1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ 268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ 319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ 325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ 366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ 377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ 399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ 421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ 439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ 460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ 487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ 571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ 608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ 625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 637 { 638 struct cgroup *cgrp = of->kn->parent->priv; 639 struct cftype *cft = of_cft(of); 640 641 /* 642 * This is open and unprotected implementation of cgroup_css(). 643 * seq_css() is only called from a kernfs file operation which has 644 * an active reference on the file. Because all the subsystem 645 * files are drained before a css is disassociated with a cgroup, 646 * the matching css from the cgroup's subsys table is guaranteed to 647 * be and stay valid until the enclosing operation is complete. 648 */ 649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 651 else 652 return &cgrp->self; 653 } 654 EXPORT_SYMBOL_GPL(of_css); 655 656 /** 657 * for_each_css - iterate all css's of a cgroup 658 * @css: the iteration cursor 659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 660 * @cgrp: the target cgroup to iterate css's of 661 * 662 * Should be called under cgroup_mutex. 663 */ 664 #define for_each_css(css, ssid, cgrp) \ 665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 666 if (!((css) = rcu_dereference_check( \ 667 (cgrp)->subsys[(ssid)], \ 668 lockdep_is_held(&cgroup_mutex)))) { } \ 669 else 670 671 /** 672 * do_each_subsys_mask - filter for_each_subsys with a bitmask 673 * @ss: the iteration cursor 674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 675 * @ss_mask: the bitmask 676 * 677 * The block will only run for cases where the ssid-th bit (1 << ssid) of 678 * @ss_mask is set. 679 */ 680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 681 unsigned long __ss_mask = (ss_mask); \ 682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 683 (ssid) = 0; \ 684 break; \ 685 } \ 686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 687 (ss) = cgroup_subsys[ssid]; \ 688 { 689 690 #define while_each_subsys_mask() \ 691 } \ 692 } \ 693 } while (false) 694 695 /* iterate over child cgrps, lock should be held throughout iteration */ 696 #define cgroup_for_each_live_child(child, cgrp) \ 697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 698 if (({ lockdep_assert_held(&cgroup_mutex); \ 699 cgroup_is_dead(child); })) \ 700 ; \ 701 else 702 703 /* walk live descendants in pre order */ 704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 (dsct) = (d_css)->cgroup; \ 708 cgroup_is_dead(dsct); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in postorder */ 713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* 722 * The default css_set - used by init and its children prior to any 723 * hierarchies being mounted. It contains a pointer to the root state 724 * for each subsystem. Also used to anchor the list of css_sets. Not 725 * reference-counted, to improve performance when child cgroups 726 * haven't been created. 727 */ 728 struct css_set init_css_set = { 729 .refcount = REFCOUNT_INIT(1), 730 .dom_cset = &init_css_set, 731 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 740 741 /* 742 * The following field is re-initialized when this cset gets linked 743 * in cgroup_init(). However, let's initialize the field 744 * statically too so that the default cgroup can be accessed safely 745 * early during boot. 746 */ 747 .dfl_cgrp = &cgrp_dfl_root.cgrp, 748 }; 749 750 static int css_set_count = 1; /* 1 for init_css_set */ 751 752 static bool css_set_threaded(struct css_set *cset) 753 { 754 return cset->dom_cset != cset; 755 } 756 757 /** 758 * css_set_populated - does a css_set contain any tasks? 759 * @cset: target css_set 760 * 761 * css_set_populated() should be the same as !!cset->nr_tasks at steady 762 * state. However, css_set_populated() can be called while a task is being 763 * added to or removed from the linked list before the nr_tasks is 764 * properly updated. Hence, we can't just look at ->nr_tasks here. 765 */ 766 static bool css_set_populated(struct css_set *cset) 767 { 768 lockdep_assert_held(&css_set_lock); 769 770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 771 } 772 773 /** 774 * cgroup_update_populated - update the populated count of a cgroup 775 * @cgrp: the target cgroup 776 * @populated: inc or dec populated count 777 * 778 * One of the css_sets associated with @cgrp is either getting its first 779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 780 * count is propagated towards root so that a given cgroup's 781 * nr_populated_children is zero iff none of its descendants contain any 782 * tasks. 783 * 784 * @cgrp's interface file "cgroup.populated" is zero if both 785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 786 * 1 otherwise. When the sum changes from or to zero, userland is notified 787 * that the content of the interface file has changed. This can be used to 788 * detect when @cgrp and its descendants become populated or empty. 789 */ 790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 791 { 792 struct cgroup *child = NULL; 793 int adj = populated ? 1 : -1; 794 795 lockdep_assert_held(&css_set_lock); 796 797 do { 798 bool was_populated = cgroup_is_populated(cgrp); 799 800 if (!child) { 801 cgrp->nr_populated_csets += adj; 802 } else { 803 if (cgroup_is_threaded(child)) 804 cgrp->nr_populated_threaded_children += adj; 805 else 806 cgrp->nr_populated_domain_children += adj; 807 } 808 809 if (was_populated == cgroup_is_populated(cgrp)) 810 break; 811 812 cgroup1_check_for_release(cgrp); 813 TRACE_CGROUP_PATH(notify_populated, cgrp, 814 cgroup_is_populated(cgrp)); 815 cgroup_file_notify(&cgrp->events_file); 816 817 child = cgrp; 818 cgrp = cgroup_parent(cgrp); 819 } while (cgrp); 820 } 821 822 /** 823 * css_set_update_populated - update populated state of a css_set 824 * @cset: target css_set 825 * @populated: whether @cset is populated or depopulated 826 * 827 * @cset is either getting the first task or losing the last. Update the 828 * populated counters of all associated cgroups accordingly. 829 */ 830 static void css_set_update_populated(struct css_set *cset, bool populated) 831 { 832 struct cgrp_cset_link *link; 833 834 lockdep_assert_held(&css_set_lock); 835 836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 837 cgroup_update_populated(link->cgrp, populated); 838 } 839 840 /* 841 * @task is leaving, advance task iterators which are pointing to it so 842 * that they can resume at the next position. Advancing an iterator might 843 * remove it from the list, use safe walk. See css_task_iter_skip() for 844 * details. 845 */ 846 static void css_set_skip_task_iters(struct css_set *cset, 847 struct task_struct *task) 848 { 849 struct css_task_iter *it, *pos; 850 851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 852 css_task_iter_skip(it, task); 853 } 854 855 /** 856 * css_set_move_task - move a task from one css_set to another 857 * @task: task being moved 858 * @from_cset: css_set @task currently belongs to (may be NULL) 859 * @to_cset: new css_set @task is being moved to (may be NULL) 860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 861 * 862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 863 * css_set, @from_cset can be NULL. If @task is being disassociated 864 * instead of moved, @to_cset can be NULL. 865 * 866 * This function automatically handles populated counter updates and 867 * css_task_iter adjustments but the caller is responsible for managing 868 * @from_cset and @to_cset's reference counts. 869 */ 870 static void css_set_move_task(struct task_struct *task, 871 struct css_set *from_cset, struct css_set *to_cset, 872 bool use_mg_tasks) 873 { 874 lockdep_assert_held(&css_set_lock); 875 876 if (to_cset && !css_set_populated(to_cset)) 877 css_set_update_populated(to_cset, true); 878 879 if (from_cset) { 880 WARN_ON_ONCE(list_empty(&task->cg_list)); 881 882 css_set_skip_task_iters(from_cset, task); 883 list_del_init(&task->cg_list); 884 if (!css_set_populated(from_cset)) 885 css_set_update_populated(from_cset, false); 886 } else { 887 WARN_ON_ONCE(!list_empty(&task->cg_list)); 888 } 889 890 if (to_cset) { 891 /* 892 * We are synchronized through cgroup_threadgroup_rwsem 893 * against PF_EXITING setting such that we can't race 894 * against cgroup_exit()/cgroup_free() dropping the css_set. 895 */ 896 WARN_ON_ONCE(task->flags & PF_EXITING); 897 898 cgroup_move_task(task, to_cset); 899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 900 &to_cset->tasks); 901 } 902 } 903 904 /* 905 * hash table for cgroup groups. This improves the performance to find 906 * an existing css_set. This hash doesn't (currently) take into 907 * account cgroups in empty hierarchies. 908 */ 909 #define CSS_SET_HASH_BITS 7 910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 911 912 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 913 { 914 unsigned long key = 0UL; 915 struct cgroup_subsys *ss; 916 int i; 917 918 for_each_subsys(ss, i) 919 key += (unsigned long)css[i]; 920 key = (key >> 16) ^ key; 921 922 return key; 923 } 924 925 void put_css_set_locked(struct css_set *cset) 926 { 927 struct cgrp_cset_link *link, *tmp_link; 928 struct cgroup_subsys *ss; 929 int ssid; 930 931 lockdep_assert_held(&css_set_lock); 932 933 if (!refcount_dec_and_test(&cset->refcount)) 934 return; 935 936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 937 938 /* This css_set is dead. Unlink it and release cgroup and css refs */ 939 for_each_subsys(ss, ssid) { 940 list_del(&cset->e_cset_node[ssid]); 941 css_put(cset->subsys[ssid]); 942 } 943 hash_del(&cset->hlist); 944 css_set_count--; 945 946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 947 list_del(&link->cset_link); 948 list_del(&link->cgrp_link); 949 if (cgroup_parent(link->cgrp)) 950 cgroup_put(link->cgrp); 951 kfree(link); 952 } 953 954 if (css_set_threaded(cset)) { 955 list_del(&cset->threaded_csets_node); 956 put_css_set_locked(cset->dom_cset); 957 } 958 959 kfree_rcu(cset, rcu_head); 960 } 961 962 /** 963 * compare_css_sets - helper function for find_existing_css_set(). 964 * @cset: candidate css_set being tested 965 * @old_cset: existing css_set for a task 966 * @new_cgrp: cgroup that's being entered by the task 967 * @template: desired set of css pointers in css_set (pre-calculated) 968 * 969 * Returns true if "cset" matches "old_cset" except for the hierarchy 970 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 971 */ 972 static bool compare_css_sets(struct css_set *cset, 973 struct css_set *old_cset, 974 struct cgroup *new_cgrp, 975 struct cgroup_subsys_state *template[]) 976 { 977 struct cgroup *new_dfl_cgrp; 978 struct list_head *l1, *l2; 979 980 /* 981 * On the default hierarchy, there can be csets which are 982 * associated with the same set of cgroups but different csses. 983 * Let's first ensure that csses match. 984 */ 985 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 986 return false; 987 988 989 /* @cset's domain should match the default cgroup's */ 990 if (cgroup_on_dfl(new_cgrp)) 991 new_dfl_cgrp = new_cgrp; 992 else 993 new_dfl_cgrp = old_cset->dfl_cgrp; 994 995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 996 return false; 997 998 /* 999 * Compare cgroup pointers in order to distinguish between 1000 * different cgroups in hierarchies. As different cgroups may 1001 * share the same effective css, this comparison is always 1002 * necessary. 1003 */ 1004 l1 = &cset->cgrp_links; 1005 l2 = &old_cset->cgrp_links; 1006 while (1) { 1007 struct cgrp_cset_link *link1, *link2; 1008 struct cgroup *cgrp1, *cgrp2; 1009 1010 l1 = l1->next; 1011 l2 = l2->next; 1012 /* See if we reached the end - both lists are equal length. */ 1013 if (l1 == &cset->cgrp_links) { 1014 BUG_ON(l2 != &old_cset->cgrp_links); 1015 break; 1016 } else { 1017 BUG_ON(l2 == &old_cset->cgrp_links); 1018 } 1019 /* Locate the cgroups associated with these links. */ 1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1022 cgrp1 = link1->cgrp; 1023 cgrp2 = link2->cgrp; 1024 /* Hierarchies should be linked in the same order. */ 1025 BUG_ON(cgrp1->root != cgrp2->root); 1026 1027 /* 1028 * If this hierarchy is the hierarchy of the cgroup 1029 * that's changing, then we need to check that this 1030 * css_set points to the new cgroup; if it's any other 1031 * hierarchy, then this css_set should point to the 1032 * same cgroup as the old css_set. 1033 */ 1034 if (cgrp1->root == new_cgrp->root) { 1035 if (cgrp1 != new_cgrp) 1036 return false; 1037 } else { 1038 if (cgrp1 != cgrp2) 1039 return false; 1040 } 1041 } 1042 return true; 1043 } 1044 1045 /** 1046 * find_existing_css_set - init css array and find the matching css_set 1047 * @old_cset: the css_set that we're using before the cgroup transition 1048 * @cgrp: the cgroup that we're moving into 1049 * @template: out param for the new set of csses, should be clear on entry 1050 */ 1051 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1052 struct cgroup *cgrp, 1053 struct cgroup_subsys_state **template) 1054 { 1055 struct cgroup_root *root = cgrp->root; 1056 struct cgroup_subsys *ss; 1057 struct css_set *cset; 1058 unsigned long key; 1059 int i; 1060 1061 /* 1062 * Build the set of subsystem state objects that we want to see in the 1063 * new css_set. While subsystems can change globally, the entries here 1064 * won't change, so no need for locking. 1065 */ 1066 for_each_subsys(ss, i) { 1067 if (root->subsys_mask & (1UL << i)) { 1068 /* 1069 * @ss is in this hierarchy, so we want the 1070 * effective css from @cgrp. 1071 */ 1072 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1073 } else { 1074 /* 1075 * @ss is not in this hierarchy, so we don't want 1076 * to change the css. 1077 */ 1078 template[i] = old_cset->subsys[i]; 1079 } 1080 } 1081 1082 key = css_set_hash(template); 1083 hash_for_each_possible(css_set_table, cset, hlist, key) { 1084 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1085 continue; 1086 1087 /* This css_set matches what we need */ 1088 return cset; 1089 } 1090 1091 /* No existing cgroup group matched */ 1092 return NULL; 1093 } 1094 1095 static void free_cgrp_cset_links(struct list_head *links_to_free) 1096 { 1097 struct cgrp_cset_link *link, *tmp_link; 1098 1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1100 list_del(&link->cset_link); 1101 kfree(link); 1102 } 1103 } 1104 1105 /** 1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1107 * @count: the number of links to allocate 1108 * @tmp_links: list_head the allocated links are put on 1109 * 1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1111 * through ->cset_link. Returns 0 on success or -errno. 1112 */ 1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1114 { 1115 struct cgrp_cset_link *link; 1116 int i; 1117 1118 INIT_LIST_HEAD(tmp_links); 1119 1120 for (i = 0; i < count; i++) { 1121 link = kzalloc(sizeof(*link), GFP_KERNEL); 1122 if (!link) { 1123 free_cgrp_cset_links(tmp_links); 1124 return -ENOMEM; 1125 } 1126 list_add(&link->cset_link, tmp_links); 1127 } 1128 return 0; 1129 } 1130 1131 /** 1132 * link_css_set - a helper function to link a css_set to a cgroup 1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1134 * @cset: the css_set to be linked 1135 * @cgrp: the destination cgroup 1136 */ 1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgrp_cset_link *link; 1141 1142 BUG_ON(list_empty(tmp_links)); 1143 1144 if (cgroup_on_dfl(cgrp)) 1145 cset->dfl_cgrp = cgrp; 1146 1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1148 link->cset = cset; 1149 link->cgrp = cgrp; 1150 1151 /* 1152 * Always add links to the tail of the lists so that the lists are 1153 * in chronological order. 1154 */ 1155 list_move_tail(&link->cset_link, &cgrp->cset_links); 1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1157 1158 if (cgroup_parent(cgrp)) 1159 cgroup_get_live(cgrp); 1160 } 1161 1162 /** 1163 * find_css_set - return a new css_set with one cgroup updated 1164 * @old_cset: the baseline css_set 1165 * @cgrp: the cgroup to be updated 1166 * 1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1168 * substituted into the appropriate hierarchy. 1169 */ 1170 static struct css_set *find_css_set(struct css_set *old_cset, 1171 struct cgroup *cgrp) 1172 { 1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1174 struct css_set *cset; 1175 struct list_head tmp_links; 1176 struct cgrp_cset_link *link; 1177 struct cgroup_subsys *ss; 1178 unsigned long key; 1179 int ssid; 1180 1181 lockdep_assert_held(&cgroup_mutex); 1182 1183 /* First see if we already have a cgroup group that matches 1184 * the desired set */ 1185 spin_lock_irq(&css_set_lock); 1186 cset = find_existing_css_set(old_cset, cgrp, template); 1187 if (cset) 1188 get_css_set(cset); 1189 spin_unlock_irq(&css_set_lock); 1190 1191 if (cset) 1192 return cset; 1193 1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1195 if (!cset) 1196 return NULL; 1197 1198 /* Allocate all the cgrp_cset_link objects that we'll need */ 1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1200 kfree(cset); 1201 return NULL; 1202 } 1203 1204 refcount_set(&cset->refcount, 1); 1205 cset->dom_cset = cset; 1206 INIT_LIST_HEAD(&cset->tasks); 1207 INIT_LIST_HEAD(&cset->mg_tasks); 1208 INIT_LIST_HEAD(&cset->dying_tasks); 1209 INIT_LIST_HEAD(&cset->task_iters); 1210 INIT_LIST_HEAD(&cset->threaded_csets); 1211 INIT_HLIST_NODE(&cset->hlist); 1212 INIT_LIST_HEAD(&cset->cgrp_links); 1213 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1282 { 1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1284 1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1286 if (favor && !favoring) { 1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1289 } else if (!favor && favoring) { 1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1292 } 1293 } 1294 1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree_rcu(root, rcu); 1319 } 1320 1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 WARN_ON_ONCE(list_empty(&root->root_list)); 1351 list_del_rcu(&root->root_list); 1352 cgroup_root_count--; 1353 1354 if (!have_favordynmods) 1355 cgroup_favor_dynmods(root, false); 1356 1357 cgroup_exit_root_id(root); 1358 1359 cgroup_unlock(); 1360 1361 cgroup_rstat_exit(cgrp); 1362 kernfs_destroy_root(root->kf_root); 1363 cgroup_free_root(root); 1364 } 1365 1366 /* 1367 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1368 */ 1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1370 struct cgroup_root *root) 1371 { 1372 struct cgroup *res_cgroup = NULL; 1373 1374 if (cset == &init_css_set) { 1375 res_cgroup = &root->cgrp; 1376 } else if (root == &cgrp_dfl_root) { 1377 res_cgroup = cset->dfl_cgrp; 1378 } else { 1379 struct cgrp_cset_link *link; 1380 lockdep_assert_held(&css_set_lock); 1381 1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1383 struct cgroup *c = link->cgrp; 1384 1385 if (c->root == root) { 1386 res_cgroup = c; 1387 break; 1388 } 1389 } 1390 } 1391 1392 /* 1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1394 * before we remove the cgroup root from the root_list. Consequently, 1395 * when accessing a cgroup root, the cset_link may have already been 1396 * freed, resulting in a NULL res_cgroup. However, by holding the 1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1399 * check. 1400 */ 1401 return res_cgroup; 1402 } 1403 1404 /* 1405 * look up cgroup associated with current task's cgroup namespace on the 1406 * specified hierarchy 1407 */ 1408 static struct cgroup * 1409 current_cgns_cgroup_from_root(struct cgroup_root *root) 1410 { 1411 struct cgroup *res = NULL; 1412 struct css_set *cset; 1413 1414 lockdep_assert_held(&css_set_lock); 1415 1416 rcu_read_lock(); 1417 1418 cset = current->nsproxy->cgroup_ns->root_cset; 1419 res = __cset_cgroup_from_root(cset, root); 1420 1421 rcu_read_unlock(); 1422 1423 /* 1424 * The namespace_sem is held by current, so the root cgroup can't 1425 * be umounted. Therefore, we can ensure that the res is non-NULL. 1426 */ 1427 WARN_ON_ONCE(!res); 1428 return res; 1429 } 1430 1431 /* 1432 * Look up cgroup associated with current task's cgroup namespace on the default 1433 * hierarchy. 1434 * 1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1437 * pointers. 1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1439 * - As a bonus returned cgrp is pinned with the current because it cannot 1440 * switch cgroup_ns asynchronously. 1441 */ 1442 static struct cgroup *current_cgns_cgroup_dfl(void) 1443 { 1444 struct css_set *cset; 1445 1446 if (current->nsproxy) { 1447 cset = current->nsproxy->cgroup_ns->root_cset; 1448 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1449 } else { 1450 /* 1451 * NOTE: This function may be called from bpf_cgroup_from_id() 1452 * on a task which has already passed exit_task_namespaces() and 1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1454 * cgroups visible for lookups. 1455 */ 1456 return &cgrp_dfl_root.cgrp; 1457 } 1458 } 1459 1460 /* look up cgroup associated with given css_set on the specified hierarchy */ 1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1462 struct cgroup_root *root) 1463 { 1464 lockdep_assert_held(&css_set_lock); 1465 1466 return __cset_cgroup_from_root(cset, root); 1467 } 1468 1469 /* 1470 * Return the cgroup for "task" from the given hierarchy. Must be 1471 * called with css_set_lock held to prevent task's groups from being modified. 1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1473 * cgroup root from being destroyed. 1474 */ 1475 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1476 struct cgroup_root *root) 1477 { 1478 /* 1479 * No need to lock the task - since we hold css_set_lock the 1480 * task can't change groups. 1481 */ 1482 return cset_cgroup_from_root(task_css_set(task), root); 1483 } 1484 1485 /* 1486 * A task must hold cgroup_mutex to modify cgroups. 1487 * 1488 * Any task can increment and decrement the count field without lock. 1489 * So in general, code holding cgroup_mutex can't rely on the count 1490 * field not changing. However, if the count goes to zero, then only 1491 * cgroup_attach_task() can increment it again. Because a count of zero 1492 * means that no tasks are currently attached, therefore there is no 1493 * way a task attached to that cgroup can fork (the other way to 1494 * increment the count). So code holding cgroup_mutex can safely 1495 * assume that if the count is zero, it will stay zero. Similarly, if 1496 * a task holds cgroup_mutex on a cgroup with zero count, it 1497 * knows that the cgroup won't be removed, as cgroup_rmdir() 1498 * needs that mutex. 1499 * 1500 * A cgroup can only be deleted if both its 'count' of using tasks 1501 * is zero, and its list of 'children' cgroups is empty. Since all 1502 * tasks in the system use _some_ cgroup, and since there is always at 1503 * least one task in the system (init, pid == 1), therefore, root cgroup 1504 * always has either children cgroups and/or using tasks. So we don't 1505 * need a special hack to ensure that root cgroup cannot be deleted. 1506 * 1507 * P.S. One more locking exception. RCU is used to guard the 1508 * update of a tasks cgroup pointer by cgroup_attach_task() 1509 */ 1510 1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1512 1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1514 char *buf) 1515 { 1516 struct cgroup_subsys *ss = cft->ss; 1517 1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1521 1522 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1524 cft->name); 1525 } else { 1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1527 } 1528 return buf; 1529 } 1530 1531 /** 1532 * cgroup_file_mode - deduce file mode of a control file 1533 * @cft: the control file in question 1534 * 1535 * S_IRUGO for read, S_IWUSR for write. 1536 */ 1537 static umode_t cgroup_file_mode(const struct cftype *cft) 1538 { 1539 umode_t mode = 0; 1540 1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1542 mode |= S_IRUGO; 1543 1544 if (cft->write_u64 || cft->write_s64 || cft->write) { 1545 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1546 mode |= S_IWUGO; 1547 else 1548 mode |= S_IWUSR; 1549 } 1550 1551 return mode; 1552 } 1553 1554 /** 1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1556 * @subtree_control: the new subtree_control mask to consider 1557 * @this_ss_mask: available subsystems 1558 * 1559 * On the default hierarchy, a subsystem may request other subsystems to be 1560 * enabled together through its ->depends_on mask. In such cases, more 1561 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1562 * 1563 * This function calculates which subsystems need to be enabled if 1564 * @subtree_control is to be applied while restricted to @this_ss_mask. 1565 */ 1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1567 { 1568 u16 cur_ss_mask = subtree_control; 1569 struct cgroup_subsys *ss; 1570 int ssid; 1571 1572 lockdep_assert_held(&cgroup_mutex); 1573 1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1575 1576 while (true) { 1577 u16 new_ss_mask = cur_ss_mask; 1578 1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1580 new_ss_mask |= ss->depends_on; 1581 } while_each_subsys_mask(); 1582 1583 /* 1584 * Mask out subsystems which aren't available. This can 1585 * happen only if some depended-upon subsystems were bound 1586 * to non-default hierarchies. 1587 */ 1588 new_ss_mask &= this_ss_mask; 1589 1590 if (new_ss_mask == cur_ss_mask) 1591 break; 1592 cur_ss_mask = new_ss_mask; 1593 } 1594 1595 return cur_ss_mask; 1596 } 1597 1598 /** 1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * 1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1603 * the method finishes if locking succeeded. Note that once this function 1604 * returns the cgroup returned by cgroup_kn_lock_live() may become 1605 * inaccessible any time. If the caller intends to continue to access the 1606 * cgroup, it should pin it before invoking this function. 1607 */ 1608 void cgroup_kn_unlock(struct kernfs_node *kn) 1609 { 1610 struct cgroup *cgrp; 1611 1612 if (kernfs_type(kn) == KERNFS_DIR) 1613 cgrp = kn->priv; 1614 else 1615 cgrp = kn->parent->priv; 1616 1617 cgroup_unlock(); 1618 1619 kernfs_unbreak_active_protection(kn); 1620 cgroup_put(cgrp); 1621 } 1622 1623 /** 1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1625 * @kn: the kernfs_node being serviced 1626 * @drain_offline: perform offline draining on the cgroup 1627 * 1628 * This helper is to be used by a cgroup kernfs method currently servicing 1629 * @kn. It breaks the active protection, performs cgroup locking and 1630 * verifies that the associated cgroup is alive. Returns the cgroup if 1631 * alive; otherwise, %NULL. A successful return should be undone by a 1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1633 * cgroup is drained of offlining csses before return. 1634 * 1635 * Any cgroup kernfs method implementation which requires locking the 1636 * associated cgroup should use this helper. It avoids nesting cgroup 1637 * locking under kernfs active protection and allows all kernfs operations 1638 * including self-removal. 1639 */ 1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1641 { 1642 struct cgroup *cgrp; 1643 1644 if (kernfs_type(kn) == KERNFS_DIR) 1645 cgrp = kn->priv; 1646 else 1647 cgrp = kn->parent->priv; 1648 1649 /* 1650 * We're gonna grab cgroup_mutex which nests outside kernfs 1651 * active_ref. cgroup liveliness check alone provides enough 1652 * protection against removal. Ensure @cgrp stays accessible and 1653 * break the active_ref protection. 1654 */ 1655 if (!cgroup_tryget(cgrp)) 1656 return NULL; 1657 kernfs_break_active_protection(kn); 1658 1659 if (drain_offline) 1660 cgroup_lock_and_drain_offline(cgrp); 1661 else 1662 cgroup_lock(); 1663 1664 if (!cgroup_is_dead(cgrp)) 1665 return cgrp; 1666 1667 cgroup_kn_unlock(kn); 1668 return NULL; 1669 } 1670 1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1672 { 1673 char name[CGROUP_FILE_NAME_MAX]; 1674 1675 lockdep_assert_held(&cgroup_mutex); 1676 1677 if (cft->file_offset) { 1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1679 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1680 1681 spin_lock_irq(&cgroup_file_kn_lock); 1682 cfile->kn = NULL; 1683 spin_unlock_irq(&cgroup_file_kn_lock); 1684 1685 del_timer_sync(&cfile->notify_timer); 1686 } 1687 1688 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1689 } 1690 1691 /** 1692 * css_clear_dir - remove subsys files in a cgroup directory 1693 * @css: target css 1694 */ 1695 static void css_clear_dir(struct cgroup_subsys_state *css) 1696 { 1697 struct cgroup *cgrp = css->cgroup; 1698 struct cftype *cfts; 1699 1700 if (!(css->flags & CSS_VISIBLE)) 1701 return; 1702 1703 css->flags &= ~CSS_VISIBLE; 1704 1705 if (!css->ss) { 1706 if (cgroup_on_dfl(cgrp)) { 1707 cgroup_addrm_files(css, cgrp, 1708 cgroup_base_files, false); 1709 if (cgroup_psi_enabled()) 1710 cgroup_addrm_files(css, cgrp, 1711 cgroup_psi_files, false); 1712 } else { 1713 cgroup_addrm_files(css, cgrp, 1714 cgroup1_base_files, false); 1715 } 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) 1718 cgroup_addrm_files(css, cgrp, cfts, false); 1719 } 1720 } 1721 1722 /** 1723 * css_populate_dir - create subsys files in a cgroup directory 1724 * @css: target css 1725 * 1726 * On failure, no file is added. 1727 */ 1728 static int css_populate_dir(struct cgroup_subsys_state *css) 1729 { 1730 struct cgroup *cgrp = css->cgroup; 1731 struct cftype *cfts, *failed_cfts; 1732 int ret; 1733 1734 if (css->flags & CSS_VISIBLE) 1735 return 0; 1736 1737 if (!css->ss) { 1738 if (cgroup_on_dfl(cgrp)) { 1739 ret = cgroup_addrm_files(css, cgrp, 1740 cgroup_base_files, true); 1741 if (ret < 0) 1742 return ret; 1743 1744 if (cgroup_psi_enabled()) { 1745 ret = cgroup_addrm_files(css, cgrp, 1746 cgroup_psi_files, true); 1747 if (ret < 0) 1748 return ret; 1749 } 1750 } else { 1751 ret = cgroup_addrm_files(css, cgrp, 1752 cgroup1_base_files, true); 1753 if (ret < 0) 1754 return ret; 1755 } 1756 } else { 1757 list_for_each_entry(cfts, &css->ss->cfts, node) { 1758 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1759 if (ret < 0) { 1760 failed_cfts = cfts; 1761 goto err; 1762 } 1763 } 1764 } 1765 1766 css->flags |= CSS_VISIBLE; 1767 1768 return 0; 1769 err: 1770 list_for_each_entry(cfts, &css->ss->cfts, node) { 1771 if (cfts == failed_cfts) 1772 break; 1773 cgroup_addrm_files(css, cgrp, cfts, false); 1774 } 1775 return ret; 1776 } 1777 1778 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1779 { 1780 struct cgroup *dcgrp = &dst_root->cgrp; 1781 struct cgroup_subsys *ss; 1782 int ssid, ret; 1783 u16 dfl_disable_ss_mask = 0; 1784 1785 lockdep_assert_held(&cgroup_mutex); 1786 1787 do_each_subsys_mask(ss, ssid, ss_mask) { 1788 /* 1789 * If @ss has non-root csses attached to it, can't move. 1790 * If @ss is an implicit controller, it is exempt from this 1791 * rule and can be stolen. 1792 */ 1793 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1794 !ss->implicit_on_dfl) 1795 return -EBUSY; 1796 1797 /* can't move between two non-dummy roots either */ 1798 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1799 return -EBUSY; 1800 1801 /* 1802 * Collect ssid's that need to be disabled from default 1803 * hierarchy. 1804 */ 1805 if (ss->root == &cgrp_dfl_root) 1806 dfl_disable_ss_mask |= 1 << ssid; 1807 1808 } while_each_subsys_mask(); 1809 1810 if (dfl_disable_ss_mask) { 1811 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1812 1813 /* 1814 * Controllers from default hierarchy that need to be rebound 1815 * are all disabled together in one go. 1816 */ 1817 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1818 WARN_ON(cgroup_apply_control(scgrp)); 1819 cgroup_finalize_control(scgrp, 0); 1820 } 1821 1822 do_each_subsys_mask(ss, ssid, ss_mask) { 1823 struct cgroup_root *src_root = ss->root; 1824 struct cgroup *scgrp = &src_root->cgrp; 1825 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1826 struct css_set *cset, *cset_pos; 1827 struct css_task_iter *it; 1828 1829 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1830 1831 if (src_root != &cgrp_dfl_root) { 1832 /* disable from the source */ 1833 src_root->subsys_mask &= ~(1 << ssid); 1834 WARN_ON(cgroup_apply_control(scgrp)); 1835 cgroup_finalize_control(scgrp, 0); 1836 } 1837 1838 /* rebind */ 1839 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1840 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1841 ss->root = dst_root; 1842 css->cgroup = dcgrp; 1843 1844 spin_lock_irq(&css_set_lock); 1845 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1846 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1847 e_cset_node[ss->id]) { 1848 list_move_tail(&cset->e_cset_node[ss->id], 1849 &dcgrp->e_csets[ss->id]); 1850 /* 1851 * all css_sets of scgrp together in same order to dcgrp, 1852 * patch in-flight iterators to preserve correct iteration. 1853 * since the iterator is always advanced right away and 1854 * finished when it->cset_pos meets it->cset_head, so only 1855 * update it->cset_head is enough here. 1856 */ 1857 list_for_each_entry(it, &cset->task_iters, iters_node) 1858 if (it->cset_head == &scgrp->e_csets[ss->id]) 1859 it->cset_head = &dcgrp->e_csets[ss->id]; 1860 } 1861 spin_unlock_irq(&css_set_lock); 1862 1863 if (ss->css_rstat_flush) { 1864 list_del_rcu(&css->rstat_css_node); 1865 synchronize_rcu(); 1866 list_add_rcu(&css->rstat_css_node, 1867 &dcgrp->rstat_css_list); 1868 } 1869 1870 /* default hierarchy doesn't enable controllers by default */ 1871 dst_root->subsys_mask |= 1 << ssid; 1872 if (dst_root == &cgrp_dfl_root) { 1873 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1874 } else { 1875 dcgrp->subtree_control |= 1 << ssid; 1876 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1877 } 1878 1879 ret = cgroup_apply_control(dcgrp); 1880 if (ret) 1881 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1882 ss->name, ret); 1883 1884 if (ss->bind) 1885 ss->bind(css); 1886 } while_each_subsys_mask(); 1887 1888 kernfs_activate(dcgrp->kn); 1889 return 0; 1890 } 1891 1892 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1893 struct kernfs_root *kf_root) 1894 { 1895 int len = 0; 1896 char *buf = NULL; 1897 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1898 struct cgroup *ns_cgroup; 1899 1900 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1901 if (!buf) 1902 return -ENOMEM; 1903 1904 spin_lock_irq(&css_set_lock); 1905 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1906 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1907 spin_unlock_irq(&css_set_lock); 1908 1909 if (len == -E2BIG) 1910 len = -ERANGE; 1911 else if (len > 0) { 1912 seq_escape(sf, buf, " \t\n\\"); 1913 len = 0; 1914 } 1915 kfree(buf); 1916 return len; 1917 } 1918 1919 enum cgroup2_param { 1920 Opt_nsdelegate, 1921 Opt_favordynmods, 1922 Opt_memory_localevents, 1923 Opt_memory_recursiveprot, 1924 Opt_memory_hugetlb_accounting, 1925 nr__cgroup2_params 1926 }; 1927 1928 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1929 fsparam_flag("nsdelegate", Opt_nsdelegate), 1930 fsparam_flag("favordynmods", Opt_favordynmods), 1931 fsparam_flag("memory_localevents", Opt_memory_localevents), 1932 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1933 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1934 {} 1935 }; 1936 1937 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1938 { 1939 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1940 struct fs_parse_result result; 1941 int opt; 1942 1943 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1944 if (opt < 0) 1945 return opt; 1946 1947 switch (opt) { 1948 case Opt_nsdelegate: 1949 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1950 return 0; 1951 case Opt_favordynmods: 1952 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1953 return 0; 1954 case Opt_memory_localevents: 1955 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1956 return 0; 1957 case Opt_memory_recursiveprot: 1958 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1959 return 0; 1960 case Opt_memory_hugetlb_accounting: 1961 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1962 return 0; 1963 } 1964 return -EINVAL; 1965 } 1966 1967 static void apply_cgroup_root_flags(unsigned int root_flags) 1968 { 1969 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1970 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1971 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1972 else 1973 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1974 1975 cgroup_favor_dynmods(&cgrp_dfl_root, 1976 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1977 1978 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1979 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1980 else 1981 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1982 1983 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1984 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1985 else 1986 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1987 1988 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 1989 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1990 else 1991 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1992 } 1993 } 1994 1995 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1996 { 1997 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1998 seq_puts(seq, ",nsdelegate"); 1999 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2000 seq_puts(seq, ",favordynmods"); 2001 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2002 seq_puts(seq, ",memory_localevents"); 2003 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2004 seq_puts(seq, ",memory_recursiveprot"); 2005 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2006 seq_puts(seq, ",memory_hugetlb_accounting"); 2007 return 0; 2008 } 2009 2010 static int cgroup_reconfigure(struct fs_context *fc) 2011 { 2012 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2013 2014 apply_cgroup_root_flags(ctx->flags); 2015 return 0; 2016 } 2017 2018 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2019 { 2020 struct cgroup_subsys *ss; 2021 int ssid; 2022 2023 INIT_LIST_HEAD(&cgrp->self.sibling); 2024 INIT_LIST_HEAD(&cgrp->self.children); 2025 INIT_LIST_HEAD(&cgrp->cset_links); 2026 INIT_LIST_HEAD(&cgrp->pidlists); 2027 mutex_init(&cgrp->pidlist_mutex); 2028 cgrp->self.cgroup = cgrp; 2029 cgrp->self.flags |= CSS_ONLINE; 2030 cgrp->dom_cgrp = cgrp; 2031 cgrp->max_descendants = INT_MAX; 2032 cgrp->max_depth = INT_MAX; 2033 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2034 prev_cputime_init(&cgrp->prev_cputime); 2035 2036 for_each_subsys(ss, ssid) 2037 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2038 2039 init_waitqueue_head(&cgrp->offline_waitq); 2040 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2041 } 2042 2043 void init_cgroup_root(struct cgroup_fs_context *ctx) 2044 { 2045 struct cgroup_root *root = ctx->root; 2046 struct cgroup *cgrp = &root->cgrp; 2047 2048 INIT_LIST_HEAD_RCU(&root->root_list); 2049 atomic_set(&root->nr_cgrps, 1); 2050 cgrp->root = root; 2051 init_cgroup_housekeeping(cgrp); 2052 2053 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2054 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2055 if (ctx->release_agent) 2056 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2057 if (ctx->name) 2058 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2059 if (ctx->cpuset_clone_children) 2060 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2061 } 2062 2063 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2064 { 2065 LIST_HEAD(tmp_links); 2066 struct cgroup *root_cgrp = &root->cgrp; 2067 struct kernfs_syscall_ops *kf_sops; 2068 struct css_set *cset; 2069 int i, ret; 2070 2071 lockdep_assert_held(&cgroup_mutex); 2072 2073 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2074 0, GFP_KERNEL); 2075 if (ret) 2076 goto out; 2077 2078 /* 2079 * We're accessing css_set_count without locking css_set_lock here, 2080 * but that's OK - it can only be increased by someone holding 2081 * cgroup_lock, and that's us. Later rebinding may disable 2082 * controllers on the default hierarchy and thus create new csets, 2083 * which can't be more than the existing ones. Allocate 2x. 2084 */ 2085 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2086 if (ret) 2087 goto cancel_ref; 2088 2089 ret = cgroup_init_root_id(root); 2090 if (ret) 2091 goto cancel_ref; 2092 2093 kf_sops = root == &cgrp_dfl_root ? 2094 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2095 2096 root->kf_root = kernfs_create_root(kf_sops, 2097 KERNFS_ROOT_CREATE_DEACTIVATED | 2098 KERNFS_ROOT_SUPPORT_EXPORTOP | 2099 KERNFS_ROOT_SUPPORT_USER_XATTR, 2100 root_cgrp); 2101 if (IS_ERR(root->kf_root)) { 2102 ret = PTR_ERR(root->kf_root); 2103 goto exit_root_id; 2104 } 2105 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2106 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2107 root_cgrp->ancestors[0] = root_cgrp; 2108 2109 ret = css_populate_dir(&root_cgrp->self); 2110 if (ret) 2111 goto destroy_root; 2112 2113 ret = cgroup_rstat_init(root_cgrp); 2114 if (ret) 2115 goto destroy_root; 2116 2117 ret = rebind_subsystems(root, ss_mask); 2118 if (ret) 2119 goto exit_stats; 2120 2121 ret = cgroup_bpf_inherit(root_cgrp); 2122 WARN_ON_ONCE(ret); 2123 2124 trace_cgroup_setup_root(root); 2125 2126 /* 2127 * There must be no failure case after here, since rebinding takes 2128 * care of subsystems' refcounts, which are explicitly dropped in 2129 * the failure exit path. 2130 */ 2131 list_add_rcu(&root->root_list, &cgroup_roots); 2132 cgroup_root_count++; 2133 2134 /* 2135 * Link the root cgroup in this hierarchy into all the css_set 2136 * objects. 2137 */ 2138 spin_lock_irq(&css_set_lock); 2139 hash_for_each(css_set_table, i, cset, hlist) { 2140 link_css_set(&tmp_links, cset, root_cgrp); 2141 if (css_set_populated(cset)) 2142 cgroup_update_populated(root_cgrp, true); 2143 } 2144 spin_unlock_irq(&css_set_lock); 2145 2146 BUG_ON(!list_empty(&root_cgrp->self.children)); 2147 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2148 2149 ret = 0; 2150 goto out; 2151 2152 exit_stats: 2153 cgroup_rstat_exit(root_cgrp); 2154 destroy_root: 2155 kernfs_destroy_root(root->kf_root); 2156 root->kf_root = NULL; 2157 exit_root_id: 2158 cgroup_exit_root_id(root); 2159 cancel_ref: 2160 percpu_ref_exit(&root_cgrp->self.refcnt); 2161 out: 2162 free_cgrp_cset_links(&tmp_links); 2163 return ret; 2164 } 2165 2166 int cgroup_do_get_tree(struct fs_context *fc) 2167 { 2168 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2169 int ret; 2170 2171 ctx->kfc.root = ctx->root->kf_root; 2172 if (fc->fs_type == &cgroup2_fs_type) 2173 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2174 else 2175 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2176 ret = kernfs_get_tree(fc); 2177 2178 /* 2179 * In non-init cgroup namespace, instead of root cgroup's dentry, 2180 * we return the dentry corresponding to the cgroupns->root_cgrp. 2181 */ 2182 if (!ret && ctx->ns != &init_cgroup_ns) { 2183 struct dentry *nsdentry; 2184 struct super_block *sb = fc->root->d_sb; 2185 struct cgroup *cgrp; 2186 2187 cgroup_lock(); 2188 spin_lock_irq(&css_set_lock); 2189 2190 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2191 2192 spin_unlock_irq(&css_set_lock); 2193 cgroup_unlock(); 2194 2195 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2196 dput(fc->root); 2197 if (IS_ERR(nsdentry)) { 2198 deactivate_locked_super(sb); 2199 ret = PTR_ERR(nsdentry); 2200 nsdentry = NULL; 2201 } 2202 fc->root = nsdentry; 2203 } 2204 2205 if (!ctx->kfc.new_sb_created) 2206 cgroup_put(&ctx->root->cgrp); 2207 2208 return ret; 2209 } 2210 2211 /* 2212 * Destroy a cgroup filesystem context. 2213 */ 2214 static void cgroup_fs_context_free(struct fs_context *fc) 2215 { 2216 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2217 2218 kfree(ctx->name); 2219 kfree(ctx->release_agent); 2220 put_cgroup_ns(ctx->ns); 2221 kernfs_free_fs_context(fc); 2222 kfree(ctx); 2223 } 2224 2225 static int cgroup_get_tree(struct fs_context *fc) 2226 { 2227 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2228 int ret; 2229 2230 WRITE_ONCE(cgrp_dfl_visible, true); 2231 cgroup_get_live(&cgrp_dfl_root.cgrp); 2232 ctx->root = &cgrp_dfl_root; 2233 2234 ret = cgroup_do_get_tree(fc); 2235 if (!ret) 2236 apply_cgroup_root_flags(ctx->flags); 2237 return ret; 2238 } 2239 2240 static const struct fs_context_operations cgroup_fs_context_ops = { 2241 .free = cgroup_fs_context_free, 2242 .parse_param = cgroup2_parse_param, 2243 .get_tree = cgroup_get_tree, 2244 .reconfigure = cgroup_reconfigure, 2245 }; 2246 2247 static const struct fs_context_operations cgroup1_fs_context_ops = { 2248 .free = cgroup_fs_context_free, 2249 .parse_param = cgroup1_parse_param, 2250 .get_tree = cgroup1_get_tree, 2251 .reconfigure = cgroup1_reconfigure, 2252 }; 2253 2254 /* 2255 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2256 * we select the namespace we're going to use. 2257 */ 2258 static int cgroup_init_fs_context(struct fs_context *fc) 2259 { 2260 struct cgroup_fs_context *ctx; 2261 2262 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2263 if (!ctx) 2264 return -ENOMEM; 2265 2266 ctx->ns = current->nsproxy->cgroup_ns; 2267 get_cgroup_ns(ctx->ns); 2268 fc->fs_private = &ctx->kfc; 2269 if (fc->fs_type == &cgroup2_fs_type) 2270 fc->ops = &cgroup_fs_context_ops; 2271 else 2272 fc->ops = &cgroup1_fs_context_ops; 2273 put_user_ns(fc->user_ns); 2274 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2275 fc->global = true; 2276 2277 if (have_favordynmods) 2278 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2279 2280 return 0; 2281 } 2282 2283 static void cgroup_kill_sb(struct super_block *sb) 2284 { 2285 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2286 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2287 2288 /* 2289 * If @root doesn't have any children, start killing it. 2290 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2291 * 2292 * And don't kill the default root. 2293 */ 2294 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2295 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2296 cgroup_bpf_offline(&root->cgrp); 2297 percpu_ref_kill(&root->cgrp.self.refcnt); 2298 } 2299 cgroup_put(&root->cgrp); 2300 kernfs_kill_sb(sb); 2301 } 2302 2303 struct file_system_type cgroup_fs_type = { 2304 .name = "cgroup", 2305 .init_fs_context = cgroup_init_fs_context, 2306 .parameters = cgroup1_fs_parameters, 2307 .kill_sb = cgroup_kill_sb, 2308 .fs_flags = FS_USERNS_MOUNT, 2309 }; 2310 2311 static struct file_system_type cgroup2_fs_type = { 2312 .name = "cgroup2", 2313 .init_fs_context = cgroup_init_fs_context, 2314 .parameters = cgroup2_fs_parameters, 2315 .kill_sb = cgroup_kill_sb, 2316 .fs_flags = FS_USERNS_MOUNT, 2317 }; 2318 2319 #ifdef CONFIG_CPUSETS 2320 static const struct fs_context_operations cpuset_fs_context_ops = { 2321 .get_tree = cgroup1_get_tree, 2322 .free = cgroup_fs_context_free, 2323 }; 2324 2325 /* 2326 * This is ugly, but preserves the userspace API for existing cpuset 2327 * users. If someone tries to mount the "cpuset" filesystem, we 2328 * silently switch it to mount "cgroup" instead 2329 */ 2330 static int cpuset_init_fs_context(struct fs_context *fc) 2331 { 2332 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2333 struct cgroup_fs_context *ctx; 2334 int err; 2335 2336 err = cgroup_init_fs_context(fc); 2337 if (err) { 2338 kfree(agent); 2339 return err; 2340 } 2341 2342 fc->ops = &cpuset_fs_context_ops; 2343 2344 ctx = cgroup_fc2context(fc); 2345 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2346 ctx->flags |= CGRP_ROOT_NOPREFIX; 2347 ctx->release_agent = agent; 2348 2349 get_filesystem(&cgroup_fs_type); 2350 put_filesystem(fc->fs_type); 2351 fc->fs_type = &cgroup_fs_type; 2352 2353 return 0; 2354 } 2355 2356 static struct file_system_type cpuset_fs_type = { 2357 .name = "cpuset", 2358 .init_fs_context = cpuset_init_fs_context, 2359 .fs_flags = FS_USERNS_MOUNT, 2360 }; 2361 #endif 2362 2363 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2364 struct cgroup_namespace *ns) 2365 { 2366 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2367 2368 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2369 } 2370 2371 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2372 struct cgroup_namespace *ns) 2373 { 2374 int ret; 2375 2376 cgroup_lock(); 2377 spin_lock_irq(&css_set_lock); 2378 2379 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2380 2381 spin_unlock_irq(&css_set_lock); 2382 cgroup_unlock(); 2383 2384 return ret; 2385 } 2386 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2387 2388 /** 2389 * cgroup_attach_lock - Lock for ->attach() 2390 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2391 * 2392 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2393 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2394 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2395 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2396 * lead to deadlocks. 2397 * 2398 * Bringing up a CPU may involve creating and destroying tasks which requires 2399 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2400 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2401 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2402 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2403 * the threadgroup_rwsem to be released to create new tasks. For more details: 2404 * 2405 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2406 * 2407 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2408 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2409 * CPU hotplug is disabled on entry. 2410 */ 2411 void cgroup_attach_lock(bool lock_threadgroup) 2412 { 2413 cpus_read_lock(); 2414 if (lock_threadgroup) 2415 percpu_down_write(&cgroup_threadgroup_rwsem); 2416 } 2417 2418 /** 2419 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2420 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2421 */ 2422 void cgroup_attach_unlock(bool lock_threadgroup) 2423 { 2424 if (lock_threadgroup) 2425 percpu_up_write(&cgroup_threadgroup_rwsem); 2426 cpus_read_unlock(); 2427 } 2428 2429 /** 2430 * cgroup_migrate_add_task - add a migration target task to a migration context 2431 * @task: target task 2432 * @mgctx: target migration context 2433 * 2434 * Add @task, which is a migration target, to @mgctx->tset. This function 2435 * becomes noop if @task doesn't need to be migrated. @task's css_set 2436 * should have been added as a migration source and @task->cg_list will be 2437 * moved from the css_set's tasks list to mg_tasks one. 2438 */ 2439 static void cgroup_migrate_add_task(struct task_struct *task, 2440 struct cgroup_mgctx *mgctx) 2441 { 2442 struct css_set *cset; 2443 2444 lockdep_assert_held(&css_set_lock); 2445 2446 /* @task either already exited or can't exit until the end */ 2447 if (task->flags & PF_EXITING) 2448 return; 2449 2450 /* cgroup_threadgroup_rwsem protects racing against forks */ 2451 WARN_ON_ONCE(list_empty(&task->cg_list)); 2452 2453 cset = task_css_set(task); 2454 if (!cset->mg_src_cgrp) 2455 return; 2456 2457 mgctx->tset.nr_tasks++; 2458 2459 list_move_tail(&task->cg_list, &cset->mg_tasks); 2460 if (list_empty(&cset->mg_node)) 2461 list_add_tail(&cset->mg_node, 2462 &mgctx->tset.src_csets); 2463 if (list_empty(&cset->mg_dst_cset->mg_node)) 2464 list_add_tail(&cset->mg_dst_cset->mg_node, 2465 &mgctx->tset.dst_csets); 2466 } 2467 2468 /** 2469 * cgroup_taskset_first - reset taskset and return the first task 2470 * @tset: taskset of interest 2471 * @dst_cssp: output variable for the destination css 2472 * 2473 * @tset iteration is initialized and the first task is returned. 2474 */ 2475 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2476 struct cgroup_subsys_state **dst_cssp) 2477 { 2478 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2479 tset->cur_task = NULL; 2480 2481 return cgroup_taskset_next(tset, dst_cssp); 2482 } 2483 2484 /** 2485 * cgroup_taskset_next - iterate to the next task in taskset 2486 * @tset: taskset of interest 2487 * @dst_cssp: output variable for the destination css 2488 * 2489 * Return the next task in @tset. Iteration must have been initialized 2490 * with cgroup_taskset_first(). 2491 */ 2492 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2493 struct cgroup_subsys_state **dst_cssp) 2494 { 2495 struct css_set *cset = tset->cur_cset; 2496 struct task_struct *task = tset->cur_task; 2497 2498 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2499 if (!task) 2500 task = list_first_entry(&cset->mg_tasks, 2501 struct task_struct, cg_list); 2502 else 2503 task = list_next_entry(task, cg_list); 2504 2505 if (&task->cg_list != &cset->mg_tasks) { 2506 tset->cur_cset = cset; 2507 tset->cur_task = task; 2508 2509 /* 2510 * This function may be called both before and 2511 * after cgroup_migrate_execute(). The two cases 2512 * can be distinguished by looking at whether @cset 2513 * has its ->mg_dst_cset set. 2514 */ 2515 if (cset->mg_dst_cset) 2516 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2517 else 2518 *dst_cssp = cset->subsys[tset->ssid]; 2519 2520 return task; 2521 } 2522 2523 cset = list_next_entry(cset, mg_node); 2524 task = NULL; 2525 } 2526 2527 return NULL; 2528 } 2529 2530 /** 2531 * cgroup_migrate_execute - migrate a taskset 2532 * @mgctx: migration context 2533 * 2534 * Migrate tasks in @mgctx as setup by migration preparation functions. 2535 * This function fails iff one of the ->can_attach callbacks fails and 2536 * guarantees that either all or none of the tasks in @mgctx are migrated. 2537 * @mgctx is consumed regardless of success. 2538 */ 2539 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2540 { 2541 struct cgroup_taskset *tset = &mgctx->tset; 2542 struct cgroup_subsys *ss; 2543 struct task_struct *task, *tmp_task; 2544 struct css_set *cset, *tmp_cset; 2545 int ssid, failed_ssid, ret; 2546 2547 /* check that we can legitimately attach to the cgroup */ 2548 if (tset->nr_tasks) { 2549 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2550 if (ss->can_attach) { 2551 tset->ssid = ssid; 2552 ret = ss->can_attach(tset); 2553 if (ret) { 2554 failed_ssid = ssid; 2555 goto out_cancel_attach; 2556 } 2557 } 2558 } while_each_subsys_mask(); 2559 } 2560 2561 /* 2562 * Now that we're guaranteed success, proceed to move all tasks to 2563 * the new cgroup. There are no failure cases after here, so this 2564 * is the commit point. 2565 */ 2566 spin_lock_irq(&css_set_lock); 2567 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2568 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2569 struct css_set *from_cset = task_css_set(task); 2570 struct css_set *to_cset = cset->mg_dst_cset; 2571 2572 get_css_set(to_cset); 2573 to_cset->nr_tasks++; 2574 css_set_move_task(task, from_cset, to_cset, true); 2575 from_cset->nr_tasks--; 2576 /* 2577 * If the source or destination cgroup is frozen, 2578 * the task might require to change its state. 2579 */ 2580 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2581 to_cset->dfl_cgrp); 2582 put_css_set_locked(from_cset); 2583 2584 } 2585 } 2586 spin_unlock_irq(&css_set_lock); 2587 2588 /* 2589 * Migration is committed, all target tasks are now on dst_csets. 2590 * Nothing is sensitive to fork() after this point. Notify 2591 * controllers that migration is complete. 2592 */ 2593 tset->csets = &tset->dst_csets; 2594 2595 if (tset->nr_tasks) { 2596 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2597 if (ss->attach) { 2598 tset->ssid = ssid; 2599 ss->attach(tset); 2600 } 2601 } while_each_subsys_mask(); 2602 } 2603 2604 ret = 0; 2605 goto out_release_tset; 2606 2607 out_cancel_attach: 2608 if (tset->nr_tasks) { 2609 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2610 if (ssid == failed_ssid) 2611 break; 2612 if (ss->cancel_attach) { 2613 tset->ssid = ssid; 2614 ss->cancel_attach(tset); 2615 } 2616 } while_each_subsys_mask(); 2617 } 2618 out_release_tset: 2619 spin_lock_irq(&css_set_lock); 2620 list_splice_init(&tset->dst_csets, &tset->src_csets); 2621 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2622 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2623 list_del_init(&cset->mg_node); 2624 } 2625 spin_unlock_irq(&css_set_lock); 2626 2627 /* 2628 * Re-initialize the cgroup_taskset structure in case it is reused 2629 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2630 * iteration. 2631 */ 2632 tset->nr_tasks = 0; 2633 tset->csets = &tset->src_csets; 2634 return ret; 2635 } 2636 2637 /** 2638 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2639 * @dst_cgrp: destination cgroup to test 2640 * 2641 * On the default hierarchy, except for the mixable, (possible) thread root 2642 * and threaded cgroups, subtree_control must be zero for migration 2643 * destination cgroups with tasks so that child cgroups don't compete 2644 * against tasks. 2645 */ 2646 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2647 { 2648 /* v1 doesn't have any restriction */ 2649 if (!cgroup_on_dfl(dst_cgrp)) 2650 return 0; 2651 2652 /* verify @dst_cgrp can host resources */ 2653 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2654 return -EOPNOTSUPP; 2655 2656 /* 2657 * If @dst_cgrp is already or can become a thread root or is 2658 * threaded, it doesn't matter. 2659 */ 2660 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2661 return 0; 2662 2663 /* apply no-internal-process constraint */ 2664 if (dst_cgrp->subtree_control) 2665 return -EBUSY; 2666 2667 return 0; 2668 } 2669 2670 /** 2671 * cgroup_migrate_finish - cleanup after attach 2672 * @mgctx: migration context 2673 * 2674 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2675 * those functions for details. 2676 */ 2677 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2678 { 2679 struct css_set *cset, *tmp_cset; 2680 2681 lockdep_assert_held(&cgroup_mutex); 2682 2683 spin_lock_irq(&css_set_lock); 2684 2685 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2686 mg_src_preload_node) { 2687 cset->mg_src_cgrp = NULL; 2688 cset->mg_dst_cgrp = NULL; 2689 cset->mg_dst_cset = NULL; 2690 list_del_init(&cset->mg_src_preload_node); 2691 put_css_set_locked(cset); 2692 } 2693 2694 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2695 mg_dst_preload_node) { 2696 cset->mg_src_cgrp = NULL; 2697 cset->mg_dst_cgrp = NULL; 2698 cset->mg_dst_cset = NULL; 2699 list_del_init(&cset->mg_dst_preload_node); 2700 put_css_set_locked(cset); 2701 } 2702 2703 spin_unlock_irq(&css_set_lock); 2704 } 2705 2706 /** 2707 * cgroup_migrate_add_src - add a migration source css_set 2708 * @src_cset: the source css_set to add 2709 * @dst_cgrp: the destination cgroup 2710 * @mgctx: migration context 2711 * 2712 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2713 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2714 * up by cgroup_migrate_finish(). 2715 * 2716 * This function may be called without holding cgroup_threadgroup_rwsem 2717 * even if the target is a process. Threads may be created and destroyed 2718 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2719 * into play and the preloaded css_sets are guaranteed to cover all 2720 * migrations. 2721 */ 2722 void cgroup_migrate_add_src(struct css_set *src_cset, 2723 struct cgroup *dst_cgrp, 2724 struct cgroup_mgctx *mgctx) 2725 { 2726 struct cgroup *src_cgrp; 2727 2728 lockdep_assert_held(&cgroup_mutex); 2729 lockdep_assert_held(&css_set_lock); 2730 2731 /* 2732 * If ->dead, @src_set is associated with one or more dead cgroups 2733 * and doesn't contain any migratable tasks. Ignore it early so 2734 * that the rest of migration path doesn't get confused by it. 2735 */ 2736 if (src_cset->dead) 2737 return; 2738 2739 if (!list_empty(&src_cset->mg_src_preload_node)) 2740 return; 2741 2742 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2743 2744 WARN_ON(src_cset->mg_src_cgrp); 2745 WARN_ON(src_cset->mg_dst_cgrp); 2746 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2747 WARN_ON(!list_empty(&src_cset->mg_node)); 2748 2749 src_cset->mg_src_cgrp = src_cgrp; 2750 src_cset->mg_dst_cgrp = dst_cgrp; 2751 get_css_set(src_cset); 2752 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2753 } 2754 2755 /** 2756 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2757 * @mgctx: migration context 2758 * 2759 * Tasks are about to be moved and all the source css_sets have been 2760 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2761 * pins all destination css_sets, links each to its source, and append them 2762 * to @mgctx->preloaded_dst_csets. 2763 * 2764 * This function must be called after cgroup_migrate_add_src() has been 2765 * called on each migration source css_set. After migration is performed 2766 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2767 * @mgctx. 2768 */ 2769 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2770 { 2771 struct css_set *src_cset, *tmp_cset; 2772 2773 lockdep_assert_held(&cgroup_mutex); 2774 2775 /* look up the dst cset for each src cset and link it to src */ 2776 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2777 mg_src_preload_node) { 2778 struct css_set *dst_cset; 2779 struct cgroup_subsys *ss; 2780 int ssid; 2781 2782 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2783 if (!dst_cset) 2784 return -ENOMEM; 2785 2786 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2787 2788 /* 2789 * If src cset equals dst, it's noop. Drop the src. 2790 * cgroup_migrate() will skip the cset too. Note that we 2791 * can't handle src == dst as some nodes are used by both. 2792 */ 2793 if (src_cset == dst_cset) { 2794 src_cset->mg_src_cgrp = NULL; 2795 src_cset->mg_dst_cgrp = NULL; 2796 list_del_init(&src_cset->mg_src_preload_node); 2797 put_css_set(src_cset); 2798 put_css_set(dst_cset); 2799 continue; 2800 } 2801 2802 src_cset->mg_dst_cset = dst_cset; 2803 2804 if (list_empty(&dst_cset->mg_dst_preload_node)) 2805 list_add_tail(&dst_cset->mg_dst_preload_node, 2806 &mgctx->preloaded_dst_csets); 2807 else 2808 put_css_set(dst_cset); 2809 2810 for_each_subsys(ss, ssid) 2811 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2812 mgctx->ss_mask |= 1 << ssid; 2813 } 2814 2815 return 0; 2816 } 2817 2818 /** 2819 * cgroup_migrate - migrate a process or task to a cgroup 2820 * @leader: the leader of the process or the task to migrate 2821 * @threadgroup: whether @leader points to the whole process or a single task 2822 * @mgctx: migration context 2823 * 2824 * Migrate a process or task denoted by @leader. If migrating a process, 2825 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2826 * responsible for invoking cgroup_migrate_add_src() and 2827 * cgroup_migrate_prepare_dst() on the targets before invoking this 2828 * function and following up with cgroup_migrate_finish(). 2829 * 2830 * As long as a controller's ->can_attach() doesn't fail, this function is 2831 * guaranteed to succeed. This means that, excluding ->can_attach() 2832 * failure, when migrating multiple targets, the success or failure can be 2833 * decided for all targets by invoking group_migrate_prepare_dst() before 2834 * actually starting migrating. 2835 */ 2836 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2837 struct cgroup_mgctx *mgctx) 2838 { 2839 struct task_struct *task; 2840 2841 /* 2842 * The following thread iteration should be inside an RCU critical 2843 * section to prevent tasks from being freed while taking the snapshot. 2844 * spin_lock_irq() implies RCU critical section here. 2845 */ 2846 spin_lock_irq(&css_set_lock); 2847 task = leader; 2848 do { 2849 cgroup_migrate_add_task(task, mgctx); 2850 if (!threadgroup) 2851 break; 2852 } while_each_thread(leader, task); 2853 spin_unlock_irq(&css_set_lock); 2854 2855 return cgroup_migrate_execute(mgctx); 2856 } 2857 2858 /** 2859 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2860 * @dst_cgrp: the cgroup to attach to 2861 * @leader: the task or the leader of the threadgroup to be attached 2862 * @threadgroup: attach the whole threadgroup? 2863 * 2864 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2865 */ 2866 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2867 bool threadgroup) 2868 { 2869 DEFINE_CGROUP_MGCTX(mgctx); 2870 struct task_struct *task; 2871 int ret = 0; 2872 2873 /* look up all src csets */ 2874 spin_lock_irq(&css_set_lock); 2875 rcu_read_lock(); 2876 task = leader; 2877 do { 2878 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2879 if (!threadgroup) 2880 break; 2881 } while_each_thread(leader, task); 2882 rcu_read_unlock(); 2883 spin_unlock_irq(&css_set_lock); 2884 2885 /* prepare dst csets and commit */ 2886 ret = cgroup_migrate_prepare_dst(&mgctx); 2887 if (!ret) 2888 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2889 2890 cgroup_migrate_finish(&mgctx); 2891 2892 if (!ret) 2893 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2894 2895 return ret; 2896 } 2897 2898 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2899 bool *threadgroup_locked) 2900 { 2901 struct task_struct *tsk; 2902 pid_t pid; 2903 2904 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2905 return ERR_PTR(-EINVAL); 2906 2907 /* 2908 * If we migrate a single thread, we don't care about threadgroup 2909 * stability. If the thread is `current`, it won't exit(2) under our 2910 * hands or change PID through exec(2). We exclude 2911 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2912 * callers by cgroup_mutex. 2913 * Therefore, we can skip the global lock. 2914 */ 2915 lockdep_assert_held(&cgroup_mutex); 2916 *threadgroup_locked = pid || threadgroup; 2917 cgroup_attach_lock(*threadgroup_locked); 2918 2919 rcu_read_lock(); 2920 if (pid) { 2921 tsk = find_task_by_vpid(pid); 2922 if (!tsk) { 2923 tsk = ERR_PTR(-ESRCH); 2924 goto out_unlock_threadgroup; 2925 } 2926 } else { 2927 tsk = current; 2928 } 2929 2930 if (threadgroup) 2931 tsk = tsk->group_leader; 2932 2933 /* 2934 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2935 * If userland migrates such a kthread to a non-root cgroup, it can 2936 * become trapped in a cpuset, or RT kthread may be born in a 2937 * cgroup with no rt_runtime allocated. Just say no. 2938 */ 2939 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2940 tsk = ERR_PTR(-EINVAL); 2941 goto out_unlock_threadgroup; 2942 } 2943 2944 get_task_struct(tsk); 2945 goto out_unlock_rcu; 2946 2947 out_unlock_threadgroup: 2948 cgroup_attach_unlock(*threadgroup_locked); 2949 *threadgroup_locked = false; 2950 out_unlock_rcu: 2951 rcu_read_unlock(); 2952 return tsk; 2953 } 2954 2955 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2956 { 2957 struct cgroup_subsys *ss; 2958 int ssid; 2959 2960 /* release reference from cgroup_procs_write_start() */ 2961 put_task_struct(task); 2962 2963 cgroup_attach_unlock(threadgroup_locked); 2964 2965 for_each_subsys(ss, ssid) 2966 if (ss->post_attach) 2967 ss->post_attach(); 2968 } 2969 2970 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2971 { 2972 struct cgroup_subsys *ss; 2973 bool printed = false; 2974 int ssid; 2975 2976 do_each_subsys_mask(ss, ssid, ss_mask) { 2977 if (printed) 2978 seq_putc(seq, ' '); 2979 seq_puts(seq, ss->name); 2980 printed = true; 2981 } while_each_subsys_mask(); 2982 if (printed) 2983 seq_putc(seq, '\n'); 2984 } 2985 2986 /* show controllers which are enabled from the parent */ 2987 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2988 { 2989 struct cgroup *cgrp = seq_css(seq)->cgroup; 2990 2991 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2992 return 0; 2993 } 2994 2995 /* show controllers which are enabled for a given cgroup's children */ 2996 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2997 { 2998 struct cgroup *cgrp = seq_css(seq)->cgroup; 2999 3000 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3001 return 0; 3002 } 3003 3004 /** 3005 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3006 * @cgrp: root of the subtree to update csses for 3007 * 3008 * @cgrp's control masks have changed and its subtree's css associations 3009 * need to be updated accordingly. This function looks up all css_sets 3010 * which are attached to the subtree, creates the matching updated css_sets 3011 * and migrates the tasks to the new ones. 3012 */ 3013 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3014 { 3015 DEFINE_CGROUP_MGCTX(mgctx); 3016 struct cgroup_subsys_state *d_css; 3017 struct cgroup *dsct; 3018 struct css_set *src_cset; 3019 bool has_tasks; 3020 int ret; 3021 3022 lockdep_assert_held(&cgroup_mutex); 3023 3024 /* look up all csses currently attached to @cgrp's subtree */ 3025 spin_lock_irq(&css_set_lock); 3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3027 struct cgrp_cset_link *link; 3028 3029 /* 3030 * As cgroup_update_dfl_csses() is only called by 3031 * cgroup_apply_control(). The csses associated with the 3032 * given cgrp will not be affected by changes made to 3033 * its subtree_control file. We can skip them. 3034 */ 3035 if (dsct == cgrp) 3036 continue; 3037 3038 list_for_each_entry(link, &dsct->cset_links, cset_link) 3039 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3040 } 3041 spin_unlock_irq(&css_set_lock); 3042 3043 /* 3044 * We need to write-lock threadgroup_rwsem while migrating tasks. 3045 * However, if there are no source csets for @cgrp, changing its 3046 * controllers isn't gonna produce any task migrations and the 3047 * write-locking can be skipped safely. 3048 */ 3049 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3050 cgroup_attach_lock(has_tasks); 3051 3052 /* NULL dst indicates self on default hierarchy */ 3053 ret = cgroup_migrate_prepare_dst(&mgctx); 3054 if (ret) 3055 goto out_finish; 3056 3057 spin_lock_irq(&css_set_lock); 3058 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3059 mg_src_preload_node) { 3060 struct task_struct *task, *ntask; 3061 3062 /* all tasks in src_csets need to be migrated */ 3063 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3064 cgroup_migrate_add_task(task, &mgctx); 3065 } 3066 spin_unlock_irq(&css_set_lock); 3067 3068 ret = cgroup_migrate_execute(&mgctx); 3069 out_finish: 3070 cgroup_migrate_finish(&mgctx); 3071 cgroup_attach_unlock(has_tasks); 3072 return ret; 3073 } 3074 3075 /** 3076 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3077 * @cgrp: root of the target subtree 3078 * 3079 * Because css offlining is asynchronous, userland may try to re-enable a 3080 * controller while the previous css is still around. This function grabs 3081 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3082 */ 3083 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3084 __acquires(&cgroup_mutex) 3085 { 3086 struct cgroup *dsct; 3087 struct cgroup_subsys_state *d_css; 3088 struct cgroup_subsys *ss; 3089 int ssid; 3090 3091 restart: 3092 cgroup_lock(); 3093 3094 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3095 for_each_subsys(ss, ssid) { 3096 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3097 DEFINE_WAIT(wait); 3098 3099 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3100 continue; 3101 3102 cgroup_get_live(dsct); 3103 prepare_to_wait(&dsct->offline_waitq, &wait, 3104 TASK_UNINTERRUPTIBLE); 3105 3106 cgroup_unlock(); 3107 schedule(); 3108 finish_wait(&dsct->offline_waitq, &wait); 3109 3110 cgroup_put(dsct); 3111 goto restart; 3112 } 3113 } 3114 } 3115 3116 /** 3117 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3118 * @cgrp: root of the target subtree 3119 * 3120 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3121 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3122 * itself. 3123 */ 3124 static void cgroup_save_control(struct cgroup *cgrp) 3125 { 3126 struct cgroup *dsct; 3127 struct cgroup_subsys_state *d_css; 3128 3129 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3130 dsct->old_subtree_control = dsct->subtree_control; 3131 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3132 dsct->old_dom_cgrp = dsct->dom_cgrp; 3133 } 3134 } 3135 3136 /** 3137 * cgroup_propagate_control - refresh control masks of a subtree 3138 * @cgrp: root of the target subtree 3139 * 3140 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3141 * ->subtree_control and propagate controller availability through the 3142 * subtree so that descendants don't have unavailable controllers enabled. 3143 */ 3144 static void cgroup_propagate_control(struct cgroup *cgrp) 3145 { 3146 struct cgroup *dsct; 3147 struct cgroup_subsys_state *d_css; 3148 3149 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3150 dsct->subtree_control &= cgroup_control(dsct); 3151 dsct->subtree_ss_mask = 3152 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3153 cgroup_ss_mask(dsct)); 3154 } 3155 } 3156 3157 /** 3158 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3159 * @cgrp: root of the target subtree 3160 * 3161 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3162 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3163 * itself. 3164 */ 3165 static void cgroup_restore_control(struct cgroup *cgrp) 3166 { 3167 struct cgroup *dsct; 3168 struct cgroup_subsys_state *d_css; 3169 3170 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3171 dsct->subtree_control = dsct->old_subtree_control; 3172 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3173 dsct->dom_cgrp = dsct->old_dom_cgrp; 3174 } 3175 } 3176 3177 static bool css_visible(struct cgroup_subsys_state *css) 3178 { 3179 struct cgroup_subsys *ss = css->ss; 3180 struct cgroup *cgrp = css->cgroup; 3181 3182 if (cgroup_control(cgrp) & (1 << ss->id)) 3183 return true; 3184 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3185 return false; 3186 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3187 } 3188 3189 /** 3190 * cgroup_apply_control_enable - enable or show csses according to control 3191 * @cgrp: root of the target subtree 3192 * 3193 * Walk @cgrp's subtree and create new csses or make the existing ones 3194 * visible. A css is created invisible if it's being implicitly enabled 3195 * through dependency. An invisible css is made visible when the userland 3196 * explicitly enables it. 3197 * 3198 * Returns 0 on success, -errno on failure. On failure, csses which have 3199 * been processed already aren't cleaned up. The caller is responsible for 3200 * cleaning up with cgroup_apply_control_disable(). 3201 */ 3202 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3203 { 3204 struct cgroup *dsct; 3205 struct cgroup_subsys_state *d_css; 3206 struct cgroup_subsys *ss; 3207 int ssid, ret; 3208 3209 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3210 for_each_subsys(ss, ssid) { 3211 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3212 3213 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3214 continue; 3215 3216 if (!css) { 3217 css = css_create(dsct, ss); 3218 if (IS_ERR(css)) 3219 return PTR_ERR(css); 3220 } 3221 3222 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3223 3224 if (css_visible(css)) { 3225 ret = css_populate_dir(css); 3226 if (ret) 3227 return ret; 3228 } 3229 } 3230 } 3231 3232 return 0; 3233 } 3234 3235 /** 3236 * cgroup_apply_control_disable - kill or hide csses according to control 3237 * @cgrp: root of the target subtree 3238 * 3239 * Walk @cgrp's subtree and kill and hide csses so that they match 3240 * cgroup_ss_mask() and cgroup_visible_mask(). 3241 * 3242 * A css is hidden when the userland requests it to be disabled while other 3243 * subsystems are still depending on it. The css must not actively control 3244 * resources and be in the vanilla state if it's made visible again later. 3245 * Controllers which may be depended upon should provide ->css_reset() for 3246 * this purpose. 3247 */ 3248 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3249 { 3250 struct cgroup *dsct; 3251 struct cgroup_subsys_state *d_css; 3252 struct cgroup_subsys *ss; 3253 int ssid; 3254 3255 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3256 for_each_subsys(ss, ssid) { 3257 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3258 3259 if (!css) 3260 continue; 3261 3262 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3263 3264 if (css->parent && 3265 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3266 kill_css(css); 3267 } else if (!css_visible(css)) { 3268 css_clear_dir(css); 3269 if (ss->css_reset) 3270 ss->css_reset(css); 3271 } 3272 } 3273 } 3274 } 3275 3276 /** 3277 * cgroup_apply_control - apply control mask updates to the subtree 3278 * @cgrp: root of the target subtree 3279 * 3280 * subsystems can be enabled and disabled in a subtree using the following 3281 * steps. 3282 * 3283 * 1. Call cgroup_save_control() to stash the current state. 3284 * 2. Update ->subtree_control masks in the subtree as desired. 3285 * 3. Call cgroup_apply_control() to apply the changes. 3286 * 4. Optionally perform other related operations. 3287 * 5. Call cgroup_finalize_control() to finish up. 3288 * 3289 * This function implements step 3 and propagates the mask changes 3290 * throughout @cgrp's subtree, updates csses accordingly and perform 3291 * process migrations. 3292 */ 3293 static int cgroup_apply_control(struct cgroup *cgrp) 3294 { 3295 int ret; 3296 3297 cgroup_propagate_control(cgrp); 3298 3299 ret = cgroup_apply_control_enable(cgrp); 3300 if (ret) 3301 return ret; 3302 3303 /* 3304 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3305 * making the following cgroup_update_dfl_csses() properly update 3306 * css associations of all tasks in the subtree. 3307 */ 3308 return cgroup_update_dfl_csses(cgrp); 3309 } 3310 3311 /** 3312 * cgroup_finalize_control - finalize control mask update 3313 * @cgrp: root of the target subtree 3314 * @ret: the result of the update 3315 * 3316 * Finalize control mask update. See cgroup_apply_control() for more info. 3317 */ 3318 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3319 { 3320 if (ret) { 3321 cgroup_restore_control(cgrp); 3322 cgroup_propagate_control(cgrp); 3323 } 3324 3325 cgroup_apply_control_disable(cgrp); 3326 } 3327 3328 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3329 { 3330 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3331 3332 /* if nothing is getting enabled, nothing to worry about */ 3333 if (!enable) 3334 return 0; 3335 3336 /* can @cgrp host any resources? */ 3337 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3338 return -EOPNOTSUPP; 3339 3340 /* mixables don't care */ 3341 if (cgroup_is_mixable(cgrp)) 3342 return 0; 3343 3344 if (domain_enable) { 3345 /* can't enable domain controllers inside a thread subtree */ 3346 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3347 return -EOPNOTSUPP; 3348 } else { 3349 /* 3350 * Threaded controllers can handle internal competitions 3351 * and are always allowed inside a (prospective) thread 3352 * subtree. 3353 */ 3354 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3355 return 0; 3356 } 3357 3358 /* 3359 * Controllers can't be enabled for a cgroup with tasks to avoid 3360 * child cgroups competing against tasks. 3361 */ 3362 if (cgroup_has_tasks(cgrp)) 3363 return -EBUSY; 3364 3365 return 0; 3366 } 3367 3368 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3369 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3370 char *buf, size_t nbytes, 3371 loff_t off) 3372 { 3373 u16 enable = 0, disable = 0; 3374 struct cgroup *cgrp, *child; 3375 struct cgroup_subsys *ss; 3376 char *tok; 3377 int ssid, ret; 3378 3379 /* 3380 * Parse input - space separated list of subsystem names prefixed 3381 * with either + or -. 3382 */ 3383 buf = strstrip(buf); 3384 while ((tok = strsep(&buf, " "))) { 3385 if (tok[0] == '\0') 3386 continue; 3387 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3388 if (!cgroup_ssid_enabled(ssid) || 3389 strcmp(tok + 1, ss->name)) 3390 continue; 3391 3392 if (*tok == '+') { 3393 enable |= 1 << ssid; 3394 disable &= ~(1 << ssid); 3395 } else if (*tok == '-') { 3396 disable |= 1 << ssid; 3397 enable &= ~(1 << ssid); 3398 } else { 3399 return -EINVAL; 3400 } 3401 break; 3402 } while_each_subsys_mask(); 3403 if (ssid == CGROUP_SUBSYS_COUNT) 3404 return -EINVAL; 3405 } 3406 3407 cgrp = cgroup_kn_lock_live(of->kn, true); 3408 if (!cgrp) 3409 return -ENODEV; 3410 3411 for_each_subsys(ss, ssid) { 3412 if (enable & (1 << ssid)) { 3413 if (cgrp->subtree_control & (1 << ssid)) { 3414 enable &= ~(1 << ssid); 3415 continue; 3416 } 3417 3418 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3419 ret = -ENOENT; 3420 goto out_unlock; 3421 } 3422 } else if (disable & (1 << ssid)) { 3423 if (!(cgrp->subtree_control & (1 << ssid))) { 3424 disable &= ~(1 << ssid); 3425 continue; 3426 } 3427 3428 /* a child has it enabled? */ 3429 cgroup_for_each_live_child(child, cgrp) { 3430 if (child->subtree_control & (1 << ssid)) { 3431 ret = -EBUSY; 3432 goto out_unlock; 3433 } 3434 } 3435 } 3436 } 3437 3438 if (!enable && !disable) { 3439 ret = 0; 3440 goto out_unlock; 3441 } 3442 3443 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3444 if (ret) 3445 goto out_unlock; 3446 3447 /* save and update control masks and prepare csses */ 3448 cgroup_save_control(cgrp); 3449 3450 cgrp->subtree_control |= enable; 3451 cgrp->subtree_control &= ~disable; 3452 3453 ret = cgroup_apply_control(cgrp); 3454 cgroup_finalize_control(cgrp, ret); 3455 if (ret) 3456 goto out_unlock; 3457 3458 kernfs_activate(cgrp->kn); 3459 out_unlock: 3460 cgroup_kn_unlock(of->kn); 3461 return ret ?: nbytes; 3462 } 3463 3464 /** 3465 * cgroup_enable_threaded - make @cgrp threaded 3466 * @cgrp: the target cgroup 3467 * 3468 * Called when "threaded" is written to the cgroup.type interface file and 3469 * tries to make @cgrp threaded and join the parent's resource domain. 3470 * This function is never called on the root cgroup as cgroup.type doesn't 3471 * exist on it. 3472 */ 3473 static int cgroup_enable_threaded(struct cgroup *cgrp) 3474 { 3475 struct cgroup *parent = cgroup_parent(cgrp); 3476 struct cgroup *dom_cgrp = parent->dom_cgrp; 3477 struct cgroup *dsct; 3478 struct cgroup_subsys_state *d_css; 3479 int ret; 3480 3481 lockdep_assert_held(&cgroup_mutex); 3482 3483 /* noop if already threaded */ 3484 if (cgroup_is_threaded(cgrp)) 3485 return 0; 3486 3487 /* 3488 * If @cgroup is populated or has domain controllers enabled, it 3489 * can't be switched. While the below cgroup_can_be_thread_root() 3490 * test can catch the same conditions, that's only when @parent is 3491 * not mixable, so let's check it explicitly. 3492 */ 3493 if (cgroup_is_populated(cgrp) || 3494 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3495 return -EOPNOTSUPP; 3496 3497 /* we're joining the parent's domain, ensure its validity */ 3498 if (!cgroup_is_valid_domain(dom_cgrp) || 3499 !cgroup_can_be_thread_root(dom_cgrp)) 3500 return -EOPNOTSUPP; 3501 3502 /* 3503 * The following shouldn't cause actual migrations and should 3504 * always succeed. 3505 */ 3506 cgroup_save_control(cgrp); 3507 3508 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3509 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3510 dsct->dom_cgrp = dom_cgrp; 3511 3512 ret = cgroup_apply_control(cgrp); 3513 if (!ret) 3514 parent->nr_threaded_children++; 3515 3516 cgroup_finalize_control(cgrp, ret); 3517 return ret; 3518 } 3519 3520 static int cgroup_type_show(struct seq_file *seq, void *v) 3521 { 3522 struct cgroup *cgrp = seq_css(seq)->cgroup; 3523 3524 if (cgroup_is_threaded(cgrp)) 3525 seq_puts(seq, "threaded\n"); 3526 else if (!cgroup_is_valid_domain(cgrp)) 3527 seq_puts(seq, "domain invalid\n"); 3528 else if (cgroup_is_thread_root(cgrp)) 3529 seq_puts(seq, "domain threaded\n"); 3530 else 3531 seq_puts(seq, "domain\n"); 3532 3533 return 0; 3534 } 3535 3536 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3537 size_t nbytes, loff_t off) 3538 { 3539 struct cgroup *cgrp; 3540 int ret; 3541 3542 /* only switching to threaded mode is supported */ 3543 if (strcmp(strstrip(buf), "threaded")) 3544 return -EINVAL; 3545 3546 /* drain dying csses before we re-apply (threaded) subtree control */ 3547 cgrp = cgroup_kn_lock_live(of->kn, true); 3548 if (!cgrp) 3549 return -ENOENT; 3550 3551 /* threaded can only be enabled */ 3552 ret = cgroup_enable_threaded(cgrp); 3553 3554 cgroup_kn_unlock(of->kn); 3555 return ret ?: nbytes; 3556 } 3557 3558 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3559 { 3560 struct cgroup *cgrp = seq_css(seq)->cgroup; 3561 int descendants = READ_ONCE(cgrp->max_descendants); 3562 3563 if (descendants == INT_MAX) 3564 seq_puts(seq, "max\n"); 3565 else 3566 seq_printf(seq, "%d\n", descendants); 3567 3568 return 0; 3569 } 3570 3571 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3572 char *buf, size_t nbytes, loff_t off) 3573 { 3574 struct cgroup *cgrp; 3575 int descendants; 3576 ssize_t ret; 3577 3578 buf = strstrip(buf); 3579 if (!strcmp(buf, "max")) { 3580 descendants = INT_MAX; 3581 } else { 3582 ret = kstrtoint(buf, 0, &descendants); 3583 if (ret) 3584 return ret; 3585 } 3586 3587 if (descendants < 0) 3588 return -ERANGE; 3589 3590 cgrp = cgroup_kn_lock_live(of->kn, false); 3591 if (!cgrp) 3592 return -ENOENT; 3593 3594 cgrp->max_descendants = descendants; 3595 3596 cgroup_kn_unlock(of->kn); 3597 3598 return nbytes; 3599 } 3600 3601 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3602 { 3603 struct cgroup *cgrp = seq_css(seq)->cgroup; 3604 int depth = READ_ONCE(cgrp->max_depth); 3605 3606 if (depth == INT_MAX) 3607 seq_puts(seq, "max\n"); 3608 else 3609 seq_printf(seq, "%d\n", depth); 3610 3611 return 0; 3612 } 3613 3614 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3615 char *buf, size_t nbytes, loff_t off) 3616 { 3617 struct cgroup *cgrp; 3618 ssize_t ret; 3619 int depth; 3620 3621 buf = strstrip(buf); 3622 if (!strcmp(buf, "max")) { 3623 depth = INT_MAX; 3624 } else { 3625 ret = kstrtoint(buf, 0, &depth); 3626 if (ret) 3627 return ret; 3628 } 3629 3630 if (depth < 0) 3631 return -ERANGE; 3632 3633 cgrp = cgroup_kn_lock_live(of->kn, false); 3634 if (!cgrp) 3635 return -ENOENT; 3636 3637 cgrp->max_depth = depth; 3638 3639 cgroup_kn_unlock(of->kn); 3640 3641 return nbytes; 3642 } 3643 3644 static int cgroup_events_show(struct seq_file *seq, void *v) 3645 { 3646 struct cgroup *cgrp = seq_css(seq)->cgroup; 3647 3648 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3649 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3650 3651 return 0; 3652 } 3653 3654 static int cgroup_stat_show(struct seq_file *seq, void *v) 3655 { 3656 struct cgroup *cgroup = seq_css(seq)->cgroup; 3657 3658 seq_printf(seq, "nr_descendants %d\n", 3659 cgroup->nr_descendants); 3660 seq_printf(seq, "nr_dying_descendants %d\n", 3661 cgroup->nr_dying_descendants); 3662 3663 return 0; 3664 } 3665 3666 #ifdef CONFIG_CGROUP_SCHED 3667 /** 3668 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3669 * @cgrp: the cgroup of interest 3670 * @ss: the subsystem of interest 3671 * 3672 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3673 * or is offline, %NULL is returned. 3674 */ 3675 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3676 struct cgroup_subsys *ss) 3677 { 3678 struct cgroup_subsys_state *css; 3679 3680 rcu_read_lock(); 3681 css = cgroup_css(cgrp, ss); 3682 if (css && !css_tryget_online(css)) 3683 css = NULL; 3684 rcu_read_unlock(); 3685 3686 return css; 3687 } 3688 3689 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3690 { 3691 struct cgroup *cgrp = seq_css(seq)->cgroup; 3692 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3693 struct cgroup_subsys_state *css; 3694 int ret; 3695 3696 if (!ss->css_extra_stat_show) 3697 return 0; 3698 3699 css = cgroup_tryget_css(cgrp, ss); 3700 if (!css) 3701 return 0; 3702 3703 ret = ss->css_extra_stat_show(seq, css); 3704 css_put(css); 3705 return ret; 3706 } 3707 3708 static int cgroup_local_stat_show(struct seq_file *seq, 3709 struct cgroup *cgrp, int ssid) 3710 { 3711 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3712 struct cgroup_subsys_state *css; 3713 int ret; 3714 3715 if (!ss->css_local_stat_show) 3716 return 0; 3717 3718 css = cgroup_tryget_css(cgrp, ss); 3719 if (!css) 3720 return 0; 3721 3722 ret = ss->css_local_stat_show(seq, css); 3723 css_put(css); 3724 return ret; 3725 } 3726 #endif 3727 3728 static int cpu_stat_show(struct seq_file *seq, void *v) 3729 { 3730 int ret = 0; 3731 3732 cgroup_base_stat_cputime_show(seq); 3733 #ifdef CONFIG_CGROUP_SCHED 3734 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3735 #endif 3736 return ret; 3737 } 3738 3739 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3740 { 3741 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3742 int ret = 0; 3743 3744 #ifdef CONFIG_CGROUP_SCHED 3745 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3746 #endif 3747 return ret; 3748 } 3749 3750 #ifdef CONFIG_PSI 3751 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3752 { 3753 struct cgroup *cgrp = seq_css(seq)->cgroup; 3754 struct psi_group *psi = cgroup_psi(cgrp); 3755 3756 return psi_show(seq, psi, PSI_IO); 3757 } 3758 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3759 { 3760 struct cgroup *cgrp = seq_css(seq)->cgroup; 3761 struct psi_group *psi = cgroup_psi(cgrp); 3762 3763 return psi_show(seq, psi, PSI_MEM); 3764 } 3765 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3766 { 3767 struct cgroup *cgrp = seq_css(seq)->cgroup; 3768 struct psi_group *psi = cgroup_psi(cgrp); 3769 3770 return psi_show(seq, psi, PSI_CPU); 3771 } 3772 3773 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3774 size_t nbytes, enum psi_res res) 3775 { 3776 struct cgroup_file_ctx *ctx = of->priv; 3777 struct psi_trigger *new; 3778 struct cgroup *cgrp; 3779 struct psi_group *psi; 3780 3781 cgrp = cgroup_kn_lock_live(of->kn, false); 3782 if (!cgrp) 3783 return -ENODEV; 3784 3785 cgroup_get(cgrp); 3786 cgroup_kn_unlock(of->kn); 3787 3788 /* Allow only one trigger per file descriptor */ 3789 if (ctx->psi.trigger) { 3790 cgroup_put(cgrp); 3791 return -EBUSY; 3792 } 3793 3794 psi = cgroup_psi(cgrp); 3795 new = psi_trigger_create(psi, buf, res, of->file, of); 3796 if (IS_ERR(new)) { 3797 cgroup_put(cgrp); 3798 return PTR_ERR(new); 3799 } 3800 3801 smp_store_release(&ctx->psi.trigger, new); 3802 cgroup_put(cgrp); 3803 3804 return nbytes; 3805 } 3806 3807 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3808 char *buf, size_t nbytes, 3809 loff_t off) 3810 { 3811 return pressure_write(of, buf, nbytes, PSI_IO); 3812 } 3813 3814 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3815 char *buf, size_t nbytes, 3816 loff_t off) 3817 { 3818 return pressure_write(of, buf, nbytes, PSI_MEM); 3819 } 3820 3821 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3822 char *buf, size_t nbytes, 3823 loff_t off) 3824 { 3825 return pressure_write(of, buf, nbytes, PSI_CPU); 3826 } 3827 3828 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3829 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3830 { 3831 struct cgroup *cgrp = seq_css(seq)->cgroup; 3832 struct psi_group *psi = cgroup_psi(cgrp); 3833 3834 return psi_show(seq, psi, PSI_IRQ); 3835 } 3836 3837 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3838 char *buf, size_t nbytes, 3839 loff_t off) 3840 { 3841 return pressure_write(of, buf, nbytes, PSI_IRQ); 3842 } 3843 #endif 3844 3845 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3846 { 3847 struct cgroup *cgrp = seq_css(seq)->cgroup; 3848 struct psi_group *psi = cgroup_psi(cgrp); 3849 3850 seq_printf(seq, "%d\n", psi->enabled); 3851 3852 return 0; 3853 } 3854 3855 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3856 char *buf, size_t nbytes, 3857 loff_t off) 3858 { 3859 ssize_t ret; 3860 int enable; 3861 struct cgroup *cgrp; 3862 struct psi_group *psi; 3863 3864 ret = kstrtoint(strstrip(buf), 0, &enable); 3865 if (ret) 3866 return ret; 3867 3868 if (enable < 0 || enable > 1) 3869 return -ERANGE; 3870 3871 cgrp = cgroup_kn_lock_live(of->kn, false); 3872 if (!cgrp) 3873 return -ENOENT; 3874 3875 psi = cgroup_psi(cgrp); 3876 if (psi->enabled != enable) { 3877 int i; 3878 3879 /* show or hide {cpu,memory,io,irq}.pressure files */ 3880 for (i = 0; i < NR_PSI_RESOURCES; i++) 3881 cgroup_file_show(&cgrp->psi_files[i], enable); 3882 3883 psi->enabled = enable; 3884 if (enable) 3885 psi_cgroup_restart(psi); 3886 } 3887 3888 cgroup_kn_unlock(of->kn); 3889 3890 return nbytes; 3891 } 3892 3893 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3894 poll_table *pt) 3895 { 3896 struct cgroup_file_ctx *ctx = of->priv; 3897 3898 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3899 } 3900 3901 static void cgroup_pressure_release(struct kernfs_open_file *of) 3902 { 3903 struct cgroup_file_ctx *ctx = of->priv; 3904 3905 psi_trigger_destroy(ctx->psi.trigger); 3906 } 3907 3908 bool cgroup_psi_enabled(void) 3909 { 3910 if (static_branch_likely(&psi_disabled)) 3911 return false; 3912 3913 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3914 } 3915 3916 #else /* CONFIG_PSI */ 3917 bool cgroup_psi_enabled(void) 3918 { 3919 return false; 3920 } 3921 3922 #endif /* CONFIG_PSI */ 3923 3924 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3925 { 3926 struct cgroup *cgrp = seq_css(seq)->cgroup; 3927 3928 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3929 3930 return 0; 3931 } 3932 3933 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3934 char *buf, size_t nbytes, loff_t off) 3935 { 3936 struct cgroup *cgrp; 3937 ssize_t ret; 3938 int freeze; 3939 3940 ret = kstrtoint(strstrip(buf), 0, &freeze); 3941 if (ret) 3942 return ret; 3943 3944 if (freeze < 0 || freeze > 1) 3945 return -ERANGE; 3946 3947 cgrp = cgroup_kn_lock_live(of->kn, false); 3948 if (!cgrp) 3949 return -ENOENT; 3950 3951 cgroup_freeze(cgrp, freeze); 3952 3953 cgroup_kn_unlock(of->kn); 3954 3955 return nbytes; 3956 } 3957 3958 static void __cgroup_kill(struct cgroup *cgrp) 3959 { 3960 struct css_task_iter it; 3961 struct task_struct *task; 3962 3963 lockdep_assert_held(&cgroup_mutex); 3964 3965 spin_lock_irq(&css_set_lock); 3966 set_bit(CGRP_KILL, &cgrp->flags); 3967 spin_unlock_irq(&css_set_lock); 3968 3969 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3970 while ((task = css_task_iter_next(&it))) { 3971 /* Ignore kernel threads here. */ 3972 if (task->flags & PF_KTHREAD) 3973 continue; 3974 3975 /* Skip tasks that are already dying. */ 3976 if (__fatal_signal_pending(task)) 3977 continue; 3978 3979 send_sig(SIGKILL, task, 0); 3980 } 3981 css_task_iter_end(&it); 3982 3983 spin_lock_irq(&css_set_lock); 3984 clear_bit(CGRP_KILL, &cgrp->flags); 3985 spin_unlock_irq(&css_set_lock); 3986 } 3987 3988 static void cgroup_kill(struct cgroup *cgrp) 3989 { 3990 struct cgroup_subsys_state *css; 3991 struct cgroup *dsct; 3992 3993 lockdep_assert_held(&cgroup_mutex); 3994 3995 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3996 __cgroup_kill(dsct); 3997 } 3998 3999 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4000 size_t nbytes, loff_t off) 4001 { 4002 ssize_t ret = 0; 4003 int kill; 4004 struct cgroup *cgrp; 4005 4006 ret = kstrtoint(strstrip(buf), 0, &kill); 4007 if (ret) 4008 return ret; 4009 4010 if (kill != 1) 4011 return -ERANGE; 4012 4013 cgrp = cgroup_kn_lock_live(of->kn, false); 4014 if (!cgrp) 4015 return -ENOENT; 4016 4017 /* 4018 * Killing is a process directed operation, i.e. the whole thread-group 4019 * is taken down so act like we do for cgroup.procs and only make this 4020 * writable in non-threaded cgroups. 4021 */ 4022 if (cgroup_is_threaded(cgrp)) 4023 ret = -EOPNOTSUPP; 4024 else 4025 cgroup_kill(cgrp); 4026 4027 cgroup_kn_unlock(of->kn); 4028 4029 return ret ?: nbytes; 4030 } 4031 4032 static int cgroup_file_open(struct kernfs_open_file *of) 4033 { 4034 struct cftype *cft = of_cft(of); 4035 struct cgroup_file_ctx *ctx; 4036 int ret; 4037 4038 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4039 if (!ctx) 4040 return -ENOMEM; 4041 4042 ctx->ns = current->nsproxy->cgroup_ns; 4043 get_cgroup_ns(ctx->ns); 4044 of->priv = ctx; 4045 4046 if (!cft->open) 4047 return 0; 4048 4049 ret = cft->open(of); 4050 if (ret) { 4051 put_cgroup_ns(ctx->ns); 4052 kfree(ctx); 4053 } 4054 return ret; 4055 } 4056 4057 static void cgroup_file_release(struct kernfs_open_file *of) 4058 { 4059 struct cftype *cft = of_cft(of); 4060 struct cgroup_file_ctx *ctx = of->priv; 4061 4062 if (cft->release) 4063 cft->release(of); 4064 put_cgroup_ns(ctx->ns); 4065 kfree(ctx); 4066 } 4067 4068 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4069 size_t nbytes, loff_t off) 4070 { 4071 struct cgroup_file_ctx *ctx = of->priv; 4072 struct cgroup *cgrp = of->kn->parent->priv; 4073 struct cftype *cft = of_cft(of); 4074 struct cgroup_subsys_state *css; 4075 int ret; 4076 4077 if (!nbytes) 4078 return 0; 4079 4080 /* 4081 * If namespaces are delegation boundaries, disallow writes to 4082 * files in an non-init namespace root from inside the namespace 4083 * except for the files explicitly marked delegatable - 4084 * cgroup.procs and cgroup.subtree_control. 4085 */ 4086 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4087 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4088 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4089 return -EPERM; 4090 4091 if (cft->write) 4092 return cft->write(of, buf, nbytes, off); 4093 4094 /* 4095 * kernfs guarantees that a file isn't deleted with operations in 4096 * flight, which means that the matching css is and stays alive and 4097 * doesn't need to be pinned. The RCU locking is not necessary 4098 * either. It's just for the convenience of using cgroup_css(). 4099 */ 4100 rcu_read_lock(); 4101 css = cgroup_css(cgrp, cft->ss); 4102 rcu_read_unlock(); 4103 4104 if (cft->write_u64) { 4105 unsigned long long v; 4106 ret = kstrtoull(buf, 0, &v); 4107 if (!ret) 4108 ret = cft->write_u64(css, cft, v); 4109 } else if (cft->write_s64) { 4110 long long v; 4111 ret = kstrtoll(buf, 0, &v); 4112 if (!ret) 4113 ret = cft->write_s64(css, cft, v); 4114 } else { 4115 ret = -EINVAL; 4116 } 4117 4118 return ret ?: nbytes; 4119 } 4120 4121 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4122 { 4123 struct cftype *cft = of_cft(of); 4124 4125 if (cft->poll) 4126 return cft->poll(of, pt); 4127 4128 return kernfs_generic_poll(of, pt); 4129 } 4130 4131 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4132 { 4133 return seq_cft(seq)->seq_start(seq, ppos); 4134 } 4135 4136 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4137 { 4138 return seq_cft(seq)->seq_next(seq, v, ppos); 4139 } 4140 4141 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4142 { 4143 if (seq_cft(seq)->seq_stop) 4144 seq_cft(seq)->seq_stop(seq, v); 4145 } 4146 4147 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4148 { 4149 struct cftype *cft = seq_cft(m); 4150 struct cgroup_subsys_state *css = seq_css(m); 4151 4152 if (cft->seq_show) 4153 return cft->seq_show(m, arg); 4154 4155 if (cft->read_u64) 4156 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4157 else if (cft->read_s64) 4158 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4159 else 4160 return -EINVAL; 4161 return 0; 4162 } 4163 4164 static struct kernfs_ops cgroup_kf_single_ops = { 4165 .atomic_write_len = PAGE_SIZE, 4166 .open = cgroup_file_open, 4167 .release = cgroup_file_release, 4168 .write = cgroup_file_write, 4169 .poll = cgroup_file_poll, 4170 .seq_show = cgroup_seqfile_show, 4171 }; 4172 4173 static struct kernfs_ops cgroup_kf_ops = { 4174 .atomic_write_len = PAGE_SIZE, 4175 .open = cgroup_file_open, 4176 .release = cgroup_file_release, 4177 .write = cgroup_file_write, 4178 .poll = cgroup_file_poll, 4179 .seq_start = cgroup_seqfile_start, 4180 .seq_next = cgroup_seqfile_next, 4181 .seq_stop = cgroup_seqfile_stop, 4182 .seq_show = cgroup_seqfile_show, 4183 }; 4184 4185 static void cgroup_file_notify_timer(struct timer_list *timer) 4186 { 4187 cgroup_file_notify(container_of(timer, struct cgroup_file, 4188 notify_timer)); 4189 } 4190 4191 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4192 struct cftype *cft) 4193 { 4194 char name[CGROUP_FILE_NAME_MAX]; 4195 struct kernfs_node *kn; 4196 struct lock_class_key *key = NULL; 4197 4198 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4199 key = &cft->lockdep_key; 4200 #endif 4201 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4202 cgroup_file_mode(cft), 4203 current_fsuid(), current_fsgid(), 4204 0, cft->kf_ops, cft, 4205 NULL, key); 4206 if (IS_ERR(kn)) 4207 return PTR_ERR(kn); 4208 4209 if (cft->file_offset) { 4210 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4211 4212 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4213 4214 spin_lock_irq(&cgroup_file_kn_lock); 4215 cfile->kn = kn; 4216 spin_unlock_irq(&cgroup_file_kn_lock); 4217 } 4218 4219 return 0; 4220 } 4221 4222 /** 4223 * cgroup_addrm_files - add or remove files to a cgroup directory 4224 * @css: the target css 4225 * @cgrp: the target cgroup (usually css->cgroup) 4226 * @cfts: array of cftypes to be added 4227 * @is_add: whether to add or remove 4228 * 4229 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4230 * For removals, this function never fails. 4231 */ 4232 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4233 struct cgroup *cgrp, struct cftype cfts[], 4234 bool is_add) 4235 { 4236 struct cftype *cft, *cft_end = NULL; 4237 int ret = 0; 4238 4239 lockdep_assert_held(&cgroup_mutex); 4240 4241 restart: 4242 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4243 /* does cft->flags tell us to skip this file on @cgrp? */ 4244 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4245 continue; 4246 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4247 continue; 4248 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4249 continue; 4250 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4251 continue; 4252 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4253 continue; 4254 if (is_add) { 4255 ret = cgroup_add_file(css, cgrp, cft); 4256 if (ret) { 4257 pr_warn("%s: failed to add %s, err=%d\n", 4258 __func__, cft->name, ret); 4259 cft_end = cft; 4260 is_add = false; 4261 goto restart; 4262 } 4263 } else { 4264 cgroup_rm_file(cgrp, cft); 4265 } 4266 } 4267 return ret; 4268 } 4269 4270 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4271 { 4272 struct cgroup_subsys *ss = cfts[0].ss; 4273 struct cgroup *root = &ss->root->cgrp; 4274 struct cgroup_subsys_state *css; 4275 int ret = 0; 4276 4277 lockdep_assert_held(&cgroup_mutex); 4278 4279 /* add/rm files for all cgroups created before */ 4280 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4281 struct cgroup *cgrp = css->cgroup; 4282 4283 if (!(css->flags & CSS_VISIBLE)) 4284 continue; 4285 4286 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4287 if (ret) 4288 break; 4289 } 4290 4291 if (is_add && !ret) 4292 kernfs_activate(root->kn); 4293 return ret; 4294 } 4295 4296 static void cgroup_exit_cftypes(struct cftype *cfts) 4297 { 4298 struct cftype *cft; 4299 4300 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4301 /* free copy for custom atomic_write_len, see init_cftypes() */ 4302 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4303 kfree(cft->kf_ops); 4304 cft->kf_ops = NULL; 4305 cft->ss = NULL; 4306 4307 /* revert flags set by cgroup core while adding @cfts */ 4308 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4309 __CFTYPE_ADDED); 4310 } 4311 } 4312 4313 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4314 { 4315 struct cftype *cft; 4316 int ret = 0; 4317 4318 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4319 struct kernfs_ops *kf_ops; 4320 4321 WARN_ON(cft->ss || cft->kf_ops); 4322 4323 if (cft->flags & __CFTYPE_ADDED) { 4324 ret = -EBUSY; 4325 break; 4326 } 4327 4328 if (cft->seq_start) 4329 kf_ops = &cgroup_kf_ops; 4330 else 4331 kf_ops = &cgroup_kf_single_ops; 4332 4333 /* 4334 * Ugh... if @cft wants a custom max_write_len, we need to 4335 * make a copy of kf_ops to set its atomic_write_len. 4336 */ 4337 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4338 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4339 if (!kf_ops) { 4340 ret = -ENOMEM; 4341 break; 4342 } 4343 kf_ops->atomic_write_len = cft->max_write_len; 4344 } 4345 4346 cft->kf_ops = kf_ops; 4347 cft->ss = ss; 4348 cft->flags |= __CFTYPE_ADDED; 4349 } 4350 4351 if (ret) 4352 cgroup_exit_cftypes(cfts); 4353 return ret; 4354 } 4355 4356 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4357 { 4358 lockdep_assert_held(&cgroup_mutex); 4359 4360 list_del(&cfts->node); 4361 cgroup_apply_cftypes(cfts, false); 4362 cgroup_exit_cftypes(cfts); 4363 } 4364 4365 /** 4366 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4367 * @cfts: zero-length name terminated array of cftypes 4368 * 4369 * Unregister @cfts. Files described by @cfts are removed from all 4370 * existing cgroups and all future cgroups won't have them either. This 4371 * function can be called anytime whether @cfts' subsys is attached or not. 4372 * 4373 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4374 * registered. 4375 */ 4376 int cgroup_rm_cftypes(struct cftype *cfts) 4377 { 4378 if (!cfts || cfts[0].name[0] == '\0') 4379 return 0; 4380 4381 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4382 return -ENOENT; 4383 4384 cgroup_lock(); 4385 cgroup_rm_cftypes_locked(cfts); 4386 cgroup_unlock(); 4387 return 0; 4388 } 4389 4390 /** 4391 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4392 * @ss: target cgroup subsystem 4393 * @cfts: zero-length name terminated array of cftypes 4394 * 4395 * Register @cfts to @ss. Files described by @cfts are created for all 4396 * existing cgroups to which @ss is attached and all future cgroups will 4397 * have them too. This function can be called anytime whether @ss is 4398 * attached or not. 4399 * 4400 * Returns 0 on successful registration, -errno on failure. Note that this 4401 * function currently returns 0 as long as @cfts registration is successful 4402 * even if some file creation attempts on existing cgroups fail. 4403 */ 4404 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4405 { 4406 int ret; 4407 4408 if (!cgroup_ssid_enabled(ss->id)) 4409 return 0; 4410 4411 if (!cfts || cfts[0].name[0] == '\0') 4412 return 0; 4413 4414 ret = cgroup_init_cftypes(ss, cfts); 4415 if (ret) 4416 return ret; 4417 4418 cgroup_lock(); 4419 4420 list_add_tail(&cfts->node, &ss->cfts); 4421 ret = cgroup_apply_cftypes(cfts, true); 4422 if (ret) 4423 cgroup_rm_cftypes_locked(cfts); 4424 4425 cgroup_unlock(); 4426 return ret; 4427 } 4428 4429 /** 4430 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4431 * @ss: target cgroup subsystem 4432 * @cfts: zero-length name terminated array of cftypes 4433 * 4434 * Similar to cgroup_add_cftypes() but the added files are only used for 4435 * the default hierarchy. 4436 */ 4437 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4438 { 4439 struct cftype *cft; 4440 4441 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4442 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4443 return cgroup_add_cftypes(ss, cfts); 4444 } 4445 4446 /** 4447 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4448 * @ss: target cgroup subsystem 4449 * @cfts: zero-length name terminated array of cftypes 4450 * 4451 * Similar to cgroup_add_cftypes() but the added files are only used for 4452 * the legacy hierarchies. 4453 */ 4454 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4455 { 4456 struct cftype *cft; 4457 4458 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4459 cft->flags |= __CFTYPE_NOT_ON_DFL; 4460 return cgroup_add_cftypes(ss, cfts); 4461 } 4462 4463 /** 4464 * cgroup_file_notify - generate a file modified event for a cgroup_file 4465 * @cfile: target cgroup_file 4466 * 4467 * @cfile must have been obtained by setting cftype->file_offset. 4468 */ 4469 void cgroup_file_notify(struct cgroup_file *cfile) 4470 { 4471 unsigned long flags; 4472 4473 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4474 if (cfile->kn) { 4475 unsigned long last = cfile->notified_at; 4476 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4477 4478 if (time_in_range(jiffies, last, next)) { 4479 timer_reduce(&cfile->notify_timer, next); 4480 } else { 4481 kernfs_notify(cfile->kn); 4482 cfile->notified_at = jiffies; 4483 } 4484 } 4485 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4486 } 4487 4488 /** 4489 * cgroup_file_show - show or hide a hidden cgroup file 4490 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4491 * @show: whether to show or hide 4492 */ 4493 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4494 { 4495 struct kernfs_node *kn; 4496 4497 spin_lock_irq(&cgroup_file_kn_lock); 4498 kn = cfile->kn; 4499 kernfs_get(kn); 4500 spin_unlock_irq(&cgroup_file_kn_lock); 4501 4502 if (kn) 4503 kernfs_show(kn, show); 4504 4505 kernfs_put(kn); 4506 } 4507 4508 /** 4509 * css_next_child - find the next child of a given css 4510 * @pos: the current position (%NULL to initiate traversal) 4511 * @parent: css whose children to walk 4512 * 4513 * This function returns the next child of @parent and should be called 4514 * under either cgroup_mutex or RCU read lock. The only requirement is 4515 * that @parent and @pos are accessible. The next sibling is guaranteed to 4516 * be returned regardless of their states. 4517 * 4518 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4519 * css which finished ->css_online() is guaranteed to be visible in the 4520 * future iterations and will stay visible until the last reference is put. 4521 * A css which hasn't finished ->css_online() or already finished 4522 * ->css_offline() may show up during traversal. It's each subsystem's 4523 * responsibility to synchronize against on/offlining. 4524 */ 4525 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4526 struct cgroup_subsys_state *parent) 4527 { 4528 struct cgroup_subsys_state *next; 4529 4530 cgroup_assert_mutex_or_rcu_locked(); 4531 4532 /* 4533 * @pos could already have been unlinked from the sibling list. 4534 * Once a cgroup is removed, its ->sibling.next is no longer 4535 * updated when its next sibling changes. CSS_RELEASED is set when 4536 * @pos is taken off list, at which time its next pointer is valid, 4537 * and, as releases are serialized, the one pointed to by the next 4538 * pointer is guaranteed to not have started release yet. This 4539 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4540 * critical section, the one pointed to by its next pointer is 4541 * guaranteed to not have finished its RCU grace period even if we 4542 * have dropped rcu_read_lock() in-between iterations. 4543 * 4544 * If @pos has CSS_RELEASED set, its next pointer can't be 4545 * dereferenced; however, as each css is given a monotonically 4546 * increasing unique serial number and always appended to the 4547 * sibling list, the next one can be found by walking the parent's 4548 * children until the first css with higher serial number than 4549 * @pos's. While this path can be slower, it happens iff iteration 4550 * races against release and the race window is very small. 4551 */ 4552 if (!pos) { 4553 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4554 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4555 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4556 } else { 4557 list_for_each_entry_rcu(next, &parent->children, sibling, 4558 lockdep_is_held(&cgroup_mutex)) 4559 if (next->serial_nr > pos->serial_nr) 4560 break; 4561 } 4562 4563 /* 4564 * @next, if not pointing to the head, can be dereferenced and is 4565 * the next sibling. 4566 */ 4567 if (&next->sibling != &parent->children) 4568 return next; 4569 return NULL; 4570 } 4571 4572 /** 4573 * css_next_descendant_pre - find the next descendant for pre-order walk 4574 * @pos: the current position (%NULL to initiate traversal) 4575 * @root: css whose descendants to walk 4576 * 4577 * To be used by css_for_each_descendant_pre(). Find the next descendant 4578 * to visit for pre-order traversal of @root's descendants. @root is 4579 * included in the iteration and the first node to be visited. 4580 * 4581 * While this function requires cgroup_mutex or RCU read locking, it 4582 * doesn't require the whole traversal to be contained in a single critical 4583 * section. This function will return the correct next descendant as long 4584 * as both @pos and @root are accessible and @pos is a descendant of @root. 4585 * 4586 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4587 * css which finished ->css_online() is guaranteed to be visible in the 4588 * future iterations and will stay visible until the last reference is put. 4589 * A css which hasn't finished ->css_online() or already finished 4590 * ->css_offline() may show up during traversal. It's each subsystem's 4591 * responsibility to synchronize against on/offlining. 4592 */ 4593 struct cgroup_subsys_state * 4594 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4595 struct cgroup_subsys_state *root) 4596 { 4597 struct cgroup_subsys_state *next; 4598 4599 cgroup_assert_mutex_or_rcu_locked(); 4600 4601 /* if first iteration, visit @root */ 4602 if (!pos) 4603 return root; 4604 4605 /* visit the first child if exists */ 4606 next = css_next_child(NULL, pos); 4607 if (next) 4608 return next; 4609 4610 /* no child, visit my or the closest ancestor's next sibling */ 4611 while (pos != root) { 4612 next = css_next_child(pos, pos->parent); 4613 if (next) 4614 return next; 4615 pos = pos->parent; 4616 } 4617 4618 return NULL; 4619 } 4620 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4621 4622 /** 4623 * css_rightmost_descendant - return the rightmost descendant of a css 4624 * @pos: css of interest 4625 * 4626 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4627 * is returned. This can be used during pre-order traversal to skip 4628 * subtree of @pos. 4629 * 4630 * While this function requires cgroup_mutex or RCU read locking, it 4631 * doesn't require the whole traversal to be contained in a single critical 4632 * section. This function will return the correct rightmost descendant as 4633 * long as @pos is accessible. 4634 */ 4635 struct cgroup_subsys_state * 4636 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4637 { 4638 struct cgroup_subsys_state *last, *tmp; 4639 4640 cgroup_assert_mutex_or_rcu_locked(); 4641 4642 do { 4643 last = pos; 4644 /* ->prev isn't RCU safe, walk ->next till the end */ 4645 pos = NULL; 4646 css_for_each_child(tmp, last) 4647 pos = tmp; 4648 } while (pos); 4649 4650 return last; 4651 } 4652 4653 static struct cgroup_subsys_state * 4654 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4655 { 4656 struct cgroup_subsys_state *last; 4657 4658 do { 4659 last = pos; 4660 pos = css_next_child(NULL, pos); 4661 } while (pos); 4662 4663 return last; 4664 } 4665 4666 /** 4667 * css_next_descendant_post - find the next descendant for post-order walk 4668 * @pos: the current position (%NULL to initiate traversal) 4669 * @root: css whose descendants to walk 4670 * 4671 * To be used by css_for_each_descendant_post(). Find the next descendant 4672 * to visit for post-order traversal of @root's descendants. @root is 4673 * included in the iteration and the last node to be visited. 4674 * 4675 * While this function requires cgroup_mutex or RCU read locking, it 4676 * doesn't require the whole traversal to be contained in a single critical 4677 * section. This function will return the correct next descendant as long 4678 * as both @pos and @cgroup are accessible and @pos is a descendant of 4679 * @cgroup. 4680 * 4681 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4682 * css which finished ->css_online() is guaranteed to be visible in the 4683 * future iterations and will stay visible until the last reference is put. 4684 * A css which hasn't finished ->css_online() or already finished 4685 * ->css_offline() may show up during traversal. It's each subsystem's 4686 * responsibility to synchronize against on/offlining. 4687 */ 4688 struct cgroup_subsys_state * 4689 css_next_descendant_post(struct cgroup_subsys_state *pos, 4690 struct cgroup_subsys_state *root) 4691 { 4692 struct cgroup_subsys_state *next; 4693 4694 cgroup_assert_mutex_or_rcu_locked(); 4695 4696 /* if first iteration, visit leftmost descendant which may be @root */ 4697 if (!pos) 4698 return css_leftmost_descendant(root); 4699 4700 /* if we visited @root, we're done */ 4701 if (pos == root) 4702 return NULL; 4703 4704 /* if there's an unvisited sibling, visit its leftmost descendant */ 4705 next = css_next_child(pos, pos->parent); 4706 if (next) 4707 return css_leftmost_descendant(next); 4708 4709 /* no sibling left, visit parent */ 4710 return pos->parent; 4711 } 4712 4713 /** 4714 * css_has_online_children - does a css have online children 4715 * @css: the target css 4716 * 4717 * Returns %true if @css has any online children; otherwise, %false. This 4718 * function can be called from any context but the caller is responsible 4719 * for synchronizing against on/offlining as necessary. 4720 */ 4721 bool css_has_online_children(struct cgroup_subsys_state *css) 4722 { 4723 struct cgroup_subsys_state *child; 4724 bool ret = false; 4725 4726 rcu_read_lock(); 4727 css_for_each_child(child, css) { 4728 if (child->flags & CSS_ONLINE) { 4729 ret = true; 4730 break; 4731 } 4732 } 4733 rcu_read_unlock(); 4734 return ret; 4735 } 4736 4737 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4738 { 4739 struct list_head *l; 4740 struct cgrp_cset_link *link; 4741 struct css_set *cset; 4742 4743 lockdep_assert_held(&css_set_lock); 4744 4745 /* find the next threaded cset */ 4746 if (it->tcset_pos) { 4747 l = it->tcset_pos->next; 4748 4749 if (l != it->tcset_head) { 4750 it->tcset_pos = l; 4751 return container_of(l, struct css_set, 4752 threaded_csets_node); 4753 } 4754 4755 it->tcset_pos = NULL; 4756 } 4757 4758 /* find the next cset */ 4759 l = it->cset_pos; 4760 l = l->next; 4761 if (l == it->cset_head) { 4762 it->cset_pos = NULL; 4763 return NULL; 4764 } 4765 4766 if (it->ss) { 4767 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4768 } else { 4769 link = list_entry(l, struct cgrp_cset_link, cset_link); 4770 cset = link->cset; 4771 } 4772 4773 it->cset_pos = l; 4774 4775 /* initialize threaded css_set walking */ 4776 if (it->flags & CSS_TASK_ITER_THREADED) { 4777 if (it->cur_dcset) 4778 put_css_set_locked(it->cur_dcset); 4779 it->cur_dcset = cset; 4780 get_css_set(cset); 4781 4782 it->tcset_head = &cset->threaded_csets; 4783 it->tcset_pos = &cset->threaded_csets; 4784 } 4785 4786 return cset; 4787 } 4788 4789 /** 4790 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4791 * @it: the iterator to advance 4792 * 4793 * Advance @it to the next css_set to walk. 4794 */ 4795 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4796 { 4797 struct css_set *cset; 4798 4799 lockdep_assert_held(&css_set_lock); 4800 4801 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4802 while ((cset = css_task_iter_next_css_set(it))) { 4803 if (!list_empty(&cset->tasks)) { 4804 it->cur_tasks_head = &cset->tasks; 4805 break; 4806 } else if (!list_empty(&cset->mg_tasks)) { 4807 it->cur_tasks_head = &cset->mg_tasks; 4808 break; 4809 } else if (!list_empty(&cset->dying_tasks)) { 4810 it->cur_tasks_head = &cset->dying_tasks; 4811 break; 4812 } 4813 } 4814 if (!cset) { 4815 it->task_pos = NULL; 4816 return; 4817 } 4818 it->task_pos = it->cur_tasks_head->next; 4819 4820 /* 4821 * We don't keep css_sets locked across iteration steps and thus 4822 * need to take steps to ensure that iteration can be resumed after 4823 * the lock is re-acquired. Iteration is performed at two levels - 4824 * css_sets and tasks in them. 4825 * 4826 * Once created, a css_set never leaves its cgroup lists, so a 4827 * pinned css_set is guaranteed to stay put and we can resume 4828 * iteration afterwards. 4829 * 4830 * Tasks may leave @cset across iteration steps. This is resolved 4831 * by registering each iterator with the css_set currently being 4832 * walked and making css_set_move_task() advance iterators whose 4833 * next task is leaving. 4834 */ 4835 if (it->cur_cset) { 4836 list_del(&it->iters_node); 4837 put_css_set_locked(it->cur_cset); 4838 } 4839 get_css_set(cset); 4840 it->cur_cset = cset; 4841 list_add(&it->iters_node, &cset->task_iters); 4842 } 4843 4844 static void css_task_iter_skip(struct css_task_iter *it, 4845 struct task_struct *task) 4846 { 4847 lockdep_assert_held(&css_set_lock); 4848 4849 if (it->task_pos == &task->cg_list) { 4850 it->task_pos = it->task_pos->next; 4851 it->flags |= CSS_TASK_ITER_SKIPPED; 4852 } 4853 } 4854 4855 static void css_task_iter_advance(struct css_task_iter *it) 4856 { 4857 struct task_struct *task; 4858 4859 lockdep_assert_held(&css_set_lock); 4860 repeat: 4861 if (it->task_pos) { 4862 /* 4863 * Advance iterator to find next entry. We go through cset 4864 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4865 * the next cset. 4866 */ 4867 if (it->flags & CSS_TASK_ITER_SKIPPED) 4868 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4869 else 4870 it->task_pos = it->task_pos->next; 4871 4872 if (it->task_pos == &it->cur_cset->tasks) { 4873 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4874 it->task_pos = it->cur_tasks_head->next; 4875 } 4876 if (it->task_pos == &it->cur_cset->mg_tasks) { 4877 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4878 it->task_pos = it->cur_tasks_head->next; 4879 } 4880 if (it->task_pos == &it->cur_cset->dying_tasks) 4881 css_task_iter_advance_css_set(it); 4882 } else { 4883 /* called from start, proceed to the first cset */ 4884 css_task_iter_advance_css_set(it); 4885 } 4886 4887 if (!it->task_pos) 4888 return; 4889 4890 task = list_entry(it->task_pos, struct task_struct, cg_list); 4891 4892 if (it->flags & CSS_TASK_ITER_PROCS) { 4893 /* if PROCS, skip over tasks which aren't group leaders */ 4894 if (!thread_group_leader(task)) 4895 goto repeat; 4896 4897 /* and dying leaders w/o live member threads */ 4898 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4899 !atomic_read(&task->signal->live)) 4900 goto repeat; 4901 } else { 4902 /* skip all dying ones */ 4903 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4904 goto repeat; 4905 } 4906 } 4907 4908 /** 4909 * css_task_iter_start - initiate task iteration 4910 * @css: the css to walk tasks of 4911 * @flags: CSS_TASK_ITER_* flags 4912 * @it: the task iterator to use 4913 * 4914 * Initiate iteration through the tasks of @css. The caller can call 4915 * css_task_iter_next() to walk through the tasks until the function 4916 * returns NULL. On completion of iteration, css_task_iter_end() must be 4917 * called. 4918 */ 4919 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4920 struct css_task_iter *it) 4921 { 4922 unsigned long irqflags; 4923 4924 memset(it, 0, sizeof(*it)); 4925 4926 spin_lock_irqsave(&css_set_lock, irqflags); 4927 4928 it->ss = css->ss; 4929 it->flags = flags; 4930 4931 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4932 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4933 else 4934 it->cset_pos = &css->cgroup->cset_links; 4935 4936 it->cset_head = it->cset_pos; 4937 4938 css_task_iter_advance(it); 4939 4940 spin_unlock_irqrestore(&css_set_lock, irqflags); 4941 } 4942 4943 /** 4944 * css_task_iter_next - return the next task for the iterator 4945 * @it: the task iterator being iterated 4946 * 4947 * The "next" function for task iteration. @it should have been 4948 * initialized via css_task_iter_start(). Returns NULL when the iteration 4949 * reaches the end. 4950 */ 4951 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4952 { 4953 unsigned long irqflags; 4954 4955 if (it->cur_task) { 4956 put_task_struct(it->cur_task); 4957 it->cur_task = NULL; 4958 } 4959 4960 spin_lock_irqsave(&css_set_lock, irqflags); 4961 4962 /* @it may be half-advanced by skips, finish advancing */ 4963 if (it->flags & CSS_TASK_ITER_SKIPPED) 4964 css_task_iter_advance(it); 4965 4966 if (it->task_pos) { 4967 it->cur_task = list_entry(it->task_pos, struct task_struct, 4968 cg_list); 4969 get_task_struct(it->cur_task); 4970 css_task_iter_advance(it); 4971 } 4972 4973 spin_unlock_irqrestore(&css_set_lock, irqflags); 4974 4975 return it->cur_task; 4976 } 4977 4978 /** 4979 * css_task_iter_end - finish task iteration 4980 * @it: the task iterator to finish 4981 * 4982 * Finish task iteration started by css_task_iter_start(). 4983 */ 4984 void css_task_iter_end(struct css_task_iter *it) 4985 { 4986 unsigned long irqflags; 4987 4988 if (it->cur_cset) { 4989 spin_lock_irqsave(&css_set_lock, irqflags); 4990 list_del(&it->iters_node); 4991 put_css_set_locked(it->cur_cset); 4992 spin_unlock_irqrestore(&css_set_lock, irqflags); 4993 } 4994 4995 if (it->cur_dcset) 4996 put_css_set(it->cur_dcset); 4997 4998 if (it->cur_task) 4999 put_task_struct(it->cur_task); 5000 } 5001 5002 static void cgroup_procs_release(struct kernfs_open_file *of) 5003 { 5004 struct cgroup_file_ctx *ctx = of->priv; 5005 5006 if (ctx->procs.started) 5007 css_task_iter_end(&ctx->procs.iter); 5008 } 5009 5010 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5011 { 5012 struct kernfs_open_file *of = s->private; 5013 struct cgroup_file_ctx *ctx = of->priv; 5014 5015 if (pos) 5016 (*pos)++; 5017 5018 return css_task_iter_next(&ctx->procs.iter); 5019 } 5020 5021 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5022 unsigned int iter_flags) 5023 { 5024 struct kernfs_open_file *of = s->private; 5025 struct cgroup *cgrp = seq_css(s)->cgroup; 5026 struct cgroup_file_ctx *ctx = of->priv; 5027 struct css_task_iter *it = &ctx->procs.iter; 5028 5029 /* 5030 * When a seq_file is seeked, it's always traversed sequentially 5031 * from position 0, so we can simply keep iterating on !0 *pos. 5032 */ 5033 if (!ctx->procs.started) { 5034 if (WARN_ON_ONCE((*pos))) 5035 return ERR_PTR(-EINVAL); 5036 css_task_iter_start(&cgrp->self, iter_flags, it); 5037 ctx->procs.started = true; 5038 } else if (!(*pos)) { 5039 css_task_iter_end(it); 5040 css_task_iter_start(&cgrp->self, iter_flags, it); 5041 } else 5042 return it->cur_task; 5043 5044 return cgroup_procs_next(s, NULL, NULL); 5045 } 5046 5047 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5048 { 5049 struct cgroup *cgrp = seq_css(s)->cgroup; 5050 5051 /* 5052 * All processes of a threaded subtree belong to the domain cgroup 5053 * of the subtree. Only threads can be distributed across the 5054 * subtree. Reject reads on cgroup.procs in the subtree proper. 5055 * They're always empty anyway. 5056 */ 5057 if (cgroup_is_threaded(cgrp)) 5058 return ERR_PTR(-EOPNOTSUPP); 5059 5060 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5061 CSS_TASK_ITER_THREADED); 5062 } 5063 5064 static int cgroup_procs_show(struct seq_file *s, void *v) 5065 { 5066 seq_printf(s, "%d\n", task_pid_vnr(v)); 5067 return 0; 5068 } 5069 5070 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5071 { 5072 int ret; 5073 struct inode *inode; 5074 5075 lockdep_assert_held(&cgroup_mutex); 5076 5077 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5078 if (!inode) 5079 return -ENOMEM; 5080 5081 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5082 iput(inode); 5083 return ret; 5084 } 5085 5086 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5087 struct cgroup *dst_cgrp, 5088 struct super_block *sb, 5089 struct cgroup_namespace *ns) 5090 { 5091 struct cgroup *com_cgrp = src_cgrp; 5092 int ret; 5093 5094 lockdep_assert_held(&cgroup_mutex); 5095 5096 /* find the common ancestor */ 5097 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5098 com_cgrp = cgroup_parent(com_cgrp); 5099 5100 /* %current should be authorized to migrate to the common ancestor */ 5101 ret = cgroup_may_write(com_cgrp, sb); 5102 if (ret) 5103 return ret; 5104 5105 /* 5106 * If namespaces are delegation boundaries, %current must be able 5107 * to see both source and destination cgroups from its namespace. 5108 */ 5109 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5110 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5111 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5112 return -ENOENT; 5113 5114 return 0; 5115 } 5116 5117 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5118 struct cgroup *dst_cgrp, 5119 struct super_block *sb, bool threadgroup, 5120 struct cgroup_namespace *ns) 5121 { 5122 int ret = 0; 5123 5124 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5125 if (ret) 5126 return ret; 5127 5128 ret = cgroup_migrate_vet_dst(dst_cgrp); 5129 if (ret) 5130 return ret; 5131 5132 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5133 ret = -EOPNOTSUPP; 5134 5135 return ret; 5136 } 5137 5138 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5139 bool threadgroup) 5140 { 5141 struct cgroup_file_ctx *ctx = of->priv; 5142 struct cgroup *src_cgrp, *dst_cgrp; 5143 struct task_struct *task; 5144 const struct cred *saved_cred; 5145 ssize_t ret; 5146 bool threadgroup_locked; 5147 5148 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5149 if (!dst_cgrp) 5150 return -ENODEV; 5151 5152 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5153 ret = PTR_ERR_OR_ZERO(task); 5154 if (ret) 5155 goto out_unlock; 5156 5157 /* find the source cgroup */ 5158 spin_lock_irq(&css_set_lock); 5159 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5160 spin_unlock_irq(&css_set_lock); 5161 5162 /* 5163 * Process and thread migrations follow same delegation rule. Check 5164 * permissions using the credentials from file open to protect against 5165 * inherited fd attacks. 5166 */ 5167 saved_cred = override_creds(of->file->f_cred); 5168 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5169 of->file->f_path.dentry->d_sb, 5170 threadgroup, ctx->ns); 5171 revert_creds(saved_cred); 5172 if (ret) 5173 goto out_finish; 5174 5175 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5176 5177 out_finish: 5178 cgroup_procs_write_finish(task, threadgroup_locked); 5179 out_unlock: 5180 cgroup_kn_unlock(of->kn); 5181 5182 return ret; 5183 } 5184 5185 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5186 char *buf, size_t nbytes, loff_t off) 5187 { 5188 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5189 } 5190 5191 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5192 { 5193 return __cgroup_procs_start(s, pos, 0); 5194 } 5195 5196 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5197 char *buf, size_t nbytes, loff_t off) 5198 { 5199 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5200 } 5201 5202 /* cgroup core interface files for the default hierarchy */ 5203 static struct cftype cgroup_base_files[] = { 5204 { 5205 .name = "cgroup.type", 5206 .flags = CFTYPE_NOT_ON_ROOT, 5207 .seq_show = cgroup_type_show, 5208 .write = cgroup_type_write, 5209 }, 5210 { 5211 .name = "cgroup.procs", 5212 .flags = CFTYPE_NS_DELEGATABLE, 5213 .file_offset = offsetof(struct cgroup, procs_file), 5214 .release = cgroup_procs_release, 5215 .seq_start = cgroup_procs_start, 5216 .seq_next = cgroup_procs_next, 5217 .seq_show = cgroup_procs_show, 5218 .write = cgroup_procs_write, 5219 }, 5220 { 5221 .name = "cgroup.threads", 5222 .flags = CFTYPE_NS_DELEGATABLE, 5223 .release = cgroup_procs_release, 5224 .seq_start = cgroup_threads_start, 5225 .seq_next = cgroup_procs_next, 5226 .seq_show = cgroup_procs_show, 5227 .write = cgroup_threads_write, 5228 }, 5229 { 5230 .name = "cgroup.controllers", 5231 .seq_show = cgroup_controllers_show, 5232 }, 5233 { 5234 .name = "cgroup.subtree_control", 5235 .flags = CFTYPE_NS_DELEGATABLE, 5236 .seq_show = cgroup_subtree_control_show, 5237 .write = cgroup_subtree_control_write, 5238 }, 5239 { 5240 .name = "cgroup.events", 5241 .flags = CFTYPE_NOT_ON_ROOT, 5242 .file_offset = offsetof(struct cgroup, events_file), 5243 .seq_show = cgroup_events_show, 5244 }, 5245 { 5246 .name = "cgroup.max.descendants", 5247 .seq_show = cgroup_max_descendants_show, 5248 .write = cgroup_max_descendants_write, 5249 }, 5250 { 5251 .name = "cgroup.max.depth", 5252 .seq_show = cgroup_max_depth_show, 5253 .write = cgroup_max_depth_write, 5254 }, 5255 { 5256 .name = "cgroup.stat", 5257 .seq_show = cgroup_stat_show, 5258 }, 5259 { 5260 .name = "cgroup.freeze", 5261 .flags = CFTYPE_NOT_ON_ROOT, 5262 .seq_show = cgroup_freeze_show, 5263 .write = cgroup_freeze_write, 5264 }, 5265 { 5266 .name = "cgroup.kill", 5267 .flags = CFTYPE_NOT_ON_ROOT, 5268 .write = cgroup_kill_write, 5269 }, 5270 { 5271 .name = "cpu.stat", 5272 .seq_show = cpu_stat_show, 5273 }, 5274 { 5275 .name = "cpu.stat.local", 5276 .seq_show = cpu_local_stat_show, 5277 }, 5278 { } /* terminate */ 5279 }; 5280 5281 static struct cftype cgroup_psi_files[] = { 5282 #ifdef CONFIG_PSI 5283 { 5284 .name = "io.pressure", 5285 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5286 .seq_show = cgroup_io_pressure_show, 5287 .write = cgroup_io_pressure_write, 5288 .poll = cgroup_pressure_poll, 5289 .release = cgroup_pressure_release, 5290 }, 5291 { 5292 .name = "memory.pressure", 5293 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5294 .seq_show = cgroup_memory_pressure_show, 5295 .write = cgroup_memory_pressure_write, 5296 .poll = cgroup_pressure_poll, 5297 .release = cgroup_pressure_release, 5298 }, 5299 { 5300 .name = "cpu.pressure", 5301 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5302 .seq_show = cgroup_cpu_pressure_show, 5303 .write = cgroup_cpu_pressure_write, 5304 .poll = cgroup_pressure_poll, 5305 .release = cgroup_pressure_release, 5306 }, 5307 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5308 { 5309 .name = "irq.pressure", 5310 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5311 .seq_show = cgroup_irq_pressure_show, 5312 .write = cgroup_irq_pressure_write, 5313 .poll = cgroup_pressure_poll, 5314 .release = cgroup_pressure_release, 5315 }, 5316 #endif 5317 { 5318 .name = "cgroup.pressure", 5319 .seq_show = cgroup_pressure_show, 5320 .write = cgroup_pressure_write, 5321 }, 5322 #endif /* CONFIG_PSI */ 5323 { } /* terminate */ 5324 }; 5325 5326 /* 5327 * css destruction is four-stage process. 5328 * 5329 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5330 * Implemented in kill_css(). 5331 * 5332 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5333 * and thus css_tryget_online() is guaranteed to fail, the css can be 5334 * offlined by invoking offline_css(). After offlining, the base ref is 5335 * put. Implemented in css_killed_work_fn(). 5336 * 5337 * 3. When the percpu_ref reaches zero, the only possible remaining 5338 * accessors are inside RCU read sections. css_release() schedules the 5339 * RCU callback. 5340 * 5341 * 4. After the grace period, the css can be freed. Implemented in 5342 * css_free_rwork_fn(). 5343 * 5344 * It is actually hairier because both step 2 and 4 require process context 5345 * and thus involve punting to css->destroy_work adding two additional 5346 * steps to the already complex sequence. 5347 */ 5348 static void css_free_rwork_fn(struct work_struct *work) 5349 { 5350 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5351 struct cgroup_subsys_state, destroy_rwork); 5352 struct cgroup_subsys *ss = css->ss; 5353 struct cgroup *cgrp = css->cgroup; 5354 5355 percpu_ref_exit(&css->refcnt); 5356 5357 if (ss) { 5358 /* css free path */ 5359 struct cgroup_subsys_state *parent = css->parent; 5360 int id = css->id; 5361 5362 ss->css_free(css); 5363 cgroup_idr_remove(&ss->css_idr, id); 5364 cgroup_put(cgrp); 5365 5366 if (parent) 5367 css_put(parent); 5368 } else { 5369 /* cgroup free path */ 5370 atomic_dec(&cgrp->root->nr_cgrps); 5371 if (!cgroup_on_dfl(cgrp)) 5372 cgroup1_pidlist_destroy_all(cgrp); 5373 cancel_work_sync(&cgrp->release_agent_work); 5374 bpf_cgrp_storage_free(cgrp); 5375 5376 if (cgroup_parent(cgrp)) { 5377 /* 5378 * We get a ref to the parent, and put the ref when 5379 * this cgroup is being freed, so it's guaranteed 5380 * that the parent won't be destroyed before its 5381 * children. 5382 */ 5383 cgroup_put(cgroup_parent(cgrp)); 5384 kernfs_put(cgrp->kn); 5385 psi_cgroup_free(cgrp); 5386 cgroup_rstat_exit(cgrp); 5387 kfree(cgrp); 5388 } else { 5389 /* 5390 * This is root cgroup's refcnt reaching zero, 5391 * which indicates that the root should be 5392 * released. 5393 */ 5394 cgroup_destroy_root(cgrp->root); 5395 } 5396 } 5397 } 5398 5399 static void css_release_work_fn(struct work_struct *work) 5400 { 5401 struct cgroup_subsys_state *css = 5402 container_of(work, struct cgroup_subsys_state, destroy_work); 5403 struct cgroup_subsys *ss = css->ss; 5404 struct cgroup *cgrp = css->cgroup; 5405 5406 cgroup_lock(); 5407 5408 css->flags |= CSS_RELEASED; 5409 list_del_rcu(&css->sibling); 5410 5411 if (ss) { 5412 /* css release path */ 5413 if (!list_empty(&css->rstat_css_node)) { 5414 cgroup_rstat_flush(cgrp); 5415 list_del_rcu(&css->rstat_css_node); 5416 } 5417 5418 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5419 if (ss->css_released) 5420 ss->css_released(css); 5421 } else { 5422 struct cgroup *tcgrp; 5423 5424 /* cgroup release path */ 5425 TRACE_CGROUP_PATH(release, cgrp); 5426 5427 cgroup_rstat_flush(cgrp); 5428 5429 spin_lock_irq(&css_set_lock); 5430 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5431 tcgrp = cgroup_parent(tcgrp)) 5432 tcgrp->nr_dying_descendants--; 5433 spin_unlock_irq(&css_set_lock); 5434 5435 /* 5436 * There are two control paths which try to determine 5437 * cgroup from dentry without going through kernfs - 5438 * cgroupstats_build() and css_tryget_online_from_dir(). 5439 * Those are supported by RCU protecting clearing of 5440 * cgrp->kn->priv backpointer. 5441 */ 5442 if (cgrp->kn) 5443 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5444 NULL); 5445 } 5446 5447 cgroup_unlock(); 5448 5449 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5450 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5451 } 5452 5453 static void css_release(struct percpu_ref *ref) 5454 { 5455 struct cgroup_subsys_state *css = 5456 container_of(ref, struct cgroup_subsys_state, refcnt); 5457 5458 INIT_WORK(&css->destroy_work, css_release_work_fn); 5459 queue_work(cgroup_destroy_wq, &css->destroy_work); 5460 } 5461 5462 static void init_and_link_css(struct cgroup_subsys_state *css, 5463 struct cgroup_subsys *ss, struct cgroup *cgrp) 5464 { 5465 lockdep_assert_held(&cgroup_mutex); 5466 5467 cgroup_get_live(cgrp); 5468 5469 memset(css, 0, sizeof(*css)); 5470 css->cgroup = cgrp; 5471 css->ss = ss; 5472 css->id = -1; 5473 INIT_LIST_HEAD(&css->sibling); 5474 INIT_LIST_HEAD(&css->children); 5475 INIT_LIST_HEAD(&css->rstat_css_node); 5476 css->serial_nr = css_serial_nr_next++; 5477 atomic_set(&css->online_cnt, 0); 5478 5479 if (cgroup_parent(cgrp)) { 5480 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5481 css_get(css->parent); 5482 } 5483 5484 if (ss->css_rstat_flush) 5485 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5486 5487 BUG_ON(cgroup_css(cgrp, ss)); 5488 } 5489 5490 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5491 static int online_css(struct cgroup_subsys_state *css) 5492 { 5493 struct cgroup_subsys *ss = css->ss; 5494 int ret = 0; 5495 5496 lockdep_assert_held(&cgroup_mutex); 5497 5498 if (ss->css_online) 5499 ret = ss->css_online(css); 5500 if (!ret) { 5501 css->flags |= CSS_ONLINE; 5502 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5503 5504 atomic_inc(&css->online_cnt); 5505 if (css->parent) 5506 atomic_inc(&css->parent->online_cnt); 5507 } 5508 return ret; 5509 } 5510 5511 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5512 static void offline_css(struct cgroup_subsys_state *css) 5513 { 5514 struct cgroup_subsys *ss = css->ss; 5515 5516 lockdep_assert_held(&cgroup_mutex); 5517 5518 if (!(css->flags & CSS_ONLINE)) 5519 return; 5520 5521 if (ss->css_offline) 5522 ss->css_offline(css); 5523 5524 css->flags &= ~CSS_ONLINE; 5525 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5526 5527 wake_up_all(&css->cgroup->offline_waitq); 5528 } 5529 5530 /** 5531 * css_create - create a cgroup_subsys_state 5532 * @cgrp: the cgroup new css will be associated with 5533 * @ss: the subsys of new css 5534 * 5535 * Create a new css associated with @cgrp - @ss pair. On success, the new 5536 * css is online and installed in @cgrp. This function doesn't create the 5537 * interface files. Returns 0 on success, -errno on failure. 5538 */ 5539 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5540 struct cgroup_subsys *ss) 5541 { 5542 struct cgroup *parent = cgroup_parent(cgrp); 5543 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5544 struct cgroup_subsys_state *css; 5545 int err; 5546 5547 lockdep_assert_held(&cgroup_mutex); 5548 5549 css = ss->css_alloc(parent_css); 5550 if (!css) 5551 css = ERR_PTR(-ENOMEM); 5552 if (IS_ERR(css)) 5553 return css; 5554 5555 init_and_link_css(css, ss, cgrp); 5556 5557 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5558 if (err) 5559 goto err_free_css; 5560 5561 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5562 if (err < 0) 5563 goto err_free_css; 5564 css->id = err; 5565 5566 /* @css is ready to be brought online now, make it visible */ 5567 list_add_tail_rcu(&css->sibling, &parent_css->children); 5568 cgroup_idr_replace(&ss->css_idr, css, css->id); 5569 5570 err = online_css(css); 5571 if (err) 5572 goto err_list_del; 5573 5574 return css; 5575 5576 err_list_del: 5577 list_del_rcu(&css->sibling); 5578 err_free_css: 5579 list_del_rcu(&css->rstat_css_node); 5580 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5581 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5582 return ERR_PTR(err); 5583 } 5584 5585 /* 5586 * The returned cgroup is fully initialized including its control mask, but 5587 * it doesn't have the control mask applied. 5588 */ 5589 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5590 umode_t mode) 5591 { 5592 struct cgroup_root *root = parent->root; 5593 struct cgroup *cgrp, *tcgrp; 5594 struct kernfs_node *kn; 5595 int level = parent->level + 1; 5596 int ret; 5597 5598 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5599 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5600 if (!cgrp) 5601 return ERR_PTR(-ENOMEM); 5602 5603 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5604 if (ret) 5605 goto out_free_cgrp; 5606 5607 ret = cgroup_rstat_init(cgrp); 5608 if (ret) 5609 goto out_cancel_ref; 5610 5611 /* create the directory */ 5612 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5613 current_fsuid(), current_fsgid(), 5614 cgrp, NULL); 5615 if (IS_ERR(kn)) { 5616 ret = PTR_ERR(kn); 5617 goto out_stat_exit; 5618 } 5619 cgrp->kn = kn; 5620 5621 init_cgroup_housekeeping(cgrp); 5622 5623 cgrp->self.parent = &parent->self; 5624 cgrp->root = root; 5625 cgrp->level = level; 5626 5627 ret = psi_cgroup_alloc(cgrp); 5628 if (ret) 5629 goto out_kernfs_remove; 5630 5631 ret = cgroup_bpf_inherit(cgrp); 5632 if (ret) 5633 goto out_psi_free; 5634 5635 /* 5636 * New cgroup inherits effective freeze counter, and 5637 * if the parent has to be frozen, the child has too. 5638 */ 5639 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5640 if (cgrp->freezer.e_freeze) { 5641 /* 5642 * Set the CGRP_FREEZE flag, so when a process will be 5643 * attached to the child cgroup, it will become frozen. 5644 * At this point the new cgroup is unpopulated, so we can 5645 * consider it frozen immediately. 5646 */ 5647 set_bit(CGRP_FREEZE, &cgrp->flags); 5648 set_bit(CGRP_FROZEN, &cgrp->flags); 5649 } 5650 5651 spin_lock_irq(&css_set_lock); 5652 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5653 cgrp->ancestors[tcgrp->level] = tcgrp; 5654 5655 if (tcgrp != cgrp) { 5656 tcgrp->nr_descendants++; 5657 5658 /* 5659 * If the new cgroup is frozen, all ancestor cgroups 5660 * get a new frozen descendant, but their state can't 5661 * change because of this. 5662 */ 5663 if (cgrp->freezer.e_freeze) 5664 tcgrp->freezer.nr_frozen_descendants++; 5665 } 5666 } 5667 spin_unlock_irq(&css_set_lock); 5668 5669 if (notify_on_release(parent)) 5670 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5671 5672 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5673 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5674 5675 cgrp->self.serial_nr = css_serial_nr_next++; 5676 5677 /* allocation complete, commit to creation */ 5678 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5679 atomic_inc(&root->nr_cgrps); 5680 cgroup_get_live(parent); 5681 5682 /* 5683 * On the default hierarchy, a child doesn't automatically inherit 5684 * subtree_control from the parent. Each is configured manually. 5685 */ 5686 if (!cgroup_on_dfl(cgrp)) 5687 cgrp->subtree_control = cgroup_control(cgrp); 5688 5689 cgroup_propagate_control(cgrp); 5690 5691 return cgrp; 5692 5693 out_psi_free: 5694 psi_cgroup_free(cgrp); 5695 out_kernfs_remove: 5696 kernfs_remove(cgrp->kn); 5697 out_stat_exit: 5698 cgroup_rstat_exit(cgrp); 5699 out_cancel_ref: 5700 percpu_ref_exit(&cgrp->self.refcnt); 5701 out_free_cgrp: 5702 kfree(cgrp); 5703 return ERR_PTR(ret); 5704 } 5705 5706 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5707 { 5708 struct cgroup *cgroup; 5709 int ret = false; 5710 int level = 1; 5711 5712 lockdep_assert_held(&cgroup_mutex); 5713 5714 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5715 if (cgroup->nr_descendants >= cgroup->max_descendants) 5716 goto fail; 5717 5718 if (level > cgroup->max_depth) 5719 goto fail; 5720 5721 level++; 5722 } 5723 5724 ret = true; 5725 fail: 5726 return ret; 5727 } 5728 5729 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5730 { 5731 struct cgroup *parent, *cgrp; 5732 int ret; 5733 5734 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5735 if (strchr(name, '\n')) 5736 return -EINVAL; 5737 5738 parent = cgroup_kn_lock_live(parent_kn, false); 5739 if (!parent) 5740 return -ENODEV; 5741 5742 if (!cgroup_check_hierarchy_limits(parent)) { 5743 ret = -EAGAIN; 5744 goto out_unlock; 5745 } 5746 5747 cgrp = cgroup_create(parent, name, mode); 5748 if (IS_ERR(cgrp)) { 5749 ret = PTR_ERR(cgrp); 5750 goto out_unlock; 5751 } 5752 5753 /* 5754 * This extra ref will be put in cgroup_free_fn() and guarantees 5755 * that @cgrp->kn is always accessible. 5756 */ 5757 kernfs_get(cgrp->kn); 5758 5759 ret = css_populate_dir(&cgrp->self); 5760 if (ret) 5761 goto out_destroy; 5762 5763 ret = cgroup_apply_control_enable(cgrp); 5764 if (ret) 5765 goto out_destroy; 5766 5767 TRACE_CGROUP_PATH(mkdir, cgrp); 5768 5769 /* let's create and online css's */ 5770 kernfs_activate(cgrp->kn); 5771 5772 ret = 0; 5773 goto out_unlock; 5774 5775 out_destroy: 5776 cgroup_destroy_locked(cgrp); 5777 out_unlock: 5778 cgroup_kn_unlock(parent_kn); 5779 return ret; 5780 } 5781 5782 /* 5783 * This is called when the refcnt of a css is confirmed to be killed. 5784 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5785 * initiate destruction and put the css ref from kill_css(). 5786 */ 5787 static void css_killed_work_fn(struct work_struct *work) 5788 { 5789 struct cgroup_subsys_state *css = 5790 container_of(work, struct cgroup_subsys_state, destroy_work); 5791 5792 cgroup_lock(); 5793 5794 do { 5795 offline_css(css); 5796 css_put(css); 5797 /* @css can't go away while we're holding cgroup_mutex */ 5798 css = css->parent; 5799 } while (css && atomic_dec_and_test(&css->online_cnt)); 5800 5801 cgroup_unlock(); 5802 } 5803 5804 /* css kill confirmation processing requires process context, bounce */ 5805 static void css_killed_ref_fn(struct percpu_ref *ref) 5806 { 5807 struct cgroup_subsys_state *css = 5808 container_of(ref, struct cgroup_subsys_state, refcnt); 5809 5810 if (atomic_dec_and_test(&css->online_cnt)) { 5811 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5812 queue_work(cgroup_destroy_wq, &css->destroy_work); 5813 } 5814 } 5815 5816 /** 5817 * kill_css - destroy a css 5818 * @css: css to destroy 5819 * 5820 * This function initiates destruction of @css by removing cgroup interface 5821 * files and putting its base reference. ->css_offline() will be invoked 5822 * asynchronously once css_tryget_online() is guaranteed to fail and when 5823 * the reference count reaches zero, @css will be released. 5824 */ 5825 static void kill_css(struct cgroup_subsys_state *css) 5826 { 5827 lockdep_assert_held(&cgroup_mutex); 5828 5829 if (css->flags & CSS_DYING) 5830 return; 5831 5832 css->flags |= CSS_DYING; 5833 5834 /* 5835 * This must happen before css is disassociated with its cgroup. 5836 * See seq_css() for details. 5837 */ 5838 css_clear_dir(css); 5839 5840 /* 5841 * Killing would put the base ref, but we need to keep it alive 5842 * until after ->css_offline(). 5843 */ 5844 css_get(css); 5845 5846 /* 5847 * cgroup core guarantees that, by the time ->css_offline() is 5848 * invoked, no new css reference will be given out via 5849 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5850 * proceed to offlining css's because percpu_ref_kill() doesn't 5851 * guarantee that the ref is seen as killed on all CPUs on return. 5852 * 5853 * Use percpu_ref_kill_and_confirm() to get notifications as each 5854 * css is confirmed to be seen as killed on all CPUs. 5855 */ 5856 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5857 } 5858 5859 /** 5860 * cgroup_destroy_locked - the first stage of cgroup destruction 5861 * @cgrp: cgroup to be destroyed 5862 * 5863 * css's make use of percpu refcnts whose killing latency shouldn't be 5864 * exposed to userland and are RCU protected. Also, cgroup core needs to 5865 * guarantee that css_tryget_online() won't succeed by the time 5866 * ->css_offline() is invoked. To satisfy all the requirements, 5867 * destruction is implemented in the following two steps. 5868 * 5869 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5870 * userland visible parts and start killing the percpu refcnts of 5871 * css's. Set up so that the next stage will be kicked off once all 5872 * the percpu refcnts are confirmed to be killed. 5873 * 5874 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5875 * rest of destruction. Once all cgroup references are gone, the 5876 * cgroup is RCU-freed. 5877 * 5878 * This function implements s1. After this step, @cgrp is gone as far as 5879 * the userland is concerned and a new cgroup with the same name may be 5880 * created. As cgroup doesn't care about the names internally, this 5881 * doesn't cause any problem. 5882 */ 5883 static int cgroup_destroy_locked(struct cgroup *cgrp) 5884 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5885 { 5886 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5887 struct cgroup_subsys_state *css; 5888 struct cgrp_cset_link *link; 5889 int ssid; 5890 5891 lockdep_assert_held(&cgroup_mutex); 5892 5893 /* 5894 * Only migration can raise populated from zero and we're already 5895 * holding cgroup_mutex. 5896 */ 5897 if (cgroup_is_populated(cgrp)) 5898 return -EBUSY; 5899 5900 /* 5901 * Make sure there's no live children. We can't test emptiness of 5902 * ->self.children as dead children linger on it while being 5903 * drained; otherwise, "rmdir parent/child parent" may fail. 5904 */ 5905 if (css_has_online_children(&cgrp->self)) 5906 return -EBUSY; 5907 5908 /* 5909 * Mark @cgrp and the associated csets dead. The former prevents 5910 * further task migration and child creation by disabling 5911 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5912 * the migration path. 5913 */ 5914 cgrp->self.flags &= ~CSS_ONLINE; 5915 5916 spin_lock_irq(&css_set_lock); 5917 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5918 link->cset->dead = true; 5919 spin_unlock_irq(&css_set_lock); 5920 5921 /* initiate massacre of all css's */ 5922 for_each_css(css, ssid, cgrp) 5923 kill_css(css); 5924 5925 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5926 css_clear_dir(&cgrp->self); 5927 kernfs_remove(cgrp->kn); 5928 5929 if (cgroup_is_threaded(cgrp)) 5930 parent->nr_threaded_children--; 5931 5932 spin_lock_irq(&css_set_lock); 5933 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5934 tcgrp->nr_descendants--; 5935 tcgrp->nr_dying_descendants++; 5936 /* 5937 * If the dying cgroup is frozen, decrease frozen descendants 5938 * counters of ancestor cgroups. 5939 */ 5940 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5941 tcgrp->freezer.nr_frozen_descendants--; 5942 } 5943 spin_unlock_irq(&css_set_lock); 5944 5945 cgroup1_check_for_release(parent); 5946 5947 cgroup_bpf_offline(cgrp); 5948 5949 /* put the base reference */ 5950 percpu_ref_kill(&cgrp->self.refcnt); 5951 5952 return 0; 5953 }; 5954 5955 int cgroup_rmdir(struct kernfs_node *kn) 5956 { 5957 struct cgroup *cgrp; 5958 int ret = 0; 5959 5960 cgrp = cgroup_kn_lock_live(kn, false); 5961 if (!cgrp) 5962 return 0; 5963 5964 ret = cgroup_destroy_locked(cgrp); 5965 if (!ret) 5966 TRACE_CGROUP_PATH(rmdir, cgrp); 5967 5968 cgroup_kn_unlock(kn); 5969 return ret; 5970 } 5971 5972 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5973 .show_options = cgroup_show_options, 5974 .mkdir = cgroup_mkdir, 5975 .rmdir = cgroup_rmdir, 5976 .show_path = cgroup_show_path, 5977 }; 5978 5979 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5980 { 5981 struct cgroup_subsys_state *css; 5982 5983 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5984 5985 cgroup_lock(); 5986 5987 idr_init(&ss->css_idr); 5988 INIT_LIST_HEAD(&ss->cfts); 5989 5990 /* Create the root cgroup state for this subsystem */ 5991 ss->root = &cgrp_dfl_root; 5992 css = ss->css_alloc(NULL); 5993 /* We don't handle early failures gracefully */ 5994 BUG_ON(IS_ERR(css)); 5995 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5996 5997 /* 5998 * Root csses are never destroyed and we can't initialize 5999 * percpu_ref during early init. Disable refcnting. 6000 */ 6001 css->flags |= CSS_NO_REF; 6002 6003 if (early) { 6004 /* allocation can't be done safely during early init */ 6005 css->id = 1; 6006 } else { 6007 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6008 BUG_ON(css->id < 0); 6009 } 6010 6011 /* Update the init_css_set to contain a subsys 6012 * pointer to this state - since the subsystem is 6013 * newly registered, all tasks and hence the 6014 * init_css_set is in the subsystem's root cgroup. */ 6015 init_css_set.subsys[ss->id] = css; 6016 6017 have_fork_callback |= (bool)ss->fork << ss->id; 6018 have_exit_callback |= (bool)ss->exit << ss->id; 6019 have_release_callback |= (bool)ss->release << ss->id; 6020 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6021 6022 /* At system boot, before all subsystems have been 6023 * registered, no tasks have been forked, so we don't 6024 * need to invoke fork callbacks here. */ 6025 BUG_ON(!list_empty(&init_task.tasks)); 6026 6027 BUG_ON(online_css(css)); 6028 6029 cgroup_unlock(); 6030 } 6031 6032 /** 6033 * cgroup_init_early - cgroup initialization at system boot 6034 * 6035 * Initialize cgroups at system boot, and initialize any 6036 * subsystems that request early init. 6037 */ 6038 int __init cgroup_init_early(void) 6039 { 6040 static struct cgroup_fs_context __initdata ctx; 6041 struct cgroup_subsys *ss; 6042 int i; 6043 6044 ctx.root = &cgrp_dfl_root; 6045 init_cgroup_root(&ctx); 6046 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6047 6048 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6049 6050 for_each_subsys(ss, i) { 6051 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6052 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6053 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6054 ss->id, ss->name); 6055 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6056 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6057 6058 ss->id = i; 6059 ss->name = cgroup_subsys_name[i]; 6060 if (!ss->legacy_name) 6061 ss->legacy_name = cgroup_subsys_name[i]; 6062 6063 if (ss->early_init) 6064 cgroup_init_subsys(ss, true); 6065 } 6066 return 0; 6067 } 6068 6069 /** 6070 * cgroup_init - cgroup initialization 6071 * 6072 * Register cgroup filesystem and /proc file, and initialize 6073 * any subsystems that didn't request early init. 6074 */ 6075 int __init cgroup_init(void) 6076 { 6077 struct cgroup_subsys *ss; 6078 int ssid; 6079 6080 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6081 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6082 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6083 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6084 6085 cgroup_rstat_boot(); 6086 6087 get_user_ns(init_cgroup_ns.user_ns); 6088 6089 cgroup_lock(); 6090 6091 /* 6092 * Add init_css_set to the hash table so that dfl_root can link to 6093 * it during init. 6094 */ 6095 hash_add(css_set_table, &init_css_set.hlist, 6096 css_set_hash(init_css_set.subsys)); 6097 6098 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6099 6100 cgroup_unlock(); 6101 6102 for_each_subsys(ss, ssid) { 6103 if (ss->early_init) { 6104 struct cgroup_subsys_state *css = 6105 init_css_set.subsys[ss->id]; 6106 6107 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6108 GFP_KERNEL); 6109 BUG_ON(css->id < 0); 6110 } else { 6111 cgroup_init_subsys(ss, false); 6112 } 6113 6114 list_add_tail(&init_css_set.e_cset_node[ssid], 6115 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6116 6117 /* 6118 * Setting dfl_root subsys_mask needs to consider the 6119 * disabled flag and cftype registration needs kmalloc, 6120 * both of which aren't available during early_init. 6121 */ 6122 if (!cgroup_ssid_enabled(ssid)) 6123 continue; 6124 6125 if (cgroup1_ssid_disabled(ssid)) 6126 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6127 ss->legacy_name); 6128 6129 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6130 6131 /* implicit controllers must be threaded too */ 6132 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6133 6134 if (ss->implicit_on_dfl) 6135 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6136 else if (!ss->dfl_cftypes) 6137 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6138 6139 if (ss->threaded) 6140 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6141 6142 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6143 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6144 } else { 6145 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6146 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6147 } 6148 6149 if (ss->bind) 6150 ss->bind(init_css_set.subsys[ssid]); 6151 6152 cgroup_lock(); 6153 css_populate_dir(init_css_set.subsys[ssid]); 6154 cgroup_unlock(); 6155 } 6156 6157 /* init_css_set.subsys[] has been updated, re-hash */ 6158 hash_del(&init_css_set.hlist); 6159 hash_add(css_set_table, &init_css_set.hlist, 6160 css_set_hash(init_css_set.subsys)); 6161 6162 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6163 WARN_ON(register_filesystem(&cgroup_fs_type)); 6164 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6165 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6166 #ifdef CONFIG_CPUSETS 6167 WARN_ON(register_filesystem(&cpuset_fs_type)); 6168 #endif 6169 6170 return 0; 6171 } 6172 6173 static int __init cgroup_wq_init(void) 6174 { 6175 /* 6176 * There isn't much point in executing destruction path in 6177 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6178 * Use 1 for @max_active. 6179 * 6180 * We would prefer to do this in cgroup_init() above, but that 6181 * is called before init_workqueues(): so leave this until after. 6182 */ 6183 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6184 BUG_ON(!cgroup_destroy_wq); 6185 return 0; 6186 } 6187 core_initcall(cgroup_wq_init); 6188 6189 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6190 { 6191 struct kernfs_node *kn; 6192 6193 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6194 if (!kn) 6195 return; 6196 kernfs_path(kn, buf, buflen); 6197 kernfs_put(kn); 6198 } 6199 6200 /* 6201 * cgroup_get_from_id : get the cgroup associated with cgroup id 6202 * @id: cgroup id 6203 * On success return the cgrp or ERR_PTR on failure 6204 * Only cgroups within current task's cgroup NS are valid. 6205 */ 6206 struct cgroup *cgroup_get_from_id(u64 id) 6207 { 6208 struct kernfs_node *kn; 6209 struct cgroup *cgrp, *root_cgrp; 6210 6211 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6212 if (!kn) 6213 return ERR_PTR(-ENOENT); 6214 6215 if (kernfs_type(kn) != KERNFS_DIR) { 6216 kernfs_put(kn); 6217 return ERR_PTR(-ENOENT); 6218 } 6219 6220 rcu_read_lock(); 6221 6222 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6223 if (cgrp && !cgroup_tryget(cgrp)) 6224 cgrp = NULL; 6225 6226 rcu_read_unlock(); 6227 kernfs_put(kn); 6228 6229 if (!cgrp) 6230 return ERR_PTR(-ENOENT); 6231 6232 root_cgrp = current_cgns_cgroup_dfl(); 6233 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6234 cgroup_put(cgrp); 6235 return ERR_PTR(-ENOENT); 6236 } 6237 6238 return cgrp; 6239 } 6240 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6241 6242 /* 6243 * proc_cgroup_show() 6244 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6245 * - Used for /proc/<pid>/cgroup. 6246 */ 6247 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6248 struct pid *pid, struct task_struct *tsk) 6249 { 6250 char *buf; 6251 int retval; 6252 struct cgroup_root *root; 6253 6254 retval = -ENOMEM; 6255 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6256 if (!buf) 6257 goto out; 6258 6259 rcu_read_lock(); 6260 spin_lock_irq(&css_set_lock); 6261 6262 for_each_root(root) { 6263 struct cgroup_subsys *ss; 6264 struct cgroup *cgrp; 6265 int ssid, count = 0; 6266 6267 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6268 continue; 6269 6270 cgrp = task_cgroup_from_root(tsk, root); 6271 /* The root has already been unmounted. */ 6272 if (!cgrp) 6273 continue; 6274 6275 seq_printf(m, "%d:", root->hierarchy_id); 6276 if (root != &cgrp_dfl_root) 6277 for_each_subsys(ss, ssid) 6278 if (root->subsys_mask & (1 << ssid)) 6279 seq_printf(m, "%s%s", count++ ? "," : "", 6280 ss->legacy_name); 6281 if (strlen(root->name)) 6282 seq_printf(m, "%sname=%s", count ? "," : "", 6283 root->name); 6284 seq_putc(m, ':'); 6285 /* 6286 * On traditional hierarchies, all zombie tasks show up as 6287 * belonging to the root cgroup. On the default hierarchy, 6288 * while a zombie doesn't show up in "cgroup.procs" and 6289 * thus can't be migrated, its /proc/PID/cgroup keeps 6290 * reporting the cgroup it belonged to before exiting. If 6291 * the cgroup is removed before the zombie is reaped, 6292 * " (deleted)" is appended to the cgroup path. 6293 */ 6294 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6295 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6296 current->nsproxy->cgroup_ns); 6297 if (retval == -E2BIG) 6298 retval = -ENAMETOOLONG; 6299 if (retval < 0) 6300 goto out_unlock; 6301 6302 seq_puts(m, buf); 6303 } else { 6304 seq_puts(m, "/"); 6305 } 6306 6307 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6308 seq_puts(m, " (deleted)\n"); 6309 else 6310 seq_putc(m, '\n'); 6311 } 6312 6313 retval = 0; 6314 out_unlock: 6315 spin_unlock_irq(&css_set_lock); 6316 rcu_read_unlock(); 6317 kfree(buf); 6318 out: 6319 return retval; 6320 } 6321 6322 /** 6323 * cgroup_fork - initialize cgroup related fields during copy_process() 6324 * @child: pointer to task_struct of forking parent process. 6325 * 6326 * A task is associated with the init_css_set until cgroup_post_fork() 6327 * attaches it to the target css_set. 6328 */ 6329 void cgroup_fork(struct task_struct *child) 6330 { 6331 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6332 INIT_LIST_HEAD(&child->cg_list); 6333 } 6334 6335 /** 6336 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6337 * @f: file corresponding to cgroup_dir 6338 * 6339 * Find the cgroup from a file pointer associated with a cgroup directory. 6340 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6341 * cgroup cannot be found. 6342 */ 6343 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6344 { 6345 struct cgroup_subsys_state *css; 6346 6347 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6348 if (IS_ERR(css)) 6349 return ERR_CAST(css); 6350 6351 return css->cgroup; 6352 } 6353 6354 /** 6355 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6356 * cgroup2. 6357 * @f: file corresponding to cgroup2_dir 6358 */ 6359 static struct cgroup *cgroup_get_from_file(struct file *f) 6360 { 6361 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6362 6363 if (IS_ERR(cgrp)) 6364 return ERR_CAST(cgrp); 6365 6366 if (!cgroup_on_dfl(cgrp)) { 6367 cgroup_put(cgrp); 6368 return ERR_PTR(-EBADF); 6369 } 6370 6371 return cgrp; 6372 } 6373 6374 /** 6375 * cgroup_css_set_fork - find or create a css_set for a child process 6376 * @kargs: the arguments passed to create the child process 6377 * 6378 * This functions finds or creates a new css_set which the child 6379 * process will be attached to in cgroup_post_fork(). By default, 6380 * the child process will be given the same css_set as its parent. 6381 * 6382 * If CLONE_INTO_CGROUP is specified this function will try to find an 6383 * existing css_set which includes the requested cgroup and if not create 6384 * a new css_set that the child will be attached to later. If this function 6385 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6386 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6387 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6388 * to the target cgroup. 6389 */ 6390 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6391 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6392 { 6393 int ret; 6394 struct cgroup *dst_cgrp = NULL; 6395 struct css_set *cset; 6396 struct super_block *sb; 6397 struct file *f; 6398 6399 if (kargs->flags & CLONE_INTO_CGROUP) 6400 cgroup_lock(); 6401 6402 cgroup_threadgroup_change_begin(current); 6403 6404 spin_lock_irq(&css_set_lock); 6405 cset = task_css_set(current); 6406 get_css_set(cset); 6407 spin_unlock_irq(&css_set_lock); 6408 6409 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6410 kargs->cset = cset; 6411 return 0; 6412 } 6413 6414 f = fget_raw(kargs->cgroup); 6415 if (!f) { 6416 ret = -EBADF; 6417 goto err; 6418 } 6419 sb = f->f_path.dentry->d_sb; 6420 6421 dst_cgrp = cgroup_get_from_file(f); 6422 if (IS_ERR(dst_cgrp)) { 6423 ret = PTR_ERR(dst_cgrp); 6424 dst_cgrp = NULL; 6425 goto err; 6426 } 6427 6428 if (cgroup_is_dead(dst_cgrp)) { 6429 ret = -ENODEV; 6430 goto err; 6431 } 6432 6433 /* 6434 * Verify that we the target cgroup is writable for us. This is 6435 * usually done by the vfs layer but since we're not going through 6436 * the vfs layer here we need to do it "manually". 6437 */ 6438 ret = cgroup_may_write(dst_cgrp, sb); 6439 if (ret) 6440 goto err; 6441 6442 /* 6443 * Spawning a task directly into a cgroup works by passing a file 6444 * descriptor to the target cgroup directory. This can even be an O_PATH 6445 * file descriptor. But it can never be a cgroup.procs file descriptor. 6446 * This was done on purpose so spawning into a cgroup could be 6447 * conceptualized as an atomic 6448 * 6449 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6450 * write(fd, <child-pid>, ...); 6451 * 6452 * sequence, i.e. it's a shorthand for the caller opening and writing 6453 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6454 * to always use the caller's credentials. 6455 */ 6456 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6457 !(kargs->flags & CLONE_THREAD), 6458 current->nsproxy->cgroup_ns); 6459 if (ret) 6460 goto err; 6461 6462 kargs->cset = find_css_set(cset, dst_cgrp); 6463 if (!kargs->cset) { 6464 ret = -ENOMEM; 6465 goto err; 6466 } 6467 6468 put_css_set(cset); 6469 fput(f); 6470 kargs->cgrp = dst_cgrp; 6471 return ret; 6472 6473 err: 6474 cgroup_threadgroup_change_end(current); 6475 cgroup_unlock(); 6476 if (f) 6477 fput(f); 6478 if (dst_cgrp) 6479 cgroup_put(dst_cgrp); 6480 put_css_set(cset); 6481 if (kargs->cset) 6482 put_css_set(kargs->cset); 6483 return ret; 6484 } 6485 6486 /** 6487 * cgroup_css_set_put_fork - drop references we took during fork 6488 * @kargs: the arguments passed to create the child process 6489 * 6490 * Drop references to the prepared css_set and target cgroup if 6491 * CLONE_INTO_CGROUP was requested. 6492 */ 6493 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6494 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6495 { 6496 struct cgroup *cgrp = kargs->cgrp; 6497 struct css_set *cset = kargs->cset; 6498 6499 cgroup_threadgroup_change_end(current); 6500 6501 if (cset) { 6502 put_css_set(cset); 6503 kargs->cset = NULL; 6504 } 6505 6506 if (kargs->flags & CLONE_INTO_CGROUP) { 6507 cgroup_unlock(); 6508 if (cgrp) { 6509 cgroup_put(cgrp); 6510 kargs->cgrp = NULL; 6511 } 6512 } 6513 } 6514 6515 /** 6516 * cgroup_can_fork - called on a new task before the process is exposed 6517 * @child: the child process 6518 * @kargs: the arguments passed to create the child process 6519 * 6520 * This prepares a new css_set for the child process which the child will 6521 * be attached to in cgroup_post_fork(). 6522 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6523 * callback returns an error, the fork aborts with that error code. This 6524 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6525 */ 6526 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6527 { 6528 struct cgroup_subsys *ss; 6529 int i, j, ret; 6530 6531 ret = cgroup_css_set_fork(kargs); 6532 if (ret) 6533 return ret; 6534 6535 do_each_subsys_mask(ss, i, have_canfork_callback) { 6536 ret = ss->can_fork(child, kargs->cset); 6537 if (ret) 6538 goto out_revert; 6539 } while_each_subsys_mask(); 6540 6541 return 0; 6542 6543 out_revert: 6544 for_each_subsys(ss, j) { 6545 if (j >= i) 6546 break; 6547 if (ss->cancel_fork) 6548 ss->cancel_fork(child, kargs->cset); 6549 } 6550 6551 cgroup_css_set_put_fork(kargs); 6552 6553 return ret; 6554 } 6555 6556 /** 6557 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6558 * @child: the child process 6559 * @kargs: the arguments passed to create the child process 6560 * 6561 * This calls the cancel_fork() callbacks if a fork failed *after* 6562 * cgroup_can_fork() succeeded and cleans up references we took to 6563 * prepare a new css_set for the child process in cgroup_can_fork(). 6564 */ 6565 void cgroup_cancel_fork(struct task_struct *child, 6566 struct kernel_clone_args *kargs) 6567 { 6568 struct cgroup_subsys *ss; 6569 int i; 6570 6571 for_each_subsys(ss, i) 6572 if (ss->cancel_fork) 6573 ss->cancel_fork(child, kargs->cset); 6574 6575 cgroup_css_set_put_fork(kargs); 6576 } 6577 6578 /** 6579 * cgroup_post_fork - finalize cgroup setup for the child process 6580 * @child: the child process 6581 * @kargs: the arguments passed to create the child process 6582 * 6583 * Attach the child process to its css_set calling the subsystem fork() 6584 * callbacks. 6585 */ 6586 void cgroup_post_fork(struct task_struct *child, 6587 struct kernel_clone_args *kargs) 6588 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6589 { 6590 unsigned long cgrp_flags = 0; 6591 bool kill = false; 6592 struct cgroup_subsys *ss; 6593 struct css_set *cset; 6594 int i; 6595 6596 cset = kargs->cset; 6597 kargs->cset = NULL; 6598 6599 spin_lock_irq(&css_set_lock); 6600 6601 /* init tasks are special, only link regular threads */ 6602 if (likely(child->pid)) { 6603 if (kargs->cgrp) 6604 cgrp_flags = kargs->cgrp->flags; 6605 else 6606 cgrp_flags = cset->dfl_cgrp->flags; 6607 6608 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6609 cset->nr_tasks++; 6610 css_set_move_task(child, NULL, cset, false); 6611 } else { 6612 put_css_set(cset); 6613 cset = NULL; 6614 } 6615 6616 if (!(child->flags & PF_KTHREAD)) { 6617 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6618 /* 6619 * If the cgroup has to be frozen, the new task has 6620 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6621 * get the task into the frozen state. 6622 */ 6623 spin_lock(&child->sighand->siglock); 6624 WARN_ON_ONCE(child->frozen); 6625 child->jobctl |= JOBCTL_TRAP_FREEZE; 6626 spin_unlock(&child->sighand->siglock); 6627 6628 /* 6629 * Calling cgroup_update_frozen() isn't required here, 6630 * because it will be called anyway a bit later from 6631 * do_freezer_trap(). So we avoid cgroup's transient 6632 * switch from the frozen state and back. 6633 */ 6634 } 6635 6636 /* 6637 * If the cgroup is to be killed notice it now and take the 6638 * child down right after we finished preparing it for 6639 * userspace. 6640 */ 6641 kill = test_bit(CGRP_KILL, &cgrp_flags); 6642 } 6643 6644 spin_unlock_irq(&css_set_lock); 6645 6646 /* 6647 * Call ss->fork(). This must happen after @child is linked on 6648 * css_set; otherwise, @child might change state between ->fork() 6649 * and addition to css_set. 6650 */ 6651 do_each_subsys_mask(ss, i, have_fork_callback) { 6652 ss->fork(child); 6653 } while_each_subsys_mask(); 6654 6655 /* Make the new cset the root_cset of the new cgroup namespace. */ 6656 if (kargs->flags & CLONE_NEWCGROUP) { 6657 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6658 6659 get_css_set(cset); 6660 child->nsproxy->cgroup_ns->root_cset = cset; 6661 put_css_set(rcset); 6662 } 6663 6664 /* Cgroup has to be killed so take down child immediately. */ 6665 if (unlikely(kill)) 6666 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6667 6668 cgroup_css_set_put_fork(kargs); 6669 } 6670 6671 /** 6672 * cgroup_exit - detach cgroup from exiting task 6673 * @tsk: pointer to task_struct of exiting process 6674 * 6675 * Description: Detach cgroup from @tsk. 6676 * 6677 */ 6678 void cgroup_exit(struct task_struct *tsk) 6679 { 6680 struct cgroup_subsys *ss; 6681 struct css_set *cset; 6682 int i; 6683 6684 spin_lock_irq(&css_set_lock); 6685 6686 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6687 cset = task_css_set(tsk); 6688 css_set_move_task(tsk, cset, NULL, false); 6689 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6690 cset->nr_tasks--; 6691 6692 if (dl_task(tsk)) 6693 dec_dl_tasks_cs(tsk); 6694 6695 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6696 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6697 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6698 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6699 6700 spin_unlock_irq(&css_set_lock); 6701 6702 /* see cgroup_post_fork() for details */ 6703 do_each_subsys_mask(ss, i, have_exit_callback) { 6704 ss->exit(tsk); 6705 } while_each_subsys_mask(); 6706 } 6707 6708 void cgroup_release(struct task_struct *task) 6709 { 6710 struct cgroup_subsys *ss; 6711 int ssid; 6712 6713 do_each_subsys_mask(ss, ssid, have_release_callback) { 6714 ss->release(task); 6715 } while_each_subsys_mask(); 6716 6717 spin_lock_irq(&css_set_lock); 6718 css_set_skip_task_iters(task_css_set(task), task); 6719 list_del_init(&task->cg_list); 6720 spin_unlock_irq(&css_set_lock); 6721 } 6722 6723 void cgroup_free(struct task_struct *task) 6724 { 6725 struct css_set *cset = task_css_set(task); 6726 put_css_set(cset); 6727 } 6728 6729 static int __init cgroup_disable(char *str) 6730 { 6731 struct cgroup_subsys *ss; 6732 char *token; 6733 int i; 6734 6735 while ((token = strsep(&str, ",")) != NULL) { 6736 if (!*token) 6737 continue; 6738 6739 for_each_subsys(ss, i) { 6740 if (strcmp(token, ss->name) && 6741 strcmp(token, ss->legacy_name)) 6742 continue; 6743 6744 static_branch_disable(cgroup_subsys_enabled_key[i]); 6745 pr_info("Disabling %s control group subsystem\n", 6746 ss->name); 6747 } 6748 6749 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6750 if (strcmp(token, cgroup_opt_feature_names[i])) 6751 continue; 6752 cgroup_feature_disable_mask |= 1 << i; 6753 pr_info("Disabling %s control group feature\n", 6754 cgroup_opt_feature_names[i]); 6755 break; 6756 } 6757 } 6758 return 1; 6759 } 6760 __setup("cgroup_disable=", cgroup_disable); 6761 6762 void __init __weak enable_debug_cgroup(void) { } 6763 6764 static int __init enable_cgroup_debug(char *str) 6765 { 6766 cgroup_debug = true; 6767 enable_debug_cgroup(); 6768 return 1; 6769 } 6770 __setup("cgroup_debug", enable_cgroup_debug); 6771 6772 static int __init cgroup_favordynmods_setup(char *str) 6773 { 6774 return (kstrtobool(str, &have_favordynmods) == 0); 6775 } 6776 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6777 6778 /** 6779 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6780 * @dentry: directory dentry of interest 6781 * @ss: subsystem of interest 6782 * 6783 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6784 * to get the corresponding css and return it. If such css doesn't exist 6785 * or can't be pinned, an ERR_PTR value is returned. 6786 */ 6787 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6788 struct cgroup_subsys *ss) 6789 { 6790 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6791 struct file_system_type *s_type = dentry->d_sb->s_type; 6792 struct cgroup_subsys_state *css = NULL; 6793 struct cgroup *cgrp; 6794 6795 /* is @dentry a cgroup dir? */ 6796 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6797 !kn || kernfs_type(kn) != KERNFS_DIR) 6798 return ERR_PTR(-EBADF); 6799 6800 rcu_read_lock(); 6801 6802 /* 6803 * This path doesn't originate from kernfs and @kn could already 6804 * have been or be removed at any point. @kn->priv is RCU 6805 * protected for this access. See css_release_work_fn() for details. 6806 */ 6807 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6808 if (cgrp) 6809 css = cgroup_css(cgrp, ss); 6810 6811 if (!css || !css_tryget_online(css)) 6812 css = ERR_PTR(-ENOENT); 6813 6814 rcu_read_unlock(); 6815 return css; 6816 } 6817 6818 /** 6819 * css_from_id - lookup css by id 6820 * @id: the cgroup id 6821 * @ss: cgroup subsys to be looked into 6822 * 6823 * Returns the css if there's valid one with @id, otherwise returns NULL. 6824 * Should be called under rcu_read_lock(). 6825 */ 6826 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6827 { 6828 WARN_ON_ONCE(!rcu_read_lock_held()); 6829 return idr_find(&ss->css_idr, id); 6830 } 6831 6832 /** 6833 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6834 * @path: path on the default hierarchy 6835 * 6836 * Find the cgroup at @path on the default hierarchy, increment its 6837 * reference count and return it. Returns pointer to the found cgroup on 6838 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6839 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6840 */ 6841 struct cgroup *cgroup_get_from_path(const char *path) 6842 { 6843 struct kernfs_node *kn; 6844 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6845 struct cgroup *root_cgrp; 6846 6847 root_cgrp = current_cgns_cgroup_dfl(); 6848 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6849 if (!kn) 6850 goto out; 6851 6852 if (kernfs_type(kn) != KERNFS_DIR) { 6853 cgrp = ERR_PTR(-ENOTDIR); 6854 goto out_kernfs; 6855 } 6856 6857 rcu_read_lock(); 6858 6859 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6860 if (!cgrp || !cgroup_tryget(cgrp)) 6861 cgrp = ERR_PTR(-ENOENT); 6862 6863 rcu_read_unlock(); 6864 6865 out_kernfs: 6866 kernfs_put(kn); 6867 out: 6868 return cgrp; 6869 } 6870 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6871 6872 /** 6873 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6874 * @fd: fd obtained by open(cgroup_dir) 6875 * 6876 * Find the cgroup from a fd which should be obtained 6877 * by opening a cgroup directory. Returns a pointer to the 6878 * cgroup on success. ERR_PTR is returned if the cgroup 6879 * cannot be found. 6880 */ 6881 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6882 { 6883 struct cgroup *cgrp; 6884 struct fd f = fdget_raw(fd); 6885 if (!f.file) 6886 return ERR_PTR(-EBADF); 6887 6888 cgrp = cgroup_v1v2_get_from_file(f.file); 6889 fdput(f); 6890 return cgrp; 6891 } 6892 6893 /** 6894 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6895 * cgroup2. 6896 * @fd: fd obtained by open(cgroup2_dir) 6897 */ 6898 struct cgroup *cgroup_get_from_fd(int fd) 6899 { 6900 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6901 6902 if (IS_ERR(cgrp)) 6903 return ERR_CAST(cgrp); 6904 6905 if (!cgroup_on_dfl(cgrp)) { 6906 cgroup_put(cgrp); 6907 return ERR_PTR(-EBADF); 6908 } 6909 return cgrp; 6910 } 6911 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6912 6913 static u64 power_of_ten(int power) 6914 { 6915 u64 v = 1; 6916 while (power--) 6917 v *= 10; 6918 return v; 6919 } 6920 6921 /** 6922 * cgroup_parse_float - parse a floating number 6923 * @input: input string 6924 * @dec_shift: number of decimal digits to shift 6925 * @v: output 6926 * 6927 * Parse a decimal floating point number in @input and store the result in 6928 * @v with decimal point right shifted @dec_shift times. For example, if 6929 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6930 * Returns 0 on success, -errno otherwise. 6931 * 6932 * There's nothing cgroup specific about this function except that it's 6933 * currently the only user. 6934 */ 6935 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6936 { 6937 s64 whole, frac = 0; 6938 int fstart = 0, fend = 0, flen; 6939 6940 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6941 return -EINVAL; 6942 if (frac < 0) 6943 return -EINVAL; 6944 6945 flen = fend > fstart ? fend - fstart : 0; 6946 if (flen < dec_shift) 6947 frac *= power_of_ten(dec_shift - flen); 6948 else 6949 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6950 6951 *v = whole * power_of_ten(dec_shift) + frac; 6952 return 0; 6953 } 6954 6955 /* 6956 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6957 * definition in cgroup-defs.h. 6958 */ 6959 #ifdef CONFIG_SOCK_CGROUP_DATA 6960 6961 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6962 { 6963 struct cgroup *cgroup; 6964 6965 rcu_read_lock(); 6966 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6967 if (in_interrupt()) { 6968 cgroup = &cgrp_dfl_root.cgrp; 6969 cgroup_get(cgroup); 6970 goto out; 6971 } 6972 6973 while (true) { 6974 struct css_set *cset; 6975 6976 cset = task_css_set(current); 6977 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6978 cgroup = cset->dfl_cgrp; 6979 break; 6980 } 6981 cpu_relax(); 6982 } 6983 out: 6984 skcd->cgroup = cgroup; 6985 cgroup_bpf_get(cgroup); 6986 rcu_read_unlock(); 6987 } 6988 6989 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6990 { 6991 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6992 6993 /* 6994 * We might be cloning a socket which is left in an empty 6995 * cgroup and the cgroup might have already been rmdir'd. 6996 * Don't use cgroup_get_live(). 6997 */ 6998 cgroup_get(cgrp); 6999 cgroup_bpf_get(cgrp); 7000 } 7001 7002 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7003 { 7004 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7005 7006 cgroup_bpf_put(cgrp); 7007 cgroup_put(cgrp); 7008 } 7009 7010 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7011 7012 #ifdef CONFIG_SYSFS 7013 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7014 ssize_t size, const char *prefix) 7015 { 7016 struct cftype *cft; 7017 ssize_t ret = 0; 7018 7019 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7020 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7021 continue; 7022 7023 if (prefix) 7024 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7025 7026 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7027 7028 if (WARN_ON(ret >= size)) 7029 break; 7030 } 7031 7032 return ret; 7033 } 7034 7035 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7036 char *buf) 7037 { 7038 struct cgroup_subsys *ss; 7039 int ssid; 7040 ssize_t ret = 0; 7041 7042 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7043 PAGE_SIZE - ret, NULL); 7044 if (cgroup_psi_enabled()) 7045 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7046 PAGE_SIZE - ret, NULL); 7047 7048 for_each_subsys(ss, ssid) 7049 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7050 PAGE_SIZE - ret, 7051 cgroup_subsys_name[ssid]); 7052 7053 return ret; 7054 } 7055 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7056 7057 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7058 char *buf) 7059 { 7060 return snprintf(buf, PAGE_SIZE, 7061 "nsdelegate\n" 7062 "favordynmods\n" 7063 "memory_localevents\n" 7064 "memory_recursiveprot\n" 7065 "memory_hugetlb_accounting\n"); 7066 } 7067 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7068 7069 static struct attribute *cgroup_sysfs_attrs[] = { 7070 &cgroup_delegate_attr.attr, 7071 &cgroup_features_attr.attr, 7072 NULL, 7073 }; 7074 7075 static const struct attribute_group cgroup_sysfs_attr_group = { 7076 .attrs = cgroup_sysfs_attrs, 7077 .name = "cgroup", 7078 }; 7079 7080 static int __init cgroup_sysfs_init(void) 7081 { 7082 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7083 } 7084 subsys_initcall(cgroup_sysfs_init); 7085 7086 #endif /* CONFIG_SYSFS */ 7087