xref: /linux/kernel/cgroup/cgroup.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <linux/nstree.h>
63 #include <net/sock.h>
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/cgroup.h>
67 
68 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
69 					 MAX_CFTYPE_NAME + 2)
70 /* let's not notify more than 100 times per second */
71 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
72 
73 /*
74  * To avoid confusing the compiler (and generating warnings) with code
75  * that attempts to access what would be a 0-element array (i.e. sized
76  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
77  * constant expression can be added.
78  */
79 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
80 
81 /*
82  * cgroup_mutex is the master lock.  Any modification to cgroup or its
83  * hierarchy must be performed while holding it.
84  *
85  * css_set_lock protects task->cgroups pointer, the list of css_set
86  * objects, and the chain of tasks off each css_set.
87  *
88  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89  * cgroup.h can use them for lockdep annotations.
90  */
91 DEFINE_MUTEX(cgroup_mutex);
92 DEFINE_SPINLOCK(css_set_lock);
93 
94 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
95 EXPORT_SYMBOL_GPL(cgroup_mutex);
96 EXPORT_SYMBOL_GPL(css_set_lock);
97 #endif
98 
99 struct blocking_notifier_head cgroup_lifetime_notifier =
100 	BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
101 
102 DEFINE_SPINLOCK(trace_cgroup_path_lock);
103 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
104 static bool cgroup_debug __read_mostly;
105 
106 /*
107  * Protects cgroup_idr and css_idr so that IDs can be released without
108  * grabbing cgroup_mutex.
109  */
110 static DEFINE_SPINLOCK(cgroup_idr_lock);
111 
112 /*
113  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
114  * against file removal/re-creation across css hiding.
115  */
116 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
117 
118 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
119 
120 #define cgroup_assert_mutex_or_rcu_locked()				\
121 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
122 			   !lockdep_is_held(&cgroup_mutex),		\
123 			   "cgroup_mutex or RCU read lock required");
124 
125 /*
126  * cgroup destruction makes heavy use of work items and there can be a lot
127  * of concurrent destructions.  Use a separate workqueue so that cgroup
128  * destruction work items don't end up filling up max_active of system_percpu_wq
129  * which may lead to deadlock.
130  *
131  * A cgroup destruction should enqueue work sequentially to:
132  * cgroup_offline_wq: use for css offline work
133  * cgroup_release_wq: use for css release work
134  * cgroup_free_wq: use for free work
135  *
136  * Rationale for using separate workqueues:
137  * The cgroup root free work may depend on completion of other css offline
138  * operations. If all tasks were enqueued to a single workqueue, this could
139  * create a deadlock scenario where:
140  * - Free work waits for other css offline work to complete.
141  * - But other css offline work is queued after free work in the same queue.
142  *
143  * Example deadlock scenario with single workqueue (cgroup_destroy_wq):
144  * 1. umount net_prio
145  * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
146  * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
147  * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
148  * 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
149  *    which can never complete as it's behind in the same queue and
150  *    workqueue's max_active is 1.
151  */
152 static struct workqueue_struct *cgroup_offline_wq;
153 static struct workqueue_struct *cgroup_release_wq;
154 static struct workqueue_struct *cgroup_free_wq;
155 
156 /* generate an array of cgroup subsystem pointers */
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
158 struct cgroup_subsys *cgroup_subsys[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 /* array of cgroup subsystem names */
164 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
165 static const char *cgroup_subsys_name[] = {
166 #include <linux/cgroup_subsys.h>
167 };
168 #undef SUBSYS
169 
170 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
171 #define SUBSYS(_x)								\
172 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
173 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
174 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
175 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
176 #include <linux/cgroup_subsys.h>
177 #undef SUBSYS
178 
179 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
180 static struct static_key_true *cgroup_subsys_enabled_key[] = {
181 #include <linux/cgroup_subsys.h>
182 };
183 #undef SUBSYS
184 
185 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
186 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
187 #include <linux/cgroup_subsys.h>
188 };
189 #undef SUBSYS
190 
191 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
192 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
193 
194 /* the default hierarchy */
195 struct cgroup_root cgrp_dfl_root = {
196 	.cgrp.self.rstat_cpu = &root_rstat_cpu,
197 	.cgrp.rstat_base_cpu = &root_rstat_base_cpu,
198 };
199 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
200 
201 /*
202  * The default hierarchy always exists but is hidden until mounted for the
203  * first time.  This is for backward compatibility.
204  */
205 bool cgrp_dfl_visible;
206 
207 /* some controllers are not supported in the default hierarchy */
208 static u16 cgrp_dfl_inhibit_ss_mask;
209 
210 /* some controllers are implicitly enabled on the default hierarchy */
211 static u16 cgrp_dfl_implicit_ss_mask;
212 
213 /* some controllers can be threaded on the default hierarchy */
214 static u16 cgrp_dfl_threaded_ss_mask;
215 
216 /* The list of hierarchy roots */
217 LIST_HEAD(cgroup_roots);
218 static int cgroup_root_count;
219 
220 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
221 static DEFINE_IDR(cgroup_hierarchy_idr);
222 
223 /*
224  * Assign a monotonically increasing serial number to csses.  It guarantees
225  * cgroups with bigger numbers are newer than those with smaller numbers.
226  * Also, as csses are always appended to the parent's ->children list, it
227  * guarantees that sibling csses are always sorted in the ascending serial
228  * number order on the list.  Protected by cgroup_mutex.
229  */
230 static u64 css_serial_nr_next = 1;
231 
232 /*
233  * These bitmasks identify subsystems with specific features to avoid
234  * having to do iterative checks repeatedly.
235  */
236 static u16 have_fork_callback __read_mostly;
237 static u16 have_exit_callback __read_mostly;
238 static u16 have_release_callback __read_mostly;
239 static u16 have_canfork_callback __read_mostly;
240 
241 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
242 
243 /*
244  * Write protected by cgroup_mutex and write-lock of cgroup_threadgroup_rwsem,
245  * read protected by either.
246  *
247  * Can only be turned on, but not turned off.
248  */
249 bool cgroup_enable_per_threadgroup_rwsem __read_mostly;
250 
251 /* cgroup namespace for init task */
252 struct cgroup_namespace init_cgroup_ns = {
253 	.ns.__ns_ref	= REFCOUNT_INIT(2),
254 	.user_ns	= &init_user_ns,
255 	.ns.ops		= &cgroupns_operations,
256 	.ns.inum	= ns_init_inum(&init_cgroup_ns),
257 	.root_cset	= &init_css_set,
258 	.ns.ns_type	= ns_common_type(&init_cgroup_ns),
259 };
260 
261 static struct file_system_type cgroup2_fs_type;
262 static struct cftype cgroup_base_files[];
263 static struct cftype cgroup_psi_files[];
264 
265 /* cgroup optional features */
266 enum cgroup_opt_features {
267 #ifdef CONFIG_PSI
268 	OPT_FEATURE_PRESSURE,
269 #endif
270 	OPT_FEATURE_COUNT
271 };
272 
273 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
274 #ifdef CONFIG_PSI
275 	"pressure",
276 #endif
277 };
278 
279 static u16 cgroup_feature_disable_mask __read_mostly;
280 
281 static int cgroup_apply_control(struct cgroup *cgrp);
282 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
283 static void css_task_iter_skip(struct css_task_iter *it,
284 			       struct task_struct *task);
285 static int cgroup_destroy_locked(struct cgroup *cgrp);
286 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
287 					      struct cgroup_subsys *ss);
288 static void css_release(struct percpu_ref *ref);
289 static void kill_css(struct cgroup_subsys_state *css);
290 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
291 			      struct cgroup *cgrp, struct cftype cfts[],
292 			      bool is_add);
293 
294 #ifdef CONFIG_DEBUG_CGROUP_REF
295 #define CGROUP_REF_FN_ATTRS	noinline
296 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
297 #include <linux/cgroup_refcnt.h>
298 #endif
299 
300 /**
301  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
302  * @ssid: subsys ID of interest
303  *
304  * cgroup_subsys_enabled() can only be used with literal subsys names which
305  * is fine for individual subsystems but unsuitable for cgroup core.  This
306  * is slower static_key_enabled() based test indexed by @ssid.
307  */
308 bool cgroup_ssid_enabled(int ssid)
309 {
310 	if (!CGROUP_HAS_SUBSYS_CONFIG)
311 		return false;
312 
313 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
314 }
315 
316 /**
317  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
318  * @cgrp: the cgroup of interest
319  *
320  * The default hierarchy is the v2 interface of cgroup and this function
321  * can be used to test whether a cgroup is on the default hierarchy for
322  * cases where a subsystem should behave differently depending on the
323  * interface version.
324  *
325  * List of changed behaviors:
326  *
327  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
328  *   and "name" are disallowed.
329  *
330  * - When mounting an existing superblock, mount options should match.
331  *
332  * - rename(2) is disallowed.
333  *
334  * - "tasks" is removed.  Everything should be at process granularity.  Use
335  *   "cgroup.procs" instead.
336  *
337  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
338  *   recycled in-between reads.
339  *
340  * - "release_agent" and "notify_on_release" are removed.  Replacement
341  *   notification mechanism will be implemented.
342  *
343  * - "cgroup.clone_children" is removed.
344  *
345  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
346  *   and its descendants contain no task; otherwise, 1.  The file also
347  *   generates kernfs notification which can be monitored through poll and
348  *   [di]notify when the value of the file changes.
349  *
350  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
351  *   take masks of ancestors with non-empty cpus/mems, instead of being
352  *   moved to an ancestor.
353  *
354  * - cpuset: a task can be moved into an empty cpuset, and again it takes
355  *   masks of ancestors.
356  *
357  * - blkcg: blk-throttle becomes properly hierarchical.
358  */
359 bool cgroup_on_dfl(const struct cgroup *cgrp)
360 {
361 	return cgrp->root == &cgrp_dfl_root;
362 }
363 
364 /* IDR wrappers which synchronize using cgroup_idr_lock */
365 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
366 			    gfp_t gfp_mask)
367 {
368 	int ret;
369 
370 	idr_preload(gfp_mask);
371 	spin_lock_bh(&cgroup_idr_lock);
372 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
373 	spin_unlock_bh(&cgroup_idr_lock);
374 	idr_preload_end();
375 	return ret;
376 }
377 
378 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
379 {
380 	void *ret;
381 
382 	spin_lock_bh(&cgroup_idr_lock);
383 	ret = idr_replace(idr, ptr, id);
384 	spin_unlock_bh(&cgroup_idr_lock);
385 	return ret;
386 }
387 
388 static void cgroup_idr_remove(struct idr *idr, int id)
389 {
390 	spin_lock_bh(&cgroup_idr_lock);
391 	idr_remove(idr, id);
392 	spin_unlock_bh(&cgroup_idr_lock);
393 }
394 
395 static bool cgroup_has_tasks(struct cgroup *cgrp)
396 {
397 	return cgrp->nr_populated_csets;
398 }
399 
400 static bool cgroup_is_threaded(struct cgroup *cgrp)
401 {
402 	return cgrp->dom_cgrp != cgrp;
403 }
404 
405 /* can @cgrp host both domain and threaded children? */
406 static bool cgroup_is_mixable(struct cgroup *cgrp)
407 {
408 	/*
409 	 * Root isn't under domain level resource control exempting it from
410 	 * the no-internal-process constraint, so it can serve as a thread
411 	 * root and a parent of resource domains at the same time.
412 	 */
413 	return !cgroup_parent(cgrp);
414 }
415 
416 /* can @cgrp become a thread root? Should always be true for a thread root */
417 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
418 {
419 	/* mixables don't care */
420 	if (cgroup_is_mixable(cgrp))
421 		return true;
422 
423 	/* domain roots can't be nested under threaded */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* can only have either domain or threaded children */
428 	if (cgrp->nr_populated_domain_children)
429 		return false;
430 
431 	/* and no domain controllers can be enabled */
432 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
433 		return false;
434 
435 	return true;
436 }
437 
438 /* is @cgrp root of a threaded subtree? */
439 static bool cgroup_is_thread_root(struct cgroup *cgrp)
440 {
441 	/* thread root should be a domain */
442 	if (cgroup_is_threaded(cgrp))
443 		return false;
444 
445 	/* a domain w/ threaded children is a thread root */
446 	if (cgrp->nr_threaded_children)
447 		return true;
448 
449 	/*
450 	 * A domain which has tasks and explicit threaded controllers
451 	 * enabled is a thread root.
452 	 */
453 	if (cgroup_has_tasks(cgrp) &&
454 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
455 		return true;
456 
457 	return false;
458 }
459 
460 /* a domain which isn't connected to the root w/o brekage can't be used */
461 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
462 {
463 	/* the cgroup itself can be a thread root */
464 	if (cgroup_is_threaded(cgrp))
465 		return false;
466 
467 	/* but the ancestors can't be unless mixable */
468 	while ((cgrp = cgroup_parent(cgrp))) {
469 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
470 			return false;
471 		if (cgroup_is_threaded(cgrp))
472 			return false;
473 	}
474 
475 	return true;
476 }
477 
478 /* subsystems visibly enabled on a cgroup */
479 static u16 cgroup_control(struct cgroup *cgrp)
480 {
481 	struct cgroup *parent = cgroup_parent(cgrp);
482 	u16 root_ss_mask = cgrp->root->subsys_mask;
483 
484 	if (parent) {
485 		u16 ss_mask = parent->subtree_control;
486 
487 		/* threaded cgroups can only have threaded controllers */
488 		if (cgroup_is_threaded(cgrp))
489 			ss_mask &= cgrp_dfl_threaded_ss_mask;
490 		return ss_mask;
491 	}
492 
493 	if (cgroup_on_dfl(cgrp))
494 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
495 				  cgrp_dfl_implicit_ss_mask);
496 	return root_ss_mask;
497 }
498 
499 /* subsystems enabled on a cgroup */
500 static u16 cgroup_ss_mask(struct cgroup *cgrp)
501 {
502 	struct cgroup *parent = cgroup_parent(cgrp);
503 
504 	if (parent) {
505 		u16 ss_mask = parent->subtree_ss_mask;
506 
507 		/* threaded cgroups can only have threaded controllers */
508 		if (cgroup_is_threaded(cgrp))
509 			ss_mask &= cgrp_dfl_threaded_ss_mask;
510 		return ss_mask;
511 	}
512 
513 	return cgrp->root->subsys_mask;
514 }
515 
516 /**
517  * cgroup_css - obtain a cgroup's css for the specified subsystem
518  * @cgrp: the cgroup of interest
519  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
520  *
521  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
522  * function must be called either under cgroup_mutex or rcu_read_lock() and
523  * the caller is responsible for pinning the returned css if it wants to
524  * keep accessing it outside the said locks.  This function may return
525  * %NULL if @cgrp doesn't have @subsys_id enabled.
526  */
527 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
528 					      struct cgroup_subsys *ss)
529 {
530 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
531 		return rcu_dereference_check(cgrp->subsys[ss->id],
532 					lockdep_is_held(&cgroup_mutex));
533 	else
534 		return &cgrp->self;
535 }
536 
537 /**
538  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
539  * @cgrp: the cgroup of interest
540  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
541  *
542  * Similar to cgroup_css() but returns the effective css, which is defined
543  * as the matching css of the nearest ancestor including self which has @ss
544  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
545  * function is guaranteed to return non-NULL css.
546  */
547 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
548 							struct cgroup_subsys *ss)
549 {
550 	lockdep_assert_held(&cgroup_mutex);
551 
552 	if (!ss)
553 		return &cgrp->self;
554 
555 	/*
556 	 * This function is used while updating css associations and thus
557 	 * can't test the csses directly.  Test ss_mask.
558 	 */
559 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
560 		cgrp = cgroup_parent(cgrp);
561 		if (!cgrp)
562 			return NULL;
563 	}
564 
565 	return cgroup_css(cgrp, ss);
566 }
567 
568 /**
569  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
570  * @cgrp: the cgroup of interest
571  * @ss: the subsystem of interest
572  *
573  * Find and get the effective css of @cgrp for @ss.  The effective css is
574  * defined as the matching css of the nearest ancestor including self which
575  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
576  * the root css is returned, so this function always returns a valid css.
577  *
578  * The returned css is not guaranteed to be online, and therefore it is the
579  * callers responsibility to try get a reference for it.
580  */
581 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
582 					 struct cgroup_subsys *ss)
583 {
584 	struct cgroup_subsys_state *css;
585 
586 	if (!CGROUP_HAS_SUBSYS_CONFIG)
587 		return NULL;
588 
589 	do {
590 		css = cgroup_css(cgrp, ss);
591 
592 		if (css)
593 			return css;
594 		cgrp = cgroup_parent(cgrp);
595 	} while (cgrp);
596 
597 	return init_css_set.subsys[ss->id];
598 }
599 
600 /**
601  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
602  * @cgrp: the cgroup of interest
603  * @ss: the subsystem of interest
604  *
605  * Find and get the effective css of @cgrp for @ss.  The effective css is
606  * defined as the matching css of the nearest ancestor including self which
607  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
608  * the root css is returned, so this function always returns a valid css.
609  * The returned css must be put using css_put().
610  */
611 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
612 					     struct cgroup_subsys *ss)
613 {
614 	struct cgroup_subsys_state *css;
615 
616 	if (!CGROUP_HAS_SUBSYS_CONFIG)
617 		return NULL;
618 
619 	rcu_read_lock();
620 
621 	do {
622 		css = cgroup_css(cgrp, ss);
623 
624 		if (css && css_tryget_online(css))
625 			goto out_unlock;
626 		cgrp = cgroup_parent(cgrp);
627 	} while (cgrp);
628 
629 	css = init_css_set.subsys[ss->id];
630 	css_get(css);
631 out_unlock:
632 	rcu_read_unlock();
633 	return css;
634 }
635 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
636 
637 static void cgroup_get_live(struct cgroup *cgrp)
638 {
639 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
640 	cgroup_get(cgrp);
641 }
642 
643 /**
644  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
645  * is responsible for taking the css_set_lock.
646  * @cgrp: the cgroup in question
647  */
648 int __cgroup_task_count(const struct cgroup *cgrp)
649 {
650 	int count = 0;
651 	struct cgrp_cset_link *link;
652 
653 	lockdep_assert_held(&css_set_lock);
654 
655 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
656 		count += link->cset->nr_tasks;
657 
658 	return count;
659 }
660 
661 /**
662  * cgroup_task_count - count the number of tasks in a cgroup.
663  * @cgrp: the cgroup in question
664  */
665 int cgroup_task_count(const struct cgroup *cgrp)
666 {
667 	int count;
668 
669 	spin_lock_irq(&css_set_lock);
670 	count = __cgroup_task_count(cgrp);
671 	spin_unlock_irq(&css_set_lock);
672 
673 	return count;
674 }
675 
676 static struct cgroup *kn_priv(struct kernfs_node *kn)
677 {
678 	struct kernfs_node *parent;
679 	/*
680 	 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
681 	 * Therefore it is always safe to dereference this pointer outside of a
682 	 * RCU section.
683 	 */
684 	parent = rcu_dereference_check(kn->__parent,
685 				       kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
686 	return parent->priv;
687 }
688 
689 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
690 {
691 	struct cgroup *cgrp = kn_priv(of->kn);
692 	struct cftype *cft = of_cft(of);
693 
694 	/*
695 	 * This is open and unprotected implementation of cgroup_css().
696 	 * seq_css() is only called from a kernfs file operation which has
697 	 * an active reference on the file.  Because all the subsystem
698 	 * files are drained before a css is disassociated with a cgroup,
699 	 * the matching css from the cgroup's subsys table is guaranteed to
700 	 * be and stay valid until the enclosing operation is complete.
701 	 */
702 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
703 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
704 	else
705 		return &cgrp->self;
706 }
707 EXPORT_SYMBOL_GPL(of_css);
708 
709 /**
710  * for_each_css - iterate all css's of a cgroup
711  * @css: the iteration cursor
712  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
713  * @cgrp: the target cgroup to iterate css's of
714  *
715  * Should be called under cgroup_mutex.
716  */
717 #define for_each_css(css, ssid, cgrp)					\
718 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
719 		if (!((css) = rcu_dereference_check(			\
720 				(cgrp)->subsys[(ssid)],			\
721 				lockdep_is_held(&cgroup_mutex)))) { }	\
722 		else
723 
724 /**
725  * do_each_subsys_mask - filter for_each_subsys with a bitmask
726  * @ss: the iteration cursor
727  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
728  * @ss_mask: the bitmask
729  *
730  * The block will only run for cases where the ssid-th bit (1 << ssid) of
731  * @ss_mask is set.
732  */
733 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
734 	unsigned long __ss_mask = (ss_mask);				\
735 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
736 		(ssid) = 0;						\
737 		break;							\
738 	}								\
739 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
740 		(ss) = cgroup_subsys[ssid];				\
741 		{
742 
743 #define while_each_subsys_mask()					\
744 		}							\
745 	}								\
746 } while (false)
747 
748 /* iterate over child cgrps, lock should be held throughout iteration */
749 #define cgroup_for_each_live_child(child, cgrp)				\
750 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
751 		if (({ lockdep_assert_held(&cgroup_mutex);		\
752 		       cgroup_is_dead(child); }))			\
753 			;						\
754 		else
755 
756 /* walk live descendants in pre order */
757 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
758 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
759 		if (({ lockdep_assert_held(&cgroup_mutex);		\
760 		       (dsct) = (d_css)->cgroup;			\
761 		       cgroup_is_dead(dsct); }))			\
762 			;						\
763 		else
764 
765 /* walk live descendants in postorder */
766 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
767 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
768 		if (({ lockdep_assert_held(&cgroup_mutex);		\
769 		       (dsct) = (d_css)->cgroup;			\
770 		       cgroup_is_dead(dsct); }))			\
771 			;						\
772 		else
773 
774 /*
775  * The default css_set - used by init and its children prior to any
776  * hierarchies being mounted. It contains a pointer to the root state
777  * for each subsystem. Also used to anchor the list of css_sets. Not
778  * reference-counted, to improve performance when child cgroups
779  * haven't been created.
780  */
781 struct css_set init_css_set = {
782 	.refcount		= REFCOUNT_INIT(1),
783 	.dom_cset		= &init_css_set,
784 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
785 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
786 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
787 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
788 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
789 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
790 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
791 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
792 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
793 
794 	/*
795 	 * The following field is re-initialized when this cset gets linked
796 	 * in cgroup_init().  However, let's initialize the field
797 	 * statically too so that the default cgroup can be accessed safely
798 	 * early during boot.
799 	 */
800 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
801 };
802 
803 static int css_set_count	= 1;	/* 1 for init_css_set */
804 
805 static bool css_set_threaded(struct css_set *cset)
806 {
807 	return cset->dom_cset != cset;
808 }
809 
810 /**
811  * css_set_populated - does a css_set contain any tasks?
812  * @cset: target css_set
813  *
814  * css_set_populated() should be the same as !!cset->nr_tasks at steady
815  * state. However, css_set_populated() can be called while a task is being
816  * added to or removed from the linked list before the nr_tasks is
817  * properly updated. Hence, we can't just look at ->nr_tasks here.
818  */
819 static bool css_set_populated(struct css_set *cset)
820 {
821 	lockdep_assert_held(&css_set_lock);
822 
823 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
824 }
825 
826 /**
827  * cgroup_update_populated - update the populated count of a cgroup
828  * @cgrp: the target cgroup
829  * @populated: inc or dec populated count
830  *
831  * One of the css_sets associated with @cgrp is either getting its first
832  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
833  * count is propagated towards root so that a given cgroup's
834  * nr_populated_children is zero iff none of its descendants contain any
835  * tasks.
836  *
837  * @cgrp's interface file "cgroup.populated" is zero if both
838  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
839  * 1 otherwise.  When the sum changes from or to zero, userland is notified
840  * that the content of the interface file has changed.  This can be used to
841  * detect when @cgrp and its descendants become populated or empty.
842  */
843 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
844 {
845 	struct cgroup *child = NULL;
846 	int adj = populated ? 1 : -1;
847 
848 	lockdep_assert_held(&css_set_lock);
849 
850 	do {
851 		bool was_populated = cgroup_is_populated(cgrp);
852 
853 		if (!child) {
854 			cgrp->nr_populated_csets += adj;
855 		} else {
856 			if (cgroup_is_threaded(child))
857 				cgrp->nr_populated_threaded_children += adj;
858 			else
859 				cgrp->nr_populated_domain_children += adj;
860 		}
861 
862 		if (was_populated == cgroup_is_populated(cgrp))
863 			break;
864 
865 		cgroup1_check_for_release(cgrp);
866 		TRACE_CGROUP_PATH(notify_populated, cgrp,
867 				  cgroup_is_populated(cgrp));
868 		cgroup_file_notify(&cgrp->events_file);
869 
870 		child = cgrp;
871 		cgrp = cgroup_parent(cgrp);
872 	} while (cgrp);
873 }
874 
875 /**
876  * css_set_update_populated - update populated state of a css_set
877  * @cset: target css_set
878  * @populated: whether @cset is populated or depopulated
879  *
880  * @cset is either getting the first task or losing the last.  Update the
881  * populated counters of all associated cgroups accordingly.
882  */
883 static void css_set_update_populated(struct css_set *cset, bool populated)
884 {
885 	struct cgrp_cset_link *link;
886 
887 	lockdep_assert_held(&css_set_lock);
888 
889 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
890 		cgroup_update_populated(link->cgrp, populated);
891 }
892 
893 /*
894  * @task is leaving, advance task iterators which are pointing to it so
895  * that they can resume at the next position.  Advancing an iterator might
896  * remove it from the list, use safe walk.  See css_task_iter_skip() for
897  * details.
898  */
899 static void css_set_skip_task_iters(struct css_set *cset,
900 				    struct task_struct *task)
901 {
902 	struct css_task_iter *it, *pos;
903 
904 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
905 		css_task_iter_skip(it, task);
906 }
907 
908 /**
909  * css_set_move_task - move a task from one css_set to another
910  * @task: task being moved
911  * @from_cset: css_set @task currently belongs to (may be NULL)
912  * @to_cset: new css_set @task is being moved to (may be NULL)
913  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
914  *
915  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
916  * css_set, @from_cset can be NULL.  If @task is being disassociated
917  * instead of moved, @to_cset can be NULL.
918  *
919  * This function automatically handles populated counter updates and
920  * css_task_iter adjustments but the caller is responsible for managing
921  * @from_cset and @to_cset's reference counts.
922  */
923 static void css_set_move_task(struct task_struct *task,
924 			      struct css_set *from_cset, struct css_set *to_cset,
925 			      bool use_mg_tasks)
926 {
927 	lockdep_assert_held(&css_set_lock);
928 
929 	if (to_cset && !css_set_populated(to_cset))
930 		css_set_update_populated(to_cset, true);
931 
932 	if (from_cset) {
933 		WARN_ON_ONCE(list_empty(&task->cg_list));
934 
935 		css_set_skip_task_iters(from_cset, task);
936 		list_del_init(&task->cg_list);
937 		if (!css_set_populated(from_cset))
938 			css_set_update_populated(from_cset, false);
939 	} else {
940 		WARN_ON_ONCE(!list_empty(&task->cg_list));
941 	}
942 
943 	if (to_cset) {
944 		/*
945 		 * We are synchronized through cgroup_threadgroup_rwsem
946 		 * against PF_EXITING setting such that we can't race
947 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
948 		 */
949 		WARN_ON_ONCE(task->flags & PF_EXITING);
950 
951 		cgroup_move_task(task, to_cset);
952 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
953 							     &to_cset->tasks);
954 	}
955 }
956 
957 /*
958  * hash table for cgroup groups. This improves the performance to find
959  * an existing css_set. This hash doesn't (currently) take into
960  * account cgroups in empty hierarchies.
961  */
962 #define CSS_SET_HASH_BITS	7
963 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
964 
965 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
966 {
967 	unsigned long key = 0UL;
968 	struct cgroup_subsys *ss;
969 	int i;
970 
971 	for_each_subsys(ss, i)
972 		key += (unsigned long)css[i];
973 	key = (key >> 16) ^ key;
974 
975 	return key;
976 }
977 
978 void put_css_set_locked(struct css_set *cset)
979 {
980 	struct cgrp_cset_link *link, *tmp_link;
981 	struct cgroup_subsys *ss;
982 	int ssid;
983 
984 	lockdep_assert_held(&css_set_lock);
985 
986 	if (!refcount_dec_and_test(&cset->refcount))
987 		return;
988 
989 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
990 
991 	/* This css_set is dead. Unlink it and release cgroup and css refs */
992 	for_each_subsys(ss, ssid) {
993 		list_del(&cset->e_cset_node[ssid]);
994 		css_put(cset->subsys[ssid]);
995 	}
996 	hash_del(&cset->hlist);
997 	css_set_count--;
998 
999 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
1000 		list_del(&link->cset_link);
1001 		list_del(&link->cgrp_link);
1002 		if (cgroup_parent(link->cgrp))
1003 			cgroup_put(link->cgrp);
1004 		kfree(link);
1005 	}
1006 
1007 	if (css_set_threaded(cset)) {
1008 		list_del(&cset->threaded_csets_node);
1009 		put_css_set_locked(cset->dom_cset);
1010 	}
1011 
1012 	kfree_rcu(cset, rcu_head);
1013 }
1014 
1015 /**
1016  * compare_css_sets - helper function for find_existing_css_set().
1017  * @cset: candidate css_set being tested
1018  * @old_cset: existing css_set for a task
1019  * @new_cgrp: cgroup that's being entered by the task
1020  * @template: desired set of css pointers in css_set (pre-calculated)
1021  *
1022  * Returns true if "cset" matches "old_cset" except for the hierarchy
1023  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1024  */
1025 static bool compare_css_sets(struct css_set *cset,
1026 			     struct css_set *old_cset,
1027 			     struct cgroup *new_cgrp,
1028 			     struct cgroup_subsys_state *template[])
1029 {
1030 	struct cgroup *new_dfl_cgrp;
1031 	struct list_head *l1, *l2;
1032 
1033 	/*
1034 	 * On the default hierarchy, there can be csets which are
1035 	 * associated with the same set of cgroups but different csses.
1036 	 * Let's first ensure that csses match.
1037 	 */
1038 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1039 		return false;
1040 
1041 
1042 	/* @cset's domain should match the default cgroup's */
1043 	if (cgroup_on_dfl(new_cgrp))
1044 		new_dfl_cgrp = new_cgrp;
1045 	else
1046 		new_dfl_cgrp = old_cset->dfl_cgrp;
1047 
1048 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1049 		return false;
1050 
1051 	/*
1052 	 * Compare cgroup pointers in order to distinguish between
1053 	 * different cgroups in hierarchies.  As different cgroups may
1054 	 * share the same effective css, this comparison is always
1055 	 * necessary.
1056 	 */
1057 	l1 = &cset->cgrp_links;
1058 	l2 = &old_cset->cgrp_links;
1059 	while (1) {
1060 		struct cgrp_cset_link *link1, *link2;
1061 		struct cgroup *cgrp1, *cgrp2;
1062 
1063 		l1 = l1->next;
1064 		l2 = l2->next;
1065 		/* See if we reached the end - both lists are equal length. */
1066 		if (l1 == &cset->cgrp_links) {
1067 			BUG_ON(l2 != &old_cset->cgrp_links);
1068 			break;
1069 		} else {
1070 			BUG_ON(l2 == &old_cset->cgrp_links);
1071 		}
1072 		/* Locate the cgroups associated with these links. */
1073 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1074 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1075 		cgrp1 = link1->cgrp;
1076 		cgrp2 = link2->cgrp;
1077 		/* Hierarchies should be linked in the same order. */
1078 		BUG_ON(cgrp1->root != cgrp2->root);
1079 
1080 		/*
1081 		 * If this hierarchy is the hierarchy of the cgroup
1082 		 * that's changing, then we need to check that this
1083 		 * css_set points to the new cgroup; if it's any other
1084 		 * hierarchy, then this css_set should point to the
1085 		 * same cgroup as the old css_set.
1086 		 */
1087 		if (cgrp1->root == new_cgrp->root) {
1088 			if (cgrp1 != new_cgrp)
1089 				return false;
1090 		} else {
1091 			if (cgrp1 != cgrp2)
1092 				return false;
1093 		}
1094 	}
1095 	return true;
1096 }
1097 
1098 /**
1099  * find_existing_css_set - init css array and find the matching css_set
1100  * @old_cset: the css_set that we're using before the cgroup transition
1101  * @cgrp: the cgroup that we're moving into
1102  * @template: out param for the new set of csses, should be clear on entry
1103  */
1104 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1105 					struct cgroup *cgrp,
1106 					struct cgroup_subsys_state **template)
1107 {
1108 	struct cgroup_root *root = cgrp->root;
1109 	struct cgroup_subsys *ss;
1110 	struct css_set *cset;
1111 	unsigned long key;
1112 	int i;
1113 
1114 	/*
1115 	 * Build the set of subsystem state objects that we want to see in the
1116 	 * new css_set. While subsystems can change globally, the entries here
1117 	 * won't change, so no need for locking.
1118 	 */
1119 	for_each_subsys(ss, i) {
1120 		if (root->subsys_mask & (1UL << i)) {
1121 			/*
1122 			 * @ss is in this hierarchy, so we want the
1123 			 * effective css from @cgrp.
1124 			 */
1125 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1126 		} else {
1127 			/*
1128 			 * @ss is not in this hierarchy, so we don't want
1129 			 * to change the css.
1130 			 */
1131 			template[i] = old_cset->subsys[i];
1132 		}
1133 	}
1134 
1135 	key = css_set_hash(template);
1136 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1137 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1138 			continue;
1139 
1140 		/* This css_set matches what we need */
1141 		return cset;
1142 	}
1143 
1144 	/* No existing cgroup group matched */
1145 	return NULL;
1146 }
1147 
1148 static void free_cgrp_cset_links(struct list_head *links_to_free)
1149 {
1150 	struct cgrp_cset_link *link, *tmp_link;
1151 
1152 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1153 		list_del(&link->cset_link);
1154 		kfree(link);
1155 	}
1156 }
1157 
1158 /**
1159  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1160  * @count: the number of links to allocate
1161  * @tmp_links: list_head the allocated links are put on
1162  *
1163  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1164  * through ->cset_link.  Returns 0 on success or -errno.
1165  */
1166 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1167 {
1168 	struct cgrp_cset_link *link;
1169 	int i;
1170 
1171 	INIT_LIST_HEAD(tmp_links);
1172 
1173 	for (i = 0; i < count; i++) {
1174 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1175 		if (!link) {
1176 			free_cgrp_cset_links(tmp_links);
1177 			return -ENOMEM;
1178 		}
1179 		list_add(&link->cset_link, tmp_links);
1180 	}
1181 	return 0;
1182 }
1183 
1184 /**
1185  * link_css_set - a helper function to link a css_set to a cgroup
1186  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1187  * @cset: the css_set to be linked
1188  * @cgrp: the destination cgroup
1189  */
1190 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1191 			 struct cgroup *cgrp)
1192 {
1193 	struct cgrp_cset_link *link;
1194 
1195 	BUG_ON(list_empty(tmp_links));
1196 
1197 	if (cgroup_on_dfl(cgrp))
1198 		cset->dfl_cgrp = cgrp;
1199 
1200 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1201 	link->cset = cset;
1202 	link->cgrp = cgrp;
1203 
1204 	/*
1205 	 * Always add links to the tail of the lists so that the lists are
1206 	 * in chronological order.
1207 	 */
1208 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1209 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1210 
1211 	if (cgroup_parent(cgrp))
1212 		cgroup_get_live(cgrp);
1213 }
1214 
1215 /**
1216  * find_css_set - return a new css_set with one cgroup updated
1217  * @old_cset: the baseline css_set
1218  * @cgrp: the cgroup to be updated
1219  *
1220  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1221  * substituted into the appropriate hierarchy.
1222  */
1223 static struct css_set *find_css_set(struct css_set *old_cset,
1224 				    struct cgroup *cgrp)
1225 {
1226 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1227 	struct css_set *cset;
1228 	struct list_head tmp_links;
1229 	struct cgrp_cset_link *link;
1230 	struct cgroup_subsys *ss;
1231 	unsigned long key;
1232 	int ssid;
1233 
1234 	lockdep_assert_held(&cgroup_mutex);
1235 
1236 	/* First see if we already have a cgroup group that matches
1237 	 * the desired set */
1238 	spin_lock_irq(&css_set_lock);
1239 	cset = find_existing_css_set(old_cset, cgrp, template);
1240 	if (cset)
1241 		get_css_set(cset);
1242 	spin_unlock_irq(&css_set_lock);
1243 
1244 	if (cset)
1245 		return cset;
1246 
1247 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1248 	if (!cset)
1249 		return NULL;
1250 
1251 	/* Allocate all the cgrp_cset_link objects that we'll need */
1252 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1253 		kfree(cset);
1254 		return NULL;
1255 	}
1256 
1257 	refcount_set(&cset->refcount, 1);
1258 	cset->dom_cset = cset;
1259 	INIT_LIST_HEAD(&cset->tasks);
1260 	INIT_LIST_HEAD(&cset->mg_tasks);
1261 	INIT_LIST_HEAD(&cset->dying_tasks);
1262 	INIT_LIST_HEAD(&cset->task_iters);
1263 	INIT_LIST_HEAD(&cset->threaded_csets);
1264 	INIT_HLIST_NODE(&cset->hlist);
1265 	INIT_LIST_HEAD(&cset->cgrp_links);
1266 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1267 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1268 	INIT_LIST_HEAD(&cset->mg_node);
1269 
1270 	/* Copy the set of subsystem state objects generated in
1271 	 * find_existing_css_set() */
1272 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1273 
1274 	spin_lock_irq(&css_set_lock);
1275 	/* Add reference counts and links from the new css_set. */
1276 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1277 		struct cgroup *c = link->cgrp;
1278 
1279 		if (c->root == cgrp->root)
1280 			c = cgrp;
1281 		link_css_set(&tmp_links, cset, c);
1282 	}
1283 
1284 	BUG_ON(!list_empty(&tmp_links));
1285 
1286 	css_set_count++;
1287 
1288 	/* Add @cset to the hash table */
1289 	key = css_set_hash(cset->subsys);
1290 	hash_add(css_set_table, &cset->hlist, key);
1291 
1292 	for_each_subsys(ss, ssid) {
1293 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1294 
1295 		list_add_tail(&cset->e_cset_node[ssid],
1296 			      &css->cgroup->e_csets[ssid]);
1297 		css_get(css);
1298 	}
1299 
1300 	spin_unlock_irq(&css_set_lock);
1301 
1302 	/*
1303 	 * If @cset should be threaded, look up the matching dom_cset and
1304 	 * link them up.  We first fully initialize @cset then look for the
1305 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1306 	 * to stay empty until we return.
1307 	 */
1308 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1309 		struct css_set *dcset;
1310 
1311 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1312 		if (!dcset) {
1313 			put_css_set(cset);
1314 			return NULL;
1315 		}
1316 
1317 		spin_lock_irq(&css_set_lock);
1318 		cset->dom_cset = dcset;
1319 		list_add_tail(&cset->threaded_csets_node,
1320 			      &dcset->threaded_csets);
1321 		spin_unlock_irq(&css_set_lock);
1322 	}
1323 
1324 	return cset;
1325 }
1326 
1327 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1328 {
1329 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1330 
1331 	return root_cgrp->root;
1332 }
1333 
1334 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1335 {
1336 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1337 
1338 	/*
1339 	 * see the comment above CGRP_ROOT_FAVOR_DYNMODS definition.
1340 	 * favordynmods can flip while task is between
1341 	 * cgroup_threadgroup_change_begin() and end(), so down_write global
1342 	 * cgroup_threadgroup_rwsem to synchronize them.
1343 	 *
1344 	 * Once cgroup_enable_per_threadgroup_rwsem is enabled, holding
1345 	 * cgroup_threadgroup_rwsem doesn't exlude tasks between
1346 	 * cgroup_thread_group_change_begin() and end() and thus it's unsafe to
1347 	 * turn off. As the scenario is unlikely, simply disallow disabling once
1348 	 * enabled and print out a warning.
1349 	 */
1350 	percpu_down_write(&cgroup_threadgroup_rwsem);
1351 	if (favor && !favoring) {
1352 		cgroup_enable_per_threadgroup_rwsem = true;
1353 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1354 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1355 	} else if (!favor && favoring) {
1356 		if (cgroup_enable_per_threadgroup_rwsem)
1357 			pr_warn_once("cgroup favordynmods: per threadgroup rwsem mechanism can't be disabled\n");
1358 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1359 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1360 	}
1361 	percpu_up_write(&cgroup_threadgroup_rwsem);
1362 }
1363 
1364 static int cgroup_init_root_id(struct cgroup_root *root)
1365 {
1366 	int id;
1367 
1368 	lockdep_assert_held(&cgroup_mutex);
1369 
1370 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1371 	if (id < 0)
1372 		return id;
1373 
1374 	root->hierarchy_id = id;
1375 	return 0;
1376 }
1377 
1378 static void cgroup_exit_root_id(struct cgroup_root *root)
1379 {
1380 	lockdep_assert_held(&cgroup_mutex);
1381 
1382 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1383 }
1384 
1385 void cgroup_free_root(struct cgroup_root *root)
1386 {
1387 	kfree_rcu(root, rcu);
1388 }
1389 
1390 static void cgroup_destroy_root(struct cgroup_root *root)
1391 {
1392 	struct cgroup *cgrp = &root->cgrp;
1393 	struct cgrp_cset_link *link, *tmp_link;
1394 	int ret;
1395 
1396 	trace_cgroup_destroy_root(root);
1397 
1398 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1399 
1400 	BUG_ON(atomic_read(&root->nr_cgrps));
1401 	BUG_ON(!list_empty(&cgrp->self.children));
1402 
1403 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
1404 					   CGROUP_LIFETIME_OFFLINE, cgrp);
1405 	WARN_ON_ONCE(notifier_to_errno(ret));
1406 
1407 	/* Rebind all subsystems back to the default hierarchy */
1408 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1409 
1410 	/*
1411 	 * Release all the links from cset_links to this hierarchy's
1412 	 * root cgroup
1413 	 */
1414 	spin_lock_irq(&css_set_lock);
1415 
1416 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1417 		list_del(&link->cset_link);
1418 		list_del(&link->cgrp_link);
1419 		kfree(link);
1420 	}
1421 
1422 	spin_unlock_irq(&css_set_lock);
1423 
1424 	WARN_ON_ONCE(list_empty(&root->root_list));
1425 	list_del_rcu(&root->root_list);
1426 	cgroup_root_count--;
1427 
1428 	if (!have_favordynmods)
1429 		cgroup_favor_dynmods(root, false);
1430 
1431 	cgroup_exit_root_id(root);
1432 
1433 	cgroup_unlock();
1434 
1435 	kernfs_destroy_root(root->kf_root);
1436 	cgroup_free_root(root);
1437 }
1438 
1439 /*
1440  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1441  */
1442 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1443 					    struct cgroup_root *root)
1444 {
1445 	struct cgroup *res_cgroup = NULL;
1446 
1447 	if (cset == &init_css_set) {
1448 		res_cgroup = &root->cgrp;
1449 	} else if (root == &cgrp_dfl_root) {
1450 		res_cgroup = cset->dfl_cgrp;
1451 	} else {
1452 		struct cgrp_cset_link *link;
1453 		lockdep_assert_held(&css_set_lock);
1454 
1455 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1456 			struct cgroup *c = link->cgrp;
1457 
1458 			if (c->root == root) {
1459 				res_cgroup = c;
1460 				break;
1461 			}
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1467 	 * before we remove the cgroup root from the root_list. Consequently,
1468 	 * when accessing a cgroup root, the cset_link may have already been
1469 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1470 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1471 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1472 	 * check.
1473 	 */
1474 	return res_cgroup;
1475 }
1476 
1477 /*
1478  * look up cgroup associated with current task's cgroup namespace on the
1479  * specified hierarchy
1480  */
1481 static struct cgroup *
1482 current_cgns_cgroup_from_root(struct cgroup_root *root)
1483 {
1484 	struct cgroup *res = NULL;
1485 	struct css_set *cset;
1486 
1487 	lockdep_assert_held(&css_set_lock);
1488 
1489 	rcu_read_lock();
1490 
1491 	cset = current->nsproxy->cgroup_ns->root_cset;
1492 	res = __cset_cgroup_from_root(cset, root);
1493 
1494 	rcu_read_unlock();
1495 
1496 	/*
1497 	 * The namespace_sem is held by current, so the root cgroup can't
1498 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1499 	 */
1500 	WARN_ON_ONCE(!res);
1501 	return res;
1502 }
1503 
1504 /*
1505  * Look up cgroup associated with current task's cgroup namespace on the default
1506  * hierarchy.
1507  *
1508  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1509  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1510  *   pointers.
1511  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1512  * - As a bonus returned cgrp is pinned with the current because it cannot
1513  *   switch cgroup_ns asynchronously.
1514  */
1515 static struct cgroup *current_cgns_cgroup_dfl(void)
1516 {
1517 	struct css_set *cset;
1518 
1519 	if (current->nsproxy) {
1520 		cset = current->nsproxy->cgroup_ns->root_cset;
1521 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1522 	} else {
1523 		/*
1524 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1525 		 * on a task which has already passed exit_task_namespaces() and
1526 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1527 		 * cgroups visible for lookups.
1528 		 */
1529 		return &cgrp_dfl_root.cgrp;
1530 	}
1531 }
1532 
1533 /* look up cgroup associated with given css_set on the specified hierarchy */
1534 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1535 					    struct cgroup_root *root)
1536 {
1537 	lockdep_assert_held(&css_set_lock);
1538 
1539 	return __cset_cgroup_from_root(cset, root);
1540 }
1541 
1542 /*
1543  * Return the cgroup for "task" from the given hierarchy. Must be
1544  * called with css_set_lock held to prevent task's groups from being modified.
1545  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1546  * cgroup root from being destroyed.
1547  */
1548 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1549 				     struct cgroup_root *root)
1550 {
1551 	/*
1552 	 * No need to lock the task - since we hold css_set_lock the
1553 	 * task can't change groups.
1554 	 */
1555 	return cset_cgroup_from_root(task_css_set(task), root);
1556 }
1557 
1558 /*
1559  * A task must hold cgroup_mutex to modify cgroups.
1560  *
1561  * Any task can increment and decrement the count field without lock.
1562  * So in general, code holding cgroup_mutex can't rely on the count
1563  * field not changing.  However, if the count goes to zero, then only
1564  * cgroup_attach_task() can increment it again.  Because a count of zero
1565  * means that no tasks are currently attached, therefore there is no
1566  * way a task attached to that cgroup can fork (the other way to
1567  * increment the count).  So code holding cgroup_mutex can safely
1568  * assume that if the count is zero, it will stay zero. Similarly, if
1569  * a task holds cgroup_mutex on a cgroup with zero count, it
1570  * knows that the cgroup won't be removed, as cgroup_rmdir()
1571  * needs that mutex.
1572  *
1573  * A cgroup can only be deleted if both its 'count' of using tasks
1574  * is zero, and its list of 'children' cgroups is empty.  Since all
1575  * tasks in the system use _some_ cgroup, and since there is always at
1576  * least one task in the system (init, pid == 1), therefore, root cgroup
1577  * always has either children cgroups and/or using tasks.  So we don't
1578  * need a special hack to ensure that root cgroup cannot be deleted.
1579  *
1580  * P.S.  One more locking exception.  RCU is used to guard the
1581  * update of a tasks cgroup pointer by cgroup_attach_task()
1582  */
1583 
1584 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1585 
1586 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1587 			      char *buf)
1588 {
1589 	struct cgroup_subsys *ss = cft->ss;
1590 
1591 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1592 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1593 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1594 
1595 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1596 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1597 			 cft->name);
1598 	} else {
1599 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1600 	}
1601 	return buf;
1602 }
1603 
1604 /**
1605  * cgroup_file_mode - deduce file mode of a control file
1606  * @cft: the control file in question
1607  *
1608  * S_IRUGO for read, S_IWUSR for write.
1609  */
1610 static umode_t cgroup_file_mode(const struct cftype *cft)
1611 {
1612 	umode_t mode = 0;
1613 
1614 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1615 		mode |= S_IRUGO;
1616 
1617 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1618 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1619 			mode |= S_IWUGO;
1620 		else
1621 			mode |= S_IWUSR;
1622 	}
1623 
1624 	return mode;
1625 }
1626 
1627 /**
1628  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1629  * @subtree_control: the new subtree_control mask to consider
1630  * @this_ss_mask: available subsystems
1631  *
1632  * On the default hierarchy, a subsystem may request other subsystems to be
1633  * enabled together through its ->depends_on mask.  In such cases, more
1634  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1635  *
1636  * This function calculates which subsystems need to be enabled if
1637  * @subtree_control is to be applied while restricted to @this_ss_mask.
1638  */
1639 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1640 {
1641 	u16 cur_ss_mask = subtree_control;
1642 	struct cgroup_subsys *ss;
1643 	int ssid;
1644 
1645 	lockdep_assert_held(&cgroup_mutex);
1646 
1647 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1648 
1649 	while (true) {
1650 		u16 new_ss_mask = cur_ss_mask;
1651 
1652 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1653 			new_ss_mask |= ss->depends_on;
1654 		} while_each_subsys_mask();
1655 
1656 		/*
1657 		 * Mask out subsystems which aren't available.  This can
1658 		 * happen only if some depended-upon subsystems were bound
1659 		 * to non-default hierarchies.
1660 		 */
1661 		new_ss_mask &= this_ss_mask;
1662 
1663 		if (new_ss_mask == cur_ss_mask)
1664 			break;
1665 		cur_ss_mask = new_ss_mask;
1666 	}
1667 
1668 	return cur_ss_mask;
1669 }
1670 
1671 /**
1672  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1673  * @kn: the kernfs_node being serviced
1674  *
1675  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1676  * the method finishes if locking succeeded.  Note that once this function
1677  * returns the cgroup returned by cgroup_kn_lock_live() may become
1678  * inaccessible any time.  If the caller intends to continue to access the
1679  * cgroup, it should pin it before invoking this function.
1680  */
1681 void cgroup_kn_unlock(struct kernfs_node *kn)
1682 {
1683 	struct cgroup *cgrp;
1684 
1685 	if (kernfs_type(kn) == KERNFS_DIR)
1686 		cgrp = kn->priv;
1687 	else
1688 		cgrp = kn_priv(kn);
1689 
1690 	cgroup_unlock();
1691 
1692 	kernfs_unbreak_active_protection(kn);
1693 	cgroup_put(cgrp);
1694 }
1695 
1696 /**
1697  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1698  * @kn: the kernfs_node being serviced
1699  * @drain_offline: perform offline draining on the cgroup
1700  *
1701  * This helper is to be used by a cgroup kernfs method currently servicing
1702  * @kn.  It breaks the active protection, performs cgroup locking and
1703  * verifies that the associated cgroup is alive.  Returns the cgroup if
1704  * alive; otherwise, %NULL.  A successful return should be undone by a
1705  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1706  * cgroup is drained of offlining csses before return.
1707  *
1708  * Any cgroup kernfs method implementation which requires locking the
1709  * associated cgroup should use this helper.  It avoids nesting cgroup
1710  * locking under kernfs active protection and allows all kernfs operations
1711  * including self-removal.
1712  */
1713 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1714 {
1715 	struct cgroup *cgrp;
1716 
1717 	if (kernfs_type(kn) == KERNFS_DIR)
1718 		cgrp = kn->priv;
1719 	else
1720 		cgrp = kn_priv(kn);
1721 
1722 	/*
1723 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1724 	 * active_ref.  cgroup liveliness check alone provides enough
1725 	 * protection against removal.  Ensure @cgrp stays accessible and
1726 	 * break the active_ref protection.
1727 	 */
1728 	if (!cgroup_tryget(cgrp))
1729 		return NULL;
1730 	kernfs_break_active_protection(kn);
1731 
1732 	if (drain_offline)
1733 		cgroup_lock_and_drain_offline(cgrp);
1734 	else
1735 		cgroup_lock();
1736 
1737 	if (!cgroup_is_dead(cgrp))
1738 		return cgrp;
1739 
1740 	cgroup_kn_unlock(kn);
1741 	return NULL;
1742 }
1743 
1744 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1745 {
1746 	char name[CGROUP_FILE_NAME_MAX];
1747 
1748 	lockdep_assert_held(&cgroup_mutex);
1749 
1750 	if (cft->file_offset) {
1751 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1752 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1753 
1754 		spin_lock_irq(&cgroup_file_kn_lock);
1755 		cfile->kn = NULL;
1756 		spin_unlock_irq(&cgroup_file_kn_lock);
1757 
1758 		timer_delete_sync(&cfile->notify_timer);
1759 	}
1760 
1761 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1762 }
1763 
1764 /**
1765  * css_clear_dir - remove subsys files in a cgroup directory
1766  * @css: target css
1767  */
1768 static void css_clear_dir(struct cgroup_subsys_state *css)
1769 {
1770 	struct cgroup *cgrp = css->cgroup;
1771 	struct cftype *cfts;
1772 
1773 	if (!(css->flags & CSS_VISIBLE))
1774 		return;
1775 
1776 	css->flags &= ~CSS_VISIBLE;
1777 
1778 	if (css_is_self(css)) {
1779 		if (cgroup_on_dfl(cgrp)) {
1780 			cgroup_addrm_files(css, cgrp,
1781 					   cgroup_base_files, false);
1782 			if (cgroup_psi_enabled())
1783 				cgroup_addrm_files(css, cgrp,
1784 						   cgroup_psi_files, false);
1785 		} else {
1786 			cgroup_addrm_files(css, cgrp,
1787 					   cgroup1_base_files, false);
1788 		}
1789 	} else {
1790 		list_for_each_entry(cfts, &css->ss->cfts, node)
1791 			cgroup_addrm_files(css, cgrp, cfts, false);
1792 	}
1793 }
1794 
1795 /**
1796  * css_populate_dir - create subsys files in a cgroup directory
1797  * @css: target css
1798  *
1799  * On failure, no file is added.
1800  */
1801 static int css_populate_dir(struct cgroup_subsys_state *css)
1802 {
1803 	struct cgroup *cgrp = css->cgroup;
1804 	struct cftype *cfts, *failed_cfts;
1805 	int ret;
1806 
1807 	if (css->flags & CSS_VISIBLE)
1808 		return 0;
1809 
1810 	if (css_is_self(css)) {
1811 		if (cgroup_on_dfl(cgrp)) {
1812 			ret = cgroup_addrm_files(css, cgrp,
1813 						 cgroup_base_files, true);
1814 			if (ret < 0)
1815 				return ret;
1816 
1817 			if (cgroup_psi_enabled()) {
1818 				ret = cgroup_addrm_files(css, cgrp,
1819 							 cgroup_psi_files, true);
1820 				if (ret < 0) {
1821 					cgroup_addrm_files(css, cgrp,
1822 							   cgroup_base_files, false);
1823 					return ret;
1824 				}
1825 			}
1826 		} else {
1827 			ret = cgroup_addrm_files(css, cgrp,
1828 						 cgroup1_base_files, true);
1829 			if (ret < 0)
1830 				return ret;
1831 		}
1832 	} else {
1833 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1834 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1835 			if (ret < 0) {
1836 				failed_cfts = cfts;
1837 				goto err;
1838 			}
1839 		}
1840 	}
1841 
1842 	css->flags |= CSS_VISIBLE;
1843 
1844 	return 0;
1845 err:
1846 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1847 		if (cfts == failed_cfts)
1848 			break;
1849 		cgroup_addrm_files(css, cgrp, cfts, false);
1850 	}
1851 	return ret;
1852 }
1853 
1854 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1855 {
1856 	struct cgroup *dcgrp = &dst_root->cgrp;
1857 	struct cgroup_subsys *ss;
1858 	int ssid, ret;
1859 	u16 dfl_disable_ss_mask = 0;
1860 
1861 	lockdep_assert_held(&cgroup_mutex);
1862 
1863 	do_each_subsys_mask(ss, ssid, ss_mask) {
1864 		/*
1865 		 * If @ss has non-root csses attached to it, can't move.
1866 		 * If @ss is an implicit controller, it is exempt from this
1867 		 * rule and can be stolen.
1868 		 */
1869 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1870 		    !ss->implicit_on_dfl)
1871 			return -EBUSY;
1872 
1873 		/* can't move between two non-dummy roots either */
1874 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1875 			return -EBUSY;
1876 
1877 		/*
1878 		 * Collect ssid's that need to be disabled from default
1879 		 * hierarchy.
1880 		 */
1881 		if (ss->root == &cgrp_dfl_root)
1882 			dfl_disable_ss_mask |= 1 << ssid;
1883 
1884 	} while_each_subsys_mask();
1885 
1886 	if (dfl_disable_ss_mask) {
1887 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1888 
1889 		/*
1890 		 * Controllers from default hierarchy that need to be rebound
1891 		 * are all disabled together in one go.
1892 		 */
1893 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1894 		WARN_ON(cgroup_apply_control(scgrp));
1895 		cgroup_finalize_control(scgrp, 0);
1896 	}
1897 
1898 	do_each_subsys_mask(ss, ssid, ss_mask) {
1899 		struct cgroup_root *src_root = ss->root;
1900 		struct cgroup *scgrp = &src_root->cgrp;
1901 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1902 		struct css_set *cset, *cset_pos;
1903 		struct css_task_iter *it;
1904 
1905 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1906 
1907 		if (src_root != &cgrp_dfl_root) {
1908 			/* disable from the source */
1909 			src_root->subsys_mask &= ~(1 << ssid);
1910 			WARN_ON(cgroup_apply_control(scgrp));
1911 			cgroup_finalize_control(scgrp, 0);
1912 		}
1913 
1914 		/* rebind */
1915 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1916 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1917 		ss->root = dst_root;
1918 
1919 		spin_lock_irq(&css_set_lock);
1920 		css->cgroup = dcgrp;
1921 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1922 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1923 					 e_cset_node[ss->id]) {
1924 			list_move_tail(&cset->e_cset_node[ss->id],
1925 				       &dcgrp->e_csets[ss->id]);
1926 			/*
1927 			 * all css_sets of scgrp together in same order to dcgrp,
1928 			 * patch in-flight iterators to preserve correct iteration.
1929 			 * since the iterator is always advanced right away and
1930 			 * finished when it->cset_pos meets it->cset_head, so only
1931 			 * update it->cset_head is enough here.
1932 			 */
1933 			list_for_each_entry(it, &cset->task_iters, iters_node)
1934 				if (it->cset_head == &scgrp->e_csets[ss->id])
1935 					it->cset_head = &dcgrp->e_csets[ss->id];
1936 		}
1937 		spin_unlock_irq(&css_set_lock);
1938 
1939 		/* default hierarchy doesn't enable controllers by default */
1940 		dst_root->subsys_mask |= 1 << ssid;
1941 		if (dst_root == &cgrp_dfl_root) {
1942 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1943 		} else {
1944 			dcgrp->subtree_control |= 1 << ssid;
1945 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1946 		}
1947 
1948 		ret = cgroup_apply_control(dcgrp);
1949 		if (ret)
1950 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1951 				ss->name, ret);
1952 
1953 		if (ss->bind)
1954 			ss->bind(css);
1955 	} while_each_subsys_mask();
1956 
1957 	kernfs_activate(dcgrp->kn);
1958 	return 0;
1959 }
1960 
1961 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1962 		     struct kernfs_root *kf_root)
1963 {
1964 	int len = 0;
1965 	char *buf = NULL;
1966 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1967 	struct cgroup *ns_cgroup;
1968 
1969 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1970 	if (!buf)
1971 		return -ENOMEM;
1972 
1973 	spin_lock_irq(&css_set_lock);
1974 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1975 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1976 	spin_unlock_irq(&css_set_lock);
1977 
1978 	if (len == -E2BIG)
1979 		len = -ERANGE;
1980 	else if (len > 0) {
1981 		seq_escape(sf, buf, " \t\n\\");
1982 		len = 0;
1983 	}
1984 	kfree(buf);
1985 	return len;
1986 }
1987 
1988 enum cgroup2_param {
1989 	Opt_nsdelegate,
1990 	Opt_favordynmods,
1991 	Opt_memory_localevents,
1992 	Opt_memory_recursiveprot,
1993 	Opt_memory_hugetlb_accounting,
1994 	Opt_pids_localevents,
1995 	nr__cgroup2_params
1996 };
1997 
1998 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1999 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
2000 	fsparam_flag("favordynmods",		Opt_favordynmods),
2001 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
2002 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
2003 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
2004 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
2005 	{}
2006 };
2007 
2008 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
2009 {
2010 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2011 	struct fs_parse_result result;
2012 	int opt;
2013 
2014 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
2015 	if (opt < 0)
2016 		return opt;
2017 
2018 	switch (opt) {
2019 	case Opt_nsdelegate:
2020 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
2021 		return 0;
2022 	case Opt_favordynmods:
2023 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2024 		return 0;
2025 	case Opt_memory_localevents:
2026 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2027 		return 0;
2028 	case Opt_memory_recursiveprot:
2029 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2030 		return 0;
2031 	case Opt_memory_hugetlb_accounting:
2032 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2033 		return 0;
2034 	case Opt_pids_localevents:
2035 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2036 		return 0;
2037 	}
2038 	return -EINVAL;
2039 }
2040 
2041 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
2042 {
2043 	struct cgroup_file_ctx *ctx = of->priv;
2044 
2045 	return &ctx->peak;
2046 }
2047 
2048 static void apply_cgroup_root_flags(unsigned int root_flags)
2049 {
2050 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2051 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
2052 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2053 		else
2054 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2055 
2056 		cgroup_favor_dynmods(&cgrp_dfl_root,
2057 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2058 
2059 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2060 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2061 		else
2062 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2063 
2064 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2065 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2066 		else
2067 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2068 
2069 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2070 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2071 		else
2072 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2073 
2074 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2075 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2076 		else
2077 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2078 	}
2079 }
2080 
2081 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2082 {
2083 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2084 		seq_puts(seq, ",nsdelegate");
2085 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2086 		seq_puts(seq, ",favordynmods");
2087 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2088 		seq_puts(seq, ",memory_localevents");
2089 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2090 		seq_puts(seq, ",memory_recursiveprot");
2091 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2092 		seq_puts(seq, ",memory_hugetlb_accounting");
2093 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2094 		seq_puts(seq, ",pids_localevents");
2095 	return 0;
2096 }
2097 
2098 static int cgroup_reconfigure(struct fs_context *fc)
2099 {
2100 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2101 
2102 	apply_cgroup_root_flags(ctx->flags);
2103 	return 0;
2104 }
2105 
2106 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2107 {
2108 	struct cgroup_subsys *ss;
2109 	int ssid;
2110 
2111 	INIT_LIST_HEAD(&cgrp->self.sibling);
2112 	INIT_LIST_HEAD(&cgrp->self.children);
2113 	INIT_LIST_HEAD(&cgrp->cset_links);
2114 	INIT_LIST_HEAD(&cgrp->pidlists);
2115 	mutex_init(&cgrp->pidlist_mutex);
2116 	cgrp->self.cgroup = cgrp;
2117 	cgrp->self.flags |= CSS_ONLINE;
2118 	cgrp->dom_cgrp = cgrp;
2119 	cgrp->max_descendants = INT_MAX;
2120 	cgrp->max_depth = INT_MAX;
2121 	prev_cputime_init(&cgrp->prev_cputime);
2122 
2123 	for_each_subsys(ss, ssid)
2124 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2125 
2126 #ifdef CONFIG_CGROUP_BPF
2127 	for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
2128 		cgrp->bpf.revisions[i] = 1;
2129 #endif
2130 
2131 	init_waitqueue_head(&cgrp->offline_waitq);
2132 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2133 }
2134 
2135 void init_cgroup_root(struct cgroup_fs_context *ctx)
2136 {
2137 	struct cgroup_root *root = ctx->root;
2138 	struct cgroup *cgrp = &root->cgrp;
2139 
2140 	INIT_LIST_HEAD_RCU(&root->root_list);
2141 	atomic_set(&root->nr_cgrps, 1);
2142 	cgrp->root = root;
2143 	init_cgroup_housekeeping(cgrp);
2144 
2145 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2146 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2147 	if (ctx->release_agent)
2148 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2149 	if (ctx->name)
2150 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2151 	if (ctx->cpuset_clone_children)
2152 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2153 }
2154 
2155 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2156 {
2157 	LIST_HEAD(tmp_links);
2158 	struct cgroup *root_cgrp = &root->cgrp;
2159 	struct kernfs_syscall_ops *kf_sops;
2160 	struct css_set *cset;
2161 	int i, ret;
2162 
2163 	lockdep_assert_held(&cgroup_mutex);
2164 
2165 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2166 			      0, GFP_KERNEL);
2167 	if (ret)
2168 		goto out;
2169 
2170 	/*
2171 	 * We're accessing css_set_count without locking css_set_lock here,
2172 	 * but that's OK - it can only be increased by someone holding
2173 	 * cgroup_lock, and that's us.  Later rebinding may disable
2174 	 * controllers on the default hierarchy and thus create new csets,
2175 	 * which can't be more than the existing ones.  Allocate 2x.
2176 	 */
2177 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2178 	if (ret)
2179 		goto cancel_ref;
2180 
2181 	ret = cgroup_init_root_id(root);
2182 	if (ret)
2183 		goto cancel_ref;
2184 
2185 	kf_sops = root == &cgrp_dfl_root ?
2186 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2187 
2188 	root->kf_root = kernfs_create_root(kf_sops,
2189 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2190 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2191 					   KERNFS_ROOT_SUPPORT_USER_XATTR |
2192 					   KERNFS_ROOT_INVARIANT_PARENT,
2193 					   root_cgrp);
2194 	if (IS_ERR(root->kf_root)) {
2195 		ret = PTR_ERR(root->kf_root);
2196 		goto exit_root_id;
2197 	}
2198 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2199 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2200 	root_cgrp->ancestors[0] = root_cgrp;
2201 
2202 	ret = css_populate_dir(&root_cgrp->self);
2203 	if (ret)
2204 		goto destroy_root;
2205 
2206 	ret = css_rstat_init(&root_cgrp->self);
2207 	if (ret)
2208 		goto destroy_root;
2209 
2210 	ret = rebind_subsystems(root, ss_mask);
2211 	if (ret)
2212 		goto exit_stats;
2213 
2214 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
2215 					   CGROUP_LIFETIME_ONLINE, root_cgrp);
2216 	WARN_ON_ONCE(notifier_to_errno(ret));
2217 
2218 	trace_cgroup_setup_root(root);
2219 
2220 	/*
2221 	 * There must be no failure case after here, since rebinding takes
2222 	 * care of subsystems' refcounts, which are explicitly dropped in
2223 	 * the failure exit path.
2224 	 */
2225 	list_add_rcu(&root->root_list, &cgroup_roots);
2226 	cgroup_root_count++;
2227 
2228 	/*
2229 	 * Link the root cgroup in this hierarchy into all the css_set
2230 	 * objects.
2231 	 */
2232 	spin_lock_irq(&css_set_lock);
2233 	hash_for_each(css_set_table, i, cset, hlist) {
2234 		link_css_set(&tmp_links, cset, root_cgrp);
2235 		if (css_set_populated(cset))
2236 			cgroup_update_populated(root_cgrp, true);
2237 	}
2238 	spin_unlock_irq(&css_set_lock);
2239 
2240 	BUG_ON(!list_empty(&root_cgrp->self.children));
2241 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2242 
2243 	ret = 0;
2244 	goto out;
2245 
2246 exit_stats:
2247 	css_rstat_exit(&root_cgrp->self);
2248 destroy_root:
2249 	kernfs_destroy_root(root->kf_root);
2250 	root->kf_root = NULL;
2251 exit_root_id:
2252 	cgroup_exit_root_id(root);
2253 cancel_ref:
2254 	percpu_ref_exit(&root_cgrp->self.refcnt);
2255 out:
2256 	free_cgrp_cset_links(&tmp_links);
2257 	return ret;
2258 }
2259 
2260 int cgroup_do_get_tree(struct fs_context *fc)
2261 {
2262 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2263 	int ret;
2264 
2265 	ctx->kfc.root = ctx->root->kf_root;
2266 	if (fc->fs_type == &cgroup2_fs_type)
2267 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2268 	else
2269 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2270 	ret = kernfs_get_tree(fc);
2271 
2272 	/*
2273 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2274 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2275 	 */
2276 	if (!ret && ctx->ns != &init_cgroup_ns) {
2277 		struct dentry *nsdentry;
2278 		struct super_block *sb = fc->root->d_sb;
2279 		struct cgroup *cgrp;
2280 
2281 		cgroup_lock();
2282 		spin_lock_irq(&css_set_lock);
2283 
2284 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2285 
2286 		spin_unlock_irq(&css_set_lock);
2287 		cgroup_unlock();
2288 
2289 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2290 		dput(fc->root);
2291 		if (IS_ERR(nsdentry)) {
2292 			deactivate_locked_super(sb);
2293 			ret = PTR_ERR(nsdentry);
2294 			nsdentry = NULL;
2295 		}
2296 		fc->root = nsdentry;
2297 	}
2298 
2299 	if (!ctx->kfc.new_sb_created)
2300 		cgroup_put(&ctx->root->cgrp);
2301 
2302 	return ret;
2303 }
2304 
2305 /*
2306  * Destroy a cgroup filesystem context.
2307  */
2308 static void cgroup_fs_context_free(struct fs_context *fc)
2309 {
2310 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2311 
2312 	kfree(ctx->name);
2313 	kfree(ctx->release_agent);
2314 	put_cgroup_ns(ctx->ns);
2315 	kernfs_free_fs_context(fc);
2316 	kfree(ctx);
2317 }
2318 
2319 static int cgroup_get_tree(struct fs_context *fc)
2320 {
2321 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2322 	int ret;
2323 
2324 	WRITE_ONCE(cgrp_dfl_visible, true);
2325 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2326 	ctx->root = &cgrp_dfl_root;
2327 
2328 	ret = cgroup_do_get_tree(fc);
2329 	if (!ret)
2330 		apply_cgroup_root_flags(ctx->flags);
2331 	return ret;
2332 }
2333 
2334 static const struct fs_context_operations cgroup_fs_context_ops = {
2335 	.free		= cgroup_fs_context_free,
2336 	.parse_param	= cgroup2_parse_param,
2337 	.get_tree	= cgroup_get_tree,
2338 	.reconfigure	= cgroup_reconfigure,
2339 };
2340 
2341 static const struct fs_context_operations cgroup1_fs_context_ops = {
2342 	.free		= cgroup_fs_context_free,
2343 	.parse_param	= cgroup1_parse_param,
2344 	.get_tree	= cgroup1_get_tree,
2345 	.reconfigure	= cgroup1_reconfigure,
2346 };
2347 
2348 /*
2349  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2350  * we select the namespace we're going to use.
2351  */
2352 static int cgroup_init_fs_context(struct fs_context *fc)
2353 {
2354 	struct cgroup_fs_context *ctx;
2355 
2356 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2357 	if (!ctx)
2358 		return -ENOMEM;
2359 
2360 	ctx->ns = current->nsproxy->cgroup_ns;
2361 	get_cgroup_ns(ctx->ns);
2362 	fc->fs_private = &ctx->kfc;
2363 	if (fc->fs_type == &cgroup2_fs_type)
2364 		fc->ops = &cgroup_fs_context_ops;
2365 	else
2366 		fc->ops = &cgroup1_fs_context_ops;
2367 	put_user_ns(fc->user_ns);
2368 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2369 	fc->global = true;
2370 
2371 	if (have_favordynmods)
2372 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2373 
2374 	return 0;
2375 }
2376 
2377 static void cgroup_kill_sb(struct super_block *sb)
2378 {
2379 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2380 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2381 
2382 	/*
2383 	 * If @root doesn't have any children, start killing it.
2384 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2385 	 *
2386 	 * And don't kill the default root.
2387 	 */
2388 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2389 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2390 		percpu_ref_kill(&root->cgrp.self.refcnt);
2391 	cgroup_put(&root->cgrp);
2392 	kernfs_kill_sb(sb);
2393 }
2394 
2395 struct file_system_type cgroup_fs_type = {
2396 	.name			= "cgroup",
2397 	.init_fs_context	= cgroup_init_fs_context,
2398 	.parameters		= cgroup1_fs_parameters,
2399 	.kill_sb		= cgroup_kill_sb,
2400 	.fs_flags		= FS_USERNS_MOUNT,
2401 };
2402 
2403 static struct file_system_type cgroup2_fs_type = {
2404 	.name			= "cgroup2",
2405 	.init_fs_context	= cgroup_init_fs_context,
2406 	.parameters		= cgroup2_fs_parameters,
2407 	.kill_sb		= cgroup_kill_sb,
2408 	.fs_flags		= FS_USERNS_MOUNT,
2409 };
2410 
2411 #ifdef CONFIG_CPUSETS_V1
2412 enum cpuset_param {
2413 	Opt_cpuset_v2_mode,
2414 };
2415 
2416 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2417 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2418 	{}
2419 };
2420 
2421 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2422 {
2423 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2424 	struct fs_parse_result result;
2425 	int opt;
2426 
2427 	opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2428 	if (opt < 0)
2429 		return opt;
2430 
2431 	switch (opt) {
2432 	case Opt_cpuset_v2_mode:
2433 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2434 		return 0;
2435 	}
2436 	return -EINVAL;
2437 }
2438 
2439 static const struct fs_context_operations cpuset_fs_context_ops = {
2440 	.get_tree	= cgroup1_get_tree,
2441 	.free		= cgroup_fs_context_free,
2442 	.parse_param	= cpuset_parse_param,
2443 };
2444 
2445 /*
2446  * This is ugly, but preserves the userspace API for existing cpuset
2447  * users. If someone tries to mount the "cpuset" filesystem, we
2448  * silently switch it to mount "cgroup" instead
2449  */
2450 static int cpuset_init_fs_context(struct fs_context *fc)
2451 {
2452 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2453 	struct cgroup_fs_context *ctx;
2454 	int err;
2455 
2456 	err = cgroup_init_fs_context(fc);
2457 	if (err) {
2458 		kfree(agent);
2459 		return err;
2460 	}
2461 
2462 	fc->ops = &cpuset_fs_context_ops;
2463 
2464 	ctx = cgroup_fc2context(fc);
2465 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2466 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2467 	ctx->release_agent = agent;
2468 
2469 	get_filesystem(&cgroup_fs_type);
2470 	put_filesystem(fc->fs_type);
2471 	fc->fs_type = &cgroup_fs_type;
2472 
2473 	return 0;
2474 }
2475 
2476 static struct file_system_type cpuset_fs_type = {
2477 	.name			= "cpuset",
2478 	.init_fs_context	= cpuset_init_fs_context,
2479 	.parameters		= cpuset_fs_parameters,
2480 	.fs_flags		= FS_USERNS_MOUNT,
2481 };
2482 #endif
2483 
2484 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2485 			  struct cgroup_namespace *ns)
2486 {
2487 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2488 
2489 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2490 }
2491 
2492 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2493 		   struct cgroup_namespace *ns)
2494 {
2495 	int ret;
2496 
2497 	cgroup_lock();
2498 	spin_lock_irq(&css_set_lock);
2499 
2500 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2501 
2502 	spin_unlock_irq(&css_set_lock);
2503 	cgroup_unlock();
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2508 
2509 /**
2510  * cgroup_attach_lock - Lock for ->attach()
2511  * @lock_mode: whether acquire and acquire which rwsem
2512  * @tsk: thread group to lock
2513  *
2514  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2515  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2516  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2517  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2518  * lead to deadlocks.
2519  *
2520  * Bringing up a CPU may involve creating and destroying tasks which requires
2521  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2522  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2523  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2524  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2525  * the threadgroup_rwsem to be released to create new tasks. For more details:
2526  *
2527  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2528  *
2529  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2530  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2531  * CPU hotplug is disabled on entry.
2532  *
2533  * When favordynmods is enabled, take per threadgroup rwsem to reduce overhead
2534  * on dynamic cgroup modifications. see the comment above
2535  * CGRP_ROOT_FAVOR_DYNMODS definition.
2536  *
2537  * tsk is not NULL only when writing to cgroup.procs.
2538  */
2539 void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode,
2540 			struct task_struct *tsk)
2541 {
2542 	cpus_read_lock();
2543 
2544 	switch (lock_mode) {
2545 	case CGRP_ATTACH_LOCK_NONE:
2546 		break;
2547 	case CGRP_ATTACH_LOCK_GLOBAL:
2548 		percpu_down_write(&cgroup_threadgroup_rwsem);
2549 		break;
2550 	case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2551 		down_write(&tsk->signal->cgroup_threadgroup_rwsem);
2552 		break;
2553 	default:
2554 		pr_warn("cgroup: Unexpected attach lock mode.");
2555 		break;
2556 	}
2557 }
2558 
2559 /**
2560  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2561  * @lock_mode: whether release and release which rwsem
2562  * @tsk: thread group to lock
2563  */
2564 void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode,
2565 			  struct task_struct *tsk)
2566 {
2567 	switch (lock_mode) {
2568 	case CGRP_ATTACH_LOCK_NONE:
2569 		break;
2570 	case CGRP_ATTACH_LOCK_GLOBAL:
2571 		percpu_up_write(&cgroup_threadgroup_rwsem);
2572 		break;
2573 	case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2574 		up_write(&tsk->signal->cgroup_threadgroup_rwsem);
2575 		break;
2576 	default:
2577 		pr_warn("cgroup: Unexpected attach lock mode.");
2578 		break;
2579 	}
2580 
2581 	cpus_read_unlock();
2582 }
2583 
2584 /**
2585  * cgroup_migrate_add_task - add a migration target task to a migration context
2586  * @task: target task
2587  * @mgctx: target migration context
2588  *
2589  * Add @task, which is a migration target, to @mgctx->tset.  This function
2590  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2591  * should have been added as a migration source and @task->cg_list will be
2592  * moved from the css_set's tasks list to mg_tasks one.
2593  */
2594 static void cgroup_migrate_add_task(struct task_struct *task,
2595 				    struct cgroup_mgctx *mgctx)
2596 {
2597 	struct css_set *cset;
2598 
2599 	lockdep_assert_held(&css_set_lock);
2600 
2601 	/* @task either already exited or can't exit until the end */
2602 	if (task->flags & PF_EXITING)
2603 		return;
2604 
2605 	/* cgroup_threadgroup_rwsem protects racing against forks */
2606 	WARN_ON_ONCE(list_empty(&task->cg_list));
2607 
2608 	cset = task_css_set(task);
2609 	if (!cset->mg_src_cgrp)
2610 		return;
2611 
2612 	mgctx->tset.nr_tasks++;
2613 
2614 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2615 	if (list_empty(&cset->mg_node))
2616 		list_add_tail(&cset->mg_node,
2617 			      &mgctx->tset.src_csets);
2618 	if (list_empty(&cset->mg_dst_cset->mg_node))
2619 		list_add_tail(&cset->mg_dst_cset->mg_node,
2620 			      &mgctx->tset.dst_csets);
2621 }
2622 
2623 /**
2624  * cgroup_taskset_first - reset taskset and return the first task
2625  * @tset: taskset of interest
2626  * @dst_cssp: output variable for the destination css
2627  *
2628  * @tset iteration is initialized and the first task is returned.
2629  */
2630 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2631 					 struct cgroup_subsys_state **dst_cssp)
2632 {
2633 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2634 	tset->cur_task = NULL;
2635 
2636 	return cgroup_taskset_next(tset, dst_cssp);
2637 }
2638 
2639 /**
2640  * cgroup_taskset_next - iterate to the next task in taskset
2641  * @tset: taskset of interest
2642  * @dst_cssp: output variable for the destination css
2643  *
2644  * Return the next task in @tset.  Iteration must have been initialized
2645  * with cgroup_taskset_first().
2646  */
2647 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2648 					struct cgroup_subsys_state **dst_cssp)
2649 {
2650 	struct css_set *cset = tset->cur_cset;
2651 	struct task_struct *task = tset->cur_task;
2652 
2653 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2654 		if (!task)
2655 			task = list_first_entry(&cset->mg_tasks,
2656 						struct task_struct, cg_list);
2657 		else
2658 			task = list_next_entry(task, cg_list);
2659 
2660 		if (&task->cg_list != &cset->mg_tasks) {
2661 			tset->cur_cset = cset;
2662 			tset->cur_task = task;
2663 
2664 			/*
2665 			 * This function may be called both before and
2666 			 * after cgroup_migrate_execute().  The two cases
2667 			 * can be distinguished by looking at whether @cset
2668 			 * has its ->mg_dst_cset set.
2669 			 */
2670 			if (cset->mg_dst_cset)
2671 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2672 			else
2673 				*dst_cssp = cset->subsys[tset->ssid];
2674 
2675 			return task;
2676 		}
2677 
2678 		cset = list_next_entry(cset, mg_node);
2679 		task = NULL;
2680 	}
2681 
2682 	return NULL;
2683 }
2684 
2685 /**
2686  * cgroup_migrate_execute - migrate a taskset
2687  * @mgctx: migration context
2688  *
2689  * Migrate tasks in @mgctx as setup by migration preparation functions.
2690  * This function fails iff one of the ->can_attach callbacks fails and
2691  * guarantees that either all or none of the tasks in @mgctx are migrated.
2692  * @mgctx is consumed regardless of success.
2693  */
2694 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2695 {
2696 	struct cgroup_taskset *tset = &mgctx->tset;
2697 	struct cgroup_subsys *ss;
2698 	struct task_struct *task, *tmp_task;
2699 	struct css_set *cset, *tmp_cset;
2700 	int ssid, failed_ssid, ret;
2701 
2702 	/* check that we can legitimately attach to the cgroup */
2703 	if (tset->nr_tasks) {
2704 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2705 			if (ss->can_attach) {
2706 				tset->ssid = ssid;
2707 				ret = ss->can_attach(tset);
2708 				if (ret) {
2709 					failed_ssid = ssid;
2710 					goto out_cancel_attach;
2711 				}
2712 			}
2713 		} while_each_subsys_mask();
2714 	}
2715 
2716 	/*
2717 	 * Now that we're guaranteed success, proceed to move all tasks to
2718 	 * the new cgroup.  There are no failure cases after here, so this
2719 	 * is the commit point.
2720 	 */
2721 	spin_lock_irq(&css_set_lock);
2722 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2723 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2724 			struct css_set *from_cset = task_css_set(task);
2725 			struct css_set *to_cset = cset->mg_dst_cset;
2726 
2727 			get_css_set(to_cset);
2728 			to_cset->nr_tasks++;
2729 			css_set_move_task(task, from_cset, to_cset, true);
2730 			from_cset->nr_tasks--;
2731 			/*
2732 			 * If the source or destination cgroup is frozen,
2733 			 * the task might require to change its state.
2734 			 */
2735 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2736 						    to_cset->dfl_cgrp);
2737 			put_css_set_locked(from_cset);
2738 
2739 		}
2740 	}
2741 	spin_unlock_irq(&css_set_lock);
2742 
2743 	/*
2744 	 * Migration is committed, all target tasks are now on dst_csets.
2745 	 * Nothing is sensitive to fork() after this point.  Notify
2746 	 * controllers that migration is complete.
2747 	 */
2748 	tset->csets = &tset->dst_csets;
2749 
2750 	if (tset->nr_tasks) {
2751 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2752 			if (ss->attach) {
2753 				tset->ssid = ssid;
2754 				ss->attach(tset);
2755 			}
2756 		} while_each_subsys_mask();
2757 	}
2758 
2759 	ret = 0;
2760 	goto out_release_tset;
2761 
2762 out_cancel_attach:
2763 	if (tset->nr_tasks) {
2764 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2765 			if (ssid == failed_ssid)
2766 				break;
2767 			if (ss->cancel_attach) {
2768 				tset->ssid = ssid;
2769 				ss->cancel_attach(tset);
2770 			}
2771 		} while_each_subsys_mask();
2772 	}
2773 out_release_tset:
2774 	spin_lock_irq(&css_set_lock);
2775 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2776 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2777 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2778 		list_del_init(&cset->mg_node);
2779 	}
2780 	spin_unlock_irq(&css_set_lock);
2781 
2782 	/*
2783 	 * Re-initialize the cgroup_taskset structure in case it is reused
2784 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2785 	 * iteration.
2786 	 */
2787 	tset->nr_tasks = 0;
2788 	tset->csets    = &tset->src_csets;
2789 	return ret;
2790 }
2791 
2792 /**
2793  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2794  * @dst_cgrp: destination cgroup to test
2795  *
2796  * On the default hierarchy, except for the mixable, (possible) thread root
2797  * and threaded cgroups, subtree_control must be zero for migration
2798  * destination cgroups with tasks so that child cgroups don't compete
2799  * against tasks.
2800  */
2801 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2802 {
2803 	/* v1 doesn't have any restriction */
2804 	if (!cgroup_on_dfl(dst_cgrp))
2805 		return 0;
2806 
2807 	/* verify @dst_cgrp can host resources */
2808 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2809 		return -EOPNOTSUPP;
2810 
2811 	/*
2812 	 * If @dst_cgrp is already or can become a thread root or is
2813 	 * threaded, it doesn't matter.
2814 	 */
2815 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2816 		return 0;
2817 
2818 	/* apply no-internal-process constraint */
2819 	if (dst_cgrp->subtree_control)
2820 		return -EBUSY;
2821 
2822 	return 0;
2823 }
2824 
2825 /**
2826  * cgroup_migrate_finish - cleanup after attach
2827  * @mgctx: migration context
2828  *
2829  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2830  * those functions for details.
2831  */
2832 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2833 {
2834 	struct css_set *cset, *tmp_cset;
2835 
2836 	lockdep_assert_held(&cgroup_mutex);
2837 
2838 	spin_lock_irq(&css_set_lock);
2839 
2840 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2841 				 mg_src_preload_node) {
2842 		cset->mg_src_cgrp = NULL;
2843 		cset->mg_dst_cgrp = NULL;
2844 		cset->mg_dst_cset = NULL;
2845 		list_del_init(&cset->mg_src_preload_node);
2846 		put_css_set_locked(cset);
2847 	}
2848 
2849 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2850 				 mg_dst_preload_node) {
2851 		cset->mg_src_cgrp = NULL;
2852 		cset->mg_dst_cgrp = NULL;
2853 		cset->mg_dst_cset = NULL;
2854 		list_del_init(&cset->mg_dst_preload_node);
2855 		put_css_set_locked(cset);
2856 	}
2857 
2858 	spin_unlock_irq(&css_set_lock);
2859 }
2860 
2861 /**
2862  * cgroup_migrate_add_src - add a migration source css_set
2863  * @src_cset: the source css_set to add
2864  * @dst_cgrp: the destination cgroup
2865  * @mgctx: migration context
2866  *
2867  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2868  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2869  * up by cgroup_migrate_finish().
2870  *
2871  * This function may be called without holding cgroup_threadgroup_rwsem
2872  * even if the target is a process.  Threads may be created and destroyed
2873  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2874  * into play and the preloaded css_sets are guaranteed to cover all
2875  * migrations.
2876  */
2877 void cgroup_migrate_add_src(struct css_set *src_cset,
2878 			    struct cgroup *dst_cgrp,
2879 			    struct cgroup_mgctx *mgctx)
2880 {
2881 	struct cgroup *src_cgrp;
2882 
2883 	lockdep_assert_held(&cgroup_mutex);
2884 	lockdep_assert_held(&css_set_lock);
2885 
2886 	/*
2887 	 * If ->dead, @src_set is associated with one or more dead cgroups
2888 	 * and doesn't contain any migratable tasks.  Ignore it early so
2889 	 * that the rest of migration path doesn't get confused by it.
2890 	 */
2891 	if (src_cset->dead)
2892 		return;
2893 
2894 	if (!list_empty(&src_cset->mg_src_preload_node))
2895 		return;
2896 
2897 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2898 
2899 	WARN_ON(src_cset->mg_src_cgrp);
2900 	WARN_ON(src_cset->mg_dst_cgrp);
2901 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2902 	WARN_ON(!list_empty(&src_cset->mg_node));
2903 
2904 	src_cset->mg_src_cgrp = src_cgrp;
2905 	src_cset->mg_dst_cgrp = dst_cgrp;
2906 	get_css_set(src_cset);
2907 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2908 }
2909 
2910 /**
2911  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2912  * @mgctx: migration context
2913  *
2914  * Tasks are about to be moved and all the source css_sets have been
2915  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2916  * pins all destination css_sets, links each to its source, and append them
2917  * to @mgctx->preloaded_dst_csets.
2918  *
2919  * This function must be called after cgroup_migrate_add_src() has been
2920  * called on each migration source css_set.  After migration is performed
2921  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2922  * @mgctx.
2923  */
2924 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2925 {
2926 	struct css_set *src_cset, *tmp_cset;
2927 
2928 	lockdep_assert_held(&cgroup_mutex);
2929 
2930 	/* look up the dst cset for each src cset and link it to src */
2931 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2932 				 mg_src_preload_node) {
2933 		struct css_set *dst_cset;
2934 		struct cgroup_subsys *ss;
2935 		int ssid;
2936 
2937 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2938 		if (!dst_cset)
2939 			return -ENOMEM;
2940 
2941 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2942 
2943 		/*
2944 		 * If src cset equals dst, it's noop.  Drop the src.
2945 		 * cgroup_migrate() will skip the cset too.  Note that we
2946 		 * can't handle src == dst as some nodes are used by both.
2947 		 */
2948 		if (src_cset == dst_cset) {
2949 			src_cset->mg_src_cgrp = NULL;
2950 			src_cset->mg_dst_cgrp = NULL;
2951 			list_del_init(&src_cset->mg_src_preload_node);
2952 			put_css_set(src_cset);
2953 			put_css_set(dst_cset);
2954 			continue;
2955 		}
2956 
2957 		src_cset->mg_dst_cset = dst_cset;
2958 
2959 		if (list_empty(&dst_cset->mg_dst_preload_node))
2960 			list_add_tail(&dst_cset->mg_dst_preload_node,
2961 				      &mgctx->preloaded_dst_csets);
2962 		else
2963 			put_css_set(dst_cset);
2964 
2965 		for_each_subsys(ss, ssid)
2966 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2967 				mgctx->ss_mask |= 1 << ssid;
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 /**
2974  * cgroup_migrate - migrate a process or task to a cgroup
2975  * @leader: the leader of the process or the task to migrate
2976  * @threadgroup: whether @leader points to the whole process or a single task
2977  * @mgctx: migration context
2978  *
2979  * Migrate a process or task denoted by @leader.  If migrating a process,
2980  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2981  * responsible for invoking cgroup_migrate_add_src() and
2982  * cgroup_migrate_prepare_dst() on the targets before invoking this
2983  * function and following up with cgroup_migrate_finish().
2984  *
2985  * As long as a controller's ->can_attach() doesn't fail, this function is
2986  * guaranteed to succeed.  This means that, excluding ->can_attach()
2987  * failure, when migrating multiple targets, the success or failure can be
2988  * decided for all targets by invoking group_migrate_prepare_dst() before
2989  * actually starting migrating.
2990  */
2991 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2992 		   struct cgroup_mgctx *mgctx)
2993 {
2994 	struct task_struct *task;
2995 
2996 	/*
2997 	 * The following thread iteration should be inside an RCU critical
2998 	 * section to prevent tasks from being freed while taking the snapshot.
2999 	 * spin_lock_irq() implies RCU critical section here.
3000 	 */
3001 	spin_lock_irq(&css_set_lock);
3002 	task = leader;
3003 	do {
3004 		cgroup_migrate_add_task(task, mgctx);
3005 		if (!threadgroup)
3006 			break;
3007 	} while_each_thread(leader, task);
3008 	spin_unlock_irq(&css_set_lock);
3009 
3010 	return cgroup_migrate_execute(mgctx);
3011 }
3012 
3013 /**
3014  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
3015  * @dst_cgrp: the cgroup to attach to
3016  * @leader: the task or the leader of the threadgroup to be attached
3017  * @threadgroup: attach the whole threadgroup?
3018  *
3019  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
3020  */
3021 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
3022 		       bool threadgroup)
3023 {
3024 	DEFINE_CGROUP_MGCTX(mgctx);
3025 	struct task_struct *task;
3026 	int ret = 0;
3027 
3028 	/* look up all src csets */
3029 	spin_lock_irq(&css_set_lock);
3030 	task = leader;
3031 	do {
3032 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
3033 		if (!threadgroup)
3034 			break;
3035 	} while_each_thread(leader, task);
3036 	spin_unlock_irq(&css_set_lock);
3037 
3038 	/* prepare dst csets and commit */
3039 	ret = cgroup_migrate_prepare_dst(&mgctx);
3040 	if (!ret)
3041 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
3042 
3043 	cgroup_migrate_finish(&mgctx);
3044 
3045 	if (!ret)
3046 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
3047 
3048 	return ret;
3049 }
3050 
3051 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
3052 					     enum cgroup_attach_lock_mode *lock_mode)
3053 {
3054 	struct task_struct *tsk;
3055 	pid_t pid;
3056 
3057 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
3058 		return ERR_PTR(-EINVAL);
3059 
3060 retry_find_task:
3061 	rcu_read_lock();
3062 	if (pid) {
3063 		tsk = find_task_by_vpid(pid);
3064 		if (!tsk) {
3065 			tsk = ERR_PTR(-ESRCH);
3066 			goto out_unlock_rcu;
3067 		}
3068 	} else {
3069 		tsk = current;
3070 	}
3071 
3072 	if (threadgroup)
3073 		tsk = tsk->group_leader;
3074 
3075 	/*
3076 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3077 	 * If userland migrates such a kthread to a non-root cgroup, it can
3078 	 * become trapped in a cpuset, or RT kthread may be born in a
3079 	 * cgroup with no rt_runtime allocated.  Just say no.
3080 	 */
3081 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3082 		tsk = ERR_PTR(-EINVAL);
3083 		goto out_unlock_rcu;
3084 	}
3085 	get_task_struct(tsk);
3086 	rcu_read_unlock();
3087 
3088 	/*
3089 	 * If we migrate a single thread, we don't care about threadgroup
3090 	 * stability. If the thread is `current`, it won't exit(2) under our
3091 	 * hands or change PID through exec(2). We exclude
3092 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write callers
3093 	 * by cgroup_mutex. Therefore, we can skip the global lock.
3094 	 */
3095 	lockdep_assert_held(&cgroup_mutex);
3096 
3097 	if (pid || threadgroup) {
3098 		if (cgroup_enable_per_threadgroup_rwsem)
3099 			*lock_mode = CGRP_ATTACH_LOCK_PER_THREADGROUP;
3100 		else
3101 			*lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3102 	} else {
3103 		*lock_mode = CGRP_ATTACH_LOCK_NONE;
3104 	}
3105 
3106 	cgroup_attach_lock(*lock_mode, tsk);
3107 
3108 	if (threadgroup) {
3109 		if (!thread_group_leader(tsk)) {
3110 			/*
3111 			 * A race with de_thread from another thread's exec()
3112 			 * may strip us of our leadership. If this happens,
3113 			 * throw this task away and try again.
3114 			 */
3115 			cgroup_attach_unlock(*lock_mode, tsk);
3116 			put_task_struct(tsk);
3117 			goto retry_find_task;
3118 		}
3119 	}
3120 
3121 	return tsk;
3122 
3123 out_unlock_rcu:
3124 	rcu_read_unlock();
3125 	return tsk;
3126 }
3127 
3128 void cgroup_procs_write_finish(struct task_struct *task,
3129 			       enum cgroup_attach_lock_mode lock_mode)
3130 {
3131 	cgroup_attach_unlock(lock_mode, task);
3132 
3133 	/* release reference from cgroup_procs_write_start() */
3134 	put_task_struct(task);
3135 }
3136 
3137 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3138 {
3139 	struct cgroup_subsys *ss;
3140 	bool printed = false;
3141 	int ssid;
3142 
3143 	do_each_subsys_mask(ss, ssid, ss_mask) {
3144 		if (printed)
3145 			seq_putc(seq, ' ');
3146 		seq_puts(seq, ss->name);
3147 		printed = true;
3148 	} while_each_subsys_mask();
3149 	if (printed)
3150 		seq_putc(seq, '\n');
3151 }
3152 
3153 /* show controllers which are enabled from the parent */
3154 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3155 {
3156 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3157 
3158 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3159 	return 0;
3160 }
3161 
3162 /* show controllers which are enabled for a given cgroup's children */
3163 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3164 {
3165 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3166 
3167 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3168 	return 0;
3169 }
3170 
3171 /**
3172  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3173  * @cgrp: root of the subtree to update csses for
3174  *
3175  * @cgrp's control masks have changed and its subtree's css associations
3176  * need to be updated accordingly.  This function looks up all css_sets
3177  * which are attached to the subtree, creates the matching updated css_sets
3178  * and migrates the tasks to the new ones.
3179  */
3180 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3181 {
3182 	DEFINE_CGROUP_MGCTX(mgctx);
3183 	struct cgroup_subsys_state *d_css;
3184 	struct cgroup *dsct;
3185 	struct css_set *src_cset;
3186 	enum cgroup_attach_lock_mode lock_mode;
3187 	bool has_tasks;
3188 	int ret;
3189 
3190 	lockdep_assert_held(&cgroup_mutex);
3191 
3192 	/* look up all csses currently attached to @cgrp's subtree */
3193 	spin_lock_irq(&css_set_lock);
3194 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3195 		struct cgrp_cset_link *link;
3196 
3197 		/*
3198 		 * As cgroup_update_dfl_csses() is only called by
3199 		 * cgroup_apply_control(). The csses associated with the
3200 		 * given cgrp will not be affected by changes made to
3201 		 * its subtree_control file. We can skip them.
3202 		 */
3203 		if (dsct == cgrp)
3204 			continue;
3205 
3206 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3207 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3208 	}
3209 	spin_unlock_irq(&css_set_lock);
3210 
3211 	/*
3212 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3213 	 * However, if there are no source csets for @cgrp, changing its
3214 	 * controllers isn't gonna produce any task migrations and the
3215 	 * write-locking can be skipped safely.
3216 	 */
3217 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3218 
3219 	if (has_tasks)
3220 		lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3221 	else
3222 		lock_mode = CGRP_ATTACH_LOCK_NONE;
3223 
3224 	cgroup_attach_lock(lock_mode, NULL);
3225 
3226 	/* NULL dst indicates self on default hierarchy */
3227 	ret = cgroup_migrate_prepare_dst(&mgctx);
3228 	if (ret)
3229 		goto out_finish;
3230 
3231 	spin_lock_irq(&css_set_lock);
3232 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3233 			    mg_src_preload_node) {
3234 		struct task_struct *task, *ntask;
3235 
3236 		/* all tasks in src_csets need to be migrated */
3237 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3238 			cgroup_migrate_add_task(task, &mgctx);
3239 	}
3240 	spin_unlock_irq(&css_set_lock);
3241 
3242 	ret = cgroup_migrate_execute(&mgctx);
3243 out_finish:
3244 	cgroup_migrate_finish(&mgctx);
3245 	cgroup_attach_unlock(lock_mode, NULL);
3246 	return ret;
3247 }
3248 
3249 /**
3250  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3251  * @cgrp: root of the target subtree
3252  *
3253  * Because css offlining is asynchronous, userland may try to re-enable a
3254  * controller while the previous css is still around.  This function grabs
3255  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3256  */
3257 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3258 	__acquires(&cgroup_mutex)
3259 {
3260 	struct cgroup *dsct;
3261 	struct cgroup_subsys_state *d_css;
3262 	struct cgroup_subsys *ss;
3263 	int ssid;
3264 
3265 restart:
3266 	cgroup_lock();
3267 
3268 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3269 		for_each_subsys(ss, ssid) {
3270 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3271 			DEFINE_WAIT(wait);
3272 
3273 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3274 				continue;
3275 
3276 			cgroup_get_live(dsct);
3277 			prepare_to_wait(&dsct->offline_waitq, &wait,
3278 					TASK_UNINTERRUPTIBLE);
3279 
3280 			cgroup_unlock();
3281 			schedule();
3282 			finish_wait(&dsct->offline_waitq, &wait);
3283 
3284 			cgroup_put(dsct);
3285 			goto restart;
3286 		}
3287 	}
3288 }
3289 
3290 /**
3291  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3292  * @cgrp: root of the target subtree
3293  *
3294  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3295  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3296  * itself.
3297  */
3298 static void cgroup_save_control(struct cgroup *cgrp)
3299 {
3300 	struct cgroup *dsct;
3301 	struct cgroup_subsys_state *d_css;
3302 
3303 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3304 		dsct->old_subtree_control = dsct->subtree_control;
3305 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3306 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3307 	}
3308 }
3309 
3310 /**
3311  * cgroup_propagate_control - refresh control masks of a subtree
3312  * @cgrp: root of the target subtree
3313  *
3314  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3315  * ->subtree_control and propagate controller availability through the
3316  * subtree so that descendants don't have unavailable controllers enabled.
3317  */
3318 static void cgroup_propagate_control(struct cgroup *cgrp)
3319 {
3320 	struct cgroup *dsct;
3321 	struct cgroup_subsys_state *d_css;
3322 
3323 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3324 		dsct->subtree_control &= cgroup_control(dsct);
3325 		dsct->subtree_ss_mask =
3326 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3327 						    cgroup_ss_mask(dsct));
3328 	}
3329 }
3330 
3331 /**
3332  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3333  * @cgrp: root of the target subtree
3334  *
3335  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3336  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3337  * itself.
3338  */
3339 static void cgroup_restore_control(struct cgroup *cgrp)
3340 {
3341 	struct cgroup *dsct;
3342 	struct cgroup_subsys_state *d_css;
3343 
3344 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3345 		dsct->subtree_control = dsct->old_subtree_control;
3346 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3347 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3348 	}
3349 }
3350 
3351 static bool css_visible(struct cgroup_subsys_state *css)
3352 {
3353 	struct cgroup_subsys *ss = css->ss;
3354 	struct cgroup *cgrp = css->cgroup;
3355 
3356 	if (cgroup_control(cgrp) & (1 << ss->id))
3357 		return true;
3358 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3359 		return false;
3360 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3361 }
3362 
3363 /**
3364  * cgroup_apply_control_enable - enable or show csses according to control
3365  * @cgrp: root of the target subtree
3366  *
3367  * Walk @cgrp's subtree and create new csses or make the existing ones
3368  * visible.  A css is created invisible if it's being implicitly enabled
3369  * through dependency.  An invisible css is made visible when the userland
3370  * explicitly enables it.
3371  *
3372  * Returns 0 on success, -errno on failure.  On failure, csses which have
3373  * been processed already aren't cleaned up.  The caller is responsible for
3374  * cleaning up with cgroup_apply_control_disable().
3375  */
3376 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3377 {
3378 	struct cgroup *dsct;
3379 	struct cgroup_subsys_state *d_css;
3380 	struct cgroup_subsys *ss;
3381 	int ssid, ret;
3382 
3383 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3384 		for_each_subsys(ss, ssid) {
3385 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3386 
3387 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3388 				continue;
3389 
3390 			if (!css) {
3391 				css = css_create(dsct, ss);
3392 				if (IS_ERR(css))
3393 					return PTR_ERR(css);
3394 			}
3395 
3396 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3397 
3398 			if (css_visible(css)) {
3399 				ret = css_populate_dir(css);
3400 				if (ret)
3401 					return ret;
3402 			}
3403 		}
3404 	}
3405 
3406 	return 0;
3407 }
3408 
3409 /**
3410  * cgroup_apply_control_disable - kill or hide csses according to control
3411  * @cgrp: root of the target subtree
3412  *
3413  * Walk @cgrp's subtree and kill and hide csses so that they match
3414  * cgroup_ss_mask() and cgroup_visible_mask().
3415  *
3416  * A css is hidden when the userland requests it to be disabled while other
3417  * subsystems are still depending on it.  The css must not actively control
3418  * resources and be in the vanilla state if it's made visible again later.
3419  * Controllers which may be depended upon should provide ->css_reset() for
3420  * this purpose.
3421  */
3422 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3423 {
3424 	struct cgroup *dsct;
3425 	struct cgroup_subsys_state *d_css;
3426 	struct cgroup_subsys *ss;
3427 	int ssid;
3428 
3429 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3430 		for_each_subsys(ss, ssid) {
3431 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3432 
3433 			if (!css)
3434 				continue;
3435 
3436 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3437 
3438 			if (css->parent &&
3439 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3440 				kill_css(css);
3441 			} else if (!css_visible(css)) {
3442 				css_clear_dir(css);
3443 				if (ss->css_reset)
3444 					ss->css_reset(css);
3445 			}
3446 		}
3447 	}
3448 }
3449 
3450 /**
3451  * cgroup_apply_control - apply control mask updates to the subtree
3452  * @cgrp: root of the target subtree
3453  *
3454  * subsystems can be enabled and disabled in a subtree using the following
3455  * steps.
3456  *
3457  * 1. Call cgroup_save_control() to stash the current state.
3458  * 2. Update ->subtree_control masks in the subtree as desired.
3459  * 3. Call cgroup_apply_control() to apply the changes.
3460  * 4. Optionally perform other related operations.
3461  * 5. Call cgroup_finalize_control() to finish up.
3462  *
3463  * This function implements step 3 and propagates the mask changes
3464  * throughout @cgrp's subtree, updates csses accordingly and perform
3465  * process migrations.
3466  */
3467 static int cgroup_apply_control(struct cgroup *cgrp)
3468 {
3469 	int ret;
3470 
3471 	cgroup_propagate_control(cgrp);
3472 
3473 	ret = cgroup_apply_control_enable(cgrp);
3474 	if (ret)
3475 		return ret;
3476 
3477 	/*
3478 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3479 	 * making the following cgroup_update_dfl_csses() properly update
3480 	 * css associations of all tasks in the subtree.
3481 	 */
3482 	return cgroup_update_dfl_csses(cgrp);
3483 }
3484 
3485 /**
3486  * cgroup_finalize_control - finalize control mask update
3487  * @cgrp: root of the target subtree
3488  * @ret: the result of the update
3489  *
3490  * Finalize control mask update.  See cgroup_apply_control() for more info.
3491  */
3492 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3493 {
3494 	if (ret) {
3495 		cgroup_restore_control(cgrp);
3496 		cgroup_propagate_control(cgrp);
3497 	}
3498 
3499 	cgroup_apply_control_disable(cgrp);
3500 }
3501 
3502 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3503 {
3504 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3505 
3506 	/* if nothing is getting enabled, nothing to worry about */
3507 	if (!enable)
3508 		return 0;
3509 
3510 	/* can @cgrp host any resources? */
3511 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3512 		return -EOPNOTSUPP;
3513 
3514 	/* mixables don't care */
3515 	if (cgroup_is_mixable(cgrp))
3516 		return 0;
3517 
3518 	if (domain_enable) {
3519 		/* can't enable domain controllers inside a thread subtree */
3520 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3521 			return -EOPNOTSUPP;
3522 	} else {
3523 		/*
3524 		 * Threaded controllers can handle internal competitions
3525 		 * and are always allowed inside a (prospective) thread
3526 		 * subtree.
3527 		 */
3528 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3529 			return 0;
3530 	}
3531 
3532 	/*
3533 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3534 	 * child cgroups competing against tasks.
3535 	 */
3536 	if (cgroup_has_tasks(cgrp))
3537 		return -EBUSY;
3538 
3539 	return 0;
3540 }
3541 
3542 /* change the enabled child controllers for a cgroup in the default hierarchy */
3543 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3544 					    char *buf, size_t nbytes,
3545 					    loff_t off)
3546 {
3547 	u16 enable = 0, disable = 0;
3548 	struct cgroup *cgrp, *child;
3549 	struct cgroup_subsys *ss;
3550 	char *tok;
3551 	int ssid, ret;
3552 
3553 	/*
3554 	 * Parse input - space separated list of subsystem names prefixed
3555 	 * with either + or -.
3556 	 */
3557 	buf = strstrip(buf);
3558 	while ((tok = strsep(&buf, " "))) {
3559 		if (tok[0] == '\0')
3560 			continue;
3561 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3562 			if (!cgroup_ssid_enabled(ssid) ||
3563 			    strcmp(tok + 1, ss->name))
3564 				continue;
3565 
3566 			if (*tok == '+') {
3567 				enable |= 1 << ssid;
3568 				disable &= ~(1 << ssid);
3569 			} else if (*tok == '-') {
3570 				disable |= 1 << ssid;
3571 				enable &= ~(1 << ssid);
3572 			} else {
3573 				return -EINVAL;
3574 			}
3575 			break;
3576 		} while_each_subsys_mask();
3577 		if (ssid == CGROUP_SUBSYS_COUNT)
3578 			return -EINVAL;
3579 	}
3580 
3581 	cgrp = cgroup_kn_lock_live(of->kn, true);
3582 	if (!cgrp)
3583 		return -ENODEV;
3584 
3585 	for_each_subsys(ss, ssid) {
3586 		if (enable & (1 << ssid)) {
3587 			if (cgrp->subtree_control & (1 << ssid)) {
3588 				enable &= ~(1 << ssid);
3589 				continue;
3590 			}
3591 
3592 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3593 				ret = -ENOENT;
3594 				goto out_unlock;
3595 			}
3596 		} else if (disable & (1 << ssid)) {
3597 			if (!(cgrp->subtree_control & (1 << ssid))) {
3598 				disable &= ~(1 << ssid);
3599 				continue;
3600 			}
3601 
3602 			/* a child has it enabled? */
3603 			cgroup_for_each_live_child(child, cgrp) {
3604 				if (child->subtree_control & (1 << ssid)) {
3605 					ret = -EBUSY;
3606 					goto out_unlock;
3607 				}
3608 			}
3609 		}
3610 	}
3611 
3612 	if (!enable && !disable) {
3613 		ret = 0;
3614 		goto out_unlock;
3615 	}
3616 
3617 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3618 	if (ret)
3619 		goto out_unlock;
3620 
3621 	/* save and update control masks and prepare csses */
3622 	cgroup_save_control(cgrp);
3623 
3624 	cgrp->subtree_control |= enable;
3625 	cgrp->subtree_control &= ~disable;
3626 
3627 	ret = cgroup_apply_control(cgrp);
3628 	cgroup_finalize_control(cgrp, ret);
3629 	if (ret)
3630 		goto out_unlock;
3631 
3632 	kernfs_activate(cgrp->kn);
3633 out_unlock:
3634 	cgroup_kn_unlock(of->kn);
3635 	return ret ?: nbytes;
3636 }
3637 
3638 /**
3639  * cgroup_enable_threaded - make @cgrp threaded
3640  * @cgrp: the target cgroup
3641  *
3642  * Called when "threaded" is written to the cgroup.type interface file and
3643  * tries to make @cgrp threaded and join the parent's resource domain.
3644  * This function is never called on the root cgroup as cgroup.type doesn't
3645  * exist on it.
3646  */
3647 static int cgroup_enable_threaded(struct cgroup *cgrp)
3648 {
3649 	struct cgroup *parent = cgroup_parent(cgrp);
3650 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3651 	struct cgroup *dsct;
3652 	struct cgroup_subsys_state *d_css;
3653 	int ret;
3654 
3655 	lockdep_assert_held(&cgroup_mutex);
3656 
3657 	/* noop if already threaded */
3658 	if (cgroup_is_threaded(cgrp))
3659 		return 0;
3660 
3661 	/*
3662 	 * If @cgroup is populated or has domain controllers enabled, it
3663 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3664 	 * test can catch the same conditions, that's only when @parent is
3665 	 * not mixable, so let's check it explicitly.
3666 	 */
3667 	if (cgroup_is_populated(cgrp) ||
3668 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3669 		return -EOPNOTSUPP;
3670 
3671 	/* we're joining the parent's domain, ensure its validity */
3672 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3673 	    !cgroup_can_be_thread_root(dom_cgrp))
3674 		return -EOPNOTSUPP;
3675 
3676 	/*
3677 	 * The following shouldn't cause actual migrations and should
3678 	 * always succeed.
3679 	 */
3680 	cgroup_save_control(cgrp);
3681 
3682 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3683 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3684 			dsct->dom_cgrp = dom_cgrp;
3685 
3686 	ret = cgroup_apply_control(cgrp);
3687 	if (!ret)
3688 		parent->nr_threaded_children++;
3689 
3690 	cgroup_finalize_control(cgrp, ret);
3691 	return ret;
3692 }
3693 
3694 static int cgroup_type_show(struct seq_file *seq, void *v)
3695 {
3696 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3697 
3698 	if (cgroup_is_threaded(cgrp))
3699 		seq_puts(seq, "threaded\n");
3700 	else if (!cgroup_is_valid_domain(cgrp))
3701 		seq_puts(seq, "domain invalid\n");
3702 	else if (cgroup_is_thread_root(cgrp))
3703 		seq_puts(seq, "domain threaded\n");
3704 	else
3705 		seq_puts(seq, "domain\n");
3706 
3707 	return 0;
3708 }
3709 
3710 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3711 				 size_t nbytes, loff_t off)
3712 {
3713 	struct cgroup *cgrp;
3714 	int ret;
3715 
3716 	/* only switching to threaded mode is supported */
3717 	if (strcmp(strstrip(buf), "threaded"))
3718 		return -EINVAL;
3719 
3720 	/* drain dying csses before we re-apply (threaded) subtree control */
3721 	cgrp = cgroup_kn_lock_live(of->kn, true);
3722 	if (!cgrp)
3723 		return -ENOENT;
3724 
3725 	/* threaded can only be enabled */
3726 	ret = cgroup_enable_threaded(cgrp);
3727 
3728 	cgroup_kn_unlock(of->kn);
3729 	return ret ?: nbytes;
3730 }
3731 
3732 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3733 {
3734 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3735 	int descendants = READ_ONCE(cgrp->max_descendants);
3736 
3737 	if (descendants == INT_MAX)
3738 		seq_puts(seq, "max\n");
3739 	else
3740 		seq_printf(seq, "%d\n", descendants);
3741 
3742 	return 0;
3743 }
3744 
3745 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3746 					   char *buf, size_t nbytes, loff_t off)
3747 {
3748 	struct cgroup *cgrp;
3749 	int descendants;
3750 	ssize_t ret;
3751 
3752 	buf = strstrip(buf);
3753 	if (!strcmp(buf, "max")) {
3754 		descendants = INT_MAX;
3755 	} else {
3756 		ret = kstrtoint(buf, 0, &descendants);
3757 		if (ret)
3758 			return ret;
3759 	}
3760 
3761 	if (descendants < 0)
3762 		return -ERANGE;
3763 
3764 	cgrp = cgroup_kn_lock_live(of->kn, false);
3765 	if (!cgrp)
3766 		return -ENOENT;
3767 
3768 	cgrp->max_descendants = descendants;
3769 
3770 	cgroup_kn_unlock(of->kn);
3771 
3772 	return nbytes;
3773 }
3774 
3775 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3776 {
3777 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3778 	int depth = READ_ONCE(cgrp->max_depth);
3779 
3780 	if (depth == INT_MAX)
3781 		seq_puts(seq, "max\n");
3782 	else
3783 		seq_printf(seq, "%d\n", depth);
3784 
3785 	return 0;
3786 }
3787 
3788 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3789 				      char *buf, size_t nbytes, loff_t off)
3790 {
3791 	struct cgroup *cgrp;
3792 	ssize_t ret;
3793 	int depth;
3794 
3795 	buf = strstrip(buf);
3796 	if (!strcmp(buf, "max")) {
3797 		depth = INT_MAX;
3798 	} else {
3799 		ret = kstrtoint(buf, 0, &depth);
3800 		if (ret)
3801 			return ret;
3802 	}
3803 
3804 	if (depth < 0)
3805 		return -ERANGE;
3806 
3807 	cgrp = cgroup_kn_lock_live(of->kn, false);
3808 	if (!cgrp)
3809 		return -ENOENT;
3810 
3811 	cgrp->max_depth = depth;
3812 
3813 	cgroup_kn_unlock(of->kn);
3814 
3815 	return nbytes;
3816 }
3817 
3818 static int cgroup_events_show(struct seq_file *seq, void *v)
3819 {
3820 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3821 
3822 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3823 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3824 
3825 	return 0;
3826 }
3827 
3828 static int cgroup_stat_show(struct seq_file *seq, void *v)
3829 {
3830 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3831 	struct cgroup_subsys_state *css;
3832 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3833 	int ssid;
3834 
3835 	seq_printf(seq, "nr_descendants %d\n",
3836 		   cgroup->nr_descendants);
3837 
3838 	/*
3839 	 * Show the number of live and dying csses associated with each of
3840 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3841 	 *
3842 	 * Without proper lock protection, racing is possible. So the
3843 	 * numbers may not be consistent when that happens.
3844 	 */
3845 	rcu_read_lock();
3846 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3847 		dying_cnt[ssid] = -1;
3848 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3849 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3850 			continue;
3851 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3852 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3853 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3854 			   css ? (css->nr_descendants + 1) : 0);
3855 	}
3856 
3857 	seq_printf(seq, "nr_dying_descendants %d\n",
3858 		   cgroup->nr_dying_descendants);
3859 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3860 		if (dying_cnt[ssid] >= 0)
3861 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3862 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3863 	}
3864 	rcu_read_unlock();
3865 	return 0;
3866 }
3867 
3868 static int cgroup_core_local_stat_show(struct seq_file *seq, void *v)
3869 {
3870 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3871 	unsigned int sequence;
3872 	u64 freeze_time;
3873 
3874 	do {
3875 		sequence = read_seqcount_begin(&cgrp->freezer.freeze_seq);
3876 		freeze_time = cgrp->freezer.frozen_nsec;
3877 		/* Add in current freezer interval if the cgroup is freezing. */
3878 		if (test_bit(CGRP_FREEZE, &cgrp->flags))
3879 			freeze_time += (ktime_get_ns() -
3880 					cgrp->freezer.freeze_start_nsec);
3881 	} while (read_seqcount_retry(&cgrp->freezer.freeze_seq, sequence));
3882 
3883 	do_div(freeze_time, NSEC_PER_USEC);
3884 	seq_printf(seq, "frozen_usec %llu\n", freeze_time);
3885 
3886 	return 0;
3887 }
3888 
3889 #ifdef CONFIG_CGROUP_SCHED
3890 /**
3891  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3892  * @cgrp: the cgroup of interest
3893  * @ss: the subsystem of interest
3894  *
3895  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3896  * or is offline, %NULL is returned.
3897  */
3898 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3899 						     struct cgroup_subsys *ss)
3900 {
3901 	struct cgroup_subsys_state *css;
3902 
3903 	rcu_read_lock();
3904 	css = cgroup_css(cgrp, ss);
3905 	if (css && !css_tryget_online(css))
3906 		css = NULL;
3907 	rcu_read_unlock();
3908 
3909 	return css;
3910 }
3911 
3912 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3913 {
3914 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3915 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3916 	struct cgroup_subsys_state *css;
3917 	int ret;
3918 
3919 	if (!ss->css_extra_stat_show)
3920 		return 0;
3921 
3922 	css = cgroup_tryget_css(cgrp, ss);
3923 	if (!css)
3924 		return 0;
3925 
3926 	ret = ss->css_extra_stat_show(seq, css);
3927 	css_put(css);
3928 	return ret;
3929 }
3930 
3931 static int cgroup_local_stat_show(struct seq_file *seq,
3932 				  struct cgroup *cgrp, int ssid)
3933 {
3934 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3935 	struct cgroup_subsys_state *css;
3936 	int ret;
3937 
3938 	if (!ss->css_local_stat_show)
3939 		return 0;
3940 
3941 	css = cgroup_tryget_css(cgrp, ss);
3942 	if (!css)
3943 		return 0;
3944 
3945 	ret = ss->css_local_stat_show(seq, css);
3946 	css_put(css);
3947 	return ret;
3948 }
3949 #endif
3950 
3951 static int cpu_stat_show(struct seq_file *seq, void *v)
3952 {
3953 	int ret = 0;
3954 
3955 	cgroup_base_stat_cputime_show(seq);
3956 #ifdef CONFIG_CGROUP_SCHED
3957 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3958 #endif
3959 	return ret;
3960 }
3961 
3962 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3963 {
3964 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3965 	int ret = 0;
3966 
3967 #ifdef CONFIG_CGROUP_SCHED
3968 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3969 #endif
3970 	return ret;
3971 }
3972 
3973 #ifdef CONFIG_PSI
3974 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3975 {
3976 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3977 	struct psi_group *psi = cgroup_psi(cgrp);
3978 
3979 	return psi_show(seq, psi, PSI_IO);
3980 }
3981 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3982 {
3983 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3984 	struct psi_group *psi = cgroup_psi(cgrp);
3985 
3986 	return psi_show(seq, psi, PSI_MEM);
3987 }
3988 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3989 {
3990 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3991 	struct psi_group *psi = cgroup_psi(cgrp);
3992 
3993 	return psi_show(seq, psi, PSI_CPU);
3994 }
3995 
3996 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3997 			      size_t nbytes, enum psi_res res)
3998 {
3999 	struct cgroup_file_ctx *ctx = of->priv;
4000 	struct psi_trigger *new;
4001 	struct cgroup *cgrp;
4002 	struct psi_group *psi;
4003 
4004 	cgrp = cgroup_kn_lock_live(of->kn, false);
4005 	if (!cgrp)
4006 		return -ENODEV;
4007 
4008 	cgroup_get(cgrp);
4009 	cgroup_kn_unlock(of->kn);
4010 
4011 	/* Allow only one trigger per file descriptor */
4012 	if (ctx->psi.trigger) {
4013 		cgroup_put(cgrp);
4014 		return -EBUSY;
4015 	}
4016 
4017 	psi = cgroup_psi(cgrp);
4018 	new = psi_trigger_create(psi, buf, res, of->file, of);
4019 	if (IS_ERR(new)) {
4020 		cgroup_put(cgrp);
4021 		return PTR_ERR(new);
4022 	}
4023 
4024 	smp_store_release(&ctx->psi.trigger, new);
4025 	cgroup_put(cgrp);
4026 
4027 	return nbytes;
4028 }
4029 
4030 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
4031 					  char *buf, size_t nbytes,
4032 					  loff_t off)
4033 {
4034 	return pressure_write(of, buf, nbytes, PSI_IO);
4035 }
4036 
4037 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
4038 					  char *buf, size_t nbytes,
4039 					  loff_t off)
4040 {
4041 	return pressure_write(of, buf, nbytes, PSI_MEM);
4042 }
4043 
4044 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
4045 					  char *buf, size_t nbytes,
4046 					  loff_t off)
4047 {
4048 	return pressure_write(of, buf, nbytes, PSI_CPU);
4049 }
4050 
4051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4052 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
4053 {
4054 	struct cgroup *cgrp = seq_css(seq)->cgroup;
4055 	struct psi_group *psi = cgroup_psi(cgrp);
4056 
4057 	return psi_show(seq, psi, PSI_IRQ);
4058 }
4059 
4060 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
4061 					 char *buf, size_t nbytes,
4062 					 loff_t off)
4063 {
4064 	return pressure_write(of, buf, nbytes, PSI_IRQ);
4065 }
4066 #endif
4067 
4068 static int cgroup_pressure_show(struct seq_file *seq, void *v)
4069 {
4070 	struct cgroup *cgrp = seq_css(seq)->cgroup;
4071 	struct psi_group *psi = cgroup_psi(cgrp);
4072 
4073 	seq_printf(seq, "%d\n", psi->enabled);
4074 
4075 	return 0;
4076 }
4077 
4078 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
4079 				     char *buf, size_t nbytes,
4080 				     loff_t off)
4081 {
4082 	ssize_t ret;
4083 	int enable;
4084 	struct cgroup *cgrp;
4085 	struct psi_group *psi;
4086 
4087 	ret = kstrtoint(strstrip(buf), 0, &enable);
4088 	if (ret)
4089 		return ret;
4090 
4091 	if (enable < 0 || enable > 1)
4092 		return -ERANGE;
4093 
4094 	cgrp = cgroup_kn_lock_live(of->kn, false);
4095 	if (!cgrp)
4096 		return -ENOENT;
4097 
4098 	psi = cgroup_psi(cgrp);
4099 	if (psi->enabled != enable) {
4100 		int i;
4101 
4102 		/* show or hide {cpu,memory,io,irq}.pressure files */
4103 		for (i = 0; i < NR_PSI_RESOURCES; i++)
4104 			cgroup_file_show(&cgrp->psi_files[i], enable);
4105 
4106 		psi->enabled = enable;
4107 		if (enable)
4108 			psi_cgroup_restart(psi);
4109 	}
4110 
4111 	cgroup_kn_unlock(of->kn);
4112 
4113 	return nbytes;
4114 }
4115 
4116 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
4117 					  poll_table *pt)
4118 {
4119 	struct cgroup_file_ctx *ctx = of->priv;
4120 
4121 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
4122 }
4123 
4124 static void cgroup_pressure_release(struct kernfs_open_file *of)
4125 {
4126 	struct cgroup_file_ctx *ctx = of->priv;
4127 
4128 	psi_trigger_destroy(ctx->psi.trigger);
4129 }
4130 
4131 bool cgroup_psi_enabled(void)
4132 {
4133 	if (static_branch_likely(&psi_disabled))
4134 		return false;
4135 
4136 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4137 }
4138 
4139 #else /* CONFIG_PSI */
4140 bool cgroup_psi_enabled(void)
4141 {
4142 	return false;
4143 }
4144 
4145 #endif /* CONFIG_PSI */
4146 
4147 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4148 {
4149 	struct cgroup *cgrp = seq_css(seq)->cgroup;
4150 
4151 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4152 
4153 	return 0;
4154 }
4155 
4156 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4157 				   char *buf, size_t nbytes, loff_t off)
4158 {
4159 	struct cgroup *cgrp;
4160 	ssize_t ret;
4161 	int freeze;
4162 
4163 	ret = kstrtoint(strstrip(buf), 0, &freeze);
4164 	if (ret)
4165 		return ret;
4166 
4167 	if (freeze < 0 || freeze > 1)
4168 		return -ERANGE;
4169 
4170 	cgrp = cgroup_kn_lock_live(of->kn, false);
4171 	if (!cgrp)
4172 		return -ENOENT;
4173 
4174 	cgroup_freeze(cgrp, freeze);
4175 
4176 	cgroup_kn_unlock(of->kn);
4177 
4178 	return nbytes;
4179 }
4180 
4181 static void __cgroup_kill(struct cgroup *cgrp)
4182 {
4183 	struct css_task_iter it;
4184 	struct task_struct *task;
4185 
4186 	lockdep_assert_held(&cgroup_mutex);
4187 
4188 	spin_lock_irq(&css_set_lock);
4189 	cgrp->kill_seq++;
4190 	spin_unlock_irq(&css_set_lock);
4191 
4192 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4193 	while ((task = css_task_iter_next(&it))) {
4194 		/* Ignore kernel threads here. */
4195 		if (task->flags & PF_KTHREAD)
4196 			continue;
4197 
4198 		/* Skip tasks that are already dying. */
4199 		if (__fatal_signal_pending(task))
4200 			continue;
4201 
4202 		send_sig(SIGKILL, task, 0);
4203 	}
4204 	css_task_iter_end(&it);
4205 }
4206 
4207 static void cgroup_kill(struct cgroup *cgrp)
4208 {
4209 	struct cgroup_subsys_state *css;
4210 	struct cgroup *dsct;
4211 
4212 	lockdep_assert_held(&cgroup_mutex);
4213 
4214 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4215 		__cgroup_kill(dsct);
4216 }
4217 
4218 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4219 				 size_t nbytes, loff_t off)
4220 {
4221 	ssize_t ret = 0;
4222 	int kill;
4223 	struct cgroup *cgrp;
4224 
4225 	ret = kstrtoint(strstrip(buf), 0, &kill);
4226 	if (ret)
4227 		return ret;
4228 
4229 	if (kill != 1)
4230 		return -ERANGE;
4231 
4232 	cgrp = cgroup_kn_lock_live(of->kn, false);
4233 	if (!cgrp)
4234 		return -ENOENT;
4235 
4236 	/*
4237 	 * Killing is a process directed operation, i.e. the whole thread-group
4238 	 * is taken down so act like we do for cgroup.procs and only make this
4239 	 * writable in non-threaded cgroups.
4240 	 */
4241 	if (cgroup_is_threaded(cgrp))
4242 		ret = -EOPNOTSUPP;
4243 	else
4244 		cgroup_kill(cgrp);
4245 
4246 	cgroup_kn_unlock(of->kn);
4247 
4248 	return ret ?: nbytes;
4249 }
4250 
4251 static int cgroup_file_open(struct kernfs_open_file *of)
4252 {
4253 	struct cftype *cft = of_cft(of);
4254 	struct cgroup_file_ctx *ctx;
4255 	int ret;
4256 
4257 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4258 	if (!ctx)
4259 		return -ENOMEM;
4260 
4261 	ctx->ns = current->nsproxy->cgroup_ns;
4262 	get_cgroup_ns(ctx->ns);
4263 	of->priv = ctx;
4264 
4265 	if (!cft->open)
4266 		return 0;
4267 
4268 	ret = cft->open(of);
4269 	if (ret) {
4270 		put_cgroup_ns(ctx->ns);
4271 		kfree(ctx);
4272 	}
4273 	return ret;
4274 }
4275 
4276 static void cgroup_file_release(struct kernfs_open_file *of)
4277 {
4278 	struct cftype *cft = of_cft(of);
4279 	struct cgroup_file_ctx *ctx = of->priv;
4280 
4281 	if (cft->release)
4282 		cft->release(of);
4283 	put_cgroup_ns(ctx->ns);
4284 	kfree(ctx);
4285 	of->priv = NULL;
4286 }
4287 
4288 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4289 				 size_t nbytes, loff_t off)
4290 {
4291 	struct cgroup_file_ctx *ctx = of->priv;
4292 	struct cgroup *cgrp = kn_priv(of->kn);
4293 	struct cftype *cft = of_cft(of);
4294 	struct cgroup_subsys_state *css;
4295 	int ret;
4296 
4297 	if (!nbytes)
4298 		return 0;
4299 
4300 	/*
4301 	 * If namespaces are delegation boundaries, disallow writes to
4302 	 * files in an non-init namespace root from inside the namespace
4303 	 * except for the files explicitly marked delegatable -
4304 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4305 	 */
4306 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4307 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4308 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4309 		return -EPERM;
4310 
4311 	if (cft->write)
4312 		return cft->write(of, buf, nbytes, off);
4313 
4314 	/*
4315 	 * kernfs guarantees that a file isn't deleted with operations in
4316 	 * flight, which means that the matching css is and stays alive and
4317 	 * doesn't need to be pinned.  The RCU locking is not necessary
4318 	 * either.  It's just for the convenience of using cgroup_css().
4319 	 */
4320 	rcu_read_lock();
4321 	css = cgroup_css(cgrp, cft->ss);
4322 	rcu_read_unlock();
4323 
4324 	if (cft->write_u64) {
4325 		unsigned long long v;
4326 		ret = kstrtoull(buf, 0, &v);
4327 		if (!ret)
4328 			ret = cft->write_u64(css, cft, v);
4329 	} else if (cft->write_s64) {
4330 		long long v;
4331 		ret = kstrtoll(buf, 0, &v);
4332 		if (!ret)
4333 			ret = cft->write_s64(css, cft, v);
4334 	} else {
4335 		ret = -EINVAL;
4336 	}
4337 
4338 	return ret ?: nbytes;
4339 }
4340 
4341 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4342 {
4343 	struct cftype *cft = of_cft(of);
4344 
4345 	if (cft->poll)
4346 		return cft->poll(of, pt);
4347 
4348 	return kernfs_generic_poll(of, pt);
4349 }
4350 
4351 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4352 {
4353 	return seq_cft(seq)->seq_start(seq, ppos);
4354 }
4355 
4356 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4357 {
4358 	return seq_cft(seq)->seq_next(seq, v, ppos);
4359 }
4360 
4361 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4362 {
4363 	if (seq_cft(seq)->seq_stop)
4364 		seq_cft(seq)->seq_stop(seq, v);
4365 }
4366 
4367 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4368 {
4369 	struct cftype *cft = seq_cft(m);
4370 	struct cgroup_subsys_state *css = seq_css(m);
4371 
4372 	if (cft->seq_show)
4373 		return cft->seq_show(m, arg);
4374 
4375 	if (cft->read_u64)
4376 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4377 	else if (cft->read_s64)
4378 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4379 	else
4380 		return -EINVAL;
4381 	return 0;
4382 }
4383 
4384 static struct kernfs_ops cgroup_kf_single_ops = {
4385 	.atomic_write_len	= PAGE_SIZE,
4386 	.open			= cgroup_file_open,
4387 	.release		= cgroup_file_release,
4388 	.write			= cgroup_file_write,
4389 	.poll			= cgroup_file_poll,
4390 	.seq_show		= cgroup_seqfile_show,
4391 };
4392 
4393 static struct kernfs_ops cgroup_kf_ops = {
4394 	.atomic_write_len	= PAGE_SIZE,
4395 	.open			= cgroup_file_open,
4396 	.release		= cgroup_file_release,
4397 	.write			= cgroup_file_write,
4398 	.poll			= cgroup_file_poll,
4399 	.seq_start		= cgroup_seqfile_start,
4400 	.seq_next		= cgroup_seqfile_next,
4401 	.seq_stop		= cgroup_seqfile_stop,
4402 	.seq_show		= cgroup_seqfile_show,
4403 };
4404 
4405 static void cgroup_file_notify_timer(struct timer_list *timer)
4406 {
4407 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4408 					notify_timer));
4409 }
4410 
4411 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4412 			   struct cftype *cft)
4413 {
4414 	char name[CGROUP_FILE_NAME_MAX];
4415 	struct kernfs_node *kn;
4416 	struct lock_class_key *key = NULL;
4417 
4418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4419 	key = &cft->lockdep_key;
4420 #endif
4421 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4422 				  cgroup_file_mode(cft),
4423 				  current_fsuid(), current_fsgid(),
4424 				  0, cft->kf_ops, cft,
4425 				  NULL, key);
4426 	if (IS_ERR(kn))
4427 		return PTR_ERR(kn);
4428 
4429 	if (cft->file_offset) {
4430 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4431 
4432 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4433 
4434 		spin_lock_irq(&cgroup_file_kn_lock);
4435 		cfile->kn = kn;
4436 		spin_unlock_irq(&cgroup_file_kn_lock);
4437 	}
4438 
4439 	return 0;
4440 }
4441 
4442 /**
4443  * cgroup_addrm_files - add or remove files to a cgroup directory
4444  * @css: the target css
4445  * @cgrp: the target cgroup (usually css->cgroup)
4446  * @cfts: array of cftypes to be added
4447  * @is_add: whether to add or remove
4448  *
4449  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4450  * For removals, this function never fails.
4451  */
4452 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4453 			      struct cgroup *cgrp, struct cftype cfts[],
4454 			      bool is_add)
4455 {
4456 	struct cftype *cft, *cft_end = NULL;
4457 	int ret = 0;
4458 
4459 	lockdep_assert_held(&cgroup_mutex);
4460 
4461 restart:
4462 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4463 		/* does cft->flags tell us to skip this file on @cgrp? */
4464 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4465 			continue;
4466 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4467 			continue;
4468 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4469 			continue;
4470 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4471 			continue;
4472 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4473 			continue;
4474 		if (is_add) {
4475 			ret = cgroup_add_file(css, cgrp, cft);
4476 			if (ret) {
4477 				pr_warn("%s: failed to add %s, err=%d\n",
4478 					__func__, cft->name, ret);
4479 				cft_end = cft;
4480 				is_add = false;
4481 				goto restart;
4482 			}
4483 		} else {
4484 			cgroup_rm_file(cgrp, cft);
4485 		}
4486 	}
4487 	return ret;
4488 }
4489 
4490 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4491 {
4492 	struct cgroup_subsys *ss = cfts[0].ss;
4493 	struct cgroup *root = &ss->root->cgrp;
4494 	struct cgroup_subsys_state *css;
4495 	int ret = 0;
4496 
4497 	lockdep_assert_held(&cgroup_mutex);
4498 
4499 	/* add/rm files for all cgroups created before */
4500 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4501 		struct cgroup *cgrp = css->cgroup;
4502 
4503 		if (!(css->flags & CSS_VISIBLE))
4504 			continue;
4505 
4506 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4507 		if (ret)
4508 			break;
4509 	}
4510 
4511 	if (is_add && !ret)
4512 		kernfs_activate(root->kn);
4513 	return ret;
4514 }
4515 
4516 static void cgroup_exit_cftypes(struct cftype *cfts)
4517 {
4518 	struct cftype *cft;
4519 
4520 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4521 		/* free copy for custom atomic_write_len, see init_cftypes() */
4522 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4523 			kfree(cft->kf_ops);
4524 		cft->kf_ops = NULL;
4525 		cft->ss = NULL;
4526 
4527 		/* revert flags set by cgroup core while adding @cfts */
4528 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4529 				__CFTYPE_ADDED);
4530 	}
4531 }
4532 
4533 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4534 {
4535 	struct cftype *cft;
4536 	int ret = 0;
4537 
4538 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4539 		struct kernfs_ops *kf_ops;
4540 
4541 		WARN_ON(cft->ss || cft->kf_ops);
4542 
4543 		if (cft->flags & __CFTYPE_ADDED) {
4544 			ret = -EBUSY;
4545 			break;
4546 		}
4547 
4548 		if (cft->seq_start)
4549 			kf_ops = &cgroup_kf_ops;
4550 		else
4551 			kf_ops = &cgroup_kf_single_ops;
4552 
4553 		/*
4554 		 * Ugh... if @cft wants a custom max_write_len, we need to
4555 		 * make a copy of kf_ops to set its atomic_write_len.
4556 		 */
4557 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4558 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4559 			if (!kf_ops) {
4560 				ret = -ENOMEM;
4561 				break;
4562 			}
4563 			kf_ops->atomic_write_len = cft->max_write_len;
4564 		}
4565 
4566 		cft->kf_ops = kf_ops;
4567 		cft->ss = ss;
4568 		cft->flags |= __CFTYPE_ADDED;
4569 	}
4570 
4571 	if (ret)
4572 		cgroup_exit_cftypes(cfts);
4573 	return ret;
4574 }
4575 
4576 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4577 {
4578 	lockdep_assert_held(&cgroup_mutex);
4579 
4580 	list_del(&cfts->node);
4581 	cgroup_apply_cftypes(cfts, false);
4582 	cgroup_exit_cftypes(cfts);
4583 }
4584 
4585 /**
4586  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4587  * @cfts: zero-length name terminated array of cftypes
4588  *
4589  * Unregister @cfts.  Files described by @cfts are removed from all
4590  * existing cgroups and all future cgroups won't have them either.  This
4591  * function can be called anytime whether @cfts' subsys is attached or not.
4592  *
4593  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4594  * registered.
4595  */
4596 int cgroup_rm_cftypes(struct cftype *cfts)
4597 {
4598 	if (!cfts || cfts[0].name[0] == '\0')
4599 		return 0;
4600 
4601 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4602 		return -ENOENT;
4603 
4604 	cgroup_lock();
4605 	cgroup_rm_cftypes_locked(cfts);
4606 	cgroup_unlock();
4607 	return 0;
4608 }
4609 
4610 /**
4611  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4612  * @ss: target cgroup subsystem
4613  * @cfts: zero-length name terminated array of cftypes
4614  *
4615  * Register @cfts to @ss.  Files described by @cfts are created for all
4616  * existing cgroups to which @ss is attached and all future cgroups will
4617  * have them too.  This function can be called anytime whether @ss is
4618  * attached or not.
4619  *
4620  * Returns 0 on successful registration, -errno on failure.  Note that this
4621  * function currently returns 0 as long as @cfts registration is successful
4622  * even if some file creation attempts on existing cgroups fail.
4623  */
4624 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4625 {
4626 	int ret;
4627 
4628 	if (!cgroup_ssid_enabled(ss->id))
4629 		return 0;
4630 
4631 	if (!cfts || cfts[0].name[0] == '\0')
4632 		return 0;
4633 
4634 	ret = cgroup_init_cftypes(ss, cfts);
4635 	if (ret)
4636 		return ret;
4637 
4638 	cgroup_lock();
4639 
4640 	list_add_tail(&cfts->node, &ss->cfts);
4641 	ret = cgroup_apply_cftypes(cfts, true);
4642 	if (ret)
4643 		cgroup_rm_cftypes_locked(cfts);
4644 
4645 	cgroup_unlock();
4646 	return ret;
4647 }
4648 
4649 /**
4650  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4651  * @ss: target cgroup subsystem
4652  * @cfts: zero-length name terminated array of cftypes
4653  *
4654  * Similar to cgroup_add_cftypes() but the added files are only used for
4655  * the default hierarchy.
4656  */
4657 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4658 {
4659 	struct cftype *cft;
4660 
4661 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4662 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4663 	return cgroup_add_cftypes(ss, cfts);
4664 }
4665 
4666 /**
4667  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4668  * @ss: target cgroup subsystem
4669  * @cfts: zero-length name terminated array of cftypes
4670  *
4671  * Similar to cgroup_add_cftypes() but the added files are only used for
4672  * the legacy hierarchies.
4673  */
4674 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4675 {
4676 	struct cftype *cft;
4677 
4678 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4679 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4680 	return cgroup_add_cftypes(ss, cfts);
4681 }
4682 
4683 /**
4684  * cgroup_file_notify - generate a file modified event for a cgroup_file
4685  * @cfile: target cgroup_file
4686  *
4687  * @cfile must have been obtained by setting cftype->file_offset.
4688  */
4689 void cgroup_file_notify(struct cgroup_file *cfile)
4690 {
4691 	unsigned long flags;
4692 
4693 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4694 	if (cfile->kn) {
4695 		unsigned long last = cfile->notified_at;
4696 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4697 
4698 		if (time_in_range(jiffies, last, next)) {
4699 			timer_reduce(&cfile->notify_timer, next);
4700 		} else {
4701 			kernfs_notify(cfile->kn);
4702 			cfile->notified_at = jiffies;
4703 		}
4704 	}
4705 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4706 }
4707 
4708 /**
4709  * cgroup_file_show - show or hide a hidden cgroup file
4710  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4711  * @show: whether to show or hide
4712  */
4713 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4714 {
4715 	struct kernfs_node *kn;
4716 
4717 	spin_lock_irq(&cgroup_file_kn_lock);
4718 	kn = cfile->kn;
4719 	kernfs_get(kn);
4720 	spin_unlock_irq(&cgroup_file_kn_lock);
4721 
4722 	if (kn)
4723 		kernfs_show(kn, show);
4724 
4725 	kernfs_put(kn);
4726 }
4727 
4728 /**
4729  * css_next_child - find the next child of a given css
4730  * @pos: the current position (%NULL to initiate traversal)
4731  * @parent: css whose children to walk
4732  *
4733  * This function returns the next child of @parent and should be called
4734  * under either cgroup_mutex or RCU read lock.  The only requirement is
4735  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4736  * be returned regardless of their states.
4737  *
4738  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4739  * css which finished ->css_online() is guaranteed to be visible in the
4740  * future iterations and will stay visible until the last reference is put.
4741  * A css which hasn't finished ->css_online() or already finished
4742  * ->css_offline() may show up during traversal.  It's each subsystem's
4743  * responsibility to synchronize against on/offlining.
4744  */
4745 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4746 					   struct cgroup_subsys_state *parent)
4747 {
4748 	struct cgroup_subsys_state *next;
4749 
4750 	cgroup_assert_mutex_or_rcu_locked();
4751 
4752 	/*
4753 	 * @pos could already have been unlinked from the sibling list.
4754 	 * Once a cgroup is removed, its ->sibling.next is no longer
4755 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4756 	 * @pos is taken off list, at which time its next pointer is valid,
4757 	 * and, as releases are serialized, the one pointed to by the next
4758 	 * pointer is guaranteed to not have started release yet.  This
4759 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4760 	 * critical section, the one pointed to by its next pointer is
4761 	 * guaranteed to not have finished its RCU grace period even if we
4762 	 * have dropped rcu_read_lock() in-between iterations.
4763 	 *
4764 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4765 	 * dereferenced; however, as each css is given a monotonically
4766 	 * increasing unique serial number and always appended to the
4767 	 * sibling list, the next one can be found by walking the parent's
4768 	 * children until the first css with higher serial number than
4769 	 * @pos's.  While this path can be slower, it happens iff iteration
4770 	 * races against release and the race window is very small.
4771 	 */
4772 	if (!pos) {
4773 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4774 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4775 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4776 	} else {
4777 		list_for_each_entry_rcu(next, &parent->children, sibling,
4778 					lockdep_is_held(&cgroup_mutex))
4779 			if (next->serial_nr > pos->serial_nr)
4780 				break;
4781 	}
4782 
4783 	/*
4784 	 * @next, if not pointing to the head, can be dereferenced and is
4785 	 * the next sibling.
4786 	 */
4787 	if (&next->sibling != &parent->children)
4788 		return next;
4789 	return NULL;
4790 }
4791 
4792 /**
4793  * css_next_descendant_pre - find the next descendant for pre-order walk
4794  * @pos: the current position (%NULL to initiate traversal)
4795  * @root: css whose descendants to walk
4796  *
4797  * To be used by css_for_each_descendant_pre().  Find the next descendant
4798  * to visit for pre-order traversal of @root's descendants.  @root is
4799  * included in the iteration and the first node to be visited.
4800  *
4801  * While this function requires cgroup_mutex or RCU read locking, it
4802  * doesn't require the whole traversal to be contained in a single critical
4803  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4804  * This function will return the correct next descendant as long as both @pos
4805  * and @root are accessible and @pos is a descendant of @root.
4806  *
4807  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4808  * css which finished ->css_online() is guaranteed to be visible in the
4809  * future iterations and will stay visible until the last reference is put.
4810  * A css which hasn't finished ->css_online() or already finished
4811  * ->css_offline() may show up during traversal.  It's each subsystem's
4812  * responsibility to synchronize against on/offlining.
4813  */
4814 struct cgroup_subsys_state *
4815 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4816 			struct cgroup_subsys_state *root)
4817 {
4818 	struct cgroup_subsys_state *next;
4819 
4820 	cgroup_assert_mutex_or_rcu_locked();
4821 
4822 	/* if first iteration, visit @root */
4823 	if (!pos)
4824 		return root;
4825 
4826 	/* visit the first child if exists */
4827 	next = css_next_child(NULL, pos);
4828 	if (next)
4829 		return next;
4830 
4831 	/* no child, visit my or the closest ancestor's next sibling */
4832 	while (pos != root) {
4833 		next = css_next_child(pos, pos->parent);
4834 		if (next)
4835 			return next;
4836 		pos = pos->parent;
4837 	}
4838 
4839 	return NULL;
4840 }
4841 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4842 
4843 /**
4844  * css_rightmost_descendant - return the rightmost descendant of a css
4845  * @pos: css of interest
4846  *
4847  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4848  * is returned.  This can be used during pre-order traversal to skip
4849  * subtree of @pos.
4850  *
4851  * While this function requires cgroup_mutex or RCU read locking, it
4852  * doesn't require the whole traversal to be contained in a single critical
4853  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4854  * This function will return the correct rightmost descendant as long as @pos
4855  * is accessible.
4856  */
4857 struct cgroup_subsys_state *
4858 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4859 {
4860 	struct cgroup_subsys_state *last, *tmp;
4861 
4862 	cgroup_assert_mutex_or_rcu_locked();
4863 
4864 	do {
4865 		last = pos;
4866 		/* ->prev isn't RCU safe, walk ->next till the end */
4867 		pos = NULL;
4868 		css_for_each_child(tmp, last)
4869 			pos = tmp;
4870 	} while (pos);
4871 
4872 	return last;
4873 }
4874 
4875 static struct cgroup_subsys_state *
4876 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4877 {
4878 	struct cgroup_subsys_state *last;
4879 
4880 	do {
4881 		last = pos;
4882 		pos = css_next_child(NULL, pos);
4883 	} while (pos);
4884 
4885 	return last;
4886 }
4887 
4888 /**
4889  * css_next_descendant_post - find the next descendant for post-order walk
4890  * @pos: the current position (%NULL to initiate traversal)
4891  * @root: css whose descendants to walk
4892  *
4893  * To be used by css_for_each_descendant_post().  Find the next descendant
4894  * to visit for post-order traversal of @root's descendants.  @root is
4895  * included in the iteration and the last node to be visited.
4896  *
4897  * While this function requires cgroup_mutex or RCU read locking, it
4898  * doesn't require the whole traversal to be contained in a single critical
4899  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4900  * This function will return the correct next descendant as long as both @pos
4901  * and @cgroup are accessible and @pos is a descendant of @cgroup.
4902  *
4903  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4904  * css which finished ->css_online() is guaranteed to be visible in the
4905  * future iterations and will stay visible until the last reference is put.
4906  * A css which hasn't finished ->css_online() or already finished
4907  * ->css_offline() may show up during traversal.  It's each subsystem's
4908  * responsibility to synchronize against on/offlining.
4909  */
4910 struct cgroup_subsys_state *
4911 css_next_descendant_post(struct cgroup_subsys_state *pos,
4912 			 struct cgroup_subsys_state *root)
4913 {
4914 	struct cgroup_subsys_state *next;
4915 
4916 	cgroup_assert_mutex_or_rcu_locked();
4917 
4918 	/* if first iteration, visit leftmost descendant which may be @root */
4919 	if (!pos)
4920 		return css_leftmost_descendant(root);
4921 
4922 	/* if we visited @root, we're done */
4923 	if (pos == root)
4924 		return NULL;
4925 
4926 	/* if there's an unvisited sibling, visit its leftmost descendant */
4927 	next = css_next_child(pos, pos->parent);
4928 	if (next)
4929 		return css_leftmost_descendant(next);
4930 
4931 	/* no sibling left, visit parent */
4932 	return pos->parent;
4933 }
4934 
4935 /**
4936  * css_has_online_children - does a css have online children
4937  * @css: the target css
4938  *
4939  * Returns %true if @css has any online children; otherwise, %false.  This
4940  * function can be called from any context but the caller is responsible
4941  * for synchronizing against on/offlining as necessary.
4942  */
4943 bool css_has_online_children(struct cgroup_subsys_state *css)
4944 {
4945 	struct cgroup_subsys_state *child;
4946 	bool ret = false;
4947 
4948 	rcu_read_lock();
4949 	css_for_each_child(child, css) {
4950 		if (child->flags & CSS_ONLINE) {
4951 			ret = true;
4952 			break;
4953 		}
4954 	}
4955 	rcu_read_unlock();
4956 	return ret;
4957 }
4958 
4959 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4960 {
4961 	struct list_head *l;
4962 	struct cgrp_cset_link *link;
4963 	struct css_set *cset;
4964 
4965 	lockdep_assert_held(&css_set_lock);
4966 
4967 	/* find the next threaded cset */
4968 	if (it->tcset_pos) {
4969 		l = it->tcset_pos->next;
4970 
4971 		if (l != it->tcset_head) {
4972 			it->tcset_pos = l;
4973 			return container_of(l, struct css_set,
4974 					    threaded_csets_node);
4975 		}
4976 
4977 		it->tcset_pos = NULL;
4978 	}
4979 
4980 	/* find the next cset */
4981 	l = it->cset_pos;
4982 	l = l->next;
4983 	if (l == it->cset_head) {
4984 		it->cset_pos = NULL;
4985 		return NULL;
4986 	}
4987 
4988 	if (it->ss) {
4989 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4990 	} else {
4991 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4992 		cset = link->cset;
4993 	}
4994 
4995 	it->cset_pos = l;
4996 
4997 	/* initialize threaded css_set walking */
4998 	if (it->flags & CSS_TASK_ITER_THREADED) {
4999 		if (it->cur_dcset)
5000 			put_css_set_locked(it->cur_dcset);
5001 		it->cur_dcset = cset;
5002 		get_css_set(cset);
5003 
5004 		it->tcset_head = &cset->threaded_csets;
5005 		it->tcset_pos = &cset->threaded_csets;
5006 	}
5007 
5008 	return cset;
5009 }
5010 
5011 /**
5012  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
5013  * @it: the iterator to advance
5014  *
5015  * Advance @it to the next css_set to walk.
5016  */
5017 static void css_task_iter_advance_css_set(struct css_task_iter *it)
5018 {
5019 	struct css_set *cset;
5020 
5021 	lockdep_assert_held(&css_set_lock);
5022 
5023 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
5024 	while ((cset = css_task_iter_next_css_set(it))) {
5025 		if (!list_empty(&cset->tasks)) {
5026 			it->cur_tasks_head = &cset->tasks;
5027 			break;
5028 		} else if (!list_empty(&cset->mg_tasks)) {
5029 			it->cur_tasks_head = &cset->mg_tasks;
5030 			break;
5031 		} else if (!list_empty(&cset->dying_tasks)) {
5032 			it->cur_tasks_head = &cset->dying_tasks;
5033 			break;
5034 		}
5035 	}
5036 	if (!cset) {
5037 		it->task_pos = NULL;
5038 		return;
5039 	}
5040 	it->task_pos = it->cur_tasks_head->next;
5041 
5042 	/*
5043 	 * We don't keep css_sets locked across iteration steps and thus
5044 	 * need to take steps to ensure that iteration can be resumed after
5045 	 * the lock is re-acquired.  Iteration is performed at two levels -
5046 	 * css_sets and tasks in them.
5047 	 *
5048 	 * Once created, a css_set never leaves its cgroup lists, so a
5049 	 * pinned css_set is guaranteed to stay put and we can resume
5050 	 * iteration afterwards.
5051 	 *
5052 	 * Tasks may leave @cset across iteration steps.  This is resolved
5053 	 * by registering each iterator with the css_set currently being
5054 	 * walked and making css_set_move_task() advance iterators whose
5055 	 * next task is leaving.
5056 	 */
5057 	if (it->cur_cset) {
5058 		list_del(&it->iters_node);
5059 		put_css_set_locked(it->cur_cset);
5060 	}
5061 	get_css_set(cset);
5062 	it->cur_cset = cset;
5063 	list_add(&it->iters_node, &cset->task_iters);
5064 }
5065 
5066 static void css_task_iter_skip(struct css_task_iter *it,
5067 			       struct task_struct *task)
5068 {
5069 	lockdep_assert_held(&css_set_lock);
5070 
5071 	if (it->task_pos == &task->cg_list) {
5072 		it->task_pos = it->task_pos->next;
5073 		it->flags |= CSS_TASK_ITER_SKIPPED;
5074 	}
5075 }
5076 
5077 static void css_task_iter_advance(struct css_task_iter *it)
5078 {
5079 	struct task_struct *task;
5080 
5081 	lockdep_assert_held(&css_set_lock);
5082 repeat:
5083 	if (it->task_pos) {
5084 		/*
5085 		 * Advance iterator to find next entry. We go through cset
5086 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
5087 		 * the next cset.
5088 		 */
5089 		if (it->flags & CSS_TASK_ITER_SKIPPED)
5090 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
5091 		else
5092 			it->task_pos = it->task_pos->next;
5093 
5094 		if (it->task_pos == &it->cur_cset->tasks) {
5095 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
5096 			it->task_pos = it->cur_tasks_head->next;
5097 		}
5098 		if (it->task_pos == &it->cur_cset->mg_tasks) {
5099 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
5100 			it->task_pos = it->cur_tasks_head->next;
5101 		}
5102 		if (it->task_pos == &it->cur_cset->dying_tasks)
5103 			css_task_iter_advance_css_set(it);
5104 	} else {
5105 		/* called from start, proceed to the first cset */
5106 		css_task_iter_advance_css_set(it);
5107 	}
5108 
5109 	if (!it->task_pos)
5110 		return;
5111 
5112 	task = list_entry(it->task_pos, struct task_struct, cg_list);
5113 
5114 	if (it->flags & CSS_TASK_ITER_PROCS) {
5115 		/* if PROCS, skip over tasks which aren't group leaders */
5116 		if (!thread_group_leader(task))
5117 			goto repeat;
5118 
5119 		/* and dying leaders w/o live member threads */
5120 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
5121 		    !atomic_read(&task->signal->live))
5122 			goto repeat;
5123 	} else {
5124 		/* skip all dying ones */
5125 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5126 			goto repeat;
5127 	}
5128 }
5129 
5130 /**
5131  * css_task_iter_start - initiate task iteration
5132  * @css: the css to walk tasks of
5133  * @flags: CSS_TASK_ITER_* flags
5134  * @it: the task iterator to use
5135  *
5136  * Initiate iteration through the tasks of @css.  The caller can call
5137  * css_task_iter_next() to walk through the tasks until the function
5138  * returns NULL.  On completion of iteration, css_task_iter_end() must be
5139  * called.
5140  */
5141 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5142 			 struct css_task_iter *it)
5143 {
5144 	unsigned long irqflags;
5145 
5146 	memset(it, 0, sizeof(*it));
5147 
5148 	spin_lock_irqsave(&css_set_lock, irqflags);
5149 
5150 	it->ss = css->ss;
5151 	it->flags = flags;
5152 
5153 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5154 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5155 	else
5156 		it->cset_pos = &css->cgroup->cset_links;
5157 
5158 	it->cset_head = it->cset_pos;
5159 
5160 	css_task_iter_advance(it);
5161 
5162 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5163 }
5164 
5165 /**
5166  * css_task_iter_next - return the next task for the iterator
5167  * @it: the task iterator being iterated
5168  *
5169  * The "next" function for task iteration.  @it should have been
5170  * initialized via css_task_iter_start().  Returns NULL when the iteration
5171  * reaches the end.
5172  */
5173 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5174 {
5175 	unsigned long irqflags;
5176 
5177 	if (it->cur_task) {
5178 		put_task_struct(it->cur_task);
5179 		it->cur_task = NULL;
5180 	}
5181 
5182 	spin_lock_irqsave(&css_set_lock, irqflags);
5183 
5184 	/* @it may be half-advanced by skips, finish advancing */
5185 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5186 		css_task_iter_advance(it);
5187 
5188 	if (it->task_pos) {
5189 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5190 					  cg_list);
5191 		get_task_struct(it->cur_task);
5192 		css_task_iter_advance(it);
5193 	}
5194 
5195 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5196 
5197 	return it->cur_task;
5198 }
5199 
5200 /**
5201  * css_task_iter_end - finish task iteration
5202  * @it: the task iterator to finish
5203  *
5204  * Finish task iteration started by css_task_iter_start().
5205  */
5206 void css_task_iter_end(struct css_task_iter *it)
5207 {
5208 	unsigned long irqflags;
5209 
5210 	if (it->cur_cset) {
5211 		spin_lock_irqsave(&css_set_lock, irqflags);
5212 		list_del(&it->iters_node);
5213 		put_css_set_locked(it->cur_cset);
5214 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5215 	}
5216 
5217 	if (it->cur_dcset)
5218 		put_css_set(it->cur_dcset);
5219 
5220 	if (it->cur_task)
5221 		put_task_struct(it->cur_task);
5222 }
5223 
5224 static void cgroup_procs_release(struct kernfs_open_file *of)
5225 {
5226 	struct cgroup_file_ctx *ctx = of->priv;
5227 
5228 	if (ctx->procs.started)
5229 		css_task_iter_end(&ctx->procs.iter);
5230 }
5231 
5232 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5233 {
5234 	struct kernfs_open_file *of = s->private;
5235 	struct cgroup_file_ctx *ctx = of->priv;
5236 
5237 	if (pos)
5238 		(*pos)++;
5239 
5240 	return css_task_iter_next(&ctx->procs.iter);
5241 }
5242 
5243 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5244 				  unsigned int iter_flags)
5245 {
5246 	struct kernfs_open_file *of = s->private;
5247 	struct cgroup *cgrp = seq_css(s)->cgroup;
5248 	struct cgroup_file_ctx *ctx = of->priv;
5249 	struct css_task_iter *it = &ctx->procs.iter;
5250 
5251 	/*
5252 	 * When a seq_file is seeked, it's always traversed sequentially
5253 	 * from position 0, so we can simply keep iterating on !0 *pos.
5254 	 */
5255 	if (!ctx->procs.started) {
5256 		if (WARN_ON_ONCE((*pos)))
5257 			return ERR_PTR(-EINVAL);
5258 		css_task_iter_start(&cgrp->self, iter_flags, it);
5259 		ctx->procs.started = true;
5260 	} else if (!(*pos)) {
5261 		css_task_iter_end(it);
5262 		css_task_iter_start(&cgrp->self, iter_flags, it);
5263 	} else
5264 		return it->cur_task;
5265 
5266 	return cgroup_procs_next(s, NULL, NULL);
5267 }
5268 
5269 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5270 {
5271 	struct cgroup *cgrp = seq_css(s)->cgroup;
5272 
5273 	/*
5274 	 * All processes of a threaded subtree belong to the domain cgroup
5275 	 * of the subtree.  Only threads can be distributed across the
5276 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5277 	 * They're always empty anyway.
5278 	 */
5279 	if (cgroup_is_threaded(cgrp))
5280 		return ERR_PTR(-EOPNOTSUPP);
5281 
5282 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5283 					    CSS_TASK_ITER_THREADED);
5284 }
5285 
5286 static int cgroup_procs_show(struct seq_file *s, void *v)
5287 {
5288 	seq_printf(s, "%d\n", task_pid_vnr(v));
5289 	return 0;
5290 }
5291 
5292 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5293 {
5294 	int ret;
5295 	struct inode *inode;
5296 
5297 	lockdep_assert_held(&cgroup_mutex);
5298 
5299 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5300 	if (!inode)
5301 		return -ENOMEM;
5302 
5303 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5304 	iput(inode);
5305 	return ret;
5306 }
5307 
5308 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5309 					 struct cgroup *dst_cgrp,
5310 					 struct super_block *sb,
5311 					 struct cgroup_namespace *ns)
5312 {
5313 	struct cgroup *com_cgrp = src_cgrp;
5314 	int ret;
5315 
5316 	lockdep_assert_held(&cgroup_mutex);
5317 
5318 	/* find the common ancestor */
5319 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5320 		com_cgrp = cgroup_parent(com_cgrp);
5321 
5322 	/* %current should be authorized to migrate to the common ancestor */
5323 	ret = cgroup_may_write(com_cgrp, sb);
5324 	if (ret)
5325 		return ret;
5326 
5327 	/*
5328 	 * If namespaces are delegation boundaries, %current must be able
5329 	 * to see both source and destination cgroups from its namespace.
5330 	 */
5331 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5332 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5333 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5334 		return -ENOENT;
5335 
5336 	return 0;
5337 }
5338 
5339 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5340 				     struct cgroup *dst_cgrp,
5341 				     struct super_block *sb, bool threadgroup,
5342 				     struct cgroup_namespace *ns)
5343 {
5344 	int ret = 0;
5345 
5346 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5347 	if (ret)
5348 		return ret;
5349 
5350 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5351 	if (ret)
5352 		return ret;
5353 
5354 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5355 		ret = -EOPNOTSUPP;
5356 
5357 	return ret;
5358 }
5359 
5360 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5361 				    bool threadgroup)
5362 {
5363 	struct cgroup_file_ctx *ctx = of->priv;
5364 	struct cgroup *src_cgrp, *dst_cgrp;
5365 	struct task_struct *task;
5366 	const struct cred *saved_cred;
5367 	ssize_t ret;
5368 	enum cgroup_attach_lock_mode lock_mode;
5369 
5370 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5371 	if (!dst_cgrp)
5372 		return -ENODEV;
5373 
5374 	task = cgroup_procs_write_start(buf, threadgroup, &lock_mode);
5375 	ret = PTR_ERR_OR_ZERO(task);
5376 	if (ret)
5377 		goto out_unlock;
5378 
5379 	/* find the source cgroup */
5380 	spin_lock_irq(&css_set_lock);
5381 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5382 	spin_unlock_irq(&css_set_lock);
5383 
5384 	/*
5385 	 * Process and thread migrations follow same delegation rule. Check
5386 	 * permissions using the credentials from file open to protect against
5387 	 * inherited fd attacks.
5388 	 */
5389 	saved_cred = override_creds(of->file->f_cred);
5390 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5391 					of->file->f_path.dentry->d_sb,
5392 					threadgroup, ctx->ns);
5393 	revert_creds(saved_cred);
5394 	if (ret)
5395 		goto out_finish;
5396 
5397 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5398 
5399 out_finish:
5400 	cgroup_procs_write_finish(task, lock_mode);
5401 out_unlock:
5402 	cgroup_kn_unlock(of->kn);
5403 
5404 	return ret;
5405 }
5406 
5407 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5408 				  char *buf, size_t nbytes, loff_t off)
5409 {
5410 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5411 }
5412 
5413 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5414 {
5415 	return __cgroup_procs_start(s, pos, 0);
5416 }
5417 
5418 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5419 				    char *buf, size_t nbytes, loff_t off)
5420 {
5421 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5422 }
5423 
5424 /* cgroup core interface files for the default hierarchy */
5425 static struct cftype cgroup_base_files[] = {
5426 	{
5427 		.name = "cgroup.type",
5428 		.flags = CFTYPE_NOT_ON_ROOT,
5429 		.seq_show = cgroup_type_show,
5430 		.write = cgroup_type_write,
5431 	},
5432 	{
5433 		.name = "cgroup.procs",
5434 		.flags = CFTYPE_NS_DELEGATABLE,
5435 		.file_offset = offsetof(struct cgroup, procs_file),
5436 		.release = cgroup_procs_release,
5437 		.seq_start = cgroup_procs_start,
5438 		.seq_next = cgroup_procs_next,
5439 		.seq_show = cgroup_procs_show,
5440 		.write = cgroup_procs_write,
5441 	},
5442 	{
5443 		.name = "cgroup.threads",
5444 		.flags = CFTYPE_NS_DELEGATABLE,
5445 		.release = cgroup_procs_release,
5446 		.seq_start = cgroup_threads_start,
5447 		.seq_next = cgroup_procs_next,
5448 		.seq_show = cgroup_procs_show,
5449 		.write = cgroup_threads_write,
5450 	},
5451 	{
5452 		.name = "cgroup.controllers",
5453 		.seq_show = cgroup_controllers_show,
5454 	},
5455 	{
5456 		.name = "cgroup.subtree_control",
5457 		.flags = CFTYPE_NS_DELEGATABLE,
5458 		.seq_show = cgroup_subtree_control_show,
5459 		.write = cgroup_subtree_control_write,
5460 	},
5461 	{
5462 		.name = "cgroup.events",
5463 		.flags = CFTYPE_NOT_ON_ROOT,
5464 		.file_offset = offsetof(struct cgroup, events_file),
5465 		.seq_show = cgroup_events_show,
5466 	},
5467 	{
5468 		.name = "cgroup.max.descendants",
5469 		.seq_show = cgroup_max_descendants_show,
5470 		.write = cgroup_max_descendants_write,
5471 	},
5472 	{
5473 		.name = "cgroup.max.depth",
5474 		.seq_show = cgroup_max_depth_show,
5475 		.write = cgroup_max_depth_write,
5476 	},
5477 	{
5478 		.name = "cgroup.stat",
5479 		.seq_show = cgroup_stat_show,
5480 	},
5481 	{
5482 		.name = "cgroup.stat.local",
5483 		.flags = CFTYPE_NOT_ON_ROOT,
5484 		.seq_show = cgroup_core_local_stat_show,
5485 	},
5486 	{
5487 		.name = "cgroup.freeze",
5488 		.flags = CFTYPE_NOT_ON_ROOT,
5489 		.seq_show = cgroup_freeze_show,
5490 		.write = cgroup_freeze_write,
5491 	},
5492 	{
5493 		.name = "cgroup.kill",
5494 		.flags = CFTYPE_NOT_ON_ROOT,
5495 		.write = cgroup_kill_write,
5496 	},
5497 	{
5498 		.name = "cpu.stat",
5499 		.seq_show = cpu_stat_show,
5500 	},
5501 	{
5502 		.name = "cpu.stat.local",
5503 		.seq_show = cpu_local_stat_show,
5504 	},
5505 	{ }	/* terminate */
5506 };
5507 
5508 static struct cftype cgroup_psi_files[] = {
5509 #ifdef CONFIG_PSI
5510 	{
5511 		.name = "io.pressure",
5512 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5513 		.seq_show = cgroup_io_pressure_show,
5514 		.write = cgroup_io_pressure_write,
5515 		.poll = cgroup_pressure_poll,
5516 		.release = cgroup_pressure_release,
5517 	},
5518 	{
5519 		.name = "memory.pressure",
5520 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5521 		.seq_show = cgroup_memory_pressure_show,
5522 		.write = cgroup_memory_pressure_write,
5523 		.poll = cgroup_pressure_poll,
5524 		.release = cgroup_pressure_release,
5525 	},
5526 	{
5527 		.name = "cpu.pressure",
5528 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5529 		.seq_show = cgroup_cpu_pressure_show,
5530 		.write = cgroup_cpu_pressure_write,
5531 		.poll = cgroup_pressure_poll,
5532 		.release = cgroup_pressure_release,
5533 	},
5534 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5535 	{
5536 		.name = "irq.pressure",
5537 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5538 		.seq_show = cgroup_irq_pressure_show,
5539 		.write = cgroup_irq_pressure_write,
5540 		.poll = cgroup_pressure_poll,
5541 		.release = cgroup_pressure_release,
5542 	},
5543 #endif
5544 	{
5545 		.name = "cgroup.pressure",
5546 		.seq_show = cgroup_pressure_show,
5547 		.write = cgroup_pressure_write,
5548 	},
5549 #endif /* CONFIG_PSI */
5550 	{ }	/* terminate */
5551 };
5552 
5553 /*
5554  * css destruction is four-stage process.
5555  *
5556  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5557  *    Implemented in kill_css().
5558  *
5559  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5560  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5561  *    offlined by invoking offline_css().  After offlining, the base ref is
5562  *    put.  Implemented in css_killed_work_fn().
5563  *
5564  * 3. When the percpu_ref reaches zero, the only possible remaining
5565  *    accessors are inside RCU read sections.  css_release() schedules the
5566  *    RCU callback.
5567  *
5568  * 4. After the grace period, the css can be freed.  Implemented in
5569  *    css_free_rwork_fn().
5570  *
5571  * It is actually hairier because both step 2 and 4 require process context
5572  * and thus involve punting to css->destroy_work adding two additional
5573  * steps to the already complex sequence.
5574  */
5575 static void css_free_rwork_fn(struct work_struct *work)
5576 {
5577 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5578 				struct cgroup_subsys_state, destroy_rwork);
5579 	struct cgroup_subsys *ss = css->ss;
5580 	struct cgroup *cgrp = css->cgroup;
5581 
5582 	percpu_ref_exit(&css->refcnt);
5583 	css_rstat_exit(css);
5584 
5585 	if (!css_is_self(css)) {
5586 		/* css free path */
5587 		struct cgroup_subsys_state *parent = css->parent;
5588 		int id = css->id;
5589 
5590 		ss->css_free(css);
5591 		cgroup_idr_remove(&ss->css_idr, id);
5592 		cgroup_put(cgrp);
5593 
5594 		if (parent)
5595 			css_put(parent);
5596 	} else {
5597 		/* cgroup free path */
5598 		atomic_dec(&cgrp->root->nr_cgrps);
5599 		if (!cgroup_on_dfl(cgrp))
5600 			cgroup1_pidlist_destroy_all(cgrp);
5601 		cancel_work_sync(&cgrp->release_agent_work);
5602 		bpf_cgrp_storage_free(cgrp);
5603 
5604 		if (cgroup_parent(cgrp)) {
5605 			/*
5606 			 * We get a ref to the parent, and put the ref when
5607 			 * this cgroup is being freed, so it's guaranteed
5608 			 * that the parent won't be destroyed before its
5609 			 * children.
5610 			 */
5611 			cgroup_put(cgroup_parent(cgrp));
5612 			kernfs_put(cgrp->kn);
5613 			psi_cgroup_free(cgrp);
5614 			kfree(cgrp);
5615 		} else {
5616 			/*
5617 			 * This is root cgroup's refcnt reaching zero,
5618 			 * which indicates that the root should be
5619 			 * released.
5620 			 */
5621 			cgroup_destroy_root(cgrp->root);
5622 		}
5623 	}
5624 }
5625 
5626 static void css_release_work_fn(struct work_struct *work)
5627 {
5628 	struct cgroup_subsys_state *css =
5629 		container_of(work, struct cgroup_subsys_state, destroy_work);
5630 	struct cgroup_subsys *ss = css->ss;
5631 	struct cgroup *cgrp = css->cgroup;
5632 
5633 	cgroup_lock();
5634 
5635 	css->flags |= CSS_RELEASED;
5636 	list_del_rcu(&css->sibling);
5637 
5638 	if (!css_is_self(css)) {
5639 		struct cgroup *parent_cgrp;
5640 
5641 		css_rstat_flush(css);
5642 
5643 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5644 		if (ss->css_released)
5645 			ss->css_released(css);
5646 
5647 		cgrp->nr_dying_subsys[ss->id]--;
5648 		/*
5649 		 * When a css is released and ready to be freed, its
5650 		 * nr_descendants must be zero. However, the corresponding
5651 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5652 		 * is activated and deactivated multiple times with one or
5653 		 * more of its previous activation leaving behind dying csses.
5654 		 */
5655 		WARN_ON_ONCE(css->nr_descendants);
5656 		parent_cgrp = cgroup_parent(cgrp);
5657 		while (parent_cgrp) {
5658 			parent_cgrp->nr_dying_subsys[ss->id]--;
5659 			parent_cgrp = cgroup_parent(parent_cgrp);
5660 		}
5661 	} else {
5662 		struct cgroup *tcgrp;
5663 
5664 		/* cgroup release path */
5665 		TRACE_CGROUP_PATH(release, cgrp);
5666 
5667 		css_rstat_flush(&cgrp->self);
5668 
5669 		spin_lock_irq(&css_set_lock);
5670 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5671 		     tcgrp = cgroup_parent(tcgrp))
5672 			tcgrp->nr_dying_descendants--;
5673 		spin_unlock_irq(&css_set_lock);
5674 
5675 		/*
5676 		 * There are two control paths which try to determine
5677 		 * cgroup from dentry without going through kernfs -
5678 		 * cgroupstats_build() and css_tryget_online_from_dir().
5679 		 * Those are supported by RCU protecting clearing of
5680 		 * cgrp->kn->priv backpointer.
5681 		 */
5682 		if (cgrp->kn)
5683 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5684 					 NULL);
5685 	}
5686 
5687 	cgroup_unlock();
5688 
5689 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5690 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5691 }
5692 
5693 static void css_release(struct percpu_ref *ref)
5694 {
5695 	struct cgroup_subsys_state *css =
5696 		container_of(ref, struct cgroup_subsys_state, refcnt);
5697 
5698 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5699 	queue_work(cgroup_release_wq, &css->destroy_work);
5700 }
5701 
5702 static void init_and_link_css(struct cgroup_subsys_state *css,
5703 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5704 {
5705 	lockdep_assert_held(&cgroup_mutex);
5706 
5707 	cgroup_get_live(cgrp);
5708 
5709 	memset(css, 0, sizeof(*css));
5710 	css->cgroup = cgrp;
5711 	css->ss = ss;
5712 	css->id = -1;
5713 	INIT_LIST_HEAD(&css->sibling);
5714 	INIT_LIST_HEAD(&css->children);
5715 	css->serial_nr = css_serial_nr_next++;
5716 	atomic_set(&css->online_cnt, 0);
5717 
5718 	if (cgroup_parent(cgrp)) {
5719 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5720 		css_get(css->parent);
5721 	}
5722 
5723 	BUG_ON(cgroup_css(cgrp, ss));
5724 }
5725 
5726 /* invoke ->css_online() on a new CSS and mark it online if successful */
5727 static int online_css(struct cgroup_subsys_state *css)
5728 {
5729 	struct cgroup_subsys *ss = css->ss;
5730 	int ret = 0;
5731 
5732 	lockdep_assert_held(&cgroup_mutex);
5733 
5734 	if (ss->css_online)
5735 		ret = ss->css_online(css);
5736 	if (!ret) {
5737 		css->flags |= CSS_ONLINE;
5738 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5739 
5740 		atomic_inc(&css->online_cnt);
5741 		if (css->parent) {
5742 			atomic_inc(&css->parent->online_cnt);
5743 			while ((css = css->parent))
5744 				css->nr_descendants++;
5745 		}
5746 	}
5747 	return ret;
5748 }
5749 
5750 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5751 static void offline_css(struct cgroup_subsys_state *css)
5752 {
5753 	struct cgroup_subsys *ss = css->ss;
5754 
5755 	lockdep_assert_held(&cgroup_mutex);
5756 
5757 	if (!(css->flags & CSS_ONLINE))
5758 		return;
5759 
5760 	if (ss->css_offline)
5761 		ss->css_offline(css);
5762 
5763 	css->flags &= ~CSS_ONLINE;
5764 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5765 
5766 	wake_up_all(&css->cgroup->offline_waitq);
5767 
5768 	css->cgroup->nr_dying_subsys[ss->id]++;
5769 	/*
5770 	 * Parent css and cgroup cannot be freed until after the freeing
5771 	 * of child css, see css_free_rwork_fn().
5772 	 */
5773 	while ((css = css->parent)) {
5774 		css->nr_descendants--;
5775 		css->cgroup->nr_dying_subsys[ss->id]++;
5776 	}
5777 }
5778 
5779 /**
5780  * css_create - create a cgroup_subsys_state
5781  * @cgrp: the cgroup new css will be associated with
5782  * @ss: the subsys of new css
5783  *
5784  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5785  * css is online and installed in @cgrp.  This function doesn't create the
5786  * interface files.  Returns 0 on success, -errno on failure.
5787  */
5788 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5789 					      struct cgroup_subsys *ss)
5790 {
5791 	struct cgroup *parent = cgroup_parent(cgrp);
5792 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5793 	struct cgroup_subsys_state *css;
5794 	int err;
5795 
5796 	lockdep_assert_held(&cgroup_mutex);
5797 
5798 	css = ss->css_alloc(parent_css);
5799 	if (!css)
5800 		css = ERR_PTR(-ENOMEM);
5801 	if (IS_ERR(css))
5802 		return css;
5803 
5804 	init_and_link_css(css, ss, cgrp);
5805 
5806 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5807 	if (err)
5808 		goto err_free_css;
5809 
5810 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5811 	if (err < 0)
5812 		goto err_free_css;
5813 	css->id = err;
5814 
5815 	err = css_rstat_init(css);
5816 	if (err)
5817 		goto err_free_css;
5818 
5819 	/* @css is ready to be brought online now, make it visible */
5820 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5821 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5822 
5823 	err = online_css(css);
5824 	if (err)
5825 		goto err_list_del;
5826 
5827 	return css;
5828 
5829 err_list_del:
5830 	list_del_rcu(&css->sibling);
5831 err_free_css:
5832 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5833 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5834 	return ERR_PTR(err);
5835 }
5836 
5837 /*
5838  * The returned cgroup is fully initialized including its control mask, but
5839  * it doesn't have the control mask applied.
5840  */
5841 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5842 				    umode_t mode)
5843 {
5844 	struct cgroup_root *root = parent->root;
5845 	struct cgroup *cgrp, *tcgrp;
5846 	struct kernfs_node *kn;
5847 	int i, level = parent->level + 1;
5848 	int ret;
5849 
5850 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5851 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5852 	if (!cgrp)
5853 		return ERR_PTR(-ENOMEM);
5854 
5855 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5856 	if (ret)
5857 		goto out_free_cgrp;
5858 
5859 	/* create the directory */
5860 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5861 				  current_fsuid(), current_fsgid(),
5862 				  cgrp, NULL);
5863 	if (IS_ERR(kn)) {
5864 		ret = PTR_ERR(kn);
5865 		goto out_cancel_ref;
5866 	}
5867 	cgrp->kn = kn;
5868 
5869 	init_cgroup_housekeeping(cgrp);
5870 
5871 	cgrp->self.parent = &parent->self;
5872 	cgrp->root = root;
5873 	cgrp->level = level;
5874 
5875 	/*
5876 	 * Now that init_cgroup_housekeeping() has been called and cgrp->self
5877 	 * is setup, it is safe to perform rstat initialization on it.
5878 	 */
5879 	ret = css_rstat_init(&cgrp->self);
5880 	if (ret)
5881 		goto out_kernfs_remove;
5882 
5883 	ret = psi_cgroup_alloc(cgrp);
5884 	if (ret)
5885 		goto out_stat_exit;
5886 
5887 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5888 		cgrp->ancestors[tcgrp->level] = tcgrp;
5889 
5890 	/*
5891 	 * New cgroup inherits effective freeze counter, and
5892 	 * if the parent has to be frozen, the child has too.
5893 	 */
5894 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5895 	seqcount_init(&cgrp->freezer.freeze_seq);
5896 	if (cgrp->freezer.e_freeze) {
5897 		/*
5898 		 * Set the CGRP_FREEZE flag, so when a process will be
5899 		 * attached to the child cgroup, it will become frozen.
5900 		 * At this point the new cgroup is unpopulated, so we can
5901 		 * consider it frozen immediately.
5902 		 */
5903 		set_bit(CGRP_FREEZE, &cgrp->flags);
5904 		cgrp->freezer.freeze_start_nsec = ktime_get_ns();
5905 		set_bit(CGRP_FROZEN, &cgrp->flags);
5906 	}
5907 
5908 	if (notify_on_release(parent))
5909 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5910 
5911 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5912 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5913 
5914 	cgrp->self.serial_nr = css_serial_nr_next++;
5915 
5916 	ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
5917 						  CGROUP_LIFETIME_ONLINE,
5918 						  CGROUP_LIFETIME_OFFLINE, cgrp);
5919 	ret = notifier_to_errno(ret);
5920 	if (ret)
5921 		goto out_psi_free;
5922 
5923 	/* allocation complete, commit to creation */
5924 	spin_lock_irq(&css_set_lock);
5925 	for (i = 0; i < level; i++) {
5926 		tcgrp = cgrp->ancestors[i];
5927 		tcgrp->nr_descendants++;
5928 
5929 		/*
5930 		 * If the new cgroup is frozen, all ancestor cgroups get a new
5931 		 * frozen descendant, but their state can't change because of
5932 		 * this.
5933 		 */
5934 		if (cgrp->freezer.e_freeze)
5935 			tcgrp->freezer.nr_frozen_descendants++;
5936 	}
5937 	spin_unlock_irq(&css_set_lock);
5938 
5939 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5940 	atomic_inc(&root->nr_cgrps);
5941 	cgroup_get_live(parent);
5942 
5943 	/*
5944 	 * On the default hierarchy, a child doesn't automatically inherit
5945 	 * subtree_control from the parent.  Each is configured manually.
5946 	 */
5947 	if (!cgroup_on_dfl(cgrp))
5948 		cgrp->subtree_control = cgroup_control(cgrp);
5949 
5950 	cgroup_propagate_control(cgrp);
5951 
5952 	return cgrp;
5953 
5954 out_psi_free:
5955 	psi_cgroup_free(cgrp);
5956 out_stat_exit:
5957 	css_rstat_exit(&cgrp->self);
5958 out_kernfs_remove:
5959 	kernfs_remove(cgrp->kn);
5960 out_cancel_ref:
5961 	percpu_ref_exit(&cgrp->self.refcnt);
5962 out_free_cgrp:
5963 	kfree(cgrp);
5964 	return ERR_PTR(ret);
5965 }
5966 
5967 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5968 {
5969 	struct cgroup *cgroup;
5970 	int ret = false;
5971 	int level = 0;
5972 
5973 	lockdep_assert_held(&cgroup_mutex);
5974 
5975 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5976 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5977 			goto fail;
5978 
5979 		if (level >= cgroup->max_depth)
5980 			goto fail;
5981 
5982 		level++;
5983 	}
5984 
5985 	ret = true;
5986 fail:
5987 	return ret;
5988 }
5989 
5990 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5991 {
5992 	struct cgroup *parent, *cgrp;
5993 	int ret;
5994 
5995 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5996 	if (strchr(name, '\n'))
5997 		return -EINVAL;
5998 
5999 	parent = cgroup_kn_lock_live(parent_kn, false);
6000 	if (!parent)
6001 		return -ENODEV;
6002 
6003 	if (!cgroup_check_hierarchy_limits(parent)) {
6004 		ret = -EAGAIN;
6005 		goto out_unlock;
6006 	}
6007 
6008 	cgrp = cgroup_create(parent, name, mode);
6009 	if (IS_ERR(cgrp)) {
6010 		ret = PTR_ERR(cgrp);
6011 		goto out_unlock;
6012 	}
6013 
6014 	/*
6015 	 * This extra ref will be put in css_free_rwork_fn() and guarantees
6016 	 * that @cgrp->kn is always accessible.
6017 	 */
6018 	kernfs_get(cgrp->kn);
6019 
6020 	ret = css_populate_dir(&cgrp->self);
6021 	if (ret)
6022 		goto out_destroy;
6023 
6024 	ret = cgroup_apply_control_enable(cgrp);
6025 	if (ret)
6026 		goto out_destroy;
6027 
6028 	TRACE_CGROUP_PATH(mkdir, cgrp);
6029 
6030 	/* let's create and online css's */
6031 	kernfs_activate(cgrp->kn);
6032 
6033 	ret = 0;
6034 	goto out_unlock;
6035 
6036 out_destroy:
6037 	cgroup_destroy_locked(cgrp);
6038 out_unlock:
6039 	cgroup_kn_unlock(parent_kn);
6040 	return ret;
6041 }
6042 
6043 /*
6044  * This is called when the refcnt of a css is confirmed to be killed.
6045  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
6046  * initiate destruction and put the css ref from kill_css().
6047  */
6048 static void css_killed_work_fn(struct work_struct *work)
6049 {
6050 	struct cgroup_subsys_state *css =
6051 		container_of(work, struct cgroup_subsys_state, destroy_work);
6052 
6053 	cgroup_lock();
6054 
6055 	do {
6056 		offline_css(css);
6057 		css_put(css);
6058 		/* @css can't go away while we're holding cgroup_mutex */
6059 		css = css->parent;
6060 	} while (css && atomic_dec_and_test(&css->online_cnt));
6061 
6062 	cgroup_unlock();
6063 }
6064 
6065 /* css kill confirmation processing requires process context, bounce */
6066 static void css_killed_ref_fn(struct percpu_ref *ref)
6067 {
6068 	struct cgroup_subsys_state *css =
6069 		container_of(ref, struct cgroup_subsys_state, refcnt);
6070 
6071 	if (atomic_dec_and_test(&css->online_cnt)) {
6072 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
6073 		queue_work(cgroup_offline_wq, &css->destroy_work);
6074 	}
6075 }
6076 
6077 /**
6078  * kill_css - destroy a css
6079  * @css: css to destroy
6080  *
6081  * This function initiates destruction of @css by removing cgroup interface
6082  * files and putting its base reference.  ->css_offline() will be invoked
6083  * asynchronously once css_tryget_online() is guaranteed to fail and when
6084  * the reference count reaches zero, @css will be released.
6085  */
6086 static void kill_css(struct cgroup_subsys_state *css)
6087 {
6088 	lockdep_assert_held(&cgroup_mutex);
6089 
6090 	if (css->flags & CSS_DYING)
6091 		return;
6092 
6093 	/*
6094 	 * Call css_killed(), if defined, before setting the CSS_DYING flag
6095 	 */
6096 	if (css->ss->css_killed)
6097 		css->ss->css_killed(css);
6098 
6099 	css->flags |= CSS_DYING;
6100 
6101 	/*
6102 	 * This must happen before css is disassociated with its cgroup.
6103 	 * See seq_css() for details.
6104 	 */
6105 	css_clear_dir(css);
6106 
6107 	/*
6108 	 * Killing would put the base ref, but we need to keep it alive
6109 	 * until after ->css_offline().
6110 	 */
6111 	css_get(css);
6112 
6113 	/*
6114 	 * cgroup core guarantees that, by the time ->css_offline() is
6115 	 * invoked, no new css reference will be given out via
6116 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
6117 	 * proceed to offlining css's because percpu_ref_kill() doesn't
6118 	 * guarantee that the ref is seen as killed on all CPUs on return.
6119 	 *
6120 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
6121 	 * css is confirmed to be seen as killed on all CPUs.
6122 	 */
6123 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
6124 }
6125 
6126 /**
6127  * cgroup_destroy_locked - the first stage of cgroup destruction
6128  * @cgrp: cgroup to be destroyed
6129  *
6130  * css's make use of percpu refcnts whose killing latency shouldn't be
6131  * exposed to userland and are RCU protected.  Also, cgroup core needs to
6132  * guarantee that css_tryget_online() won't succeed by the time
6133  * ->css_offline() is invoked.  To satisfy all the requirements,
6134  * destruction is implemented in the following two steps.
6135  *
6136  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
6137  *     userland visible parts and start killing the percpu refcnts of
6138  *     css's.  Set up so that the next stage will be kicked off once all
6139  *     the percpu refcnts are confirmed to be killed.
6140  *
6141  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6142  *     rest of destruction.  Once all cgroup references are gone, the
6143  *     cgroup is RCU-freed.
6144  *
6145  * This function implements s1.  After this step, @cgrp is gone as far as
6146  * the userland is concerned and a new cgroup with the same name may be
6147  * created.  As cgroup doesn't care about the names internally, this
6148  * doesn't cause any problem.
6149  */
6150 static int cgroup_destroy_locked(struct cgroup *cgrp)
6151 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6152 {
6153 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6154 	struct cgroup_subsys_state *css;
6155 	struct cgrp_cset_link *link;
6156 	int ssid, ret;
6157 
6158 	lockdep_assert_held(&cgroup_mutex);
6159 
6160 	/*
6161 	 * Only migration can raise populated from zero and we're already
6162 	 * holding cgroup_mutex.
6163 	 */
6164 	if (cgroup_is_populated(cgrp))
6165 		return -EBUSY;
6166 
6167 	/*
6168 	 * Make sure there's no live children.  We can't test emptiness of
6169 	 * ->self.children as dead children linger on it while being
6170 	 * drained; otherwise, "rmdir parent/child parent" may fail.
6171 	 */
6172 	if (css_has_online_children(&cgrp->self))
6173 		return -EBUSY;
6174 
6175 	/*
6176 	 * Mark @cgrp and the associated csets dead.  The former prevents
6177 	 * further task migration and child creation by disabling
6178 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
6179 	 * the migration path.
6180 	 */
6181 	cgrp->self.flags &= ~CSS_ONLINE;
6182 
6183 	spin_lock_irq(&css_set_lock);
6184 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
6185 		link->cset->dead = true;
6186 	spin_unlock_irq(&css_set_lock);
6187 
6188 	/* initiate massacre of all css's */
6189 	for_each_css(css, ssid, cgrp)
6190 		kill_css(css);
6191 
6192 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6193 	css_clear_dir(&cgrp->self);
6194 	kernfs_remove(cgrp->kn);
6195 
6196 	if (cgroup_is_threaded(cgrp))
6197 		parent->nr_threaded_children--;
6198 
6199 	spin_lock_irq(&css_set_lock);
6200 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6201 		tcgrp->nr_descendants--;
6202 		tcgrp->nr_dying_descendants++;
6203 		/*
6204 		 * If the dying cgroup is frozen, decrease frozen descendants
6205 		 * counters of ancestor cgroups.
6206 		 */
6207 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6208 			tcgrp->freezer.nr_frozen_descendants--;
6209 	}
6210 	spin_unlock_irq(&css_set_lock);
6211 
6212 	cgroup1_check_for_release(parent);
6213 
6214 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
6215 					   CGROUP_LIFETIME_OFFLINE, cgrp);
6216 	WARN_ON_ONCE(notifier_to_errno(ret));
6217 
6218 	/* put the base reference */
6219 	percpu_ref_kill(&cgrp->self.refcnt);
6220 
6221 	return 0;
6222 };
6223 
6224 int cgroup_rmdir(struct kernfs_node *kn)
6225 {
6226 	struct cgroup *cgrp;
6227 	int ret = 0;
6228 
6229 	cgrp = cgroup_kn_lock_live(kn, false);
6230 	if (!cgrp)
6231 		return 0;
6232 
6233 	ret = cgroup_destroy_locked(cgrp);
6234 	if (!ret)
6235 		TRACE_CGROUP_PATH(rmdir, cgrp);
6236 
6237 	cgroup_kn_unlock(kn);
6238 	return ret;
6239 }
6240 
6241 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6242 	.show_options		= cgroup_show_options,
6243 	.mkdir			= cgroup_mkdir,
6244 	.rmdir			= cgroup_rmdir,
6245 	.show_path		= cgroup_show_path,
6246 };
6247 
6248 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6249 {
6250 	struct cgroup_subsys_state *css;
6251 
6252 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6253 
6254 	cgroup_lock();
6255 
6256 	idr_init(&ss->css_idr);
6257 	INIT_LIST_HEAD(&ss->cfts);
6258 
6259 	/* Create the root cgroup state for this subsystem */
6260 	ss->root = &cgrp_dfl_root;
6261 	css = ss->css_alloc(NULL);
6262 	/* We don't handle early failures gracefully */
6263 	BUG_ON(IS_ERR(css));
6264 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6265 
6266 	/*
6267 	 * Root csses are never destroyed and we can't initialize
6268 	 * percpu_ref during early init.  Disable refcnting.
6269 	 */
6270 	css->flags |= CSS_NO_REF;
6271 
6272 	if (early) {
6273 		/* allocation can't be done safely during early init */
6274 		css->id = 1;
6275 	} else {
6276 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6277 		BUG_ON(css->id < 0);
6278 
6279 		BUG_ON(ss_rstat_init(ss));
6280 		BUG_ON(css_rstat_init(css));
6281 	}
6282 
6283 	/* Update the init_css_set to contain a subsys
6284 	 * pointer to this state - since the subsystem is
6285 	 * newly registered, all tasks and hence the
6286 	 * init_css_set is in the subsystem's root cgroup. */
6287 	init_css_set.subsys[ss->id] = css;
6288 
6289 	have_fork_callback |= (bool)ss->fork << ss->id;
6290 	have_exit_callback |= (bool)ss->exit << ss->id;
6291 	have_release_callback |= (bool)ss->release << ss->id;
6292 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6293 
6294 	/* At system boot, before all subsystems have been
6295 	 * registered, no tasks have been forked, so we don't
6296 	 * need to invoke fork callbacks here. */
6297 	BUG_ON(!list_empty(&init_task.tasks));
6298 
6299 	BUG_ON(online_css(css));
6300 
6301 	cgroup_unlock();
6302 }
6303 
6304 /**
6305  * cgroup_init_early - cgroup initialization at system boot
6306  *
6307  * Initialize cgroups at system boot, and initialize any
6308  * subsystems that request early init.
6309  */
6310 int __init cgroup_init_early(void)
6311 {
6312 	static struct cgroup_fs_context __initdata ctx;
6313 	struct cgroup_subsys *ss;
6314 	int i;
6315 
6316 	ctx.root = &cgrp_dfl_root;
6317 	init_cgroup_root(&ctx);
6318 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6319 
6320 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6321 
6322 	for_each_subsys(ss, i) {
6323 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6324 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6325 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6326 		     ss->id, ss->name);
6327 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6328 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6329 		WARN(ss->early_init && ss->css_rstat_flush,
6330 		     "cgroup rstat cannot be used with early init subsystem\n");
6331 
6332 		ss->id = i;
6333 		ss->name = cgroup_subsys_name[i];
6334 		if (!ss->legacy_name)
6335 			ss->legacy_name = cgroup_subsys_name[i];
6336 
6337 		if (ss->early_init)
6338 			cgroup_init_subsys(ss, true);
6339 	}
6340 	return 0;
6341 }
6342 
6343 /**
6344  * cgroup_init - cgroup initialization
6345  *
6346  * Register cgroup filesystem and /proc file, and initialize
6347  * any subsystems that didn't request early init.
6348  */
6349 int __init cgroup_init(void)
6350 {
6351 	struct cgroup_subsys *ss;
6352 	int ssid;
6353 
6354 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6355 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6356 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6357 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6358 
6359 	BUG_ON(ss_rstat_init(NULL));
6360 
6361 	get_user_ns(init_cgroup_ns.user_ns);
6362 
6363 	cgroup_lock();
6364 
6365 	/*
6366 	 * Add init_css_set to the hash table so that dfl_root can link to
6367 	 * it during init.
6368 	 */
6369 	hash_add(css_set_table, &init_css_set.hlist,
6370 		 css_set_hash(init_css_set.subsys));
6371 
6372 	cgroup_bpf_lifetime_notifier_init();
6373 
6374 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6375 
6376 	cgroup_unlock();
6377 
6378 	for_each_subsys(ss, ssid) {
6379 		if (ss->early_init) {
6380 			struct cgroup_subsys_state *css =
6381 				init_css_set.subsys[ss->id];
6382 
6383 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6384 						   GFP_KERNEL);
6385 			BUG_ON(css->id < 0);
6386 		} else {
6387 			cgroup_init_subsys(ss, false);
6388 		}
6389 
6390 		list_add_tail(&init_css_set.e_cset_node[ssid],
6391 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6392 
6393 		/*
6394 		 * Setting dfl_root subsys_mask needs to consider the
6395 		 * disabled flag and cftype registration needs kmalloc,
6396 		 * both of which aren't available during early_init.
6397 		 */
6398 		if (!cgroup_ssid_enabled(ssid))
6399 			continue;
6400 
6401 		if (cgroup1_ssid_disabled(ssid))
6402 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6403 				ss->legacy_name);
6404 
6405 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6406 
6407 		/* implicit controllers must be threaded too */
6408 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6409 
6410 		if (ss->implicit_on_dfl)
6411 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6412 		else if (!ss->dfl_cftypes)
6413 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6414 
6415 		if (ss->threaded)
6416 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6417 
6418 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6419 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6420 		} else {
6421 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6422 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6423 		}
6424 
6425 		if (ss->bind)
6426 			ss->bind(init_css_set.subsys[ssid]);
6427 
6428 		cgroup_lock();
6429 		css_populate_dir(init_css_set.subsys[ssid]);
6430 		cgroup_unlock();
6431 	}
6432 
6433 	/* init_css_set.subsys[] has been updated, re-hash */
6434 	hash_del(&init_css_set.hlist);
6435 	hash_add(css_set_table, &init_css_set.hlist,
6436 		 css_set_hash(init_css_set.subsys));
6437 
6438 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6439 	WARN_ON(register_filesystem(&cgroup_fs_type));
6440 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6441 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6442 #ifdef CONFIG_CPUSETS_V1
6443 	WARN_ON(register_filesystem(&cpuset_fs_type));
6444 #endif
6445 
6446 	ns_tree_add(&init_cgroup_ns);
6447 	return 0;
6448 }
6449 
6450 static int __init cgroup_wq_init(void)
6451 {
6452 	/*
6453 	 * There isn't much point in executing destruction path in
6454 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6455 	 * Use 1 for @max_active.
6456 	 *
6457 	 * We would prefer to do this in cgroup_init() above, but that
6458 	 * is called before init_workqueues(): so leave this until after.
6459 	 */
6460 	cgroup_offline_wq = alloc_workqueue("cgroup_offline", WQ_PERCPU, 1);
6461 	BUG_ON(!cgroup_offline_wq);
6462 
6463 	cgroup_release_wq = alloc_workqueue("cgroup_release", WQ_PERCPU, 1);
6464 	BUG_ON(!cgroup_release_wq);
6465 
6466 	cgroup_free_wq = alloc_workqueue("cgroup_free", WQ_PERCPU, 1);
6467 	BUG_ON(!cgroup_free_wq);
6468 	return 0;
6469 }
6470 core_initcall(cgroup_wq_init);
6471 
6472 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6473 {
6474 	struct kernfs_node *kn;
6475 
6476 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6477 	if (!kn)
6478 		return;
6479 	kernfs_path(kn, buf, buflen);
6480 	kernfs_put(kn);
6481 }
6482 
6483 /*
6484  * __cgroup_get_from_id : get the cgroup associated with cgroup id
6485  * @id: cgroup id
6486  * On success return the cgrp or ERR_PTR on failure
6487  * There are no cgroup NS restrictions.
6488  */
6489 struct cgroup *__cgroup_get_from_id(u64 id)
6490 {
6491 	struct kernfs_node *kn;
6492 	struct cgroup *cgrp;
6493 
6494 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6495 	if (!kn)
6496 		return ERR_PTR(-ENOENT);
6497 
6498 	if (kernfs_type(kn) != KERNFS_DIR) {
6499 		kernfs_put(kn);
6500 		return ERR_PTR(-ENOENT);
6501 	}
6502 
6503 	rcu_read_lock();
6504 
6505 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6506 	if (cgrp && !cgroup_tryget(cgrp))
6507 		cgrp = NULL;
6508 
6509 	rcu_read_unlock();
6510 	kernfs_put(kn);
6511 
6512 	if (!cgrp)
6513 		return ERR_PTR(-ENOENT);
6514 	return cgrp;
6515 }
6516 
6517 /*
6518  * cgroup_get_from_id : get the cgroup associated with cgroup id
6519  * @id: cgroup id
6520  * On success return the cgrp or ERR_PTR on failure
6521  * Only cgroups within current task's cgroup NS are valid.
6522  */
6523 struct cgroup *cgroup_get_from_id(u64 id)
6524 {
6525 	struct cgroup *cgrp, *root_cgrp;
6526 
6527 	cgrp = __cgroup_get_from_id(id);
6528 	if (IS_ERR(cgrp))
6529 		return cgrp;
6530 
6531 	root_cgrp = current_cgns_cgroup_dfl();
6532 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6533 		cgroup_put(cgrp);
6534 		return ERR_PTR(-ENOENT);
6535 	}
6536 
6537 	return cgrp;
6538 }
6539 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6540 
6541 /*
6542  * proc_cgroup_show()
6543  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6544  *  - Used for /proc/<pid>/cgroup.
6545  */
6546 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6547 		     struct pid *pid, struct task_struct *tsk)
6548 {
6549 	char *buf;
6550 	int retval;
6551 	struct cgroup_root *root;
6552 
6553 	retval = -ENOMEM;
6554 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6555 	if (!buf)
6556 		goto out;
6557 
6558 	rcu_read_lock();
6559 	spin_lock_irq(&css_set_lock);
6560 
6561 	for_each_root(root) {
6562 		struct cgroup_subsys *ss;
6563 		struct cgroup *cgrp;
6564 		int ssid, count = 0;
6565 
6566 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6567 			continue;
6568 
6569 		cgrp = task_cgroup_from_root(tsk, root);
6570 		/* The root has already been unmounted. */
6571 		if (!cgrp)
6572 			continue;
6573 
6574 		seq_printf(m, "%d:", root->hierarchy_id);
6575 		if (root != &cgrp_dfl_root)
6576 			for_each_subsys(ss, ssid)
6577 				if (root->subsys_mask & (1 << ssid))
6578 					seq_printf(m, "%s%s", count++ ? "," : "",
6579 						   ss->legacy_name);
6580 		if (strlen(root->name))
6581 			seq_printf(m, "%sname=%s", count ? "," : "",
6582 				   root->name);
6583 		seq_putc(m, ':');
6584 		/*
6585 		 * On traditional hierarchies, all zombie tasks show up as
6586 		 * belonging to the root cgroup.  On the default hierarchy,
6587 		 * while a zombie doesn't show up in "cgroup.procs" and
6588 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6589 		 * reporting the cgroup it belonged to before exiting.  If
6590 		 * the cgroup is removed before the zombie is reaped,
6591 		 * " (deleted)" is appended to the cgroup path.
6592 		 */
6593 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6594 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6595 						current->nsproxy->cgroup_ns);
6596 			if (retval == -E2BIG)
6597 				retval = -ENAMETOOLONG;
6598 			if (retval < 0)
6599 				goto out_unlock;
6600 
6601 			seq_puts(m, buf);
6602 		} else {
6603 			seq_puts(m, "/");
6604 		}
6605 
6606 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6607 			seq_puts(m, " (deleted)\n");
6608 		else
6609 			seq_putc(m, '\n');
6610 	}
6611 
6612 	retval = 0;
6613 out_unlock:
6614 	spin_unlock_irq(&css_set_lock);
6615 	rcu_read_unlock();
6616 	kfree(buf);
6617 out:
6618 	return retval;
6619 }
6620 
6621 /**
6622  * cgroup_fork - initialize cgroup related fields during copy_process()
6623  * @child: pointer to task_struct of forking parent process.
6624  *
6625  * A task is associated with the init_css_set until cgroup_post_fork()
6626  * attaches it to the target css_set.
6627  */
6628 void cgroup_fork(struct task_struct *child)
6629 {
6630 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6631 	INIT_LIST_HEAD(&child->cg_list);
6632 }
6633 
6634 /**
6635  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6636  * @f: file corresponding to cgroup_dir
6637  *
6638  * Find the cgroup from a file pointer associated with a cgroup directory.
6639  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6640  * cgroup cannot be found.
6641  */
6642 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6643 {
6644 	struct cgroup_subsys_state *css;
6645 
6646 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6647 	if (IS_ERR(css))
6648 		return ERR_CAST(css);
6649 
6650 	return css->cgroup;
6651 }
6652 
6653 /**
6654  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6655  * cgroup2.
6656  * @f: file corresponding to cgroup2_dir
6657  */
6658 static struct cgroup *cgroup_get_from_file(struct file *f)
6659 {
6660 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6661 
6662 	if (IS_ERR(cgrp))
6663 		return ERR_CAST(cgrp);
6664 
6665 	if (!cgroup_on_dfl(cgrp)) {
6666 		cgroup_put(cgrp);
6667 		return ERR_PTR(-EBADF);
6668 	}
6669 
6670 	return cgrp;
6671 }
6672 
6673 /**
6674  * cgroup_css_set_fork - find or create a css_set for a child process
6675  * @kargs: the arguments passed to create the child process
6676  *
6677  * This functions finds or creates a new css_set which the child
6678  * process will be attached to in cgroup_post_fork(). By default,
6679  * the child process will be given the same css_set as its parent.
6680  *
6681  * If CLONE_INTO_CGROUP is specified this function will try to find an
6682  * existing css_set which includes the requested cgroup and if not create
6683  * a new css_set that the child will be attached to later. If this function
6684  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6685  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6686  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6687  * to the target cgroup.
6688  */
6689 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6690 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6691 {
6692 	int ret;
6693 	struct cgroup *dst_cgrp = NULL;
6694 	struct css_set *cset;
6695 	struct super_block *sb;
6696 
6697 	if (kargs->flags & CLONE_INTO_CGROUP)
6698 		cgroup_lock();
6699 
6700 	cgroup_threadgroup_change_begin(current);
6701 
6702 	spin_lock_irq(&css_set_lock);
6703 	cset = task_css_set(current);
6704 	get_css_set(cset);
6705 	if (kargs->cgrp)
6706 		kargs->kill_seq = kargs->cgrp->kill_seq;
6707 	else
6708 		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6709 	spin_unlock_irq(&css_set_lock);
6710 
6711 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6712 		kargs->cset = cset;
6713 		return 0;
6714 	}
6715 
6716 	CLASS(fd_raw, f)(kargs->cgroup);
6717 	if (fd_empty(f)) {
6718 		ret = -EBADF;
6719 		goto err;
6720 	}
6721 	sb = fd_file(f)->f_path.dentry->d_sb;
6722 
6723 	dst_cgrp = cgroup_get_from_file(fd_file(f));
6724 	if (IS_ERR(dst_cgrp)) {
6725 		ret = PTR_ERR(dst_cgrp);
6726 		dst_cgrp = NULL;
6727 		goto err;
6728 	}
6729 
6730 	if (cgroup_is_dead(dst_cgrp)) {
6731 		ret = -ENODEV;
6732 		goto err;
6733 	}
6734 
6735 	/*
6736 	 * Verify that we the target cgroup is writable for us. This is
6737 	 * usually done by the vfs layer but since we're not going through
6738 	 * the vfs layer here we need to do it "manually".
6739 	 */
6740 	ret = cgroup_may_write(dst_cgrp, sb);
6741 	if (ret)
6742 		goto err;
6743 
6744 	/*
6745 	 * Spawning a task directly into a cgroup works by passing a file
6746 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6747 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6748 	 * This was done on purpose so spawning into a cgroup could be
6749 	 * conceptualized as an atomic
6750 	 *
6751 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6752 	 *   write(fd, <child-pid>, ...);
6753 	 *
6754 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6755 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6756 	 * to always use the caller's credentials.
6757 	 */
6758 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6759 					!(kargs->flags & CLONE_THREAD),
6760 					current->nsproxy->cgroup_ns);
6761 	if (ret)
6762 		goto err;
6763 
6764 	kargs->cset = find_css_set(cset, dst_cgrp);
6765 	if (!kargs->cset) {
6766 		ret = -ENOMEM;
6767 		goto err;
6768 	}
6769 
6770 	put_css_set(cset);
6771 	kargs->cgrp = dst_cgrp;
6772 	return ret;
6773 
6774 err:
6775 	cgroup_threadgroup_change_end(current);
6776 	cgroup_unlock();
6777 	if (dst_cgrp)
6778 		cgroup_put(dst_cgrp);
6779 	put_css_set(cset);
6780 	if (kargs->cset)
6781 		put_css_set(kargs->cset);
6782 	return ret;
6783 }
6784 
6785 /**
6786  * cgroup_css_set_put_fork - drop references we took during fork
6787  * @kargs: the arguments passed to create the child process
6788  *
6789  * Drop references to the prepared css_set and target cgroup if
6790  * CLONE_INTO_CGROUP was requested.
6791  */
6792 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6793 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6794 {
6795 	struct cgroup *cgrp = kargs->cgrp;
6796 	struct css_set *cset = kargs->cset;
6797 
6798 	cgroup_threadgroup_change_end(current);
6799 
6800 	if (cset) {
6801 		put_css_set(cset);
6802 		kargs->cset = NULL;
6803 	}
6804 
6805 	if (kargs->flags & CLONE_INTO_CGROUP) {
6806 		cgroup_unlock();
6807 		if (cgrp) {
6808 			cgroup_put(cgrp);
6809 			kargs->cgrp = NULL;
6810 		}
6811 	}
6812 }
6813 
6814 /**
6815  * cgroup_can_fork - called on a new task before the process is exposed
6816  * @child: the child process
6817  * @kargs: the arguments passed to create the child process
6818  *
6819  * This prepares a new css_set for the child process which the child will
6820  * be attached to in cgroup_post_fork().
6821  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6822  * callback returns an error, the fork aborts with that error code. This
6823  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6824  */
6825 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6826 {
6827 	struct cgroup_subsys *ss;
6828 	int i, j, ret;
6829 
6830 	ret = cgroup_css_set_fork(kargs);
6831 	if (ret)
6832 		return ret;
6833 
6834 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6835 		ret = ss->can_fork(child, kargs->cset);
6836 		if (ret)
6837 			goto out_revert;
6838 	} while_each_subsys_mask();
6839 
6840 	return 0;
6841 
6842 out_revert:
6843 	for_each_subsys(ss, j) {
6844 		if (j >= i)
6845 			break;
6846 		if (ss->cancel_fork)
6847 			ss->cancel_fork(child, kargs->cset);
6848 	}
6849 
6850 	cgroup_css_set_put_fork(kargs);
6851 
6852 	return ret;
6853 }
6854 
6855 /**
6856  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6857  * @child: the child process
6858  * @kargs: the arguments passed to create the child process
6859  *
6860  * This calls the cancel_fork() callbacks if a fork failed *after*
6861  * cgroup_can_fork() succeeded and cleans up references we took to
6862  * prepare a new css_set for the child process in cgroup_can_fork().
6863  */
6864 void cgroup_cancel_fork(struct task_struct *child,
6865 			struct kernel_clone_args *kargs)
6866 {
6867 	struct cgroup_subsys *ss;
6868 	int i;
6869 
6870 	for_each_subsys(ss, i)
6871 		if (ss->cancel_fork)
6872 			ss->cancel_fork(child, kargs->cset);
6873 
6874 	cgroup_css_set_put_fork(kargs);
6875 }
6876 
6877 /**
6878  * cgroup_post_fork - finalize cgroup setup for the child process
6879  * @child: the child process
6880  * @kargs: the arguments passed to create the child process
6881  *
6882  * Attach the child process to its css_set calling the subsystem fork()
6883  * callbacks.
6884  */
6885 void cgroup_post_fork(struct task_struct *child,
6886 		      struct kernel_clone_args *kargs)
6887 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6888 {
6889 	unsigned int cgrp_kill_seq = 0;
6890 	unsigned long cgrp_flags = 0;
6891 	bool kill = false;
6892 	struct cgroup_subsys *ss;
6893 	struct css_set *cset;
6894 	int i;
6895 
6896 	cset = kargs->cset;
6897 	kargs->cset = NULL;
6898 
6899 	spin_lock_irq(&css_set_lock);
6900 
6901 	/* init tasks are special, only link regular threads */
6902 	if (likely(child->pid)) {
6903 		if (kargs->cgrp) {
6904 			cgrp_flags = kargs->cgrp->flags;
6905 			cgrp_kill_seq = kargs->cgrp->kill_seq;
6906 		} else {
6907 			cgrp_flags = cset->dfl_cgrp->flags;
6908 			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6909 		}
6910 
6911 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6912 		cset->nr_tasks++;
6913 		css_set_move_task(child, NULL, cset, false);
6914 	} else {
6915 		put_css_set(cset);
6916 		cset = NULL;
6917 	}
6918 
6919 	if (!(child->flags & PF_KTHREAD)) {
6920 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6921 			/*
6922 			 * If the cgroup has to be frozen, the new task has
6923 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6924 			 * get the task into the frozen state.
6925 			 */
6926 			spin_lock(&child->sighand->siglock);
6927 			WARN_ON_ONCE(child->frozen);
6928 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6929 			spin_unlock(&child->sighand->siglock);
6930 
6931 			/*
6932 			 * Calling cgroup_update_frozen() isn't required here,
6933 			 * because it will be called anyway a bit later from
6934 			 * do_freezer_trap(). So we avoid cgroup's transient
6935 			 * switch from the frozen state and back.
6936 			 */
6937 		}
6938 
6939 		/*
6940 		 * If the cgroup is to be killed notice it now and take the
6941 		 * child down right after we finished preparing it for
6942 		 * userspace.
6943 		 */
6944 		kill = kargs->kill_seq != cgrp_kill_seq;
6945 	}
6946 
6947 	spin_unlock_irq(&css_set_lock);
6948 
6949 	/*
6950 	 * Call ss->fork().  This must happen after @child is linked on
6951 	 * css_set; otherwise, @child might change state between ->fork()
6952 	 * and addition to css_set.
6953 	 */
6954 	do_each_subsys_mask(ss, i, have_fork_callback) {
6955 		ss->fork(child);
6956 	} while_each_subsys_mask();
6957 
6958 	/* Make the new cset the root_cset of the new cgroup namespace. */
6959 	if (kargs->flags & CLONE_NEWCGROUP) {
6960 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6961 
6962 		get_css_set(cset);
6963 		child->nsproxy->cgroup_ns->root_cset = cset;
6964 		put_css_set(rcset);
6965 	}
6966 
6967 	/* Cgroup has to be killed so take down child immediately. */
6968 	if (unlikely(kill))
6969 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6970 
6971 	cgroup_css_set_put_fork(kargs);
6972 }
6973 
6974 /**
6975  * cgroup_exit - detach cgroup from exiting task
6976  * @tsk: pointer to task_struct of exiting process
6977  *
6978  * Description: Detach cgroup from @tsk.
6979  *
6980  */
6981 void cgroup_exit(struct task_struct *tsk)
6982 {
6983 	struct cgroup_subsys *ss;
6984 	struct css_set *cset;
6985 	int i;
6986 
6987 	spin_lock_irq(&css_set_lock);
6988 
6989 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6990 	cset = task_css_set(tsk);
6991 	css_set_move_task(tsk, cset, NULL, false);
6992 	cset->nr_tasks--;
6993 	/* matches the signal->live check in css_task_iter_advance() */
6994 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6995 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6996 
6997 	if (dl_task(tsk))
6998 		dec_dl_tasks_cs(tsk);
6999 
7000 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
7001 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
7002 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
7003 		cgroup_update_frozen(task_dfl_cgroup(tsk));
7004 
7005 	spin_unlock_irq(&css_set_lock);
7006 
7007 	/* see cgroup_post_fork() for details */
7008 	do_each_subsys_mask(ss, i, have_exit_callback) {
7009 		ss->exit(tsk);
7010 	} while_each_subsys_mask();
7011 }
7012 
7013 void cgroup_release(struct task_struct *task)
7014 {
7015 	struct cgroup_subsys *ss;
7016 	int ssid;
7017 
7018 	do_each_subsys_mask(ss, ssid, have_release_callback) {
7019 		ss->release(task);
7020 	} while_each_subsys_mask();
7021 
7022 	if (!list_empty(&task->cg_list)) {
7023 		spin_lock_irq(&css_set_lock);
7024 		css_set_skip_task_iters(task_css_set(task), task);
7025 		list_del_init(&task->cg_list);
7026 		spin_unlock_irq(&css_set_lock);
7027 	}
7028 }
7029 
7030 void cgroup_free(struct task_struct *task)
7031 {
7032 	struct css_set *cset = task_css_set(task);
7033 	put_css_set(cset);
7034 }
7035 
7036 static int __init cgroup_disable(char *str)
7037 {
7038 	struct cgroup_subsys *ss;
7039 	char *token;
7040 	int i;
7041 
7042 	while ((token = strsep(&str, ",")) != NULL) {
7043 		if (!*token)
7044 			continue;
7045 
7046 		for_each_subsys(ss, i) {
7047 			if (strcmp(token, ss->name) &&
7048 			    strcmp(token, ss->legacy_name))
7049 				continue;
7050 
7051 			static_branch_disable(cgroup_subsys_enabled_key[i]);
7052 			pr_info("Disabling %s control group subsystem\n",
7053 				ss->name);
7054 		}
7055 
7056 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
7057 			if (strcmp(token, cgroup_opt_feature_names[i]))
7058 				continue;
7059 			cgroup_feature_disable_mask |= 1 << i;
7060 			pr_info("Disabling %s control group feature\n",
7061 				cgroup_opt_feature_names[i]);
7062 			break;
7063 		}
7064 	}
7065 	return 1;
7066 }
7067 __setup("cgroup_disable=", cgroup_disable);
7068 
7069 void __init __weak enable_debug_cgroup(void) { }
7070 
7071 static int __init enable_cgroup_debug(char *str)
7072 {
7073 	cgroup_debug = true;
7074 	enable_debug_cgroup();
7075 	return 1;
7076 }
7077 __setup("cgroup_debug", enable_cgroup_debug);
7078 
7079 static int __init cgroup_favordynmods_setup(char *str)
7080 {
7081 	return (kstrtobool(str, &have_favordynmods) == 0);
7082 }
7083 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
7084 
7085 /**
7086  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
7087  * @dentry: directory dentry of interest
7088  * @ss: subsystem of interest
7089  *
7090  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
7091  * to get the corresponding css and return it.  If such css doesn't exist
7092  * or can't be pinned, an ERR_PTR value is returned.
7093  */
7094 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
7095 						       struct cgroup_subsys *ss)
7096 {
7097 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
7098 	struct file_system_type *s_type = dentry->d_sb->s_type;
7099 	struct cgroup_subsys_state *css = NULL;
7100 	struct cgroup *cgrp;
7101 
7102 	/* is @dentry a cgroup dir? */
7103 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
7104 	    !kn || kernfs_type(kn) != KERNFS_DIR)
7105 		return ERR_PTR(-EBADF);
7106 
7107 	rcu_read_lock();
7108 
7109 	/*
7110 	 * This path doesn't originate from kernfs and @kn could already
7111 	 * have been or be removed at any point.  @kn->priv is RCU
7112 	 * protected for this access.  See css_release_work_fn() for details.
7113 	 */
7114 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7115 	if (cgrp)
7116 		css = cgroup_css(cgrp, ss);
7117 
7118 	if (!css || !css_tryget_online(css))
7119 		css = ERR_PTR(-ENOENT);
7120 
7121 	rcu_read_unlock();
7122 	return css;
7123 }
7124 
7125 /**
7126  * css_from_id - lookup css by id
7127  * @id: the cgroup id
7128  * @ss: cgroup subsys to be looked into
7129  *
7130  * Returns the css if there's valid one with @id, otherwise returns NULL.
7131  * Should be called under rcu_read_lock().
7132  */
7133 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
7134 {
7135 	WARN_ON_ONCE(!rcu_read_lock_held());
7136 	return idr_find(&ss->css_idr, id);
7137 }
7138 
7139 /**
7140  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
7141  * @path: path on the default hierarchy
7142  *
7143  * Find the cgroup at @path on the default hierarchy, increment its
7144  * reference count and return it.  Returns pointer to the found cgroup on
7145  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
7146  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
7147  */
7148 struct cgroup *cgroup_get_from_path(const char *path)
7149 {
7150 	struct kernfs_node *kn;
7151 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
7152 	struct cgroup *root_cgrp;
7153 
7154 	root_cgrp = current_cgns_cgroup_dfl();
7155 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
7156 	if (!kn)
7157 		goto out;
7158 
7159 	if (kernfs_type(kn) != KERNFS_DIR) {
7160 		cgrp = ERR_PTR(-ENOTDIR);
7161 		goto out_kernfs;
7162 	}
7163 
7164 	rcu_read_lock();
7165 
7166 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7167 	if (!cgrp || !cgroup_tryget(cgrp))
7168 		cgrp = ERR_PTR(-ENOENT);
7169 
7170 	rcu_read_unlock();
7171 
7172 out_kernfs:
7173 	kernfs_put(kn);
7174 out:
7175 	return cgrp;
7176 }
7177 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7178 
7179 /**
7180  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7181  * @fd: fd obtained by open(cgroup_dir)
7182  *
7183  * Find the cgroup from a fd which should be obtained
7184  * by opening a cgroup directory.  Returns a pointer to the
7185  * cgroup on success. ERR_PTR is returned if the cgroup
7186  * cannot be found.
7187  */
7188 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7189 {
7190 	CLASS(fd_raw, f)(fd);
7191 	if (fd_empty(f))
7192 		return ERR_PTR(-EBADF);
7193 
7194 	return cgroup_v1v2_get_from_file(fd_file(f));
7195 }
7196 
7197 /**
7198  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7199  * cgroup2.
7200  * @fd: fd obtained by open(cgroup2_dir)
7201  */
7202 struct cgroup *cgroup_get_from_fd(int fd)
7203 {
7204 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7205 
7206 	if (IS_ERR(cgrp))
7207 		return ERR_CAST(cgrp);
7208 
7209 	if (!cgroup_on_dfl(cgrp)) {
7210 		cgroup_put(cgrp);
7211 		return ERR_PTR(-EBADF);
7212 	}
7213 	return cgrp;
7214 }
7215 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7216 
7217 static u64 power_of_ten(int power)
7218 {
7219 	u64 v = 1;
7220 	while (power--)
7221 		v *= 10;
7222 	return v;
7223 }
7224 
7225 /**
7226  * cgroup_parse_float - parse a floating number
7227  * @input: input string
7228  * @dec_shift: number of decimal digits to shift
7229  * @v: output
7230  *
7231  * Parse a decimal floating point number in @input and store the result in
7232  * @v with decimal point right shifted @dec_shift times.  For example, if
7233  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7234  * Returns 0 on success, -errno otherwise.
7235  *
7236  * There's nothing cgroup specific about this function except that it's
7237  * currently the only user.
7238  */
7239 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7240 {
7241 	s64 whole, frac = 0;
7242 	int fstart = 0, fend = 0, flen;
7243 
7244 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7245 		return -EINVAL;
7246 	if (frac < 0)
7247 		return -EINVAL;
7248 
7249 	flen = fend > fstart ? fend - fstart : 0;
7250 	if (flen < dec_shift)
7251 		frac *= power_of_ten(dec_shift - flen);
7252 	else
7253 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7254 
7255 	*v = whole * power_of_ten(dec_shift) + frac;
7256 	return 0;
7257 }
7258 
7259 /*
7260  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7261  * definition in cgroup-defs.h.
7262  */
7263 #ifdef CONFIG_SOCK_CGROUP_DATA
7264 
7265 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7266 {
7267 	struct cgroup *cgroup;
7268 
7269 	rcu_read_lock();
7270 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7271 	if (in_interrupt()) {
7272 		cgroup = &cgrp_dfl_root.cgrp;
7273 		cgroup_get(cgroup);
7274 		goto out;
7275 	}
7276 
7277 	while (true) {
7278 		struct css_set *cset;
7279 
7280 		cset = task_css_set(current);
7281 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7282 			cgroup = cset->dfl_cgrp;
7283 			break;
7284 		}
7285 		cpu_relax();
7286 	}
7287 out:
7288 	skcd->cgroup = cgroup;
7289 	cgroup_bpf_get(cgroup);
7290 	rcu_read_unlock();
7291 }
7292 
7293 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7294 {
7295 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7296 
7297 	/*
7298 	 * We might be cloning a socket which is left in an empty
7299 	 * cgroup and the cgroup might have already been rmdir'd.
7300 	 * Don't use cgroup_get_live().
7301 	 */
7302 	cgroup_get(cgrp);
7303 	cgroup_bpf_get(cgrp);
7304 }
7305 
7306 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7307 {
7308 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7309 
7310 	cgroup_bpf_put(cgrp);
7311 	cgroup_put(cgrp);
7312 }
7313 
7314 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7315 
7316 #ifdef CONFIG_SYSFS
7317 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7318 				      ssize_t size, const char *prefix)
7319 {
7320 	struct cftype *cft;
7321 	ssize_t ret = 0;
7322 
7323 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7324 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7325 			continue;
7326 
7327 		if (prefix)
7328 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7329 
7330 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7331 
7332 		if (WARN_ON(ret >= size))
7333 			break;
7334 	}
7335 
7336 	return ret;
7337 }
7338 
7339 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7340 			      char *buf)
7341 {
7342 	struct cgroup_subsys *ss;
7343 	int ssid;
7344 	ssize_t ret = 0;
7345 
7346 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7347 				     PAGE_SIZE - ret, NULL);
7348 	if (cgroup_psi_enabled())
7349 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7350 					      PAGE_SIZE - ret, NULL);
7351 
7352 	for_each_subsys(ss, ssid)
7353 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7354 					      PAGE_SIZE - ret,
7355 					      cgroup_subsys_name[ssid]);
7356 
7357 	return ret;
7358 }
7359 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7360 
7361 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7362 			     char *buf)
7363 {
7364 	return snprintf(buf, PAGE_SIZE,
7365 			"nsdelegate\n"
7366 			"favordynmods\n"
7367 			"memory_localevents\n"
7368 			"memory_recursiveprot\n"
7369 			"memory_hugetlb_accounting\n"
7370 			"pids_localevents\n");
7371 }
7372 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7373 
7374 static struct attribute *cgroup_sysfs_attrs[] = {
7375 	&cgroup_delegate_attr.attr,
7376 	&cgroup_features_attr.attr,
7377 	NULL,
7378 };
7379 
7380 static const struct attribute_group cgroup_sysfs_attr_group = {
7381 	.attrs = cgroup_sysfs_attrs,
7382 	.name = "cgroup",
7383 };
7384 
7385 static int __init cgroup_sysfs_init(void)
7386 {
7387 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7388 }
7389 subsys_initcall(cgroup_sysfs_init);
7390 
7391 #endif /* CONFIG_SYSFS */
7392