4676 } while (pos); 4677 4678 return last; 4679 } 4680 4681 /** 4682 * css_next_descendant_post - find the next descendant for post-order walk 4683 * @pos: the current position (%NULL to initiate traversal) 4684 * @root: css whose descendants to walk 4685 * 4686 * To be used by css_for_each_descendant_post(). Find the next descendant 4687 * to visit for post-order traversal of @root's descendants. @root is 4688 * included in the iteration and the last node to be visited. 4689 * 4690 * While this function requires cgroup_mutex or RCU read locking, it 4691 * doesn't require the whole traversal to be contained in a single critical 4692 * section. This function will return the correct next descendant as long 4693 * as both @pos and @cgroup are accessible and @pos is a descendant of 4694 * @cgroup. 4695 * 4696 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4697 * css which finished ->css_online() is guaranteed to be visible in the 4698 * future iterations and will stay visible until the last reference is put. 4699 * A css which hasn't finished ->css_online() or already finished 4700 * ->css_offline() may show up during traversal. It's each subsystem's 4701 * responsibility to synchronize against on/offlining. 4702 */ 4703 struct cgroup_subsys_state * 4704 css_next_descendant_post(struct cgroup_subsys_state *pos, 4705 struct cgroup_subsys_state *root) 4706 { 4707 struct cgroup_subsys_state *next; 4708 4709 cgroup_assert_mutex_or_rcu_locked(); 4710 4711 /* if first iteration, visit leftmost descendant which may be @root */ 4712 if (!pos) 4713 return css_leftmost_descendant(root); 4714 4715 /* if we visited @root, we're done */ 4716 if (pos == root) 4717 return NULL; 4718 4719 /* if there's an unvisited sibling, visit its leftmost descendant */ 4720 next = css_next_child(pos, pos->parent); 4721 if (next) 4722 return css_leftmost_descendant(next); 4723 4724 /* no sibling left, visit parent */ 4725 return pos->parent; 4726 } 4727 4728 /** 4729 * css_has_online_children - does a css have online children 4730 * @css: the target css 4731 * 4732 * Returns %true if @css has any online children; otherwise, %false. This 4733 * function can be called from any context but the caller is responsible 4734 * for synchronizing against on/offlining as necessary. 4735 */ 4736 bool css_has_online_children(struct cgroup_subsys_state *css) 4737 { 4738 struct cgroup_subsys_state *child; 4739 bool ret = false; 4740 4741 rcu_read_lock(); 4742 css_for_each_child(child, css) { 4743 if (child->flags & CSS_ONLINE) { 4744 ret = true; 4745 break; 4746 } 4747 } 4748 rcu_read_unlock(); 4749 return ret; 4750 } 4751 4752 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4753 { 4754 struct list_head *l; 4755 struct cgrp_cset_link *link; 4756 struct css_set *cset; 4757 4758 lockdep_assert_held(&css_set_lock); 4759 4760 /* find the next threaded cset */ 4761 if (it->tcset_pos) { 4762 l = it->tcset_pos->next; 4763 4764 if (l != it->tcset_head) { 4765 it->tcset_pos = l; 4766 return container_of(l, struct css_set, 4767 threaded_csets_node); 4768 } 4769 4770 it->tcset_pos = NULL; 4771 } 4772 4773 /* find the next cset */ 4774 l = it->cset_pos; 4775 l = l->next; 4776 if (l == it->cset_head) { 4777 it->cset_pos = NULL; 4778 return NULL; 4779 } 4780 4781 if (it->ss) { 4782 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4783 } else { 4784 link = list_entry(l, struct cgrp_cset_link, cset_link); 4785 cset = link->cset; 4786 } 4787 4788 it->cset_pos = l; 4789 4790 /* initialize threaded css_set walking */ 4791 if (it->flags & CSS_TASK_ITER_THREADED) { 4792 if (it->cur_dcset) 4793 put_css_set_locked(it->cur_dcset); 4794 it->cur_dcset = cset; 4795 get_css_set(cset); 4796 4797 it->tcset_head = &cset->threaded_csets; 4798 it->tcset_pos = &cset->threaded_csets; 4799 } 4800 4801 return cset; 4802 } 4803 4804 /** 4805 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4806 * @it: the iterator to advance 4807 * 4808 * Advance @it to the next css_set to walk. 4809 */ 4810 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4811 { 4812 struct css_set *cset; 4813 4814 lockdep_assert_held(&css_set_lock); 4815 4816 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4817 while ((cset = css_task_iter_next_css_set(it))) { 4818 if (!list_empty(&cset->tasks)) { 4819 it->cur_tasks_head = &cset->tasks; 4820 break; 4821 } else if (!list_empty(&cset->mg_tasks)) { 4822 it->cur_tasks_head = &cset->mg_tasks; 4823 break; 4824 } else if (!list_empty(&cset->dying_tasks)) { 4825 it->cur_tasks_head = &cset->dying_tasks; 4826 break; 4827 } 4828 } 4829 if (!cset) { 4830 it->task_pos = NULL; 4831 return; 4832 } 4833 it->task_pos = it->cur_tasks_head->next; 4834 4835 /* 4836 * We don't keep css_sets locked across iteration steps and thus 4837 * need to take steps to ensure that iteration can be resumed after 4838 * the lock is re-acquired. Iteration is performed at two levels - 4839 * css_sets and tasks in them. 4840 * 4841 * Once created, a css_set never leaves its cgroup lists, so a 4842 * pinned css_set is guaranteed to stay put and we can resume 4843 * iteration afterwards. 4844 * 4845 * Tasks may leave @cset across iteration steps. This is resolved 4846 * by registering each iterator with the css_set currently being 4847 * walked and making css_set_move_task() advance iterators whose 4848 * next task is leaving. 4849 */ 4850 if (it->cur_cset) { 4851 list_del(&it->iters_node); 4852 put_css_set_locked(it->cur_cset); 4853 } 4854 get_css_set(cset); 4855 it->cur_cset = cset; 4856 list_add(&it->iters_node, &cset->task_iters); 4857 } 4858 4859 static void css_task_iter_skip(struct css_task_iter *it, 4860 struct task_struct *task) 4861 { 4862 lockdep_assert_held(&css_set_lock); 4863 4864 if (it->task_pos == &task->cg_list) { 4865 it->task_pos = it->task_pos->next; 4866 it->flags |= CSS_TASK_ITER_SKIPPED; 4867 } 4868 } 4869 4870 static void css_task_iter_advance(struct css_task_iter *it) 4871 { 4872 struct task_struct *task; 4873 4874 lockdep_assert_held(&css_set_lock); 4875 repeat: 4876 if (it->task_pos) { 4877 /* 4878 * Advance iterator to find next entry. We go through cset 4879 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4880 * the next cset. 4881 */ 4882 if (it->flags & CSS_TASK_ITER_SKIPPED) 4883 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4884 else 4885 it->task_pos = it->task_pos->next; 4886 4887 if (it->task_pos == &it->cur_cset->tasks) { 4888 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4889 it->task_pos = it->cur_tasks_head->next; 4890 } 4891 if (it->task_pos == &it->cur_cset->mg_tasks) { 4892 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4893 it->task_pos = it->cur_tasks_head->next; 4894 } 4895 if (it->task_pos == &it->cur_cset->dying_tasks) 4896 css_task_iter_advance_css_set(it); 4897 } else { 4898 /* called from start, proceed to the first cset */ 4899 css_task_iter_advance_css_set(it); 4900 } 4901 4902 if (!it->task_pos) 4903 return; 4904 4905 task = list_entry(it->task_pos, struct task_struct, cg_list); 4906 4907 if (it->flags & CSS_TASK_ITER_PROCS) { 4908 /* if PROCS, skip over tasks which aren't group leaders */ 4909 if (!thread_group_leader(task)) 4910 goto repeat; 4911 4912 /* and dying leaders w/o live member threads */ 4913 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4914 !atomic_read(&task->signal->live)) 4915 goto repeat; 4916 } else { 4917 /* skip all dying ones */ 4918 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4919 goto repeat; 4920 } 4921 } 4922 4923 /** 4924 * css_task_iter_start - initiate task iteration 4925 * @css: the css to walk tasks of 4926 * @flags: CSS_TASK_ITER_* flags 4927 * @it: the task iterator to use 4928 * 4929 * Initiate iteration through the tasks of @css. The caller can call 4930 * css_task_iter_next() to walk through the tasks until the function 4931 * returns NULL. On completion of iteration, css_task_iter_end() must be 4932 * called. 4933 */ 4934 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4935 struct css_task_iter *it) 4936 { 4937 unsigned long irqflags; 4938 4939 memset(it, 0, sizeof(*it)); 4940 4941 spin_lock_irqsave(&css_set_lock, irqflags); 4942 4943 it->ss = css->ss; 4944 it->flags = flags; 4945 4946 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4947 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4948 else 4949 it->cset_pos = &css->cgroup->cset_links; 4950 4951 it->cset_head = it->cset_pos; 4952 4953 css_task_iter_advance(it); 4954 4955 spin_unlock_irqrestore(&css_set_lock, irqflags); 4956 } 4957 4958 /** 4959 * css_task_iter_next - return the next task for the iterator 4960 * @it: the task iterator being iterated 4961 * 4962 * The "next" function for task iteration. @it should have been 4963 * initialized via css_task_iter_start(). Returns NULL when the iteration 4964 * reaches the end. 4965 */ 4966 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4967 { 4968 unsigned long irqflags; 4969 4970 if (it->cur_task) { 4971 put_task_struct(it->cur_task); 4972 it->cur_task = NULL; 4973 } 4974 4975 spin_lock_irqsave(&css_set_lock, irqflags); 4976 4977 /* @it may be half-advanced by skips, finish advancing */ 4978 if (it->flags & CSS_TASK_ITER_SKIPPED) 4979 css_task_iter_advance(it); 4980 4981 if (it->task_pos) { 4982 it->cur_task = list_entry(it->task_pos, struct task_struct, 4983 cg_list); 4984 get_task_struct(it->cur_task); 4985 css_task_iter_advance(it); 4986 } 4987 4988 spin_unlock_irqrestore(&css_set_lock, irqflags); 4989 4990 return it->cur_task; 4991 } 4992 4993 /** 4994 * css_task_iter_end - finish task iteration 4995 * @it: the task iterator to finish 4996 * 4997 * Finish task iteration started by css_task_iter_start(). 4998 */ 4999 void css_task_iter_end(struct css_task_iter *it) 5000 { 5001 unsigned long irqflags; 5002 5003 if (it->cur_cset) { 5004 spin_lock_irqsave(&css_set_lock, irqflags); 5005 list_del(&it->iters_node); 5006 put_css_set_locked(it->cur_cset); 5007 spin_unlock_irqrestore(&css_set_lock, irqflags); 5008 } 5009 5010 if (it->cur_dcset) 5011 put_css_set(it->cur_dcset); 5012 5013 if (it->cur_task) 5014 put_task_struct(it->cur_task); 5015 } 5016 5017 static void cgroup_procs_release(struct kernfs_open_file *of) 5018 { 5019 struct cgroup_file_ctx *ctx = of->priv; 5020 5021 if (ctx->procs.started) 5022 css_task_iter_end(&ctx->procs.iter); 5023 } 5024 5025 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5026 { 5027 struct kernfs_open_file *of = s->private; 5028 struct cgroup_file_ctx *ctx = of->priv; 5029 5030 if (pos) 5031 (*pos)++; 5032 5033 return css_task_iter_next(&ctx->procs.iter); 5034 } 5035 5036 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5037 unsigned int iter_flags) 5038 { 5039 struct kernfs_open_file *of = s->private; 5040 struct cgroup *cgrp = seq_css(s)->cgroup; 5041 struct cgroup_file_ctx *ctx = of->priv; 5042 struct css_task_iter *it = &ctx->procs.iter; 5043 5044 /* 5045 * When a seq_file is seeked, it's always traversed sequentially 5046 * from position 0, so we can simply keep iterating on !0 *pos. 5047 */ 5048 if (!ctx->procs.started) { 5049 if (WARN_ON_ONCE((*pos))) 5050 return ERR_PTR(-EINVAL); 5051 css_task_iter_start(&cgrp->self, iter_flags, it); 5052 ctx->procs.started = true; 5053 } else if (!(*pos)) { 5054 css_task_iter_end(it); 5055 css_task_iter_start(&cgrp->self, iter_flags, it); 5056 } else 5057 return it->cur_task; 5058 5059 return cgroup_procs_next(s, NULL, NULL); 5060 } 5061 5062 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5063 { 5064 struct cgroup *cgrp = seq_css(s)->cgroup; 5065 5066 /* 5067 * All processes of a threaded subtree belong to the domain cgroup 5068 * of the subtree. Only threads can be distributed across the 5069 * subtree. Reject reads on cgroup.procs in the subtree proper. 5070 * They're always empty anyway. 5071 */ 5072 if (cgroup_is_threaded(cgrp)) 5073 return ERR_PTR(-EOPNOTSUPP); 5074 5075 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5076 CSS_TASK_ITER_THREADED); 5077 } 5078 5079 static int cgroup_procs_show(struct seq_file *s, void *v) 5080 { 5081 seq_printf(s, "%d\n", task_pid_vnr(v)); 5082 return 0; 5083 } 5084 5085 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5086 { 5087 int ret; 5088 struct inode *inode; 5089 5090 lockdep_assert_held(&cgroup_mutex); 5091 5092 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5093 if (!inode) 5094 return -ENOMEM; 5095 5096 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5097 iput(inode); 5098 return ret; 5099 } 5100 5101 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5102 struct cgroup *dst_cgrp, 5103 struct super_block *sb, 5104 struct cgroup_namespace *ns) 5105 { 5106 struct cgroup *com_cgrp = src_cgrp; 5107 int ret; 5108 5109 lockdep_assert_held(&cgroup_mutex); 5110 5111 /* find the common ancestor */ 5112 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5113 com_cgrp = cgroup_parent(com_cgrp); 5114 5115 /* %current should be authorized to migrate to the common ancestor */ 5116 ret = cgroup_may_write(com_cgrp, sb); 5117 if (ret) 5118 return ret; 5119 5120 /* 5121 * If namespaces are delegation boundaries, %current must be able 5122 * to see both source and destination cgroups from its namespace. 5123 */ 5124 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5125 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5126 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5127 return -ENOENT; 5128 5129 return 0; 5130 } 5131 5132 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5133 struct cgroup *dst_cgrp, 5134 struct super_block *sb, bool threadgroup, 5135 struct cgroup_namespace *ns) 5136 { 5137 int ret = 0; 5138 5139 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5140 if (ret) 5141 return ret; 5142 5143 ret = cgroup_migrate_vet_dst(dst_cgrp); 5144 if (ret) 5145 return ret; 5146 5147 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5148 ret = -EOPNOTSUPP; 5149 5150 return ret; 5151 } 5152 5153 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5154 bool threadgroup) 5155 { 5156 struct cgroup_file_ctx *ctx = of->priv; 5157 struct cgroup *src_cgrp, *dst_cgrp; 5158 struct task_struct *task; 5159 const struct cred *saved_cred; 5160 ssize_t ret; 5161 bool threadgroup_locked; 5162 5163 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5164 if (!dst_cgrp) 5165 return -ENODEV; 5166 5167 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5168 ret = PTR_ERR_OR_ZERO(task); 5169 if (ret) 5170 goto out_unlock; 5171 5172 /* find the source cgroup */ 5173 spin_lock_irq(&css_set_lock); 5174 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5175 spin_unlock_irq(&css_set_lock); 5176 5177 /* 5178 * Process and thread migrations follow same delegation rule. Check 5179 * permissions using the credentials from file open to protect against 5180 * inherited fd attacks. 5181 */ 5182 saved_cred = override_creds(of->file->f_cred); 5183 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5184 of->file->f_path.dentry->d_sb, 5185 threadgroup, ctx->ns); 5186 revert_creds(saved_cred); 5187 if (ret) 5188 goto out_finish; 5189 5190 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5191 5192 out_finish: 5193 cgroup_procs_write_finish(task, threadgroup_locked); 5194 out_unlock: 5195 cgroup_kn_unlock(of->kn); 5196 5197 return ret; 5198 } 5199 5200 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5201 char *buf, size_t nbytes, loff_t off) 5202 { 5203 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5204 } 5205 5206 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5207 { 5208 return __cgroup_procs_start(s, pos, 0); 5209 } 5210 5211 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5212 char *buf, size_t nbytes, loff_t off) 5213 { 5214 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5215 } 5216 5217 /* cgroup core interface files for the default hierarchy */ 5218 static struct cftype cgroup_base_files[] = { 5219 { 5220 .name = "cgroup.type", 5221 .flags = CFTYPE_NOT_ON_ROOT, 5222 .seq_show = cgroup_type_show, 5223 .write = cgroup_type_write, 5224 }, 5225 { 5226 .name = "cgroup.procs", 5227 .flags = CFTYPE_NS_DELEGATABLE, 5228 .file_offset = offsetof(struct cgroup, procs_file), 5229 .release = cgroup_procs_release, 5230 .seq_start = cgroup_procs_start, 5231 .seq_next = cgroup_procs_next, 5232 .seq_show = cgroup_procs_show, 5233 .write = cgroup_procs_write, 5234 }, 5235 { 5236 .name = "cgroup.threads", 5237 .flags = CFTYPE_NS_DELEGATABLE, 5238 .release = cgroup_procs_release, 5239 .seq_start = cgroup_threads_start, 5240 .seq_next = cgroup_procs_next, 5241 .seq_show = cgroup_procs_show, 5242 .write = cgroup_threads_write, 5243 }, 5244 { 5245 .name = "cgroup.controllers", 5246 .seq_show = cgroup_controllers_show, 5247 }, 5248 { 5249 .name = "cgroup.subtree_control", 5250 .flags = CFTYPE_NS_DELEGATABLE, 5251 .seq_show = cgroup_subtree_control_show, 5252 .write = cgroup_subtree_control_write, 5253 }, 5254 { 5255 .name = "cgroup.events", 5256 .flags = CFTYPE_NOT_ON_ROOT, 5257 .file_offset = offsetof(struct cgroup, events_file), 5258 .seq_show = cgroup_events_show, 5259 }, 5260 { 5261 .name = "cgroup.max.descendants", 5262 .seq_show = cgroup_max_descendants_show, 5263 .write = cgroup_max_descendants_write, 5264 }, 5265 { 5266 .name = "cgroup.max.depth", 5267 .seq_show = cgroup_max_depth_show, 5268 .write = cgroup_max_depth_write, 5269 }, 5270 { 5271 .name = "cgroup.stat", 5272 .seq_show = cgroup_stat_show, 5273 }, 5274 { 5275 .name = "cgroup.freeze", 5276 .flags = CFTYPE_NOT_ON_ROOT, 5277 .seq_show = cgroup_freeze_show, 5278 .write = cgroup_freeze_write, 5279 }, 5280 { 5281 .name = "cgroup.kill", 5282 .flags = CFTYPE_NOT_ON_ROOT, 5283 .write = cgroup_kill_write, 5284 }, 5285 { 5286 .name = "cpu.stat", 5287 .seq_show = cpu_stat_show, 5288 }, 5289 { 5290 .name = "cpu.stat.local", 5291 .seq_show = cpu_local_stat_show, 5292 }, 5293 { } /* terminate */ 5294 }; 5295 5296 static struct cftype cgroup_psi_files[] = { 5297 #ifdef CONFIG_PSI 5298 { 5299 .name = "io.pressure", 5300 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5301 .seq_show = cgroup_io_pressure_show, 5302 .write = cgroup_io_pressure_write, 5303 .poll = cgroup_pressure_poll, 5304 .release = cgroup_pressure_release, 5305 }, 5306 { 5307 .name = "memory.pressure", 5308 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5309 .seq_show = cgroup_memory_pressure_show, 5310 .write = cgroup_memory_pressure_write, 5311 .poll = cgroup_pressure_poll, 5312 .release = cgroup_pressure_release, 5313 }, 5314 { 5315 .name = "cpu.pressure", 5316 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5317 .seq_show = cgroup_cpu_pressure_show, 5318 .write = cgroup_cpu_pressure_write, 5319 .poll = cgroup_pressure_poll, 5320 .release = cgroup_pressure_release, 5321 }, 5322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5323 { 5324 .name = "irq.pressure", 5325 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5326 .seq_show = cgroup_irq_pressure_show, 5327 .write = cgroup_irq_pressure_write, 5328 .poll = cgroup_pressure_poll, 5329 .release = cgroup_pressure_release, 5330 }, 5331 #endif 5332 { 5333 .name = "cgroup.pressure", 5334 .seq_show = cgroup_pressure_show, 5335 .write = cgroup_pressure_write, 5336 }, 5337 #endif /* CONFIG_PSI */ 5338 { } /* terminate */ 5339 }; 5340 5341 /* 5342 * css destruction is four-stage process. 5343 * 5344 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5345 * Implemented in kill_css(). 5346 * 5347 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5348 * and thus css_tryget_online() is guaranteed to fail, the css can be 5349 * offlined by invoking offline_css(). After offlining, the base ref is 5350 * put. Implemented in css_killed_work_fn(). 5351 * 5352 * 3. When the percpu_ref reaches zero, the only possible remaining 5353 * accessors are inside RCU read sections. css_release() schedules the 5354 * RCU callback. 5355 * 5356 * 4. After the grace period, the css can be freed. Implemented in 5357 * css_free_rwork_fn(). 5358 * 5359 * It is actually hairier because both step 2 and 4 require process context 5360 * and thus involve punting to css->destroy_work adding two additional 5361 * steps to the already complex sequence. 5362 */ 5363 static void css_free_rwork_fn(struct work_struct *work) 5364 { 5365 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5366 struct cgroup_subsys_state, destroy_rwork); 5367 struct cgroup_subsys *ss = css->ss; 5368 struct cgroup *cgrp = css->cgroup; 5369 5370 percpu_ref_exit(&css->refcnt); 5371 5372 if (ss) { 5373 /* css free path */ 5374 struct cgroup_subsys_state *parent = css->parent; 5375 int id = css->id; 5376 5377 ss->css_free(css); 5378 cgroup_idr_remove(&ss->css_idr, id); 5379 cgroup_put(cgrp); 5380 5381 if (parent) 5382 css_put(parent); 5383 } else { 5384 /* cgroup free path */ 5385 atomic_dec(&cgrp->root->nr_cgrps); 5386 if (!cgroup_on_dfl(cgrp)) 5387 cgroup1_pidlist_destroy_all(cgrp); 5388 cancel_work_sync(&cgrp->release_agent_work); 5389 bpf_cgrp_storage_free(cgrp); 5390 5391 if (cgroup_parent(cgrp)) { 5392 /* 5393 * We get a ref to the parent, and put the ref when 5394 * this cgroup is being freed, so it's guaranteed 5395 * that the parent won't be destroyed before its 5396 * children. 5397 */ 5398 cgroup_put(cgroup_parent(cgrp)); 5399 kernfs_put(cgrp->kn); 5400 psi_cgroup_free(cgrp); 5401 cgroup_rstat_exit(cgrp); 5402 kfree(cgrp); 5403 } else { 5404 /* 5405 * This is root cgroup's refcnt reaching zero, 5406 * which indicates that the root should be 5407 * released. 5408 */ 5409 cgroup_destroy_root(cgrp->root); 5410 } 5411 } 5412 } 5413 5414 static void css_release_work_fn(struct work_struct *work) 5415 { 5416 struct cgroup_subsys_state *css = 5417 container_of(work, struct cgroup_subsys_state, destroy_work); 5418 struct cgroup_subsys *ss = css->ss; 5419 struct cgroup *cgrp = css->cgroup; 5420 5421 cgroup_lock(); 5422 5423 css->flags |= CSS_RELEASED; 5424 list_del_rcu(&css->sibling); 5425 5426 if (ss) { 5427 /* css release path */ 5428 if (!list_empty(&css->rstat_css_node)) { 5429 cgroup_rstat_flush(cgrp); 5430 list_del_rcu(&css->rstat_css_node); 5431 } 5432 5433 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5434 if (ss->css_released) 5435 ss->css_released(css); 5436 } else { 5437 struct cgroup *tcgrp; 5438 5439 /* cgroup release path */ 5440 TRACE_CGROUP_PATH(release, cgrp); 5441 5442 cgroup_rstat_flush(cgrp); 5443 5444 spin_lock_irq(&css_set_lock); 5445 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5446 tcgrp = cgroup_parent(tcgrp)) 5447 tcgrp->nr_dying_descendants--; 5448 spin_unlock_irq(&css_set_lock); 5449 5450 /* 5451 * There are two control paths which try to determine 5452 * cgroup from dentry without going through kernfs - 5453 * cgroupstats_build() and css_tryget_online_from_dir(). 5454 * Those are supported by RCU protecting clearing of 5455 * cgrp->kn->priv backpointer. 5456 */ 5457 if (cgrp->kn) 5458 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5459 NULL); 5460 } 5461 5462 cgroup_unlock(); 5463 5464 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5465 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5466 } 5467 5468 static void css_release(struct percpu_ref *ref) 5469 { 5470 struct cgroup_subsys_state *css = 5471 container_of(ref, struct cgroup_subsys_state, refcnt); 5472 5473 INIT_WORK(&css->destroy_work, css_release_work_fn); 5474 queue_work(cgroup_destroy_wq, &css->destroy_work); 5475 } 5476 5477 static void init_and_link_css(struct cgroup_subsys_state *css, 5478 struct cgroup_subsys *ss, struct cgroup *cgrp) 5479 { 5480 lockdep_assert_held(&cgroup_mutex); 5481 5482 cgroup_get_live(cgrp); 5483 5484 memset(css, 0, sizeof(*css)); 5485 css->cgroup = cgrp; 5486 css->ss = ss; 5487 css->id = -1; 5488 INIT_LIST_HEAD(&css->sibling); 5489 INIT_LIST_HEAD(&css->children); 5490 INIT_LIST_HEAD(&css->rstat_css_node); 5491 css->serial_nr = css_serial_nr_next++; 5492 atomic_set(&css->online_cnt, 0); 5493 5494 if (cgroup_parent(cgrp)) { 5495 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5496 css_get(css->parent); 5497 } 5498 5499 if (ss->css_rstat_flush) 5500 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5501 5502 BUG_ON(cgroup_css(cgrp, ss)); 5503 } 5504 5505 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5506 static int online_css(struct cgroup_subsys_state *css) 5507 { 5508 struct cgroup_subsys *ss = css->ss; 5509 int ret = 0; 5510 5511 lockdep_assert_held(&cgroup_mutex); 5512 5513 if (ss->css_online) 5514 ret = ss->css_online(css); 5515 if (!ret) { 5516 css->flags |= CSS_ONLINE; 5517 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5518 5519 atomic_inc(&css->online_cnt); 5520 if (css->parent) 5521 atomic_inc(&css->parent->online_cnt); 5522 } 5523 return ret; 5524 } 5525 5526 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5527 static void offline_css(struct cgroup_subsys_state *css) 5528 { 5529 struct cgroup_subsys *ss = css->ss; 5530 5531 lockdep_assert_held(&cgroup_mutex); 5532 5533 if (!(css->flags & CSS_ONLINE)) 5534 return; 5535 5536 if (ss->css_offline) 5537 ss->css_offline(css); 5538 5539 css->flags &= ~CSS_ONLINE; 5540 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5541 5542 wake_up_all(&css->cgroup->offline_waitq); 5543 } 5544 5545 /** 5546 * css_create - create a cgroup_subsys_state 5547 * @cgrp: the cgroup new css will be associated with 5548 * @ss: the subsys of new css 5549 * 5550 * Create a new css associated with @cgrp - @ss pair. On success, the new 5551 * css is online and installed in @cgrp. This function doesn't create the 5552 * interface files. Returns 0 on success, -errno on failure. 5553 */ 5554 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5555 struct cgroup_subsys *ss) 5556 { 5557 struct cgroup *parent = cgroup_parent(cgrp); 5558 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5559 struct cgroup_subsys_state *css; 5560 int err; 5561 5562 lockdep_assert_held(&cgroup_mutex); 5563 5564 css = ss->css_alloc(parent_css); 5565 if (!css) 5566 css = ERR_PTR(-ENOMEM); 5567 if (IS_ERR(css)) 5568 return css; 5569 5570 init_and_link_css(css, ss, cgrp); 5571 5572 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5573 if (err) 5574 goto err_free_css; 5575 5576 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5577 if (err < 0) 5578 goto err_free_css; 5579 css->id = err; 5580 5581 /* @css is ready to be brought online now, make it visible */ 5582 list_add_tail_rcu(&css->sibling, &parent_css->children); 5583 cgroup_idr_replace(&ss->css_idr, css, css->id); 5584 5585 err = online_css(css); 5586 if (err) 5587 goto err_list_del; 5588 5589 return css; 5590 5591 err_list_del: 5592 list_del_rcu(&css->sibling); 5593 err_free_css: 5594 list_del_rcu(&css->rstat_css_node); 5595 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5596 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5597 return ERR_PTR(err); 5598 } 5599 5600 /* 5601 * The returned cgroup is fully initialized including its control mask, but 5602 * it doesn't have the control mask applied. 5603 */ 5604 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5605 umode_t mode) 5606 { 5607 struct cgroup_root *root = parent->root; 5608 struct cgroup *cgrp, *tcgrp; 5609 struct kernfs_node *kn; 5610 int level = parent->level + 1; 5611 int ret; 5612 5613 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5614 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5615 if (!cgrp) 5616 return ERR_PTR(-ENOMEM); 5617 5618 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5619 if (ret) 5620 goto out_free_cgrp; 5621 5622 ret = cgroup_rstat_init(cgrp); 5623 if (ret) 5624 goto out_cancel_ref; 5625 5626 /* create the directory */ 5627 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5628 current_fsuid(), current_fsgid(), 5629 cgrp, NULL); 5630 if (IS_ERR(kn)) { 5631 ret = PTR_ERR(kn); 5632 goto out_stat_exit; 5633 } 5634 cgrp->kn = kn; 5635 5636 init_cgroup_housekeeping(cgrp); 5637 5638 cgrp->self.parent = &parent->self; 5639 cgrp->root = root; 5640 cgrp->level = level; 5641 5642 ret = psi_cgroup_alloc(cgrp); 5643 if (ret) 5644 goto out_kernfs_remove; 5645 5646 ret = cgroup_bpf_inherit(cgrp); 5647 if (ret) 5648 goto out_psi_free; 5649 5650 /* 5651 * New cgroup inherits effective freeze counter, and 5652 * if the parent has to be frozen, the child has too. 5653 */ 5654 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5655 if (cgrp->freezer.e_freeze) { 5656 /* 5657 * Set the CGRP_FREEZE flag, so when a process will be 5658 * attached to the child cgroup, it will become frozen. 5659 * At this point the new cgroup is unpopulated, so we can 5660 * consider it frozen immediately. 5661 */ 5662 set_bit(CGRP_FREEZE, &cgrp->flags); 5663 set_bit(CGRP_FROZEN, &cgrp->flags); 5664 } 5665 5666 spin_lock_irq(&css_set_lock); 5667 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5668 cgrp->ancestors[tcgrp->level] = tcgrp; 5669 5670 if (tcgrp != cgrp) { 5671 tcgrp->nr_descendants++; 5672 5673 /* 5674 * If the new cgroup is frozen, all ancestor cgroups 5675 * get a new frozen descendant, but their state can't 5676 * change because of this. 5677 */ 5678 if (cgrp->freezer.e_freeze) 5679 tcgrp->freezer.nr_frozen_descendants++; 5680 } 5681 } 5682 spin_unlock_irq(&css_set_lock); 5683 5684 if (notify_on_release(parent)) 5685 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5686 5687 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5688 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5689 5690 cgrp->self.serial_nr = css_serial_nr_next++; 5691 5692 /* allocation complete, commit to creation */ 5693 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5694 atomic_inc(&root->nr_cgrps); 5695 cgroup_get_live(parent); 5696 5697 /* 5698 * On the default hierarchy, a child doesn't automatically inherit 5699 * subtree_control from the parent. Each is configured manually. 5700 */ 5701 if (!cgroup_on_dfl(cgrp)) 5702 cgrp->subtree_control = cgroup_control(cgrp); 5703 5704 cgroup_propagate_control(cgrp); 5705 5706 return cgrp; 5707 5708 out_psi_free: 5709 psi_cgroup_free(cgrp); 5710 out_kernfs_remove: 5711 kernfs_remove(cgrp->kn); 5712 out_stat_exit: 5713 cgroup_rstat_exit(cgrp); 5714 out_cancel_ref: 5715 percpu_ref_exit(&cgrp->self.refcnt); 5716 out_free_cgrp: 5717 kfree(cgrp); 5718 return ERR_PTR(ret); 5719 } 5720 5721 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5722 { 5723 struct cgroup *cgroup; 5724 int ret = false; 5725 int level = 1; 5726 5727 lockdep_assert_held(&cgroup_mutex); 5728 5729 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5730 if (cgroup->nr_descendants >= cgroup->max_descendants) 5731 goto fail; 5732 5733 if (level > cgroup->max_depth) 5734 goto fail; 5735 5736 level++; 5737 } 5738 5739 ret = true; 5740 fail: 5741 return ret; 5742 } 5743 5744 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5745 { 5746 struct cgroup *parent, *cgrp; 5747 int ret; 5748 5749 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5750 if (strchr(name, '\n')) 5751 return -EINVAL; 5752 5753 parent = cgroup_kn_lock_live(parent_kn, false); 5754 if (!parent) 5755 return -ENODEV; 5756 5757 if (!cgroup_check_hierarchy_limits(parent)) { 5758 ret = -EAGAIN; 5759 goto out_unlock; 5760 } 5761 5762 cgrp = cgroup_create(parent, name, mode); 5763 if (IS_ERR(cgrp)) { 5764 ret = PTR_ERR(cgrp); 5765 goto out_unlock; 5766 } 5767 5768 /* 5769 * This extra ref will be put in cgroup_free_fn() and guarantees 5770 * that @cgrp->kn is always accessible. 5771 */ 5772 kernfs_get(cgrp->kn); 5773 5774 ret = css_populate_dir(&cgrp->self); 5775 if (ret) 5776 goto out_destroy; 5777 5778 ret = cgroup_apply_control_enable(cgrp); 5779 if (ret) 5780 goto out_destroy; 5781 5782 TRACE_CGROUP_PATH(mkdir, cgrp); 5783 5784 /* let's create and online css's */ 5785 kernfs_activate(cgrp->kn); 5786 5787 ret = 0; 5788 goto out_unlock; 5789 5790 out_destroy: 5791 cgroup_destroy_locked(cgrp); 5792 out_unlock: 5793 cgroup_kn_unlock(parent_kn); 5794 return ret; 5795 } 5796 5797 /* 5798 * This is called when the refcnt of a css is confirmed to be killed. 5799 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5800 * initiate destruction and put the css ref from kill_css(). 5801 */ 5802 static void css_killed_work_fn(struct work_struct *work) 5803 { 5804 struct cgroup_subsys_state *css = 5805 container_of(work, struct cgroup_subsys_state, destroy_work); 5806 5807 cgroup_lock(); 5808 5809 do { 5810 offline_css(css); 5811 css_put(css); 5812 /* @css can't go away while we're holding cgroup_mutex */ 5813 css = css->parent; 5814 } while (css && atomic_dec_and_test(&css->online_cnt)); 5815 5816 cgroup_unlock(); 5817 } 5818 5819 /* css kill confirmation processing requires process context, bounce */ 5820 static void css_killed_ref_fn(struct percpu_ref *ref) 5821 { 5822 struct cgroup_subsys_state *css = 5823 container_of(ref, struct cgroup_subsys_state, refcnt); 5824 5825 if (atomic_dec_and_test(&css->online_cnt)) { 5826 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5827 queue_work(cgroup_destroy_wq, &css->destroy_work); 5828 } 5829 } 5830 5831 /** 5832 * kill_css - destroy a css 5833 * @css: css to destroy 5834 * 5835 * This function initiates destruction of @css by removing cgroup interface 5836 * files and putting its base reference. ->css_offline() will be invoked 5837 * asynchronously once css_tryget_online() is guaranteed to fail and when 5838 * the reference count reaches zero, @css will be released. 5839 */ 5840 static void kill_css(struct cgroup_subsys_state *css) 5841 { 5842 lockdep_assert_held(&cgroup_mutex); 5843 5844 if (css->flags & CSS_DYING) 5845 return; 5846 5847 css->flags |= CSS_DYING; 5848 5849 /* 5850 * This must happen before css is disassociated with its cgroup. 5851 * See seq_css() for details. 5852 */ 5853 css_clear_dir(css); 5854 5855 /* 5856 * Killing would put the base ref, but we need to keep it alive 5857 * until after ->css_offline(). 5858 */ 5859 css_get(css); 5860 5861 /* 5862 * cgroup core guarantees that, by the time ->css_offline() is 5863 * invoked, no new css reference will be given out via 5864 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5865 * proceed to offlining css's because percpu_ref_kill() doesn't 5866 * guarantee that the ref is seen as killed on all CPUs on return. 5867 * 5868 * Use percpu_ref_kill_and_confirm() to get notifications as each 5869 * css is confirmed to be seen as killed on all CPUs. 5870 */ 5871 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5872 } 5873 5874 /** 5875 * cgroup_destroy_locked - the first stage of cgroup destruction 5876 * @cgrp: cgroup to be destroyed 5877 * 5878 * css's make use of percpu refcnts whose killing latency shouldn't be 5879 * exposed to userland and are RCU protected. Also, cgroup core needs to 5880 * guarantee that css_tryget_online() won't succeed by the time 5881 * ->css_offline() is invoked. To satisfy all the requirements, 5882 * destruction is implemented in the following two steps. 5883 * 5884 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5885 * userland visible parts and start killing the percpu refcnts of 5886 * css's. Set up so that the next stage will be kicked off once all 5887 * the percpu refcnts are confirmed to be killed. 5888 * 5889 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5890 * rest of destruction. Once all cgroup references are gone, the 5891 * cgroup is RCU-freed. 5892 * 5893 * This function implements s1. After this step, @cgrp is gone as far as 5894 * the userland is concerned and a new cgroup with the same name may be 5895 * created. As cgroup doesn't care about the names internally, this 5896 * doesn't cause any problem. 5897 */ 5898 static int cgroup_destroy_locked(struct cgroup *cgrp) 5899 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5900 { 5901 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5902 struct cgroup_subsys_state *css; 5903 struct cgrp_cset_link *link; 5904 int ssid; 5905 5906 lockdep_assert_held(&cgroup_mutex); 5907 5908 /* 5909 * Only migration can raise populated from zero and we're already 5910 * holding cgroup_mutex. 5911 */ 5912 if (cgroup_is_populated(cgrp)) 5913 return -EBUSY; 5914 5915 /* 5916 * Make sure there's no live children. We can't test emptiness of 5917 * ->self.children as dead children linger on it while being 5918 * drained; otherwise, "rmdir parent/child parent" may fail. 5919 */ 5920 if (css_has_online_children(&cgrp->self)) 5921 return -EBUSY; 5922 5923 /* 5924 * Mark @cgrp and the associated csets dead. The former prevents 5925 * further task migration and child creation by disabling 5926 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5927 * the migration path. 5928 */ 5929 cgrp->self.flags &= ~CSS_ONLINE; 5930 5931 spin_lock_irq(&css_set_lock); 5932 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5933 link->cset->dead = true; 5934 spin_unlock_irq(&css_set_lock); 5935 5936 /* initiate massacre of all css's */ 5937 for_each_css(css, ssid, cgrp) 5938 kill_css(css); 5939 5940 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5941 css_clear_dir(&cgrp->self); 5942 kernfs_remove(cgrp->kn); 5943 5944 if (cgroup_is_threaded(cgrp)) 5945 parent->nr_threaded_children--; 5946 5947 spin_lock_irq(&css_set_lock); 5948 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5949 tcgrp->nr_descendants--; 5950 tcgrp->nr_dying_descendants++; 5951 /* 5952 * If the dying cgroup is frozen, decrease frozen descendants 5953 * counters of ancestor cgroups. 5954 */ 5955 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5956 tcgrp->freezer.nr_frozen_descendants--; 5957 } 5958 spin_unlock_irq(&css_set_lock); 5959 5960 cgroup1_check_for_release(parent); 5961 5962 cgroup_bpf_offline(cgrp); 5963 5964 /* put the base reference */ 5965 percpu_ref_kill(&cgrp->self.refcnt); 5966 5967 return 0; 5968 }; 5969 5970 int cgroup_rmdir(struct kernfs_node *kn) 5971 { 5972 struct cgroup *cgrp; 5973 int ret = 0; 5974 5975 cgrp = cgroup_kn_lock_live(kn, false); 5976 if (!cgrp) 5977 return 0; 5978 5979 ret = cgroup_destroy_locked(cgrp); 5980 if (!ret) 5981 TRACE_CGROUP_PATH(rmdir, cgrp); 5982 5983 cgroup_kn_unlock(kn); 5984 return ret; 5985 } 5986 5987 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5988 .show_options = cgroup_show_options, 5989 .mkdir = cgroup_mkdir, 5990 .rmdir = cgroup_rmdir, 5991 .show_path = cgroup_show_path, 5992 }; 5993 5994 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5995 { 5996 struct cgroup_subsys_state *css; 5997 5998 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5999 6000 cgroup_lock(); 6001 6002 idr_init(&ss->css_idr); 6003 INIT_LIST_HEAD(&ss->cfts); 6004 6005 /* Create the root cgroup state for this subsystem */ 6006 ss->root = &cgrp_dfl_root; 6007 css = ss->css_alloc(NULL); 6008 /* We don't handle early failures gracefully */ 6009 BUG_ON(IS_ERR(css)); 6010 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6011 6012 /* 6013 * Root csses are never destroyed and we can't initialize 6014 * percpu_ref during early init. Disable refcnting. 6015 */ 6016 css->flags |= CSS_NO_REF; 6017 6018 if (early) { 6019 /* allocation can't be done safely during early init */ 6020 css->id = 1; 6021 } else { 6022 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6023 BUG_ON(css->id < 0); 6024 } 6025 6026 /* Update the init_css_set to contain a subsys 6027 * pointer to this state - since the subsystem is 6028 * newly registered, all tasks and hence the 6029 * init_css_set is in the subsystem's root cgroup. */ 6030 init_css_set.subsys[ss->id] = css; 6031 6032 have_fork_callback |= (bool)ss->fork << ss->id; 6033 have_exit_callback |= (bool)ss->exit << ss->id; 6034 have_release_callback |= (bool)ss->release << ss->id; 6035 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6036 6037 /* At system boot, before all subsystems have been 6038 * registered, no tasks have been forked, so we don't 6039 * need to invoke fork callbacks here. */ 6040 BUG_ON(!list_empty(&init_task.tasks)); 6041 6042 BUG_ON(online_css(css)); 6043 6044 cgroup_unlock(); 6045 } 6046 6047 /** 6048 * cgroup_init_early - cgroup initialization at system boot 6049 * 6050 * Initialize cgroups at system boot, and initialize any 6051 * subsystems that request early init. 6052 */ 6053 int __init cgroup_init_early(void) 6054 { 6055 static struct cgroup_fs_context __initdata ctx; 6056 struct cgroup_subsys *ss; 6057 int i; 6058 6059 ctx.root = &cgrp_dfl_root; 6060 init_cgroup_root(&ctx); 6061 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6062 6063 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6064 6065 for_each_subsys(ss, i) { 6066 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6067 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6068 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6069 ss->id, ss->name); 6070 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6071 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6072 6073 ss->id = i; 6074 ss->name = cgroup_subsys_name[i]; 6075 if (!ss->legacy_name) 6076 ss->legacy_name = cgroup_subsys_name[i]; 6077 6078 if (ss->early_init) 6079 cgroup_init_subsys(ss, true); 6080 } 6081 return 0; 6082 } 6083 6084 /** 6085 * cgroup_init - cgroup initialization 6086 * 6087 * Register cgroup filesystem and /proc file, and initialize 6088 * any subsystems that didn't request early init. 6089 */ 6090 int __init cgroup_init(void) 6091 { 6092 struct cgroup_subsys *ss; 6093 int ssid; 6094 6095 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6096 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6097 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6098 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6099 6100 cgroup_rstat_boot(); 6101 6102 get_user_ns(init_cgroup_ns.user_ns); 6103 6104 cgroup_lock(); 6105 6106 /* 6107 * Add init_css_set to the hash table so that dfl_root can link to 6108 * it during init. 6109 */ 6110 hash_add(css_set_table, &init_css_set.hlist, 6111 css_set_hash(init_css_set.subsys)); 6112 6113 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6114 6115 cgroup_unlock(); 6116 6117 for_each_subsys(ss, ssid) { 6118 if (ss->early_init) { 6119 struct cgroup_subsys_state *css = 6120 init_css_set.subsys[ss->id]; 6121 6122 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6123 GFP_KERNEL); 6124 BUG_ON(css->id < 0); 6125 } else { 6126 cgroup_init_subsys(ss, false); 6127 } 6128 6129 list_add_tail(&init_css_set.e_cset_node[ssid], 6130 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6131 6132 /* 6133 * Setting dfl_root subsys_mask needs to consider the 6134 * disabled flag and cftype registration needs kmalloc, 6135 * both of which aren't available during early_init. 6136 */ 6137 if (!cgroup_ssid_enabled(ssid)) 6138 continue; 6139 6140 if (cgroup1_ssid_disabled(ssid)) 6141 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6142 ss->legacy_name); 6143 6144 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6145 6146 /* implicit controllers must be threaded too */ 6147 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6148 6149 if (ss->implicit_on_dfl) 6150 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6151 else if (!ss->dfl_cftypes) 6152 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6153 6154 if (ss->threaded) 6155 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6156 6157 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6158 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6159 } else { 6160 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6161 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6162 } 6163 6164 if (ss->bind) 6165 ss->bind(init_css_set.subsys[ssid]); 6166 6167 cgroup_lock(); 6168 css_populate_dir(init_css_set.subsys[ssid]); 6169 cgroup_unlock(); 6170 } 6171 6172 /* init_css_set.subsys[] has been updated, re-hash */ 6173 hash_del(&init_css_set.hlist); 6174 hash_add(css_set_table, &init_css_set.hlist, 6175 css_set_hash(init_css_set.subsys)); 6176 6177 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6178 WARN_ON(register_filesystem(&cgroup_fs_type)); 6179 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6180 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6181 #ifdef CONFIG_CPUSETS 6182 WARN_ON(register_filesystem(&cpuset_fs_type)); 6183 #endif 6184 6185 return 0; 6186 } 6187 6188 static int __init cgroup_wq_init(void) 6189 { 6190 /* 6191 * There isn't much point in executing destruction path in 6192 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6193 * Use 1 for @max_active. 6194 * 6195 * We would prefer to do this in cgroup_init() above, but that 6196 * is called before init_workqueues(): so leave this until after. 6197 */ 6198 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6199 BUG_ON(!cgroup_destroy_wq); 6200 return 0; 6201 } 6202 core_initcall(cgroup_wq_init); 6203 6204 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6205 { 6206 struct kernfs_node *kn; 6207 6208 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6209 if (!kn) 6210 return; 6211 kernfs_path(kn, buf, buflen); 6212 kernfs_put(kn); 6213 } 6214 6215 /* 6216 * cgroup_get_from_id : get the cgroup associated with cgroup id 6217 * @id: cgroup id 6218 * On success return the cgrp or ERR_PTR on failure 6219 * Only cgroups within current task's cgroup NS are valid. 6220 */ 6221 struct cgroup *cgroup_get_from_id(u64 id) 6222 { 6223 struct kernfs_node *kn; 6224 struct cgroup *cgrp, *root_cgrp; 6225 6226 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6227 if (!kn) 6228 return ERR_PTR(-ENOENT); 6229 6230 if (kernfs_type(kn) != KERNFS_DIR) { 6231 kernfs_put(kn); 6232 return ERR_PTR(-ENOENT); 6233 } 6234 6235 rcu_read_lock(); 6236 6237 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6238 if (cgrp && !cgroup_tryget(cgrp)) 6239 cgrp = NULL; 6240 6241 rcu_read_unlock(); 6242 kernfs_put(kn); 6243 6244 if (!cgrp) 6245 return ERR_PTR(-ENOENT); 6246 6247 root_cgrp = current_cgns_cgroup_dfl(); 6248 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6249 cgroup_put(cgrp); 6250 return ERR_PTR(-ENOENT); 6251 } 6252 6253 return cgrp; 6254 } 6255 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6256 6257 /* 6258 * proc_cgroup_show() 6259 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6260 * - Used for /proc/<pid>/cgroup. 6261 */ 6262 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6263 struct pid *pid, struct task_struct *tsk) 6264 { 6265 char *buf; 6266 int retval; 6267 struct cgroup_root *root; 6268 6269 retval = -ENOMEM; 6270 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6271 if (!buf) 6272 goto out; 6273 6274 rcu_read_lock(); 6275 spin_lock_irq(&css_set_lock); 6276 6277 for_each_root(root) { 6278 struct cgroup_subsys *ss; 6279 struct cgroup *cgrp; 6280 int ssid, count = 0; 6281 6282 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6283 continue; 6284 6285 cgrp = task_cgroup_from_root(tsk, root); 6286 /* The root has already been unmounted. */ 6287 if (!cgrp) 6288 continue; 6289 6290 seq_printf(m, "%d:", root->hierarchy_id); 6291 if (root != &cgrp_dfl_root) 6292 for_each_subsys(ss, ssid) 6293 if (root->subsys_mask & (1 << ssid)) 6294 seq_printf(m, "%s%s", count++ ? "," : "", 6295 ss->legacy_name); 6296 if (strlen(root->name)) 6297 seq_printf(m, "%sname=%s", count ? "," : "", 6298 root->name); 6299 seq_putc(m, ':'); 6300 /* 6301 * On traditional hierarchies, all zombie tasks show up as 6302 * belonging to the root cgroup. On the default hierarchy, 6303 * while a zombie doesn't show up in "cgroup.procs" and 6304 * thus can't be migrated, its /proc/PID/cgroup keeps 6305 * reporting the cgroup it belonged to before exiting. If 6306 * the cgroup is removed before the zombie is reaped, 6307 * " (deleted)" is appended to the cgroup path. 6308 */ 6309 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6310 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6311 current->nsproxy->cgroup_ns); 6312 if (retval == -E2BIG) 6313 retval = -ENAMETOOLONG; 6314 if (retval < 0) 6315 goto out_unlock; 6316 6317 seq_puts(m, buf); 6318 } else { 6319 seq_puts(m, "/"); 6320 } 6321 6322 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6323 seq_puts(m, " (deleted)\n"); 6324 else 6325 seq_putc(m, '\n'); 6326 } 6327 6328 retval = 0; 6329 out_unlock: 6330 spin_unlock_irq(&css_set_lock); 6331 rcu_read_unlock(); 6332 kfree(buf); 6333 out: 6334 return retval; 6335 } 6336 6337 /** 6338 * cgroup_fork - initialize cgroup related fields during copy_process() 6339 * @child: pointer to task_struct of forking parent process. 6340 * 6341 * A task is associated with the init_css_set until cgroup_post_fork() 6342 * attaches it to the target css_set. 6343 */ 6344 void cgroup_fork(struct task_struct *child) 6345 { 6346 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6347 INIT_LIST_HEAD(&child->cg_list); 6348 } 6349 6350 /** 6351 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6352 * @f: file corresponding to cgroup_dir 6353 * 6354 * Find the cgroup from a file pointer associated with a cgroup directory. 6355 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6356 * cgroup cannot be found. 6357 */ 6358 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6359 { 6360 struct cgroup_subsys_state *css; 6361 6362 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6363 if (IS_ERR(css)) 6364 return ERR_CAST(css); 6365 6366 return css->cgroup; 6367 } 6368 6369 /** 6370 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6371 * cgroup2. 6372 * @f: file corresponding to cgroup2_dir 6373 */ 6374 static struct cgroup *cgroup_get_from_file(struct file *f) 6375 { 6376 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6377 6378 if (IS_ERR(cgrp)) 6379 return ERR_CAST(cgrp); 6380 6381 if (!cgroup_on_dfl(cgrp)) { 6382 cgroup_put(cgrp); 6383 return ERR_PTR(-EBADF); 6384 } 6385 6386 return cgrp; 6387 } 6388 6389 /** 6390 * cgroup_css_set_fork - find or create a css_set for a child process 6391 * @kargs: the arguments passed to create the child process 6392 * 6393 * This functions finds or creates a new css_set which the child 6394 * process will be attached to in cgroup_post_fork(). By default, 6395 * the child process will be given the same css_set as its parent. 6396 * 6397 * If CLONE_INTO_CGROUP is specified this function will try to find an 6398 * existing css_set which includes the requested cgroup and if not create 6399 * a new css_set that the child will be attached to later. If this function 6400 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6401 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6402 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6403 * to the target cgroup. 6404 */ 6405 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6406 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6407 { 6408 int ret; 6409 struct cgroup *dst_cgrp = NULL; 6410 struct css_set *cset; 6411 struct super_block *sb; 6412 struct file *f; 6413 6414 if (kargs->flags & CLONE_INTO_CGROUP) 6415 cgroup_lock(); 6416 6417 cgroup_threadgroup_change_begin(current); 6418 6419 spin_lock_irq(&css_set_lock); 6420 cset = task_css_set(current); 6421 get_css_set(cset); 6422 spin_unlock_irq(&css_set_lock); 6423 6424 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6425 kargs->cset = cset; 6426 return 0; 6427 } 6428 6429 f = fget_raw(kargs->cgroup); 6430 if (!f) { 6431 ret = -EBADF; 6432 goto err; 6433 } 6434 sb = f->f_path.dentry->d_sb; 6435 6436 dst_cgrp = cgroup_get_from_file(f); 6437 if (IS_ERR(dst_cgrp)) { 6438 ret = PTR_ERR(dst_cgrp); 6439 dst_cgrp = NULL; 6440 goto err; 6441 } 6442 6443 if (cgroup_is_dead(dst_cgrp)) { 6444 ret = -ENODEV; 6445 goto err; 6446 } 6447 6448 /* 6449 * Verify that we the target cgroup is writable for us. This is 6450 * usually done by the vfs layer but since we're not going through 6451 * the vfs layer here we need to do it "manually". 6452 */ 6453 ret = cgroup_may_write(dst_cgrp, sb); 6454 if (ret) 6455 goto err; 6456 6457 /* 6458 * Spawning a task directly into a cgroup works by passing a file 6459 * descriptor to the target cgroup directory. This can even be an O_PATH 6460 * file descriptor. But it can never be a cgroup.procs file descriptor. 6461 * This was done on purpose so spawning into a cgroup could be 6462 * conceptualized as an atomic 6463 * 6464 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6465 * write(fd, <child-pid>, ...); 6466 * 6467 * sequence, i.e. it's a shorthand for the caller opening and writing 6468 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6469 * to always use the caller's credentials. 6470 */ 6471 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6472 !(kargs->flags & CLONE_THREAD), 6473 current->nsproxy->cgroup_ns); 6474 if (ret) 6475 goto err; 6476 6477 kargs->cset = find_css_set(cset, dst_cgrp); 6478 if (!kargs->cset) { 6479 ret = -ENOMEM; 6480 goto err; 6481 } 6482 6483 put_css_set(cset); 6484 fput(f); 6485 kargs->cgrp = dst_cgrp; 6486 return ret; 6487 6488 err: 6489 cgroup_threadgroup_change_end(current); 6490 cgroup_unlock(); 6491 if (f) 6492 fput(f); 6493 if (dst_cgrp) 6494 cgroup_put(dst_cgrp); 6495 put_css_set(cset); 6496 if (kargs->cset) 6497 put_css_set(kargs->cset); 6498 return ret; 6499 } 6500 6501 /** 6502 * cgroup_css_set_put_fork - drop references we took during fork 6503 * @kargs: the arguments passed to create the child process 6504 * 6505 * Drop references to the prepared css_set and target cgroup if 6506 * CLONE_INTO_CGROUP was requested. 6507 */ 6508 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6509 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6510 { 6511 struct cgroup *cgrp = kargs->cgrp; 6512 struct css_set *cset = kargs->cset; 6513 6514 cgroup_threadgroup_change_end(current); 6515 6516 if (cset) { 6517 put_css_set(cset); 6518 kargs->cset = NULL; 6519 } 6520 6521 if (kargs->flags & CLONE_INTO_CGROUP) { 6522 cgroup_unlock(); 6523 if (cgrp) { 6524 cgroup_put(cgrp); 6525 kargs->cgrp = NULL; 6526 } 6527 } 6528 } 6529 6530 /** 6531 * cgroup_can_fork - called on a new task before the process is exposed 6532 * @child: the child process 6533 * @kargs: the arguments passed to create the child process 6534 * 6535 * This prepares a new css_set for the child process which the child will 6536 * be attached to in cgroup_post_fork(). 6537 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6538 * callback returns an error, the fork aborts with that error code. This 6539 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6540 */ 6541 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6542 { 6543 struct cgroup_subsys *ss; 6544 int i, j, ret; 6545 6546 ret = cgroup_css_set_fork(kargs); 6547 if (ret) 6548 return ret; 6549 6550 do_each_subsys_mask(ss, i, have_canfork_callback) { 6551 ret = ss->can_fork(child, kargs->cset); 6552 if (ret) 6553 goto out_revert; 6554 } while_each_subsys_mask(); 6555 6556 return 0; 6557 6558 out_revert: 6559 for_each_subsys(ss, j) { 6560 if (j >= i) 6561 break; 6562 if (ss->cancel_fork) 6563 ss->cancel_fork(child, kargs->cset); 6564 } 6565 6566 cgroup_css_set_put_fork(kargs); 6567 6568 return ret; 6569 } 6570 6571 /** 6572 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6573 * @child: the child process 6574 * @kargs: the arguments passed to create the child process 6575 * 6576 * This calls the cancel_fork() callbacks if a fork failed *after* 6577 * cgroup_can_fork() succeeded and cleans up references we took to 6578 * prepare a new css_set for the child process in cgroup_can_fork(). 6579 */ 6580 void cgroup_cancel_fork(struct task_struct *child, 6581 struct kernel_clone_args *kargs) 6582 { 6583 struct cgroup_subsys *ss; 6584 int i; 6585 6586 for_each_subsys(ss, i) 6587 if (ss->cancel_fork) 6588 ss->cancel_fork(child, kargs->cset); 6589 6590 cgroup_css_set_put_fork(kargs); 6591 } 6592 6593 /** 6594 * cgroup_post_fork - finalize cgroup setup for the child process 6595 * @child: the child process 6596 * @kargs: the arguments passed to create the child process 6597 * 6598 * Attach the child process to its css_set calling the subsystem fork() 6599 * callbacks. 6600 */ 6601 void cgroup_post_fork(struct task_struct *child, 6602 struct kernel_clone_args *kargs) 6603 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6604 { 6605 unsigned long cgrp_flags = 0; 6606 bool kill = false; 6607 struct cgroup_subsys *ss; 6608 struct css_set *cset; 6609 int i; 6610 6611 cset = kargs->cset; 6612 kargs->cset = NULL; 6613 6614 spin_lock_irq(&css_set_lock); 6615 6616 /* init tasks are special, only link regular threads */ 6617 if (likely(child->pid)) { 6618 if (kargs->cgrp) 6619 cgrp_flags = kargs->cgrp->flags; 6620 else 6621 cgrp_flags = cset->dfl_cgrp->flags; 6622 6623 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6624 cset->nr_tasks++; 6625 css_set_move_task(child, NULL, cset, false); 6626 } else { 6627 put_css_set(cset); 6628 cset = NULL; 6629 } 6630 6631 if (!(child->flags & PF_KTHREAD)) { 6632 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6633 /* 6634 * If the cgroup has to be frozen, the new task has 6635 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6636 * get the task into the frozen state. 6637 */ 6638 spin_lock(&child->sighand->siglock); 6639 WARN_ON_ONCE(child->frozen); 6640 child->jobctl |= JOBCTL_TRAP_FREEZE; 6641 spin_unlock(&child->sighand->siglock); 6642 6643 /* 6644 * Calling cgroup_update_frozen() isn't required here, 6645 * because it will be called anyway a bit later from 6646 * do_freezer_trap(). So we avoid cgroup's transient 6647 * switch from the frozen state and back. 6648 */ 6649 } 6650 6651 /* 6652 * If the cgroup is to be killed notice it now and take the 6653 * child down right after we finished preparing it for 6654 * userspace. 6655 */ 6656 kill = test_bit(CGRP_KILL, &cgrp_flags); 6657 } 6658 6659 spin_unlock_irq(&css_set_lock); 6660 6661 /* 6662 * Call ss->fork(). This must happen after @child is linked on 6663 * css_set; otherwise, @child might change state between ->fork() 6664 * and addition to css_set. 6665 */ 6666 do_each_subsys_mask(ss, i, have_fork_callback) { 6667 ss->fork(child); 6668 } while_each_subsys_mask(); 6669 6670 /* Make the new cset the root_cset of the new cgroup namespace. */ 6671 if (kargs->flags & CLONE_NEWCGROUP) { 6672 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6673 6674 get_css_set(cset); 6675 child->nsproxy->cgroup_ns->root_cset = cset; 6676 put_css_set(rcset); 6677 } 6678 6679 /* Cgroup has to be killed so take down child immediately. */ 6680 if (unlikely(kill)) 6681 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6682 6683 cgroup_css_set_put_fork(kargs); 6684 } 6685 6686 /** 6687 * cgroup_exit - detach cgroup from exiting task 6688 * @tsk: pointer to task_struct of exiting process 6689 * 6690 * Description: Detach cgroup from @tsk. 6691 * 6692 */ 6693 void cgroup_exit(struct task_struct *tsk) 6694 { 6695 struct cgroup_subsys *ss; 6696 struct css_set *cset; 6697 int i; 6698 6699 spin_lock_irq(&css_set_lock); 6700 6701 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6702 cset = task_css_set(tsk); 6703 css_set_move_task(tsk, cset, NULL, false); 6704 cset->nr_tasks--; 6705 /* matches the signal->live check in css_task_iter_advance() */ 6706 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6707 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6708 6709 if (dl_task(tsk)) 6710 dec_dl_tasks_cs(tsk); 6711 6712 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6713 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6714 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6715 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6716 6717 spin_unlock_irq(&css_set_lock); 6718 6719 /* see cgroup_post_fork() for details */ 6720 do_each_subsys_mask(ss, i, have_exit_callback) { 6721 ss->exit(tsk); 6722 } while_each_subsys_mask(); 6723 } 6724 6725 void cgroup_release(struct task_struct *task) 6726 { 6727 struct cgroup_subsys *ss; 6728 int ssid; 6729 6730 do_each_subsys_mask(ss, ssid, have_release_callback) { 6731 ss->release(task); 6732 } while_each_subsys_mask(); 6733 6734 if (!list_empty(&task->cg_list)) { 6735 spin_lock_irq(&css_set_lock); 6736 css_set_skip_task_iters(task_css_set(task), task); 6737 list_del_init(&task->cg_list); 6738 spin_unlock_irq(&css_set_lock); 6739 } 6740 } 6741 6742 void cgroup_free(struct task_struct *task) 6743 { 6744 struct css_set *cset = task_css_set(task); 6745 put_css_set(cset); 6746 } 6747 6748 static int __init cgroup_disable(char *str) 6749 { 6750 struct cgroup_subsys *ss; 6751 char *token; 6752 int i; 6753 6754 while ((token = strsep(&str, ",")) != NULL) { 6755 if (!*token) 6756 continue; 6757 6758 for_each_subsys(ss, i) { 6759 if (strcmp(token, ss->name) && 6760 strcmp(token, ss->legacy_name)) 6761 continue; 6762 6763 static_branch_disable(cgroup_subsys_enabled_key[i]); 6764 pr_info("Disabling %s control group subsystem\n", 6765 ss->name); 6766 } 6767 6768 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6769 if (strcmp(token, cgroup_opt_feature_names[i])) 6770 continue; 6771 cgroup_feature_disable_mask |= 1 << i; 6772 pr_info("Disabling %s control group feature\n", 6773 cgroup_opt_feature_names[i]); 6774 break; 6775 } 6776 } 6777 return 1; 6778 } 6779 __setup("cgroup_disable=", cgroup_disable); 6780 6781 void __init __weak enable_debug_cgroup(void) { } 6782 6783 static int __init enable_cgroup_debug(char *str) 6784 { 6785 cgroup_debug = true; 6786 enable_debug_cgroup(); 6787 return 1; 6788 } 6789 __setup("cgroup_debug", enable_cgroup_debug); 6790 6791 static int __init cgroup_favordynmods_setup(char *str) 6792 { 6793 return (kstrtobool(str, &have_favordynmods) == 0); 6794 } 6795 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6796 6797 /** 6798 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6799 * @dentry: directory dentry of interest 6800 * @ss: subsystem of interest 6801 * 6802 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6803 * to get the corresponding css and return it. If such css doesn't exist 6804 * or can't be pinned, an ERR_PTR value is returned. 6805 */ 6806 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6807 struct cgroup_subsys *ss) 6808 { 6809 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6810 struct file_system_type *s_type = dentry->d_sb->s_type; 6811 struct cgroup_subsys_state *css = NULL; 6812 struct cgroup *cgrp; 6813 6814 /* is @dentry a cgroup dir? */ 6815 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6816 !kn || kernfs_type(kn) != KERNFS_DIR) 6817 return ERR_PTR(-EBADF); 6818 6819 rcu_read_lock(); 6820 6821 /* 6822 * This path doesn't originate from kernfs and @kn could already 6823 * have been or be removed at any point. @kn->priv is RCU 6824 * protected for this access. See css_release_work_fn() for details. 6825 */ 6826 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6827 if (cgrp) 6828 css = cgroup_css(cgrp, ss); 6829 6830 if (!css || !css_tryget_online(css)) 6831 css = ERR_PTR(-ENOENT); 6832 6833 rcu_read_unlock(); 6834 return css; 6835 } 6836 6837 /** 6838 * css_from_id - lookup css by id 6839 * @id: the cgroup id 6840 * @ss: cgroup subsys to be looked into 6841 * 6842 * Returns the css if there's valid one with @id, otherwise returns NULL. 6843 * Should be called under rcu_read_lock(). 6844 */ 6845 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6846 { 6847 WARN_ON_ONCE(!rcu_read_lock_held()); 6848 return idr_find(&ss->css_idr, id); 6849 } 6850 6851 /** 6852 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6853 * @path: path on the default hierarchy 6854 * 6855 * Find the cgroup at @path on the default hierarchy, increment its 6856 * reference count and return it. Returns pointer to the found cgroup on 6857 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6858 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6859 */ 6860 struct cgroup *cgroup_get_from_path(const char *path) 6861 { 6862 struct kernfs_node *kn; 6863 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6864 struct cgroup *root_cgrp; 6865 6866 root_cgrp = current_cgns_cgroup_dfl(); 6867 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6868 if (!kn) 6869 goto out; 6870 6871 if (kernfs_type(kn) != KERNFS_DIR) { 6872 cgrp = ERR_PTR(-ENOTDIR); 6873 goto out_kernfs; 6874 } 6875 6876 rcu_read_lock(); 6877 6878 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6879 if (!cgrp || !cgroup_tryget(cgrp)) 6880 cgrp = ERR_PTR(-ENOENT); 6881 6882 rcu_read_unlock(); 6883 6884 out_kernfs: 6885 kernfs_put(kn); 6886 out: 6887 return cgrp; 6888 } 6889 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6890 6891 /** 6892 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6893 * @fd: fd obtained by open(cgroup_dir) 6894 * 6895 * Find the cgroup from a fd which should be obtained 6896 * by opening a cgroup directory. Returns a pointer to the 6897 * cgroup on success. ERR_PTR is returned if the cgroup 6898 * cannot be found. 6899 */ 6900 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6901 { 6902 struct cgroup *cgrp; 6903 struct fd f = fdget_raw(fd); 6904 if (!f.file) 6905 return ERR_PTR(-EBADF); 6906 6907 cgrp = cgroup_v1v2_get_from_file(f.file); 6908 fdput(f); 6909 return cgrp; 6910 } 6911 6912 /** 6913 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6914 * cgroup2. 6915 * @fd: fd obtained by open(cgroup2_dir) 6916 */ 6917 struct cgroup *cgroup_get_from_fd(int fd) 6918 { 6919 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6920 6921 if (IS_ERR(cgrp)) 6922 return ERR_CAST(cgrp); 6923 6924 if (!cgroup_on_dfl(cgrp)) { 6925 cgroup_put(cgrp); 6926 return ERR_PTR(-EBADF); 6927 } 6928 return cgrp; 6929 } 6930 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6931 6932 static u64 power_of_ten(int power) 6933 { 6934 u64 v = 1; 6935 while (power--) 6936 v *= 10; 6937 return v; 6938 } 6939 6940 /** 6941 * cgroup_parse_float - parse a floating number 6942 * @input: input string 6943 * @dec_shift: number of decimal digits to shift 6944 * @v: output 6945 * 6946 * Parse a decimal floating point number in @input and store the result in 6947 * @v with decimal point right shifted @dec_shift times. For example, if 6948 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6949 * Returns 0 on success, -errno otherwise. 6950 * 6951 * There's nothing cgroup specific about this function except that it's 6952 * currently the only user. 6953 */ 6954 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6955 { 6956 s64 whole, frac = 0; 6957 int fstart = 0, fend = 0, flen; 6958 6959 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6960 return -EINVAL; 6961 if (frac < 0) 6962 return -EINVAL; 6963 6964 flen = fend > fstart ? fend - fstart : 0; 6965 if (flen < dec_shift) 6966 frac *= power_of_ten(dec_shift - flen); 6967 else 6968 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6969 6970 *v = whole * power_of_ten(dec_shift) + frac; 6971 return 0; 6972 } 6973 6974 /* 6975 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6976 * definition in cgroup-defs.h. 6977 */ 6978 #ifdef CONFIG_SOCK_CGROUP_DATA 6979 6980 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6981 { 6982 struct cgroup *cgroup; 6983 6984 rcu_read_lock(); 6985 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6986 if (in_interrupt()) { 6987 cgroup = &cgrp_dfl_root.cgrp; 6988 cgroup_get(cgroup); 6989 goto out; 6990 } 6991 6992 while (true) { 6993 struct css_set *cset; 6994 6995 cset = task_css_set(current); 6996 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6997 cgroup = cset->dfl_cgrp; 6998 break; 6999 } 7000 cpu_relax(); 7001 } 7002 out: 7003 skcd->cgroup = cgroup; 7004 cgroup_bpf_get(cgroup); 7005 rcu_read_unlock(); 7006 } 7007 7008 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7009 { 7010 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7011 7012 /* 7013 * We might be cloning a socket which is left in an empty 7014 * cgroup and the cgroup might have already been rmdir'd. 7015 * Don't use cgroup_get_live(). 7016 */ 7017 cgroup_get(cgrp); 7018 cgroup_bpf_get(cgrp); 7019 } 7020 7021 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7022 { 7023 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7024 7025 cgroup_bpf_put(cgrp); 7026 cgroup_put(cgrp); 7027 } 7028 7029 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7030 7031 #ifdef CONFIG_SYSFS 7032 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7033 ssize_t size, const char *prefix) 7034 { 7035 struct cftype *cft; 7036 ssize_t ret = 0; 7037 7038 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7039 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7040 continue; 7041 7042 if (prefix) 7043 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7044 7045 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7046 7047 if (WARN_ON(ret >= size)) 7048 break; 7049 } 7050 7051 return ret; 7052 } 7053 7054 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7055 char *buf) 7056 { 7057 struct cgroup_subsys *ss; 7058 int ssid; 7059 ssize_t ret = 0; 7060 7061 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7062 PAGE_SIZE - ret, NULL); 7063 if (cgroup_psi_enabled()) 7064 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7065 PAGE_SIZE - ret, NULL); 7066 7067 for_each_subsys(ss, ssid) 7068 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7069 PAGE_SIZE - ret, 7070 cgroup_subsys_name[ssid]); 7071 7072 return ret; 7073 } 7074 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7075 7076 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7077 char *buf) 7078 { 7079 return snprintf(buf, PAGE_SIZE, 7080 "nsdelegate\n" 7081 "favordynmods\n" 7082 "memory_localevents\n" 7083 "memory_recursiveprot\n" 7084 "memory_hugetlb_accounting\n" 7085 "pids_localevents\n"); 7086 } 7087 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7088 7089 static struct attribute *cgroup_sysfs_attrs[] = { 7090 &cgroup_delegate_attr.attr, 7091 &cgroup_features_attr.attr, 7092 NULL, 7093 }; 7094 7095 static const struct attribute_group cgroup_sysfs_attr_group = { 7096 .attrs = cgroup_sysfs_attrs, 7097 .name = "cgroup", 7098 }; 7099 7100 static int __init cgroup_sysfs_init(void) 7101 { 7102 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7103 } 7104 subsys_initcall(cgroup_sysfs_init); 7105 7106 #endif /* CONFIG_SYSFS */ 7107