1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ 268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ 319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ 325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ 366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ 377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ 399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ 421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ 439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ 460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ 487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ 571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ 608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ 625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 637 { 638 struct cgroup *cgrp = of->kn->parent->priv; 639 struct cftype *cft = of_cft(of); 640 641 /* 642 * This is open and unprotected implementation of cgroup_css(). 643 * seq_css() is only called from a kernfs file operation which has 644 * an active reference on the file. Because all the subsystem 645 * files are drained before a css is disassociated with a cgroup, 646 * the matching css from the cgroup's subsys table is guaranteed to 647 * be and stay valid until the enclosing operation is complete. 648 */ 649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 651 else 652 return &cgrp->self; 653 } 654 EXPORT_SYMBOL_GPL(of_css); 655 656 /** 657 * for_each_css - iterate all css's of a cgroup 658 * @css: the iteration cursor 659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 660 * @cgrp: the target cgroup to iterate css's of 661 * 662 * Should be called under cgroup_mutex. 663 */ 664 #define for_each_css(css, ssid, cgrp) \ 665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 666 if (!((css) = rcu_dereference_check( \ 667 (cgrp)->subsys[(ssid)], \ 668 lockdep_is_held(&cgroup_mutex)))) { } \ 669 else 670 671 /** 672 * do_each_subsys_mask - filter for_each_subsys with a bitmask 673 * @ss: the iteration cursor 674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 675 * @ss_mask: the bitmask 676 * 677 * The block will only run for cases where the ssid-th bit (1 << ssid) of 678 * @ss_mask is set. 679 */ 680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 681 unsigned long __ss_mask = (ss_mask); \ 682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 683 (ssid) = 0; \ 684 break; \ 685 } \ 686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 687 (ss) = cgroup_subsys[ssid]; \ 688 { 689 690 #define while_each_subsys_mask() \ 691 } \ 692 } \ 693 } while (false) 694 695 /* iterate over child cgrps, lock should be held throughout iteration */ 696 #define cgroup_for_each_live_child(child, cgrp) \ 697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 698 if (({ lockdep_assert_held(&cgroup_mutex); \ 699 cgroup_is_dead(child); })) \ 700 ; \ 701 else 702 703 /* walk live descendants in pre order */ 704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 (dsct) = (d_css)->cgroup; \ 708 cgroup_is_dead(dsct); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in postorder */ 713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* 722 * The default css_set - used by init and its children prior to any 723 * hierarchies being mounted. It contains a pointer to the root state 724 * for each subsystem. Also used to anchor the list of css_sets. Not 725 * reference-counted, to improve performance when child cgroups 726 * haven't been created. 727 */ 728 struct css_set init_css_set = { 729 .refcount = REFCOUNT_INIT(1), 730 .dom_cset = &init_css_set, 731 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 740 741 /* 742 * The following field is re-initialized when this cset gets linked 743 * in cgroup_init(). However, let's initialize the field 744 * statically too so that the default cgroup can be accessed safely 745 * early during boot. 746 */ 747 .dfl_cgrp = &cgrp_dfl_root.cgrp, 748 }; 749 750 static int css_set_count = 1; /* 1 for init_css_set */ 751 752 static bool css_set_threaded(struct css_set *cset) 753 { 754 return cset->dom_cset != cset; 755 } 756 757 /** 758 * css_set_populated - does a css_set contain any tasks? 759 * @cset: target css_set 760 * 761 * css_set_populated() should be the same as !!cset->nr_tasks at steady 762 * state. However, css_set_populated() can be called while a task is being 763 * added to or removed from the linked list before the nr_tasks is 764 * properly updated. Hence, we can't just look at ->nr_tasks here. 765 */ 766 static bool css_set_populated(struct css_set *cset) 767 { 768 lockdep_assert_held(&css_set_lock); 769 770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 771 } 772 773 /** 774 * cgroup_update_populated - update the populated count of a cgroup 775 * @cgrp: the target cgroup 776 * @populated: inc or dec populated count 777 * 778 * One of the css_sets associated with @cgrp is either getting its first 779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 780 * count is propagated towards root so that a given cgroup's 781 * nr_populated_children is zero iff none of its descendants contain any 782 * tasks. 783 * 784 * @cgrp's interface file "cgroup.populated" is zero if both 785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 786 * 1 otherwise. When the sum changes from or to zero, userland is notified 787 * that the content of the interface file has changed. This can be used to 788 * detect when @cgrp and its descendants become populated or empty. 789 */ 790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 791 { 792 struct cgroup *child = NULL; 793 int adj = populated ? 1 : -1; 794 795 lockdep_assert_held(&css_set_lock); 796 797 do { 798 bool was_populated = cgroup_is_populated(cgrp); 799 800 if (!child) { 801 cgrp->nr_populated_csets += adj; 802 } else { 803 if (cgroup_is_threaded(child)) 804 cgrp->nr_populated_threaded_children += adj; 805 else 806 cgrp->nr_populated_domain_children += adj; 807 } 808 809 if (was_populated == cgroup_is_populated(cgrp)) 810 break; 811 812 cgroup1_check_for_release(cgrp); 813 TRACE_CGROUP_PATH(notify_populated, cgrp, 814 cgroup_is_populated(cgrp)); 815 cgroup_file_notify(&cgrp->events_file); 816 817 child = cgrp; 818 cgrp = cgroup_parent(cgrp); 819 } while (cgrp); 820 } 821 822 /** 823 * css_set_update_populated - update populated state of a css_set 824 * @cset: target css_set 825 * @populated: whether @cset is populated or depopulated 826 * 827 * @cset is either getting the first task or losing the last. Update the 828 * populated counters of all associated cgroups accordingly. 829 */ 830 static void css_set_update_populated(struct css_set *cset, bool populated) 831 { 832 struct cgrp_cset_link *link; 833 834 lockdep_assert_held(&css_set_lock); 835 836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 837 cgroup_update_populated(link->cgrp, populated); 838 } 839 840 /* 841 * @task is leaving, advance task iterators which are pointing to it so 842 * that they can resume at the next position. Advancing an iterator might 843 * remove it from the list, use safe walk. See css_task_iter_skip() for 844 * details. 845 */ 846 static void css_set_skip_task_iters(struct css_set *cset, 847 struct task_struct *task) 848 { 849 struct css_task_iter *it, *pos; 850 851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 852 css_task_iter_skip(it, task); 853 } 854 855 /** 856 * css_set_move_task - move a task from one css_set to another 857 * @task: task being moved 858 * @from_cset: css_set @task currently belongs to (may be NULL) 859 * @to_cset: new css_set @task is being moved to (may be NULL) 860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 861 * 862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 863 * css_set, @from_cset can be NULL. If @task is being disassociated 864 * instead of moved, @to_cset can be NULL. 865 * 866 * This function automatically handles populated counter updates and 867 * css_task_iter adjustments but the caller is responsible for managing 868 * @from_cset and @to_cset's reference counts. 869 */ 870 static void css_set_move_task(struct task_struct *task, 871 struct css_set *from_cset, struct css_set *to_cset, 872 bool use_mg_tasks) 873 { 874 lockdep_assert_held(&css_set_lock); 875 876 if (to_cset && !css_set_populated(to_cset)) 877 css_set_update_populated(to_cset, true); 878 879 if (from_cset) { 880 WARN_ON_ONCE(list_empty(&task->cg_list)); 881 882 css_set_skip_task_iters(from_cset, task); 883 list_del_init(&task->cg_list); 884 if (!css_set_populated(from_cset)) 885 css_set_update_populated(from_cset, false); 886 } else { 887 WARN_ON_ONCE(!list_empty(&task->cg_list)); 888 } 889 890 if (to_cset) { 891 /* 892 * We are synchronized through cgroup_threadgroup_rwsem 893 * against PF_EXITING setting such that we can't race 894 * against cgroup_exit()/cgroup_free() dropping the css_set. 895 */ 896 WARN_ON_ONCE(task->flags & PF_EXITING); 897 898 cgroup_move_task(task, to_cset); 899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 900 &to_cset->tasks); 901 } 902 } 903 904 /* 905 * hash table for cgroup groups. This improves the performance to find 906 * an existing css_set. This hash doesn't (currently) take into 907 * account cgroups in empty hierarchies. 908 */ 909 #define CSS_SET_HASH_BITS 7 910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 911 912 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 913 { 914 unsigned long key = 0UL; 915 struct cgroup_subsys *ss; 916 int i; 917 918 for_each_subsys(ss, i) 919 key += (unsigned long)css[i]; 920 key = (key >> 16) ^ key; 921 922 return key; 923 } 924 925 void put_css_set_locked(struct css_set *cset) 926 { 927 struct cgrp_cset_link *link, *tmp_link; 928 struct cgroup_subsys *ss; 929 int ssid; 930 931 lockdep_assert_held(&css_set_lock); 932 933 if (!refcount_dec_and_test(&cset->refcount)) 934 return; 935 936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 937 938 /* This css_set is dead. Unlink it and release cgroup and css refs */ 939 for_each_subsys(ss, ssid) { 940 list_del(&cset->e_cset_node[ssid]); 941 css_put(cset->subsys[ssid]); 942 } 943 hash_del(&cset->hlist); 944 css_set_count--; 945 946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 947 list_del(&link->cset_link); 948 list_del(&link->cgrp_link); 949 if (cgroup_parent(link->cgrp)) 950 cgroup_put(link->cgrp); 951 kfree(link); 952 } 953 954 if (css_set_threaded(cset)) { 955 list_del(&cset->threaded_csets_node); 956 put_css_set_locked(cset->dom_cset); 957 } 958 959 kfree_rcu(cset, rcu_head); 960 } 961 962 /** 963 * compare_css_sets - helper function for find_existing_css_set(). 964 * @cset: candidate css_set being tested 965 * @old_cset: existing css_set for a task 966 * @new_cgrp: cgroup that's being entered by the task 967 * @template: desired set of css pointers in css_set (pre-calculated) 968 * 969 * Returns true if "cset" matches "old_cset" except for the hierarchy 970 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 971 */ 972 static bool compare_css_sets(struct css_set *cset, 973 struct css_set *old_cset, 974 struct cgroup *new_cgrp, 975 struct cgroup_subsys_state *template[]) 976 { 977 struct cgroup *new_dfl_cgrp; 978 struct list_head *l1, *l2; 979 980 /* 981 * On the default hierarchy, there can be csets which are 982 * associated with the same set of cgroups but different csses. 983 * Let's first ensure that csses match. 984 */ 985 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 986 return false; 987 988 989 /* @cset's domain should match the default cgroup's */ 990 if (cgroup_on_dfl(new_cgrp)) 991 new_dfl_cgrp = new_cgrp; 992 else 993 new_dfl_cgrp = old_cset->dfl_cgrp; 994 995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 996 return false; 997 998 /* 999 * Compare cgroup pointers in order to distinguish between 1000 * different cgroups in hierarchies. As different cgroups may 1001 * share the same effective css, this comparison is always 1002 * necessary. 1003 */ 1004 l1 = &cset->cgrp_links; 1005 l2 = &old_cset->cgrp_links; 1006 while (1) { 1007 struct cgrp_cset_link *link1, *link2; 1008 struct cgroup *cgrp1, *cgrp2; 1009 1010 l1 = l1->next; 1011 l2 = l2->next; 1012 /* See if we reached the end - both lists are equal length. */ 1013 if (l1 == &cset->cgrp_links) { 1014 BUG_ON(l2 != &old_cset->cgrp_links); 1015 break; 1016 } else { 1017 BUG_ON(l2 == &old_cset->cgrp_links); 1018 } 1019 /* Locate the cgroups associated with these links. */ 1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1022 cgrp1 = link1->cgrp; 1023 cgrp2 = link2->cgrp; 1024 /* Hierarchies should be linked in the same order. */ 1025 BUG_ON(cgrp1->root != cgrp2->root); 1026 1027 /* 1028 * If this hierarchy is the hierarchy of the cgroup 1029 * that's changing, then we need to check that this 1030 * css_set points to the new cgroup; if it's any other 1031 * hierarchy, then this css_set should point to the 1032 * same cgroup as the old css_set. 1033 */ 1034 if (cgrp1->root == new_cgrp->root) { 1035 if (cgrp1 != new_cgrp) 1036 return false; 1037 } else { 1038 if (cgrp1 != cgrp2) 1039 return false; 1040 } 1041 } 1042 return true; 1043 } 1044 1045 /** 1046 * find_existing_css_set - init css array and find the matching css_set 1047 * @old_cset: the css_set that we're using before the cgroup transition 1048 * @cgrp: the cgroup that we're moving into 1049 * @template: out param for the new set of csses, should be clear on entry 1050 */ 1051 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1052 struct cgroup *cgrp, 1053 struct cgroup_subsys_state **template) 1054 { 1055 struct cgroup_root *root = cgrp->root; 1056 struct cgroup_subsys *ss; 1057 struct css_set *cset; 1058 unsigned long key; 1059 int i; 1060 1061 /* 1062 * Build the set of subsystem state objects that we want to see in the 1063 * new css_set. While subsystems can change globally, the entries here 1064 * won't change, so no need for locking. 1065 */ 1066 for_each_subsys(ss, i) { 1067 if (root->subsys_mask & (1UL << i)) { 1068 /* 1069 * @ss is in this hierarchy, so we want the 1070 * effective css from @cgrp. 1071 */ 1072 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1073 } else { 1074 /* 1075 * @ss is not in this hierarchy, so we don't want 1076 * to change the css. 1077 */ 1078 template[i] = old_cset->subsys[i]; 1079 } 1080 } 1081 1082 key = css_set_hash(template); 1083 hash_for_each_possible(css_set_table, cset, hlist, key) { 1084 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1085 continue; 1086 1087 /* This css_set matches what we need */ 1088 return cset; 1089 } 1090 1091 /* No existing cgroup group matched */ 1092 return NULL; 1093 } 1094 1095 static void free_cgrp_cset_links(struct list_head *links_to_free) 1096 { 1097 struct cgrp_cset_link *link, *tmp_link; 1098 1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1100 list_del(&link->cset_link); 1101 kfree(link); 1102 } 1103 } 1104 1105 /** 1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1107 * @count: the number of links to allocate 1108 * @tmp_links: list_head the allocated links are put on 1109 * 1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1111 * through ->cset_link. Returns 0 on success or -errno. 1112 */ 1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1114 { 1115 struct cgrp_cset_link *link; 1116 int i; 1117 1118 INIT_LIST_HEAD(tmp_links); 1119 1120 for (i = 0; i < count; i++) { 1121 link = kzalloc(sizeof(*link), GFP_KERNEL); 1122 if (!link) { 1123 free_cgrp_cset_links(tmp_links); 1124 return -ENOMEM; 1125 } 1126 list_add(&link->cset_link, tmp_links); 1127 } 1128 return 0; 1129 } 1130 1131 /** 1132 * link_css_set - a helper function to link a css_set to a cgroup 1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1134 * @cset: the css_set to be linked 1135 * @cgrp: the destination cgroup 1136 */ 1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgrp_cset_link *link; 1141 1142 BUG_ON(list_empty(tmp_links)); 1143 1144 if (cgroup_on_dfl(cgrp)) 1145 cset->dfl_cgrp = cgrp; 1146 1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1148 link->cset = cset; 1149 link->cgrp = cgrp; 1150 1151 /* 1152 * Always add links to the tail of the lists so that the lists are 1153 * in chronological order. 1154 */ 1155 list_move_tail(&link->cset_link, &cgrp->cset_links); 1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1157 1158 if (cgroup_parent(cgrp)) 1159 cgroup_get_live(cgrp); 1160 } 1161 1162 /** 1163 * find_css_set - return a new css_set with one cgroup updated 1164 * @old_cset: the baseline css_set 1165 * @cgrp: the cgroup to be updated 1166 * 1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1168 * substituted into the appropriate hierarchy. 1169 */ 1170 static struct css_set *find_css_set(struct css_set *old_cset, 1171 struct cgroup *cgrp) 1172 { 1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1174 struct css_set *cset; 1175 struct list_head tmp_links; 1176 struct cgrp_cset_link *link; 1177 struct cgroup_subsys *ss; 1178 unsigned long key; 1179 int ssid; 1180 1181 lockdep_assert_held(&cgroup_mutex); 1182 1183 /* First see if we already have a cgroup group that matches 1184 * the desired set */ 1185 spin_lock_irq(&css_set_lock); 1186 cset = find_existing_css_set(old_cset, cgrp, template); 1187 if (cset) 1188 get_css_set(cset); 1189 spin_unlock_irq(&css_set_lock); 1190 1191 if (cset) 1192 return cset; 1193 1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1195 if (!cset) 1196 return NULL; 1197 1198 /* Allocate all the cgrp_cset_link objects that we'll need */ 1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1200 kfree(cset); 1201 return NULL; 1202 } 1203 1204 refcount_set(&cset->refcount, 1); 1205 cset->dom_cset = cset; 1206 INIT_LIST_HEAD(&cset->tasks); 1207 INIT_LIST_HEAD(&cset->mg_tasks); 1208 INIT_LIST_HEAD(&cset->dying_tasks); 1209 INIT_LIST_HEAD(&cset->task_iters); 1210 INIT_LIST_HEAD(&cset->threaded_csets); 1211 INIT_HLIST_NODE(&cset->hlist); 1212 INIT_LIST_HEAD(&cset->cgrp_links); 1213 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1282 { 1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1284 1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1286 if (favor && !favoring) { 1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1289 } else if (!favor && favoring) { 1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1292 } 1293 } 1294 1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree(root); 1319 } 1320 1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 if (!list_empty(&root->root_list)) { 1351 list_del(&root->root_list); 1352 cgroup_root_count--; 1353 } 1354 1355 if (!have_favordynmods) 1356 cgroup_favor_dynmods(root, false); 1357 1358 cgroup_exit_root_id(root); 1359 1360 cgroup_unlock(); 1361 1362 cgroup_rstat_exit(cgrp); 1363 kernfs_destroy_root(root->kf_root); 1364 cgroup_free_root(root); 1365 } 1366 1367 /* 1368 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1369 */ 1370 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1371 struct cgroup_root *root) 1372 { 1373 struct cgroup *res_cgroup = NULL; 1374 1375 if (cset == &init_css_set) { 1376 res_cgroup = &root->cgrp; 1377 } else if (root == &cgrp_dfl_root) { 1378 res_cgroup = cset->dfl_cgrp; 1379 } else { 1380 struct cgrp_cset_link *link; 1381 lockdep_assert_held(&css_set_lock); 1382 1383 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1384 struct cgroup *c = link->cgrp; 1385 1386 if (c->root == root) { 1387 res_cgroup = c; 1388 break; 1389 } 1390 } 1391 } 1392 1393 BUG_ON(!res_cgroup); 1394 return res_cgroup; 1395 } 1396 1397 /* 1398 * look up cgroup associated with current task's cgroup namespace on the 1399 * specified hierarchy 1400 */ 1401 static struct cgroup * 1402 current_cgns_cgroup_from_root(struct cgroup_root *root) 1403 { 1404 struct cgroup *res = NULL; 1405 struct css_set *cset; 1406 1407 lockdep_assert_held(&css_set_lock); 1408 1409 rcu_read_lock(); 1410 1411 cset = current->nsproxy->cgroup_ns->root_cset; 1412 res = __cset_cgroup_from_root(cset, root); 1413 1414 rcu_read_unlock(); 1415 1416 return res; 1417 } 1418 1419 /* 1420 * Look up cgroup associated with current task's cgroup namespace on the default 1421 * hierarchy. 1422 * 1423 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1424 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1425 * pointers. 1426 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1427 * - As a bonus returned cgrp is pinned with the current because it cannot 1428 * switch cgroup_ns asynchronously. 1429 */ 1430 static struct cgroup *current_cgns_cgroup_dfl(void) 1431 { 1432 struct css_set *cset; 1433 1434 if (current->nsproxy) { 1435 cset = current->nsproxy->cgroup_ns->root_cset; 1436 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1437 } else { 1438 /* 1439 * NOTE: This function may be called from bpf_cgroup_from_id() 1440 * on a task which has already passed exit_task_namespaces() and 1441 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1442 * cgroups visible for lookups. 1443 */ 1444 return &cgrp_dfl_root.cgrp; 1445 } 1446 } 1447 1448 /* look up cgroup associated with given css_set on the specified hierarchy */ 1449 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1450 struct cgroup_root *root) 1451 { 1452 lockdep_assert_held(&cgroup_mutex); 1453 lockdep_assert_held(&css_set_lock); 1454 1455 return __cset_cgroup_from_root(cset, root); 1456 } 1457 1458 /* 1459 * Return the cgroup for "task" from the given hierarchy. Must be 1460 * called with cgroup_mutex and css_set_lock held. 1461 */ 1462 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1463 struct cgroup_root *root) 1464 { 1465 /* 1466 * No need to lock the task - since we hold css_set_lock the 1467 * task can't change groups. 1468 */ 1469 return cset_cgroup_from_root(task_css_set(task), root); 1470 } 1471 1472 /* 1473 * A task must hold cgroup_mutex to modify cgroups. 1474 * 1475 * Any task can increment and decrement the count field without lock. 1476 * So in general, code holding cgroup_mutex can't rely on the count 1477 * field not changing. However, if the count goes to zero, then only 1478 * cgroup_attach_task() can increment it again. Because a count of zero 1479 * means that no tasks are currently attached, therefore there is no 1480 * way a task attached to that cgroup can fork (the other way to 1481 * increment the count). So code holding cgroup_mutex can safely 1482 * assume that if the count is zero, it will stay zero. Similarly, if 1483 * a task holds cgroup_mutex on a cgroup with zero count, it 1484 * knows that the cgroup won't be removed, as cgroup_rmdir() 1485 * needs that mutex. 1486 * 1487 * A cgroup can only be deleted if both its 'count' of using tasks 1488 * is zero, and its list of 'children' cgroups is empty. Since all 1489 * tasks in the system use _some_ cgroup, and since there is always at 1490 * least one task in the system (init, pid == 1), therefore, root cgroup 1491 * always has either children cgroups and/or using tasks. So we don't 1492 * need a special hack to ensure that root cgroup cannot be deleted. 1493 * 1494 * P.S. One more locking exception. RCU is used to guard the 1495 * update of a tasks cgroup pointer by cgroup_attach_task() 1496 */ 1497 1498 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1499 1500 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1501 char *buf) 1502 { 1503 struct cgroup_subsys *ss = cft->ss; 1504 1505 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1506 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1507 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1508 1509 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1510 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1511 cft->name); 1512 } else { 1513 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1514 } 1515 return buf; 1516 } 1517 1518 /** 1519 * cgroup_file_mode - deduce file mode of a control file 1520 * @cft: the control file in question 1521 * 1522 * S_IRUGO for read, S_IWUSR for write. 1523 */ 1524 static umode_t cgroup_file_mode(const struct cftype *cft) 1525 { 1526 umode_t mode = 0; 1527 1528 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1529 mode |= S_IRUGO; 1530 1531 if (cft->write_u64 || cft->write_s64 || cft->write) { 1532 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1533 mode |= S_IWUGO; 1534 else 1535 mode |= S_IWUSR; 1536 } 1537 1538 return mode; 1539 } 1540 1541 /** 1542 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1543 * @subtree_control: the new subtree_control mask to consider 1544 * @this_ss_mask: available subsystems 1545 * 1546 * On the default hierarchy, a subsystem may request other subsystems to be 1547 * enabled together through its ->depends_on mask. In such cases, more 1548 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1549 * 1550 * This function calculates which subsystems need to be enabled if 1551 * @subtree_control is to be applied while restricted to @this_ss_mask. 1552 */ 1553 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1554 { 1555 u16 cur_ss_mask = subtree_control; 1556 struct cgroup_subsys *ss; 1557 int ssid; 1558 1559 lockdep_assert_held(&cgroup_mutex); 1560 1561 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1562 1563 while (true) { 1564 u16 new_ss_mask = cur_ss_mask; 1565 1566 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1567 new_ss_mask |= ss->depends_on; 1568 } while_each_subsys_mask(); 1569 1570 /* 1571 * Mask out subsystems which aren't available. This can 1572 * happen only if some depended-upon subsystems were bound 1573 * to non-default hierarchies. 1574 */ 1575 new_ss_mask &= this_ss_mask; 1576 1577 if (new_ss_mask == cur_ss_mask) 1578 break; 1579 cur_ss_mask = new_ss_mask; 1580 } 1581 1582 return cur_ss_mask; 1583 } 1584 1585 /** 1586 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1587 * @kn: the kernfs_node being serviced 1588 * 1589 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1590 * the method finishes if locking succeeded. Note that once this function 1591 * returns the cgroup returned by cgroup_kn_lock_live() may become 1592 * inaccessible any time. If the caller intends to continue to access the 1593 * cgroup, it should pin it before invoking this function. 1594 */ 1595 void cgroup_kn_unlock(struct kernfs_node *kn) 1596 { 1597 struct cgroup *cgrp; 1598 1599 if (kernfs_type(kn) == KERNFS_DIR) 1600 cgrp = kn->priv; 1601 else 1602 cgrp = kn->parent->priv; 1603 1604 cgroup_unlock(); 1605 1606 kernfs_unbreak_active_protection(kn); 1607 cgroup_put(cgrp); 1608 } 1609 1610 /** 1611 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1612 * @kn: the kernfs_node being serviced 1613 * @drain_offline: perform offline draining on the cgroup 1614 * 1615 * This helper is to be used by a cgroup kernfs method currently servicing 1616 * @kn. It breaks the active protection, performs cgroup locking and 1617 * verifies that the associated cgroup is alive. Returns the cgroup if 1618 * alive; otherwise, %NULL. A successful return should be undone by a 1619 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1620 * cgroup is drained of offlining csses before return. 1621 * 1622 * Any cgroup kernfs method implementation which requires locking the 1623 * associated cgroup should use this helper. It avoids nesting cgroup 1624 * locking under kernfs active protection and allows all kernfs operations 1625 * including self-removal. 1626 */ 1627 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1628 { 1629 struct cgroup *cgrp; 1630 1631 if (kernfs_type(kn) == KERNFS_DIR) 1632 cgrp = kn->priv; 1633 else 1634 cgrp = kn->parent->priv; 1635 1636 /* 1637 * We're gonna grab cgroup_mutex which nests outside kernfs 1638 * active_ref. cgroup liveliness check alone provides enough 1639 * protection against removal. Ensure @cgrp stays accessible and 1640 * break the active_ref protection. 1641 */ 1642 if (!cgroup_tryget(cgrp)) 1643 return NULL; 1644 kernfs_break_active_protection(kn); 1645 1646 if (drain_offline) 1647 cgroup_lock_and_drain_offline(cgrp); 1648 else 1649 cgroup_lock(); 1650 1651 if (!cgroup_is_dead(cgrp)) 1652 return cgrp; 1653 1654 cgroup_kn_unlock(kn); 1655 return NULL; 1656 } 1657 1658 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1659 { 1660 char name[CGROUP_FILE_NAME_MAX]; 1661 1662 lockdep_assert_held(&cgroup_mutex); 1663 1664 if (cft->file_offset) { 1665 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1666 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1667 1668 spin_lock_irq(&cgroup_file_kn_lock); 1669 cfile->kn = NULL; 1670 spin_unlock_irq(&cgroup_file_kn_lock); 1671 1672 del_timer_sync(&cfile->notify_timer); 1673 } 1674 1675 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1676 } 1677 1678 /** 1679 * css_clear_dir - remove subsys files in a cgroup directory 1680 * @css: target css 1681 */ 1682 static void css_clear_dir(struct cgroup_subsys_state *css) 1683 { 1684 struct cgroup *cgrp = css->cgroup; 1685 struct cftype *cfts; 1686 1687 if (!(css->flags & CSS_VISIBLE)) 1688 return; 1689 1690 css->flags &= ~CSS_VISIBLE; 1691 1692 if (!css->ss) { 1693 if (cgroup_on_dfl(cgrp)) { 1694 cgroup_addrm_files(css, cgrp, 1695 cgroup_base_files, false); 1696 if (cgroup_psi_enabled()) 1697 cgroup_addrm_files(css, cgrp, 1698 cgroup_psi_files, false); 1699 } else { 1700 cgroup_addrm_files(css, cgrp, 1701 cgroup1_base_files, false); 1702 } 1703 } else { 1704 list_for_each_entry(cfts, &css->ss->cfts, node) 1705 cgroup_addrm_files(css, cgrp, cfts, false); 1706 } 1707 } 1708 1709 /** 1710 * css_populate_dir - create subsys files in a cgroup directory 1711 * @css: target css 1712 * 1713 * On failure, no file is added. 1714 */ 1715 static int css_populate_dir(struct cgroup_subsys_state *css) 1716 { 1717 struct cgroup *cgrp = css->cgroup; 1718 struct cftype *cfts, *failed_cfts; 1719 int ret; 1720 1721 if (css->flags & CSS_VISIBLE) 1722 return 0; 1723 1724 if (!css->ss) { 1725 if (cgroup_on_dfl(cgrp)) { 1726 ret = cgroup_addrm_files(css, cgrp, 1727 cgroup_base_files, true); 1728 if (ret < 0) 1729 return ret; 1730 1731 if (cgroup_psi_enabled()) { 1732 ret = cgroup_addrm_files(css, cgrp, 1733 cgroup_psi_files, true); 1734 if (ret < 0) 1735 return ret; 1736 } 1737 } else { 1738 ret = cgroup_addrm_files(css, cgrp, 1739 cgroup1_base_files, true); 1740 if (ret < 0) 1741 return ret; 1742 } 1743 } else { 1744 list_for_each_entry(cfts, &css->ss->cfts, node) { 1745 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1746 if (ret < 0) { 1747 failed_cfts = cfts; 1748 goto err; 1749 } 1750 } 1751 } 1752 1753 css->flags |= CSS_VISIBLE; 1754 1755 return 0; 1756 err: 1757 list_for_each_entry(cfts, &css->ss->cfts, node) { 1758 if (cfts == failed_cfts) 1759 break; 1760 cgroup_addrm_files(css, cgrp, cfts, false); 1761 } 1762 return ret; 1763 } 1764 1765 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1766 { 1767 struct cgroup *dcgrp = &dst_root->cgrp; 1768 struct cgroup_subsys *ss; 1769 int ssid, ret; 1770 u16 dfl_disable_ss_mask = 0; 1771 1772 lockdep_assert_held(&cgroup_mutex); 1773 1774 do_each_subsys_mask(ss, ssid, ss_mask) { 1775 /* 1776 * If @ss has non-root csses attached to it, can't move. 1777 * If @ss is an implicit controller, it is exempt from this 1778 * rule and can be stolen. 1779 */ 1780 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1781 !ss->implicit_on_dfl) 1782 return -EBUSY; 1783 1784 /* can't move between two non-dummy roots either */ 1785 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1786 return -EBUSY; 1787 1788 /* 1789 * Collect ssid's that need to be disabled from default 1790 * hierarchy. 1791 */ 1792 if (ss->root == &cgrp_dfl_root) 1793 dfl_disable_ss_mask |= 1 << ssid; 1794 1795 } while_each_subsys_mask(); 1796 1797 if (dfl_disable_ss_mask) { 1798 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1799 1800 /* 1801 * Controllers from default hierarchy that need to be rebound 1802 * are all disabled together in one go. 1803 */ 1804 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1805 WARN_ON(cgroup_apply_control(scgrp)); 1806 cgroup_finalize_control(scgrp, 0); 1807 } 1808 1809 do_each_subsys_mask(ss, ssid, ss_mask) { 1810 struct cgroup_root *src_root = ss->root; 1811 struct cgroup *scgrp = &src_root->cgrp; 1812 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1813 struct css_set *cset, *cset_pos; 1814 struct css_task_iter *it; 1815 1816 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1817 1818 if (src_root != &cgrp_dfl_root) { 1819 /* disable from the source */ 1820 src_root->subsys_mask &= ~(1 << ssid); 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 /* rebind */ 1826 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1827 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1828 ss->root = dst_root; 1829 css->cgroup = dcgrp; 1830 1831 spin_lock_irq(&css_set_lock); 1832 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1833 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1834 e_cset_node[ss->id]) { 1835 list_move_tail(&cset->e_cset_node[ss->id], 1836 &dcgrp->e_csets[ss->id]); 1837 /* 1838 * all css_sets of scgrp together in same order to dcgrp, 1839 * patch in-flight iterators to preserve correct iteration. 1840 * since the iterator is always advanced right away and 1841 * finished when it->cset_pos meets it->cset_head, so only 1842 * update it->cset_head is enough here. 1843 */ 1844 list_for_each_entry(it, &cset->task_iters, iters_node) 1845 if (it->cset_head == &scgrp->e_csets[ss->id]) 1846 it->cset_head = &dcgrp->e_csets[ss->id]; 1847 } 1848 spin_unlock_irq(&css_set_lock); 1849 1850 if (ss->css_rstat_flush) { 1851 list_del_rcu(&css->rstat_css_node); 1852 synchronize_rcu(); 1853 list_add_rcu(&css->rstat_css_node, 1854 &dcgrp->rstat_css_list); 1855 } 1856 1857 /* default hierarchy doesn't enable controllers by default */ 1858 dst_root->subsys_mask |= 1 << ssid; 1859 if (dst_root == &cgrp_dfl_root) { 1860 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1861 } else { 1862 dcgrp->subtree_control |= 1 << ssid; 1863 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1864 } 1865 1866 ret = cgroup_apply_control(dcgrp); 1867 if (ret) 1868 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1869 ss->name, ret); 1870 1871 if (ss->bind) 1872 ss->bind(css); 1873 } while_each_subsys_mask(); 1874 1875 kernfs_activate(dcgrp->kn); 1876 return 0; 1877 } 1878 1879 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1880 struct kernfs_root *kf_root) 1881 { 1882 int len = 0; 1883 char *buf = NULL; 1884 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1885 struct cgroup *ns_cgroup; 1886 1887 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1888 if (!buf) 1889 return -ENOMEM; 1890 1891 spin_lock_irq(&css_set_lock); 1892 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1893 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1894 spin_unlock_irq(&css_set_lock); 1895 1896 if (len >= PATH_MAX) 1897 len = -ERANGE; 1898 else if (len > 0) { 1899 seq_escape(sf, buf, " \t\n\\"); 1900 len = 0; 1901 } 1902 kfree(buf); 1903 return len; 1904 } 1905 1906 enum cgroup2_param { 1907 Opt_nsdelegate, 1908 Opt_favordynmods, 1909 Opt_memory_localevents, 1910 Opt_memory_recursiveprot, 1911 Opt_memory_hugetlb_accounting, 1912 nr__cgroup2_params 1913 }; 1914 1915 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1916 fsparam_flag("nsdelegate", Opt_nsdelegate), 1917 fsparam_flag("favordynmods", Opt_favordynmods), 1918 fsparam_flag("memory_localevents", Opt_memory_localevents), 1919 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1920 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1921 {} 1922 }; 1923 1924 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1925 { 1926 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1927 struct fs_parse_result result; 1928 int opt; 1929 1930 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1931 if (opt < 0) 1932 return opt; 1933 1934 switch (opt) { 1935 case Opt_nsdelegate: 1936 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1937 return 0; 1938 case Opt_favordynmods: 1939 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1940 return 0; 1941 case Opt_memory_localevents: 1942 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1943 return 0; 1944 case Opt_memory_recursiveprot: 1945 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1946 return 0; 1947 case Opt_memory_hugetlb_accounting: 1948 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1949 return 0; 1950 } 1951 return -EINVAL; 1952 } 1953 1954 static void apply_cgroup_root_flags(unsigned int root_flags) 1955 { 1956 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1957 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1958 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1959 else 1960 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1961 1962 cgroup_favor_dynmods(&cgrp_dfl_root, 1963 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1964 1965 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1966 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1967 else 1968 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1969 1970 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1971 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1972 else 1973 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1974 1975 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 1976 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1977 else 1978 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1979 } 1980 } 1981 1982 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1983 { 1984 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1985 seq_puts(seq, ",nsdelegate"); 1986 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1987 seq_puts(seq, ",favordynmods"); 1988 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1989 seq_puts(seq, ",memory_localevents"); 1990 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1991 seq_puts(seq, ",memory_recursiveprot"); 1992 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 1993 seq_puts(seq, ",memory_hugetlb_accounting"); 1994 return 0; 1995 } 1996 1997 static int cgroup_reconfigure(struct fs_context *fc) 1998 { 1999 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2000 2001 apply_cgroup_root_flags(ctx->flags); 2002 return 0; 2003 } 2004 2005 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2006 { 2007 struct cgroup_subsys *ss; 2008 int ssid; 2009 2010 INIT_LIST_HEAD(&cgrp->self.sibling); 2011 INIT_LIST_HEAD(&cgrp->self.children); 2012 INIT_LIST_HEAD(&cgrp->cset_links); 2013 INIT_LIST_HEAD(&cgrp->pidlists); 2014 mutex_init(&cgrp->pidlist_mutex); 2015 cgrp->self.cgroup = cgrp; 2016 cgrp->self.flags |= CSS_ONLINE; 2017 cgrp->dom_cgrp = cgrp; 2018 cgrp->max_descendants = INT_MAX; 2019 cgrp->max_depth = INT_MAX; 2020 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2021 prev_cputime_init(&cgrp->prev_cputime); 2022 2023 for_each_subsys(ss, ssid) 2024 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2025 2026 init_waitqueue_head(&cgrp->offline_waitq); 2027 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2028 } 2029 2030 void init_cgroup_root(struct cgroup_fs_context *ctx) 2031 { 2032 struct cgroup_root *root = ctx->root; 2033 struct cgroup *cgrp = &root->cgrp; 2034 2035 INIT_LIST_HEAD(&root->root_list); 2036 atomic_set(&root->nr_cgrps, 1); 2037 cgrp->root = root; 2038 init_cgroup_housekeeping(cgrp); 2039 2040 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2041 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2042 if (ctx->release_agent) 2043 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2044 if (ctx->name) 2045 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2046 if (ctx->cpuset_clone_children) 2047 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2048 } 2049 2050 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2051 { 2052 LIST_HEAD(tmp_links); 2053 struct cgroup *root_cgrp = &root->cgrp; 2054 struct kernfs_syscall_ops *kf_sops; 2055 struct css_set *cset; 2056 int i, ret; 2057 2058 lockdep_assert_held(&cgroup_mutex); 2059 2060 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2061 0, GFP_KERNEL); 2062 if (ret) 2063 goto out; 2064 2065 /* 2066 * We're accessing css_set_count without locking css_set_lock here, 2067 * but that's OK - it can only be increased by someone holding 2068 * cgroup_lock, and that's us. Later rebinding may disable 2069 * controllers on the default hierarchy and thus create new csets, 2070 * which can't be more than the existing ones. Allocate 2x. 2071 */ 2072 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2073 if (ret) 2074 goto cancel_ref; 2075 2076 ret = cgroup_init_root_id(root); 2077 if (ret) 2078 goto cancel_ref; 2079 2080 kf_sops = root == &cgrp_dfl_root ? 2081 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2082 2083 root->kf_root = kernfs_create_root(kf_sops, 2084 KERNFS_ROOT_CREATE_DEACTIVATED | 2085 KERNFS_ROOT_SUPPORT_EXPORTOP | 2086 KERNFS_ROOT_SUPPORT_USER_XATTR, 2087 root_cgrp); 2088 if (IS_ERR(root->kf_root)) { 2089 ret = PTR_ERR(root->kf_root); 2090 goto exit_root_id; 2091 } 2092 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2093 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2094 root_cgrp->ancestors[0] = root_cgrp; 2095 2096 ret = css_populate_dir(&root_cgrp->self); 2097 if (ret) 2098 goto destroy_root; 2099 2100 ret = cgroup_rstat_init(root_cgrp); 2101 if (ret) 2102 goto destroy_root; 2103 2104 ret = rebind_subsystems(root, ss_mask); 2105 if (ret) 2106 goto exit_stats; 2107 2108 ret = cgroup_bpf_inherit(root_cgrp); 2109 WARN_ON_ONCE(ret); 2110 2111 trace_cgroup_setup_root(root); 2112 2113 /* 2114 * There must be no failure case after here, since rebinding takes 2115 * care of subsystems' refcounts, which are explicitly dropped in 2116 * the failure exit path. 2117 */ 2118 list_add(&root->root_list, &cgroup_roots); 2119 cgroup_root_count++; 2120 2121 /* 2122 * Link the root cgroup in this hierarchy into all the css_set 2123 * objects. 2124 */ 2125 spin_lock_irq(&css_set_lock); 2126 hash_for_each(css_set_table, i, cset, hlist) { 2127 link_css_set(&tmp_links, cset, root_cgrp); 2128 if (css_set_populated(cset)) 2129 cgroup_update_populated(root_cgrp, true); 2130 } 2131 spin_unlock_irq(&css_set_lock); 2132 2133 BUG_ON(!list_empty(&root_cgrp->self.children)); 2134 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2135 2136 ret = 0; 2137 goto out; 2138 2139 exit_stats: 2140 cgroup_rstat_exit(root_cgrp); 2141 destroy_root: 2142 kernfs_destroy_root(root->kf_root); 2143 root->kf_root = NULL; 2144 exit_root_id: 2145 cgroup_exit_root_id(root); 2146 cancel_ref: 2147 percpu_ref_exit(&root_cgrp->self.refcnt); 2148 out: 2149 free_cgrp_cset_links(&tmp_links); 2150 return ret; 2151 } 2152 2153 int cgroup_do_get_tree(struct fs_context *fc) 2154 { 2155 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2156 int ret; 2157 2158 ctx->kfc.root = ctx->root->kf_root; 2159 if (fc->fs_type == &cgroup2_fs_type) 2160 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2161 else 2162 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2163 ret = kernfs_get_tree(fc); 2164 2165 /* 2166 * In non-init cgroup namespace, instead of root cgroup's dentry, 2167 * we return the dentry corresponding to the cgroupns->root_cgrp. 2168 */ 2169 if (!ret && ctx->ns != &init_cgroup_ns) { 2170 struct dentry *nsdentry; 2171 struct super_block *sb = fc->root->d_sb; 2172 struct cgroup *cgrp; 2173 2174 cgroup_lock(); 2175 spin_lock_irq(&css_set_lock); 2176 2177 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2178 2179 spin_unlock_irq(&css_set_lock); 2180 cgroup_unlock(); 2181 2182 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2183 dput(fc->root); 2184 if (IS_ERR(nsdentry)) { 2185 deactivate_locked_super(sb); 2186 ret = PTR_ERR(nsdentry); 2187 nsdentry = NULL; 2188 } 2189 fc->root = nsdentry; 2190 } 2191 2192 if (!ctx->kfc.new_sb_created) 2193 cgroup_put(&ctx->root->cgrp); 2194 2195 return ret; 2196 } 2197 2198 /* 2199 * Destroy a cgroup filesystem context. 2200 */ 2201 static void cgroup_fs_context_free(struct fs_context *fc) 2202 { 2203 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2204 2205 kfree(ctx->name); 2206 kfree(ctx->release_agent); 2207 put_cgroup_ns(ctx->ns); 2208 kernfs_free_fs_context(fc); 2209 kfree(ctx); 2210 } 2211 2212 static int cgroup_get_tree(struct fs_context *fc) 2213 { 2214 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2215 int ret; 2216 2217 WRITE_ONCE(cgrp_dfl_visible, true); 2218 cgroup_get_live(&cgrp_dfl_root.cgrp); 2219 ctx->root = &cgrp_dfl_root; 2220 2221 ret = cgroup_do_get_tree(fc); 2222 if (!ret) 2223 apply_cgroup_root_flags(ctx->flags); 2224 return ret; 2225 } 2226 2227 static const struct fs_context_operations cgroup_fs_context_ops = { 2228 .free = cgroup_fs_context_free, 2229 .parse_param = cgroup2_parse_param, 2230 .get_tree = cgroup_get_tree, 2231 .reconfigure = cgroup_reconfigure, 2232 }; 2233 2234 static const struct fs_context_operations cgroup1_fs_context_ops = { 2235 .free = cgroup_fs_context_free, 2236 .parse_param = cgroup1_parse_param, 2237 .get_tree = cgroup1_get_tree, 2238 .reconfigure = cgroup1_reconfigure, 2239 }; 2240 2241 /* 2242 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2243 * we select the namespace we're going to use. 2244 */ 2245 static int cgroup_init_fs_context(struct fs_context *fc) 2246 { 2247 struct cgroup_fs_context *ctx; 2248 2249 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2250 if (!ctx) 2251 return -ENOMEM; 2252 2253 ctx->ns = current->nsproxy->cgroup_ns; 2254 get_cgroup_ns(ctx->ns); 2255 fc->fs_private = &ctx->kfc; 2256 if (fc->fs_type == &cgroup2_fs_type) 2257 fc->ops = &cgroup_fs_context_ops; 2258 else 2259 fc->ops = &cgroup1_fs_context_ops; 2260 put_user_ns(fc->user_ns); 2261 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2262 fc->global = true; 2263 2264 if (have_favordynmods) 2265 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2266 2267 return 0; 2268 } 2269 2270 static void cgroup_kill_sb(struct super_block *sb) 2271 { 2272 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2273 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2274 2275 /* 2276 * If @root doesn't have any children, start killing it. 2277 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2278 * 2279 * And don't kill the default root. 2280 */ 2281 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2282 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2283 cgroup_bpf_offline(&root->cgrp); 2284 percpu_ref_kill(&root->cgrp.self.refcnt); 2285 } 2286 cgroup_put(&root->cgrp); 2287 kernfs_kill_sb(sb); 2288 } 2289 2290 struct file_system_type cgroup_fs_type = { 2291 .name = "cgroup", 2292 .init_fs_context = cgroup_init_fs_context, 2293 .parameters = cgroup1_fs_parameters, 2294 .kill_sb = cgroup_kill_sb, 2295 .fs_flags = FS_USERNS_MOUNT, 2296 }; 2297 2298 static struct file_system_type cgroup2_fs_type = { 2299 .name = "cgroup2", 2300 .init_fs_context = cgroup_init_fs_context, 2301 .parameters = cgroup2_fs_parameters, 2302 .kill_sb = cgroup_kill_sb, 2303 .fs_flags = FS_USERNS_MOUNT, 2304 }; 2305 2306 #ifdef CONFIG_CPUSETS 2307 static const struct fs_context_operations cpuset_fs_context_ops = { 2308 .get_tree = cgroup1_get_tree, 2309 .free = cgroup_fs_context_free, 2310 }; 2311 2312 /* 2313 * This is ugly, but preserves the userspace API for existing cpuset 2314 * users. If someone tries to mount the "cpuset" filesystem, we 2315 * silently switch it to mount "cgroup" instead 2316 */ 2317 static int cpuset_init_fs_context(struct fs_context *fc) 2318 { 2319 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2320 struct cgroup_fs_context *ctx; 2321 int err; 2322 2323 err = cgroup_init_fs_context(fc); 2324 if (err) { 2325 kfree(agent); 2326 return err; 2327 } 2328 2329 fc->ops = &cpuset_fs_context_ops; 2330 2331 ctx = cgroup_fc2context(fc); 2332 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2333 ctx->flags |= CGRP_ROOT_NOPREFIX; 2334 ctx->release_agent = agent; 2335 2336 get_filesystem(&cgroup_fs_type); 2337 put_filesystem(fc->fs_type); 2338 fc->fs_type = &cgroup_fs_type; 2339 2340 return 0; 2341 } 2342 2343 static struct file_system_type cpuset_fs_type = { 2344 .name = "cpuset", 2345 .init_fs_context = cpuset_init_fs_context, 2346 .fs_flags = FS_USERNS_MOUNT, 2347 }; 2348 #endif 2349 2350 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2351 struct cgroup_namespace *ns) 2352 { 2353 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2354 2355 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2356 } 2357 2358 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2359 struct cgroup_namespace *ns) 2360 { 2361 int ret; 2362 2363 cgroup_lock(); 2364 spin_lock_irq(&css_set_lock); 2365 2366 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2367 2368 spin_unlock_irq(&css_set_lock); 2369 cgroup_unlock(); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2374 2375 /** 2376 * cgroup_attach_lock - Lock for ->attach() 2377 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2378 * 2379 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2380 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2381 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2382 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2383 * lead to deadlocks. 2384 * 2385 * Bringing up a CPU may involve creating and destroying tasks which requires 2386 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2387 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2388 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2389 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2390 * the threadgroup_rwsem to be released to create new tasks. For more details: 2391 * 2392 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2393 * 2394 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2395 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2396 * CPU hotplug is disabled on entry. 2397 */ 2398 void cgroup_attach_lock(bool lock_threadgroup) 2399 { 2400 cpus_read_lock(); 2401 if (lock_threadgroup) 2402 percpu_down_write(&cgroup_threadgroup_rwsem); 2403 } 2404 2405 /** 2406 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2407 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2408 */ 2409 void cgroup_attach_unlock(bool lock_threadgroup) 2410 { 2411 if (lock_threadgroup) 2412 percpu_up_write(&cgroup_threadgroup_rwsem); 2413 cpus_read_unlock(); 2414 } 2415 2416 /** 2417 * cgroup_migrate_add_task - add a migration target task to a migration context 2418 * @task: target task 2419 * @mgctx: target migration context 2420 * 2421 * Add @task, which is a migration target, to @mgctx->tset. This function 2422 * becomes noop if @task doesn't need to be migrated. @task's css_set 2423 * should have been added as a migration source and @task->cg_list will be 2424 * moved from the css_set's tasks list to mg_tasks one. 2425 */ 2426 static void cgroup_migrate_add_task(struct task_struct *task, 2427 struct cgroup_mgctx *mgctx) 2428 { 2429 struct css_set *cset; 2430 2431 lockdep_assert_held(&css_set_lock); 2432 2433 /* @task either already exited or can't exit until the end */ 2434 if (task->flags & PF_EXITING) 2435 return; 2436 2437 /* cgroup_threadgroup_rwsem protects racing against forks */ 2438 WARN_ON_ONCE(list_empty(&task->cg_list)); 2439 2440 cset = task_css_set(task); 2441 if (!cset->mg_src_cgrp) 2442 return; 2443 2444 mgctx->tset.nr_tasks++; 2445 2446 list_move_tail(&task->cg_list, &cset->mg_tasks); 2447 if (list_empty(&cset->mg_node)) 2448 list_add_tail(&cset->mg_node, 2449 &mgctx->tset.src_csets); 2450 if (list_empty(&cset->mg_dst_cset->mg_node)) 2451 list_add_tail(&cset->mg_dst_cset->mg_node, 2452 &mgctx->tset.dst_csets); 2453 } 2454 2455 /** 2456 * cgroup_taskset_first - reset taskset and return the first task 2457 * @tset: taskset of interest 2458 * @dst_cssp: output variable for the destination css 2459 * 2460 * @tset iteration is initialized and the first task is returned. 2461 */ 2462 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2463 struct cgroup_subsys_state **dst_cssp) 2464 { 2465 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2466 tset->cur_task = NULL; 2467 2468 return cgroup_taskset_next(tset, dst_cssp); 2469 } 2470 2471 /** 2472 * cgroup_taskset_next - iterate to the next task in taskset 2473 * @tset: taskset of interest 2474 * @dst_cssp: output variable for the destination css 2475 * 2476 * Return the next task in @tset. Iteration must have been initialized 2477 * with cgroup_taskset_first(). 2478 */ 2479 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2480 struct cgroup_subsys_state **dst_cssp) 2481 { 2482 struct css_set *cset = tset->cur_cset; 2483 struct task_struct *task = tset->cur_task; 2484 2485 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2486 if (!task) 2487 task = list_first_entry(&cset->mg_tasks, 2488 struct task_struct, cg_list); 2489 else 2490 task = list_next_entry(task, cg_list); 2491 2492 if (&task->cg_list != &cset->mg_tasks) { 2493 tset->cur_cset = cset; 2494 tset->cur_task = task; 2495 2496 /* 2497 * This function may be called both before and 2498 * after cgroup_migrate_execute(). The two cases 2499 * can be distinguished by looking at whether @cset 2500 * has its ->mg_dst_cset set. 2501 */ 2502 if (cset->mg_dst_cset) 2503 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2504 else 2505 *dst_cssp = cset->subsys[tset->ssid]; 2506 2507 return task; 2508 } 2509 2510 cset = list_next_entry(cset, mg_node); 2511 task = NULL; 2512 } 2513 2514 return NULL; 2515 } 2516 2517 /** 2518 * cgroup_migrate_execute - migrate a taskset 2519 * @mgctx: migration context 2520 * 2521 * Migrate tasks in @mgctx as setup by migration preparation functions. 2522 * This function fails iff one of the ->can_attach callbacks fails and 2523 * guarantees that either all or none of the tasks in @mgctx are migrated. 2524 * @mgctx is consumed regardless of success. 2525 */ 2526 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2527 { 2528 struct cgroup_taskset *tset = &mgctx->tset; 2529 struct cgroup_subsys *ss; 2530 struct task_struct *task, *tmp_task; 2531 struct css_set *cset, *tmp_cset; 2532 int ssid, failed_ssid, ret; 2533 2534 /* check that we can legitimately attach to the cgroup */ 2535 if (tset->nr_tasks) { 2536 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2537 if (ss->can_attach) { 2538 tset->ssid = ssid; 2539 ret = ss->can_attach(tset); 2540 if (ret) { 2541 failed_ssid = ssid; 2542 goto out_cancel_attach; 2543 } 2544 } 2545 } while_each_subsys_mask(); 2546 } 2547 2548 /* 2549 * Now that we're guaranteed success, proceed to move all tasks to 2550 * the new cgroup. There are no failure cases after here, so this 2551 * is the commit point. 2552 */ 2553 spin_lock_irq(&css_set_lock); 2554 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2555 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2556 struct css_set *from_cset = task_css_set(task); 2557 struct css_set *to_cset = cset->mg_dst_cset; 2558 2559 get_css_set(to_cset); 2560 to_cset->nr_tasks++; 2561 css_set_move_task(task, from_cset, to_cset, true); 2562 from_cset->nr_tasks--; 2563 /* 2564 * If the source or destination cgroup is frozen, 2565 * the task might require to change its state. 2566 */ 2567 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2568 to_cset->dfl_cgrp); 2569 put_css_set_locked(from_cset); 2570 2571 } 2572 } 2573 spin_unlock_irq(&css_set_lock); 2574 2575 /* 2576 * Migration is committed, all target tasks are now on dst_csets. 2577 * Nothing is sensitive to fork() after this point. Notify 2578 * controllers that migration is complete. 2579 */ 2580 tset->csets = &tset->dst_csets; 2581 2582 if (tset->nr_tasks) { 2583 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2584 if (ss->attach) { 2585 tset->ssid = ssid; 2586 ss->attach(tset); 2587 } 2588 } while_each_subsys_mask(); 2589 } 2590 2591 ret = 0; 2592 goto out_release_tset; 2593 2594 out_cancel_attach: 2595 if (tset->nr_tasks) { 2596 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2597 if (ssid == failed_ssid) 2598 break; 2599 if (ss->cancel_attach) { 2600 tset->ssid = ssid; 2601 ss->cancel_attach(tset); 2602 } 2603 } while_each_subsys_mask(); 2604 } 2605 out_release_tset: 2606 spin_lock_irq(&css_set_lock); 2607 list_splice_init(&tset->dst_csets, &tset->src_csets); 2608 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2609 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2610 list_del_init(&cset->mg_node); 2611 } 2612 spin_unlock_irq(&css_set_lock); 2613 2614 /* 2615 * Re-initialize the cgroup_taskset structure in case it is reused 2616 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2617 * iteration. 2618 */ 2619 tset->nr_tasks = 0; 2620 tset->csets = &tset->src_csets; 2621 return ret; 2622 } 2623 2624 /** 2625 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2626 * @dst_cgrp: destination cgroup to test 2627 * 2628 * On the default hierarchy, except for the mixable, (possible) thread root 2629 * and threaded cgroups, subtree_control must be zero for migration 2630 * destination cgroups with tasks so that child cgroups don't compete 2631 * against tasks. 2632 */ 2633 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2634 { 2635 /* v1 doesn't have any restriction */ 2636 if (!cgroup_on_dfl(dst_cgrp)) 2637 return 0; 2638 2639 /* verify @dst_cgrp can host resources */ 2640 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2641 return -EOPNOTSUPP; 2642 2643 /* 2644 * If @dst_cgrp is already or can become a thread root or is 2645 * threaded, it doesn't matter. 2646 */ 2647 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2648 return 0; 2649 2650 /* apply no-internal-process constraint */ 2651 if (dst_cgrp->subtree_control) 2652 return -EBUSY; 2653 2654 return 0; 2655 } 2656 2657 /** 2658 * cgroup_migrate_finish - cleanup after attach 2659 * @mgctx: migration context 2660 * 2661 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2662 * those functions for details. 2663 */ 2664 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2665 { 2666 struct css_set *cset, *tmp_cset; 2667 2668 lockdep_assert_held(&cgroup_mutex); 2669 2670 spin_lock_irq(&css_set_lock); 2671 2672 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2673 mg_src_preload_node) { 2674 cset->mg_src_cgrp = NULL; 2675 cset->mg_dst_cgrp = NULL; 2676 cset->mg_dst_cset = NULL; 2677 list_del_init(&cset->mg_src_preload_node); 2678 put_css_set_locked(cset); 2679 } 2680 2681 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2682 mg_dst_preload_node) { 2683 cset->mg_src_cgrp = NULL; 2684 cset->mg_dst_cgrp = NULL; 2685 cset->mg_dst_cset = NULL; 2686 list_del_init(&cset->mg_dst_preload_node); 2687 put_css_set_locked(cset); 2688 } 2689 2690 spin_unlock_irq(&css_set_lock); 2691 } 2692 2693 /** 2694 * cgroup_migrate_add_src - add a migration source css_set 2695 * @src_cset: the source css_set to add 2696 * @dst_cgrp: the destination cgroup 2697 * @mgctx: migration context 2698 * 2699 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2700 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2701 * up by cgroup_migrate_finish(). 2702 * 2703 * This function may be called without holding cgroup_threadgroup_rwsem 2704 * even if the target is a process. Threads may be created and destroyed 2705 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2706 * into play and the preloaded css_sets are guaranteed to cover all 2707 * migrations. 2708 */ 2709 void cgroup_migrate_add_src(struct css_set *src_cset, 2710 struct cgroup *dst_cgrp, 2711 struct cgroup_mgctx *mgctx) 2712 { 2713 struct cgroup *src_cgrp; 2714 2715 lockdep_assert_held(&cgroup_mutex); 2716 lockdep_assert_held(&css_set_lock); 2717 2718 /* 2719 * If ->dead, @src_set is associated with one or more dead cgroups 2720 * and doesn't contain any migratable tasks. Ignore it early so 2721 * that the rest of migration path doesn't get confused by it. 2722 */ 2723 if (src_cset->dead) 2724 return; 2725 2726 if (!list_empty(&src_cset->mg_src_preload_node)) 2727 return; 2728 2729 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2730 2731 WARN_ON(src_cset->mg_src_cgrp); 2732 WARN_ON(src_cset->mg_dst_cgrp); 2733 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2734 WARN_ON(!list_empty(&src_cset->mg_node)); 2735 2736 src_cset->mg_src_cgrp = src_cgrp; 2737 src_cset->mg_dst_cgrp = dst_cgrp; 2738 get_css_set(src_cset); 2739 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2740 } 2741 2742 /** 2743 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2744 * @mgctx: migration context 2745 * 2746 * Tasks are about to be moved and all the source css_sets have been 2747 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2748 * pins all destination css_sets, links each to its source, and append them 2749 * to @mgctx->preloaded_dst_csets. 2750 * 2751 * This function must be called after cgroup_migrate_add_src() has been 2752 * called on each migration source css_set. After migration is performed 2753 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2754 * @mgctx. 2755 */ 2756 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2757 { 2758 struct css_set *src_cset, *tmp_cset; 2759 2760 lockdep_assert_held(&cgroup_mutex); 2761 2762 /* look up the dst cset for each src cset and link it to src */ 2763 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2764 mg_src_preload_node) { 2765 struct css_set *dst_cset; 2766 struct cgroup_subsys *ss; 2767 int ssid; 2768 2769 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2770 if (!dst_cset) 2771 return -ENOMEM; 2772 2773 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2774 2775 /* 2776 * If src cset equals dst, it's noop. Drop the src. 2777 * cgroup_migrate() will skip the cset too. Note that we 2778 * can't handle src == dst as some nodes are used by both. 2779 */ 2780 if (src_cset == dst_cset) { 2781 src_cset->mg_src_cgrp = NULL; 2782 src_cset->mg_dst_cgrp = NULL; 2783 list_del_init(&src_cset->mg_src_preload_node); 2784 put_css_set(src_cset); 2785 put_css_set(dst_cset); 2786 continue; 2787 } 2788 2789 src_cset->mg_dst_cset = dst_cset; 2790 2791 if (list_empty(&dst_cset->mg_dst_preload_node)) 2792 list_add_tail(&dst_cset->mg_dst_preload_node, 2793 &mgctx->preloaded_dst_csets); 2794 else 2795 put_css_set(dst_cset); 2796 2797 for_each_subsys(ss, ssid) 2798 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2799 mgctx->ss_mask |= 1 << ssid; 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * cgroup_migrate - migrate a process or task to a cgroup 2807 * @leader: the leader of the process or the task to migrate 2808 * @threadgroup: whether @leader points to the whole process or a single task 2809 * @mgctx: migration context 2810 * 2811 * Migrate a process or task denoted by @leader. If migrating a process, 2812 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2813 * responsible for invoking cgroup_migrate_add_src() and 2814 * cgroup_migrate_prepare_dst() on the targets before invoking this 2815 * function and following up with cgroup_migrate_finish(). 2816 * 2817 * As long as a controller's ->can_attach() doesn't fail, this function is 2818 * guaranteed to succeed. This means that, excluding ->can_attach() 2819 * failure, when migrating multiple targets, the success or failure can be 2820 * decided for all targets by invoking group_migrate_prepare_dst() before 2821 * actually starting migrating. 2822 */ 2823 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2824 struct cgroup_mgctx *mgctx) 2825 { 2826 struct task_struct *task; 2827 2828 /* 2829 * The following thread iteration should be inside an RCU critical 2830 * section to prevent tasks from being freed while taking the snapshot. 2831 * spin_lock_irq() implies RCU critical section here. 2832 */ 2833 spin_lock_irq(&css_set_lock); 2834 task = leader; 2835 do { 2836 cgroup_migrate_add_task(task, mgctx); 2837 if (!threadgroup) 2838 break; 2839 } while_each_thread(leader, task); 2840 spin_unlock_irq(&css_set_lock); 2841 2842 return cgroup_migrate_execute(mgctx); 2843 } 2844 2845 /** 2846 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2847 * @dst_cgrp: the cgroup to attach to 2848 * @leader: the task or the leader of the threadgroup to be attached 2849 * @threadgroup: attach the whole threadgroup? 2850 * 2851 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2852 */ 2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2854 bool threadgroup) 2855 { 2856 DEFINE_CGROUP_MGCTX(mgctx); 2857 struct task_struct *task; 2858 int ret = 0; 2859 2860 /* look up all src csets */ 2861 spin_lock_irq(&css_set_lock); 2862 rcu_read_lock(); 2863 task = leader; 2864 do { 2865 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2866 if (!threadgroup) 2867 break; 2868 } while_each_thread(leader, task); 2869 rcu_read_unlock(); 2870 spin_unlock_irq(&css_set_lock); 2871 2872 /* prepare dst csets and commit */ 2873 ret = cgroup_migrate_prepare_dst(&mgctx); 2874 if (!ret) 2875 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2876 2877 cgroup_migrate_finish(&mgctx); 2878 2879 if (!ret) 2880 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2881 2882 return ret; 2883 } 2884 2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2886 bool *threadgroup_locked) 2887 { 2888 struct task_struct *tsk; 2889 pid_t pid; 2890 2891 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2892 return ERR_PTR(-EINVAL); 2893 2894 /* 2895 * If we migrate a single thread, we don't care about threadgroup 2896 * stability. If the thread is `current`, it won't exit(2) under our 2897 * hands or change PID through exec(2). We exclude 2898 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2899 * callers by cgroup_mutex. 2900 * Therefore, we can skip the global lock. 2901 */ 2902 lockdep_assert_held(&cgroup_mutex); 2903 *threadgroup_locked = pid || threadgroup; 2904 cgroup_attach_lock(*threadgroup_locked); 2905 2906 rcu_read_lock(); 2907 if (pid) { 2908 tsk = find_task_by_vpid(pid); 2909 if (!tsk) { 2910 tsk = ERR_PTR(-ESRCH); 2911 goto out_unlock_threadgroup; 2912 } 2913 } else { 2914 tsk = current; 2915 } 2916 2917 if (threadgroup) 2918 tsk = tsk->group_leader; 2919 2920 /* 2921 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2922 * If userland migrates such a kthread to a non-root cgroup, it can 2923 * become trapped in a cpuset, or RT kthread may be born in a 2924 * cgroup with no rt_runtime allocated. Just say no. 2925 */ 2926 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2927 tsk = ERR_PTR(-EINVAL); 2928 goto out_unlock_threadgroup; 2929 } 2930 2931 get_task_struct(tsk); 2932 goto out_unlock_rcu; 2933 2934 out_unlock_threadgroup: 2935 cgroup_attach_unlock(*threadgroup_locked); 2936 *threadgroup_locked = false; 2937 out_unlock_rcu: 2938 rcu_read_unlock(); 2939 return tsk; 2940 } 2941 2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2943 { 2944 struct cgroup_subsys *ss; 2945 int ssid; 2946 2947 /* release reference from cgroup_procs_write_start() */ 2948 put_task_struct(task); 2949 2950 cgroup_attach_unlock(threadgroup_locked); 2951 2952 for_each_subsys(ss, ssid) 2953 if (ss->post_attach) 2954 ss->post_attach(); 2955 } 2956 2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2958 { 2959 struct cgroup_subsys *ss; 2960 bool printed = false; 2961 int ssid; 2962 2963 do_each_subsys_mask(ss, ssid, ss_mask) { 2964 if (printed) 2965 seq_putc(seq, ' '); 2966 seq_puts(seq, ss->name); 2967 printed = true; 2968 } while_each_subsys_mask(); 2969 if (printed) 2970 seq_putc(seq, '\n'); 2971 } 2972 2973 /* show controllers which are enabled from the parent */ 2974 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2975 { 2976 struct cgroup *cgrp = seq_css(seq)->cgroup; 2977 2978 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2979 return 0; 2980 } 2981 2982 /* show controllers which are enabled for a given cgroup's children */ 2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2984 { 2985 struct cgroup *cgrp = seq_css(seq)->cgroup; 2986 2987 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2988 return 0; 2989 } 2990 2991 /** 2992 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2993 * @cgrp: root of the subtree to update csses for 2994 * 2995 * @cgrp's control masks have changed and its subtree's css associations 2996 * need to be updated accordingly. This function looks up all css_sets 2997 * which are attached to the subtree, creates the matching updated css_sets 2998 * and migrates the tasks to the new ones. 2999 */ 3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3001 { 3002 DEFINE_CGROUP_MGCTX(mgctx); 3003 struct cgroup_subsys_state *d_css; 3004 struct cgroup *dsct; 3005 struct css_set *src_cset; 3006 bool has_tasks; 3007 int ret; 3008 3009 lockdep_assert_held(&cgroup_mutex); 3010 3011 /* look up all csses currently attached to @cgrp's subtree */ 3012 spin_lock_irq(&css_set_lock); 3013 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3014 struct cgrp_cset_link *link; 3015 3016 /* 3017 * As cgroup_update_dfl_csses() is only called by 3018 * cgroup_apply_control(). The csses associated with the 3019 * given cgrp will not be affected by changes made to 3020 * its subtree_control file. We can skip them. 3021 */ 3022 if (dsct == cgrp) 3023 continue; 3024 3025 list_for_each_entry(link, &dsct->cset_links, cset_link) 3026 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3027 } 3028 spin_unlock_irq(&css_set_lock); 3029 3030 /* 3031 * We need to write-lock threadgroup_rwsem while migrating tasks. 3032 * However, if there are no source csets for @cgrp, changing its 3033 * controllers isn't gonna produce any task migrations and the 3034 * write-locking can be skipped safely. 3035 */ 3036 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3037 cgroup_attach_lock(has_tasks); 3038 3039 /* NULL dst indicates self on default hierarchy */ 3040 ret = cgroup_migrate_prepare_dst(&mgctx); 3041 if (ret) 3042 goto out_finish; 3043 3044 spin_lock_irq(&css_set_lock); 3045 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3046 mg_src_preload_node) { 3047 struct task_struct *task, *ntask; 3048 3049 /* all tasks in src_csets need to be migrated */ 3050 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3051 cgroup_migrate_add_task(task, &mgctx); 3052 } 3053 spin_unlock_irq(&css_set_lock); 3054 3055 ret = cgroup_migrate_execute(&mgctx); 3056 out_finish: 3057 cgroup_migrate_finish(&mgctx); 3058 cgroup_attach_unlock(has_tasks); 3059 return ret; 3060 } 3061 3062 /** 3063 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3064 * @cgrp: root of the target subtree 3065 * 3066 * Because css offlining is asynchronous, userland may try to re-enable a 3067 * controller while the previous css is still around. This function grabs 3068 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3069 */ 3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3071 __acquires(&cgroup_mutex) 3072 { 3073 struct cgroup *dsct; 3074 struct cgroup_subsys_state *d_css; 3075 struct cgroup_subsys *ss; 3076 int ssid; 3077 3078 restart: 3079 cgroup_lock(); 3080 3081 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3082 for_each_subsys(ss, ssid) { 3083 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3084 DEFINE_WAIT(wait); 3085 3086 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3087 continue; 3088 3089 cgroup_get_live(dsct); 3090 prepare_to_wait(&dsct->offline_waitq, &wait, 3091 TASK_UNINTERRUPTIBLE); 3092 3093 cgroup_unlock(); 3094 schedule(); 3095 finish_wait(&dsct->offline_waitq, &wait); 3096 3097 cgroup_put(dsct); 3098 goto restart; 3099 } 3100 } 3101 } 3102 3103 /** 3104 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3105 * @cgrp: root of the target subtree 3106 * 3107 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3108 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3109 * itself. 3110 */ 3111 static void cgroup_save_control(struct cgroup *cgrp) 3112 { 3113 struct cgroup *dsct; 3114 struct cgroup_subsys_state *d_css; 3115 3116 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3117 dsct->old_subtree_control = dsct->subtree_control; 3118 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3119 dsct->old_dom_cgrp = dsct->dom_cgrp; 3120 } 3121 } 3122 3123 /** 3124 * cgroup_propagate_control - refresh control masks of a subtree 3125 * @cgrp: root of the target subtree 3126 * 3127 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3128 * ->subtree_control and propagate controller availability through the 3129 * subtree so that descendants don't have unavailable controllers enabled. 3130 */ 3131 static void cgroup_propagate_control(struct cgroup *cgrp) 3132 { 3133 struct cgroup *dsct; 3134 struct cgroup_subsys_state *d_css; 3135 3136 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3137 dsct->subtree_control &= cgroup_control(dsct); 3138 dsct->subtree_ss_mask = 3139 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3140 cgroup_ss_mask(dsct)); 3141 } 3142 } 3143 3144 /** 3145 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3146 * @cgrp: root of the target subtree 3147 * 3148 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3149 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3150 * itself. 3151 */ 3152 static void cgroup_restore_control(struct cgroup *cgrp) 3153 { 3154 struct cgroup *dsct; 3155 struct cgroup_subsys_state *d_css; 3156 3157 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3158 dsct->subtree_control = dsct->old_subtree_control; 3159 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3160 dsct->dom_cgrp = dsct->old_dom_cgrp; 3161 } 3162 } 3163 3164 static bool css_visible(struct cgroup_subsys_state *css) 3165 { 3166 struct cgroup_subsys *ss = css->ss; 3167 struct cgroup *cgrp = css->cgroup; 3168 3169 if (cgroup_control(cgrp) & (1 << ss->id)) 3170 return true; 3171 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3172 return false; 3173 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3174 } 3175 3176 /** 3177 * cgroup_apply_control_enable - enable or show csses according to control 3178 * @cgrp: root of the target subtree 3179 * 3180 * Walk @cgrp's subtree and create new csses or make the existing ones 3181 * visible. A css is created invisible if it's being implicitly enabled 3182 * through dependency. An invisible css is made visible when the userland 3183 * explicitly enables it. 3184 * 3185 * Returns 0 on success, -errno on failure. On failure, csses which have 3186 * been processed already aren't cleaned up. The caller is responsible for 3187 * cleaning up with cgroup_apply_control_disable(). 3188 */ 3189 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3190 { 3191 struct cgroup *dsct; 3192 struct cgroup_subsys_state *d_css; 3193 struct cgroup_subsys *ss; 3194 int ssid, ret; 3195 3196 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3197 for_each_subsys(ss, ssid) { 3198 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3199 3200 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3201 continue; 3202 3203 if (!css) { 3204 css = css_create(dsct, ss); 3205 if (IS_ERR(css)) 3206 return PTR_ERR(css); 3207 } 3208 3209 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3210 3211 if (css_visible(css)) { 3212 ret = css_populate_dir(css); 3213 if (ret) 3214 return ret; 3215 } 3216 } 3217 } 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * cgroup_apply_control_disable - kill or hide csses according to control 3224 * @cgrp: root of the target subtree 3225 * 3226 * Walk @cgrp's subtree and kill and hide csses so that they match 3227 * cgroup_ss_mask() and cgroup_visible_mask(). 3228 * 3229 * A css is hidden when the userland requests it to be disabled while other 3230 * subsystems are still depending on it. The css must not actively control 3231 * resources and be in the vanilla state if it's made visible again later. 3232 * Controllers which may be depended upon should provide ->css_reset() for 3233 * this purpose. 3234 */ 3235 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3236 { 3237 struct cgroup *dsct; 3238 struct cgroup_subsys_state *d_css; 3239 struct cgroup_subsys *ss; 3240 int ssid; 3241 3242 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3243 for_each_subsys(ss, ssid) { 3244 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3245 3246 if (!css) 3247 continue; 3248 3249 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3250 3251 if (css->parent && 3252 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3253 kill_css(css); 3254 } else if (!css_visible(css)) { 3255 css_clear_dir(css); 3256 if (ss->css_reset) 3257 ss->css_reset(css); 3258 } 3259 } 3260 } 3261 } 3262 3263 /** 3264 * cgroup_apply_control - apply control mask updates to the subtree 3265 * @cgrp: root of the target subtree 3266 * 3267 * subsystems can be enabled and disabled in a subtree using the following 3268 * steps. 3269 * 3270 * 1. Call cgroup_save_control() to stash the current state. 3271 * 2. Update ->subtree_control masks in the subtree as desired. 3272 * 3. Call cgroup_apply_control() to apply the changes. 3273 * 4. Optionally perform other related operations. 3274 * 5. Call cgroup_finalize_control() to finish up. 3275 * 3276 * This function implements step 3 and propagates the mask changes 3277 * throughout @cgrp's subtree, updates csses accordingly and perform 3278 * process migrations. 3279 */ 3280 static int cgroup_apply_control(struct cgroup *cgrp) 3281 { 3282 int ret; 3283 3284 cgroup_propagate_control(cgrp); 3285 3286 ret = cgroup_apply_control_enable(cgrp); 3287 if (ret) 3288 return ret; 3289 3290 /* 3291 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3292 * making the following cgroup_update_dfl_csses() properly update 3293 * css associations of all tasks in the subtree. 3294 */ 3295 return cgroup_update_dfl_csses(cgrp); 3296 } 3297 3298 /** 3299 * cgroup_finalize_control - finalize control mask update 3300 * @cgrp: root of the target subtree 3301 * @ret: the result of the update 3302 * 3303 * Finalize control mask update. See cgroup_apply_control() for more info. 3304 */ 3305 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3306 { 3307 if (ret) { 3308 cgroup_restore_control(cgrp); 3309 cgroup_propagate_control(cgrp); 3310 } 3311 3312 cgroup_apply_control_disable(cgrp); 3313 } 3314 3315 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3316 { 3317 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3318 3319 /* if nothing is getting enabled, nothing to worry about */ 3320 if (!enable) 3321 return 0; 3322 3323 /* can @cgrp host any resources? */ 3324 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3325 return -EOPNOTSUPP; 3326 3327 /* mixables don't care */ 3328 if (cgroup_is_mixable(cgrp)) 3329 return 0; 3330 3331 if (domain_enable) { 3332 /* can't enable domain controllers inside a thread subtree */ 3333 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3334 return -EOPNOTSUPP; 3335 } else { 3336 /* 3337 * Threaded controllers can handle internal competitions 3338 * and are always allowed inside a (prospective) thread 3339 * subtree. 3340 */ 3341 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3342 return 0; 3343 } 3344 3345 /* 3346 * Controllers can't be enabled for a cgroup with tasks to avoid 3347 * child cgroups competing against tasks. 3348 */ 3349 if (cgroup_has_tasks(cgrp)) 3350 return -EBUSY; 3351 3352 return 0; 3353 } 3354 3355 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3356 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3357 char *buf, size_t nbytes, 3358 loff_t off) 3359 { 3360 u16 enable = 0, disable = 0; 3361 struct cgroup *cgrp, *child; 3362 struct cgroup_subsys *ss; 3363 char *tok; 3364 int ssid, ret; 3365 3366 /* 3367 * Parse input - space separated list of subsystem names prefixed 3368 * with either + or -. 3369 */ 3370 buf = strstrip(buf); 3371 while ((tok = strsep(&buf, " "))) { 3372 if (tok[0] == '\0') 3373 continue; 3374 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3375 if (!cgroup_ssid_enabled(ssid) || 3376 strcmp(tok + 1, ss->name)) 3377 continue; 3378 3379 if (*tok == '+') { 3380 enable |= 1 << ssid; 3381 disable &= ~(1 << ssid); 3382 } else if (*tok == '-') { 3383 disable |= 1 << ssid; 3384 enable &= ~(1 << ssid); 3385 } else { 3386 return -EINVAL; 3387 } 3388 break; 3389 } while_each_subsys_mask(); 3390 if (ssid == CGROUP_SUBSYS_COUNT) 3391 return -EINVAL; 3392 } 3393 3394 cgrp = cgroup_kn_lock_live(of->kn, true); 3395 if (!cgrp) 3396 return -ENODEV; 3397 3398 for_each_subsys(ss, ssid) { 3399 if (enable & (1 << ssid)) { 3400 if (cgrp->subtree_control & (1 << ssid)) { 3401 enable &= ~(1 << ssid); 3402 continue; 3403 } 3404 3405 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3406 ret = -ENOENT; 3407 goto out_unlock; 3408 } 3409 } else if (disable & (1 << ssid)) { 3410 if (!(cgrp->subtree_control & (1 << ssid))) { 3411 disable &= ~(1 << ssid); 3412 continue; 3413 } 3414 3415 /* a child has it enabled? */ 3416 cgroup_for_each_live_child(child, cgrp) { 3417 if (child->subtree_control & (1 << ssid)) { 3418 ret = -EBUSY; 3419 goto out_unlock; 3420 } 3421 } 3422 } 3423 } 3424 3425 if (!enable && !disable) { 3426 ret = 0; 3427 goto out_unlock; 3428 } 3429 3430 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3431 if (ret) 3432 goto out_unlock; 3433 3434 /* save and update control masks and prepare csses */ 3435 cgroup_save_control(cgrp); 3436 3437 cgrp->subtree_control |= enable; 3438 cgrp->subtree_control &= ~disable; 3439 3440 ret = cgroup_apply_control(cgrp); 3441 cgroup_finalize_control(cgrp, ret); 3442 if (ret) 3443 goto out_unlock; 3444 3445 kernfs_activate(cgrp->kn); 3446 out_unlock: 3447 cgroup_kn_unlock(of->kn); 3448 return ret ?: nbytes; 3449 } 3450 3451 /** 3452 * cgroup_enable_threaded - make @cgrp threaded 3453 * @cgrp: the target cgroup 3454 * 3455 * Called when "threaded" is written to the cgroup.type interface file and 3456 * tries to make @cgrp threaded and join the parent's resource domain. 3457 * This function is never called on the root cgroup as cgroup.type doesn't 3458 * exist on it. 3459 */ 3460 static int cgroup_enable_threaded(struct cgroup *cgrp) 3461 { 3462 struct cgroup *parent = cgroup_parent(cgrp); 3463 struct cgroup *dom_cgrp = parent->dom_cgrp; 3464 struct cgroup *dsct; 3465 struct cgroup_subsys_state *d_css; 3466 int ret; 3467 3468 lockdep_assert_held(&cgroup_mutex); 3469 3470 /* noop if already threaded */ 3471 if (cgroup_is_threaded(cgrp)) 3472 return 0; 3473 3474 /* 3475 * If @cgroup is populated or has domain controllers enabled, it 3476 * can't be switched. While the below cgroup_can_be_thread_root() 3477 * test can catch the same conditions, that's only when @parent is 3478 * not mixable, so let's check it explicitly. 3479 */ 3480 if (cgroup_is_populated(cgrp) || 3481 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3482 return -EOPNOTSUPP; 3483 3484 /* we're joining the parent's domain, ensure its validity */ 3485 if (!cgroup_is_valid_domain(dom_cgrp) || 3486 !cgroup_can_be_thread_root(dom_cgrp)) 3487 return -EOPNOTSUPP; 3488 3489 /* 3490 * The following shouldn't cause actual migrations and should 3491 * always succeed. 3492 */ 3493 cgroup_save_control(cgrp); 3494 3495 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3496 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3497 dsct->dom_cgrp = dom_cgrp; 3498 3499 ret = cgroup_apply_control(cgrp); 3500 if (!ret) 3501 parent->nr_threaded_children++; 3502 3503 cgroup_finalize_control(cgrp, ret); 3504 return ret; 3505 } 3506 3507 static int cgroup_type_show(struct seq_file *seq, void *v) 3508 { 3509 struct cgroup *cgrp = seq_css(seq)->cgroup; 3510 3511 if (cgroup_is_threaded(cgrp)) 3512 seq_puts(seq, "threaded\n"); 3513 else if (!cgroup_is_valid_domain(cgrp)) 3514 seq_puts(seq, "domain invalid\n"); 3515 else if (cgroup_is_thread_root(cgrp)) 3516 seq_puts(seq, "domain threaded\n"); 3517 else 3518 seq_puts(seq, "domain\n"); 3519 3520 return 0; 3521 } 3522 3523 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3524 size_t nbytes, loff_t off) 3525 { 3526 struct cgroup *cgrp; 3527 int ret; 3528 3529 /* only switching to threaded mode is supported */ 3530 if (strcmp(strstrip(buf), "threaded")) 3531 return -EINVAL; 3532 3533 /* drain dying csses before we re-apply (threaded) subtree control */ 3534 cgrp = cgroup_kn_lock_live(of->kn, true); 3535 if (!cgrp) 3536 return -ENOENT; 3537 3538 /* threaded can only be enabled */ 3539 ret = cgroup_enable_threaded(cgrp); 3540 3541 cgroup_kn_unlock(of->kn); 3542 return ret ?: nbytes; 3543 } 3544 3545 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3546 { 3547 struct cgroup *cgrp = seq_css(seq)->cgroup; 3548 int descendants = READ_ONCE(cgrp->max_descendants); 3549 3550 if (descendants == INT_MAX) 3551 seq_puts(seq, "max\n"); 3552 else 3553 seq_printf(seq, "%d\n", descendants); 3554 3555 return 0; 3556 } 3557 3558 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3559 char *buf, size_t nbytes, loff_t off) 3560 { 3561 struct cgroup *cgrp; 3562 int descendants; 3563 ssize_t ret; 3564 3565 buf = strstrip(buf); 3566 if (!strcmp(buf, "max")) { 3567 descendants = INT_MAX; 3568 } else { 3569 ret = kstrtoint(buf, 0, &descendants); 3570 if (ret) 3571 return ret; 3572 } 3573 3574 if (descendants < 0) 3575 return -ERANGE; 3576 3577 cgrp = cgroup_kn_lock_live(of->kn, false); 3578 if (!cgrp) 3579 return -ENOENT; 3580 3581 cgrp->max_descendants = descendants; 3582 3583 cgroup_kn_unlock(of->kn); 3584 3585 return nbytes; 3586 } 3587 3588 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3589 { 3590 struct cgroup *cgrp = seq_css(seq)->cgroup; 3591 int depth = READ_ONCE(cgrp->max_depth); 3592 3593 if (depth == INT_MAX) 3594 seq_puts(seq, "max\n"); 3595 else 3596 seq_printf(seq, "%d\n", depth); 3597 3598 return 0; 3599 } 3600 3601 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3602 char *buf, size_t nbytes, loff_t off) 3603 { 3604 struct cgroup *cgrp; 3605 ssize_t ret; 3606 int depth; 3607 3608 buf = strstrip(buf); 3609 if (!strcmp(buf, "max")) { 3610 depth = INT_MAX; 3611 } else { 3612 ret = kstrtoint(buf, 0, &depth); 3613 if (ret) 3614 return ret; 3615 } 3616 3617 if (depth < 0) 3618 return -ERANGE; 3619 3620 cgrp = cgroup_kn_lock_live(of->kn, false); 3621 if (!cgrp) 3622 return -ENOENT; 3623 3624 cgrp->max_depth = depth; 3625 3626 cgroup_kn_unlock(of->kn); 3627 3628 return nbytes; 3629 } 3630 3631 static int cgroup_events_show(struct seq_file *seq, void *v) 3632 { 3633 struct cgroup *cgrp = seq_css(seq)->cgroup; 3634 3635 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3636 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3637 3638 return 0; 3639 } 3640 3641 static int cgroup_stat_show(struct seq_file *seq, void *v) 3642 { 3643 struct cgroup *cgroup = seq_css(seq)->cgroup; 3644 3645 seq_printf(seq, "nr_descendants %d\n", 3646 cgroup->nr_descendants); 3647 seq_printf(seq, "nr_dying_descendants %d\n", 3648 cgroup->nr_dying_descendants); 3649 3650 return 0; 3651 } 3652 3653 #ifdef CONFIG_CGROUP_SCHED 3654 /** 3655 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3656 * @cgrp: the cgroup of interest 3657 * @ss: the subsystem of interest 3658 * 3659 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3660 * or is offline, %NULL is returned. 3661 */ 3662 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3663 struct cgroup_subsys *ss) 3664 { 3665 struct cgroup_subsys_state *css; 3666 3667 rcu_read_lock(); 3668 css = cgroup_css(cgrp, ss); 3669 if (css && !css_tryget_online(css)) 3670 css = NULL; 3671 rcu_read_unlock(); 3672 3673 return css; 3674 } 3675 3676 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3677 { 3678 struct cgroup *cgrp = seq_css(seq)->cgroup; 3679 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3680 struct cgroup_subsys_state *css; 3681 int ret; 3682 3683 if (!ss->css_extra_stat_show) 3684 return 0; 3685 3686 css = cgroup_tryget_css(cgrp, ss); 3687 if (!css) 3688 return 0; 3689 3690 ret = ss->css_extra_stat_show(seq, css); 3691 css_put(css); 3692 return ret; 3693 } 3694 3695 static int cgroup_local_stat_show(struct seq_file *seq, 3696 struct cgroup *cgrp, int ssid) 3697 { 3698 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3699 struct cgroup_subsys_state *css; 3700 int ret; 3701 3702 if (!ss->css_local_stat_show) 3703 return 0; 3704 3705 css = cgroup_tryget_css(cgrp, ss); 3706 if (!css) 3707 return 0; 3708 3709 ret = ss->css_local_stat_show(seq, css); 3710 css_put(css); 3711 return ret; 3712 } 3713 #endif 3714 3715 static int cpu_stat_show(struct seq_file *seq, void *v) 3716 { 3717 int ret = 0; 3718 3719 cgroup_base_stat_cputime_show(seq); 3720 #ifdef CONFIG_CGROUP_SCHED 3721 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3722 #endif 3723 return ret; 3724 } 3725 3726 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3727 { 3728 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3729 int ret = 0; 3730 3731 #ifdef CONFIG_CGROUP_SCHED 3732 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3733 #endif 3734 return ret; 3735 } 3736 3737 #ifdef CONFIG_PSI 3738 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3739 { 3740 struct cgroup *cgrp = seq_css(seq)->cgroup; 3741 struct psi_group *psi = cgroup_psi(cgrp); 3742 3743 return psi_show(seq, psi, PSI_IO); 3744 } 3745 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3746 { 3747 struct cgroup *cgrp = seq_css(seq)->cgroup; 3748 struct psi_group *psi = cgroup_psi(cgrp); 3749 3750 return psi_show(seq, psi, PSI_MEM); 3751 } 3752 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3753 { 3754 struct cgroup *cgrp = seq_css(seq)->cgroup; 3755 struct psi_group *psi = cgroup_psi(cgrp); 3756 3757 return psi_show(seq, psi, PSI_CPU); 3758 } 3759 3760 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3761 size_t nbytes, enum psi_res res) 3762 { 3763 struct cgroup_file_ctx *ctx = of->priv; 3764 struct psi_trigger *new; 3765 struct cgroup *cgrp; 3766 struct psi_group *psi; 3767 3768 cgrp = cgroup_kn_lock_live(of->kn, false); 3769 if (!cgrp) 3770 return -ENODEV; 3771 3772 cgroup_get(cgrp); 3773 cgroup_kn_unlock(of->kn); 3774 3775 /* Allow only one trigger per file descriptor */ 3776 if (ctx->psi.trigger) { 3777 cgroup_put(cgrp); 3778 return -EBUSY; 3779 } 3780 3781 psi = cgroup_psi(cgrp); 3782 new = psi_trigger_create(psi, buf, res, of->file, of); 3783 if (IS_ERR(new)) { 3784 cgroup_put(cgrp); 3785 return PTR_ERR(new); 3786 } 3787 3788 smp_store_release(&ctx->psi.trigger, new); 3789 cgroup_put(cgrp); 3790 3791 return nbytes; 3792 } 3793 3794 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3795 char *buf, size_t nbytes, 3796 loff_t off) 3797 { 3798 return pressure_write(of, buf, nbytes, PSI_IO); 3799 } 3800 3801 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3802 char *buf, size_t nbytes, 3803 loff_t off) 3804 { 3805 return pressure_write(of, buf, nbytes, PSI_MEM); 3806 } 3807 3808 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3809 char *buf, size_t nbytes, 3810 loff_t off) 3811 { 3812 return pressure_write(of, buf, nbytes, PSI_CPU); 3813 } 3814 3815 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3816 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3817 { 3818 struct cgroup *cgrp = seq_css(seq)->cgroup; 3819 struct psi_group *psi = cgroup_psi(cgrp); 3820 3821 return psi_show(seq, psi, PSI_IRQ); 3822 } 3823 3824 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3825 char *buf, size_t nbytes, 3826 loff_t off) 3827 { 3828 return pressure_write(of, buf, nbytes, PSI_IRQ); 3829 } 3830 #endif 3831 3832 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3833 { 3834 struct cgroup *cgrp = seq_css(seq)->cgroup; 3835 struct psi_group *psi = cgroup_psi(cgrp); 3836 3837 seq_printf(seq, "%d\n", psi->enabled); 3838 3839 return 0; 3840 } 3841 3842 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3843 char *buf, size_t nbytes, 3844 loff_t off) 3845 { 3846 ssize_t ret; 3847 int enable; 3848 struct cgroup *cgrp; 3849 struct psi_group *psi; 3850 3851 ret = kstrtoint(strstrip(buf), 0, &enable); 3852 if (ret) 3853 return ret; 3854 3855 if (enable < 0 || enable > 1) 3856 return -ERANGE; 3857 3858 cgrp = cgroup_kn_lock_live(of->kn, false); 3859 if (!cgrp) 3860 return -ENOENT; 3861 3862 psi = cgroup_psi(cgrp); 3863 if (psi->enabled != enable) { 3864 int i; 3865 3866 /* show or hide {cpu,memory,io,irq}.pressure files */ 3867 for (i = 0; i < NR_PSI_RESOURCES; i++) 3868 cgroup_file_show(&cgrp->psi_files[i], enable); 3869 3870 psi->enabled = enable; 3871 if (enable) 3872 psi_cgroup_restart(psi); 3873 } 3874 3875 cgroup_kn_unlock(of->kn); 3876 3877 return nbytes; 3878 } 3879 3880 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3881 poll_table *pt) 3882 { 3883 struct cgroup_file_ctx *ctx = of->priv; 3884 3885 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3886 } 3887 3888 static int cgroup_pressure_open(struct kernfs_open_file *of) 3889 { 3890 if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 3891 return -EPERM; 3892 3893 return 0; 3894 } 3895 3896 static void cgroup_pressure_release(struct kernfs_open_file *of) 3897 { 3898 struct cgroup_file_ctx *ctx = of->priv; 3899 3900 psi_trigger_destroy(ctx->psi.trigger); 3901 } 3902 3903 bool cgroup_psi_enabled(void) 3904 { 3905 if (static_branch_likely(&psi_disabled)) 3906 return false; 3907 3908 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3909 } 3910 3911 #else /* CONFIG_PSI */ 3912 bool cgroup_psi_enabled(void) 3913 { 3914 return false; 3915 } 3916 3917 #endif /* CONFIG_PSI */ 3918 3919 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3920 { 3921 struct cgroup *cgrp = seq_css(seq)->cgroup; 3922 3923 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3924 3925 return 0; 3926 } 3927 3928 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3929 char *buf, size_t nbytes, loff_t off) 3930 { 3931 struct cgroup *cgrp; 3932 ssize_t ret; 3933 int freeze; 3934 3935 ret = kstrtoint(strstrip(buf), 0, &freeze); 3936 if (ret) 3937 return ret; 3938 3939 if (freeze < 0 || freeze > 1) 3940 return -ERANGE; 3941 3942 cgrp = cgroup_kn_lock_live(of->kn, false); 3943 if (!cgrp) 3944 return -ENOENT; 3945 3946 cgroup_freeze(cgrp, freeze); 3947 3948 cgroup_kn_unlock(of->kn); 3949 3950 return nbytes; 3951 } 3952 3953 static void __cgroup_kill(struct cgroup *cgrp) 3954 { 3955 struct css_task_iter it; 3956 struct task_struct *task; 3957 3958 lockdep_assert_held(&cgroup_mutex); 3959 3960 spin_lock_irq(&css_set_lock); 3961 set_bit(CGRP_KILL, &cgrp->flags); 3962 spin_unlock_irq(&css_set_lock); 3963 3964 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3965 while ((task = css_task_iter_next(&it))) { 3966 /* Ignore kernel threads here. */ 3967 if (task->flags & PF_KTHREAD) 3968 continue; 3969 3970 /* Skip tasks that are already dying. */ 3971 if (__fatal_signal_pending(task)) 3972 continue; 3973 3974 send_sig(SIGKILL, task, 0); 3975 } 3976 css_task_iter_end(&it); 3977 3978 spin_lock_irq(&css_set_lock); 3979 clear_bit(CGRP_KILL, &cgrp->flags); 3980 spin_unlock_irq(&css_set_lock); 3981 } 3982 3983 static void cgroup_kill(struct cgroup *cgrp) 3984 { 3985 struct cgroup_subsys_state *css; 3986 struct cgroup *dsct; 3987 3988 lockdep_assert_held(&cgroup_mutex); 3989 3990 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3991 __cgroup_kill(dsct); 3992 } 3993 3994 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3995 size_t nbytes, loff_t off) 3996 { 3997 ssize_t ret = 0; 3998 int kill; 3999 struct cgroup *cgrp; 4000 4001 ret = kstrtoint(strstrip(buf), 0, &kill); 4002 if (ret) 4003 return ret; 4004 4005 if (kill != 1) 4006 return -ERANGE; 4007 4008 cgrp = cgroup_kn_lock_live(of->kn, false); 4009 if (!cgrp) 4010 return -ENOENT; 4011 4012 /* 4013 * Killing is a process directed operation, i.e. the whole thread-group 4014 * is taken down so act like we do for cgroup.procs and only make this 4015 * writable in non-threaded cgroups. 4016 */ 4017 if (cgroup_is_threaded(cgrp)) 4018 ret = -EOPNOTSUPP; 4019 else 4020 cgroup_kill(cgrp); 4021 4022 cgroup_kn_unlock(of->kn); 4023 4024 return ret ?: nbytes; 4025 } 4026 4027 static int cgroup_file_open(struct kernfs_open_file *of) 4028 { 4029 struct cftype *cft = of_cft(of); 4030 struct cgroup_file_ctx *ctx; 4031 int ret; 4032 4033 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4034 if (!ctx) 4035 return -ENOMEM; 4036 4037 ctx->ns = current->nsproxy->cgroup_ns; 4038 get_cgroup_ns(ctx->ns); 4039 of->priv = ctx; 4040 4041 if (!cft->open) 4042 return 0; 4043 4044 ret = cft->open(of); 4045 if (ret) { 4046 put_cgroup_ns(ctx->ns); 4047 kfree(ctx); 4048 } 4049 return ret; 4050 } 4051 4052 static void cgroup_file_release(struct kernfs_open_file *of) 4053 { 4054 struct cftype *cft = of_cft(of); 4055 struct cgroup_file_ctx *ctx = of->priv; 4056 4057 if (cft->release) 4058 cft->release(of); 4059 put_cgroup_ns(ctx->ns); 4060 kfree(ctx); 4061 } 4062 4063 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4064 size_t nbytes, loff_t off) 4065 { 4066 struct cgroup_file_ctx *ctx = of->priv; 4067 struct cgroup *cgrp = of->kn->parent->priv; 4068 struct cftype *cft = of_cft(of); 4069 struct cgroup_subsys_state *css; 4070 int ret; 4071 4072 if (!nbytes) 4073 return 0; 4074 4075 /* 4076 * If namespaces are delegation boundaries, disallow writes to 4077 * files in an non-init namespace root from inside the namespace 4078 * except for the files explicitly marked delegatable - 4079 * cgroup.procs and cgroup.subtree_control. 4080 */ 4081 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4082 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4083 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4084 return -EPERM; 4085 4086 if (cft->write) 4087 return cft->write(of, buf, nbytes, off); 4088 4089 /* 4090 * kernfs guarantees that a file isn't deleted with operations in 4091 * flight, which means that the matching css is and stays alive and 4092 * doesn't need to be pinned. The RCU locking is not necessary 4093 * either. It's just for the convenience of using cgroup_css(). 4094 */ 4095 rcu_read_lock(); 4096 css = cgroup_css(cgrp, cft->ss); 4097 rcu_read_unlock(); 4098 4099 if (cft->write_u64) { 4100 unsigned long long v; 4101 ret = kstrtoull(buf, 0, &v); 4102 if (!ret) 4103 ret = cft->write_u64(css, cft, v); 4104 } else if (cft->write_s64) { 4105 long long v; 4106 ret = kstrtoll(buf, 0, &v); 4107 if (!ret) 4108 ret = cft->write_s64(css, cft, v); 4109 } else { 4110 ret = -EINVAL; 4111 } 4112 4113 return ret ?: nbytes; 4114 } 4115 4116 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4117 { 4118 struct cftype *cft = of_cft(of); 4119 4120 if (cft->poll) 4121 return cft->poll(of, pt); 4122 4123 return kernfs_generic_poll(of, pt); 4124 } 4125 4126 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4127 { 4128 return seq_cft(seq)->seq_start(seq, ppos); 4129 } 4130 4131 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4132 { 4133 return seq_cft(seq)->seq_next(seq, v, ppos); 4134 } 4135 4136 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4137 { 4138 if (seq_cft(seq)->seq_stop) 4139 seq_cft(seq)->seq_stop(seq, v); 4140 } 4141 4142 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4143 { 4144 struct cftype *cft = seq_cft(m); 4145 struct cgroup_subsys_state *css = seq_css(m); 4146 4147 if (cft->seq_show) 4148 return cft->seq_show(m, arg); 4149 4150 if (cft->read_u64) 4151 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4152 else if (cft->read_s64) 4153 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4154 else 4155 return -EINVAL; 4156 return 0; 4157 } 4158 4159 static struct kernfs_ops cgroup_kf_single_ops = { 4160 .atomic_write_len = PAGE_SIZE, 4161 .open = cgroup_file_open, 4162 .release = cgroup_file_release, 4163 .write = cgroup_file_write, 4164 .poll = cgroup_file_poll, 4165 .seq_show = cgroup_seqfile_show, 4166 }; 4167 4168 static struct kernfs_ops cgroup_kf_ops = { 4169 .atomic_write_len = PAGE_SIZE, 4170 .open = cgroup_file_open, 4171 .release = cgroup_file_release, 4172 .write = cgroup_file_write, 4173 .poll = cgroup_file_poll, 4174 .seq_start = cgroup_seqfile_start, 4175 .seq_next = cgroup_seqfile_next, 4176 .seq_stop = cgroup_seqfile_stop, 4177 .seq_show = cgroup_seqfile_show, 4178 }; 4179 4180 /* set uid and gid of cgroup dirs and files to that of the creator */ 4181 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4182 { 4183 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4184 .ia_uid = current_fsuid(), 4185 .ia_gid = current_fsgid(), }; 4186 4187 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4188 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4189 return 0; 4190 4191 return kernfs_setattr(kn, &iattr); 4192 } 4193 4194 static void cgroup_file_notify_timer(struct timer_list *timer) 4195 { 4196 cgroup_file_notify(container_of(timer, struct cgroup_file, 4197 notify_timer)); 4198 } 4199 4200 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4201 struct cftype *cft) 4202 { 4203 char name[CGROUP_FILE_NAME_MAX]; 4204 struct kernfs_node *kn; 4205 struct lock_class_key *key = NULL; 4206 int ret; 4207 4208 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4209 key = &cft->lockdep_key; 4210 #endif 4211 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4212 cgroup_file_mode(cft), 4213 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4214 0, cft->kf_ops, cft, 4215 NULL, key); 4216 if (IS_ERR(kn)) 4217 return PTR_ERR(kn); 4218 4219 ret = cgroup_kn_set_ugid(kn); 4220 if (ret) { 4221 kernfs_remove(kn); 4222 return ret; 4223 } 4224 4225 if (cft->file_offset) { 4226 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4227 4228 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4229 4230 spin_lock_irq(&cgroup_file_kn_lock); 4231 cfile->kn = kn; 4232 spin_unlock_irq(&cgroup_file_kn_lock); 4233 } 4234 4235 return 0; 4236 } 4237 4238 /** 4239 * cgroup_addrm_files - add or remove files to a cgroup directory 4240 * @css: the target css 4241 * @cgrp: the target cgroup (usually css->cgroup) 4242 * @cfts: array of cftypes to be added 4243 * @is_add: whether to add or remove 4244 * 4245 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4246 * For removals, this function never fails. 4247 */ 4248 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4249 struct cgroup *cgrp, struct cftype cfts[], 4250 bool is_add) 4251 { 4252 struct cftype *cft, *cft_end = NULL; 4253 int ret = 0; 4254 4255 lockdep_assert_held(&cgroup_mutex); 4256 4257 restart: 4258 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4259 /* does cft->flags tell us to skip this file on @cgrp? */ 4260 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4261 continue; 4262 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4263 continue; 4264 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4265 continue; 4266 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4267 continue; 4268 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4269 continue; 4270 if (is_add) { 4271 ret = cgroup_add_file(css, cgrp, cft); 4272 if (ret) { 4273 pr_warn("%s: failed to add %s, err=%d\n", 4274 __func__, cft->name, ret); 4275 cft_end = cft; 4276 is_add = false; 4277 goto restart; 4278 } 4279 } else { 4280 cgroup_rm_file(cgrp, cft); 4281 } 4282 } 4283 return ret; 4284 } 4285 4286 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4287 { 4288 struct cgroup_subsys *ss = cfts[0].ss; 4289 struct cgroup *root = &ss->root->cgrp; 4290 struct cgroup_subsys_state *css; 4291 int ret = 0; 4292 4293 lockdep_assert_held(&cgroup_mutex); 4294 4295 /* add/rm files for all cgroups created before */ 4296 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4297 struct cgroup *cgrp = css->cgroup; 4298 4299 if (!(css->flags & CSS_VISIBLE)) 4300 continue; 4301 4302 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4303 if (ret) 4304 break; 4305 } 4306 4307 if (is_add && !ret) 4308 kernfs_activate(root->kn); 4309 return ret; 4310 } 4311 4312 static void cgroup_exit_cftypes(struct cftype *cfts) 4313 { 4314 struct cftype *cft; 4315 4316 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4317 /* free copy for custom atomic_write_len, see init_cftypes() */ 4318 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4319 kfree(cft->kf_ops); 4320 cft->kf_ops = NULL; 4321 cft->ss = NULL; 4322 4323 /* revert flags set by cgroup core while adding @cfts */ 4324 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4325 __CFTYPE_ADDED); 4326 } 4327 } 4328 4329 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4330 { 4331 struct cftype *cft; 4332 int ret = 0; 4333 4334 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4335 struct kernfs_ops *kf_ops; 4336 4337 WARN_ON(cft->ss || cft->kf_ops); 4338 4339 if (cft->flags & __CFTYPE_ADDED) { 4340 ret = -EBUSY; 4341 break; 4342 } 4343 4344 if (cft->seq_start) 4345 kf_ops = &cgroup_kf_ops; 4346 else 4347 kf_ops = &cgroup_kf_single_ops; 4348 4349 /* 4350 * Ugh... if @cft wants a custom max_write_len, we need to 4351 * make a copy of kf_ops to set its atomic_write_len. 4352 */ 4353 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4354 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4355 if (!kf_ops) { 4356 ret = -ENOMEM; 4357 break; 4358 } 4359 kf_ops->atomic_write_len = cft->max_write_len; 4360 } 4361 4362 cft->kf_ops = kf_ops; 4363 cft->ss = ss; 4364 cft->flags |= __CFTYPE_ADDED; 4365 } 4366 4367 if (ret) 4368 cgroup_exit_cftypes(cfts); 4369 return ret; 4370 } 4371 4372 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4373 { 4374 lockdep_assert_held(&cgroup_mutex); 4375 4376 list_del(&cfts->node); 4377 cgroup_apply_cftypes(cfts, false); 4378 cgroup_exit_cftypes(cfts); 4379 } 4380 4381 /** 4382 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4383 * @cfts: zero-length name terminated array of cftypes 4384 * 4385 * Unregister @cfts. Files described by @cfts are removed from all 4386 * existing cgroups and all future cgroups won't have them either. This 4387 * function can be called anytime whether @cfts' subsys is attached or not. 4388 * 4389 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4390 * registered. 4391 */ 4392 int cgroup_rm_cftypes(struct cftype *cfts) 4393 { 4394 if (!cfts || cfts[0].name[0] == '\0') 4395 return 0; 4396 4397 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4398 return -ENOENT; 4399 4400 cgroup_lock(); 4401 cgroup_rm_cftypes_locked(cfts); 4402 cgroup_unlock(); 4403 return 0; 4404 } 4405 4406 /** 4407 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4408 * @ss: target cgroup subsystem 4409 * @cfts: zero-length name terminated array of cftypes 4410 * 4411 * Register @cfts to @ss. Files described by @cfts are created for all 4412 * existing cgroups to which @ss is attached and all future cgroups will 4413 * have them too. This function can be called anytime whether @ss is 4414 * attached or not. 4415 * 4416 * Returns 0 on successful registration, -errno on failure. Note that this 4417 * function currently returns 0 as long as @cfts registration is successful 4418 * even if some file creation attempts on existing cgroups fail. 4419 */ 4420 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4421 { 4422 int ret; 4423 4424 if (!cgroup_ssid_enabled(ss->id)) 4425 return 0; 4426 4427 if (!cfts || cfts[0].name[0] == '\0') 4428 return 0; 4429 4430 ret = cgroup_init_cftypes(ss, cfts); 4431 if (ret) 4432 return ret; 4433 4434 cgroup_lock(); 4435 4436 list_add_tail(&cfts->node, &ss->cfts); 4437 ret = cgroup_apply_cftypes(cfts, true); 4438 if (ret) 4439 cgroup_rm_cftypes_locked(cfts); 4440 4441 cgroup_unlock(); 4442 return ret; 4443 } 4444 4445 /** 4446 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4447 * @ss: target cgroup subsystem 4448 * @cfts: zero-length name terminated array of cftypes 4449 * 4450 * Similar to cgroup_add_cftypes() but the added files are only used for 4451 * the default hierarchy. 4452 */ 4453 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4454 { 4455 struct cftype *cft; 4456 4457 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4458 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4459 return cgroup_add_cftypes(ss, cfts); 4460 } 4461 4462 /** 4463 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4464 * @ss: target cgroup subsystem 4465 * @cfts: zero-length name terminated array of cftypes 4466 * 4467 * Similar to cgroup_add_cftypes() but the added files are only used for 4468 * the legacy hierarchies. 4469 */ 4470 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4471 { 4472 struct cftype *cft; 4473 4474 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4475 cft->flags |= __CFTYPE_NOT_ON_DFL; 4476 return cgroup_add_cftypes(ss, cfts); 4477 } 4478 4479 /** 4480 * cgroup_file_notify - generate a file modified event for a cgroup_file 4481 * @cfile: target cgroup_file 4482 * 4483 * @cfile must have been obtained by setting cftype->file_offset. 4484 */ 4485 void cgroup_file_notify(struct cgroup_file *cfile) 4486 { 4487 unsigned long flags; 4488 4489 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4490 if (cfile->kn) { 4491 unsigned long last = cfile->notified_at; 4492 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4493 4494 if (time_in_range(jiffies, last, next)) { 4495 timer_reduce(&cfile->notify_timer, next); 4496 } else { 4497 kernfs_notify(cfile->kn); 4498 cfile->notified_at = jiffies; 4499 } 4500 } 4501 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4502 } 4503 4504 /** 4505 * cgroup_file_show - show or hide a hidden cgroup file 4506 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4507 * @show: whether to show or hide 4508 */ 4509 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4510 { 4511 struct kernfs_node *kn; 4512 4513 spin_lock_irq(&cgroup_file_kn_lock); 4514 kn = cfile->kn; 4515 kernfs_get(kn); 4516 spin_unlock_irq(&cgroup_file_kn_lock); 4517 4518 if (kn) 4519 kernfs_show(kn, show); 4520 4521 kernfs_put(kn); 4522 } 4523 4524 /** 4525 * css_next_child - find the next child of a given css 4526 * @pos: the current position (%NULL to initiate traversal) 4527 * @parent: css whose children to walk 4528 * 4529 * This function returns the next child of @parent and should be called 4530 * under either cgroup_mutex or RCU read lock. The only requirement is 4531 * that @parent and @pos are accessible. The next sibling is guaranteed to 4532 * be returned regardless of their states. 4533 * 4534 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4535 * css which finished ->css_online() is guaranteed to be visible in the 4536 * future iterations and will stay visible until the last reference is put. 4537 * A css which hasn't finished ->css_online() or already finished 4538 * ->css_offline() may show up during traversal. It's each subsystem's 4539 * responsibility to synchronize against on/offlining. 4540 */ 4541 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4542 struct cgroup_subsys_state *parent) 4543 { 4544 struct cgroup_subsys_state *next; 4545 4546 cgroup_assert_mutex_or_rcu_locked(); 4547 4548 /* 4549 * @pos could already have been unlinked from the sibling list. 4550 * Once a cgroup is removed, its ->sibling.next is no longer 4551 * updated when its next sibling changes. CSS_RELEASED is set when 4552 * @pos is taken off list, at which time its next pointer is valid, 4553 * and, as releases are serialized, the one pointed to by the next 4554 * pointer is guaranteed to not have started release yet. This 4555 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4556 * critical section, the one pointed to by its next pointer is 4557 * guaranteed to not have finished its RCU grace period even if we 4558 * have dropped rcu_read_lock() in-between iterations. 4559 * 4560 * If @pos has CSS_RELEASED set, its next pointer can't be 4561 * dereferenced; however, as each css is given a monotonically 4562 * increasing unique serial number and always appended to the 4563 * sibling list, the next one can be found by walking the parent's 4564 * children until the first css with higher serial number than 4565 * @pos's. While this path can be slower, it happens iff iteration 4566 * races against release and the race window is very small. 4567 */ 4568 if (!pos) { 4569 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4570 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4571 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4572 } else { 4573 list_for_each_entry_rcu(next, &parent->children, sibling, 4574 lockdep_is_held(&cgroup_mutex)) 4575 if (next->serial_nr > pos->serial_nr) 4576 break; 4577 } 4578 4579 /* 4580 * @next, if not pointing to the head, can be dereferenced and is 4581 * the next sibling. 4582 */ 4583 if (&next->sibling != &parent->children) 4584 return next; 4585 return NULL; 4586 } 4587 4588 /** 4589 * css_next_descendant_pre - find the next descendant for pre-order walk 4590 * @pos: the current position (%NULL to initiate traversal) 4591 * @root: css whose descendants to walk 4592 * 4593 * To be used by css_for_each_descendant_pre(). Find the next descendant 4594 * to visit for pre-order traversal of @root's descendants. @root is 4595 * included in the iteration and the first node to be visited. 4596 * 4597 * While this function requires cgroup_mutex or RCU read locking, it 4598 * doesn't require the whole traversal to be contained in a single critical 4599 * section. This function will return the correct next descendant as long 4600 * as both @pos and @root are accessible and @pos is a descendant of @root. 4601 * 4602 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4603 * css which finished ->css_online() is guaranteed to be visible in the 4604 * future iterations and will stay visible until the last reference is put. 4605 * A css which hasn't finished ->css_online() or already finished 4606 * ->css_offline() may show up during traversal. It's each subsystem's 4607 * responsibility to synchronize against on/offlining. 4608 */ 4609 struct cgroup_subsys_state * 4610 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4611 struct cgroup_subsys_state *root) 4612 { 4613 struct cgroup_subsys_state *next; 4614 4615 cgroup_assert_mutex_or_rcu_locked(); 4616 4617 /* if first iteration, visit @root */ 4618 if (!pos) 4619 return root; 4620 4621 /* visit the first child if exists */ 4622 next = css_next_child(NULL, pos); 4623 if (next) 4624 return next; 4625 4626 /* no child, visit my or the closest ancestor's next sibling */ 4627 while (pos != root) { 4628 next = css_next_child(pos, pos->parent); 4629 if (next) 4630 return next; 4631 pos = pos->parent; 4632 } 4633 4634 return NULL; 4635 } 4636 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4637 4638 /** 4639 * css_rightmost_descendant - return the rightmost descendant of a css 4640 * @pos: css of interest 4641 * 4642 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4643 * is returned. This can be used during pre-order traversal to skip 4644 * subtree of @pos. 4645 * 4646 * While this function requires cgroup_mutex or RCU read locking, it 4647 * doesn't require the whole traversal to be contained in a single critical 4648 * section. This function will return the correct rightmost descendant as 4649 * long as @pos is accessible. 4650 */ 4651 struct cgroup_subsys_state * 4652 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4653 { 4654 struct cgroup_subsys_state *last, *tmp; 4655 4656 cgroup_assert_mutex_or_rcu_locked(); 4657 4658 do { 4659 last = pos; 4660 /* ->prev isn't RCU safe, walk ->next till the end */ 4661 pos = NULL; 4662 css_for_each_child(tmp, last) 4663 pos = tmp; 4664 } while (pos); 4665 4666 return last; 4667 } 4668 4669 static struct cgroup_subsys_state * 4670 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4671 { 4672 struct cgroup_subsys_state *last; 4673 4674 do { 4675 last = pos; 4676 pos = css_next_child(NULL, pos); 4677 } while (pos); 4678 4679 return last; 4680 } 4681 4682 /** 4683 * css_next_descendant_post - find the next descendant for post-order walk 4684 * @pos: the current position (%NULL to initiate traversal) 4685 * @root: css whose descendants to walk 4686 * 4687 * To be used by css_for_each_descendant_post(). Find the next descendant 4688 * to visit for post-order traversal of @root's descendants. @root is 4689 * included in the iteration and the last node to be visited. 4690 * 4691 * While this function requires cgroup_mutex or RCU read locking, it 4692 * doesn't require the whole traversal to be contained in a single critical 4693 * section. This function will return the correct next descendant as long 4694 * as both @pos and @cgroup are accessible and @pos is a descendant of 4695 * @cgroup. 4696 * 4697 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4698 * css which finished ->css_online() is guaranteed to be visible in the 4699 * future iterations and will stay visible until the last reference is put. 4700 * A css which hasn't finished ->css_online() or already finished 4701 * ->css_offline() may show up during traversal. It's each subsystem's 4702 * responsibility to synchronize against on/offlining. 4703 */ 4704 struct cgroup_subsys_state * 4705 css_next_descendant_post(struct cgroup_subsys_state *pos, 4706 struct cgroup_subsys_state *root) 4707 { 4708 struct cgroup_subsys_state *next; 4709 4710 cgroup_assert_mutex_or_rcu_locked(); 4711 4712 /* if first iteration, visit leftmost descendant which may be @root */ 4713 if (!pos) 4714 return css_leftmost_descendant(root); 4715 4716 /* if we visited @root, we're done */ 4717 if (pos == root) 4718 return NULL; 4719 4720 /* if there's an unvisited sibling, visit its leftmost descendant */ 4721 next = css_next_child(pos, pos->parent); 4722 if (next) 4723 return css_leftmost_descendant(next); 4724 4725 /* no sibling left, visit parent */ 4726 return pos->parent; 4727 } 4728 4729 /** 4730 * css_has_online_children - does a css have online children 4731 * @css: the target css 4732 * 4733 * Returns %true if @css has any online children; otherwise, %false. This 4734 * function can be called from any context but the caller is responsible 4735 * for synchronizing against on/offlining as necessary. 4736 */ 4737 bool css_has_online_children(struct cgroup_subsys_state *css) 4738 { 4739 struct cgroup_subsys_state *child; 4740 bool ret = false; 4741 4742 rcu_read_lock(); 4743 css_for_each_child(child, css) { 4744 if (child->flags & CSS_ONLINE) { 4745 ret = true; 4746 break; 4747 } 4748 } 4749 rcu_read_unlock(); 4750 return ret; 4751 } 4752 4753 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4754 { 4755 struct list_head *l; 4756 struct cgrp_cset_link *link; 4757 struct css_set *cset; 4758 4759 lockdep_assert_held(&css_set_lock); 4760 4761 /* find the next threaded cset */ 4762 if (it->tcset_pos) { 4763 l = it->tcset_pos->next; 4764 4765 if (l != it->tcset_head) { 4766 it->tcset_pos = l; 4767 return container_of(l, struct css_set, 4768 threaded_csets_node); 4769 } 4770 4771 it->tcset_pos = NULL; 4772 } 4773 4774 /* find the next cset */ 4775 l = it->cset_pos; 4776 l = l->next; 4777 if (l == it->cset_head) { 4778 it->cset_pos = NULL; 4779 return NULL; 4780 } 4781 4782 if (it->ss) { 4783 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4784 } else { 4785 link = list_entry(l, struct cgrp_cset_link, cset_link); 4786 cset = link->cset; 4787 } 4788 4789 it->cset_pos = l; 4790 4791 /* initialize threaded css_set walking */ 4792 if (it->flags & CSS_TASK_ITER_THREADED) { 4793 if (it->cur_dcset) 4794 put_css_set_locked(it->cur_dcset); 4795 it->cur_dcset = cset; 4796 get_css_set(cset); 4797 4798 it->tcset_head = &cset->threaded_csets; 4799 it->tcset_pos = &cset->threaded_csets; 4800 } 4801 4802 return cset; 4803 } 4804 4805 /** 4806 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4807 * @it: the iterator to advance 4808 * 4809 * Advance @it to the next css_set to walk. 4810 */ 4811 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4812 { 4813 struct css_set *cset; 4814 4815 lockdep_assert_held(&css_set_lock); 4816 4817 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4818 while ((cset = css_task_iter_next_css_set(it))) { 4819 if (!list_empty(&cset->tasks)) { 4820 it->cur_tasks_head = &cset->tasks; 4821 break; 4822 } else if (!list_empty(&cset->mg_tasks)) { 4823 it->cur_tasks_head = &cset->mg_tasks; 4824 break; 4825 } else if (!list_empty(&cset->dying_tasks)) { 4826 it->cur_tasks_head = &cset->dying_tasks; 4827 break; 4828 } 4829 } 4830 if (!cset) { 4831 it->task_pos = NULL; 4832 return; 4833 } 4834 it->task_pos = it->cur_tasks_head->next; 4835 4836 /* 4837 * We don't keep css_sets locked across iteration steps and thus 4838 * need to take steps to ensure that iteration can be resumed after 4839 * the lock is re-acquired. Iteration is performed at two levels - 4840 * css_sets and tasks in them. 4841 * 4842 * Once created, a css_set never leaves its cgroup lists, so a 4843 * pinned css_set is guaranteed to stay put and we can resume 4844 * iteration afterwards. 4845 * 4846 * Tasks may leave @cset across iteration steps. This is resolved 4847 * by registering each iterator with the css_set currently being 4848 * walked and making css_set_move_task() advance iterators whose 4849 * next task is leaving. 4850 */ 4851 if (it->cur_cset) { 4852 list_del(&it->iters_node); 4853 put_css_set_locked(it->cur_cset); 4854 } 4855 get_css_set(cset); 4856 it->cur_cset = cset; 4857 list_add(&it->iters_node, &cset->task_iters); 4858 } 4859 4860 static void css_task_iter_skip(struct css_task_iter *it, 4861 struct task_struct *task) 4862 { 4863 lockdep_assert_held(&css_set_lock); 4864 4865 if (it->task_pos == &task->cg_list) { 4866 it->task_pos = it->task_pos->next; 4867 it->flags |= CSS_TASK_ITER_SKIPPED; 4868 } 4869 } 4870 4871 static void css_task_iter_advance(struct css_task_iter *it) 4872 { 4873 struct task_struct *task; 4874 4875 lockdep_assert_held(&css_set_lock); 4876 repeat: 4877 if (it->task_pos) { 4878 /* 4879 * Advance iterator to find next entry. We go through cset 4880 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4881 * the next cset. 4882 */ 4883 if (it->flags & CSS_TASK_ITER_SKIPPED) 4884 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4885 else 4886 it->task_pos = it->task_pos->next; 4887 4888 if (it->task_pos == &it->cur_cset->tasks) { 4889 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4890 it->task_pos = it->cur_tasks_head->next; 4891 } 4892 if (it->task_pos == &it->cur_cset->mg_tasks) { 4893 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4894 it->task_pos = it->cur_tasks_head->next; 4895 } 4896 if (it->task_pos == &it->cur_cset->dying_tasks) 4897 css_task_iter_advance_css_set(it); 4898 } else { 4899 /* called from start, proceed to the first cset */ 4900 css_task_iter_advance_css_set(it); 4901 } 4902 4903 if (!it->task_pos) 4904 return; 4905 4906 task = list_entry(it->task_pos, struct task_struct, cg_list); 4907 4908 if (it->flags & CSS_TASK_ITER_PROCS) { 4909 /* if PROCS, skip over tasks which aren't group leaders */ 4910 if (!thread_group_leader(task)) 4911 goto repeat; 4912 4913 /* and dying leaders w/o live member threads */ 4914 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4915 !atomic_read(&task->signal->live)) 4916 goto repeat; 4917 } else { 4918 /* skip all dying ones */ 4919 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4920 goto repeat; 4921 } 4922 } 4923 4924 /** 4925 * css_task_iter_start - initiate task iteration 4926 * @css: the css to walk tasks of 4927 * @flags: CSS_TASK_ITER_* flags 4928 * @it: the task iterator to use 4929 * 4930 * Initiate iteration through the tasks of @css. The caller can call 4931 * css_task_iter_next() to walk through the tasks until the function 4932 * returns NULL. On completion of iteration, css_task_iter_end() must be 4933 * called. 4934 */ 4935 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4936 struct css_task_iter *it) 4937 { 4938 unsigned long irqflags; 4939 4940 memset(it, 0, sizeof(*it)); 4941 4942 spin_lock_irqsave(&css_set_lock, irqflags); 4943 4944 it->ss = css->ss; 4945 it->flags = flags; 4946 4947 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4948 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4949 else 4950 it->cset_pos = &css->cgroup->cset_links; 4951 4952 it->cset_head = it->cset_pos; 4953 4954 css_task_iter_advance(it); 4955 4956 spin_unlock_irqrestore(&css_set_lock, irqflags); 4957 } 4958 4959 /** 4960 * css_task_iter_next - return the next task for the iterator 4961 * @it: the task iterator being iterated 4962 * 4963 * The "next" function for task iteration. @it should have been 4964 * initialized via css_task_iter_start(). Returns NULL when the iteration 4965 * reaches the end. 4966 */ 4967 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4968 { 4969 unsigned long irqflags; 4970 4971 if (it->cur_task) { 4972 put_task_struct(it->cur_task); 4973 it->cur_task = NULL; 4974 } 4975 4976 spin_lock_irqsave(&css_set_lock, irqflags); 4977 4978 /* @it may be half-advanced by skips, finish advancing */ 4979 if (it->flags & CSS_TASK_ITER_SKIPPED) 4980 css_task_iter_advance(it); 4981 4982 if (it->task_pos) { 4983 it->cur_task = list_entry(it->task_pos, struct task_struct, 4984 cg_list); 4985 get_task_struct(it->cur_task); 4986 css_task_iter_advance(it); 4987 } 4988 4989 spin_unlock_irqrestore(&css_set_lock, irqflags); 4990 4991 return it->cur_task; 4992 } 4993 4994 /** 4995 * css_task_iter_end - finish task iteration 4996 * @it: the task iterator to finish 4997 * 4998 * Finish task iteration started by css_task_iter_start(). 4999 */ 5000 void css_task_iter_end(struct css_task_iter *it) 5001 { 5002 unsigned long irqflags; 5003 5004 if (it->cur_cset) { 5005 spin_lock_irqsave(&css_set_lock, irqflags); 5006 list_del(&it->iters_node); 5007 put_css_set_locked(it->cur_cset); 5008 spin_unlock_irqrestore(&css_set_lock, irqflags); 5009 } 5010 5011 if (it->cur_dcset) 5012 put_css_set(it->cur_dcset); 5013 5014 if (it->cur_task) 5015 put_task_struct(it->cur_task); 5016 } 5017 5018 static void cgroup_procs_release(struct kernfs_open_file *of) 5019 { 5020 struct cgroup_file_ctx *ctx = of->priv; 5021 5022 if (ctx->procs.started) 5023 css_task_iter_end(&ctx->procs.iter); 5024 } 5025 5026 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5027 { 5028 struct kernfs_open_file *of = s->private; 5029 struct cgroup_file_ctx *ctx = of->priv; 5030 5031 if (pos) 5032 (*pos)++; 5033 5034 return css_task_iter_next(&ctx->procs.iter); 5035 } 5036 5037 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5038 unsigned int iter_flags) 5039 { 5040 struct kernfs_open_file *of = s->private; 5041 struct cgroup *cgrp = seq_css(s)->cgroup; 5042 struct cgroup_file_ctx *ctx = of->priv; 5043 struct css_task_iter *it = &ctx->procs.iter; 5044 5045 /* 5046 * When a seq_file is seeked, it's always traversed sequentially 5047 * from position 0, so we can simply keep iterating on !0 *pos. 5048 */ 5049 if (!ctx->procs.started) { 5050 if (WARN_ON_ONCE((*pos))) 5051 return ERR_PTR(-EINVAL); 5052 css_task_iter_start(&cgrp->self, iter_flags, it); 5053 ctx->procs.started = true; 5054 } else if (!(*pos)) { 5055 css_task_iter_end(it); 5056 css_task_iter_start(&cgrp->self, iter_flags, it); 5057 } else 5058 return it->cur_task; 5059 5060 return cgroup_procs_next(s, NULL, NULL); 5061 } 5062 5063 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5064 { 5065 struct cgroup *cgrp = seq_css(s)->cgroup; 5066 5067 /* 5068 * All processes of a threaded subtree belong to the domain cgroup 5069 * of the subtree. Only threads can be distributed across the 5070 * subtree. Reject reads on cgroup.procs in the subtree proper. 5071 * They're always empty anyway. 5072 */ 5073 if (cgroup_is_threaded(cgrp)) 5074 return ERR_PTR(-EOPNOTSUPP); 5075 5076 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5077 CSS_TASK_ITER_THREADED); 5078 } 5079 5080 static int cgroup_procs_show(struct seq_file *s, void *v) 5081 { 5082 seq_printf(s, "%d\n", task_pid_vnr(v)); 5083 return 0; 5084 } 5085 5086 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5087 { 5088 int ret; 5089 struct inode *inode; 5090 5091 lockdep_assert_held(&cgroup_mutex); 5092 5093 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5094 if (!inode) 5095 return -ENOMEM; 5096 5097 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5098 iput(inode); 5099 return ret; 5100 } 5101 5102 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5103 struct cgroup *dst_cgrp, 5104 struct super_block *sb, 5105 struct cgroup_namespace *ns) 5106 { 5107 struct cgroup *com_cgrp = src_cgrp; 5108 int ret; 5109 5110 lockdep_assert_held(&cgroup_mutex); 5111 5112 /* find the common ancestor */ 5113 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5114 com_cgrp = cgroup_parent(com_cgrp); 5115 5116 /* %current should be authorized to migrate to the common ancestor */ 5117 ret = cgroup_may_write(com_cgrp, sb); 5118 if (ret) 5119 return ret; 5120 5121 /* 5122 * If namespaces are delegation boundaries, %current must be able 5123 * to see both source and destination cgroups from its namespace. 5124 */ 5125 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5126 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5127 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5128 return -ENOENT; 5129 5130 return 0; 5131 } 5132 5133 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5134 struct cgroup *dst_cgrp, 5135 struct super_block *sb, bool threadgroup, 5136 struct cgroup_namespace *ns) 5137 { 5138 int ret = 0; 5139 5140 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5141 if (ret) 5142 return ret; 5143 5144 ret = cgroup_migrate_vet_dst(dst_cgrp); 5145 if (ret) 5146 return ret; 5147 5148 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5149 ret = -EOPNOTSUPP; 5150 5151 return ret; 5152 } 5153 5154 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5155 bool threadgroup) 5156 { 5157 struct cgroup_file_ctx *ctx = of->priv; 5158 struct cgroup *src_cgrp, *dst_cgrp; 5159 struct task_struct *task; 5160 const struct cred *saved_cred; 5161 ssize_t ret; 5162 bool threadgroup_locked; 5163 5164 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5165 if (!dst_cgrp) 5166 return -ENODEV; 5167 5168 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5169 ret = PTR_ERR_OR_ZERO(task); 5170 if (ret) 5171 goto out_unlock; 5172 5173 /* find the source cgroup */ 5174 spin_lock_irq(&css_set_lock); 5175 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5176 spin_unlock_irq(&css_set_lock); 5177 5178 /* 5179 * Process and thread migrations follow same delegation rule. Check 5180 * permissions using the credentials from file open to protect against 5181 * inherited fd attacks. 5182 */ 5183 saved_cred = override_creds(of->file->f_cred); 5184 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5185 of->file->f_path.dentry->d_sb, 5186 threadgroup, ctx->ns); 5187 revert_creds(saved_cred); 5188 if (ret) 5189 goto out_finish; 5190 5191 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5192 5193 out_finish: 5194 cgroup_procs_write_finish(task, threadgroup_locked); 5195 out_unlock: 5196 cgroup_kn_unlock(of->kn); 5197 5198 return ret; 5199 } 5200 5201 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5202 char *buf, size_t nbytes, loff_t off) 5203 { 5204 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5205 } 5206 5207 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5208 { 5209 return __cgroup_procs_start(s, pos, 0); 5210 } 5211 5212 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5213 char *buf, size_t nbytes, loff_t off) 5214 { 5215 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5216 } 5217 5218 /* cgroup core interface files for the default hierarchy */ 5219 static struct cftype cgroup_base_files[] = { 5220 { 5221 .name = "cgroup.type", 5222 .flags = CFTYPE_NOT_ON_ROOT, 5223 .seq_show = cgroup_type_show, 5224 .write = cgroup_type_write, 5225 }, 5226 { 5227 .name = "cgroup.procs", 5228 .flags = CFTYPE_NS_DELEGATABLE, 5229 .file_offset = offsetof(struct cgroup, procs_file), 5230 .release = cgroup_procs_release, 5231 .seq_start = cgroup_procs_start, 5232 .seq_next = cgroup_procs_next, 5233 .seq_show = cgroup_procs_show, 5234 .write = cgroup_procs_write, 5235 }, 5236 { 5237 .name = "cgroup.threads", 5238 .flags = CFTYPE_NS_DELEGATABLE, 5239 .release = cgroup_procs_release, 5240 .seq_start = cgroup_threads_start, 5241 .seq_next = cgroup_procs_next, 5242 .seq_show = cgroup_procs_show, 5243 .write = cgroup_threads_write, 5244 }, 5245 { 5246 .name = "cgroup.controllers", 5247 .seq_show = cgroup_controllers_show, 5248 }, 5249 { 5250 .name = "cgroup.subtree_control", 5251 .flags = CFTYPE_NS_DELEGATABLE, 5252 .seq_show = cgroup_subtree_control_show, 5253 .write = cgroup_subtree_control_write, 5254 }, 5255 { 5256 .name = "cgroup.events", 5257 .flags = CFTYPE_NOT_ON_ROOT, 5258 .file_offset = offsetof(struct cgroup, events_file), 5259 .seq_show = cgroup_events_show, 5260 }, 5261 { 5262 .name = "cgroup.max.descendants", 5263 .seq_show = cgroup_max_descendants_show, 5264 .write = cgroup_max_descendants_write, 5265 }, 5266 { 5267 .name = "cgroup.max.depth", 5268 .seq_show = cgroup_max_depth_show, 5269 .write = cgroup_max_depth_write, 5270 }, 5271 { 5272 .name = "cgroup.stat", 5273 .seq_show = cgroup_stat_show, 5274 }, 5275 { 5276 .name = "cgroup.freeze", 5277 .flags = CFTYPE_NOT_ON_ROOT, 5278 .seq_show = cgroup_freeze_show, 5279 .write = cgroup_freeze_write, 5280 }, 5281 { 5282 .name = "cgroup.kill", 5283 .flags = CFTYPE_NOT_ON_ROOT, 5284 .write = cgroup_kill_write, 5285 }, 5286 { 5287 .name = "cpu.stat", 5288 .seq_show = cpu_stat_show, 5289 }, 5290 { 5291 .name = "cpu.stat.local", 5292 .seq_show = cpu_local_stat_show, 5293 }, 5294 { } /* terminate */ 5295 }; 5296 5297 static struct cftype cgroup_psi_files[] = { 5298 #ifdef CONFIG_PSI 5299 { 5300 .name = "io.pressure", 5301 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5302 .open = cgroup_pressure_open, 5303 .seq_show = cgroup_io_pressure_show, 5304 .write = cgroup_io_pressure_write, 5305 .poll = cgroup_pressure_poll, 5306 .release = cgroup_pressure_release, 5307 }, 5308 { 5309 .name = "memory.pressure", 5310 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5311 .open = cgroup_pressure_open, 5312 .seq_show = cgroup_memory_pressure_show, 5313 .write = cgroup_memory_pressure_write, 5314 .poll = cgroup_pressure_poll, 5315 .release = cgroup_pressure_release, 5316 }, 5317 { 5318 .name = "cpu.pressure", 5319 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5320 .open = cgroup_pressure_open, 5321 .seq_show = cgroup_cpu_pressure_show, 5322 .write = cgroup_cpu_pressure_write, 5323 .poll = cgroup_pressure_poll, 5324 .release = cgroup_pressure_release, 5325 }, 5326 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5327 { 5328 .name = "irq.pressure", 5329 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5330 .open = cgroup_pressure_open, 5331 .seq_show = cgroup_irq_pressure_show, 5332 .write = cgroup_irq_pressure_write, 5333 .poll = cgroup_pressure_poll, 5334 .release = cgroup_pressure_release, 5335 }, 5336 #endif 5337 { 5338 .name = "cgroup.pressure", 5339 .seq_show = cgroup_pressure_show, 5340 .write = cgroup_pressure_write, 5341 }, 5342 #endif /* CONFIG_PSI */ 5343 { } /* terminate */ 5344 }; 5345 5346 /* 5347 * css destruction is four-stage process. 5348 * 5349 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5350 * Implemented in kill_css(). 5351 * 5352 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5353 * and thus css_tryget_online() is guaranteed to fail, the css can be 5354 * offlined by invoking offline_css(). After offlining, the base ref is 5355 * put. Implemented in css_killed_work_fn(). 5356 * 5357 * 3. When the percpu_ref reaches zero, the only possible remaining 5358 * accessors are inside RCU read sections. css_release() schedules the 5359 * RCU callback. 5360 * 5361 * 4. After the grace period, the css can be freed. Implemented in 5362 * css_free_rwork_fn(). 5363 * 5364 * It is actually hairier because both step 2 and 4 require process context 5365 * and thus involve punting to css->destroy_work adding two additional 5366 * steps to the already complex sequence. 5367 */ 5368 static void css_free_rwork_fn(struct work_struct *work) 5369 { 5370 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5371 struct cgroup_subsys_state, destroy_rwork); 5372 struct cgroup_subsys *ss = css->ss; 5373 struct cgroup *cgrp = css->cgroup; 5374 5375 percpu_ref_exit(&css->refcnt); 5376 5377 if (ss) { 5378 /* css free path */ 5379 struct cgroup_subsys_state *parent = css->parent; 5380 int id = css->id; 5381 5382 ss->css_free(css); 5383 cgroup_idr_remove(&ss->css_idr, id); 5384 cgroup_put(cgrp); 5385 5386 if (parent) 5387 css_put(parent); 5388 } else { 5389 /* cgroup free path */ 5390 atomic_dec(&cgrp->root->nr_cgrps); 5391 cgroup1_pidlist_destroy_all(cgrp); 5392 cancel_work_sync(&cgrp->release_agent_work); 5393 bpf_cgrp_storage_free(cgrp); 5394 5395 if (cgroup_parent(cgrp)) { 5396 /* 5397 * We get a ref to the parent, and put the ref when 5398 * this cgroup is being freed, so it's guaranteed 5399 * that the parent won't be destroyed before its 5400 * children. 5401 */ 5402 cgroup_put(cgroup_parent(cgrp)); 5403 kernfs_put(cgrp->kn); 5404 psi_cgroup_free(cgrp); 5405 cgroup_rstat_exit(cgrp); 5406 kfree(cgrp); 5407 } else { 5408 /* 5409 * This is root cgroup's refcnt reaching zero, 5410 * which indicates that the root should be 5411 * released. 5412 */ 5413 cgroup_destroy_root(cgrp->root); 5414 } 5415 } 5416 } 5417 5418 static void css_release_work_fn(struct work_struct *work) 5419 { 5420 struct cgroup_subsys_state *css = 5421 container_of(work, struct cgroup_subsys_state, destroy_work); 5422 struct cgroup_subsys *ss = css->ss; 5423 struct cgroup *cgrp = css->cgroup; 5424 5425 cgroup_lock(); 5426 5427 css->flags |= CSS_RELEASED; 5428 list_del_rcu(&css->sibling); 5429 5430 if (ss) { 5431 /* css release path */ 5432 if (!list_empty(&css->rstat_css_node)) { 5433 cgroup_rstat_flush(cgrp); 5434 list_del_rcu(&css->rstat_css_node); 5435 } 5436 5437 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5438 if (ss->css_released) 5439 ss->css_released(css); 5440 } else { 5441 struct cgroup *tcgrp; 5442 5443 /* cgroup release path */ 5444 TRACE_CGROUP_PATH(release, cgrp); 5445 5446 cgroup_rstat_flush(cgrp); 5447 5448 spin_lock_irq(&css_set_lock); 5449 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5450 tcgrp = cgroup_parent(tcgrp)) 5451 tcgrp->nr_dying_descendants--; 5452 spin_unlock_irq(&css_set_lock); 5453 5454 /* 5455 * There are two control paths which try to determine 5456 * cgroup from dentry without going through kernfs - 5457 * cgroupstats_build() and css_tryget_online_from_dir(). 5458 * Those are supported by RCU protecting clearing of 5459 * cgrp->kn->priv backpointer. 5460 */ 5461 if (cgrp->kn) 5462 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5463 NULL); 5464 } 5465 5466 cgroup_unlock(); 5467 5468 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5469 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5470 } 5471 5472 static void css_release(struct percpu_ref *ref) 5473 { 5474 struct cgroup_subsys_state *css = 5475 container_of(ref, struct cgroup_subsys_state, refcnt); 5476 5477 INIT_WORK(&css->destroy_work, css_release_work_fn); 5478 queue_work(cgroup_destroy_wq, &css->destroy_work); 5479 } 5480 5481 static void init_and_link_css(struct cgroup_subsys_state *css, 5482 struct cgroup_subsys *ss, struct cgroup *cgrp) 5483 { 5484 lockdep_assert_held(&cgroup_mutex); 5485 5486 cgroup_get_live(cgrp); 5487 5488 memset(css, 0, sizeof(*css)); 5489 css->cgroup = cgrp; 5490 css->ss = ss; 5491 css->id = -1; 5492 INIT_LIST_HEAD(&css->sibling); 5493 INIT_LIST_HEAD(&css->children); 5494 INIT_LIST_HEAD(&css->rstat_css_node); 5495 css->serial_nr = css_serial_nr_next++; 5496 atomic_set(&css->online_cnt, 0); 5497 5498 if (cgroup_parent(cgrp)) { 5499 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5500 css_get(css->parent); 5501 } 5502 5503 if (ss->css_rstat_flush) 5504 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5505 5506 BUG_ON(cgroup_css(cgrp, ss)); 5507 } 5508 5509 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5510 static int online_css(struct cgroup_subsys_state *css) 5511 { 5512 struct cgroup_subsys *ss = css->ss; 5513 int ret = 0; 5514 5515 lockdep_assert_held(&cgroup_mutex); 5516 5517 if (ss->css_online) 5518 ret = ss->css_online(css); 5519 if (!ret) { 5520 css->flags |= CSS_ONLINE; 5521 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5522 5523 atomic_inc(&css->online_cnt); 5524 if (css->parent) 5525 atomic_inc(&css->parent->online_cnt); 5526 } 5527 return ret; 5528 } 5529 5530 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5531 static void offline_css(struct cgroup_subsys_state *css) 5532 { 5533 struct cgroup_subsys *ss = css->ss; 5534 5535 lockdep_assert_held(&cgroup_mutex); 5536 5537 if (!(css->flags & CSS_ONLINE)) 5538 return; 5539 5540 if (ss->css_offline) 5541 ss->css_offline(css); 5542 5543 css->flags &= ~CSS_ONLINE; 5544 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5545 5546 wake_up_all(&css->cgroup->offline_waitq); 5547 } 5548 5549 /** 5550 * css_create - create a cgroup_subsys_state 5551 * @cgrp: the cgroup new css will be associated with 5552 * @ss: the subsys of new css 5553 * 5554 * Create a new css associated with @cgrp - @ss pair. On success, the new 5555 * css is online and installed in @cgrp. This function doesn't create the 5556 * interface files. Returns 0 on success, -errno on failure. 5557 */ 5558 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5559 struct cgroup_subsys *ss) 5560 { 5561 struct cgroup *parent = cgroup_parent(cgrp); 5562 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5563 struct cgroup_subsys_state *css; 5564 int err; 5565 5566 lockdep_assert_held(&cgroup_mutex); 5567 5568 css = ss->css_alloc(parent_css); 5569 if (!css) 5570 css = ERR_PTR(-ENOMEM); 5571 if (IS_ERR(css)) 5572 return css; 5573 5574 init_and_link_css(css, ss, cgrp); 5575 5576 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5577 if (err) 5578 goto err_free_css; 5579 5580 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5581 if (err < 0) 5582 goto err_free_css; 5583 css->id = err; 5584 5585 /* @css is ready to be brought online now, make it visible */ 5586 list_add_tail_rcu(&css->sibling, &parent_css->children); 5587 cgroup_idr_replace(&ss->css_idr, css, css->id); 5588 5589 err = online_css(css); 5590 if (err) 5591 goto err_list_del; 5592 5593 return css; 5594 5595 err_list_del: 5596 list_del_rcu(&css->sibling); 5597 err_free_css: 5598 list_del_rcu(&css->rstat_css_node); 5599 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5600 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5601 return ERR_PTR(err); 5602 } 5603 5604 /* 5605 * The returned cgroup is fully initialized including its control mask, but 5606 * it doesn't have the control mask applied. 5607 */ 5608 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5609 umode_t mode) 5610 { 5611 struct cgroup_root *root = parent->root; 5612 struct cgroup *cgrp, *tcgrp; 5613 struct kernfs_node *kn; 5614 int level = parent->level + 1; 5615 int ret; 5616 5617 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5618 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5619 if (!cgrp) 5620 return ERR_PTR(-ENOMEM); 5621 5622 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5623 if (ret) 5624 goto out_free_cgrp; 5625 5626 ret = cgroup_rstat_init(cgrp); 5627 if (ret) 5628 goto out_cancel_ref; 5629 5630 /* create the directory */ 5631 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5632 if (IS_ERR(kn)) { 5633 ret = PTR_ERR(kn); 5634 goto out_stat_exit; 5635 } 5636 cgrp->kn = kn; 5637 5638 init_cgroup_housekeeping(cgrp); 5639 5640 cgrp->self.parent = &parent->self; 5641 cgrp->root = root; 5642 cgrp->level = level; 5643 5644 ret = psi_cgroup_alloc(cgrp); 5645 if (ret) 5646 goto out_kernfs_remove; 5647 5648 ret = cgroup_bpf_inherit(cgrp); 5649 if (ret) 5650 goto out_psi_free; 5651 5652 /* 5653 * New cgroup inherits effective freeze counter, and 5654 * if the parent has to be frozen, the child has too. 5655 */ 5656 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5657 if (cgrp->freezer.e_freeze) { 5658 /* 5659 * Set the CGRP_FREEZE flag, so when a process will be 5660 * attached to the child cgroup, it will become frozen. 5661 * At this point the new cgroup is unpopulated, so we can 5662 * consider it frozen immediately. 5663 */ 5664 set_bit(CGRP_FREEZE, &cgrp->flags); 5665 set_bit(CGRP_FROZEN, &cgrp->flags); 5666 } 5667 5668 spin_lock_irq(&css_set_lock); 5669 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5670 cgrp->ancestors[tcgrp->level] = tcgrp; 5671 5672 if (tcgrp != cgrp) { 5673 tcgrp->nr_descendants++; 5674 5675 /* 5676 * If the new cgroup is frozen, all ancestor cgroups 5677 * get a new frozen descendant, but their state can't 5678 * change because of this. 5679 */ 5680 if (cgrp->freezer.e_freeze) 5681 tcgrp->freezer.nr_frozen_descendants++; 5682 } 5683 } 5684 spin_unlock_irq(&css_set_lock); 5685 5686 if (notify_on_release(parent)) 5687 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5688 5689 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5690 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5691 5692 cgrp->self.serial_nr = css_serial_nr_next++; 5693 5694 /* allocation complete, commit to creation */ 5695 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5696 atomic_inc(&root->nr_cgrps); 5697 cgroup_get_live(parent); 5698 5699 /* 5700 * On the default hierarchy, a child doesn't automatically inherit 5701 * subtree_control from the parent. Each is configured manually. 5702 */ 5703 if (!cgroup_on_dfl(cgrp)) 5704 cgrp->subtree_control = cgroup_control(cgrp); 5705 5706 cgroup_propagate_control(cgrp); 5707 5708 return cgrp; 5709 5710 out_psi_free: 5711 psi_cgroup_free(cgrp); 5712 out_kernfs_remove: 5713 kernfs_remove(cgrp->kn); 5714 out_stat_exit: 5715 cgroup_rstat_exit(cgrp); 5716 out_cancel_ref: 5717 percpu_ref_exit(&cgrp->self.refcnt); 5718 out_free_cgrp: 5719 kfree(cgrp); 5720 return ERR_PTR(ret); 5721 } 5722 5723 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5724 { 5725 struct cgroup *cgroup; 5726 int ret = false; 5727 int level = 1; 5728 5729 lockdep_assert_held(&cgroup_mutex); 5730 5731 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5732 if (cgroup->nr_descendants >= cgroup->max_descendants) 5733 goto fail; 5734 5735 if (level > cgroup->max_depth) 5736 goto fail; 5737 5738 level++; 5739 } 5740 5741 ret = true; 5742 fail: 5743 return ret; 5744 } 5745 5746 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5747 { 5748 struct cgroup *parent, *cgrp; 5749 int ret; 5750 5751 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5752 if (strchr(name, '\n')) 5753 return -EINVAL; 5754 5755 parent = cgroup_kn_lock_live(parent_kn, false); 5756 if (!parent) 5757 return -ENODEV; 5758 5759 if (!cgroup_check_hierarchy_limits(parent)) { 5760 ret = -EAGAIN; 5761 goto out_unlock; 5762 } 5763 5764 cgrp = cgroup_create(parent, name, mode); 5765 if (IS_ERR(cgrp)) { 5766 ret = PTR_ERR(cgrp); 5767 goto out_unlock; 5768 } 5769 5770 /* 5771 * This extra ref will be put in cgroup_free_fn() and guarantees 5772 * that @cgrp->kn is always accessible. 5773 */ 5774 kernfs_get(cgrp->kn); 5775 5776 ret = cgroup_kn_set_ugid(cgrp->kn); 5777 if (ret) 5778 goto out_destroy; 5779 5780 ret = css_populate_dir(&cgrp->self); 5781 if (ret) 5782 goto out_destroy; 5783 5784 ret = cgroup_apply_control_enable(cgrp); 5785 if (ret) 5786 goto out_destroy; 5787 5788 TRACE_CGROUP_PATH(mkdir, cgrp); 5789 5790 /* let's create and online css's */ 5791 kernfs_activate(cgrp->kn); 5792 5793 ret = 0; 5794 goto out_unlock; 5795 5796 out_destroy: 5797 cgroup_destroy_locked(cgrp); 5798 out_unlock: 5799 cgroup_kn_unlock(parent_kn); 5800 return ret; 5801 } 5802 5803 /* 5804 * This is called when the refcnt of a css is confirmed to be killed. 5805 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5806 * initiate destruction and put the css ref from kill_css(). 5807 */ 5808 static void css_killed_work_fn(struct work_struct *work) 5809 { 5810 struct cgroup_subsys_state *css = 5811 container_of(work, struct cgroup_subsys_state, destroy_work); 5812 5813 cgroup_lock(); 5814 5815 do { 5816 offline_css(css); 5817 css_put(css); 5818 /* @css can't go away while we're holding cgroup_mutex */ 5819 css = css->parent; 5820 } while (css && atomic_dec_and_test(&css->online_cnt)); 5821 5822 cgroup_unlock(); 5823 } 5824 5825 /* css kill confirmation processing requires process context, bounce */ 5826 static void css_killed_ref_fn(struct percpu_ref *ref) 5827 { 5828 struct cgroup_subsys_state *css = 5829 container_of(ref, struct cgroup_subsys_state, refcnt); 5830 5831 if (atomic_dec_and_test(&css->online_cnt)) { 5832 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5833 queue_work(cgroup_destroy_wq, &css->destroy_work); 5834 } 5835 } 5836 5837 /** 5838 * kill_css - destroy a css 5839 * @css: css to destroy 5840 * 5841 * This function initiates destruction of @css by removing cgroup interface 5842 * files and putting its base reference. ->css_offline() will be invoked 5843 * asynchronously once css_tryget_online() is guaranteed to fail and when 5844 * the reference count reaches zero, @css will be released. 5845 */ 5846 static void kill_css(struct cgroup_subsys_state *css) 5847 { 5848 lockdep_assert_held(&cgroup_mutex); 5849 5850 if (css->flags & CSS_DYING) 5851 return; 5852 5853 css->flags |= CSS_DYING; 5854 5855 /* 5856 * This must happen before css is disassociated with its cgroup. 5857 * See seq_css() for details. 5858 */ 5859 css_clear_dir(css); 5860 5861 /* 5862 * Killing would put the base ref, but we need to keep it alive 5863 * until after ->css_offline(). 5864 */ 5865 css_get(css); 5866 5867 /* 5868 * cgroup core guarantees that, by the time ->css_offline() is 5869 * invoked, no new css reference will be given out via 5870 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5871 * proceed to offlining css's because percpu_ref_kill() doesn't 5872 * guarantee that the ref is seen as killed on all CPUs on return. 5873 * 5874 * Use percpu_ref_kill_and_confirm() to get notifications as each 5875 * css is confirmed to be seen as killed on all CPUs. 5876 */ 5877 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5878 } 5879 5880 /** 5881 * cgroup_destroy_locked - the first stage of cgroup destruction 5882 * @cgrp: cgroup to be destroyed 5883 * 5884 * css's make use of percpu refcnts whose killing latency shouldn't be 5885 * exposed to userland and are RCU protected. Also, cgroup core needs to 5886 * guarantee that css_tryget_online() won't succeed by the time 5887 * ->css_offline() is invoked. To satisfy all the requirements, 5888 * destruction is implemented in the following two steps. 5889 * 5890 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5891 * userland visible parts and start killing the percpu refcnts of 5892 * css's. Set up so that the next stage will be kicked off once all 5893 * the percpu refcnts are confirmed to be killed. 5894 * 5895 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5896 * rest of destruction. Once all cgroup references are gone, the 5897 * cgroup is RCU-freed. 5898 * 5899 * This function implements s1. After this step, @cgrp is gone as far as 5900 * the userland is concerned and a new cgroup with the same name may be 5901 * created. As cgroup doesn't care about the names internally, this 5902 * doesn't cause any problem. 5903 */ 5904 static int cgroup_destroy_locked(struct cgroup *cgrp) 5905 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5906 { 5907 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5908 struct cgroup_subsys_state *css; 5909 struct cgrp_cset_link *link; 5910 int ssid; 5911 5912 lockdep_assert_held(&cgroup_mutex); 5913 5914 /* 5915 * Only migration can raise populated from zero and we're already 5916 * holding cgroup_mutex. 5917 */ 5918 if (cgroup_is_populated(cgrp)) 5919 return -EBUSY; 5920 5921 /* 5922 * Make sure there's no live children. We can't test emptiness of 5923 * ->self.children as dead children linger on it while being 5924 * drained; otherwise, "rmdir parent/child parent" may fail. 5925 */ 5926 if (css_has_online_children(&cgrp->self)) 5927 return -EBUSY; 5928 5929 /* 5930 * Mark @cgrp and the associated csets dead. The former prevents 5931 * further task migration and child creation by disabling 5932 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5933 * the migration path. 5934 */ 5935 cgrp->self.flags &= ~CSS_ONLINE; 5936 5937 spin_lock_irq(&css_set_lock); 5938 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5939 link->cset->dead = true; 5940 spin_unlock_irq(&css_set_lock); 5941 5942 /* initiate massacre of all css's */ 5943 for_each_css(css, ssid, cgrp) 5944 kill_css(css); 5945 5946 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5947 css_clear_dir(&cgrp->self); 5948 kernfs_remove(cgrp->kn); 5949 5950 if (cgroup_is_threaded(cgrp)) 5951 parent->nr_threaded_children--; 5952 5953 spin_lock_irq(&css_set_lock); 5954 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5955 tcgrp->nr_descendants--; 5956 tcgrp->nr_dying_descendants++; 5957 /* 5958 * If the dying cgroup is frozen, decrease frozen descendants 5959 * counters of ancestor cgroups. 5960 */ 5961 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5962 tcgrp->freezer.nr_frozen_descendants--; 5963 } 5964 spin_unlock_irq(&css_set_lock); 5965 5966 cgroup1_check_for_release(parent); 5967 5968 cgroup_bpf_offline(cgrp); 5969 5970 /* put the base reference */ 5971 percpu_ref_kill(&cgrp->self.refcnt); 5972 5973 return 0; 5974 }; 5975 5976 int cgroup_rmdir(struct kernfs_node *kn) 5977 { 5978 struct cgroup *cgrp; 5979 int ret = 0; 5980 5981 cgrp = cgroup_kn_lock_live(kn, false); 5982 if (!cgrp) 5983 return 0; 5984 5985 ret = cgroup_destroy_locked(cgrp); 5986 if (!ret) 5987 TRACE_CGROUP_PATH(rmdir, cgrp); 5988 5989 cgroup_kn_unlock(kn); 5990 return ret; 5991 } 5992 5993 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5994 .show_options = cgroup_show_options, 5995 .mkdir = cgroup_mkdir, 5996 .rmdir = cgroup_rmdir, 5997 .show_path = cgroup_show_path, 5998 }; 5999 6000 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6001 { 6002 struct cgroup_subsys_state *css; 6003 6004 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6005 6006 cgroup_lock(); 6007 6008 idr_init(&ss->css_idr); 6009 INIT_LIST_HEAD(&ss->cfts); 6010 6011 /* Create the root cgroup state for this subsystem */ 6012 ss->root = &cgrp_dfl_root; 6013 css = ss->css_alloc(NULL); 6014 /* We don't handle early failures gracefully */ 6015 BUG_ON(IS_ERR(css)); 6016 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6017 6018 /* 6019 * Root csses are never destroyed and we can't initialize 6020 * percpu_ref during early init. Disable refcnting. 6021 */ 6022 css->flags |= CSS_NO_REF; 6023 6024 if (early) { 6025 /* allocation can't be done safely during early init */ 6026 css->id = 1; 6027 } else { 6028 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6029 BUG_ON(css->id < 0); 6030 } 6031 6032 /* Update the init_css_set to contain a subsys 6033 * pointer to this state - since the subsystem is 6034 * newly registered, all tasks and hence the 6035 * init_css_set is in the subsystem's root cgroup. */ 6036 init_css_set.subsys[ss->id] = css; 6037 6038 have_fork_callback |= (bool)ss->fork << ss->id; 6039 have_exit_callback |= (bool)ss->exit << ss->id; 6040 have_release_callback |= (bool)ss->release << ss->id; 6041 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6042 6043 /* At system boot, before all subsystems have been 6044 * registered, no tasks have been forked, so we don't 6045 * need to invoke fork callbacks here. */ 6046 BUG_ON(!list_empty(&init_task.tasks)); 6047 6048 BUG_ON(online_css(css)); 6049 6050 cgroup_unlock(); 6051 } 6052 6053 /** 6054 * cgroup_init_early - cgroup initialization at system boot 6055 * 6056 * Initialize cgroups at system boot, and initialize any 6057 * subsystems that request early init. 6058 */ 6059 int __init cgroup_init_early(void) 6060 { 6061 static struct cgroup_fs_context __initdata ctx; 6062 struct cgroup_subsys *ss; 6063 int i; 6064 6065 ctx.root = &cgrp_dfl_root; 6066 init_cgroup_root(&ctx); 6067 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6068 6069 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6070 6071 for_each_subsys(ss, i) { 6072 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6073 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6074 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6075 ss->id, ss->name); 6076 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6077 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6078 6079 ss->id = i; 6080 ss->name = cgroup_subsys_name[i]; 6081 if (!ss->legacy_name) 6082 ss->legacy_name = cgroup_subsys_name[i]; 6083 6084 if (ss->early_init) 6085 cgroup_init_subsys(ss, true); 6086 } 6087 return 0; 6088 } 6089 6090 /** 6091 * cgroup_init - cgroup initialization 6092 * 6093 * Register cgroup filesystem and /proc file, and initialize 6094 * any subsystems that didn't request early init. 6095 */ 6096 int __init cgroup_init(void) 6097 { 6098 struct cgroup_subsys *ss; 6099 int ssid; 6100 6101 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6102 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6103 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6104 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6105 6106 cgroup_rstat_boot(); 6107 6108 get_user_ns(init_cgroup_ns.user_ns); 6109 6110 cgroup_lock(); 6111 6112 /* 6113 * Add init_css_set to the hash table so that dfl_root can link to 6114 * it during init. 6115 */ 6116 hash_add(css_set_table, &init_css_set.hlist, 6117 css_set_hash(init_css_set.subsys)); 6118 6119 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6120 6121 cgroup_unlock(); 6122 6123 for_each_subsys(ss, ssid) { 6124 if (ss->early_init) { 6125 struct cgroup_subsys_state *css = 6126 init_css_set.subsys[ss->id]; 6127 6128 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6129 GFP_KERNEL); 6130 BUG_ON(css->id < 0); 6131 } else { 6132 cgroup_init_subsys(ss, false); 6133 } 6134 6135 list_add_tail(&init_css_set.e_cset_node[ssid], 6136 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6137 6138 /* 6139 * Setting dfl_root subsys_mask needs to consider the 6140 * disabled flag and cftype registration needs kmalloc, 6141 * both of which aren't available during early_init. 6142 */ 6143 if (!cgroup_ssid_enabled(ssid)) 6144 continue; 6145 6146 if (cgroup1_ssid_disabled(ssid)) 6147 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6148 ss->legacy_name); 6149 6150 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6151 6152 /* implicit controllers must be threaded too */ 6153 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6154 6155 if (ss->implicit_on_dfl) 6156 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6157 else if (!ss->dfl_cftypes) 6158 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6159 6160 if (ss->threaded) 6161 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6162 6163 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6164 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6165 } else { 6166 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6167 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6168 } 6169 6170 if (ss->bind) 6171 ss->bind(init_css_set.subsys[ssid]); 6172 6173 cgroup_lock(); 6174 css_populate_dir(init_css_set.subsys[ssid]); 6175 cgroup_unlock(); 6176 } 6177 6178 /* init_css_set.subsys[] has been updated, re-hash */ 6179 hash_del(&init_css_set.hlist); 6180 hash_add(css_set_table, &init_css_set.hlist, 6181 css_set_hash(init_css_set.subsys)); 6182 6183 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6184 WARN_ON(register_filesystem(&cgroup_fs_type)); 6185 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6186 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6187 #ifdef CONFIG_CPUSETS 6188 WARN_ON(register_filesystem(&cpuset_fs_type)); 6189 #endif 6190 6191 return 0; 6192 } 6193 6194 static int __init cgroup_wq_init(void) 6195 { 6196 /* 6197 * There isn't much point in executing destruction path in 6198 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6199 * Use 1 for @max_active. 6200 * 6201 * We would prefer to do this in cgroup_init() above, but that 6202 * is called before init_workqueues(): so leave this until after. 6203 */ 6204 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6205 BUG_ON(!cgroup_destroy_wq); 6206 return 0; 6207 } 6208 core_initcall(cgroup_wq_init); 6209 6210 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6211 { 6212 struct kernfs_node *kn; 6213 6214 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6215 if (!kn) 6216 return; 6217 kernfs_path(kn, buf, buflen); 6218 kernfs_put(kn); 6219 } 6220 6221 /* 6222 * cgroup_get_from_id : get the cgroup associated with cgroup id 6223 * @id: cgroup id 6224 * On success return the cgrp or ERR_PTR on failure 6225 * Only cgroups within current task's cgroup NS are valid. 6226 */ 6227 struct cgroup *cgroup_get_from_id(u64 id) 6228 { 6229 struct kernfs_node *kn; 6230 struct cgroup *cgrp, *root_cgrp; 6231 6232 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6233 if (!kn) 6234 return ERR_PTR(-ENOENT); 6235 6236 if (kernfs_type(kn) != KERNFS_DIR) { 6237 kernfs_put(kn); 6238 return ERR_PTR(-ENOENT); 6239 } 6240 6241 rcu_read_lock(); 6242 6243 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6244 if (cgrp && !cgroup_tryget(cgrp)) 6245 cgrp = NULL; 6246 6247 rcu_read_unlock(); 6248 kernfs_put(kn); 6249 6250 if (!cgrp) 6251 return ERR_PTR(-ENOENT); 6252 6253 root_cgrp = current_cgns_cgroup_dfl(); 6254 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6255 cgroup_put(cgrp); 6256 return ERR_PTR(-ENOENT); 6257 } 6258 6259 return cgrp; 6260 } 6261 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6262 6263 /* 6264 * proc_cgroup_show() 6265 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6266 * - Used for /proc/<pid>/cgroup. 6267 */ 6268 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6269 struct pid *pid, struct task_struct *tsk) 6270 { 6271 char *buf; 6272 int retval; 6273 struct cgroup_root *root; 6274 6275 retval = -ENOMEM; 6276 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6277 if (!buf) 6278 goto out; 6279 6280 cgroup_lock(); 6281 spin_lock_irq(&css_set_lock); 6282 6283 for_each_root(root) { 6284 struct cgroup_subsys *ss; 6285 struct cgroup *cgrp; 6286 int ssid, count = 0; 6287 6288 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6289 continue; 6290 6291 seq_printf(m, "%d:", root->hierarchy_id); 6292 if (root != &cgrp_dfl_root) 6293 for_each_subsys(ss, ssid) 6294 if (root->subsys_mask & (1 << ssid)) 6295 seq_printf(m, "%s%s", count++ ? "," : "", 6296 ss->legacy_name); 6297 if (strlen(root->name)) 6298 seq_printf(m, "%sname=%s", count ? "," : "", 6299 root->name); 6300 seq_putc(m, ':'); 6301 6302 cgrp = task_cgroup_from_root(tsk, root); 6303 6304 /* 6305 * On traditional hierarchies, all zombie tasks show up as 6306 * belonging to the root cgroup. On the default hierarchy, 6307 * while a zombie doesn't show up in "cgroup.procs" and 6308 * thus can't be migrated, its /proc/PID/cgroup keeps 6309 * reporting the cgroup it belonged to before exiting. If 6310 * the cgroup is removed before the zombie is reaped, 6311 * " (deleted)" is appended to the cgroup path. 6312 */ 6313 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6314 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6315 current->nsproxy->cgroup_ns); 6316 if (retval >= PATH_MAX) 6317 retval = -ENAMETOOLONG; 6318 if (retval < 0) 6319 goto out_unlock; 6320 6321 seq_puts(m, buf); 6322 } else { 6323 seq_puts(m, "/"); 6324 } 6325 6326 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6327 seq_puts(m, " (deleted)\n"); 6328 else 6329 seq_putc(m, '\n'); 6330 } 6331 6332 retval = 0; 6333 out_unlock: 6334 spin_unlock_irq(&css_set_lock); 6335 cgroup_unlock(); 6336 kfree(buf); 6337 out: 6338 return retval; 6339 } 6340 6341 /** 6342 * cgroup_fork - initialize cgroup related fields during copy_process() 6343 * @child: pointer to task_struct of forking parent process. 6344 * 6345 * A task is associated with the init_css_set until cgroup_post_fork() 6346 * attaches it to the target css_set. 6347 */ 6348 void cgroup_fork(struct task_struct *child) 6349 { 6350 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6351 INIT_LIST_HEAD(&child->cg_list); 6352 } 6353 6354 /** 6355 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6356 * @f: file corresponding to cgroup_dir 6357 * 6358 * Find the cgroup from a file pointer associated with a cgroup directory. 6359 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6360 * cgroup cannot be found. 6361 */ 6362 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6363 { 6364 struct cgroup_subsys_state *css; 6365 6366 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6367 if (IS_ERR(css)) 6368 return ERR_CAST(css); 6369 6370 return css->cgroup; 6371 } 6372 6373 /** 6374 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6375 * cgroup2. 6376 * @f: file corresponding to cgroup2_dir 6377 */ 6378 static struct cgroup *cgroup_get_from_file(struct file *f) 6379 { 6380 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6381 6382 if (IS_ERR(cgrp)) 6383 return ERR_CAST(cgrp); 6384 6385 if (!cgroup_on_dfl(cgrp)) { 6386 cgroup_put(cgrp); 6387 return ERR_PTR(-EBADF); 6388 } 6389 6390 return cgrp; 6391 } 6392 6393 /** 6394 * cgroup_css_set_fork - find or create a css_set for a child process 6395 * @kargs: the arguments passed to create the child process 6396 * 6397 * This functions finds or creates a new css_set which the child 6398 * process will be attached to in cgroup_post_fork(). By default, 6399 * the child process will be given the same css_set as its parent. 6400 * 6401 * If CLONE_INTO_CGROUP is specified this function will try to find an 6402 * existing css_set which includes the requested cgroup and if not create 6403 * a new css_set that the child will be attached to later. If this function 6404 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6405 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6406 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6407 * to the target cgroup. 6408 */ 6409 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6410 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6411 { 6412 int ret; 6413 struct cgroup *dst_cgrp = NULL; 6414 struct css_set *cset; 6415 struct super_block *sb; 6416 struct file *f; 6417 6418 if (kargs->flags & CLONE_INTO_CGROUP) 6419 cgroup_lock(); 6420 6421 cgroup_threadgroup_change_begin(current); 6422 6423 spin_lock_irq(&css_set_lock); 6424 cset = task_css_set(current); 6425 get_css_set(cset); 6426 spin_unlock_irq(&css_set_lock); 6427 6428 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6429 kargs->cset = cset; 6430 return 0; 6431 } 6432 6433 f = fget_raw(kargs->cgroup); 6434 if (!f) { 6435 ret = -EBADF; 6436 goto err; 6437 } 6438 sb = f->f_path.dentry->d_sb; 6439 6440 dst_cgrp = cgroup_get_from_file(f); 6441 if (IS_ERR(dst_cgrp)) { 6442 ret = PTR_ERR(dst_cgrp); 6443 dst_cgrp = NULL; 6444 goto err; 6445 } 6446 6447 if (cgroup_is_dead(dst_cgrp)) { 6448 ret = -ENODEV; 6449 goto err; 6450 } 6451 6452 /* 6453 * Verify that we the target cgroup is writable for us. This is 6454 * usually done by the vfs layer but since we're not going through 6455 * the vfs layer here we need to do it "manually". 6456 */ 6457 ret = cgroup_may_write(dst_cgrp, sb); 6458 if (ret) 6459 goto err; 6460 6461 /* 6462 * Spawning a task directly into a cgroup works by passing a file 6463 * descriptor to the target cgroup directory. This can even be an O_PATH 6464 * file descriptor. But it can never be a cgroup.procs file descriptor. 6465 * This was done on purpose so spawning into a cgroup could be 6466 * conceptualized as an atomic 6467 * 6468 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6469 * write(fd, <child-pid>, ...); 6470 * 6471 * sequence, i.e. it's a shorthand for the caller opening and writing 6472 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6473 * to always use the caller's credentials. 6474 */ 6475 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6476 !(kargs->flags & CLONE_THREAD), 6477 current->nsproxy->cgroup_ns); 6478 if (ret) 6479 goto err; 6480 6481 kargs->cset = find_css_set(cset, dst_cgrp); 6482 if (!kargs->cset) { 6483 ret = -ENOMEM; 6484 goto err; 6485 } 6486 6487 put_css_set(cset); 6488 fput(f); 6489 kargs->cgrp = dst_cgrp; 6490 return ret; 6491 6492 err: 6493 cgroup_threadgroup_change_end(current); 6494 cgroup_unlock(); 6495 if (f) 6496 fput(f); 6497 if (dst_cgrp) 6498 cgroup_put(dst_cgrp); 6499 put_css_set(cset); 6500 if (kargs->cset) 6501 put_css_set(kargs->cset); 6502 return ret; 6503 } 6504 6505 /** 6506 * cgroup_css_set_put_fork - drop references we took during fork 6507 * @kargs: the arguments passed to create the child process 6508 * 6509 * Drop references to the prepared css_set and target cgroup if 6510 * CLONE_INTO_CGROUP was requested. 6511 */ 6512 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6513 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6514 { 6515 struct cgroup *cgrp = kargs->cgrp; 6516 struct css_set *cset = kargs->cset; 6517 6518 cgroup_threadgroup_change_end(current); 6519 6520 if (cset) { 6521 put_css_set(cset); 6522 kargs->cset = NULL; 6523 } 6524 6525 if (kargs->flags & CLONE_INTO_CGROUP) { 6526 cgroup_unlock(); 6527 if (cgrp) { 6528 cgroup_put(cgrp); 6529 kargs->cgrp = NULL; 6530 } 6531 } 6532 } 6533 6534 /** 6535 * cgroup_can_fork - called on a new task before the process is exposed 6536 * @child: the child process 6537 * @kargs: the arguments passed to create the child process 6538 * 6539 * This prepares a new css_set for the child process which the child will 6540 * be attached to in cgroup_post_fork(). 6541 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6542 * callback returns an error, the fork aborts with that error code. This 6543 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6544 */ 6545 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6546 { 6547 struct cgroup_subsys *ss; 6548 int i, j, ret; 6549 6550 ret = cgroup_css_set_fork(kargs); 6551 if (ret) 6552 return ret; 6553 6554 do_each_subsys_mask(ss, i, have_canfork_callback) { 6555 ret = ss->can_fork(child, kargs->cset); 6556 if (ret) 6557 goto out_revert; 6558 } while_each_subsys_mask(); 6559 6560 return 0; 6561 6562 out_revert: 6563 for_each_subsys(ss, j) { 6564 if (j >= i) 6565 break; 6566 if (ss->cancel_fork) 6567 ss->cancel_fork(child, kargs->cset); 6568 } 6569 6570 cgroup_css_set_put_fork(kargs); 6571 6572 return ret; 6573 } 6574 6575 /** 6576 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6577 * @child: the child process 6578 * @kargs: the arguments passed to create the child process 6579 * 6580 * This calls the cancel_fork() callbacks if a fork failed *after* 6581 * cgroup_can_fork() succeeded and cleans up references we took to 6582 * prepare a new css_set for the child process in cgroup_can_fork(). 6583 */ 6584 void cgroup_cancel_fork(struct task_struct *child, 6585 struct kernel_clone_args *kargs) 6586 { 6587 struct cgroup_subsys *ss; 6588 int i; 6589 6590 for_each_subsys(ss, i) 6591 if (ss->cancel_fork) 6592 ss->cancel_fork(child, kargs->cset); 6593 6594 cgroup_css_set_put_fork(kargs); 6595 } 6596 6597 /** 6598 * cgroup_post_fork - finalize cgroup setup for the child process 6599 * @child: the child process 6600 * @kargs: the arguments passed to create the child process 6601 * 6602 * Attach the child process to its css_set calling the subsystem fork() 6603 * callbacks. 6604 */ 6605 void cgroup_post_fork(struct task_struct *child, 6606 struct kernel_clone_args *kargs) 6607 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6608 { 6609 unsigned long cgrp_flags = 0; 6610 bool kill = false; 6611 struct cgroup_subsys *ss; 6612 struct css_set *cset; 6613 int i; 6614 6615 cset = kargs->cset; 6616 kargs->cset = NULL; 6617 6618 spin_lock_irq(&css_set_lock); 6619 6620 /* init tasks are special, only link regular threads */ 6621 if (likely(child->pid)) { 6622 if (kargs->cgrp) 6623 cgrp_flags = kargs->cgrp->flags; 6624 else 6625 cgrp_flags = cset->dfl_cgrp->flags; 6626 6627 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6628 cset->nr_tasks++; 6629 css_set_move_task(child, NULL, cset, false); 6630 } else { 6631 put_css_set(cset); 6632 cset = NULL; 6633 } 6634 6635 if (!(child->flags & PF_KTHREAD)) { 6636 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6637 /* 6638 * If the cgroup has to be frozen, the new task has 6639 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6640 * get the task into the frozen state. 6641 */ 6642 spin_lock(&child->sighand->siglock); 6643 WARN_ON_ONCE(child->frozen); 6644 child->jobctl |= JOBCTL_TRAP_FREEZE; 6645 spin_unlock(&child->sighand->siglock); 6646 6647 /* 6648 * Calling cgroup_update_frozen() isn't required here, 6649 * because it will be called anyway a bit later from 6650 * do_freezer_trap(). So we avoid cgroup's transient 6651 * switch from the frozen state and back. 6652 */ 6653 } 6654 6655 /* 6656 * If the cgroup is to be killed notice it now and take the 6657 * child down right after we finished preparing it for 6658 * userspace. 6659 */ 6660 kill = test_bit(CGRP_KILL, &cgrp_flags); 6661 } 6662 6663 spin_unlock_irq(&css_set_lock); 6664 6665 /* 6666 * Call ss->fork(). This must happen after @child is linked on 6667 * css_set; otherwise, @child might change state between ->fork() 6668 * and addition to css_set. 6669 */ 6670 do_each_subsys_mask(ss, i, have_fork_callback) { 6671 ss->fork(child); 6672 } while_each_subsys_mask(); 6673 6674 /* Make the new cset the root_cset of the new cgroup namespace. */ 6675 if (kargs->flags & CLONE_NEWCGROUP) { 6676 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6677 6678 get_css_set(cset); 6679 child->nsproxy->cgroup_ns->root_cset = cset; 6680 put_css_set(rcset); 6681 } 6682 6683 /* Cgroup has to be killed so take down child immediately. */ 6684 if (unlikely(kill)) 6685 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6686 6687 cgroup_css_set_put_fork(kargs); 6688 } 6689 6690 /** 6691 * cgroup_exit - detach cgroup from exiting task 6692 * @tsk: pointer to task_struct of exiting process 6693 * 6694 * Description: Detach cgroup from @tsk. 6695 * 6696 */ 6697 void cgroup_exit(struct task_struct *tsk) 6698 { 6699 struct cgroup_subsys *ss; 6700 struct css_set *cset; 6701 int i; 6702 6703 spin_lock_irq(&css_set_lock); 6704 6705 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6706 cset = task_css_set(tsk); 6707 css_set_move_task(tsk, cset, NULL, false); 6708 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6709 cset->nr_tasks--; 6710 6711 if (dl_task(tsk)) 6712 dec_dl_tasks_cs(tsk); 6713 6714 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6715 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6716 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6717 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6718 6719 spin_unlock_irq(&css_set_lock); 6720 6721 /* see cgroup_post_fork() for details */ 6722 do_each_subsys_mask(ss, i, have_exit_callback) { 6723 ss->exit(tsk); 6724 } while_each_subsys_mask(); 6725 } 6726 6727 void cgroup_release(struct task_struct *task) 6728 { 6729 struct cgroup_subsys *ss; 6730 int ssid; 6731 6732 do_each_subsys_mask(ss, ssid, have_release_callback) { 6733 ss->release(task); 6734 } while_each_subsys_mask(); 6735 6736 spin_lock_irq(&css_set_lock); 6737 css_set_skip_task_iters(task_css_set(task), task); 6738 list_del_init(&task->cg_list); 6739 spin_unlock_irq(&css_set_lock); 6740 } 6741 6742 void cgroup_free(struct task_struct *task) 6743 { 6744 struct css_set *cset = task_css_set(task); 6745 put_css_set(cset); 6746 } 6747 6748 static int __init cgroup_disable(char *str) 6749 { 6750 struct cgroup_subsys *ss; 6751 char *token; 6752 int i; 6753 6754 while ((token = strsep(&str, ",")) != NULL) { 6755 if (!*token) 6756 continue; 6757 6758 for_each_subsys(ss, i) { 6759 if (strcmp(token, ss->name) && 6760 strcmp(token, ss->legacy_name)) 6761 continue; 6762 6763 static_branch_disable(cgroup_subsys_enabled_key[i]); 6764 pr_info("Disabling %s control group subsystem\n", 6765 ss->name); 6766 } 6767 6768 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6769 if (strcmp(token, cgroup_opt_feature_names[i])) 6770 continue; 6771 cgroup_feature_disable_mask |= 1 << i; 6772 pr_info("Disabling %s control group feature\n", 6773 cgroup_opt_feature_names[i]); 6774 break; 6775 } 6776 } 6777 return 1; 6778 } 6779 __setup("cgroup_disable=", cgroup_disable); 6780 6781 void __init __weak enable_debug_cgroup(void) { } 6782 6783 static int __init enable_cgroup_debug(char *str) 6784 { 6785 cgroup_debug = true; 6786 enable_debug_cgroup(); 6787 return 1; 6788 } 6789 __setup("cgroup_debug", enable_cgroup_debug); 6790 6791 static int __init cgroup_favordynmods_setup(char *str) 6792 { 6793 return (kstrtobool(str, &have_favordynmods) == 0); 6794 } 6795 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6796 6797 /** 6798 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6799 * @dentry: directory dentry of interest 6800 * @ss: subsystem of interest 6801 * 6802 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6803 * to get the corresponding css and return it. If such css doesn't exist 6804 * or can't be pinned, an ERR_PTR value is returned. 6805 */ 6806 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6807 struct cgroup_subsys *ss) 6808 { 6809 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6810 struct file_system_type *s_type = dentry->d_sb->s_type; 6811 struct cgroup_subsys_state *css = NULL; 6812 struct cgroup *cgrp; 6813 6814 /* is @dentry a cgroup dir? */ 6815 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6816 !kn || kernfs_type(kn) != KERNFS_DIR) 6817 return ERR_PTR(-EBADF); 6818 6819 rcu_read_lock(); 6820 6821 /* 6822 * This path doesn't originate from kernfs and @kn could already 6823 * have been or be removed at any point. @kn->priv is RCU 6824 * protected for this access. See css_release_work_fn() for details. 6825 */ 6826 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6827 if (cgrp) 6828 css = cgroup_css(cgrp, ss); 6829 6830 if (!css || !css_tryget_online(css)) 6831 css = ERR_PTR(-ENOENT); 6832 6833 rcu_read_unlock(); 6834 return css; 6835 } 6836 6837 /** 6838 * css_from_id - lookup css by id 6839 * @id: the cgroup id 6840 * @ss: cgroup subsys to be looked into 6841 * 6842 * Returns the css if there's valid one with @id, otherwise returns NULL. 6843 * Should be called under rcu_read_lock(). 6844 */ 6845 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6846 { 6847 WARN_ON_ONCE(!rcu_read_lock_held()); 6848 return idr_find(&ss->css_idr, id); 6849 } 6850 6851 /** 6852 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6853 * @path: path on the default hierarchy 6854 * 6855 * Find the cgroup at @path on the default hierarchy, increment its 6856 * reference count and return it. Returns pointer to the found cgroup on 6857 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6858 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6859 */ 6860 struct cgroup *cgroup_get_from_path(const char *path) 6861 { 6862 struct kernfs_node *kn; 6863 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6864 struct cgroup *root_cgrp; 6865 6866 root_cgrp = current_cgns_cgroup_dfl(); 6867 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6868 if (!kn) 6869 goto out; 6870 6871 if (kernfs_type(kn) != KERNFS_DIR) { 6872 cgrp = ERR_PTR(-ENOTDIR); 6873 goto out_kernfs; 6874 } 6875 6876 rcu_read_lock(); 6877 6878 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6879 if (!cgrp || !cgroup_tryget(cgrp)) 6880 cgrp = ERR_PTR(-ENOENT); 6881 6882 rcu_read_unlock(); 6883 6884 out_kernfs: 6885 kernfs_put(kn); 6886 out: 6887 return cgrp; 6888 } 6889 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6890 6891 /** 6892 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6893 * @fd: fd obtained by open(cgroup_dir) 6894 * 6895 * Find the cgroup from a fd which should be obtained 6896 * by opening a cgroup directory. Returns a pointer to the 6897 * cgroup on success. ERR_PTR is returned if the cgroup 6898 * cannot be found. 6899 */ 6900 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6901 { 6902 struct cgroup *cgrp; 6903 struct fd f = fdget_raw(fd); 6904 if (!f.file) 6905 return ERR_PTR(-EBADF); 6906 6907 cgrp = cgroup_v1v2_get_from_file(f.file); 6908 fdput(f); 6909 return cgrp; 6910 } 6911 6912 /** 6913 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6914 * cgroup2. 6915 * @fd: fd obtained by open(cgroup2_dir) 6916 */ 6917 struct cgroup *cgroup_get_from_fd(int fd) 6918 { 6919 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6920 6921 if (IS_ERR(cgrp)) 6922 return ERR_CAST(cgrp); 6923 6924 if (!cgroup_on_dfl(cgrp)) { 6925 cgroup_put(cgrp); 6926 return ERR_PTR(-EBADF); 6927 } 6928 return cgrp; 6929 } 6930 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6931 6932 static u64 power_of_ten(int power) 6933 { 6934 u64 v = 1; 6935 while (power--) 6936 v *= 10; 6937 return v; 6938 } 6939 6940 /** 6941 * cgroup_parse_float - parse a floating number 6942 * @input: input string 6943 * @dec_shift: number of decimal digits to shift 6944 * @v: output 6945 * 6946 * Parse a decimal floating point number in @input and store the result in 6947 * @v with decimal point right shifted @dec_shift times. For example, if 6948 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6949 * Returns 0 on success, -errno otherwise. 6950 * 6951 * There's nothing cgroup specific about this function except that it's 6952 * currently the only user. 6953 */ 6954 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6955 { 6956 s64 whole, frac = 0; 6957 int fstart = 0, fend = 0, flen; 6958 6959 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6960 return -EINVAL; 6961 if (frac < 0) 6962 return -EINVAL; 6963 6964 flen = fend > fstart ? fend - fstart : 0; 6965 if (flen < dec_shift) 6966 frac *= power_of_ten(dec_shift - flen); 6967 else 6968 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6969 6970 *v = whole * power_of_ten(dec_shift) + frac; 6971 return 0; 6972 } 6973 6974 /* 6975 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6976 * definition in cgroup-defs.h. 6977 */ 6978 #ifdef CONFIG_SOCK_CGROUP_DATA 6979 6980 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6981 { 6982 struct cgroup *cgroup; 6983 6984 rcu_read_lock(); 6985 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6986 if (in_interrupt()) { 6987 cgroup = &cgrp_dfl_root.cgrp; 6988 cgroup_get(cgroup); 6989 goto out; 6990 } 6991 6992 while (true) { 6993 struct css_set *cset; 6994 6995 cset = task_css_set(current); 6996 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6997 cgroup = cset->dfl_cgrp; 6998 break; 6999 } 7000 cpu_relax(); 7001 } 7002 out: 7003 skcd->cgroup = cgroup; 7004 cgroup_bpf_get(cgroup); 7005 rcu_read_unlock(); 7006 } 7007 7008 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7009 { 7010 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7011 7012 /* 7013 * We might be cloning a socket which is left in an empty 7014 * cgroup and the cgroup might have already been rmdir'd. 7015 * Don't use cgroup_get_live(). 7016 */ 7017 cgroup_get(cgrp); 7018 cgroup_bpf_get(cgrp); 7019 } 7020 7021 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7022 { 7023 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7024 7025 cgroup_bpf_put(cgrp); 7026 cgroup_put(cgrp); 7027 } 7028 7029 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7030 7031 #ifdef CONFIG_SYSFS 7032 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7033 ssize_t size, const char *prefix) 7034 { 7035 struct cftype *cft; 7036 ssize_t ret = 0; 7037 7038 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7039 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7040 continue; 7041 7042 if (prefix) 7043 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7044 7045 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7046 7047 if (WARN_ON(ret >= size)) 7048 break; 7049 } 7050 7051 return ret; 7052 } 7053 7054 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7055 char *buf) 7056 { 7057 struct cgroup_subsys *ss; 7058 int ssid; 7059 ssize_t ret = 0; 7060 7061 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7062 PAGE_SIZE - ret, NULL); 7063 if (cgroup_psi_enabled()) 7064 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7065 PAGE_SIZE - ret, NULL); 7066 7067 for_each_subsys(ss, ssid) 7068 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7069 PAGE_SIZE - ret, 7070 cgroup_subsys_name[ssid]); 7071 7072 return ret; 7073 } 7074 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7075 7076 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7077 char *buf) 7078 { 7079 return snprintf(buf, PAGE_SIZE, 7080 "nsdelegate\n" 7081 "favordynmods\n" 7082 "memory_localevents\n" 7083 "memory_recursiveprot\n" 7084 "memory_hugetlb_accounting\n"); 7085 } 7086 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7087 7088 static struct attribute *cgroup_sysfs_attrs[] = { 7089 &cgroup_delegate_attr.attr, 7090 &cgroup_features_attr.attr, 7091 NULL, 7092 }; 7093 7094 static const struct attribute_group cgroup_sysfs_attr_group = { 7095 .attrs = cgroup_sysfs_attrs, 7096 .name = "cgroup", 7097 }; 7098 7099 static int __init cgroup_sysfs_init(void) 7100 { 7101 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7102 } 7103 subsys_initcall(cgroup_sysfs_init); 7104 7105 #endif /* CONFIG_SYSFS */ 7106