xref: /linux/kernel/cgroup/cgroup.c (revision 0678df8271820bcf8fb4f877129f05d68a237de4)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 	OPT_FEATURE_PRESSURE,
229 #endif
230 	OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 	"pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 			       struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 					      struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 			      struct cgroup *cgrp, struct cftype cfts[],
252 			      bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS	noinline
256 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
268 bool cgroup_ssid_enabled(int ssid)
269 {
270 	if (!CGROUP_HAS_SUBSYS_CONFIG)
271 		return false;
272 
273 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 	return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 			    gfp_t gfp_mask)
327 {
328 	int ret;
329 
330 	idr_preload(gfp_mask);
331 	spin_lock_bh(&cgroup_idr_lock);
332 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 	spin_unlock_bh(&cgroup_idr_lock);
334 	idr_preload_end();
335 	return ret;
336 }
337 
338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 	void *ret;
341 
342 	spin_lock_bh(&cgroup_idr_lock);
343 	ret = idr_replace(idr, ptr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 	return ret;
346 }
347 
348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 	spin_lock_bh(&cgroup_idr_lock);
351 	idr_remove(idr, id);
352 	spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 	return cgrp->nr_populated_csets;
358 }
359 
360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 	return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 	/*
369 	 * Root isn't under domain level resource control exempting it from
370 	 * the no-internal-process constraint, so it can serve as a thread
371 	 * root and a parent of resource domains at the same time.
372 	 */
373 	return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 	/* mixables don't care */
380 	if (cgroup_is_mixable(cgrp))
381 		return true;
382 
383 	/* domain roots can't be nested under threaded */
384 	if (cgroup_is_threaded(cgrp))
385 		return false;
386 
387 	/* can only have either domain or threaded children */
388 	if (cgrp->nr_populated_domain_children)
389 		return false;
390 
391 	/* and no domain controllers can be enabled */
392 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 		return false;
394 
395 	return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 	/* thread root should be a domain */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* a domain w/ threaded children is a thread root */
406 	if (cgrp->nr_threaded_children)
407 		return true;
408 
409 	/*
410 	 * A domain which has tasks and explicit threaded controllers
411 	 * enabled is a thread root.
412 	 */
413 	if (cgroup_has_tasks(cgrp) &&
414 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 		return true;
416 
417 	return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 	/* the cgroup itself can be a thread root */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* but the ancestors can't be unless mixable */
428 	while ((cgrp = cgroup_parent(cgrp))) {
429 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 			return false;
431 		if (cgroup_is_threaded(cgrp))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 	u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_control;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	if (cgroup_on_dfl(cgrp))
454 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 				  cgrp_dfl_implicit_ss_mask);
456 	return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 	struct cgroup *parent = cgroup_parent(cgrp);
463 
464 	if (parent) {
465 		u16 ss_mask = parent->subtree_ss_mask;
466 
467 		/* threaded cgroups can only have threaded controllers */
468 		if (cgroup_is_threaded(cgrp))
469 			ss_mask &= cgrp_dfl_threaded_ss_mask;
470 		return ss_mask;
471 	}
472 
473 	return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 					      struct cgroup_subsys *ss)
489 {
490 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 		return rcu_dereference_check(cgrp->subsys[ss->id],
492 					lockdep_is_held(&cgroup_mutex));
493 	else
494 		return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	if (!CGROUP_HAS_SUBSYS_CONFIG)
547 		return NULL;
548 
549 	do {
550 		css = cgroup_css(cgrp, ss);
551 
552 		if (css)
553 			return css;
554 		cgrp = cgroup_parent(cgrp);
555 	} while (cgrp);
556 
557 	return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 					     struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	rcu_read_lock();
580 
581 	do {
582 		css = cgroup_css(cgrp, ss);
583 
584 		if (css && css_tryget_online(css))
585 			goto out_unlock;
586 		cgrp = cgroup_parent(cgrp);
587 	} while (cgrp);
588 
589 	css = init_css_set.subsys[ss->id];
590 	css_get(css);
591 out_unlock:
592 	rcu_read_unlock();
593 	return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 	cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 	int count = 0;
611 	struct cgrp_cset_link *link;
612 
613 	lockdep_assert_held(&css_set_lock);
614 
615 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 		count += link->cset->nr_tasks;
617 
618 	return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 	int count;
628 
629 	spin_lock_irq(&css_set_lock);
630 	count = __cgroup_task_count(cgrp);
631 	spin_unlock_irq(&css_set_lock);
632 
633 	return count;
634 }
635 
636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638 	struct cgroup *cgrp = of->kn->parent->priv;
639 	struct cftype *cft = of_cft(of);
640 
641 	/*
642 	 * This is open and unprotected implementation of cgroup_css().
643 	 * seq_css() is only called from a kernfs file operation which has
644 	 * an active reference on the file.  Because all the subsystem
645 	 * files are drained before a css is disassociated with a cgroup,
646 	 * the matching css from the cgroup's subsys table is guaranteed to
647 	 * be and stay valid until the enclosing operation is complete.
648 	 */
649 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 	else
652 		return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655 
656 /**
657  * for_each_css - iterate all css's of a cgroup
658  * @css: the iteration cursor
659  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660  * @cgrp: the target cgroup to iterate css's of
661  *
662  * Should be called under cgroup_mutex.
663  */
664 #define for_each_css(css, ssid, cgrp)					\
665 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666 		if (!((css) = rcu_dereference_check(			\
667 				(cgrp)->subsys[(ssid)],			\
668 				lockdep_is_held(&cgroup_mutex)))) { }	\
669 		else
670 
671 /**
672  * do_each_subsys_mask - filter for_each_subsys with a bitmask
673  * @ss: the iteration cursor
674  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675  * @ss_mask: the bitmask
676  *
677  * The block will only run for cases where the ssid-th bit (1 << ssid) of
678  * @ss_mask is set.
679  */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681 	unsigned long __ss_mask = (ss_mask);				\
682 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683 		(ssid) = 0;						\
684 		break;							\
685 	}								\
686 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687 		(ss) = cgroup_subsys[ssid];				\
688 		{
689 
690 #define while_each_subsys_mask()					\
691 		}							\
692 	}								\
693 } while (false)
694 
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp)				\
697 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 		if (({ lockdep_assert_held(&cgroup_mutex);		\
699 		       cgroup_is_dead(child); }))			\
700 			;						\
701 		else
702 
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       (dsct) = (d_css)->cgroup;			\
708 		       cgroup_is_dead(dsct); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /*
722  * The default css_set - used by init and its children prior to any
723  * hierarchies being mounted. It contains a pointer to the root state
724  * for each subsystem. Also used to anchor the list of css_sets. Not
725  * reference-counted, to improve performance when child cgroups
726  * haven't been created.
727  */
728 struct css_set init_css_set = {
729 	.refcount		= REFCOUNT_INIT(1),
730 	.dom_cset		= &init_css_set,
731 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740 
741 	/*
742 	 * The following field is re-initialized when this cset gets linked
743 	 * in cgroup_init().  However, let's initialize the field
744 	 * statically too so that the default cgroup can be accessed safely
745 	 * early during boot.
746 	 */
747 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748 };
749 
750 static int css_set_count	= 1;	/* 1 for init_css_set */
751 
752 static bool css_set_threaded(struct css_set *cset)
753 {
754 	return cset->dom_cset != cset;
755 }
756 
757 /**
758  * css_set_populated - does a css_set contain any tasks?
759  * @cset: target css_set
760  *
761  * css_set_populated() should be the same as !!cset->nr_tasks at steady
762  * state. However, css_set_populated() can be called while a task is being
763  * added to or removed from the linked list before the nr_tasks is
764  * properly updated. Hence, we can't just look at ->nr_tasks here.
765  */
766 static bool css_set_populated(struct css_set *cset)
767 {
768 	lockdep_assert_held(&css_set_lock);
769 
770 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772 
773 /**
774  * cgroup_update_populated - update the populated count of a cgroup
775  * @cgrp: the target cgroup
776  * @populated: inc or dec populated count
777  *
778  * One of the css_sets associated with @cgrp is either getting its first
779  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780  * count is propagated towards root so that a given cgroup's
781  * nr_populated_children is zero iff none of its descendants contain any
782  * tasks.
783  *
784  * @cgrp's interface file "cgroup.populated" is zero if both
785  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786  * 1 otherwise.  When the sum changes from or to zero, userland is notified
787  * that the content of the interface file has changed.  This can be used to
788  * detect when @cgrp and its descendants become populated or empty.
789  */
790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792 	struct cgroup *child = NULL;
793 	int adj = populated ? 1 : -1;
794 
795 	lockdep_assert_held(&css_set_lock);
796 
797 	do {
798 		bool was_populated = cgroup_is_populated(cgrp);
799 
800 		if (!child) {
801 			cgrp->nr_populated_csets += adj;
802 		} else {
803 			if (cgroup_is_threaded(child))
804 				cgrp->nr_populated_threaded_children += adj;
805 			else
806 				cgrp->nr_populated_domain_children += adj;
807 		}
808 
809 		if (was_populated == cgroup_is_populated(cgrp))
810 			break;
811 
812 		cgroup1_check_for_release(cgrp);
813 		TRACE_CGROUP_PATH(notify_populated, cgrp,
814 				  cgroup_is_populated(cgrp));
815 		cgroup_file_notify(&cgrp->events_file);
816 
817 		child = cgrp;
818 		cgrp = cgroup_parent(cgrp);
819 	} while (cgrp);
820 }
821 
822 /**
823  * css_set_update_populated - update populated state of a css_set
824  * @cset: target css_set
825  * @populated: whether @cset is populated or depopulated
826  *
827  * @cset is either getting the first task or losing the last.  Update the
828  * populated counters of all associated cgroups accordingly.
829  */
830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832 	struct cgrp_cset_link *link;
833 
834 	lockdep_assert_held(&css_set_lock);
835 
836 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 		cgroup_update_populated(link->cgrp, populated);
838 }
839 
840 /*
841  * @task is leaving, advance task iterators which are pointing to it so
842  * that they can resume at the next position.  Advancing an iterator might
843  * remove it from the list, use safe walk.  See css_task_iter_skip() for
844  * details.
845  */
846 static void css_set_skip_task_iters(struct css_set *cset,
847 				    struct task_struct *task)
848 {
849 	struct css_task_iter *it, *pos;
850 
851 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 		css_task_iter_skip(it, task);
853 }
854 
855 /**
856  * css_set_move_task - move a task from one css_set to another
857  * @task: task being moved
858  * @from_cset: css_set @task currently belongs to (may be NULL)
859  * @to_cset: new css_set @task is being moved to (may be NULL)
860  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861  *
862  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863  * css_set, @from_cset can be NULL.  If @task is being disassociated
864  * instead of moved, @to_cset can be NULL.
865  *
866  * This function automatically handles populated counter updates and
867  * css_task_iter adjustments but the caller is responsible for managing
868  * @from_cset and @to_cset's reference counts.
869  */
870 static void css_set_move_task(struct task_struct *task,
871 			      struct css_set *from_cset, struct css_set *to_cset,
872 			      bool use_mg_tasks)
873 {
874 	lockdep_assert_held(&css_set_lock);
875 
876 	if (to_cset && !css_set_populated(to_cset))
877 		css_set_update_populated(to_cset, true);
878 
879 	if (from_cset) {
880 		WARN_ON_ONCE(list_empty(&task->cg_list));
881 
882 		css_set_skip_task_iters(from_cset, task);
883 		list_del_init(&task->cg_list);
884 		if (!css_set_populated(from_cset))
885 			css_set_update_populated(from_cset, false);
886 	} else {
887 		WARN_ON_ONCE(!list_empty(&task->cg_list));
888 	}
889 
890 	if (to_cset) {
891 		/*
892 		 * We are synchronized through cgroup_threadgroup_rwsem
893 		 * against PF_EXITING setting such that we can't race
894 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 		 */
896 		WARN_ON_ONCE(task->flags & PF_EXITING);
897 
898 		cgroup_move_task(task, to_cset);
899 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900 							     &to_cset->tasks);
901 	}
902 }
903 
904 /*
905  * hash table for cgroup groups. This improves the performance to find
906  * an existing css_set. This hash doesn't (currently) take into
907  * account cgroups in empty hierarchies.
908  */
909 #define CSS_SET_HASH_BITS	7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911 
912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914 	unsigned long key = 0UL;
915 	struct cgroup_subsys *ss;
916 	int i;
917 
918 	for_each_subsys(ss, i)
919 		key += (unsigned long)css[i];
920 	key = (key >> 16) ^ key;
921 
922 	return key;
923 }
924 
925 void put_css_set_locked(struct css_set *cset)
926 {
927 	struct cgrp_cset_link *link, *tmp_link;
928 	struct cgroup_subsys *ss;
929 	int ssid;
930 
931 	lockdep_assert_held(&css_set_lock);
932 
933 	if (!refcount_dec_and_test(&cset->refcount))
934 		return;
935 
936 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937 
938 	/* This css_set is dead. Unlink it and release cgroup and css refs */
939 	for_each_subsys(ss, ssid) {
940 		list_del(&cset->e_cset_node[ssid]);
941 		css_put(cset->subsys[ssid]);
942 	}
943 	hash_del(&cset->hlist);
944 	css_set_count--;
945 
946 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 		list_del(&link->cset_link);
948 		list_del(&link->cgrp_link);
949 		if (cgroup_parent(link->cgrp))
950 			cgroup_put(link->cgrp);
951 		kfree(link);
952 	}
953 
954 	if (css_set_threaded(cset)) {
955 		list_del(&cset->threaded_csets_node);
956 		put_css_set_locked(cset->dom_cset);
957 	}
958 
959 	kfree_rcu(cset, rcu_head);
960 }
961 
962 /**
963  * compare_css_sets - helper function for find_existing_css_set().
964  * @cset: candidate css_set being tested
965  * @old_cset: existing css_set for a task
966  * @new_cgrp: cgroup that's being entered by the task
967  * @template: desired set of css pointers in css_set (pre-calculated)
968  *
969  * Returns true if "cset" matches "old_cset" except for the hierarchy
970  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971  */
972 static bool compare_css_sets(struct css_set *cset,
973 			     struct css_set *old_cset,
974 			     struct cgroup *new_cgrp,
975 			     struct cgroup_subsys_state *template[])
976 {
977 	struct cgroup *new_dfl_cgrp;
978 	struct list_head *l1, *l2;
979 
980 	/*
981 	 * On the default hierarchy, there can be csets which are
982 	 * associated with the same set of cgroups but different csses.
983 	 * Let's first ensure that csses match.
984 	 */
985 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986 		return false;
987 
988 
989 	/* @cset's domain should match the default cgroup's */
990 	if (cgroup_on_dfl(new_cgrp))
991 		new_dfl_cgrp = new_cgrp;
992 	else
993 		new_dfl_cgrp = old_cset->dfl_cgrp;
994 
995 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 		return false;
997 
998 	/*
999 	 * Compare cgroup pointers in order to distinguish between
1000 	 * different cgroups in hierarchies.  As different cgroups may
1001 	 * share the same effective css, this comparison is always
1002 	 * necessary.
1003 	 */
1004 	l1 = &cset->cgrp_links;
1005 	l2 = &old_cset->cgrp_links;
1006 	while (1) {
1007 		struct cgrp_cset_link *link1, *link2;
1008 		struct cgroup *cgrp1, *cgrp2;
1009 
1010 		l1 = l1->next;
1011 		l2 = l2->next;
1012 		/* See if we reached the end - both lists are equal length. */
1013 		if (l1 == &cset->cgrp_links) {
1014 			BUG_ON(l2 != &old_cset->cgrp_links);
1015 			break;
1016 		} else {
1017 			BUG_ON(l2 == &old_cset->cgrp_links);
1018 		}
1019 		/* Locate the cgroups associated with these links. */
1020 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 		cgrp1 = link1->cgrp;
1023 		cgrp2 = link2->cgrp;
1024 		/* Hierarchies should be linked in the same order. */
1025 		BUG_ON(cgrp1->root != cgrp2->root);
1026 
1027 		/*
1028 		 * If this hierarchy is the hierarchy of the cgroup
1029 		 * that's changing, then we need to check that this
1030 		 * css_set points to the new cgroup; if it's any other
1031 		 * hierarchy, then this css_set should point to the
1032 		 * same cgroup as the old css_set.
1033 		 */
1034 		if (cgrp1->root == new_cgrp->root) {
1035 			if (cgrp1 != new_cgrp)
1036 				return false;
1037 		} else {
1038 			if (cgrp1 != cgrp2)
1039 				return false;
1040 		}
1041 	}
1042 	return true;
1043 }
1044 
1045 /**
1046  * find_existing_css_set - init css array and find the matching css_set
1047  * @old_cset: the css_set that we're using before the cgroup transition
1048  * @cgrp: the cgroup that we're moving into
1049  * @template: out param for the new set of csses, should be clear on entry
1050  */
1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 					struct cgroup *cgrp,
1053 					struct cgroup_subsys_state **template)
1054 {
1055 	struct cgroup_root *root = cgrp->root;
1056 	struct cgroup_subsys *ss;
1057 	struct css_set *cset;
1058 	unsigned long key;
1059 	int i;
1060 
1061 	/*
1062 	 * Build the set of subsystem state objects that we want to see in the
1063 	 * new css_set. While subsystems can change globally, the entries here
1064 	 * won't change, so no need for locking.
1065 	 */
1066 	for_each_subsys(ss, i) {
1067 		if (root->subsys_mask & (1UL << i)) {
1068 			/*
1069 			 * @ss is in this hierarchy, so we want the
1070 			 * effective css from @cgrp.
1071 			 */
1072 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 		} else {
1074 			/*
1075 			 * @ss is not in this hierarchy, so we don't want
1076 			 * to change the css.
1077 			 */
1078 			template[i] = old_cset->subsys[i];
1079 		}
1080 	}
1081 
1082 	key = css_set_hash(template);
1083 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085 			continue;
1086 
1087 		/* This css_set matches what we need */
1088 		return cset;
1089 	}
1090 
1091 	/* No existing cgroup group matched */
1092 	return NULL;
1093 }
1094 
1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097 	struct cgrp_cset_link *link, *tmp_link;
1098 
1099 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 		list_del(&link->cset_link);
1101 		kfree(link);
1102 	}
1103 }
1104 
1105 /**
1106  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107  * @count: the number of links to allocate
1108  * @tmp_links: list_head the allocated links are put on
1109  *
1110  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111  * through ->cset_link.  Returns 0 on success or -errno.
1112  */
1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115 	struct cgrp_cset_link *link;
1116 	int i;
1117 
1118 	INIT_LIST_HEAD(tmp_links);
1119 
1120 	for (i = 0; i < count; i++) {
1121 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122 		if (!link) {
1123 			free_cgrp_cset_links(tmp_links);
1124 			return -ENOMEM;
1125 		}
1126 		list_add(&link->cset_link, tmp_links);
1127 	}
1128 	return 0;
1129 }
1130 
1131 /**
1132  * link_css_set - a helper function to link a css_set to a cgroup
1133  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134  * @cset: the css_set to be linked
1135  * @cgrp: the destination cgroup
1136  */
1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 			 struct cgroup *cgrp)
1139 {
1140 	struct cgrp_cset_link *link;
1141 
1142 	BUG_ON(list_empty(tmp_links));
1143 
1144 	if (cgroup_on_dfl(cgrp))
1145 		cset->dfl_cgrp = cgrp;
1146 
1147 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 	link->cset = cset;
1149 	link->cgrp = cgrp;
1150 
1151 	/*
1152 	 * Always add links to the tail of the lists so that the lists are
1153 	 * in chronological order.
1154 	 */
1155 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157 
1158 	if (cgroup_parent(cgrp))
1159 		cgroup_get_live(cgrp);
1160 }
1161 
1162 /**
1163  * find_css_set - return a new css_set with one cgroup updated
1164  * @old_cset: the baseline css_set
1165  * @cgrp: the cgroup to be updated
1166  *
1167  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168  * substituted into the appropriate hierarchy.
1169  */
1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171 				    struct cgroup *cgrp)
1172 {
1173 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 	struct css_set *cset;
1175 	struct list_head tmp_links;
1176 	struct cgrp_cset_link *link;
1177 	struct cgroup_subsys *ss;
1178 	unsigned long key;
1179 	int ssid;
1180 
1181 	lockdep_assert_held(&cgroup_mutex);
1182 
1183 	/* First see if we already have a cgroup group that matches
1184 	 * the desired set */
1185 	spin_lock_irq(&css_set_lock);
1186 	cset = find_existing_css_set(old_cset, cgrp, template);
1187 	if (cset)
1188 		get_css_set(cset);
1189 	spin_unlock_irq(&css_set_lock);
1190 
1191 	if (cset)
1192 		return cset;
1193 
1194 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195 	if (!cset)
1196 		return NULL;
1197 
1198 	/* Allocate all the cgrp_cset_link objects that we'll need */
1199 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200 		kfree(cset);
1201 		return NULL;
1202 	}
1203 
1204 	refcount_set(&cset->refcount, 1);
1205 	cset->dom_cset = cset;
1206 	INIT_LIST_HEAD(&cset->tasks);
1207 	INIT_LIST_HEAD(&cset->mg_tasks);
1208 	INIT_LIST_HEAD(&cset->dying_tasks);
1209 	INIT_LIST_HEAD(&cset->task_iters);
1210 	INIT_LIST_HEAD(&cset->threaded_csets);
1211 	INIT_HLIST_NODE(&cset->hlist);
1212 	INIT_LIST_HEAD(&cset->cgrp_links);
1213 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284 
1285 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 	if (favor && !favoring) {
1287 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 	} else if (!favor && favoring) {
1290 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 	}
1293 }
1294 
1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 	int id;
1298 
1299 	lockdep_assert_held(&cgroup_mutex);
1300 
1301 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 	if (id < 0)
1303 		return id;
1304 
1305 	root->hierarchy_id = id;
1306 	return 0;
1307 }
1308 
1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 	lockdep_assert_held(&cgroup_mutex);
1312 
1313 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 	kfree(root);
1319 }
1320 
1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 	struct cgroup *cgrp = &root->cgrp;
1324 	struct cgrp_cset_link *link, *tmp_link;
1325 
1326 	trace_cgroup_destroy_root(root);
1327 
1328 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330 	BUG_ON(atomic_read(&root->nr_cgrps));
1331 	BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333 	/* Rebind all subsystems back to the default hierarchy */
1334 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336 	/*
1337 	 * Release all the links from cset_links to this hierarchy's
1338 	 * root cgroup
1339 	 */
1340 	spin_lock_irq(&css_set_lock);
1341 
1342 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 		list_del(&link->cset_link);
1344 		list_del(&link->cgrp_link);
1345 		kfree(link);
1346 	}
1347 
1348 	spin_unlock_irq(&css_set_lock);
1349 
1350 	if (!list_empty(&root->root_list)) {
1351 		list_del(&root->root_list);
1352 		cgroup_root_count--;
1353 	}
1354 
1355 	if (!have_favordynmods)
1356 		cgroup_favor_dynmods(root, false);
1357 
1358 	cgroup_exit_root_id(root);
1359 
1360 	cgroup_unlock();
1361 
1362 	cgroup_rstat_exit(cgrp);
1363 	kernfs_destroy_root(root->kf_root);
1364 	cgroup_free_root(root);
1365 }
1366 
1367 /*
1368  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1369  */
1370 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1371 					    struct cgroup_root *root)
1372 {
1373 	struct cgroup *res_cgroup = NULL;
1374 
1375 	if (cset == &init_css_set) {
1376 		res_cgroup = &root->cgrp;
1377 	} else if (root == &cgrp_dfl_root) {
1378 		res_cgroup = cset->dfl_cgrp;
1379 	} else {
1380 		struct cgrp_cset_link *link;
1381 		lockdep_assert_held(&css_set_lock);
1382 
1383 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1384 			struct cgroup *c = link->cgrp;
1385 
1386 			if (c->root == root) {
1387 				res_cgroup = c;
1388 				break;
1389 			}
1390 		}
1391 	}
1392 
1393 	BUG_ON(!res_cgroup);
1394 	return res_cgroup;
1395 }
1396 
1397 /*
1398  * look up cgroup associated with current task's cgroup namespace on the
1399  * specified hierarchy
1400  */
1401 static struct cgroup *
1402 current_cgns_cgroup_from_root(struct cgroup_root *root)
1403 {
1404 	struct cgroup *res = NULL;
1405 	struct css_set *cset;
1406 
1407 	lockdep_assert_held(&css_set_lock);
1408 
1409 	rcu_read_lock();
1410 
1411 	cset = current->nsproxy->cgroup_ns->root_cset;
1412 	res = __cset_cgroup_from_root(cset, root);
1413 
1414 	rcu_read_unlock();
1415 
1416 	return res;
1417 }
1418 
1419 /*
1420  * Look up cgroup associated with current task's cgroup namespace on the default
1421  * hierarchy.
1422  *
1423  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1424  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1425  *   pointers.
1426  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1427  * - As a bonus returned cgrp is pinned with the current because it cannot
1428  *   switch cgroup_ns asynchronously.
1429  */
1430 static struct cgroup *current_cgns_cgroup_dfl(void)
1431 {
1432 	struct css_set *cset;
1433 
1434 	if (current->nsproxy) {
1435 		cset = current->nsproxy->cgroup_ns->root_cset;
1436 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1437 	} else {
1438 		/*
1439 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1440 		 * on a task which has already passed exit_task_namespaces() and
1441 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1442 		 * cgroups visible for lookups.
1443 		 */
1444 		return &cgrp_dfl_root.cgrp;
1445 	}
1446 }
1447 
1448 /* look up cgroup associated with given css_set on the specified hierarchy */
1449 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1450 					    struct cgroup_root *root)
1451 {
1452 	lockdep_assert_held(&cgroup_mutex);
1453 	lockdep_assert_held(&css_set_lock);
1454 
1455 	return __cset_cgroup_from_root(cset, root);
1456 }
1457 
1458 /*
1459  * Return the cgroup for "task" from the given hierarchy. Must be
1460  * called with cgroup_mutex and css_set_lock held.
1461  */
1462 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1463 				     struct cgroup_root *root)
1464 {
1465 	/*
1466 	 * No need to lock the task - since we hold css_set_lock the
1467 	 * task can't change groups.
1468 	 */
1469 	return cset_cgroup_from_root(task_css_set(task), root);
1470 }
1471 
1472 /*
1473  * A task must hold cgroup_mutex to modify cgroups.
1474  *
1475  * Any task can increment and decrement the count field without lock.
1476  * So in general, code holding cgroup_mutex can't rely on the count
1477  * field not changing.  However, if the count goes to zero, then only
1478  * cgroup_attach_task() can increment it again.  Because a count of zero
1479  * means that no tasks are currently attached, therefore there is no
1480  * way a task attached to that cgroup can fork (the other way to
1481  * increment the count).  So code holding cgroup_mutex can safely
1482  * assume that if the count is zero, it will stay zero. Similarly, if
1483  * a task holds cgroup_mutex on a cgroup with zero count, it
1484  * knows that the cgroup won't be removed, as cgroup_rmdir()
1485  * needs that mutex.
1486  *
1487  * A cgroup can only be deleted if both its 'count' of using tasks
1488  * is zero, and its list of 'children' cgroups is empty.  Since all
1489  * tasks in the system use _some_ cgroup, and since there is always at
1490  * least one task in the system (init, pid == 1), therefore, root cgroup
1491  * always has either children cgroups and/or using tasks.  So we don't
1492  * need a special hack to ensure that root cgroup cannot be deleted.
1493  *
1494  * P.S.  One more locking exception.  RCU is used to guard the
1495  * update of a tasks cgroup pointer by cgroup_attach_task()
1496  */
1497 
1498 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1499 
1500 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1501 			      char *buf)
1502 {
1503 	struct cgroup_subsys *ss = cft->ss;
1504 
1505 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1506 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1507 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1508 
1509 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1510 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1511 			 cft->name);
1512 	} else {
1513 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1514 	}
1515 	return buf;
1516 }
1517 
1518 /**
1519  * cgroup_file_mode - deduce file mode of a control file
1520  * @cft: the control file in question
1521  *
1522  * S_IRUGO for read, S_IWUSR for write.
1523  */
1524 static umode_t cgroup_file_mode(const struct cftype *cft)
1525 {
1526 	umode_t mode = 0;
1527 
1528 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1529 		mode |= S_IRUGO;
1530 
1531 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1532 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1533 			mode |= S_IWUGO;
1534 		else
1535 			mode |= S_IWUSR;
1536 	}
1537 
1538 	return mode;
1539 }
1540 
1541 /**
1542  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1543  * @subtree_control: the new subtree_control mask to consider
1544  * @this_ss_mask: available subsystems
1545  *
1546  * On the default hierarchy, a subsystem may request other subsystems to be
1547  * enabled together through its ->depends_on mask.  In such cases, more
1548  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1549  *
1550  * This function calculates which subsystems need to be enabled if
1551  * @subtree_control is to be applied while restricted to @this_ss_mask.
1552  */
1553 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1554 {
1555 	u16 cur_ss_mask = subtree_control;
1556 	struct cgroup_subsys *ss;
1557 	int ssid;
1558 
1559 	lockdep_assert_held(&cgroup_mutex);
1560 
1561 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1562 
1563 	while (true) {
1564 		u16 new_ss_mask = cur_ss_mask;
1565 
1566 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1567 			new_ss_mask |= ss->depends_on;
1568 		} while_each_subsys_mask();
1569 
1570 		/*
1571 		 * Mask out subsystems which aren't available.  This can
1572 		 * happen only if some depended-upon subsystems were bound
1573 		 * to non-default hierarchies.
1574 		 */
1575 		new_ss_mask &= this_ss_mask;
1576 
1577 		if (new_ss_mask == cur_ss_mask)
1578 			break;
1579 		cur_ss_mask = new_ss_mask;
1580 	}
1581 
1582 	return cur_ss_mask;
1583 }
1584 
1585 /**
1586  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1587  * @kn: the kernfs_node being serviced
1588  *
1589  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1590  * the method finishes if locking succeeded.  Note that once this function
1591  * returns the cgroup returned by cgroup_kn_lock_live() may become
1592  * inaccessible any time.  If the caller intends to continue to access the
1593  * cgroup, it should pin it before invoking this function.
1594  */
1595 void cgroup_kn_unlock(struct kernfs_node *kn)
1596 {
1597 	struct cgroup *cgrp;
1598 
1599 	if (kernfs_type(kn) == KERNFS_DIR)
1600 		cgrp = kn->priv;
1601 	else
1602 		cgrp = kn->parent->priv;
1603 
1604 	cgroup_unlock();
1605 
1606 	kernfs_unbreak_active_protection(kn);
1607 	cgroup_put(cgrp);
1608 }
1609 
1610 /**
1611  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1612  * @kn: the kernfs_node being serviced
1613  * @drain_offline: perform offline draining on the cgroup
1614  *
1615  * This helper is to be used by a cgroup kernfs method currently servicing
1616  * @kn.  It breaks the active protection, performs cgroup locking and
1617  * verifies that the associated cgroup is alive.  Returns the cgroup if
1618  * alive; otherwise, %NULL.  A successful return should be undone by a
1619  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1620  * cgroup is drained of offlining csses before return.
1621  *
1622  * Any cgroup kernfs method implementation which requires locking the
1623  * associated cgroup should use this helper.  It avoids nesting cgroup
1624  * locking under kernfs active protection and allows all kernfs operations
1625  * including self-removal.
1626  */
1627 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1628 {
1629 	struct cgroup *cgrp;
1630 
1631 	if (kernfs_type(kn) == KERNFS_DIR)
1632 		cgrp = kn->priv;
1633 	else
1634 		cgrp = kn->parent->priv;
1635 
1636 	/*
1637 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1638 	 * active_ref.  cgroup liveliness check alone provides enough
1639 	 * protection against removal.  Ensure @cgrp stays accessible and
1640 	 * break the active_ref protection.
1641 	 */
1642 	if (!cgroup_tryget(cgrp))
1643 		return NULL;
1644 	kernfs_break_active_protection(kn);
1645 
1646 	if (drain_offline)
1647 		cgroup_lock_and_drain_offline(cgrp);
1648 	else
1649 		cgroup_lock();
1650 
1651 	if (!cgroup_is_dead(cgrp))
1652 		return cgrp;
1653 
1654 	cgroup_kn_unlock(kn);
1655 	return NULL;
1656 }
1657 
1658 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1659 {
1660 	char name[CGROUP_FILE_NAME_MAX];
1661 
1662 	lockdep_assert_held(&cgroup_mutex);
1663 
1664 	if (cft->file_offset) {
1665 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1666 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1667 
1668 		spin_lock_irq(&cgroup_file_kn_lock);
1669 		cfile->kn = NULL;
1670 		spin_unlock_irq(&cgroup_file_kn_lock);
1671 
1672 		del_timer_sync(&cfile->notify_timer);
1673 	}
1674 
1675 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1676 }
1677 
1678 /**
1679  * css_clear_dir - remove subsys files in a cgroup directory
1680  * @css: target css
1681  */
1682 static void css_clear_dir(struct cgroup_subsys_state *css)
1683 {
1684 	struct cgroup *cgrp = css->cgroup;
1685 	struct cftype *cfts;
1686 
1687 	if (!(css->flags & CSS_VISIBLE))
1688 		return;
1689 
1690 	css->flags &= ~CSS_VISIBLE;
1691 
1692 	if (!css->ss) {
1693 		if (cgroup_on_dfl(cgrp)) {
1694 			cgroup_addrm_files(css, cgrp,
1695 					   cgroup_base_files, false);
1696 			if (cgroup_psi_enabled())
1697 				cgroup_addrm_files(css, cgrp,
1698 						   cgroup_psi_files, false);
1699 		} else {
1700 			cgroup_addrm_files(css, cgrp,
1701 					   cgroup1_base_files, false);
1702 		}
1703 	} else {
1704 		list_for_each_entry(cfts, &css->ss->cfts, node)
1705 			cgroup_addrm_files(css, cgrp, cfts, false);
1706 	}
1707 }
1708 
1709 /**
1710  * css_populate_dir - create subsys files in a cgroup directory
1711  * @css: target css
1712  *
1713  * On failure, no file is added.
1714  */
1715 static int css_populate_dir(struct cgroup_subsys_state *css)
1716 {
1717 	struct cgroup *cgrp = css->cgroup;
1718 	struct cftype *cfts, *failed_cfts;
1719 	int ret;
1720 
1721 	if (css->flags & CSS_VISIBLE)
1722 		return 0;
1723 
1724 	if (!css->ss) {
1725 		if (cgroup_on_dfl(cgrp)) {
1726 			ret = cgroup_addrm_files(css, cgrp,
1727 						 cgroup_base_files, true);
1728 			if (ret < 0)
1729 				return ret;
1730 
1731 			if (cgroup_psi_enabled()) {
1732 				ret = cgroup_addrm_files(css, cgrp,
1733 							 cgroup_psi_files, true);
1734 				if (ret < 0)
1735 					return ret;
1736 			}
1737 		} else {
1738 			ret = cgroup_addrm_files(css, cgrp,
1739 						 cgroup1_base_files, true);
1740 			if (ret < 0)
1741 				return ret;
1742 		}
1743 	} else {
1744 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1745 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1746 			if (ret < 0) {
1747 				failed_cfts = cfts;
1748 				goto err;
1749 			}
1750 		}
1751 	}
1752 
1753 	css->flags |= CSS_VISIBLE;
1754 
1755 	return 0;
1756 err:
1757 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1758 		if (cfts == failed_cfts)
1759 			break;
1760 		cgroup_addrm_files(css, cgrp, cfts, false);
1761 	}
1762 	return ret;
1763 }
1764 
1765 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1766 {
1767 	struct cgroup *dcgrp = &dst_root->cgrp;
1768 	struct cgroup_subsys *ss;
1769 	int ssid, ret;
1770 	u16 dfl_disable_ss_mask = 0;
1771 
1772 	lockdep_assert_held(&cgroup_mutex);
1773 
1774 	do_each_subsys_mask(ss, ssid, ss_mask) {
1775 		/*
1776 		 * If @ss has non-root csses attached to it, can't move.
1777 		 * If @ss is an implicit controller, it is exempt from this
1778 		 * rule and can be stolen.
1779 		 */
1780 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1781 		    !ss->implicit_on_dfl)
1782 			return -EBUSY;
1783 
1784 		/* can't move between two non-dummy roots either */
1785 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1786 			return -EBUSY;
1787 
1788 		/*
1789 		 * Collect ssid's that need to be disabled from default
1790 		 * hierarchy.
1791 		 */
1792 		if (ss->root == &cgrp_dfl_root)
1793 			dfl_disable_ss_mask |= 1 << ssid;
1794 
1795 	} while_each_subsys_mask();
1796 
1797 	if (dfl_disable_ss_mask) {
1798 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1799 
1800 		/*
1801 		 * Controllers from default hierarchy that need to be rebound
1802 		 * are all disabled together in one go.
1803 		 */
1804 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1805 		WARN_ON(cgroup_apply_control(scgrp));
1806 		cgroup_finalize_control(scgrp, 0);
1807 	}
1808 
1809 	do_each_subsys_mask(ss, ssid, ss_mask) {
1810 		struct cgroup_root *src_root = ss->root;
1811 		struct cgroup *scgrp = &src_root->cgrp;
1812 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1813 		struct css_set *cset, *cset_pos;
1814 		struct css_task_iter *it;
1815 
1816 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1817 
1818 		if (src_root != &cgrp_dfl_root) {
1819 			/* disable from the source */
1820 			src_root->subsys_mask &= ~(1 << ssid);
1821 			WARN_ON(cgroup_apply_control(scgrp));
1822 			cgroup_finalize_control(scgrp, 0);
1823 		}
1824 
1825 		/* rebind */
1826 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1827 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1828 		ss->root = dst_root;
1829 		css->cgroup = dcgrp;
1830 
1831 		spin_lock_irq(&css_set_lock);
1832 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1833 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1834 					 e_cset_node[ss->id]) {
1835 			list_move_tail(&cset->e_cset_node[ss->id],
1836 				       &dcgrp->e_csets[ss->id]);
1837 			/*
1838 			 * all css_sets of scgrp together in same order to dcgrp,
1839 			 * patch in-flight iterators to preserve correct iteration.
1840 			 * since the iterator is always advanced right away and
1841 			 * finished when it->cset_pos meets it->cset_head, so only
1842 			 * update it->cset_head is enough here.
1843 			 */
1844 			list_for_each_entry(it, &cset->task_iters, iters_node)
1845 				if (it->cset_head == &scgrp->e_csets[ss->id])
1846 					it->cset_head = &dcgrp->e_csets[ss->id];
1847 		}
1848 		spin_unlock_irq(&css_set_lock);
1849 
1850 		if (ss->css_rstat_flush) {
1851 			list_del_rcu(&css->rstat_css_node);
1852 			synchronize_rcu();
1853 			list_add_rcu(&css->rstat_css_node,
1854 				     &dcgrp->rstat_css_list);
1855 		}
1856 
1857 		/* default hierarchy doesn't enable controllers by default */
1858 		dst_root->subsys_mask |= 1 << ssid;
1859 		if (dst_root == &cgrp_dfl_root) {
1860 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1861 		} else {
1862 			dcgrp->subtree_control |= 1 << ssid;
1863 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1864 		}
1865 
1866 		ret = cgroup_apply_control(dcgrp);
1867 		if (ret)
1868 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1869 				ss->name, ret);
1870 
1871 		if (ss->bind)
1872 			ss->bind(css);
1873 	} while_each_subsys_mask();
1874 
1875 	kernfs_activate(dcgrp->kn);
1876 	return 0;
1877 }
1878 
1879 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1880 		     struct kernfs_root *kf_root)
1881 {
1882 	int len = 0;
1883 	char *buf = NULL;
1884 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1885 	struct cgroup *ns_cgroup;
1886 
1887 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1888 	if (!buf)
1889 		return -ENOMEM;
1890 
1891 	spin_lock_irq(&css_set_lock);
1892 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1893 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1894 	spin_unlock_irq(&css_set_lock);
1895 
1896 	if (len >= PATH_MAX)
1897 		len = -ERANGE;
1898 	else if (len > 0) {
1899 		seq_escape(sf, buf, " \t\n\\");
1900 		len = 0;
1901 	}
1902 	kfree(buf);
1903 	return len;
1904 }
1905 
1906 enum cgroup2_param {
1907 	Opt_nsdelegate,
1908 	Opt_favordynmods,
1909 	Opt_memory_localevents,
1910 	Opt_memory_recursiveprot,
1911 	Opt_memory_hugetlb_accounting,
1912 	nr__cgroup2_params
1913 };
1914 
1915 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1916 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1917 	fsparam_flag("favordynmods",		Opt_favordynmods),
1918 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1919 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1920 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1921 	{}
1922 };
1923 
1924 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1925 {
1926 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1927 	struct fs_parse_result result;
1928 	int opt;
1929 
1930 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1931 	if (opt < 0)
1932 		return opt;
1933 
1934 	switch (opt) {
1935 	case Opt_nsdelegate:
1936 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1937 		return 0;
1938 	case Opt_favordynmods:
1939 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1940 		return 0;
1941 	case Opt_memory_localevents:
1942 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1943 		return 0;
1944 	case Opt_memory_recursiveprot:
1945 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1946 		return 0;
1947 	case Opt_memory_hugetlb_accounting:
1948 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1949 		return 0;
1950 	}
1951 	return -EINVAL;
1952 }
1953 
1954 static void apply_cgroup_root_flags(unsigned int root_flags)
1955 {
1956 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1957 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1958 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1959 		else
1960 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1961 
1962 		cgroup_favor_dynmods(&cgrp_dfl_root,
1963 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1964 
1965 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1966 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1967 		else
1968 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1969 
1970 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1971 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1972 		else
1973 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1974 
1975 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1976 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1977 		else
1978 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1979 	}
1980 }
1981 
1982 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1983 {
1984 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1985 		seq_puts(seq, ",nsdelegate");
1986 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1987 		seq_puts(seq, ",favordynmods");
1988 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1989 		seq_puts(seq, ",memory_localevents");
1990 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1991 		seq_puts(seq, ",memory_recursiveprot");
1992 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1993 		seq_puts(seq, ",memory_hugetlb_accounting");
1994 	return 0;
1995 }
1996 
1997 static int cgroup_reconfigure(struct fs_context *fc)
1998 {
1999 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2000 
2001 	apply_cgroup_root_flags(ctx->flags);
2002 	return 0;
2003 }
2004 
2005 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2006 {
2007 	struct cgroup_subsys *ss;
2008 	int ssid;
2009 
2010 	INIT_LIST_HEAD(&cgrp->self.sibling);
2011 	INIT_LIST_HEAD(&cgrp->self.children);
2012 	INIT_LIST_HEAD(&cgrp->cset_links);
2013 	INIT_LIST_HEAD(&cgrp->pidlists);
2014 	mutex_init(&cgrp->pidlist_mutex);
2015 	cgrp->self.cgroup = cgrp;
2016 	cgrp->self.flags |= CSS_ONLINE;
2017 	cgrp->dom_cgrp = cgrp;
2018 	cgrp->max_descendants = INT_MAX;
2019 	cgrp->max_depth = INT_MAX;
2020 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2021 	prev_cputime_init(&cgrp->prev_cputime);
2022 
2023 	for_each_subsys(ss, ssid)
2024 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2025 
2026 	init_waitqueue_head(&cgrp->offline_waitq);
2027 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2028 }
2029 
2030 void init_cgroup_root(struct cgroup_fs_context *ctx)
2031 {
2032 	struct cgroup_root *root = ctx->root;
2033 	struct cgroup *cgrp = &root->cgrp;
2034 
2035 	INIT_LIST_HEAD(&root->root_list);
2036 	atomic_set(&root->nr_cgrps, 1);
2037 	cgrp->root = root;
2038 	init_cgroup_housekeeping(cgrp);
2039 
2040 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2041 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2042 	if (ctx->release_agent)
2043 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2044 	if (ctx->name)
2045 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2046 	if (ctx->cpuset_clone_children)
2047 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2048 }
2049 
2050 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2051 {
2052 	LIST_HEAD(tmp_links);
2053 	struct cgroup *root_cgrp = &root->cgrp;
2054 	struct kernfs_syscall_ops *kf_sops;
2055 	struct css_set *cset;
2056 	int i, ret;
2057 
2058 	lockdep_assert_held(&cgroup_mutex);
2059 
2060 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2061 			      0, GFP_KERNEL);
2062 	if (ret)
2063 		goto out;
2064 
2065 	/*
2066 	 * We're accessing css_set_count without locking css_set_lock here,
2067 	 * but that's OK - it can only be increased by someone holding
2068 	 * cgroup_lock, and that's us.  Later rebinding may disable
2069 	 * controllers on the default hierarchy and thus create new csets,
2070 	 * which can't be more than the existing ones.  Allocate 2x.
2071 	 */
2072 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2073 	if (ret)
2074 		goto cancel_ref;
2075 
2076 	ret = cgroup_init_root_id(root);
2077 	if (ret)
2078 		goto cancel_ref;
2079 
2080 	kf_sops = root == &cgrp_dfl_root ?
2081 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2082 
2083 	root->kf_root = kernfs_create_root(kf_sops,
2084 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2085 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2086 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2087 					   root_cgrp);
2088 	if (IS_ERR(root->kf_root)) {
2089 		ret = PTR_ERR(root->kf_root);
2090 		goto exit_root_id;
2091 	}
2092 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2093 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2094 	root_cgrp->ancestors[0] = root_cgrp;
2095 
2096 	ret = css_populate_dir(&root_cgrp->self);
2097 	if (ret)
2098 		goto destroy_root;
2099 
2100 	ret = cgroup_rstat_init(root_cgrp);
2101 	if (ret)
2102 		goto destroy_root;
2103 
2104 	ret = rebind_subsystems(root, ss_mask);
2105 	if (ret)
2106 		goto exit_stats;
2107 
2108 	ret = cgroup_bpf_inherit(root_cgrp);
2109 	WARN_ON_ONCE(ret);
2110 
2111 	trace_cgroup_setup_root(root);
2112 
2113 	/*
2114 	 * There must be no failure case after here, since rebinding takes
2115 	 * care of subsystems' refcounts, which are explicitly dropped in
2116 	 * the failure exit path.
2117 	 */
2118 	list_add(&root->root_list, &cgroup_roots);
2119 	cgroup_root_count++;
2120 
2121 	/*
2122 	 * Link the root cgroup in this hierarchy into all the css_set
2123 	 * objects.
2124 	 */
2125 	spin_lock_irq(&css_set_lock);
2126 	hash_for_each(css_set_table, i, cset, hlist) {
2127 		link_css_set(&tmp_links, cset, root_cgrp);
2128 		if (css_set_populated(cset))
2129 			cgroup_update_populated(root_cgrp, true);
2130 	}
2131 	spin_unlock_irq(&css_set_lock);
2132 
2133 	BUG_ON(!list_empty(&root_cgrp->self.children));
2134 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2135 
2136 	ret = 0;
2137 	goto out;
2138 
2139 exit_stats:
2140 	cgroup_rstat_exit(root_cgrp);
2141 destroy_root:
2142 	kernfs_destroy_root(root->kf_root);
2143 	root->kf_root = NULL;
2144 exit_root_id:
2145 	cgroup_exit_root_id(root);
2146 cancel_ref:
2147 	percpu_ref_exit(&root_cgrp->self.refcnt);
2148 out:
2149 	free_cgrp_cset_links(&tmp_links);
2150 	return ret;
2151 }
2152 
2153 int cgroup_do_get_tree(struct fs_context *fc)
2154 {
2155 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2156 	int ret;
2157 
2158 	ctx->kfc.root = ctx->root->kf_root;
2159 	if (fc->fs_type == &cgroup2_fs_type)
2160 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2161 	else
2162 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2163 	ret = kernfs_get_tree(fc);
2164 
2165 	/*
2166 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2167 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2168 	 */
2169 	if (!ret && ctx->ns != &init_cgroup_ns) {
2170 		struct dentry *nsdentry;
2171 		struct super_block *sb = fc->root->d_sb;
2172 		struct cgroup *cgrp;
2173 
2174 		cgroup_lock();
2175 		spin_lock_irq(&css_set_lock);
2176 
2177 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2178 
2179 		spin_unlock_irq(&css_set_lock);
2180 		cgroup_unlock();
2181 
2182 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2183 		dput(fc->root);
2184 		if (IS_ERR(nsdentry)) {
2185 			deactivate_locked_super(sb);
2186 			ret = PTR_ERR(nsdentry);
2187 			nsdentry = NULL;
2188 		}
2189 		fc->root = nsdentry;
2190 	}
2191 
2192 	if (!ctx->kfc.new_sb_created)
2193 		cgroup_put(&ctx->root->cgrp);
2194 
2195 	return ret;
2196 }
2197 
2198 /*
2199  * Destroy a cgroup filesystem context.
2200  */
2201 static void cgroup_fs_context_free(struct fs_context *fc)
2202 {
2203 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2204 
2205 	kfree(ctx->name);
2206 	kfree(ctx->release_agent);
2207 	put_cgroup_ns(ctx->ns);
2208 	kernfs_free_fs_context(fc);
2209 	kfree(ctx);
2210 }
2211 
2212 static int cgroup_get_tree(struct fs_context *fc)
2213 {
2214 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2215 	int ret;
2216 
2217 	WRITE_ONCE(cgrp_dfl_visible, true);
2218 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2219 	ctx->root = &cgrp_dfl_root;
2220 
2221 	ret = cgroup_do_get_tree(fc);
2222 	if (!ret)
2223 		apply_cgroup_root_flags(ctx->flags);
2224 	return ret;
2225 }
2226 
2227 static const struct fs_context_operations cgroup_fs_context_ops = {
2228 	.free		= cgroup_fs_context_free,
2229 	.parse_param	= cgroup2_parse_param,
2230 	.get_tree	= cgroup_get_tree,
2231 	.reconfigure	= cgroup_reconfigure,
2232 };
2233 
2234 static const struct fs_context_operations cgroup1_fs_context_ops = {
2235 	.free		= cgroup_fs_context_free,
2236 	.parse_param	= cgroup1_parse_param,
2237 	.get_tree	= cgroup1_get_tree,
2238 	.reconfigure	= cgroup1_reconfigure,
2239 };
2240 
2241 /*
2242  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2243  * we select the namespace we're going to use.
2244  */
2245 static int cgroup_init_fs_context(struct fs_context *fc)
2246 {
2247 	struct cgroup_fs_context *ctx;
2248 
2249 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2250 	if (!ctx)
2251 		return -ENOMEM;
2252 
2253 	ctx->ns = current->nsproxy->cgroup_ns;
2254 	get_cgroup_ns(ctx->ns);
2255 	fc->fs_private = &ctx->kfc;
2256 	if (fc->fs_type == &cgroup2_fs_type)
2257 		fc->ops = &cgroup_fs_context_ops;
2258 	else
2259 		fc->ops = &cgroup1_fs_context_ops;
2260 	put_user_ns(fc->user_ns);
2261 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2262 	fc->global = true;
2263 
2264 	if (have_favordynmods)
2265 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2266 
2267 	return 0;
2268 }
2269 
2270 static void cgroup_kill_sb(struct super_block *sb)
2271 {
2272 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2273 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2274 
2275 	/*
2276 	 * If @root doesn't have any children, start killing it.
2277 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2278 	 *
2279 	 * And don't kill the default root.
2280 	 */
2281 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2282 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2283 		cgroup_bpf_offline(&root->cgrp);
2284 		percpu_ref_kill(&root->cgrp.self.refcnt);
2285 	}
2286 	cgroup_put(&root->cgrp);
2287 	kernfs_kill_sb(sb);
2288 }
2289 
2290 struct file_system_type cgroup_fs_type = {
2291 	.name			= "cgroup",
2292 	.init_fs_context	= cgroup_init_fs_context,
2293 	.parameters		= cgroup1_fs_parameters,
2294 	.kill_sb		= cgroup_kill_sb,
2295 	.fs_flags		= FS_USERNS_MOUNT,
2296 };
2297 
2298 static struct file_system_type cgroup2_fs_type = {
2299 	.name			= "cgroup2",
2300 	.init_fs_context	= cgroup_init_fs_context,
2301 	.parameters		= cgroup2_fs_parameters,
2302 	.kill_sb		= cgroup_kill_sb,
2303 	.fs_flags		= FS_USERNS_MOUNT,
2304 };
2305 
2306 #ifdef CONFIG_CPUSETS
2307 static const struct fs_context_operations cpuset_fs_context_ops = {
2308 	.get_tree	= cgroup1_get_tree,
2309 	.free		= cgroup_fs_context_free,
2310 };
2311 
2312 /*
2313  * This is ugly, but preserves the userspace API for existing cpuset
2314  * users. If someone tries to mount the "cpuset" filesystem, we
2315  * silently switch it to mount "cgroup" instead
2316  */
2317 static int cpuset_init_fs_context(struct fs_context *fc)
2318 {
2319 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2320 	struct cgroup_fs_context *ctx;
2321 	int err;
2322 
2323 	err = cgroup_init_fs_context(fc);
2324 	if (err) {
2325 		kfree(agent);
2326 		return err;
2327 	}
2328 
2329 	fc->ops = &cpuset_fs_context_ops;
2330 
2331 	ctx = cgroup_fc2context(fc);
2332 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2333 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2334 	ctx->release_agent = agent;
2335 
2336 	get_filesystem(&cgroup_fs_type);
2337 	put_filesystem(fc->fs_type);
2338 	fc->fs_type = &cgroup_fs_type;
2339 
2340 	return 0;
2341 }
2342 
2343 static struct file_system_type cpuset_fs_type = {
2344 	.name			= "cpuset",
2345 	.init_fs_context	= cpuset_init_fs_context,
2346 	.fs_flags		= FS_USERNS_MOUNT,
2347 };
2348 #endif
2349 
2350 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2351 			  struct cgroup_namespace *ns)
2352 {
2353 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2354 
2355 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2356 }
2357 
2358 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2359 		   struct cgroup_namespace *ns)
2360 {
2361 	int ret;
2362 
2363 	cgroup_lock();
2364 	spin_lock_irq(&css_set_lock);
2365 
2366 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2367 
2368 	spin_unlock_irq(&css_set_lock);
2369 	cgroup_unlock();
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2374 
2375 /**
2376  * cgroup_attach_lock - Lock for ->attach()
2377  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2378  *
2379  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2380  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2381  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2382  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2383  * lead to deadlocks.
2384  *
2385  * Bringing up a CPU may involve creating and destroying tasks which requires
2386  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2387  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2388  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2389  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2390  * the threadgroup_rwsem to be released to create new tasks. For more details:
2391  *
2392  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2393  *
2394  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2395  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2396  * CPU hotplug is disabled on entry.
2397  */
2398 void cgroup_attach_lock(bool lock_threadgroup)
2399 {
2400 	cpus_read_lock();
2401 	if (lock_threadgroup)
2402 		percpu_down_write(&cgroup_threadgroup_rwsem);
2403 }
2404 
2405 /**
2406  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2407  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2408  */
2409 void cgroup_attach_unlock(bool lock_threadgroup)
2410 {
2411 	if (lock_threadgroup)
2412 		percpu_up_write(&cgroup_threadgroup_rwsem);
2413 	cpus_read_unlock();
2414 }
2415 
2416 /**
2417  * cgroup_migrate_add_task - add a migration target task to a migration context
2418  * @task: target task
2419  * @mgctx: target migration context
2420  *
2421  * Add @task, which is a migration target, to @mgctx->tset.  This function
2422  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2423  * should have been added as a migration source and @task->cg_list will be
2424  * moved from the css_set's tasks list to mg_tasks one.
2425  */
2426 static void cgroup_migrate_add_task(struct task_struct *task,
2427 				    struct cgroup_mgctx *mgctx)
2428 {
2429 	struct css_set *cset;
2430 
2431 	lockdep_assert_held(&css_set_lock);
2432 
2433 	/* @task either already exited or can't exit until the end */
2434 	if (task->flags & PF_EXITING)
2435 		return;
2436 
2437 	/* cgroup_threadgroup_rwsem protects racing against forks */
2438 	WARN_ON_ONCE(list_empty(&task->cg_list));
2439 
2440 	cset = task_css_set(task);
2441 	if (!cset->mg_src_cgrp)
2442 		return;
2443 
2444 	mgctx->tset.nr_tasks++;
2445 
2446 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2447 	if (list_empty(&cset->mg_node))
2448 		list_add_tail(&cset->mg_node,
2449 			      &mgctx->tset.src_csets);
2450 	if (list_empty(&cset->mg_dst_cset->mg_node))
2451 		list_add_tail(&cset->mg_dst_cset->mg_node,
2452 			      &mgctx->tset.dst_csets);
2453 }
2454 
2455 /**
2456  * cgroup_taskset_first - reset taskset and return the first task
2457  * @tset: taskset of interest
2458  * @dst_cssp: output variable for the destination css
2459  *
2460  * @tset iteration is initialized and the first task is returned.
2461  */
2462 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2463 					 struct cgroup_subsys_state **dst_cssp)
2464 {
2465 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2466 	tset->cur_task = NULL;
2467 
2468 	return cgroup_taskset_next(tset, dst_cssp);
2469 }
2470 
2471 /**
2472  * cgroup_taskset_next - iterate to the next task in taskset
2473  * @tset: taskset of interest
2474  * @dst_cssp: output variable for the destination css
2475  *
2476  * Return the next task in @tset.  Iteration must have been initialized
2477  * with cgroup_taskset_first().
2478  */
2479 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2480 					struct cgroup_subsys_state **dst_cssp)
2481 {
2482 	struct css_set *cset = tset->cur_cset;
2483 	struct task_struct *task = tset->cur_task;
2484 
2485 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2486 		if (!task)
2487 			task = list_first_entry(&cset->mg_tasks,
2488 						struct task_struct, cg_list);
2489 		else
2490 			task = list_next_entry(task, cg_list);
2491 
2492 		if (&task->cg_list != &cset->mg_tasks) {
2493 			tset->cur_cset = cset;
2494 			tset->cur_task = task;
2495 
2496 			/*
2497 			 * This function may be called both before and
2498 			 * after cgroup_migrate_execute().  The two cases
2499 			 * can be distinguished by looking at whether @cset
2500 			 * has its ->mg_dst_cset set.
2501 			 */
2502 			if (cset->mg_dst_cset)
2503 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2504 			else
2505 				*dst_cssp = cset->subsys[tset->ssid];
2506 
2507 			return task;
2508 		}
2509 
2510 		cset = list_next_entry(cset, mg_node);
2511 		task = NULL;
2512 	}
2513 
2514 	return NULL;
2515 }
2516 
2517 /**
2518  * cgroup_migrate_execute - migrate a taskset
2519  * @mgctx: migration context
2520  *
2521  * Migrate tasks in @mgctx as setup by migration preparation functions.
2522  * This function fails iff one of the ->can_attach callbacks fails and
2523  * guarantees that either all or none of the tasks in @mgctx are migrated.
2524  * @mgctx is consumed regardless of success.
2525  */
2526 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2527 {
2528 	struct cgroup_taskset *tset = &mgctx->tset;
2529 	struct cgroup_subsys *ss;
2530 	struct task_struct *task, *tmp_task;
2531 	struct css_set *cset, *tmp_cset;
2532 	int ssid, failed_ssid, ret;
2533 
2534 	/* check that we can legitimately attach to the cgroup */
2535 	if (tset->nr_tasks) {
2536 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2537 			if (ss->can_attach) {
2538 				tset->ssid = ssid;
2539 				ret = ss->can_attach(tset);
2540 				if (ret) {
2541 					failed_ssid = ssid;
2542 					goto out_cancel_attach;
2543 				}
2544 			}
2545 		} while_each_subsys_mask();
2546 	}
2547 
2548 	/*
2549 	 * Now that we're guaranteed success, proceed to move all tasks to
2550 	 * the new cgroup.  There are no failure cases after here, so this
2551 	 * is the commit point.
2552 	 */
2553 	spin_lock_irq(&css_set_lock);
2554 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2555 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2556 			struct css_set *from_cset = task_css_set(task);
2557 			struct css_set *to_cset = cset->mg_dst_cset;
2558 
2559 			get_css_set(to_cset);
2560 			to_cset->nr_tasks++;
2561 			css_set_move_task(task, from_cset, to_cset, true);
2562 			from_cset->nr_tasks--;
2563 			/*
2564 			 * If the source or destination cgroup is frozen,
2565 			 * the task might require to change its state.
2566 			 */
2567 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2568 						    to_cset->dfl_cgrp);
2569 			put_css_set_locked(from_cset);
2570 
2571 		}
2572 	}
2573 	spin_unlock_irq(&css_set_lock);
2574 
2575 	/*
2576 	 * Migration is committed, all target tasks are now on dst_csets.
2577 	 * Nothing is sensitive to fork() after this point.  Notify
2578 	 * controllers that migration is complete.
2579 	 */
2580 	tset->csets = &tset->dst_csets;
2581 
2582 	if (tset->nr_tasks) {
2583 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2584 			if (ss->attach) {
2585 				tset->ssid = ssid;
2586 				ss->attach(tset);
2587 			}
2588 		} while_each_subsys_mask();
2589 	}
2590 
2591 	ret = 0;
2592 	goto out_release_tset;
2593 
2594 out_cancel_attach:
2595 	if (tset->nr_tasks) {
2596 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2597 			if (ssid == failed_ssid)
2598 				break;
2599 			if (ss->cancel_attach) {
2600 				tset->ssid = ssid;
2601 				ss->cancel_attach(tset);
2602 			}
2603 		} while_each_subsys_mask();
2604 	}
2605 out_release_tset:
2606 	spin_lock_irq(&css_set_lock);
2607 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2608 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2609 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2610 		list_del_init(&cset->mg_node);
2611 	}
2612 	spin_unlock_irq(&css_set_lock);
2613 
2614 	/*
2615 	 * Re-initialize the cgroup_taskset structure in case it is reused
2616 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2617 	 * iteration.
2618 	 */
2619 	tset->nr_tasks = 0;
2620 	tset->csets    = &tset->src_csets;
2621 	return ret;
2622 }
2623 
2624 /**
2625  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2626  * @dst_cgrp: destination cgroup to test
2627  *
2628  * On the default hierarchy, except for the mixable, (possible) thread root
2629  * and threaded cgroups, subtree_control must be zero for migration
2630  * destination cgroups with tasks so that child cgroups don't compete
2631  * against tasks.
2632  */
2633 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2634 {
2635 	/* v1 doesn't have any restriction */
2636 	if (!cgroup_on_dfl(dst_cgrp))
2637 		return 0;
2638 
2639 	/* verify @dst_cgrp can host resources */
2640 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2641 		return -EOPNOTSUPP;
2642 
2643 	/*
2644 	 * If @dst_cgrp is already or can become a thread root or is
2645 	 * threaded, it doesn't matter.
2646 	 */
2647 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2648 		return 0;
2649 
2650 	/* apply no-internal-process constraint */
2651 	if (dst_cgrp->subtree_control)
2652 		return -EBUSY;
2653 
2654 	return 0;
2655 }
2656 
2657 /**
2658  * cgroup_migrate_finish - cleanup after attach
2659  * @mgctx: migration context
2660  *
2661  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2662  * those functions for details.
2663  */
2664 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2665 {
2666 	struct css_set *cset, *tmp_cset;
2667 
2668 	lockdep_assert_held(&cgroup_mutex);
2669 
2670 	spin_lock_irq(&css_set_lock);
2671 
2672 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2673 				 mg_src_preload_node) {
2674 		cset->mg_src_cgrp = NULL;
2675 		cset->mg_dst_cgrp = NULL;
2676 		cset->mg_dst_cset = NULL;
2677 		list_del_init(&cset->mg_src_preload_node);
2678 		put_css_set_locked(cset);
2679 	}
2680 
2681 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2682 				 mg_dst_preload_node) {
2683 		cset->mg_src_cgrp = NULL;
2684 		cset->mg_dst_cgrp = NULL;
2685 		cset->mg_dst_cset = NULL;
2686 		list_del_init(&cset->mg_dst_preload_node);
2687 		put_css_set_locked(cset);
2688 	}
2689 
2690 	spin_unlock_irq(&css_set_lock);
2691 }
2692 
2693 /**
2694  * cgroup_migrate_add_src - add a migration source css_set
2695  * @src_cset: the source css_set to add
2696  * @dst_cgrp: the destination cgroup
2697  * @mgctx: migration context
2698  *
2699  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2700  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2701  * up by cgroup_migrate_finish().
2702  *
2703  * This function may be called without holding cgroup_threadgroup_rwsem
2704  * even if the target is a process.  Threads may be created and destroyed
2705  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2706  * into play and the preloaded css_sets are guaranteed to cover all
2707  * migrations.
2708  */
2709 void cgroup_migrate_add_src(struct css_set *src_cset,
2710 			    struct cgroup *dst_cgrp,
2711 			    struct cgroup_mgctx *mgctx)
2712 {
2713 	struct cgroup *src_cgrp;
2714 
2715 	lockdep_assert_held(&cgroup_mutex);
2716 	lockdep_assert_held(&css_set_lock);
2717 
2718 	/*
2719 	 * If ->dead, @src_set is associated with one or more dead cgroups
2720 	 * and doesn't contain any migratable tasks.  Ignore it early so
2721 	 * that the rest of migration path doesn't get confused by it.
2722 	 */
2723 	if (src_cset->dead)
2724 		return;
2725 
2726 	if (!list_empty(&src_cset->mg_src_preload_node))
2727 		return;
2728 
2729 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2730 
2731 	WARN_ON(src_cset->mg_src_cgrp);
2732 	WARN_ON(src_cset->mg_dst_cgrp);
2733 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2734 	WARN_ON(!list_empty(&src_cset->mg_node));
2735 
2736 	src_cset->mg_src_cgrp = src_cgrp;
2737 	src_cset->mg_dst_cgrp = dst_cgrp;
2738 	get_css_set(src_cset);
2739 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2740 }
2741 
2742 /**
2743  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2744  * @mgctx: migration context
2745  *
2746  * Tasks are about to be moved and all the source css_sets have been
2747  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2748  * pins all destination css_sets, links each to its source, and append them
2749  * to @mgctx->preloaded_dst_csets.
2750  *
2751  * This function must be called after cgroup_migrate_add_src() has been
2752  * called on each migration source css_set.  After migration is performed
2753  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2754  * @mgctx.
2755  */
2756 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2757 {
2758 	struct css_set *src_cset, *tmp_cset;
2759 
2760 	lockdep_assert_held(&cgroup_mutex);
2761 
2762 	/* look up the dst cset for each src cset and link it to src */
2763 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2764 				 mg_src_preload_node) {
2765 		struct css_set *dst_cset;
2766 		struct cgroup_subsys *ss;
2767 		int ssid;
2768 
2769 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2770 		if (!dst_cset)
2771 			return -ENOMEM;
2772 
2773 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2774 
2775 		/*
2776 		 * If src cset equals dst, it's noop.  Drop the src.
2777 		 * cgroup_migrate() will skip the cset too.  Note that we
2778 		 * can't handle src == dst as some nodes are used by both.
2779 		 */
2780 		if (src_cset == dst_cset) {
2781 			src_cset->mg_src_cgrp = NULL;
2782 			src_cset->mg_dst_cgrp = NULL;
2783 			list_del_init(&src_cset->mg_src_preload_node);
2784 			put_css_set(src_cset);
2785 			put_css_set(dst_cset);
2786 			continue;
2787 		}
2788 
2789 		src_cset->mg_dst_cset = dst_cset;
2790 
2791 		if (list_empty(&dst_cset->mg_dst_preload_node))
2792 			list_add_tail(&dst_cset->mg_dst_preload_node,
2793 				      &mgctx->preloaded_dst_csets);
2794 		else
2795 			put_css_set(dst_cset);
2796 
2797 		for_each_subsys(ss, ssid)
2798 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2799 				mgctx->ss_mask |= 1 << ssid;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 /**
2806  * cgroup_migrate - migrate a process or task to a cgroup
2807  * @leader: the leader of the process or the task to migrate
2808  * @threadgroup: whether @leader points to the whole process or a single task
2809  * @mgctx: migration context
2810  *
2811  * Migrate a process or task denoted by @leader.  If migrating a process,
2812  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2813  * responsible for invoking cgroup_migrate_add_src() and
2814  * cgroup_migrate_prepare_dst() on the targets before invoking this
2815  * function and following up with cgroup_migrate_finish().
2816  *
2817  * As long as a controller's ->can_attach() doesn't fail, this function is
2818  * guaranteed to succeed.  This means that, excluding ->can_attach()
2819  * failure, when migrating multiple targets, the success or failure can be
2820  * decided for all targets by invoking group_migrate_prepare_dst() before
2821  * actually starting migrating.
2822  */
2823 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2824 		   struct cgroup_mgctx *mgctx)
2825 {
2826 	struct task_struct *task;
2827 
2828 	/*
2829 	 * The following thread iteration should be inside an RCU critical
2830 	 * section to prevent tasks from being freed while taking the snapshot.
2831 	 * spin_lock_irq() implies RCU critical section here.
2832 	 */
2833 	spin_lock_irq(&css_set_lock);
2834 	task = leader;
2835 	do {
2836 		cgroup_migrate_add_task(task, mgctx);
2837 		if (!threadgroup)
2838 			break;
2839 	} while_each_thread(leader, task);
2840 	spin_unlock_irq(&css_set_lock);
2841 
2842 	return cgroup_migrate_execute(mgctx);
2843 }
2844 
2845 /**
2846  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847  * @dst_cgrp: the cgroup to attach to
2848  * @leader: the task or the leader of the threadgroup to be attached
2849  * @threadgroup: attach the whole threadgroup?
2850  *
2851  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852  */
2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854 		       bool threadgroup)
2855 {
2856 	DEFINE_CGROUP_MGCTX(mgctx);
2857 	struct task_struct *task;
2858 	int ret = 0;
2859 
2860 	/* look up all src csets */
2861 	spin_lock_irq(&css_set_lock);
2862 	rcu_read_lock();
2863 	task = leader;
2864 	do {
2865 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866 		if (!threadgroup)
2867 			break;
2868 	} while_each_thread(leader, task);
2869 	rcu_read_unlock();
2870 	spin_unlock_irq(&css_set_lock);
2871 
2872 	/* prepare dst csets and commit */
2873 	ret = cgroup_migrate_prepare_dst(&mgctx);
2874 	if (!ret)
2875 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876 
2877 	cgroup_migrate_finish(&mgctx);
2878 
2879 	if (!ret)
2880 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881 
2882 	return ret;
2883 }
2884 
2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886 					     bool *threadgroup_locked)
2887 {
2888 	struct task_struct *tsk;
2889 	pid_t pid;
2890 
2891 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892 		return ERR_PTR(-EINVAL);
2893 
2894 	/*
2895 	 * If we migrate a single thread, we don't care about threadgroup
2896 	 * stability. If the thread is `current`, it won't exit(2) under our
2897 	 * hands or change PID through exec(2). We exclude
2898 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2899 	 * callers by cgroup_mutex.
2900 	 * Therefore, we can skip the global lock.
2901 	 */
2902 	lockdep_assert_held(&cgroup_mutex);
2903 	*threadgroup_locked = pid || threadgroup;
2904 	cgroup_attach_lock(*threadgroup_locked);
2905 
2906 	rcu_read_lock();
2907 	if (pid) {
2908 		tsk = find_task_by_vpid(pid);
2909 		if (!tsk) {
2910 			tsk = ERR_PTR(-ESRCH);
2911 			goto out_unlock_threadgroup;
2912 		}
2913 	} else {
2914 		tsk = current;
2915 	}
2916 
2917 	if (threadgroup)
2918 		tsk = tsk->group_leader;
2919 
2920 	/*
2921 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2922 	 * If userland migrates such a kthread to a non-root cgroup, it can
2923 	 * become trapped in a cpuset, or RT kthread may be born in a
2924 	 * cgroup with no rt_runtime allocated.  Just say no.
2925 	 */
2926 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2927 		tsk = ERR_PTR(-EINVAL);
2928 		goto out_unlock_threadgroup;
2929 	}
2930 
2931 	get_task_struct(tsk);
2932 	goto out_unlock_rcu;
2933 
2934 out_unlock_threadgroup:
2935 	cgroup_attach_unlock(*threadgroup_locked);
2936 	*threadgroup_locked = false;
2937 out_unlock_rcu:
2938 	rcu_read_unlock();
2939 	return tsk;
2940 }
2941 
2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2943 {
2944 	struct cgroup_subsys *ss;
2945 	int ssid;
2946 
2947 	/* release reference from cgroup_procs_write_start() */
2948 	put_task_struct(task);
2949 
2950 	cgroup_attach_unlock(threadgroup_locked);
2951 
2952 	for_each_subsys(ss, ssid)
2953 		if (ss->post_attach)
2954 			ss->post_attach();
2955 }
2956 
2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2958 {
2959 	struct cgroup_subsys *ss;
2960 	bool printed = false;
2961 	int ssid;
2962 
2963 	do_each_subsys_mask(ss, ssid, ss_mask) {
2964 		if (printed)
2965 			seq_putc(seq, ' ');
2966 		seq_puts(seq, ss->name);
2967 		printed = true;
2968 	} while_each_subsys_mask();
2969 	if (printed)
2970 		seq_putc(seq, '\n');
2971 }
2972 
2973 /* show controllers which are enabled from the parent */
2974 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2975 {
2976 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2977 
2978 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2979 	return 0;
2980 }
2981 
2982 /* show controllers which are enabled for a given cgroup's children */
2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2984 {
2985 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2986 
2987 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2988 	return 0;
2989 }
2990 
2991 /**
2992  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2993  * @cgrp: root of the subtree to update csses for
2994  *
2995  * @cgrp's control masks have changed and its subtree's css associations
2996  * need to be updated accordingly.  This function looks up all css_sets
2997  * which are attached to the subtree, creates the matching updated css_sets
2998  * and migrates the tasks to the new ones.
2999  */
3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3001 {
3002 	DEFINE_CGROUP_MGCTX(mgctx);
3003 	struct cgroup_subsys_state *d_css;
3004 	struct cgroup *dsct;
3005 	struct css_set *src_cset;
3006 	bool has_tasks;
3007 	int ret;
3008 
3009 	lockdep_assert_held(&cgroup_mutex);
3010 
3011 	/* look up all csses currently attached to @cgrp's subtree */
3012 	spin_lock_irq(&css_set_lock);
3013 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3014 		struct cgrp_cset_link *link;
3015 
3016 		/*
3017 		 * As cgroup_update_dfl_csses() is only called by
3018 		 * cgroup_apply_control(). The csses associated with the
3019 		 * given cgrp will not be affected by changes made to
3020 		 * its subtree_control file. We can skip them.
3021 		 */
3022 		if (dsct == cgrp)
3023 			continue;
3024 
3025 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3026 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3027 	}
3028 	spin_unlock_irq(&css_set_lock);
3029 
3030 	/*
3031 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3032 	 * However, if there are no source csets for @cgrp, changing its
3033 	 * controllers isn't gonna produce any task migrations and the
3034 	 * write-locking can be skipped safely.
3035 	 */
3036 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3037 	cgroup_attach_lock(has_tasks);
3038 
3039 	/* NULL dst indicates self on default hierarchy */
3040 	ret = cgroup_migrate_prepare_dst(&mgctx);
3041 	if (ret)
3042 		goto out_finish;
3043 
3044 	spin_lock_irq(&css_set_lock);
3045 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3046 			    mg_src_preload_node) {
3047 		struct task_struct *task, *ntask;
3048 
3049 		/* all tasks in src_csets need to be migrated */
3050 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3051 			cgroup_migrate_add_task(task, &mgctx);
3052 	}
3053 	spin_unlock_irq(&css_set_lock);
3054 
3055 	ret = cgroup_migrate_execute(&mgctx);
3056 out_finish:
3057 	cgroup_migrate_finish(&mgctx);
3058 	cgroup_attach_unlock(has_tasks);
3059 	return ret;
3060 }
3061 
3062 /**
3063  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3064  * @cgrp: root of the target subtree
3065  *
3066  * Because css offlining is asynchronous, userland may try to re-enable a
3067  * controller while the previous css is still around.  This function grabs
3068  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3069  */
3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3071 	__acquires(&cgroup_mutex)
3072 {
3073 	struct cgroup *dsct;
3074 	struct cgroup_subsys_state *d_css;
3075 	struct cgroup_subsys *ss;
3076 	int ssid;
3077 
3078 restart:
3079 	cgroup_lock();
3080 
3081 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3082 		for_each_subsys(ss, ssid) {
3083 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3084 			DEFINE_WAIT(wait);
3085 
3086 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3087 				continue;
3088 
3089 			cgroup_get_live(dsct);
3090 			prepare_to_wait(&dsct->offline_waitq, &wait,
3091 					TASK_UNINTERRUPTIBLE);
3092 
3093 			cgroup_unlock();
3094 			schedule();
3095 			finish_wait(&dsct->offline_waitq, &wait);
3096 
3097 			cgroup_put(dsct);
3098 			goto restart;
3099 		}
3100 	}
3101 }
3102 
3103 /**
3104  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3105  * @cgrp: root of the target subtree
3106  *
3107  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3108  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3109  * itself.
3110  */
3111 static void cgroup_save_control(struct cgroup *cgrp)
3112 {
3113 	struct cgroup *dsct;
3114 	struct cgroup_subsys_state *d_css;
3115 
3116 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117 		dsct->old_subtree_control = dsct->subtree_control;
3118 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3119 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3120 	}
3121 }
3122 
3123 /**
3124  * cgroup_propagate_control - refresh control masks of a subtree
3125  * @cgrp: root of the target subtree
3126  *
3127  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3128  * ->subtree_control and propagate controller availability through the
3129  * subtree so that descendants don't have unavailable controllers enabled.
3130  */
3131 static void cgroup_propagate_control(struct cgroup *cgrp)
3132 {
3133 	struct cgroup *dsct;
3134 	struct cgroup_subsys_state *d_css;
3135 
3136 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3137 		dsct->subtree_control &= cgroup_control(dsct);
3138 		dsct->subtree_ss_mask =
3139 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3140 						    cgroup_ss_mask(dsct));
3141 	}
3142 }
3143 
3144 /**
3145  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3146  * @cgrp: root of the target subtree
3147  *
3148  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3149  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3150  * itself.
3151  */
3152 static void cgroup_restore_control(struct cgroup *cgrp)
3153 {
3154 	struct cgroup *dsct;
3155 	struct cgroup_subsys_state *d_css;
3156 
3157 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3158 		dsct->subtree_control = dsct->old_subtree_control;
3159 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3160 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3161 	}
3162 }
3163 
3164 static bool css_visible(struct cgroup_subsys_state *css)
3165 {
3166 	struct cgroup_subsys *ss = css->ss;
3167 	struct cgroup *cgrp = css->cgroup;
3168 
3169 	if (cgroup_control(cgrp) & (1 << ss->id))
3170 		return true;
3171 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3172 		return false;
3173 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3174 }
3175 
3176 /**
3177  * cgroup_apply_control_enable - enable or show csses according to control
3178  * @cgrp: root of the target subtree
3179  *
3180  * Walk @cgrp's subtree and create new csses or make the existing ones
3181  * visible.  A css is created invisible if it's being implicitly enabled
3182  * through dependency.  An invisible css is made visible when the userland
3183  * explicitly enables it.
3184  *
3185  * Returns 0 on success, -errno on failure.  On failure, csses which have
3186  * been processed already aren't cleaned up.  The caller is responsible for
3187  * cleaning up with cgroup_apply_control_disable().
3188  */
3189 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3190 {
3191 	struct cgroup *dsct;
3192 	struct cgroup_subsys_state *d_css;
3193 	struct cgroup_subsys *ss;
3194 	int ssid, ret;
3195 
3196 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3197 		for_each_subsys(ss, ssid) {
3198 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3199 
3200 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3201 				continue;
3202 
3203 			if (!css) {
3204 				css = css_create(dsct, ss);
3205 				if (IS_ERR(css))
3206 					return PTR_ERR(css);
3207 			}
3208 
3209 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210 
3211 			if (css_visible(css)) {
3212 				ret = css_populate_dir(css);
3213 				if (ret)
3214 					return ret;
3215 			}
3216 		}
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  * cgroup_apply_control_disable - kill or hide csses according to control
3224  * @cgrp: root of the target subtree
3225  *
3226  * Walk @cgrp's subtree and kill and hide csses so that they match
3227  * cgroup_ss_mask() and cgroup_visible_mask().
3228  *
3229  * A css is hidden when the userland requests it to be disabled while other
3230  * subsystems are still depending on it.  The css must not actively control
3231  * resources and be in the vanilla state if it's made visible again later.
3232  * Controllers which may be depended upon should provide ->css_reset() for
3233  * this purpose.
3234  */
3235 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3236 {
3237 	struct cgroup *dsct;
3238 	struct cgroup_subsys_state *d_css;
3239 	struct cgroup_subsys *ss;
3240 	int ssid;
3241 
3242 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243 		for_each_subsys(ss, ssid) {
3244 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3245 
3246 			if (!css)
3247 				continue;
3248 
3249 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3250 
3251 			if (css->parent &&
3252 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3253 				kill_css(css);
3254 			} else if (!css_visible(css)) {
3255 				css_clear_dir(css);
3256 				if (ss->css_reset)
3257 					ss->css_reset(css);
3258 			}
3259 		}
3260 	}
3261 }
3262 
3263 /**
3264  * cgroup_apply_control - apply control mask updates to the subtree
3265  * @cgrp: root of the target subtree
3266  *
3267  * subsystems can be enabled and disabled in a subtree using the following
3268  * steps.
3269  *
3270  * 1. Call cgroup_save_control() to stash the current state.
3271  * 2. Update ->subtree_control masks in the subtree as desired.
3272  * 3. Call cgroup_apply_control() to apply the changes.
3273  * 4. Optionally perform other related operations.
3274  * 5. Call cgroup_finalize_control() to finish up.
3275  *
3276  * This function implements step 3 and propagates the mask changes
3277  * throughout @cgrp's subtree, updates csses accordingly and perform
3278  * process migrations.
3279  */
3280 static int cgroup_apply_control(struct cgroup *cgrp)
3281 {
3282 	int ret;
3283 
3284 	cgroup_propagate_control(cgrp);
3285 
3286 	ret = cgroup_apply_control_enable(cgrp);
3287 	if (ret)
3288 		return ret;
3289 
3290 	/*
3291 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3292 	 * making the following cgroup_update_dfl_csses() properly update
3293 	 * css associations of all tasks in the subtree.
3294 	 */
3295 	return cgroup_update_dfl_csses(cgrp);
3296 }
3297 
3298 /**
3299  * cgroup_finalize_control - finalize control mask update
3300  * @cgrp: root of the target subtree
3301  * @ret: the result of the update
3302  *
3303  * Finalize control mask update.  See cgroup_apply_control() for more info.
3304  */
3305 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3306 {
3307 	if (ret) {
3308 		cgroup_restore_control(cgrp);
3309 		cgroup_propagate_control(cgrp);
3310 	}
3311 
3312 	cgroup_apply_control_disable(cgrp);
3313 }
3314 
3315 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3316 {
3317 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3318 
3319 	/* if nothing is getting enabled, nothing to worry about */
3320 	if (!enable)
3321 		return 0;
3322 
3323 	/* can @cgrp host any resources? */
3324 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3325 		return -EOPNOTSUPP;
3326 
3327 	/* mixables don't care */
3328 	if (cgroup_is_mixable(cgrp))
3329 		return 0;
3330 
3331 	if (domain_enable) {
3332 		/* can't enable domain controllers inside a thread subtree */
3333 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3334 			return -EOPNOTSUPP;
3335 	} else {
3336 		/*
3337 		 * Threaded controllers can handle internal competitions
3338 		 * and are always allowed inside a (prospective) thread
3339 		 * subtree.
3340 		 */
3341 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3342 			return 0;
3343 	}
3344 
3345 	/*
3346 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3347 	 * child cgroups competing against tasks.
3348 	 */
3349 	if (cgroup_has_tasks(cgrp))
3350 		return -EBUSY;
3351 
3352 	return 0;
3353 }
3354 
3355 /* change the enabled child controllers for a cgroup in the default hierarchy */
3356 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3357 					    char *buf, size_t nbytes,
3358 					    loff_t off)
3359 {
3360 	u16 enable = 0, disable = 0;
3361 	struct cgroup *cgrp, *child;
3362 	struct cgroup_subsys *ss;
3363 	char *tok;
3364 	int ssid, ret;
3365 
3366 	/*
3367 	 * Parse input - space separated list of subsystem names prefixed
3368 	 * with either + or -.
3369 	 */
3370 	buf = strstrip(buf);
3371 	while ((tok = strsep(&buf, " "))) {
3372 		if (tok[0] == '\0')
3373 			continue;
3374 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3375 			if (!cgroup_ssid_enabled(ssid) ||
3376 			    strcmp(tok + 1, ss->name))
3377 				continue;
3378 
3379 			if (*tok == '+') {
3380 				enable |= 1 << ssid;
3381 				disable &= ~(1 << ssid);
3382 			} else if (*tok == '-') {
3383 				disable |= 1 << ssid;
3384 				enable &= ~(1 << ssid);
3385 			} else {
3386 				return -EINVAL;
3387 			}
3388 			break;
3389 		} while_each_subsys_mask();
3390 		if (ssid == CGROUP_SUBSYS_COUNT)
3391 			return -EINVAL;
3392 	}
3393 
3394 	cgrp = cgroup_kn_lock_live(of->kn, true);
3395 	if (!cgrp)
3396 		return -ENODEV;
3397 
3398 	for_each_subsys(ss, ssid) {
3399 		if (enable & (1 << ssid)) {
3400 			if (cgrp->subtree_control & (1 << ssid)) {
3401 				enable &= ~(1 << ssid);
3402 				continue;
3403 			}
3404 
3405 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3406 				ret = -ENOENT;
3407 				goto out_unlock;
3408 			}
3409 		} else if (disable & (1 << ssid)) {
3410 			if (!(cgrp->subtree_control & (1 << ssid))) {
3411 				disable &= ~(1 << ssid);
3412 				continue;
3413 			}
3414 
3415 			/* a child has it enabled? */
3416 			cgroup_for_each_live_child(child, cgrp) {
3417 				if (child->subtree_control & (1 << ssid)) {
3418 					ret = -EBUSY;
3419 					goto out_unlock;
3420 				}
3421 			}
3422 		}
3423 	}
3424 
3425 	if (!enable && !disable) {
3426 		ret = 0;
3427 		goto out_unlock;
3428 	}
3429 
3430 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3431 	if (ret)
3432 		goto out_unlock;
3433 
3434 	/* save and update control masks and prepare csses */
3435 	cgroup_save_control(cgrp);
3436 
3437 	cgrp->subtree_control |= enable;
3438 	cgrp->subtree_control &= ~disable;
3439 
3440 	ret = cgroup_apply_control(cgrp);
3441 	cgroup_finalize_control(cgrp, ret);
3442 	if (ret)
3443 		goto out_unlock;
3444 
3445 	kernfs_activate(cgrp->kn);
3446 out_unlock:
3447 	cgroup_kn_unlock(of->kn);
3448 	return ret ?: nbytes;
3449 }
3450 
3451 /**
3452  * cgroup_enable_threaded - make @cgrp threaded
3453  * @cgrp: the target cgroup
3454  *
3455  * Called when "threaded" is written to the cgroup.type interface file and
3456  * tries to make @cgrp threaded and join the parent's resource domain.
3457  * This function is never called on the root cgroup as cgroup.type doesn't
3458  * exist on it.
3459  */
3460 static int cgroup_enable_threaded(struct cgroup *cgrp)
3461 {
3462 	struct cgroup *parent = cgroup_parent(cgrp);
3463 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3464 	struct cgroup *dsct;
3465 	struct cgroup_subsys_state *d_css;
3466 	int ret;
3467 
3468 	lockdep_assert_held(&cgroup_mutex);
3469 
3470 	/* noop if already threaded */
3471 	if (cgroup_is_threaded(cgrp))
3472 		return 0;
3473 
3474 	/*
3475 	 * If @cgroup is populated or has domain controllers enabled, it
3476 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3477 	 * test can catch the same conditions, that's only when @parent is
3478 	 * not mixable, so let's check it explicitly.
3479 	 */
3480 	if (cgroup_is_populated(cgrp) ||
3481 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3482 		return -EOPNOTSUPP;
3483 
3484 	/* we're joining the parent's domain, ensure its validity */
3485 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3486 	    !cgroup_can_be_thread_root(dom_cgrp))
3487 		return -EOPNOTSUPP;
3488 
3489 	/*
3490 	 * The following shouldn't cause actual migrations and should
3491 	 * always succeed.
3492 	 */
3493 	cgroup_save_control(cgrp);
3494 
3495 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3496 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3497 			dsct->dom_cgrp = dom_cgrp;
3498 
3499 	ret = cgroup_apply_control(cgrp);
3500 	if (!ret)
3501 		parent->nr_threaded_children++;
3502 
3503 	cgroup_finalize_control(cgrp, ret);
3504 	return ret;
3505 }
3506 
3507 static int cgroup_type_show(struct seq_file *seq, void *v)
3508 {
3509 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3510 
3511 	if (cgroup_is_threaded(cgrp))
3512 		seq_puts(seq, "threaded\n");
3513 	else if (!cgroup_is_valid_domain(cgrp))
3514 		seq_puts(seq, "domain invalid\n");
3515 	else if (cgroup_is_thread_root(cgrp))
3516 		seq_puts(seq, "domain threaded\n");
3517 	else
3518 		seq_puts(seq, "domain\n");
3519 
3520 	return 0;
3521 }
3522 
3523 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3524 				 size_t nbytes, loff_t off)
3525 {
3526 	struct cgroup *cgrp;
3527 	int ret;
3528 
3529 	/* only switching to threaded mode is supported */
3530 	if (strcmp(strstrip(buf), "threaded"))
3531 		return -EINVAL;
3532 
3533 	/* drain dying csses before we re-apply (threaded) subtree control */
3534 	cgrp = cgroup_kn_lock_live(of->kn, true);
3535 	if (!cgrp)
3536 		return -ENOENT;
3537 
3538 	/* threaded can only be enabled */
3539 	ret = cgroup_enable_threaded(cgrp);
3540 
3541 	cgroup_kn_unlock(of->kn);
3542 	return ret ?: nbytes;
3543 }
3544 
3545 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3546 {
3547 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3548 	int descendants = READ_ONCE(cgrp->max_descendants);
3549 
3550 	if (descendants == INT_MAX)
3551 		seq_puts(seq, "max\n");
3552 	else
3553 		seq_printf(seq, "%d\n", descendants);
3554 
3555 	return 0;
3556 }
3557 
3558 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3559 					   char *buf, size_t nbytes, loff_t off)
3560 {
3561 	struct cgroup *cgrp;
3562 	int descendants;
3563 	ssize_t ret;
3564 
3565 	buf = strstrip(buf);
3566 	if (!strcmp(buf, "max")) {
3567 		descendants = INT_MAX;
3568 	} else {
3569 		ret = kstrtoint(buf, 0, &descendants);
3570 		if (ret)
3571 			return ret;
3572 	}
3573 
3574 	if (descendants < 0)
3575 		return -ERANGE;
3576 
3577 	cgrp = cgroup_kn_lock_live(of->kn, false);
3578 	if (!cgrp)
3579 		return -ENOENT;
3580 
3581 	cgrp->max_descendants = descendants;
3582 
3583 	cgroup_kn_unlock(of->kn);
3584 
3585 	return nbytes;
3586 }
3587 
3588 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3589 {
3590 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3591 	int depth = READ_ONCE(cgrp->max_depth);
3592 
3593 	if (depth == INT_MAX)
3594 		seq_puts(seq, "max\n");
3595 	else
3596 		seq_printf(seq, "%d\n", depth);
3597 
3598 	return 0;
3599 }
3600 
3601 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3602 				      char *buf, size_t nbytes, loff_t off)
3603 {
3604 	struct cgroup *cgrp;
3605 	ssize_t ret;
3606 	int depth;
3607 
3608 	buf = strstrip(buf);
3609 	if (!strcmp(buf, "max")) {
3610 		depth = INT_MAX;
3611 	} else {
3612 		ret = kstrtoint(buf, 0, &depth);
3613 		if (ret)
3614 			return ret;
3615 	}
3616 
3617 	if (depth < 0)
3618 		return -ERANGE;
3619 
3620 	cgrp = cgroup_kn_lock_live(of->kn, false);
3621 	if (!cgrp)
3622 		return -ENOENT;
3623 
3624 	cgrp->max_depth = depth;
3625 
3626 	cgroup_kn_unlock(of->kn);
3627 
3628 	return nbytes;
3629 }
3630 
3631 static int cgroup_events_show(struct seq_file *seq, void *v)
3632 {
3633 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3634 
3635 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3636 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3637 
3638 	return 0;
3639 }
3640 
3641 static int cgroup_stat_show(struct seq_file *seq, void *v)
3642 {
3643 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3644 
3645 	seq_printf(seq, "nr_descendants %d\n",
3646 		   cgroup->nr_descendants);
3647 	seq_printf(seq, "nr_dying_descendants %d\n",
3648 		   cgroup->nr_dying_descendants);
3649 
3650 	return 0;
3651 }
3652 
3653 #ifdef CONFIG_CGROUP_SCHED
3654 /**
3655  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3656  * @cgrp: the cgroup of interest
3657  * @ss: the subsystem of interest
3658  *
3659  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3660  * or is offline, %NULL is returned.
3661  */
3662 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3663 						     struct cgroup_subsys *ss)
3664 {
3665 	struct cgroup_subsys_state *css;
3666 
3667 	rcu_read_lock();
3668 	css = cgroup_css(cgrp, ss);
3669 	if (css && !css_tryget_online(css))
3670 		css = NULL;
3671 	rcu_read_unlock();
3672 
3673 	return css;
3674 }
3675 
3676 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3677 {
3678 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3679 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3680 	struct cgroup_subsys_state *css;
3681 	int ret;
3682 
3683 	if (!ss->css_extra_stat_show)
3684 		return 0;
3685 
3686 	css = cgroup_tryget_css(cgrp, ss);
3687 	if (!css)
3688 		return 0;
3689 
3690 	ret = ss->css_extra_stat_show(seq, css);
3691 	css_put(css);
3692 	return ret;
3693 }
3694 
3695 static int cgroup_local_stat_show(struct seq_file *seq,
3696 				  struct cgroup *cgrp, int ssid)
3697 {
3698 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3699 	struct cgroup_subsys_state *css;
3700 	int ret;
3701 
3702 	if (!ss->css_local_stat_show)
3703 		return 0;
3704 
3705 	css = cgroup_tryget_css(cgrp, ss);
3706 	if (!css)
3707 		return 0;
3708 
3709 	ret = ss->css_local_stat_show(seq, css);
3710 	css_put(css);
3711 	return ret;
3712 }
3713 #endif
3714 
3715 static int cpu_stat_show(struct seq_file *seq, void *v)
3716 {
3717 	int ret = 0;
3718 
3719 	cgroup_base_stat_cputime_show(seq);
3720 #ifdef CONFIG_CGROUP_SCHED
3721 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3722 #endif
3723 	return ret;
3724 }
3725 
3726 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3727 {
3728 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3729 	int ret = 0;
3730 
3731 #ifdef CONFIG_CGROUP_SCHED
3732 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3733 #endif
3734 	return ret;
3735 }
3736 
3737 #ifdef CONFIG_PSI
3738 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3739 {
3740 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3741 	struct psi_group *psi = cgroup_psi(cgrp);
3742 
3743 	return psi_show(seq, psi, PSI_IO);
3744 }
3745 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3746 {
3747 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3748 	struct psi_group *psi = cgroup_psi(cgrp);
3749 
3750 	return psi_show(seq, psi, PSI_MEM);
3751 }
3752 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3753 {
3754 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3755 	struct psi_group *psi = cgroup_psi(cgrp);
3756 
3757 	return psi_show(seq, psi, PSI_CPU);
3758 }
3759 
3760 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3761 			      size_t nbytes, enum psi_res res)
3762 {
3763 	struct cgroup_file_ctx *ctx = of->priv;
3764 	struct psi_trigger *new;
3765 	struct cgroup *cgrp;
3766 	struct psi_group *psi;
3767 
3768 	cgrp = cgroup_kn_lock_live(of->kn, false);
3769 	if (!cgrp)
3770 		return -ENODEV;
3771 
3772 	cgroup_get(cgrp);
3773 	cgroup_kn_unlock(of->kn);
3774 
3775 	/* Allow only one trigger per file descriptor */
3776 	if (ctx->psi.trigger) {
3777 		cgroup_put(cgrp);
3778 		return -EBUSY;
3779 	}
3780 
3781 	psi = cgroup_psi(cgrp);
3782 	new = psi_trigger_create(psi, buf, res, of->file, of);
3783 	if (IS_ERR(new)) {
3784 		cgroup_put(cgrp);
3785 		return PTR_ERR(new);
3786 	}
3787 
3788 	smp_store_release(&ctx->psi.trigger, new);
3789 	cgroup_put(cgrp);
3790 
3791 	return nbytes;
3792 }
3793 
3794 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3795 					  char *buf, size_t nbytes,
3796 					  loff_t off)
3797 {
3798 	return pressure_write(of, buf, nbytes, PSI_IO);
3799 }
3800 
3801 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3802 					  char *buf, size_t nbytes,
3803 					  loff_t off)
3804 {
3805 	return pressure_write(of, buf, nbytes, PSI_MEM);
3806 }
3807 
3808 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3809 					  char *buf, size_t nbytes,
3810 					  loff_t off)
3811 {
3812 	return pressure_write(of, buf, nbytes, PSI_CPU);
3813 }
3814 
3815 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3816 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3817 {
3818 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3819 	struct psi_group *psi = cgroup_psi(cgrp);
3820 
3821 	return psi_show(seq, psi, PSI_IRQ);
3822 }
3823 
3824 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3825 					 char *buf, size_t nbytes,
3826 					 loff_t off)
3827 {
3828 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3829 }
3830 #endif
3831 
3832 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3833 {
3834 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3835 	struct psi_group *psi = cgroup_psi(cgrp);
3836 
3837 	seq_printf(seq, "%d\n", psi->enabled);
3838 
3839 	return 0;
3840 }
3841 
3842 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3843 				     char *buf, size_t nbytes,
3844 				     loff_t off)
3845 {
3846 	ssize_t ret;
3847 	int enable;
3848 	struct cgroup *cgrp;
3849 	struct psi_group *psi;
3850 
3851 	ret = kstrtoint(strstrip(buf), 0, &enable);
3852 	if (ret)
3853 		return ret;
3854 
3855 	if (enable < 0 || enable > 1)
3856 		return -ERANGE;
3857 
3858 	cgrp = cgroup_kn_lock_live(of->kn, false);
3859 	if (!cgrp)
3860 		return -ENOENT;
3861 
3862 	psi = cgroup_psi(cgrp);
3863 	if (psi->enabled != enable) {
3864 		int i;
3865 
3866 		/* show or hide {cpu,memory,io,irq}.pressure files */
3867 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3868 			cgroup_file_show(&cgrp->psi_files[i], enable);
3869 
3870 		psi->enabled = enable;
3871 		if (enable)
3872 			psi_cgroup_restart(psi);
3873 	}
3874 
3875 	cgroup_kn_unlock(of->kn);
3876 
3877 	return nbytes;
3878 }
3879 
3880 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3881 					  poll_table *pt)
3882 {
3883 	struct cgroup_file_ctx *ctx = of->priv;
3884 
3885 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3886 }
3887 
3888 static int cgroup_pressure_open(struct kernfs_open_file *of)
3889 {
3890 	if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
3891 		return -EPERM;
3892 
3893 	return 0;
3894 }
3895 
3896 static void cgroup_pressure_release(struct kernfs_open_file *of)
3897 {
3898 	struct cgroup_file_ctx *ctx = of->priv;
3899 
3900 	psi_trigger_destroy(ctx->psi.trigger);
3901 }
3902 
3903 bool cgroup_psi_enabled(void)
3904 {
3905 	if (static_branch_likely(&psi_disabled))
3906 		return false;
3907 
3908 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3909 }
3910 
3911 #else /* CONFIG_PSI */
3912 bool cgroup_psi_enabled(void)
3913 {
3914 	return false;
3915 }
3916 
3917 #endif /* CONFIG_PSI */
3918 
3919 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3920 {
3921 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3922 
3923 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3924 
3925 	return 0;
3926 }
3927 
3928 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3929 				   char *buf, size_t nbytes, loff_t off)
3930 {
3931 	struct cgroup *cgrp;
3932 	ssize_t ret;
3933 	int freeze;
3934 
3935 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3936 	if (ret)
3937 		return ret;
3938 
3939 	if (freeze < 0 || freeze > 1)
3940 		return -ERANGE;
3941 
3942 	cgrp = cgroup_kn_lock_live(of->kn, false);
3943 	if (!cgrp)
3944 		return -ENOENT;
3945 
3946 	cgroup_freeze(cgrp, freeze);
3947 
3948 	cgroup_kn_unlock(of->kn);
3949 
3950 	return nbytes;
3951 }
3952 
3953 static void __cgroup_kill(struct cgroup *cgrp)
3954 {
3955 	struct css_task_iter it;
3956 	struct task_struct *task;
3957 
3958 	lockdep_assert_held(&cgroup_mutex);
3959 
3960 	spin_lock_irq(&css_set_lock);
3961 	set_bit(CGRP_KILL, &cgrp->flags);
3962 	spin_unlock_irq(&css_set_lock);
3963 
3964 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3965 	while ((task = css_task_iter_next(&it))) {
3966 		/* Ignore kernel threads here. */
3967 		if (task->flags & PF_KTHREAD)
3968 			continue;
3969 
3970 		/* Skip tasks that are already dying. */
3971 		if (__fatal_signal_pending(task))
3972 			continue;
3973 
3974 		send_sig(SIGKILL, task, 0);
3975 	}
3976 	css_task_iter_end(&it);
3977 
3978 	spin_lock_irq(&css_set_lock);
3979 	clear_bit(CGRP_KILL, &cgrp->flags);
3980 	spin_unlock_irq(&css_set_lock);
3981 }
3982 
3983 static void cgroup_kill(struct cgroup *cgrp)
3984 {
3985 	struct cgroup_subsys_state *css;
3986 	struct cgroup *dsct;
3987 
3988 	lockdep_assert_held(&cgroup_mutex);
3989 
3990 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3991 		__cgroup_kill(dsct);
3992 }
3993 
3994 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3995 				 size_t nbytes, loff_t off)
3996 {
3997 	ssize_t ret = 0;
3998 	int kill;
3999 	struct cgroup *cgrp;
4000 
4001 	ret = kstrtoint(strstrip(buf), 0, &kill);
4002 	if (ret)
4003 		return ret;
4004 
4005 	if (kill != 1)
4006 		return -ERANGE;
4007 
4008 	cgrp = cgroup_kn_lock_live(of->kn, false);
4009 	if (!cgrp)
4010 		return -ENOENT;
4011 
4012 	/*
4013 	 * Killing is a process directed operation, i.e. the whole thread-group
4014 	 * is taken down so act like we do for cgroup.procs and only make this
4015 	 * writable in non-threaded cgroups.
4016 	 */
4017 	if (cgroup_is_threaded(cgrp))
4018 		ret = -EOPNOTSUPP;
4019 	else
4020 		cgroup_kill(cgrp);
4021 
4022 	cgroup_kn_unlock(of->kn);
4023 
4024 	return ret ?: nbytes;
4025 }
4026 
4027 static int cgroup_file_open(struct kernfs_open_file *of)
4028 {
4029 	struct cftype *cft = of_cft(of);
4030 	struct cgroup_file_ctx *ctx;
4031 	int ret;
4032 
4033 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4034 	if (!ctx)
4035 		return -ENOMEM;
4036 
4037 	ctx->ns = current->nsproxy->cgroup_ns;
4038 	get_cgroup_ns(ctx->ns);
4039 	of->priv = ctx;
4040 
4041 	if (!cft->open)
4042 		return 0;
4043 
4044 	ret = cft->open(of);
4045 	if (ret) {
4046 		put_cgroup_ns(ctx->ns);
4047 		kfree(ctx);
4048 	}
4049 	return ret;
4050 }
4051 
4052 static void cgroup_file_release(struct kernfs_open_file *of)
4053 {
4054 	struct cftype *cft = of_cft(of);
4055 	struct cgroup_file_ctx *ctx = of->priv;
4056 
4057 	if (cft->release)
4058 		cft->release(of);
4059 	put_cgroup_ns(ctx->ns);
4060 	kfree(ctx);
4061 }
4062 
4063 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4064 				 size_t nbytes, loff_t off)
4065 {
4066 	struct cgroup_file_ctx *ctx = of->priv;
4067 	struct cgroup *cgrp = of->kn->parent->priv;
4068 	struct cftype *cft = of_cft(of);
4069 	struct cgroup_subsys_state *css;
4070 	int ret;
4071 
4072 	if (!nbytes)
4073 		return 0;
4074 
4075 	/*
4076 	 * If namespaces are delegation boundaries, disallow writes to
4077 	 * files in an non-init namespace root from inside the namespace
4078 	 * except for the files explicitly marked delegatable -
4079 	 * cgroup.procs and cgroup.subtree_control.
4080 	 */
4081 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4082 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4083 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4084 		return -EPERM;
4085 
4086 	if (cft->write)
4087 		return cft->write(of, buf, nbytes, off);
4088 
4089 	/*
4090 	 * kernfs guarantees that a file isn't deleted with operations in
4091 	 * flight, which means that the matching css is and stays alive and
4092 	 * doesn't need to be pinned.  The RCU locking is not necessary
4093 	 * either.  It's just for the convenience of using cgroup_css().
4094 	 */
4095 	rcu_read_lock();
4096 	css = cgroup_css(cgrp, cft->ss);
4097 	rcu_read_unlock();
4098 
4099 	if (cft->write_u64) {
4100 		unsigned long long v;
4101 		ret = kstrtoull(buf, 0, &v);
4102 		if (!ret)
4103 			ret = cft->write_u64(css, cft, v);
4104 	} else if (cft->write_s64) {
4105 		long long v;
4106 		ret = kstrtoll(buf, 0, &v);
4107 		if (!ret)
4108 			ret = cft->write_s64(css, cft, v);
4109 	} else {
4110 		ret = -EINVAL;
4111 	}
4112 
4113 	return ret ?: nbytes;
4114 }
4115 
4116 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4117 {
4118 	struct cftype *cft = of_cft(of);
4119 
4120 	if (cft->poll)
4121 		return cft->poll(of, pt);
4122 
4123 	return kernfs_generic_poll(of, pt);
4124 }
4125 
4126 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4127 {
4128 	return seq_cft(seq)->seq_start(seq, ppos);
4129 }
4130 
4131 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4132 {
4133 	return seq_cft(seq)->seq_next(seq, v, ppos);
4134 }
4135 
4136 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4137 {
4138 	if (seq_cft(seq)->seq_stop)
4139 		seq_cft(seq)->seq_stop(seq, v);
4140 }
4141 
4142 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4143 {
4144 	struct cftype *cft = seq_cft(m);
4145 	struct cgroup_subsys_state *css = seq_css(m);
4146 
4147 	if (cft->seq_show)
4148 		return cft->seq_show(m, arg);
4149 
4150 	if (cft->read_u64)
4151 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4152 	else if (cft->read_s64)
4153 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4154 	else
4155 		return -EINVAL;
4156 	return 0;
4157 }
4158 
4159 static struct kernfs_ops cgroup_kf_single_ops = {
4160 	.atomic_write_len	= PAGE_SIZE,
4161 	.open			= cgroup_file_open,
4162 	.release		= cgroup_file_release,
4163 	.write			= cgroup_file_write,
4164 	.poll			= cgroup_file_poll,
4165 	.seq_show		= cgroup_seqfile_show,
4166 };
4167 
4168 static struct kernfs_ops cgroup_kf_ops = {
4169 	.atomic_write_len	= PAGE_SIZE,
4170 	.open			= cgroup_file_open,
4171 	.release		= cgroup_file_release,
4172 	.write			= cgroup_file_write,
4173 	.poll			= cgroup_file_poll,
4174 	.seq_start		= cgroup_seqfile_start,
4175 	.seq_next		= cgroup_seqfile_next,
4176 	.seq_stop		= cgroup_seqfile_stop,
4177 	.seq_show		= cgroup_seqfile_show,
4178 };
4179 
4180 /* set uid and gid of cgroup dirs and files to that of the creator */
4181 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4182 {
4183 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4184 			       .ia_uid = current_fsuid(),
4185 			       .ia_gid = current_fsgid(), };
4186 
4187 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4188 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4189 		return 0;
4190 
4191 	return kernfs_setattr(kn, &iattr);
4192 }
4193 
4194 static void cgroup_file_notify_timer(struct timer_list *timer)
4195 {
4196 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4197 					notify_timer));
4198 }
4199 
4200 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4201 			   struct cftype *cft)
4202 {
4203 	char name[CGROUP_FILE_NAME_MAX];
4204 	struct kernfs_node *kn;
4205 	struct lock_class_key *key = NULL;
4206 	int ret;
4207 
4208 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4209 	key = &cft->lockdep_key;
4210 #endif
4211 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4212 				  cgroup_file_mode(cft),
4213 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4214 				  0, cft->kf_ops, cft,
4215 				  NULL, key);
4216 	if (IS_ERR(kn))
4217 		return PTR_ERR(kn);
4218 
4219 	ret = cgroup_kn_set_ugid(kn);
4220 	if (ret) {
4221 		kernfs_remove(kn);
4222 		return ret;
4223 	}
4224 
4225 	if (cft->file_offset) {
4226 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4227 
4228 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4229 
4230 		spin_lock_irq(&cgroup_file_kn_lock);
4231 		cfile->kn = kn;
4232 		spin_unlock_irq(&cgroup_file_kn_lock);
4233 	}
4234 
4235 	return 0;
4236 }
4237 
4238 /**
4239  * cgroup_addrm_files - add or remove files to a cgroup directory
4240  * @css: the target css
4241  * @cgrp: the target cgroup (usually css->cgroup)
4242  * @cfts: array of cftypes to be added
4243  * @is_add: whether to add or remove
4244  *
4245  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4246  * For removals, this function never fails.
4247  */
4248 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4249 			      struct cgroup *cgrp, struct cftype cfts[],
4250 			      bool is_add)
4251 {
4252 	struct cftype *cft, *cft_end = NULL;
4253 	int ret = 0;
4254 
4255 	lockdep_assert_held(&cgroup_mutex);
4256 
4257 restart:
4258 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4259 		/* does cft->flags tell us to skip this file on @cgrp? */
4260 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4261 			continue;
4262 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4263 			continue;
4264 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4265 			continue;
4266 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4267 			continue;
4268 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4269 			continue;
4270 		if (is_add) {
4271 			ret = cgroup_add_file(css, cgrp, cft);
4272 			if (ret) {
4273 				pr_warn("%s: failed to add %s, err=%d\n",
4274 					__func__, cft->name, ret);
4275 				cft_end = cft;
4276 				is_add = false;
4277 				goto restart;
4278 			}
4279 		} else {
4280 			cgroup_rm_file(cgrp, cft);
4281 		}
4282 	}
4283 	return ret;
4284 }
4285 
4286 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4287 {
4288 	struct cgroup_subsys *ss = cfts[0].ss;
4289 	struct cgroup *root = &ss->root->cgrp;
4290 	struct cgroup_subsys_state *css;
4291 	int ret = 0;
4292 
4293 	lockdep_assert_held(&cgroup_mutex);
4294 
4295 	/* add/rm files for all cgroups created before */
4296 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4297 		struct cgroup *cgrp = css->cgroup;
4298 
4299 		if (!(css->flags & CSS_VISIBLE))
4300 			continue;
4301 
4302 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4303 		if (ret)
4304 			break;
4305 	}
4306 
4307 	if (is_add && !ret)
4308 		kernfs_activate(root->kn);
4309 	return ret;
4310 }
4311 
4312 static void cgroup_exit_cftypes(struct cftype *cfts)
4313 {
4314 	struct cftype *cft;
4315 
4316 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4317 		/* free copy for custom atomic_write_len, see init_cftypes() */
4318 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4319 			kfree(cft->kf_ops);
4320 		cft->kf_ops = NULL;
4321 		cft->ss = NULL;
4322 
4323 		/* revert flags set by cgroup core while adding @cfts */
4324 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4325 				__CFTYPE_ADDED);
4326 	}
4327 }
4328 
4329 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4330 {
4331 	struct cftype *cft;
4332 	int ret = 0;
4333 
4334 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4335 		struct kernfs_ops *kf_ops;
4336 
4337 		WARN_ON(cft->ss || cft->kf_ops);
4338 
4339 		if (cft->flags & __CFTYPE_ADDED) {
4340 			ret = -EBUSY;
4341 			break;
4342 		}
4343 
4344 		if (cft->seq_start)
4345 			kf_ops = &cgroup_kf_ops;
4346 		else
4347 			kf_ops = &cgroup_kf_single_ops;
4348 
4349 		/*
4350 		 * Ugh... if @cft wants a custom max_write_len, we need to
4351 		 * make a copy of kf_ops to set its atomic_write_len.
4352 		 */
4353 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4354 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4355 			if (!kf_ops) {
4356 				ret = -ENOMEM;
4357 				break;
4358 			}
4359 			kf_ops->atomic_write_len = cft->max_write_len;
4360 		}
4361 
4362 		cft->kf_ops = kf_ops;
4363 		cft->ss = ss;
4364 		cft->flags |= __CFTYPE_ADDED;
4365 	}
4366 
4367 	if (ret)
4368 		cgroup_exit_cftypes(cfts);
4369 	return ret;
4370 }
4371 
4372 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4373 {
4374 	lockdep_assert_held(&cgroup_mutex);
4375 
4376 	list_del(&cfts->node);
4377 	cgroup_apply_cftypes(cfts, false);
4378 	cgroup_exit_cftypes(cfts);
4379 }
4380 
4381 /**
4382  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4383  * @cfts: zero-length name terminated array of cftypes
4384  *
4385  * Unregister @cfts.  Files described by @cfts are removed from all
4386  * existing cgroups and all future cgroups won't have them either.  This
4387  * function can be called anytime whether @cfts' subsys is attached or not.
4388  *
4389  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4390  * registered.
4391  */
4392 int cgroup_rm_cftypes(struct cftype *cfts)
4393 {
4394 	if (!cfts || cfts[0].name[0] == '\0')
4395 		return 0;
4396 
4397 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4398 		return -ENOENT;
4399 
4400 	cgroup_lock();
4401 	cgroup_rm_cftypes_locked(cfts);
4402 	cgroup_unlock();
4403 	return 0;
4404 }
4405 
4406 /**
4407  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4408  * @ss: target cgroup subsystem
4409  * @cfts: zero-length name terminated array of cftypes
4410  *
4411  * Register @cfts to @ss.  Files described by @cfts are created for all
4412  * existing cgroups to which @ss is attached and all future cgroups will
4413  * have them too.  This function can be called anytime whether @ss is
4414  * attached or not.
4415  *
4416  * Returns 0 on successful registration, -errno on failure.  Note that this
4417  * function currently returns 0 as long as @cfts registration is successful
4418  * even if some file creation attempts on existing cgroups fail.
4419  */
4420 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4421 {
4422 	int ret;
4423 
4424 	if (!cgroup_ssid_enabled(ss->id))
4425 		return 0;
4426 
4427 	if (!cfts || cfts[0].name[0] == '\0')
4428 		return 0;
4429 
4430 	ret = cgroup_init_cftypes(ss, cfts);
4431 	if (ret)
4432 		return ret;
4433 
4434 	cgroup_lock();
4435 
4436 	list_add_tail(&cfts->node, &ss->cfts);
4437 	ret = cgroup_apply_cftypes(cfts, true);
4438 	if (ret)
4439 		cgroup_rm_cftypes_locked(cfts);
4440 
4441 	cgroup_unlock();
4442 	return ret;
4443 }
4444 
4445 /**
4446  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4447  * @ss: target cgroup subsystem
4448  * @cfts: zero-length name terminated array of cftypes
4449  *
4450  * Similar to cgroup_add_cftypes() but the added files are only used for
4451  * the default hierarchy.
4452  */
4453 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4454 {
4455 	struct cftype *cft;
4456 
4457 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4458 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4459 	return cgroup_add_cftypes(ss, cfts);
4460 }
4461 
4462 /**
4463  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4464  * @ss: target cgroup subsystem
4465  * @cfts: zero-length name terminated array of cftypes
4466  *
4467  * Similar to cgroup_add_cftypes() but the added files are only used for
4468  * the legacy hierarchies.
4469  */
4470 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4471 {
4472 	struct cftype *cft;
4473 
4474 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4475 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4476 	return cgroup_add_cftypes(ss, cfts);
4477 }
4478 
4479 /**
4480  * cgroup_file_notify - generate a file modified event for a cgroup_file
4481  * @cfile: target cgroup_file
4482  *
4483  * @cfile must have been obtained by setting cftype->file_offset.
4484  */
4485 void cgroup_file_notify(struct cgroup_file *cfile)
4486 {
4487 	unsigned long flags;
4488 
4489 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4490 	if (cfile->kn) {
4491 		unsigned long last = cfile->notified_at;
4492 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4493 
4494 		if (time_in_range(jiffies, last, next)) {
4495 			timer_reduce(&cfile->notify_timer, next);
4496 		} else {
4497 			kernfs_notify(cfile->kn);
4498 			cfile->notified_at = jiffies;
4499 		}
4500 	}
4501 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4502 }
4503 
4504 /**
4505  * cgroup_file_show - show or hide a hidden cgroup file
4506  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4507  * @show: whether to show or hide
4508  */
4509 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4510 {
4511 	struct kernfs_node *kn;
4512 
4513 	spin_lock_irq(&cgroup_file_kn_lock);
4514 	kn = cfile->kn;
4515 	kernfs_get(kn);
4516 	spin_unlock_irq(&cgroup_file_kn_lock);
4517 
4518 	if (kn)
4519 		kernfs_show(kn, show);
4520 
4521 	kernfs_put(kn);
4522 }
4523 
4524 /**
4525  * css_next_child - find the next child of a given css
4526  * @pos: the current position (%NULL to initiate traversal)
4527  * @parent: css whose children to walk
4528  *
4529  * This function returns the next child of @parent and should be called
4530  * under either cgroup_mutex or RCU read lock.  The only requirement is
4531  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4532  * be returned regardless of their states.
4533  *
4534  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4535  * css which finished ->css_online() is guaranteed to be visible in the
4536  * future iterations and will stay visible until the last reference is put.
4537  * A css which hasn't finished ->css_online() or already finished
4538  * ->css_offline() may show up during traversal.  It's each subsystem's
4539  * responsibility to synchronize against on/offlining.
4540  */
4541 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4542 					   struct cgroup_subsys_state *parent)
4543 {
4544 	struct cgroup_subsys_state *next;
4545 
4546 	cgroup_assert_mutex_or_rcu_locked();
4547 
4548 	/*
4549 	 * @pos could already have been unlinked from the sibling list.
4550 	 * Once a cgroup is removed, its ->sibling.next is no longer
4551 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4552 	 * @pos is taken off list, at which time its next pointer is valid,
4553 	 * and, as releases are serialized, the one pointed to by the next
4554 	 * pointer is guaranteed to not have started release yet.  This
4555 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4556 	 * critical section, the one pointed to by its next pointer is
4557 	 * guaranteed to not have finished its RCU grace period even if we
4558 	 * have dropped rcu_read_lock() in-between iterations.
4559 	 *
4560 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4561 	 * dereferenced; however, as each css is given a monotonically
4562 	 * increasing unique serial number and always appended to the
4563 	 * sibling list, the next one can be found by walking the parent's
4564 	 * children until the first css with higher serial number than
4565 	 * @pos's.  While this path can be slower, it happens iff iteration
4566 	 * races against release and the race window is very small.
4567 	 */
4568 	if (!pos) {
4569 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4570 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4571 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4572 	} else {
4573 		list_for_each_entry_rcu(next, &parent->children, sibling,
4574 					lockdep_is_held(&cgroup_mutex))
4575 			if (next->serial_nr > pos->serial_nr)
4576 				break;
4577 	}
4578 
4579 	/*
4580 	 * @next, if not pointing to the head, can be dereferenced and is
4581 	 * the next sibling.
4582 	 */
4583 	if (&next->sibling != &parent->children)
4584 		return next;
4585 	return NULL;
4586 }
4587 
4588 /**
4589  * css_next_descendant_pre - find the next descendant for pre-order walk
4590  * @pos: the current position (%NULL to initiate traversal)
4591  * @root: css whose descendants to walk
4592  *
4593  * To be used by css_for_each_descendant_pre().  Find the next descendant
4594  * to visit for pre-order traversal of @root's descendants.  @root is
4595  * included in the iteration and the first node to be visited.
4596  *
4597  * While this function requires cgroup_mutex or RCU read locking, it
4598  * doesn't require the whole traversal to be contained in a single critical
4599  * section.  This function will return the correct next descendant as long
4600  * as both @pos and @root are accessible and @pos is a descendant of @root.
4601  *
4602  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4603  * css which finished ->css_online() is guaranteed to be visible in the
4604  * future iterations and will stay visible until the last reference is put.
4605  * A css which hasn't finished ->css_online() or already finished
4606  * ->css_offline() may show up during traversal.  It's each subsystem's
4607  * responsibility to synchronize against on/offlining.
4608  */
4609 struct cgroup_subsys_state *
4610 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4611 			struct cgroup_subsys_state *root)
4612 {
4613 	struct cgroup_subsys_state *next;
4614 
4615 	cgroup_assert_mutex_or_rcu_locked();
4616 
4617 	/* if first iteration, visit @root */
4618 	if (!pos)
4619 		return root;
4620 
4621 	/* visit the first child if exists */
4622 	next = css_next_child(NULL, pos);
4623 	if (next)
4624 		return next;
4625 
4626 	/* no child, visit my or the closest ancestor's next sibling */
4627 	while (pos != root) {
4628 		next = css_next_child(pos, pos->parent);
4629 		if (next)
4630 			return next;
4631 		pos = pos->parent;
4632 	}
4633 
4634 	return NULL;
4635 }
4636 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4637 
4638 /**
4639  * css_rightmost_descendant - return the rightmost descendant of a css
4640  * @pos: css of interest
4641  *
4642  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4643  * is returned.  This can be used during pre-order traversal to skip
4644  * subtree of @pos.
4645  *
4646  * While this function requires cgroup_mutex or RCU read locking, it
4647  * doesn't require the whole traversal to be contained in a single critical
4648  * section.  This function will return the correct rightmost descendant as
4649  * long as @pos is accessible.
4650  */
4651 struct cgroup_subsys_state *
4652 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4653 {
4654 	struct cgroup_subsys_state *last, *tmp;
4655 
4656 	cgroup_assert_mutex_or_rcu_locked();
4657 
4658 	do {
4659 		last = pos;
4660 		/* ->prev isn't RCU safe, walk ->next till the end */
4661 		pos = NULL;
4662 		css_for_each_child(tmp, last)
4663 			pos = tmp;
4664 	} while (pos);
4665 
4666 	return last;
4667 }
4668 
4669 static struct cgroup_subsys_state *
4670 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4671 {
4672 	struct cgroup_subsys_state *last;
4673 
4674 	do {
4675 		last = pos;
4676 		pos = css_next_child(NULL, pos);
4677 	} while (pos);
4678 
4679 	return last;
4680 }
4681 
4682 /**
4683  * css_next_descendant_post - find the next descendant for post-order walk
4684  * @pos: the current position (%NULL to initiate traversal)
4685  * @root: css whose descendants to walk
4686  *
4687  * To be used by css_for_each_descendant_post().  Find the next descendant
4688  * to visit for post-order traversal of @root's descendants.  @root is
4689  * included in the iteration and the last node to be visited.
4690  *
4691  * While this function requires cgroup_mutex or RCU read locking, it
4692  * doesn't require the whole traversal to be contained in a single critical
4693  * section.  This function will return the correct next descendant as long
4694  * as both @pos and @cgroup are accessible and @pos is a descendant of
4695  * @cgroup.
4696  *
4697  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4698  * css which finished ->css_online() is guaranteed to be visible in the
4699  * future iterations and will stay visible until the last reference is put.
4700  * A css which hasn't finished ->css_online() or already finished
4701  * ->css_offline() may show up during traversal.  It's each subsystem's
4702  * responsibility to synchronize against on/offlining.
4703  */
4704 struct cgroup_subsys_state *
4705 css_next_descendant_post(struct cgroup_subsys_state *pos,
4706 			 struct cgroup_subsys_state *root)
4707 {
4708 	struct cgroup_subsys_state *next;
4709 
4710 	cgroup_assert_mutex_or_rcu_locked();
4711 
4712 	/* if first iteration, visit leftmost descendant which may be @root */
4713 	if (!pos)
4714 		return css_leftmost_descendant(root);
4715 
4716 	/* if we visited @root, we're done */
4717 	if (pos == root)
4718 		return NULL;
4719 
4720 	/* if there's an unvisited sibling, visit its leftmost descendant */
4721 	next = css_next_child(pos, pos->parent);
4722 	if (next)
4723 		return css_leftmost_descendant(next);
4724 
4725 	/* no sibling left, visit parent */
4726 	return pos->parent;
4727 }
4728 
4729 /**
4730  * css_has_online_children - does a css have online children
4731  * @css: the target css
4732  *
4733  * Returns %true if @css has any online children; otherwise, %false.  This
4734  * function can be called from any context but the caller is responsible
4735  * for synchronizing against on/offlining as necessary.
4736  */
4737 bool css_has_online_children(struct cgroup_subsys_state *css)
4738 {
4739 	struct cgroup_subsys_state *child;
4740 	bool ret = false;
4741 
4742 	rcu_read_lock();
4743 	css_for_each_child(child, css) {
4744 		if (child->flags & CSS_ONLINE) {
4745 			ret = true;
4746 			break;
4747 		}
4748 	}
4749 	rcu_read_unlock();
4750 	return ret;
4751 }
4752 
4753 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4754 {
4755 	struct list_head *l;
4756 	struct cgrp_cset_link *link;
4757 	struct css_set *cset;
4758 
4759 	lockdep_assert_held(&css_set_lock);
4760 
4761 	/* find the next threaded cset */
4762 	if (it->tcset_pos) {
4763 		l = it->tcset_pos->next;
4764 
4765 		if (l != it->tcset_head) {
4766 			it->tcset_pos = l;
4767 			return container_of(l, struct css_set,
4768 					    threaded_csets_node);
4769 		}
4770 
4771 		it->tcset_pos = NULL;
4772 	}
4773 
4774 	/* find the next cset */
4775 	l = it->cset_pos;
4776 	l = l->next;
4777 	if (l == it->cset_head) {
4778 		it->cset_pos = NULL;
4779 		return NULL;
4780 	}
4781 
4782 	if (it->ss) {
4783 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4784 	} else {
4785 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4786 		cset = link->cset;
4787 	}
4788 
4789 	it->cset_pos = l;
4790 
4791 	/* initialize threaded css_set walking */
4792 	if (it->flags & CSS_TASK_ITER_THREADED) {
4793 		if (it->cur_dcset)
4794 			put_css_set_locked(it->cur_dcset);
4795 		it->cur_dcset = cset;
4796 		get_css_set(cset);
4797 
4798 		it->tcset_head = &cset->threaded_csets;
4799 		it->tcset_pos = &cset->threaded_csets;
4800 	}
4801 
4802 	return cset;
4803 }
4804 
4805 /**
4806  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4807  * @it: the iterator to advance
4808  *
4809  * Advance @it to the next css_set to walk.
4810  */
4811 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4812 {
4813 	struct css_set *cset;
4814 
4815 	lockdep_assert_held(&css_set_lock);
4816 
4817 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4818 	while ((cset = css_task_iter_next_css_set(it))) {
4819 		if (!list_empty(&cset->tasks)) {
4820 			it->cur_tasks_head = &cset->tasks;
4821 			break;
4822 		} else if (!list_empty(&cset->mg_tasks)) {
4823 			it->cur_tasks_head = &cset->mg_tasks;
4824 			break;
4825 		} else if (!list_empty(&cset->dying_tasks)) {
4826 			it->cur_tasks_head = &cset->dying_tasks;
4827 			break;
4828 		}
4829 	}
4830 	if (!cset) {
4831 		it->task_pos = NULL;
4832 		return;
4833 	}
4834 	it->task_pos = it->cur_tasks_head->next;
4835 
4836 	/*
4837 	 * We don't keep css_sets locked across iteration steps and thus
4838 	 * need to take steps to ensure that iteration can be resumed after
4839 	 * the lock is re-acquired.  Iteration is performed at two levels -
4840 	 * css_sets and tasks in them.
4841 	 *
4842 	 * Once created, a css_set never leaves its cgroup lists, so a
4843 	 * pinned css_set is guaranteed to stay put and we can resume
4844 	 * iteration afterwards.
4845 	 *
4846 	 * Tasks may leave @cset across iteration steps.  This is resolved
4847 	 * by registering each iterator with the css_set currently being
4848 	 * walked and making css_set_move_task() advance iterators whose
4849 	 * next task is leaving.
4850 	 */
4851 	if (it->cur_cset) {
4852 		list_del(&it->iters_node);
4853 		put_css_set_locked(it->cur_cset);
4854 	}
4855 	get_css_set(cset);
4856 	it->cur_cset = cset;
4857 	list_add(&it->iters_node, &cset->task_iters);
4858 }
4859 
4860 static void css_task_iter_skip(struct css_task_iter *it,
4861 			       struct task_struct *task)
4862 {
4863 	lockdep_assert_held(&css_set_lock);
4864 
4865 	if (it->task_pos == &task->cg_list) {
4866 		it->task_pos = it->task_pos->next;
4867 		it->flags |= CSS_TASK_ITER_SKIPPED;
4868 	}
4869 }
4870 
4871 static void css_task_iter_advance(struct css_task_iter *it)
4872 {
4873 	struct task_struct *task;
4874 
4875 	lockdep_assert_held(&css_set_lock);
4876 repeat:
4877 	if (it->task_pos) {
4878 		/*
4879 		 * Advance iterator to find next entry. We go through cset
4880 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4881 		 * the next cset.
4882 		 */
4883 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4884 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4885 		else
4886 			it->task_pos = it->task_pos->next;
4887 
4888 		if (it->task_pos == &it->cur_cset->tasks) {
4889 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4890 			it->task_pos = it->cur_tasks_head->next;
4891 		}
4892 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4893 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4894 			it->task_pos = it->cur_tasks_head->next;
4895 		}
4896 		if (it->task_pos == &it->cur_cset->dying_tasks)
4897 			css_task_iter_advance_css_set(it);
4898 	} else {
4899 		/* called from start, proceed to the first cset */
4900 		css_task_iter_advance_css_set(it);
4901 	}
4902 
4903 	if (!it->task_pos)
4904 		return;
4905 
4906 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4907 
4908 	if (it->flags & CSS_TASK_ITER_PROCS) {
4909 		/* if PROCS, skip over tasks which aren't group leaders */
4910 		if (!thread_group_leader(task))
4911 			goto repeat;
4912 
4913 		/* and dying leaders w/o live member threads */
4914 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4915 		    !atomic_read(&task->signal->live))
4916 			goto repeat;
4917 	} else {
4918 		/* skip all dying ones */
4919 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4920 			goto repeat;
4921 	}
4922 }
4923 
4924 /**
4925  * css_task_iter_start - initiate task iteration
4926  * @css: the css to walk tasks of
4927  * @flags: CSS_TASK_ITER_* flags
4928  * @it: the task iterator to use
4929  *
4930  * Initiate iteration through the tasks of @css.  The caller can call
4931  * css_task_iter_next() to walk through the tasks until the function
4932  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4933  * called.
4934  */
4935 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4936 			 struct css_task_iter *it)
4937 {
4938 	unsigned long irqflags;
4939 
4940 	memset(it, 0, sizeof(*it));
4941 
4942 	spin_lock_irqsave(&css_set_lock, irqflags);
4943 
4944 	it->ss = css->ss;
4945 	it->flags = flags;
4946 
4947 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4948 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4949 	else
4950 		it->cset_pos = &css->cgroup->cset_links;
4951 
4952 	it->cset_head = it->cset_pos;
4953 
4954 	css_task_iter_advance(it);
4955 
4956 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4957 }
4958 
4959 /**
4960  * css_task_iter_next - return the next task for the iterator
4961  * @it: the task iterator being iterated
4962  *
4963  * The "next" function for task iteration.  @it should have been
4964  * initialized via css_task_iter_start().  Returns NULL when the iteration
4965  * reaches the end.
4966  */
4967 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4968 {
4969 	unsigned long irqflags;
4970 
4971 	if (it->cur_task) {
4972 		put_task_struct(it->cur_task);
4973 		it->cur_task = NULL;
4974 	}
4975 
4976 	spin_lock_irqsave(&css_set_lock, irqflags);
4977 
4978 	/* @it may be half-advanced by skips, finish advancing */
4979 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4980 		css_task_iter_advance(it);
4981 
4982 	if (it->task_pos) {
4983 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4984 					  cg_list);
4985 		get_task_struct(it->cur_task);
4986 		css_task_iter_advance(it);
4987 	}
4988 
4989 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4990 
4991 	return it->cur_task;
4992 }
4993 
4994 /**
4995  * css_task_iter_end - finish task iteration
4996  * @it: the task iterator to finish
4997  *
4998  * Finish task iteration started by css_task_iter_start().
4999  */
5000 void css_task_iter_end(struct css_task_iter *it)
5001 {
5002 	unsigned long irqflags;
5003 
5004 	if (it->cur_cset) {
5005 		spin_lock_irqsave(&css_set_lock, irqflags);
5006 		list_del(&it->iters_node);
5007 		put_css_set_locked(it->cur_cset);
5008 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5009 	}
5010 
5011 	if (it->cur_dcset)
5012 		put_css_set(it->cur_dcset);
5013 
5014 	if (it->cur_task)
5015 		put_task_struct(it->cur_task);
5016 }
5017 
5018 static void cgroup_procs_release(struct kernfs_open_file *of)
5019 {
5020 	struct cgroup_file_ctx *ctx = of->priv;
5021 
5022 	if (ctx->procs.started)
5023 		css_task_iter_end(&ctx->procs.iter);
5024 }
5025 
5026 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5027 {
5028 	struct kernfs_open_file *of = s->private;
5029 	struct cgroup_file_ctx *ctx = of->priv;
5030 
5031 	if (pos)
5032 		(*pos)++;
5033 
5034 	return css_task_iter_next(&ctx->procs.iter);
5035 }
5036 
5037 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5038 				  unsigned int iter_flags)
5039 {
5040 	struct kernfs_open_file *of = s->private;
5041 	struct cgroup *cgrp = seq_css(s)->cgroup;
5042 	struct cgroup_file_ctx *ctx = of->priv;
5043 	struct css_task_iter *it = &ctx->procs.iter;
5044 
5045 	/*
5046 	 * When a seq_file is seeked, it's always traversed sequentially
5047 	 * from position 0, so we can simply keep iterating on !0 *pos.
5048 	 */
5049 	if (!ctx->procs.started) {
5050 		if (WARN_ON_ONCE((*pos)))
5051 			return ERR_PTR(-EINVAL);
5052 		css_task_iter_start(&cgrp->self, iter_flags, it);
5053 		ctx->procs.started = true;
5054 	} else if (!(*pos)) {
5055 		css_task_iter_end(it);
5056 		css_task_iter_start(&cgrp->self, iter_flags, it);
5057 	} else
5058 		return it->cur_task;
5059 
5060 	return cgroup_procs_next(s, NULL, NULL);
5061 }
5062 
5063 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5064 {
5065 	struct cgroup *cgrp = seq_css(s)->cgroup;
5066 
5067 	/*
5068 	 * All processes of a threaded subtree belong to the domain cgroup
5069 	 * of the subtree.  Only threads can be distributed across the
5070 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5071 	 * They're always empty anyway.
5072 	 */
5073 	if (cgroup_is_threaded(cgrp))
5074 		return ERR_PTR(-EOPNOTSUPP);
5075 
5076 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5077 					    CSS_TASK_ITER_THREADED);
5078 }
5079 
5080 static int cgroup_procs_show(struct seq_file *s, void *v)
5081 {
5082 	seq_printf(s, "%d\n", task_pid_vnr(v));
5083 	return 0;
5084 }
5085 
5086 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5087 {
5088 	int ret;
5089 	struct inode *inode;
5090 
5091 	lockdep_assert_held(&cgroup_mutex);
5092 
5093 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5094 	if (!inode)
5095 		return -ENOMEM;
5096 
5097 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5098 	iput(inode);
5099 	return ret;
5100 }
5101 
5102 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5103 					 struct cgroup *dst_cgrp,
5104 					 struct super_block *sb,
5105 					 struct cgroup_namespace *ns)
5106 {
5107 	struct cgroup *com_cgrp = src_cgrp;
5108 	int ret;
5109 
5110 	lockdep_assert_held(&cgroup_mutex);
5111 
5112 	/* find the common ancestor */
5113 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5114 		com_cgrp = cgroup_parent(com_cgrp);
5115 
5116 	/* %current should be authorized to migrate to the common ancestor */
5117 	ret = cgroup_may_write(com_cgrp, sb);
5118 	if (ret)
5119 		return ret;
5120 
5121 	/*
5122 	 * If namespaces are delegation boundaries, %current must be able
5123 	 * to see both source and destination cgroups from its namespace.
5124 	 */
5125 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5126 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5127 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5128 		return -ENOENT;
5129 
5130 	return 0;
5131 }
5132 
5133 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5134 				     struct cgroup *dst_cgrp,
5135 				     struct super_block *sb, bool threadgroup,
5136 				     struct cgroup_namespace *ns)
5137 {
5138 	int ret = 0;
5139 
5140 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5141 	if (ret)
5142 		return ret;
5143 
5144 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5145 	if (ret)
5146 		return ret;
5147 
5148 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5149 		ret = -EOPNOTSUPP;
5150 
5151 	return ret;
5152 }
5153 
5154 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5155 				    bool threadgroup)
5156 {
5157 	struct cgroup_file_ctx *ctx = of->priv;
5158 	struct cgroup *src_cgrp, *dst_cgrp;
5159 	struct task_struct *task;
5160 	const struct cred *saved_cred;
5161 	ssize_t ret;
5162 	bool threadgroup_locked;
5163 
5164 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5165 	if (!dst_cgrp)
5166 		return -ENODEV;
5167 
5168 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5169 	ret = PTR_ERR_OR_ZERO(task);
5170 	if (ret)
5171 		goto out_unlock;
5172 
5173 	/* find the source cgroup */
5174 	spin_lock_irq(&css_set_lock);
5175 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5176 	spin_unlock_irq(&css_set_lock);
5177 
5178 	/*
5179 	 * Process and thread migrations follow same delegation rule. Check
5180 	 * permissions using the credentials from file open to protect against
5181 	 * inherited fd attacks.
5182 	 */
5183 	saved_cred = override_creds(of->file->f_cred);
5184 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5185 					of->file->f_path.dentry->d_sb,
5186 					threadgroup, ctx->ns);
5187 	revert_creds(saved_cred);
5188 	if (ret)
5189 		goto out_finish;
5190 
5191 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5192 
5193 out_finish:
5194 	cgroup_procs_write_finish(task, threadgroup_locked);
5195 out_unlock:
5196 	cgroup_kn_unlock(of->kn);
5197 
5198 	return ret;
5199 }
5200 
5201 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5202 				  char *buf, size_t nbytes, loff_t off)
5203 {
5204 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5205 }
5206 
5207 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5208 {
5209 	return __cgroup_procs_start(s, pos, 0);
5210 }
5211 
5212 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5213 				    char *buf, size_t nbytes, loff_t off)
5214 {
5215 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5216 }
5217 
5218 /* cgroup core interface files for the default hierarchy */
5219 static struct cftype cgroup_base_files[] = {
5220 	{
5221 		.name = "cgroup.type",
5222 		.flags = CFTYPE_NOT_ON_ROOT,
5223 		.seq_show = cgroup_type_show,
5224 		.write = cgroup_type_write,
5225 	},
5226 	{
5227 		.name = "cgroup.procs",
5228 		.flags = CFTYPE_NS_DELEGATABLE,
5229 		.file_offset = offsetof(struct cgroup, procs_file),
5230 		.release = cgroup_procs_release,
5231 		.seq_start = cgroup_procs_start,
5232 		.seq_next = cgroup_procs_next,
5233 		.seq_show = cgroup_procs_show,
5234 		.write = cgroup_procs_write,
5235 	},
5236 	{
5237 		.name = "cgroup.threads",
5238 		.flags = CFTYPE_NS_DELEGATABLE,
5239 		.release = cgroup_procs_release,
5240 		.seq_start = cgroup_threads_start,
5241 		.seq_next = cgroup_procs_next,
5242 		.seq_show = cgroup_procs_show,
5243 		.write = cgroup_threads_write,
5244 	},
5245 	{
5246 		.name = "cgroup.controllers",
5247 		.seq_show = cgroup_controllers_show,
5248 	},
5249 	{
5250 		.name = "cgroup.subtree_control",
5251 		.flags = CFTYPE_NS_DELEGATABLE,
5252 		.seq_show = cgroup_subtree_control_show,
5253 		.write = cgroup_subtree_control_write,
5254 	},
5255 	{
5256 		.name = "cgroup.events",
5257 		.flags = CFTYPE_NOT_ON_ROOT,
5258 		.file_offset = offsetof(struct cgroup, events_file),
5259 		.seq_show = cgroup_events_show,
5260 	},
5261 	{
5262 		.name = "cgroup.max.descendants",
5263 		.seq_show = cgroup_max_descendants_show,
5264 		.write = cgroup_max_descendants_write,
5265 	},
5266 	{
5267 		.name = "cgroup.max.depth",
5268 		.seq_show = cgroup_max_depth_show,
5269 		.write = cgroup_max_depth_write,
5270 	},
5271 	{
5272 		.name = "cgroup.stat",
5273 		.seq_show = cgroup_stat_show,
5274 	},
5275 	{
5276 		.name = "cgroup.freeze",
5277 		.flags = CFTYPE_NOT_ON_ROOT,
5278 		.seq_show = cgroup_freeze_show,
5279 		.write = cgroup_freeze_write,
5280 	},
5281 	{
5282 		.name = "cgroup.kill",
5283 		.flags = CFTYPE_NOT_ON_ROOT,
5284 		.write = cgroup_kill_write,
5285 	},
5286 	{
5287 		.name = "cpu.stat",
5288 		.seq_show = cpu_stat_show,
5289 	},
5290 	{
5291 		.name = "cpu.stat.local",
5292 		.seq_show = cpu_local_stat_show,
5293 	},
5294 	{ }	/* terminate */
5295 };
5296 
5297 static struct cftype cgroup_psi_files[] = {
5298 #ifdef CONFIG_PSI
5299 	{
5300 		.name = "io.pressure",
5301 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5302 		.open = cgroup_pressure_open,
5303 		.seq_show = cgroup_io_pressure_show,
5304 		.write = cgroup_io_pressure_write,
5305 		.poll = cgroup_pressure_poll,
5306 		.release = cgroup_pressure_release,
5307 	},
5308 	{
5309 		.name = "memory.pressure",
5310 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5311 		.open = cgroup_pressure_open,
5312 		.seq_show = cgroup_memory_pressure_show,
5313 		.write = cgroup_memory_pressure_write,
5314 		.poll = cgroup_pressure_poll,
5315 		.release = cgroup_pressure_release,
5316 	},
5317 	{
5318 		.name = "cpu.pressure",
5319 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5320 		.open = cgroup_pressure_open,
5321 		.seq_show = cgroup_cpu_pressure_show,
5322 		.write = cgroup_cpu_pressure_write,
5323 		.poll = cgroup_pressure_poll,
5324 		.release = cgroup_pressure_release,
5325 	},
5326 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5327 	{
5328 		.name = "irq.pressure",
5329 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5330 		.open = cgroup_pressure_open,
5331 		.seq_show = cgroup_irq_pressure_show,
5332 		.write = cgroup_irq_pressure_write,
5333 		.poll = cgroup_pressure_poll,
5334 		.release = cgroup_pressure_release,
5335 	},
5336 #endif
5337 	{
5338 		.name = "cgroup.pressure",
5339 		.seq_show = cgroup_pressure_show,
5340 		.write = cgroup_pressure_write,
5341 	},
5342 #endif /* CONFIG_PSI */
5343 	{ }	/* terminate */
5344 };
5345 
5346 /*
5347  * css destruction is four-stage process.
5348  *
5349  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5350  *    Implemented in kill_css().
5351  *
5352  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5353  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5354  *    offlined by invoking offline_css().  After offlining, the base ref is
5355  *    put.  Implemented in css_killed_work_fn().
5356  *
5357  * 3. When the percpu_ref reaches zero, the only possible remaining
5358  *    accessors are inside RCU read sections.  css_release() schedules the
5359  *    RCU callback.
5360  *
5361  * 4. After the grace period, the css can be freed.  Implemented in
5362  *    css_free_rwork_fn().
5363  *
5364  * It is actually hairier because both step 2 and 4 require process context
5365  * and thus involve punting to css->destroy_work adding two additional
5366  * steps to the already complex sequence.
5367  */
5368 static void css_free_rwork_fn(struct work_struct *work)
5369 {
5370 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5371 				struct cgroup_subsys_state, destroy_rwork);
5372 	struct cgroup_subsys *ss = css->ss;
5373 	struct cgroup *cgrp = css->cgroup;
5374 
5375 	percpu_ref_exit(&css->refcnt);
5376 
5377 	if (ss) {
5378 		/* css free path */
5379 		struct cgroup_subsys_state *parent = css->parent;
5380 		int id = css->id;
5381 
5382 		ss->css_free(css);
5383 		cgroup_idr_remove(&ss->css_idr, id);
5384 		cgroup_put(cgrp);
5385 
5386 		if (parent)
5387 			css_put(parent);
5388 	} else {
5389 		/* cgroup free path */
5390 		atomic_dec(&cgrp->root->nr_cgrps);
5391 		cgroup1_pidlist_destroy_all(cgrp);
5392 		cancel_work_sync(&cgrp->release_agent_work);
5393 		bpf_cgrp_storage_free(cgrp);
5394 
5395 		if (cgroup_parent(cgrp)) {
5396 			/*
5397 			 * We get a ref to the parent, and put the ref when
5398 			 * this cgroup is being freed, so it's guaranteed
5399 			 * that the parent won't be destroyed before its
5400 			 * children.
5401 			 */
5402 			cgroup_put(cgroup_parent(cgrp));
5403 			kernfs_put(cgrp->kn);
5404 			psi_cgroup_free(cgrp);
5405 			cgroup_rstat_exit(cgrp);
5406 			kfree(cgrp);
5407 		} else {
5408 			/*
5409 			 * This is root cgroup's refcnt reaching zero,
5410 			 * which indicates that the root should be
5411 			 * released.
5412 			 */
5413 			cgroup_destroy_root(cgrp->root);
5414 		}
5415 	}
5416 }
5417 
5418 static void css_release_work_fn(struct work_struct *work)
5419 {
5420 	struct cgroup_subsys_state *css =
5421 		container_of(work, struct cgroup_subsys_state, destroy_work);
5422 	struct cgroup_subsys *ss = css->ss;
5423 	struct cgroup *cgrp = css->cgroup;
5424 
5425 	cgroup_lock();
5426 
5427 	css->flags |= CSS_RELEASED;
5428 	list_del_rcu(&css->sibling);
5429 
5430 	if (ss) {
5431 		/* css release path */
5432 		if (!list_empty(&css->rstat_css_node)) {
5433 			cgroup_rstat_flush(cgrp);
5434 			list_del_rcu(&css->rstat_css_node);
5435 		}
5436 
5437 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5438 		if (ss->css_released)
5439 			ss->css_released(css);
5440 	} else {
5441 		struct cgroup *tcgrp;
5442 
5443 		/* cgroup release path */
5444 		TRACE_CGROUP_PATH(release, cgrp);
5445 
5446 		cgroup_rstat_flush(cgrp);
5447 
5448 		spin_lock_irq(&css_set_lock);
5449 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5450 		     tcgrp = cgroup_parent(tcgrp))
5451 			tcgrp->nr_dying_descendants--;
5452 		spin_unlock_irq(&css_set_lock);
5453 
5454 		/*
5455 		 * There are two control paths which try to determine
5456 		 * cgroup from dentry without going through kernfs -
5457 		 * cgroupstats_build() and css_tryget_online_from_dir().
5458 		 * Those are supported by RCU protecting clearing of
5459 		 * cgrp->kn->priv backpointer.
5460 		 */
5461 		if (cgrp->kn)
5462 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5463 					 NULL);
5464 	}
5465 
5466 	cgroup_unlock();
5467 
5468 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5469 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5470 }
5471 
5472 static void css_release(struct percpu_ref *ref)
5473 {
5474 	struct cgroup_subsys_state *css =
5475 		container_of(ref, struct cgroup_subsys_state, refcnt);
5476 
5477 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5478 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5479 }
5480 
5481 static void init_and_link_css(struct cgroup_subsys_state *css,
5482 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5483 {
5484 	lockdep_assert_held(&cgroup_mutex);
5485 
5486 	cgroup_get_live(cgrp);
5487 
5488 	memset(css, 0, sizeof(*css));
5489 	css->cgroup = cgrp;
5490 	css->ss = ss;
5491 	css->id = -1;
5492 	INIT_LIST_HEAD(&css->sibling);
5493 	INIT_LIST_HEAD(&css->children);
5494 	INIT_LIST_HEAD(&css->rstat_css_node);
5495 	css->serial_nr = css_serial_nr_next++;
5496 	atomic_set(&css->online_cnt, 0);
5497 
5498 	if (cgroup_parent(cgrp)) {
5499 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5500 		css_get(css->parent);
5501 	}
5502 
5503 	if (ss->css_rstat_flush)
5504 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5505 
5506 	BUG_ON(cgroup_css(cgrp, ss));
5507 }
5508 
5509 /* invoke ->css_online() on a new CSS and mark it online if successful */
5510 static int online_css(struct cgroup_subsys_state *css)
5511 {
5512 	struct cgroup_subsys *ss = css->ss;
5513 	int ret = 0;
5514 
5515 	lockdep_assert_held(&cgroup_mutex);
5516 
5517 	if (ss->css_online)
5518 		ret = ss->css_online(css);
5519 	if (!ret) {
5520 		css->flags |= CSS_ONLINE;
5521 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5522 
5523 		atomic_inc(&css->online_cnt);
5524 		if (css->parent)
5525 			atomic_inc(&css->parent->online_cnt);
5526 	}
5527 	return ret;
5528 }
5529 
5530 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5531 static void offline_css(struct cgroup_subsys_state *css)
5532 {
5533 	struct cgroup_subsys *ss = css->ss;
5534 
5535 	lockdep_assert_held(&cgroup_mutex);
5536 
5537 	if (!(css->flags & CSS_ONLINE))
5538 		return;
5539 
5540 	if (ss->css_offline)
5541 		ss->css_offline(css);
5542 
5543 	css->flags &= ~CSS_ONLINE;
5544 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5545 
5546 	wake_up_all(&css->cgroup->offline_waitq);
5547 }
5548 
5549 /**
5550  * css_create - create a cgroup_subsys_state
5551  * @cgrp: the cgroup new css will be associated with
5552  * @ss: the subsys of new css
5553  *
5554  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5555  * css is online and installed in @cgrp.  This function doesn't create the
5556  * interface files.  Returns 0 on success, -errno on failure.
5557  */
5558 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5559 					      struct cgroup_subsys *ss)
5560 {
5561 	struct cgroup *parent = cgroup_parent(cgrp);
5562 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5563 	struct cgroup_subsys_state *css;
5564 	int err;
5565 
5566 	lockdep_assert_held(&cgroup_mutex);
5567 
5568 	css = ss->css_alloc(parent_css);
5569 	if (!css)
5570 		css = ERR_PTR(-ENOMEM);
5571 	if (IS_ERR(css))
5572 		return css;
5573 
5574 	init_and_link_css(css, ss, cgrp);
5575 
5576 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5577 	if (err)
5578 		goto err_free_css;
5579 
5580 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5581 	if (err < 0)
5582 		goto err_free_css;
5583 	css->id = err;
5584 
5585 	/* @css is ready to be brought online now, make it visible */
5586 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5587 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5588 
5589 	err = online_css(css);
5590 	if (err)
5591 		goto err_list_del;
5592 
5593 	return css;
5594 
5595 err_list_del:
5596 	list_del_rcu(&css->sibling);
5597 err_free_css:
5598 	list_del_rcu(&css->rstat_css_node);
5599 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5600 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5601 	return ERR_PTR(err);
5602 }
5603 
5604 /*
5605  * The returned cgroup is fully initialized including its control mask, but
5606  * it doesn't have the control mask applied.
5607  */
5608 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5609 				    umode_t mode)
5610 {
5611 	struct cgroup_root *root = parent->root;
5612 	struct cgroup *cgrp, *tcgrp;
5613 	struct kernfs_node *kn;
5614 	int level = parent->level + 1;
5615 	int ret;
5616 
5617 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5618 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5619 	if (!cgrp)
5620 		return ERR_PTR(-ENOMEM);
5621 
5622 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5623 	if (ret)
5624 		goto out_free_cgrp;
5625 
5626 	ret = cgroup_rstat_init(cgrp);
5627 	if (ret)
5628 		goto out_cancel_ref;
5629 
5630 	/* create the directory */
5631 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5632 	if (IS_ERR(kn)) {
5633 		ret = PTR_ERR(kn);
5634 		goto out_stat_exit;
5635 	}
5636 	cgrp->kn = kn;
5637 
5638 	init_cgroup_housekeeping(cgrp);
5639 
5640 	cgrp->self.parent = &parent->self;
5641 	cgrp->root = root;
5642 	cgrp->level = level;
5643 
5644 	ret = psi_cgroup_alloc(cgrp);
5645 	if (ret)
5646 		goto out_kernfs_remove;
5647 
5648 	ret = cgroup_bpf_inherit(cgrp);
5649 	if (ret)
5650 		goto out_psi_free;
5651 
5652 	/*
5653 	 * New cgroup inherits effective freeze counter, and
5654 	 * if the parent has to be frozen, the child has too.
5655 	 */
5656 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5657 	if (cgrp->freezer.e_freeze) {
5658 		/*
5659 		 * Set the CGRP_FREEZE flag, so when a process will be
5660 		 * attached to the child cgroup, it will become frozen.
5661 		 * At this point the new cgroup is unpopulated, so we can
5662 		 * consider it frozen immediately.
5663 		 */
5664 		set_bit(CGRP_FREEZE, &cgrp->flags);
5665 		set_bit(CGRP_FROZEN, &cgrp->flags);
5666 	}
5667 
5668 	spin_lock_irq(&css_set_lock);
5669 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5670 		cgrp->ancestors[tcgrp->level] = tcgrp;
5671 
5672 		if (tcgrp != cgrp) {
5673 			tcgrp->nr_descendants++;
5674 
5675 			/*
5676 			 * If the new cgroup is frozen, all ancestor cgroups
5677 			 * get a new frozen descendant, but their state can't
5678 			 * change because of this.
5679 			 */
5680 			if (cgrp->freezer.e_freeze)
5681 				tcgrp->freezer.nr_frozen_descendants++;
5682 		}
5683 	}
5684 	spin_unlock_irq(&css_set_lock);
5685 
5686 	if (notify_on_release(parent))
5687 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5688 
5689 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5690 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5691 
5692 	cgrp->self.serial_nr = css_serial_nr_next++;
5693 
5694 	/* allocation complete, commit to creation */
5695 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5696 	atomic_inc(&root->nr_cgrps);
5697 	cgroup_get_live(parent);
5698 
5699 	/*
5700 	 * On the default hierarchy, a child doesn't automatically inherit
5701 	 * subtree_control from the parent.  Each is configured manually.
5702 	 */
5703 	if (!cgroup_on_dfl(cgrp))
5704 		cgrp->subtree_control = cgroup_control(cgrp);
5705 
5706 	cgroup_propagate_control(cgrp);
5707 
5708 	return cgrp;
5709 
5710 out_psi_free:
5711 	psi_cgroup_free(cgrp);
5712 out_kernfs_remove:
5713 	kernfs_remove(cgrp->kn);
5714 out_stat_exit:
5715 	cgroup_rstat_exit(cgrp);
5716 out_cancel_ref:
5717 	percpu_ref_exit(&cgrp->self.refcnt);
5718 out_free_cgrp:
5719 	kfree(cgrp);
5720 	return ERR_PTR(ret);
5721 }
5722 
5723 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5724 {
5725 	struct cgroup *cgroup;
5726 	int ret = false;
5727 	int level = 1;
5728 
5729 	lockdep_assert_held(&cgroup_mutex);
5730 
5731 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5732 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5733 			goto fail;
5734 
5735 		if (level > cgroup->max_depth)
5736 			goto fail;
5737 
5738 		level++;
5739 	}
5740 
5741 	ret = true;
5742 fail:
5743 	return ret;
5744 }
5745 
5746 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5747 {
5748 	struct cgroup *parent, *cgrp;
5749 	int ret;
5750 
5751 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5752 	if (strchr(name, '\n'))
5753 		return -EINVAL;
5754 
5755 	parent = cgroup_kn_lock_live(parent_kn, false);
5756 	if (!parent)
5757 		return -ENODEV;
5758 
5759 	if (!cgroup_check_hierarchy_limits(parent)) {
5760 		ret = -EAGAIN;
5761 		goto out_unlock;
5762 	}
5763 
5764 	cgrp = cgroup_create(parent, name, mode);
5765 	if (IS_ERR(cgrp)) {
5766 		ret = PTR_ERR(cgrp);
5767 		goto out_unlock;
5768 	}
5769 
5770 	/*
5771 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5772 	 * that @cgrp->kn is always accessible.
5773 	 */
5774 	kernfs_get(cgrp->kn);
5775 
5776 	ret = cgroup_kn_set_ugid(cgrp->kn);
5777 	if (ret)
5778 		goto out_destroy;
5779 
5780 	ret = css_populate_dir(&cgrp->self);
5781 	if (ret)
5782 		goto out_destroy;
5783 
5784 	ret = cgroup_apply_control_enable(cgrp);
5785 	if (ret)
5786 		goto out_destroy;
5787 
5788 	TRACE_CGROUP_PATH(mkdir, cgrp);
5789 
5790 	/* let's create and online css's */
5791 	kernfs_activate(cgrp->kn);
5792 
5793 	ret = 0;
5794 	goto out_unlock;
5795 
5796 out_destroy:
5797 	cgroup_destroy_locked(cgrp);
5798 out_unlock:
5799 	cgroup_kn_unlock(parent_kn);
5800 	return ret;
5801 }
5802 
5803 /*
5804  * This is called when the refcnt of a css is confirmed to be killed.
5805  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5806  * initiate destruction and put the css ref from kill_css().
5807  */
5808 static void css_killed_work_fn(struct work_struct *work)
5809 {
5810 	struct cgroup_subsys_state *css =
5811 		container_of(work, struct cgroup_subsys_state, destroy_work);
5812 
5813 	cgroup_lock();
5814 
5815 	do {
5816 		offline_css(css);
5817 		css_put(css);
5818 		/* @css can't go away while we're holding cgroup_mutex */
5819 		css = css->parent;
5820 	} while (css && atomic_dec_and_test(&css->online_cnt));
5821 
5822 	cgroup_unlock();
5823 }
5824 
5825 /* css kill confirmation processing requires process context, bounce */
5826 static void css_killed_ref_fn(struct percpu_ref *ref)
5827 {
5828 	struct cgroup_subsys_state *css =
5829 		container_of(ref, struct cgroup_subsys_state, refcnt);
5830 
5831 	if (atomic_dec_and_test(&css->online_cnt)) {
5832 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5833 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5834 	}
5835 }
5836 
5837 /**
5838  * kill_css - destroy a css
5839  * @css: css to destroy
5840  *
5841  * This function initiates destruction of @css by removing cgroup interface
5842  * files and putting its base reference.  ->css_offline() will be invoked
5843  * asynchronously once css_tryget_online() is guaranteed to fail and when
5844  * the reference count reaches zero, @css will be released.
5845  */
5846 static void kill_css(struct cgroup_subsys_state *css)
5847 {
5848 	lockdep_assert_held(&cgroup_mutex);
5849 
5850 	if (css->flags & CSS_DYING)
5851 		return;
5852 
5853 	css->flags |= CSS_DYING;
5854 
5855 	/*
5856 	 * This must happen before css is disassociated with its cgroup.
5857 	 * See seq_css() for details.
5858 	 */
5859 	css_clear_dir(css);
5860 
5861 	/*
5862 	 * Killing would put the base ref, but we need to keep it alive
5863 	 * until after ->css_offline().
5864 	 */
5865 	css_get(css);
5866 
5867 	/*
5868 	 * cgroup core guarantees that, by the time ->css_offline() is
5869 	 * invoked, no new css reference will be given out via
5870 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5871 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5872 	 * guarantee that the ref is seen as killed on all CPUs on return.
5873 	 *
5874 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5875 	 * css is confirmed to be seen as killed on all CPUs.
5876 	 */
5877 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5878 }
5879 
5880 /**
5881  * cgroup_destroy_locked - the first stage of cgroup destruction
5882  * @cgrp: cgroup to be destroyed
5883  *
5884  * css's make use of percpu refcnts whose killing latency shouldn't be
5885  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5886  * guarantee that css_tryget_online() won't succeed by the time
5887  * ->css_offline() is invoked.  To satisfy all the requirements,
5888  * destruction is implemented in the following two steps.
5889  *
5890  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5891  *     userland visible parts and start killing the percpu refcnts of
5892  *     css's.  Set up so that the next stage will be kicked off once all
5893  *     the percpu refcnts are confirmed to be killed.
5894  *
5895  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5896  *     rest of destruction.  Once all cgroup references are gone, the
5897  *     cgroup is RCU-freed.
5898  *
5899  * This function implements s1.  After this step, @cgrp is gone as far as
5900  * the userland is concerned and a new cgroup with the same name may be
5901  * created.  As cgroup doesn't care about the names internally, this
5902  * doesn't cause any problem.
5903  */
5904 static int cgroup_destroy_locked(struct cgroup *cgrp)
5905 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5906 {
5907 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5908 	struct cgroup_subsys_state *css;
5909 	struct cgrp_cset_link *link;
5910 	int ssid;
5911 
5912 	lockdep_assert_held(&cgroup_mutex);
5913 
5914 	/*
5915 	 * Only migration can raise populated from zero and we're already
5916 	 * holding cgroup_mutex.
5917 	 */
5918 	if (cgroup_is_populated(cgrp))
5919 		return -EBUSY;
5920 
5921 	/*
5922 	 * Make sure there's no live children.  We can't test emptiness of
5923 	 * ->self.children as dead children linger on it while being
5924 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5925 	 */
5926 	if (css_has_online_children(&cgrp->self))
5927 		return -EBUSY;
5928 
5929 	/*
5930 	 * Mark @cgrp and the associated csets dead.  The former prevents
5931 	 * further task migration and child creation by disabling
5932 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5933 	 * the migration path.
5934 	 */
5935 	cgrp->self.flags &= ~CSS_ONLINE;
5936 
5937 	spin_lock_irq(&css_set_lock);
5938 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5939 		link->cset->dead = true;
5940 	spin_unlock_irq(&css_set_lock);
5941 
5942 	/* initiate massacre of all css's */
5943 	for_each_css(css, ssid, cgrp)
5944 		kill_css(css);
5945 
5946 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5947 	css_clear_dir(&cgrp->self);
5948 	kernfs_remove(cgrp->kn);
5949 
5950 	if (cgroup_is_threaded(cgrp))
5951 		parent->nr_threaded_children--;
5952 
5953 	spin_lock_irq(&css_set_lock);
5954 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5955 		tcgrp->nr_descendants--;
5956 		tcgrp->nr_dying_descendants++;
5957 		/*
5958 		 * If the dying cgroup is frozen, decrease frozen descendants
5959 		 * counters of ancestor cgroups.
5960 		 */
5961 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5962 			tcgrp->freezer.nr_frozen_descendants--;
5963 	}
5964 	spin_unlock_irq(&css_set_lock);
5965 
5966 	cgroup1_check_for_release(parent);
5967 
5968 	cgroup_bpf_offline(cgrp);
5969 
5970 	/* put the base reference */
5971 	percpu_ref_kill(&cgrp->self.refcnt);
5972 
5973 	return 0;
5974 };
5975 
5976 int cgroup_rmdir(struct kernfs_node *kn)
5977 {
5978 	struct cgroup *cgrp;
5979 	int ret = 0;
5980 
5981 	cgrp = cgroup_kn_lock_live(kn, false);
5982 	if (!cgrp)
5983 		return 0;
5984 
5985 	ret = cgroup_destroy_locked(cgrp);
5986 	if (!ret)
5987 		TRACE_CGROUP_PATH(rmdir, cgrp);
5988 
5989 	cgroup_kn_unlock(kn);
5990 	return ret;
5991 }
5992 
5993 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5994 	.show_options		= cgroup_show_options,
5995 	.mkdir			= cgroup_mkdir,
5996 	.rmdir			= cgroup_rmdir,
5997 	.show_path		= cgroup_show_path,
5998 };
5999 
6000 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6001 {
6002 	struct cgroup_subsys_state *css;
6003 
6004 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6005 
6006 	cgroup_lock();
6007 
6008 	idr_init(&ss->css_idr);
6009 	INIT_LIST_HEAD(&ss->cfts);
6010 
6011 	/* Create the root cgroup state for this subsystem */
6012 	ss->root = &cgrp_dfl_root;
6013 	css = ss->css_alloc(NULL);
6014 	/* We don't handle early failures gracefully */
6015 	BUG_ON(IS_ERR(css));
6016 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6017 
6018 	/*
6019 	 * Root csses are never destroyed and we can't initialize
6020 	 * percpu_ref during early init.  Disable refcnting.
6021 	 */
6022 	css->flags |= CSS_NO_REF;
6023 
6024 	if (early) {
6025 		/* allocation can't be done safely during early init */
6026 		css->id = 1;
6027 	} else {
6028 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6029 		BUG_ON(css->id < 0);
6030 	}
6031 
6032 	/* Update the init_css_set to contain a subsys
6033 	 * pointer to this state - since the subsystem is
6034 	 * newly registered, all tasks and hence the
6035 	 * init_css_set is in the subsystem's root cgroup. */
6036 	init_css_set.subsys[ss->id] = css;
6037 
6038 	have_fork_callback |= (bool)ss->fork << ss->id;
6039 	have_exit_callback |= (bool)ss->exit << ss->id;
6040 	have_release_callback |= (bool)ss->release << ss->id;
6041 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6042 
6043 	/* At system boot, before all subsystems have been
6044 	 * registered, no tasks have been forked, so we don't
6045 	 * need to invoke fork callbacks here. */
6046 	BUG_ON(!list_empty(&init_task.tasks));
6047 
6048 	BUG_ON(online_css(css));
6049 
6050 	cgroup_unlock();
6051 }
6052 
6053 /**
6054  * cgroup_init_early - cgroup initialization at system boot
6055  *
6056  * Initialize cgroups at system boot, and initialize any
6057  * subsystems that request early init.
6058  */
6059 int __init cgroup_init_early(void)
6060 {
6061 	static struct cgroup_fs_context __initdata ctx;
6062 	struct cgroup_subsys *ss;
6063 	int i;
6064 
6065 	ctx.root = &cgrp_dfl_root;
6066 	init_cgroup_root(&ctx);
6067 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6068 
6069 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6070 
6071 	for_each_subsys(ss, i) {
6072 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6073 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6074 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6075 		     ss->id, ss->name);
6076 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6077 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6078 
6079 		ss->id = i;
6080 		ss->name = cgroup_subsys_name[i];
6081 		if (!ss->legacy_name)
6082 			ss->legacy_name = cgroup_subsys_name[i];
6083 
6084 		if (ss->early_init)
6085 			cgroup_init_subsys(ss, true);
6086 	}
6087 	return 0;
6088 }
6089 
6090 /**
6091  * cgroup_init - cgroup initialization
6092  *
6093  * Register cgroup filesystem and /proc file, and initialize
6094  * any subsystems that didn't request early init.
6095  */
6096 int __init cgroup_init(void)
6097 {
6098 	struct cgroup_subsys *ss;
6099 	int ssid;
6100 
6101 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6102 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6103 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6104 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6105 
6106 	cgroup_rstat_boot();
6107 
6108 	get_user_ns(init_cgroup_ns.user_ns);
6109 
6110 	cgroup_lock();
6111 
6112 	/*
6113 	 * Add init_css_set to the hash table so that dfl_root can link to
6114 	 * it during init.
6115 	 */
6116 	hash_add(css_set_table, &init_css_set.hlist,
6117 		 css_set_hash(init_css_set.subsys));
6118 
6119 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6120 
6121 	cgroup_unlock();
6122 
6123 	for_each_subsys(ss, ssid) {
6124 		if (ss->early_init) {
6125 			struct cgroup_subsys_state *css =
6126 				init_css_set.subsys[ss->id];
6127 
6128 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6129 						   GFP_KERNEL);
6130 			BUG_ON(css->id < 0);
6131 		} else {
6132 			cgroup_init_subsys(ss, false);
6133 		}
6134 
6135 		list_add_tail(&init_css_set.e_cset_node[ssid],
6136 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6137 
6138 		/*
6139 		 * Setting dfl_root subsys_mask needs to consider the
6140 		 * disabled flag and cftype registration needs kmalloc,
6141 		 * both of which aren't available during early_init.
6142 		 */
6143 		if (!cgroup_ssid_enabled(ssid))
6144 			continue;
6145 
6146 		if (cgroup1_ssid_disabled(ssid))
6147 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6148 				ss->legacy_name);
6149 
6150 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6151 
6152 		/* implicit controllers must be threaded too */
6153 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6154 
6155 		if (ss->implicit_on_dfl)
6156 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6157 		else if (!ss->dfl_cftypes)
6158 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6159 
6160 		if (ss->threaded)
6161 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6162 
6163 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6164 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6165 		} else {
6166 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6167 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6168 		}
6169 
6170 		if (ss->bind)
6171 			ss->bind(init_css_set.subsys[ssid]);
6172 
6173 		cgroup_lock();
6174 		css_populate_dir(init_css_set.subsys[ssid]);
6175 		cgroup_unlock();
6176 	}
6177 
6178 	/* init_css_set.subsys[] has been updated, re-hash */
6179 	hash_del(&init_css_set.hlist);
6180 	hash_add(css_set_table, &init_css_set.hlist,
6181 		 css_set_hash(init_css_set.subsys));
6182 
6183 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6184 	WARN_ON(register_filesystem(&cgroup_fs_type));
6185 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6186 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6187 #ifdef CONFIG_CPUSETS
6188 	WARN_ON(register_filesystem(&cpuset_fs_type));
6189 #endif
6190 
6191 	return 0;
6192 }
6193 
6194 static int __init cgroup_wq_init(void)
6195 {
6196 	/*
6197 	 * There isn't much point in executing destruction path in
6198 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6199 	 * Use 1 for @max_active.
6200 	 *
6201 	 * We would prefer to do this in cgroup_init() above, but that
6202 	 * is called before init_workqueues(): so leave this until after.
6203 	 */
6204 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6205 	BUG_ON(!cgroup_destroy_wq);
6206 	return 0;
6207 }
6208 core_initcall(cgroup_wq_init);
6209 
6210 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6211 {
6212 	struct kernfs_node *kn;
6213 
6214 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6215 	if (!kn)
6216 		return;
6217 	kernfs_path(kn, buf, buflen);
6218 	kernfs_put(kn);
6219 }
6220 
6221 /*
6222  * cgroup_get_from_id : get the cgroup associated with cgroup id
6223  * @id: cgroup id
6224  * On success return the cgrp or ERR_PTR on failure
6225  * Only cgroups within current task's cgroup NS are valid.
6226  */
6227 struct cgroup *cgroup_get_from_id(u64 id)
6228 {
6229 	struct kernfs_node *kn;
6230 	struct cgroup *cgrp, *root_cgrp;
6231 
6232 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6233 	if (!kn)
6234 		return ERR_PTR(-ENOENT);
6235 
6236 	if (kernfs_type(kn) != KERNFS_DIR) {
6237 		kernfs_put(kn);
6238 		return ERR_PTR(-ENOENT);
6239 	}
6240 
6241 	rcu_read_lock();
6242 
6243 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6244 	if (cgrp && !cgroup_tryget(cgrp))
6245 		cgrp = NULL;
6246 
6247 	rcu_read_unlock();
6248 	kernfs_put(kn);
6249 
6250 	if (!cgrp)
6251 		return ERR_PTR(-ENOENT);
6252 
6253 	root_cgrp = current_cgns_cgroup_dfl();
6254 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6255 		cgroup_put(cgrp);
6256 		return ERR_PTR(-ENOENT);
6257 	}
6258 
6259 	return cgrp;
6260 }
6261 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6262 
6263 /*
6264  * proc_cgroup_show()
6265  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6266  *  - Used for /proc/<pid>/cgroup.
6267  */
6268 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6269 		     struct pid *pid, struct task_struct *tsk)
6270 {
6271 	char *buf;
6272 	int retval;
6273 	struct cgroup_root *root;
6274 
6275 	retval = -ENOMEM;
6276 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6277 	if (!buf)
6278 		goto out;
6279 
6280 	cgroup_lock();
6281 	spin_lock_irq(&css_set_lock);
6282 
6283 	for_each_root(root) {
6284 		struct cgroup_subsys *ss;
6285 		struct cgroup *cgrp;
6286 		int ssid, count = 0;
6287 
6288 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6289 			continue;
6290 
6291 		seq_printf(m, "%d:", root->hierarchy_id);
6292 		if (root != &cgrp_dfl_root)
6293 			for_each_subsys(ss, ssid)
6294 				if (root->subsys_mask & (1 << ssid))
6295 					seq_printf(m, "%s%s", count++ ? "," : "",
6296 						   ss->legacy_name);
6297 		if (strlen(root->name))
6298 			seq_printf(m, "%sname=%s", count ? "," : "",
6299 				   root->name);
6300 		seq_putc(m, ':');
6301 
6302 		cgrp = task_cgroup_from_root(tsk, root);
6303 
6304 		/*
6305 		 * On traditional hierarchies, all zombie tasks show up as
6306 		 * belonging to the root cgroup.  On the default hierarchy,
6307 		 * while a zombie doesn't show up in "cgroup.procs" and
6308 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6309 		 * reporting the cgroup it belonged to before exiting.  If
6310 		 * the cgroup is removed before the zombie is reaped,
6311 		 * " (deleted)" is appended to the cgroup path.
6312 		 */
6313 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6314 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6315 						current->nsproxy->cgroup_ns);
6316 			if (retval >= PATH_MAX)
6317 				retval = -ENAMETOOLONG;
6318 			if (retval < 0)
6319 				goto out_unlock;
6320 
6321 			seq_puts(m, buf);
6322 		} else {
6323 			seq_puts(m, "/");
6324 		}
6325 
6326 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6327 			seq_puts(m, " (deleted)\n");
6328 		else
6329 			seq_putc(m, '\n');
6330 	}
6331 
6332 	retval = 0;
6333 out_unlock:
6334 	spin_unlock_irq(&css_set_lock);
6335 	cgroup_unlock();
6336 	kfree(buf);
6337 out:
6338 	return retval;
6339 }
6340 
6341 /**
6342  * cgroup_fork - initialize cgroup related fields during copy_process()
6343  * @child: pointer to task_struct of forking parent process.
6344  *
6345  * A task is associated with the init_css_set until cgroup_post_fork()
6346  * attaches it to the target css_set.
6347  */
6348 void cgroup_fork(struct task_struct *child)
6349 {
6350 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6351 	INIT_LIST_HEAD(&child->cg_list);
6352 }
6353 
6354 /**
6355  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6356  * @f: file corresponding to cgroup_dir
6357  *
6358  * Find the cgroup from a file pointer associated with a cgroup directory.
6359  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6360  * cgroup cannot be found.
6361  */
6362 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6363 {
6364 	struct cgroup_subsys_state *css;
6365 
6366 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6367 	if (IS_ERR(css))
6368 		return ERR_CAST(css);
6369 
6370 	return css->cgroup;
6371 }
6372 
6373 /**
6374  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6375  * cgroup2.
6376  * @f: file corresponding to cgroup2_dir
6377  */
6378 static struct cgroup *cgroup_get_from_file(struct file *f)
6379 {
6380 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6381 
6382 	if (IS_ERR(cgrp))
6383 		return ERR_CAST(cgrp);
6384 
6385 	if (!cgroup_on_dfl(cgrp)) {
6386 		cgroup_put(cgrp);
6387 		return ERR_PTR(-EBADF);
6388 	}
6389 
6390 	return cgrp;
6391 }
6392 
6393 /**
6394  * cgroup_css_set_fork - find or create a css_set for a child process
6395  * @kargs: the arguments passed to create the child process
6396  *
6397  * This functions finds or creates a new css_set which the child
6398  * process will be attached to in cgroup_post_fork(). By default,
6399  * the child process will be given the same css_set as its parent.
6400  *
6401  * If CLONE_INTO_CGROUP is specified this function will try to find an
6402  * existing css_set which includes the requested cgroup and if not create
6403  * a new css_set that the child will be attached to later. If this function
6404  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6405  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6406  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6407  * to the target cgroup.
6408  */
6409 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6410 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6411 {
6412 	int ret;
6413 	struct cgroup *dst_cgrp = NULL;
6414 	struct css_set *cset;
6415 	struct super_block *sb;
6416 	struct file *f;
6417 
6418 	if (kargs->flags & CLONE_INTO_CGROUP)
6419 		cgroup_lock();
6420 
6421 	cgroup_threadgroup_change_begin(current);
6422 
6423 	spin_lock_irq(&css_set_lock);
6424 	cset = task_css_set(current);
6425 	get_css_set(cset);
6426 	spin_unlock_irq(&css_set_lock);
6427 
6428 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6429 		kargs->cset = cset;
6430 		return 0;
6431 	}
6432 
6433 	f = fget_raw(kargs->cgroup);
6434 	if (!f) {
6435 		ret = -EBADF;
6436 		goto err;
6437 	}
6438 	sb = f->f_path.dentry->d_sb;
6439 
6440 	dst_cgrp = cgroup_get_from_file(f);
6441 	if (IS_ERR(dst_cgrp)) {
6442 		ret = PTR_ERR(dst_cgrp);
6443 		dst_cgrp = NULL;
6444 		goto err;
6445 	}
6446 
6447 	if (cgroup_is_dead(dst_cgrp)) {
6448 		ret = -ENODEV;
6449 		goto err;
6450 	}
6451 
6452 	/*
6453 	 * Verify that we the target cgroup is writable for us. This is
6454 	 * usually done by the vfs layer but since we're not going through
6455 	 * the vfs layer here we need to do it "manually".
6456 	 */
6457 	ret = cgroup_may_write(dst_cgrp, sb);
6458 	if (ret)
6459 		goto err;
6460 
6461 	/*
6462 	 * Spawning a task directly into a cgroup works by passing a file
6463 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6464 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6465 	 * This was done on purpose so spawning into a cgroup could be
6466 	 * conceptualized as an atomic
6467 	 *
6468 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6469 	 *   write(fd, <child-pid>, ...);
6470 	 *
6471 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6472 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6473 	 * to always use the caller's credentials.
6474 	 */
6475 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6476 					!(kargs->flags & CLONE_THREAD),
6477 					current->nsproxy->cgroup_ns);
6478 	if (ret)
6479 		goto err;
6480 
6481 	kargs->cset = find_css_set(cset, dst_cgrp);
6482 	if (!kargs->cset) {
6483 		ret = -ENOMEM;
6484 		goto err;
6485 	}
6486 
6487 	put_css_set(cset);
6488 	fput(f);
6489 	kargs->cgrp = dst_cgrp;
6490 	return ret;
6491 
6492 err:
6493 	cgroup_threadgroup_change_end(current);
6494 	cgroup_unlock();
6495 	if (f)
6496 		fput(f);
6497 	if (dst_cgrp)
6498 		cgroup_put(dst_cgrp);
6499 	put_css_set(cset);
6500 	if (kargs->cset)
6501 		put_css_set(kargs->cset);
6502 	return ret;
6503 }
6504 
6505 /**
6506  * cgroup_css_set_put_fork - drop references we took during fork
6507  * @kargs: the arguments passed to create the child process
6508  *
6509  * Drop references to the prepared css_set and target cgroup if
6510  * CLONE_INTO_CGROUP was requested.
6511  */
6512 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6513 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6514 {
6515 	struct cgroup *cgrp = kargs->cgrp;
6516 	struct css_set *cset = kargs->cset;
6517 
6518 	cgroup_threadgroup_change_end(current);
6519 
6520 	if (cset) {
6521 		put_css_set(cset);
6522 		kargs->cset = NULL;
6523 	}
6524 
6525 	if (kargs->flags & CLONE_INTO_CGROUP) {
6526 		cgroup_unlock();
6527 		if (cgrp) {
6528 			cgroup_put(cgrp);
6529 			kargs->cgrp = NULL;
6530 		}
6531 	}
6532 }
6533 
6534 /**
6535  * cgroup_can_fork - called on a new task before the process is exposed
6536  * @child: the child process
6537  * @kargs: the arguments passed to create the child process
6538  *
6539  * This prepares a new css_set for the child process which the child will
6540  * be attached to in cgroup_post_fork().
6541  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6542  * callback returns an error, the fork aborts with that error code. This
6543  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6544  */
6545 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6546 {
6547 	struct cgroup_subsys *ss;
6548 	int i, j, ret;
6549 
6550 	ret = cgroup_css_set_fork(kargs);
6551 	if (ret)
6552 		return ret;
6553 
6554 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6555 		ret = ss->can_fork(child, kargs->cset);
6556 		if (ret)
6557 			goto out_revert;
6558 	} while_each_subsys_mask();
6559 
6560 	return 0;
6561 
6562 out_revert:
6563 	for_each_subsys(ss, j) {
6564 		if (j >= i)
6565 			break;
6566 		if (ss->cancel_fork)
6567 			ss->cancel_fork(child, kargs->cset);
6568 	}
6569 
6570 	cgroup_css_set_put_fork(kargs);
6571 
6572 	return ret;
6573 }
6574 
6575 /**
6576  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6577  * @child: the child process
6578  * @kargs: the arguments passed to create the child process
6579  *
6580  * This calls the cancel_fork() callbacks if a fork failed *after*
6581  * cgroup_can_fork() succeeded and cleans up references we took to
6582  * prepare a new css_set for the child process in cgroup_can_fork().
6583  */
6584 void cgroup_cancel_fork(struct task_struct *child,
6585 			struct kernel_clone_args *kargs)
6586 {
6587 	struct cgroup_subsys *ss;
6588 	int i;
6589 
6590 	for_each_subsys(ss, i)
6591 		if (ss->cancel_fork)
6592 			ss->cancel_fork(child, kargs->cset);
6593 
6594 	cgroup_css_set_put_fork(kargs);
6595 }
6596 
6597 /**
6598  * cgroup_post_fork - finalize cgroup setup for the child process
6599  * @child: the child process
6600  * @kargs: the arguments passed to create the child process
6601  *
6602  * Attach the child process to its css_set calling the subsystem fork()
6603  * callbacks.
6604  */
6605 void cgroup_post_fork(struct task_struct *child,
6606 		      struct kernel_clone_args *kargs)
6607 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6608 {
6609 	unsigned long cgrp_flags = 0;
6610 	bool kill = false;
6611 	struct cgroup_subsys *ss;
6612 	struct css_set *cset;
6613 	int i;
6614 
6615 	cset = kargs->cset;
6616 	kargs->cset = NULL;
6617 
6618 	spin_lock_irq(&css_set_lock);
6619 
6620 	/* init tasks are special, only link regular threads */
6621 	if (likely(child->pid)) {
6622 		if (kargs->cgrp)
6623 			cgrp_flags = kargs->cgrp->flags;
6624 		else
6625 			cgrp_flags = cset->dfl_cgrp->flags;
6626 
6627 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6628 		cset->nr_tasks++;
6629 		css_set_move_task(child, NULL, cset, false);
6630 	} else {
6631 		put_css_set(cset);
6632 		cset = NULL;
6633 	}
6634 
6635 	if (!(child->flags & PF_KTHREAD)) {
6636 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6637 			/*
6638 			 * If the cgroup has to be frozen, the new task has
6639 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6640 			 * get the task into the frozen state.
6641 			 */
6642 			spin_lock(&child->sighand->siglock);
6643 			WARN_ON_ONCE(child->frozen);
6644 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6645 			spin_unlock(&child->sighand->siglock);
6646 
6647 			/*
6648 			 * Calling cgroup_update_frozen() isn't required here,
6649 			 * because it will be called anyway a bit later from
6650 			 * do_freezer_trap(). So we avoid cgroup's transient
6651 			 * switch from the frozen state and back.
6652 			 */
6653 		}
6654 
6655 		/*
6656 		 * If the cgroup is to be killed notice it now and take the
6657 		 * child down right after we finished preparing it for
6658 		 * userspace.
6659 		 */
6660 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6661 	}
6662 
6663 	spin_unlock_irq(&css_set_lock);
6664 
6665 	/*
6666 	 * Call ss->fork().  This must happen after @child is linked on
6667 	 * css_set; otherwise, @child might change state between ->fork()
6668 	 * and addition to css_set.
6669 	 */
6670 	do_each_subsys_mask(ss, i, have_fork_callback) {
6671 		ss->fork(child);
6672 	} while_each_subsys_mask();
6673 
6674 	/* Make the new cset the root_cset of the new cgroup namespace. */
6675 	if (kargs->flags & CLONE_NEWCGROUP) {
6676 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6677 
6678 		get_css_set(cset);
6679 		child->nsproxy->cgroup_ns->root_cset = cset;
6680 		put_css_set(rcset);
6681 	}
6682 
6683 	/* Cgroup has to be killed so take down child immediately. */
6684 	if (unlikely(kill))
6685 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6686 
6687 	cgroup_css_set_put_fork(kargs);
6688 }
6689 
6690 /**
6691  * cgroup_exit - detach cgroup from exiting task
6692  * @tsk: pointer to task_struct of exiting process
6693  *
6694  * Description: Detach cgroup from @tsk.
6695  *
6696  */
6697 void cgroup_exit(struct task_struct *tsk)
6698 {
6699 	struct cgroup_subsys *ss;
6700 	struct css_set *cset;
6701 	int i;
6702 
6703 	spin_lock_irq(&css_set_lock);
6704 
6705 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6706 	cset = task_css_set(tsk);
6707 	css_set_move_task(tsk, cset, NULL, false);
6708 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6709 	cset->nr_tasks--;
6710 
6711 	if (dl_task(tsk))
6712 		dec_dl_tasks_cs(tsk);
6713 
6714 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6715 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6716 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6717 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6718 
6719 	spin_unlock_irq(&css_set_lock);
6720 
6721 	/* see cgroup_post_fork() for details */
6722 	do_each_subsys_mask(ss, i, have_exit_callback) {
6723 		ss->exit(tsk);
6724 	} while_each_subsys_mask();
6725 }
6726 
6727 void cgroup_release(struct task_struct *task)
6728 {
6729 	struct cgroup_subsys *ss;
6730 	int ssid;
6731 
6732 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6733 		ss->release(task);
6734 	} while_each_subsys_mask();
6735 
6736 	spin_lock_irq(&css_set_lock);
6737 	css_set_skip_task_iters(task_css_set(task), task);
6738 	list_del_init(&task->cg_list);
6739 	spin_unlock_irq(&css_set_lock);
6740 }
6741 
6742 void cgroup_free(struct task_struct *task)
6743 {
6744 	struct css_set *cset = task_css_set(task);
6745 	put_css_set(cset);
6746 }
6747 
6748 static int __init cgroup_disable(char *str)
6749 {
6750 	struct cgroup_subsys *ss;
6751 	char *token;
6752 	int i;
6753 
6754 	while ((token = strsep(&str, ",")) != NULL) {
6755 		if (!*token)
6756 			continue;
6757 
6758 		for_each_subsys(ss, i) {
6759 			if (strcmp(token, ss->name) &&
6760 			    strcmp(token, ss->legacy_name))
6761 				continue;
6762 
6763 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6764 			pr_info("Disabling %s control group subsystem\n",
6765 				ss->name);
6766 		}
6767 
6768 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6769 			if (strcmp(token, cgroup_opt_feature_names[i]))
6770 				continue;
6771 			cgroup_feature_disable_mask |= 1 << i;
6772 			pr_info("Disabling %s control group feature\n",
6773 				cgroup_opt_feature_names[i]);
6774 			break;
6775 		}
6776 	}
6777 	return 1;
6778 }
6779 __setup("cgroup_disable=", cgroup_disable);
6780 
6781 void __init __weak enable_debug_cgroup(void) { }
6782 
6783 static int __init enable_cgroup_debug(char *str)
6784 {
6785 	cgroup_debug = true;
6786 	enable_debug_cgroup();
6787 	return 1;
6788 }
6789 __setup("cgroup_debug", enable_cgroup_debug);
6790 
6791 static int __init cgroup_favordynmods_setup(char *str)
6792 {
6793 	return (kstrtobool(str, &have_favordynmods) == 0);
6794 }
6795 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6796 
6797 /**
6798  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6799  * @dentry: directory dentry of interest
6800  * @ss: subsystem of interest
6801  *
6802  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6803  * to get the corresponding css and return it.  If such css doesn't exist
6804  * or can't be pinned, an ERR_PTR value is returned.
6805  */
6806 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6807 						       struct cgroup_subsys *ss)
6808 {
6809 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6810 	struct file_system_type *s_type = dentry->d_sb->s_type;
6811 	struct cgroup_subsys_state *css = NULL;
6812 	struct cgroup *cgrp;
6813 
6814 	/* is @dentry a cgroup dir? */
6815 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6816 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6817 		return ERR_PTR(-EBADF);
6818 
6819 	rcu_read_lock();
6820 
6821 	/*
6822 	 * This path doesn't originate from kernfs and @kn could already
6823 	 * have been or be removed at any point.  @kn->priv is RCU
6824 	 * protected for this access.  See css_release_work_fn() for details.
6825 	 */
6826 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6827 	if (cgrp)
6828 		css = cgroup_css(cgrp, ss);
6829 
6830 	if (!css || !css_tryget_online(css))
6831 		css = ERR_PTR(-ENOENT);
6832 
6833 	rcu_read_unlock();
6834 	return css;
6835 }
6836 
6837 /**
6838  * css_from_id - lookup css by id
6839  * @id: the cgroup id
6840  * @ss: cgroup subsys to be looked into
6841  *
6842  * Returns the css if there's valid one with @id, otherwise returns NULL.
6843  * Should be called under rcu_read_lock().
6844  */
6845 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6846 {
6847 	WARN_ON_ONCE(!rcu_read_lock_held());
6848 	return idr_find(&ss->css_idr, id);
6849 }
6850 
6851 /**
6852  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6853  * @path: path on the default hierarchy
6854  *
6855  * Find the cgroup at @path on the default hierarchy, increment its
6856  * reference count and return it.  Returns pointer to the found cgroup on
6857  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6858  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6859  */
6860 struct cgroup *cgroup_get_from_path(const char *path)
6861 {
6862 	struct kernfs_node *kn;
6863 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6864 	struct cgroup *root_cgrp;
6865 
6866 	root_cgrp = current_cgns_cgroup_dfl();
6867 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6868 	if (!kn)
6869 		goto out;
6870 
6871 	if (kernfs_type(kn) != KERNFS_DIR) {
6872 		cgrp = ERR_PTR(-ENOTDIR);
6873 		goto out_kernfs;
6874 	}
6875 
6876 	rcu_read_lock();
6877 
6878 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6879 	if (!cgrp || !cgroup_tryget(cgrp))
6880 		cgrp = ERR_PTR(-ENOENT);
6881 
6882 	rcu_read_unlock();
6883 
6884 out_kernfs:
6885 	kernfs_put(kn);
6886 out:
6887 	return cgrp;
6888 }
6889 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6890 
6891 /**
6892  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6893  * @fd: fd obtained by open(cgroup_dir)
6894  *
6895  * Find the cgroup from a fd which should be obtained
6896  * by opening a cgroup directory.  Returns a pointer to the
6897  * cgroup on success. ERR_PTR is returned if the cgroup
6898  * cannot be found.
6899  */
6900 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6901 {
6902 	struct cgroup *cgrp;
6903 	struct fd f = fdget_raw(fd);
6904 	if (!f.file)
6905 		return ERR_PTR(-EBADF);
6906 
6907 	cgrp = cgroup_v1v2_get_from_file(f.file);
6908 	fdput(f);
6909 	return cgrp;
6910 }
6911 
6912 /**
6913  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6914  * cgroup2.
6915  * @fd: fd obtained by open(cgroup2_dir)
6916  */
6917 struct cgroup *cgroup_get_from_fd(int fd)
6918 {
6919 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6920 
6921 	if (IS_ERR(cgrp))
6922 		return ERR_CAST(cgrp);
6923 
6924 	if (!cgroup_on_dfl(cgrp)) {
6925 		cgroup_put(cgrp);
6926 		return ERR_PTR(-EBADF);
6927 	}
6928 	return cgrp;
6929 }
6930 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6931 
6932 static u64 power_of_ten(int power)
6933 {
6934 	u64 v = 1;
6935 	while (power--)
6936 		v *= 10;
6937 	return v;
6938 }
6939 
6940 /**
6941  * cgroup_parse_float - parse a floating number
6942  * @input: input string
6943  * @dec_shift: number of decimal digits to shift
6944  * @v: output
6945  *
6946  * Parse a decimal floating point number in @input and store the result in
6947  * @v with decimal point right shifted @dec_shift times.  For example, if
6948  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6949  * Returns 0 on success, -errno otherwise.
6950  *
6951  * There's nothing cgroup specific about this function except that it's
6952  * currently the only user.
6953  */
6954 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6955 {
6956 	s64 whole, frac = 0;
6957 	int fstart = 0, fend = 0, flen;
6958 
6959 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6960 		return -EINVAL;
6961 	if (frac < 0)
6962 		return -EINVAL;
6963 
6964 	flen = fend > fstart ? fend - fstart : 0;
6965 	if (flen < dec_shift)
6966 		frac *= power_of_ten(dec_shift - flen);
6967 	else
6968 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6969 
6970 	*v = whole * power_of_ten(dec_shift) + frac;
6971 	return 0;
6972 }
6973 
6974 /*
6975  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6976  * definition in cgroup-defs.h.
6977  */
6978 #ifdef CONFIG_SOCK_CGROUP_DATA
6979 
6980 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6981 {
6982 	struct cgroup *cgroup;
6983 
6984 	rcu_read_lock();
6985 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6986 	if (in_interrupt()) {
6987 		cgroup = &cgrp_dfl_root.cgrp;
6988 		cgroup_get(cgroup);
6989 		goto out;
6990 	}
6991 
6992 	while (true) {
6993 		struct css_set *cset;
6994 
6995 		cset = task_css_set(current);
6996 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6997 			cgroup = cset->dfl_cgrp;
6998 			break;
6999 		}
7000 		cpu_relax();
7001 	}
7002 out:
7003 	skcd->cgroup = cgroup;
7004 	cgroup_bpf_get(cgroup);
7005 	rcu_read_unlock();
7006 }
7007 
7008 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7009 {
7010 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7011 
7012 	/*
7013 	 * We might be cloning a socket which is left in an empty
7014 	 * cgroup and the cgroup might have already been rmdir'd.
7015 	 * Don't use cgroup_get_live().
7016 	 */
7017 	cgroup_get(cgrp);
7018 	cgroup_bpf_get(cgrp);
7019 }
7020 
7021 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7022 {
7023 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7024 
7025 	cgroup_bpf_put(cgrp);
7026 	cgroup_put(cgrp);
7027 }
7028 
7029 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7030 
7031 #ifdef CONFIG_SYSFS
7032 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7033 				      ssize_t size, const char *prefix)
7034 {
7035 	struct cftype *cft;
7036 	ssize_t ret = 0;
7037 
7038 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7039 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7040 			continue;
7041 
7042 		if (prefix)
7043 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7044 
7045 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7046 
7047 		if (WARN_ON(ret >= size))
7048 			break;
7049 	}
7050 
7051 	return ret;
7052 }
7053 
7054 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7055 			      char *buf)
7056 {
7057 	struct cgroup_subsys *ss;
7058 	int ssid;
7059 	ssize_t ret = 0;
7060 
7061 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7062 				     PAGE_SIZE - ret, NULL);
7063 	if (cgroup_psi_enabled())
7064 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7065 					      PAGE_SIZE - ret, NULL);
7066 
7067 	for_each_subsys(ss, ssid)
7068 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7069 					      PAGE_SIZE - ret,
7070 					      cgroup_subsys_name[ssid]);
7071 
7072 	return ret;
7073 }
7074 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7075 
7076 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7077 			     char *buf)
7078 {
7079 	return snprintf(buf, PAGE_SIZE,
7080 			"nsdelegate\n"
7081 			"favordynmods\n"
7082 			"memory_localevents\n"
7083 			"memory_recursiveprot\n"
7084 			"memory_hugetlb_accounting\n");
7085 }
7086 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7087 
7088 static struct attribute *cgroup_sysfs_attrs[] = {
7089 	&cgroup_delegate_attr.attr,
7090 	&cgroup_features_attr.attr,
7091 	NULL,
7092 };
7093 
7094 static const struct attribute_group cgroup_sysfs_attr_group = {
7095 	.attrs = cgroup_sysfs_attrs,
7096 	.name = "cgroup",
7097 };
7098 
7099 static int __init cgroup_sysfs_init(void)
7100 {
7101 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7102 }
7103 subsys_initcall(cgroup_sysfs_init);
7104 
7105 #endif /* CONFIG_SYSFS */
7106