1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <linux/nstree.h> 63 #include <net/sock.h> 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/cgroup.h> 67 68 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 69 MAX_CFTYPE_NAME + 2) 70 /* let's not notify more than 100 times per second */ 71 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 72 73 /* 74 * To avoid confusing the compiler (and generating warnings) with code 75 * that attempts to access what would be a 0-element array (i.e. sized 76 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 77 * constant expression can be added. 78 */ 79 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 80 81 /* 82 * cgroup_mutex is the master lock. Any modification to cgroup or its 83 * hierarchy must be performed while holding it. 84 * 85 * css_set_lock protects task->cgroups pointer, the list of css_set 86 * objects, and the chain of tasks off each css_set. 87 * 88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 89 * cgroup.h can use them for lockdep annotations. 90 */ 91 DEFINE_MUTEX(cgroup_mutex); 92 DEFINE_SPINLOCK(css_set_lock); 93 94 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) 95 EXPORT_SYMBOL_GPL(cgroup_mutex); 96 EXPORT_SYMBOL_GPL(css_set_lock); 97 #endif 98 99 struct blocking_notifier_head cgroup_lifetime_notifier = 100 BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier); 101 102 DEFINE_SPINLOCK(trace_cgroup_path_lock); 103 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 104 static bool cgroup_debug __read_mostly; 105 106 /* 107 * Protects cgroup_idr and css_idr so that IDs can be released without 108 * grabbing cgroup_mutex. 109 */ 110 static DEFINE_SPINLOCK(cgroup_idr_lock); 111 112 /* 113 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 114 * against file removal/re-creation across css hiding. 115 */ 116 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 117 118 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 119 120 #define cgroup_assert_mutex_or_rcu_locked() \ 121 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 122 !lockdep_is_held(&cgroup_mutex), \ 123 "cgroup_mutex or RCU read lock required"); 124 125 /* 126 * cgroup destruction makes heavy use of work items and there can be a lot 127 * of concurrent destructions. Use a separate workqueue so that cgroup 128 * destruction work items don't end up filling up max_active of system_wq 129 * which may lead to deadlock. 130 * 131 * A cgroup destruction should enqueue work sequentially to: 132 * cgroup_offline_wq: use for css offline work 133 * cgroup_release_wq: use for css release work 134 * cgroup_free_wq: use for free work 135 * 136 * Rationale for using separate workqueues: 137 * The cgroup root free work may depend on completion of other css offline 138 * operations. If all tasks were enqueued to a single workqueue, this could 139 * create a deadlock scenario where: 140 * - Free work waits for other css offline work to complete. 141 * - But other css offline work is queued after free work in the same queue. 142 * 143 * Example deadlock scenario with single workqueue (cgroup_destroy_wq): 144 * 1. umount net_prio 145 * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx) 146 * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx) 147 * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline. 148 * 5. net_prio root destruction blocks waiting for perf_event CSS A offline, 149 * which can never complete as it's behind in the same queue and 150 * workqueue's max_active is 1. 151 */ 152 static struct workqueue_struct *cgroup_offline_wq; 153 static struct workqueue_struct *cgroup_release_wq; 154 static struct workqueue_struct *cgroup_free_wq; 155 156 /* generate an array of cgroup subsystem pointers */ 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 158 struct cgroup_subsys *cgroup_subsys[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 /* array of cgroup subsystem names */ 164 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 165 static const char *cgroup_subsys_name[] = { 166 #include <linux/cgroup_subsys.h> 167 }; 168 #undef SUBSYS 169 170 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 171 #define SUBSYS(_x) \ 172 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 173 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 174 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 175 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 176 #include <linux/cgroup_subsys.h> 177 #undef SUBSYS 178 179 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 180 static struct static_key_true *cgroup_subsys_enabled_key[] = { 181 #include <linux/cgroup_subsys.h> 182 }; 183 #undef SUBSYS 184 185 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 186 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 187 #include <linux/cgroup_subsys.h> 188 }; 189 #undef SUBSYS 190 191 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu); 192 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu); 193 194 /* the default hierarchy */ 195 struct cgroup_root cgrp_dfl_root = { 196 .cgrp.self.rstat_cpu = &root_rstat_cpu, 197 .cgrp.rstat_base_cpu = &root_rstat_base_cpu, 198 }; 199 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 200 201 /* 202 * The default hierarchy always exists but is hidden until mounted for the 203 * first time. This is for backward compatibility. 204 */ 205 bool cgrp_dfl_visible; 206 207 /* some controllers are not supported in the default hierarchy */ 208 static u16 cgrp_dfl_inhibit_ss_mask; 209 210 /* some controllers are implicitly enabled on the default hierarchy */ 211 static u16 cgrp_dfl_implicit_ss_mask; 212 213 /* some controllers can be threaded on the default hierarchy */ 214 static u16 cgrp_dfl_threaded_ss_mask; 215 216 /* The list of hierarchy roots */ 217 LIST_HEAD(cgroup_roots); 218 static int cgroup_root_count; 219 220 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 221 static DEFINE_IDR(cgroup_hierarchy_idr); 222 223 /* 224 * Assign a monotonically increasing serial number to csses. It guarantees 225 * cgroups with bigger numbers are newer than those with smaller numbers. 226 * Also, as csses are always appended to the parent's ->children list, it 227 * guarantees that sibling csses are always sorted in the ascending serial 228 * number order on the list. Protected by cgroup_mutex. 229 */ 230 static u64 css_serial_nr_next = 1; 231 232 /* 233 * These bitmasks identify subsystems with specific features to avoid 234 * having to do iterative checks repeatedly. 235 */ 236 static u16 have_fork_callback __read_mostly; 237 static u16 have_exit_callback __read_mostly; 238 static u16 have_release_callback __read_mostly; 239 static u16 have_canfork_callback __read_mostly; 240 241 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 242 243 /* cgroup namespace for init task */ 244 struct cgroup_namespace init_cgroup_ns = { 245 .ns.__ns_ref = REFCOUNT_INIT(2), 246 .user_ns = &init_user_ns, 247 .ns.ops = &cgroupns_operations, 248 .ns.inum = ns_init_inum(&init_cgroup_ns), 249 .root_cset = &init_css_set, 250 .ns.ns_type = ns_common_type(&init_cgroup_ns), 251 }; 252 253 static struct file_system_type cgroup2_fs_type; 254 static struct cftype cgroup_base_files[]; 255 static struct cftype cgroup_psi_files[]; 256 257 /* cgroup optional features */ 258 enum cgroup_opt_features { 259 #ifdef CONFIG_PSI 260 OPT_FEATURE_PRESSURE, 261 #endif 262 OPT_FEATURE_COUNT 263 }; 264 265 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 266 #ifdef CONFIG_PSI 267 "pressure", 268 #endif 269 }; 270 271 static u16 cgroup_feature_disable_mask __read_mostly; 272 273 static int cgroup_apply_control(struct cgroup *cgrp); 274 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 275 static void css_task_iter_skip(struct css_task_iter *it, 276 struct task_struct *task); 277 static int cgroup_destroy_locked(struct cgroup *cgrp); 278 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 279 struct cgroup_subsys *ss); 280 static void css_release(struct percpu_ref *ref); 281 static void kill_css(struct cgroup_subsys_state *css); 282 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 283 struct cgroup *cgrp, struct cftype cfts[], 284 bool is_add); 285 286 #ifdef CONFIG_DEBUG_CGROUP_REF 287 #define CGROUP_REF_FN_ATTRS noinline 288 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 289 #include <linux/cgroup_refcnt.h> 290 #endif 291 292 /** 293 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 294 * @ssid: subsys ID of interest 295 * 296 * cgroup_subsys_enabled() can only be used with literal subsys names which 297 * is fine for individual subsystems but unsuitable for cgroup core. This 298 * is slower static_key_enabled() based test indexed by @ssid. 299 */ 300 bool cgroup_ssid_enabled(int ssid) 301 { 302 if (!CGROUP_HAS_SUBSYS_CONFIG) 303 return false; 304 305 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 306 } 307 308 /** 309 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 310 * @cgrp: the cgroup of interest 311 * 312 * The default hierarchy is the v2 interface of cgroup and this function 313 * can be used to test whether a cgroup is on the default hierarchy for 314 * cases where a subsystem should behave differently depending on the 315 * interface version. 316 * 317 * List of changed behaviors: 318 * 319 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 320 * and "name" are disallowed. 321 * 322 * - When mounting an existing superblock, mount options should match. 323 * 324 * - rename(2) is disallowed. 325 * 326 * - "tasks" is removed. Everything should be at process granularity. Use 327 * "cgroup.procs" instead. 328 * 329 * - "cgroup.procs" is not sorted. pids will be unique unless they got 330 * recycled in-between reads. 331 * 332 * - "release_agent" and "notify_on_release" are removed. Replacement 333 * notification mechanism will be implemented. 334 * 335 * - "cgroup.clone_children" is removed. 336 * 337 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 338 * and its descendants contain no task; otherwise, 1. The file also 339 * generates kernfs notification which can be monitored through poll and 340 * [di]notify when the value of the file changes. 341 * 342 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 343 * take masks of ancestors with non-empty cpus/mems, instead of being 344 * moved to an ancestor. 345 * 346 * - cpuset: a task can be moved into an empty cpuset, and again it takes 347 * masks of ancestors. 348 * 349 * - blkcg: blk-throttle becomes properly hierarchical. 350 */ 351 bool cgroup_on_dfl(const struct cgroup *cgrp) 352 { 353 return cgrp->root == &cgrp_dfl_root; 354 } 355 356 /* IDR wrappers which synchronize using cgroup_idr_lock */ 357 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 358 gfp_t gfp_mask) 359 { 360 int ret; 361 362 idr_preload(gfp_mask); 363 spin_lock_bh(&cgroup_idr_lock); 364 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 365 spin_unlock_bh(&cgroup_idr_lock); 366 idr_preload_end(); 367 return ret; 368 } 369 370 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 371 { 372 void *ret; 373 374 spin_lock_bh(&cgroup_idr_lock); 375 ret = idr_replace(idr, ptr, id); 376 spin_unlock_bh(&cgroup_idr_lock); 377 return ret; 378 } 379 380 static void cgroup_idr_remove(struct idr *idr, int id) 381 { 382 spin_lock_bh(&cgroup_idr_lock); 383 idr_remove(idr, id); 384 spin_unlock_bh(&cgroup_idr_lock); 385 } 386 387 static bool cgroup_has_tasks(struct cgroup *cgrp) 388 { 389 return cgrp->nr_populated_csets; 390 } 391 392 static bool cgroup_is_threaded(struct cgroup *cgrp) 393 { 394 return cgrp->dom_cgrp != cgrp; 395 } 396 397 /* can @cgrp host both domain and threaded children? */ 398 static bool cgroup_is_mixable(struct cgroup *cgrp) 399 { 400 /* 401 * Root isn't under domain level resource control exempting it from 402 * the no-internal-process constraint, so it can serve as a thread 403 * root and a parent of resource domains at the same time. 404 */ 405 return !cgroup_parent(cgrp); 406 } 407 408 /* can @cgrp become a thread root? Should always be true for a thread root */ 409 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 410 { 411 /* mixables don't care */ 412 if (cgroup_is_mixable(cgrp)) 413 return true; 414 415 /* domain roots can't be nested under threaded */ 416 if (cgroup_is_threaded(cgrp)) 417 return false; 418 419 /* can only have either domain or threaded children */ 420 if (cgrp->nr_populated_domain_children) 421 return false; 422 423 /* and no domain controllers can be enabled */ 424 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 425 return false; 426 427 return true; 428 } 429 430 /* is @cgrp root of a threaded subtree? */ 431 static bool cgroup_is_thread_root(struct cgroup *cgrp) 432 { 433 /* thread root should be a domain */ 434 if (cgroup_is_threaded(cgrp)) 435 return false; 436 437 /* a domain w/ threaded children is a thread root */ 438 if (cgrp->nr_threaded_children) 439 return true; 440 441 /* 442 * A domain which has tasks and explicit threaded controllers 443 * enabled is a thread root. 444 */ 445 if (cgroup_has_tasks(cgrp) && 446 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 447 return true; 448 449 return false; 450 } 451 452 /* a domain which isn't connected to the root w/o brekage can't be used */ 453 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 454 { 455 /* the cgroup itself can be a thread root */ 456 if (cgroup_is_threaded(cgrp)) 457 return false; 458 459 /* but the ancestors can't be unless mixable */ 460 while ((cgrp = cgroup_parent(cgrp))) { 461 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 462 return false; 463 if (cgroup_is_threaded(cgrp)) 464 return false; 465 } 466 467 return true; 468 } 469 470 /* subsystems visibly enabled on a cgroup */ 471 static u16 cgroup_control(struct cgroup *cgrp) 472 { 473 struct cgroup *parent = cgroup_parent(cgrp); 474 u16 root_ss_mask = cgrp->root->subsys_mask; 475 476 if (parent) { 477 u16 ss_mask = parent->subtree_control; 478 479 /* threaded cgroups can only have threaded controllers */ 480 if (cgroup_is_threaded(cgrp)) 481 ss_mask &= cgrp_dfl_threaded_ss_mask; 482 return ss_mask; 483 } 484 485 if (cgroup_on_dfl(cgrp)) 486 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 487 cgrp_dfl_implicit_ss_mask); 488 return root_ss_mask; 489 } 490 491 /* subsystems enabled on a cgroup */ 492 static u16 cgroup_ss_mask(struct cgroup *cgrp) 493 { 494 struct cgroup *parent = cgroup_parent(cgrp); 495 496 if (parent) { 497 u16 ss_mask = parent->subtree_ss_mask; 498 499 /* threaded cgroups can only have threaded controllers */ 500 if (cgroup_is_threaded(cgrp)) 501 ss_mask &= cgrp_dfl_threaded_ss_mask; 502 return ss_mask; 503 } 504 505 return cgrp->root->subsys_mask; 506 } 507 508 /** 509 * cgroup_css - obtain a cgroup's css for the specified subsystem 510 * @cgrp: the cgroup of interest 511 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 512 * 513 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 514 * function must be called either under cgroup_mutex or rcu_read_lock() and 515 * the caller is responsible for pinning the returned css if it wants to 516 * keep accessing it outside the said locks. This function may return 517 * %NULL if @cgrp doesn't have @subsys_id enabled. 518 */ 519 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 520 struct cgroup_subsys *ss) 521 { 522 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 523 return rcu_dereference_check(cgrp->subsys[ss->id], 524 lockdep_is_held(&cgroup_mutex)); 525 else 526 return &cgrp->self; 527 } 528 529 /** 530 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 533 * 534 * Similar to cgroup_css() but returns the effective css, which is defined 535 * as the matching css of the nearest ancestor including self which has @ss 536 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 537 * function is guaranteed to return non-NULL css. 538 */ 539 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 540 struct cgroup_subsys *ss) 541 { 542 lockdep_assert_held(&cgroup_mutex); 543 544 if (!ss) 545 return &cgrp->self; 546 547 /* 548 * This function is used while updating css associations and thus 549 * can't test the csses directly. Test ss_mask. 550 */ 551 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 552 cgrp = cgroup_parent(cgrp); 553 if (!cgrp) 554 return NULL; 555 } 556 557 return cgroup_css(cgrp, ss); 558 } 559 560 /** 561 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * 570 * The returned css is not guaranteed to be online, and therefore it is the 571 * callers responsibility to try get a reference for it. 572 */ 573 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 574 struct cgroup_subsys *ss) 575 { 576 struct cgroup_subsys_state *css; 577 578 if (!CGROUP_HAS_SUBSYS_CONFIG) 579 return NULL; 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css) 585 return css; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 return init_css_set.subsys[ss->id]; 590 } 591 592 /** 593 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 594 * @cgrp: the cgroup of interest 595 * @ss: the subsystem of interest 596 * 597 * Find and get the effective css of @cgrp for @ss. The effective css is 598 * defined as the matching css of the nearest ancestor including self which 599 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 600 * the root css is returned, so this function always returns a valid css. 601 * The returned css must be put using css_put(). 602 */ 603 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 604 struct cgroup_subsys *ss) 605 { 606 struct cgroup_subsys_state *css; 607 608 if (!CGROUP_HAS_SUBSYS_CONFIG) 609 return NULL; 610 611 rcu_read_lock(); 612 613 do { 614 css = cgroup_css(cgrp, ss); 615 616 if (css && css_tryget_online(css)) 617 goto out_unlock; 618 cgrp = cgroup_parent(cgrp); 619 } while (cgrp); 620 621 css = init_css_set.subsys[ss->id]; 622 css_get(css); 623 out_unlock: 624 rcu_read_unlock(); 625 return css; 626 } 627 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 628 629 static void cgroup_get_live(struct cgroup *cgrp) 630 { 631 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 632 cgroup_get(cgrp); 633 } 634 635 /** 636 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 637 * is responsible for taking the css_set_lock. 638 * @cgrp: the cgroup in question 639 */ 640 int __cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count = 0; 643 struct cgrp_cset_link *link; 644 645 lockdep_assert_held(&css_set_lock); 646 647 list_for_each_entry(link, &cgrp->cset_links, cset_link) 648 count += link->cset->nr_tasks; 649 650 return count; 651 } 652 653 /** 654 * cgroup_task_count - count the number of tasks in a cgroup. 655 * @cgrp: the cgroup in question 656 */ 657 int cgroup_task_count(const struct cgroup *cgrp) 658 { 659 int count; 660 661 spin_lock_irq(&css_set_lock); 662 count = __cgroup_task_count(cgrp); 663 spin_unlock_irq(&css_set_lock); 664 665 return count; 666 } 667 668 static struct cgroup *kn_priv(struct kernfs_node *kn) 669 { 670 struct kernfs_node *parent; 671 /* 672 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. 673 * Therefore it is always safe to dereference this pointer outside of a 674 * RCU section. 675 */ 676 parent = rcu_dereference_check(kn->__parent, 677 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); 678 return parent->priv; 679 } 680 681 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 682 { 683 struct cgroup *cgrp = kn_priv(of->kn); 684 struct cftype *cft = of_cft(of); 685 686 /* 687 * This is open and unprotected implementation of cgroup_css(). 688 * seq_css() is only called from a kernfs file operation which has 689 * an active reference on the file. Because all the subsystem 690 * files are drained before a css is disassociated with a cgroup, 691 * the matching css from the cgroup's subsys table is guaranteed to 692 * be and stay valid until the enclosing operation is complete. 693 */ 694 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 695 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 696 else 697 return &cgrp->self; 698 } 699 EXPORT_SYMBOL_GPL(of_css); 700 701 /** 702 * for_each_css - iterate all css's of a cgroup 703 * @css: the iteration cursor 704 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 705 * @cgrp: the target cgroup to iterate css's of 706 * 707 * Should be called under cgroup_mutex. 708 */ 709 #define for_each_css(css, ssid, cgrp) \ 710 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 711 if (!((css) = rcu_dereference_check( \ 712 (cgrp)->subsys[(ssid)], \ 713 lockdep_is_held(&cgroup_mutex)))) { } \ 714 else 715 716 /** 717 * do_each_subsys_mask - filter for_each_subsys with a bitmask 718 * @ss: the iteration cursor 719 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 720 * @ss_mask: the bitmask 721 * 722 * The block will only run for cases where the ssid-th bit (1 << ssid) of 723 * @ss_mask is set. 724 */ 725 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 726 unsigned long __ss_mask = (ss_mask); \ 727 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 728 (ssid) = 0; \ 729 break; \ 730 } \ 731 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 732 (ss) = cgroup_subsys[ssid]; \ 733 { 734 735 #define while_each_subsys_mask() \ 736 } \ 737 } \ 738 } while (false) 739 740 /* iterate over child cgrps, lock should be held throughout iteration */ 741 #define cgroup_for_each_live_child(child, cgrp) \ 742 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 743 if (({ lockdep_assert_held(&cgroup_mutex); \ 744 cgroup_is_dead(child); })) \ 745 ; \ 746 else 747 748 /* walk live descendants in pre order */ 749 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 750 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 751 if (({ lockdep_assert_held(&cgroup_mutex); \ 752 (dsct) = (d_css)->cgroup; \ 753 cgroup_is_dead(dsct); })) \ 754 ; \ 755 else 756 757 /* walk live descendants in postorder */ 758 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 759 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 760 if (({ lockdep_assert_held(&cgroup_mutex); \ 761 (dsct) = (d_css)->cgroup; \ 762 cgroup_is_dead(dsct); })) \ 763 ; \ 764 else 765 766 /* 767 * The default css_set - used by init and its children prior to any 768 * hierarchies being mounted. It contains a pointer to the root state 769 * for each subsystem. Also used to anchor the list of css_sets. Not 770 * reference-counted, to improve performance when child cgroups 771 * haven't been created. 772 */ 773 struct css_set init_css_set = { 774 .refcount = REFCOUNT_INIT(1), 775 .dom_cset = &init_css_set, 776 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 777 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 778 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 779 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 780 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 781 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 782 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 783 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 784 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 785 786 /* 787 * The following field is re-initialized when this cset gets linked 788 * in cgroup_init(). However, let's initialize the field 789 * statically too so that the default cgroup can be accessed safely 790 * early during boot. 791 */ 792 .dfl_cgrp = &cgrp_dfl_root.cgrp, 793 }; 794 795 static int css_set_count = 1; /* 1 for init_css_set */ 796 797 static bool css_set_threaded(struct css_set *cset) 798 { 799 return cset->dom_cset != cset; 800 } 801 802 /** 803 * css_set_populated - does a css_set contain any tasks? 804 * @cset: target css_set 805 * 806 * css_set_populated() should be the same as !!cset->nr_tasks at steady 807 * state. However, css_set_populated() can be called while a task is being 808 * added to or removed from the linked list before the nr_tasks is 809 * properly updated. Hence, we can't just look at ->nr_tasks here. 810 */ 811 static bool css_set_populated(struct css_set *cset) 812 { 813 lockdep_assert_held(&css_set_lock); 814 815 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 816 } 817 818 /** 819 * cgroup_update_populated - update the populated count of a cgroup 820 * @cgrp: the target cgroup 821 * @populated: inc or dec populated count 822 * 823 * One of the css_sets associated with @cgrp is either getting its first 824 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 825 * count is propagated towards root so that a given cgroup's 826 * nr_populated_children is zero iff none of its descendants contain any 827 * tasks. 828 * 829 * @cgrp's interface file "cgroup.populated" is zero if both 830 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 831 * 1 otherwise. When the sum changes from or to zero, userland is notified 832 * that the content of the interface file has changed. This can be used to 833 * detect when @cgrp and its descendants become populated or empty. 834 */ 835 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 836 { 837 struct cgroup *child = NULL; 838 int adj = populated ? 1 : -1; 839 840 lockdep_assert_held(&css_set_lock); 841 842 do { 843 bool was_populated = cgroup_is_populated(cgrp); 844 845 if (!child) { 846 cgrp->nr_populated_csets += adj; 847 } else { 848 if (cgroup_is_threaded(child)) 849 cgrp->nr_populated_threaded_children += adj; 850 else 851 cgrp->nr_populated_domain_children += adj; 852 } 853 854 if (was_populated == cgroup_is_populated(cgrp)) 855 break; 856 857 cgroup1_check_for_release(cgrp); 858 TRACE_CGROUP_PATH(notify_populated, cgrp, 859 cgroup_is_populated(cgrp)); 860 cgroup_file_notify(&cgrp->events_file); 861 862 child = cgrp; 863 cgrp = cgroup_parent(cgrp); 864 } while (cgrp); 865 } 866 867 /** 868 * css_set_update_populated - update populated state of a css_set 869 * @cset: target css_set 870 * @populated: whether @cset is populated or depopulated 871 * 872 * @cset is either getting the first task or losing the last. Update the 873 * populated counters of all associated cgroups accordingly. 874 */ 875 static void css_set_update_populated(struct css_set *cset, bool populated) 876 { 877 struct cgrp_cset_link *link; 878 879 lockdep_assert_held(&css_set_lock); 880 881 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 882 cgroup_update_populated(link->cgrp, populated); 883 } 884 885 /* 886 * @task is leaving, advance task iterators which are pointing to it so 887 * that they can resume at the next position. Advancing an iterator might 888 * remove it from the list, use safe walk. See css_task_iter_skip() for 889 * details. 890 */ 891 static void css_set_skip_task_iters(struct css_set *cset, 892 struct task_struct *task) 893 { 894 struct css_task_iter *it, *pos; 895 896 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 897 css_task_iter_skip(it, task); 898 } 899 900 /** 901 * css_set_move_task - move a task from one css_set to another 902 * @task: task being moved 903 * @from_cset: css_set @task currently belongs to (may be NULL) 904 * @to_cset: new css_set @task is being moved to (may be NULL) 905 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 906 * 907 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 908 * css_set, @from_cset can be NULL. If @task is being disassociated 909 * instead of moved, @to_cset can be NULL. 910 * 911 * This function automatically handles populated counter updates and 912 * css_task_iter adjustments but the caller is responsible for managing 913 * @from_cset and @to_cset's reference counts. 914 */ 915 static void css_set_move_task(struct task_struct *task, 916 struct css_set *from_cset, struct css_set *to_cset, 917 bool use_mg_tasks) 918 { 919 lockdep_assert_held(&css_set_lock); 920 921 if (to_cset && !css_set_populated(to_cset)) 922 css_set_update_populated(to_cset, true); 923 924 if (from_cset) { 925 WARN_ON_ONCE(list_empty(&task->cg_list)); 926 927 css_set_skip_task_iters(from_cset, task); 928 list_del_init(&task->cg_list); 929 if (!css_set_populated(from_cset)) 930 css_set_update_populated(from_cset, false); 931 } else { 932 WARN_ON_ONCE(!list_empty(&task->cg_list)); 933 } 934 935 if (to_cset) { 936 /* 937 * We are synchronized through cgroup_threadgroup_rwsem 938 * against PF_EXITING setting such that we can't race 939 * against cgroup_exit()/cgroup_free() dropping the css_set. 940 */ 941 WARN_ON_ONCE(task->flags & PF_EXITING); 942 943 cgroup_move_task(task, to_cset); 944 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 945 &to_cset->tasks); 946 } 947 } 948 949 /* 950 * hash table for cgroup groups. This improves the performance to find 951 * an existing css_set. This hash doesn't (currently) take into 952 * account cgroups in empty hierarchies. 953 */ 954 #define CSS_SET_HASH_BITS 7 955 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 956 957 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 958 { 959 unsigned long key = 0UL; 960 struct cgroup_subsys *ss; 961 int i; 962 963 for_each_subsys(ss, i) 964 key += (unsigned long)css[i]; 965 key = (key >> 16) ^ key; 966 967 return key; 968 } 969 970 void put_css_set_locked(struct css_set *cset) 971 { 972 struct cgrp_cset_link *link, *tmp_link; 973 struct cgroup_subsys *ss; 974 int ssid; 975 976 lockdep_assert_held(&css_set_lock); 977 978 if (!refcount_dec_and_test(&cset->refcount)) 979 return; 980 981 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 982 983 /* This css_set is dead. Unlink it and release cgroup and css refs */ 984 for_each_subsys(ss, ssid) { 985 list_del(&cset->e_cset_node[ssid]); 986 css_put(cset->subsys[ssid]); 987 } 988 hash_del(&cset->hlist); 989 css_set_count--; 990 991 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 992 list_del(&link->cset_link); 993 list_del(&link->cgrp_link); 994 if (cgroup_parent(link->cgrp)) 995 cgroup_put(link->cgrp); 996 kfree(link); 997 } 998 999 if (css_set_threaded(cset)) { 1000 list_del(&cset->threaded_csets_node); 1001 put_css_set_locked(cset->dom_cset); 1002 } 1003 1004 kfree_rcu(cset, rcu_head); 1005 } 1006 1007 /** 1008 * compare_css_sets - helper function for find_existing_css_set(). 1009 * @cset: candidate css_set being tested 1010 * @old_cset: existing css_set for a task 1011 * @new_cgrp: cgroup that's being entered by the task 1012 * @template: desired set of css pointers in css_set (pre-calculated) 1013 * 1014 * Returns true if "cset" matches "old_cset" except for the hierarchy 1015 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1016 */ 1017 static bool compare_css_sets(struct css_set *cset, 1018 struct css_set *old_cset, 1019 struct cgroup *new_cgrp, 1020 struct cgroup_subsys_state *template[]) 1021 { 1022 struct cgroup *new_dfl_cgrp; 1023 struct list_head *l1, *l2; 1024 1025 /* 1026 * On the default hierarchy, there can be csets which are 1027 * associated with the same set of cgroups but different csses. 1028 * Let's first ensure that csses match. 1029 */ 1030 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1031 return false; 1032 1033 1034 /* @cset's domain should match the default cgroup's */ 1035 if (cgroup_on_dfl(new_cgrp)) 1036 new_dfl_cgrp = new_cgrp; 1037 else 1038 new_dfl_cgrp = old_cset->dfl_cgrp; 1039 1040 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1041 return false; 1042 1043 /* 1044 * Compare cgroup pointers in order to distinguish between 1045 * different cgroups in hierarchies. As different cgroups may 1046 * share the same effective css, this comparison is always 1047 * necessary. 1048 */ 1049 l1 = &cset->cgrp_links; 1050 l2 = &old_cset->cgrp_links; 1051 while (1) { 1052 struct cgrp_cset_link *link1, *link2; 1053 struct cgroup *cgrp1, *cgrp2; 1054 1055 l1 = l1->next; 1056 l2 = l2->next; 1057 /* See if we reached the end - both lists are equal length. */ 1058 if (l1 == &cset->cgrp_links) { 1059 BUG_ON(l2 != &old_cset->cgrp_links); 1060 break; 1061 } else { 1062 BUG_ON(l2 == &old_cset->cgrp_links); 1063 } 1064 /* Locate the cgroups associated with these links. */ 1065 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1066 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1067 cgrp1 = link1->cgrp; 1068 cgrp2 = link2->cgrp; 1069 /* Hierarchies should be linked in the same order. */ 1070 BUG_ON(cgrp1->root != cgrp2->root); 1071 1072 /* 1073 * If this hierarchy is the hierarchy of the cgroup 1074 * that's changing, then we need to check that this 1075 * css_set points to the new cgroup; if it's any other 1076 * hierarchy, then this css_set should point to the 1077 * same cgroup as the old css_set. 1078 */ 1079 if (cgrp1->root == new_cgrp->root) { 1080 if (cgrp1 != new_cgrp) 1081 return false; 1082 } else { 1083 if (cgrp1 != cgrp2) 1084 return false; 1085 } 1086 } 1087 return true; 1088 } 1089 1090 /** 1091 * find_existing_css_set - init css array and find the matching css_set 1092 * @old_cset: the css_set that we're using before the cgroup transition 1093 * @cgrp: the cgroup that we're moving into 1094 * @template: out param for the new set of csses, should be clear on entry 1095 */ 1096 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1097 struct cgroup *cgrp, 1098 struct cgroup_subsys_state **template) 1099 { 1100 struct cgroup_root *root = cgrp->root; 1101 struct cgroup_subsys *ss; 1102 struct css_set *cset; 1103 unsigned long key; 1104 int i; 1105 1106 /* 1107 * Build the set of subsystem state objects that we want to see in the 1108 * new css_set. While subsystems can change globally, the entries here 1109 * won't change, so no need for locking. 1110 */ 1111 for_each_subsys(ss, i) { 1112 if (root->subsys_mask & (1UL << i)) { 1113 /* 1114 * @ss is in this hierarchy, so we want the 1115 * effective css from @cgrp. 1116 */ 1117 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1118 } else { 1119 /* 1120 * @ss is not in this hierarchy, so we don't want 1121 * to change the css. 1122 */ 1123 template[i] = old_cset->subsys[i]; 1124 } 1125 } 1126 1127 key = css_set_hash(template); 1128 hash_for_each_possible(css_set_table, cset, hlist, key) { 1129 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1130 continue; 1131 1132 /* This css_set matches what we need */ 1133 return cset; 1134 } 1135 1136 /* No existing cgroup group matched */ 1137 return NULL; 1138 } 1139 1140 static void free_cgrp_cset_links(struct list_head *links_to_free) 1141 { 1142 struct cgrp_cset_link *link, *tmp_link; 1143 1144 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1145 list_del(&link->cset_link); 1146 kfree(link); 1147 } 1148 } 1149 1150 /** 1151 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1152 * @count: the number of links to allocate 1153 * @tmp_links: list_head the allocated links are put on 1154 * 1155 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1156 * through ->cset_link. Returns 0 on success or -errno. 1157 */ 1158 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1159 { 1160 struct cgrp_cset_link *link; 1161 int i; 1162 1163 INIT_LIST_HEAD(tmp_links); 1164 1165 for (i = 0; i < count; i++) { 1166 link = kzalloc(sizeof(*link), GFP_KERNEL); 1167 if (!link) { 1168 free_cgrp_cset_links(tmp_links); 1169 return -ENOMEM; 1170 } 1171 list_add(&link->cset_link, tmp_links); 1172 } 1173 return 0; 1174 } 1175 1176 /** 1177 * link_css_set - a helper function to link a css_set to a cgroup 1178 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1179 * @cset: the css_set to be linked 1180 * @cgrp: the destination cgroup 1181 */ 1182 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1183 struct cgroup *cgrp) 1184 { 1185 struct cgrp_cset_link *link; 1186 1187 BUG_ON(list_empty(tmp_links)); 1188 1189 if (cgroup_on_dfl(cgrp)) 1190 cset->dfl_cgrp = cgrp; 1191 1192 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1193 link->cset = cset; 1194 link->cgrp = cgrp; 1195 1196 /* 1197 * Always add links to the tail of the lists so that the lists are 1198 * in chronological order. 1199 */ 1200 list_move_tail(&link->cset_link, &cgrp->cset_links); 1201 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1202 1203 if (cgroup_parent(cgrp)) 1204 cgroup_get_live(cgrp); 1205 } 1206 1207 /** 1208 * find_css_set - return a new css_set with one cgroup updated 1209 * @old_cset: the baseline css_set 1210 * @cgrp: the cgroup to be updated 1211 * 1212 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1213 * substituted into the appropriate hierarchy. 1214 */ 1215 static struct css_set *find_css_set(struct css_set *old_cset, 1216 struct cgroup *cgrp) 1217 { 1218 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1219 struct css_set *cset; 1220 struct list_head tmp_links; 1221 struct cgrp_cset_link *link; 1222 struct cgroup_subsys *ss; 1223 unsigned long key; 1224 int ssid; 1225 1226 lockdep_assert_held(&cgroup_mutex); 1227 1228 /* First see if we already have a cgroup group that matches 1229 * the desired set */ 1230 spin_lock_irq(&css_set_lock); 1231 cset = find_existing_css_set(old_cset, cgrp, template); 1232 if (cset) 1233 get_css_set(cset); 1234 spin_unlock_irq(&css_set_lock); 1235 1236 if (cset) 1237 return cset; 1238 1239 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1240 if (!cset) 1241 return NULL; 1242 1243 /* Allocate all the cgrp_cset_link objects that we'll need */ 1244 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1245 kfree(cset); 1246 return NULL; 1247 } 1248 1249 refcount_set(&cset->refcount, 1); 1250 cset->dom_cset = cset; 1251 INIT_LIST_HEAD(&cset->tasks); 1252 INIT_LIST_HEAD(&cset->mg_tasks); 1253 INIT_LIST_HEAD(&cset->dying_tasks); 1254 INIT_LIST_HEAD(&cset->task_iters); 1255 INIT_LIST_HEAD(&cset->threaded_csets); 1256 INIT_HLIST_NODE(&cset->hlist); 1257 INIT_LIST_HEAD(&cset->cgrp_links); 1258 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1259 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1260 INIT_LIST_HEAD(&cset->mg_node); 1261 1262 /* Copy the set of subsystem state objects generated in 1263 * find_existing_css_set() */ 1264 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1265 1266 spin_lock_irq(&css_set_lock); 1267 /* Add reference counts and links from the new css_set. */ 1268 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1269 struct cgroup *c = link->cgrp; 1270 1271 if (c->root == cgrp->root) 1272 c = cgrp; 1273 link_css_set(&tmp_links, cset, c); 1274 } 1275 1276 BUG_ON(!list_empty(&tmp_links)); 1277 1278 css_set_count++; 1279 1280 /* Add @cset to the hash table */ 1281 key = css_set_hash(cset->subsys); 1282 hash_add(css_set_table, &cset->hlist, key); 1283 1284 for_each_subsys(ss, ssid) { 1285 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1286 1287 list_add_tail(&cset->e_cset_node[ssid], 1288 &css->cgroup->e_csets[ssid]); 1289 css_get(css); 1290 } 1291 1292 spin_unlock_irq(&css_set_lock); 1293 1294 /* 1295 * If @cset should be threaded, look up the matching dom_cset and 1296 * link them up. We first fully initialize @cset then look for the 1297 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1298 * to stay empty until we return. 1299 */ 1300 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1301 struct css_set *dcset; 1302 1303 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1304 if (!dcset) { 1305 put_css_set(cset); 1306 return NULL; 1307 } 1308 1309 spin_lock_irq(&css_set_lock); 1310 cset->dom_cset = dcset; 1311 list_add_tail(&cset->threaded_csets_node, 1312 &dcset->threaded_csets); 1313 spin_unlock_irq(&css_set_lock); 1314 } 1315 1316 return cset; 1317 } 1318 1319 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1320 { 1321 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1322 1323 return root_cgrp->root; 1324 } 1325 1326 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1327 { 1328 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1329 1330 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1331 if (favor && !favoring) { 1332 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1333 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1334 } else if (!favor && favoring) { 1335 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1336 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1337 } 1338 } 1339 1340 static int cgroup_init_root_id(struct cgroup_root *root) 1341 { 1342 int id; 1343 1344 lockdep_assert_held(&cgroup_mutex); 1345 1346 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1347 if (id < 0) 1348 return id; 1349 1350 root->hierarchy_id = id; 1351 return 0; 1352 } 1353 1354 static void cgroup_exit_root_id(struct cgroup_root *root) 1355 { 1356 lockdep_assert_held(&cgroup_mutex); 1357 1358 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1359 } 1360 1361 void cgroup_free_root(struct cgroup_root *root) 1362 { 1363 kfree_rcu(root, rcu); 1364 } 1365 1366 static void cgroup_destroy_root(struct cgroup_root *root) 1367 { 1368 struct cgroup *cgrp = &root->cgrp; 1369 struct cgrp_cset_link *link, *tmp_link; 1370 int ret; 1371 1372 trace_cgroup_destroy_root(root); 1373 1374 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1375 1376 BUG_ON(atomic_read(&root->nr_cgrps)); 1377 BUG_ON(!list_empty(&cgrp->self.children)); 1378 1379 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 1380 CGROUP_LIFETIME_OFFLINE, cgrp); 1381 WARN_ON_ONCE(notifier_to_errno(ret)); 1382 1383 /* Rebind all subsystems back to the default hierarchy */ 1384 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1385 1386 /* 1387 * Release all the links from cset_links to this hierarchy's 1388 * root cgroup 1389 */ 1390 spin_lock_irq(&css_set_lock); 1391 1392 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1393 list_del(&link->cset_link); 1394 list_del(&link->cgrp_link); 1395 kfree(link); 1396 } 1397 1398 spin_unlock_irq(&css_set_lock); 1399 1400 WARN_ON_ONCE(list_empty(&root->root_list)); 1401 list_del_rcu(&root->root_list); 1402 cgroup_root_count--; 1403 1404 if (!have_favordynmods) 1405 cgroup_favor_dynmods(root, false); 1406 1407 cgroup_exit_root_id(root); 1408 1409 cgroup_unlock(); 1410 1411 kernfs_destroy_root(root->kf_root); 1412 cgroup_free_root(root); 1413 } 1414 1415 /* 1416 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1417 */ 1418 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1419 struct cgroup_root *root) 1420 { 1421 struct cgroup *res_cgroup = NULL; 1422 1423 if (cset == &init_css_set) { 1424 res_cgroup = &root->cgrp; 1425 } else if (root == &cgrp_dfl_root) { 1426 res_cgroup = cset->dfl_cgrp; 1427 } else { 1428 struct cgrp_cset_link *link; 1429 lockdep_assert_held(&css_set_lock); 1430 1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1432 struct cgroup *c = link->cgrp; 1433 1434 if (c->root == root) { 1435 res_cgroup = c; 1436 break; 1437 } 1438 } 1439 } 1440 1441 /* 1442 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1443 * before we remove the cgroup root from the root_list. Consequently, 1444 * when accessing a cgroup root, the cset_link may have already been 1445 * freed, resulting in a NULL res_cgroup. However, by holding the 1446 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1447 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1448 * check. 1449 */ 1450 return res_cgroup; 1451 } 1452 1453 /* 1454 * look up cgroup associated with current task's cgroup namespace on the 1455 * specified hierarchy 1456 */ 1457 static struct cgroup * 1458 current_cgns_cgroup_from_root(struct cgroup_root *root) 1459 { 1460 struct cgroup *res = NULL; 1461 struct css_set *cset; 1462 1463 lockdep_assert_held(&css_set_lock); 1464 1465 rcu_read_lock(); 1466 1467 cset = current->nsproxy->cgroup_ns->root_cset; 1468 res = __cset_cgroup_from_root(cset, root); 1469 1470 rcu_read_unlock(); 1471 1472 /* 1473 * The namespace_sem is held by current, so the root cgroup can't 1474 * be umounted. Therefore, we can ensure that the res is non-NULL. 1475 */ 1476 WARN_ON_ONCE(!res); 1477 return res; 1478 } 1479 1480 /* 1481 * Look up cgroup associated with current task's cgroup namespace on the default 1482 * hierarchy. 1483 * 1484 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1485 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1486 * pointers. 1487 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1488 * - As a bonus returned cgrp is pinned with the current because it cannot 1489 * switch cgroup_ns asynchronously. 1490 */ 1491 static struct cgroup *current_cgns_cgroup_dfl(void) 1492 { 1493 struct css_set *cset; 1494 1495 if (current->nsproxy) { 1496 cset = current->nsproxy->cgroup_ns->root_cset; 1497 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1498 } else { 1499 /* 1500 * NOTE: This function may be called from bpf_cgroup_from_id() 1501 * on a task which has already passed exit_task_namespaces() and 1502 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1503 * cgroups visible for lookups. 1504 */ 1505 return &cgrp_dfl_root.cgrp; 1506 } 1507 } 1508 1509 /* look up cgroup associated with given css_set on the specified hierarchy */ 1510 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1511 struct cgroup_root *root) 1512 { 1513 lockdep_assert_held(&css_set_lock); 1514 1515 return __cset_cgroup_from_root(cset, root); 1516 } 1517 1518 /* 1519 * Return the cgroup for "task" from the given hierarchy. Must be 1520 * called with css_set_lock held to prevent task's groups from being modified. 1521 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1522 * cgroup root from being destroyed. 1523 */ 1524 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1525 struct cgroup_root *root) 1526 { 1527 /* 1528 * No need to lock the task - since we hold css_set_lock the 1529 * task can't change groups. 1530 */ 1531 return cset_cgroup_from_root(task_css_set(task), root); 1532 } 1533 1534 /* 1535 * A task must hold cgroup_mutex to modify cgroups. 1536 * 1537 * Any task can increment and decrement the count field without lock. 1538 * So in general, code holding cgroup_mutex can't rely on the count 1539 * field not changing. However, if the count goes to zero, then only 1540 * cgroup_attach_task() can increment it again. Because a count of zero 1541 * means that no tasks are currently attached, therefore there is no 1542 * way a task attached to that cgroup can fork (the other way to 1543 * increment the count). So code holding cgroup_mutex can safely 1544 * assume that if the count is zero, it will stay zero. Similarly, if 1545 * a task holds cgroup_mutex on a cgroup with zero count, it 1546 * knows that the cgroup won't be removed, as cgroup_rmdir() 1547 * needs that mutex. 1548 * 1549 * A cgroup can only be deleted if both its 'count' of using tasks 1550 * is zero, and its list of 'children' cgroups is empty. Since all 1551 * tasks in the system use _some_ cgroup, and since there is always at 1552 * least one task in the system (init, pid == 1), therefore, root cgroup 1553 * always has either children cgroups and/or using tasks. So we don't 1554 * need a special hack to ensure that root cgroup cannot be deleted. 1555 * 1556 * P.S. One more locking exception. RCU is used to guard the 1557 * update of a tasks cgroup pointer by cgroup_attach_task() 1558 */ 1559 1560 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1561 1562 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1563 char *buf) 1564 { 1565 struct cgroup_subsys *ss = cft->ss; 1566 1567 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1568 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1569 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1570 1571 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1572 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1573 cft->name); 1574 } else { 1575 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1576 } 1577 return buf; 1578 } 1579 1580 /** 1581 * cgroup_file_mode - deduce file mode of a control file 1582 * @cft: the control file in question 1583 * 1584 * S_IRUGO for read, S_IWUSR for write. 1585 */ 1586 static umode_t cgroup_file_mode(const struct cftype *cft) 1587 { 1588 umode_t mode = 0; 1589 1590 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1591 mode |= S_IRUGO; 1592 1593 if (cft->write_u64 || cft->write_s64 || cft->write) { 1594 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1595 mode |= S_IWUGO; 1596 else 1597 mode |= S_IWUSR; 1598 } 1599 1600 return mode; 1601 } 1602 1603 /** 1604 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1605 * @subtree_control: the new subtree_control mask to consider 1606 * @this_ss_mask: available subsystems 1607 * 1608 * On the default hierarchy, a subsystem may request other subsystems to be 1609 * enabled together through its ->depends_on mask. In such cases, more 1610 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1611 * 1612 * This function calculates which subsystems need to be enabled if 1613 * @subtree_control is to be applied while restricted to @this_ss_mask. 1614 */ 1615 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1616 { 1617 u16 cur_ss_mask = subtree_control; 1618 struct cgroup_subsys *ss; 1619 int ssid; 1620 1621 lockdep_assert_held(&cgroup_mutex); 1622 1623 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1624 1625 while (true) { 1626 u16 new_ss_mask = cur_ss_mask; 1627 1628 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1629 new_ss_mask |= ss->depends_on; 1630 } while_each_subsys_mask(); 1631 1632 /* 1633 * Mask out subsystems which aren't available. This can 1634 * happen only if some depended-upon subsystems were bound 1635 * to non-default hierarchies. 1636 */ 1637 new_ss_mask &= this_ss_mask; 1638 1639 if (new_ss_mask == cur_ss_mask) 1640 break; 1641 cur_ss_mask = new_ss_mask; 1642 } 1643 1644 return cur_ss_mask; 1645 } 1646 1647 /** 1648 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1649 * @kn: the kernfs_node being serviced 1650 * 1651 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1652 * the method finishes if locking succeeded. Note that once this function 1653 * returns the cgroup returned by cgroup_kn_lock_live() may become 1654 * inaccessible any time. If the caller intends to continue to access the 1655 * cgroup, it should pin it before invoking this function. 1656 */ 1657 void cgroup_kn_unlock(struct kernfs_node *kn) 1658 { 1659 struct cgroup *cgrp; 1660 1661 if (kernfs_type(kn) == KERNFS_DIR) 1662 cgrp = kn->priv; 1663 else 1664 cgrp = kn_priv(kn); 1665 1666 cgroup_unlock(); 1667 1668 kernfs_unbreak_active_protection(kn); 1669 cgroup_put(cgrp); 1670 } 1671 1672 /** 1673 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1674 * @kn: the kernfs_node being serviced 1675 * @drain_offline: perform offline draining on the cgroup 1676 * 1677 * This helper is to be used by a cgroup kernfs method currently servicing 1678 * @kn. It breaks the active protection, performs cgroup locking and 1679 * verifies that the associated cgroup is alive. Returns the cgroup if 1680 * alive; otherwise, %NULL. A successful return should be undone by a 1681 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1682 * cgroup is drained of offlining csses before return. 1683 * 1684 * Any cgroup kernfs method implementation which requires locking the 1685 * associated cgroup should use this helper. It avoids nesting cgroup 1686 * locking under kernfs active protection and allows all kernfs operations 1687 * including self-removal. 1688 */ 1689 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1690 { 1691 struct cgroup *cgrp; 1692 1693 if (kernfs_type(kn) == KERNFS_DIR) 1694 cgrp = kn->priv; 1695 else 1696 cgrp = kn_priv(kn); 1697 1698 /* 1699 * We're gonna grab cgroup_mutex which nests outside kernfs 1700 * active_ref. cgroup liveliness check alone provides enough 1701 * protection against removal. Ensure @cgrp stays accessible and 1702 * break the active_ref protection. 1703 */ 1704 if (!cgroup_tryget(cgrp)) 1705 return NULL; 1706 kernfs_break_active_protection(kn); 1707 1708 if (drain_offline) 1709 cgroup_lock_and_drain_offline(cgrp); 1710 else 1711 cgroup_lock(); 1712 1713 if (!cgroup_is_dead(cgrp)) 1714 return cgrp; 1715 1716 cgroup_kn_unlock(kn); 1717 return NULL; 1718 } 1719 1720 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1721 { 1722 char name[CGROUP_FILE_NAME_MAX]; 1723 1724 lockdep_assert_held(&cgroup_mutex); 1725 1726 if (cft->file_offset) { 1727 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1728 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1729 1730 spin_lock_irq(&cgroup_file_kn_lock); 1731 cfile->kn = NULL; 1732 spin_unlock_irq(&cgroup_file_kn_lock); 1733 1734 timer_delete_sync(&cfile->notify_timer); 1735 } 1736 1737 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1738 } 1739 1740 /** 1741 * css_clear_dir - remove subsys files in a cgroup directory 1742 * @css: target css 1743 */ 1744 static void css_clear_dir(struct cgroup_subsys_state *css) 1745 { 1746 struct cgroup *cgrp = css->cgroup; 1747 struct cftype *cfts; 1748 1749 if (!(css->flags & CSS_VISIBLE)) 1750 return; 1751 1752 css->flags &= ~CSS_VISIBLE; 1753 1754 if (css_is_self(css)) { 1755 if (cgroup_on_dfl(cgrp)) { 1756 cgroup_addrm_files(css, cgrp, 1757 cgroup_base_files, false); 1758 if (cgroup_psi_enabled()) 1759 cgroup_addrm_files(css, cgrp, 1760 cgroup_psi_files, false); 1761 } else { 1762 cgroup_addrm_files(css, cgrp, 1763 cgroup1_base_files, false); 1764 } 1765 } else { 1766 list_for_each_entry(cfts, &css->ss->cfts, node) 1767 cgroup_addrm_files(css, cgrp, cfts, false); 1768 } 1769 } 1770 1771 /** 1772 * css_populate_dir - create subsys files in a cgroup directory 1773 * @css: target css 1774 * 1775 * On failure, no file is added. 1776 */ 1777 static int css_populate_dir(struct cgroup_subsys_state *css) 1778 { 1779 struct cgroup *cgrp = css->cgroup; 1780 struct cftype *cfts, *failed_cfts; 1781 int ret; 1782 1783 if (css->flags & CSS_VISIBLE) 1784 return 0; 1785 1786 if (css_is_self(css)) { 1787 if (cgroup_on_dfl(cgrp)) { 1788 ret = cgroup_addrm_files(css, cgrp, 1789 cgroup_base_files, true); 1790 if (ret < 0) 1791 return ret; 1792 1793 if (cgroup_psi_enabled()) { 1794 ret = cgroup_addrm_files(css, cgrp, 1795 cgroup_psi_files, true); 1796 if (ret < 0) { 1797 cgroup_addrm_files(css, cgrp, 1798 cgroup_base_files, false); 1799 return ret; 1800 } 1801 } 1802 } else { 1803 ret = cgroup_addrm_files(css, cgrp, 1804 cgroup1_base_files, true); 1805 if (ret < 0) 1806 return ret; 1807 } 1808 } else { 1809 list_for_each_entry(cfts, &css->ss->cfts, node) { 1810 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1811 if (ret < 0) { 1812 failed_cfts = cfts; 1813 goto err; 1814 } 1815 } 1816 } 1817 1818 css->flags |= CSS_VISIBLE; 1819 1820 return 0; 1821 err: 1822 list_for_each_entry(cfts, &css->ss->cfts, node) { 1823 if (cfts == failed_cfts) 1824 break; 1825 cgroup_addrm_files(css, cgrp, cfts, false); 1826 } 1827 return ret; 1828 } 1829 1830 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1831 { 1832 struct cgroup *dcgrp = &dst_root->cgrp; 1833 struct cgroup_subsys *ss; 1834 int ssid, ret; 1835 u16 dfl_disable_ss_mask = 0; 1836 1837 lockdep_assert_held(&cgroup_mutex); 1838 1839 do_each_subsys_mask(ss, ssid, ss_mask) { 1840 /* 1841 * If @ss has non-root csses attached to it, can't move. 1842 * If @ss is an implicit controller, it is exempt from this 1843 * rule and can be stolen. 1844 */ 1845 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1846 !ss->implicit_on_dfl) 1847 return -EBUSY; 1848 1849 /* can't move between two non-dummy roots either */ 1850 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1851 return -EBUSY; 1852 1853 /* 1854 * Collect ssid's that need to be disabled from default 1855 * hierarchy. 1856 */ 1857 if (ss->root == &cgrp_dfl_root) 1858 dfl_disable_ss_mask |= 1 << ssid; 1859 1860 } while_each_subsys_mask(); 1861 1862 if (dfl_disable_ss_mask) { 1863 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1864 1865 /* 1866 * Controllers from default hierarchy that need to be rebound 1867 * are all disabled together in one go. 1868 */ 1869 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1870 WARN_ON(cgroup_apply_control(scgrp)); 1871 cgroup_finalize_control(scgrp, 0); 1872 } 1873 1874 do_each_subsys_mask(ss, ssid, ss_mask) { 1875 struct cgroup_root *src_root = ss->root; 1876 struct cgroup *scgrp = &src_root->cgrp; 1877 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1878 struct css_set *cset, *cset_pos; 1879 struct css_task_iter *it; 1880 1881 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1882 1883 if (src_root != &cgrp_dfl_root) { 1884 /* disable from the source */ 1885 src_root->subsys_mask &= ~(1 << ssid); 1886 WARN_ON(cgroup_apply_control(scgrp)); 1887 cgroup_finalize_control(scgrp, 0); 1888 } 1889 1890 /* rebind */ 1891 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1892 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1893 ss->root = dst_root; 1894 1895 spin_lock_irq(&css_set_lock); 1896 css->cgroup = dcgrp; 1897 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1898 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1899 e_cset_node[ss->id]) { 1900 list_move_tail(&cset->e_cset_node[ss->id], 1901 &dcgrp->e_csets[ss->id]); 1902 /* 1903 * all css_sets of scgrp together in same order to dcgrp, 1904 * patch in-flight iterators to preserve correct iteration. 1905 * since the iterator is always advanced right away and 1906 * finished when it->cset_pos meets it->cset_head, so only 1907 * update it->cset_head is enough here. 1908 */ 1909 list_for_each_entry(it, &cset->task_iters, iters_node) 1910 if (it->cset_head == &scgrp->e_csets[ss->id]) 1911 it->cset_head = &dcgrp->e_csets[ss->id]; 1912 } 1913 spin_unlock_irq(&css_set_lock); 1914 1915 /* default hierarchy doesn't enable controllers by default */ 1916 dst_root->subsys_mask |= 1 << ssid; 1917 if (dst_root == &cgrp_dfl_root) { 1918 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1919 } else { 1920 dcgrp->subtree_control |= 1 << ssid; 1921 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1922 } 1923 1924 ret = cgroup_apply_control(dcgrp); 1925 if (ret) 1926 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1927 ss->name, ret); 1928 1929 if (ss->bind) 1930 ss->bind(css); 1931 } while_each_subsys_mask(); 1932 1933 kernfs_activate(dcgrp->kn); 1934 return 0; 1935 } 1936 1937 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1938 struct kernfs_root *kf_root) 1939 { 1940 int len = 0; 1941 char *buf = NULL; 1942 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1943 struct cgroup *ns_cgroup; 1944 1945 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1946 if (!buf) 1947 return -ENOMEM; 1948 1949 spin_lock_irq(&css_set_lock); 1950 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1951 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1952 spin_unlock_irq(&css_set_lock); 1953 1954 if (len == -E2BIG) 1955 len = -ERANGE; 1956 else if (len > 0) { 1957 seq_escape(sf, buf, " \t\n\\"); 1958 len = 0; 1959 } 1960 kfree(buf); 1961 return len; 1962 } 1963 1964 enum cgroup2_param { 1965 Opt_nsdelegate, 1966 Opt_favordynmods, 1967 Opt_memory_localevents, 1968 Opt_memory_recursiveprot, 1969 Opt_memory_hugetlb_accounting, 1970 Opt_pids_localevents, 1971 nr__cgroup2_params 1972 }; 1973 1974 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1975 fsparam_flag("nsdelegate", Opt_nsdelegate), 1976 fsparam_flag("favordynmods", Opt_favordynmods), 1977 fsparam_flag("memory_localevents", Opt_memory_localevents), 1978 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1979 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1980 fsparam_flag("pids_localevents", Opt_pids_localevents), 1981 {} 1982 }; 1983 1984 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1985 { 1986 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1987 struct fs_parse_result result; 1988 int opt; 1989 1990 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1991 if (opt < 0) 1992 return opt; 1993 1994 switch (opt) { 1995 case Opt_nsdelegate: 1996 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1997 return 0; 1998 case Opt_favordynmods: 1999 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2000 return 0; 2001 case Opt_memory_localevents: 2002 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2003 return 0; 2004 case Opt_memory_recursiveprot: 2005 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2006 return 0; 2007 case Opt_memory_hugetlb_accounting: 2008 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2009 return 0; 2010 case Opt_pids_localevents: 2011 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2012 return 0; 2013 } 2014 return -EINVAL; 2015 } 2016 2017 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 2018 { 2019 struct cgroup_file_ctx *ctx = of->priv; 2020 2021 return &ctx->peak; 2022 } 2023 2024 static void apply_cgroup_root_flags(unsigned int root_flags) 2025 { 2026 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 2027 if (root_flags & CGRP_ROOT_NS_DELEGATE) 2028 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 2029 else 2030 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 2031 2032 cgroup_favor_dynmods(&cgrp_dfl_root, 2033 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 2034 2035 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2036 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2037 else 2038 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2039 2040 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2041 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2042 else 2043 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2044 2045 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2046 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2047 else 2048 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2049 2050 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2051 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2052 else 2053 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2054 } 2055 } 2056 2057 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2058 { 2059 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2060 seq_puts(seq, ",nsdelegate"); 2061 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2062 seq_puts(seq, ",favordynmods"); 2063 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2064 seq_puts(seq, ",memory_localevents"); 2065 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2066 seq_puts(seq, ",memory_recursiveprot"); 2067 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2068 seq_puts(seq, ",memory_hugetlb_accounting"); 2069 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2070 seq_puts(seq, ",pids_localevents"); 2071 return 0; 2072 } 2073 2074 static int cgroup_reconfigure(struct fs_context *fc) 2075 { 2076 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2077 2078 apply_cgroup_root_flags(ctx->flags); 2079 return 0; 2080 } 2081 2082 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2083 { 2084 struct cgroup_subsys *ss; 2085 int ssid; 2086 2087 INIT_LIST_HEAD(&cgrp->self.sibling); 2088 INIT_LIST_HEAD(&cgrp->self.children); 2089 INIT_LIST_HEAD(&cgrp->cset_links); 2090 INIT_LIST_HEAD(&cgrp->pidlists); 2091 mutex_init(&cgrp->pidlist_mutex); 2092 cgrp->self.cgroup = cgrp; 2093 cgrp->self.flags |= CSS_ONLINE; 2094 cgrp->dom_cgrp = cgrp; 2095 cgrp->max_descendants = INT_MAX; 2096 cgrp->max_depth = INT_MAX; 2097 prev_cputime_init(&cgrp->prev_cputime); 2098 2099 for_each_subsys(ss, ssid) 2100 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2101 2102 #ifdef CONFIG_CGROUP_BPF 2103 for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++) 2104 cgrp->bpf.revisions[i] = 1; 2105 #endif 2106 2107 init_waitqueue_head(&cgrp->offline_waitq); 2108 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2109 } 2110 2111 void init_cgroup_root(struct cgroup_fs_context *ctx) 2112 { 2113 struct cgroup_root *root = ctx->root; 2114 struct cgroup *cgrp = &root->cgrp; 2115 2116 INIT_LIST_HEAD_RCU(&root->root_list); 2117 atomic_set(&root->nr_cgrps, 1); 2118 cgrp->root = root; 2119 init_cgroup_housekeeping(cgrp); 2120 2121 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2122 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2123 if (ctx->release_agent) 2124 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2125 if (ctx->name) 2126 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2127 if (ctx->cpuset_clone_children) 2128 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2129 } 2130 2131 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2132 { 2133 LIST_HEAD(tmp_links); 2134 struct cgroup *root_cgrp = &root->cgrp; 2135 struct kernfs_syscall_ops *kf_sops; 2136 struct css_set *cset; 2137 int i, ret; 2138 2139 lockdep_assert_held(&cgroup_mutex); 2140 2141 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2142 0, GFP_KERNEL); 2143 if (ret) 2144 goto out; 2145 2146 /* 2147 * We're accessing css_set_count without locking css_set_lock here, 2148 * but that's OK - it can only be increased by someone holding 2149 * cgroup_lock, and that's us. Later rebinding may disable 2150 * controllers on the default hierarchy and thus create new csets, 2151 * which can't be more than the existing ones. Allocate 2x. 2152 */ 2153 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2154 if (ret) 2155 goto cancel_ref; 2156 2157 ret = cgroup_init_root_id(root); 2158 if (ret) 2159 goto cancel_ref; 2160 2161 kf_sops = root == &cgrp_dfl_root ? 2162 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2163 2164 root->kf_root = kernfs_create_root(kf_sops, 2165 KERNFS_ROOT_CREATE_DEACTIVATED | 2166 KERNFS_ROOT_SUPPORT_EXPORTOP | 2167 KERNFS_ROOT_SUPPORT_USER_XATTR | 2168 KERNFS_ROOT_INVARIANT_PARENT, 2169 root_cgrp); 2170 if (IS_ERR(root->kf_root)) { 2171 ret = PTR_ERR(root->kf_root); 2172 goto exit_root_id; 2173 } 2174 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2175 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2176 root_cgrp->ancestors[0] = root_cgrp; 2177 2178 ret = css_populate_dir(&root_cgrp->self); 2179 if (ret) 2180 goto destroy_root; 2181 2182 ret = css_rstat_init(&root_cgrp->self); 2183 if (ret) 2184 goto destroy_root; 2185 2186 ret = rebind_subsystems(root, ss_mask); 2187 if (ret) 2188 goto exit_stats; 2189 2190 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 2191 CGROUP_LIFETIME_ONLINE, root_cgrp); 2192 WARN_ON_ONCE(notifier_to_errno(ret)); 2193 2194 trace_cgroup_setup_root(root); 2195 2196 /* 2197 * There must be no failure case after here, since rebinding takes 2198 * care of subsystems' refcounts, which are explicitly dropped in 2199 * the failure exit path. 2200 */ 2201 list_add_rcu(&root->root_list, &cgroup_roots); 2202 cgroup_root_count++; 2203 2204 /* 2205 * Link the root cgroup in this hierarchy into all the css_set 2206 * objects. 2207 */ 2208 spin_lock_irq(&css_set_lock); 2209 hash_for_each(css_set_table, i, cset, hlist) { 2210 link_css_set(&tmp_links, cset, root_cgrp); 2211 if (css_set_populated(cset)) 2212 cgroup_update_populated(root_cgrp, true); 2213 } 2214 spin_unlock_irq(&css_set_lock); 2215 2216 BUG_ON(!list_empty(&root_cgrp->self.children)); 2217 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2218 2219 ret = 0; 2220 goto out; 2221 2222 exit_stats: 2223 css_rstat_exit(&root_cgrp->self); 2224 destroy_root: 2225 kernfs_destroy_root(root->kf_root); 2226 root->kf_root = NULL; 2227 exit_root_id: 2228 cgroup_exit_root_id(root); 2229 cancel_ref: 2230 percpu_ref_exit(&root_cgrp->self.refcnt); 2231 out: 2232 free_cgrp_cset_links(&tmp_links); 2233 return ret; 2234 } 2235 2236 int cgroup_do_get_tree(struct fs_context *fc) 2237 { 2238 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2239 int ret; 2240 2241 ctx->kfc.root = ctx->root->kf_root; 2242 if (fc->fs_type == &cgroup2_fs_type) 2243 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2244 else 2245 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2246 ret = kernfs_get_tree(fc); 2247 2248 /* 2249 * In non-init cgroup namespace, instead of root cgroup's dentry, 2250 * we return the dentry corresponding to the cgroupns->root_cgrp. 2251 */ 2252 if (!ret && ctx->ns != &init_cgroup_ns) { 2253 struct dentry *nsdentry; 2254 struct super_block *sb = fc->root->d_sb; 2255 struct cgroup *cgrp; 2256 2257 cgroup_lock(); 2258 spin_lock_irq(&css_set_lock); 2259 2260 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2261 2262 spin_unlock_irq(&css_set_lock); 2263 cgroup_unlock(); 2264 2265 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2266 dput(fc->root); 2267 if (IS_ERR(nsdentry)) { 2268 deactivate_locked_super(sb); 2269 ret = PTR_ERR(nsdentry); 2270 nsdentry = NULL; 2271 } 2272 fc->root = nsdentry; 2273 } 2274 2275 if (!ctx->kfc.new_sb_created) 2276 cgroup_put(&ctx->root->cgrp); 2277 2278 return ret; 2279 } 2280 2281 /* 2282 * Destroy a cgroup filesystem context. 2283 */ 2284 static void cgroup_fs_context_free(struct fs_context *fc) 2285 { 2286 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2287 2288 kfree(ctx->name); 2289 kfree(ctx->release_agent); 2290 put_cgroup_ns(ctx->ns); 2291 kernfs_free_fs_context(fc); 2292 kfree(ctx); 2293 } 2294 2295 static int cgroup_get_tree(struct fs_context *fc) 2296 { 2297 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2298 int ret; 2299 2300 WRITE_ONCE(cgrp_dfl_visible, true); 2301 cgroup_get_live(&cgrp_dfl_root.cgrp); 2302 ctx->root = &cgrp_dfl_root; 2303 2304 ret = cgroup_do_get_tree(fc); 2305 if (!ret) 2306 apply_cgroup_root_flags(ctx->flags); 2307 return ret; 2308 } 2309 2310 static const struct fs_context_operations cgroup_fs_context_ops = { 2311 .free = cgroup_fs_context_free, 2312 .parse_param = cgroup2_parse_param, 2313 .get_tree = cgroup_get_tree, 2314 .reconfigure = cgroup_reconfigure, 2315 }; 2316 2317 static const struct fs_context_operations cgroup1_fs_context_ops = { 2318 .free = cgroup_fs_context_free, 2319 .parse_param = cgroup1_parse_param, 2320 .get_tree = cgroup1_get_tree, 2321 .reconfigure = cgroup1_reconfigure, 2322 }; 2323 2324 /* 2325 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2326 * we select the namespace we're going to use. 2327 */ 2328 static int cgroup_init_fs_context(struct fs_context *fc) 2329 { 2330 struct cgroup_fs_context *ctx; 2331 2332 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2333 if (!ctx) 2334 return -ENOMEM; 2335 2336 ctx->ns = current->nsproxy->cgroup_ns; 2337 get_cgroup_ns(ctx->ns); 2338 fc->fs_private = &ctx->kfc; 2339 if (fc->fs_type == &cgroup2_fs_type) 2340 fc->ops = &cgroup_fs_context_ops; 2341 else 2342 fc->ops = &cgroup1_fs_context_ops; 2343 put_user_ns(fc->user_ns); 2344 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2345 fc->global = true; 2346 2347 if (have_favordynmods) 2348 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2349 2350 return 0; 2351 } 2352 2353 static void cgroup_kill_sb(struct super_block *sb) 2354 { 2355 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2356 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2357 2358 /* 2359 * If @root doesn't have any children, start killing it. 2360 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2361 * 2362 * And don't kill the default root. 2363 */ 2364 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2365 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2366 percpu_ref_kill(&root->cgrp.self.refcnt); 2367 cgroup_put(&root->cgrp); 2368 kernfs_kill_sb(sb); 2369 } 2370 2371 struct file_system_type cgroup_fs_type = { 2372 .name = "cgroup", 2373 .init_fs_context = cgroup_init_fs_context, 2374 .parameters = cgroup1_fs_parameters, 2375 .kill_sb = cgroup_kill_sb, 2376 .fs_flags = FS_USERNS_MOUNT, 2377 }; 2378 2379 static struct file_system_type cgroup2_fs_type = { 2380 .name = "cgroup2", 2381 .init_fs_context = cgroup_init_fs_context, 2382 .parameters = cgroup2_fs_parameters, 2383 .kill_sb = cgroup_kill_sb, 2384 .fs_flags = FS_USERNS_MOUNT, 2385 }; 2386 2387 #ifdef CONFIG_CPUSETS_V1 2388 enum cpuset_param { 2389 Opt_cpuset_v2_mode, 2390 }; 2391 2392 static const struct fs_parameter_spec cpuset_fs_parameters[] = { 2393 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 2394 {} 2395 }; 2396 2397 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) 2398 { 2399 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2400 struct fs_parse_result result; 2401 int opt; 2402 2403 opt = fs_parse(fc, cpuset_fs_parameters, param, &result); 2404 if (opt < 0) 2405 return opt; 2406 2407 switch (opt) { 2408 case Opt_cpuset_v2_mode: 2409 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 2410 return 0; 2411 } 2412 return -EINVAL; 2413 } 2414 2415 static const struct fs_context_operations cpuset_fs_context_ops = { 2416 .get_tree = cgroup1_get_tree, 2417 .free = cgroup_fs_context_free, 2418 .parse_param = cpuset_parse_param, 2419 }; 2420 2421 /* 2422 * This is ugly, but preserves the userspace API for existing cpuset 2423 * users. If someone tries to mount the "cpuset" filesystem, we 2424 * silently switch it to mount "cgroup" instead 2425 */ 2426 static int cpuset_init_fs_context(struct fs_context *fc) 2427 { 2428 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2429 struct cgroup_fs_context *ctx; 2430 int err; 2431 2432 err = cgroup_init_fs_context(fc); 2433 if (err) { 2434 kfree(agent); 2435 return err; 2436 } 2437 2438 fc->ops = &cpuset_fs_context_ops; 2439 2440 ctx = cgroup_fc2context(fc); 2441 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2442 ctx->flags |= CGRP_ROOT_NOPREFIX; 2443 ctx->release_agent = agent; 2444 2445 get_filesystem(&cgroup_fs_type); 2446 put_filesystem(fc->fs_type); 2447 fc->fs_type = &cgroup_fs_type; 2448 2449 return 0; 2450 } 2451 2452 static struct file_system_type cpuset_fs_type = { 2453 .name = "cpuset", 2454 .init_fs_context = cpuset_init_fs_context, 2455 .parameters = cpuset_fs_parameters, 2456 .fs_flags = FS_USERNS_MOUNT, 2457 }; 2458 #endif 2459 2460 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2461 struct cgroup_namespace *ns) 2462 { 2463 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2464 2465 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2466 } 2467 2468 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2469 struct cgroup_namespace *ns) 2470 { 2471 int ret; 2472 2473 cgroup_lock(); 2474 spin_lock_irq(&css_set_lock); 2475 2476 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2477 2478 spin_unlock_irq(&css_set_lock); 2479 cgroup_unlock(); 2480 2481 return ret; 2482 } 2483 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2484 2485 /** 2486 * cgroup_attach_lock - Lock for ->attach() 2487 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2488 * 2489 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2490 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2491 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2492 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2493 * lead to deadlocks. 2494 * 2495 * Bringing up a CPU may involve creating and destroying tasks which requires 2496 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2497 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2498 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2499 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2500 * the threadgroup_rwsem to be released to create new tasks. For more details: 2501 * 2502 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2503 * 2504 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2505 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2506 * CPU hotplug is disabled on entry. 2507 */ 2508 void cgroup_attach_lock(bool lock_threadgroup) 2509 { 2510 cpus_read_lock(); 2511 if (lock_threadgroup) 2512 percpu_down_write(&cgroup_threadgroup_rwsem); 2513 } 2514 2515 /** 2516 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2517 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2518 */ 2519 void cgroup_attach_unlock(bool lock_threadgroup) 2520 { 2521 if (lock_threadgroup) 2522 percpu_up_write(&cgroup_threadgroup_rwsem); 2523 cpus_read_unlock(); 2524 } 2525 2526 /** 2527 * cgroup_migrate_add_task - add a migration target task to a migration context 2528 * @task: target task 2529 * @mgctx: target migration context 2530 * 2531 * Add @task, which is a migration target, to @mgctx->tset. This function 2532 * becomes noop if @task doesn't need to be migrated. @task's css_set 2533 * should have been added as a migration source and @task->cg_list will be 2534 * moved from the css_set's tasks list to mg_tasks one. 2535 */ 2536 static void cgroup_migrate_add_task(struct task_struct *task, 2537 struct cgroup_mgctx *mgctx) 2538 { 2539 struct css_set *cset; 2540 2541 lockdep_assert_held(&css_set_lock); 2542 2543 /* @task either already exited or can't exit until the end */ 2544 if (task->flags & PF_EXITING) 2545 return; 2546 2547 /* cgroup_threadgroup_rwsem protects racing against forks */ 2548 WARN_ON_ONCE(list_empty(&task->cg_list)); 2549 2550 cset = task_css_set(task); 2551 if (!cset->mg_src_cgrp) 2552 return; 2553 2554 mgctx->tset.nr_tasks++; 2555 2556 list_move_tail(&task->cg_list, &cset->mg_tasks); 2557 if (list_empty(&cset->mg_node)) 2558 list_add_tail(&cset->mg_node, 2559 &mgctx->tset.src_csets); 2560 if (list_empty(&cset->mg_dst_cset->mg_node)) 2561 list_add_tail(&cset->mg_dst_cset->mg_node, 2562 &mgctx->tset.dst_csets); 2563 } 2564 2565 /** 2566 * cgroup_taskset_first - reset taskset and return the first task 2567 * @tset: taskset of interest 2568 * @dst_cssp: output variable for the destination css 2569 * 2570 * @tset iteration is initialized and the first task is returned. 2571 */ 2572 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2573 struct cgroup_subsys_state **dst_cssp) 2574 { 2575 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2576 tset->cur_task = NULL; 2577 2578 return cgroup_taskset_next(tset, dst_cssp); 2579 } 2580 2581 /** 2582 * cgroup_taskset_next - iterate to the next task in taskset 2583 * @tset: taskset of interest 2584 * @dst_cssp: output variable for the destination css 2585 * 2586 * Return the next task in @tset. Iteration must have been initialized 2587 * with cgroup_taskset_first(). 2588 */ 2589 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2590 struct cgroup_subsys_state **dst_cssp) 2591 { 2592 struct css_set *cset = tset->cur_cset; 2593 struct task_struct *task = tset->cur_task; 2594 2595 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2596 if (!task) 2597 task = list_first_entry(&cset->mg_tasks, 2598 struct task_struct, cg_list); 2599 else 2600 task = list_next_entry(task, cg_list); 2601 2602 if (&task->cg_list != &cset->mg_tasks) { 2603 tset->cur_cset = cset; 2604 tset->cur_task = task; 2605 2606 /* 2607 * This function may be called both before and 2608 * after cgroup_migrate_execute(). The two cases 2609 * can be distinguished by looking at whether @cset 2610 * has its ->mg_dst_cset set. 2611 */ 2612 if (cset->mg_dst_cset) 2613 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2614 else 2615 *dst_cssp = cset->subsys[tset->ssid]; 2616 2617 return task; 2618 } 2619 2620 cset = list_next_entry(cset, mg_node); 2621 task = NULL; 2622 } 2623 2624 return NULL; 2625 } 2626 2627 /** 2628 * cgroup_migrate_execute - migrate a taskset 2629 * @mgctx: migration context 2630 * 2631 * Migrate tasks in @mgctx as setup by migration preparation functions. 2632 * This function fails iff one of the ->can_attach callbacks fails and 2633 * guarantees that either all or none of the tasks in @mgctx are migrated. 2634 * @mgctx is consumed regardless of success. 2635 */ 2636 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2637 { 2638 struct cgroup_taskset *tset = &mgctx->tset; 2639 struct cgroup_subsys *ss; 2640 struct task_struct *task, *tmp_task; 2641 struct css_set *cset, *tmp_cset; 2642 int ssid, failed_ssid, ret; 2643 2644 /* check that we can legitimately attach to the cgroup */ 2645 if (tset->nr_tasks) { 2646 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2647 if (ss->can_attach) { 2648 tset->ssid = ssid; 2649 ret = ss->can_attach(tset); 2650 if (ret) { 2651 failed_ssid = ssid; 2652 goto out_cancel_attach; 2653 } 2654 } 2655 } while_each_subsys_mask(); 2656 } 2657 2658 /* 2659 * Now that we're guaranteed success, proceed to move all tasks to 2660 * the new cgroup. There are no failure cases after here, so this 2661 * is the commit point. 2662 */ 2663 spin_lock_irq(&css_set_lock); 2664 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2665 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2666 struct css_set *from_cset = task_css_set(task); 2667 struct css_set *to_cset = cset->mg_dst_cset; 2668 2669 get_css_set(to_cset); 2670 to_cset->nr_tasks++; 2671 css_set_move_task(task, from_cset, to_cset, true); 2672 from_cset->nr_tasks--; 2673 /* 2674 * If the source or destination cgroup is frozen, 2675 * the task might require to change its state. 2676 */ 2677 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2678 to_cset->dfl_cgrp); 2679 put_css_set_locked(from_cset); 2680 2681 } 2682 } 2683 spin_unlock_irq(&css_set_lock); 2684 2685 /* 2686 * Migration is committed, all target tasks are now on dst_csets. 2687 * Nothing is sensitive to fork() after this point. Notify 2688 * controllers that migration is complete. 2689 */ 2690 tset->csets = &tset->dst_csets; 2691 2692 if (tset->nr_tasks) { 2693 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2694 if (ss->attach) { 2695 tset->ssid = ssid; 2696 ss->attach(tset); 2697 } 2698 } while_each_subsys_mask(); 2699 } 2700 2701 ret = 0; 2702 goto out_release_tset; 2703 2704 out_cancel_attach: 2705 if (tset->nr_tasks) { 2706 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2707 if (ssid == failed_ssid) 2708 break; 2709 if (ss->cancel_attach) { 2710 tset->ssid = ssid; 2711 ss->cancel_attach(tset); 2712 } 2713 } while_each_subsys_mask(); 2714 } 2715 out_release_tset: 2716 spin_lock_irq(&css_set_lock); 2717 list_splice_init(&tset->dst_csets, &tset->src_csets); 2718 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2719 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2720 list_del_init(&cset->mg_node); 2721 } 2722 spin_unlock_irq(&css_set_lock); 2723 2724 /* 2725 * Re-initialize the cgroup_taskset structure in case it is reused 2726 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2727 * iteration. 2728 */ 2729 tset->nr_tasks = 0; 2730 tset->csets = &tset->src_csets; 2731 return ret; 2732 } 2733 2734 /** 2735 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2736 * @dst_cgrp: destination cgroup to test 2737 * 2738 * On the default hierarchy, except for the mixable, (possible) thread root 2739 * and threaded cgroups, subtree_control must be zero for migration 2740 * destination cgroups with tasks so that child cgroups don't compete 2741 * against tasks. 2742 */ 2743 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2744 { 2745 /* v1 doesn't have any restriction */ 2746 if (!cgroup_on_dfl(dst_cgrp)) 2747 return 0; 2748 2749 /* verify @dst_cgrp can host resources */ 2750 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2751 return -EOPNOTSUPP; 2752 2753 /* 2754 * If @dst_cgrp is already or can become a thread root or is 2755 * threaded, it doesn't matter. 2756 */ 2757 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2758 return 0; 2759 2760 /* apply no-internal-process constraint */ 2761 if (dst_cgrp->subtree_control) 2762 return -EBUSY; 2763 2764 return 0; 2765 } 2766 2767 /** 2768 * cgroup_migrate_finish - cleanup after attach 2769 * @mgctx: migration context 2770 * 2771 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2772 * those functions for details. 2773 */ 2774 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2775 { 2776 struct css_set *cset, *tmp_cset; 2777 2778 lockdep_assert_held(&cgroup_mutex); 2779 2780 spin_lock_irq(&css_set_lock); 2781 2782 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2783 mg_src_preload_node) { 2784 cset->mg_src_cgrp = NULL; 2785 cset->mg_dst_cgrp = NULL; 2786 cset->mg_dst_cset = NULL; 2787 list_del_init(&cset->mg_src_preload_node); 2788 put_css_set_locked(cset); 2789 } 2790 2791 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2792 mg_dst_preload_node) { 2793 cset->mg_src_cgrp = NULL; 2794 cset->mg_dst_cgrp = NULL; 2795 cset->mg_dst_cset = NULL; 2796 list_del_init(&cset->mg_dst_preload_node); 2797 put_css_set_locked(cset); 2798 } 2799 2800 spin_unlock_irq(&css_set_lock); 2801 } 2802 2803 /** 2804 * cgroup_migrate_add_src - add a migration source css_set 2805 * @src_cset: the source css_set to add 2806 * @dst_cgrp: the destination cgroup 2807 * @mgctx: migration context 2808 * 2809 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2810 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2811 * up by cgroup_migrate_finish(). 2812 * 2813 * This function may be called without holding cgroup_threadgroup_rwsem 2814 * even if the target is a process. Threads may be created and destroyed 2815 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2816 * into play and the preloaded css_sets are guaranteed to cover all 2817 * migrations. 2818 */ 2819 void cgroup_migrate_add_src(struct css_set *src_cset, 2820 struct cgroup *dst_cgrp, 2821 struct cgroup_mgctx *mgctx) 2822 { 2823 struct cgroup *src_cgrp; 2824 2825 lockdep_assert_held(&cgroup_mutex); 2826 lockdep_assert_held(&css_set_lock); 2827 2828 /* 2829 * If ->dead, @src_set is associated with one or more dead cgroups 2830 * and doesn't contain any migratable tasks. Ignore it early so 2831 * that the rest of migration path doesn't get confused by it. 2832 */ 2833 if (src_cset->dead) 2834 return; 2835 2836 if (!list_empty(&src_cset->mg_src_preload_node)) 2837 return; 2838 2839 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2840 2841 WARN_ON(src_cset->mg_src_cgrp); 2842 WARN_ON(src_cset->mg_dst_cgrp); 2843 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2844 WARN_ON(!list_empty(&src_cset->mg_node)); 2845 2846 src_cset->mg_src_cgrp = src_cgrp; 2847 src_cset->mg_dst_cgrp = dst_cgrp; 2848 get_css_set(src_cset); 2849 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2850 } 2851 2852 /** 2853 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2854 * @mgctx: migration context 2855 * 2856 * Tasks are about to be moved and all the source css_sets have been 2857 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2858 * pins all destination css_sets, links each to its source, and append them 2859 * to @mgctx->preloaded_dst_csets. 2860 * 2861 * This function must be called after cgroup_migrate_add_src() has been 2862 * called on each migration source css_set. After migration is performed 2863 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2864 * @mgctx. 2865 */ 2866 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2867 { 2868 struct css_set *src_cset, *tmp_cset; 2869 2870 lockdep_assert_held(&cgroup_mutex); 2871 2872 /* look up the dst cset for each src cset and link it to src */ 2873 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2874 mg_src_preload_node) { 2875 struct css_set *dst_cset; 2876 struct cgroup_subsys *ss; 2877 int ssid; 2878 2879 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2880 if (!dst_cset) 2881 return -ENOMEM; 2882 2883 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2884 2885 /* 2886 * If src cset equals dst, it's noop. Drop the src. 2887 * cgroup_migrate() will skip the cset too. Note that we 2888 * can't handle src == dst as some nodes are used by both. 2889 */ 2890 if (src_cset == dst_cset) { 2891 src_cset->mg_src_cgrp = NULL; 2892 src_cset->mg_dst_cgrp = NULL; 2893 list_del_init(&src_cset->mg_src_preload_node); 2894 put_css_set(src_cset); 2895 put_css_set(dst_cset); 2896 continue; 2897 } 2898 2899 src_cset->mg_dst_cset = dst_cset; 2900 2901 if (list_empty(&dst_cset->mg_dst_preload_node)) 2902 list_add_tail(&dst_cset->mg_dst_preload_node, 2903 &mgctx->preloaded_dst_csets); 2904 else 2905 put_css_set(dst_cset); 2906 2907 for_each_subsys(ss, ssid) 2908 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2909 mgctx->ss_mask |= 1 << ssid; 2910 } 2911 2912 return 0; 2913 } 2914 2915 /** 2916 * cgroup_migrate - migrate a process or task to a cgroup 2917 * @leader: the leader of the process or the task to migrate 2918 * @threadgroup: whether @leader points to the whole process or a single task 2919 * @mgctx: migration context 2920 * 2921 * Migrate a process or task denoted by @leader. If migrating a process, 2922 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2923 * responsible for invoking cgroup_migrate_add_src() and 2924 * cgroup_migrate_prepare_dst() on the targets before invoking this 2925 * function and following up with cgroup_migrate_finish(). 2926 * 2927 * As long as a controller's ->can_attach() doesn't fail, this function is 2928 * guaranteed to succeed. This means that, excluding ->can_attach() 2929 * failure, when migrating multiple targets, the success or failure can be 2930 * decided for all targets by invoking group_migrate_prepare_dst() before 2931 * actually starting migrating. 2932 */ 2933 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2934 struct cgroup_mgctx *mgctx) 2935 { 2936 struct task_struct *task; 2937 2938 /* 2939 * The following thread iteration should be inside an RCU critical 2940 * section to prevent tasks from being freed while taking the snapshot. 2941 * spin_lock_irq() implies RCU critical section here. 2942 */ 2943 spin_lock_irq(&css_set_lock); 2944 task = leader; 2945 do { 2946 cgroup_migrate_add_task(task, mgctx); 2947 if (!threadgroup) 2948 break; 2949 } while_each_thread(leader, task); 2950 spin_unlock_irq(&css_set_lock); 2951 2952 return cgroup_migrate_execute(mgctx); 2953 } 2954 2955 /** 2956 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2957 * @dst_cgrp: the cgroup to attach to 2958 * @leader: the task or the leader of the threadgroup to be attached 2959 * @threadgroup: attach the whole threadgroup? 2960 * 2961 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2962 */ 2963 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2964 bool threadgroup) 2965 { 2966 DEFINE_CGROUP_MGCTX(mgctx); 2967 struct task_struct *task; 2968 int ret = 0; 2969 2970 /* look up all src csets */ 2971 spin_lock_irq(&css_set_lock); 2972 rcu_read_lock(); 2973 task = leader; 2974 do { 2975 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2976 if (!threadgroup) 2977 break; 2978 } while_each_thread(leader, task); 2979 rcu_read_unlock(); 2980 spin_unlock_irq(&css_set_lock); 2981 2982 /* prepare dst csets and commit */ 2983 ret = cgroup_migrate_prepare_dst(&mgctx); 2984 if (!ret) 2985 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2986 2987 cgroup_migrate_finish(&mgctx); 2988 2989 if (!ret) 2990 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2991 2992 return ret; 2993 } 2994 2995 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2996 bool *threadgroup_locked) 2997 { 2998 struct task_struct *tsk; 2999 pid_t pid; 3000 3001 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 3002 return ERR_PTR(-EINVAL); 3003 3004 /* 3005 * If we migrate a single thread, we don't care about threadgroup 3006 * stability. If the thread is `current`, it won't exit(2) under our 3007 * hands or change PID through exec(2). We exclude 3008 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 3009 * callers by cgroup_mutex. 3010 * Therefore, we can skip the global lock. 3011 */ 3012 lockdep_assert_held(&cgroup_mutex); 3013 *threadgroup_locked = pid || threadgroup; 3014 cgroup_attach_lock(*threadgroup_locked); 3015 3016 rcu_read_lock(); 3017 if (pid) { 3018 tsk = find_task_by_vpid(pid); 3019 if (!tsk) { 3020 tsk = ERR_PTR(-ESRCH); 3021 goto out_unlock_threadgroup; 3022 } 3023 } else { 3024 tsk = current; 3025 } 3026 3027 if (threadgroup) 3028 tsk = tsk->group_leader; 3029 3030 /* 3031 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 3032 * If userland migrates such a kthread to a non-root cgroup, it can 3033 * become trapped in a cpuset, or RT kthread may be born in a 3034 * cgroup with no rt_runtime allocated. Just say no. 3035 */ 3036 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 3037 tsk = ERR_PTR(-EINVAL); 3038 goto out_unlock_threadgroup; 3039 } 3040 3041 get_task_struct(tsk); 3042 goto out_unlock_rcu; 3043 3044 out_unlock_threadgroup: 3045 cgroup_attach_unlock(*threadgroup_locked); 3046 *threadgroup_locked = false; 3047 out_unlock_rcu: 3048 rcu_read_unlock(); 3049 return tsk; 3050 } 3051 3052 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 3053 { 3054 struct cgroup_subsys *ss; 3055 int ssid; 3056 3057 /* release reference from cgroup_procs_write_start() */ 3058 put_task_struct(task); 3059 3060 cgroup_attach_unlock(threadgroup_locked); 3061 3062 for_each_subsys(ss, ssid) 3063 if (ss->post_attach) 3064 ss->post_attach(); 3065 } 3066 3067 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3068 { 3069 struct cgroup_subsys *ss; 3070 bool printed = false; 3071 int ssid; 3072 3073 do_each_subsys_mask(ss, ssid, ss_mask) { 3074 if (printed) 3075 seq_putc(seq, ' '); 3076 seq_puts(seq, ss->name); 3077 printed = true; 3078 } while_each_subsys_mask(); 3079 if (printed) 3080 seq_putc(seq, '\n'); 3081 } 3082 3083 /* show controllers which are enabled from the parent */ 3084 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3085 { 3086 struct cgroup *cgrp = seq_css(seq)->cgroup; 3087 3088 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3089 return 0; 3090 } 3091 3092 /* show controllers which are enabled for a given cgroup's children */ 3093 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3094 { 3095 struct cgroup *cgrp = seq_css(seq)->cgroup; 3096 3097 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3098 return 0; 3099 } 3100 3101 /** 3102 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3103 * @cgrp: root of the subtree to update csses for 3104 * 3105 * @cgrp's control masks have changed and its subtree's css associations 3106 * need to be updated accordingly. This function looks up all css_sets 3107 * which are attached to the subtree, creates the matching updated css_sets 3108 * and migrates the tasks to the new ones. 3109 */ 3110 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3111 { 3112 DEFINE_CGROUP_MGCTX(mgctx); 3113 struct cgroup_subsys_state *d_css; 3114 struct cgroup *dsct; 3115 struct css_set *src_cset; 3116 bool has_tasks; 3117 int ret; 3118 3119 lockdep_assert_held(&cgroup_mutex); 3120 3121 /* look up all csses currently attached to @cgrp's subtree */ 3122 spin_lock_irq(&css_set_lock); 3123 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3124 struct cgrp_cset_link *link; 3125 3126 /* 3127 * As cgroup_update_dfl_csses() is only called by 3128 * cgroup_apply_control(). The csses associated with the 3129 * given cgrp will not be affected by changes made to 3130 * its subtree_control file. We can skip them. 3131 */ 3132 if (dsct == cgrp) 3133 continue; 3134 3135 list_for_each_entry(link, &dsct->cset_links, cset_link) 3136 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3137 } 3138 spin_unlock_irq(&css_set_lock); 3139 3140 /* 3141 * We need to write-lock threadgroup_rwsem while migrating tasks. 3142 * However, if there are no source csets for @cgrp, changing its 3143 * controllers isn't gonna produce any task migrations and the 3144 * write-locking can be skipped safely. 3145 */ 3146 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3147 cgroup_attach_lock(has_tasks); 3148 3149 /* NULL dst indicates self on default hierarchy */ 3150 ret = cgroup_migrate_prepare_dst(&mgctx); 3151 if (ret) 3152 goto out_finish; 3153 3154 spin_lock_irq(&css_set_lock); 3155 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3156 mg_src_preload_node) { 3157 struct task_struct *task, *ntask; 3158 3159 /* all tasks in src_csets need to be migrated */ 3160 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3161 cgroup_migrate_add_task(task, &mgctx); 3162 } 3163 spin_unlock_irq(&css_set_lock); 3164 3165 ret = cgroup_migrate_execute(&mgctx); 3166 out_finish: 3167 cgroup_migrate_finish(&mgctx); 3168 cgroup_attach_unlock(has_tasks); 3169 return ret; 3170 } 3171 3172 /** 3173 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3174 * @cgrp: root of the target subtree 3175 * 3176 * Because css offlining is asynchronous, userland may try to re-enable a 3177 * controller while the previous css is still around. This function grabs 3178 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3179 */ 3180 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3181 __acquires(&cgroup_mutex) 3182 { 3183 struct cgroup *dsct; 3184 struct cgroup_subsys_state *d_css; 3185 struct cgroup_subsys *ss; 3186 int ssid; 3187 3188 restart: 3189 cgroup_lock(); 3190 3191 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3192 for_each_subsys(ss, ssid) { 3193 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3194 DEFINE_WAIT(wait); 3195 3196 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3197 continue; 3198 3199 cgroup_get_live(dsct); 3200 prepare_to_wait(&dsct->offline_waitq, &wait, 3201 TASK_UNINTERRUPTIBLE); 3202 3203 cgroup_unlock(); 3204 schedule(); 3205 finish_wait(&dsct->offline_waitq, &wait); 3206 3207 cgroup_put(dsct); 3208 goto restart; 3209 } 3210 } 3211 } 3212 3213 /** 3214 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3215 * @cgrp: root of the target subtree 3216 * 3217 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3218 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3219 * itself. 3220 */ 3221 static void cgroup_save_control(struct cgroup *cgrp) 3222 { 3223 struct cgroup *dsct; 3224 struct cgroup_subsys_state *d_css; 3225 3226 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3227 dsct->old_subtree_control = dsct->subtree_control; 3228 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3229 dsct->old_dom_cgrp = dsct->dom_cgrp; 3230 } 3231 } 3232 3233 /** 3234 * cgroup_propagate_control - refresh control masks of a subtree 3235 * @cgrp: root of the target subtree 3236 * 3237 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3238 * ->subtree_control and propagate controller availability through the 3239 * subtree so that descendants don't have unavailable controllers enabled. 3240 */ 3241 static void cgroup_propagate_control(struct cgroup *cgrp) 3242 { 3243 struct cgroup *dsct; 3244 struct cgroup_subsys_state *d_css; 3245 3246 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3247 dsct->subtree_control &= cgroup_control(dsct); 3248 dsct->subtree_ss_mask = 3249 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3250 cgroup_ss_mask(dsct)); 3251 } 3252 } 3253 3254 /** 3255 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3256 * @cgrp: root of the target subtree 3257 * 3258 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3259 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3260 * itself. 3261 */ 3262 static void cgroup_restore_control(struct cgroup *cgrp) 3263 { 3264 struct cgroup *dsct; 3265 struct cgroup_subsys_state *d_css; 3266 3267 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3268 dsct->subtree_control = dsct->old_subtree_control; 3269 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3270 dsct->dom_cgrp = dsct->old_dom_cgrp; 3271 } 3272 } 3273 3274 static bool css_visible(struct cgroup_subsys_state *css) 3275 { 3276 struct cgroup_subsys *ss = css->ss; 3277 struct cgroup *cgrp = css->cgroup; 3278 3279 if (cgroup_control(cgrp) & (1 << ss->id)) 3280 return true; 3281 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3282 return false; 3283 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3284 } 3285 3286 /** 3287 * cgroup_apply_control_enable - enable or show csses according to control 3288 * @cgrp: root of the target subtree 3289 * 3290 * Walk @cgrp's subtree and create new csses or make the existing ones 3291 * visible. A css is created invisible if it's being implicitly enabled 3292 * through dependency. An invisible css is made visible when the userland 3293 * explicitly enables it. 3294 * 3295 * Returns 0 on success, -errno on failure. On failure, csses which have 3296 * been processed already aren't cleaned up. The caller is responsible for 3297 * cleaning up with cgroup_apply_control_disable(). 3298 */ 3299 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3300 { 3301 struct cgroup *dsct; 3302 struct cgroup_subsys_state *d_css; 3303 struct cgroup_subsys *ss; 3304 int ssid, ret; 3305 3306 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3307 for_each_subsys(ss, ssid) { 3308 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3309 3310 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3311 continue; 3312 3313 if (!css) { 3314 css = css_create(dsct, ss); 3315 if (IS_ERR(css)) 3316 return PTR_ERR(css); 3317 } 3318 3319 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3320 3321 if (css_visible(css)) { 3322 ret = css_populate_dir(css); 3323 if (ret) 3324 return ret; 3325 } 3326 } 3327 } 3328 3329 return 0; 3330 } 3331 3332 /** 3333 * cgroup_apply_control_disable - kill or hide csses according to control 3334 * @cgrp: root of the target subtree 3335 * 3336 * Walk @cgrp's subtree and kill and hide csses so that they match 3337 * cgroup_ss_mask() and cgroup_visible_mask(). 3338 * 3339 * A css is hidden when the userland requests it to be disabled while other 3340 * subsystems are still depending on it. The css must not actively control 3341 * resources and be in the vanilla state if it's made visible again later. 3342 * Controllers which may be depended upon should provide ->css_reset() for 3343 * this purpose. 3344 */ 3345 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3346 { 3347 struct cgroup *dsct; 3348 struct cgroup_subsys_state *d_css; 3349 struct cgroup_subsys *ss; 3350 int ssid; 3351 3352 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3353 for_each_subsys(ss, ssid) { 3354 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3355 3356 if (!css) 3357 continue; 3358 3359 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3360 3361 if (css->parent && 3362 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3363 kill_css(css); 3364 } else if (!css_visible(css)) { 3365 css_clear_dir(css); 3366 if (ss->css_reset) 3367 ss->css_reset(css); 3368 } 3369 } 3370 } 3371 } 3372 3373 /** 3374 * cgroup_apply_control - apply control mask updates to the subtree 3375 * @cgrp: root of the target subtree 3376 * 3377 * subsystems can be enabled and disabled in a subtree using the following 3378 * steps. 3379 * 3380 * 1. Call cgroup_save_control() to stash the current state. 3381 * 2. Update ->subtree_control masks in the subtree as desired. 3382 * 3. Call cgroup_apply_control() to apply the changes. 3383 * 4. Optionally perform other related operations. 3384 * 5. Call cgroup_finalize_control() to finish up. 3385 * 3386 * This function implements step 3 and propagates the mask changes 3387 * throughout @cgrp's subtree, updates csses accordingly and perform 3388 * process migrations. 3389 */ 3390 static int cgroup_apply_control(struct cgroup *cgrp) 3391 { 3392 int ret; 3393 3394 cgroup_propagate_control(cgrp); 3395 3396 ret = cgroup_apply_control_enable(cgrp); 3397 if (ret) 3398 return ret; 3399 3400 /* 3401 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3402 * making the following cgroup_update_dfl_csses() properly update 3403 * css associations of all tasks in the subtree. 3404 */ 3405 return cgroup_update_dfl_csses(cgrp); 3406 } 3407 3408 /** 3409 * cgroup_finalize_control - finalize control mask update 3410 * @cgrp: root of the target subtree 3411 * @ret: the result of the update 3412 * 3413 * Finalize control mask update. See cgroup_apply_control() for more info. 3414 */ 3415 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3416 { 3417 if (ret) { 3418 cgroup_restore_control(cgrp); 3419 cgroup_propagate_control(cgrp); 3420 } 3421 3422 cgroup_apply_control_disable(cgrp); 3423 } 3424 3425 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3426 { 3427 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3428 3429 /* if nothing is getting enabled, nothing to worry about */ 3430 if (!enable) 3431 return 0; 3432 3433 /* can @cgrp host any resources? */ 3434 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3435 return -EOPNOTSUPP; 3436 3437 /* mixables don't care */ 3438 if (cgroup_is_mixable(cgrp)) 3439 return 0; 3440 3441 if (domain_enable) { 3442 /* can't enable domain controllers inside a thread subtree */ 3443 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3444 return -EOPNOTSUPP; 3445 } else { 3446 /* 3447 * Threaded controllers can handle internal competitions 3448 * and are always allowed inside a (prospective) thread 3449 * subtree. 3450 */ 3451 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3452 return 0; 3453 } 3454 3455 /* 3456 * Controllers can't be enabled for a cgroup with tasks to avoid 3457 * child cgroups competing against tasks. 3458 */ 3459 if (cgroup_has_tasks(cgrp)) 3460 return -EBUSY; 3461 3462 return 0; 3463 } 3464 3465 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3466 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3467 char *buf, size_t nbytes, 3468 loff_t off) 3469 { 3470 u16 enable = 0, disable = 0; 3471 struct cgroup *cgrp, *child; 3472 struct cgroup_subsys *ss; 3473 char *tok; 3474 int ssid, ret; 3475 3476 /* 3477 * Parse input - space separated list of subsystem names prefixed 3478 * with either + or -. 3479 */ 3480 buf = strstrip(buf); 3481 while ((tok = strsep(&buf, " "))) { 3482 if (tok[0] == '\0') 3483 continue; 3484 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3485 if (!cgroup_ssid_enabled(ssid) || 3486 strcmp(tok + 1, ss->name)) 3487 continue; 3488 3489 if (*tok == '+') { 3490 enable |= 1 << ssid; 3491 disable &= ~(1 << ssid); 3492 } else if (*tok == '-') { 3493 disable |= 1 << ssid; 3494 enable &= ~(1 << ssid); 3495 } else { 3496 return -EINVAL; 3497 } 3498 break; 3499 } while_each_subsys_mask(); 3500 if (ssid == CGROUP_SUBSYS_COUNT) 3501 return -EINVAL; 3502 } 3503 3504 cgrp = cgroup_kn_lock_live(of->kn, true); 3505 if (!cgrp) 3506 return -ENODEV; 3507 3508 for_each_subsys(ss, ssid) { 3509 if (enable & (1 << ssid)) { 3510 if (cgrp->subtree_control & (1 << ssid)) { 3511 enable &= ~(1 << ssid); 3512 continue; 3513 } 3514 3515 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3516 ret = -ENOENT; 3517 goto out_unlock; 3518 } 3519 } else if (disable & (1 << ssid)) { 3520 if (!(cgrp->subtree_control & (1 << ssid))) { 3521 disable &= ~(1 << ssid); 3522 continue; 3523 } 3524 3525 /* a child has it enabled? */ 3526 cgroup_for_each_live_child(child, cgrp) { 3527 if (child->subtree_control & (1 << ssid)) { 3528 ret = -EBUSY; 3529 goto out_unlock; 3530 } 3531 } 3532 } 3533 } 3534 3535 if (!enable && !disable) { 3536 ret = 0; 3537 goto out_unlock; 3538 } 3539 3540 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3541 if (ret) 3542 goto out_unlock; 3543 3544 /* save and update control masks and prepare csses */ 3545 cgroup_save_control(cgrp); 3546 3547 cgrp->subtree_control |= enable; 3548 cgrp->subtree_control &= ~disable; 3549 3550 ret = cgroup_apply_control(cgrp); 3551 cgroup_finalize_control(cgrp, ret); 3552 if (ret) 3553 goto out_unlock; 3554 3555 kernfs_activate(cgrp->kn); 3556 out_unlock: 3557 cgroup_kn_unlock(of->kn); 3558 return ret ?: nbytes; 3559 } 3560 3561 /** 3562 * cgroup_enable_threaded - make @cgrp threaded 3563 * @cgrp: the target cgroup 3564 * 3565 * Called when "threaded" is written to the cgroup.type interface file and 3566 * tries to make @cgrp threaded and join the parent's resource domain. 3567 * This function is never called on the root cgroup as cgroup.type doesn't 3568 * exist on it. 3569 */ 3570 static int cgroup_enable_threaded(struct cgroup *cgrp) 3571 { 3572 struct cgroup *parent = cgroup_parent(cgrp); 3573 struct cgroup *dom_cgrp = parent->dom_cgrp; 3574 struct cgroup *dsct; 3575 struct cgroup_subsys_state *d_css; 3576 int ret; 3577 3578 lockdep_assert_held(&cgroup_mutex); 3579 3580 /* noop if already threaded */ 3581 if (cgroup_is_threaded(cgrp)) 3582 return 0; 3583 3584 /* 3585 * If @cgroup is populated or has domain controllers enabled, it 3586 * can't be switched. While the below cgroup_can_be_thread_root() 3587 * test can catch the same conditions, that's only when @parent is 3588 * not mixable, so let's check it explicitly. 3589 */ 3590 if (cgroup_is_populated(cgrp) || 3591 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3592 return -EOPNOTSUPP; 3593 3594 /* we're joining the parent's domain, ensure its validity */ 3595 if (!cgroup_is_valid_domain(dom_cgrp) || 3596 !cgroup_can_be_thread_root(dom_cgrp)) 3597 return -EOPNOTSUPP; 3598 3599 /* 3600 * The following shouldn't cause actual migrations and should 3601 * always succeed. 3602 */ 3603 cgroup_save_control(cgrp); 3604 3605 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3606 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3607 dsct->dom_cgrp = dom_cgrp; 3608 3609 ret = cgroup_apply_control(cgrp); 3610 if (!ret) 3611 parent->nr_threaded_children++; 3612 3613 cgroup_finalize_control(cgrp, ret); 3614 return ret; 3615 } 3616 3617 static int cgroup_type_show(struct seq_file *seq, void *v) 3618 { 3619 struct cgroup *cgrp = seq_css(seq)->cgroup; 3620 3621 if (cgroup_is_threaded(cgrp)) 3622 seq_puts(seq, "threaded\n"); 3623 else if (!cgroup_is_valid_domain(cgrp)) 3624 seq_puts(seq, "domain invalid\n"); 3625 else if (cgroup_is_thread_root(cgrp)) 3626 seq_puts(seq, "domain threaded\n"); 3627 else 3628 seq_puts(seq, "domain\n"); 3629 3630 return 0; 3631 } 3632 3633 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3634 size_t nbytes, loff_t off) 3635 { 3636 struct cgroup *cgrp; 3637 int ret; 3638 3639 /* only switching to threaded mode is supported */ 3640 if (strcmp(strstrip(buf), "threaded")) 3641 return -EINVAL; 3642 3643 /* drain dying csses before we re-apply (threaded) subtree control */ 3644 cgrp = cgroup_kn_lock_live(of->kn, true); 3645 if (!cgrp) 3646 return -ENOENT; 3647 3648 /* threaded can only be enabled */ 3649 ret = cgroup_enable_threaded(cgrp); 3650 3651 cgroup_kn_unlock(of->kn); 3652 return ret ?: nbytes; 3653 } 3654 3655 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3656 { 3657 struct cgroup *cgrp = seq_css(seq)->cgroup; 3658 int descendants = READ_ONCE(cgrp->max_descendants); 3659 3660 if (descendants == INT_MAX) 3661 seq_puts(seq, "max\n"); 3662 else 3663 seq_printf(seq, "%d\n", descendants); 3664 3665 return 0; 3666 } 3667 3668 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3669 char *buf, size_t nbytes, loff_t off) 3670 { 3671 struct cgroup *cgrp; 3672 int descendants; 3673 ssize_t ret; 3674 3675 buf = strstrip(buf); 3676 if (!strcmp(buf, "max")) { 3677 descendants = INT_MAX; 3678 } else { 3679 ret = kstrtoint(buf, 0, &descendants); 3680 if (ret) 3681 return ret; 3682 } 3683 3684 if (descendants < 0) 3685 return -ERANGE; 3686 3687 cgrp = cgroup_kn_lock_live(of->kn, false); 3688 if (!cgrp) 3689 return -ENOENT; 3690 3691 cgrp->max_descendants = descendants; 3692 3693 cgroup_kn_unlock(of->kn); 3694 3695 return nbytes; 3696 } 3697 3698 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3699 { 3700 struct cgroup *cgrp = seq_css(seq)->cgroup; 3701 int depth = READ_ONCE(cgrp->max_depth); 3702 3703 if (depth == INT_MAX) 3704 seq_puts(seq, "max\n"); 3705 else 3706 seq_printf(seq, "%d\n", depth); 3707 3708 return 0; 3709 } 3710 3711 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3712 char *buf, size_t nbytes, loff_t off) 3713 { 3714 struct cgroup *cgrp; 3715 ssize_t ret; 3716 int depth; 3717 3718 buf = strstrip(buf); 3719 if (!strcmp(buf, "max")) { 3720 depth = INT_MAX; 3721 } else { 3722 ret = kstrtoint(buf, 0, &depth); 3723 if (ret) 3724 return ret; 3725 } 3726 3727 if (depth < 0) 3728 return -ERANGE; 3729 3730 cgrp = cgroup_kn_lock_live(of->kn, false); 3731 if (!cgrp) 3732 return -ENOENT; 3733 3734 cgrp->max_depth = depth; 3735 3736 cgroup_kn_unlock(of->kn); 3737 3738 return nbytes; 3739 } 3740 3741 static int cgroup_events_show(struct seq_file *seq, void *v) 3742 { 3743 struct cgroup *cgrp = seq_css(seq)->cgroup; 3744 3745 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3746 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3747 3748 return 0; 3749 } 3750 3751 static int cgroup_stat_show(struct seq_file *seq, void *v) 3752 { 3753 struct cgroup *cgroup = seq_css(seq)->cgroup; 3754 struct cgroup_subsys_state *css; 3755 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3756 int ssid; 3757 3758 seq_printf(seq, "nr_descendants %d\n", 3759 cgroup->nr_descendants); 3760 3761 /* 3762 * Show the number of live and dying csses associated with each of 3763 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3764 * 3765 * Without proper lock protection, racing is possible. So the 3766 * numbers may not be consistent when that happens. 3767 */ 3768 rcu_read_lock(); 3769 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3770 dying_cnt[ssid] = -1; 3771 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3772 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3773 continue; 3774 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3775 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3776 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3777 css ? (css->nr_descendants + 1) : 0); 3778 } 3779 3780 seq_printf(seq, "nr_dying_descendants %d\n", 3781 cgroup->nr_dying_descendants); 3782 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3783 if (dying_cnt[ssid] >= 0) 3784 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3785 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3786 } 3787 rcu_read_unlock(); 3788 return 0; 3789 } 3790 3791 #ifdef CONFIG_CGROUP_SCHED 3792 /** 3793 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3794 * @cgrp: the cgroup of interest 3795 * @ss: the subsystem of interest 3796 * 3797 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3798 * or is offline, %NULL is returned. 3799 */ 3800 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3801 struct cgroup_subsys *ss) 3802 { 3803 struct cgroup_subsys_state *css; 3804 3805 rcu_read_lock(); 3806 css = cgroup_css(cgrp, ss); 3807 if (css && !css_tryget_online(css)) 3808 css = NULL; 3809 rcu_read_unlock(); 3810 3811 return css; 3812 } 3813 3814 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3815 { 3816 struct cgroup *cgrp = seq_css(seq)->cgroup; 3817 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3818 struct cgroup_subsys_state *css; 3819 int ret; 3820 3821 if (!ss->css_extra_stat_show) 3822 return 0; 3823 3824 css = cgroup_tryget_css(cgrp, ss); 3825 if (!css) 3826 return 0; 3827 3828 ret = ss->css_extra_stat_show(seq, css); 3829 css_put(css); 3830 return ret; 3831 } 3832 3833 static int cgroup_local_stat_show(struct seq_file *seq, 3834 struct cgroup *cgrp, int ssid) 3835 { 3836 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3837 struct cgroup_subsys_state *css; 3838 int ret; 3839 3840 if (!ss->css_local_stat_show) 3841 return 0; 3842 3843 css = cgroup_tryget_css(cgrp, ss); 3844 if (!css) 3845 return 0; 3846 3847 ret = ss->css_local_stat_show(seq, css); 3848 css_put(css); 3849 return ret; 3850 } 3851 #endif 3852 3853 static int cpu_stat_show(struct seq_file *seq, void *v) 3854 { 3855 int ret = 0; 3856 3857 cgroup_base_stat_cputime_show(seq); 3858 #ifdef CONFIG_CGROUP_SCHED 3859 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3860 #endif 3861 return ret; 3862 } 3863 3864 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3865 { 3866 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3867 int ret = 0; 3868 3869 #ifdef CONFIG_CGROUP_SCHED 3870 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3871 #endif 3872 return ret; 3873 } 3874 3875 #ifdef CONFIG_PSI 3876 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3877 { 3878 struct cgroup *cgrp = seq_css(seq)->cgroup; 3879 struct psi_group *psi = cgroup_psi(cgrp); 3880 3881 return psi_show(seq, psi, PSI_IO); 3882 } 3883 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3884 { 3885 struct cgroup *cgrp = seq_css(seq)->cgroup; 3886 struct psi_group *psi = cgroup_psi(cgrp); 3887 3888 return psi_show(seq, psi, PSI_MEM); 3889 } 3890 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3891 { 3892 struct cgroup *cgrp = seq_css(seq)->cgroup; 3893 struct psi_group *psi = cgroup_psi(cgrp); 3894 3895 return psi_show(seq, psi, PSI_CPU); 3896 } 3897 3898 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3899 size_t nbytes, enum psi_res res) 3900 { 3901 struct cgroup_file_ctx *ctx = of->priv; 3902 struct psi_trigger *new; 3903 struct cgroup *cgrp; 3904 struct psi_group *psi; 3905 3906 cgrp = cgroup_kn_lock_live(of->kn, false); 3907 if (!cgrp) 3908 return -ENODEV; 3909 3910 cgroup_get(cgrp); 3911 cgroup_kn_unlock(of->kn); 3912 3913 /* Allow only one trigger per file descriptor */ 3914 if (ctx->psi.trigger) { 3915 cgroup_put(cgrp); 3916 return -EBUSY; 3917 } 3918 3919 psi = cgroup_psi(cgrp); 3920 new = psi_trigger_create(psi, buf, res, of->file, of); 3921 if (IS_ERR(new)) { 3922 cgroup_put(cgrp); 3923 return PTR_ERR(new); 3924 } 3925 3926 smp_store_release(&ctx->psi.trigger, new); 3927 cgroup_put(cgrp); 3928 3929 return nbytes; 3930 } 3931 3932 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3933 char *buf, size_t nbytes, 3934 loff_t off) 3935 { 3936 return pressure_write(of, buf, nbytes, PSI_IO); 3937 } 3938 3939 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3940 char *buf, size_t nbytes, 3941 loff_t off) 3942 { 3943 return pressure_write(of, buf, nbytes, PSI_MEM); 3944 } 3945 3946 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3947 char *buf, size_t nbytes, 3948 loff_t off) 3949 { 3950 return pressure_write(of, buf, nbytes, PSI_CPU); 3951 } 3952 3953 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3954 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3955 { 3956 struct cgroup *cgrp = seq_css(seq)->cgroup; 3957 struct psi_group *psi = cgroup_psi(cgrp); 3958 3959 return psi_show(seq, psi, PSI_IRQ); 3960 } 3961 3962 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3963 char *buf, size_t nbytes, 3964 loff_t off) 3965 { 3966 return pressure_write(of, buf, nbytes, PSI_IRQ); 3967 } 3968 #endif 3969 3970 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3971 { 3972 struct cgroup *cgrp = seq_css(seq)->cgroup; 3973 struct psi_group *psi = cgroup_psi(cgrp); 3974 3975 seq_printf(seq, "%d\n", psi->enabled); 3976 3977 return 0; 3978 } 3979 3980 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3981 char *buf, size_t nbytes, 3982 loff_t off) 3983 { 3984 ssize_t ret; 3985 int enable; 3986 struct cgroup *cgrp; 3987 struct psi_group *psi; 3988 3989 ret = kstrtoint(strstrip(buf), 0, &enable); 3990 if (ret) 3991 return ret; 3992 3993 if (enable < 0 || enable > 1) 3994 return -ERANGE; 3995 3996 cgrp = cgroup_kn_lock_live(of->kn, false); 3997 if (!cgrp) 3998 return -ENOENT; 3999 4000 psi = cgroup_psi(cgrp); 4001 if (psi->enabled != enable) { 4002 int i; 4003 4004 /* show or hide {cpu,memory,io,irq}.pressure files */ 4005 for (i = 0; i < NR_PSI_RESOURCES; i++) 4006 cgroup_file_show(&cgrp->psi_files[i], enable); 4007 4008 psi->enabled = enable; 4009 if (enable) 4010 psi_cgroup_restart(psi); 4011 } 4012 4013 cgroup_kn_unlock(of->kn); 4014 4015 return nbytes; 4016 } 4017 4018 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 4019 poll_table *pt) 4020 { 4021 struct cgroup_file_ctx *ctx = of->priv; 4022 4023 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 4024 } 4025 4026 static void cgroup_pressure_release(struct kernfs_open_file *of) 4027 { 4028 struct cgroup_file_ctx *ctx = of->priv; 4029 4030 psi_trigger_destroy(ctx->psi.trigger); 4031 } 4032 4033 bool cgroup_psi_enabled(void) 4034 { 4035 if (static_branch_likely(&psi_disabled)) 4036 return false; 4037 4038 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 4039 } 4040 4041 #else /* CONFIG_PSI */ 4042 bool cgroup_psi_enabled(void) 4043 { 4044 return false; 4045 } 4046 4047 #endif /* CONFIG_PSI */ 4048 4049 static int cgroup_freeze_show(struct seq_file *seq, void *v) 4050 { 4051 struct cgroup *cgrp = seq_css(seq)->cgroup; 4052 4053 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 4054 4055 return 0; 4056 } 4057 4058 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 4059 char *buf, size_t nbytes, loff_t off) 4060 { 4061 struct cgroup *cgrp; 4062 ssize_t ret; 4063 int freeze; 4064 4065 ret = kstrtoint(strstrip(buf), 0, &freeze); 4066 if (ret) 4067 return ret; 4068 4069 if (freeze < 0 || freeze > 1) 4070 return -ERANGE; 4071 4072 cgrp = cgroup_kn_lock_live(of->kn, false); 4073 if (!cgrp) 4074 return -ENOENT; 4075 4076 cgroup_freeze(cgrp, freeze); 4077 4078 cgroup_kn_unlock(of->kn); 4079 4080 return nbytes; 4081 } 4082 4083 static void __cgroup_kill(struct cgroup *cgrp) 4084 { 4085 struct css_task_iter it; 4086 struct task_struct *task; 4087 4088 lockdep_assert_held(&cgroup_mutex); 4089 4090 spin_lock_irq(&css_set_lock); 4091 cgrp->kill_seq++; 4092 spin_unlock_irq(&css_set_lock); 4093 4094 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4095 while ((task = css_task_iter_next(&it))) { 4096 /* Ignore kernel threads here. */ 4097 if (task->flags & PF_KTHREAD) 4098 continue; 4099 4100 /* Skip tasks that are already dying. */ 4101 if (__fatal_signal_pending(task)) 4102 continue; 4103 4104 send_sig(SIGKILL, task, 0); 4105 } 4106 css_task_iter_end(&it); 4107 } 4108 4109 static void cgroup_kill(struct cgroup *cgrp) 4110 { 4111 struct cgroup_subsys_state *css; 4112 struct cgroup *dsct; 4113 4114 lockdep_assert_held(&cgroup_mutex); 4115 4116 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4117 __cgroup_kill(dsct); 4118 } 4119 4120 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4121 size_t nbytes, loff_t off) 4122 { 4123 ssize_t ret = 0; 4124 int kill; 4125 struct cgroup *cgrp; 4126 4127 ret = kstrtoint(strstrip(buf), 0, &kill); 4128 if (ret) 4129 return ret; 4130 4131 if (kill != 1) 4132 return -ERANGE; 4133 4134 cgrp = cgroup_kn_lock_live(of->kn, false); 4135 if (!cgrp) 4136 return -ENOENT; 4137 4138 /* 4139 * Killing is a process directed operation, i.e. the whole thread-group 4140 * is taken down so act like we do for cgroup.procs and only make this 4141 * writable in non-threaded cgroups. 4142 */ 4143 if (cgroup_is_threaded(cgrp)) 4144 ret = -EOPNOTSUPP; 4145 else 4146 cgroup_kill(cgrp); 4147 4148 cgroup_kn_unlock(of->kn); 4149 4150 return ret ?: nbytes; 4151 } 4152 4153 static int cgroup_file_open(struct kernfs_open_file *of) 4154 { 4155 struct cftype *cft = of_cft(of); 4156 struct cgroup_file_ctx *ctx; 4157 int ret; 4158 4159 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4160 if (!ctx) 4161 return -ENOMEM; 4162 4163 ctx->ns = current->nsproxy->cgroup_ns; 4164 get_cgroup_ns(ctx->ns); 4165 of->priv = ctx; 4166 4167 if (!cft->open) 4168 return 0; 4169 4170 ret = cft->open(of); 4171 if (ret) { 4172 put_cgroup_ns(ctx->ns); 4173 kfree(ctx); 4174 } 4175 return ret; 4176 } 4177 4178 static void cgroup_file_release(struct kernfs_open_file *of) 4179 { 4180 struct cftype *cft = of_cft(of); 4181 struct cgroup_file_ctx *ctx = of->priv; 4182 4183 if (cft->release) 4184 cft->release(of); 4185 put_cgroup_ns(ctx->ns); 4186 kfree(ctx); 4187 of->priv = NULL; 4188 } 4189 4190 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4191 size_t nbytes, loff_t off) 4192 { 4193 struct cgroup_file_ctx *ctx = of->priv; 4194 struct cgroup *cgrp = kn_priv(of->kn); 4195 struct cftype *cft = of_cft(of); 4196 struct cgroup_subsys_state *css; 4197 int ret; 4198 4199 if (!nbytes) 4200 return 0; 4201 4202 /* 4203 * If namespaces are delegation boundaries, disallow writes to 4204 * files in an non-init namespace root from inside the namespace 4205 * except for the files explicitly marked delegatable - 4206 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4207 */ 4208 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4209 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4210 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4211 return -EPERM; 4212 4213 if (cft->write) 4214 return cft->write(of, buf, nbytes, off); 4215 4216 /* 4217 * kernfs guarantees that a file isn't deleted with operations in 4218 * flight, which means that the matching css is and stays alive and 4219 * doesn't need to be pinned. The RCU locking is not necessary 4220 * either. It's just for the convenience of using cgroup_css(). 4221 */ 4222 rcu_read_lock(); 4223 css = cgroup_css(cgrp, cft->ss); 4224 rcu_read_unlock(); 4225 4226 if (cft->write_u64) { 4227 unsigned long long v; 4228 ret = kstrtoull(buf, 0, &v); 4229 if (!ret) 4230 ret = cft->write_u64(css, cft, v); 4231 } else if (cft->write_s64) { 4232 long long v; 4233 ret = kstrtoll(buf, 0, &v); 4234 if (!ret) 4235 ret = cft->write_s64(css, cft, v); 4236 } else { 4237 ret = -EINVAL; 4238 } 4239 4240 return ret ?: nbytes; 4241 } 4242 4243 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4244 { 4245 struct cftype *cft = of_cft(of); 4246 4247 if (cft->poll) 4248 return cft->poll(of, pt); 4249 4250 return kernfs_generic_poll(of, pt); 4251 } 4252 4253 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4254 { 4255 return seq_cft(seq)->seq_start(seq, ppos); 4256 } 4257 4258 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4259 { 4260 return seq_cft(seq)->seq_next(seq, v, ppos); 4261 } 4262 4263 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4264 { 4265 if (seq_cft(seq)->seq_stop) 4266 seq_cft(seq)->seq_stop(seq, v); 4267 } 4268 4269 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4270 { 4271 struct cftype *cft = seq_cft(m); 4272 struct cgroup_subsys_state *css = seq_css(m); 4273 4274 if (cft->seq_show) 4275 return cft->seq_show(m, arg); 4276 4277 if (cft->read_u64) 4278 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4279 else if (cft->read_s64) 4280 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4281 else 4282 return -EINVAL; 4283 return 0; 4284 } 4285 4286 static struct kernfs_ops cgroup_kf_single_ops = { 4287 .atomic_write_len = PAGE_SIZE, 4288 .open = cgroup_file_open, 4289 .release = cgroup_file_release, 4290 .write = cgroup_file_write, 4291 .poll = cgroup_file_poll, 4292 .seq_show = cgroup_seqfile_show, 4293 }; 4294 4295 static struct kernfs_ops cgroup_kf_ops = { 4296 .atomic_write_len = PAGE_SIZE, 4297 .open = cgroup_file_open, 4298 .release = cgroup_file_release, 4299 .write = cgroup_file_write, 4300 .poll = cgroup_file_poll, 4301 .seq_start = cgroup_seqfile_start, 4302 .seq_next = cgroup_seqfile_next, 4303 .seq_stop = cgroup_seqfile_stop, 4304 .seq_show = cgroup_seqfile_show, 4305 }; 4306 4307 static void cgroup_file_notify_timer(struct timer_list *timer) 4308 { 4309 cgroup_file_notify(container_of(timer, struct cgroup_file, 4310 notify_timer)); 4311 } 4312 4313 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4314 struct cftype *cft) 4315 { 4316 char name[CGROUP_FILE_NAME_MAX]; 4317 struct kernfs_node *kn; 4318 struct lock_class_key *key = NULL; 4319 4320 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4321 key = &cft->lockdep_key; 4322 #endif 4323 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4324 cgroup_file_mode(cft), 4325 current_fsuid(), current_fsgid(), 4326 0, cft->kf_ops, cft, 4327 NULL, key); 4328 if (IS_ERR(kn)) 4329 return PTR_ERR(kn); 4330 4331 if (cft->file_offset) { 4332 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4333 4334 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4335 4336 spin_lock_irq(&cgroup_file_kn_lock); 4337 cfile->kn = kn; 4338 spin_unlock_irq(&cgroup_file_kn_lock); 4339 } 4340 4341 return 0; 4342 } 4343 4344 /** 4345 * cgroup_addrm_files - add or remove files to a cgroup directory 4346 * @css: the target css 4347 * @cgrp: the target cgroup (usually css->cgroup) 4348 * @cfts: array of cftypes to be added 4349 * @is_add: whether to add or remove 4350 * 4351 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4352 * For removals, this function never fails. 4353 */ 4354 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4355 struct cgroup *cgrp, struct cftype cfts[], 4356 bool is_add) 4357 { 4358 struct cftype *cft, *cft_end = NULL; 4359 int ret = 0; 4360 4361 lockdep_assert_held(&cgroup_mutex); 4362 4363 restart: 4364 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4365 /* does cft->flags tell us to skip this file on @cgrp? */ 4366 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4367 continue; 4368 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4369 continue; 4370 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4371 continue; 4372 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4373 continue; 4374 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4375 continue; 4376 if (is_add) { 4377 ret = cgroup_add_file(css, cgrp, cft); 4378 if (ret) { 4379 pr_warn("%s: failed to add %s, err=%d\n", 4380 __func__, cft->name, ret); 4381 cft_end = cft; 4382 is_add = false; 4383 goto restart; 4384 } 4385 } else { 4386 cgroup_rm_file(cgrp, cft); 4387 } 4388 } 4389 return ret; 4390 } 4391 4392 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4393 { 4394 struct cgroup_subsys *ss = cfts[0].ss; 4395 struct cgroup *root = &ss->root->cgrp; 4396 struct cgroup_subsys_state *css; 4397 int ret = 0; 4398 4399 lockdep_assert_held(&cgroup_mutex); 4400 4401 /* add/rm files for all cgroups created before */ 4402 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4403 struct cgroup *cgrp = css->cgroup; 4404 4405 if (!(css->flags & CSS_VISIBLE)) 4406 continue; 4407 4408 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4409 if (ret) 4410 break; 4411 } 4412 4413 if (is_add && !ret) 4414 kernfs_activate(root->kn); 4415 return ret; 4416 } 4417 4418 static void cgroup_exit_cftypes(struct cftype *cfts) 4419 { 4420 struct cftype *cft; 4421 4422 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4423 /* free copy for custom atomic_write_len, see init_cftypes() */ 4424 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4425 kfree(cft->kf_ops); 4426 cft->kf_ops = NULL; 4427 cft->ss = NULL; 4428 4429 /* revert flags set by cgroup core while adding @cfts */ 4430 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4431 __CFTYPE_ADDED); 4432 } 4433 } 4434 4435 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4436 { 4437 struct cftype *cft; 4438 int ret = 0; 4439 4440 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4441 struct kernfs_ops *kf_ops; 4442 4443 WARN_ON(cft->ss || cft->kf_ops); 4444 4445 if (cft->flags & __CFTYPE_ADDED) { 4446 ret = -EBUSY; 4447 break; 4448 } 4449 4450 if (cft->seq_start) 4451 kf_ops = &cgroup_kf_ops; 4452 else 4453 kf_ops = &cgroup_kf_single_ops; 4454 4455 /* 4456 * Ugh... if @cft wants a custom max_write_len, we need to 4457 * make a copy of kf_ops to set its atomic_write_len. 4458 */ 4459 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4460 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4461 if (!kf_ops) { 4462 ret = -ENOMEM; 4463 break; 4464 } 4465 kf_ops->atomic_write_len = cft->max_write_len; 4466 } 4467 4468 cft->kf_ops = kf_ops; 4469 cft->ss = ss; 4470 cft->flags |= __CFTYPE_ADDED; 4471 } 4472 4473 if (ret) 4474 cgroup_exit_cftypes(cfts); 4475 return ret; 4476 } 4477 4478 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4479 { 4480 lockdep_assert_held(&cgroup_mutex); 4481 4482 list_del(&cfts->node); 4483 cgroup_apply_cftypes(cfts, false); 4484 cgroup_exit_cftypes(cfts); 4485 } 4486 4487 /** 4488 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4489 * @cfts: zero-length name terminated array of cftypes 4490 * 4491 * Unregister @cfts. Files described by @cfts are removed from all 4492 * existing cgroups and all future cgroups won't have them either. This 4493 * function can be called anytime whether @cfts' subsys is attached or not. 4494 * 4495 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4496 * registered. 4497 */ 4498 int cgroup_rm_cftypes(struct cftype *cfts) 4499 { 4500 if (!cfts || cfts[0].name[0] == '\0') 4501 return 0; 4502 4503 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4504 return -ENOENT; 4505 4506 cgroup_lock(); 4507 cgroup_rm_cftypes_locked(cfts); 4508 cgroup_unlock(); 4509 return 0; 4510 } 4511 4512 /** 4513 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4514 * @ss: target cgroup subsystem 4515 * @cfts: zero-length name terminated array of cftypes 4516 * 4517 * Register @cfts to @ss. Files described by @cfts are created for all 4518 * existing cgroups to which @ss is attached and all future cgroups will 4519 * have them too. This function can be called anytime whether @ss is 4520 * attached or not. 4521 * 4522 * Returns 0 on successful registration, -errno on failure. Note that this 4523 * function currently returns 0 as long as @cfts registration is successful 4524 * even if some file creation attempts on existing cgroups fail. 4525 */ 4526 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4527 { 4528 int ret; 4529 4530 if (!cgroup_ssid_enabled(ss->id)) 4531 return 0; 4532 4533 if (!cfts || cfts[0].name[0] == '\0') 4534 return 0; 4535 4536 ret = cgroup_init_cftypes(ss, cfts); 4537 if (ret) 4538 return ret; 4539 4540 cgroup_lock(); 4541 4542 list_add_tail(&cfts->node, &ss->cfts); 4543 ret = cgroup_apply_cftypes(cfts, true); 4544 if (ret) 4545 cgroup_rm_cftypes_locked(cfts); 4546 4547 cgroup_unlock(); 4548 return ret; 4549 } 4550 4551 /** 4552 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4553 * @ss: target cgroup subsystem 4554 * @cfts: zero-length name terminated array of cftypes 4555 * 4556 * Similar to cgroup_add_cftypes() but the added files are only used for 4557 * the default hierarchy. 4558 */ 4559 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4560 { 4561 struct cftype *cft; 4562 4563 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4564 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4565 return cgroup_add_cftypes(ss, cfts); 4566 } 4567 4568 /** 4569 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4570 * @ss: target cgroup subsystem 4571 * @cfts: zero-length name terminated array of cftypes 4572 * 4573 * Similar to cgroup_add_cftypes() but the added files are only used for 4574 * the legacy hierarchies. 4575 */ 4576 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4577 { 4578 struct cftype *cft; 4579 4580 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4581 cft->flags |= __CFTYPE_NOT_ON_DFL; 4582 return cgroup_add_cftypes(ss, cfts); 4583 } 4584 4585 /** 4586 * cgroup_file_notify - generate a file modified event for a cgroup_file 4587 * @cfile: target cgroup_file 4588 * 4589 * @cfile must have been obtained by setting cftype->file_offset. 4590 */ 4591 void cgroup_file_notify(struct cgroup_file *cfile) 4592 { 4593 unsigned long flags; 4594 4595 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4596 if (cfile->kn) { 4597 unsigned long last = cfile->notified_at; 4598 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4599 4600 if (time_in_range(jiffies, last, next)) { 4601 timer_reduce(&cfile->notify_timer, next); 4602 } else { 4603 kernfs_notify(cfile->kn); 4604 cfile->notified_at = jiffies; 4605 } 4606 } 4607 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4608 } 4609 4610 /** 4611 * cgroup_file_show - show or hide a hidden cgroup file 4612 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4613 * @show: whether to show or hide 4614 */ 4615 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4616 { 4617 struct kernfs_node *kn; 4618 4619 spin_lock_irq(&cgroup_file_kn_lock); 4620 kn = cfile->kn; 4621 kernfs_get(kn); 4622 spin_unlock_irq(&cgroup_file_kn_lock); 4623 4624 if (kn) 4625 kernfs_show(kn, show); 4626 4627 kernfs_put(kn); 4628 } 4629 4630 /** 4631 * css_next_child - find the next child of a given css 4632 * @pos: the current position (%NULL to initiate traversal) 4633 * @parent: css whose children to walk 4634 * 4635 * This function returns the next child of @parent and should be called 4636 * under either cgroup_mutex or RCU read lock. The only requirement is 4637 * that @parent and @pos are accessible. The next sibling is guaranteed to 4638 * be returned regardless of their states. 4639 * 4640 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4641 * css which finished ->css_online() is guaranteed to be visible in the 4642 * future iterations and will stay visible until the last reference is put. 4643 * A css which hasn't finished ->css_online() or already finished 4644 * ->css_offline() may show up during traversal. It's each subsystem's 4645 * responsibility to synchronize against on/offlining. 4646 */ 4647 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4648 struct cgroup_subsys_state *parent) 4649 { 4650 struct cgroup_subsys_state *next; 4651 4652 cgroup_assert_mutex_or_rcu_locked(); 4653 4654 /* 4655 * @pos could already have been unlinked from the sibling list. 4656 * Once a cgroup is removed, its ->sibling.next is no longer 4657 * updated when its next sibling changes. CSS_RELEASED is set when 4658 * @pos is taken off list, at which time its next pointer is valid, 4659 * and, as releases are serialized, the one pointed to by the next 4660 * pointer is guaranteed to not have started release yet. This 4661 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4662 * critical section, the one pointed to by its next pointer is 4663 * guaranteed to not have finished its RCU grace period even if we 4664 * have dropped rcu_read_lock() in-between iterations. 4665 * 4666 * If @pos has CSS_RELEASED set, its next pointer can't be 4667 * dereferenced; however, as each css is given a monotonically 4668 * increasing unique serial number and always appended to the 4669 * sibling list, the next one can be found by walking the parent's 4670 * children until the first css with higher serial number than 4671 * @pos's. While this path can be slower, it happens iff iteration 4672 * races against release and the race window is very small. 4673 */ 4674 if (!pos) { 4675 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4676 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4677 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4678 } else { 4679 list_for_each_entry_rcu(next, &parent->children, sibling, 4680 lockdep_is_held(&cgroup_mutex)) 4681 if (next->serial_nr > pos->serial_nr) 4682 break; 4683 } 4684 4685 /* 4686 * @next, if not pointing to the head, can be dereferenced and is 4687 * the next sibling. 4688 */ 4689 if (&next->sibling != &parent->children) 4690 return next; 4691 return NULL; 4692 } 4693 4694 /** 4695 * css_next_descendant_pre - find the next descendant for pre-order walk 4696 * @pos: the current position (%NULL to initiate traversal) 4697 * @root: css whose descendants to walk 4698 * 4699 * To be used by css_for_each_descendant_pre(). Find the next descendant 4700 * to visit for pre-order traversal of @root's descendants. @root is 4701 * included in the iteration and the first node to be visited. 4702 * 4703 * While this function requires cgroup_mutex or RCU read locking, it 4704 * doesn't require the whole traversal to be contained in a single critical 4705 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4706 * This function will return the correct next descendant as long as both @pos 4707 * and @root are accessible and @pos is a descendant of @root. 4708 * 4709 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4710 * css which finished ->css_online() is guaranteed to be visible in the 4711 * future iterations and will stay visible until the last reference is put. 4712 * A css which hasn't finished ->css_online() or already finished 4713 * ->css_offline() may show up during traversal. It's each subsystem's 4714 * responsibility to synchronize against on/offlining. 4715 */ 4716 struct cgroup_subsys_state * 4717 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4718 struct cgroup_subsys_state *root) 4719 { 4720 struct cgroup_subsys_state *next; 4721 4722 cgroup_assert_mutex_or_rcu_locked(); 4723 4724 /* if first iteration, visit @root */ 4725 if (!pos) 4726 return root; 4727 4728 /* visit the first child if exists */ 4729 next = css_next_child(NULL, pos); 4730 if (next) 4731 return next; 4732 4733 /* no child, visit my or the closest ancestor's next sibling */ 4734 while (pos != root) { 4735 next = css_next_child(pos, pos->parent); 4736 if (next) 4737 return next; 4738 pos = pos->parent; 4739 } 4740 4741 return NULL; 4742 } 4743 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4744 4745 /** 4746 * css_rightmost_descendant - return the rightmost descendant of a css 4747 * @pos: css of interest 4748 * 4749 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4750 * is returned. This can be used during pre-order traversal to skip 4751 * subtree of @pos. 4752 * 4753 * While this function requires cgroup_mutex or RCU read locking, it 4754 * doesn't require the whole traversal to be contained in a single critical 4755 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4756 * This function will return the correct rightmost descendant as long as @pos 4757 * is accessible. 4758 */ 4759 struct cgroup_subsys_state * 4760 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4761 { 4762 struct cgroup_subsys_state *last, *tmp; 4763 4764 cgroup_assert_mutex_or_rcu_locked(); 4765 4766 do { 4767 last = pos; 4768 /* ->prev isn't RCU safe, walk ->next till the end */ 4769 pos = NULL; 4770 css_for_each_child(tmp, last) 4771 pos = tmp; 4772 } while (pos); 4773 4774 return last; 4775 } 4776 4777 static struct cgroup_subsys_state * 4778 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4779 { 4780 struct cgroup_subsys_state *last; 4781 4782 do { 4783 last = pos; 4784 pos = css_next_child(NULL, pos); 4785 } while (pos); 4786 4787 return last; 4788 } 4789 4790 /** 4791 * css_next_descendant_post - find the next descendant for post-order walk 4792 * @pos: the current position (%NULL to initiate traversal) 4793 * @root: css whose descendants to walk 4794 * 4795 * To be used by css_for_each_descendant_post(). Find the next descendant 4796 * to visit for post-order traversal of @root's descendants. @root is 4797 * included in the iteration and the last node to be visited. 4798 * 4799 * While this function requires cgroup_mutex or RCU read locking, it 4800 * doesn't require the whole traversal to be contained in a single critical 4801 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4802 * This function will return the correct next descendant as long as both @pos 4803 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4804 * 4805 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4806 * css which finished ->css_online() is guaranteed to be visible in the 4807 * future iterations and will stay visible until the last reference is put. 4808 * A css which hasn't finished ->css_online() or already finished 4809 * ->css_offline() may show up during traversal. It's each subsystem's 4810 * responsibility to synchronize against on/offlining. 4811 */ 4812 struct cgroup_subsys_state * 4813 css_next_descendant_post(struct cgroup_subsys_state *pos, 4814 struct cgroup_subsys_state *root) 4815 { 4816 struct cgroup_subsys_state *next; 4817 4818 cgroup_assert_mutex_or_rcu_locked(); 4819 4820 /* if first iteration, visit leftmost descendant which may be @root */ 4821 if (!pos) 4822 return css_leftmost_descendant(root); 4823 4824 /* if we visited @root, we're done */ 4825 if (pos == root) 4826 return NULL; 4827 4828 /* if there's an unvisited sibling, visit its leftmost descendant */ 4829 next = css_next_child(pos, pos->parent); 4830 if (next) 4831 return css_leftmost_descendant(next); 4832 4833 /* no sibling left, visit parent */ 4834 return pos->parent; 4835 } 4836 4837 /** 4838 * css_has_online_children - does a css have online children 4839 * @css: the target css 4840 * 4841 * Returns %true if @css has any online children; otherwise, %false. This 4842 * function can be called from any context but the caller is responsible 4843 * for synchronizing against on/offlining as necessary. 4844 */ 4845 bool css_has_online_children(struct cgroup_subsys_state *css) 4846 { 4847 struct cgroup_subsys_state *child; 4848 bool ret = false; 4849 4850 rcu_read_lock(); 4851 css_for_each_child(child, css) { 4852 if (child->flags & CSS_ONLINE) { 4853 ret = true; 4854 break; 4855 } 4856 } 4857 rcu_read_unlock(); 4858 return ret; 4859 } 4860 4861 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4862 { 4863 struct list_head *l; 4864 struct cgrp_cset_link *link; 4865 struct css_set *cset; 4866 4867 lockdep_assert_held(&css_set_lock); 4868 4869 /* find the next threaded cset */ 4870 if (it->tcset_pos) { 4871 l = it->tcset_pos->next; 4872 4873 if (l != it->tcset_head) { 4874 it->tcset_pos = l; 4875 return container_of(l, struct css_set, 4876 threaded_csets_node); 4877 } 4878 4879 it->tcset_pos = NULL; 4880 } 4881 4882 /* find the next cset */ 4883 l = it->cset_pos; 4884 l = l->next; 4885 if (l == it->cset_head) { 4886 it->cset_pos = NULL; 4887 return NULL; 4888 } 4889 4890 if (it->ss) { 4891 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4892 } else { 4893 link = list_entry(l, struct cgrp_cset_link, cset_link); 4894 cset = link->cset; 4895 } 4896 4897 it->cset_pos = l; 4898 4899 /* initialize threaded css_set walking */ 4900 if (it->flags & CSS_TASK_ITER_THREADED) { 4901 if (it->cur_dcset) 4902 put_css_set_locked(it->cur_dcset); 4903 it->cur_dcset = cset; 4904 get_css_set(cset); 4905 4906 it->tcset_head = &cset->threaded_csets; 4907 it->tcset_pos = &cset->threaded_csets; 4908 } 4909 4910 return cset; 4911 } 4912 4913 /** 4914 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4915 * @it: the iterator to advance 4916 * 4917 * Advance @it to the next css_set to walk. 4918 */ 4919 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4920 { 4921 struct css_set *cset; 4922 4923 lockdep_assert_held(&css_set_lock); 4924 4925 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4926 while ((cset = css_task_iter_next_css_set(it))) { 4927 if (!list_empty(&cset->tasks)) { 4928 it->cur_tasks_head = &cset->tasks; 4929 break; 4930 } else if (!list_empty(&cset->mg_tasks)) { 4931 it->cur_tasks_head = &cset->mg_tasks; 4932 break; 4933 } else if (!list_empty(&cset->dying_tasks)) { 4934 it->cur_tasks_head = &cset->dying_tasks; 4935 break; 4936 } 4937 } 4938 if (!cset) { 4939 it->task_pos = NULL; 4940 return; 4941 } 4942 it->task_pos = it->cur_tasks_head->next; 4943 4944 /* 4945 * We don't keep css_sets locked across iteration steps and thus 4946 * need to take steps to ensure that iteration can be resumed after 4947 * the lock is re-acquired. Iteration is performed at two levels - 4948 * css_sets and tasks in them. 4949 * 4950 * Once created, a css_set never leaves its cgroup lists, so a 4951 * pinned css_set is guaranteed to stay put and we can resume 4952 * iteration afterwards. 4953 * 4954 * Tasks may leave @cset across iteration steps. This is resolved 4955 * by registering each iterator with the css_set currently being 4956 * walked and making css_set_move_task() advance iterators whose 4957 * next task is leaving. 4958 */ 4959 if (it->cur_cset) { 4960 list_del(&it->iters_node); 4961 put_css_set_locked(it->cur_cset); 4962 } 4963 get_css_set(cset); 4964 it->cur_cset = cset; 4965 list_add(&it->iters_node, &cset->task_iters); 4966 } 4967 4968 static void css_task_iter_skip(struct css_task_iter *it, 4969 struct task_struct *task) 4970 { 4971 lockdep_assert_held(&css_set_lock); 4972 4973 if (it->task_pos == &task->cg_list) { 4974 it->task_pos = it->task_pos->next; 4975 it->flags |= CSS_TASK_ITER_SKIPPED; 4976 } 4977 } 4978 4979 static void css_task_iter_advance(struct css_task_iter *it) 4980 { 4981 struct task_struct *task; 4982 4983 lockdep_assert_held(&css_set_lock); 4984 repeat: 4985 if (it->task_pos) { 4986 /* 4987 * Advance iterator to find next entry. We go through cset 4988 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4989 * the next cset. 4990 */ 4991 if (it->flags & CSS_TASK_ITER_SKIPPED) 4992 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4993 else 4994 it->task_pos = it->task_pos->next; 4995 4996 if (it->task_pos == &it->cur_cset->tasks) { 4997 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4998 it->task_pos = it->cur_tasks_head->next; 4999 } 5000 if (it->task_pos == &it->cur_cset->mg_tasks) { 5001 it->cur_tasks_head = &it->cur_cset->dying_tasks; 5002 it->task_pos = it->cur_tasks_head->next; 5003 } 5004 if (it->task_pos == &it->cur_cset->dying_tasks) 5005 css_task_iter_advance_css_set(it); 5006 } else { 5007 /* called from start, proceed to the first cset */ 5008 css_task_iter_advance_css_set(it); 5009 } 5010 5011 if (!it->task_pos) 5012 return; 5013 5014 task = list_entry(it->task_pos, struct task_struct, cg_list); 5015 5016 if (it->flags & CSS_TASK_ITER_PROCS) { 5017 /* if PROCS, skip over tasks which aren't group leaders */ 5018 if (!thread_group_leader(task)) 5019 goto repeat; 5020 5021 /* and dying leaders w/o live member threads */ 5022 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 5023 !atomic_read(&task->signal->live)) 5024 goto repeat; 5025 } else { 5026 /* skip all dying ones */ 5027 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 5028 goto repeat; 5029 } 5030 } 5031 5032 /** 5033 * css_task_iter_start - initiate task iteration 5034 * @css: the css to walk tasks of 5035 * @flags: CSS_TASK_ITER_* flags 5036 * @it: the task iterator to use 5037 * 5038 * Initiate iteration through the tasks of @css. The caller can call 5039 * css_task_iter_next() to walk through the tasks until the function 5040 * returns NULL. On completion of iteration, css_task_iter_end() must be 5041 * called. 5042 */ 5043 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 5044 struct css_task_iter *it) 5045 { 5046 unsigned long irqflags; 5047 5048 memset(it, 0, sizeof(*it)); 5049 5050 spin_lock_irqsave(&css_set_lock, irqflags); 5051 5052 it->ss = css->ss; 5053 it->flags = flags; 5054 5055 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 5056 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 5057 else 5058 it->cset_pos = &css->cgroup->cset_links; 5059 5060 it->cset_head = it->cset_pos; 5061 5062 css_task_iter_advance(it); 5063 5064 spin_unlock_irqrestore(&css_set_lock, irqflags); 5065 } 5066 5067 /** 5068 * css_task_iter_next - return the next task for the iterator 5069 * @it: the task iterator being iterated 5070 * 5071 * The "next" function for task iteration. @it should have been 5072 * initialized via css_task_iter_start(). Returns NULL when the iteration 5073 * reaches the end. 5074 */ 5075 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5076 { 5077 unsigned long irqflags; 5078 5079 if (it->cur_task) { 5080 put_task_struct(it->cur_task); 5081 it->cur_task = NULL; 5082 } 5083 5084 spin_lock_irqsave(&css_set_lock, irqflags); 5085 5086 /* @it may be half-advanced by skips, finish advancing */ 5087 if (it->flags & CSS_TASK_ITER_SKIPPED) 5088 css_task_iter_advance(it); 5089 5090 if (it->task_pos) { 5091 it->cur_task = list_entry(it->task_pos, struct task_struct, 5092 cg_list); 5093 get_task_struct(it->cur_task); 5094 css_task_iter_advance(it); 5095 } 5096 5097 spin_unlock_irqrestore(&css_set_lock, irqflags); 5098 5099 return it->cur_task; 5100 } 5101 5102 /** 5103 * css_task_iter_end - finish task iteration 5104 * @it: the task iterator to finish 5105 * 5106 * Finish task iteration started by css_task_iter_start(). 5107 */ 5108 void css_task_iter_end(struct css_task_iter *it) 5109 { 5110 unsigned long irqflags; 5111 5112 if (it->cur_cset) { 5113 spin_lock_irqsave(&css_set_lock, irqflags); 5114 list_del(&it->iters_node); 5115 put_css_set_locked(it->cur_cset); 5116 spin_unlock_irqrestore(&css_set_lock, irqflags); 5117 } 5118 5119 if (it->cur_dcset) 5120 put_css_set(it->cur_dcset); 5121 5122 if (it->cur_task) 5123 put_task_struct(it->cur_task); 5124 } 5125 5126 static void cgroup_procs_release(struct kernfs_open_file *of) 5127 { 5128 struct cgroup_file_ctx *ctx = of->priv; 5129 5130 if (ctx->procs.started) 5131 css_task_iter_end(&ctx->procs.iter); 5132 } 5133 5134 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5135 { 5136 struct kernfs_open_file *of = s->private; 5137 struct cgroup_file_ctx *ctx = of->priv; 5138 5139 if (pos) 5140 (*pos)++; 5141 5142 return css_task_iter_next(&ctx->procs.iter); 5143 } 5144 5145 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5146 unsigned int iter_flags) 5147 { 5148 struct kernfs_open_file *of = s->private; 5149 struct cgroup *cgrp = seq_css(s)->cgroup; 5150 struct cgroup_file_ctx *ctx = of->priv; 5151 struct css_task_iter *it = &ctx->procs.iter; 5152 5153 /* 5154 * When a seq_file is seeked, it's always traversed sequentially 5155 * from position 0, so we can simply keep iterating on !0 *pos. 5156 */ 5157 if (!ctx->procs.started) { 5158 if (WARN_ON_ONCE((*pos))) 5159 return ERR_PTR(-EINVAL); 5160 css_task_iter_start(&cgrp->self, iter_flags, it); 5161 ctx->procs.started = true; 5162 } else if (!(*pos)) { 5163 css_task_iter_end(it); 5164 css_task_iter_start(&cgrp->self, iter_flags, it); 5165 } else 5166 return it->cur_task; 5167 5168 return cgroup_procs_next(s, NULL, NULL); 5169 } 5170 5171 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5172 { 5173 struct cgroup *cgrp = seq_css(s)->cgroup; 5174 5175 /* 5176 * All processes of a threaded subtree belong to the domain cgroup 5177 * of the subtree. Only threads can be distributed across the 5178 * subtree. Reject reads on cgroup.procs in the subtree proper. 5179 * They're always empty anyway. 5180 */ 5181 if (cgroup_is_threaded(cgrp)) 5182 return ERR_PTR(-EOPNOTSUPP); 5183 5184 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5185 CSS_TASK_ITER_THREADED); 5186 } 5187 5188 static int cgroup_procs_show(struct seq_file *s, void *v) 5189 { 5190 seq_printf(s, "%d\n", task_pid_vnr(v)); 5191 return 0; 5192 } 5193 5194 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5195 { 5196 int ret; 5197 struct inode *inode; 5198 5199 lockdep_assert_held(&cgroup_mutex); 5200 5201 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5202 if (!inode) 5203 return -ENOMEM; 5204 5205 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5206 iput(inode); 5207 return ret; 5208 } 5209 5210 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5211 struct cgroup *dst_cgrp, 5212 struct super_block *sb, 5213 struct cgroup_namespace *ns) 5214 { 5215 struct cgroup *com_cgrp = src_cgrp; 5216 int ret; 5217 5218 lockdep_assert_held(&cgroup_mutex); 5219 5220 /* find the common ancestor */ 5221 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5222 com_cgrp = cgroup_parent(com_cgrp); 5223 5224 /* %current should be authorized to migrate to the common ancestor */ 5225 ret = cgroup_may_write(com_cgrp, sb); 5226 if (ret) 5227 return ret; 5228 5229 /* 5230 * If namespaces are delegation boundaries, %current must be able 5231 * to see both source and destination cgroups from its namespace. 5232 */ 5233 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5234 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5235 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5236 return -ENOENT; 5237 5238 return 0; 5239 } 5240 5241 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5242 struct cgroup *dst_cgrp, 5243 struct super_block *sb, bool threadgroup, 5244 struct cgroup_namespace *ns) 5245 { 5246 int ret = 0; 5247 5248 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5249 if (ret) 5250 return ret; 5251 5252 ret = cgroup_migrate_vet_dst(dst_cgrp); 5253 if (ret) 5254 return ret; 5255 5256 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5257 ret = -EOPNOTSUPP; 5258 5259 return ret; 5260 } 5261 5262 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5263 bool threadgroup) 5264 { 5265 struct cgroup_file_ctx *ctx = of->priv; 5266 struct cgroup *src_cgrp, *dst_cgrp; 5267 struct task_struct *task; 5268 const struct cred *saved_cred; 5269 ssize_t ret; 5270 bool threadgroup_locked; 5271 5272 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5273 if (!dst_cgrp) 5274 return -ENODEV; 5275 5276 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5277 ret = PTR_ERR_OR_ZERO(task); 5278 if (ret) 5279 goto out_unlock; 5280 5281 /* find the source cgroup */ 5282 spin_lock_irq(&css_set_lock); 5283 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5284 spin_unlock_irq(&css_set_lock); 5285 5286 /* 5287 * Process and thread migrations follow same delegation rule. Check 5288 * permissions using the credentials from file open to protect against 5289 * inherited fd attacks. 5290 */ 5291 saved_cred = override_creds(of->file->f_cred); 5292 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5293 of->file->f_path.dentry->d_sb, 5294 threadgroup, ctx->ns); 5295 revert_creds(saved_cred); 5296 if (ret) 5297 goto out_finish; 5298 5299 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5300 5301 out_finish: 5302 cgroup_procs_write_finish(task, threadgroup_locked); 5303 out_unlock: 5304 cgroup_kn_unlock(of->kn); 5305 5306 return ret; 5307 } 5308 5309 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5310 char *buf, size_t nbytes, loff_t off) 5311 { 5312 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5313 } 5314 5315 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5316 { 5317 return __cgroup_procs_start(s, pos, 0); 5318 } 5319 5320 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5321 char *buf, size_t nbytes, loff_t off) 5322 { 5323 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5324 } 5325 5326 /* cgroup core interface files for the default hierarchy */ 5327 static struct cftype cgroup_base_files[] = { 5328 { 5329 .name = "cgroup.type", 5330 .flags = CFTYPE_NOT_ON_ROOT, 5331 .seq_show = cgroup_type_show, 5332 .write = cgroup_type_write, 5333 }, 5334 { 5335 .name = "cgroup.procs", 5336 .flags = CFTYPE_NS_DELEGATABLE, 5337 .file_offset = offsetof(struct cgroup, procs_file), 5338 .release = cgroup_procs_release, 5339 .seq_start = cgroup_procs_start, 5340 .seq_next = cgroup_procs_next, 5341 .seq_show = cgroup_procs_show, 5342 .write = cgroup_procs_write, 5343 }, 5344 { 5345 .name = "cgroup.threads", 5346 .flags = CFTYPE_NS_DELEGATABLE, 5347 .release = cgroup_procs_release, 5348 .seq_start = cgroup_threads_start, 5349 .seq_next = cgroup_procs_next, 5350 .seq_show = cgroup_procs_show, 5351 .write = cgroup_threads_write, 5352 }, 5353 { 5354 .name = "cgroup.controllers", 5355 .seq_show = cgroup_controllers_show, 5356 }, 5357 { 5358 .name = "cgroup.subtree_control", 5359 .flags = CFTYPE_NS_DELEGATABLE, 5360 .seq_show = cgroup_subtree_control_show, 5361 .write = cgroup_subtree_control_write, 5362 }, 5363 { 5364 .name = "cgroup.events", 5365 .flags = CFTYPE_NOT_ON_ROOT, 5366 .file_offset = offsetof(struct cgroup, events_file), 5367 .seq_show = cgroup_events_show, 5368 }, 5369 { 5370 .name = "cgroup.max.descendants", 5371 .seq_show = cgroup_max_descendants_show, 5372 .write = cgroup_max_descendants_write, 5373 }, 5374 { 5375 .name = "cgroup.max.depth", 5376 .seq_show = cgroup_max_depth_show, 5377 .write = cgroup_max_depth_write, 5378 }, 5379 { 5380 .name = "cgroup.stat", 5381 .seq_show = cgroup_stat_show, 5382 }, 5383 { 5384 .name = "cgroup.freeze", 5385 .flags = CFTYPE_NOT_ON_ROOT, 5386 .seq_show = cgroup_freeze_show, 5387 .write = cgroup_freeze_write, 5388 }, 5389 { 5390 .name = "cgroup.kill", 5391 .flags = CFTYPE_NOT_ON_ROOT, 5392 .write = cgroup_kill_write, 5393 }, 5394 { 5395 .name = "cpu.stat", 5396 .seq_show = cpu_stat_show, 5397 }, 5398 { 5399 .name = "cpu.stat.local", 5400 .seq_show = cpu_local_stat_show, 5401 }, 5402 { } /* terminate */ 5403 }; 5404 5405 static struct cftype cgroup_psi_files[] = { 5406 #ifdef CONFIG_PSI 5407 { 5408 .name = "io.pressure", 5409 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5410 .seq_show = cgroup_io_pressure_show, 5411 .write = cgroup_io_pressure_write, 5412 .poll = cgroup_pressure_poll, 5413 .release = cgroup_pressure_release, 5414 }, 5415 { 5416 .name = "memory.pressure", 5417 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5418 .seq_show = cgroup_memory_pressure_show, 5419 .write = cgroup_memory_pressure_write, 5420 .poll = cgroup_pressure_poll, 5421 .release = cgroup_pressure_release, 5422 }, 5423 { 5424 .name = "cpu.pressure", 5425 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5426 .seq_show = cgroup_cpu_pressure_show, 5427 .write = cgroup_cpu_pressure_write, 5428 .poll = cgroup_pressure_poll, 5429 .release = cgroup_pressure_release, 5430 }, 5431 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5432 { 5433 .name = "irq.pressure", 5434 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5435 .seq_show = cgroup_irq_pressure_show, 5436 .write = cgroup_irq_pressure_write, 5437 .poll = cgroup_pressure_poll, 5438 .release = cgroup_pressure_release, 5439 }, 5440 #endif 5441 { 5442 .name = "cgroup.pressure", 5443 .seq_show = cgroup_pressure_show, 5444 .write = cgroup_pressure_write, 5445 }, 5446 #endif /* CONFIG_PSI */ 5447 { } /* terminate */ 5448 }; 5449 5450 /* 5451 * css destruction is four-stage process. 5452 * 5453 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5454 * Implemented in kill_css(). 5455 * 5456 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5457 * and thus css_tryget_online() is guaranteed to fail, the css can be 5458 * offlined by invoking offline_css(). After offlining, the base ref is 5459 * put. Implemented in css_killed_work_fn(). 5460 * 5461 * 3. When the percpu_ref reaches zero, the only possible remaining 5462 * accessors are inside RCU read sections. css_release() schedules the 5463 * RCU callback. 5464 * 5465 * 4. After the grace period, the css can be freed. Implemented in 5466 * css_free_rwork_fn(). 5467 * 5468 * It is actually hairier because both step 2 and 4 require process context 5469 * and thus involve punting to css->destroy_work adding two additional 5470 * steps to the already complex sequence. 5471 */ 5472 static void css_free_rwork_fn(struct work_struct *work) 5473 { 5474 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5475 struct cgroup_subsys_state, destroy_rwork); 5476 struct cgroup_subsys *ss = css->ss; 5477 struct cgroup *cgrp = css->cgroup; 5478 5479 percpu_ref_exit(&css->refcnt); 5480 css_rstat_exit(css); 5481 5482 if (!css_is_self(css)) { 5483 /* css free path */ 5484 struct cgroup_subsys_state *parent = css->parent; 5485 int id = css->id; 5486 5487 ss->css_free(css); 5488 cgroup_idr_remove(&ss->css_idr, id); 5489 cgroup_put(cgrp); 5490 5491 if (parent) 5492 css_put(parent); 5493 } else { 5494 /* cgroup free path */ 5495 atomic_dec(&cgrp->root->nr_cgrps); 5496 if (!cgroup_on_dfl(cgrp)) 5497 cgroup1_pidlist_destroy_all(cgrp); 5498 cancel_work_sync(&cgrp->release_agent_work); 5499 bpf_cgrp_storage_free(cgrp); 5500 5501 if (cgroup_parent(cgrp)) { 5502 /* 5503 * We get a ref to the parent, and put the ref when 5504 * this cgroup is being freed, so it's guaranteed 5505 * that the parent won't be destroyed before its 5506 * children. 5507 */ 5508 cgroup_put(cgroup_parent(cgrp)); 5509 kernfs_put(cgrp->kn); 5510 psi_cgroup_free(cgrp); 5511 kfree(cgrp); 5512 } else { 5513 /* 5514 * This is root cgroup's refcnt reaching zero, 5515 * which indicates that the root should be 5516 * released. 5517 */ 5518 cgroup_destroy_root(cgrp->root); 5519 } 5520 } 5521 } 5522 5523 static void css_release_work_fn(struct work_struct *work) 5524 { 5525 struct cgroup_subsys_state *css = 5526 container_of(work, struct cgroup_subsys_state, destroy_work); 5527 struct cgroup_subsys *ss = css->ss; 5528 struct cgroup *cgrp = css->cgroup; 5529 5530 cgroup_lock(); 5531 5532 css->flags |= CSS_RELEASED; 5533 list_del_rcu(&css->sibling); 5534 5535 if (!css_is_self(css)) { 5536 struct cgroup *parent_cgrp; 5537 5538 css_rstat_flush(css); 5539 5540 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5541 if (ss->css_released) 5542 ss->css_released(css); 5543 5544 cgrp->nr_dying_subsys[ss->id]--; 5545 /* 5546 * When a css is released and ready to be freed, its 5547 * nr_descendants must be zero. However, the corresponding 5548 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5549 * is activated and deactivated multiple times with one or 5550 * more of its previous activation leaving behind dying csses. 5551 */ 5552 WARN_ON_ONCE(css->nr_descendants); 5553 parent_cgrp = cgroup_parent(cgrp); 5554 while (parent_cgrp) { 5555 parent_cgrp->nr_dying_subsys[ss->id]--; 5556 parent_cgrp = cgroup_parent(parent_cgrp); 5557 } 5558 } else { 5559 struct cgroup *tcgrp; 5560 5561 /* cgroup release path */ 5562 TRACE_CGROUP_PATH(release, cgrp); 5563 5564 css_rstat_flush(&cgrp->self); 5565 5566 spin_lock_irq(&css_set_lock); 5567 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5568 tcgrp = cgroup_parent(tcgrp)) 5569 tcgrp->nr_dying_descendants--; 5570 spin_unlock_irq(&css_set_lock); 5571 5572 /* 5573 * There are two control paths which try to determine 5574 * cgroup from dentry without going through kernfs - 5575 * cgroupstats_build() and css_tryget_online_from_dir(). 5576 * Those are supported by RCU protecting clearing of 5577 * cgrp->kn->priv backpointer. 5578 */ 5579 if (cgrp->kn) 5580 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5581 NULL); 5582 } 5583 5584 cgroup_unlock(); 5585 5586 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5587 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); 5588 } 5589 5590 static void css_release(struct percpu_ref *ref) 5591 { 5592 struct cgroup_subsys_state *css = 5593 container_of(ref, struct cgroup_subsys_state, refcnt); 5594 5595 INIT_WORK(&css->destroy_work, css_release_work_fn); 5596 queue_work(cgroup_release_wq, &css->destroy_work); 5597 } 5598 5599 static void init_and_link_css(struct cgroup_subsys_state *css, 5600 struct cgroup_subsys *ss, struct cgroup *cgrp) 5601 { 5602 lockdep_assert_held(&cgroup_mutex); 5603 5604 cgroup_get_live(cgrp); 5605 5606 memset(css, 0, sizeof(*css)); 5607 css->cgroup = cgrp; 5608 css->ss = ss; 5609 css->id = -1; 5610 INIT_LIST_HEAD(&css->sibling); 5611 INIT_LIST_HEAD(&css->children); 5612 css->serial_nr = css_serial_nr_next++; 5613 atomic_set(&css->online_cnt, 0); 5614 5615 if (cgroup_parent(cgrp)) { 5616 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5617 css_get(css->parent); 5618 } 5619 5620 BUG_ON(cgroup_css(cgrp, ss)); 5621 } 5622 5623 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5624 static int online_css(struct cgroup_subsys_state *css) 5625 { 5626 struct cgroup_subsys *ss = css->ss; 5627 int ret = 0; 5628 5629 lockdep_assert_held(&cgroup_mutex); 5630 5631 if (ss->css_online) 5632 ret = ss->css_online(css); 5633 if (!ret) { 5634 css->flags |= CSS_ONLINE; 5635 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5636 5637 atomic_inc(&css->online_cnt); 5638 if (css->parent) { 5639 atomic_inc(&css->parent->online_cnt); 5640 while ((css = css->parent)) 5641 css->nr_descendants++; 5642 } 5643 } 5644 return ret; 5645 } 5646 5647 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5648 static void offline_css(struct cgroup_subsys_state *css) 5649 { 5650 struct cgroup_subsys *ss = css->ss; 5651 5652 lockdep_assert_held(&cgroup_mutex); 5653 5654 if (!(css->flags & CSS_ONLINE)) 5655 return; 5656 5657 if (ss->css_offline) 5658 ss->css_offline(css); 5659 5660 css->flags &= ~CSS_ONLINE; 5661 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5662 5663 wake_up_all(&css->cgroup->offline_waitq); 5664 5665 css->cgroup->nr_dying_subsys[ss->id]++; 5666 /* 5667 * Parent css and cgroup cannot be freed until after the freeing 5668 * of child css, see css_free_rwork_fn(). 5669 */ 5670 while ((css = css->parent)) { 5671 css->nr_descendants--; 5672 css->cgroup->nr_dying_subsys[ss->id]++; 5673 } 5674 } 5675 5676 /** 5677 * css_create - create a cgroup_subsys_state 5678 * @cgrp: the cgroup new css will be associated with 5679 * @ss: the subsys of new css 5680 * 5681 * Create a new css associated with @cgrp - @ss pair. On success, the new 5682 * css is online and installed in @cgrp. This function doesn't create the 5683 * interface files. Returns 0 on success, -errno on failure. 5684 */ 5685 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5686 struct cgroup_subsys *ss) 5687 { 5688 struct cgroup *parent = cgroup_parent(cgrp); 5689 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5690 struct cgroup_subsys_state *css; 5691 int err; 5692 5693 lockdep_assert_held(&cgroup_mutex); 5694 5695 css = ss->css_alloc(parent_css); 5696 if (!css) 5697 css = ERR_PTR(-ENOMEM); 5698 if (IS_ERR(css)) 5699 return css; 5700 5701 init_and_link_css(css, ss, cgrp); 5702 5703 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5704 if (err) 5705 goto err_free_css; 5706 5707 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5708 if (err < 0) 5709 goto err_free_css; 5710 css->id = err; 5711 5712 err = css_rstat_init(css); 5713 if (err) 5714 goto err_free_css; 5715 5716 /* @css is ready to be brought online now, make it visible */ 5717 list_add_tail_rcu(&css->sibling, &parent_css->children); 5718 cgroup_idr_replace(&ss->css_idr, css, css->id); 5719 5720 err = online_css(css); 5721 if (err) 5722 goto err_list_del; 5723 5724 return css; 5725 5726 err_list_del: 5727 list_del_rcu(&css->sibling); 5728 err_free_css: 5729 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5730 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); 5731 return ERR_PTR(err); 5732 } 5733 5734 /* 5735 * The returned cgroup is fully initialized including its control mask, but 5736 * it doesn't have the control mask applied. 5737 */ 5738 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5739 umode_t mode) 5740 { 5741 struct cgroup_root *root = parent->root; 5742 struct cgroup *cgrp, *tcgrp; 5743 struct kernfs_node *kn; 5744 int i, level = parent->level + 1; 5745 int ret; 5746 5747 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5748 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5749 if (!cgrp) 5750 return ERR_PTR(-ENOMEM); 5751 5752 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5753 if (ret) 5754 goto out_free_cgrp; 5755 5756 /* create the directory */ 5757 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5758 current_fsuid(), current_fsgid(), 5759 cgrp, NULL); 5760 if (IS_ERR(kn)) { 5761 ret = PTR_ERR(kn); 5762 goto out_cancel_ref; 5763 } 5764 cgrp->kn = kn; 5765 5766 init_cgroup_housekeeping(cgrp); 5767 5768 cgrp->self.parent = &parent->self; 5769 cgrp->root = root; 5770 cgrp->level = level; 5771 5772 /* 5773 * Now that init_cgroup_housekeeping() has been called and cgrp->self 5774 * is setup, it is safe to perform rstat initialization on it. 5775 */ 5776 ret = css_rstat_init(&cgrp->self); 5777 if (ret) 5778 goto out_kernfs_remove; 5779 5780 ret = psi_cgroup_alloc(cgrp); 5781 if (ret) 5782 goto out_stat_exit; 5783 5784 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 5785 cgrp->ancestors[tcgrp->level] = tcgrp; 5786 5787 /* 5788 * New cgroup inherits effective freeze counter, and 5789 * if the parent has to be frozen, the child has too. 5790 */ 5791 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5792 if (cgrp->freezer.e_freeze) { 5793 /* 5794 * Set the CGRP_FREEZE flag, so when a process will be 5795 * attached to the child cgroup, it will become frozen. 5796 * At this point the new cgroup is unpopulated, so we can 5797 * consider it frozen immediately. 5798 */ 5799 set_bit(CGRP_FREEZE, &cgrp->flags); 5800 set_bit(CGRP_FROZEN, &cgrp->flags); 5801 } 5802 5803 if (notify_on_release(parent)) 5804 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5805 5806 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5807 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5808 5809 cgrp->self.serial_nr = css_serial_nr_next++; 5810 5811 ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier, 5812 CGROUP_LIFETIME_ONLINE, 5813 CGROUP_LIFETIME_OFFLINE, cgrp); 5814 ret = notifier_to_errno(ret); 5815 if (ret) 5816 goto out_psi_free; 5817 5818 /* allocation complete, commit to creation */ 5819 spin_lock_irq(&css_set_lock); 5820 for (i = 0; i < level; i++) { 5821 tcgrp = cgrp->ancestors[i]; 5822 tcgrp->nr_descendants++; 5823 5824 /* 5825 * If the new cgroup is frozen, all ancestor cgroups get a new 5826 * frozen descendant, but their state can't change because of 5827 * this. 5828 */ 5829 if (cgrp->freezer.e_freeze) 5830 tcgrp->freezer.nr_frozen_descendants++; 5831 } 5832 spin_unlock_irq(&css_set_lock); 5833 5834 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5835 atomic_inc(&root->nr_cgrps); 5836 cgroup_get_live(parent); 5837 5838 /* 5839 * On the default hierarchy, a child doesn't automatically inherit 5840 * subtree_control from the parent. Each is configured manually. 5841 */ 5842 if (!cgroup_on_dfl(cgrp)) 5843 cgrp->subtree_control = cgroup_control(cgrp); 5844 5845 cgroup_propagate_control(cgrp); 5846 5847 return cgrp; 5848 5849 out_psi_free: 5850 psi_cgroup_free(cgrp); 5851 out_stat_exit: 5852 css_rstat_exit(&cgrp->self); 5853 out_kernfs_remove: 5854 kernfs_remove(cgrp->kn); 5855 out_cancel_ref: 5856 percpu_ref_exit(&cgrp->self.refcnt); 5857 out_free_cgrp: 5858 kfree(cgrp); 5859 return ERR_PTR(ret); 5860 } 5861 5862 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5863 { 5864 struct cgroup *cgroup; 5865 int ret = false; 5866 int level = 0; 5867 5868 lockdep_assert_held(&cgroup_mutex); 5869 5870 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5871 if (cgroup->nr_descendants >= cgroup->max_descendants) 5872 goto fail; 5873 5874 if (level >= cgroup->max_depth) 5875 goto fail; 5876 5877 level++; 5878 } 5879 5880 ret = true; 5881 fail: 5882 return ret; 5883 } 5884 5885 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5886 { 5887 struct cgroup *parent, *cgrp; 5888 int ret; 5889 5890 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5891 if (strchr(name, '\n')) 5892 return -EINVAL; 5893 5894 parent = cgroup_kn_lock_live(parent_kn, false); 5895 if (!parent) 5896 return -ENODEV; 5897 5898 if (!cgroup_check_hierarchy_limits(parent)) { 5899 ret = -EAGAIN; 5900 goto out_unlock; 5901 } 5902 5903 cgrp = cgroup_create(parent, name, mode); 5904 if (IS_ERR(cgrp)) { 5905 ret = PTR_ERR(cgrp); 5906 goto out_unlock; 5907 } 5908 5909 /* 5910 * This extra ref will be put in css_free_rwork_fn() and guarantees 5911 * that @cgrp->kn is always accessible. 5912 */ 5913 kernfs_get(cgrp->kn); 5914 5915 ret = css_populate_dir(&cgrp->self); 5916 if (ret) 5917 goto out_destroy; 5918 5919 ret = cgroup_apply_control_enable(cgrp); 5920 if (ret) 5921 goto out_destroy; 5922 5923 TRACE_CGROUP_PATH(mkdir, cgrp); 5924 5925 /* let's create and online css's */ 5926 kernfs_activate(cgrp->kn); 5927 5928 ret = 0; 5929 goto out_unlock; 5930 5931 out_destroy: 5932 cgroup_destroy_locked(cgrp); 5933 out_unlock: 5934 cgroup_kn_unlock(parent_kn); 5935 return ret; 5936 } 5937 5938 /* 5939 * This is called when the refcnt of a css is confirmed to be killed. 5940 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5941 * initiate destruction and put the css ref from kill_css(). 5942 */ 5943 static void css_killed_work_fn(struct work_struct *work) 5944 { 5945 struct cgroup_subsys_state *css = 5946 container_of(work, struct cgroup_subsys_state, destroy_work); 5947 5948 cgroup_lock(); 5949 5950 do { 5951 offline_css(css); 5952 css_put(css); 5953 /* @css can't go away while we're holding cgroup_mutex */ 5954 css = css->parent; 5955 } while (css && atomic_dec_and_test(&css->online_cnt)); 5956 5957 cgroup_unlock(); 5958 } 5959 5960 /* css kill confirmation processing requires process context, bounce */ 5961 static void css_killed_ref_fn(struct percpu_ref *ref) 5962 { 5963 struct cgroup_subsys_state *css = 5964 container_of(ref, struct cgroup_subsys_state, refcnt); 5965 5966 if (atomic_dec_and_test(&css->online_cnt)) { 5967 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5968 queue_work(cgroup_offline_wq, &css->destroy_work); 5969 } 5970 } 5971 5972 /** 5973 * kill_css - destroy a css 5974 * @css: css to destroy 5975 * 5976 * This function initiates destruction of @css by removing cgroup interface 5977 * files and putting its base reference. ->css_offline() will be invoked 5978 * asynchronously once css_tryget_online() is guaranteed to fail and when 5979 * the reference count reaches zero, @css will be released. 5980 */ 5981 static void kill_css(struct cgroup_subsys_state *css) 5982 { 5983 lockdep_assert_held(&cgroup_mutex); 5984 5985 if (css->flags & CSS_DYING) 5986 return; 5987 5988 /* 5989 * Call css_killed(), if defined, before setting the CSS_DYING flag 5990 */ 5991 if (css->ss->css_killed) 5992 css->ss->css_killed(css); 5993 5994 css->flags |= CSS_DYING; 5995 5996 /* 5997 * This must happen before css is disassociated with its cgroup. 5998 * See seq_css() for details. 5999 */ 6000 css_clear_dir(css); 6001 6002 /* 6003 * Killing would put the base ref, but we need to keep it alive 6004 * until after ->css_offline(). 6005 */ 6006 css_get(css); 6007 6008 /* 6009 * cgroup core guarantees that, by the time ->css_offline() is 6010 * invoked, no new css reference will be given out via 6011 * css_tryget_online(). We can't simply call percpu_ref_kill() and 6012 * proceed to offlining css's because percpu_ref_kill() doesn't 6013 * guarantee that the ref is seen as killed on all CPUs on return. 6014 * 6015 * Use percpu_ref_kill_and_confirm() to get notifications as each 6016 * css is confirmed to be seen as killed on all CPUs. 6017 */ 6018 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 6019 } 6020 6021 /** 6022 * cgroup_destroy_locked - the first stage of cgroup destruction 6023 * @cgrp: cgroup to be destroyed 6024 * 6025 * css's make use of percpu refcnts whose killing latency shouldn't be 6026 * exposed to userland and are RCU protected. Also, cgroup core needs to 6027 * guarantee that css_tryget_online() won't succeed by the time 6028 * ->css_offline() is invoked. To satisfy all the requirements, 6029 * destruction is implemented in the following two steps. 6030 * 6031 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 6032 * userland visible parts and start killing the percpu refcnts of 6033 * css's. Set up so that the next stage will be kicked off once all 6034 * the percpu refcnts are confirmed to be killed. 6035 * 6036 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 6037 * rest of destruction. Once all cgroup references are gone, the 6038 * cgroup is RCU-freed. 6039 * 6040 * This function implements s1. After this step, @cgrp is gone as far as 6041 * the userland is concerned and a new cgroup with the same name may be 6042 * created. As cgroup doesn't care about the names internally, this 6043 * doesn't cause any problem. 6044 */ 6045 static int cgroup_destroy_locked(struct cgroup *cgrp) 6046 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 6047 { 6048 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 6049 struct cgroup_subsys_state *css; 6050 struct cgrp_cset_link *link; 6051 int ssid, ret; 6052 6053 lockdep_assert_held(&cgroup_mutex); 6054 6055 /* 6056 * Only migration can raise populated from zero and we're already 6057 * holding cgroup_mutex. 6058 */ 6059 if (cgroup_is_populated(cgrp)) 6060 return -EBUSY; 6061 6062 /* 6063 * Make sure there's no live children. We can't test emptiness of 6064 * ->self.children as dead children linger on it while being 6065 * drained; otherwise, "rmdir parent/child parent" may fail. 6066 */ 6067 if (css_has_online_children(&cgrp->self)) 6068 return -EBUSY; 6069 6070 /* 6071 * Mark @cgrp and the associated csets dead. The former prevents 6072 * further task migration and child creation by disabling 6073 * cgroup_kn_lock_live(). The latter makes the csets ignored by 6074 * the migration path. 6075 */ 6076 cgrp->self.flags &= ~CSS_ONLINE; 6077 6078 spin_lock_irq(&css_set_lock); 6079 list_for_each_entry(link, &cgrp->cset_links, cset_link) 6080 link->cset->dead = true; 6081 spin_unlock_irq(&css_set_lock); 6082 6083 /* initiate massacre of all css's */ 6084 for_each_css(css, ssid, cgrp) 6085 kill_css(css); 6086 6087 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6088 css_clear_dir(&cgrp->self); 6089 kernfs_remove(cgrp->kn); 6090 6091 if (cgroup_is_threaded(cgrp)) 6092 parent->nr_threaded_children--; 6093 6094 spin_lock_irq(&css_set_lock); 6095 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6096 tcgrp->nr_descendants--; 6097 tcgrp->nr_dying_descendants++; 6098 /* 6099 * If the dying cgroup is frozen, decrease frozen descendants 6100 * counters of ancestor cgroups. 6101 */ 6102 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6103 tcgrp->freezer.nr_frozen_descendants--; 6104 } 6105 spin_unlock_irq(&css_set_lock); 6106 6107 cgroup1_check_for_release(parent); 6108 6109 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 6110 CGROUP_LIFETIME_OFFLINE, cgrp); 6111 WARN_ON_ONCE(notifier_to_errno(ret)); 6112 6113 /* put the base reference */ 6114 percpu_ref_kill(&cgrp->self.refcnt); 6115 6116 return 0; 6117 }; 6118 6119 int cgroup_rmdir(struct kernfs_node *kn) 6120 { 6121 struct cgroup *cgrp; 6122 int ret = 0; 6123 6124 cgrp = cgroup_kn_lock_live(kn, false); 6125 if (!cgrp) 6126 return 0; 6127 6128 ret = cgroup_destroy_locked(cgrp); 6129 if (!ret) 6130 TRACE_CGROUP_PATH(rmdir, cgrp); 6131 6132 cgroup_kn_unlock(kn); 6133 return ret; 6134 } 6135 6136 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6137 .show_options = cgroup_show_options, 6138 .mkdir = cgroup_mkdir, 6139 .rmdir = cgroup_rmdir, 6140 .show_path = cgroup_show_path, 6141 }; 6142 6143 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6144 { 6145 struct cgroup_subsys_state *css; 6146 6147 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6148 6149 cgroup_lock(); 6150 6151 idr_init(&ss->css_idr); 6152 INIT_LIST_HEAD(&ss->cfts); 6153 6154 /* Create the root cgroup state for this subsystem */ 6155 ss->root = &cgrp_dfl_root; 6156 css = ss->css_alloc(NULL); 6157 /* We don't handle early failures gracefully */ 6158 BUG_ON(IS_ERR(css)); 6159 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6160 6161 /* 6162 * Root csses are never destroyed and we can't initialize 6163 * percpu_ref during early init. Disable refcnting. 6164 */ 6165 css->flags |= CSS_NO_REF; 6166 6167 if (early) { 6168 /* allocation can't be done safely during early init */ 6169 css->id = 1; 6170 } else { 6171 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6172 BUG_ON(css->id < 0); 6173 6174 BUG_ON(ss_rstat_init(ss)); 6175 BUG_ON(css_rstat_init(css)); 6176 } 6177 6178 /* Update the init_css_set to contain a subsys 6179 * pointer to this state - since the subsystem is 6180 * newly registered, all tasks and hence the 6181 * init_css_set is in the subsystem's root cgroup. */ 6182 init_css_set.subsys[ss->id] = css; 6183 6184 have_fork_callback |= (bool)ss->fork << ss->id; 6185 have_exit_callback |= (bool)ss->exit << ss->id; 6186 have_release_callback |= (bool)ss->release << ss->id; 6187 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6188 6189 /* At system boot, before all subsystems have been 6190 * registered, no tasks have been forked, so we don't 6191 * need to invoke fork callbacks here. */ 6192 BUG_ON(!list_empty(&init_task.tasks)); 6193 6194 BUG_ON(online_css(css)); 6195 6196 cgroup_unlock(); 6197 } 6198 6199 /** 6200 * cgroup_init_early - cgroup initialization at system boot 6201 * 6202 * Initialize cgroups at system boot, and initialize any 6203 * subsystems that request early init. 6204 */ 6205 int __init cgroup_init_early(void) 6206 { 6207 static struct cgroup_fs_context __initdata ctx; 6208 struct cgroup_subsys *ss; 6209 int i; 6210 6211 ctx.root = &cgrp_dfl_root; 6212 init_cgroup_root(&ctx); 6213 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6214 6215 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6216 6217 for_each_subsys(ss, i) { 6218 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6219 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6220 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6221 ss->id, ss->name); 6222 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6223 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6224 WARN(ss->early_init && ss->css_rstat_flush, 6225 "cgroup rstat cannot be used with early init subsystem\n"); 6226 6227 ss->id = i; 6228 ss->name = cgroup_subsys_name[i]; 6229 if (!ss->legacy_name) 6230 ss->legacy_name = cgroup_subsys_name[i]; 6231 6232 if (ss->early_init) 6233 cgroup_init_subsys(ss, true); 6234 } 6235 return 0; 6236 } 6237 6238 /** 6239 * cgroup_init - cgroup initialization 6240 * 6241 * Register cgroup filesystem and /proc file, and initialize 6242 * any subsystems that didn't request early init. 6243 */ 6244 int __init cgroup_init(void) 6245 { 6246 struct cgroup_subsys *ss; 6247 int ssid; 6248 6249 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6250 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6251 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6252 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6253 6254 BUG_ON(ss_rstat_init(NULL)); 6255 6256 get_user_ns(init_cgroup_ns.user_ns); 6257 6258 cgroup_lock(); 6259 6260 /* 6261 * Add init_css_set to the hash table so that dfl_root can link to 6262 * it during init. 6263 */ 6264 hash_add(css_set_table, &init_css_set.hlist, 6265 css_set_hash(init_css_set.subsys)); 6266 6267 cgroup_bpf_lifetime_notifier_init(); 6268 6269 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6270 6271 cgroup_unlock(); 6272 6273 for_each_subsys(ss, ssid) { 6274 if (ss->early_init) { 6275 struct cgroup_subsys_state *css = 6276 init_css_set.subsys[ss->id]; 6277 6278 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6279 GFP_KERNEL); 6280 BUG_ON(css->id < 0); 6281 } else { 6282 cgroup_init_subsys(ss, false); 6283 } 6284 6285 list_add_tail(&init_css_set.e_cset_node[ssid], 6286 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6287 6288 /* 6289 * Setting dfl_root subsys_mask needs to consider the 6290 * disabled flag and cftype registration needs kmalloc, 6291 * both of which aren't available during early_init. 6292 */ 6293 if (!cgroup_ssid_enabled(ssid)) 6294 continue; 6295 6296 if (cgroup1_ssid_disabled(ssid)) 6297 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6298 ss->legacy_name); 6299 6300 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6301 6302 /* implicit controllers must be threaded too */ 6303 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6304 6305 if (ss->implicit_on_dfl) 6306 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6307 else if (!ss->dfl_cftypes) 6308 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6309 6310 if (ss->threaded) 6311 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6312 6313 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6314 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6315 } else { 6316 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6317 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6318 } 6319 6320 if (ss->bind) 6321 ss->bind(init_css_set.subsys[ssid]); 6322 6323 cgroup_lock(); 6324 css_populate_dir(init_css_set.subsys[ssid]); 6325 cgroup_unlock(); 6326 } 6327 6328 /* init_css_set.subsys[] has been updated, re-hash */ 6329 hash_del(&init_css_set.hlist); 6330 hash_add(css_set_table, &init_css_set.hlist, 6331 css_set_hash(init_css_set.subsys)); 6332 6333 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6334 WARN_ON(register_filesystem(&cgroup_fs_type)); 6335 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6336 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6337 #ifdef CONFIG_CPUSETS_V1 6338 WARN_ON(register_filesystem(&cpuset_fs_type)); 6339 #endif 6340 6341 ns_tree_add(&init_cgroup_ns); 6342 return 0; 6343 } 6344 6345 static int __init cgroup_wq_init(void) 6346 { 6347 /* 6348 * There isn't much point in executing destruction path in 6349 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6350 * Use 1 for @max_active. 6351 * 6352 * We would prefer to do this in cgroup_init() above, but that 6353 * is called before init_workqueues(): so leave this until after. 6354 */ 6355 cgroup_offline_wq = alloc_workqueue("cgroup_offline", 0, 1); 6356 BUG_ON(!cgroup_offline_wq); 6357 6358 cgroup_release_wq = alloc_workqueue("cgroup_release", 0, 1); 6359 BUG_ON(!cgroup_release_wq); 6360 6361 cgroup_free_wq = alloc_workqueue("cgroup_free", 0, 1); 6362 BUG_ON(!cgroup_free_wq); 6363 return 0; 6364 } 6365 core_initcall(cgroup_wq_init); 6366 6367 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6368 { 6369 struct kernfs_node *kn; 6370 6371 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6372 if (!kn) 6373 return; 6374 kernfs_path(kn, buf, buflen); 6375 kernfs_put(kn); 6376 } 6377 6378 /* 6379 * cgroup_get_from_id : get the cgroup associated with cgroup id 6380 * @id: cgroup id 6381 * On success return the cgrp or ERR_PTR on failure 6382 * Only cgroups within current task's cgroup NS are valid. 6383 */ 6384 struct cgroup *cgroup_get_from_id(u64 id) 6385 { 6386 struct kernfs_node *kn; 6387 struct cgroup *cgrp, *root_cgrp; 6388 6389 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6390 if (!kn) 6391 return ERR_PTR(-ENOENT); 6392 6393 if (kernfs_type(kn) != KERNFS_DIR) { 6394 kernfs_put(kn); 6395 return ERR_PTR(-ENOENT); 6396 } 6397 6398 rcu_read_lock(); 6399 6400 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6401 if (cgrp && !cgroup_tryget(cgrp)) 6402 cgrp = NULL; 6403 6404 rcu_read_unlock(); 6405 kernfs_put(kn); 6406 6407 if (!cgrp) 6408 return ERR_PTR(-ENOENT); 6409 6410 root_cgrp = current_cgns_cgroup_dfl(); 6411 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6412 cgroup_put(cgrp); 6413 return ERR_PTR(-ENOENT); 6414 } 6415 6416 return cgrp; 6417 } 6418 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6419 6420 /* 6421 * proc_cgroup_show() 6422 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6423 * - Used for /proc/<pid>/cgroup. 6424 */ 6425 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6426 struct pid *pid, struct task_struct *tsk) 6427 { 6428 char *buf; 6429 int retval; 6430 struct cgroup_root *root; 6431 6432 retval = -ENOMEM; 6433 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6434 if (!buf) 6435 goto out; 6436 6437 rcu_read_lock(); 6438 spin_lock_irq(&css_set_lock); 6439 6440 for_each_root(root) { 6441 struct cgroup_subsys *ss; 6442 struct cgroup *cgrp; 6443 int ssid, count = 0; 6444 6445 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6446 continue; 6447 6448 cgrp = task_cgroup_from_root(tsk, root); 6449 /* The root has already been unmounted. */ 6450 if (!cgrp) 6451 continue; 6452 6453 seq_printf(m, "%d:", root->hierarchy_id); 6454 if (root != &cgrp_dfl_root) 6455 for_each_subsys(ss, ssid) 6456 if (root->subsys_mask & (1 << ssid)) 6457 seq_printf(m, "%s%s", count++ ? "," : "", 6458 ss->legacy_name); 6459 if (strlen(root->name)) 6460 seq_printf(m, "%sname=%s", count ? "," : "", 6461 root->name); 6462 seq_putc(m, ':'); 6463 /* 6464 * On traditional hierarchies, all zombie tasks show up as 6465 * belonging to the root cgroup. On the default hierarchy, 6466 * while a zombie doesn't show up in "cgroup.procs" and 6467 * thus can't be migrated, its /proc/PID/cgroup keeps 6468 * reporting the cgroup it belonged to before exiting. If 6469 * the cgroup is removed before the zombie is reaped, 6470 * " (deleted)" is appended to the cgroup path. 6471 */ 6472 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6473 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6474 current->nsproxy->cgroup_ns); 6475 if (retval == -E2BIG) 6476 retval = -ENAMETOOLONG; 6477 if (retval < 0) 6478 goto out_unlock; 6479 6480 seq_puts(m, buf); 6481 } else { 6482 seq_puts(m, "/"); 6483 } 6484 6485 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6486 seq_puts(m, " (deleted)\n"); 6487 else 6488 seq_putc(m, '\n'); 6489 } 6490 6491 retval = 0; 6492 out_unlock: 6493 spin_unlock_irq(&css_set_lock); 6494 rcu_read_unlock(); 6495 kfree(buf); 6496 out: 6497 return retval; 6498 } 6499 6500 /** 6501 * cgroup_fork - initialize cgroup related fields during copy_process() 6502 * @child: pointer to task_struct of forking parent process. 6503 * 6504 * A task is associated with the init_css_set until cgroup_post_fork() 6505 * attaches it to the target css_set. 6506 */ 6507 void cgroup_fork(struct task_struct *child) 6508 { 6509 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6510 INIT_LIST_HEAD(&child->cg_list); 6511 } 6512 6513 /** 6514 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6515 * @f: file corresponding to cgroup_dir 6516 * 6517 * Find the cgroup from a file pointer associated with a cgroup directory. 6518 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6519 * cgroup cannot be found. 6520 */ 6521 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6522 { 6523 struct cgroup_subsys_state *css; 6524 6525 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6526 if (IS_ERR(css)) 6527 return ERR_CAST(css); 6528 6529 return css->cgroup; 6530 } 6531 6532 /** 6533 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6534 * cgroup2. 6535 * @f: file corresponding to cgroup2_dir 6536 */ 6537 static struct cgroup *cgroup_get_from_file(struct file *f) 6538 { 6539 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6540 6541 if (IS_ERR(cgrp)) 6542 return ERR_CAST(cgrp); 6543 6544 if (!cgroup_on_dfl(cgrp)) { 6545 cgroup_put(cgrp); 6546 return ERR_PTR(-EBADF); 6547 } 6548 6549 return cgrp; 6550 } 6551 6552 /** 6553 * cgroup_css_set_fork - find or create a css_set for a child process 6554 * @kargs: the arguments passed to create the child process 6555 * 6556 * This functions finds or creates a new css_set which the child 6557 * process will be attached to in cgroup_post_fork(). By default, 6558 * the child process will be given the same css_set as its parent. 6559 * 6560 * If CLONE_INTO_CGROUP is specified this function will try to find an 6561 * existing css_set which includes the requested cgroup and if not create 6562 * a new css_set that the child will be attached to later. If this function 6563 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6564 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6565 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6566 * to the target cgroup. 6567 */ 6568 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6569 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6570 { 6571 int ret; 6572 struct cgroup *dst_cgrp = NULL; 6573 struct css_set *cset; 6574 struct super_block *sb; 6575 6576 if (kargs->flags & CLONE_INTO_CGROUP) 6577 cgroup_lock(); 6578 6579 cgroup_threadgroup_change_begin(current); 6580 6581 spin_lock_irq(&css_set_lock); 6582 cset = task_css_set(current); 6583 get_css_set(cset); 6584 if (kargs->cgrp) 6585 kargs->kill_seq = kargs->cgrp->kill_seq; 6586 else 6587 kargs->kill_seq = cset->dfl_cgrp->kill_seq; 6588 spin_unlock_irq(&css_set_lock); 6589 6590 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6591 kargs->cset = cset; 6592 return 0; 6593 } 6594 6595 CLASS(fd_raw, f)(kargs->cgroup); 6596 if (fd_empty(f)) { 6597 ret = -EBADF; 6598 goto err; 6599 } 6600 sb = fd_file(f)->f_path.dentry->d_sb; 6601 6602 dst_cgrp = cgroup_get_from_file(fd_file(f)); 6603 if (IS_ERR(dst_cgrp)) { 6604 ret = PTR_ERR(dst_cgrp); 6605 dst_cgrp = NULL; 6606 goto err; 6607 } 6608 6609 if (cgroup_is_dead(dst_cgrp)) { 6610 ret = -ENODEV; 6611 goto err; 6612 } 6613 6614 /* 6615 * Verify that we the target cgroup is writable for us. This is 6616 * usually done by the vfs layer but since we're not going through 6617 * the vfs layer here we need to do it "manually". 6618 */ 6619 ret = cgroup_may_write(dst_cgrp, sb); 6620 if (ret) 6621 goto err; 6622 6623 /* 6624 * Spawning a task directly into a cgroup works by passing a file 6625 * descriptor to the target cgroup directory. This can even be an O_PATH 6626 * file descriptor. But it can never be a cgroup.procs file descriptor. 6627 * This was done on purpose so spawning into a cgroup could be 6628 * conceptualized as an atomic 6629 * 6630 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6631 * write(fd, <child-pid>, ...); 6632 * 6633 * sequence, i.e. it's a shorthand for the caller opening and writing 6634 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6635 * to always use the caller's credentials. 6636 */ 6637 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6638 !(kargs->flags & CLONE_THREAD), 6639 current->nsproxy->cgroup_ns); 6640 if (ret) 6641 goto err; 6642 6643 kargs->cset = find_css_set(cset, dst_cgrp); 6644 if (!kargs->cset) { 6645 ret = -ENOMEM; 6646 goto err; 6647 } 6648 6649 put_css_set(cset); 6650 kargs->cgrp = dst_cgrp; 6651 return ret; 6652 6653 err: 6654 cgroup_threadgroup_change_end(current); 6655 cgroup_unlock(); 6656 if (dst_cgrp) 6657 cgroup_put(dst_cgrp); 6658 put_css_set(cset); 6659 if (kargs->cset) 6660 put_css_set(kargs->cset); 6661 return ret; 6662 } 6663 6664 /** 6665 * cgroup_css_set_put_fork - drop references we took during fork 6666 * @kargs: the arguments passed to create the child process 6667 * 6668 * Drop references to the prepared css_set and target cgroup if 6669 * CLONE_INTO_CGROUP was requested. 6670 */ 6671 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6672 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6673 { 6674 struct cgroup *cgrp = kargs->cgrp; 6675 struct css_set *cset = kargs->cset; 6676 6677 cgroup_threadgroup_change_end(current); 6678 6679 if (cset) { 6680 put_css_set(cset); 6681 kargs->cset = NULL; 6682 } 6683 6684 if (kargs->flags & CLONE_INTO_CGROUP) { 6685 cgroup_unlock(); 6686 if (cgrp) { 6687 cgroup_put(cgrp); 6688 kargs->cgrp = NULL; 6689 } 6690 } 6691 } 6692 6693 /** 6694 * cgroup_can_fork - called on a new task before the process is exposed 6695 * @child: the child process 6696 * @kargs: the arguments passed to create the child process 6697 * 6698 * This prepares a new css_set for the child process which the child will 6699 * be attached to in cgroup_post_fork(). 6700 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6701 * callback returns an error, the fork aborts with that error code. This 6702 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6703 */ 6704 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6705 { 6706 struct cgroup_subsys *ss; 6707 int i, j, ret; 6708 6709 ret = cgroup_css_set_fork(kargs); 6710 if (ret) 6711 return ret; 6712 6713 do_each_subsys_mask(ss, i, have_canfork_callback) { 6714 ret = ss->can_fork(child, kargs->cset); 6715 if (ret) 6716 goto out_revert; 6717 } while_each_subsys_mask(); 6718 6719 return 0; 6720 6721 out_revert: 6722 for_each_subsys(ss, j) { 6723 if (j >= i) 6724 break; 6725 if (ss->cancel_fork) 6726 ss->cancel_fork(child, kargs->cset); 6727 } 6728 6729 cgroup_css_set_put_fork(kargs); 6730 6731 return ret; 6732 } 6733 6734 /** 6735 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6736 * @child: the child process 6737 * @kargs: the arguments passed to create the child process 6738 * 6739 * This calls the cancel_fork() callbacks if a fork failed *after* 6740 * cgroup_can_fork() succeeded and cleans up references we took to 6741 * prepare a new css_set for the child process in cgroup_can_fork(). 6742 */ 6743 void cgroup_cancel_fork(struct task_struct *child, 6744 struct kernel_clone_args *kargs) 6745 { 6746 struct cgroup_subsys *ss; 6747 int i; 6748 6749 for_each_subsys(ss, i) 6750 if (ss->cancel_fork) 6751 ss->cancel_fork(child, kargs->cset); 6752 6753 cgroup_css_set_put_fork(kargs); 6754 } 6755 6756 /** 6757 * cgroup_post_fork - finalize cgroup setup for the child process 6758 * @child: the child process 6759 * @kargs: the arguments passed to create the child process 6760 * 6761 * Attach the child process to its css_set calling the subsystem fork() 6762 * callbacks. 6763 */ 6764 void cgroup_post_fork(struct task_struct *child, 6765 struct kernel_clone_args *kargs) 6766 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6767 { 6768 unsigned int cgrp_kill_seq = 0; 6769 unsigned long cgrp_flags = 0; 6770 bool kill = false; 6771 struct cgroup_subsys *ss; 6772 struct css_set *cset; 6773 int i; 6774 6775 cset = kargs->cset; 6776 kargs->cset = NULL; 6777 6778 spin_lock_irq(&css_set_lock); 6779 6780 /* init tasks are special, only link regular threads */ 6781 if (likely(child->pid)) { 6782 if (kargs->cgrp) { 6783 cgrp_flags = kargs->cgrp->flags; 6784 cgrp_kill_seq = kargs->cgrp->kill_seq; 6785 } else { 6786 cgrp_flags = cset->dfl_cgrp->flags; 6787 cgrp_kill_seq = cset->dfl_cgrp->kill_seq; 6788 } 6789 6790 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6791 cset->nr_tasks++; 6792 css_set_move_task(child, NULL, cset, false); 6793 } else { 6794 put_css_set(cset); 6795 cset = NULL; 6796 } 6797 6798 if (!(child->flags & PF_KTHREAD)) { 6799 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6800 /* 6801 * If the cgroup has to be frozen, the new task has 6802 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6803 * get the task into the frozen state. 6804 */ 6805 spin_lock(&child->sighand->siglock); 6806 WARN_ON_ONCE(child->frozen); 6807 child->jobctl |= JOBCTL_TRAP_FREEZE; 6808 spin_unlock(&child->sighand->siglock); 6809 6810 /* 6811 * Calling cgroup_update_frozen() isn't required here, 6812 * because it will be called anyway a bit later from 6813 * do_freezer_trap(). So we avoid cgroup's transient 6814 * switch from the frozen state and back. 6815 */ 6816 } 6817 6818 /* 6819 * If the cgroup is to be killed notice it now and take the 6820 * child down right after we finished preparing it for 6821 * userspace. 6822 */ 6823 kill = kargs->kill_seq != cgrp_kill_seq; 6824 } 6825 6826 spin_unlock_irq(&css_set_lock); 6827 6828 /* 6829 * Call ss->fork(). This must happen after @child is linked on 6830 * css_set; otherwise, @child might change state between ->fork() 6831 * and addition to css_set. 6832 */ 6833 do_each_subsys_mask(ss, i, have_fork_callback) { 6834 ss->fork(child); 6835 } while_each_subsys_mask(); 6836 6837 /* Make the new cset the root_cset of the new cgroup namespace. */ 6838 if (kargs->flags & CLONE_NEWCGROUP) { 6839 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6840 6841 get_css_set(cset); 6842 child->nsproxy->cgroup_ns->root_cset = cset; 6843 put_css_set(rcset); 6844 } 6845 6846 /* Cgroup has to be killed so take down child immediately. */ 6847 if (unlikely(kill)) 6848 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6849 6850 cgroup_css_set_put_fork(kargs); 6851 } 6852 6853 /** 6854 * cgroup_exit - detach cgroup from exiting task 6855 * @tsk: pointer to task_struct of exiting process 6856 * 6857 * Description: Detach cgroup from @tsk. 6858 * 6859 */ 6860 void cgroup_exit(struct task_struct *tsk) 6861 { 6862 struct cgroup_subsys *ss; 6863 struct css_set *cset; 6864 int i; 6865 6866 spin_lock_irq(&css_set_lock); 6867 6868 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6869 cset = task_css_set(tsk); 6870 css_set_move_task(tsk, cset, NULL, false); 6871 cset->nr_tasks--; 6872 /* matches the signal->live check in css_task_iter_advance() */ 6873 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6874 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6875 6876 if (dl_task(tsk)) 6877 dec_dl_tasks_cs(tsk); 6878 6879 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6880 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6881 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6882 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6883 6884 spin_unlock_irq(&css_set_lock); 6885 6886 /* see cgroup_post_fork() for details */ 6887 do_each_subsys_mask(ss, i, have_exit_callback) { 6888 ss->exit(tsk); 6889 } while_each_subsys_mask(); 6890 } 6891 6892 void cgroup_release(struct task_struct *task) 6893 { 6894 struct cgroup_subsys *ss; 6895 int ssid; 6896 6897 do_each_subsys_mask(ss, ssid, have_release_callback) { 6898 ss->release(task); 6899 } while_each_subsys_mask(); 6900 6901 if (!list_empty(&task->cg_list)) { 6902 spin_lock_irq(&css_set_lock); 6903 css_set_skip_task_iters(task_css_set(task), task); 6904 list_del_init(&task->cg_list); 6905 spin_unlock_irq(&css_set_lock); 6906 } 6907 } 6908 6909 void cgroup_free(struct task_struct *task) 6910 { 6911 struct css_set *cset = task_css_set(task); 6912 put_css_set(cset); 6913 } 6914 6915 static int __init cgroup_disable(char *str) 6916 { 6917 struct cgroup_subsys *ss; 6918 char *token; 6919 int i; 6920 6921 while ((token = strsep(&str, ",")) != NULL) { 6922 if (!*token) 6923 continue; 6924 6925 for_each_subsys(ss, i) { 6926 if (strcmp(token, ss->name) && 6927 strcmp(token, ss->legacy_name)) 6928 continue; 6929 6930 static_branch_disable(cgroup_subsys_enabled_key[i]); 6931 pr_info("Disabling %s control group subsystem\n", 6932 ss->name); 6933 } 6934 6935 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6936 if (strcmp(token, cgroup_opt_feature_names[i])) 6937 continue; 6938 cgroup_feature_disable_mask |= 1 << i; 6939 pr_info("Disabling %s control group feature\n", 6940 cgroup_opt_feature_names[i]); 6941 break; 6942 } 6943 } 6944 return 1; 6945 } 6946 __setup("cgroup_disable=", cgroup_disable); 6947 6948 void __init __weak enable_debug_cgroup(void) { } 6949 6950 static int __init enable_cgroup_debug(char *str) 6951 { 6952 cgroup_debug = true; 6953 enable_debug_cgroup(); 6954 return 1; 6955 } 6956 __setup("cgroup_debug", enable_cgroup_debug); 6957 6958 static int __init cgroup_favordynmods_setup(char *str) 6959 { 6960 return (kstrtobool(str, &have_favordynmods) == 0); 6961 } 6962 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6963 6964 /** 6965 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6966 * @dentry: directory dentry of interest 6967 * @ss: subsystem of interest 6968 * 6969 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6970 * to get the corresponding css and return it. If such css doesn't exist 6971 * or can't be pinned, an ERR_PTR value is returned. 6972 */ 6973 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6974 struct cgroup_subsys *ss) 6975 { 6976 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6977 struct file_system_type *s_type = dentry->d_sb->s_type; 6978 struct cgroup_subsys_state *css = NULL; 6979 struct cgroup *cgrp; 6980 6981 /* is @dentry a cgroup dir? */ 6982 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6983 !kn || kernfs_type(kn) != KERNFS_DIR) 6984 return ERR_PTR(-EBADF); 6985 6986 rcu_read_lock(); 6987 6988 /* 6989 * This path doesn't originate from kernfs and @kn could already 6990 * have been or be removed at any point. @kn->priv is RCU 6991 * protected for this access. See css_release_work_fn() for details. 6992 */ 6993 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6994 if (cgrp) 6995 css = cgroup_css(cgrp, ss); 6996 6997 if (!css || !css_tryget_online(css)) 6998 css = ERR_PTR(-ENOENT); 6999 7000 rcu_read_unlock(); 7001 return css; 7002 } 7003 7004 /** 7005 * css_from_id - lookup css by id 7006 * @id: the cgroup id 7007 * @ss: cgroup subsys to be looked into 7008 * 7009 * Returns the css if there's valid one with @id, otherwise returns NULL. 7010 * Should be called under rcu_read_lock(). 7011 */ 7012 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 7013 { 7014 WARN_ON_ONCE(!rcu_read_lock_held()); 7015 return idr_find(&ss->css_idr, id); 7016 } 7017 7018 /** 7019 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 7020 * @path: path on the default hierarchy 7021 * 7022 * Find the cgroup at @path on the default hierarchy, increment its 7023 * reference count and return it. Returns pointer to the found cgroup on 7024 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 7025 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 7026 */ 7027 struct cgroup *cgroup_get_from_path(const char *path) 7028 { 7029 struct kernfs_node *kn; 7030 struct cgroup *cgrp = ERR_PTR(-ENOENT); 7031 struct cgroup *root_cgrp; 7032 7033 root_cgrp = current_cgns_cgroup_dfl(); 7034 kn = kernfs_walk_and_get(root_cgrp->kn, path); 7035 if (!kn) 7036 goto out; 7037 7038 if (kernfs_type(kn) != KERNFS_DIR) { 7039 cgrp = ERR_PTR(-ENOTDIR); 7040 goto out_kernfs; 7041 } 7042 7043 rcu_read_lock(); 7044 7045 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 7046 if (!cgrp || !cgroup_tryget(cgrp)) 7047 cgrp = ERR_PTR(-ENOENT); 7048 7049 rcu_read_unlock(); 7050 7051 out_kernfs: 7052 kernfs_put(kn); 7053 out: 7054 return cgrp; 7055 } 7056 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 7057 7058 /** 7059 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 7060 * @fd: fd obtained by open(cgroup_dir) 7061 * 7062 * Find the cgroup from a fd which should be obtained 7063 * by opening a cgroup directory. Returns a pointer to the 7064 * cgroup on success. ERR_PTR is returned if the cgroup 7065 * cannot be found. 7066 */ 7067 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 7068 { 7069 CLASS(fd_raw, f)(fd); 7070 if (fd_empty(f)) 7071 return ERR_PTR(-EBADF); 7072 7073 return cgroup_v1v2_get_from_file(fd_file(f)); 7074 } 7075 7076 /** 7077 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 7078 * cgroup2. 7079 * @fd: fd obtained by open(cgroup2_dir) 7080 */ 7081 struct cgroup *cgroup_get_from_fd(int fd) 7082 { 7083 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 7084 7085 if (IS_ERR(cgrp)) 7086 return ERR_CAST(cgrp); 7087 7088 if (!cgroup_on_dfl(cgrp)) { 7089 cgroup_put(cgrp); 7090 return ERR_PTR(-EBADF); 7091 } 7092 return cgrp; 7093 } 7094 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 7095 7096 static u64 power_of_ten(int power) 7097 { 7098 u64 v = 1; 7099 while (power--) 7100 v *= 10; 7101 return v; 7102 } 7103 7104 /** 7105 * cgroup_parse_float - parse a floating number 7106 * @input: input string 7107 * @dec_shift: number of decimal digits to shift 7108 * @v: output 7109 * 7110 * Parse a decimal floating point number in @input and store the result in 7111 * @v with decimal point right shifted @dec_shift times. For example, if 7112 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7113 * Returns 0 on success, -errno otherwise. 7114 * 7115 * There's nothing cgroup specific about this function except that it's 7116 * currently the only user. 7117 */ 7118 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7119 { 7120 s64 whole, frac = 0; 7121 int fstart = 0, fend = 0, flen; 7122 7123 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7124 return -EINVAL; 7125 if (frac < 0) 7126 return -EINVAL; 7127 7128 flen = fend > fstart ? fend - fstart : 0; 7129 if (flen < dec_shift) 7130 frac *= power_of_ten(dec_shift - flen); 7131 else 7132 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7133 7134 *v = whole * power_of_ten(dec_shift) + frac; 7135 return 0; 7136 } 7137 7138 /* 7139 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7140 * definition in cgroup-defs.h. 7141 */ 7142 #ifdef CONFIG_SOCK_CGROUP_DATA 7143 7144 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7145 { 7146 struct cgroup *cgroup; 7147 7148 rcu_read_lock(); 7149 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7150 if (in_interrupt()) { 7151 cgroup = &cgrp_dfl_root.cgrp; 7152 cgroup_get(cgroup); 7153 goto out; 7154 } 7155 7156 while (true) { 7157 struct css_set *cset; 7158 7159 cset = task_css_set(current); 7160 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7161 cgroup = cset->dfl_cgrp; 7162 break; 7163 } 7164 cpu_relax(); 7165 } 7166 out: 7167 skcd->cgroup = cgroup; 7168 cgroup_bpf_get(cgroup); 7169 rcu_read_unlock(); 7170 } 7171 7172 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7173 { 7174 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7175 7176 /* 7177 * We might be cloning a socket which is left in an empty 7178 * cgroup and the cgroup might have already been rmdir'd. 7179 * Don't use cgroup_get_live(). 7180 */ 7181 cgroup_get(cgrp); 7182 cgroup_bpf_get(cgrp); 7183 } 7184 7185 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7186 { 7187 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7188 7189 cgroup_bpf_put(cgrp); 7190 cgroup_put(cgrp); 7191 } 7192 7193 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7194 7195 #ifdef CONFIG_SYSFS 7196 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7197 ssize_t size, const char *prefix) 7198 { 7199 struct cftype *cft; 7200 ssize_t ret = 0; 7201 7202 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7203 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7204 continue; 7205 7206 if (prefix) 7207 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7208 7209 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7210 7211 if (WARN_ON(ret >= size)) 7212 break; 7213 } 7214 7215 return ret; 7216 } 7217 7218 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7219 char *buf) 7220 { 7221 struct cgroup_subsys *ss; 7222 int ssid; 7223 ssize_t ret = 0; 7224 7225 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7226 PAGE_SIZE - ret, NULL); 7227 if (cgroup_psi_enabled()) 7228 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7229 PAGE_SIZE - ret, NULL); 7230 7231 for_each_subsys(ss, ssid) 7232 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7233 PAGE_SIZE - ret, 7234 cgroup_subsys_name[ssid]); 7235 7236 return ret; 7237 } 7238 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7239 7240 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7241 char *buf) 7242 { 7243 return snprintf(buf, PAGE_SIZE, 7244 "nsdelegate\n" 7245 "favordynmods\n" 7246 "memory_localevents\n" 7247 "memory_recursiveprot\n" 7248 "memory_hugetlb_accounting\n" 7249 "pids_localevents\n"); 7250 } 7251 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7252 7253 static struct attribute *cgroup_sysfs_attrs[] = { 7254 &cgroup_delegate_attr.attr, 7255 &cgroup_features_attr.attr, 7256 NULL, 7257 }; 7258 7259 static const struct attribute_group cgroup_sysfs_attr_group = { 7260 .attrs = cgroup_sysfs_attrs, 7261 .name = "cgroup", 7262 }; 7263 7264 static int __init cgroup_sysfs_init(void) 7265 { 7266 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7267 } 7268 subsys_initcall(cgroup_sysfs_init); 7269 7270 #endif /* CONFIG_SYSFS */ 7271