xref: /linux/kernel/cgroup/cgroup.c (revision 01aa9d518eae8a4d75cd3049defc6ed0b6d0a658)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62 
63 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
64 					 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
67 
68 /*
69  * cgroup_mutex is the master lock.  Any modification to cgroup or its
70  * hierarchy must be performed while holding it.
71  *
72  * css_set_lock protects task->cgroups pointer, the list of css_set
73  * objects, and the chain of tasks off each css_set.
74  *
75  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76  * cgroup.h can use them for lockdep annotations.
77  */
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
80 
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
85 
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
88 
89 /*
90  * Protects cgroup_idr and css_idr so that IDs can be released without
91  * grabbing cgroup_mutex.
92  */
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
94 
95 /*
96  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
97  * against file removal/re-creation across css hiding.
98  */
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
100 
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
102 
103 #define cgroup_assert_mutex_or_rcu_locked()				\
104 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
105 			   !lockdep_is_held(&cgroup_mutex),		\
106 			   "cgroup_mutex or RCU read lock required");
107 
108 /*
109  * cgroup destruction makes heavy use of work items and there can be a lot
110  * of concurrent destructions.  Use a separate workqueue so that cgroup
111  * destruction work items don't end up filling up max_active of system_wq
112  * which may lead to deadlock.
113  */
114 static struct workqueue_struct *cgroup_destroy_wq;
115 
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122 
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129 
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x)								\
132 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
134 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
138 
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150 
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
152 
153 /*
154  * The default hierarchy, reserved for the subsystems that are otherwise
155  * unattached - it never has more than a single cgroup, and all tasks are
156  * part of that cgroup.
157  */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160 
161 /*
162  * The default hierarchy always exists but is hidden until mounted for the
163  * first time.  This is for backward compatibility.
164  */
165 static bool cgrp_dfl_visible;
166 
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169 
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172 
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175 
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179 
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182 
183 /*
184  * Assign a monotonically increasing serial number to csses.  It guarantees
185  * cgroups with bigger numbers are newer than those with smaller numbers.
186  * Also, as csses are always appended to the parent's ->children list, it
187  * guarantees that sibling csses are always sorted in the ascending serial
188  * number order on the list.  Protected by cgroup_mutex.
189  */
190 static u64 css_serial_nr_next = 1;
191 
192 /*
193  * These bitmasks identify subsystems with specific features to avoid
194  * having to do iterative checks repeatedly.
195  */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_free_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200 
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 	.count		= REFCOUNT_INIT(2),
204 	.user_ns	= &init_user_ns,
205 	.ns.ops		= &cgroupns_operations,
206 	.ns.inum	= PROC_CGROUP_INIT_INO,
207 	.root_cset	= &init_css_set,
208 };
209 
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212 
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_advance(struct css_task_iter *it);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * The set of behaviors which change on the default hierarchy are still
251  * being determined and the mount option is prefixed with __DEVEL__.
252  *
253  * List of changed behaviors:
254  *
255  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256  *   and "name" are disallowed.
257  *
258  * - When mounting an existing superblock, mount options should match.
259  *
260  * - Remount is disallowed.
261  *
262  * - rename(2) is disallowed.
263  *
264  * - "tasks" is removed.  Everything should be at process granularity.  Use
265  *   "cgroup.procs" instead.
266  *
267  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
268  *   recycled inbetween reads.
269  *
270  * - "release_agent" and "notify_on_release" are removed.  Replacement
271  *   notification mechanism will be implemented.
272  *
273  * - "cgroup.clone_children" is removed.
274  *
275  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
276  *   and its descendants contain no task; otherwise, 1.  The file also
277  *   generates kernfs notification which can be monitored through poll and
278  *   [di]notify when the value of the file changes.
279  *
280  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281  *   take masks of ancestors with non-empty cpus/mems, instead of being
282  *   moved to an ancestor.
283  *
284  * - cpuset: a task can be moved into an empty cpuset, and again it takes
285  *   masks of ancestors.
286  *
287  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288  *   is not created.
289  *
290  * - blkcg: blk-throttle becomes properly hierarchical.
291  *
292  * - debug: disallowed on the default hierarchy.
293  */
294 bool cgroup_on_dfl(const struct cgroup *cgrp)
295 {
296 	return cgrp->root == &cgrp_dfl_root;
297 }
298 
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 			    gfp_t gfp_mask)
302 {
303 	int ret;
304 
305 	idr_preload(gfp_mask);
306 	spin_lock_bh(&cgroup_idr_lock);
307 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
308 	spin_unlock_bh(&cgroup_idr_lock);
309 	idr_preload_end();
310 	return ret;
311 }
312 
313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314 {
315 	void *ret;
316 
317 	spin_lock_bh(&cgroup_idr_lock);
318 	ret = idr_replace(idr, ptr, id);
319 	spin_unlock_bh(&cgroup_idr_lock);
320 	return ret;
321 }
322 
323 static void cgroup_idr_remove(struct idr *idr, int id)
324 {
325 	spin_lock_bh(&cgroup_idr_lock);
326 	idr_remove(idr, id);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 }
329 
330 static bool cgroup_has_tasks(struct cgroup *cgrp)
331 {
332 	return cgrp->nr_populated_csets;
333 }
334 
335 bool cgroup_is_threaded(struct cgroup *cgrp)
336 {
337 	return cgrp->dom_cgrp != cgrp;
338 }
339 
340 /* can @cgrp host both domain and threaded children? */
341 static bool cgroup_is_mixable(struct cgroup *cgrp)
342 {
343 	/*
344 	 * Root isn't under domain level resource control exempting it from
345 	 * the no-internal-process constraint, so it can serve as a thread
346 	 * root and a parent of resource domains at the same time.
347 	 */
348 	return !cgroup_parent(cgrp);
349 }
350 
351 /* can @cgrp become a thread root? should always be true for a thread root */
352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
353 {
354 	/* mixables don't care */
355 	if (cgroup_is_mixable(cgrp))
356 		return true;
357 
358 	/* domain roots can't be nested under threaded */
359 	if (cgroup_is_threaded(cgrp))
360 		return false;
361 
362 	/* can only have either domain or threaded children */
363 	if (cgrp->nr_populated_domain_children)
364 		return false;
365 
366 	/* and no domain controllers can be enabled */
367 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
368 		return false;
369 
370 	return true;
371 }
372 
373 /* is @cgrp root of a threaded subtree? */
374 bool cgroup_is_thread_root(struct cgroup *cgrp)
375 {
376 	/* thread root should be a domain */
377 	if (cgroup_is_threaded(cgrp))
378 		return false;
379 
380 	/* a domain w/ threaded children is a thread root */
381 	if (cgrp->nr_threaded_children)
382 		return true;
383 
384 	/*
385 	 * A domain which has tasks and explicit threaded controllers
386 	 * enabled is a thread root.
387 	 */
388 	if (cgroup_has_tasks(cgrp) &&
389 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
390 		return true;
391 
392 	return false;
393 }
394 
395 /* a domain which isn't connected to the root w/o brekage can't be used */
396 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
397 {
398 	/* the cgroup itself can be a thread root */
399 	if (cgroup_is_threaded(cgrp))
400 		return false;
401 
402 	/* but the ancestors can't be unless mixable */
403 	while ((cgrp = cgroup_parent(cgrp))) {
404 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
405 			return false;
406 		if (cgroup_is_threaded(cgrp))
407 			return false;
408 	}
409 
410 	return true;
411 }
412 
413 /* subsystems visibly enabled on a cgroup */
414 static u16 cgroup_control(struct cgroup *cgrp)
415 {
416 	struct cgroup *parent = cgroup_parent(cgrp);
417 	u16 root_ss_mask = cgrp->root->subsys_mask;
418 
419 	if (parent) {
420 		u16 ss_mask = parent->subtree_control;
421 
422 		/* threaded cgroups can only have threaded controllers */
423 		if (cgroup_is_threaded(cgrp))
424 			ss_mask &= cgrp_dfl_threaded_ss_mask;
425 		return ss_mask;
426 	}
427 
428 	if (cgroup_on_dfl(cgrp))
429 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
430 				  cgrp_dfl_implicit_ss_mask);
431 	return root_ss_mask;
432 }
433 
434 /* subsystems enabled on a cgroup */
435 static u16 cgroup_ss_mask(struct cgroup *cgrp)
436 {
437 	struct cgroup *parent = cgroup_parent(cgrp);
438 
439 	if (parent) {
440 		u16 ss_mask = parent->subtree_ss_mask;
441 
442 		/* threaded cgroups can only have threaded controllers */
443 		if (cgroup_is_threaded(cgrp))
444 			ss_mask &= cgrp_dfl_threaded_ss_mask;
445 		return ss_mask;
446 	}
447 
448 	return cgrp->root->subsys_mask;
449 }
450 
451 /**
452  * cgroup_css - obtain a cgroup's css for the specified subsystem
453  * @cgrp: the cgroup of interest
454  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
455  *
456  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
457  * function must be called either under cgroup_mutex or rcu_read_lock() and
458  * the caller is responsible for pinning the returned css if it wants to
459  * keep accessing it outside the said locks.  This function may return
460  * %NULL if @cgrp doesn't have @subsys_id enabled.
461  */
462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
463 					      struct cgroup_subsys *ss)
464 {
465 	if (ss)
466 		return rcu_dereference_check(cgrp->subsys[ss->id],
467 					lockdep_is_held(&cgroup_mutex));
468 	else
469 		return &cgrp->self;
470 }
471 
472 /**
473  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474  * @cgrp: the cgroup of interest
475  * @ss: the subsystem of interest
476  *
477  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
478  * or is offline, %NULL is returned.
479  */
480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
481 						     struct cgroup_subsys *ss)
482 {
483 	struct cgroup_subsys_state *css;
484 
485 	rcu_read_lock();
486 	css = cgroup_css(cgrp, ss);
487 	if (!css || !css_tryget_online(css))
488 		css = NULL;
489 	rcu_read_unlock();
490 
491 	return css;
492 }
493 
494 /**
495  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
496  * @cgrp: the cgroup of interest
497  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
498  *
499  * Similar to cgroup_css() but returns the effective css, which is defined
500  * as the matching css of the nearest ancestor including self which has @ss
501  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
502  * function is guaranteed to return non-NULL css.
503  */
504 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
505 							struct cgroup_subsys *ss)
506 {
507 	lockdep_assert_held(&cgroup_mutex);
508 
509 	if (!ss)
510 		return &cgrp->self;
511 
512 	/*
513 	 * This function is used while updating css associations and thus
514 	 * can't test the csses directly.  Test ss_mask.
515 	 */
516 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
517 		cgrp = cgroup_parent(cgrp);
518 		if (!cgrp)
519 			return NULL;
520 	}
521 
522 	return cgroup_css(cgrp, ss);
523 }
524 
525 /**
526  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
527  * @cgrp: the cgroup of interest
528  * @ss: the subsystem of interest
529  *
530  * Find and get the effective css of @cgrp for @ss.  The effective css is
531  * defined as the matching css of the nearest ancestor including self which
532  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
533  * the root css is returned, so this function always returns a valid css.
534  *
535  * The returned css is not guaranteed to be online, and therefore it is the
536  * callers responsiblity to tryget a reference for it.
537  */
538 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
539 					 struct cgroup_subsys *ss)
540 {
541 	struct cgroup_subsys_state *css;
542 
543 	do {
544 		css = cgroup_css(cgrp, ss);
545 
546 		if (css)
547 			return css;
548 		cgrp = cgroup_parent(cgrp);
549 	} while (cgrp);
550 
551 	return init_css_set.subsys[ss->id];
552 }
553 
554 /**
555  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
556  * @cgrp: the cgroup of interest
557  * @ss: the subsystem of interest
558  *
559  * Find and get the effective css of @cgrp for @ss.  The effective css is
560  * defined as the matching css of the nearest ancestor including self which
561  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
562  * the root css is returned, so this function always returns a valid css.
563  * The returned css must be put using css_put().
564  */
565 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
566 					     struct cgroup_subsys *ss)
567 {
568 	struct cgroup_subsys_state *css;
569 
570 	rcu_read_lock();
571 
572 	do {
573 		css = cgroup_css(cgrp, ss);
574 
575 		if (css && css_tryget_online(css))
576 			goto out_unlock;
577 		cgrp = cgroup_parent(cgrp);
578 	} while (cgrp);
579 
580 	css = init_css_set.subsys[ss->id];
581 	css_get(css);
582 out_unlock:
583 	rcu_read_unlock();
584 	return css;
585 }
586 
587 static void cgroup_get_live(struct cgroup *cgrp)
588 {
589 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
590 	css_get(&cgrp->self);
591 }
592 
593 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
594 {
595 	struct cgroup *cgrp = of->kn->parent->priv;
596 	struct cftype *cft = of_cft(of);
597 
598 	/*
599 	 * This is open and unprotected implementation of cgroup_css().
600 	 * seq_css() is only called from a kernfs file operation which has
601 	 * an active reference on the file.  Because all the subsystem
602 	 * files are drained before a css is disassociated with a cgroup,
603 	 * the matching css from the cgroup's subsys table is guaranteed to
604 	 * be and stay valid until the enclosing operation is complete.
605 	 */
606 	if (cft->ss)
607 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
608 	else
609 		return &cgrp->self;
610 }
611 EXPORT_SYMBOL_GPL(of_css);
612 
613 /**
614  * for_each_css - iterate all css's of a cgroup
615  * @css: the iteration cursor
616  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
617  * @cgrp: the target cgroup to iterate css's of
618  *
619  * Should be called under cgroup_[tree_]mutex.
620  */
621 #define for_each_css(css, ssid, cgrp)					\
622 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
623 		if (!((css) = rcu_dereference_check(			\
624 				(cgrp)->subsys[(ssid)],			\
625 				lockdep_is_held(&cgroup_mutex)))) { }	\
626 		else
627 
628 /**
629  * for_each_e_css - iterate all effective css's of a cgroup
630  * @css: the iteration cursor
631  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
632  * @cgrp: the target cgroup to iterate css's of
633  *
634  * Should be called under cgroup_[tree_]mutex.
635  */
636 #define for_each_e_css(css, ssid, cgrp)					    \
637 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
638 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
639 						   cgroup_subsys[(ssid)]))) \
640 			;						    \
641 		else
642 
643 /**
644  * do_each_subsys_mask - filter for_each_subsys with a bitmask
645  * @ss: the iteration cursor
646  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
647  * @ss_mask: the bitmask
648  *
649  * The block will only run for cases where the ssid-th bit (1 << ssid) of
650  * @ss_mask is set.
651  */
652 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
653 	unsigned long __ss_mask = (ss_mask);				\
654 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
655 		(ssid) = 0;						\
656 		break;							\
657 	}								\
658 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
659 		(ss) = cgroup_subsys[ssid];				\
660 		{
661 
662 #define while_each_subsys_mask()					\
663 		}							\
664 	}								\
665 } while (false)
666 
667 /* iterate over child cgrps, lock should be held throughout iteration */
668 #define cgroup_for_each_live_child(child, cgrp)				\
669 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
670 		if (({ lockdep_assert_held(&cgroup_mutex);		\
671 		       cgroup_is_dead(child); }))			\
672 			;						\
673 		else
674 
675 /* walk live descendants in preorder */
676 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
677 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
678 		if (({ lockdep_assert_held(&cgroup_mutex);		\
679 		       (dsct) = (d_css)->cgroup;			\
680 		       cgroup_is_dead(dsct); }))			\
681 			;						\
682 		else
683 
684 /* walk live descendants in postorder */
685 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
686 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
687 		if (({ lockdep_assert_held(&cgroup_mutex);		\
688 		       (dsct) = (d_css)->cgroup;			\
689 		       cgroup_is_dead(dsct); }))			\
690 			;						\
691 		else
692 
693 /*
694  * The default css_set - used by init and its children prior to any
695  * hierarchies being mounted. It contains a pointer to the root state
696  * for each subsystem. Also used to anchor the list of css_sets. Not
697  * reference-counted, to improve performance when child cgroups
698  * haven't been created.
699  */
700 struct css_set init_css_set = {
701 	.refcount		= REFCOUNT_INIT(1),
702 	.dom_cset		= &init_css_set,
703 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
704 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
705 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
706 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
707 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
708 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
709 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
710 
711 	/*
712 	 * The following field is re-initialized when this cset gets linked
713 	 * in cgroup_init().  However, let's initialize the field
714 	 * statically too so that the default cgroup can be accessed safely
715 	 * early during boot.
716 	 */
717 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
718 };
719 
720 static int css_set_count	= 1;	/* 1 for init_css_set */
721 
722 static bool css_set_threaded(struct css_set *cset)
723 {
724 	return cset->dom_cset != cset;
725 }
726 
727 /**
728  * css_set_populated - does a css_set contain any tasks?
729  * @cset: target css_set
730  *
731  * css_set_populated() should be the same as !!cset->nr_tasks at steady
732  * state. However, css_set_populated() can be called while a task is being
733  * added to or removed from the linked list before the nr_tasks is
734  * properly updated. Hence, we can't just look at ->nr_tasks here.
735  */
736 static bool css_set_populated(struct css_set *cset)
737 {
738 	lockdep_assert_held(&css_set_lock);
739 
740 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
741 }
742 
743 /**
744  * cgroup_update_populated - update the populated count of a cgroup
745  * @cgrp: the target cgroup
746  * @populated: inc or dec populated count
747  *
748  * One of the css_sets associated with @cgrp is either getting its first
749  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
750  * count is propagated towards root so that a given cgroup's
751  * nr_populated_children is zero iff none of its descendants contain any
752  * tasks.
753  *
754  * @cgrp's interface file "cgroup.populated" is zero if both
755  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
756  * 1 otherwise.  When the sum changes from or to zero, userland is notified
757  * that the content of the interface file has changed.  This can be used to
758  * detect when @cgrp and its descendants become populated or empty.
759  */
760 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
761 {
762 	struct cgroup *child = NULL;
763 	int adj = populated ? 1 : -1;
764 
765 	lockdep_assert_held(&css_set_lock);
766 
767 	do {
768 		bool was_populated = cgroup_is_populated(cgrp);
769 
770 		if (!child) {
771 			cgrp->nr_populated_csets += adj;
772 		} else {
773 			if (cgroup_is_threaded(child))
774 				cgrp->nr_populated_threaded_children += adj;
775 			else
776 				cgrp->nr_populated_domain_children += adj;
777 		}
778 
779 		if (was_populated == cgroup_is_populated(cgrp))
780 			break;
781 
782 		cgroup1_check_for_release(cgrp);
783 		cgroup_file_notify(&cgrp->events_file);
784 
785 		child = cgrp;
786 		cgrp = cgroup_parent(cgrp);
787 	} while (cgrp);
788 }
789 
790 /**
791  * css_set_update_populated - update populated state of a css_set
792  * @cset: target css_set
793  * @populated: whether @cset is populated or depopulated
794  *
795  * @cset is either getting the first task or losing the last.  Update the
796  * populated counters of all associated cgroups accordingly.
797  */
798 static void css_set_update_populated(struct css_set *cset, bool populated)
799 {
800 	struct cgrp_cset_link *link;
801 
802 	lockdep_assert_held(&css_set_lock);
803 
804 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
805 		cgroup_update_populated(link->cgrp, populated);
806 }
807 
808 /**
809  * css_set_move_task - move a task from one css_set to another
810  * @task: task being moved
811  * @from_cset: css_set @task currently belongs to (may be NULL)
812  * @to_cset: new css_set @task is being moved to (may be NULL)
813  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
814  *
815  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
816  * css_set, @from_cset can be NULL.  If @task is being disassociated
817  * instead of moved, @to_cset can be NULL.
818  *
819  * This function automatically handles populated counter updates and
820  * css_task_iter adjustments but the caller is responsible for managing
821  * @from_cset and @to_cset's reference counts.
822  */
823 static void css_set_move_task(struct task_struct *task,
824 			      struct css_set *from_cset, struct css_set *to_cset,
825 			      bool use_mg_tasks)
826 {
827 	lockdep_assert_held(&css_set_lock);
828 
829 	if (to_cset && !css_set_populated(to_cset))
830 		css_set_update_populated(to_cset, true);
831 
832 	if (from_cset) {
833 		struct css_task_iter *it, *pos;
834 
835 		WARN_ON_ONCE(list_empty(&task->cg_list));
836 
837 		/*
838 		 * @task is leaving, advance task iterators which are
839 		 * pointing to it so that they can resume at the next
840 		 * position.  Advancing an iterator might remove it from
841 		 * the list, use safe walk.  See css_task_iter_advance*()
842 		 * for details.
843 		 */
844 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
845 					 iters_node)
846 			if (it->task_pos == &task->cg_list)
847 				css_task_iter_advance(it);
848 
849 		list_del_init(&task->cg_list);
850 		if (!css_set_populated(from_cset))
851 			css_set_update_populated(from_cset, false);
852 	} else {
853 		WARN_ON_ONCE(!list_empty(&task->cg_list));
854 	}
855 
856 	if (to_cset) {
857 		/*
858 		 * We are synchronized through cgroup_threadgroup_rwsem
859 		 * against PF_EXITING setting such that we can't race
860 		 * against cgroup_exit() changing the css_set to
861 		 * init_css_set and dropping the old one.
862 		 */
863 		WARN_ON_ONCE(task->flags & PF_EXITING);
864 
865 		rcu_assign_pointer(task->cgroups, to_cset);
866 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
867 							     &to_cset->tasks);
868 	}
869 }
870 
871 /*
872  * hash table for cgroup groups. This improves the performance to find
873  * an existing css_set. This hash doesn't (currently) take into
874  * account cgroups in empty hierarchies.
875  */
876 #define CSS_SET_HASH_BITS	7
877 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
878 
879 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
880 {
881 	unsigned long key = 0UL;
882 	struct cgroup_subsys *ss;
883 	int i;
884 
885 	for_each_subsys(ss, i)
886 		key += (unsigned long)css[i];
887 	key = (key >> 16) ^ key;
888 
889 	return key;
890 }
891 
892 void put_css_set_locked(struct css_set *cset)
893 {
894 	struct cgrp_cset_link *link, *tmp_link;
895 	struct cgroup_subsys *ss;
896 	int ssid;
897 
898 	lockdep_assert_held(&css_set_lock);
899 
900 	if (!refcount_dec_and_test(&cset->refcount))
901 		return;
902 
903 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
904 
905 	/* This css_set is dead. unlink it and release cgroup and css refs */
906 	for_each_subsys(ss, ssid) {
907 		list_del(&cset->e_cset_node[ssid]);
908 		css_put(cset->subsys[ssid]);
909 	}
910 	hash_del(&cset->hlist);
911 	css_set_count--;
912 
913 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
914 		list_del(&link->cset_link);
915 		list_del(&link->cgrp_link);
916 		if (cgroup_parent(link->cgrp))
917 			cgroup_put(link->cgrp);
918 		kfree(link);
919 	}
920 
921 	if (css_set_threaded(cset)) {
922 		list_del(&cset->threaded_csets_node);
923 		put_css_set_locked(cset->dom_cset);
924 	}
925 
926 	kfree_rcu(cset, rcu_head);
927 }
928 
929 /**
930  * compare_css_sets - helper function for find_existing_css_set().
931  * @cset: candidate css_set being tested
932  * @old_cset: existing css_set for a task
933  * @new_cgrp: cgroup that's being entered by the task
934  * @template: desired set of css pointers in css_set (pre-calculated)
935  *
936  * Returns true if "cset" matches "old_cset" except for the hierarchy
937  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
938  */
939 static bool compare_css_sets(struct css_set *cset,
940 			     struct css_set *old_cset,
941 			     struct cgroup *new_cgrp,
942 			     struct cgroup_subsys_state *template[])
943 {
944 	struct cgroup *new_dfl_cgrp;
945 	struct list_head *l1, *l2;
946 
947 	/*
948 	 * On the default hierarchy, there can be csets which are
949 	 * associated with the same set of cgroups but different csses.
950 	 * Let's first ensure that csses match.
951 	 */
952 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
953 		return false;
954 
955 
956 	/* @cset's domain should match the default cgroup's */
957 	if (cgroup_on_dfl(new_cgrp))
958 		new_dfl_cgrp = new_cgrp;
959 	else
960 		new_dfl_cgrp = old_cset->dfl_cgrp;
961 
962 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
963 		return false;
964 
965 	/*
966 	 * Compare cgroup pointers in order to distinguish between
967 	 * different cgroups in hierarchies.  As different cgroups may
968 	 * share the same effective css, this comparison is always
969 	 * necessary.
970 	 */
971 	l1 = &cset->cgrp_links;
972 	l2 = &old_cset->cgrp_links;
973 	while (1) {
974 		struct cgrp_cset_link *link1, *link2;
975 		struct cgroup *cgrp1, *cgrp2;
976 
977 		l1 = l1->next;
978 		l2 = l2->next;
979 		/* See if we reached the end - both lists are equal length. */
980 		if (l1 == &cset->cgrp_links) {
981 			BUG_ON(l2 != &old_cset->cgrp_links);
982 			break;
983 		} else {
984 			BUG_ON(l2 == &old_cset->cgrp_links);
985 		}
986 		/* Locate the cgroups associated with these links. */
987 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
988 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
989 		cgrp1 = link1->cgrp;
990 		cgrp2 = link2->cgrp;
991 		/* Hierarchies should be linked in the same order. */
992 		BUG_ON(cgrp1->root != cgrp2->root);
993 
994 		/*
995 		 * If this hierarchy is the hierarchy of the cgroup
996 		 * that's changing, then we need to check that this
997 		 * css_set points to the new cgroup; if it's any other
998 		 * hierarchy, then this css_set should point to the
999 		 * same cgroup as the old css_set.
1000 		 */
1001 		if (cgrp1->root == new_cgrp->root) {
1002 			if (cgrp1 != new_cgrp)
1003 				return false;
1004 		} else {
1005 			if (cgrp1 != cgrp2)
1006 				return false;
1007 		}
1008 	}
1009 	return true;
1010 }
1011 
1012 /**
1013  * find_existing_css_set - init css array and find the matching css_set
1014  * @old_cset: the css_set that we're using before the cgroup transition
1015  * @cgrp: the cgroup that we're moving into
1016  * @template: out param for the new set of csses, should be clear on entry
1017  */
1018 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1019 					struct cgroup *cgrp,
1020 					struct cgroup_subsys_state *template[])
1021 {
1022 	struct cgroup_root *root = cgrp->root;
1023 	struct cgroup_subsys *ss;
1024 	struct css_set *cset;
1025 	unsigned long key;
1026 	int i;
1027 
1028 	/*
1029 	 * Build the set of subsystem state objects that we want to see in the
1030 	 * new css_set. while subsystems can change globally, the entries here
1031 	 * won't change, so no need for locking.
1032 	 */
1033 	for_each_subsys(ss, i) {
1034 		if (root->subsys_mask & (1UL << i)) {
1035 			/*
1036 			 * @ss is in this hierarchy, so we want the
1037 			 * effective css from @cgrp.
1038 			 */
1039 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1040 		} else {
1041 			/*
1042 			 * @ss is not in this hierarchy, so we don't want
1043 			 * to change the css.
1044 			 */
1045 			template[i] = old_cset->subsys[i];
1046 		}
1047 	}
1048 
1049 	key = css_set_hash(template);
1050 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1051 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1052 			continue;
1053 
1054 		/* This css_set matches what we need */
1055 		return cset;
1056 	}
1057 
1058 	/* No existing cgroup group matched */
1059 	return NULL;
1060 }
1061 
1062 static void free_cgrp_cset_links(struct list_head *links_to_free)
1063 {
1064 	struct cgrp_cset_link *link, *tmp_link;
1065 
1066 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1067 		list_del(&link->cset_link);
1068 		kfree(link);
1069 	}
1070 }
1071 
1072 /**
1073  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1074  * @count: the number of links to allocate
1075  * @tmp_links: list_head the allocated links are put on
1076  *
1077  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1078  * through ->cset_link.  Returns 0 on success or -errno.
1079  */
1080 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1081 {
1082 	struct cgrp_cset_link *link;
1083 	int i;
1084 
1085 	INIT_LIST_HEAD(tmp_links);
1086 
1087 	for (i = 0; i < count; i++) {
1088 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1089 		if (!link) {
1090 			free_cgrp_cset_links(tmp_links);
1091 			return -ENOMEM;
1092 		}
1093 		list_add(&link->cset_link, tmp_links);
1094 	}
1095 	return 0;
1096 }
1097 
1098 /**
1099  * link_css_set - a helper function to link a css_set to a cgroup
1100  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1101  * @cset: the css_set to be linked
1102  * @cgrp: the destination cgroup
1103  */
1104 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1105 			 struct cgroup *cgrp)
1106 {
1107 	struct cgrp_cset_link *link;
1108 
1109 	BUG_ON(list_empty(tmp_links));
1110 
1111 	if (cgroup_on_dfl(cgrp))
1112 		cset->dfl_cgrp = cgrp;
1113 
1114 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1115 	link->cset = cset;
1116 	link->cgrp = cgrp;
1117 
1118 	/*
1119 	 * Always add links to the tail of the lists so that the lists are
1120 	 * in choronological order.
1121 	 */
1122 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1123 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1124 
1125 	if (cgroup_parent(cgrp))
1126 		cgroup_get_live(cgrp);
1127 }
1128 
1129 /**
1130  * find_css_set - return a new css_set with one cgroup updated
1131  * @old_cset: the baseline css_set
1132  * @cgrp: the cgroup to be updated
1133  *
1134  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1135  * substituted into the appropriate hierarchy.
1136  */
1137 static struct css_set *find_css_set(struct css_set *old_cset,
1138 				    struct cgroup *cgrp)
1139 {
1140 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1141 	struct css_set *cset;
1142 	struct list_head tmp_links;
1143 	struct cgrp_cset_link *link;
1144 	struct cgroup_subsys *ss;
1145 	unsigned long key;
1146 	int ssid;
1147 
1148 	lockdep_assert_held(&cgroup_mutex);
1149 
1150 	/* First see if we already have a cgroup group that matches
1151 	 * the desired set */
1152 	spin_lock_irq(&css_set_lock);
1153 	cset = find_existing_css_set(old_cset, cgrp, template);
1154 	if (cset)
1155 		get_css_set(cset);
1156 	spin_unlock_irq(&css_set_lock);
1157 
1158 	if (cset)
1159 		return cset;
1160 
1161 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1162 	if (!cset)
1163 		return NULL;
1164 
1165 	/* Allocate all the cgrp_cset_link objects that we'll need */
1166 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1167 		kfree(cset);
1168 		return NULL;
1169 	}
1170 
1171 	refcount_set(&cset->refcount, 1);
1172 	cset->dom_cset = cset;
1173 	INIT_LIST_HEAD(&cset->tasks);
1174 	INIT_LIST_HEAD(&cset->mg_tasks);
1175 	INIT_LIST_HEAD(&cset->task_iters);
1176 	INIT_LIST_HEAD(&cset->threaded_csets);
1177 	INIT_HLIST_NODE(&cset->hlist);
1178 	INIT_LIST_HEAD(&cset->cgrp_links);
1179 	INIT_LIST_HEAD(&cset->mg_preload_node);
1180 	INIT_LIST_HEAD(&cset->mg_node);
1181 
1182 	/* Copy the set of subsystem state objects generated in
1183 	 * find_existing_css_set() */
1184 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1185 
1186 	spin_lock_irq(&css_set_lock);
1187 	/* Add reference counts and links from the new css_set. */
1188 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1189 		struct cgroup *c = link->cgrp;
1190 
1191 		if (c->root == cgrp->root)
1192 			c = cgrp;
1193 		link_css_set(&tmp_links, cset, c);
1194 	}
1195 
1196 	BUG_ON(!list_empty(&tmp_links));
1197 
1198 	css_set_count++;
1199 
1200 	/* Add @cset to the hash table */
1201 	key = css_set_hash(cset->subsys);
1202 	hash_add(css_set_table, &cset->hlist, key);
1203 
1204 	for_each_subsys(ss, ssid) {
1205 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1206 
1207 		list_add_tail(&cset->e_cset_node[ssid],
1208 			      &css->cgroup->e_csets[ssid]);
1209 		css_get(css);
1210 	}
1211 
1212 	spin_unlock_irq(&css_set_lock);
1213 
1214 	/*
1215 	 * If @cset should be threaded, look up the matching dom_cset and
1216 	 * link them up.  We first fully initialize @cset then look for the
1217 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1218 	 * to stay empty until we return.
1219 	 */
1220 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1221 		struct css_set *dcset;
1222 
1223 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1224 		if (!dcset) {
1225 			put_css_set(cset);
1226 			return NULL;
1227 		}
1228 
1229 		spin_lock_irq(&css_set_lock);
1230 		cset->dom_cset = dcset;
1231 		list_add_tail(&cset->threaded_csets_node,
1232 			      &dcset->threaded_csets);
1233 		spin_unlock_irq(&css_set_lock);
1234 	}
1235 
1236 	return cset;
1237 }
1238 
1239 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1240 {
1241 	struct cgroup *root_cgrp = kf_root->kn->priv;
1242 
1243 	return root_cgrp->root;
1244 }
1245 
1246 static int cgroup_init_root_id(struct cgroup_root *root)
1247 {
1248 	int id;
1249 
1250 	lockdep_assert_held(&cgroup_mutex);
1251 
1252 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1253 	if (id < 0)
1254 		return id;
1255 
1256 	root->hierarchy_id = id;
1257 	return 0;
1258 }
1259 
1260 static void cgroup_exit_root_id(struct cgroup_root *root)
1261 {
1262 	lockdep_assert_held(&cgroup_mutex);
1263 
1264 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1265 }
1266 
1267 void cgroup_free_root(struct cgroup_root *root)
1268 {
1269 	if (root) {
1270 		idr_destroy(&root->cgroup_idr);
1271 		kfree(root);
1272 	}
1273 }
1274 
1275 static void cgroup_destroy_root(struct cgroup_root *root)
1276 {
1277 	struct cgroup *cgrp = &root->cgrp;
1278 	struct cgrp_cset_link *link, *tmp_link;
1279 
1280 	trace_cgroup_destroy_root(root);
1281 
1282 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1283 
1284 	BUG_ON(atomic_read(&root->nr_cgrps));
1285 	BUG_ON(!list_empty(&cgrp->self.children));
1286 
1287 	/* Rebind all subsystems back to the default hierarchy */
1288 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1289 
1290 	/*
1291 	 * Release all the links from cset_links to this hierarchy's
1292 	 * root cgroup
1293 	 */
1294 	spin_lock_irq(&css_set_lock);
1295 
1296 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1297 		list_del(&link->cset_link);
1298 		list_del(&link->cgrp_link);
1299 		kfree(link);
1300 	}
1301 
1302 	spin_unlock_irq(&css_set_lock);
1303 
1304 	if (!list_empty(&root->root_list)) {
1305 		list_del(&root->root_list);
1306 		cgroup_root_count--;
1307 	}
1308 
1309 	cgroup_exit_root_id(root);
1310 
1311 	mutex_unlock(&cgroup_mutex);
1312 
1313 	kernfs_destroy_root(root->kf_root);
1314 	cgroup_free_root(root);
1315 }
1316 
1317 /*
1318  * look up cgroup associated with current task's cgroup namespace on the
1319  * specified hierarchy
1320  */
1321 static struct cgroup *
1322 current_cgns_cgroup_from_root(struct cgroup_root *root)
1323 {
1324 	struct cgroup *res = NULL;
1325 	struct css_set *cset;
1326 
1327 	lockdep_assert_held(&css_set_lock);
1328 
1329 	rcu_read_lock();
1330 
1331 	cset = current->nsproxy->cgroup_ns->root_cset;
1332 	if (cset == &init_css_set) {
1333 		res = &root->cgrp;
1334 	} else {
1335 		struct cgrp_cset_link *link;
1336 
1337 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1338 			struct cgroup *c = link->cgrp;
1339 
1340 			if (c->root == root) {
1341 				res = c;
1342 				break;
1343 			}
1344 		}
1345 	}
1346 	rcu_read_unlock();
1347 
1348 	BUG_ON(!res);
1349 	return res;
1350 }
1351 
1352 /* look up cgroup associated with given css_set on the specified hierarchy */
1353 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1354 					    struct cgroup_root *root)
1355 {
1356 	struct cgroup *res = NULL;
1357 
1358 	lockdep_assert_held(&cgroup_mutex);
1359 	lockdep_assert_held(&css_set_lock);
1360 
1361 	if (cset == &init_css_set) {
1362 		res = &root->cgrp;
1363 	} else if (root == &cgrp_dfl_root) {
1364 		res = cset->dfl_cgrp;
1365 	} else {
1366 		struct cgrp_cset_link *link;
1367 
1368 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1369 			struct cgroup *c = link->cgrp;
1370 
1371 			if (c->root == root) {
1372 				res = c;
1373 				break;
1374 			}
1375 		}
1376 	}
1377 
1378 	BUG_ON(!res);
1379 	return res;
1380 }
1381 
1382 /*
1383  * Return the cgroup for "task" from the given hierarchy. Must be
1384  * called with cgroup_mutex and css_set_lock held.
1385  */
1386 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1387 				     struct cgroup_root *root)
1388 {
1389 	/*
1390 	 * No need to lock the task - since we hold cgroup_mutex the
1391 	 * task can't change groups, so the only thing that can happen
1392 	 * is that it exits and its css is set back to init_css_set.
1393 	 */
1394 	return cset_cgroup_from_root(task_css_set(task), root);
1395 }
1396 
1397 /*
1398  * A task must hold cgroup_mutex to modify cgroups.
1399  *
1400  * Any task can increment and decrement the count field without lock.
1401  * So in general, code holding cgroup_mutex can't rely on the count
1402  * field not changing.  However, if the count goes to zero, then only
1403  * cgroup_attach_task() can increment it again.  Because a count of zero
1404  * means that no tasks are currently attached, therefore there is no
1405  * way a task attached to that cgroup can fork (the other way to
1406  * increment the count).  So code holding cgroup_mutex can safely
1407  * assume that if the count is zero, it will stay zero. Similarly, if
1408  * a task holds cgroup_mutex on a cgroup with zero count, it
1409  * knows that the cgroup won't be removed, as cgroup_rmdir()
1410  * needs that mutex.
1411  *
1412  * A cgroup can only be deleted if both its 'count' of using tasks
1413  * is zero, and its list of 'children' cgroups is empty.  Since all
1414  * tasks in the system use _some_ cgroup, and since there is always at
1415  * least one task in the system (init, pid == 1), therefore, root cgroup
1416  * always has either children cgroups and/or using tasks.  So we don't
1417  * need a special hack to ensure that root cgroup cannot be deleted.
1418  *
1419  * P.S.  One more locking exception.  RCU is used to guard the
1420  * update of a tasks cgroup pointer by cgroup_attach_task()
1421  */
1422 
1423 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1424 
1425 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1426 			      char *buf)
1427 {
1428 	struct cgroup_subsys *ss = cft->ss;
1429 
1430 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1431 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1432 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1433 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1434 			 cft->name);
1435 	else
1436 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1437 	return buf;
1438 }
1439 
1440 /**
1441  * cgroup_file_mode - deduce file mode of a control file
1442  * @cft: the control file in question
1443  *
1444  * S_IRUGO for read, S_IWUSR for write.
1445  */
1446 static umode_t cgroup_file_mode(const struct cftype *cft)
1447 {
1448 	umode_t mode = 0;
1449 
1450 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1451 		mode |= S_IRUGO;
1452 
1453 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1454 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1455 			mode |= S_IWUGO;
1456 		else
1457 			mode |= S_IWUSR;
1458 	}
1459 
1460 	return mode;
1461 }
1462 
1463 /**
1464  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1465  * @subtree_control: the new subtree_control mask to consider
1466  * @this_ss_mask: available subsystems
1467  *
1468  * On the default hierarchy, a subsystem may request other subsystems to be
1469  * enabled together through its ->depends_on mask.  In such cases, more
1470  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1471  *
1472  * This function calculates which subsystems need to be enabled if
1473  * @subtree_control is to be applied while restricted to @this_ss_mask.
1474  */
1475 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1476 {
1477 	u16 cur_ss_mask = subtree_control;
1478 	struct cgroup_subsys *ss;
1479 	int ssid;
1480 
1481 	lockdep_assert_held(&cgroup_mutex);
1482 
1483 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1484 
1485 	while (true) {
1486 		u16 new_ss_mask = cur_ss_mask;
1487 
1488 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1489 			new_ss_mask |= ss->depends_on;
1490 		} while_each_subsys_mask();
1491 
1492 		/*
1493 		 * Mask out subsystems which aren't available.  This can
1494 		 * happen only if some depended-upon subsystems were bound
1495 		 * to non-default hierarchies.
1496 		 */
1497 		new_ss_mask &= this_ss_mask;
1498 
1499 		if (new_ss_mask == cur_ss_mask)
1500 			break;
1501 		cur_ss_mask = new_ss_mask;
1502 	}
1503 
1504 	return cur_ss_mask;
1505 }
1506 
1507 /**
1508  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1509  * @kn: the kernfs_node being serviced
1510  *
1511  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1512  * the method finishes if locking succeeded.  Note that once this function
1513  * returns the cgroup returned by cgroup_kn_lock_live() may become
1514  * inaccessible any time.  If the caller intends to continue to access the
1515  * cgroup, it should pin it before invoking this function.
1516  */
1517 void cgroup_kn_unlock(struct kernfs_node *kn)
1518 {
1519 	struct cgroup *cgrp;
1520 
1521 	if (kernfs_type(kn) == KERNFS_DIR)
1522 		cgrp = kn->priv;
1523 	else
1524 		cgrp = kn->parent->priv;
1525 
1526 	mutex_unlock(&cgroup_mutex);
1527 
1528 	kernfs_unbreak_active_protection(kn);
1529 	cgroup_put(cgrp);
1530 }
1531 
1532 /**
1533  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1534  * @kn: the kernfs_node being serviced
1535  * @drain_offline: perform offline draining on the cgroup
1536  *
1537  * This helper is to be used by a cgroup kernfs method currently servicing
1538  * @kn.  It breaks the active protection, performs cgroup locking and
1539  * verifies that the associated cgroup is alive.  Returns the cgroup if
1540  * alive; otherwise, %NULL.  A successful return should be undone by a
1541  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1542  * cgroup is drained of offlining csses before return.
1543  *
1544  * Any cgroup kernfs method implementation which requires locking the
1545  * associated cgroup should use this helper.  It avoids nesting cgroup
1546  * locking under kernfs active protection and allows all kernfs operations
1547  * including self-removal.
1548  */
1549 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1550 {
1551 	struct cgroup *cgrp;
1552 
1553 	if (kernfs_type(kn) == KERNFS_DIR)
1554 		cgrp = kn->priv;
1555 	else
1556 		cgrp = kn->parent->priv;
1557 
1558 	/*
1559 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1560 	 * active_ref.  cgroup liveliness check alone provides enough
1561 	 * protection against removal.  Ensure @cgrp stays accessible and
1562 	 * break the active_ref protection.
1563 	 */
1564 	if (!cgroup_tryget(cgrp))
1565 		return NULL;
1566 	kernfs_break_active_protection(kn);
1567 
1568 	if (drain_offline)
1569 		cgroup_lock_and_drain_offline(cgrp);
1570 	else
1571 		mutex_lock(&cgroup_mutex);
1572 
1573 	if (!cgroup_is_dead(cgrp))
1574 		return cgrp;
1575 
1576 	cgroup_kn_unlock(kn);
1577 	return NULL;
1578 }
1579 
1580 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1581 {
1582 	char name[CGROUP_FILE_NAME_MAX];
1583 
1584 	lockdep_assert_held(&cgroup_mutex);
1585 
1586 	if (cft->file_offset) {
1587 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1588 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1589 
1590 		spin_lock_irq(&cgroup_file_kn_lock);
1591 		cfile->kn = NULL;
1592 		spin_unlock_irq(&cgroup_file_kn_lock);
1593 
1594 		del_timer_sync(&cfile->notify_timer);
1595 	}
1596 
1597 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1598 }
1599 
1600 /**
1601  * css_clear_dir - remove subsys files in a cgroup directory
1602  * @css: taget css
1603  */
1604 static void css_clear_dir(struct cgroup_subsys_state *css)
1605 {
1606 	struct cgroup *cgrp = css->cgroup;
1607 	struct cftype *cfts;
1608 
1609 	if (!(css->flags & CSS_VISIBLE))
1610 		return;
1611 
1612 	css->flags &= ~CSS_VISIBLE;
1613 
1614 	if (!css->ss) {
1615 		if (cgroup_on_dfl(cgrp))
1616 			cfts = cgroup_base_files;
1617 		else
1618 			cfts = cgroup1_base_files;
1619 
1620 		cgroup_addrm_files(css, cgrp, cfts, false);
1621 	} else {
1622 		list_for_each_entry(cfts, &css->ss->cfts, node)
1623 			cgroup_addrm_files(css, cgrp, cfts, false);
1624 	}
1625 }
1626 
1627 /**
1628  * css_populate_dir - create subsys files in a cgroup directory
1629  * @css: target css
1630  *
1631  * On failure, no file is added.
1632  */
1633 static int css_populate_dir(struct cgroup_subsys_state *css)
1634 {
1635 	struct cgroup *cgrp = css->cgroup;
1636 	struct cftype *cfts, *failed_cfts;
1637 	int ret;
1638 
1639 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1640 		return 0;
1641 
1642 	if (!css->ss) {
1643 		if (cgroup_on_dfl(cgrp))
1644 			cfts = cgroup_base_files;
1645 		else
1646 			cfts = cgroup1_base_files;
1647 
1648 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1649 		if (ret < 0)
1650 			return ret;
1651 	} else {
1652 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1653 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1654 			if (ret < 0) {
1655 				failed_cfts = cfts;
1656 				goto err;
1657 			}
1658 		}
1659 	}
1660 
1661 	css->flags |= CSS_VISIBLE;
1662 
1663 	return 0;
1664 err:
1665 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1666 		if (cfts == failed_cfts)
1667 			break;
1668 		cgroup_addrm_files(css, cgrp, cfts, false);
1669 	}
1670 	return ret;
1671 }
1672 
1673 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1674 {
1675 	struct cgroup *dcgrp = &dst_root->cgrp;
1676 	struct cgroup_subsys *ss;
1677 	int ssid, i, ret;
1678 
1679 	lockdep_assert_held(&cgroup_mutex);
1680 
1681 	do_each_subsys_mask(ss, ssid, ss_mask) {
1682 		/*
1683 		 * If @ss has non-root csses attached to it, can't move.
1684 		 * If @ss is an implicit controller, it is exempt from this
1685 		 * rule and can be stolen.
1686 		 */
1687 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1688 		    !ss->implicit_on_dfl)
1689 			return -EBUSY;
1690 
1691 		/* can't move between two non-dummy roots either */
1692 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1693 			return -EBUSY;
1694 	} while_each_subsys_mask();
1695 
1696 	do_each_subsys_mask(ss, ssid, ss_mask) {
1697 		struct cgroup_root *src_root = ss->root;
1698 		struct cgroup *scgrp = &src_root->cgrp;
1699 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1700 		struct css_set *cset;
1701 
1702 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1703 
1704 		/* disable from the source */
1705 		src_root->subsys_mask &= ~(1 << ssid);
1706 		WARN_ON(cgroup_apply_control(scgrp));
1707 		cgroup_finalize_control(scgrp, 0);
1708 
1709 		/* rebind */
1710 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1711 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1712 		ss->root = dst_root;
1713 		css->cgroup = dcgrp;
1714 
1715 		spin_lock_irq(&css_set_lock);
1716 		hash_for_each(css_set_table, i, cset, hlist)
1717 			list_move_tail(&cset->e_cset_node[ss->id],
1718 				       &dcgrp->e_csets[ss->id]);
1719 		spin_unlock_irq(&css_set_lock);
1720 
1721 		/* default hierarchy doesn't enable controllers by default */
1722 		dst_root->subsys_mask |= 1 << ssid;
1723 		if (dst_root == &cgrp_dfl_root) {
1724 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1725 		} else {
1726 			dcgrp->subtree_control |= 1 << ssid;
1727 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1728 		}
1729 
1730 		ret = cgroup_apply_control(dcgrp);
1731 		if (ret)
1732 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1733 				ss->name, ret);
1734 
1735 		if (ss->bind)
1736 			ss->bind(css);
1737 	} while_each_subsys_mask();
1738 
1739 	kernfs_activate(dcgrp->kn);
1740 	return 0;
1741 }
1742 
1743 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1744 		     struct kernfs_root *kf_root)
1745 {
1746 	int len = 0;
1747 	char *buf = NULL;
1748 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1749 	struct cgroup *ns_cgroup;
1750 
1751 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1752 	if (!buf)
1753 		return -ENOMEM;
1754 
1755 	spin_lock_irq(&css_set_lock);
1756 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1757 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1758 	spin_unlock_irq(&css_set_lock);
1759 
1760 	if (len >= PATH_MAX)
1761 		len = -ERANGE;
1762 	else if (len > 0) {
1763 		seq_escape(sf, buf, " \t\n\\");
1764 		len = 0;
1765 	}
1766 	kfree(buf);
1767 	return len;
1768 }
1769 
1770 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1771 {
1772 	char *token;
1773 
1774 	*root_flags = 0;
1775 
1776 	if (!data)
1777 		return 0;
1778 
1779 	while ((token = strsep(&data, ",")) != NULL) {
1780 		if (!strcmp(token, "nsdelegate")) {
1781 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1782 			continue;
1783 		}
1784 
1785 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1786 		return -EINVAL;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static void apply_cgroup_root_flags(unsigned int root_flags)
1793 {
1794 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1795 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1796 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1797 		else
1798 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1799 	}
1800 }
1801 
1802 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1803 {
1804 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1805 		seq_puts(seq, ",nsdelegate");
1806 	return 0;
1807 }
1808 
1809 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1810 {
1811 	unsigned int root_flags;
1812 	int ret;
1813 
1814 	ret = parse_cgroup_root_flags(data, &root_flags);
1815 	if (ret)
1816 		return ret;
1817 
1818 	apply_cgroup_root_flags(root_flags);
1819 	return 0;
1820 }
1821 
1822 /*
1823  * To reduce the fork() overhead for systems that are not actually using
1824  * their cgroups capability, we don't maintain the lists running through
1825  * each css_set to its tasks until we see the list actually used - in other
1826  * words after the first mount.
1827  */
1828 static bool use_task_css_set_links __read_mostly;
1829 
1830 static void cgroup_enable_task_cg_lists(void)
1831 {
1832 	struct task_struct *p, *g;
1833 
1834 	/*
1835 	 * We need tasklist_lock because RCU is not safe against
1836 	 * while_each_thread(). Besides, a forking task that has passed
1837 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1838 	 * is not guaranteed to have its child immediately visible in the
1839 	 * tasklist if we walk through it with RCU.
1840 	 */
1841 	read_lock(&tasklist_lock);
1842 	spin_lock_irq(&css_set_lock);
1843 
1844 	if (use_task_css_set_links)
1845 		goto out_unlock;
1846 
1847 	use_task_css_set_links = true;
1848 
1849 	do_each_thread(g, p) {
1850 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1851 			     task_css_set(p) != &init_css_set);
1852 
1853 		/*
1854 		 * We should check if the process is exiting, otherwise
1855 		 * it will race with cgroup_exit() in that the list
1856 		 * entry won't be deleted though the process has exited.
1857 		 * Do it while holding siglock so that we don't end up
1858 		 * racing against cgroup_exit().
1859 		 *
1860 		 * Interrupts were already disabled while acquiring
1861 		 * the css_set_lock, so we do not need to disable it
1862 		 * again when acquiring the sighand->siglock here.
1863 		 */
1864 		spin_lock(&p->sighand->siglock);
1865 		if (!(p->flags & PF_EXITING)) {
1866 			struct css_set *cset = task_css_set(p);
1867 
1868 			if (!css_set_populated(cset))
1869 				css_set_update_populated(cset, true);
1870 			list_add_tail(&p->cg_list, &cset->tasks);
1871 			get_css_set(cset);
1872 			cset->nr_tasks++;
1873 		}
1874 		spin_unlock(&p->sighand->siglock);
1875 	} while_each_thread(g, p);
1876 out_unlock:
1877 	spin_unlock_irq(&css_set_lock);
1878 	read_unlock(&tasklist_lock);
1879 }
1880 
1881 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1882 {
1883 	struct cgroup_subsys *ss;
1884 	int ssid;
1885 
1886 	INIT_LIST_HEAD(&cgrp->self.sibling);
1887 	INIT_LIST_HEAD(&cgrp->self.children);
1888 	INIT_LIST_HEAD(&cgrp->cset_links);
1889 	INIT_LIST_HEAD(&cgrp->pidlists);
1890 	mutex_init(&cgrp->pidlist_mutex);
1891 	cgrp->self.cgroup = cgrp;
1892 	cgrp->self.flags |= CSS_ONLINE;
1893 	cgrp->dom_cgrp = cgrp;
1894 	cgrp->max_descendants = INT_MAX;
1895 	cgrp->max_depth = INT_MAX;
1896 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1897 	prev_cputime_init(&cgrp->prev_cputime);
1898 
1899 	for_each_subsys(ss, ssid)
1900 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1901 
1902 	init_waitqueue_head(&cgrp->offline_waitq);
1903 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1904 }
1905 
1906 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1907 {
1908 	struct cgroup *cgrp = &root->cgrp;
1909 
1910 	INIT_LIST_HEAD(&root->root_list);
1911 	atomic_set(&root->nr_cgrps, 1);
1912 	cgrp->root = root;
1913 	init_cgroup_housekeeping(cgrp);
1914 	idr_init(&root->cgroup_idr);
1915 
1916 	root->flags = opts->flags;
1917 	if (opts->release_agent)
1918 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1919 	if (opts->name)
1920 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1921 	if (opts->cpuset_clone_children)
1922 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1923 }
1924 
1925 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1926 {
1927 	LIST_HEAD(tmp_links);
1928 	struct cgroup *root_cgrp = &root->cgrp;
1929 	struct kernfs_syscall_ops *kf_sops;
1930 	struct css_set *cset;
1931 	int i, ret;
1932 
1933 	lockdep_assert_held(&cgroup_mutex);
1934 
1935 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1936 	if (ret < 0)
1937 		goto out;
1938 	root_cgrp->id = ret;
1939 	root_cgrp->ancestor_ids[0] = ret;
1940 
1941 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1942 			      ref_flags, GFP_KERNEL);
1943 	if (ret)
1944 		goto out;
1945 
1946 	/*
1947 	 * We're accessing css_set_count without locking css_set_lock here,
1948 	 * but that's OK - it can only be increased by someone holding
1949 	 * cgroup_lock, and that's us.  Later rebinding may disable
1950 	 * controllers on the default hierarchy and thus create new csets,
1951 	 * which can't be more than the existing ones.  Allocate 2x.
1952 	 */
1953 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1954 	if (ret)
1955 		goto cancel_ref;
1956 
1957 	ret = cgroup_init_root_id(root);
1958 	if (ret)
1959 		goto cancel_ref;
1960 
1961 	kf_sops = root == &cgrp_dfl_root ?
1962 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1963 
1964 	root->kf_root = kernfs_create_root(kf_sops,
1965 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1966 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1967 					   root_cgrp);
1968 	if (IS_ERR(root->kf_root)) {
1969 		ret = PTR_ERR(root->kf_root);
1970 		goto exit_root_id;
1971 	}
1972 	root_cgrp->kn = root->kf_root->kn;
1973 
1974 	ret = css_populate_dir(&root_cgrp->self);
1975 	if (ret)
1976 		goto destroy_root;
1977 
1978 	ret = rebind_subsystems(root, ss_mask);
1979 	if (ret)
1980 		goto destroy_root;
1981 
1982 	ret = cgroup_bpf_inherit(root_cgrp);
1983 	WARN_ON_ONCE(ret);
1984 
1985 	trace_cgroup_setup_root(root);
1986 
1987 	/*
1988 	 * There must be no failure case after here, since rebinding takes
1989 	 * care of subsystems' refcounts, which are explicitly dropped in
1990 	 * the failure exit path.
1991 	 */
1992 	list_add(&root->root_list, &cgroup_roots);
1993 	cgroup_root_count++;
1994 
1995 	/*
1996 	 * Link the root cgroup in this hierarchy into all the css_set
1997 	 * objects.
1998 	 */
1999 	spin_lock_irq(&css_set_lock);
2000 	hash_for_each(css_set_table, i, cset, hlist) {
2001 		link_css_set(&tmp_links, cset, root_cgrp);
2002 		if (css_set_populated(cset))
2003 			cgroup_update_populated(root_cgrp, true);
2004 	}
2005 	spin_unlock_irq(&css_set_lock);
2006 
2007 	BUG_ON(!list_empty(&root_cgrp->self.children));
2008 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2009 
2010 	kernfs_activate(root_cgrp->kn);
2011 	ret = 0;
2012 	goto out;
2013 
2014 destroy_root:
2015 	kernfs_destroy_root(root->kf_root);
2016 	root->kf_root = NULL;
2017 exit_root_id:
2018 	cgroup_exit_root_id(root);
2019 cancel_ref:
2020 	percpu_ref_exit(&root_cgrp->self.refcnt);
2021 out:
2022 	free_cgrp_cset_links(&tmp_links);
2023 	return ret;
2024 }
2025 
2026 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2027 			       struct cgroup_root *root, unsigned long magic,
2028 			       struct cgroup_namespace *ns)
2029 {
2030 	struct dentry *dentry;
2031 	bool new_sb;
2032 
2033 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2034 
2035 	/*
2036 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2037 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2038 	 */
2039 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2040 		struct dentry *nsdentry;
2041 		struct cgroup *cgrp;
2042 
2043 		mutex_lock(&cgroup_mutex);
2044 		spin_lock_irq(&css_set_lock);
2045 
2046 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2047 
2048 		spin_unlock_irq(&css_set_lock);
2049 		mutex_unlock(&cgroup_mutex);
2050 
2051 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2052 		dput(dentry);
2053 		dentry = nsdentry;
2054 	}
2055 
2056 	if (IS_ERR(dentry) || !new_sb)
2057 		cgroup_put(&root->cgrp);
2058 
2059 	return dentry;
2060 }
2061 
2062 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2063 			 int flags, const char *unused_dev_name,
2064 			 void *data)
2065 {
2066 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2067 	struct dentry *dentry;
2068 	int ret;
2069 
2070 	get_cgroup_ns(ns);
2071 
2072 	/* Check if the caller has permission to mount. */
2073 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2074 		put_cgroup_ns(ns);
2075 		return ERR_PTR(-EPERM);
2076 	}
2077 
2078 	/*
2079 	 * The first time anyone tries to mount a cgroup, enable the list
2080 	 * linking each css_set to its tasks and fix up all existing tasks.
2081 	 */
2082 	if (!use_task_css_set_links)
2083 		cgroup_enable_task_cg_lists();
2084 
2085 	if (fs_type == &cgroup2_fs_type) {
2086 		unsigned int root_flags;
2087 
2088 		ret = parse_cgroup_root_flags(data, &root_flags);
2089 		if (ret) {
2090 			put_cgroup_ns(ns);
2091 			return ERR_PTR(ret);
2092 		}
2093 
2094 		cgrp_dfl_visible = true;
2095 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2096 
2097 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2098 					 CGROUP2_SUPER_MAGIC, ns);
2099 		if (!IS_ERR(dentry))
2100 			apply_cgroup_root_flags(root_flags);
2101 	} else {
2102 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2103 				       CGROUP_SUPER_MAGIC, ns);
2104 	}
2105 
2106 	put_cgroup_ns(ns);
2107 	return dentry;
2108 }
2109 
2110 static void cgroup_kill_sb(struct super_block *sb)
2111 {
2112 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2113 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2114 
2115 	/*
2116 	 * If @root doesn't have any mounts or children, start killing it.
2117 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2118 	 * cgroup_mount() may wait for @root's release.
2119 	 *
2120 	 * And don't kill the default root.
2121 	 */
2122 	if (!list_empty(&root->cgrp.self.children) ||
2123 	    root == &cgrp_dfl_root)
2124 		cgroup_put(&root->cgrp);
2125 	else
2126 		percpu_ref_kill(&root->cgrp.self.refcnt);
2127 
2128 	kernfs_kill_sb(sb);
2129 }
2130 
2131 struct file_system_type cgroup_fs_type = {
2132 	.name = "cgroup",
2133 	.mount = cgroup_mount,
2134 	.kill_sb = cgroup_kill_sb,
2135 	.fs_flags = FS_USERNS_MOUNT,
2136 };
2137 
2138 static struct file_system_type cgroup2_fs_type = {
2139 	.name = "cgroup2",
2140 	.mount = cgroup_mount,
2141 	.kill_sb = cgroup_kill_sb,
2142 	.fs_flags = FS_USERNS_MOUNT,
2143 };
2144 
2145 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2146 			  struct cgroup_namespace *ns)
2147 {
2148 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2149 
2150 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2151 }
2152 
2153 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2154 		   struct cgroup_namespace *ns)
2155 {
2156 	int ret;
2157 
2158 	mutex_lock(&cgroup_mutex);
2159 	spin_lock_irq(&css_set_lock);
2160 
2161 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2162 
2163 	spin_unlock_irq(&css_set_lock);
2164 	mutex_unlock(&cgroup_mutex);
2165 
2166 	return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2169 
2170 /**
2171  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2172  * @task: target task
2173  * @buf: the buffer to write the path into
2174  * @buflen: the length of the buffer
2175  *
2176  * Determine @task's cgroup on the first (the one with the lowest non-zero
2177  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2178  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2179  * cgroup controller callbacks.
2180  *
2181  * Return value is the same as kernfs_path().
2182  */
2183 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2184 {
2185 	struct cgroup_root *root;
2186 	struct cgroup *cgrp;
2187 	int hierarchy_id = 1;
2188 	int ret;
2189 
2190 	mutex_lock(&cgroup_mutex);
2191 	spin_lock_irq(&css_set_lock);
2192 
2193 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2194 
2195 	if (root) {
2196 		cgrp = task_cgroup_from_root(task, root);
2197 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2198 	} else {
2199 		/* if no hierarchy exists, everyone is in "/" */
2200 		ret = strlcpy(buf, "/", buflen);
2201 	}
2202 
2203 	spin_unlock_irq(&css_set_lock);
2204 	mutex_unlock(&cgroup_mutex);
2205 	return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(task_cgroup_path);
2208 
2209 /**
2210  * cgroup_migrate_add_task - add a migration target task to a migration context
2211  * @task: target task
2212  * @mgctx: target migration context
2213  *
2214  * Add @task, which is a migration target, to @mgctx->tset.  This function
2215  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2216  * should have been added as a migration source and @task->cg_list will be
2217  * moved from the css_set's tasks list to mg_tasks one.
2218  */
2219 static void cgroup_migrate_add_task(struct task_struct *task,
2220 				    struct cgroup_mgctx *mgctx)
2221 {
2222 	struct css_set *cset;
2223 
2224 	lockdep_assert_held(&css_set_lock);
2225 
2226 	/* @task either already exited or can't exit until the end */
2227 	if (task->flags & PF_EXITING)
2228 		return;
2229 
2230 	/* leave @task alone if post_fork() hasn't linked it yet */
2231 	if (list_empty(&task->cg_list))
2232 		return;
2233 
2234 	cset = task_css_set(task);
2235 	if (!cset->mg_src_cgrp)
2236 		return;
2237 
2238 	mgctx->tset.nr_tasks++;
2239 
2240 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2241 	if (list_empty(&cset->mg_node))
2242 		list_add_tail(&cset->mg_node,
2243 			      &mgctx->tset.src_csets);
2244 	if (list_empty(&cset->mg_dst_cset->mg_node))
2245 		list_add_tail(&cset->mg_dst_cset->mg_node,
2246 			      &mgctx->tset.dst_csets);
2247 }
2248 
2249 /**
2250  * cgroup_taskset_first - reset taskset and return the first task
2251  * @tset: taskset of interest
2252  * @dst_cssp: output variable for the destination css
2253  *
2254  * @tset iteration is initialized and the first task is returned.
2255  */
2256 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2257 					 struct cgroup_subsys_state **dst_cssp)
2258 {
2259 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2260 	tset->cur_task = NULL;
2261 
2262 	return cgroup_taskset_next(tset, dst_cssp);
2263 }
2264 
2265 /**
2266  * cgroup_taskset_next - iterate to the next task in taskset
2267  * @tset: taskset of interest
2268  * @dst_cssp: output variable for the destination css
2269  *
2270  * Return the next task in @tset.  Iteration must have been initialized
2271  * with cgroup_taskset_first().
2272  */
2273 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2274 					struct cgroup_subsys_state **dst_cssp)
2275 {
2276 	struct css_set *cset = tset->cur_cset;
2277 	struct task_struct *task = tset->cur_task;
2278 
2279 	while (&cset->mg_node != tset->csets) {
2280 		if (!task)
2281 			task = list_first_entry(&cset->mg_tasks,
2282 						struct task_struct, cg_list);
2283 		else
2284 			task = list_next_entry(task, cg_list);
2285 
2286 		if (&task->cg_list != &cset->mg_tasks) {
2287 			tset->cur_cset = cset;
2288 			tset->cur_task = task;
2289 
2290 			/*
2291 			 * This function may be called both before and
2292 			 * after cgroup_taskset_migrate().  The two cases
2293 			 * can be distinguished by looking at whether @cset
2294 			 * has its ->mg_dst_cset set.
2295 			 */
2296 			if (cset->mg_dst_cset)
2297 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2298 			else
2299 				*dst_cssp = cset->subsys[tset->ssid];
2300 
2301 			return task;
2302 		}
2303 
2304 		cset = list_next_entry(cset, mg_node);
2305 		task = NULL;
2306 	}
2307 
2308 	return NULL;
2309 }
2310 
2311 /**
2312  * cgroup_taskset_migrate - migrate a taskset
2313  * @mgctx: migration context
2314  *
2315  * Migrate tasks in @mgctx as setup by migration preparation functions.
2316  * This function fails iff one of the ->can_attach callbacks fails and
2317  * guarantees that either all or none of the tasks in @mgctx are migrated.
2318  * @mgctx is consumed regardless of success.
2319  */
2320 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2321 {
2322 	struct cgroup_taskset *tset = &mgctx->tset;
2323 	struct cgroup_subsys *ss;
2324 	struct task_struct *task, *tmp_task;
2325 	struct css_set *cset, *tmp_cset;
2326 	int ssid, failed_ssid, ret;
2327 
2328 	/* check that we can legitimately attach to the cgroup */
2329 	if (tset->nr_tasks) {
2330 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2331 			if (ss->can_attach) {
2332 				tset->ssid = ssid;
2333 				ret = ss->can_attach(tset);
2334 				if (ret) {
2335 					failed_ssid = ssid;
2336 					goto out_cancel_attach;
2337 				}
2338 			}
2339 		} while_each_subsys_mask();
2340 	}
2341 
2342 	/*
2343 	 * Now that we're guaranteed success, proceed to move all tasks to
2344 	 * the new cgroup.  There are no failure cases after here, so this
2345 	 * is the commit point.
2346 	 */
2347 	spin_lock_irq(&css_set_lock);
2348 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2349 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2350 			struct css_set *from_cset = task_css_set(task);
2351 			struct css_set *to_cset = cset->mg_dst_cset;
2352 
2353 			get_css_set(to_cset);
2354 			to_cset->nr_tasks++;
2355 			css_set_move_task(task, from_cset, to_cset, true);
2356 			put_css_set_locked(from_cset);
2357 			from_cset->nr_tasks--;
2358 		}
2359 	}
2360 	spin_unlock_irq(&css_set_lock);
2361 
2362 	/*
2363 	 * Migration is committed, all target tasks are now on dst_csets.
2364 	 * Nothing is sensitive to fork() after this point.  Notify
2365 	 * controllers that migration is complete.
2366 	 */
2367 	tset->csets = &tset->dst_csets;
2368 
2369 	if (tset->nr_tasks) {
2370 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2371 			if (ss->attach) {
2372 				tset->ssid = ssid;
2373 				ss->attach(tset);
2374 			}
2375 		} while_each_subsys_mask();
2376 	}
2377 
2378 	ret = 0;
2379 	goto out_release_tset;
2380 
2381 out_cancel_attach:
2382 	if (tset->nr_tasks) {
2383 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2384 			if (ssid == failed_ssid)
2385 				break;
2386 			if (ss->cancel_attach) {
2387 				tset->ssid = ssid;
2388 				ss->cancel_attach(tset);
2389 			}
2390 		} while_each_subsys_mask();
2391 	}
2392 out_release_tset:
2393 	spin_lock_irq(&css_set_lock);
2394 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2395 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2396 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2397 		list_del_init(&cset->mg_node);
2398 	}
2399 	spin_unlock_irq(&css_set_lock);
2400 
2401 	/*
2402 	 * Re-initialize the cgroup_taskset structure in case it is reused
2403 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2404 	 * iteration.
2405 	 */
2406 	tset->nr_tasks = 0;
2407 	tset->csets    = &tset->src_csets;
2408 	return ret;
2409 }
2410 
2411 /**
2412  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2413  * @dst_cgrp: destination cgroup to test
2414  *
2415  * On the default hierarchy, except for the mixable, (possible) thread root
2416  * and threaded cgroups, subtree_control must be zero for migration
2417  * destination cgroups with tasks so that child cgroups don't compete
2418  * against tasks.
2419  */
2420 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2421 {
2422 	/* v1 doesn't have any restriction */
2423 	if (!cgroup_on_dfl(dst_cgrp))
2424 		return 0;
2425 
2426 	/* verify @dst_cgrp can host resources */
2427 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2428 		return -EOPNOTSUPP;
2429 
2430 	/* mixables don't care */
2431 	if (cgroup_is_mixable(dst_cgrp))
2432 		return 0;
2433 
2434 	/*
2435 	 * If @dst_cgrp is already or can become a thread root or is
2436 	 * threaded, it doesn't matter.
2437 	 */
2438 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2439 		return 0;
2440 
2441 	/* apply no-internal-process constraint */
2442 	if (dst_cgrp->subtree_control)
2443 		return -EBUSY;
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * cgroup_migrate_finish - cleanup after attach
2450  * @mgctx: migration context
2451  *
2452  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2453  * those functions for details.
2454  */
2455 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2456 {
2457 	LIST_HEAD(preloaded);
2458 	struct css_set *cset, *tmp_cset;
2459 
2460 	lockdep_assert_held(&cgroup_mutex);
2461 
2462 	spin_lock_irq(&css_set_lock);
2463 
2464 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2465 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2466 
2467 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2468 		cset->mg_src_cgrp = NULL;
2469 		cset->mg_dst_cgrp = NULL;
2470 		cset->mg_dst_cset = NULL;
2471 		list_del_init(&cset->mg_preload_node);
2472 		put_css_set_locked(cset);
2473 	}
2474 
2475 	spin_unlock_irq(&css_set_lock);
2476 }
2477 
2478 /**
2479  * cgroup_migrate_add_src - add a migration source css_set
2480  * @src_cset: the source css_set to add
2481  * @dst_cgrp: the destination cgroup
2482  * @mgctx: migration context
2483  *
2484  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2485  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2486  * up by cgroup_migrate_finish().
2487  *
2488  * This function may be called without holding cgroup_threadgroup_rwsem
2489  * even if the target is a process.  Threads may be created and destroyed
2490  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2491  * into play and the preloaded css_sets are guaranteed to cover all
2492  * migrations.
2493  */
2494 void cgroup_migrate_add_src(struct css_set *src_cset,
2495 			    struct cgroup *dst_cgrp,
2496 			    struct cgroup_mgctx *mgctx)
2497 {
2498 	struct cgroup *src_cgrp;
2499 
2500 	lockdep_assert_held(&cgroup_mutex);
2501 	lockdep_assert_held(&css_set_lock);
2502 
2503 	/*
2504 	 * If ->dead, @src_set is associated with one or more dead cgroups
2505 	 * and doesn't contain any migratable tasks.  Ignore it early so
2506 	 * that the rest of migration path doesn't get confused by it.
2507 	 */
2508 	if (src_cset->dead)
2509 		return;
2510 
2511 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2512 
2513 	if (!list_empty(&src_cset->mg_preload_node))
2514 		return;
2515 
2516 	WARN_ON(src_cset->mg_src_cgrp);
2517 	WARN_ON(src_cset->mg_dst_cgrp);
2518 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2519 	WARN_ON(!list_empty(&src_cset->mg_node));
2520 
2521 	src_cset->mg_src_cgrp = src_cgrp;
2522 	src_cset->mg_dst_cgrp = dst_cgrp;
2523 	get_css_set(src_cset);
2524 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2525 }
2526 
2527 /**
2528  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2529  * @mgctx: migration context
2530  *
2531  * Tasks are about to be moved and all the source css_sets have been
2532  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2533  * pins all destination css_sets, links each to its source, and append them
2534  * to @mgctx->preloaded_dst_csets.
2535  *
2536  * This function must be called after cgroup_migrate_add_src() has been
2537  * called on each migration source css_set.  After migration is performed
2538  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2539  * @mgctx.
2540  */
2541 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2542 {
2543 	struct css_set *src_cset, *tmp_cset;
2544 
2545 	lockdep_assert_held(&cgroup_mutex);
2546 
2547 	/* look up the dst cset for each src cset and link it to src */
2548 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2549 				 mg_preload_node) {
2550 		struct css_set *dst_cset;
2551 		struct cgroup_subsys *ss;
2552 		int ssid;
2553 
2554 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2555 		if (!dst_cset)
2556 			goto err;
2557 
2558 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2559 
2560 		/*
2561 		 * If src cset equals dst, it's noop.  Drop the src.
2562 		 * cgroup_migrate() will skip the cset too.  Note that we
2563 		 * can't handle src == dst as some nodes are used by both.
2564 		 */
2565 		if (src_cset == dst_cset) {
2566 			src_cset->mg_src_cgrp = NULL;
2567 			src_cset->mg_dst_cgrp = NULL;
2568 			list_del_init(&src_cset->mg_preload_node);
2569 			put_css_set(src_cset);
2570 			put_css_set(dst_cset);
2571 			continue;
2572 		}
2573 
2574 		src_cset->mg_dst_cset = dst_cset;
2575 
2576 		if (list_empty(&dst_cset->mg_preload_node))
2577 			list_add_tail(&dst_cset->mg_preload_node,
2578 				      &mgctx->preloaded_dst_csets);
2579 		else
2580 			put_css_set(dst_cset);
2581 
2582 		for_each_subsys(ss, ssid)
2583 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2584 				mgctx->ss_mask |= 1 << ssid;
2585 	}
2586 
2587 	return 0;
2588 err:
2589 	cgroup_migrate_finish(mgctx);
2590 	return -ENOMEM;
2591 }
2592 
2593 /**
2594  * cgroup_migrate - migrate a process or task to a cgroup
2595  * @leader: the leader of the process or the task to migrate
2596  * @threadgroup: whether @leader points to the whole process or a single task
2597  * @mgctx: migration context
2598  *
2599  * Migrate a process or task denoted by @leader.  If migrating a process,
2600  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2601  * responsible for invoking cgroup_migrate_add_src() and
2602  * cgroup_migrate_prepare_dst() on the targets before invoking this
2603  * function and following up with cgroup_migrate_finish().
2604  *
2605  * As long as a controller's ->can_attach() doesn't fail, this function is
2606  * guaranteed to succeed.  This means that, excluding ->can_attach()
2607  * failure, when migrating multiple targets, the success or failure can be
2608  * decided for all targets by invoking group_migrate_prepare_dst() before
2609  * actually starting migrating.
2610  */
2611 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2612 		   struct cgroup_mgctx *mgctx)
2613 {
2614 	struct task_struct *task;
2615 
2616 	/*
2617 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2618 	 * already PF_EXITING could be freed from underneath us unless we
2619 	 * take an rcu_read_lock.
2620 	 */
2621 	spin_lock_irq(&css_set_lock);
2622 	rcu_read_lock();
2623 	task = leader;
2624 	do {
2625 		cgroup_migrate_add_task(task, mgctx);
2626 		if (!threadgroup)
2627 			break;
2628 	} while_each_thread(leader, task);
2629 	rcu_read_unlock();
2630 	spin_unlock_irq(&css_set_lock);
2631 
2632 	return cgroup_migrate_execute(mgctx);
2633 }
2634 
2635 /**
2636  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2637  * @dst_cgrp: the cgroup to attach to
2638  * @leader: the task or the leader of the threadgroup to be attached
2639  * @threadgroup: attach the whole threadgroup?
2640  *
2641  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2642  */
2643 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2644 		       bool threadgroup)
2645 {
2646 	DEFINE_CGROUP_MGCTX(mgctx);
2647 	struct task_struct *task;
2648 	int ret;
2649 
2650 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2651 	if (ret)
2652 		return ret;
2653 
2654 	/* look up all src csets */
2655 	spin_lock_irq(&css_set_lock);
2656 	rcu_read_lock();
2657 	task = leader;
2658 	do {
2659 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2660 		if (!threadgroup)
2661 			break;
2662 	} while_each_thread(leader, task);
2663 	rcu_read_unlock();
2664 	spin_unlock_irq(&css_set_lock);
2665 
2666 	/* prepare dst csets and commit */
2667 	ret = cgroup_migrate_prepare_dst(&mgctx);
2668 	if (!ret)
2669 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2670 
2671 	cgroup_migrate_finish(&mgctx);
2672 
2673 	if (!ret)
2674 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2675 
2676 	return ret;
2677 }
2678 
2679 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2680 	__acquires(&cgroup_threadgroup_rwsem)
2681 {
2682 	struct task_struct *tsk;
2683 	pid_t pid;
2684 
2685 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2686 		return ERR_PTR(-EINVAL);
2687 
2688 	percpu_down_write(&cgroup_threadgroup_rwsem);
2689 
2690 	rcu_read_lock();
2691 	if (pid) {
2692 		tsk = find_task_by_vpid(pid);
2693 		if (!tsk) {
2694 			tsk = ERR_PTR(-ESRCH);
2695 			goto out_unlock_threadgroup;
2696 		}
2697 	} else {
2698 		tsk = current;
2699 	}
2700 
2701 	if (threadgroup)
2702 		tsk = tsk->group_leader;
2703 
2704 	/*
2705 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2706 	 * If userland migrates such a kthread to a non-root cgroup, it can
2707 	 * become trapped in a cpuset, or RT kthread may be born in a
2708 	 * cgroup with no rt_runtime allocated.  Just say no.
2709 	 */
2710 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2711 		tsk = ERR_PTR(-EINVAL);
2712 		goto out_unlock_threadgroup;
2713 	}
2714 
2715 	get_task_struct(tsk);
2716 	goto out_unlock_rcu;
2717 
2718 out_unlock_threadgroup:
2719 	percpu_up_write(&cgroup_threadgroup_rwsem);
2720 out_unlock_rcu:
2721 	rcu_read_unlock();
2722 	return tsk;
2723 }
2724 
2725 void cgroup_procs_write_finish(struct task_struct *task)
2726 	__releases(&cgroup_threadgroup_rwsem)
2727 {
2728 	struct cgroup_subsys *ss;
2729 	int ssid;
2730 
2731 	/* release reference from cgroup_procs_write_start() */
2732 	put_task_struct(task);
2733 
2734 	percpu_up_write(&cgroup_threadgroup_rwsem);
2735 	for_each_subsys(ss, ssid)
2736 		if (ss->post_attach)
2737 			ss->post_attach();
2738 }
2739 
2740 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2741 {
2742 	struct cgroup_subsys *ss;
2743 	bool printed = false;
2744 	int ssid;
2745 
2746 	do_each_subsys_mask(ss, ssid, ss_mask) {
2747 		if (printed)
2748 			seq_putc(seq, ' ');
2749 		seq_printf(seq, "%s", ss->name);
2750 		printed = true;
2751 	} while_each_subsys_mask();
2752 	if (printed)
2753 		seq_putc(seq, '\n');
2754 }
2755 
2756 /* show controllers which are enabled from the parent */
2757 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2758 {
2759 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2760 
2761 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2762 	return 0;
2763 }
2764 
2765 /* show controllers which are enabled for a given cgroup's children */
2766 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2767 {
2768 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2769 
2770 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2771 	return 0;
2772 }
2773 
2774 /**
2775  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2776  * @cgrp: root of the subtree to update csses for
2777  *
2778  * @cgrp's control masks have changed and its subtree's css associations
2779  * need to be updated accordingly.  This function looks up all css_sets
2780  * which are attached to the subtree, creates the matching updated css_sets
2781  * and migrates the tasks to the new ones.
2782  */
2783 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2784 {
2785 	DEFINE_CGROUP_MGCTX(mgctx);
2786 	struct cgroup_subsys_state *d_css;
2787 	struct cgroup *dsct;
2788 	struct css_set *src_cset;
2789 	int ret;
2790 
2791 	lockdep_assert_held(&cgroup_mutex);
2792 
2793 	percpu_down_write(&cgroup_threadgroup_rwsem);
2794 
2795 	/* look up all csses currently attached to @cgrp's subtree */
2796 	spin_lock_irq(&css_set_lock);
2797 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2798 		struct cgrp_cset_link *link;
2799 
2800 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2801 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2802 	}
2803 	spin_unlock_irq(&css_set_lock);
2804 
2805 	/* NULL dst indicates self on default hierarchy */
2806 	ret = cgroup_migrate_prepare_dst(&mgctx);
2807 	if (ret)
2808 		goto out_finish;
2809 
2810 	spin_lock_irq(&css_set_lock);
2811 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2812 		struct task_struct *task, *ntask;
2813 
2814 		/* all tasks in src_csets need to be migrated */
2815 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2816 			cgroup_migrate_add_task(task, &mgctx);
2817 	}
2818 	spin_unlock_irq(&css_set_lock);
2819 
2820 	ret = cgroup_migrate_execute(&mgctx);
2821 out_finish:
2822 	cgroup_migrate_finish(&mgctx);
2823 	percpu_up_write(&cgroup_threadgroup_rwsem);
2824 	return ret;
2825 }
2826 
2827 /**
2828  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2829  * @cgrp: root of the target subtree
2830  *
2831  * Because css offlining is asynchronous, userland may try to re-enable a
2832  * controller while the previous css is still around.  This function grabs
2833  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2834  */
2835 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2836 	__acquires(&cgroup_mutex)
2837 {
2838 	struct cgroup *dsct;
2839 	struct cgroup_subsys_state *d_css;
2840 	struct cgroup_subsys *ss;
2841 	int ssid;
2842 
2843 restart:
2844 	mutex_lock(&cgroup_mutex);
2845 
2846 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2847 		for_each_subsys(ss, ssid) {
2848 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2849 			DEFINE_WAIT(wait);
2850 
2851 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2852 				continue;
2853 
2854 			cgroup_get_live(dsct);
2855 			prepare_to_wait(&dsct->offline_waitq, &wait,
2856 					TASK_UNINTERRUPTIBLE);
2857 
2858 			mutex_unlock(&cgroup_mutex);
2859 			schedule();
2860 			finish_wait(&dsct->offline_waitq, &wait);
2861 
2862 			cgroup_put(dsct);
2863 			goto restart;
2864 		}
2865 	}
2866 }
2867 
2868 /**
2869  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2870  * @cgrp: root of the target subtree
2871  *
2872  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2873  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2874  * itself.
2875  */
2876 static void cgroup_save_control(struct cgroup *cgrp)
2877 {
2878 	struct cgroup *dsct;
2879 	struct cgroup_subsys_state *d_css;
2880 
2881 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2882 		dsct->old_subtree_control = dsct->subtree_control;
2883 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2884 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2885 	}
2886 }
2887 
2888 /**
2889  * cgroup_propagate_control - refresh control masks of a subtree
2890  * @cgrp: root of the target subtree
2891  *
2892  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2893  * ->subtree_control and propagate controller availability through the
2894  * subtree so that descendants don't have unavailable controllers enabled.
2895  */
2896 static void cgroup_propagate_control(struct cgroup *cgrp)
2897 {
2898 	struct cgroup *dsct;
2899 	struct cgroup_subsys_state *d_css;
2900 
2901 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2902 		dsct->subtree_control &= cgroup_control(dsct);
2903 		dsct->subtree_ss_mask =
2904 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2905 						    cgroup_ss_mask(dsct));
2906 	}
2907 }
2908 
2909 /**
2910  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2911  * @cgrp: root of the target subtree
2912  *
2913  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2914  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2915  * itself.
2916  */
2917 static void cgroup_restore_control(struct cgroup *cgrp)
2918 {
2919 	struct cgroup *dsct;
2920 	struct cgroup_subsys_state *d_css;
2921 
2922 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2923 		dsct->subtree_control = dsct->old_subtree_control;
2924 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2925 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2926 	}
2927 }
2928 
2929 static bool css_visible(struct cgroup_subsys_state *css)
2930 {
2931 	struct cgroup_subsys *ss = css->ss;
2932 	struct cgroup *cgrp = css->cgroup;
2933 
2934 	if (cgroup_control(cgrp) & (1 << ss->id))
2935 		return true;
2936 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2937 		return false;
2938 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2939 }
2940 
2941 /**
2942  * cgroup_apply_control_enable - enable or show csses according to control
2943  * @cgrp: root of the target subtree
2944  *
2945  * Walk @cgrp's subtree and create new csses or make the existing ones
2946  * visible.  A css is created invisible if it's being implicitly enabled
2947  * through dependency.  An invisible css is made visible when the userland
2948  * explicitly enables it.
2949  *
2950  * Returns 0 on success, -errno on failure.  On failure, csses which have
2951  * been processed already aren't cleaned up.  The caller is responsible for
2952  * cleaning up with cgroup_apply_control_disable().
2953  */
2954 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2955 {
2956 	struct cgroup *dsct;
2957 	struct cgroup_subsys_state *d_css;
2958 	struct cgroup_subsys *ss;
2959 	int ssid, ret;
2960 
2961 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2962 		for_each_subsys(ss, ssid) {
2963 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2964 
2965 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2966 
2967 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2968 				continue;
2969 
2970 			if (!css) {
2971 				css = css_create(dsct, ss);
2972 				if (IS_ERR(css))
2973 					return PTR_ERR(css);
2974 			}
2975 
2976 			if (css_visible(css)) {
2977 				ret = css_populate_dir(css);
2978 				if (ret)
2979 					return ret;
2980 			}
2981 		}
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 /**
2988  * cgroup_apply_control_disable - kill or hide csses according to control
2989  * @cgrp: root of the target subtree
2990  *
2991  * Walk @cgrp's subtree and kill and hide csses so that they match
2992  * cgroup_ss_mask() and cgroup_visible_mask().
2993  *
2994  * A css is hidden when the userland requests it to be disabled while other
2995  * subsystems are still depending on it.  The css must not actively control
2996  * resources and be in the vanilla state if it's made visible again later.
2997  * Controllers which may be depended upon should provide ->css_reset() for
2998  * this purpose.
2999  */
3000 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3001 {
3002 	struct cgroup *dsct;
3003 	struct cgroup_subsys_state *d_css;
3004 	struct cgroup_subsys *ss;
3005 	int ssid;
3006 
3007 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3008 		for_each_subsys(ss, ssid) {
3009 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3010 
3011 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3012 
3013 			if (!css)
3014 				continue;
3015 
3016 			if (css->parent &&
3017 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3018 				kill_css(css);
3019 			} else if (!css_visible(css)) {
3020 				css_clear_dir(css);
3021 				if (ss->css_reset)
3022 					ss->css_reset(css);
3023 			}
3024 		}
3025 	}
3026 }
3027 
3028 /**
3029  * cgroup_apply_control - apply control mask updates to the subtree
3030  * @cgrp: root of the target subtree
3031  *
3032  * subsystems can be enabled and disabled in a subtree using the following
3033  * steps.
3034  *
3035  * 1. Call cgroup_save_control() to stash the current state.
3036  * 2. Update ->subtree_control masks in the subtree as desired.
3037  * 3. Call cgroup_apply_control() to apply the changes.
3038  * 4. Optionally perform other related operations.
3039  * 5. Call cgroup_finalize_control() to finish up.
3040  *
3041  * This function implements step 3 and propagates the mask changes
3042  * throughout @cgrp's subtree, updates csses accordingly and perform
3043  * process migrations.
3044  */
3045 static int cgroup_apply_control(struct cgroup *cgrp)
3046 {
3047 	int ret;
3048 
3049 	cgroup_propagate_control(cgrp);
3050 
3051 	ret = cgroup_apply_control_enable(cgrp);
3052 	if (ret)
3053 		return ret;
3054 
3055 	/*
3056 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3057 	 * making the following cgroup_update_dfl_csses() properly update
3058 	 * css associations of all tasks in the subtree.
3059 	 */
3060 	ret = cgroup_update_dfl_csses(cgrp);
3061 	if (ret)
3062 		return ret;
3063 
3064 	return 0;
3065 }
3066 
3067 /**
3068  * cgroup_finalize_control - finalize control mask update
3069  * @cgrp: root of the target subtree
3070  * @ret: the result of the update
3071  *
3072  * Finalize control mask update.  See cgroup_apply_control() for more info.
3073  */
3074 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3075 {
3076 	if (ret) {
3077 		cgroup_restore_control(cgrp);
3078 		cgroup_propagate_control(cgrp);
3079 	}
3080 
3081 	cgroup_apply_control_disable(cgrp);
3082 }
3083 
3084 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3085 {
3086 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3087 
3088 	/* if nothing is getting enabled, nothing to worry about */
3089 	if (!enable)
3090 		return 0;
3091 
3092 	/* can @cgrp host any resources? */
3093 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3094 		return -EOPNOTSUPP;
3095 
3096 	/* mixables don't care */
3097 	if (cgroup_is_mixable(cgrp))
3098 		return 0;
3099 
3100 	if (domain_enable) {
3101 		/* can't enable domain controllers inside a thread subtree */
3102 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3103 			return -EOPNOTSUPP;
3104 	} else {
3105 		/*
3106 		 * Threaded controllers can handle internal competitions
3107 		 * and are always allowed inside a (prospective) thread
3108 		 * subtree.
3109 		 */
3110 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3111 			return 0;
3112 	}
3113 
3114 	/*
3115 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3116 	 * child cgroups competing against tasks.
3117 	 */
3118 	if (cgroup_has_tasks(cgrp))
3119 		return -EBUSY;
3120 
3121 	return 0;
3122 }
3123 
3124 /* change the enabled child controllers for a cgroup in the default hierarchy */
3125 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3126 					    char *buf, size_t nbytes,
3127 					    loff_t off)
3128 {
3129 	u16 enable = 0, disable = 0;
3130 	struct cgroup *cgrp, *child;
3131 	struct cgroup_subsys *ss;
3132 	char *tok;
3133 	int ssid, ret;
3134 
3135 	/*
3136 	 * Parse input - space separated list of subsystem names prefixed
3137 	 * with either + or -.
3138 	 */
3139 	buf = strstrip(buf);
3140 	while ((tok = strsep(&buf, " "))) {
3141 		if (tok[0] == '\0')
3142 			continue;
3143 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3144 			if (!cgroup_ssid_enabled(ssid) ||
3145 			    strcmp(tok + 1, ss->name))
3146 				continue;
3147 
3148 			if (*tok == '+') {
3149 				enable |= 1 << ssid;
3150 				disable &= ~(1 << ssid);
3151 			} else if (*tok == '-') {
3152 				disable |= 1 << ssid;
3153 				enable &= ~(1 << ssid);
3154 			} else {
3155 				return -EINVAL;
3156 			}
3157 			break;
3158 		} while_each_subsys_mask();
3159 		if (ssid == CGROUP_SUBSYS_COUNT)
3160 			return -EINVAL;
3161 	}
3162 
3163 	cgrp = cgroup_kn_lock_live(of->kn, true);
3164 	if (!cgrp)
3165 		return -ENODEV;
3166 
3167 	for_each_subsys(ss, ssid) {
3168 		if (enable & (1 << ssid)) {
3169 			if (cgrp->subtree_control & (1 << ssid)) {
3170 				enable &= ~(1 << ssid);
3171 				continue;
3172 			}
3173 
3174 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3175 				ret = -ENOENT;
3176 				goto out_unlock;
3177 			}
3178 		} else if (disable & (1 << ssid)) {
3179 			if (!(cgrp->subtree_control & (1 << ssid))) {
3180 				disable &= ~(1 << ssid);
3181 				continue;
3182 			}
3183 
3184 			/* a child has it enabled? */
3185 			cgroup_for_each_live_child(child, cgrp) {
3186 				if (child->subtree_control & (1 << ssid)) {
3187 					ret = -EBUSY;
3188 					goto out_unlock;
3189 				}
3190 			}
3191 		}
3192 	}
3193 
3194 	if (!enable && !disable) {
3195 		ret = 0;
3196 		goto out_unlock;
3197 	}
3198 
3199 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3200 	if (ret)
3201 		goto out_unlock;
3202 
3203 	/* save and update control masks and prepare csses */
3204 	cgroup_save_control(cgrp);
3205 
3206 	cgrp->subtree_control |= enable;
3207 	cgrp->subtree_control &= ~disable;
3208 
3209 	ret = cgroup_apply_control(cgrp);
3210 	cgroup_finalize_control(cgrp, ret);
3211 	if (ret)
3212 		goto out_unlock;
3213 
3214 	kernfs_activate(cgrp->kn);
3215 out_unlock:
3216 	cgroup_kn_unlock(of->kn);
3217 	return ret ?: nbytes;
3218 }
3219 
3220 /**
3221  * cgroup_enable_threaded - make @cgrp threaded
3222  * @cgrp: the target cgroup
3223  *
3224  * Called when "threaded" is written to the cgroup.type interface file and
3225  * tries to make @cgrp threaded and join the parent's resource domain.
3226  * This function is never called on the root cgroup as cgroup.type doesn't
3227  * exist on it.
3228  */
3229 static int cgroup_enable_threaded(struct cgroup *cgrp)
3230 {
3231 	struct cgroup *parent = cgroup_parent(cgrp);
3232 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3233 	struct cgroup *dsct;
3234 	struct cgroup_subsys_state *d_css;
3235 	int ret;
3236 
3237 	lockdep_assert_held(&cgroup_mutex);
3238 
3239 	/* noop if already threaded */
3240 	if (cgroup_is_threaded(cgrp))
3241 		return 0;
3242 
3243 	/*
3244 	 * If @cgroup is populated or has domain controllers enabled, it
3245 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3246 	 * test can catch the same conditions, that's only when @parent is
3247 	 * not mixable, so let's check it explicitly.
3248 	 */
3249 	if (cgroup_is_populated(cgrp) ||
3250 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3251 		return -EOPNOTSUPP;
3252 
3253 	/* we're joining the parent's domain, ensure its validity */
3254 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3255 	    !cgroup_can_be_thread_root(dom_cgrp))
3256 		return -EOPNOTSUPP;
3257 
3258 	/*
3259 	 * The following shouldn't cause actual migrations and should
3260 	 * always succeed.
3261 	 */
3262 	cgroup_save_control(cgrp);
3263 
3264 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3265 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3266 			dsct->dom_cgrp = dom_cgrp;
3267 
3268 	ret = cgroup_apply_control(cgrp);
3269 	if (!ret)
3270 		parent->nr_threaded_children++;
3271 
3272 	cgroup_finalize_control(cgrp, ret);
3273 	return ret;
3274 }
3275 
3276 static int cgroup_type_show(struct seq_file *seq, void *v)
3277 {
3278 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3279 
3280 	if (cgroup_is_threaded(cgrp))
3281 		seq_puts(seq, "threaded\n");
3282 	else if (!cgroup_is_valid_domain(cgrp))
3283 		seq_puts(seq, "domain invalid\n");
3284 	else if (cgroup_is_thread_root(cgrp))
3285 		seq_puts(seq, "domain threaded\n");
3286 	else
3287 		seq_puts(seq, "domain\n");
3288 
3289 	return 0;
3290 }
3291 
3292 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3293 				 size_t nbytes, loff_t off)
3294 {
3295 	struct cgroup *cgrp;
3296 	int ret;
3297 
3298 	/* only switching to threaded mode is supported */
3299 	if (strcmp(strstrip(buf), "threaded"))
3300 		return -EINVAL;
3301 
3302 	cgrp = cgroup_kn_lock_live(of->kn, false);
3303 	if (!cgrp)
3304 		return -ENOENT;
3305 
3306 	/* threaded can only be enabled */
3307 	ret = cgroup_enable_threaded(cgrp);
3308 
3309 	cgroup_kn_unlock(of->kn);
3310 	return ret ?: nbytes;
3311 }
3312 
3313 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3314 {
3315 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3316 	int descendants = READ_ONCE(cgrp->max_descendants);
3317 
3318 	if (descendants == INT_MAX)
3319 		seq_puts(seq, "max\n");
3320 	else
3321 		seq_printf(seq, "%d\n", descendants);
3322 
3323 	return 0;
3324 }
3325 
3326 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3327 					   char *buf, size_t nbytes, loff_t off)
3328 {
3329 	struct cgroup *cgrp;
3330 	int descendants;
3331 	ssize_t ret;
3332 
3333 	buf = strstrip(buf);
3334 	if (!strcmp(buf, "max")) {
3335 		descendants = INT_MAX;
3336 	} else {
3337 		ret = kstrtoint(buf, 0, &descendants);
3338 		if (ret)
3339 			return ret;
3340 	}
3341 
3342 	if (descendants < 0)
3343 		return -ERANGE;
3344 
3345 	cgrp = cgroup_kn_lock_live(of->kn, false);
3346 	if (!cgrp)
3347 		return -ENOENT;
3348 
3349 	cgrp->max_descendants = descendants;
3350 
3351 	cgroup_kn_unlock(of->kn);
3352 
3353 	return nbytes;
3354 }
3355 
3356 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3357 {
3358 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3359 	int depth = READ_ONCE(cgrp->max_depth);
3360 
3361 	if (depth == INT_MAX)
3362 		seq_puts(seq, "max\n");
3363 	else
3364 		seq_printf(seq, "%d\n", depth);
3365 
3366 	return 0;
3367 }
3368 
3369 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3370 				      char *buf, size_t nbytes, loff_t off)
3371 {
3372 	struct cgroup *cgrp;
3373 	ssize_t ret;
3374 	int depth;
3375 
3376 	buf = strstrip(buf);
3377 	if (!strcmp(buf, "max")) {
3378 		depth = INT_MAX;
3379 	} else {
3380 		ret = kstrtoint(buf, 0, &depth);
3381 		if (ret)
3382 			return ret;
3383 	}
3384 
3385 	if (depth < 0)
3386 		return -ERANGE;
3387 
3388 	cgrp = cgroup_kn_lock_live(of->kn, false);
3389 	if (!cgrp)
3390 		return -ENOENT;
3391 
3392 	cgrp->max_depth = depth;
3393 
3394 	cgroup_kn_unlock(of->kn);
3395 
3396 	return nbytes;
3397 }
3398 
3399 static int cgroup_events_show(struct seq_file *seq, void *v)
3400 {
3401 	seq_printf(seq, "populated %d\n",
3402 		   cgroup_is_populated(seq_css(seq)->cgroup));
3403 	return 0;
3404 }
3405 
3406 static int cgroup_stat_show(struct seq_file *seq, void *v)
3407 {
3408 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3409 
3410 	seq_printf(seq, "nr_descendants %d\n",
3411 		   cgroup->nr_descendants);
3412 	seq_printf(seq, "nr_dying_descendants %d\n",
3413 		   cgroup->nr_dying_descendants);
3414 
3415 	return 0;
3416 }
3417 
3418 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3419 						 struct cgroup *cgrp, int ssid)
3420 {
3421 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3422 	struct cgroup_subsys_state *css;
3423 	int ret;
3424 
3425 	if (!ss->css_extra_stat_show)
3426 		return 0;
3427 
3428 	css = cgroup_tryget_css(cgrp, ss);
3429 	if (!css)
3430 		return 0;
3431 
3432 	ret = ss->css_extra_stat_show(seq, css);
3433 	css_put(css);
3434 	return ret;
3435 }
3436 
3437 static int cpu_stat_show(struct seq_file *seq, void *v)
3438 {
3439 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3440 	int ret = 0;
3441 
3442 	cgroup_base_stat_cputime_show(seq);
3443 #ifdef CONFIG_CGROUP_SCHED
3444 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3445 #endif
3446 	return ret;
3447 }
3448 
3449 static int cgroup_file_open(struct kernfs_open_file *of)
3450 {
3451 	struct cftype *cft = of->kn->priv;
3452 
3453 	if (cft->open)
3454 		return cft->open(of);
3455 	return 0;
3456 }
3457 
3458 static void cgroup_file_release(struct kernfs_open_file *of)
3459 {
3460 	struct cftype *cft = of->kn->priv;
3461 
3462 	if (cft->release)
3463 		cft->release(of);
3464 }
3465 
3466 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3467 				 size_t nbytes, loff_t off)
3468 {
3469 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3470 	struct cgroup *cgrp = of->kn->parent->priv;
3471 	struct cftype *cft = of->kn->priv;
3472 	struct cgroup_subsys_state *css;
3473 	int ret;
3474 
3475 	/*
3476 	 * If namespaces are delegation boundaries, disallow writes to
3477 	 * files in an non-init namespace root from inside the namespace
3478 	 * except for the files explicitly marked delegatable -
3479 	 * cgroup.procs and cgroup.subtree_control.
3480 	 */
3481 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3482 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3483 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3484 		return -EPERM;
3485 
3486 	if (cft->write)
3487 		return cft->write(of, buf, nbytes, off);
3488 
3489 	/*
3490 	 * kernfs guarantees that a file isn't deleted with operations in
3491 	 * flight, which means that the matching css is and stays alive and
3492 	 * doesn't need to be pinned.  The RCU locking is not necessary
3493 	 * either.  It's just for the convenience of using cgroup_css().
3494 	 */
3495 	rcu_read_lock();
3496 	css = cgroup_css(cgrp, cft->ss);
3497 	rcu_read_unlock();
3498 
3499 	if (cft->write_u64) {
3500 		unsigned long long v;
3501 		ret = kstrtoull(buf, 0, &v);
3502 		if (!ret)
3503 			ret = cft->write_u64(css, cft, v);
3504 	} else if (cft->write_s64) {
3505 		long long v;
3506 		ret = kstrtoll(buf, 0, &v);
3507 		if (!ret)
3508 			ret = cft->write_s64(css, cft, v);
3509 	} else {
3510 		ret = -EINVAL;
3511 	}
3512 
3513 	return ret ?: nbytes;
3514 }
3515 
3516 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3517 {
3518 	return seq_cft(seq)->seq_start(seq, ppos);
3519 }
3520 
3521 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3522 {
3523 	return seq_cft(seq)->seq_next(seq, v, ppos);
3524 }
3525 
3526 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3527 {
3528 	if (seq_cft(seq)->seq_stop)
3529 		seq_cft(seq)->seq_stop(seq, v);
3530 }
3531 
3532 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3533 {
3534 	struct cftype *cft = seq_cft(m);
3535 	struct cgroup_subsys_state *css = seq_css(m);
3536 
3537 	if (cft->seq_show)
3538 		return cft->seq_show(m, arg);
3539 
3540 	if (cft->read_u64)
3541 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3542 	else if (cft->read_s64)
3543 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3544 	else
3545 		return -EINVAL;
3546 	return 0;
3547 }
3548 
3549 static struct kernfs_ops cgroup_kf_single_ops = {
3550 	.atomic_write_len	= PAGE_SIZE,
3551 	.open			= cgroup_file_open,
3552 	.release		= cgroup_file_release,
3553 	.write			= cgroup_file_write,
3554 	.seq_show		= cgroup_seqfile_show,
3555 };
3556 
3557 static struct kernfs_ops cgroup_kf_ops = {
3558 	.atomic_write_len	= PAGE_SIZE,
3559 	.open			= cgroup_file_open,
3560 	.release		= cgroup_file_release,
3561 	.write			= cgroup_file_write,
3562 	.seq_start		= cgroup_seqfile_start,
3563 	.seq_next		= cgroup_seqfile_next,
3564 	.seq_stop		= cgroup_seqfile_stop,
3565 	.seq_show		= cgroup_seqfile_show,
3566 };
3567 
3568 /* set uid and gid of cgroup dirs and files to that of the creator */
3569 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3570 {
3571 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3572 			       .ia_uid = current_fsuid(),
3573 			       .ia_gid = current_fsgid(), };
3574 
3575 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3576 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3577 		return 0;
3578 
3579 	return kernfs_setattr(kn, &iattr);
3580 }
3581 
3582 static void cgroup_file_notify_timer(struct timer_list *timer)
3583 {
3584 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3585 					notify_timer));
3586 }
3587 
3588 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3589 			   struct cftype *cft)
3590 {
3591 	char name[CGROUP_FILE_NAME_MAX];
3592 	struct kernfs_node *kn;
3593 	struct lock_class_key *key = NULL;
3594 	int ret;
3595 
3596 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3597 	key = &cft->lockdep_key;
3598 #endif
3599 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3600 				  cgroup_file_mode(cft),
3601 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3602 				  0, cft->kf_ops, cft,
3603 				  NULL, key);
3604 	if (IS_ERR(kn))
3605 		return PTR_ERR(kn);
3606 
3607 	ret = cgroup_kn_set_ugid(kn);
3608 	if (ret) {
3609 		kernfs_remove(kn);
3610 		return ret;
3611 	}
3612 
3613 	if (cft->file_offset) {
3614 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3615 
3616 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3617 
3618 		spin_lock_irq(&cgroup_file_kn_lock);
3619 		cfile->kn = kn;
3620 		spin_unlock_irq(&cgroup_file_kn_lock);
3621 	}
3622 
3623 	return 0;
3624 }
3625 
3626 /**
3627  * cgroup_addrm_files - add or remove files to a cgroup directory
3628  * @css: the target css
3629  * @cgrp: the target cgroup (usually css->cgroup)
3630  * @cfts: array of cftypes to be added
3631  * @is_add: whether to add or remove
3632  *
3633  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3634  * For removals, this function never fails.
3635  */
3636 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3637 			      struct cgroup *cgrp, struct cftype cfts[],
3638 			      bool is_add)
3639 {
3640 	struct cftype *cft, *cft_end = NULL;
3641 	int ret = 0;
3642 
3643 	lockdep_assert_held(&cgroup_mutex);
3644 
3645 restart:
3646 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3647 		/* does cft->flags tell us to skip this file on @cgrp? */
3648 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3649 			continue;
3650 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3651 			continue;
3652 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3653 			continue;
3654 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3655 			continue;
3656 
3657 		if (is_add) {
3658 			ret = cgroup_add_file(css, cgrp, cft);
3659 			if (ret) {
3660 				pr_warn("%s: failed to add %s, err=%d\n",
3661 					__func__, cft->name, ret);
3662 				cft_end = cft;
3663 				is_add = false;
3664 				goto restart;
3665 			}
3666 		} else {
3667 			cgroup_rm_file(cgrp, cft);
3668 		}
3669 	}
3670 	return ret;
3671 }
3672 
3673 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3674 {
3675 	struct cgroup_subsys *ss = cfts[0].ss;
3676 	struct cgroup *root = &ss->root->cgrp;
3677 	struct cgroup_subsys_state *css;
3678 	int ret = 0;
3679 
3680 	lockdep_assert_held(&cgroup_mutex);
3681 
3682 	/* add/rm files for all cgroups created before */
3683 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3684 		struct cgroup *cgrp = css->cgroup;
3685 
3686 		if (!(css->flags & CSS_VISIBLE))
3687 			continue;
3688 
3689 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3690 		if (ret)
3691 			break;
3692 	}
3693 
3694 	if (is_add && !ret)
3695 		kernfs_activate(root->kn);
3696 	return ret;
3697 }
3698 
3699 static void cgroup_exit_cftypes(struct cftype *cfts)
3700 {
3701 	struct cftype *cft;
3702 
3703 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3704 		/* free copy for custom atomic_write_len, see init_cftypes() */
3705 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3706 			kfree(cft->kf_ops);
3707 		cft->kf_ops = NULL;
3708 		cft->ss = NULL;
3709 
3710 		/* revert flags set by cgroup core while adding @cfts */
3711 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3712 	}
3713 }
3714 
3715 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3716 {
3717 	struct cftype *cft;
3718 
3719 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3720 		struct kernfs_ops *kf_ops;
3721 
3722 		WARN_ON(cft->ss || cft->kf_ops);
3723 
3724 		if (cft->seq_start)
3725 			kf_ops = &cgroup_kf_ops;
3726 		else
3727 			kf_ops = &cgroup_kf_single_ops;
3728 
3729 		/*
3730 		 * Ugh... if @cft wants a custom max_write_len, we need to
3731 		 * make a copy of kf_ops to set its atomic_write_len.
3732 		 */
3733 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3734 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3735 			if (!kf_ops) {
3736 				cgroup_exit_cftypes(cfts);
3737 				return -ENOMEM;
3738 			}
3739 			kf_ops->atomic_write_len = cft->max_write_len;
3740 		}
3741 
3742 		cft->kf_ops = kf_ops;
3743 		cft->ss = ss;
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3750 {
3751 	lockdep_assert_held(&cgroup_mutex);
3752 
3753 	if (!cfts || !cfts[0].ss)
3754 		return -ENOENT;
3755 
3756 	list_del(&cfts->node);
3757 	cgroup_apply_cftypes(cfts, false);
3758 	cgroup_exit_cftypes(cfts);
3759 	return 0;
3760 }
3761 
3762 /**
3763  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3764  * @cfts: zero-length name terminated array of cftypes
3765  *
3766  * Unregister @cfts.  Files described by @cfts are removed from all
3767  * existing cgroups and all future cgroups won't have them either.  This
3768  * function can be called anytime whether @cfts' subsys is attached or not.
3769  *
3770  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3771  * registered.
3772  */
3773 int cgroup_rm_cftypes(struct cftype *cfts)
3774 {
3775 	int ret;
3776 
3777 	mutex_lock(&cgroup_mutex);
3778 	ret = cgroup_rm_cftypes_locked(cfts);
3779 	mutex_unlock(&cgroup_mutex);
3780 	return ret;
3781 }
3782 
3783 /**
3784  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3785  * @ss: target cgroup subsystem
3786  * @cfts: zero-length name terminated array of cftypes
3787  *
3788  * Register @cfts to @ss.  Files described by @cfts are created for all
3789  * existing cgroups to which @ss is attached and all future cgroups will
3790  * have them too.  This function can be called anytime whether @ss is
3791  * attached or not.
3792  *
3793  * Returns 0 on successful registration, -errno on failure.  Note that this
3794  * function currently returns 0 as long as @cfts registration is successful
3795  * even if some file creation attempts on existing cgroups fail.
3796  */
3797 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3798 {
3799 	int ret;
3800 
3801 	if (!cgroup_ssid_enabled(ss->id))
3802 		return 0;
3803 
3804 	if (!cfts || cfts[0].name[0] == '\0')
3805 		return 0;
3806 
3807 	ret = cgroup_init_cftypes(ss, cfts);
3808 	if (ret)
3809 		return ret;
3810 
3811 	mutex_lock(&cgroup_mutex);
3812 
3813 	list_add_tail(&cfts->node, &ss->cfts);
3814 	ret = cgroup_apply_cftypes(cfts, true);
3815 	if (ret)
3816 		cgroup_rm_cftypes_locked(cfts);
3817 
3818 	mutex_unlock(&cgroup_mutex);
3819 	return ret;
3820 }
3821 
3822 /**
3823  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3824  * @ss: target cgroup subsystem
3825  * @cfts: zero-length name terminated array of cftypes
3826  *
3827  * Similar to cgroup_add_cftypes() but the added files are only used for
3828  * the default hierarchy.
3829  */
3830 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3831 {
3832 	struct cftype *cft;
3833 
3834 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3835 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3836 	return cgroup_add_cftypes(ss, cfts);
3837 }
3838 
3839 /**
3840  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3841  * @ss: target cgroup subsystem
3842  * @cfts: zero-length name terminated array of cftypes
3843  *
3844  * Similar to cgroup_add_cftypes() but the added files are only used for
3845  * the legacy hierarchies.
3846  */
3847 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3848 {
3849 	struct cftype *cft;
3850 
3851 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3852 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3853 	return cgroup_add_cftypes(ss, cfts);
3854 }
3855 
3856 /**
3857  * cgroup_file_notify - generate a file modified event for a cgroup_file
3858  * @cfile: target cgroup_file
3859  *
3860  * @cfile must have been obtained by setting cftype->file_offset.
3861  */
3862 void cgroup_file_notify(struct cgroup_file *cfile)
3863 {
3864 	unsigned long flags;
3865 
3866 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3867 	if (cfile->kn) {
3868 		unsigned long last = cfile->notified_at;
3869 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3870 
3871 		if (time_in_range(jiffies, last, next)) {
3872 			timer_reduce(&cfile->notify_timer, next);
3873 		} else {
3874 			kernfs_notify(cfile->kn);
3875 			cfile->notified_at = jiffies;
3876 		}
3877 	}
3878 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3879 }
3880 
3881 /**
3882  * css_next_child - find the next child of a given css
3883  * @pos: the current position (%NULL to initiate traversal)
3884  * @parent: css whose children to walk
3885  *
3886  * This function returns the next child of @parent and should be called
3887  * under either cgroup_mutex or RCU read lock.  The only requirement is
3888  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3889  * be returned regardless of their states.
3890  *
3891  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3892  * css which finished ->css_online() is guaranteed to be visible in the
3893  * future iterations and will stay visible until the last reference is put.
3894  * A css which hasn't finished ->css_online() or already finished
3895  * ->css_offline() may show up during traversal.  It's each subsystem's
3896  * responsibility to synchronize against on/offlining.
3897  */
3898 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3899 					   struct cgroup_subsys_state *parent)
3900 {
3901 	struct cgroup_subsys_state *next;
3902 
3903 	cgroup_assert_mutex_or_rcu_locked();
3904 
3905 	/*
3906 	 * @pos could already have been unlinked from the sibling list.
3907 	 * Once a cgroup is removed, its ->sibling.next is no longer
3908 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3909 	 * @pos is taken off list, at which time its next pointer is valid,
3910 	 * and, as releases are serialized, the one pointed to by the next
3911 	 * pointer is guaranteed to not have started release yet.  This
3912 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3913 	 * critical section, the one pointed to by its next pointer is
3914 	 * guaranteed to not have finished its RCU grace period even if we
3915 	 * have dropped rcu_read_lock() inbetween iterations.
3916 	 *
3917 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3918 	 * dereferenced; however, as each css is given a monotonically
3919 	 * increasing unique serial number and always appended to the
3920 	 * sibling list, the next one can be found by walking the parent's
3921 	 * children until the first css with higher serial number than
3922 	 * @pos's.  While this path can be slower, it happens iff iteration
3923 	 * races against release and the race window is very small.
3924 	 */
3925 	if (!pos) {
3926 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3927 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3928 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3929 	} else {
3930 		list_for_each_entry_rcu(next, &parent->children, sibling)
3931 			if (next->serial_nr > pos->serial_nr)
3932 				break;
3933 	}
3934 
3935 	/*
3936 	 * @next, if not pointing to the head, can be dereferenced and is
3937 	 * the next sibling.
3938 	 */
3939 	if (&next->sibling != &parent->children)
3940 		return next;
3941 	return NULL;
3942 }
3943 
3944 /**
3945  * css_next_descendant_pre - find the next descendant for pre-order walk
3946  * @pos: the current position (%NULL to initiate traversal)
3947  * @root: css whose descendants to walk
3948  *
3949  * To be used by css_for_each_descendant_pre().  Find the next descendant
3950  * to visit for pre-order traversal of @root's descendants.  @root is
3951  * included in the iteration and the first node to be visited.
3952  *
3953  * While this function requires cgroup_mutex or RCU read locking, it
3954  * doesn't require the whole traversal to be contained in a single critical
3955  * section.  This function will return the correct next descendant as long
3956  * as both @pos and @root are accessible and @pos is a descendant of @root.
3957  *
3958  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3959  * css which finished ->css_online() is guaranteed to be visible in the
3960  * future iterations and will stay visible until the last reference is put.
3961  * A css which hasn't finished ->css_online() or already finished
3962  * ->css_offline() may show up during traversal.  It's each subsystem's
3963  * responsibility to synchronize against on/offlining.
3964  */
3965 struct cgroup_subsys_state *
3966 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3967 			struct cgroup_subsys_state *root)
3968 {
3969 	struct cgroup_subsys_state *next;
3970 
3971 	cgroup_assert_mutex_or_rcu_locked();
3972 
3973 	/* if first iteration, visit @root */
3974 	if (!pos)
3975 		return root;
3976 
3977 	/* visit the first child if exists */
3978 	next = css_next_child(NULL, pos);
3979 	if (next)
3980 		return next;
3981 
3982 	/* no child, visit my or the closest ancestor's next sibling */
3983 	while (pos != root) {
3984 		next = css_next_child(pos, pos->parent);
3985 		if (next)
3986 			return next;
3987 		pos = pos->parent;
3988 	}
3989 
3990 	return NULL;
3991 }
3992 
3993 /**
3994  * css_rightmost_descendant - return the rightmost descendant of a css
3995  * @pos: css of interest
3996  *
3997  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3998  * is returned.  This can be used during pre-order traversal to skip
3999  * subtree of @pos.
4000  *
4001  * While this function requires cgroup_mutex or RCU read locking, it
4002  * doesn't require the whole traversal to be contained in a single critical
4003  * section.  This function will return the correct rightmost descendant as
4004  * long as @pos is accessible.
4005  */
4006 struct cgroup_subsys_state *
4007 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4008 {
4009 	struct cgroup_subsys_state *last, *tmp;
4010 
4011 	cgroup_assert_mutex_or_rcu_locked();
4012 
4013 	do {
4014 		last = pos;
4015 		/* ->prev isn't RCU safe, walk ->next till the end */
4016 		pos = NULL;
4017 		css_for_each_child(tmp, last)
4018 			pos = tmp;
4019 	} while (pos);
4020 
4021 	return last;
4022 }
4023 
4024 static struct cgroup_subsys_state *
4025 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4026 {
4027 	struct cgroup_subsys_state *last;
4028 
4029 	do {
4030 		last = pos;
4031 		pos = css_next_child(NULL, pos);
4032 	} while (pos);
4033 
4034 	return last;
4035 }
4036 
4037 /**
4038  * css_next_descendant_post - find the next descendant for post-order walk
4039  * @pos: the current position (%NULL to initiate traversal)
4040  * @root: css whose descendants to walk
4041  *
4042  * To be used by css_for_each_descendant_post().  Find the next descendant
4043  * to visit for post-order traversal of @root's descendants.  @root is
4044  * included in the iteration and the last node to be visited.
4045  *
4046  * While this function requires cgroup_mutex or RCU read locking, it
4047  * doesn't require the whole traversal to be contained in a single critical
4048  * section.  This function will return the correct next descendant as long
4049  * as both @pos and @cgroup are accessible and @pos is a descendant of
4050  * @cgroup.
4051  *
4052  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4053  * css which finished ->css_online() is guaranteed to be visible in the
4054  * future iterations and will stay visible until the last reference is put.
4055  * A css which hasn't finished ->css_online() or already finished
4056  * ->css_offline() may show up during traversal.  It's each subsystem's
4057  * responsibility to synchronize against on/offlining.
4058  */
4059 struct cgroup_subsys_state *
4060 css_next_descendant_post(struct cgroup_subsys_state *pos,
4061 			 struct cgroup_subsys_state *root)
4062 {
4063 	struct cgroup_subsys_state *next;
4064 
4065 	cgroup_assert_mutex_or_rcu_locked();
4066 
4067 	/* if first iteration, visit leftmost descendant which may be @root */
4068 	if (!pos)
4069 		return css_leftmost_descendant(root);
4070 
4071 	/* if we visited @root, we're done */
4072 	if (pos == root)
4073 		return NULL;
4074 
4075 	/* if there's an unvisited sibling, visit its leftmost descendant */
4076 	next = css_next_child(pos, pos->parent);
4077 	if (next)
4078 		return css_leftmost_descendant(next);
4079 
4080 	/* no sibling left, visit parent */
4081 	return pos->parent;
4082 }
4083 
4084 /**
4085  * css_has_online_children - does a css have online children
4086  * @css: the target css
4087  *
4088  * Returns %true if @css has any online children; otherwise, %false.  This
4089  * function can be called from any context but the caller is responsible
4090  * for synchronizing against on/offlining as necessary.
4091  */
4092 bool css_has_online_children(struct cgroup_subsys_state *css)
4093 {
4094 	struct cgroup_subsys_state *child;
4095 	bool ret = false;
4096 
4097 	rcu_read_lock();
4098 	css_for_each_child(child, css) {
4099 		if (child->flags & CSS_ONLINE) {
4100 			ret = true;
4101 			break;
4102 		}
4103 	}
4104 	rcu_read_unlock();
4105 	return ret;
4106 }
4107 
4108 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4109 {
4110 	struct list_head *l;
4111 	struct cgrp_cset_link *link;
4112 	struct css_set *cset;
4113 
4114 	lockdep_assert_held(&css_set_lock);
4115 
4116 	/* find the next threaded cset */
4117 	if (it->tcset_pos) {
4118 		l = it->tcset_pos->next;
4119 
4120 		if (l != it->tcset_head) {
4121 			it->tcset_pos = l;
4122 			return container_of(l, struct css_set,
4123 					    threaded_csets_node);
4124 		}
4125 
4126 		it->tcset_pos = NULL;
4127 	}
4128 
4129 	/* find the next cset */
4130 	l = it->cset_pos;
4131 	l = l->next;
4132 	if (l == it->cset_head) {
4133 		it->cset_pos = NULL;
4134 		return NULL;
4135 	}
4136 
4137 	if (it->ss) {
4138 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4139 	} else {
4140 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4141 		cset = link->cset;
4142 	}
4143 
4144 	it->cset_pos = l;
4145 
4146 	/* initialize threaded css_set walking */
4147 	if (it->flags & CSS_TASK_ITER_THREADED) {
4148 		if (it->cur_dcset)
4149 			put_css_set_locked(it->cur_dcset);
4150 		it->cur_dcset = cset;
4151 		get_css_set(cset);
4152 
4153 		it->tcset_head = &cset->threaded_csets;
4154 		it->tcset_pos = &cset->threaded_csets;
4155 	}
4156 
4157 	return cset;
4158 }
4159 
4160 /**
4161  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4162  * @it: the iterator to advance
4163  *
4164  * Advance @it to the next css_set to walk.
4165  */
4166 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4167 {
4168 	struct css_set *cset;
4169 
4170 	lockdep_assert_held(&css_set_lock);
4171 
4172 	/* Advance to the next non-empty css_set */
4173 	do {
4174 		cset = css_task_iter_next_css_set(it);
4175 		if (!cset) {
4176 			it->task_pos = NULL;
4177 			return;
4178 		}
4179 	} while (!css_set_populated(cset));
4180 
4181 	if (!list_empty(&cset->tasks))
4182 		it->task_pos = cset->tasks.next;
4183 	else
4184 		it->task_pos = cset->mg_tasks.next;
4185 
4186 	it->tasks_head = &cset->tasks;
4187 	it->mg_tasks_head = &cset->mg_tasks;
4188 
4189 	/*
4190 	 * We don't keep css_sets locked across iteration steps and thus
4191 	 * need to take steps to ensure that iteration can be resumed after
4192 	 * the lock is re-acquired.  Iteration is performed at two levels -
4193 	 * css_sets and tasks in them.
4194 	 *
4195 	 * Once created, a css_set never leaves its cgroup lists, so a
4196 	 * pinned css_set is guaranteed to stay put and we can resume
4197 	 * iteration afterwards.
4198 	 *
4199 	 * Tasks may leave @cset across iteration steps.  This is resolved
4200 	 * by registering each iterator with the css_set currently being
4201 	 * walked and making css_set_move_task() advance iterators whose
4202 	 * next task is leaving.
4203 	 */
4204 	if (it->cur_cset) {
4205 		list_del(&it->iters_node);
4206 		put_css_set_locked(it->cur_cset);
4207 	}
4208 	get_css_set(cset);
4209 	it->cur_cset = cset;
4210 	list_add(&it->iters_node, &cset->task_iters);
4211 }
4212 
4213 static void css_task_iter_advance(struct css_task_iter *it)
4214 {
4215 	struct list_head *next;
4216 
4217 	lockdep_assert_held(&css_set_lock);
4218 repeat:
4219 	/*
4220 	 * Advance iterator to find next entry.  cset->tasks is consumed
4221 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4222 	 * next cset.
4223 	 */
4224 	next = it->task_pos->next;
4225 
4226 	if (next == it->tasks_head)
4227 		next = it->mg_tasks_head->next;
4228 
4229 	if (next == it->mg_tasks_head)
4230 		css_task_iter_advance_css_set(it);
4231 	else
4232 		it->task_pos = next;
4233 
4234 	/* if PROCS, skip over tasks which aren't group leaders */
4235 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4236 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4237 					    cg_list)))
4238 		goto repeat;
4239 }
4240 
4241 /**
4242  * css_task_iter_start - initiate task iteration
4243  * @css: the css to walk tasks of
4244  * @flags: CSS_TASK_ITER_* flags
4245  * @it: the task iterator to use
4246  *
4247  * Initiate iteration through the tasks of @css.  The caller can call
4248  * css_task_iter_next() to walk through the tasks until the function
4249  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4250  * called.
4251  */
4252 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4253 			 struct css_task_iter *it)
4254 {
4255 	/* no one should try to iterate before mounting cgroups */
4256 	WARN_ON_ONCE(!use_task_css_set_links);
4257 
4258 	memset(it, 0, sizeof(*it));
4259 
4260 	spin_lock_irq(&css_set_lock);
4261 
4262 	it->ss = css->ss;
4263 	it->flags = flags;
4264 
4265 	if (it->ss)
4266 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4267 	else
4268 		it->cset_pos = &css->cgroup->cset_links;
4269 
4270 	it->cset_head = it->cset_pos;
4271 
4272 	css_task_iter_advance_css_set(it);
4273 
4274 	spin_unlock_irq(&css_set_lock);
4275 }
4276 
4277 /**
4278  * css_task_iter_next - return the next task for the iterator
4279  * @it: the task iterator being iterated
4280  *
4281  * The "next" function for task iteration.  @it should have been
4282  * initialized via css_task_iter_start().  Returns NULL when the iteration
4283  * reaches the end.
4284  */
4285 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4286 {
4287 	if (it->cur_task) {
4288 		put_task_struct(it->cur_task);
4289 		it->cur_task = NULL;
4290 	}
4291 
4292 	spin_lock_irq(&css_set_lock);
4293 
4294 	if (it->task_pos) {
4295 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4296 					  cg_list);
4297 		get_task_struct(it->cur_task);
4298 		css_task_iter_advance(it);
4299 	}
4300 
4301 	spin_unlock_irq(&css_set_lock);
4302 
4303 	return it->cur_task;
4304 }
4305 
4306 /**
4307  * css_task_iter_end - finish task iteration
4308  * @it: the task iterator to finish
4309  *
4310  * Finish task iteration started by css_task_iter_start().
4311  */
4312 void css_task_iter_end(struct css_task_iter *it)
4313 {
4314 	if (it->cur_cset) {
4315 		spin_lock_irq(&css_set_lock);
4316 		list_del(&it->iters_node);
4317 		put_css_set_locked(it->cur_cset);
4318 		spin_unlock_irq(&css_set_lock);
4319 	}
4320 
4321 	if (it->cur_dcset)
4322 		put_css_set(it->cur_dcset);
4323 
4324 	if (it->cur_task)
4325 		put_task_struct(it->cur_task);
4326 }
4327 
4328 static void cgroup_procs_release(struct kernfs_open_file *of)
4329 {
4330 	if (of->priv) {
4331 		css_task_iter_end(of->priv);
4332 		kfree(of->priv);
4333 	}
4334 }
4335 
4336 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4337 {
4338 	struct kernfs_open_file *of = s->private;
4339 	struct css_task_iter *it = of->priv;
4340 
4341 	return css_task_iter_next(it);
4342 }
4343 
4344 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4345 				  unsigned int iter_flags)
4346 {
4347 	struct kernfs_open_file *of = s->private;
4348 	struct cgroup *cgrp = seq_css(s)->cgroup;
4349 	struct css_task_iter *it = of->priv;
4350 
4351 	/*
4352 	 * When a seq_file is seeked, it's always traversed sequentially
4353 	 * from position 0, so we can simply keep iterating on !0 *pos.
4354 	 */
4355 	if (!it) {
4356 		if (WARN_ON_ONCE((*pos)++))
4357 			return ERR_PTR(-EINVAL);
4358 
4359 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4360 		if (!it)
4361 			return ERR_PTR(-ENOMEM);
4362 		of->priv = it;
4363 		css_task_iter_start(&cgrp->self, iter_flags, it);
4364 	} else if (!(*pos)++) {
4365 		css_task_iter_end(it);
4366 		css_task_iter_start(&cgrp->self, iter_flags, it);
4367 	}
4368 
4369 	return cgroup_procs_next(s, NULL, NULL);
4370 }
4371 
4372 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4373 {
4374 	struct cgroup *cgrp = seq_css(s)->cgroup;
4375 
4376 	/*
4377 	 * All processes of a threaded subtree belong to the domain cgroup
4378 	 * of the subtree.  Only threads can be distributed across the
4379 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4380 	 * They're always empty anyway.
4381 	 */
4382 	if (cgroup_is_threaded(cgrp))
4383 		return ERR_PTR(-EOPNOTSUPP);
4384 
4385 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4386 					    CSS_TASK_ITER_THREADED);
4387 }
4388 
4389 static int cgroup_procs_show(struct seq_file *s, void *v)
4390 {
4391 	seq_printf(s, "%d\n", task_pid_vnr(v));
4392 	return 0;
4393 }
4394 
4395 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4396 					 struct cgroup *dst_cgrp,
4397 					 struct super_block *sb)
4398 {
4399 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4400 	struct cgroup *com_cgrp = src_cgrp;
4401 	struct inode *inode;
4402 	int ret;
4403 
4404 	lockdep_assert_held(&cgroup_mutex);
4405 
4406 	/* find the common ancestor */
4407 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4408 		com_cgrp = cgroup_parent(com_cgrp);
4409 
4410 	/* %current should be authorized to migrate to the common ancestor */
4411 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4412 	if (!inode)
4413 		return -ENOMEM;
4414 
4415 	ret = inode_permission(inode, MAY_WRITE);
4416 	iput(inode);
4417 	if (ret)
4418 		return ret;
4419 
4420 	/*
4421 	 * If namespaces are delegation boundaries, %current must be able
4422 	 * to see both source and destination cgroups from its namespace.
4423 	 */
4424 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4425 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4426 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4427 		return -ENOENT;
4428 
4429 	return 0;
4430 }
4431 
4432 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4433 				  char *buf, size_t nbytes, loff_t off)
4434 {
4435 	struct cgroup *src_cgrp, *dst_cgrp;
4436 	struct task_struct *task;
4437 	ssize_t ret;
4438 
4439 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4440 	if (!dst_cgrp)
4441 		return -ENODEV;
4442 
4443 	task = cgroup_procs_write_start(buf, true);
4444 	ret = PTR_ERR_OR_ZERO(task);
4445 	if (ret)
4446 		goto out_unlock;
4447 
4448 	/* find the source cgroup */
4449 	spin_lock_irq(&css_set_lock);
4450 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4451 	spin_unlock_irq(&css_set_lock);
4452 
4453 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4454 					    of->file->f_path.dentry->d_sb);
4455 	if (ret)
4456 		goto out_finish;
4457 
4458 	ret = cgroup_attach_task(dst_cgrp, task, true);
4459 
4460 out_finish:
4461 	cgroup_procs_write_finish(task);
4462 out_unlock:
4463 	cgroup_kn_unlock(of->kn);
4464 
4465 	return ret ?: nbytes;
4466 }
4467 
4468 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4469 {
4470 	return __cgroup_procs_start(s, pos, 0);
4471 }
4472 
4473 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4474 				    char *buf, size_t nbytes, loff_t off)
4475 {
4476 	struct cgroup *src_cgrp, *dst_cgrp;
4477 	struct task_struct *task;
4478 	ssize_t ret;
4479 
4480 	buf = strstrip(buf);
4481 
4482 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4483 	if (!dst_cgrp)
4484 		return -ENODEV;
4485 
4486 	task = cgroup_procs_write_start(buf, false);
4487 	ret = PTR_ERR_OR_ZERO(task);
4488 	if (ret)
4489 		goto out_unlock;
4490 
4491 	/* find the source cgroup */
4492 	spin_lock_irq(&css_set_lock);
4493 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4494 	spin_unlock_irq(&css_set_lock);
4495 
4496 	/* thread migrations follow the cgroup.procs delegation rule */
4497 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4498 					    of->file->f_path.dentry->d_sb);
4499 	if (ret)
4500 		goto out_finish;
4501 
4502 	/* and must be contained in the same domain */
4503 	ret = -EOPNOTSUPP;
4504 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4505 		goto out_finish;
4506 
4507 	ret = cgroup_attach_task(dst_cgrp, task, false);
4508 
4509 out_finish:
4510 	cgroup_procs_write_finish(task);
4511 out_unlock:
4512 	cgroup_kn_unlock(of->kn);
4513 
4514 	return ret ?: nbytes;
4515 }
4516 
4517 /* cgroup core interface files for the default hierarchy */
4518 static struct cftype cgroup_base_files[] = {
4519 	{
4520 		.name = "cgroup.type",
4521 		.flags = CFTYPE_NOT_ON_ROOT,
4522 		.seq_show = cgroup_type_show,
4523 		.write = cgroup_type_write,
4524 	},
4525 	{
4526 		.name = "cgroup.procs",
4527 		.flags = CFTYPE_NS_DELEGATABLE,
4528 		.file_offset = offsetof(struct cgroup, procs_file),
4529 		.release = cgroup_procs_release,
4530 		.seq_start = cgroup_procs_start,
4531 		.seq_next = cgroup_procs_next,
4532 		.seq_show = cgroup_procs_show,
4533 		.write = cgroup_procs_write,
4534 	},
4535 	{
4536 		.name = "cgroup.threads",
4537 		.flags = CFTYPE_NS_DELEGATABLE,
4538 		.release = cgroup_procs_release,
4539 		.seq_start = cgroup_threads_start,
4540 		.seq_next = cgroup_procs_next,
4541 		.seq_show = cgroup_procs_show,
4542 		.write = cgroup_threads_write,
4543 	},
4544 	{
4545 		.name = "cgroup.controllers",
4546 		.seq_show = cgroup_controllers_show,
4547 	},
4548 	{
4549 		.name = "cgroup.subtree_control",
4550 		.flags = CFTYPE_NS_DELEGATABLE,
4551 		.seq_show = cgroup_subtree_control_show,
4552 		.write = cgroup_subtree_control_write,
4553 	},
4554 	{
4555 		.name = "cgroup.events",
4556 		.flags = CFTYPE_NOT_ON_ROOT,
4557 		.file_offset = offsetof(struct cgroup, events_file),
4558 		.seq_show = cgroup_events_show,
4559 	},
4560 	{
4561 		.name = "cgroup.max.descendants",
4562 		.seq_show = cgroup_max_descendants_show,
4563 		.write = cgroup_max_descendants_write,
4564 	},
4565 	{
4566 		.name = "cgroup.max.depth",
4567 		.seq_show = cgroup_max_depth_show,
4568 		.write = cgroup_max_depth_write,
4569 	},
4570 	{
4571 		.name = "cgroup.stat",
4572 		.seq_show = cgroup_stat_show,
4573 	},
4574 	{
4575 		.name = "cpu.stat",
4576 		.flags = CFTYPE_NOT_ON_ROOT,
4577 		.seq_show = cpu_stat_show,
4578 	},
4579 	{ }	/* terminate */
4580 };
4581 
4582 /*
4583  * css destruction is four-stage process.
4584  *
4585  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4586  *    Implemented in kill_css().
4587  *
4588  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4589  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4590  *    offlined by invoking offline_css().  After offlining, the base ref is
4591  *    put.  Implemented in css_killed_work_fn().
4592  *
4593  * 3. When the percpu_ref reaches zero, the only possible remaining
4594  *    accessors are inside RCU read sections.  css_release() schedules the
4595  *    RCU callback.
4596  *
4597  * 4. After the grace period, the css can be freed.  Implemented in
4598  *    css_free_work_fn().
4599  *
4600  * It is actually hairier because both step 2 and 4 require process context
4601  * and thus involve punting to css->destroy_work adding two additional
4602  * steps to the already complex sequence.
4603  */
4604 static void css_free_rwork_fn(struct work_struct *work)
4605 {
4606 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4607 				struct cgroup_subsys_state, destroy_rwork);
4608 	struct cgroup_subsys *ss = css->ss;
4609 	struct cgroup *cgrp = css->cgroup;
4610 
4611 	percpu_ref_exit(&css->refcnt);
4612 
4613 	if (ss) {
4614 		/* css free path */
4615 		struct cgroup_subsys_state *parent = css->parent;
4616 		int id = css->id;
4617 
4618 		ss->css_free(css);
4619 		cgroup_idr_remove(&ss->css_idr, id);
4620 		cgroup_put(cgrp);
4621 
4622 		if (parent)
4623 			css_put(parent);
4624 	} else {
4625 		/* cgroup free path */
4626 		atomic_dec(&cgrp->root->nr_cgrps);
4627 		cgroup1_pidlist_destroy_all(cgrp);
4628 		cancel_work_sync(&cgrp->release_agent_work);
4629 
4630 		if (cgroup_parent(cgrp)) {
4631 			/*
4632 			 * We get a ref to the parent, and put the ref when
4633 			 * this cgroup is being freed, so it's guaranteed
4634 			 * that the parent won't be destroyed before its
4635 			 * children.
4636 			 */
4637 			cgroup_put(cgroup_parent(cgrp));
4638 			kernfs_put(cgrp->kn);
4639 			if (cgroup_on_dfl(cgrp))
4640 				cgroup_rstat_exit(cgrp);
4641 			kfree(cgrp);
4642 		} else {
4643 			/*
4644 			 * This is root cgroup's refcnt reaching zero,
4645 			 * which indicates that the root should be
4646 			 * released.
4647 			 */
4648 			cgroup_destroy_root(cgrp->root);
4649 		}
4650 	}
4651 }
4652 
4653 static void css_release_work_fn(struct work_struct *work)
4654 {
4655 	struct cgroup_subsys_state *css =
4656 		container_of(work, struct cgroup_subsys_state, destroy_work);
4657 	struct cgroup_subsys *ss = css->ss;
4658 	struct cgroup *cgrp = css->cgroup;
4659 
4660 	mutex_lock(&cgroup_mutex);
4661 
4662 	css->flags |= CSS_RELEASED;
4663 	list_del_rcu(&css->sibling);
4664 
4665 	if (ss) {
4666 		/* css release path */
4667 		if (!list_empty(&css->rstat_css_node)) {
4668 			cgroup_rstat_flush(cgrp);
4669 			list_del_rcu(&css->rstat_css_node);
4670 		}
4671 
4672 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4673 		if (ss->css_released)
4674 			ss->css_released(css);
4675 	} else {
4676 		struct cgroup *tcgrp;
4677 
4678 		/* cgroup release path */
4679 		TRACE_CGROUP_PATH(release, cgrp);
4680 
4681 		if (cgroup_on_dfl(cgrp))
4682 			cgroup_rstat_flush(cgrp);
4683 
4684 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4685 		     tcgrp = cgroup_parent(tcgrp))
4686 			tcgrp->nr_dying_descendants--;
4687 
4688 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4689 		cgrp->id = -1;
4690 
4691 		/*
4692 		 * There are two control paths which try to determine
4693 		 * cgroup from dentry without going through kernfs -
4694 		 * cgroupstats_build() and css_tryget_online_from_dir().
4695 		 * Those are supported by RCU protecting clearing of
4696 		 * cgrp->kn->priv backpointer.
4697 		 */
4698 		if (cgrp->kn)
4699 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4700 					 NULL);
4701 
4702 		cgroup_bpf_put(cgrp);
4703 	}
4704 
4705 	mutex_unlock(&cgroup_mutex);
4706 
4707 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4708 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4709 }
4710 
4711 static void css_release(struct percpu_ref *ref)
4712 {
4713 	struct cgroup_subsys_state *css =
4714 		container_of(ref, struct cgroup_subsys_state, refcnt);
4715 
4716 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4717 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4718 }
4719 
4720 static void init_and_link_css(struct cgroup_subsys_state *css,
4721 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4722 {
4723 	lockdep_assert_held(&cgroup_mutex);
4724 
4725 	cgroup_get_live(cgrp);
4726 
4727 	memset(css, 0, sizeof(*css));
4728 	css->cgroup = cgrp;
4729 	css->ss = ss;
4730 	css->id = -1;
4731 	INIT_LIST_HEAD(&css->sibling);
4732 	INIT_LIST_HEAD(&css->children);
4733 	INIT_LIST_HEAD(&css->rstat_css_node);
4734 	css->serial_nr = css_serial_nr_next++;
4735 	atomic_set(&css->online_cnt, 0);
4736 
4737 	if (cgroup_parent(cgrp)) {
4738 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4739 		css_get(css->parent);
4740 	}
4741 
4742 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4743 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4744 
4745 	BUG_ON(cgroup_css(cgrp, ss));
4746 }
4747 
4748 /* invoke ->css_online() on a new CSS and mark it online if successful */
4749 static int online_css(struct cgroup_subsys_state *css)
4750 {
4751 	struct cgroup_subsys *ss = css->ss;
4752 	int ret = 0;
4753 
4754 	lockdep_assert_held(&cgroup_mutex);
4755 
4756 	if (ss->css_online)
4757 		ret = ss->css_online(css);
4758 	if (!ret) {
4759 		css->flags |= CSS_ONLINE;
4760 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4761 
4762 		atomic_inc(&css->online_cnt);
4763 		if (css->parent)
4764 			atomic_inc(&css->parent->online_cnt);
4765 	}
4766 	return ret;
4767 }
4768 
4769 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4770 static void offline_css(struct cgroup_subsys_state *css)
4771 {
4772 	struct cgroup_subsys *ss = css->ss;
4773 
4774 	lockdep_assert_held(&cgroup_mutex);
4775 
4776 	if (!(css->flags & CSS_ONLINE))
4777 		return;
4778 
4779 	if (ss->css_offline)
4780 		ss->css_offline(css);
4781 
4782 	css->flags &= ~CSS_ONLINE;
4783 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4784 
4785 	wake_up_all(&css->cgroup->offline_waitq);
4786 }
4787 
4788 /**
4789  * css_create - create a cgroup_subsys_state
4790  * @cgrp: the cgroup new css will be associated with
4791  * @ss: the subsys of new css
4792  *
4793  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4794  * css is online and installed in @cgrp.  This function doesn't create the
4795  * interface files.  Returns 0 on success, -errno on failure.
4796  */
4797 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4798 					      struct cgroup_subsys *ss)
4799 {
4800 	struct cgroup *parent = cgroup_parent(cgrp);
4801 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4802 	struct cgroup_subsys_state *css;
4803 	int err;
4804 
4805 	lockdep_assert_held(&cgroup_mutex);
4806 
4807 	css = ss->css_alloc(parent_css);
4808 	if (!css)
4809 		css = ERR_PTR(-ENOMEM);
4810 	if (IS_ERR(css))
4811 		return css;
4812 
4813 	init_and_link_css(css, ss, cgrp);
4814 
4815 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4816 	if (err)
4817 		goto err_free_css;
4818 
4819 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4820 	if (err < 0)
4821 		goto err_free_css;
4822 	css->id = err;
4823 
4824 	/* @css is ready to be brought online now, make it visible */
4825 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4826 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4827 
4828 	err = online_css(css);
4829 	if (err)
4830 		goto err_list_del;
4831 
4832 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4833 	    cgroup_parent(parent)) {
4834 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4835 			current->comm, current->pid, ss->name);
4836 		if (!strcmp(ss->name, "memory"))
4837 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4838 		ss->warned_broken_hierarchy = true;
4839 	}
4840 
4841 	return css;
4842 
4843 err_list_del:
4844 	list_del_rcu(&css->sibling);
4845 err_free_css:
4846 	list_del_rcu(&css->rstat_css_node);
4847 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4848 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4849 	return ERR_PTR(err);
4850 }
4851 
4852 /*
4853  * The returned cgroup is fully initialized including its control mask, but
4854  * it isn't associated with its kernfs_node and doesn't have the control
4855  * mask applied.
4856  */
4857 static struct cgroup *cgroup_create(struct cgroup *parent)
4858 {
4859 	struct cgroup_root *root = parent->root;
4860 	struct cgroup *cgrp, *tcgrp;
4861 	int level = parent->level + 1;
4862 	int ret;
4863 
4864 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4865 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4866 		       GFP_KERNEL);
4867 	if (!cgrp)
4868 		return ERR_PTR(-ENOMEM);
4869 
4870 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4871 	if (ret)
4872 		goto out_free_cgrp;
4873 
4874 	if (cgroup_on_dfl(parent)) {
4875 		ret = cgroup_rstat_init(cgrp);
4876 		if (ret)
4877 			goto out_cancel_ref;
4878 	}
4879 
4880 	/*
4881 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4882 	 * a half-baked cgroup.
4883 	 */
4884 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4885 	if (cgrp->id < 0) {
4886 		ret = -ENOMEM;
4887 		goto out_stat_exit;
4888 	}
4889 
4890 	init_cgroup_housekeeping(cgrp);
4891 
4892 	cgrp->self.parent = &parent->self;
4893 	cgrp->root = root;
4894 	cgrp->level = level;
4895 	ret = cgroup_bpf_inherit(cgrp);
4896 	if (ret)
4897 		goto out_idr_free;
4898 
4899 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4900 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4901 
4902 		if (tcgrp != cgrp)
4903 			tcgrp->nr_descendants++;
4904 	}
4905 
4906 	if (notify_on_release(parent))
4907 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4908 
4909 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4910 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4911 
4912 	cgrp->self.serial_nr = css_serial_nr_next++;
4913 
4914 	/* allocation complete, commit to creation */
4915 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4916 	atomic_inc(&root->nr_cgrps);
4917 	cgroup_get_live(parent);
4918 
4919 	/*
4920 	 * @cgrp is now fully operational.  If something fails after this
4921 	 * point, it'll be released via the normal destruction path.
4922 	 */
4923 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4924 
4925 	/*
4926 	 * On the default hierarchy, a child doesn't automatically inherit
4927 	 * subtree_control from the parent.  Each is configured manually.
4928 	 */
4929 	if (!cgroup_on_dfl(cgrp))
4930 		cgrp->subtree_control = cgroup_control(cgrp);
4931 
4932 	cgroup_propagate_control(cgrp);
4933 
4934 	return cgrp;
4935 
4936 out_idr_free:
4937 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4938 out_stat_exit:
4939 	if (cgroup_on_dfl(parent))
4940 		cgroup_rstat_exit(cgrp);
4941 out_cancel_ref:
4942 	percpu_ref_exit(&cgrp->self.refcnt);
4943 out_free_cgrp:
4944 	kfree(cgrp);
4945 	return ERR_PTR(ret);
4946 }
4947 
4948 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4949 {
4950 	struct cgroup *cgroup;
4951 	int ret = false;
4952 	int level = 1;
4953 
4954 	lockdep_assert_held(&cgroup_mutex);
4955 
4956 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4957 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4958 			goto fail;
4959 
4960 		if (level > cgroup->max_depth)
4961 			goto fail;
4962 
4963 		level++;
4964 	}
4965 
4966 	ret = true;
4967 fail:
4968 	return ret;
4969 }
4970 
4971 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4972 {
4973 	struct cgroup *parent, *cgrp;
4974 	struct kernfs_node *kn;
4975 	int ret;
4976 
4977 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4978 	if (strchr(name, '\n'))
4979 		return -EINVAL;
4980 
4981 	parent = cgroup_kn_lock_live(parent_kn, false);
4982 	if (!parent)
4983 		return -ENODEV;
4984 
4985 	if (!cgroup_check_hierarchy_limits(parent)) {
4986 		ret = -EAGAIN;
4987 		goto out_unlock;
4988 	}
4989 
4990 	cgrp = cgroup_create(parent);
4991 	if (IS_ERR(cgrp)) {
4992 		ret = PTR_ERR(cgrp);
4993 		goto out_unlock;
4994 	}
4995 
4996 	/* create the directory */
4997 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4998 	if (IS_ERR(kn)) {
4999 		ret = PTR_ERR(kn);
5000 		goto out_destroy;
5001 	}
5002 	cgrp->kn = kn;
5003 
5004 	/*
5005 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5006 	 * that @cgrp->kn is always accessible.
5007 	 */
5008 	kernfs_get(kn);
5009 
5010 	ret = cgroup_kn_set_ugid(kn);
5011 	if (ret)
5012 		goto out_destroy;
5013 
5014 	ret = css_populate_dir(&cgrp->self);
5015 	if (ret)
5016 		goto out_destroy;
5017 
5018 	ret = cgroup_apply_control_enable(cgrp);
5019 	if (ret)
5020 		goto out_destroy;
5021 
5022 	TRACE_CGROUP_PATH(mkdir, cgrp);
5023 
5024 	/* let's create and online css's */
5025 	kernfs_activate(kn);
5026 
5027 	ret = 0;
5028 	goto out_unlock;
5029 
5030 out_destroy:
5031 	cgroup_destroy_locked(cgrp);
5032 out_unlock:
5033 	cgroup_kn_unlock(parent_kn);
5034 	return ret;
5035 }
5036 
5037 /*
5038  * This is called when the refcnt of a css is confirmed to be killed.
5039  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5040  * initate destruction and put the css ref from kill_css().
5041  */
5042 static void css_killed_work_fn(struct work_struct *work)
5043 {
5044 	struct cgroup_subsys_state *css =
5045 		container_of(work, struct cgroup_subsys_state, destroy_work);
5046 
5047 	mutex_lock(&cgroup_mutex);
5048 
5049 	do {
5050 		offline_css(css);
5051 		css_put(css);
5052 		/* @css can't go away while we're holding cgroup_mutex */
5053 		css = css->parent;
5054 	} while (css && atomic_dec_and_test(&css->online_cnt));
5055 
5056 	mutex_unlock(&cgroup_mutex);
5057 }
5058 
5059 /* css kill confirmation processing requires process context, bounce */
5060 static void css_killed_ref_fn(struct percpu_ref *ref)
5061 {
5062 	struct cgroup_subsys_state *css =
5063 		container_of(ref, struct cgroup_subsys_state, refcnt);
5064 
5065 	if (atomic_dec_and_test(&css->online_cnt)) {
5066 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5067 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5068 	}
5069 }
5070 
5071 /**
5072  * kill_css - destroy a css
5073  * @css: css to destroy
5074  *
5075  * This function initiates destruction of @css by removing cgroup interface
5076  * files and putting its base reference.  ->css_offline() will be invoked
5077  * asynchronously once css_tryget_online() is guaranteed to fail and when
5078  * the reference count reaches zero, @css will be released.
5079  */
5080 static void kill_css(struct cgroup_subsys_state *css)
5081 {
5082 	lockdep_assert_held(&cgroup_mutex);
5083 
5084 	if (css->flags & CSS_DYING)
5085 		return;
5086 
5087 	css->flags |= CSS_DYING;
5088 
5089 	/*
5090 	 * This must happen before css is disassociated with its cgroup.
5091 	 * See seq_css() for details.
5092 	 */
5093 	css_clear_dir(css);
5094 
5095 	/*
5096 	 * Killing would put the base ref, but we need to keep it alive
5097 	 * until after ->css_offline().
5098 	 */
5099 	css_get(css);
5100 
5101 	/*
5102 	 * cgroup core guarantees that, by the time ->css_offline() is
5103 	 * invoked, no new css reference will be given out via
5104 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5105 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5106 	 * guarantee that the ref is seen as killed on all CPUs on return.
5107 	 *
5108 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5109 	 * css is confirmed to be seen as killed on all CPUs.
5110 	 */
5111 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5112 }
5113 
5114 /**
5115  * cgroup_destroy_locked - the first stage of cgroup destruction
5116  * @cgrp: cgroup to be destroyed
5117  *
5118  * css's make use of percpu refcnts whose killing latency shouldn't be
5119  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5120  * guarantee that css_tryget_online() won't succeed by the time
5121  * ->css_offline() is invoked.  To satisfy all the requirements,
5122  * destruction is implemented in the following two steps.
5123  *
5124  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5125  *     userland visible parts and start killing the percpu refcnts of
5126  *     css's.  Set up so that the next stage will be kicked off once all
5127  *     the percpu refcnts are confirmed to be killed.
5128  *
5129  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5130  *     rest of destruction.  Once all cgroup references are gone, the
5131  *     cgroup is RCU-freed.
5132  *
5133  * This function implements s1.  After this step, @cgrp is gone as far as
5134  * the userland is concerned and a new cgroup with the same name may be
5135  * created.  As cgroup doesn't care about the names internally, this
5136  * doesn't cause any problem.
5137  */
5138 static int cgroup_destroy_locked(struct cgroup *cgrp)
5139 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5140 {
5141 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5142 	struct cgroup_subsys_state *css;
5143 	struct cgrp_cset_link *link;
5144 	int ssid;
5145 
5146 	lockdep_assert_held(&cgroup_mutex);
5147 
5148 	/*
5149 	 * Only migration can raise populated from zero and we're already
5150 	 * holding cgroup_mutex.
5151 	 */
5152 	if (cgroup_is_populated(cgrp))
5153 		return -EBUSY;
5154 
5155 	/*
5156 	 * Make sure there's no live children.  We can't test emptiness of
5157 	 * ->self.children as dead children linger on it while being
5158 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5159 	 */
5160 	if (css_has_online_children(&cgrp->self))
5161 		return -EBUSY;
5162 
5163 	/*
5164 	 * Mark @cgrp and the associated csets dead.  The former prevents
5165 	 * further task migration and child creation by disabling
5166 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5167 	 * the migration path.
5168 	 */
5169 	cgrp->self.flags &= ~CSS_ONLINE;
5170 
5171 	spin_lock_irq(&css_set_lock);
5172 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5173 		link->cset->dead = true;
5174 	spin_unlock_irq(&css_set_lock);
5175 
5176 	/* initiate massacre of all css's */
5177 	for_each_css(css, ssid, cgrp)
5178 		kill_css(css);
5179 
5180 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5181 	css_clear_dir(&cgrp->self);
5182 	kernfs_remove(cgrp->kn);
5183 
5184 	if (parent && cgroup_is_threaded(cgrp))
5185 		parent->nr_threaded_children--;
5186 
5187 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5188 		tcgrp->nr_descendants--;
5189 		tcgrp->nr_dying_descendants++;
5190 	}
5191 
5192 	cgroup1_check_for_release(parent);
5193 
5194 	/* put the base reference */
5195 	percpu_ref_kill(&cgrp->self.refcnt);
5196 
5197 	return 0;
5198 };
5199 
5200 int cgroup_rmdir(struct kernfs_node *kn)
5201 {
5202 	struct cgroup *cgrp;
5203 	int ret = 0;
5204 
5205 	cgrp = cgroup_kn_lock_live(kn, false);
5206 	if (!cgrp)
5207 		return 0;
5208 
5209 	ret = cgroup_destroy_locked(cgrp);
5210 	if (!ret)
5211 		TRACE_CGROUP_PATH(rmdir, cgrp);
5212 
5213 	cgroup_kn_unlock(kn);
5214 	return ret;
5215 }
5216 
5217 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5218 	.show_options		= cgroup_show_options,
5219 	.remount_fs		= cgroup_remount,
5220 	.mkdir			= cgroup_mkdir,
5221 	.rmdir			= cgroup_rmdir,
5222 	.show_path		= cgroup_show_path,
5223 };
5224 
5225 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5226 {
5227 	struct cgroup_subsys_state *css;
5228 
5229 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5230 
5231 	mutex_lock(&cgroup_mutex);
5232 
5233 	idr_init(&ss->css_idr);
5234 	INIT_LIST_HEAD(&ss->cfts);
5235 
5236 	/* Create the root cgroup state for this subsystem */
5237 	ss->root = &cgrp_dfl_root;
5238 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5239 	/* We don't handle early failures gracefully */
5240 	BUG_ON(IS_ERR(css));
5241 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5242 
5243 	/*
5244 	 * Root csses are never destroyed and we can't initialize
5245 	 * percpu_ref during early init.  Disable refcnting.
5246 	 */
5247 	css->flags |= CSS_NO_REF;
5248 
5249 	if (early) {
5250 		/* allocation can't be done safely during early init */
5251 		css->id = 1;
5252 	} else {
5253 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5254 		BUG_ON(css->id < 0);
5255 	}
5256 
5257 	/* Update the init_css_set to contain a subsys
5258 	 * pointer to this state - since the subsystem is
5259 	 * newly registered, all tasks and hence the
5260 	 * init_css_set is in the subsystem's root cgroup. */
5261 	init_css_set.subsys[ss->id] = css;
5262 
5263 	have_fork_callback |= (bool)ss->fork << ss->id;
5264 	have_exit_callback |= (bool)ss->exit << ss->id;
5265 	have_free_callback |= (bool)ss->free << ss->id;
5266 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5267 
5268 	/* At system boot, before all subsystems have been
5269 	 * registered, no tasks have been forked, so we don't
5270 	 * need to invoke fork callbacks here. */
5271 	BUG_ON(!list_empty(&init_task.tasks));
5272 
5273 	BUG_ON(online_css(css));
5274 
5275 	mutex_unlock(&cgroup_mutex);
5276 }
5277 
5278 /**
5279  * cgroup_init_early - cgroup initialization at system boot
5280  *
5281  * Initialize cgroups at system boot, and initialize any
5282  * subsystems that request early init.
5283  */
5284 int __init cgroup_init_early(void)
5285 {
5286 	static struct cgroup_sb_opts __initdata opts;
5287 	struct cgroup_subsys *ss;
5288 	int i;
5289 
5290 	init_cgroup_root(&cgrp_dfl_root, &opts);
5291 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5292 
5293 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5294 
5295 	for_each_subsys(ss, i) {
5296 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5297 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5298 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5299 		     ss->id, ss->name);
5300 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5301 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5302 
5303 		ss->id = i;
5304 		ss->name = cgroup_subsys_name[i];
5305 		if (!ss->legacy_name)
5306 			ss->legacy_name = cgroup_subsys_name[i];
5307 
5308 		if (ss->early_init)
5309 			cgroup_init_subsys(ss, true);
5310 	}
5311 	return 0;
5312 }
5313 
5314 static u16 cgroup_disable_mask __initdata;
5315 
5316 /**
5317  * cgroup_init - cgroup initialization
5318  *
5319  * Register cgroup filesystem and /proc file, and initialize
5320  * any subsystems that didn't request early init.
5321  */
5322 int __init cgroup_init(void)
5323 {
5324 	struct cgroup_subsys *ss;
5325 	int ssid;
5326 
5327 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5328 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5329 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5330 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5331 
5332 	cgroup_rstat_boot();
5333 
5334 	/*
5335 	 * The latency of the synchronize_sched() is too high for cgroups,
5336 	 * avoid it at the cost of forcing all readers into the slow path.
5337 	 */
5338 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5339 
5340 	get_user_ns(init_cgroup_ns.user_ns);
5341 
5342 	mutex_lock(&cgroup_mutex);
5343 
5344 	/*
5345 	 * Add init_css_set to the hash table so that dfl_root can link to
5346 	 * it during init.
5347 	 */
5348 	hash_add(css_set_table, &init_css_set.hlist,
5349 		 css_set_hash(init_css_set.subsys));
5350 
5351 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5352 
5353 	mutex_unlock(&cgroup_mutex);
5354 
5355 	for_each_subsys(ss, ssid) {
5356 		if (ss->early_init) {
5357 			struct cgroup_subsys_state *css =
5358 				init_css_set.subsys[ss->id];
5359 
5360 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5361 						   GFP_KERNEL);
5362 			BUG_ON(css->id < 0);
5363 		} else {
5364 			cgroup_init_subsys(ss, false);
5365 		}
5366 
5367 		list_add_tail(&init_css_set.e_cset_node[ssid],
5368 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5369 
5370 		/*
5371 		 * Setting dfl_root subsys_mask needs to consider the
5372 		 * disabled flag and cftype registration needs kmalloc,
5373 		 * both of which aren't available during early_init.
5374 		 */
5375 		if (cgroup_disable_mask & (1 << ssid)) {
5376 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5377 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5378 			       ss->name);
5379 			continue;
5380 		}
5381 
5382 		if (cgroup1_ssid_disabled(ssid))
5383 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5384 			       ss->name);
5385 
5386 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5387 
5388 		/* implicit controllers must be threaded too */
5389 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5390 
5391 		if (ss->implicit_on_dfl)
5392 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5393 		else if (!ss->dfl_cftypes)
5394 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5395 
5396 		if (ss->threaded)
5397 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5398 
5399 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5400 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5401 		} else {
5402 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5403 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5404 		}
5405 
5406 		if (ss->bind)
5407 			ss->bind(init_css_set.subsys[ssid]);
5408 
5409 		mutex_lock(&cgroup_mutex);
5410 		css_populate_dir(init_css_set.subsys[ssid]);
5411 		mutex_unlock(&cgroup_mutex);
5412 	}
5413 
5414 	/* init_css_set.subsys[] has been updated, re-hash */
5415 	hash_del(&init_css_set.hlist);
5416 	hash_add(css_set_table, &init_css_set.hlist,
5417 		 css_set_hash(init_css_set.subsys));
5418 
5419 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5420 	WARN_ON(register_filesystem(&cgroup_fs_type));
5421 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5422 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5423 
5424 	return 0;
5425 }
5426 
5427 static int __init cgroup_wq_init(void)
5428 {
5429 	/*
5430 	 * There isn't much point in executing destruction path in
5431 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5432 	 * Use 1 for @max_active.
5433 	 *
5434 	 * We would prefer to do this in cgroup_init() above, but that
5435 	 * is called before init_workqueues(): so leave this until after.
5436 	 */
5437 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5438 	BUG_ON(!cgroup_destroy_wq);
5439 	return 0;
5440 }
5441 core_initcall(cgroup_wq_init);
5442 
5443 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5444 					char *buf, size_t buflen)
5445 {
5446 	struct kernfs_node *kn;
5447 
5448 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5449 	if (!kn)
5450 		return;
5451 	kernfs_path(kn, buf, buflen);
5452 	kernfs_put(kn);
5453 }
5454 
5455 /*
5456  * proc_cgroup_show()
5457  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5458  *  - Used for /proc/<pid>/cgroup.
5459  */
5460 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5461 		     struct pid *pid, struct task_struct *tsk)
5462 {
5463 	char *buf;
5464 	int retval;
5465 	struct cgroup_root *root;
5466 
5467 	retval = -ENOMEM;
5468 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5469 	if (!buf)
5470 		goto out;
5471 
5472 	mutex_lock(&cgroup_mutex);
5473 	spin_lock_irq(&css_set_lock);
5474 
5475 	for_each_root(root) {
5476 		struct cgroup_subsys *ss;
5477 		struct cgroup *cgrp;
5478 		int ssid, count = 0;
5479 
5480 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5481 			continue;
5482 
5483 		seq_printf(m, "%d:", root->hierarchy_id);
5484 		if (root != &cgrp_dfl_root)
5485 			for_each_subsys(ss, ssid)
5486 				if (root->subsys_mask & (1 << ssid))
5487 					seq_printf(m, "%s%s", count++ ? "," : "",
5488 						   ss->legacy_name);
5489 		if (strlen(root->name))
5490 			seq_printf(m, "%sname=%s", count ? "," : "",
5491 				   root->name);
5492 		seq_putc(m, ':');
5493 
5494 		cgrp = task_cgroup_from_root(tsk, root);
5495 
5496 		/*
5497 		 * On traditional hierarchies, all zombie tasks show up as
5498 		 * belonging to the root cgroup.  On the default hierarchy,
5499 		 * while a zombie doesn't show up in "cgroup.procs" and
5500 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5501 		 * reporting the cgroup it belonged to before exiting.  If
5502 		 * the cgroup is removed before the zombie is reaped,
5503 		 * " (deleted)" is appended to the cgroup path.
5504 		 */
5505 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5506 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5507 						current->nsproxy->cgroup_ns);
5508 			if (retval >= PATH_MAX)
5509 				retval = -ENAMETOOLONG;
5510 			if (retval < 0)
5511 				goto out_unlock;
5512 
5513 			seq_puts(m, buf);
5514 		} else {
5515 			seq_puts(m, "/");
5516 		}
5517 
5518 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5519 			seq_puts(m, " (deleted)\n");
5520 		else
5521 			seq_putc(m, '\n');
5522 	}
5523 
5524 	retval = 0;
5525 out_unlock:
5526 	spin_unlock_irq(&css_set_lock);
5527 	mutex_unlock(&cgroup_mutex);
5528 	kfree(buf);
5529 out:
5530 	return retval;
5531 }
5532 
5533 /**
5534  * cgroup_fork - initialize cgroup related fields during copy_process()
5535  * @child: pointer to task_struct of forking parent process.
5536  *
5537  * A task is associated with the init_css_set until cgroup_post_fork()
5538  * attaches it to the parent's css_set.  Empty cg_list indicates that
5539  * @child isn't holding reference to its css_set.
5540  */
5541 void cgroup_fork(struct task_struct *child)
5542 {
5543 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5544 	INIT_LIST_HEAD(&child->cg_list);
5545 }
5546 
5547 /**
5548  * cgroup_can_fork - called on a new task before the process is exposed
5549  * @child: the task in question.
5550  *
5551  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5552  * returns an error, the fork aborts with that error code. This allows for
5553  * a cgroup subsystem to conditionally allow or deny new forks.
5554  */
5555 int cgroup_can_fork(struct task_struct *child)
5556 {
5557 	struct cgroup_subsys *ss;
5558 	int i, j, ret;
5559 
5560 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5561 		ret = ss->can_fork(child);
5562 		if (ret)
5563 			goto out_revert;
5564 	} while_each_subsys_mask();
5565 
5566 	return 0;
5567 
5568 out_revert:
5569 	for_each_subsys(ss, j) {
5570 		if (j >= i)
5571 			break;
5572 		if (ss->cancel_fork)
5573 			ss->cancel_fork(child);
5574 	}
5575 
5576 	return ret;
5577 }
5578 
5579 /**
5580  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5581  * @child: the task in question
5582  *
5583  * This calls the cancel_fork() callbacks if a fork failed *after*
5584  * cgroup_can_fork() succeded.
5585  */
5586 void cgroup_cancel_fork(struct task_struct *child)
5587 {
5588 	struct cgroup_subsys *ss;
5589 	int i;
5590 
5591 	for_each_subsys(ss, i)
5592 		if (ss->cancel_fork)
5593 			ss->cancel_fork(child);
5594 }
5595 
5596 /**
5597  * cgroup_post_fork - called on a new task after adding it to the task list
5598  * @child: the task in question
5599  *
5600  * Adds the task to the list running through its css_set if necessary and
5601  * call the subsystem fork() callbacks.  Has to be after the task is
5602  * visible on the task list in case we race with the first call to
5603  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5604  * list.
5605  */
5606 void cgroup_post_fork(struct task_struct *child)
5607 {
5608 	struct cgroup_subsys *ss;
5609 	int i;
5610 
5611 	/*
5612 	 * This may race against cgroup_enable_task_cg_lists().  As that
5613 	 * function sets use_task_css_set_links before grabbing
5614 	 * tasklist_lock and we just went through tasklist_lock to add
5615 	 * @child, it's guaranteed that either we see the set
5616 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5617 	 * @child during its iteration.
5618 	 *
5619 	 * If we won the race, @child is associated with %current's
5620 	 * css_set.  Grabbing css_set_lock guarantees both that the
5621 	 * association is stable, and, on completion of the parent's
5622 	 * migration, @child is visible in the source of migration or
5623 	 * already in the destination cgroup.  This guarantee is necessary
5624 	 * when implementing operations which need to migrate all tasks of
5625 	 * a cgroup to another.
5626 	 *
5627 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5628 	 * will remain in init_css_set.  This is safe because all tasks are
5629 	 * in the init_css_set before cg_links is enabled and there's no
5630 	 * operation which transfers all tasks out of init_css_set.
5631 	 */
5632 	if (use_task_css_set_links) {
5633 		struct css_set *cset;
5634 
5635 		spin_lock_irq(&css_set_lock);
5636 		cset = task_css_set(current);
5637 		if (list_empty(&child->cg_list)) {
5638 			get_css_set(cset);
5639 			cset->nr_tasks++;
5640 			css_set_move_task(child, NULL, cset, false);
5641 		}
5642 		spin_unlock_irq(&css_set_lock);
5643 	}
5644 
5645 	/*
5646 	 * Call ss->fork().  This must happen after @child is linked on
5647 	 * css_set; otherwise, @child might change state between ->fork()
5648 	 * and addition to css_set.
5649 	 */
5650 	do_each_subsys_mask(ss, i, have_fork_callback) {
5651 		ss->fork(child);
5652 	} while_each_subsys_mask();
5653 }
5654 
5655 /**
5656  * cgroup_exit - detach cgroup from exiting task
5657  * @tsk: pointer to task_struct of exiting process
5658  *
5659  * Description: Detach cgroup from @tsk and release it.
5660  *
5661  * Note that cgroups marked notify_on_release force every task in
5662  * them to take the global cgroup_mutex mutex when exiting.
5663  * This could impact scaling on very large systems.  Be reluctant to
5664  * use notify_on_release cgroups where very high task exit scaling
5665  * is required on large systems.
5666  *
5667  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5668  * call cgroup_exit() while the task is still competent to handle
5669  * notify_on_release(), then leave the task attached to the root cgroup in
5670  * each hierarchy for the remainder of its exit.  No need to bother with
5671  * init_css_set refcnting.  init_css_set never goes away and we can't race
5672  * with migration path - PF_EXITING is visible to migration path.
5673  */
5674 void cgroup_exit(struct task_struct *tsk)
5675 {
5676 	struct cgroup_subsys *ss;
5677 	struct css_set *cset;
5678 	int i;
5679 
5680 	/*
5681 	 * Unlink from @tsk from its css_set.  As migration path can't race
5682 	 * with us, we can check css_set and cg_list without synchronization.
5683 	 */
5684 	cset = task_css_set(tsk);
5685 
5686 	if (!list_empty(&tsk->cg_list)) {
5687 		spin_lock_irq(&css_set_lock);
5688 		css_set_move_task(tsk, cset, NULL, false);
5689 		cset->nr_tasks--;
5690 		spin_unlock_irq(&css_set_lock);
5691 	} else {
5692 		get_css_set(cset);
5693 	}
5694 
5695 	/* see cgroup_post_fork() for details */
5696 	do_each_subsys_mask(ss, i, have_exit_callback) {
5697 		ss->exit(tsk);
5698 	} while_each_subsys_mask();
5699 }
5700 
5701 void cgroup_free(struct task_struct *task)
5702 {
5703 	struct css_set *cset = task_css_set(task);
5704 	struct cgroup_subsys *ss;
5705 	int ssid;
5706 
5707 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5708 		ss->free(task);
5709 	} while_each_subsys_mask();
5710 
5711 	put_css_set(cset);
5712 }
5713 
5714 static int __init cgroup_disable(char *str)
5715 {
5716 	struct cgroup_subsys *ss;
5717 	char *token;
5718 	int i;
5719 
5720 	while ((token = strsep(&str, ",")) != NULL) {
5721 		if (!*token)
5722 			continue;
5723 
5724 		for_each_subsys(ss, i) {
5725 			if (strcmp(token, ss->name) &&
5726 			    strcmp(token, ss->legacy_name))
5727 				continue;
5728 			cgroup_disable_mask |= 1 << i;
5729 		}
5730 	}
5731 	return 1;
5732 }
5733 __setup("cgroup_disable=", cgroup_disable);
5734 
5735 /**
5736  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5737  * @dentry: directory dentry of interest
5738  * @ss: subsystem of interest
5739  *
5740  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5741  * to get the corresponding css and return it.  If such css doesn't exist
5742  * or can't be pinned, an ERR_PTR value is returned.
5743  */
5744 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5745 						       struct cgroup_subsys *ss)
5746 {
5747 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5748 	struct file_system_type *s_type = dentry->d_sb->s_type;
5749 	struct cgroup_subsys_state *css = NULL;
5750 	struct cgroup *cgrp;
5751 
5752 	/* is @dentry a cgroup dir? */
5753 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5754 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5755 		return ERR_PTR(-EBADF);
5756 
5757 	rcu_read_lock();
5758 
5759 	/*
5760 	 * This path doesn't originate from kernfs and @kn could already
5761 	 * have been or be removed at any point.  @kn->priv is RCU
5762 	 * protected for this access.  See css_release_work_fn() for details.
5763 	 */
5764 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5765 	if (cgrp)
5766 		css = cgroup_css(cgrp, ss);
5767 
5768 	if (!css || !css_tryget_online(css))
5769 		css = ERR_PTR(-ENOENT);
5770 
5771 	rcu_read_unlock();
5772 	return css;
5773 }
5774 
5775 /**
5776  * css_from_id - lookup css by id
5777  * @id: the cgroup id
5778  * @ss: cgroup subsys to be looked into
5779  *
5780  * Returns the css if there's valid one with @id, otherwise returns NULL.
5781  * Should be called under rcu_read_lock().
5782  */
5783 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5784 {
5785 	WARN_ON_ONCE(!rcu_read_lock_held());
5786 	return idr_find(&ss->css_idr, id);
5787 }
5788 
5789 /**
5790  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5791  * @path: path on the default hierarchy
5792  *
5793  * Find the cgroup at @path on the default hierarchy, increment its
5794  * reference count and return it.  Returns pointer to the found cgroup on
5795  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5796  * if @path points to a non-directory.
5797  */
5798 struct cgroup *cgroup_get_from_path(const char *path)
5799 {
5800 	struct kernfs_node *kn;
5801 	struct cgroup *cgrp;
5802 
5803 	mutex_lock(&cgroup_mutex);
5804 
5805 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5806 	if (kn) {
5807 		if (kernfs_type(kn) == KERNFS_DIR) {
5808 			cgrp = kn->priv;
5809 			cgroup_get_live(cgrp);
5810 		} else {
5811 			cgrp = ERR_PTR(-ENOTDIR);
5812 		}
5813 		kernfs_put(kn);
5814 	} else {
5815 		cgrp = ERR_PTR(-ENOENT);
5816 	}
5817 
5818 	mutex_unlock(&cgroup_mutex);
5819 	return cgrp;
5820 }
5821 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5822 
5823 /**
5824  * cgroup_get_from_fd - get a cgroup pointer from a fd
5825  * @fd: fd obtained by open(cgroup2_dir)
5826  *
5827  * Find the cgroup from a fd which should be obtained
5828  * by opening a cgroup directory.  Returns a pointer to the
5829  * cgroup on success. ERR_PTR is returned if the cgroup
5830  * cannot be found.
5831  */
5832 struct cgroup *cgroup_get_from_fd(int fd)
5833 {
5834 	struct cgroup_subsys_state *css;
5835 	struct cgroup *cgrp;
5836 	struct file *f;
5837 
5838 	f = fget_raw(fd);
5839 	if (!f)
5840 		return ERR_PTR(-EBADF);
5841 
5842 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5843 	fput(f);
5844 	if (IS_ERR(css))
5845 		return ERR_CAST(css);
5846 
5847 	cgrp = css->cgroup;
5848 	if (!cgroup_on_dfl(cgrp)) {
5849 		cgroup_put(cgrp);
5850 		return ERR_PTR(-EBADF);
5851 	}
5852 
5853 	return cgrp;
5854 }
5855 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5856 
5857 /*
5858  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5859  * definition in cgroup-defs.h.
5860  */
5861 #ifdef CONFIG_SOCK_CGROUP_DATA
5862 
5863 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5864 
5865 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5866 static bool cgroup_sk_alloc_disabled __read_mostly;
5867 
5868 void cgroup_sk_alloc_disable(void)
5869 {
5870 	if (cgroup_sk_alloc_disabled)
5871 		return;
5872 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5873 	cgroup_sk_alloc_disabled = true;
5874 }
5875 
5876 #else
5877 
5878 #define cgroup_sk_alloc_disabled	false
5879 
5880 #endif
5881 
5882 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5883 {
5884 	if (cgroup_sk_alloc_disabled)
5885 		return;
5886 
5887 	/* Socket clone path */
5888 	if (skcd->val) {
5889 		/*
5890 		 * We might be cloning a socket which is left in an empty
5891 		 * cgroup and the cgroup might have already been rmdir'd.
5892 		 * Don't use cgroup_get_live().
5893 		 */
5894 		cgroup_get(sock_cgroup_ptr(skcd));
5895 		return;
5896 	}
5897 
5898 	rcu_read_lock();
5899 
5900 	while (true) {
5901 		struct css_set *cset;
5902 
5903 		cset = task_css_set(current);
5904 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5905 			skcd->val = (unsigned long)cset->dfl_cgrp;
5906 			break;
5907 		}
5908 		cpu_relax();
5909 	}
5910 
5911 	rcu_read_unlock();
5912 }
5913 
5914 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5915 {
5916 	cgroup_put(sock_cgroup_ptr(skcd));
5917 }
5918 
5919 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5920 
5921 #ifdef CONFIG_CGROUP_BPF
5922 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5923 		      enum bpf_attach_type type, u32 flags)
5924 {
5925 	int ret;
5926 
5927 	mutex_lock(&cgroup_mutex);
5928 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5929 	mutex_unlock(&cgroup_mutex);
5930 	return ret;
5931 }
5932 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5933 		      enum bpf_attach_type type, u32 flags)
5934 {
5935 	int ret;
5936 
5937 	mutex_lock(&cgroup_mutex);
5938 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5939 	mutex_unlock(&cgroup_mutex);
5940 	return ret;
5941 }
5942 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5943 		     union bpf_attr __user *uattr)
5944 {
5945 	int ret;
5946 
5947 	mutex_lock(&cgroup_mutex);
5948 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5949 	mutex_unlock(&cgroup_mutex);
5950 	return ret;
5951 }
5952 #endif /* CONFIG_CGROUP_BPF */
5953 
5954 #ifdef CONFIG_SYSFS
5955 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5956 				      ssize_t size, const char *prefix)
5957 {
5958 	struct cftype *cft;
5959 	ssize_t ret = 0;
5960 
5961 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5962 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5963 			continue;
5964 
5965 		if (prefix)
5966 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5967 
5968 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5969 
5970 		if (unlikely(ret >= size)) {
5971 			WARN_ON(1);
5972 			break;
5973 		}
5974 	}
5975 
5976 	return ret;
5977 }
5978 
5979 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5980 			      char *buf)
5981 {
5982 	struct cgroup_subsys *ss;
5983 	int ssid;
5984 	ssize_t ret = 0;
5985 
5986 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5987 				     NULL);
5988 
5989 	for_each_subsys(ss, ssid)
5990 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5991 					      PAGE_SIZE - ret,
5992 					      cgroup_subsys_name[ssid]);
5993 
5994 	return ret;
5995 }
5996 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5997 
5998 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5999 			     char *buf)
6000 {
6001 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6002 }
6003 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6004 
6005 static struct attribute *cgroup_sysfs_attrs[] = {
6006 	&cgroup_delegate_attr.attr,
6007 	&cgroup_features_attr.attr,
6008 	NULL,
6009 };
6010 
6011 static const struct attribute_group cgroup_sysfs_attr_group = {
6012 	.attrs = cgroup_sysfs_attrs,
6013 	.name = "cgroup",
6014 };
6015 
6016 static int __init cgroup_sysfs_init(void)
6017 {
6018 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6019 }
6020 subsys_initcall(cgroup_sysfs_init);
6021 #endif /* CONFIG_SYSFS */
6022