1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <linux/nstree.h> 63 #include <net/sock.h> 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/cgroup.h> 67 68 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 69 MAX_CFTYPE_NAME + 2) 70 /* let's not notify more than 100 times per second */ 71 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 72 73 /* 74 * To avoid confusing the compiler (and generating warnings) with code 75 * that attempts to access what would be a 0-element array (i.e. sized 76 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 77 * constant expression can be added. 78 */ 79 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 80 81 /* 82 * cgroup_mutex is the master lock. Any modification to cgroup or its 83 * hierarchy must be performed while holding it. 84 * 85 * css_set_lock protects task->cgroups pointer, the list of css_set 86 * objects, and the chain of tasks off each css_set. 87 * 88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 89 * cgroup.h can use them for lockdep annotations. 90 */ 91 DEFINE_MUTEX(cgroup_mutex); 92 DEFINE_SPINLOCK(css_set_lock); 93 94 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) 95 EXPORT_SYMBOL_GPL(cgroup_mutex); 96 EXPORT_SYMBOL_GPL(css_set_lock); 97 #endif 98 99 struct blocking_notifier_head cgroup_lifetime_notifier = 100 BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier); 101 102 DEFINE_SPINLOCK(trace_cgroup_path_lock); 103 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 104 static bool cgroup_debug __read_mostly; 105 106 /* 107 * Protects cgroup_idr and css_idr so that IDs can be released without 108 * grabbing cgroup_mutex. 109 */ 110 static DEFINE_SPINLOCK(cgroup_idr_lock); 111 112 /* 113 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 114 * against file removal/re-creation across css hiding. 115 */ 116 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 117 118 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 119 120 #define cgroup_assert_mutex_or_rcu_locked() \ 121 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 122 !lockdep_is_held(&cgroup_mutex), \ 123 "cgroup_mutex or RCU read lock required"); 124 125 /* 126 * cgroup destruction makes heavy use of work items and there can be a lot 127 * of concurrent destructions. Use a separate workqueue so that cgroup 128 * destruction work items don't end up filling up max_active of system_percpu_wq 129 * which may lead to deadlock. 130 * 131 * A cgroup destruction should enqueue work sequentially to: 132 * cgroup_offline_wq: use for css offline work 133 * cgroup_release_wq: use for css release work 134 * cgroup_free_wq: use for free work 135 * 136 * Rationale for using separate workqueues: 137 * The cgroup root free work may depend on completion of other css offline 138 * operations. If all tasks were enqueued to a single workqueue, this could 139 * create a deadlock scenario where: 140 * - Free work waits for other css offline work to complete. 141 * - But other css offline work is queued after free work in the same queue. 142 * 143 * Example deadlock scenario with single workqueue (cgroup_destroy_wq): 144 * 1. umount net_prio 145 * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx) 146 * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx) 147 * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline. 148 * 5. net_prio root destruction blocks waiting for perf_event CSS A offline, 149 * which can never complete as it's behind in the same queue and 150 * workqueue's max_active is 1. 151 */ 152 static struct workqueue_struct *cgroup_offline_wq; 153 static struct workqueue_struct *cgroup_release_wq; 154 static struct workqueue_struct *cgroup_free_wq; 155 156 /* generate an array of cgroup subsystem pointers */ 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 158 struct cgroup_subsys *cgroup_subsys[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 /* array of cgroup subsystem names */ 164 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 165 static const char *cgroup_subsys_name[] = { 166 #include <linux/cgroup_subsys.h> 167 }; 168 #undef SUBSYS 169 170 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 171 #define SUBSYS(_x) \ 172 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 173 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 174 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 175 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 176 #include <linux/cgroup_subsys.h> 177 #undef SUBSYS 178 179 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 180 static struct static_key_true *cgroup_subsys_enabled_key[] = { 181 #include <linux/cgroup_subsys.h> 182 }; 183 #undef SUBSYS 184 185 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 186 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 187 #include <linux/cgroup_subsys.h> 188 }; 189 #undef SUBSYS 190 191 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu); 192 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu); 193 194 /* the default hierarchy */ 195 struct cgroup_root cgrp_dfl_root = { 196 .cgrp.self.rstat_cpu = &root_rstat_cpu, 197 .cgrp.rstat_base_cpu = &root_rstat_base_cpu, 198 }; 199 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 200 201 /* 202 * The default hierarchy always exists but is hidden until mounted for the 203 * first time. This is for backward compatibility. 204 */ 205 bool cgrp_dfl_visible; 206 207 /* some controllers are not supported in the default hierarchy */ 208 static u16 cgrp_dfl_inhibit_ss_mask; 209 210 /* some controllers are implicitly enabled on the default hierarchy */ 211 static u16 cgrp_dfl_implicit_ss_mask; 212 213 /* some controllers can be threaded on the default hierarchy */ 214 static u16 cgrp_dfl_threaded_ss_mask; 215 216 /* The list of hierarchy roots */ 217 LIST_HEAD(cgroup_roots); 218 static int cgroup_root_count; 219 220 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 221 static DEFINE_IDR(cgroup_hierarchy_idr); 222 223 /* 224 * Assign a monotonically increasing serial number to csses. It guarantees 225 * cgroups with bigger numbers are newer than those with smaller numbers. 226 * Also, as csses are always appended to the parent's ->children list, it 227 * guarantees that sibling csses are always sorted in the ascending serial 228 * number order on the list. Protected by cgroup_mutex. 229 */ 230 static u64 css_serial_nr_next = 1; 231 232 /* 233 * These bitmasks identify subsystems with specific features to avoid 234 * having to do iterative checks repeatedly. 235 */ 236 static u16 have_fork_callback __read_mostly; 237 static u16 have_exit_callback __read_mostly; 238 static u16 have_release_callback __read_mostly; 239 static u16 have_canfork_callback __read_mostly; 240 241 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 242 243 /* 244 * Write protected by cgroup_mutex and write-lock of cgroup_threadgroup_rwsem, 245 * read protected by either. 246 * 247 * Can only be turned on, but not turned off. 248 */ 249 bool cgroup_enable_per_threadgroup_rwsem __read_mostly; 250 251 /* cgroup namespace for init task */ 252 struct cgroup_namespace init_cgroup_ns = { 253 .ns.__ns_ref = REFCOUNT_INIT(2), 254 .user_ns = &init_user_ns, 255 .ns.ops = &cgroupns_operations, 256 .ns.inum = ns_init_inum(&init_cgroup_ns), 257 .root_cset = &init_css_set, 258 .ns.ns_type = ns_common_type(&init_cgroup_ns), 259 }; 260 261 static struct file_system_type cgroup2_fs_type; 262 static struct cftype cgroup_base_files[]; 263 static struct cftype cgroup_psi_files[]; 264 265 /* cgroup optional features */ 266 enum cgroup_opt_features { 267 #ifdef CONFIG_PSI 268 OPT_FEATURE_PRESSURE, 269 #endif 270 OPT_FEATURE_COUNT 271 }; 272 273 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 274 #ifdef CONFIG_PSI 275 "pressure", 276 #endif 277 }; 278 279 static u16 cgroup_feature_disable_mask __read_mostly; 280 281 static int cgroup_apply_control(struct cgroup *cgrp); 282 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 283 static void css_task_iter_skip(struct css_task_iter *it, 284 struct task_struct *task); 285 static int cgroup_destroy_locked(struct cgroup *cgrp); 286 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 287 struct cgroup_subsys *ss); 288 static void css_release(struct percpu_ref *ref); 289 static void kill_css(struct cgroup_subsys_state *css); 290 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 291 struct cgroup *cgrp, struct cftype cfts[], 292 bool is_add); 293 294 #ifdef CONFIG_DEBUG_CGROUP_REF 295 #define CGROUP_REF_FN_ATTRS noinline 296 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 297 #include <linux/cgroup_refcnt.h> 298 #endif 299 300 /** 301 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 302 * @ssid: subsys ID of interest 303 * 304 * cgroup_subsys_enabled() can only be used with literal subsys names which 305 * is fine for individual subsystems but unsuitable for cgroup core. This 306 * is slower static_key_enabled() based test indexed by @ssid. 307 */ 308 bool cgroup_ssid_enabled(int ssid) 309 { 310 if (!CGROUP_HAS_SUBSYS_CONFIG) 311 return false; 312 313 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 314 } 315 316 /** 317 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 318 * @cgrp: the cgroup of interest 319 * 320 * The default hierarchy is the v2 interface of cgroup and this function 321 * can be used to test whether a cgroup is on the default hierarchy for 322 * cases where a subsystem should behave differently depending on the 323 * interface version. 324 * 325 * List of changed behaviors: 326 * 327 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 328 * and "name" are disallowed. 329 * 330 * - When mounting an existing superblock, mount options should match. 331 * 332 * - rename(2) is disallowed. 333 * 334 * - "tasks" is removed. Everything should be at process granularity. Use 335 * "cgroup.procs" instead. 336 * 337 * - "cgroup.procs" is not sorted. pids will be unique unless they got 338 * recycled in-between reads. 339 * 340 * - "release_agent" and "notify_on_release" are removed. Replacement 341 * notification mechanism will be implemented. 342 * 343 * - "cgroup.clone_children" is removed. 344 * 345 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 346 * and its descendants contain no task; otherwise, 1. The file also 347 * generates kernfs notification which can be monitored through poll and 348 * [di]notify when the value of the file changes. 349 * 350 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 351 * take masks of ancestors with non-empty cpus/mems, instead of being 352 * moved to an ancestor. 353 * 354 * - cpuset: a task can be moved into an empty cpuset, and again it takes 355 * masks of ancestors. 356 * 357 * - blkcg: blk-throttle becomes properly hierarchical. 358 */ 359 bool cgroup_on_dfl(const struct cgroup *cgrp) 360 { 361 return cgrp->root == &cgrp_dfl_root; 362 } 363 364 /* IDR wrappers which synchronize using cgroup_idr_lock */ 365 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 366 gfp_t gfp_mask) 367 { 368 int ret; 369 370 idr_preload(gfp_mask); 371 spin_lock_bh(&cgroup_idr_lock); 372 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 373 spin_unlock_bh(&cgroup_idr_lock); 374 idr_preload_end(); 375 return ret; 376 } 377 378 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 379 { 380 void *ret; 381 382 spin_lock_bh(&cgroup_idr_lock); 383 ret = idr_replace(idr, ptr, id); 384 spin_unlock_bh(&cgroup_idr_lock); 385 return ret; 386 } 387 388 static void cgroup_idr_remove(struct idr *idr, int id) 389 { 390 spin_lock_bh(&cgroup_idr_lock); 391 idr_remove(idr, id); 392 spin_unlock_bh(&cgroup_idr_lock); 393 } 394 395 static bool cgroup_has_tasks(struct cgroup *cgrp) 396 { 397 return cgrp->nr_populated_csets; 398 } 399 400 static bool cgroup_is_threaded(struct cgroup *cgrp) 401 { 402 return cgrp->dom_cgrp != cgrp; 403 } 404 405 /* can @cgrp host both domain and threaded children? */ 406 static bool cgroup_is_mixable(struct cgroup *cgrp) 407 { 408 /* 409 * Root isn't under domain level resource control exempting it from 410 * the no-internal-process constraint, so it can serve as a thread 411 * root and a parent of resource domains at the same time. 412 */ 413 return !cgroup_parent(cgrp); 414 } 415 416 /* can @cgrp become a thread root? Should always be true for a thread root */ 417 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 418 { 419 /* mixables don't care */ 420 if (cgroup_is_mixable(cgrp)) 421 return true; 422 423 /* domain roots can't be nested under threaded */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* can only have either domain or threaded children */ 428 if (cgrp->nr_populated_domain_children) 429 return false; 430 431 /* and no domain controllers can be enabled */ 432 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 433 return false; 434 435 return true; 436 } 437 438 /* is @cgrp root of a threaded subtree? */ 439 static bool cgroup_is_thread_root(struct cgroup *cgrp) 440 { 441 /* thread root should be a domain */ 442 if (cgroup_is_threaded(cgrp)) 443 return false; 444 445 /* a domain w/ threaded children is a thread root */ 446 if (cgrp->nr_threaded_children) 447 return true; 448 449 /* 450 * A domain which has tasks and explicit threaded controllers 451 * enabled is a thread root. 452 */ 453 if (cgroup_has_tasks(cgrp) && 454 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 455 return true; 456 457 return false; 458 } 459 460 /* a domain which isn't connected to the root w/o brekage can't be used */ 461 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 462 { 463 /* the cgroup itself can be a thread root */ 464 if (cgroup_is_threaded(cgrp)) 465 return false; 466 467 /* but the ancestors can't be unless mixable */ 468 while ((cgrp = cgroup_parent(cgrp))) { 469 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 470 return false; 471 if (cgroup_is_threaded(cgrp)) 472 return false; 473 } 474 475 return true; 476 } 477 478 /* subsystems visibly enabled on a cgroup */ 479 static u16 cgroup_control(struct cgroup *cgrp) 480 { 481 struct cgroup *parent = cgroup_parent(cgrp); 482 u16 root_ss_mask = cgrp->root->subsys_mask; 483 484 if (parent) { 485 u16 ss_mask = parent->subtree_control; 486 487 /* threaded cgroups can only have threaded controllers */ 488 if (cgroup_is_threaded(cgrp)) 489 ss_mask &= cgrp_dfl_threaded_ss_mask; 490 return ss_mask; 491 } 492 493 if (cgroup_on_dfl(cgrp)) 494 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 495 cgrp_dfl_implicit_ss_mask); 496 return root_ss_mask; 497 } 498 499 /* subsystems enabled on a cgroup */ 500 static u16 cgroup_ss_mask(struct cgroup *cgrp) 501 { 502 struct cgroup *parent = cgroup_parent(cgrp); 503 504 if (parent) { 505 u16 ss_mask = parent->subtree_ss_mask; 506 507 /* threaded cgroups can only have threaded controllers */ 508 if (cgroup_is_threaded(cgrp)) 509 ss_mask &= cgrp_dfl_threaded_ss_mask; 510 return ss_mask; 511 } 512 513 return cgrp->root->subsys_mask; 514 } 515 516 /** 517 * cgroup_css - obtain a cgroup's css for the specified subsystem 518 * @cgrp: the cgroup of interest 519 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 520 * 521 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 522 * function must be called either under cgroup_mutex or rcu_read_lock() and 523 * the caller is responsible for pinning the returned css if it wants to 524 * keep accessing it outside the said locks. This function may return 525 * %NULL if @cgrp doesn't have @subsys_id enabled. 526 */ 527 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 528 struct cgroup_subsys *ss) 529 { 530 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 531 return rcu_dereference_check(cgrp->subsys[ss->id], 532 lockdep_is_held(&cgroup_mutex)); 533 else 534 return &cgrp->self; 535 } 536 537 /** 538 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 539 * @cgrp: the cgroup of interest 540 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 541 * 542 * Similar to cgroup_css() but returns the effective css, which is defined 543 * as the matching css of the nearest ancestor including self which has @ss 544 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 545 * function is guaranteed to return non-NULL css. 546 */ 547 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 548 struct cgroup_subsys *ss) 549 { 550 lockdep_assert_held(&cgroup_mutex); 551 552 if (!ss) 553 return &cgrp->self; 554 555 /* 556 * This function is used while updating css associations and thus 557 * can't test the csses directly. Test ss_mask. 558 */ 559 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 560 cgrp = cgroup_parent(cgrp); 561 if (!cgrp) 562 return NULL; 563 } 564 565 return cgroup_css(cgrp, ss); 566 } 567 568 /** 569 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 570 * @cgrp: the cgroup of interest 571 * @ss: the subsystem of interest 572 * 573 * Find and get the effective css of @cgrp for @ss. The effective css is 574 * defined as the matching css of the nearest ancestor including self which 575 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 576 * the root css is returned, so this function always returns a valid css. 577 * 578 * The returned css is not guaranteed to be online, and therefore it is the 579 * callers responsibility to try get a reference for it. 580 */ 581 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 582 struct cgroup_subsys *ss) 583 { 584 struct cgroup_subsys_state *css; 585 586 if (!CGROUP_HAS_SUBSYS_CONFIG) 587 return NULL; 588 589 do { 590 css = cgroup_css(cgrp, ss); 591 592 if (css) 593 return css; 594 cgrp = cgroup_parent(cgrp); 595 } while (cgrp); 596 597 return init_css_set.subsys[ss->id]; 598 } 599 600 /** 601 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 602 * @cgrp: the cgroup of interest 603 * @ss: the subsystem of interest 604 * 605 * Find and get the effective css of @cgrp for @ss. The effective css is 606 * defined as the matching css of the nearest ancestor including self which 607 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 608 * the root css is returned, so this function always returns a valid css. 609 * The returned css must be put using css_put(). 610 */ 611 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 612 struct cgroup_subsys *ss) 613 { 614 struct cgroup_subsys_state *css; 615 616 if (!CGROUP_HAS_SUBSYS_CONFIG) 617 return NULL; 618 619 rcu_read_lock(); 620 621 do { 622 css = cgroup_css(cgrp, ss); 623 624 if (css && css_tryget_online(css)) 625 goto out_unlock; 626 cgrp = cgroup_parent(cgrp); 627 } while (cgrp); 628 629 css = init_css_set.subsys[ss->id]; 630 css_get(css); 631 out_unlock: 632 rcu_read_unlock(); 633 return css; 634 } 635 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 636 637 static void cgroup_get_live(struct cgroup *cgrp) 638 { 639 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 640 cgroup_get(cgrp); 641 } 642 643 /** 644 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 645 * is responsible for taking the css_set_lock. 646 * @cgrp: the cgroup in question 647 */ 648 int __cgroup_task_count(const struct cgroup *cgrp) 649 { 650 int count = 0; 651 struct cgrp_cset_link *link; 652 653 lockdep_assert_held(&css_set_lock); 654 655 list_for_each_entry(link, &cgrp->cset_links, cset_link) 656 count += link->cset->nr_tasks; 657 658 return count; 659 } 660 661 /** 662 * cgroup_task_count - count the number of tasks in a cgroup. 663 * @cgrp: the cgroup in question 664 */ 665 int cgroup_task_count(const struct cgroup *cgrp) 666 { 667 int count; 668 669 spin_lock_irq(&css_set_lock); 670 count = __cgroup_task_count(cgrp); 671 spin_unlock_irq(&css_set_lock); 672 673 return count; 674 } 675 676 static struct cgroup *kn_priv(struct kernfs_node *kn) 677 { 678 struct kernfs_node *parent; 679 /* 680 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. 681 * Therefore it is always safe to dereference this pointer outside of a 682 * RCU section. 683 */ 684 parent = rcu_dereference_check(kn->__parent, 685 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); 686 return parent->priv; 687 } 688 689 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 690 { 691 struct cgroup *cgrp = kn_priv(of->kn); 692 struct cftype *cft = of_cft(of); 693 694 /* 695 * This is open and unprotected implementation of cgroup_css(). 696 * seq_css() is only called from a kernfs file operation which has 697 * an active reference on the file. Because all the subsystem 698 * files are drained before a css is disassociated with a cgroup, 699 * the matching css from the cgroup's subsys table is guaranteed to 700 * be and stay valid until the enclosing operation is complete. 701 */ 702 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 703 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 704 else 705 return &cgrp->self; 706 } 707 EXPORT_SYMBOL_GPL(of_css); 708 709 /** 710 * for_each_css - iterate all css's of a cgroup 711 * @css: the iteration cursor 712 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 713 * @cgrp: the target cgroup to iterate css's of 714 * 715 * Should be called under cgroup_mutex. 716 */ 717 #define for_each_css(css, ssid, cgrp) \ 718 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 719 if (!((css) = rcu_dereference_check( \ 720 (cgrp)->subsys[(ssid)], \ 721 lockdep_is_held(&cgroup_mutex)))) { } \ 722 else 723 724 /** 725 * do_each_subsys_mask - filter for_each_subsys with a bitmask 726 * @ss: the iteration cursor 727 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 728 * @ss_mask: the bitmask 729 * 730 * The block will only run for cases where the ssid-th bit (1 << ssid) of 731 * @ss_mask is set. 732 */ 733 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 734 unsigned long __ss_mask = (ss_mask); \ 735 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 736 (ssid) = 0; \ 737 break; \ 738 } \ 739 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 740 (ss) = cgroup_subsys[ssid]; \ 741 { 742 743 #define while_each_subsys_mask() \ 744 } \ 745 } \ 746 } while (false) 747 748 /* iterate over child cgrps, lock should be held throughout iteration */ 749 #define cgroup_for_each_live_child(child, cgrp) \ 750 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 751 if (({ lockdep_assert_held(&cgroup_mutex); \ 752 cgroup_is_dead(child); })) \ 753 ; \ 754 else 755 756 /* walk live descendants in pre order */ 757 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 758 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 759 if (({ lockdep_assert_held(&cgroup_mutex); \ 760 (dsct) = (d_css)->cgroup; \ 761 cgroup_is_dead(dsct); })) \ 762 ; \ 763 else 764 765 /* walk live descendants in postorder */ 766 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 767 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 768 if (({ lockdep_assert_held(&cgroup_mutex); \ 769 (dsct) = (d_css)->cgroup; \ 770 cgroup_is_dead(dsct); })) \ 771 ; \ 772 else 773 774 /* 775 * The default css_set - used by init and its children prior to any 776 * hierarchies being mounted. It contains a pointer to the root state 777 * for each subsystem. Also used to anchor the list of css_sets. Not 778 * reference-counted, to improve performance when child cgroups 779 * haven't been created. 780 */ 781 struct css_set init_css_set = { 782 .refcount = REFCOUNT_INIT(1), 783 .dom_cset = &init_css_set, 784 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 785 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 786 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 787 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 788 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 789 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 790 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 791 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 792 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 793 794 /* 795 * The following field is re-initialized when this cset gets linked 796 * in cgroup_init(). However, let's initialize the field 797 * statically too so that the default cgroup can be accessed safely 798 * early during boot. 799 */ 800 .dfl_cgrp = &cgrp_dfl_root.cgrp, 801 }; 802 803 static int css_set_count = 1; /* 1 for init_css_set */ 804 805 static bool css_set_threaded(struct css_set *cset) 806 { 807 return cset->dom_cset != cset; 808 } 809 810 /** 811 * css_set_populated - does a css_set contain any tasks? 812 * @cset: target css_set 813 * 814 * css_set_populated() should be the same as !!cset->nr_tasks at steady 815 * state. However, css_set_populated() can be called while a task is being 816 * added to or removed from the linked list before the nr_tasks is 817 * properly updated. Hence, we can't just look at ->nr_tasks here. 818 */ 819 static bool css_set_populated(struct css_set *cset) 820 { 821 lockdep_assert_held(&css_set_lock); 822 823 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 824 } 825 826 /** 827 * cgroup_update_populated - update the populated count of a cgroup 828 * @cgrp: the target cgroup 829 * @populated: inc or dec populated count 830 * 831 * One of the css_sets associated with @cgrp is either getting its first 832 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 833 * count is propagated towards root so that a given cgroup's 834 * nr_populated_children is zero iff none of its descendants contain any 835 * tasks. 836 * 837 * @cgrp's interface file "cgroup.populated" is zero if both 838 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 839 * 1 otherwise. When the sum changes from or to zero, userland is notified 840 * that the content of the interface file has changed. This can be used to 841 * detect when @cgrp and its descendants become populated or empty. 842 */ 843 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 844 { 845 struct cgroup *child = NULL; 846 int adj = populated ? 1 : -1; 847 848 lockdep_assert_held(&css_set_lock); 849 850 do { 851 bool was_populated = cgroup_is_populated(cgrp); 852 853 if (!child) { 854 cgrp->nr_populated_csets += adj; 855 } else { 856 if (cgroup_is_threaded(child)) 857 cgrp->nr_populated_threaded_children += adj; 858 else 859 cgrp->nr_populated_domain_children += adj; 860 } 861 862 if (was_populated == cgroup_is_populated(cgrp)) 863 break; 864 865 cgroup1_check_for_release(cgrp); 866 TRACE_CGROUP_PATH(notify_populated, cgrp, 867 cgroup_is_populated(cgrp)); 868 cgroup_file_notify(&cgrp->events_file); 869 870 child = cgrp; 871 cgrp = cgroup_parent(cgrp); 872 } while (cgrp); 873 } 874 875 /** 876 * css_set_update_populated - update populated state of a css_set 877 * @cset: target css_set 878 * @populated: whether @cset is populated or depopulated 879 * 880 * @cset is either getting the first task or losing the last. Update the 881 * populated counters of all associated cgroups accordingly. 882 */ 883 static void css_set_update_populated(struct css_set *cset, bool populated) 884 { 885 struct cgrp_cset_link *link; 886 887 lockdep_assert_held(&css_set_lock); 888 889 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 890 cgroup_update_populated(link->cgrp, populated); 891 } 892 893 /* 894 * @task is leaving, advance task iterators which are pointing to it so 895 * that they can resume at the next position. Advancing an iterator might 896 * remove it from the list, use safe walk. See css_task_iter_skip() for 897 * details. 898 */ 899 static void css_set_skip_task_iters(struct css_set *cset, 900 struct task_struct *task) 901 { 902 struct css_task_iter *it, *pos; 903 904 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 905 css_task_iter_skip(it, task); 906 } 907 908 /** 909 * css_set_move_task - move a task from one css_set to another 910 * @task: task being moved 911 * @from_cset: css_set @task currently belongs to (may be NULL) 912 * @to_cset: new css_set @task is being moved to (may be NULL) 913 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 914 * 915 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 916 * css_set, @from_cset can be NULL. If @task is being disassociated 917 * instead of moved, @to_cset can be NULL. 918 * 919 * This function automatically handles populated counter updates and 920 * css_task_iter adjustments but the caller is responsible for managing 921 * @from_cset and @to_cset's reference counts. 922 */ 923 static void css_set_move_task(struct task_struct *task, 924 struct css_set *from_cset, struct css_set *to_cset, 925 bool use_mg_tasks) 926 { 927 lockdep_assert_held(&css_set_lock); 928 929 if (to_cset && !css_set_populated(to_cset)) 930 css_set_update_populated(to_cset, true); 931 932 if (from_cset) { 933 WARN_ON_ONCE(list_empty(&task->cg_list)); 934 935 css_set_skip_task_iters(from_cset, task); 936 list_del_init(&task->cg_list); 937 if (!css_set_populated(from_cset)) 938 css_set_update_populated(from_cset, false); 939 } else { 940 WARN_ON_ONCE(!list_empty(&task->cg_list)); 941 } 942 943 if (to_cset) { 944 /* 945 * We are synchronized through cgroup_threadgroup_rwsem 946 * against PF_EXITING setting such that we can't race 947 * against cgroup_exit()/cgroup_free() dropping the css_set. 948 */ 949 WARN_ON_ONCE(task->flags & PF_EXITING); 950 951 cgroup_move_task(task, to_cset); 952 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 953 &to_cset->tasks); 954 } 955 } 956 957 /* 958 * hash table for cgroup groups. This improves the performance to find 959 * an existing css_set. This hash doesn't (currently) take into 960 * account cgroups in empty hierarchies. 961 */ 962 #define CSS_SET_HASH_BITS 7 963 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 964 965 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 966 { 967 unsigned long key = 0UL; 968 struct cgroup_subsys *ss; 969 int i; 970 971 for_each_subsys(ss, i) 972 key += (unsigned long)css[i]; 973 key = (key >> 16) ^ key; 974 975 return key; 976 } 977 978 void put_css_set_locked(struct css_set *cset) 979 { 980 struct cgrp_cset_link *link, *tmp_link; 981 struct cgroup_subsys *ss; 982 int ssid; 983 984 lockdep_assert_held(&css_set_lock); 985 986 if (!refcount_dec_and_test(&cset->refcount)) 987 return; 988 989 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 990 991 /* This css_set is dead. Unlink it and release cgroup and css refs */ 992 for_each_subsys(ss, ssid) { 993 list_del(&cset->e_cset_node[ssid]); 994 css_put(cset->subsys[ssid]); 995 } 996 hash_del(&cset->hlist); 997 css_set_count--; 998 999 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 1000 list_del(&link->cset_link); 1001 list_del(&link->cgrp_link); 1002 if (cgroup_parent(link->cgrp)) 1003 cgroup_put(link->cgrp); 1004 kfree(link); 1005 } 1006 1007 if (css_set_threaded(cset)) { 1008 list_del(&cset->threaded_csets_node); 1009 put_css_set_locked(cset->dom_cset); 1010 } 1011 1012 kfree_rcu(cset, rcu_head); 1013 } 1014 1015 /** 1016 * compare_css_sets - helper function for find_existing_css_set(). 1017 * @cset: candidate css_set being tested 1018 * @old_cset: existing css_set for a task 1019 * @new_cgrp: cgroup that's being entered by the task 1020 * @template: desired set of css pointers in css_set (pre-calculated) 1021 * 1022 * Returns true if "cset" matches "old_cset" except for the hierarchy 1023 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1024 */ 1025 static bool compare_css_sets(struct css_set *cset, 1026 struct css_set *old_cset, 1027 struct cgroup *new_cgrp, 1028 struct cgroup_subsys_state *template[]) 1029 { 1030 struct cgroup *new_dfl_cgrp; 1031 struct list_head *l1, *l2; 1032 1033 /* 1034 * On the default hierarchy, there can be csets which are 1035 * associated with the same set of cgroups but different csses. 1036 * Let's first ensure that csses match. 1037 */ 1038 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1039 return false; 1040 1041 1042 /* @cset's domain should match the default cgroup's */ 1043 if (cgroup_on_dfl(new_cgrp)) 1044 new_dfl_cgrp = new_cgrp; 1045 else 1046 new_dfl_cgrp = old_cset->dfl_cgrp; 1047 1048 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1049 return false; 1050 1051 /* 1052 * Compare cgroup pointers in order to distinguish between 1053 * different cgroups in hierarchies. As different cgroups may 1054 * share the same effective css, this comparison is always 1055 * necessary. 1056 */ 1057 l1 = &cset->cgrp_links; 1058 l2 = &old_cset->cgrp_links; 1059 while (1) { 1060 struct cgrp_cset_link *link1, *link2; 1061 struct cgroup *cgrp1, *cgrp2; 1062 1063 l1 = l1->next; 1064 l2 = l2->next; 1065 /* See if we reached the end - both lists are equal length. */ 1066 if (l1 == &cset->cgrp_links) { 1067 BUG_ON(l2 != &old_cset->cgrp_links); 1068 break; 1069 } else { 1070 BUG_ON(l2 == &old_cset->cgrp_links); 1071 } 1072 /* Locate the cgroups associated with these links. */ 1073 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1074 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1075 cgrp1 = link1->cgrp; 1076 cgrp2 = link2->cgrp; 1077 /* Hierarchies should be linked in the same order. */ 1078 BUG_ON(cgrp1->root != cgrp2->root); 1079 1080 /* 1081 * If this hierarchy is the hierarchy of the cgroup 1082 * that's changing, then we need to check that this 1083 * css_set points to the new cgroup; if it's any other 1084 * hierarchy, then this css_set should point to the 1085 * same cgroup as the old css_set. 1086 */ 1087 if (cgrp1->root == new_cgrp->root) { 1088 if (cgrp1 != new_cgrp) 1089 return false; 1090 } else { 1091 if (cgrp1 != cgrp2) 1092 return false; 1093 } 1094 } 1095 return true; 1096 } 1097 1098 /** 1099 * find_existing_css_set - init css array and find the matching css_set 1100 * @old_cset: the css_set that we're using before the cgroup transition 1101 * @cgrp: the cgroup that we're moving into 1102 * @template: out param for the new set of csses, should be clear on entry 1103 */ 1104 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1105 struct cgroup *cgrp, 1106 struct cgroup_subsys_state **template) 1107 { 1108 struct cgroup_root *root = cgrp->root; 1109 struct cgroup_subsys *ss; 1110 struct css_set *cset; 1111 unsigned long key; 1112 int i; 1113 1114 /* 1115 * Build the set of subsystem state objects that we want to see in the 1116 * new css_set. While subsystems can change globally, the entries here 1117 * won't change, so no need for locking. 1118 */ 1119 for_each_subsys(ss, i) { 1120 if (root->subsys_mask & (1UL << i)) { 1121 /* 1122 * @ss is in this hierarchy, so we want the 1123 * effective css from @cgrp. 1124 */ 1125 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1126 } else { 1127 /* 1128 * @ss is not in this hierarchy, so we don't want 1129 * to change the css. 1130 */ 1131 template[i] = old_cset->subsys[i]; 1132 } 1133 } 1134 1135 key = css_set_hash(template); 1136 hash_for_each_possible(css_set_table, cset, hlist, key) { 1137 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1138 continue; 1139 1140 /* This css_set matches what we need */ 1141 return cset; 1142 } 1143 1144 /* No existing cgroup group matched */ 1145 return NULL; 1146 } 1147 1148 static void free_cgrp_cset_links(struct list_head *links_to_free) 1149 { 1150 struct cgrp_cset_link *link, *tmp_link; 1151 1152 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1153 list_del(&link->cset_link); 1154 kfree(link); 1155 } 1156 } 1157 1158 /** 1159 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1160 * @count: the number of links to allocate 1161 * @tmp_links: list_head the allocated links are put on 1162 * 1163 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1164 * through ->cset_link. Returns 0 on success or -errno. 1165 */ 1166 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1167 { 1168 struct cgrp_cset_link *link; 1169 int i; 1170 1171 INIT_LIST_HEAD(tmp_links); 1172 1173 for (i = 0; i < count; i++) { 1174 link = kzalloc(sizeof(*link), GFP_KERNEL); 1175 if (!link) { 1176 free_cgrp_cset_links(tmp_links); 1177 return -ENOMEM; 1178 } 1179 list_add(&link->cset_link, tmp_links); 1180 } 1181 return 0; 1182 } 1183 1184 /** 1185 * link_css_set - a helper function to link a css_set to a cgroup 1186 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1187 * @cset: the css_set to be linked 1188 * @cgrp: the destination cgroup 1189 */ 1190 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1191 struct cgroup *cgrp) 1192 { 1193 struct cgrp_cset_link *link; 1194 1195 BUG_ON(list_empty(tmp_links)); 1196 1197 if (cgroup_on_dfl(cgrp)) 1198 cset->dfl_cgrp = cgrp; 1199 1200 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1201 link->cset = cset; 1202 link->cgrp = cgrp; 1203 1204 /* 1205 * Always add links to the tail of the lists so that the lists are 1206 * in chronological order. 1207 */ 1208 list_move_tail(&link->cset_link, &cgrp->cset_links); 1209 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1210 1211 if (cgroup_parent(cgrp)) 1212 cgroup_get_live(cgrp); 1213 } 1214 1215 /** 1216 * find_css_set - return a new css_set with one cgroup updated 1217 * @old_cset: the baseline css_set 1218 * @cgrp: the cgroup to be updated 1219 * 1220 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1221 * substituted into the appropriate hierarchy. 1222 */ 1223 static struct css_set *find_css_set(struct css_set *old_cset, 1224 struct cgroup *cgrp) 1225 { 1226 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1227 struct css_set *cset; 1228 struct list_head tmp_links; 1229 struct cgrp_cset_link *link; 1230 struct cgroup_subsys *ss; 1231 unsigned long key; 1232 int ssid; 1233 1234 lockdep_assert_held(&cgroup_mutex); 1235 1236 /* First see if we already have a cgroup group that matches 1237 * the desired set */ 1238 spin_lock_irq(&css_set_lock); 1239 cset = find_existing_css_set(old_cset, cgrp, template); 1240 if (cset) 1241 get_css_set(cset); 1242 spin_unlock_irq(&css_set_lock); 1243 1244 if (cset) 1245 return cset; 1246 1247 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1248 if (!cset) 1249 return NULL; 1250 1251 /* Allocate all the cgrp_cset_link objects that we'll need */ 1252 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1253 kfree(cset); 1254 return NULL; 1255 } 1256 1257 refcount_set(&cset->refcount, 1); 1258 cset->dom_cset = cset; 1259 INIT_LIST_HEAD(&cset->tasks); 1260 INIT_LIST_HEAD(&cset->mg_tasks); 1261 INIT_LIST_HEAD(&cset->dying_tasks); 1262 INIT_LIST_HEAD(&cset->task_iters); 1263 INIT_LIST_HEAD(&cset->threaded_csets); 1264 INIT_HLIST_NODE(&cset->hlist); 1265 INIT_LIST_HEAD(&cset->cgrp_links); 1266 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1267 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1268 INIT_LIST_HEAD(&cset->mg_node); 1269 1270 /* Copy the set of subsystem state objects generated in 1271 * find_existing_css_set() */ 1272 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1273 1274 spin_lock_irq(&css_set_lock); 1275 /* Add reference counts and links from the new css_set. */ 1276 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1277 struct cgroup *c = link->cgrp; 1278 1279 if (c->root == cgrp->root) 1280 c = cgrp; 1281 link_css_set(&tmp_links, cset, c); 1282 } 1283 1284 BUG_ON(!list_empty(&tmp_links)); 1285 1286 css_set_count++; 1287 1288 /* Add @cset to the hash table */ 1289 key = css_set_hash(cset->subsys); 1290 hash_add(css_set_table, &cset->hlist, key); 1291 1292 for_each_subsys(ss, ssid) { 1293 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1294 1295 list_add_tail(&cset->e_cset_node[ssid], 1296 &css->cgroup->e_csets[ssid]); 1297 css_get(css); 1298 } 1299 1300 spin_unlock_irq(&css_set_lock); 1301 1302 /* 1303 * If @cset should be threaded, look up the matching dom_cset and 1304 * link them up. We first fully initialize @cset then look for the 1305 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1306 * to stay empty until we return. 1307 */ 1308 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1309 struct css_set *dcset; 1310 1311 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1312 if (!dcset) { 1313 put_css_set(cset); 1314 return NULL; 1315 } 1316 1317 spin_lock_irq(&css_set_lock); 1318 cset->dom_cset = dcset; 1319 list_add_tail(&cset->threaded_csets_node, 1320 &dcset->threaded_csets); 1321 spin_unlock_irq(&css_set_lock); 1322 } 1323 1324 return cset; 1325 } 1326 1327 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1328 { 1329 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1330 1331 return root_cgrp->root; 1332 } 1333 1334 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1335 { 1336 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1337 1338 /* 1339 * see the comment above CGRP_ROOT_FAVOR_DYNMODS definition. 1340 * favordynmods can flip while task is between 1341 * cgroup_threadgroup_change_begin() and end(), so down_write global 1342 * cgroup_threadgroup_rwsem to synchronize them. 1343 * 1344 * Once cgroup_enable_per_threadgroup_rwsem is enabled, holding 1345 * cgroup_threadgroup_rwsem doesn't exlude tasks between 1346 * cgroup_thread_group_change_begin() and end() and thus it's unsafe to 1347 * turn off. As the scenario is unlikely, simply disallow disabling once 1348 * enabled and print out a warning. 1349 */ 1350 percpu_down_write(&cgroup_threadgroup_rwsem); 1351 if (favor && !favoring) { 1352 cgroup_enable_per_threadgroup_rwsem = true; 1353 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1354 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1355 } else if (!favor && favoring) { 1356 if (cgroup_enable_per_threadgroup_rwsem) 1357 pr_warn_once("cgroup favordynmods: per threadgroup rwsem mechanism can't be disabled\n"); 1358 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1359 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1360 } 1361 percpu_up_write(&cgroup_threadgroup_rwsem); 1362 } 1363 1364 static int cgroup_init_root_id(struct cgroup_root *root) 1365 { 1366 int id; 1367 1368 lockdep_assert_held(&cgroup_mutex); 1369 1370 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1371 if (id < 0) 1372 return id; 1373 1374 root->hierarchy_id = id; 1375 return 0; 1376 } 1377 1378 static void cgroup_exit_root_id(struct cgroup_root *root) 1379 { 1380 lockdep_assert_held(&cgroup_mutex); 1381 1382 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1383 } 1384 1385 void cgroup_free_root(struct cgroup_root *root) 1386 { 1387 kfree_rcu(root, rcu); 1388 } 1389 1390 static void cgroup_destroy_root(struct cgroup_root *root) 1391 { 1392 struct cgroup *cgrp = &root->cgrp; 1393 struct cgrp_cset_link *link, *tmp_link; 1394 int ret; 1395 1396 trace_cgroup_destroy_root(root); 1397 1398 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1399 1400 BUG_ON(atomic_read(&root->nr_cgrps)); 1401 BUG_ON(!list_empty(&cgrp->self.children)); 1402 1403 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 1404 CGROUP_LIFETIME_OFFLINE, cgrp); 1405 WARN_ON_ONCE(notifier_to_errno(ret)); 1406 1407 /* Rebind all subsystems back to the default hierarchy */ 1408 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1409 1410 /* 1411 * Release all the links from cset_links to this hierarchy's 1412 * root cgroup 1413 */ 1414 spin_lock_irq(&css_set_lock); 1415 1416 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1417 list_del(&link->cset_link); 1418 list_del(&link->cgrp_link); 1419 kfree(link); 1420 } 1421 1422 spin_unlock_irq(&css_set_lock); 1423 1424 WARN_ON_ONCE(list_empty(&root->root_list)); 1425 list_del_rcu(&root->root_list); 1426 cgroup_root_count--; 1427 1428 if (!have_favordynmods) 1429 cgroup_favor_dynmods(root, false); 1430 1431 cgroup_exit_root_id(root); 1432 1433 cgroup_unlock(); 1434 1435 kernfs_destroy_root(root->kf_root); 1436 cgroup_free_root(root); 1437 } 1438 1439 /* 1440 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1441 */ 1442 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1443 struct cgroup_root *root) 1444 { 1445 struct cgroup *res_cgroup = NULL; 1446 1447 if (cset == &init_css_set) { 1448 res_cgroup = &root->cgrp; 1449 } else if (root == &cgrp_dfl_root) { 1450 res_cgroup = cset->dfl_cgrp; 1451 } else { 1452 struct cgrp_cset_link *link; 1453 lockdep_assert_held(&css_set_lock); 1454 1455 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1456 struct cgroup *c = link->cgrp; 1457 1458 if (c->root == root) { 1459 res_cgroup = c; 1460 break; 1461 } 1462 } 1463 } 1464 1465 /* 1466 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1467 * before we remove the cgroup root from the root_list. Consequently, 1468 * when accessing a cgroup root, the cset_link may have already been 1469 * freed, resulting in a NULL res_cgroup. However, by holding the 1470 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1471 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1472 * check. 1473 */ 1474 return res_cgroup; 1475 } 1476 1477 /* 1478 * look up cgroup associated with current task's cgroup namespace on the 1479 * specified hierarchy 1480 */ 1481 static struct cgroup * 1482 current_cgns_cgroup_from_root(struct cgroup_root *root) 1483 { 1484 struct cgroup *res = NULL; 1485 struct css_set *cset; 1486 1487 lockdep_assert_held(&css_set_lock); 1488 1489 rcu_read_lock(); 1490 1491 cset = current->nsproxy->cgroup_ns->root_cset; 1492 res = __cset_cgroup_from_root(cset, root); 1493 1494 rcu_read_unlock(); 1495 1496 /* 1497 * The namespace_sem is held by current, so the root cgroup can't 1498 * be umounted. Therefore, we can ensure that the res is non-NULL. 1499 */ 1500 WARN_ON_ONCE(!res); 1501 return res; 1502 } 1503 1504 /* 1505 * Look up cgroup associated with current task's cgroup namespace on the default 1506 * hierarchy. 1507 * 1508 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1509 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1510 * pointers. 1511 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1512 * - As a bonus returned cgrp is pinned with the current because it cannot 1513 * switch cgroup_ns asynchronously. 1514 */ 1515 static struct cgroup *current_cgns_cgroup_dfl(void) 1516 { 1517 struct css_set *cset; 1518 1519 if (current->nsproxy) { 1520 cset = current->nsproxy->cgroup_ns->root_cset; 1521 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1522 } else { 1523 /* 1524 * NOTE: This function may be called from bpf_cgroup_from_id() 1525 * on a task which has already passed exit_task_namespaces() and 1526 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1527 * cgroups visible for lookups. 1528 */ 1529 return &cgrp_dfl_root.cgrp; 1530 } 1531 } 1532 1533 /* look up cgroup associated with given css_set on the specified hierarchy */ 1534 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1535 struct cgroup_root *root) 1536 { 1537 lockdep_assert_held(&css_set_lock); 1538 1539 return __cset_cgroup_from_root(cset, root); 1540 } 1541 1542 /* 1543 * Return the cgroup for "task" from the given hierarchy. Must be 1544 * called with css_set_lock held to prevent task's groups from being modified. 1545 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1546 * cgroup root from being destroyed. 1547 */ 1548 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1549 struct cgroup_root *root) 1550 { 1551 /* 1552 * No need to lock the task - since we hold css_set_lock the 1553 * task can't change groups. 1554 */ 1555 return cset_cgroup_from_root(task_css_set(task), root); 1556 } 1557 1558 /* 1559 * A task must hold cgroup_mutex to modify cgroups. 1560 * 1561 * Any task can increment and decrement the count field without lock. 1562 * So in general, code holding cgroup_mutex can't rely on the count 1563 * field not changing. However, if the count goes to zero, then only 1564 * cgroup_attach_task() can increment it again. Because a count of zero 1565 * means that no tasks are currently attached, therefore there is no 1566 * way a task attached to that cgroup can fork (the other way to 1567 * increment the count). So code holding cgroup_mutex can safely 1568 * assume that if the count is zero, it will stay zero. Similarly, if 1569 * a task holds cgroup_mutex on a cgroup with zero count, it 1570 * knows that the cgroup won't be removed, as cgroup_rmdir() 1571 * needs that mutex. 1572 * 1573 * A cgroup can only be deleted if both its 'count' of using tasks 1574 * is zero, and its list of 'children' cgroups is empty. Since all 1575 * tasks in the system use _some_ cgroup, and since there is always at 1576 * least one task in the system (init, pid == 1), therefore, root cgroup 1577 * always has either children cgroups and/or using tasks. So we don't 1578 * need a special hack to ensure that root cgroup cannot be deleted. 1579 * 1580 * P.S. One more locking exception. RCU is used to guard the 1581 * update of a tasks cgroup pointer by cgroup_attach_task() 1582 */ 1583 1584 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1585 1586 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1587 char *buf) 1588 { 1589 struct cgroup_subsys *ss = cft->ss; 1590 1591 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1592 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1593 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1594 1595 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1596 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1597 cft->name); 1598 } else { 1599 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1600 } 1601 return buf; 1602 } 1603 1604 /** 1605 * cgroup_file_mode - deduce file mode of a control file 1606 * @cft: the control file in question 1607 * 1608 * S_IRUGO for read, S_IWUSR for write. 1609 */ 1610 static umode_t cgroup_file_mode(const struct cftype *cft) 1611 { 1612 umode_t mode = 0; 1613 1614 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1615 mode |= S_IRUGO; 1616 1617 if (cft->write_u64 || cft->write_s64 || cft->write) { 1618 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1619 mode |= S_IWUGO; 1620 else 1621 mode |= S_IWUSR; 1622 } 1623 1624 return mode; 1625 } 1626 1627 /** 1628 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1629 * @subtree_control: the new subtree_control mask to consider 1630 * @this_ss_mask: available subsystems 1631 * 1632 * On the default hierarchy, a subsystem may request other subsystems to be 1633 * enabled together through its ->depends_on mask. In such cases, more 1634 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1635 * 1636 * This function calculates which subsystems need to be enabled if 1637 * @subtree_control is to be applied while restricted to @this_ss_mask. 1638 */ 1639 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1640 { 1641 u16 cur_ss_mask = subtree_control; 1642 struct cgroup_subsys *ss; 1643 int ssid; 1644 1645 lockdep_assert_held(&cgroup_mutex); 1646 1647 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1648 1649 while (true) { 1650 u16 new_ss_mask = cur_ss_mask; 1651 1652 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1653 new_ss_mask |= ss->depends_on; 1654 } while_each_subsys_mask(); 1655 1656 /* 1657 * Mask out subsystems which aren't available. This can 1658 * happen only if some depended-upon subsystems were bound 1659 * to non-default hierarchies. 1660 */ 1661 new_ss_mask &= this_ss_mask; 1662 1663 if (new_ss_mask == cur_ss_mask) 1664 break; 1665 cur_ss_mask = new_ss_mask; 1666 } 1667 1668 return cur_ss_mask; 1669 } 1670 1671 /** 1672 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1673 * @kn: the kernfs_node being serviced 1674 * 1675 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1676 * the method finishes if locking succeeded. Note that once this function 1677 * returns the cgroup returned by cgroup_kn_lock_live() may become 1678 * inaccessible any time. If the caller intends to continue to access the 1679 * cgroup, it should pin it before invoking this function. 1680 */ 1681 void cgroup_kn_unlock(struct kernfs_node *kn) 1682 { 1683 struct cgroup *cgrp; 1684 1685 if (kernfs_type(kn) == KERNFS_DIR) 1686 cgrp = kn->priv; 1687 else 1688 cgrp = kn_priv(kn); 1689 1690 cgroup_unlock(); 1691 1692 kernfs_unbreak_active_protection(kn); 1693 cgroup_put(cgrp); 1694 } 1695 1696 /** 1697 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1698 * @kn: the kernfs_node being serviced 1699 * @drain_offline: perform offline draining on the cgroup 1700 * 1701 * This helper is to be used by a cgroup kernfs method currently servicing 1702 * @kn. It breaks the active protection, performs cgroup locking and 1703 * verifies that the associated cgroup is alive. Returns the cgroup if 1704 * alive; otherwise, %NULL. A successful return should be undone by a 1705 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1706 * cgroup is drained of offlining csses before return. 1707 * 1708 * Any cgroup kernfs method implementation which requires locking the 1709 * associated cgroup should use this helper. It avoids nesting cgroup 1710 * locking under kernfs active protection and allows all kernfs operations 1711 * including self-removal. 1712 */ 1713 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1714 { 1715 struct cgroup *cgrp; 1716 1717 if (kernfs_type(kn) == KERNFS_DIR) 1718 cgrp = kn->priv; 1719 else 1720 cgrp = kn_priv(kn); 1721 1722 /* 1723 * We're gonna grab cgroup_mutex which nests outside kernfs 1724 * active_ref. cgroup liveliness check alone provides enough 1725 * protection against removal. Ensure @cgrp stays accessible and 1726 * break the active_ref protection. 1727 */ 1728 if (!cgroup_tryget(cgrp)) 1729 return NULL; 1730 kernfs_break_active_protection(kn); 1731 1732 if (drain_offline) 1733 cgroup_lock_and_drain_offline(cgrp); 1734 else 1735 cgroup_lock(); 1736 1737 if (!cgroup_is_dead(cgrp)) 1738 return cgrp; 1739 1740 cgroup_kn_unlock(kn); 1741 return NULL; 1742 } 1743 1744 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1745 { 1746 char name[CGROUP_FILE_NAME_MAX]; 1747 1748 lockdep_assert_held(&cgroup_mutex); 1749 1750 if (cft->file_offset) { 1751 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1752 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1753 1754 spin_lock_irq(&cgroup_file_kn_lock); 1755 cfile->kn = NULL; 1756 spin_unlock_irq(&cgroup_file_kn_lock); 1757 1758 timer_delete_sync(&cfile->notify_timer); 1759 } 1760 1761 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1762 } 1763 1764 /** 1765 * css_clear_dir - remove subsys files in a cgroup directory 1766 * @css: target css 1767 */ 1768 static void css_clear_dir(struct cgroup_subsys_state *css) 1769 { 1770 struct cgroup *cgrp = css->cgroup; 1771 struct cftype *cfts; 1772 1773 if (!(css->flags & CSS_VISIBLE)) 1774 return; 1775 1776 css->flags &= ~CSS_VISIBLE; 1777 1778 if (css_is_self(css)) { 1779 if (cgroup_on_dfl(cgrp)) { 1780 cgroup_addrm_files(css, cgrp, 1781 cgroup_base_files, false); 1782 if (cgroup_psi_enabled()) 1783 cgroup_addrm_files(css, cgrp, 1784 cgroup_psi_files, false); 1785 } else { 1786 cgroup_addrm_files(css, cgrp, 1787 cgroup1_base_files, false); 1788 } 1789 } else { 1790 list_for_each_entry(cfts, &css->ss->cfts, node) 1791 cgroup_addrm_files(css, cgrp, cfts, false); 1792 } 1793 } 1794 1795 /** 1796 * css_populate_dir - create subsys files in a cgroup directory 1797 * @css: target css 1798 * 1799 * On failure, no file is added. 1800 */ 1801 static int css_populate_dir(struct cgroup_subsys_state *css) 1802 { 1803 struct cgroup *cgrp = css->cgroup; 1804 struct cftype *cfts, *failed_cfts; 1805 int ret; 1806 1807 if (css->flags & CSS_VISIBLE) 1808 return 0; 1809 1810 if (css_is_self(css)) { 1811 if (cgroup_on_dfl(cgrp)) { 1812 ret = cgroup_addrm_files(css, cgrp, 1813 cgroup_base_files, true); 1814 if (ret < 0) 1815 return ret; 1816 1817 if (cgroup_psi_enabled()) { 1818 ret = cgroup_addrm_files(css, cgrp, 1819 cgroup_psi_files, true); 1820 if (ret < 0) { 1821 cgroup_addrm_files(css, cgrp, 1822 cgroup_base_files, false); 1823 return ret; 1824 } 1825 } 1826 } else { 1827 ret = cgroup_addrm_files(css, cgrp, 1828 cgroup1_base_files, true); 1829 if (ret < 0) 1830 return ret; 1831 } 1832 } else { 1833 list_for_each_entry(cfts, &css->ss->cfts, node) { 1834 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1835 if (ret < 0) { 1836 failed_cfts = cfts; 1837 goto err; 1838 } 1839 } 1840 } 1841 1842 css->flags |= CSS_VISIBLE; 1843 1844 return 0; 1845 err: 1846 list_for_each_entry(cfts, &css->ss->cfts, node) { 1847 if (cfts == failed_cfts) 1848 break; 1849 cgroup_addrm_files(css, cgrp, cfts, false); 1850 } 1851 return ret; 1852 } 1853 1854 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1855 { 1856 struct cgroup *dcgrp = &dst_root->cgrp; 1857 struct cgroup_subsys *ss; 1858 int ssid, ret; 1859 u16 dfl_disable_ss_mask = 0; 1860 1861 lockdep_assert_held(&cgroup_mutex); 1862 1863 do_each_subsys_mask(ss, ssid, ss_mask) { 1864 /* 1865 * If @ss has non-root csses attached to it, can't move. 1866 * If @ss is an implicit controller, it is exempt from this 1867 * rule and can be stolen. 1868 */ 1869 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1870 !ss->implicit_on_dfl) 1871 return -EBUSY; 1872 1873 /* can't move between two non-dummy roots either */ 1874 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1875 return -EBUSY; 1876 1877 /* 1878 * Collect ssid's that need to be disabled from default 1879 * hierarchy. 1880 */ 1881 if (ss->root == &cgrp_dfl_root) 1882 dfl_disable_ss_mask |= 1 << ssid; 1883 1884 } while_each_subsys_mask(); 1885 1886 if (dfl_disable_ss_mask) { 1887 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1888 1889 /* 1890 * Controllers from default hierarchy that need to be rebound 1891 * are all disabled together in one go. 1892 */ 1893 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1894 WARN_ON(cgroup_apply_control(scgrp)); 1895 cgroup_finalize_control(scgrp, 0); 1896 } 1897 1898 do_each_subsys_mask(ss, ssid, ss_mask) { 1899 struct cgroup_root *src_root = ss->root; 1900 struct cgroup *scgrp = &src_root->cgrp; 1901 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1902 struct css_set *cset, *cset_pos; 1903 struct css_task_iter *it; 1904 1905 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1906 1907 if (src_root != &cgrp_dfl_root) { 1908 /* disable from the source */ 1909 src_root->subsys_mask &= ~(1 << ssid); 1910 WARN_ON(cgroup_apply_control(scgrp)); 1911 cgroup_finalize_control(scgrp, 0); 1912 } 1913 1914 /* rebind */ 1915 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1916 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1917 ss->root = dst_root; 1918 1919 spin_lock_irq(&css_set_lock); 1920 css->cgroup = dcgrp; 1921 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1922 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1923 e_cset_node[ss->id]) { 1924 list_move_tail(&cset->e_cset_node[ss->id], 1925 &dcgrp->e_csets[ss->id]); 1926 /* 1927 * all css_sets of scgrp together in same order to dcgrp, 1928 * patch in-flight iterators to preserve correct iteration. 1929 * since the iterator is always advanced right away and 1930 * finished when it->cset_pos meets it->cset_head, so only 1931 * update it->cset_head is enough here. 1932 */ 1933 list_for_each_entry(it, &cset->task_iters, iters_node) 1934 if (it->cset_head == &scgrp->e_csets[ss->id]) 1935 it->cset_head = &dcgrp->e_csets[ss->id]; 1936 } 1937 spin_unlock_irq(&css_set_lock); 1938 1939 /* default hierarchy doesn't enable controllers by default */ 1940 dst_root->subsys_mask |= 1 << ssid; 1941 if (dst_root == &cgrp_dfl_root) { 1942 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1943 } else { 1944 dcgrp->subtree_control |= 1 << ssid; 1945 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1946 } 1947 1948 ret = cgroup_apply_control(dcgrp); 1949 if (ret) 1950 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1951 ss->name, ret); 1952 1953 if (ss->bind) 1954 ss->bind(css); 1955 } while_each_subsys_mask(); 1956 1957 kernfs_activate(dcgrp->kn); 1958 return 0; 1959 } 1960 1961 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1962 struct kernfs_root *kf_root) 1963 { 1964 int len = 0; 1965 char *buf = NULL; 1966 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1967 struct cgroup *ns_cgroup; 1968 1969 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1970 if (!buf) 1971 return -ENOMEM; 1972 1973 spin_lock_irq(&css_set_lock); 1974 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1975 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1976 spin_unlock_irq(&css_set_lock); 1977 1978 if (len == -E2BIG) 1979 len = -ERANGE; 1980 else if (len > 0) { 1981 seq_escape(sf, buf, " \t\n\\"); 1982 len = 0; 1983 } 1984 kfree(buf); 1985 return len; 1986 } 1987 1988 enum cgroup2_param { 1989 Opt_nsdelegate, 1990 Opt_favordynmods, 1991 Opt_memory_localevents, 1992 Opt_memory_recursiveprot, 1993 Opt_memory_hugetlb_accounting, 1994 Opt_pids_localevents, 1995 nr__cgroup2_params 1996 }; 1997 1998 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1999 fsparam_flag("nsdelegate", Opt_nsdelegate), 2000 fsparam_flag("favordynmods", Opt_favordynmods), 2001 fsparam_flag("memory_localevents", Opt_memory_localevents), 2002 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 2003 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 2004 fsparam_flag("pids_localevents", Opt_pids_localevents), 2005 {} 2006 }; 2007 2008 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 2009 { 2010 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2011 struct fs_parse_result result; 2012 int opt; 2013 2014 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 2015 if (opt < 0) 2016 return opt; 2017 2018 switch (opt) { 2019 case Opt_nsdelegate: 2020 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 2021 return 0; 2022 case Opt_favordynmods: 2023 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2024 return 0; 2025 case Opt_memory_localevents: 2026 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2027 return 0; 2028 case Opt_memory_recursiveprot: 2029 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2030 return 0; 2031 case Opt_memory_hugetlb_accounting: 2032 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2033 return 0; 2034 case Opt_pids_localevents: 2035 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2036 return 0; 2037 } 2038 return -EINVAL; 2039 } 2040 2041 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 2042 { 2043 struct cgroup_file_ctx *ctx = of->priv; 2044 2045 return &ctx->peak; 2046 } 2047 2048 static void apply_cgroup_root_flags(unsigned int root_flags) 2049 { 2050 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 2051 if (root_flags & CGRP_ROOT_NS_DELEGATE) 2052 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 2053 else 2054 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 2055 2056 cgroup_favor_dynmods(&cgrp_dfl_root, 2057 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 2058 2059 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2060 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2061 else 2062 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2063 2064 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2065 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2066 else 2067 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2068 2069 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2070 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2071 else 2072 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2073 2074 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2075 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2076 else 2077 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2078 } 2079 } 2080 2081 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2082 { 2083 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2084 seq_puts(seq, ",nsdelegate"); 2085 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2086 seq_puts(seq, ",favordynmods"); 2087 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2088 seq_puts(seq, ",memory_localevents"); 2089 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2090 seq_puts(seq, ",memory_recursiveprot"); 2091 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2092 seq_puts(seq, ",memory_hugetlb_accounting"); 2093 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2094 seq_puts(seq, ",pids_localevents"); 2095 return 0; 2096 } 2097 2098 static int cgroup_reconfigure(struct fs_context *fc) 2099 { 2100 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2101 2102 apply_cgroup_root_flags(ctx->flags); 2103 return 0; 2104 } 2105 2106 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2107 { 2108 struct cgroup_subsys *ss; 2109 int ssid; 2110 2111 INIT_LIST_HEAD(&cgrp->self.sibling); 2112 INIT_LIST_HEAD(&cgrp->self.children); 2113 INIT_LIST_HEAD(&cgrp->cset_links); 2114 INIT_LIST_HEAD(&cgrp->pidlists); 2115 mutex_init(&cgrp->pidlist_mutex); 2116 cgrp->self.cgroup = cgrp; 2117 cgrp->self.flags |= CSS_ONLINE; 2118 cgrp->dom_cgrp = cgrp; 2119 cgrp->max_descendants = INT_MAX; 2120 cgrp->max_depth = INT_MAX; 2121 prev_cputime_init(&cgrp->prev_cputime); 2122 2123 for_each_subsys(ss, ssid) 2124 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2125 2126 #ifdef CONFIG_CGROUP_BPF 2127 for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++) 2128 cgrp->bpf.revisions[i] = 1; 2129 #endif 2130 2131 init_waitqueue_head(&cgrp->offline_waitq); 2132 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2133 } 2134 2135 void init_cgroup_root(struct cgroup_fs_context *ctx) 2136 { 2137 struct cgroup_root *root = ctx->root; 2138 struct cgroup *cgrp = &root->cgrp; 2139 2140 INIT_LIST_HEAD_RCU(&root->root_list); 2141 atomic_set(&root->nr_cgrps, 1); 2142 cgrp->root = root; 2143 init_cgroup_housekeeping(cgrp); 2144 2145 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2146 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2147 if (ctx->release_agent) 2148 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2149 if (ctx->name) 2150 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2151 if (ctx->cpuset_clone_children) 2152 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2153 } 2154 2155 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2156 { 2157 LIST_HEAD(tmp_links); 2158 struct cgroup *root_cgrp = &root->cgrp; 2159 struct kernfs_syscall_ops *kf_sops; 2160 struct css_set *cset; 2161 int i, ret; 2162 2163 lockdep_assert_held(&cgroup_mutex); 2164 2165 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2166 0, GFP_KERNEL); 2167 if (ret) 2168 goto out; 2169 2170 /* 2171 * We're accessing css_set_count without locking css_set_lock here, 2172 * but that's OK - it can only be increased by someone holding 2173 * cgroup_lock, and that's us. Later rebinding may disable 2174 * controllers on the default hierarchy and thus create new csets, 2175 * which can't be more than the existing ones. Allocate 2x. 2176 */ 2177 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2178 if (ret) 2179 goto cancel_ref; 2180 2181 ret = cgroup_init_root_id(root); 2182 if (ret) 2183 goto cancel_ref; 2184 2185 kf_sops = root == &cgrp_dfl_root ? 2186 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2187 2188 root->kf_root = kernfs_create_root(kf_sops, 2189 KERNFS_ROOT_CREATE_DEACTIVATED | 2190 KERNFS_ROOT_SUPPORT_EXPORTOP | 2191 KERNFS_ROOT_SUPPORT_USER_XATTR | 2192 KERNFS_ROOT_INVARIANT_PARENT, 2193 root_cgrp); 2194 if (IS_ERR(root->kf_root)) { 2195 ret = PTR_ERR(root->kf_root); 2196 goto exit_root_id; 2197 } 2198 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2199 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2200 root_cgrp->ancestors[0] = root_cgrp; 2201 2202 ret = css_populate_dir(&root_cgrp->self); 2203 if (ret) 2204 goto destroy_root; 2205 2206 ret = css_rstat_init(&root_cgrp->self); 2207 if (ret) 2208 goto destroy_root; 2209 2210 ret = rebind_subsystems(root, ss_mask); 2211 if (ret) 2212 goto exit_stats; 2213 2214 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 2215 CGROUP_LIFETIME_ONLINE, root_cgrp); 2216 WARN_ON_ONCE(notifier_to_errno(ret)); 2217 2218 trace_cgroup_setup_root(root); 2219 2220 /* 2221 * There must be no failure case after here, since rebinding takes 2222 * care of subsystems' refcounts, which are explicitly dropped in 2223 * the failure exit path. 2224 */ 2225 list_add_rcu(&root->root_list, &cgroup_roots); 2226 cgroup_root_count++; 2227 2228 /* 2229 * Link the root cgroup in this hierarchy into all the css_set 2230 * objects. 2231 */ 2232 spin_lock_irq(&css_set_lock); 2233 hash_for_each(css_set_table, i, cset, hlist) { 2234 link_css_set(&tmp_links, cset, root_cgrp); 2235 if (css_set_populated(cset)) 2236 cgroup_update_populated(root_cgrp, true); 2237 } 2238 spin_unlock_irq(&css_set_lock); 2239 2240 BUG_ON(!list_empty(&root_cgrp->self.children)); 2241 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2242 2243 ret = 0; 2244 goto out; 2245 2246 exit_stats: 2247 css_rstat_exit(&root_cgrp->self); 2248 destroy_root: 2249 kernfs_destroy_root(root->kf_root); 2250 root->kf_root = NULL; 2251 exit_root_id: 2252 cgroup_exit_root_id(root); 2253 cancel_ref: 2254 percpu_ref_exit(&root_cgrp->self.refcnt); 2255 out: 2256 free_cgrp_cset_links(&tmp_links); 2257 return ret; 2258 } 2259 2260 int cgroup_do_get_tree(struct fs_context *fc) 2261 { 2262 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2263 int ret; 2264 2265 ctx->kfc.root = ctx->root->kf_root; 2266 if (fc->fs_type == &cgroup2_fs_type) 2267 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2268 else 2269 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2270 ret = kernfs_get_tree(fc); 2271 2272 /* 2273 * In non-init cgroup namespace, instead of root cgroup's dentry, 2274 * we return the dentry corresponding to the cgroupns->root_cgrp. 2275 */ 2276 if (!ret && ctx->ns != &init_cgroup_ns) { 2277 struct dentry *nsdentry; 2278 struct super_block *sb = fc->root->d_sb; 2279 struct cgroup *cgrp; 2280 2281 cgroup_lock(); 2282 spin_lock_irq(&css_set_lock); 2283 2284 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2285 2286 spin_unlock_irq(&css_set_lock); 2287 cgroup_unlock(); 2288 2289 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2290 dput(fc->root); 2291 if (IS_ERR(nsdentry)) { 2292 deactivate_locked_super(sb); 2293 ret = PTR_ERR(nsdentry); 2294 nsdentry = NULL; 2295 } 2296 fc->root = nsdentry; 2297 } 2298 2299 if (!ctx->kfc.new_sb_created) 2300 cgroup_put(&ctx->root->cgrp); 2301 2302 return ret; 2303 } 2304 2305 /* 2306 * Destroy a cgroup filesystem context. 2307 */ 2308 static void cgroup_fs_context_free(struct fs_context *fc) 2309 { 2310 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2311 2312 kfree(ctx->name); 2313 kfree(ctx->release_agent); 2314 put_cgroup_ns(ctx->ns); 2315 kernfs_free_fs_context(fc); 2316 kfree(ctx); 2317 } 2318 2319 static int cgroup_get_tree(struct fs_context *fc) 2320 { 2321 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2322 int ret; 2323 2324 WRITE_ONCE(cgrp_dfl_visible, true); 2325 cgroup_get_live(&cgrp_dfl_root.cgrp); 2326 ctx->root = &cgrp_dfl_root; 2327 2328 ret = cgroup_do_get_tree(fc); 2329 if (!ret) 2330 apply_cgroup_root_flags(ctx->flags); 2331 return ret; 2332 } 2333 2334 static const struct fs_context_operations cgroup_fs_context_ops = { 2335 .free = cgroup_fs_context_free, 2336 .parse_param = cgroup2_parse_param, 2337 .get_tree = cgroup_get_tree, 2338 .reconfigure = cgroup_reconfigure, 2339 }; 2340 2341 static const struct fs_context_operations cgroup1_fs_context_ops = { 2342 .free = cgroup_fs_context_free, 2343 .parse_param = cgroup1_parse_param, 2344 .get_tree = cgroup1_get_tree, 2345 .reconfigure = cgroup1_reconfigure, 2346 }; 2347 2348 /* 2349 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2350 * we select the namespace we're going to use. 2351 */ 2352 static int cgroup_init_fs_context(struct fs_context *fc) 2353 { 2354 struct cgroup_fs_context *ctx; 2355 2356 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2357 if (!ctx) 2358 return -ENOMEM; 2359 2360 ctx->ns = current->nsproxy->cgroup_ns; 2361 get_cgroup_ns(ctx->ns); 2362 fc->fs_private = &ctx->kfc; 2363 if (fc->fs_type == &cgroup2_fs_type) 2364 fc->ops = &cgroup_fs_context_ops; 2365 else 2366 fc->ops = &cgroup1_fs_context_ops; 2367 put_user_ns(fc->user_ns); 2368 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2369 fc->global = true; 2370 2371 if (have_favordynmods) 2372 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2373 2374 return 0; 2375 } 2376 2377 static void cgroup_kill_sb(struct super_block *sb) 2378 { 2379 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2380 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2381 2382 /* 2383 * If @root doesn't have any children, start killing it. 2384 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2385 * 2386 * And don't kill the default root. 2387 */ 2388 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2389 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2390 percpu_ref_kill(&root->cgrp.self.refcnt); 2391 cgroup_put(&root->cgrp); 2392 kernfs_kill_sb(sb); 2393 } 2394 2395 struct file_system_type cgroup_fs_type = { 2396 .name = "cgroup", 2397 .init_fs_context = cgroup_init_fs_context, 2398 .parameters = cgroup1_fs_parameters, 2399 .kill_sb = cgroup_kill_sb, 2400 .fs_flags = FS_USERNS_MOUNT, 2401 }; 2402 2403 static struct file_system_type cgroup2_fs_type = { 2404 .name = "cgroup2", 2405 .init_fs_context = cgroup_init_fs_context, 2406 .parameters = cgroup2_fs_parameters, 2407 .kill_sb = cgroup_kill_sb, 2408 .fs_flags = FS_USERNS_MOUNT, 2409 }; 2410 2411 #ifdef CONFIG_CPUSETS_V1 2412 enum cpuset_param { 2413 Opt_cpuset_v2_mode, 2414 }; 2415 2416 static const struct fs_parameter_spec cpuset_fs_parameters[] = { 2417 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 2418 {} 2419 }; 2420 2421 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) 2422 { 2423 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2424 struct fs_parse_result result; 2425 int opt; 2426 2427 opt = fs_parse(fc, cpuset_fs_parameters, param, &result); 2428 if (opt < 0) 2429 return opt; 2430 2431 switch (opt) { 2432 case Opt_cpuset_v2_mode: 2433 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 2434 return 0; 2435 } 2436 return -EINVAL; 2437 } 2438 2439 static const struct fs_context_operations cpuset_fs_context_ops = { 2440 .get_tree = cgroup1_get_tree, 2441 .free = cgroup_fs_context_free, 2442 .parse_param = cpuset_parse_param, 2443 }; 2444 2445 /* 2446 * This is ugly, but preserves the userspace API for existing cpuset 2447 * users. If someone tries to mount the "cpuset" filesystem, we 2448 * silently switch it to mount "cgroup" instead 2449 */ 2450 static int cpuset_init_fs_context(struct fs_context *fc) 2451 { 2452 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2453 struct cgroup_fs_context *ctx; 2454 int err; 2455 2456 err = cgroup_init_fs_context(fc); 2457 if (err) { 2458 kfree(agent); 2459 return err; 2460 } 2461 2462 fc->ops = &cpuset_fs_context_ops; 2463 2464 ctx = cgroup_fc2context(fc); 2465 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2466 ctx->flags |= CGRP_ROOT_NOPREFIX; 2467 ctx->release_agent = agent; 2468 2469 get_filesystem(&cgroup_fs_type); 2470 put_filesystem(fc->fs_type); 2471 fc->fs_type = &cgroup_fs_type; 2472 2473 return 0; 2474 } 2475 2476 static struct file_system_type cpuset_fs_type = { 2477 .name = "cpuset", 2478 .init_fs_context = cpuset_init_fs_context, 2479 .parameters = cpuset_fs_parameters, 2480 .fs_flags = FS_USERNS_MOUNT, 2481 }; 2482 #endif 2483 2484 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2485 struct cgroup_namespace *ns) 2486 { 2487 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2488 2489 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2490 } 2491 2492 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2493 struct cgroup_namespace *ns) 2494 { 2495 int ret; 2496 2497 cgroup_lock(); 2498 spin_lock_irq(&css_set_lock); 2499 2500 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2501 2502 spin_unlock_irq(&css_set_lock); 2503 cgroup_unlock(); 2504 2505 return ret; 2506 } 2507 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2508 2509 /** 2510 * cgroup_attach_lock - Lock for ->attach() 2511 * @lock_mode: whether acquire and acquire which rwsem 2512 * @tsk: thread group to lock 2513 * 2514 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2515 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2516 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2517 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2518 * lead to deadlocks. 2519 * 2520 * Bringing up a CPU may involve creating and destroying tasks which requires 2521 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2522 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2523 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2524 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2525 * the threadgroup_rwsem to be released to create new tasks. For more details: 2526 * 2527 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2528 * 2529 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2530 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2531 * CPU hotplug is disabled on entry. 2532 * 2533 * When favordynmods is enabled, take per threadgroup rwsem to reduce overhead 2534 * on dynamic cgroup modifications. see the comment above 2535 * CGRP_ROOT_FAVOR_DYNMODS definition. 2536 * 2537 * tsk is not NULL only when writing to cgroup.procs. 2538 */ 2539 void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode, 2540 struct task_struct *tsk) 2541 { 2542 cpus_read_lock(); 2543 2544 switch (lock_mode) { 2545 case CGRP_ATTACH_LOCK_NONE: 2546 break; 2547 case CGRP_ATTACH_LOCK_GLOBAL: 2548 percpu_down_write(&cgroup_threadgroup_rwsem); 2549 break; 2550 case CGRP_ATTACH_LOCK_PER_THREADGROUP: 2551 down_write(&tsk->signal->cgroup_threadgroup_rwsem); 2552 break; 2553 default: 2554 pr_warn("cgroup: Unexpected attach lock mode."); 2555 break; 2556 } 2557 } 2558 2559 /** 2560 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2561 * @lock_mode: whether release and release which rwsem 2562 * @tsk: thread group to lock 2563 */ 2564 void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode, 2565 struct task_struct *tsk) 2566 { 2567 switch (lock_mode) { 2568 case CGRP_ATTACH_LOCK_NONE: 2569 break; 2570 case CGRP_ATTACH_LOCK_GLOBAL: 2571 percpu_up_write(&cgroup_threadgroup_rwsem); 2572 break; 2573 case CGRP_ATTACH_LOCK_PER_THREADGROUP: 2574 up_write(&tsk->signal->cgroup_threadgroup_rwsem); 2575 break; 2576 default: 2577 pr_warn("cgroup: Unexpected attach lock mode."); 2578 break; 2579 } 2580 2581 cpus_read_unlock(); 2582 } 2583 2584 /** 2585 * cgroup_migrate_add_task - add a migration target task to a migration context 2586 * @task: target task 2587 * @mgctx: target migration context 2588 * 2589 * Add @task, which is a migration target, to @mgctx->tset. This function 2590 * becomes noop if @task doesn't need to be migrated. @task's css_set 2591 * should have been added as a migration source and @task->cg_list will be 2592 * moved from the css_set's tasks list to mg_tasks one. 2593 */ 2594 static void cgroup_migrate_add_task(struct task_struct *task, 2595 struct cgroup_mgctx *mgctx) 2596 { 2597 struct css_set *cset; 2598 2599 lockdep_assert_held(&css_set_lock); 2600 2601 /* @task either already exited or can't exit until the end */ 2602 if (task->flags & PF_EXITING) 2603 return; 2604 2605 /* cgroup_threadgroup_rwsem protects racing against forks */ 2606 WARN_ON_ONCE(list_empty(&task->cg_list)); 2607 2608 cset = task_css_set(task); 2609 if (!cset->mg_src_cgrp) 2610 return; 2611 2612 mgctx->tset.nr_tasks++; 2613 2614 list_move_tail(&task->cg_list, &cset->mg_tasks); 2615 if (list_empty(&cset->mg_node)) 2616 list_add_tail(&cset->mg_node, 2617 &mgctx->tset.src_csets); 2618 if (list_empty(&cset->mg_dst_cset->mg_node)) 2619 list_add_tail(&cset->mg_dst_cset->mg_node, 2620 &mgctx->tset.dst_csets); 2621 } 2622 2623 /** 2624 * cgroup_taskset_first - reset taskset and return the first task 2625 * @tset: taskset of interest 2626 * @dst_cssp: output variable for the destination css 2627 * 2628 * @tset iteration is initialized and the first task is returned. 2629 */ 2630 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2631 struct cgroup_subsys_state **dst_cssp) 2632 { 2633 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2634 tset->cur_task = NULL; 2635 2636 return cgroup_taskset_next(tset, dst_cssp); 2637 } 2638 2639 /** 2640 * cgroup_taskset_next - iterate to the next task in taskset 2641 * @tset: taskset of interest 2642 * @dst_cssp: output variable for the destination css 2643 * 2644 * Return the next task in @tset. Iteration must have been initialized 2645 * with cgroup_taskset_first(). 2646 */ 2647 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2648 struct cgroup_subsys_state **dst_cssp) 2649 { 2650 struct css_set *cset = tset->cur_cset; 2651 struct task_struct *task = tset->cur_task; 2652 2653 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2654 if (!task) 2655 task = list_first_entry(&cset->mg_tasks, 2656 struct task_struct, cg_list); 2657 else 2658 task = list_next_entry(task, cg_list); 2659 2660 if (&task->cg_list != &cset->mg_tasks) { 2661 tset->cur_cset = cset; 2662 tset->cur_task = task; 2663 2664 /* 2665 * This function may be called both before and 2666 * after cgroup_migrate_execute(). The two cases 2667 * can be distinguished by looking at whether @cset 2668 * has its ->mg_dst_cset set. 2669 */ 2670 if (cset->mg_dst_cset) 2671 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2672 else 2673 *dst_cssp = cset->subsys[tset->ssid]; 2674 2675 return task; 2676 } 2677 2678 cset = list_next_entry(cset, mg_node); 2679 task = NULL; 2680 } 2681 2682 return NULL; 2683 } 2684 2685 /** 2686 * cgroup_migrate_execute - migrate a taskset 2687 * @mgctx: migration context 2688 * 2689 * Migrate tasks in @mgctx as setup by migration preparation functions. 2690 * This function fails iff one of the ->can_attach callbacks fails and 2691 * guarantees that either all or none of the tasks in @mgctx are migrated. 2692 * @mgctx is consumed regardless of success. 2693 */ 2694 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2695 { 2696 struct cgroup_taskset *tset = &mgctx->tset; 2697 struct cgroup_subsys *ss; 2698 struct task_struct *task, *tmp_task; 2699 struct css_set *cset, *tmp_cset; 2700 int ssid, failed_ssid, ret; 2701 2702 /* check that we can legitimately attach to the cgroup */ 2703 if (tset->nr_tasks) { 2704 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2705 if (ss->can_attach) { 2706 tset->ssid = ssid; 2707 ret = ss->can_attach(tset); 2708 if (ret) { 2709 failed_ssid = ssid; 2710 goto out_cancel_attach; 2711 } 2712 } 2713 } while_each_subsys_mask(); 2714 } 2715 2716 /* 2717 * Now that we're guaranteed success, proceed to move all tasks to 2718 * the new cgroup. There are no failure cases after here, so this 2719 * is the commit point. 2720 */ 2721 spin_lock_irq(&css_set_lock); 2722 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2723 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2724 struct css_set *from_cset = task_css_set(task); 2725 struct css_set *to_cset = cset->mg_dst_cset; 2726 2727 get_css_set(to_cset); 2728 to_cset->nr_tasks++; 2729 css_set_move_task(task, from_cset, to_cset, true); 2730 from_cset->nr_tasks--; 2731 /* 2732 * If the source or destination cgroup is frozen, 2733 * the task might require to change its state. 2734 */ 2735 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2736 to_cset->dfl_cgrp); 2737 put_css_set_locked(from_cset); 2738 2739 } 2740 } 2741 spin_unlock_irq(&css_set_lock); 2742 2743 /* 2744 * Migration is committed, all target tasks are now on dst_csets. 2745 * Nothing is sensitive to fork() after this point. Notify 2746 * controllers that migration is complete. 2747 */ 2748 tset->csets = &tset->dst_csets; 2749 2750 if (tset->nr_tasks) { 2751 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2752 if (ss->attach) { 2753 tset->ssid = ssid; 2754 ss->attach(tset); 2755 } 2756 } while_each_subsys_mask(); 2757 } 2758 2759 ret = 0; 2760 goto out_release_tset; 2761 2762 out_cancel_attach: 2763 if (tset->nr_tasks) { 2764 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2765 if (ssid == failed_ssid) 2766 break; 2767 if (ss->cancel_attach) { 2768 tset->ssid = ssid; 2769 ss->cancel_attach(tset); 2770 } 2771 } while_each_subsys_mask(); 2772 } 2773 out_release_tset: 2774 spin_lock_irq(&css_set_lock); 2775 list_splice_init(&tset->dst_csets, &tset->src_csets); 2776 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2777 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2778 list_del_init(&cset->mg_node); 2779 } 2780 spin_unlock_irq(&css_set_lock); 2781 2782 /* 2783 * Re-initialize the cgroup_taskset structure in case it is reused 2784 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2785 * iteration. 2786 */ 2787 tset->nr_tasks = 0; 2788 tset->csets = &tset->src_csets; 2789 return ret; 2790 } 2791 2792 /** 2793 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2794 * @dst_cgrp: destination cgroup to test 2795 * 2796 * On the default hierarchy, except for the mixable, (possible) thread root 2797 * and threaded cgroups, subtree_control must be zero for migration 2798 * destination cgroups with tasks so that child cgroups don't compete 2799 * against tasks. 2800 */ 2801 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2802 { 2803 /* v1 doesn't have any restriction */ 2804 if (!cgroup_on_dfl(dst_cgrp)) 2805 return 0; 2806 2807 /* verify @dst_cgrp can host resources */ 2808 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2809 return -EOPNOTSUPP; 2810 2811 /* 2812 * If @dst_cgrp is already or can become a thread root or is 2813 * threaded, it doesn't matter. 2814 */ 2815 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2816 return 0; 2817 2818 /* apply no-internal-process constraint */ 2819 if (dst_cgrp->subtree_control) 2820 return -EBUSY; 2821 2822 return 0; 2823 } 2824 2825 /** 2826 * cgroup_migrate_finish - cleanup after attach 2827 * @mgctx: migration context 2828 * 2829 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2830 * those functions for details. 2831 */ 2832 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2833 { 2834 struct css_set *cset, *tmp_cset; 2835 2836 lockdep_assert_held(&cgroup_mutex); 2837 2838 spin_lock_irq(&css_set_lock); 2839 2840 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2841 mg_src_preload_node) { 2842 cset->mg_src_cgrp = NULL; 2843 cset->mg_dst_cgrp = NULL; 2844 cset->mg_dst_cset = NULL; 2845 list_del_init(&cset->mg_src_preload_node); 2846 put_css_set_locked(cset); 2847 } 2848 2849 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2850 mg_dst_preload_node) { 2851 cset->mg_src_cgrp = NULL; 2852 cset->mg_dst_cgrp = NULL; 2853 cset->mg_dst_cset = NULL; 2854 list_del_init(&cset->mg_dst_preload_node); 2855 put_css_set_locked(cset); 2856 } 2857 2858 spin_unlock_irq(&css_set_lock); 2859 } 2860 2861 /** 2862 * cgroup_migrate_add_src - add a migration source css_set 2863 * @src_cset: the source css_set to add 2864 * @dst_cgrp: the destination cgroup 2865 * @mgctx: migration context 2866 * 2867 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2868 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2869 * up by cgroup_migrate_finish(). 2870 * 2871 * This function may be called without holding cgroup_threadgroup_rwsem 2872 * even if the target is a process. Threads may be created and destroyed 2873 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2874 * into play and the preloaded css_sets are guaranteed to cover all 2875 * migrations. 2876 */ 2877 void cgroup_migrate_add_src(struct css_set *src_cset, 2878 struct cgroup *dst_cgrp, 2879 struct cgroup_mgctx *mgctx) 2880 { 2881 struct cgroup *src_cgrp; 2882 2883 lockdep_assert_held(&cgroup_mutex); 2884 lockdep_assert_held(&css_set_lock); 2885 2886 /* 2887 * If ->dead, @src_set is associated with one or more dead cgroups 2888 * and doesn't contain any migratable tasks. Ignore it early so 2889 * that the rest of migration path doesn't get confused by it. 2890 */ 2891 if (src_cset->dead) 2892 return; 2893 2894 if (!list_empty(&src_cset->mg_src_preload_node)) 2895 return; 2896 2897 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2898 2899 WARN_ON(src_cset->mg_src_cgrp); 2900 WARN_ON(src_cset->mg_dst_cgrp); 2901 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2902 WARN_ON(!list_empty(&src_cset->mg_node)); 2903 2904 src_cset->mg_src_cgrp = src_cgrp; 2905 src_cset->mg_dst_cgrp = dst_cgrp; 2906 get_css_set(src_cset); 2907 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2908 } 2909 2910 /** 2911 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2912 * @mgctx: migration context 2913 * 2914 * Tasks are about to be moved and all the source css_sets have been 2915 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2916 * pins all destination css_sets, links each to its source, and append them 2917 * to @mgctx->preloaded_dst_csets. 2918 * 2919 * This function must be called after cgroup_migrate_add_src() has been 2920 * called on each migration source css_set. After migration is performed 2921 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2922 * @mgctx. 2923 */ 2924 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2925 { 2926 struct css_set *src_cset, *tmp_cset; 2927 2928 lockdep_assert_held(&cgroup_mutex); 2929 2930 /* look up the dst cset for each src cset and link it to src */ 2931 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2932 mg_src_preload_node) { 2933 struct css_set *dst_cset; 2934 struct cgroup_subsys *ss; 2935 int ssid; 2936 2937 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2938 if (!dst_cset) 2939 return -ENOMEM; 2940 2941 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2942 2943 /* 2944 * If src cset equals dst, it's noop. Drop the src. 2945 * cgroup_migrate() will skip the cset too. Note that we 2946 * can't handle src == dst as some nodes are used by both. 2947 */ 2948 if (src_cset == dst_cset) { 2949 src_cset->mg_src_cgrp = NULL; 2950 src_cset->mg_dst_cgrp = NULL; 2951 list_del_init(&src_cset->mg_src_preload_node); 2952 put_css_set(src_cset); 2953 put_css_set(dst_cset); 2954 continue; 2955 } 2956 2957 src_cset->mg_dst_cset = dst_cset; 2958 2959 if (list_empty(&dst_cset->mg_dst_preload_node)) 2960 list_add_tail(&dst_cset->mg_dst_preload_node, 2961 &mgctx->preloaded_dst_csets); 2962 else 2963 put_css_set(dst_cset); 2964 2965 for_each_subsys(ss, ssid) 2966 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2967 mgctx->ss_mask |= 1 << ssid; 2968 } 2969 2970 return 0; 2971 } 2972 2973 /** 2974 * cgroup_migrate - migrate a process or task to a cgroup 2975 * @leader: the leader of the process or the task to migrate 2976 * @threadgroup: whether @leader points to the whole process or a single task 2977 * @mgctx: migration context 2978 * 2979 * Migrate a process or task denoted by @leader. If migrating a process, 2980 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2981 * responsible for invoking cgroup_migrate_add_src() and 2982 * cgroup_migrate_prepare_dst() on the targets before invoking this 2983 * function and following up with cgroup_migrate_finish(). 2984 * 2985 * As long as a controller's ->can_attach() doesn't fail, this function is 2986 * guaranteed to succeed. This means that, excluding ->can_attach() 2987 * failure, when migrating multiple targets, the success or failure can be 2988 * decided for all targets by invoking group_migrate_prepare_dst() before 2989 * actually starting migrating. 2990 */ 2991 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2992 struct cgroup_mgctx *mgctx) 2993 { 2994 struct task_struct *task; 2995 2996 /* 2997 * The following thread iteration should be inside an RCU critical 2998 * section to prevent tasks from being freed while taking the snapshot. 2999 * spin_lock_irq() implies RCU critical section here. 3000 */ 3001 spin_lock_irq(&css_set_lock); 3002 task = leader; 3003 do { 3004 cgroup_migrate_add_task(task, mgctx); 3005 if (!threadgroup) 3006 break; 3007 } while_each_thread(leader, task); 3008 spin_unlock_irq(&css_set_lock); 3009 3010 return cgroup_migrate_execute(mgctx); 3011 } 3012 3013 /** 3014 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 3015 * @dst_cgrp: the cgroup to attach to 3016 * @leader: the task or the leader of the threadgroup to be attached 3017 * @threadgroup: attach the whole threadgroup? 3018 * 3019 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 3020 */ 3021 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 3022 bool threadgroup) 3023 { 3024 DEFINE_CGROUP_MGCTX(mgctx); 3025 struct task_struct *task; 3026 int ret = 0; 3027 3028 /* look up all src csets */ 3029 spin_lock_irq(&css_set_lock); 3030 task = leader; 3031 do { 3032 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 3033 if (!threadgroup) 3034 break; 3035 } while_each_thread(leader, task); 3036 spin_unlock_irq(&css_set_lock); 3037 3038 /* prepare dst csets and commit */ 3039 ret = cgroup_migrate_prepare_dst(&mgctx); 3040 if (!ret) 3041 ret = cgroup_migrate(leader, threadgroup, &mgctx); 3042 3043 cgroup_migrate_finish(&mgctx); 3044 3045 if (!ret) 3046 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 3047 3048 return ret; 3049 } 3050 3051 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 3052 enum cgroup_attach_lock_mode *lock_mode) 3053 { 3054 struct task_struct *tsk; 3055 pid_t pid; 3056 3057 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 3058 return ERR_PTR(-EINVAL); 3059 3060 retry_find_task: 3061 rcu_read_lock(); 3062 if (pid) { 3063 tsk = find_task_by_vpid(pid); 3064 if (!tsk) { 3065 tsk = ERR_PTR(-ESRCH); 3066 goto out_unlock_rcu; 3067 } 3068 } else { 3069 tsk = current; 3070 } 3071 3072 if (threadgroup) 3073 tsk = tsk->group_leader; 3074 3075 /* 3076 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 3077 * If userland migrates such a kthread to a non-root cgroup, it can 3078 * become trapped in a cpuset, or RT kthread may be born in a 3079 * cgroup with no rt_runtime allocated. Just say no. 3080 */ 3081 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 3082 tsk = ERR_PTR(-EINVAL); 3083 goto out_unlock_rcu; 3084 } 3085 get_task_struct(tsk); 3086 rcu_read_unlock(); 3087 3088 /* 3089 * If we migrate a single thread, we don't care about threadgroup 3090 * stability. If the thread is `current`, it won't exit(2) under our 3091 * hands or change PID through exec(2). We exclude 3092 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write callers 3093 * by cgroup_mutex. Therefore, we can skip the global lock. 3094 */ 3095 lockdep_assert_held(&cgroup_mutex); 3096 3097 if (pid || threadgroup) { 3098 if (cgroup_enable_per_threadgroup_rwsem) 3099 *lock_mode = CGRP_ATTACH_LOCK_PER_THREADGROUP; 3100 else 3101 *lock_mode = CGRP_ATTACH_LOCK_GLOBAL; 3102 } else { 3103 *lock_mode = CGRP_ATTACH_LOCK_NONE; 3104 } 3105 3106 cgroup_attach_lock(*lock_mode, tsk); 3107 3108 if (threadgroup) { 3109 if (!thread_group_leader(tsk)) { 3110 /* 3111 * A race with de_thread from another thread's exec() 3112 * may strip us of our leadership. If this happens, 3113 * throw this task away and try again. 3114 */ 3115 cgroup_attach_unlock(*lock_mode, tsk); 3116 put_task_struct(tsk); 3117 goto retry_find_task; 3118 } 3119 } 3120 3121 return tsk; 3122 3123 out_unlock_rcu: 3124 rcu_read_unlock(); 3125 return tsk; 3126 } 3127 3128 void cgroup_procs_write_finish(struct task_struct *task, 3129 enum cgroup_attach_lock_mode lock_mode) 3130 { 3131 cgroup_attach_unlock(lock_mode, task); 3132 3133 /* release reference from cgroup_procs_write_start() */ 3134 put_task_struct(task); 3135 } 3136 3137 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3138 { 3139 struct cgroup_subsys *ss; 3140 bool printed = false; 3141 int ssid; 3142 3143 do_each_subsys_mask(ss, ssid, ss_mask) { 3144 if (printed) 3145 seq_putc(seq, ' '); 3146 seq_puts(seq, ss->name); 3147 printed = true; 3148 } while_each_subsys_mask(); 3149 if (printed) 3150 seq_putc(seq, '\n'); 3151 } 3152 3153 /* show controllers which are enabled from the parent */ 3154 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3155 { 3156 struct cgroup *cgrp = seq_css(seq)->cgroup; 3157 3158 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3159 return 0; 3160 } 3161 3162 /* show controllers which are enabled for a given cgroup's children */ 3163 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3164 { 3165 struct cgroup *cgrp = seq_css(seq)->cgroup; 3166 3167 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3168 return 0; 3169 } 3170 3171 /** 3172 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3173 * @cgrp: root of the subtree to update csses for 3174 * 3175 * @cgrp's control masks have changed and its subtree's css associations 3176 * need to be updated accordingly. This function looks up all css_sets 3177 * which are attached to the subtree, creates the matching updated css_sets 3178 * and migrates the tasks to the new ones. 3179 */ 3180 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3181 { 3182 DEFINE_CGROUP_MGCTX(mgctx); 3183 struct cgroup_subsys_state *d_css; 3184 struct cgroup *dsct; 3185 struct css_set *src_cset; 3186 enum cgroup_attach_lock_mode lock_mode; 3187 bool has_tasks; 3188 int ret; 3189 3190 lockdep_assert_held(&cgroup_mutex); 3191 3192 /* look up all csses currently attached to @cgrp's subtree */ 3193 spin_lock_irq(&css_set_lock); 3194 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3195 struct cgrp_cset_link *link; 3196 3197 /* 3198 * As cgroup_update_dfl_csses() is only called by 3199 * cgroup_apply_control(). The csses associated with the 3200 * given cgrp will not be affected by changes made to 3201 * its subtree_control file. We can skip them. 3202 */ 3203 if (dsct == cgrp) 3204 continue; 3205 3206 list_for_each_entry(link, &dsct->cset_links, cset_link) 3207 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3208 } 3209 spin_unlock_irq(&css_set_lock); 3210 3211 /* 3212 * We need to write-lock threadgroup_rwsem while migrating tasks. 3213 * However, if there are no source csets for @cgrp, changing its 3214 * controllers isn't gonna produce any task migrations and the 3215 * write-locking can be skipped safely. 3216 */ 3217 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3218 3219 if (has_tasks) 3220 lock_mode = CGRP_ATTACH_LOCK_GLOBAL; 3221 else 3222 lock_mode = CGRP_ATTACH_LOCK_NONE; 3223 3224 cgroup_attach_lock(lock_mode, NULL); 3225 3226 /* NULL dst indicates self on default hierarchy */ 3227 ret = cgroup_migrate_prepare_dst(&mgctx); 3228 if (ret) 3229 goto out_finish; 3230 3231 spin_lock_irq(&css_set_lock); 3232 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3233 mg_src_preload_node) { 3234 struct task_struct *task, *ntask; 3235 3236 /* all tasks in src_csets need to be migrated */ 3237 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3238 cgroup_migrate_add_task(task, &mgctx); 3239 } 3240 spin_unlock_irq(&css_set_lock); 3241 3242 ret = cgroup_migrate_execute(&mgctx); 3243 out_finish: 3244 cgroup_migrate_finish(&mgctx); 3245 cgroup_attach_unlock(lock_mode, NULL); 3246 return ret; 3247 } 3248 3249 /** 3250 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3251 * @cgrp: root of the target subtree 3252 * 3253 * Because css offlining is asynchronous, userland may try to re-enable a 3254 * controller while the previous css is still around. This function grabs 3255 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3256 */ 3257 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3258 __acquires(&cgroup_mutex) 3259 { 3260 struct cgroup *dsct; 3261 struct cgroup_subsys_state *d_css; 3262 struct cgroup_subsys *ss; 3263 int ssid; 3264 3265 restart: 3266 cgroup_lock(); 3267 3268 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3269 for_each_subsys(ss, ssid) { 3270 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3271 DEFINE_WAIT(wait); 3272 3273 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3274 continue; 3275 3276 cgroup_get_live(dsct); 3277 prepare_to_wait(&dsct->offline_waitq, &wait, 3278 TASK_UNINTERRUPTIBLE); 3279 3280 cgroup_unlock(); 3281 schedule(); 3282 finish_wait(&dsct->offline_waitq, &wait); 3283 3284 cgroup_put(dsct); 3285 goto restart; 3286 } 3287 } 3288 } 3289 3290 /** 3291 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3292 * @cgrp: root of the target subtree 3293 * 3294 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3295 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3296 * itself. 3297 */ 3298 static void cgroup_save_control(struct cgroup *cgrp) 3299 { 3300 struct cgroup *dsct; 3301 struct cgroup_subsys_state *d_css; 3302 3303 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3304 dsct->old_subtree_control = dsct->subtree_control; 3305 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3306 dsct->old_dom_cgrp = dsct->dom_cgrp; 3307 } 3308 } 3309 3310 /** 3311 * cgroup_propagate_control - refresh control masks of a subtree 3312 * @cgrp: root of the target subtree 3313 * 3314 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3315 * ->subtree_control and propagate controller availability through the 3316 * subtree so that descendants don't have unavailable controllers enabled. 3317 */ 3318 static void cgroup_propagate_control(struct cgroup *cgrp) 3319 { 3320 struct cgroup *dsct; 3321 struct cgroup_subsys_state *d_css; 3322 3323 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3324 dsct->subtree_control &= cgroup_control(dsct); 3325 dsct->subtree_ss_mask = 3326 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3327 cgroup_ss_mask(dsct)); 3328 } 3329 } 3330 3331 /** 3332 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3333 * @cgrp: root of the target subtree 3334 * 3335 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3336 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3337 * itself. 3338 */ 3339 static void cgroup_restore_control(struct cgroup *cgrp) 3340 { 3341 struct cgroup *dsct; 3342 struct cgroup_subsys_state *d_css; 3343 3344 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3345 dsct->subtree_control = dsct->old_subtree_control; 3346 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3347 dsct->dom_cgrp = dsct->old_dom_cgrp; 3348 } 3349 } 3350 3351 static bool css_visible(struct cgroup_subsys_state *css) 3352 { 3353 struct cgroup_subsys *ss = css->ss; 3354 struct cgroup *cgrp = css->cgroup; 3355 3356 if (cgroup_control(cgrp) & (1 << ss->id)) 3357 return true; 3358 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3359 return false; 3360 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3361 } 3362 3363 /** 3364 * cgroup_apply_control_enable - enable or show csses according to control 3365 * @cgrp: root of the target subtree 3366 * 3367 * Walk @cgrp's subtree and create new csses or make the existing ones 3368 * visible. A css is created invisible if it's being implicitly enabled 3369 * through dependency. An invisible css is made visible when the userland 3370 * explicitly enables it. 3371 * 3372 * Returns 0 on success, -errno on failure. On failure, csses which have 3373 * been processed already aren't cleaned up. The caller is responsible for 3374 * cleaning up with cgroup_apply_control_disable(). 3375 */ 3376 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3377 { 3378 struct cgroup *dsct; 3379 struct cgroup_subsys_state *d_css; 3380 struct cgroup_subsys *ss; 3381 int ssid, ret; 3382 3383 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3384 for_each_subsys(ss, ssid) { 3385 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3386 3387 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3388 continue; 3389 3390 if (!css) { 3391 css = css_create(dsct, ss); 3392 if (IS_ERR(css)) 3393 return PTR_ERR(css); 3394 } 3395 3396 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3397 3398 if (css_visible(css)) { 3399 ret = css_populate_dir(css); 3400 if (ret) 3401 return ret; 3402 } 3403 } 3404 } 3405 3406 return 0; 3407 } 3408 3409 /** 3410 * cgroup_apply_control_disable - kill or hide csses according to control 3411 * @cgrp: root of the target subtree 3412 * 3413 * Walk @cgrp's subtree and kill and hide csses so that they match 3414 * cgroup_ss_mask() and cgroup_visible_mask(). 3415 * 3416 * A css is hidden when the userland requests it to be disabled while other 3417 * subsystems are still depending on it. The css must not actively control 3418 * resources and be in the vanilla state if it's made visible again later. 3419 * Controllers which may be depended upon should provide ->css_reset() for 3420 * this purpose. 3421 */ 3422 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3423 { 3424 struct cgroup *dsct; 3425 struct cgroup_subsys_state *d_css; 3426 struct cgroup_subsys *ss; 3427 int ssid; 3428 3429 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3430 for_each_subsys(ss, ssid) { 3431 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3432 3433 if (!css) 3434 continue; 3435 3436 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3437 3438 if (css->parent && 3439 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3440 kill_css(css); 3441 } else if (!css_visible(css)) { 3442 css_clear_dir(css); 3443 if (ss->css_reset) 3444 ss->css_reset(css); 3445 } 3446 } 3447 } 3448 } 3449 3450 /** 3451 * cgroup_apply_control - apply control mask updates to the subtree 3452 * @cgrp: root of the target subtree 3453 * 3454 * subsystems can be enabled and disabled in a subtree using the following 3455 * steps. 3456 * 3457 * 1. Call cgroup_save_control() to stash the current state. 3458 * 2. Update ->subtree_control masks in the subtree as desired. 3459 * 3. Call cgroup_apply_control() to apply the changes. 3460 * 4. Optionally perform other related operations. 3461 * 5. Call cgroup_finalize_control() to finish up. 3462 * 3463 * This function implements step 3 and propagates the mask changes 3464 * throughout @cgrp's subtree, updates csses accordingly and perform 3465 * process migrations. 3466 */ 3467 static int cgroup_apply_control(struct cgroup *cgrp) 3468 { 3469 int ret; 3470 3471 cgroup_propagate_control(cgrp); 3472 3473 ret = cgroup_apply_control_enable(cgrp); 3474 if (ret) 3475 return ret; 3476 3477 /* 3478 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3479 * making the following cgroup_update_dfl_csses() properly update 3480 * css associations of all tasks in the subtree. 3481 */ 3482 return cgroup_update_dfl_csses(cgrp); 3483 } 3484 3485 /** 3486 * cgroup_finalize_control - finalize control mask update 3487 * @cgrp: root of the target subtree 3488 * @ret: the result of the update 3489 * 3490 * Finalize control mask update. See cgroup_apply_control() for more info. 3491 */ 3492 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3493 { 3494 if (ret) { 3495 cgroup_restore_control(cgrp); 3496 cgroup_propagate_control(cgrp); 3497 } 3498 3499 cgroup_apply_control_disable(cgrp); 3500 } 3501 3502 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3503 { 3504 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3505 3506 /* if nothing is getting enabled, nothing to worry about */ 3507 if (!enable) 3508 return 0; 3509 3510 /* can @cgrp host any resources? */ 3511 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3512 return -EOPNOTSUPP; 3513 3514 /* mixables don't care */ 3515 if (cgroup_is_mixable(cgrp)) 3516 return 0; 3517 3518 if (domain_enable) { 3519 /* can't enable domain controllers inside a thread subtree */ 3520 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3521 return -EOPNOTSUPP; 3522 } else { 3523 /* 3524 * Threaded controllers can handle internal competitions 3525 * and are always allowed inside a (prospective) thread 3526 * subtree. 3527 */ 3528 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3529 return 0; 3530 } 3531 3532 /* 3533 * Controllers can't be enabled for a cgroup with tasks to avoid 3534 * child cgroups competing against tasks. 3535 */ 3536 if (cgroup_has_tasks(cgrp)) 3537 return -EBUSY; 3538 3539 return 0; 3540 } 3541 3542 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3543 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3544 char *buf, size_t nbytes, 3545 loff_t off) 3546 { 3547 u16 enable = 0, disable = 0; 3548 struct cgroup *cgrp, *child; 3549 struct cgroup_subsys *ss; 3550 char *tok; 3551 int ssid, ret; 3552 3553 /* 3554 * Parse input - space separated list of subsystem names prefixed 3555 * with either + or -. 3556 */ 3557 buf = strstrip(buf); 3558 while ((tok = strsep(&buf, " "))) { 3559 if (tok[0] == '\0') 3560 continue; 3561 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3562 if (!cgroup_ssid_enabled(ssid) || 3563 strcmp(tok + 1, ss->name)) 3564 continue; 3565 3566 if (*tok == '+') { 3567 enable |= 1 << ssid; 3568 disable &= ~(1 << ssid); 3569 } else if (*tok == '-') { 3570 disable |= 1 << ssid; 3571 enable &= ~(1 << ssid); 3572 } else { 3573 return -EINVAL; 3574 } 3575 break; 3576 } while_each_subsys_mask(); 3577 if (ssid == CGROUP_SUBSYS_COUNT) 3578 return -EINVAL; 3579 } 3580 3581 cgrp = cgroup_kn_lock_live(of->kn, true); 3582 if (!cgrp) 3583 return -ENODEV; 3584 3585 for_each_subsys(ss, ssid) { 3586 if (enable & (1 << ssid)) { 3587 if (cgrp->subtree_control & (1 << ssid)) { 3588 enable &= ~(1 << ssid); 3589 continue; 3590 } 3591 3592 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3593 ret = -ENOENT; 3594 goto out_unlock; 3595 } 3596 } else if (disable & (1 << ssid)) { 3597 if (!(cgrp->subtree_control & (1 << ssid))) { 3598 disable &= ~(1 << ssid); 3599 continue; 3600 } 3601 3602 /* a child has it enabled? */ 3603 cgroup_for_each_live_child(child, cgrp) { 3604 if (child->subtree_control & (1 << ssid)) { 3605 ret = -EBUSY; 3606 goto out_unlock; 3607 } 3608 } 3609 } 3610 } 3611 3612 if (!enable && !disable) { 3613 ret = 0; 3614 goto out_unlock; 3615 } 3616 3617 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3618 if (ret) 3619 goto out_unlock; 3620 3621 /* save and update control masks and prepare csses */ 3622 cgroup_save_control(cgrp); 3623 3624 cgrp->subtree_control |= enable; 3625 cgrp->subtree_control &= ~disable; 3626 3627 ret = cgroup_apply_control(cgrp); 3628 cgroup_finalize_control(cgrp, ret); 3629 if (ret) 3630 goto out_unlock; 3631 3632 kernfs_activate(cgrp->kn); 3633 out_unlock: 3634 cgroup_kn_unlock(of->kn); 3635 return ret ?: nbytes; 3636 } 3637 3638 /** 3639 * cgroup_enable_threaded - make @cgrp threaded 3640 * @cgrp: the target cgroup 3641 * 3642 * Called when "threaded" is written to the cgroup.type interface file and 3643 * tries to make @cgrp threaded and join the parent's resource domain. 3644 * This function is never called on the root cgroup as cgroup.type doesn't 3645 * exist on it. 3646 */ 3647 static int cgroup_enable_threaded(struct cgroup *cgrp) 3648 { 3649 struct cgroup *parent = cgroup_parent(cgrp); 3650 struct cgroup *dom_cgrp = parent->dom_cgrp; 3651 struct cgroup *dsct; 3652 struct cgroup_subsys_state *d_css; 3653 int ret; 3654 3655 lockdep_assert_held(&cgroup_mutex); 3656 3657 /* noop if already threaded */ 3658 if (cgroup_is_threaded(cgrp)) 3659 return 0; 3660 3661 /* 3662 * If @cgroup is populated or has domain controllers enabled, it 3663 * can't be switched. While the below cgroup_can_be_thread_root() 3664 * test can catch the same conditions, that's only when @parent is 3665 * not mixable, so let's check it explicitly. 3666 */ 3667 if (cgroup_is_populated(cgrp) || 3668 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3669 return -EOPNOTSUPP; 3670 3671 /* we're joining the parent's domain, ensure its validity */ 3672 if (!cgroup_is_valid_domain(dom_cgrp) || 3673 !cgroup_can_be_thread_root(dom_cgrp)) 3674 return -EOPNOTSUPP; 3675 3676 /* 3677 * The following shouldn't cause actual migrations and should 3678 * always succeed. 3679 */ 3680 cgroup_save_control(cgrp); 3681 3682 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3683 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3684 dsct->dom_cgrp = dom_cgrp; 3685 3686 ret = cgroup_apply_control(cgrp); 3687 if (!ret) 3688 parent->nr_threaded_children++; 3689 3690 cgroup_finalize_control(cgrp, ret); 3691 return ret; 3692 } 3693 3694 static int cgroup_type_show(struct seq_file *seq, void *v) 3695 { 3696 struct cgroup *cgrp = seq_css(seq)->cgroup; 3697 3698 if (cgroup_is_threaded(cgrp)) 3699 seq_puts(seq, "threaded\n"); 3700 else if (!cgroup_is_valid_domain(cgrp)) 3701 seq_puts(seq, "domain invalid\n"); 3702 else if (cgroup_is_thread_root(cgrp)) 3703 seq_puts(seq, "domain threaded\n"); 3704 else 3705 seq_puts(seq, "domain\n"); 3706 3707 return 0; 3708 } 3709 3710 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3711 size_t nbytes, loff_t off) 3712 { 3713 struct cgroup *cgrp; 3714 int ret; 3715 3716 /* only switching to threaded mode is supported */ 3717 if (strcmp(strstrip(buf), "threaded")) 3718 return -EINVAL; 3719 3720 /* drain dying csses before we re-apply (threaded) subtree control */ 3721 cgrp = cgroup_kn_lock_live(of->kn, true); 3722 if (!cgrp) 3723 return -ENOENT; 3724 3725 /* threaded can only be enabled */ 3726 ret = cgroup_enable_threaded(cgrp); 3727 3728 cgroup_kn_unlock(of->kn); 3729 return ret ?: nbytes; 3730 } 3731 3732 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3733 { 3734 struct cgroup *cgrp = seq_css(seq)->cgroup; 3735 int descendants = READ_ONCE(cgrp->max_descendants); 3736 3737 if (descendants == INT_MAX) 3738 seq_puts(seq, "max\n"); 3739 else 3740 seq_printf(seq, "%d\n", descendants); 3741 3742 return 0; 3743 } 3744 3745 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3746 char *buf, size_t nbytes, loff_t off) 3747 { 3748 struct cgroup *cgrp; 3749 int descendants; 3750 ssize_t ret; 3751 3752 buf = strstrip(buf); 3753 if (!strcmp(buf, "max")) { 3754 descendants = INT_MAX; 3755 } else { 3756 ret = kstrtoint(buf, 0, &descendants); 3757 if (ret) 3758 return ret; 3759 } 3760 3761 if (descendants < 0) 3762 return -ERANGE; 3763 3764 cgrp = cgroup_kn_lock_live(of->kn, false); 3765 if (!cgrp) 3766 return -ENOENT; 3767 3768 cgrp->max_descendants = descendants; 3769 3770 cgroup_kn_unlock(of->kn); 3771 3772 return nbytes; 3773 } 3774 3775 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3776 { 3777 struct cgroup *cgrp = seq_css(seq)->cgroup; 3778 int depth = READ_ONCE(cgrp->max_depth); 3779 3780 if (depth == INT_MAX) 3781 seq_puts(seq, "max\n"); 3782 else 3783 seq_printf(seq, "%d\n", depth); 3784 3785 return 0; 3786 } 3787 3788 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3789 char *buf, size_t nbytes, loff_t off) 3790 { 3791 struct cgroup *cgrp; 3792 ssize_t ret; 3793 int depth; 3794 3795 buf = strstrip(buf); 3796 if (!strcmp(buf, "max")) { 3797 depth = INT_MAX; 3798 } else { 3799 ret = kstrtoint(buf, 0, &depth); 3800 if (ret) 3801 return ret; 3802 } 3803 3804 if (depth < 0) 3805 return -ERANGE; 3806 3807 cgrp = cgroup_kn_lock_live(of->kn, false); 3808 if (!cgrp) 3809 return -ENOENT; 3810 3811 cgrp->max_depth = depth; 3812 3813 cgroup_kn_unlock(of->kn); 3814 3815 return nbytes; 3816 } 3817 3818 static int cgroup_events_show(struct seq_file *seq, void *v) 3819 { 3820 struct cgroup *cgrp = seq_css(seq)->cgroup; 3821 3822 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3823 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3824 3825 return 0; 3826 } 3827 3828 static int cgroup_stat_show(struct seq_file *seq, void *v) 3829 { 3830 struct cgroup *cgroup = seq_css(seq)->cgroup; 3831 struct cgroup_subsys_state *css; 3832 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3833 int ssid; 3834 3835 seq_printf(seq, "nr_descendants %d\n", 3836 cgroup->nr_descendants); 3837 3838 /* 3839 * Show the number of live and dying csses associated with each of 3840 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3841 * 3842 * Without proper lock protection, racing is possible. So the 3843 * numbers may not be consistent when that happens. 3844 */ 3845 rcu_read_lock(); 3846 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3847 dying_cnt[ssid] = -1; 3848 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3849 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3850 continue; 3851 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3852 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3853 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3854 css ? (css->nr_descendants + 1) : 0); 3855 } 3856 3857 seq_printf(seq, "nr_dying_descendants %d\n", 3858 cgroup->nr_dying_descendants); 3859 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3860 if (dying_cnt[ssid] >= 0) 3861 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3862 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3863 } 3864 rcu_read_unlock(); 3865 return 0; 3866 } 3867 3868 static int cgroup_core_local_stat_show(struct seq_file *seq, void *v) 3869 { 3870 struct cgroup *cgrp = seq_css(seq)->cgroup; 3871 unsigned int sequence; 3872 u64 freeze_time; 3873 3874 do { 3875 sequence = read_seqcount_begin(&cgrp->freezer.freeze_seq); 3876 freeze_time = cgrp->freezer.frozen_nsec; 3877 /* Add in current freezer interval if the cgroup is freezing. */ 3878 if (test_bit(CGRP_FREEZE, &cgrp->flags)) 3879 freeze_time += (ktime_get_ns() - 3880 cgrp->freezer.freeze_start_nsec); 3881 } while (read_seqcount_retry(&cgrp->freezer.freeze_seq, sequence)); 3882 3883 do_div(freeze_time, NSEC_PER_USEC); 3884 seq_printf(seq, "frozen_usec %llu\n", freeze_time); 3885 3886 return 0; 3887 } 3888 3889 #ifdef CONFIG_CGROUP_SCHED 3890 /** 3891 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3892 * @cgrp: the cgroup of interest 3893 * @ss: the subsystem of interest 3894 * 3895 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3896 * or is offline, %NULL is returned. 3897 */ 3898 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3899 struct cgroup_subsys *ss) 3900 { 3901 struct cgroup_subsys_state *css; 3902 3903 rcu_read_lock(); 3904 css = cgroup_css(cgrp, ss); 3905 if (css && !css_tryget_online(css)) 3906 css = NULL; 3907 rcu_read_unlock(); 3908 3909 return css; 3910 } 3911 3912 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3913 { 3914 struct cgroup *cgrp = seq_css(seq)->cgroup; 3915 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3916 struct cgroup_subsys_state *css; 3917 int ret; 3918 3919 if (!ss->css_extra_stat_show) 3920 return 0; 3921 3922 css = cgroup_tryget_css(cgrp, ss); 3923 if (!css) 3924 return 0; 3925 3926 ret = ss->css_extra_stat_show(seq, css); 3927 css_put(css); 3928 return ret; 3929 } 3930 3931 static int cgroup_local_stat_show(struct seq_file *seq, 3932 struct cgroup *cgrp, int ssid) 3933 { 3934 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3935 struct cgroup_subsys_state *css; 3936 int ret; 3937 3938 if (!ss->css_local_stat_show) 3939 return 0; 3940 3941 css = cgroup_tryget_css(cgrp, ss); 3942 if (!css) 3943 return 0; 3944 3945 ret = ss->css_local_stat_show(seq, css); 3946 css_put(css); 3947 return ret; 3948 } 3949 #endif 3950 3951 static int cpu_stat_show(struct seq_file *seq, void *v) 3952 { 3953 int ret = 0; 3954 3955 cgroup_base_stat_cputime_show(seq); 3956 #ifdef CONFIG_CGROUP_SCHED 3957 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3958 #endif 3959 return ret; 3960 } 3961 3962 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3963 { 3964 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3965 int ret = 0; 3966 3967 #ifdef CONFIG_CGROUP_SCHED 3968 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3969 #endif 3970 return ret; 3971 } 3972 3973 #ifdef CONFIG_PSI 3974 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3975 { 3976 struct cgroup *cgrp = seq_css(seq)->cgroup; 3977 struct psi_group *psi = cgroup_psi(cgrp); 3978 3979 return psi_show(seq, psi, PSI_IO); 3980 } 3981 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3982 { 3983 struct cgroup *cgrp = seq_css(seq)->cgroup; 3984 struct psi_group *psi = cgroup_psi(cgrp); 3985 3986 return psi_show(seq, psi, PSI_MEM); 3987 } 3988 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3989 { 3990 struct cgroup *cgrp = seq_css(seq)->cgroup; 3991 struct psi_group *psi = cgroup_psi(cgrp); 3992 3993 return psi_show(seq, psi, PSI_CPU); 3994 } 3995 3996 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3997 size_t nbytes, enum psi_res res) 3998 { 3999 struct cgroup_file_ctx *ctx = of->priv; 4000 struct psi_trigger *new; 4001 struct cgroup *cgrp; 4002 struct psi_group *psi; 4003 4004 cgrp = cgroup_kn_lock_live(of->kn, false); 4005 if (!cgrp) 4006 return -ENODEV; 4007 4008 cgroup_get(cgrp); 4009 cgroup_kn_unlock(of->kn); 4010 4011 /* Allow only one trigger per file descriptor */ 4012 if (ctx->psi.trigger) { 4013 cgroup_put(cgrp); 4014 return -EBUSY; 4015 } 4016 4017 psi = cgroup_psi(cgrp); 4018 new = psi_trigger_create(psi, buf, res, of->file, of); 4019 if (IS_ERR(new)) { 4020 cgroup_put(cgrp); 4021 return PTR_ERR(new); 4022 } 4023 4024 smp_store_release(&ctx->psi.trigger, new); 4025 cgroup_put(cgrp); 4026 4027 return nbytes; 4028 } 4029 4030 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 4031 char *buf, size_t nbytes, 4032 loff_t off) 4033 { 4034 return pressure_write(of, buf, nbytes, PSI_IO); 4035 } 4036 4037 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 4038 char *buf, size_t nbytes, 4039 loff_t off) 4040 { 4041 return pressure_write(of, buf, nbytes, PSI_MEM); 4042 } 4043 4044 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 4045 char *buf, size_t nbytes, 4046 loff_t off) 4047 { 4048 return pressure_write(of, buf, nbytes, PSI_CPU); 4049 } 4050 4051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 4052 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 4053 { 4054 struct cgroup *cgrp = seq_css(seq)->cgroup; 4055 struct psi_group *psi = cgroup_psi(cgrp); 4056 4057 return psi_show(seq, psi, PSI_IRQ); 4058 } 4059 4060 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 4061 char *buf, size_t nbytes, 4062 loff_t off) 4063 { 4064 return pressure_write(of, buf, nbytes, PSI_IRQ); 4065 } 4066 #endif 4067 4068 static int cgroup_pressure_show(struct seq_file *seq, void *v) 4069 { 4070 struct cgroup *cgrp = seq_css(seq)->cgroup; 4071 struct psi_group *psi = cgroup_psi(cgrp); 4072 4073 seq_printf(seq, "%d\n", psi->enabled); 4074 4075 return 0; 4076 } 4077 4078 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 4079 char *buf, size_t nbytes, 4080 loff_t off) 4081 { 4082 ssize_t ret; 4083 int enable; 4084 struct cgroup *cgrp; 4085 struct psi_group *psi; 4086 4087 ret = kstrtoint(strstrip(buf), 0, &enable); 4088 if (ret) 4089 return ret; 4090 4091 if (enable < 0 || enable > 1) 4092 return -ERANGE; 4093 4094 cgrp = cgroup_kn_lock_live(of->kn, false); 4095 if (!cgrp) 4096 return -ENOENT; 4097 4098 psi = cgroup_psi(cgrp); 4099 if (psi->enabled != enable) { 4100 int i; 4101 4102 /* show or hide {cpu,memory,io,irq}.pressure files */ 4103 for (i = 0; i < NR_PSI_RESOURCES; i++) 4104 cgroup_file_show(&cgrp->psi_files[i], enable); 4105 4106 psi->enabled = enable; 4107 if (enable) 4108 psi_cgroup_restart(psi); 4109 } 4110 4111 cgroup_kn_unlock(of->kn); 4112 4113 return nbytes; 4114 } 4115 4116 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 4117 poll_table *pt) 4118 { 4119 struct cgroup_file_ctx *ctx = of->priv; 4120 4121 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 4122 } 4123 4124 static void cgroup_pressure_release(struct kernfs_open_file *of) 4125 { 4126 struct cgroup_file_ctx *ctx = of->priv; 4127 4128 psi_trigger_destroy(ctx->psi.trigger); 4129 } 4130 4131 bool cgroup_psi_enabled(void) 4132 { 4133 if (static_branch_likely(&psi_disabled)) 4134 return false; 4135 4136 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 4137 } 4138 4139 #else /* CONFIG_PSI */ 4140 bool cgroup_psi_enabled(void) 4141 { 4142 return false; 4143 } 4144 4145 #endif /* CONFIG_PSI */ 4146 4147 static int cgroup_freeze_show(struct seq_file *seq, void *v) 4148 { 4149 struct cgroup *cgrp = seq_css(seq)->cgroup; 4150 4151 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 4152 4153 return 0; 4154 } 4155 4156 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 4157 char *buf, size_t nbytes, loff_t off) 4158 { 4159 struct cgroup *cgrp; 4160 ssize_t ret; 4161 int freeze; 4162 4163 ret = kstrtoint(strstrip(buf), 0, &freeze); 4164 if (ret) 4165 return ret; 4166 4167 if (freeze < 0 || freeze > 1) 4168 return -ERANGE; 4169 4170 cgrp = cgroup_kn_lock_live(of->kn, false); 4171 if (!cgrp) 4172 return -ENOENT; 4173 4174 cgroup_freeze(cgrp, freeze); 4175 4176 cgroup_kn_unlock(of->kn); 4177 4178 return nbytes; 4179 } 4180 4181 static void __cgroup_kill(struct cgroup *cgrp) 4182 { 4183 struct css_task_iter it; 4184 struct task_struct *task; 4185 4186 lockdep_assert_held(&cgroup_mutex); 4187 4188 spin_lock_irq(&css_set_lock); 4189 cgrp->kill_seq++; 4190 spin_unlock_irq(&css_set_lock); 4191 4192 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4193 while ((task = css_task_iter_next(&it))) { 4194 /* Ignore kernel threads here. */ 4195 if (task->flags & PF_KTHREAD) 4196 continue; 4197 4198 /* Skip tasks that are already dying. */ 4199 if (__fatal_signal_pending(task)) 4200 continue; 4201 4202 send_sig(SIGKILL, task, 0); 4203 } 4204 css_task_iter_end(&it); 4205 } 4206 4207 static void cgroup_kill(struct cgroup *cgrp) 4208 { 4209 struct cgroup_subsys_state *css; 4210 struct cgroup *dsct; 4211 4212 lockdep_assert_held(&cgroup_mutex); 4213 4214 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4215 __cgroup_kill(dsct); 4216 } 4217 4218 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4219 size_t nbytes, loff_t off) 4220 { 4221 ssize_t ret = 0; 4222 int kill; 4223 struct cgroup *cgrp; 4224 4225 ret = kstrtoint(strstrip(buf), 0, &kill); 4226 if (ret) 4227 return ret; 4228 4229 if (kill != 1) 4230 return -ERANGE; 4231 4232 cgrp = cgroup_kn_lock_live(of->kn, false); 4233 if (!cgrp) 4234 return -ENOENT; 4235 4236 /* 4237 * Killing is a process directed operation, i.e. the whole thread-group 4238 * is taken down so act like we do for cgroup.procs and only make this 4239 * writable in non-threaded cgroups. 4240 */ 4241 if (cgroup_is_threaded(cgrp)) 4242 ret = -EOPNOTSUPP; 4243 else 4244 cgroup_kill(cgrp); 4245 4246 cgroup_kn_unlock(of->kn); 4247 4248 return ret ?: nbytes; 4249 } 4250 4251 static int cgroup_file_open(struct kernfs_open_file *of) 4252 { 4253 struct cftype *cft = of_cft(of); 4254 struct cgroup_file_ctx *ctx; 4255 int ret; 4256 4257 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4258 if (!ctx) 4259 return -ENOMEM; 4260 4261 ctx->ns = current->nsproxy->cgroup_ns; 4262 get_cgroup_ns(ctx->ns); 4263 of->priv = ctx; 4264 4265 if (!cft->open) 4266 return 0; 4267 4268 ret = cft->open(of); 4269 if (ret) { 4270 put_cgroup_ns(ctx->ns); 4271 kfree(ctx); 4272 } 4273 return ret; 4274 } 4275 4276 static void cgroup_file_release(struct kernfs_open_file *of) 4277 { 4278 struct cftype *cft = of_cft(of); 4279 struct cgroup_file_ctx *ctx = of->priv; 4280 4281 if (cft->release) 4282 cft->release(of); 4283 put_cgroup_ns(ctx->ns); 4284 kfree(ctx); 4285 of->priv = NULL; 4286 } 4287 4288 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4289 size_t nbytes, loff_t off) 4290 { 4291 struct cgroup_file_ctx *ctx = of->priv; 4292 struct cgroup *cgrp = kn_priv(of->kn); 4293 struct cftype *cft = of_cft(of); 4294 struct cgroup_subsys_state *css; 4295 int ret; 4296 4297 if (!nbytes) 4298 return 0; 4299 4300 /* 4301 * If namespaces are delegation boundaries, disallow writes to 4302 * files in an non-init namespace root from inside the namespace 4303 * except for the files explicitly marked delegatable - 4304 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4305 */ 4306 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4307 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4308 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4309 return -EPERM; 4310 4311 if (cft->write) 4312 return cft->write(of, buf, nbytes, off); 4313 4314 /* 4315 * kernfs guarantees that a file isn't deleted with operations in 4316 * flight, which means that the matching css is and stays alive and 4317 * doesn't need to be pinned. The RCU locking is not necessary 4318 * either. It's just for the convenience of using cgroup_css(). 4319 */ 4320 rcu_read_lock(); 4321 css = cgroup_css(cgrp, cft->ss); 4322 rcu_read_unlock(); 4323 4324 if (cft->write_u64) { 4325 unsigned long long v; 4326 ret = kstrtoull(buf, 0, &v); 4327 if (!ret) 4328 ret = cft->write_u64(css, cft, v); 4329 } else if (cft->write_s64) { 4330 long long v; 4331 ret = kstrtoll(buf, 0, &v); 4332 if (!ret) 4333 ret = cft->write_s64(css, cft, v); 4334 } else { 4335 ret = -EINVAL; 4336 } 4337 4338 return ret ?: nbytes; 4339 } 4340 4341 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4342 { 4343 struct cftype *cft = of_cft(of); 4344 4345 if (cft->poll) 4346 return cft->poll(of, pt); 4347 4348 return kernfs_generic_poll(of, pt); 4349 } 4350 4351 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4352 { 4353 return seq_cft(seq)->seq_start(seq, ppos); 4354 } 4355 4356 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4357 { 4358 return seq_cft(seq)->seq_next(seq, v, ppos); 4359 } 4360 4361 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4362 { 4363 if (seq_cft(seq)->seq_stop) 4364 seq_cft(seq)->seq_stop(seq, v); 4365 } 4366 4367 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4368 { 4369 struct cftype *cft = seq_cft(m); 4370 struct cgroup_subsys_state *css = seq_css(m); 4371 4372 if (cft->seq_show) 4373 return cft->seq_show(m, arg); 4374 4375 if (cft->read_u64) 4376 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4377 else if (cft->read_s64) 4378 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4379 else 4380 return -EINVAL; 4381 return 0; 4382 } 4383 4384 static struct kernfs_ops cgroup_kf_single_ops = { 4385 .atomic_write_len = PAGE_SIZE, 4386 .open = cgroup_file_open, 4387 .release = cgroup_file_release, 4388 .write = cgroup_file_write, 4389 .poll = cgroup_file_poll, 4390 .seq_show = cgroup_seqfile_show, 4391 }; 4392 4393 static struct kernfs_ops cgroup_kf_ops = { 4394 .atomic_write_len = PAGE_SIZE, 4395 .open = cgroup_file_open, 4396 .release = cgroup_file_release, 4397 .write = cgroup_file_write, 4398 .poll = cgroup_file_poll, 4399 .seq_start = cgroup_seqfile_start, 4400 .seq_next = cgroup_seqfile_next, 4401 .seq_stop = cgroup_seqfile_stop, 4402 .seq_show = cgroup_seqfile_show, 4403 }; 4404 4405 static void cgroup_file_notify_timer(struct timer_list *timer) 4406 { 4407 cgroup_file_notify(container_of(timer, struct cgroup_file, 4408 notify_timer)); 4409 } 4410 4411 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4412 struct cftype *cft) 4413 { 4414 char name[CGROUP_FILE_NAME_MAX]; 4415 struct kernfs_node *kn; 4416 struct lock_class_key *key = NULL; 4417 4418 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4419 key = &cft->lockdep_key; 4420 #endif 4421 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4422 cgroup_file_mode(cft), 4423 current_fsuid(), current_fsgid(), 4424 0, cft->kf_ops, cft, 4425 NULL, key); 4426 if (IS_ERR(kn)) 4427 return PTR_ERR(kn); 4428 4429 if (cft->file_offset) { 4430 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4431 4432 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4433 4434 spin_lock_irq(&cgroup_file_kn_lock); 4435 cfile->kn = kn; 4436 spin_unlock_irq(&cgroup_file_kn_lock); 4437 } 4438 4439 return 0; 4440 } 4441 4442 /** 4443 * cgroup_addrm_files - add or remove files to a cgroup directory 4444 * @css: the target css 4445 * @cgrp: the target cgroup (usually css->cgroup) 4446 * @cfts: array of cftypes to be added 4447 * @is_add: whether to add or remove 4448 * 4449 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4450 * For removals, this function never fails. 4451 */ 4452 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4453 struct cgroup *cgrp, struct cftype cfts[], 4454 bool is_add) 4455 { 4456 struct cftype *cft, *cft_end = NULL; 4457 int ret = 0; 4458 4459 lockdep_assert_held(&cgroup_mutex); 4460 4461 restart: 4462 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4463 /* does cft->flags tell us to skip this file on @cgrp? */ 4464 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4465 continue; 4466 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4467 continue; 4468 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4469 continue; 4470 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4471 continue; 4472 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4473 continue; 4474 if (is_add) { 4475 ret = cgroup_add_file(css, cgrp, cft); 4476 if (ret) { 4477 pr_warn("%s: failed to add %s, err=%d\n", 4478 __func__, cft->name, ret); 4479 cft_end = cft; 4480 is_add = false; 4481 goto restart; 4482 } 4483 } else { 4484 cgroup_rm_file(cgrp, cft); 4485 } 4486 } 4487 return ret; 4488 } 4489 4490 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4491 { 4492 struct cgroup_subsys *ss = cfts[0].ss; 4493 struct cgroup *root = &ss->root->cgrp; 4494 struct cgroup_subsys_state *css; 4495 int ret = 0; 4496 4497 lockdep_assert_held(&cgroup_mutex); 4498 4499 /* add/rm files for all cgroups created before */ 4500 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4501 struct cgroup *cgrp = css->cgroup; 4502 4503 if (!(css->flags & CSS_VISIBLE)) 4504 continue; 4505 4506 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4507 if (ret) 4508 break; 4509 } 4510 4511 if (is_add && !ret) 4512 kernfs_activate(root->kn); 4513 return ret; 4514 } 4515 4516 static void cgroup_exit_cftypes(struct cftype *cfts) 4517 { 4518 struct cftype *cft; 4519 4520 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4521 /* free copy for custom atomic_write_len, see init_cftypes() */ 4522 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4523 kfree(cft->kf_ops); 4524 cft->kf_ops = NULL; 4525 cft->ss = NULL; 4526 4527 /* revert flags set by cgroup core while adding @cfts */ 4528 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4529 __CFTYPE_ADDED); 4530 } 4531 } 4532 4533 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4534 { 4535 struct cftype *cft; 4536 int ret = 0; 4537 4538 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4539 struct kernfs_ops *kf_ops; 4540 4541 WARN_ON(cft->ss || cft->kf_ops); 4542 4543 if (cft->flags & __CFTYPE_ADDED) { 4544 ret = -EBUSY; 4545 break; 4546 } 4547 4548 if (cft->seq_start) 4549 kf_ops = &cgroup_kf_ops; 4550 else 4551 kf_ops = &cgroup_kf_single_ops; 4552 4553 /* 4554 * Ugh... if @cft wants a custom max_write_len, we need to 4555 * make a copy of kf_ops to set its atomic_write_len. 4556 */ 4557 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4558 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4559 if (!kf_ops) { 4560 ret = -ENOMEM; 4561 break; 4562 } 4563 kf_ops->atomic_write_len = cft->max_write_len; 4564 } 4565 4566 cft->kf_ops = kf_ops; 4567 cft->ss = ss; 4568 cft->flags |= __CFTYPE_ADDED; 4569 } 4570 4571 if (ret) 4572 cgroup_exit_cftypes(cfts); 4573 return ret; 4574 } 4575 4576 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4577 { 4578 lockdep_assert_held(&cgroup_mutex); 4579 4580 list_del(&cfts->node); 4581 cgroup_apply_cftypes(cfts, false); 4582 cgroup_exit_cftypes(cfts); 4583 } 4584 4585 /** 4586 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4587 * @cfts: zero-length name terminated array of cftypes 4588 * 4589 * Unregister @cfts. Files described by @cfts are removed from all 4590 * existing cgroups and all future cgroups won't have them either. This 4591 * function can be called anytime whether @cfts' subsys is attached or not. 4592 * 4593 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4594 * registered. 4595 */ 4596 int cgroup_rm_cftypes(struct cftype *cfts) 4597 { 4598 if (!cfts || cfts[0].name[0] == '\0') 4599 return 0; 4600 4601 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4602 return -ENOENT; 4603 4604 cgroup_lock(); 4605 cgroup_rm_cftypes_locked(cfts); 4606 cgroup_unlock(); 4607 return 0; 4608 } 4609 4610 /** 4611 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4612 * @ss: target cgroup subsystem 4613 * @cfts: zero-length name terminated array of cftypes 4614 * 4615 * Register @cfts to @ss. Files described by @cfts are created for all 4616 * existing cgroups to which @ss is attached and all future cgroups will 4617 * have them too. This function can be called anytime whether @ss is 4618 * attached or not. 4619 * 4620 * Returns 0 on successful registration, -errno on failure. Note that this 4621 * function currently returns 0 as long as @cfts registration is successful 4622 * even if some file creation attempts on existing cgroups fail. 4623 */ 4624 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4625 { 4626 int ret; 4627 4628 if (!cgroup_ssid_enabled(ss->id)) 4629 return 0; 4630 4631 if (!cfts || cfts[0].name[0] == '\0') 4632 return 0; 4633 4634 ret = cgroup_init_cftypes(ss, cfts); 4635 if (ret) 4636 return ret; 4637 4638 cgroup_lock(); 4639 4640 list_add_tail(&cfts->node, &ss->cfts); 4641 ret = cgroup_apply_cftypes(cfts, true); 4642 if (ret) 4643 cgroup_rm_cftypes_locked(cfts); 4644 4645 cgroup_unlock(); 4646 return ret; 4647 } 4648 4649 /** 4650 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4651 * @ss: target cgroup subsystem 4652 * @cfts: zero-length name terminated array of cftypes 4653 * 4654 * Similar to cgroup_add_cftypes() but the added files are only used for 4655 * the default hierarchy. 4656 */ 4657 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4658 { 4659 struct cftype *cft; 4660 4661 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4662 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4663 return cgroup_add_cftypes(ss, cfts); 4664 } 4665 4666 /** 4667 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4668 * @ss: target cgroup subsystem 4669 * @cfts: zero-length name terminated array of cftypes 4670 * 4671 * Similar to cgroup_add_cftypes() but the added files are only used for 4672 * the legacy hierarchies. 4673 */ 4674 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4675 { 4676 struct cftype *cft; 4677 4678 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4679 cft->flags |= __CFTYPE_NOT_ON_DFL; 4680 return cgroup_add_cftypes(ss, cfts); 4681 } 4682 4683 /** 4684 * cgroup_file_notify - generate a file modified event for a cgroup_file 4685 * @cfile: target cgroup_file 4686 * 4687 * @cfile must have been obtained by setting cftype->file_offset. 4688 */ 4689 void cgroup_file_notify(struct cgroup_file *cfile) 4690 { 4691 unsigned long flags; 4692 4693 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4694 if (cfile->kn) { 4695 unsigned long last = cfile->notified_at; 4696 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4697 4698 if (time_in_range(jiffies, last, next)) { 4699 timer_reduce(&cfile->notify_timer, next); 4700 } else { 4701 kernfs_notify(cfile->kn); 4702 cfile->notified_at = jiffies; 4703 } 4704 } 4705 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4706 } 4707 4708 /** 4709 * cgroup_file_show - show or hide a hidden cgroup file 4710 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4711 * @show: whether to show or hide 4712 */ 4713 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4714 { 4715 struct kernfs_node *kn; 4716 4717 spin_lock_irq(&cgroup_file_kn_lock); 4718 kn = cfile->kn; 4719 kernfs_get(kn); 4720 spin_unlock_irq(&cgroup_file_kn_lock); 4721 4722 if (kn) 4723 kernfs_show(kn, show); 4724 4725 kernfs_put(kn); 4726 } 4727 4728 /** 4729 * css_next_child - find the next child of a given css 4730 * @pos: the current position (%NULL to initiate traversal) 4731 * @parent: css whose children to walk 4732 * 4733 * This function returns the next child of @parent and should be called 4734 * under either cgroup_mutex or RCU read lock. The only requirement is 4735 * that @parent and @pos are accessible. The next sibling is guaranteed to 4736 * be returned regardless of their states. 4737 * 4738 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4739 * css which finished ->css_online() is guaranteed to be visible in the 4740 * future iterations and will stay visible until the last reference is put. 4741 * A css which hasn't finished ->css_online() or already finished 4742 * ->css_offline() may show up during traversal. It's each subsystem's 4743 * responsibility to synchronize against on/offlining. 4744 */ 4745 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4746 struct cgroup_subsys_state *parent) 4747 { 4748 struct cgroup_subsys_state *next; 4749 4750 cgroup_assert_mutex_or_rcu_locked(); 4751 4752 /* 4753 * @pos could already have been unlinked from the sibling list. 4754 * Once a cgroup is removed, its ->sibling.next is no longer 4755 * updated when its next sibling changes. CSS_RELEASED is set when 4756 * @pos is taken off list, at which time its next pointer is valid, 4757 * and, as releases are serialized, the one pointed to by the next 4758 * pointer is guaranteed to not have started release yet. This 4759 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4760 * critical section, the one pointed to by its next pointer is 4761 * guaranteed to not have finished its RCU grace period even if we 4762 * have dropped rcu_read_lock() in-between iterations. 4763 * 4764 * If @pos has CSS_RELEASED set, its next pointer can't be 4765 * dereferenced; however, as each css is given a monotonically 4766 * increasing unique serial number and always appended to the 4767 * sibling list, the next one can be found by walking the parent's 4768 * children until the first css with higher serial number than 4769 * @pos's. While this path can be slower, it happens iff iteration 4770 * races against release and the race window is very small. 4771 */ 4772 if (!pos) { 4773 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4774 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4775 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4776 } else { 4777 list_for_each_entry_rcu(next, &parent->children, sibling, 4778 lockdep_is_held(&cgroup_mutex)) 4779 if (next->serial_nr > pos->serial_nr) 4780 break; 4781 } 4782 4783 /* 4784 * @next, if not pointing to the head, can be dereferenced and is 4785 * the next sibling. 4786 */ 4787 if (&next->sibling != &parent->children) 4788 return next; 4789 return NULL; 4790 } 4791 4792 /** 4793 * css_next_descendant_pre - find the next descendant for pre-order walk 4794 * @pos: the current position (%NULL to initiate traversal) 4795 * @root: css whose descendants to walk 4796 * 4797 * To be used by css_for_each_descendant_pre(). Find the next descendant 4798 * to visit for pre-order traversal of @root's descendants. @root is 4799 * included in the iteration and the first node to be visited. 4800 * 4801 * While this function requires cgroup_mutex or RCU read locking, it 4802 * doesn't require the whole traversal to be contained in a single critical 4803 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4804 * This function will return the correct next descendant as long as both @pos 4805 * and @root are accessible and @pos is a descendant of @root. 4806 * 4807 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4808 * css which finished ->css_online() is guaranteed to be visible in the 4809 * future iterations and will stay visible until the last reference is put. 4810 * A css which hasn't finished ->css_online() or already finished 4811 * ->css_offline() may show up during traversal. It's each subsystem's 4812 * responsibility to synchronize against on/offlining. 4813 */ 4814 struct cgroup_subsys_state * 4815 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4816 struct cgroup_subsys_state *root) 4817 { 4818 struct cgroup_subsys_state *next; 4819 4820 cgroup_assert_mutex_or_rcu_locked(); 4821 4822 /* if first iteration, visit @root */ 4823 if (!pos) 4824 return root; 4825 4826 /* visit the first child if exists */ 4827 next = css_next_child(NULL, pos); 4828 if (next) 4829 return next; 4830 4831 /* no child, visit my or the closest ancestor's next sibling */ 4832 while (pos != root) { 4833 next = css_next_child(pos, pos->parent); 4834 if (next) 4835 return next; 4836 pos = pos->parent; 4837 } 4838 4839 return NULL; 4840 } 4841 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4842 4843 /** 4844 * css_rightmost_descendant - return the rightmost descendant of a css 4845 * @pos: css of interest 4846 * 4847 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4848 * is returned. This can be used during pre-order traversal to skip 4849 * subtree of @pos. 4850 * 4851 * While this function requires cgroup_mutex or RCU read locking, it 4852 * doesn't require the whole traversal to be contained in a single critical 4853 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4854 * This function will return the correct rightmost descendant as long as @pos 4855 * is accessible. 4856 */ 4857 struct cgroup_subsys_state * 4858 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4859 { 4860 struct cgroup_subsys_state *last, *tmp; 4861 4862 cgroup_assert_mutex_or_rcu_locked(); 4863 4864 do { 4865 last = pos; 4866 /* ->prev isn't RCU safe, walk ->next till the end */ 4867 pos = NULL; 4868 css_for_each_child(tmp, last) 4869 pos = tmp; 4870 } while (pos); 4871 4872 return last; 4873 } 4874 4875 static struct cgroup_subsys_state * 4876 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4877 { 4878 struct cgroup_subsys_state *last; 4879 4880 do { 4881 last = pos; 4882 pos = css_next_child(NULL, pos); 4883 } while (pos); 4884 4885 return last; 4886 } 4887 4888 /** 4889 * css_next_descendant_post - find the next descendant for post-order walk 4890 * @pos: the current position (%NULL to initiate traversal) 4891 * @root: css whose descendants to walk 4892 * 4893 * To be used by css_for_each_descendant_post(). Find the next descendant 4894 * to visit for post-order traversal of @root's descendants. @root is 4895 * included in the iteration and the last node to be visited. 4896 * 4897 * While this function requires cgroup_mutex or RCU read locking, it 4898 * doesn't require the whole traversal to be contained in a single critical 4899 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4900 * This function will return the correct next descendant as long as both @pos 4901 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4902 * 4903 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4904 * css which finished ->css_online() is guaranteed to be visible in the 4905 * future iterations and will stay visible until the last reference is put. 4906 * A css which hasn't finished ->css_online() or already finished 4907 * ->css_offline() may show up during traversal. It's each subsystem's 4908 * responsibility to synchronize against on/offlining. 4909 */ 4910 struct cgroup_subsys_state * 4911 css_next_descendant_post(struct cgroup_subsys_state *pos, 4912 struct cgroup_subsys_state *root) 4913 { 4914 struct cgroup_subsys_state *next; 4915 4916 cgroup_assert_mutex_or_rcu_locked(); 4917 4918 /* if first iteration, visit leftmost descendant which may be @root */ 4919 if (!pos) 4920 return css_leftmost_descendant(root); 4921 4922 /* if we visited @root, we're done */ 4923 if (pos == root) 4924 return NULL; 4925 4926 /* if there's an unvisited sibling, visit its leftmost descendant */ 4927 next = css_next_child(pos, pos->parent); 4928 if (next) 4929 return css_leftmost_descendant(next); 4930 4931 /* no sibling left, visit parent */ 4932 return pos->parent; 4933 } 4934 4935 /** 4936 * css_has_online_children - does a css have online children 4937 * @css: the target css 4938 * 4939 * Returns %true if @css has any online children; otherwise, %false. This 4940 * function can be called from any context but the caller is responsible 4941 * for synchronizing against on/offlining as necessary. 4942 */ 4943 bool css_has_online_children(struct cgroup_subsys_state *css) 4944 { 4945 struct cgroup_subsys_state *child; 4946 bool ret = false; 4947 4948 rcu_read_lock(); 4949 css_for_each_child(child, css) { 4950 if (child->flags & CSS_ONLINE) { 4951 ret = true; 4952 break; 4953 } 4954 } 4955 rcu_read_unlock(); 4956 return ret; 4957 } 4958 4959 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4960 { 4961 struct list_head *l; 4962 struct cgrp_cset_link *link; 4963 struct css_set *cset; 4964 4965 lockdep_assert_held(&css_set_lock); 4966 4967 /* find the next threaded cset */ 4968 if (it->tcset_pos) { 4969 l = it->tcset_pos->next; 4970 4971 if (l != it->tcset_head) { 4972 it->tcset_pos = l; 4973 return container_of(l, struct css_set, 4974 threaded_csets_node); 4975 } 4976 4977 it->tcset_pos = NULL; 4978 } 4979 4980 /* find the next cset */ 4981 l = it->cset_pos; 4982 l = l->next; 4983 if (l == it->cset_head) { 4984 it->cset_pos = NULL; 4985 return NULL; 4986 } 4987 4988 if (it->ss) { 4989 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4990 } else { 4991 link = list_entry(l, struct cgrp_cset_link, cset_link); 4992 cset = link->cset; 4993 } 4994 4995 it->cset_pos = l; 4996 4997 /* initialize threaded css_set walking */ 4998 if (it->flags & CSS_TASK_ITER_THREADED) { 4999 if (it->cur_dcset) 5000 put_css_set_locked(it->cur_dcset); 5001 it->cur_dcset = cset; 5002 get_css_set(cset); 5003 5004 it->tcset_head = &cset->threaded_csets; 5005 it->tcset_pos = &cset->threaded_csets; 5006 } 5007 5008 return cset; 5009 } 5010 5011 /** 5012 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 5013 * @it: the iterator to advance 5014 * 5015 * Advance @it to the next css_set to walk. 5016 */ 5017 static void css_task_iter_advance_css_set(struct css_task_iter *it) 5018 { 5019 struct css_set *cset; 5020 5021 lockdep_assert_held(&css_set_lock); 5022 5023 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 5024 while ((cset = css_task_iter_next_css_set(it))) { 5025 if (!list_empty(&cset->tasks)) { 5026 it->cur_tasks_head = &cset->tasks; 5027 break; 5028 } else if (!list_empty(&cset->mg_tasks)) { 5029 it->cur_tasks_head = &cset->mg_tasks; 5030 break; 5031 } else if (!list_empty(&cset->dying_tasks)) { 5032 it->cur_tasks_head = &cset->dying_tasks; 5033 break; 5034 } 5035 } 5036 if (!cset) { 5037 it->task_pos = NULL; 5038 return; 5039 } 5040 it->task_pos = it->cur_tasks_head->next; 5041 5042 /* 5043 * We don't keep css_sets locked across iteration steps and thus 5044 * need to take steps to ensure that iteration can be resumed after 5045 * the lock is re-acquired. Iteration is performed at two levels - 5046 * css_sets and tasks in them. 5047 * 5048 * Once created, a css_set never leaves its cgroup lists, so a 5049 * pinned css_set is guaranteed to stay put and we can resume 5050 * iteration afterwards. 5051 * 5052 * Tasks may leave @cset across iteration steps. This is resolved 5053 * by registering each iterator with the css_set currently being 5054 * walked and making css_set_move_task() advance iterators whose 5055 * next task is leaving. 5056 */ 5057 if (it->cur_cset) { 5058 list_del(&it->iters_node); 5059 put_css_set_locked(it->cur_cset); 5060 } 5061 get_css_set(cset); 5062 it->cur_cset = cset; 5063 list_add(&it->iters_node, &cset->task_iters); 5064 } 5065 5066 static void css_task_iter_skip(struct css_task_iter *it, 5067 struct task_struct *task) 5068 { 5069 lockdep_assert_held(&css_set_lock); 5070 5071 if (it->task_pos == &task->cg_list) { 5072 it->task_pos = it->task_pos->next; 5073 it->flags |= CSS_TASK_ITER_SKIPPED; 5074 } 5075 } 5076 5077 static void css_task_iter_advance(struct css_task_iter *it) 5078 { 5079 struct task_struct *task; 5080 5081 lockdep_assert_held(&css_set_lock); 5082 repeat: 5083 if (it->task_pos) { 5084 /* 5085 * Advance iterator to find next entry. We go through cset 5086 * tasks, mg_tasks and dying_tasks, when consumed we move onto 5087 * the next cset. 5088 */ 5089 if (it->flags & CSS_TASK_ITER_SKIPPED) 5090 it->flags &= ~CSS_TASK_ITER_SKIPPED; 5091 else 5092 it->task_pos = it->task_pos->next; 5093 5094 if (it->task_pos == &it->cur_cset->tasks) { 5095 it->cur_tasks_head = &it->cur_cset->mg_tasks; 5096 it->task_pos = it->cur_tasks_head->next; 5097 } 5098 if (it->task_pos == &it->cur_cset->mg_tasks) { 5099 it->cur_tasks_head = &it->cur_cset->dying_tasks; 5100 it->task_pos = it->cur_tasks_head->next; 5101 } 5102 if (it->task_pos == &it->cur_cset->dying_tasks) 5103 css_task_iter_advance_css_set(it); 5104 } else { 5105 /* called from start, proceed to the first cset */ 5106 css_task_iter_advance_css_set(it); 5107 } 5108 5109 if (!it->task_pos) 5110 return; 5111 5112 task = list_entry(it->task_pos, struct task_struct, cg_list); 5113 5114 if (it->flags & CSS_TASK_ITER_PROCS) { 5115 /* if PROCS, skip over tasks which aren't group leaders */ 5116 if (!thread_group_leader(task)) 5117 goto repeat; 5118 5119 /* and dying leaders w/o live member threads */ 5120 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 5121 !atomic_read(&task->signal->live)) 5122 goto repeat; 5123 } else { 5124 /* skip all dying ones */ 5125 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 5126 goto repeat; 5127 } 5128 } 5129 5130 /** 5131 * css_task_iter_start - initiate task iteration 5132 * @css: the css to walk tasks of 5133 * @flags: CSS_TASK_ITER_* flags 5134 * @it: the task iterator to use 5135 * 5136 * Initiate iteration through the tasks of @css. The caller can call 5137 * css_task_iter_next() to walk through the tasks until the function 5138 * returns NULL. On completion of iteration, css_task_iter_end() must be 5139 * called. 5140 */ 5141 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 5142 struct css_task_iter *it) 5143 { 5144 unsigned long irqflags; 5145 5146 memset(it, 0, sizeof(*it)); 5147 5148 spin_lock_irqsave(&css_set_lock, irqflags); 5149 5150 it->ss = css->ss; 5151 it->flags = flags; 5152 5153 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 5154 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 5155 else 5156 it->cset_pos = &css->cgroup->cset_links; 5157 5158 it->cset_head = it->cset_pos; 5159 5160 css_task_iter_advance(it); 5161 5162 spin_unlock_irqrestore(&css_set_lock, irqflags); 5163 } 5164 5165 /** 5166 * css_task_iter_next - return the next task for the iterator 5167 * @it: the task iterator being iterated 5168 * 5169 * The "next" function for task iteration. @it should have been 5170 * initialized via css_task_iter_start(). Returns NULL when the iteration 5171 * reaches the end. 5172 */ 5173 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5174 { 5175 unsigned long irqflags; 5176 5177 if (it->cur_task) { 5178 put_task_struct(it->cur_task); 5179 it->cur_task = NULL; 5180 } 5181 5182 spin_lock_irqsave(&css_set_lock, irqflags); 5183 5184 /* @it may be half-advanced by skips, finish advancing */ 5185 if (it->flags & CSS_TASK_ITER_SKIPPED) 5186 css_task_iter_advance(it); 5187 5188 if (it->task_pos) { 5189 it->cur_task = list_entry(it->task_pos, struct task_struct, 5190 cg_list); 5191 get_task_struct(it->cur_task); 5192 css_task_iter_advance(it); 5193 } 5194 5195 spin_unlock_irqrestore(&css_set_lock, irqflags); 5196 5197 return it->cur_task; 5198 } 5199 5200 /** 5201 * css_task_iter_end - finish task iteration 5202 * @it: the task iterator to finish 5203 * 5204 * Finish task iteration started by css_task_iter_start(). 5205 */ 5206 void css_task_iter_end(struct css_task_iter *it) 5207 { 5208 unsigned long irqflags; 5209 5210 if (it->cur_cset) { 5211 spin_lock_irqsave(&css_set_lock, irqflags); 5212 list_del(&it->iters_node); 5213 put_css_set_locked(it->cur_cset); 5214 spin_unlock_irqrestore(&css_set_lock, irqflags); 5215 } 5216 5217 if (it->cur_dcset) 5218 put_css_set(it->cur_dcset); 5219 5220 if (it->cur_task) 5221 put_task_struct(it->cur_task); 5222 } 5223 5224 static void cgroup_procs_release(struct kernfs_open_file *of) 5225 { 5226 struct cgroup_file_ctx *ctx = of->priv; 5227 5228 if (ctx->procs.started) 5229 css_task_iter_end(&ctx->procs.iter); 5230 } 5231 5232 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5233 { 5234 struct kernfs_open_file *of = s->private; 5235 struct cgroup_file_ctx *ctx = of->priv; 5236 5237 if (pos) 5238 (*pos)++; 5239 5240 return css_task_iter_next(&ctx->procs.iter); 5241 } 5242 5243 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5244 unsigned int iter_flags) 5245 { 5246 struct kernfs_open_file *of = s->private; 5247 struct cgroup *cgrp = seq_css(s)->cgroup; 5248 struct cgroup_file_ctx *ctx = of->priv; 5249 struct css_task_iter *it = &ctx->procs.iter; 5250 5251 /* 5252 * When a seq_file is seeked, it's always traversed sequentially 5253 * from position 0, so we can simply keep iterating on !0 *pos. 5254 */ 5255 if (!ctx->procs.started) { 5256 if (WARN_ON_ONCE((*pos))) 5257 return ERR_PTR(-EINVAL); 5258 css_task_iter_start(&cgrp->self, iter_flags, it); 5259 ctx->procs.started = true; 5260 } else if (!(*pos)) { 5261 css_task_iter_end(it); 5262 css_task_iter_start(&cgrp->self, iter_flags, it); 5263 } else 5264 return it->cur_task; 5265 5266 return cgroup_procs_next(s, NULL, NULL); 5267 } 5268 5269 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5270 { 5271 struct cgroup *cgrp = seq_css(s)->cgroup; 5272 5273 /* 5274 * All processes of a threaded subtree belong to the domain cgroup 5275 * of the subtree. Only threads can be distributed across the 5276 * subtree. Reject reads on cgroup.procs in the subtree proper. 5277 * They're always empty anyway. 5278 */ 5279 if (cgroup_is_threaded(cgrp)) 5280 return ERR_PTR(-EOPNOTSUPP); 5281 5282 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5283 CSS_TASK_ITER_THREADED); 5284 } 5285 5286 static int cgroup_procs_show(struct seq_file *s, void *v) 5287 { 5288 seq_printf(s, "%d\n", task_pid_vnr(v)); 5289 return 0; 5290 } 5291 5292 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5293 { 5294 int ret; 5295 struct inode *inode; 5296 5297 lockdep_assert_held(&cgroup_mutex); 5298 5299 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5300 if (!inode) 5301 return -ENOMEM; 5302 5303 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5304 iput(inode); 5305 return ret; 5306 } 5307 5308 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5309 struct cgroup *dst_cgrp, 5310 struct super_block *sb, 5311 struct cgroup_namespace *ns) 5312 { 5313 struct cgroup *com_cgrp = src_cgrp; 5314 int ret; 5315 5316 lockdep_assert_held(&cgroup_mutex); 5317 5318 /* find the common ancestor */ 5319 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5320 com_cgrp = cgroup_parent(com_cgrp); 5321 5322 /* %current should be authorized to migrate to the common ancestor */ 5323 ret = cgroup_may_write(com_cgrp, sb); 5324 if (ret) 5325 return ret; 5326 5327 /* 5328 * If namespaces are delegation boundaries, %current must be able 5329 * to see both source and destination cgroups from its namespace. 5330 */ 5331 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5332 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5333 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5334 return -ENOENT; 5335 5336 return 0; 5337 } 5338 5339 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5340 struct cgroup *dst_cgrp, 5341 struct super_block *sb, bool threadgroup, 5342 struct cgroup_namespace *ns) 5343 { 5344 int ret = 0; 5345 5346 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5347 if (ret) 5348 return ret; 5349 5350 ret = cgroup_migrate_vet_dst(dst_cgrp); 5351 if (ret) 5352 return ret; 5353 5354 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5355 ret = -EOPNOTSUPP; 5356 5357 return ret; 5358 } 5359 5360 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5361 bool threadgroup) 5362 { 5363 struct cgroup_file_ctx *ctx = of->priv; 5364 struct cgroup *src_cgrp, *dst_cgrp; 5365 struct task_struct *task; 5366 const struct cred *saved_cred; 5367 ssize_t ret; 5368 enum cgroup_attach_lock_mode lock_mode; 5369 5370 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5371 if (!dst_cgrp) 5372 return -ENODEV; 5373 5374 task = cgroup_procs_write_start(buf, threadgroup, &lock_mode); 5375 ret = PTR_ERR_OR_ZERO(task); 5376 if (ret) 5377 goto out_unlock; 5378 5379 /* find the source cgroup */ 5380 spin_lock_irq(&css_set_lock); 5381 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5382 spin_unlock_irq(&css_set_lock); 5383 5384 /* 5385 * Process and thread migrations follow same delegation rule. Check 5386 * permissions using the credentials from file open to protect against 5387 * inherited fd attacks. 5388 */ 5389 saved_cred = override_creds(of->file->f_cred); 5390 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5391 of->file->f_path.dentry->d_sb, 5392 threadgroup, ctx->ns); 5393 revert_creds(saved_cred); 5394 if (ret) 5395 goto out_finish; 5396 5397 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5398 5399 out_finish: 5400 cgroup_procs_write_finish(task, lock_mode); 5401 out_unlock: 5402 cgroup_kn_unlock(of->kn); 5403 5404 return ret; 5405 } 5406 5407 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5408 char *buf, size_t nbytes, loff_t off) 5409 { 5410 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5411 } 5412 5413 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5414 { 5415 return __cgroup_procs_start(s, pos, 0); 5416 } 5417 5418 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5419 char *buf, size_t nbytes, loff_t off) 5420 { 5421 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5422 } 5423 5424 /* cgroup core interface files for the default hierarchy */ 5425 static struct cftype cgroup_base_files[] = { 5426 { 5427 .name = "cgroup.type", 5428 .flags = CFTYPE_NOT_ON_ROOT, 5429 .seq_show = cgroup_type_show, 5430 .write = cgroup_type_write, 5431 }, 5432 { 5433 .name = "cgroup.procs", 5434 .flags = CFTYPE_NS_DELEGATABLE, 5435 .file_offset = offsetof(struct cgroup, procs_file), 5436 .release = cgroup_procs_release, 5437 .seq_start = cgroup_procs_start, 5438 .seq_next = cgroup_procs_next, 5439 .seq_show = cgroup_procs_show, 5440 .write = cgroup_procs_write, 5441 }, 5442 { 5443 .name = "cgroup.threads", 5444 .flags = CFTYPE_NS_DELEGATABLE, 5445 .release = cgroup_procs_release, 5446 .seq_start = cgroup_threads_start, 5447 .seq_next = cgroup_procs_next, 5448 .seq_show = cgroup_procs_show, 5449 .write = cgroup_threads_write, 5450 }, 5451 { 5452 .name = "cgroup.controllers", 5453 .seq_show = cgroup_controllers_show, 5454 }, 5455 { 5456 .name = "cgroup.subtree_control", 5457 .flags = CFTYPE_NS_DELEGATABLE, 5458 .seq_show = cgroup_subtree_control_show, 5459 .write = cgroup_subtree_control_write, 5460 }, 5461 { 5462 .name = "cgroup.events", 5463 .flags = CFTYPE_NOT_ON_ROOT, 5464 .file_offset = offsetof(struct cgroup, events_file), 5465 .seq_show = cgroup_events_show, 5466 }, 5467 { 5468 .name = "cgroup.max.descendants", 5469 .seq_show = cgroup_max_descendants_show, 5470 .write = cgroup_max_descendants_write, 5471 }, 5472 { 5473 .name = "cgroup.max.depth", 5474 .seq_show = cgroup_max_depth_show, 5475 .write = cgroup_max_depth_write, 5476 }, 5477 { 5478 .name = "cgroup.stat", 5479 .seq_show = cgroup_stat_show, 5480 }, 5481 { 5482 .name = "cgroup.stat.local", 5483 .flags = CFTYPE_NOT_ON_ROOT, 5484 .seq_show = cgroup_core_local_stat_show, 5485 }, 5486 { 5487 .name = "cgroup.freeze", 5488 .flags = CFTYPE_NOT_ON_ROOT, 5489 .seq_show = cgroup_freeze_show, 5490 .write = cgroup_freeze_write, 5491 }, 5492 { 5493 .name = "cgroup.kill", 5494 .flags = CFTYPE_NOT_ON_ROOT, 5495 .write = cgroup_kill_write, 5496 }, 5497 { 5498 .name = "cpu.stat", 5499 .seq_show = cpu_stat_show, 5500 }, 5501 { 5502 .name = "cpu.stat.local", 5503 .seq_show = cpu_local_stat_show, 5504 }, 5505 { } /* terminate */ 5506 }; 5507 5508 static struct cftype cgroup_psi_files[] = { 5509 #ifdef CONFIG_PSI 5510 { 5511 .name = "io.pressure", 5512 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5513 .seq_show = cgroup_io_pressure_show, 5514 .write = cgroup_io_pressure_write, 5515 .poll = cgroup_pressure_poll, 5516 .release = cgroup_pressure_release, 5517 }, 5518 { 5519 .name = "memory.pressure", 5520 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5521 .seq_show = cgroup_memory_pressure_show, 5522 .write = cgroup_memory_pressure_write, 5523 .poll = cgroup_pressure_poll, 5524 .release = cgroup_pressure_release, 5525 }, 5526 { 5527 .name = "cpu.pressure", 5528 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5529 .seq_show = cgroup_cpu_pressure_show, 5530 .write = cgroup_cpu_pressure_write, 5531 .poll = cgroup_pressure_poll, 5532 .release = cgroup_pressure_release, 5533 }, 5534 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5535 { 5536 .name = "irq.pressure", 5537 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5538 .seq_show = cgroup_irq_pressure_show, 5539 .write = cgroup_irq_pressure_write, 5540 .poll = cgroup_pressure_poll, 5541 .release = cgroup_pressure_release, 5542 }, 5543 #endif 5544 { 5545 .name = "cgroup.pressure", 5546 .seq_show = cgroup_pressure_show, 5547 .write = cgroup_pressure_write, 5548 }, 5549 #endif /* CONFIG_PSI */ 5550 { } /* terminate */ 5551 }; 5552 5553 /* 5554 * css destruction is four-stage process. 5555 * 5556 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5557 * Implemented in kill_css(). 5558 * 5559 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5560 * and thus css_tryget_online() is guaranteed to fail, the css can be 5561 * offlined by invoking offline_css(). After offlining, the base ref is 5562 * put. Implemented in css_killed_work_fn(). 5563 * 5564 * 3. When the percpu_ref reaches zero, the only possible remaining 5565 * accessors are inside RCU read sections. css_release() schedules the 5566 * RCU callback. 5567 * 5568 * 4. After the grace period, the css can be freed. Implemented in 5569 * css_free_rwork_fn(). 5570 * 5571 * It is actually hairier because both step 2 and 4 require process context 5572 * and thus involve punting to css->destroy_work adding two additional 5573 * steps to the already complex sequence. 5574 */ 5575 static void css_free_rwork_fn(struct work_struct *work) 5576 { 5577 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5578 struct cgroup_subsys_state, destroy_rwork); 5579 struct cgroup_subsys *ss = css->ss; 5580 struct cgroup *cgrp = css->cgroup; 5581 5582 percpu_ref_exit(&css->refcnt); 5583 css_rstat_exit(css); 5584 5585 if (!css_is_self(css)) { 5586 /* css free path */ 5587 struct cgroup_subsys_state *parent = css->parent; 5588 int id = css->id; 5589 5590 ss->css_free(css); 5591 cgroup_idr_remove(&ss->css_idr, id); 5592 cgroup_put(cgrp); 5593 5594 if (parent) 5595 css_put(parent); 5596 } else { 5597 /* cgroup free path */ 5598 atomic_dec(&cgrp->root->nr_cgrps); 5599 if (!cgroup_on_dfl(cgrp)) 5600 cgroup1_pidlist_destroy_all(cgrp); 5601 cancel_work_sync(&cgrp->release_agent_work); 5602 bpf_cgrp_storage_free(cgrp); 5603 5604 if (cgroup_parent(cgrp)) { 5605 /* 5606 * We get a ref to the parent, and put the ref when 5607 * this cgroup is being freed, so it's guaranteed 5608 * that the parent won't be destroyed before its 5609 * children. 5610 */ 5611 cgroup_put(cgroup_parent(cgrp)); 5612 kernfs_put(cgrp->kn); 5613 psi_cgroup_free(cgrp); 5614 kfree(cgrp); 5615 } else { 5616 /* 5617 * This is root cgroup's refcnt reaching zero, 5618 * which indicates that the root should be 5619 * released. 5620 */ 5621 cgroup_destroy_root(cgrp->root); 5622 } 5623 } 5624 } 5625 5626 static void css_release_work_fn(struct work_struct *work) 5627 { 5628 struct cgroup_subsys_state *css = 5629 container_of(work, struct cgroup_subsys_state, destroy_work); 5630 struct cgroup_subsys *ss = css->ss; 5631 struct cgroup *cgrp = css->cgroup; 5632 5633 cgroup_lock(); 5634 5635 css->flags |= CSS_RELEASED; 5636 list_del_rcu(&css->sibling); 5637 5638 if (!css_is_self(css)) { 5639 struct cgroup *parent_cgrp; 5640 5641 css_rstat_flush(css); 5642 5643 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5644 if (ss->css_released) 5645 ss->css_released(css); 5646 5647 cgrp->nr_dying_subsys[ss->id]--; 5648 /* 5649 * When a css is released and ready to be freed, its 5650 * nr_descendants must be zero. However, the corresponding 5651 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5652 * is activated and deactivated multiple times with one or 5653 * more of its previous activation leaving behind dying csses. 5654 */ 5655 WARN_ON_ONCE(css->nr_descendants); 5656 parent_cgrp = cgroup_parent(cgrp); 5657 while (parent_cgrp) { 5658 parent_cgrp->nr_dying_subsys[ss->id]--; 5659 parent_cgrp = cgroup_parent(parent_cgrp); 5660 } 5661 } else { 5662 struct cgroup *tcgrp; 5663 5664 /* cgroup release path */ 5665 TRACE_CGROUP_PATH(release, cgrp); 5666 5667 css_rstat_flush(&cgrp->self); 5668 5669 spin_lock_irq(&css_set_lock); 5670 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5671 tcgrp = cgroup_parent(tcgrp)) 5672 tcgrp->nr_dying_descendants--; 5673 spin_unlock_irq(&css_set_lock); 5674 5675 /* 5676 * There are two control paths which try to determine 5677 * cgroup from dentry without going through kernfs - 5678 * cgroupstats_build() and css_tryget_online_from_dir(). 5679 * Those are supported by RCU protecting clearing of 5680 * cgrp->kn->priv backpointer. 5681 */ 5682 if (cgrp->kn) 5683 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5684 NULL); 5685 } 5686 5687 cgroup_unlock(); 5688 5689 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5690 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); 5691 } 5692 5693 static void css_release(struct percpu_ref *ref) 5694 { 5695 struct cgroup_subsys_state *css = 5696 container_of(ref, struct cgroup_subsys_state, refcnt); 5697 5698 INIT_WORK(&css->destroy_work, css_release_work_fn); 5699 queue_work(cgroup_release_wq, &css->destroy_work); 5700 } 5701 5702 static void init_and_link_css(struct cgroup_subsys_state *css, 5703 struct cgroup_subsys *ss, struct cgroup *cgrp) 5704 { 5705 lockdep_assert_held(&cgroup_mutex); 5706 5707 cgroup_get_live(cgrp); 5708 5709 memset(css, 0, sizeof(*css)); 5710 css->cgroup = cgrp; 5711 css->ss = ss; 5712 css->id = -1; 5713 INIT_LIST_HEAD(&css->sibling); 5714 INIT_LIST_HEAD(&css->children); 5715 css->serial_nr = css_serial_nr_next++; 5716 atomic_set(&css->online_cnt, 0); 5717 5718 if (cgroup_parent(cgrp)) { 5719 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5720 css_get(css->parent); 5721 } 5722 5723 BUG_ON(cgroup_css(cgrp, ss)); 5724 } 5725 5726 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5727 static int online_css(struct cgroup_subsys_state *css) 5728 { 5729 struct cgroup_subsys *ss = css->ss; 5730 int ret = 0; 5731 5732 lockdep_assert_held(&cgroup_mutex); 5733 5734 if (ss->css_online) 5735 ret = ss->css_online(css); 5736 if (!ret) { 5737 css->flags |= CSS_ONLINE; 5738 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5739 5740 atomic_inc(&css->online_cnt); 5741 if (css->parent) { 5742 atomic_inc(&css->parent->online_cnt); 5743 while ((css = css->parent)) 5744 css->nr_descendants++; 5745 } 5746 } 5747 return ret; 5748 } 5749 5750 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5751 static void offline_css(struct cgroup_subsys_state *css) 5752 { 5753 struct cgroup_subsys *ss = css->ss; 5754 5755 lockdep_assert_held(&cgroup_mutex); 5756 5757 if (!(css->flags & CSS_ONLINE)) 5758 return; 5759 5760 if (ss->css_offline) 5761 ss->css_offline(css); 5762 5763 css->flags &= ~CSS_ONLINE; 5764 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5765 5766 wake_up_all(&css->cgroup->offline_waitq); 5767 5768 css->cgroup->nr_dying_subsys[ss->id]++; 5769 /* 5770 * Parent css and cgroup cannot be freed until after the freeing 5771 * of child css, see css_free_rwork_fn(). 5772 */ 5773 while ((css = css->parent)) { 5774 css->nr_descendants--; 5775 css->cgroup->nr_dying_subsys[ss->id]++; 5776 } 5777 } 5778 5779 /** 5780 * css_create - create a cgroup_subsys_state 5781 * @cgrp: the cgroup new css will be associated with 5782 * @ss: the subsys of new css 5783 * 5784 * Create a new css associated with @cgrp - @ss pair. On success, the new 5785 * css is online and installed in @cgrp. This function doesn't create the 5786 * interface files. Returns 0 on success, -errno on failure. 5787 */ 5788 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5789 struct cgroup_subsys *ss) 5790 { 5791 struct cgroup *parent = cgroup_parent(cgrp); 5792 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5793 struct cgroup_subsys_state *css; 5794 int err; 5795 5796 lockdep_assert_held(&cgroup_mutex); 5797 5798 css = ss->css_alloc(parent_css); 5799 if (!css) 5800 css = ERR_PTR(-ENOMEM); 5801 if (IS_ERR(css)) 5802 return css; 5803 5804 init_and_link_css(css, ss, cgrp); 5805 5806 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5807 if (err) 5808 goto err_free_css; 5809 5810 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5811 if (err < 0) 5812 goto err_free_css; 5813 css->id = err; 5814 5815 err = css_rstat_init(css); 5816 if (err) 5817 goto err_free_css; 5818 5819 /* @css is ready to be brought online now, make it visible */ 5820 list_add_tail_rcu(&css->sibling, &parent_css->children); 5821 cgroup_idr_replace(&ss->css_idr, css, css->id); 5822 5823 err = online_css(css); 5824 if (err) 5825 goto err_list_del; 5826 5827 return css; 5828 5829 err_list_del: 5830 list_del_rcu(&css->sibling); 5831 err_free_css: 5832 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5833 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); 5834 return ERR_PTR(err); 5835 } 5836 5837 /* 5838 * The returned cgroup is fully initialized including its control mask, but 5839 * it doesn't have the control mask applied. 5840 */ 5841 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5842 umode_t mode) 5843 { 5844 struct cgroup_root *root = parent->root; 5845 struct cgroup *cgrp, *tcgrp; 5846 struct kernfs_node *kn; 5847 int i, level = parent->level + 1; 5848 int ret; 5849 5850 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5851 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5852 if (!cgrp) 5853 return ERR_PTR(-ENOMEM); 5854 5855 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5856 if (ret) 5857 goto out_free_cgrp; 5858 5859 /* create the directory */ 5860 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5861 current_fsuid(), current_fsgid(), 5862 cgrp, NULL); 5863 if (IS_ERR(kn)) { 5864 ret = PTR_ERR(kn); 5865 goto out_cancel_ref; 5866 } 5867 cgrp->kn = kn; 5868 5869 init_cgroup_housekeeping(cgrp); 5870 5871 cgrp->self.parent = &parent->self; 5872 cgrp->root = root; 5873 cgrp->level = level; 5874 5875 /* 5876 * Now that init_cgroup_housekeeping() has been called and cgrp->self 5877 * is setup, it is safe to perform rstat initialization on it. 5878 */ 5879 ret = css_rstat_init(&cgrp->self); 5880 if (ret) 5881 goto out_kernfs_remove; 5882 5883 ret = psi_cgroup_alloc(cgrp); 5884 if (ret) 5885 goto out_stat_exit; 5886 5887 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 5888 cgrp->ancestors[tcgrp->level] = tcgrp; 5889 5890 /* 5891 * New cgroup inherits effective freeze counter, and 5892 * if the parent has to be frozen, the child has too. 5893 */ 5894 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5895 seqcount_init(&cgrp->freezer.freeze_seq); 5896 if (cgrp->freezer.e_freeze) { 5897 /* 5898 * Set the CGRP_FREEZE flag, so when a process will be 5899 * attached to the child cgroup, it will become frozen. 5900 * At this point the new cgroup is unpopulated, so we can 5901 * consider it frozen immediately. 5902 */ 5903 set_bit(CGRP_FREEZE, &cgrp->flags); 5904 cgrp->freezer.freeze_start_nsec = ktime_get_ns(); 5905 set_bit(CGRP_FROZEN, &cgrp->flags); 5906 } 5907 5908 if (notify_on_release(parent)) 5909 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5910 5911 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5912 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5913 5914 cgrp->self.serial_nr = css_serial_nr_next++; 5915 5916 ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier, 5917 CGROUP_LIFETIME_ONLINE, 5918 CGROUP_LIFETIME_OFFLINE, cgrp); 5919 ret = notifier_to_errno(ret); 5920 if (ret) 5921 goto out_psi_free; 5922 5923 /* allocation complete, commit to creation */ 5924 spin_lock_irq(&css_set_lock); 5925 for (i = 0; i < level; i++) { 5926 tcgrp = cgrp->ancestors[i]; 5927 tcgrp->nr_descendants++; 5928 5929 /* 5930 * If the new cgroup is frozen, all ancestor cgroups get a new 5931 * frozen descendant, but their state can't change because of 5932 * this. 5933 */ 5934 if (cgrp->freezer.e_freeze) 5935 tcgrp->freezer.nr_frozen_descendants++; 5936 } 5937 spin_unlock_irq(&css_set_lock); 5938 5939 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5940 atomic_inc(&root->nr_cgrps); 5941 cgroup_get_live(parent); 5942 5943 /* 5944 * On the default hierarchy, a child doesn't automatically inherit 5945 * subtree_control from the parent. Each is configured manually. 5946 */ 5947 if (!cgroup_on_dfl(cgrp)) 5948 cgrp->subtree_control = cgroup_control(cgrp); 5949 5950 cgroup_propagate_control(cgrp); 5951 5952 return cgrp; 5953 5954 out_psi_free: 5955 psi_cgroup_free(cgrp); 5956 out_stat_exit: 5957 css_rstat_exit(&cgrp->self); 5958 out_kernfs_remove: 5959 kernfs_remove(cgrp->kn); 5960 out_cancel_ref: 5961 percpu_ref_exit(&cgrp->self.refcnt); 5962 out_free_cgrp: 5963 kfree(cgrp); 5964 return ERR_PTR(ret); 5965 } 5966 5967 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5968 { 5969 struct cgroup *cgroup; 5970 int ret = false; 5971 int level = 0; 5972 5973 lockdep_assert_held(&cgroup_mutex); 5974 5975 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5976 if (cgroup->nr_descendants >= cgroup->max_descendants) 5977 goto fail; 5978 5979 if (level >= cgroup->max_depth) 5980 goto fail; 5981 5982 level++; 5983 } 5984 5985 ret = true; 5986 fail: 5987 return ret; 5988 } 5989 5990 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5991 { 5992 struct cgroup *parent, *cgrp; 5993 int ret; 5994 5995 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5996 if (strchr(name, '\n')) 5997 return -EINVAL; 5998 5999 parent = cgroup_kn_lock_live(parent_kn, false); 6000 if (!parent) 6001 return -ENODEV; 6002 6003 if (!cgroup_check_hierarchy_limits(parent)) { 6004 ret = -EAGAIN; 6005 goto out_unlock; 6006 } 6007 6008 cgrp = cgroup_create(parent, name, mode); 6009 if (IS_ERR(cgrp)) { 6010 ret = PTR_ERR(cgrp); 6011 goto out_unlock; 6012 } 6013 6014 /* 6015 * This extra ref will be put in css_free_rwork_fn() and guarantees 6016 * that @cgrp->kn is always accessible. 6017 */ 6018 kernfs_get(cgrp->kn); 6019 6020 ret = css_populate_dir(&cgrp->self); 6021 if (ret) 6022 goto out_destroy; 6023 6024 ret = cgroup_apply_control_enable(cgrp); 6025 if (ret) 6026 goto out_destroy; 6027 6028 TRACE_CGROUP_PATH(mkdir, cgrp); 6029 6030 /* let's create and online css's */ 6031 kernfs_activate(cgrp->kn); 6032 6033 ret = 0; 6034 goto out_unlock; 6035 6036 out_destroy: 6037 cgroup_destroy_locked(cgrp); 6038 out_unlock: 6039 cgroup_kn_unlock(parent_kn); 6040 return ret; 6041 } 6042 6043 /* 6044 * This is called when the refcnt of a css is confirmed to be killed. 6045 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 6046 * initiate destruction and put the css ref from kill_css(). 6047 */ 6048 static void css_killed_work_fn(struct work_struct *work) 6049 { 6050 struct cgroup_subsys_state *css = 6051 container_of(work, struct cgroup_subsys_state, destroy_work); 6052 6053 cgroup_lock(); 6054 6055 do { 6056 offline_css(css); 6057 css_put(css); 6058 /* @css can't go away while we're holding cgroup_mutex */ 6059 css = css->parent; 6060 } while (css && atomic_dec_and_test(&css->online_cnt)); 6061 6062 cgroup_unlock(); 6063 } 6064 6065 /* css kill confirmation processing requires process context, bounce */ 6066 static void css_killed_ref_fn(struct percpu_ref *ref) 6067 { 6068 struct cgroup_subsys_state *css = 6069 container_of(ref, struct cgroup_subsys_state, refcnt); 6070 6071 if (atomic_dec_and_test(&css->online_cnt)) { 6072 INIT_WORK(&css->destroy_work, css_killed_work_fn); 6073 queue_work(cgroup_offline_wq, &css->destroy_work); 6074 } 6075 } 6076 6077 /** 6078 * kill_css - destroy a css 6079 * @css: css to destroy 6080 * 6081 * This function initiates destruction of @css by removing cgroup interface 6082 * files and putting its base reference. ->css_offline() will be invoked 6083 * asynchronously once css_tryget_online() is guaranteed to fail and when 6084 * the reference count reaches zero, @css will be released. 6085 */ 6086 static void kill_css(struct cgroup_subsys_state *css) 6087 { 6088 lockdep_assert_held(&cgroup_mutex); 6089 6090 if (css->flags & CSS_DYING) 6091 return; 6092 6093 /* 6094 * Call css_killed(), if defined, before setting the CSS_DYING flag 6095 */ 6096 if (css->ss->css_killed) 6097 css->ss->css_killed(css); 6098 6099 css->flags |= CSS_DYING; 6100 6101 /* 6102 * This must happen before css is disassociated with its cgroup. 6103 * See seq_css() for details. 6104 */ 6105 css_clear_dir(css); 6106 6107 /* 6108 * Killing would put the base ref, but we need to keep it alive 6109 * until after ->css_offline(). 6110 */ 6111 css_get(css); 6112 6113 /* 6114 * cgroup core guarantees that, by the time ->css_offline() is 6115 * invoked, no new css reference will be given out via 6116 * css_tryget_online(). We can't simply call percpu_ref_kill() and 6117 * proceed to offlining css's because percpu_ref_kill() doesn't 6118 * guarantee that the ref is seen as killed on all CPUs on return. 6119 * 6120 * Use percpu_ref_kill_and_confirm() to get notifications as each 6121 * css is confirmed to be seen as killed on all CPUs. 6122 */ 6123 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 6124 } 6125 6126 /** 6127 * cgroup_destroy_locked - the first stage of cgroup destruction 6128 * @cgrp: cgroup to be destroyed 6129 * 6130 * css's make use of percpu refcnts whose killing latency shouldn't be 6131 * exposed to userland and are RCU protected. Also, cgroup core needs to 6132 * guarantee that css_tryget_online() won't succeed by the time 6133 * ->css_offline() is invoked. To satisfy all the requirements, 6134 * destruction is implemented in the following two steps. 6135 * 6136 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 6137 * userland visible parts and start killing the percpu refcnts of 6138 * css's. Set up so that the next stage will be kicked off once all 6139 * the percpu refcnts are confirmed to be killed. 6140 * 6141 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 6142 * rest of destruction. Once all cgroup references are gone, the 6143 * cgroup is RCU-freed. 6144 * 6145 * This function implements s1. After this step, @cgrp is gone as far as 6146 * the userland is concerned and a new cgroup with the same name may be 6147 * created. As cgroup doesn't care about the names internally, this 6148 * doesn't cause any problem. 6149 */ 6150 static int cgroup_destroy_locked(struct cgroup *cgrp) 6151 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 6152 { 6153 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 6154 struct cgroup_subsys_state *css; 6155 struct cgrp_cset_link *link; 6156 int ssid, ret; 6157 6158 lockdep_assert_held(&cgroup_mutex); 6159 6160 /* 6161 * Only migration can raise populated from zero and we're already 6162 * holding cgroup_mutex. 6163 */ 6164 if (cgroup_is_populated(cgrp)) 6165 return -EBUSY; 6166 6167 /* 6168 * Make sure there's no live children. We can't test emptiness of 6169 * ->self.children as dead children linger on it while being 6170 * drained; otherwise, "rmdir parent/child parent" may fail. 6171 */ 6172 if (css_has_online_children(&cgrp->self)) 6173 return -EBUSY; 6174 6175 /* 6176 * Mark @cgrp and the associated csets dead. The former prevents 6177 * further task migration and child creation by disabling 6178 * cgroup_kn_lock_live(). The latter makes the csets ignored by 6179 * the migration path. 6180 */ 6181 cgrp->self.flags &= ~CSS_ONLINE; 6182 6183 spin_lock_irq(&css_set_lock); 6184 list_for_each_entry(link, &cgrp->cset_links, cset_link) 6185 link->cset->dead = true; 6186 spin_unlock_irq(&css_set_lock); 6187 6188 /* initiate massacre of all css's */ 6189 for_each_css(css, ssid, cgrp) 6190 kill_css(css); 6191 6192 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6193 css_clear_dir(&cgrp->self); 6194 kernfs_remove(cgrp->kn); 6195 6196 if (cgroup_is_threaded(cgrp)) 6197 parent->nr_threaded_children--; 6198 6199 spin_lock_irq(&css_set_lock); 6200 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6201 tcgrp->nr_descendants--; 6202 tcgrp->nr_dying_descendants++; 6203 /* 6204 * If the dying cgroup is frozen, decrease frozen descendants 6205 * counters of ancestor cgroups. 6206 */ 6207 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6208 tcgrp->freezer.nr_frozen_descendants--; 6209 } 6210 spin_unlock_irq(&css_set_lock); 6211 6212 cgroup1_check_for_release(parent); 6213 6214 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 6215 CGROUP_LIFETIME_OFFLINE, cgrp); 6216 WARN_ON_ONCE(notifier_to_errno(ret)); 6217 6218 /* put the base reference */ 6219 percpu_ref_kill(&cgrp->self.refcnt); 6220 6221 return 0; 6222 }; 6223 6224 int cgroup_rmdir(struct kernfs_node *kn) 6225 { 6226 struct cgroup *cgrp; 6227 int ret = 0; 6228 6229 cgrp = cgroup_kn_lock_live(kn, false); 6230 if (!cgrp) 6231 return 0; 6232 6233 ret = cgroup_destroy_locked(cgrp); 6234 if (!ret) 6235 TRACE_CGROUP_PATH(rmdir, cgrp); 6236 6237 cgroup_kn_unlock(kn); 6238 return ret; 6239 } 6240 6241 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6242 .show_options = cgroup_show_options, 6243 .mkdir = cgroup_mkdir, 6244 .rmdir = cgroup_rmdir, 6245 .show_path = cgroup_show_path, 6246 }; 6247 6248 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6249 { 6250 struct cgroup_subsys_state *css; 6251 6252 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6253 6254 cgroup_lock(); 6255 6256 idr_init(&ss->css_idr); 6257 INIT_LIST_HEAD(&ss->cfts); 6258 6259 /* Create the root cgroup state for this subsystem */ 6260 ss->root = &cgrp_dfl_root; 6261 css = ss->css_alloc(NULL); 6262 /* We don't handle early failures gracefully */ 6263 BUG_ON(IS_ERR(css)); 6264 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6265 6266 /* 6267 * Root csses are never destroyed and we can't initialize 6268 * percpu_ref during early init. Disable refcnting. 6269 */ 6270 css->flags |= CSS_NO_REF; 6271 6272 if (early) { 6273 /* allocation can't be done safely during early init */ 6274 css->id = 1; 6275 } else { 6276 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6277 BUG_ON(css->id < 0); 6278 6279 BUG_ON(ss_rstat_init(ss)); 6280 BUG_ON(css_rstat_init(css)); 6281 } 6282 6283 /* Update the init_css_set to contain a subsys 6284 * pointer to this state - since the subsystem is 6285 * newly registered, all tasks and hence the 6286 * init_css_set is in the subsystem's root cgroup. */ 6287 init_css_set.subsys[ss->id] = css; 6288 6289 have_fork_callback |= (bool)ss->fork << ss->id; 6290 have_exit_callback |= (bool)ss->exit << ss->id; 6291 have_release_callback |= (bool)ss->release << ss->id; 6292 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6293 6294 /* At system boot, before all subsystems have been 6295 * registered, no tasks have been forked, so we don't 6296 * need to invoke fork callbacks here. */ 6297 BUG_ON(!list_empty(&init_task.tasks)); 6298 6299 BUG_ON(online_css(css)); 6300 6301 cgroup_unlock(); 6302 } 6303 6304 /** 6305 * cgroup_init_early - cgroup initialization at system boot 6306 * 6307 * Initialize cgroups at system boot, and initialize any 6308 * subsystems that request early init. 6309 */ 6310 int __init cgroup_init_early(void) 6311 { 6312 static struct cgroup_fs_context __initdata ctx; 6313 struct cgroup_subsys *ss; 6314 int i; 6315 6316 ctx.root = &cgrp_dfl_root; 6317 init_cgroup_root(&ctx); 6318 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6319 6320 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6321 6322 for_each_subsys(ss, i) { 6323 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6324 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6325 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6326 ss->id, ss->name); 6327 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6328 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6329 WARN(ss->early_init && ss->css_rstat_flush, 6330 "cgroup rstat cannot be used with early init subsystem\n"); 6331 6332 ss->id = i; 6333 ss->name = cgroup_subsys_name[i]; 6334 if (!ss->legacy_name) 6335 ss->legacy_name = cgroup_subsys_name[i]; 6336 6337 if (ss->early_init) 6338 cgroup_init_subsys(ss, true); 6339 } 6340 return 0; 6341 } 6342 6343 /** 6344 * cgroup_init - cgroup initialization 6345 * 6346 * Register cgroup filesystem and /proc file, and initialize 6347 * any subsystems that didn't request early init. 6348 */ 6349 int __init cgroup_init(void) 6350 { 6351 struct cgroup_subsys *ss; 6352 int ssid; 6353 6354 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6355 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6356 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6357 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6358 6359 BUG_ON(ss_rstat_init(NULL)); 6360 6361 get_user_ns(init_cgroup_ns.user_ns); 6362 6363 cgroup_lock(); 6364 6365 /* 6366 * Add init_css_set to the hash table so that dfl_root can link to 6367 * it during init. 6368 */ 6369 hash_add(css_set_table, &init_css_set.hlist, 6370 css_set_hash(init_css_set.subsys)); 6371 6372 cgroup_bpf_lifetime_notifier_init(); 6373 6374 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6375 6376 cgroup_unlock(); 6377 6378 for_each_subsys(ss, ssid) { 6379 if (ss->early_init) { 6380 struct cgroup_subsys_state *css = 6381 init_css_set.subsys[ss->id]; 6382 6383 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6384 GFP_KERNEL); 6385 BUG_ON(css->id < 0); 6386 } else { 6387 cgroup_init_subsys(ss, false); 6388 } 6389 6390 list_add_tail(&init_css_set.e_cset_node[ssid], 6391 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6392 6393 /* 6394 * Setting dfl_root subsys_mask needs to consider the 6395 * disabled flag and cftype registration needs kmalloc, 6396 * both of which aren't available during early_init. 6397 */ 6398 if (!cgroup_ssid_enabled(ssid)) 6399 continue; 6400 6401 if (cgroup1_ssid_disabled(ssid)) 6402 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6403 ss->legacy_name); 6404 6405 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6406 6407 /* implicit controllers must be threaded too */ 6408 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6409 6410 if (ss->implicit_on_dfl) 6411 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6412 else if (!ss->dfl_cftypes) 6413 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6414 6415 if (ss->threaded) 6416 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6417 6418 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6419 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6420 } else { 6421 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6422 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6423 } 6424 6425 if (ss->bind) 6426 ss->bind(init_css_set.subsys[ssid]); 6427 6428 cgroup_lock(); 6429 css_populate_dir(init_css_set.subsys[ssid]); 6430 cgroup_unlock(); 6431 } 6432 6433 /* init_css_set.subsys[] has been updated, re-hash */ 6434 hash_del(&init_css_set.hlist); 6435 hash_add(css_set_table, &init_css_set.hlist, 6436 css_set_hash(init_css_set.subsys)); 6437 6438 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6439 WARN_ON(register_filesystem(&cgroup_fs_type)); 6440 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6441 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6442 #ifdef CONFIG_CPUSETS_V1 6443 WARN_ON(register_filesystem(&cpuset_fs_type)); 6444 #endif 6445 6446 ns_tree_add(&init_cgroup_ns); 6447 return 0; 6448 } 6449 6450 static int __init cgroup_wq_init(void) 6451 { 6452 /* 6453 * There isn't much point in executing destruction path in 6454 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6455 * Use 1 for @max_active. 6456 * 6457 * We would prefer to do this in cgroup_init() above, but that 6458 * is called before init_workqueues(): so leave this until after. 6459 */ 6460 cgroup_offline_wq = alloc_workqueue("cgroup_offline", WQ_PERCPU, 1); 6461 BUG_ON(!cgroup_offline_wq); 6462 6463 cgroup_release_wq = alloc_workqueue("cgroup_release", WQ_PERCPU, 1); 6464 BUG_ON(!cgroup_release_wq); 6465 6466 cgroup_free_wq = alloc_workqueue("cgroup_free", WQ_PERCPU, 1); 6467 BUG_ON(!cgroup_free_wq); 6468 return 0; 6469 } 6470 core_initcall(cgroup_wq_init); 6471 6472 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6473 { 6474 struct kernfs_node *kn; 6475 6476 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6477 if (!kn) 6478 return; 6479 kernfs_path(kn, buf, buflen); 6480 kernfs_put(kn); 6481 } 6482 6483 /* 6484 * __cgroup_get_from_id : get the cgroup associated with cgroup id 6485 * @id: cgroup id 6486 * On success return the cgrp or ERR_PTR on failure 6487 * There are no cgroup NS restrictions. 6488 */ 6489 struct cgroup *__cgroup_get_from_id(u64 id) 6490 { 6491 struct kernfs_node *kn; 6492 struct cgroup *cgrp; 6493 6494 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6495 if (!kn) 6496 return ERR_PTR(-ENOENT); 6497 6498 if (kernfs_type(kn) != KERNFS_DIR) { 6499 kernfs_put(kn); 6500 return ERR_PTR(-ENOENT); 6501 } 6502 6503 rcu_read_lock(); 6504 6505 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6506 if (cgrp && !cgroup_tryget(cgrp)) 6507 cgrp = NULL; 6508 6509 rcu_read_unlock(); 6510 kernfs_put(kn); 6511 6512 if (!cgrp) 6513 return ERR_PTR(-ENOENT); 6514 return cgrp; 6515 } 6516 6517 /* 6518 * cgroup_get_from_id : get the cgroup associated with cgroup id 6519 * @id: cgroup id 6520 * On success return the cgrp or ERR_PTR on failure 6521 * Only cgroups within current task's cgroup NS are valid. 6522 */ 6523 struct cgroup *cgroup_get_from_id(u64 id) 6524 { 6525 struct cgroup *cgrp, *root_cgrp; 6526 6527 cgrp = __cgroup_get_from_id(id); 6528 if (IS_ERR(cgrp)) 6529 return cgrp; 6530 6531 root_cgrp = current_cgns_cgroup_dfl(); 6532 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6533 cgroup_put(cgrp); 6534 return ERR_PTR(-ENOENT); 6535 } 6536 6537 return cgrp; 6538 } 6539 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6540 6541 /* 6542 * proc_cgroup_show() 6543 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6544 * - Used for /proc/<pid>/cgroup. 6545 */ 6546 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6547 struct pid *pid, struct task_struct *tsk) 6548 { 6549 char *buf; 6550 int retval; 6551 struct cgroup_root *root; 6552 6553 retval = -ENOMEM; 6554 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6555 if (!buf) 6556 goto out; 6557 6558 rcu_read_lock(); 6559 spin_lock_irq(&css_set_lock); 6560 6561 for_each_root(root) { 6562 struct cgroup_subsys *ss; 6563 struct cgroup *cgrp; 6564 int ssid, count = 0; 6565 6566 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6567 continue; 6568 6569 cgrp = task_cgroup_from_root(tsk, root); 6570 /* The root has already been unmounted. */ 6571 if (!cgrp) 6572 continue; 6573 6574 seq_printf(m, "%d:", root->hierarchy_id); 6575 if (root != &cgrp_dfl_root) 6576 for_each_subsys(ss, ssid) 6577 if (root->subsys_mask & (1 << ssid)) 6578 seq_printf(m, "%s%s", count++ ? "," : "", 6579 ss->legacy_name); 6580 if (strlen(root->name)) 6581 seq_printf(m, "%sname=%s", count ? "," : "", 6582 root->name); 6583 seq_putc(m, ':'); 6584 /* 6585 * On traditional hierarchies, all zombie tasks show up as 6586 * belonging to the root cgroup. On the default hierarchy, 6587 * while a zombie doesn't show up in "cgroup.procs" and 6588 * thus can't be migrated, its /proc/PID/cgroup keeps 6589 * reporting the cgroup it belonged to before exiting. If 6590 * the cgroup is removed before the zombie is reaped, 6591 * " (deleted)" is appended to the cgroup path. 6592 */ 6593 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6594 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6595 current->nsproxy->cgroup_ns); 6596 if (retval == -E2BIG) 6597 retval = -ENAMETOOLONG; 6598 if (retval < 0) 6599 goto out_unlock; 6600 6601 seq_puts(m, buf); 6602 } else { 6603 seq_puts(m, "/"); 6604 } 6605 6606 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6607 seq_puts(m, " (deleted)\n"); 6608 else 6609 seq_putc(m, '\n'); 6610 } 6611 6612 retval = 0; 6613 out_unlock: 6614 spin_unlock_irq(&css_set_lock); 6615 rcu_read_unlock(); 6616 kfree(buf); 6617 out: 6618 return retval; 6619 } 6620 6621 /** 6622 * cgroup_fork - initialize cgroup related fields during copy_process() 6623 * @child: pointer to task_struct of forking parent process. 6624 * 6625 * A task is associated with the init_css_set until cgroup_post_fork() 6626 * attaches it to the target css_set. 6627 */ 6628 void cgroup_fork(struct task_struct *child) 6629 { 6630 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6631 INIT_LIST_HEAD(&child->cg_list); 6632 } 6633 6634 /** 6635 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6636 * @f: file corresponding to cgroup_dir 6637 * 6638 * Find the cgroup from a file pointer associated with a cgroup directory. 6639 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6640 * cgroup cannot be found. 6641 */ 6642 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6643 { 6644 struct cgroup_subsys_state *css; 6645 6646 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6647 if (IS_ERR(css)) 6648 return ERR_CAST(css); 6649 6650 return css->cgroup; 6651 } 6652 6653 /** 6654 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6655 * cgroup2. 6656 * @f: file corresponding to cgroup2_dir 6657 */ 6658 static struct cgroup *cgroup_get_from_file(struct file *f) 6659 { 6660 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6661 6662 if (IS_ERR(cgrp)) 6663 return ERR_CAST(cgrp); 6664 6665 if (!cgroup_on_dfl(cgrp)) { 6666 cgroup_put(cgrp); 6667 return ERR_PTR(-EBADF); 6668 } 6669 6670 return cgrp; 6671 } 6672 6673 /** 6674 * cgroup_css_set_fork - find or create a css_set for a child process 6675 * @kargs: the arguments passed to create the child process 6676 * 6677 * This functions finds or creates a new css_set which the child 6678 * process will be attached to in cgroup_post_fork(). By default, 6679 * the child process will be given the same css_set as its parent. 6680 * 6681 * If CLONE_INTO_CGROUP is specified this function will try to find an 6682 * existing css_set which includes the requested cgroup and if not create 6683 * a new css_set that the child will be attached to later. If this function 6684 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6685 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6686 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6687 * to the target cgroup. 6688 */ 6689 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6690 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6691 { 6692 int ret; 6693 struct cgroup *dst_cgrp = NULL; 6694 struct css_set *cset; 6695 struct super_block *sb; 6696 6697 if (kargs->flags & CLONE_INTO_CGROUP) 6698 cgroup_lock(); 6699 6700 cgroup_threadgroup_change_begin(current); 6701 6702 spin_lock_irq(&css_set_lock); 6703 cset = task_css_set(current); 6704 get_css_set(cset); 6705 if (kargs->cgrp) 6706 kargs->kill_seq = kargs->cgrp->kill_seq; 6707 else 6708 kargs->kill_seq = cset->dfl_cgrp->kill_seq; 6709 spin_unlock_irq(&css_set_lock); 6710 6711 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6712 kargs->cset = cset; 6713 return 0; 6714 } 6715 6716 CLASS(fd_raw, f)(kargs->cgroup); 6717 if (fd_empty(f)) { 6718 ret = -EBADF; 6719 goto err; 6720 } 6721 sb = fd_file(f)->f_path.dentry->d_sb; 6722 6723 dst_cgrp = cgroup_get_from_file(fd_file(f)); 6724 if (IS_ERR(dst_cgrp)) { 6725 ret = PTR_ERR(dst_cgrp); 6726 dst_cgrp = NULL; 6727 goto err; 6728 } 6729 6730 if (cgroup_is_dead(dst_cgrp)) { 6731 ret = -ENODEV; 6732 goto err; 6733 } 6734 6735 /* 6736 * Verify that we the target cgroup is writable for us. This is 6737 * usually done by the vfs layer but since we're not going through 6738 * the vfs layer here we need to do it "manually". 6739 */ 6740 ret = cgroup_may_write(dst_cgrp, sb); 6741 if (ret) 6742 goto err; 6743 6744 /* 6745 * Spawning a task directly into a cgroup works by passing a file 6746 * descriptor to the target cgroup directory. This can even be an O_PATH 6747 * file descriptor. But it can never be a cgroup.procs file descriptor. 6748 * This was done on purpose so spawning into a cgroup could be 6749 * conceptualized as an atomic 6750 * 6751 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6752 * write(fd, <child-pid>, ...); 6753 * 6754 * sequence, i.e. it's a shorthand for the caller opening and writing 6755 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6756 * to always use the caller's credentials. 6757 */ 6758 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6759 !(kargs->flags & CLONE_THREAD), 6760 current->nsproxy->cgroup_ns); 6761 if (ret) 6762 goto err; 6763 6764 kargs->cset = find_css_set(cset, dst_cgrp); 6765 if (!kargs->cset) { 6766 ret = -ENOMEM; 6767 goto err; 6768 } 6769 6770 put_css_set(cset); 6771 kargs->cgrp = dst_cgrp; 6772 return ret; 6773 6774 err: 6775 cgroup_threadgroup_change_end(current); 6776 cgroup_unlock(); 6777 if (dst_cgrp) 6778 cgroup_put(dst_cgrp); 6779 put_css_set(cset); 6780 if (kargs->cset) 6781 put_css_set(kargs->cset); 6782 return ret; 6783 } 6784 6785 /** 6786 * cgroup_css_set_put_fork - drop references we took during fork 6787 * @kargs: the arguments passed to create the child process 6788 * 6789 * Drop references to the prepared css_set and target cgroup if 6790 * CLONE_INTO_CGROUP was requested. 6791 */ 6792 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6793 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6794 { 6795 struct cgroup *cgrp = kargs->cgrp; 6796 struct css_set *cset = kargs->cset; 6797 6798 cgroup_threadgroup_change_end(current); 6799 6800 if (cset) { 6801 put_css_set(cset); 6802 kargs->cset = NULL; 6803 } 6804 6805 if (kargs->flags & CLONE_INTO_CGROUP) { 6806 cgroup_unlock(); 6807 if (cgrp) { 6808 cgroup_put(cgrp); 6809 kargs->cgrp = NULL; 6810 } 6811 } 6812 } 6813 6814 /** 6815 * cgroup_can_fork - called on a new task before the process is exposed 6816 * @child: the child process 6817 * @kargs: the arguments passed to create the child process 6818 * 6819 * This prepares a new css_set for the child process which the child will 6820 * be attached to in cgroup_post_fork(). 6821 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6822 * callback returns an error, the fork aborts with that error code. This 6823 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6824 */ 6825 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6826 { 6827 struct cgroup_subsys *ss; 6828 int i, j, ret; 6829 6830 ret = cgroup_css_set_fork(kargs); 6831 if (ret) 6832 return ret; 6833 6834 do_each_subsys_mask(ss, i, have_canfork_callback) { 6835 ret = ss->can_fork(child, kargs->cset); 6836 if (ret) 6837 goto out_revert; 6838 } while_each_subsys_mask(); 6839 6840 return 0; 6841 6842 out_revert: 6843 for_each_subsys(ss, j) { 6844 if (j >= i) 6845 break; 6846 if (ss->cancel_fork) 6847 ss->cancel_fork(child, kargs->cset); 6848 } 6849 6850 cgroup_css_set_put_fork(kargs); 6851 6852 return ret; 6853 } 6854 6855 /** 6856 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6857 * @child: the child process 6858 * @kargs: the arguments passed to create the child process 6859 * 6860 * This calls the cancel_fork() callbacks if a fork failed *after* 6861 * cgroup_can_fork() succeeded and cleans up references we took to 6862 * prepare a new css_set for the child process in cgroup_can_fork(). 6863 */ 6864 void cgroup_cancel_fork(struct task_struct *child, 6865 struct kernel_clone_args *kargs) 6866 { 6867 struct cgroup_subsys *ss; 6868 int i; 6869 6870 for_each_subsys(ss, i) 6871 if (ss->cancel_fork) 6872 ss->cancel_fork(child, kargs->cset); 6873 6874 cgroup_css_set_put_fork(kargs); 6875 } 6876 6877 /** 6878 * cgroup_post_fork - finalize cgroup setup for the child process 6879 * @child: the child process 6880 * @kargs: the arguments passed to create the child process 6881 * 6882 * Attach the child process to its css_set calling the subsystem fork() 6883 * callbacks. 6884 */ 6885 void cgroup_post_fork(struct task_struct *child, 6886 struct kernel_clone_args *kargs) 6887 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6888 { 6889 unsigned int cgrp_kill_seq = 0; 6890 unsigned long cgrp_flags = 0; 6891 bool kill = false; 6892 struct cgroup_subsys *ss; 6893 struct css_set *cset; 6894 int i; 6895 6896 cset = kargs->cset; 6897 kargs->cset = NULL; 6898 6899 spin_lock_irq(&css_set_lock); 6900 6901 /* init tasks are special, only link regular threads */ 6902 if (likely(child->pid)) { 6903 if (kargs->cgrp) { 6904 cgrp_flags = kargs->cgrp->flags; 6905 cgrp_kill_seq = kargs->cgrp->kill_seq; 6906 } else { 6907 cgrp_flags = cset->dfl_cgrp->flags; 6908 cgrp_kill_seq = cset->dfl_cgrp->kill_seq; 6909 } 6910 6911 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6912 cset->nr_tasks++; 6913 css_set_move_task(child, NULL, cset, false); 6914 } else { 6915 put_css_set(cset); 6916 cset = NULL; 6917 } 6918 6919 if (!(child->flags & PF_KTHREAD)) { 6920 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6921 /* 6922 * If the cgroup has to be frozen, the new task has 6923 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6924 * get the task into the frozen state. 6925 */ 6926 spin_lock(&child->sighand->siglock); 6927 WARN_ON_ONCE(child->frozen); 6928 child->jobctl |= JOBCTL_TRAP_FREEZE; 6929 spin_unlock(&child->sighand->siglock); 6930 6931 /* 6932 * Calling cgroup_update_frozen() isn't required here, 6933 * because it will be called anyway a bit later from 6934 * do_freezer_trap(). So we avoid cgroup's transient 6935 * switch from the frozen state and back. 6936 */ 6937 } 6938 6939 /* 6940 * If the cgroup is to be killed notice it now and take the 6941 * child down right after we finished preparing it for 6942 * userspace. 6943 */ 6944 kill = kargs->kill_seq != cgrp_kill_seq; 6945 } 6946 6947 spin_unlock_irq(&css_set_lock); 6948 6949 /* 6950 * Call ss->fork(). This must happen after @child is linked on 6951 * css_set; otherwise, @child might change state between ->fork() 6952 * and addition to css_set. 6953 */ 6954 do_each_subsys_mask(ss, i, have_fork_callback) { 6955 ss->fork(child); 6956 } while_each_subsys_mask(); 6957 6958 /* Make the new cset the root_cset of the new cgroup namespace. */ 6959 if (kargs->flags & CLONE_NEWCGROUP) { 6960 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6961 6962 get_css_set(cset); 6963 child->nsproxy->cgroup_ns->root_cset = cset; 6964 put_css_set(rcset); 6965 } 6966 6967 /* Cgroup has to be killed so take down child immediately. */ 6968 if (unlikely(kill)) 6969 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6970 6971 cgroup_css_set_put_fork(kargs); 6972 } 6973 6974 /** 6975 * cgroup_exit - detach cgroup from exiting task 6976 * @tsk: pointer to task_struct of exiting process 6977 * 6978 * Description: Detach cgroup from @tsk. 6979 * 6980 */ 6981 void cgroup_exit(struct task_struct *tsk) 6982 { 6983 struct cgroup_subsys *ss; 6984 struct css_set *cset; 6985 int i; 6986 6987 spin_lock_irq(&css_set_lock); 6988 6989 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6990 cset = task_css_set(tsk); 6991 css_set_move_task(tsk, cset, NULL, false); 6992 cset->nr_tasks--; 6993 /* matches the signal->live check in css_task_iter_advance() */ 6994 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6995 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6996 6997 if (dl_task(tsk)) 6998 dec_dl_tasks_cs(tsk); 6999 7000 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 7001 if (unlikely(!(tsk->flags & PF_KTHREAD) && 7002 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 7003 cgroup_update_frozen(task_dfl_cgroup(tsk)); 7004 7005 spin_unlock_irq(&css_set_lock); 7006 7007 /* see cgroup_post_fork() for details */ 7008 do_each_subsys_mask(ss, i, have_exit_callback) { 7009 ss->exit(tsk); 7010 } while_each_subsys_mask(); 7011 } 7012 7013 void cgroup_release(struct task_struct *task) 7014 { 7015 struct cgroup_subsys *ss; 7016 int ssid; 7017 7018 do_each_subsys_mask(ss, ssid, have_release_callback) { 7019 ss->release(task); 7020 } while_each_subsys_mask(); 7021 7022 if (!list_empty(&task->cg_list)) { 7023 spin_lock_irq(&css_set_lock); 7024 css_set_skip_task_iters(task_css_set(task), task); 7025 list_del_init(&task->cg_list); 7026 spin_unlock_irq(&css_set_lock); 7027 } 7028 } 7029 7030 void cgroup_free(struct task_struct *task) 7031 { 7032 struct css_set *cset = task_css_set(task); 7033 put_css_set(cset); 7034 } 7035 7036 static int __init cgroup_disable(char *str) 7037 { 7038 struct cgroup_subsys *ss; 7039 char *token; 7040 int i; 7041 7042 while ((token = strsep(&str, ",")) != NULL) { 7043 if (!*token) 7044 continue; 7045 7046 for_each_subsys(ss, i) { 7047 if (strcmp(token, ss->name) && 7048 strcmp(token, ss->legacy_name)) 7049 continue; 7050 7051 static_branch_disable(cgroup_subsys_enabled_key[i]); 7052 pr_info("Disabling %s control group subsystem\n", 7053 ss->name); 7054 } 7055 7056 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 7057 if (strcmp(token, cgroup_opt_feature_names[i])) 7058 continue; 7059 cgroup_feature_disable_mask |= 1 << i; 7060 pr_info("Disabling %s control group feature\n", 7061 cgroup_opt_feature_names[i]); 7062 break; 7063 } 7064 } 7065 return 1; 7066 } 7067 __setup("cgroup_disable=", cgroup_disable); 7068 7069 void __init __weak enable_debug_cgroup(void) { } 7070 7071 static int __init enable_cgroup_debug(char *str) 7072 { 7073 cgroup_debug = true; 7074 enable_debug_cgroup(); 7075 return 1; 7076 } 7077 __setup("cgroup_debug", enable_cgroup_debug); 7078 7079 static int __init cgroup_favordynmods_setup(char *str) 7080 { 7081 return (kstrtobool(str, &have_favordynmods) == 0); 7082 } 7083 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 7084 7085 /** 7086 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 7087 * @dentry: directory dentry of interest 7088 * @ss: subsystem of interest 7089 * 7090 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 7091 * to get the corresponding css and return it. If such css doesn't exist 7092 * or can't be pinned, an ERR_PTR value is returned. 7093 */ 7094 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 7095 struct cgroup_subsys *ss) 7096 { 7097 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 7098 struct file_system_type *s_type = dentry->d_sb->s_type; 7099 struct cgroup_subsys_state *css = NULL; 7100 struct cgroup *cgrp; 7101 7102 /* is @dentry a cgroup dir? */ 7103 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 7104 !kn || kernfs_type(kn) != KERNFS_DIR) 7105 return ERR_PTR(-EBADF); 7106 7107 rcu_read_lock(); 7108 7109 /* 7110 * This path doesn't originate from kernfs and @kn could already 7111 * have been or be removed at any point. @kn->priv is RCU 7112 * protected for this access. See css_release_work_fn() for details. 7113 */ 7114 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 7115 if (cgrp) 7116 css = cgroup_css(cgrp, ss); 7117 7118 if (!css || !css_tryget_online(css)) 7119 css = ERR_PTR(-ENOENT); 7120 7121 rcu_read_unlock(); 7122 return css; 7123 } 7124 7125 /** 7126 * css_from_id - lookup css by id 7127 * @id: the cgroup id 7128 * @ss: cgroup subsys to be looked into 7129 * 7130 * Returns the css if there's valid one with @id, otherwise returns NULL. 7131 * Should be called under rcu_read_lock(). 7132 */ 7133 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 7134 { 7135 WARN_ON_ONCE(!rcu_read_lock_held()); 7136 return idr_find(&ss->css_idr, id); 7137 } 7138 7139 /** 7140 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 7141 * @path: path on the default hierarchy 7142 * 7143 * Find the cgroup at @path on the default hierarchy, increment its 7144 * reference count and return it. Returns pointer to the found cgroup on 7145 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 7146 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 7147 */ 7148 struct cgroup *cgroup_get_from_path(const char *path) 7149 { 7150 struct kernfs_node *kn; 7151 struct cgroup *cgrp = ERR_PTR(-ENOENT); 7152 struct cgroup *root_cgrp; 7153 7154 root_cgrp = current_cgns_cgroup_dfl(); 7155 kn = kernfs_walk_and_get(root_cgrp->kn, path); 7156 if (!kn) 7157 goto out; 7158 7159 if (kernfs_type(kn) != KERNFS_DIR) { 7160 cgrp = ERR_PTR(-ENOTDIR); 7161 goto out_kernfs; 7162 } 7163 7164 rcu_read_lock(); 7165 7166 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 7167 if (!cgrp || !cgroup_tryget(cgrp)) 7168 cgrp = ERR_PTR(-ENOENT); 7169 7170 rcu_read_unlock(); 7171 7172 out_kernfs: 7173 kernfs_put(kn); 7174 out: 7175 return cgrp; 7176 } 7177 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 7178 7179 /** 7180 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 7181 * @fd: fd obtained by open(cgroup_dir) 7182 * 7183 * Find the cgroup from a fd which should be obtained 7184 * by opening a cgroup directory. Returns a pointer to the 7185 * cgroup on success. ERR_PTR is returned if the cgroup 7186 * cannot be found. 7187 */ 7188 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 7189 { 7190 CLASS(fd_raw, f)(fd); 7191 if (fd_empty(f)) 7192 return ERR_PTR(-EBADF); 7193 7194 return cgroup_v1v2_get_from_file(fd_file(f)); 7195 } 7196 7197 /** 7198 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 7199 * cgroup2. 7200 * @fd: fd obtained by open(cgroup2_dir) 7201 */ 7202 struct cgroup *cgroup_get_from_fd(int fd) 7203 { 7204 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 7205 7206 if (IS_ERR(cgrp)) 7207 return ERR_CAST(cgrp); 7208 7209 if (!cgroup_on_dfl(cgrp)) { 7210 cgroup_put(cgrp); 7211 return ERR_PTR(-EBADF); 7212 } 7213 return cgrp; 7214 } 7215 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 7216 7217 static u64 power_of_ten(int power) 7218 { 7219 u64 v = 1; 7220 while (power--) 7221 v *= 10; 7222 return v; 7223 } 7224 7225 /** 7226 * cgroup_parse_float - parse a floating number 7227 * @input: input string 7228 * @dec_shift: number of decimal digits to shift 7229 * @v: output 7230 * 7231 * Parse a decimal floating point number in @input and store the result in 7232 * @v with decimal point right shifted @dec_shift times. For example, if 7233 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7234 * Returns 0 on success, -errno otherwise. 7235 * 7236 * There's nothing cgroup specific about this function except that it's 7237 * currently the only user. 7238 */ 7239 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7240 { 7241 s64 whole, frac = 0; 7242 int fstart = 0, fend = 0, flen; 7243 7244 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7245 return -EINVAL; 7246 if (frac < 0) 7247 return -EINVAL; 7248 7249 flen = fend > fstart ? fend - fstart : 0; 7250 if (flen < dec_shift) 7251 frac *= power_of_ten(dec_shift - flen); 7252 else 7253 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7254 7255 *v = whole * power_of_ten(dec_shift) + frac; 7256 return 0; 7257 } 7258 7259 /* 7260 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7261 * definition in cgroup-defs.h. 7262 */ 7263 #ifdef CONFIG_SOCK_CGROUP_DATA 7264 7265 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7266 { 7267 struct cgroup *cgroup; 7268 7269 rcu_read_lock(); 7270 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7271 if (in_interrupt()) { 7272 cgroup = &cgrp_dfl_root.cgrp; 7273 cgroup_get(cgroup); 7274 goto out; 7275 } 7276 7277 while (true) { 7278 struct css_set *cset; 7279 7280 cset = task_css_set(current); 7281 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7282 cgroup = cset->dfl_cgrp; 7283 break; 7284 } 7285 cpu_relax(); 7286 } 7287 out: 7288 skcd->cgroup = cgroup; 7289 cgroup_bpf_get(cgroup); 7290 rcu_read_unlock(); 7291 } 7292 7293 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7294 { 7295 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7296 7297 /* 7298 * We might be cloning a socket which is left in an empty 7299 * cgroup and the cgroup might have already been rmdir'd. 7300 * Don't use cgroup_get_live(). 7301 */ 7302 cgroup_get(cgrp); 7303 cgroup_bpf_get(cgrp); 7304 } 7305 7306 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7307 { 7308 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7309 7310 cgroup_bpf_put(cgrp); 7311 cgroup_put(cgrp); 7312 } 7313 7314 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7315 7316 #ifdef CONFIG_SYSFS 7317 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7318 ssize_t size, const char *prefix) 7319 { 7320 struct cftype *cft; 7321 ssize_t ret = 0; 7322 7323 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7324 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7325 continue; 7326 7327 if (prefix) 7328 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7329 7330 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7331 7332 if (WARN_ON(ret >= size)) 7333 break; 7334 } 7335 7336 return ret; 7337 } 7338 7339 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7340 char *buf) 7341 { 7342 struct cgroup_subsys *ss; 7343 int ssid; 7344 ssize_t ret = 0; 7345 7346 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7347 PAGE_SIZE - ret, NULL); 7348 if (cgroup_psi_enabled()) 7349 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7350 PAGE_SIZE - ret, NULL); 7351 7352 for_each_subsys(ss, ssid) 7353 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7354 PAGE_SIZE - ret, 7355 cgroup_subsys_name[ssid]); 7356 7357 return ret; 7358 } 7359 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7360 7361 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7362 char *buf) 7363 { 7364 return snprintf(buf, PAGE_SIZE, 7365 "nsdelegate\n" 7366 "favordynmods\n" 7367 "memory_localevents\n" 7368 "memory_recursiveprot\n" 7369 "memory_hugetlb_accounting\n" 7370 "pids_localevents\n"); 7371 } 7372 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7373 7374 static struct attribute *cgroup_sysfs_attrs[] = { 7375 &cgroup_delegate_attr.attr, 7376 &cgroup_features_attr.attr, 7377 NULL, 7378 }; 7379 7380 static const struct attribute_group cgroup_sysfs_attr_group = { 7381 .attrs = cgroup_sysfs_attrs, 7382 .name = "cgroup", 7383 }; 7384 7385 static int __init cgroup_sysfs_init(void) 7386 { 7387 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7388 } 7389 subsys_initcall(cgroup_sysfs_init); 7390 7391 #endif /* CONFIG_SYSFS */ 7392