1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ 268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ 319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ 325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ 366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ 377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ 399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ 421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ 439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ 460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ 487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ 571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ 608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ 625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 636 static struct cgroup *kn_priv(struct kernfs_node *kn) 637 { 638 struct kernfs_node *parent; 639 /* 640 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. 641 * Therefore it is always safe to dereference this pointer outside of a 642 * RCU section. 643 */ 644 parent = rcu_dereference_check(kn->__parent, 645 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); 646 return parent->priv; 647 } 648 649 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 650 { 651 struct cgroup *cgrp = kn_priv(of->kn); 652 struct cftype *cft = of_cft(of); 653 654 /* 655 * This is open and unprotected implementation of cgroup_css(). 656 * seq_css() is only called from a kernfs file operation which has 657 * an active reference on the file. Because all the subsystem 658 * files are drained before a css is disassociated with a cgroup, 659 * the matching css from the cgroup's subsys table is guaranteed to 660 * be and stay valid until the enclosing operation is complete. 661 */ 662 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 663 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 664 else 665 return &cgrp->self; 666 } 667 EXPORT_SYMBOL_GPL(of_css); 668 669 /** 670 * for_each_css - iterate all css's of a cgroup 671 * @css: the iteration cursor 672 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 673 * @cgrp: the target cgroup to iterate css's of 674 * 675 * Should be called under cgroup_mutex. 676 */ 677 #define for_each_css(css, ssid, cgrp) \ 678 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 679 if (!((css) = rcu_dereference_check( \ 680 (cgrp)->subsys[(ssid)], \ 681 lockdep_is_held(&cgroup_mutex)))) { } \ 682 else 683 684 /** 685 * do_each_subsys_mask - filter for_each_subsys with a bitmask 686 * @ss: the iteration cursor 687 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 688 * @ss_mask: the bitmask 689 * 690 * The block will only run for cases where the ssid-th bit (1 << ssid) of 691 * @ss_mask is set. 692 */ 693 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 694 unsigned long __ss_mask = (ss_mask); \ 695 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 696 (ssid) = 0; \ 697 break; \ 698 } \ 699 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 700 (ss) = cgroup_subsys[ssid]; \ 701 { 702 703 #define while_each_subsys_mask() \ 704 } \ 705 } \ 706 } while (false) 707 708 /* iterate over child cgrps, lock should be held throughout iteration */ 709 #define cgroup_for_each_live_child(child, cgrp) \ 710 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 711 if (({ lockdep_assert_held(&cgroup_mutex); \ 712 cgroup_is_dead(child); })) \ 713 ; \ 714 else 715 716 /* walk live descendants in pre order */ 717 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 718 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 719 if (({ lockdep_assert_held(&cgroup_mutex); \ 720 (dsct) = (d_css)->cgroup; \ 721 cgroup_is_dead(dsct); })) \ 722 ; \ 723 else 724 725 /* walk live descendants in postorder */ 726 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 727 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 (dsct) = (d_css)->cgroup; \ 730 cgroup_is_dead(dsct); })) \ 731 ; \ 732 else 733 734 /* 735 * The default css_set - used by init and its children prior to any 736 * hierarchies being mounted. It contains a pointer to the root state 737 * for each subsystem. Also used to anchor the list of css_sets. Not 738 * reference-counted, to improve performance when child cgroups 739 * haven't been created. 740 */ 741 struct css_set init_css_set = { 742 .refcount = REFCOUNT_INIT(1), 743 .dom_cset = &init_css_set, 744 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 745 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 746 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 747 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 748 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 749 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 750 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 751 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 752 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 753 754 /* 755 * The following field is re-initialized when this cset gets linked 756 * in cgroup_init(). However, let's initialize the field 757 * statically too so that the default cgroup can be accessed safely 758 * early during boot. 759 */ 760 .dfl_cgrp = &cgrp_dfl_root.cgrp, 761 }; 762 763 static int css_set_count = 1; /* 1 for init_css_set */ 764 765 static bool css_set_threaded(struct css_set *cset) 766 { 767 return cset->dom_cset != cset; 768 } 769 770 /** 771 * css_set_populated - does a css_set contain any tasks? 772 * @cset: target css_set 773 * 774 * css_set_populated() should be the same as !!cset->nr_tasks at steady 775 * state. However, css_set_populated() can be called while a task is being 776 * added to or removed from the linked list before the nr_tasks is 777 * properly updated. Hence, we can't just look at ->nr_tasks here. 778 */ 779 static bool css_set_populated(struct css_set *cset) 780 { 781 lockdep_assert_held(&css_set_lock); 782 783 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 784 } 785 786 /** 787 * cgroup_update_populated - update the populated count of a cgroup 788 * @cgrp: the target cgroup 789 * @populated: inc or dec populated count 790 * 791 * One of the css_sets associated with @cgrp is either getting its first 792 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 793 * count is propagated towards root so that a given cgroup's 794 * nr_populated_children is zero iff none of its descendants contain any 795 * tasks. 796 * 797 * @cgrp's interface file "cgroup.populated" is zero if both 798 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 799 * 1 otherwise. When the sum changes from or to zero, userland is notified 800 * that the content of the interface file has changed. This can be used to 801 * detect when @cgrp and its descendants become populated or empty. 802 */ 803 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 804 { 805 struct cgroup *child = NULL; 806 int adj = populated ? 1 : -1; 807 808 lockdep_assert_held(&css_set_lock); 809 810 do { 811 bool was_populated = cgroup_is_populated(cgrp); 812 813 if (!child) { 814 cgrp->nr_populated_csets += adj; 815 } else { 816 if (cgroup_is_threaded(child)) 817 cgrp->nr_populated_threaded_children += adj; 818 else 819 cgrp->nr_populated_domain_children += adj; 820 } 821 822 if (was_populated == cgroup_is_populated(cgrp)) 823 break; 824 825 cgroup1_check_for_release(cgrp); 826 TRACE_CGROUP_PATH(notify_populated, cgrp, 827 cgroup_is_populated(cgrp)); 828 cgroup_file_notify(&cgrp->events_file); 829 830 child = cgrp; 831 cgrp = cgroup_parent(cgrp); 832 } while (cgrp); 833 } 834 835 /** 836 * css_set_update_populated - update populated state of a css_set 837 * @cset: target css_set 838 * @populated: whether @cset is populated or depopulated 839 * 840 * @cset is either getting the first task or losing the last. Update the 841 * populated counters of all associated cgroups accordingly. 842 */ 843 static void css_set_update_populated(struct css_set *cset, bool populated) 844 { 845 struct cgrp_cset_link *link; 846 847 lockdep_assert_held(&css_set_lock); 848 849 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 850 cgroup_update_populated(link->cgrp, populated); 851 } 852 853 /* 854 * @task is leaving, advance task iterators which are pointing to it so 855 * that they can resume at the next position. Advancing an iterator might 856 * remove it from the list, use safe walk. See css_task_iter_skip() for 857 * details. 858 */ 859 static void css_set_skip_task_iters(struct css_set *cset, 860 struct task_struct *task) 861 { 862 struct css_task_iter *it, *pos; 863 864 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 865 css_task_iter_skip(it, task); 866 } 867 868 /** 869 * css_set_move_task - move a task from one css_set to another 870 * @task: task being moved 871 * @from_cset: css_set @task currently belongs to (may be NULL) 872 * @to_cset: new css_set @task is being moved to (may be NULL) 873 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 874 * 875 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 876 * css_set, @from_cset can be NULL. If @task is being disassociated 877 * instead of moved, @to_cset can be NULL. 878 * 879 * This function automatically handles populated counter updates and 880 * css_task_iter adjustments but the caller is responsible for managing 881 * @from_cset and @to_cset's reference counts. 882 */ 883 static void css_set_move_task(struct task_struct *task, 884 struct css_set *from_cset, struct css_set *to_cset, 885 bool use_mg_tasks) 886 { 887 lockdep_assert_held(&css_set_lock); 888 889 if (to_cset && !css_set_populated(to_cset)) 890 css_set_update_populated(to_cset, true); 891 892 if (from_cset) { 893 WARN_ON_ONCE(list_empty(&task->cg_list)); 894 895 css_set_skip_task_iters(from_cset, task); 896 list_del_init(&task->cg_list); 897 if (!css_set_populated(from_cset)) 898 css_set_update_populated(from_cset, false); 899 } else { 900 WARN_ON_ONCE(!list_empty(&task->cg_list)); 901 } 902 903 if (to_cset) { 904 /* 905 * We are synchronized through cgroup_threadgroup_rwsem 906 * against PF_EXITING setting such that we can't race 907 * against cgroup_exit()/cgroup_free() dropping the css_set. 908 */ 909 WARN_ON_ONCE(task->flags & PF_EXITING); 910 911 cgroup_move_task(task, to_cset); 912 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 913 &to_cset->tasks); 914 } 915 } 916 917 /* 918 * hash table for cgroup groups. This improves the performance to find 919 * an existing css_set. This hash doesn't (currently) take into 920 * account cgroups in empty hierarchies. 921 */ 922 #define CSS_SET_HASH_BITS 7 923 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 924 925 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 926 { 927 unsigned long key = 0UL; 928 struct cgroup_subsys *ss; 929 int i; 930 931 for_each_subsys(ss, i) 932 key += (unsigned long)css[i]; 933 key = (key >> 16) ^ key; 934 935 return key; 936 } 937 938 void put_css_set_locked(struct css_set *cset) 939 { 940 struct cgrp_cset_link *link, *tmp_link; 941 struct cgroup_subsys *ss; 942 int ssid; 943 944 lockdep_assert_held(&css_set_lock); 945 946 if (!refcount_dec_and_test(&cset->refcount)) 947 return; 948 949 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 950 951 /* This css_set is dead. Unlink it and release cgroup and css refs */ 952 for_each_subsys(ss, ssid) { 953 list_del(&cset->e_cset_node[ssid]); 954 css_put(cset->subsys[ssid]); 955 } 956 hash_del(&cset->hlist); 957 css_set_count--; 958 959 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 960 list_del(&link->cset_link); 961 list_del(&link->cgrp_link); 962 if (cgroup_parent(link->cgrp)) 963 cgroup_put(link->cgrp); 964 kfree(link); 965 } 966 967 if (css_set_threaded(cset)) { 968 list_del(&cset->threaded_csets_node); 969 put_css_set_locked(cset->dom_cset); 970 } 971 972 kfree_rcu(cset, rcu_head); 973 } 974 975 /** 976 * compare_css_sets - helper function for find_existing_css_set(). 977 * @cset: candidate css_set being tested 978 * @old_cset: existing css_set for a task 979 * @new_cgrp: cgroup that's being entered by the task 980 * @template: desired set of css pointers in css_set (pre-calculated) 981 * 982 * Returns true if "cset" matches "old_cset" except for the hierarchy 983 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 984 */ 985 static bool compare_css_sets(struct css_set *cset, 986 struct css_set *old_cset, 987 struct cgroup *new_cgrp, 988 struct cgroup_subsys_state *template[]) 989 { 990 struct cgroup *new_dfl_cgrp; 991 struct list_head *l1, *l2; 992 993 /* 994 * On the default hierarchy, there can be csets which are 995 * associated with the same set of cgroups but different csses. 996 * Let's first ensure that csses match. 997 */ 998 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 999 return false; 1000 1001 1002 /* @cset's domain should match the default cgroup's */ 1003 if (cgroup_on_dfl(new_cgrp)) 1004 new_dfl_cgrp = new_cgrp; 1005 else 1006 new_dfl_cgrp = old_cset->dfl_cgrp; 1007 1008 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1009 return false; 1010 1011 /* 1012 * Compare cgroup pointers in order to distinguish between 1013 * different cgroups in hierarchies. As different cgroups may 1014 * share the same effective css, this comparison is always 1015 * necessary. 1016 */ 1017 l1 = &cset->cgrp_links; 1018 l2 = &old_cset->cgrp_links; 1019 while (1) { 1020 struct cgrp_cset_link *link1, *link2; 1021 struct cgroup *cgrp1, *cgrp2; 1022 1023 l1 = l1->next; 1024 l2 = l2->next; 1025 /* See if we reached the end - both lists are equal length. */ 1026 if (l1 == &cset->cgrp_links) { 1027 BUG_ON(l2 != &old_cset->cgrp_links); 1028 break; 1029 } else { 1030 BUG_ON(l2 == &old_cset->cgrp_links); 1031 } 1032 /* Locate the cgroups associated with these links. */ 1033 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1034 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1035 cgrp1 = link1->cgrp; 1036 cgrp2 = link2->cgrp; 1037 /* Hierarchies should be linked in the same order. */ 1038 BUG_ON(cgrp1->root != cgrp2->root); 1039 1040 /* 1041 * If this hierarchy is the hierarchy of the cgroup 1042 * that's changing, then we need to check that this 1043 * css_set points to the new cgroup; if it's any other 1044 * hierarchy, then this css_set should point to the 1045 * same cgroup as the old css_set. 1046 */ 1047 if (cgrp1->root == new_cgrp->root) { 1048 if (cgrp1 != new_cgrp) 1049 return false; 1050 } else { 1051 if (cgrp1 != cgrp2) 1052 return false; 1053 } 1054 } 1055 return true; 1056 } 1057 1058 /** 1059 * find_existing_css_set - init css array and find the matching css_set 1060 * @old_cset: the css_set that we're using before the cgroup transition 1061 * @cgrp: the cgroup that we're moving into 1062 * @template: out param for the new set of csses, should be clear on entry 1063 */ 1064 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1065 struct cgroup *cgrp, 1066 struct cgroup_subsys_state **template) 1067 { 1068 struct cgroup_root *root = cgrp->root; 1069 struct cgroup_subsys *ss; 1070 struct css_set *cset; 1071 unsigned long key; 1072 int i; 1073 1074 /* 1075 * Build the set of subsystem state objects that we want to see in the 1076 * new css_set. While subsystems can change globally, the entries here 1077 * won't change, so no need for locking. 1078 */ 1079 for_each_subsys(ss, i) { 1080 if (root->subsys_mask & (1UL << i)) { 1081 /* 1082 * @ss is in this hierarchy, so we want the 1083 * effective css from @cgrp. 1084 */ 1085 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1086 } else { 1087 /* 1088 * @ss is not in this hierarchy, so we don't want 1089 * to change the css. 1090 */ 1091 template[i] = old_cset->subsys[i]; 1092 } 1093 } 1094 1095 key = css_set_hash(template); 1096 hash_for_each_possible(css_set_table, cset, hlist, key) { 1097 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1098 continue; 1099 1100 /* This css_set matches what we need */ 1101 return cset; 1102 } 1103 1104 /* No existing cgroup group matched */ 1105 return NULL; 1106 } 1107 1108 static void free_cgrp_cset_links(struct list_head *links_to_free) 1109 { 1110 struct cgrp_cset_link *link, *tmp_link; 1111 1112 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1113 list_del(&link->cset_link); 1114 kfree(link); 1115 } 1116 } 1117 1118 /** 1119 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1120 * @count: the number of links to allocate 1121 * @tmp_links: list_head the allocated links are put on 1122 * 1123 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1124 * through ->cset_link. Returns 0 on success or -errno. 1125 */ 1126 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1127 { 1128 struct cgrp_cset_link *link; 1129 int i; 1130 1131 INIT_LIST_HEAD(tmp_links); 1132 1133 for (i = 0; i < count; i++) { 1134 link = kzalloc(sizeof(*link), GFP_KERNEL); 1135 if (!link) { 1136 free_cgrp_cset_links(tmp_links); 1137 return -ENOMEM; 1138 } 1139 list_add(&link->cset_link, tmp_links); 1140 } 1141 return 0; 1142 } 1143 1144 /** 1145 * link_css_set - a helper function to link a css_set to a cgroup 1146 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1147 * @cset: the css_set to be linked 1148 * @cgrp: the destination cgroup 1149 */ 1150 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1151 struct cgroup *cgrp) 1152 { 1153 struct cgrp_cset_link *link; 1154 1155 BUG_ON(list_empty(tmp_links)); 1156 1157 if (cgroup_on_dfl(cgrp)) 1158 cset->dfl_cgrp = cgrp; 1159 1160 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1161 link->cset = cset; 1162 link->cgrp = cgrp; 1163 1164 /* 1165 * Always add links to the tail of the lists so that the lists are 1166 * in chronological order. 1167 */ 1168 list_move_tail(&link->cset_link, &cgrp->cset_links); 1169 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1170 1171 if (cgroup_parent(cgrp)) 1172 cgroup_get_live(cgrp); 1173 } 1174 1175 /** 1176 * find_css_set - return a new css_set with one cgroup updated 1177 * @old_cset: the baseline css_set 1178 * @cgrp: the cgroup to be updated 1179 * 1180 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1181 * substituted into the appropriate hierarchy. 1182 */ 1183 static struct css_set *find_css_set(struct css_set *old_cset, 1184 struct cgroup *cgrp) 1185 { 1186 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1187 struct css_set *cset; 1188 struct list_head tmp_links; 1189 struct cgrp_cset_link *link; 1190 struct cgroup_subsys *ss; 1191 unsigned long key; 1192 int ssid; 1193 1194 lockdep_assert_held(&cgroup_mutex); 1195 1196 /* First see if we already have a cgroup group that matches 1197 * the desired set */ 1198 spin_lock_irq(&css_set_lock); 1199 cset = find_existing_css_set(old_cset, cgrp, template); 1200 if (cset) 1201 get_css_set(cset); 1202 spin_unlock_irq(&css_set_lock); 1203 1204 if (cset) 1205 return cset; 1206 1207 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1208 if (!cset) 1209 return NULL; 1210 1211 /* Allocate all the cgrp_cset_link objects that we'll need */ 1212 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1213 kfree(cset); 1214 return NULL; 1215 } 1216 1217 refcount_set(&cset->refcount, 1); 1218 cset->dom_cset = cset; 1219 INIT_LIST_HEAD(&cset->tasks); 1220 INIT_LIST_HEAD(&cset->mg_tasks); 1221 INIT_LIST_HEAD(&cset->dying_tasks); 1222 INIT_LIST_HEAD(&cset->task_iters); 1223 INIT_LIST_HEAD(&cset->threaded_csets); 1224 INIT_HLIST_NODE(&cset->hlist); 1225 INIT_LIST_HEAD(&cset->cgrp_links); 1226 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1227 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1228 INIT_LIST_HEAD(&cset->mg_node); 1229 1230 /* Copy the set of subsystem state objects generated in 1231 * find_existing_css_set() */ 1232 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1233 1234 spin_lock_irq(&css_set_lock); 1235 /* Add reference counts and links from the new css_set. */ 1236 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1237 struct cgroup *c = link->cgrp; 1238 1239 if (c->root == cgrp->root) 1240 c = cgrp; 1241 link_css_set(&tmp_links, cset, c); 1242 } 1243 1244 BUG_ON(!list_empty(&tmp_links)); 1245 1246 css_set_count++; 1247 1248 /* Add @cset to the hash table */ 1249 key = css_set_hash(cset->subsys); 1250 hash_add(css_set_table, &cset->hlist, key); 1251 1252 for_each_subsys(ss, ssid) { 1253 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1254 1255 list_add_tail(&cset->e_cset_node[ssid], 1256 &css->cgroup->e_csets[ssid]); 1257 css_get(css); 1258 } 1259 1260 spin_unlock_irq(&css_set_lock); 1261 1262 /* 1263 * If @cset should be threaded, look up the matching dom_cset and 1264 * link them up. We first fully initialize @cset then look for the 1265 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1266 * to stay empty until we return. 1267 */ 1268 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1269 struct css_set *dcset; 1270 1271 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1272 if (!dcset) { 1273 put_css_set(cset); 1274 return NULL; 1275 } 1276 1277 spin_lock_irq(&css_set_lock); 1278 cset->dom_cset = dcset; 1279 list_add_tail(&cset->threaded_csets_node, 1280 &dcset->threaded_csets); 1281 spin_unlock_irq(&css_set_lock); 1282 } 1283 1284 return cset; 1285 } 1286 1287 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1288 { 1289 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1290 1291 return root_cgrp->root; 1292 } 1293 1294 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1295 { 1296 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1297 1298 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1299 if (favor && !favoring) { 1300 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1301 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1302 } else if (!favor && favoring) { 1303 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1304 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1305 } 1306 } 1307 1308 static int cgroup_init_root_id(struct cgroup_root *root) 1309 { 1310 int id; 1311 1312 lockdep_assert_held(&cgroup_mutex); 1313 1314 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1315 if (id < 0) 1316 return id; 1317 1318 root->hierarchy_id = id; 1319 return 0; 1320 } 1321 1322 static void cgroup_exit_root_id(struct cgroup_root *root) 1323 { 1324 lockdep_assert_held(&cgroup_mutex); 1325 1326 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1327 } 1328 1329 void cgroup_free_root(struct cgroup_root *root) 1330 { 1331 kfree_rcu(root, rcu); 1332 } 1333 1334 static void cgroup_destroy_root(struct cgroup_root *root) 1335 { 1336 struct cgroup *cgrp = &root->cgrp; 1337 struct cgrp_cset_link *link, *tmp_link; 1338 1339 trace_cgroup_destroy_root(root); 1340 1341 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1342 1343 BUG_ON(atomic_read(&root->nr_cgrps)); 1344 BUG_ON(!list_empty(&cgrp->self.children)); 1345 1346 /* Rebind all subsystems back to the default hierarchy */ 1347 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1348 1349 /* 1350 * Release all the links from cset_links to this hierarchy's 1351 * root cgroup 1352 */ 1353 spin_lock_irq(&css_set_lock); 1354 1355 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1356 list_del(&link->cset_link); 1357 list_del(&link->cgrp_link); 1358 kfree(link); 1359 } 1360 1361 spin_unlock_irq(&css_set_lock); 1362 1363 WARN_ON_ONCE(list_empty(&root->root_list)); 1364 list_del_rcu(&root->root_list); 1365 cgroup_root_count--; 1366 1367 if (!have_favordynmods) 1368 cgroup_favor_dynmods(root, false); 1369 1370 cgroup_exit_root_id(root); 1371 1372 cgroup_unlock(); 1373 1374 cgroup_rstat_exit(cgrp); 1375 kernfs_destroy_root(root->kf_root); 1376 cgroup_free_root(root); 1377 } 1378 1379 /* 1380 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1381 */ 1382 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1383 struct cgroup_root *root) 1384 { 1385 struct cgroup *res_cgroup = NULL; 1386 1387 if (cset == &init_css_set) { 1388 res_cgroup = &root->cgrp; 1389 } else if (root == &cgrp_dfl_root) { 1390 res_cgroup = cset->dfl_cgrp; 1391 } else { 1392 struct cgrp_cset_link *link; 1393 lockdep_assert_held(&css_set_lock); 1394 1395 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1396 struct cgroup *c = link->cgrp; 1397 1398 if (c->root == root) { 1399 res_cgroup = c; 1400 break; 1401 } 1402 } 1403 } 1404 1405 /* 1406 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1407 * before we remove the cgroup root from the root_list. Consequently, 1408 * when accessing a cgroup root, the cset_link may have already been 1409 * freed, resulting in a NULL res_cgroup. However, by holding the 1410 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1411 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1412 * check. 1413 */ 1414 return res_cgroup; 1415 } 1416 1417 /* 1418 * look up cgroup associated with current task's cgroup namespace on the 1419 * specified hierarchy 1420 */ 1421 static struct cgroup * 1422 current_cgns_cgroup_from_root(struct cgroup_root *root) 1423 { 1424 struct cgroup *res = NULL; 1425 struct css_set *cset; 1426 1427 lockdep_assert_held(&css_set_lock); 1428 1429 rcu_read_lock(); 1430 1431 cset = current->nsproxy->cgroup_ns->root_cset; 1432 res = __cset_cgroup_from_root(cset, root); 1433 1434 rcu_read_unlock(); 1435 1436 /* 1437 * The namespace_sem is held by current, so the root cgroup can't 1438 * be umounted. Therefore, we can ensure that the res is non-NULL. 1439 */ 1440 WARN_ON_ONCE(!res); 1441 return res; 1442 } 1443 1444 /* 1445 * Look up cgroup associated with current task's cgroup namespace on the default 1446 * hierarchy. 1447 * 1448 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1449 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1450 * pointers. 1451 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1452 * - As a bonus returned cgrp is pinned with the current because it cannot 1453 * switch cgroup_ns asynchronously. 1454 */ 1455 static struct cgroup *current_cgns_cgroup_dfl(void) 1456 { 1457 struct css_set *cset; 1458 1459 if (current->nsproxy) { 1460 cset = current->nsproxy->cgroup_ns->root_cset; 1461 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1462 } else { 1463 /* 1464 * NOTE: This function may be called from bpf_cgroup_from_id() 1465 * on a task which has already passed exit_task_namespaces() and 1466 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1467 * cgroups visible for lookups. 1468 */ 1469 return &cgrp_dfl_root.cgrp; 1470 } 1471 } 1472 1473 /* look up cgroup associated with given css_set on the specified hierarchy */ 1474 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1475 struct cgroup_root *root) 1476 { 1477 lockdep_assert_held(&css_set_lock); 1478 1479 return __cset_cgroup_from_root(cset, root); 1480 } 1481 1482 /* 1483 * Return the cgroup for "task" from the given hierarchy. Must be 1484 * called with css_set_lock held to prevent task's groups from being modified. 1485 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1486 * cgroup root from being destroyed. 1487 */ 1488 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1489 struct cgroup_root *root) 1490 { 1491 /* 1492 * No need to lock the task - since we hold css_set_lock the 1493 * task can't change groups. 1494 */ 1495 return cset_cgroup_from_root(task_css_set(task), root); 1496 } 1497 1498 /* 1499 * A task must hold cgroup_mutex to modify cgroups. 1500 * 1501 * Any task can increment and decrement the count field without lock. 1502 * So in general, code holding cgroup_mutex can't rely on the count 1503 * field not changing. However, if the count goes to zero, then only 1504 * cgroup_attach_task() can increment it again. Because a count of zero 1505 * means that no tasks are currently attached, therefore there is no 1506 * way a task attached to that cgroup can fork (the other way to 1507 * increment the count). So code holding cgroup_mutex can safely 1508 * assume that if the count is zero, it will stay zero. Similarly, if 1509 * a task holds cgroup_mutex on a cgroup with zero count, it 1510 * knows that the cgroup won't be removed, as cgroup_rmdir() 1511 * needs that mutex. 1512 * 1513 * A cgroup can only be deleted if both its 'count' of using tasks 1514 * is zero, and its list of 'children' cgroups is empty. Since all 1515 * tasks in the system use _some_ cgroup, and since there is always at 1516 * least one task in the system (init, pid == 1), therefore, root cgroup 1517 * always has either children cgroups and/or using tasks. So we don't 1518 * need a special hack to ensure that root cgroup cannot be deleted. 1519 * 1520 * P.S. One more locking exception. RCU is used to guard the 1521 * update of a tasks cgroup pointer by cgroup_attach_task() 1522 */ 1523 1524 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1525 1526 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1527 char *buf) 1528 { 1529 struct cgroup_subsys *ss = cft->ss; 1530 1531 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1532 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1533 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1534 1535 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1536 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1537 cft->name); 1538 } else { 1539 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1540 } 1541 return buf; 1542 } 1543 1544 /** 1545 * cgroup_file_mode - deduce file mode of a control file 1546 * @cft: the control file in question 1547 * 1548 * S_IRUGO for read, S_IWUSR for write. 1549 */ 1550 static umode_t cgroup_file_mode(const struct cftype *cft) 1551 { 1552 umode_t mode = 0; 1553 1554 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1555 mode |= S_IRUGO; 1556 1557 if (cft->write_u64 || cft->write_s64 || cft->write) { 1558 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1559 mode |= S_IWUGO; 1560 else 1561 mode |= S_IWUSR; 1562 } 1563 1564 return mode; 1565 } 1566 1567 /** 1568 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1569 * @subtree_control: the new subtree_control mask to consider 1570 * @this_ss_mask: available subsystems 1571 * 1572 * On the default hierarchy, a subsystem may request other subsystems to be 1573 * enabled together through its ->depends_on mask. In such cases, more 1574 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1575 * 1576 * This function calculates which subsystems need to be enabled if 1577 * @subtree_control is to be applied while restricted to @this_ss_mask. 1578 */ 1579 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1580 { 1581 u16 cur_ss_mask = subtree_control; 1582 struct cgroup_subsys *ss; 1583 int ssid; 1584 1585 lockdep_assert_held(&cgroup_mutex); 1586 1587 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1588 1589 while (true) { 1590 u16 new_ss_mask = cur_ss_mask; 1591 1592 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1593 new_ss_mask |= ss->depends_on; 1594 } while_each_subsys_mask(); 1595 1596 /* 1597 * Mask out subsystems which aren't available. This can 1598 * happen only if some depended-upon subsystems were bound 1599 * to non-default hierarchies. 1600 */ 1601 new_ss_mask &= this_ss_mask; 1602 1603 if (new_ss_mask == cur_ss_mask) 1604 break; 1605 cur_ss_mask = new_ss_mask; 1606 } 1607 1608 return cur_ss_mask; 1609 } 1610 1611 /** 1612 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1613 * @kn: the kernfs_node being serviced 1614 * 1615 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1616 * the method finishes if locking succeeded. Note that once this function 1617 * returns the cgroup returned by cgroup_kn_lock_live() may become 1618 * inaccessible any time. If the caller intends to continue to access the 1619 * cgroup, it should pin it before invoking this function. 1620 */ 1621 void cgroup_kn_unlock(struct kernfs_node *kn) 1622 { 1623 struct cgroup *cgrp; 1624 1625 if (kernfs_type(kn) == KERNFS_DIR) 1626 cgrp = kn->priv; 1627 else 1628 cgrp = kn_priv(kn); 1629 1630 cgroup_unlock(); 1631 1632 kernfs_unbreak_active_protection(kn); 1633 cgroup_put(cgrp); 1634 } 1635 1636 /** 1637 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1638 * @kn: the kernfs_node being serviced 1639 * @drain_offline: perform offline draining on the cgroup 1640 * 1641 * This helper is to be used by a cgroup kernfs method currently servicing 1642 * @kn. It breaks the active protection, performs cgroup locking and 1643 * verifies that the associated cgroup is alive. Returns the cgroup if 1644 * alive; otherwise, %NULL. A successful return should be undone by a 1645 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1646 * cgroup is drained of offlining csses before return. 1647 * 1648 * Any cgroup kernfs method implementation which requires locking the 1649 * associated cgroup should use this helper. It avoids nesting cgroup 1650 * locking under kernfs active protection and allows all kernfs operations 1651 * including self-removal. 1652 */ 1653 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1654 { 1655 struct cgroup *cgrp; 1656 1657 if (kernfs_type(kn) == KERNFS_DIR) 1658 cgrp = kn->priv; 1659 else 1660 cgrp = kn_priv(kn); 1661 1662 /* 1663 * We're gonna grab cgroup_mutex which nests outside kernfs 1664 * active_ref. cgroup liveliness check alone provides enough 1665 * protection against removal. Ensure @cgrp stays accessible and 1666 * break the active_ref protection. 1667 */ 1668 if (!cgroup_tryget(cgrp)) 1669 return NULL; 1670 kernfs_break_active_protection(kn); 1671 1672 if (drain_offline) 1673 cgroup_lock_and_drain_offline(cgrp); 1674 else 1675 cgroup_lock(); 1676 1677 if (!cgroup_is_dead(cgrp)) 1678 return cgrp; 1679 1680 cgroup_kn_unlock(kn); 1681 return NULL; 1682 } 1683 1684 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1685 { 1686 char name[CGROUP_FILE_NAME_MAX]; 1687 1688 lockdep_assert_held(&cgroup_mutex); 1689 1690 if (cft->file_offset) { 1691 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1692 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1693 1694 spin_lock_irq(&cgroup_file_kn_lock); 1695 cfile->kn = NULL; 1696 spin_unlock_irq(&cgroup_file_kn_lock); 1697 1698 timer_delete_sync(&cfile->notify_timer); 1699 } 1700 1701 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1702 } 1703 1704 /** 1705 * css_clear_dir - remove subsys files in a cgroup directory 1706 * @css: target css 1707 */ 1708 static void css_clear_dir(struct cgroup_subsys_state *css) 1709 { 1710 struct cgroup *cgrp = css->cgroup; 1711 struct cftype *cfts; 1712 1713 if (!(css->flags & CSS_VISIBLE)) 1714 return; 1715 1716 css->flags &= ~CSS_VISIBLE; 1717 1718 if (!css->ss) { 1719 if (cgroup_on_dfl(cgrp)) { 1720 cgroup_addrm_files(css, cgrp, 1721 cgroup_base_files, false); 1722 if (cgroup_psi_enabled()) 1723 cgroup_addrm_files(css, cgrp, 1724 cgroup_psi_files, false); 1725 } else { 1726 cgroup_addrm_files(css, cgrp, 1727 cgroup1_base_files, false); 1728 } 1729 } else { 1730 list_for_each_entry(cfts, &css->ss->cfts, node) 1731 cgroup_addrm_files(css, cgrp, cfts, false); 1732 } 1733 } 1734 1735 /** 1736 * css_populate_dir - create subsys files in a cgroup directory 1737 * @css: target css 1738 * 1739 * On failure, no file is added. 1740 */ 1741 static int css_populate_dir(struct cgroup_subsys_state *css) 1742 { 1743 struct cgroup *cgrp = css->cgroup; 1744 struct cftype *cfts, *failed_cfts; 1745 int ret; 1746 1747 if (css->flags & CSS_VISIBLE) 1748 return 0; 1749 1750 if (!css->ss) { 1751 if (cgroup_on_dfl(cgrp)) { 1752 ret = cgroup_addrm_files(css, cgrp, 1753 cgroup_base_files, true); 1754 if (ret < 0) 1755 return ret; 1756 1757 if (cgroup_psi_enabled()) { 1758 ret = cgroup_addrm_files(css, cgrp, 1759 cgroup_psi_files, true); 1760 if (ret < 0) { 1761 cgroup_addrm_files(css, cgrp, 1762 cgroup_base_files, false); 1763 return ret; 1764 } 1765 } 1766 } else { 1767 ret = cgroup_addrm_files(css, cgrp, 1768 cgroup1_base_files, true); 1769 if (ret < 0) 1770 return ret; 1771 } 1772 } else { 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1775 if (ret < 0) { 1776 failed_cfts = cfts; 1777 goto err; 1778 } 1779 } 1780 } 1781 1782 css->flags |= CSS_VISIBLE; 1783 1784 return 0; 1785 err: 1786 list_for_each_entry(cfts, &css->ss->cfts, node) { 1787 if (cfts == failed_cfts) 1788 break; 1789 cgroup_addrm_files(css, cgrp, cfts, false); 1790 } 1791 return ret; 1792 } 1793 1794 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1795 { 1796 struct cgroup *dcgrp = &dst_root->cgrp; 1797 struct cgroup_subsys *ss; 1798 int ssid, ret; 1799 u16 dfl_disable_ss_mask = 0; 1800 1801 lockdep_assert_held(&cgroup_mutex); 1802 1803 do_each_subsys_mask(ss, ssid, ss_mask) { 1804 /* 1805 * If @ss has non-root csses attached to it, can't move. 1806 * If @ss is an implicit controller, it is exempt from this 1807 * rule and can be stolen. 1808 */ 1809 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1810 !ss->implicit_on_dfl) 1811 return -EBUSY; 1812 1813 /* can't move between two non-dummy roots either */ 1814 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1815 return -EBUSY; 1816 1817 /* 1818 * Collect ssid's that need to be disabled from default 1819 * hierarchy. 1820 */ 1821 if (ss->root == &cgrp_dfl_root) 1822 dfl_disable_ss_mask |= 1 << ssid; 1823 1824 } while_each_subsys_mask(); 1825 1826 if (dfl_disable_ss_mask) { 1827 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1828 1829 /* 1830 * Controllers from default hierarchy that need to be rebound 1831 * are all disabled together in one go. 1832 */ 1833 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1834 WARN_ON(cgroup_apply_control(scgrp)); 1835 cgroup_finalize_control(scgrp, 0); 1836 } 1837 1838 do_each_subsys_mask(ss, ssid, ss_mask) { 1839 struct cgroup_root *src_root = ss->root; 1840 struct cgroup *scgrp = &src_root->cgrp; 1841 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1842 struct css_set *cset, *cset_pos; 1843 struct css_task_iter *it; 1844 1845 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1846 1847 if (src_root != &cgrp_dfl_root) { 1848 /* disable from the source */ 1849 src_root->subsys_mask &= ~(1 << ssid); 1850 WARN_ON(cgroup_apply_control(scgrp)); 1851 cgroup_finalize_control(scgrp, 0); 1852 } 1853 1854 /* rebind */ 1855 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1856 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1857 ss->root = dst_root; 1858 1859 spin_lock_irq(&css_set_lock); 1860 css->cgroup = dcgrp; 1861 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1862 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1863 e_cset_node[ss->id]) { 1864 list_move_tail(&cset->e_cset_node[ss->id], 1865 &dcgrp->e_csets[ss->id]); 1866 /* 1867 * all css_sets of scgrp together in same order to dcgrp, 1868 * patch in-flight iterators to preserve correct iteration. 1869 * since the iterator is always advanced right away and 1870 * finished when it->cset_pos meets it->cset_head, so only 1871 * update it->cset_head is enough here. 1872 */ 1873 list_for_each_entry(it, &cset->task_iters, iters_node) 1874 if (it->cset_head == &scgrp->e_csets[ss->id]) 1875 it->cset_head = &dcgrp->e_csets[ss->id]; 1876 } 1877 spin_unlock_irq(&css_set_lock); 1878 1879 if (ss->css_rstat_flush) { 1880 list_del_rcu(&css->rstat_css_node); 1881 synchronize_rcu(); 1882 list_add_rcu(&css->rstat_css_node, 1883 &dcgrp->rstat_css_list); 1884 } 1885 1886 /* default hierarchy doesn't enable controllers by default */ 1887 dst_root->subsys_mask |= 1 << ssid; 1888 if (dst_root == &cgrp_dfl_root) { 1889 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1890 } else { 1891 dcgrp->subtree_control |= 1 << ssid; 1892 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1893 } 1894 1895 ret = cgroup_apply_control(dcgrp); 1896 if (ret) 1897 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1898 ss->name, ret); 1899 1900 if (ss->bind) 1901 ss->bind(css); 1902 } while_each_subsys_mask(); 1903 1904 kernfs_activate(dcgrp->kn); 1905 return 0; 1906 } 1907 1908 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1909 struct kernfs_root *kf_root) 1910 { 1911 int len = 0; 1912 char *buf = NULL; 1913 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1914 struct cgroup *ns_cgroup; 1915 1916 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1917 if (!buf) 1918 return -ENOMEM; 1919 1920 spin_lock_irq(&css_set_lock); 1921 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1922 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1923 spin_unlock_irq(&css_set_lock); 1924 1925 if (len == -E2BIG) 1926 len = -ERANGE; 1927 else if (len > 0) { 1928 seq_escape(sf, buf, " \t\n\\"); 1929 len = 0; 1930 } 1931 kfree(buf); 1932 return len; 1933 } 1934 1935 enum cgroup2_param { 1936 Opt_nsdelegate, 1937 Opt_favordynmods, 1938 Opt_memory_localevents, 1939 Opt_memory_recursiveprot, 1940 Opt_memory_hugetlb_accounting, 1941 Opt_pids_localevents, 1942 nr__cgroup2_params 1943 }; 1944 1945 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1946 fsparam_flag("nsdelegate", Opt_nsdelegate), 1947 fsparam_flag("favordynmods", Opt_favordynmods), 1948 fsparam_flag("memory_localevents", Opt_memory_localevents), 1949 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1950 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1951 fsparam_flag("pids_localevents", Opt_pids_localevents), 1952 {} 1953 }; 1954 1955 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1956 { 1957 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1958 struct fs_parse_result result; 1959 int opt; 1960 1961 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1962 if (opt < 0) 1963 return opt; 1964 1965 switch (opt) { 1966 case Opt_nsdelegate: 1967 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1968 return 0; 1969 case Opt_favordynmods: 1970 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1971 return 0; 1972 case Opt_memory_localevents: 1973 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1974 return 0; 1975 case Opt_memory_recursiveprot: 1976 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1977 return 0; 1978 case Opt_memory_hugetlb_accounting: 1979 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1980 return 0; 1981 case Opt_pids_localevents: 1982 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 1983 return 0; 1984 } 1985 return -EINVAL; 1986 } 1987 1988 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 1989 { 1990 struct cgroup_file_ctx *ctx = of->priv; 1991 1992 return &ctx->peak; 1993 } 1994 1995 static void apply_cgroup_root_flags(unsigned int root_flags) 1996 { 1997 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1998 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1999 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 2000 else 2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 2002 2003 cgroup_favor_dynmods(&cgrp_dfl_root, 2004 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 2005 2006 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2007 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2008 else 2009 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2010 2011 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2012 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2013 else 2014 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2015 2016 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2017 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2018 else 2019 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2020 2021 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2022 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2023 else 2024 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2025 } 2026 } 2027 2028 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2029 { 2030 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2031 seq_puts(seq, ",nsdelegate"); 2032 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2033 seq_puts(seq, ",favordynmods"); 2034 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2035 seq_puts(seq, ",memory_localevents"); 2036 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2037 seq_puts(seq, ",memory_recursiveprot"); 2038 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2039 seq_puts(seq, ",memory_hugetlb_accounting"); 2040 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2041 seq_puts(seq, ",pids_localevents"); 2042 return 0; 2043 } 2044 2045 static int cgroup_reconfigure(struct fs_context *fc) 2046 { 2047 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2048 2049 apply_cgroup_root_flags(ctx->flags); 2050 return 0; 2051 } 2052 2053 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2054 { 2055 struct cgroup_subsys *ss; 2056 int ssid; 2057 2058 INIT_LIST_HEAD(&cgrp->self.sibling); 2059 INIT_LIST_HEAD(&cgrp->self.children); 2060 INIT_LIST_HEAD(&cgrp->cset_links); 2061 INIT_LIST_HEAD(&cgrp->pidlists); 2062 mutex_init(&cgrp->pidlist_mutex); 2063 cgrp->self.cgroup = cgrp; 2064 cgrp->self.flags |= CSS_ONLINE; 2065 cgrp->dom_cgrp = cgrp; 2066 cgrp->max_descendants = INT_MAX; 2067 cgrp->max_depth = INT_MAX; 2068 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2069 prev_cputime_init(&cgrp->prev_cputime); 2070 2071 for_each_subsys(ss, ssid) 2072 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2073 2074 init_waitqueue_head(&cgrp->offline_waitq); 2075 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2076 } 2077 2078 void init_cgroup_root(struct cgroup_fs_context *ctx) 2079 { 2080 struct cgroup_root *root = ctx->root; 2081 struct cgroup *cgrp = &root->cgrp; 2082 2083 INIT_LIST_HEAD_RCU(&root->root_list); 2084 atomic_set(&root->nr_cgrps, 1); 2085 cgrp->root = root; 2086 init_cgroup_housekeeping(cgrp); 2087 2088 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2089 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2090 if (ctx->release_agent) 2091 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2092 if (ctx->name) 2093 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2094 if (ctx->cpuset_clone_children) 2095 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2096 } 2097 2098 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2099 { 2100 LIST_HEAD(tmp_links); 2101 struct cgroup *root_cgrp = &root->cgrp; 2102 struct kernfs_syscall_ops *kf_sops; 2103 struct css_set *cset; 2104 int i, ret; 2105 2106 lockdep_assert_held(&cgroup_mutex); 2107 2108 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2109 0, GFP_KERNEL); 2110 if (ret) 2111 goto out; 2112 2113 /* 2114 * We're accessing css_set_count without locking css_set_lock here, 2115 * but that's OK - it can only be increased by someone holding 2116 * cgroup_lock, and that's us. Later rebinding may disable 2117 * controllers on the default hierarchy and thus create new csets, 2118 * which can't be more than the existing ones. Allocate 2x. 2119 */ 2120 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2121 if (ret) 2122 goto cancel_ref; 2123 2124 ret = cgroup_init_root_id(root); 2125 if (ret) 2126 goto cancel_ref; 2127 2128 kf_sops = root == &cgrp_dfl_root ? 2129 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2130 2131 root->kf_root = kernfs_create_root(kf_sops, 2132 KERNFS_ROOT_CREATE_DEACTIVATED | 2133 KERNFS_ROOT_SUPPORT_EXPORTOP | 2134 KERNFS_ROOT_SUPPORT_USER_XATTR | 2135 KERNFS_ROOT_INVARIANT_PARENT, 2136 root_cgrp); 2137 if (IS_ERR(root->kf_root)) { 2138 ret = PTR_ERR(root->kf_root); 2139 goto exit_root_id; 2140 } 2141 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2142 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2143 root_cgrp->ancestors[0] = root_cgrp; 2144 2145 ret = css_populate_dir(&root_cgrp->self); 2146 if (ret) 2147 goto destroy_root; 2148 2149 ret = cgroup_rstat_init(root_cgrp); 2150 if (ret) 2151 goto destroy_root; 2152 2153 ret = rebind_subsystems(root, ss_mask); 2154 if (ret) 2155 goto exit_stats; 2156 2157 if (root == &cgrp_dfl_root) { 2158 ret = cgroup_bpf_inherit(root_cgrp); 2159 WARN_ON_ONCE(ret); 2160 } 2161 2162 trace_cgroup_setup_root(root); 2163 2164 /* 2165 * There must be no failure case after here, since rebinding takes 2166 * care of subsystems' refcounts, which are explicitly dropped in 2167 * the failure exit path. 2168 */ 2169 list_add_rcu(&root->root_list, &cgroup_roots); 2170 cgroup_root_count++; 2171 2172 /* 2173 * Link the root cgroup in this hierarchy into all the css_set 2174 * objects. 2175 */ 2176 spin_lock_irq(&css_set_lock); 2177 hash_for_each(css_set_table, i, cset, hlist) { 2178 link_css_set(&tmp_links, cset, root_cgrp); 2179 if (css_set_populated(cset)) 2180 cgroup_update_populated(root_cgrp, true); 2181 } 2182 spin_unlock_irq(&css_set_lock); 2183 2184 BUG_ON(!list_empty(&root_cgrp->self.children)); 2185 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2186 2187 ret = 0; 2188 goto out; 2189 2190 exit_stats: 2191 cgroup_rstat_exit(root_cgrp); 2192 destroy_root: 2193 kernfs_destroy_root(root->kf_root); 2194 root->kf_root = NULL; 2195 exit_root_id: 2196 cgroup_exit_root_id(root); 2197 cancel_ref: 2198 percpu_ref_exit(&root_cgrp->self.refcnt); 2199 out: 2200 free_cgrp_cset_links(&tmp_links); 2201 return ret; 2202 } 2203 2204 int cgroup_do_get_tree(struct fs_context *fc) 2205 { 2206 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2207 int ret; 2208 2209 ctx->kfc.root = ctx->root->kf_root; 2210 if (fc->fs_type == &cgroup2_fs_type) 2211 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2212 else 2213 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2214 ret = kernfs_get_tree(fc); 2215 2216 /* 2217 * In non-init cgroup namespace, instead of root cgroup's dentry, 2218 * we return the dentry corresponding to the cgroupns->root_cgrp. 2219 */ 2220 if (!ret && ctx->ns != &init_cgroup_ns) { 2221 struct dentry *nsdentry; 2222 struct super_block *sb = fc->root->d_sb; 2223 struct cgroup *cgrp; 2224 2225 cgroup_lock(); 2226 spin_lock_irq(&css_set_lock); 2227 2228 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2229 2230 spin_unlock_irq(&css_set_lock); 2231 cgroup_unlock(); 2232 2233 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2234 dput(fc->root); 2235 if (IS_ERR(nsdentry)) { 2236 deactivate_locked_super(sb); 2237 ret = PTR_ERR(nsdentry); 2238 nsdentry = NULL; 2239 } 2240 fc->root = nsdentry; 2241 } 2242 2243 if (!ctx->kfc.new_sb_created) 2244 cgroup_put(&ctx->root->cgrp); 2245 2246 return ret; 2247 } 2248 2249 /* 2250 * Destroy a cgroup filesystem context. 2251 */ 2252 static void cgroup_fs_context_free(struct fs_context *fc) 2253 { 2254 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2255 2256 kfree(ctx->name); 2257 kfree(ctx->release_agent); 2258 put_cgroup_ns(ctx->ns); 2259 kernfs_free_fs_context(fc); 2260 kfree(ctx); 2261 } 2262 2263 static int cgroup_get_tree(struct fs_context *fc) 2264 { 2265 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2266 int ret; 2267 2268 WRITE_ONCE(cgrp_dfl_visible, true); 2269 cgroup_get_live(&cgrp_dfl_root.cgrp); 2270 ctx->root = &cgrp_dfl_root; 2271 2272 ret = cgroup_do_get_tree(fc); 2273 if (!ret) 2274 apply_cgroup_root_flags(ctx->flags); 2275 return ret; 2276 } 2277 2278 static const struct fs_context_operations cgroup_fs_context_ops = { 2279 .free = cgroup_fs_context_free, 2280 .parse_param = cgroup2_parse_param, 2281 .get_tree = cgroup_get_tree, 2282 .reconfigure = cgroup_reconfigure, 2283 }; 2284 2285 static const struct fs_context_operations cgroup1_fs_context_ops = { 2286 .free = cgroup_fs_context_free, 2287 .parse_param = cgroup1_parse_param, 2288 .get_tree = cgroup1_get_tree, 2289 .reconfigure = cgroup1_reconfigure, 2290 }; 2291 2292 /* 2293 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2294 * we select the namespace we're going to use. 2295 */ 2296 static int cgroup_init_fs_context(struct fs_context *fc) 2297 { 2298 struct cgroup_fs_context *ctx; 2299 2300 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2301 if (!ctx) 2302 return -ENOMEM; 2303 2304 ctx->ns = current->nsproxy->cgroup_ns; 2305 get_cgroup_ns(ctx->ns); 2306 fc->fs_private = &ctx->kfc; 2307 if (fc->fs_type == &cgroup2_fs_type) 2308 fc->ops = &cgroup_fs_context_ops; 2309 else 2310 fc->ops = &cgroup1_fs_context_ops; 2311 put_user_ns(fc->user_ns); 2312 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2313 fc->global = true; 2314 2315 if (have_favordynmods) 2316 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2317 2318 return 0; 2319 } 2320 2321 static void cgroup_kill_sb(struct super_block *sb) 2322 { 2323 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2324 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2325 2326 /* 2327 * If @root doesn't have any children, start killing it. 2328 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2329 * 2330 * And don't kill the default root. 2331 */ 2332 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2333 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2334 percpu_ref_kill(&root->cgrp.self.refcnt); 2335 cgroup_put(&root->cgrp); 2336 kernfs_kill_sb(sb); 2337 } 2338 2339 struct file_system_type cgroup_fs_type = { 2340 .name = "cgroup", 2341 .init_fs_context = cgroup_init_fs_context, 2342 .parameters = cgroup1_fs_parameters, 2343 .kill_sb = cgroup_kill_sb, 2344 .fs_flags = FS_USERNS_MOUNT, 2345 }; 2346 2347 static struct file_system_type cgroup2_fs_type = { 2348 .name = "cgroup2", 2349 .init_fs_context = cgroup_init_fs_context, 2350 .parameters = cgroup2_fs_parameters, 2351 .kill_sb = cgroup_kill_sb, 2352 .fs_flags = FS_USERNS_MOUNT, 2353 }; 2354 2355 #ifdef CONFIG_CPUSETS_V1 2356 enum cpuset_param { 2357 Opt_cpuset_v2_mode, 2358 }; 2359 2360 static const struct fs_parameter_spec cpuset_fs_parameters[] = { 2361 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 2362 {} 2363 }; 2364 2365 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) 2366 { 2367 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2368 struct fs_parse_result result; 2369 int opt; 2370 2371 opt = fs_parse(fc, cpuset_fs_parameters, param, &result); 2372 if (opt < 0) 2373 return opt; 2374 2375 switch (opt) { 2376 case Opt_cpuset_v2_mode: 2377 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 2378 return 0; 2379 } 2380 return -EINVAL; 2381 } 2382 2383 static const struct fs_context_operations cpuset_fs_context_ops = { 2384 .get_tree = cgroup1_get_tree, 2385 .free = cgroup_fs_context_free, 2386 .parse_param = cpuset_parse_param, 2387 }; 2388 2389 /* 2390 * This is ugly, but preserves the userspace API for existing cpuset 2391 * users. If someone tries to mount the "cpuset" filesystem, we 2392 * silently switch it to mount "cgroup" instead 2393 */ 2394 static int cpuset_init_fs_context(struct fs_context *fc) 2395 { 2396 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2397 struct cgroup_fs_context *ctx; 2398 int err; 2399 2400 err = cgroup_init_fs_context(fc); 2401 if (err) { 2402 kfree(agent); 2403 return err; 2404 } 2405 2406 fc->ops = &cpuset_fs_context_ops; 2407 2408 ctx = cgroup_fc2context(fc); 2409 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2410 ctx->flags |= CGRP_ROOT_NOPREFIX; 2411 ctx->release_agent = agent; 2412 2413 get_filesystem(&cgroup_fs_type); 2414 put_filesystem(fc->fs_type); 2415 fc->fs_type = &cgroup_fs_type; 2416 2417 return 0; 2418 } 2419 2420 static struct file_system_type cpuset_fs_type = { 2421 .name = "cpuset", 2422 .init_fs_context = cpuset_init_fs_context, 2423 .parameters = cpuset_fs_parameters, 2424 .fs_flags = FS_USERNS_MOUNT, 2425 }; 2426 #endif 2427 2428 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2429 struct cgroup_namespace *ns) 2430 { 2431 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2432 2433 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2434 } 2435 2436 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2437 struct cgroup_namespace *ns) 2438 { 2439 int ret; 2440 2441 cgroup_lock(); 2442 spin_lock_irq(&css_set_lock); 2443 2444 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2445 2446 spin_unlock_irq(&css_set_lock); 2447 cgroup_unlock(); 2448 2449 return ret; 2450 } 2451 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2452 2453 /** 2454 * cgroup_attach_lock - Lock for ->attach() 2455 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2456 * 2457 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2458 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2459 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2460 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2461 * lead to deadlocks. 2462 * 2463 * Bringing up a CPU may involve creating and destroying tasks which requires 2464 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2465 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2466 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2467 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2468 * the threadgroup_rwsem to be released to create new tasks. For more details: 2469 * 2470 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2471 * 2472 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2473 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2474 * CPU hotplug is disabled on entry. 2475 */ 2476 void cgroup_attach_lock(bool lock_threadgroup) 2477 { 2478 cpus_read_lock(); 2479 if (lock_threadgroup) 2480 percpu_down_write(&cgroup_threadgroup_rwsem); 2481 } 2482 2483 /** 2484 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2485 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2486 */ 2487 void cgroup_attach_unlock(bool lock_threadgroup) 2488 { 2489 if (lock_threadgroup) 2490 percpu_up_write(&cgroup_threadgroup_rwsem); 2491 cpus_read_unlock(); 2492 } 2493 2494 /** 2495 * cgroup_migrate_add_task - add a migration target task to a migration context 2496 * @task: target task 2497 * @mgctx: target migration context 2498 * 2499 * Add @task, which is a migration target, to @mgctx->tset. This function 2500 * becomes noop if @task doesn't need to be migrated. @task's css_set 2501 * should have been added as a migration source and @task->cg_list will be 2502 * moved from the css_set's tasks list to mg_tasks one. 2503 */ 2504 static void cgroup_migrate_add_task(struct task_struct *task, 2505 struct cgroup_mgctx *mgctx) 2506 { 2507 struct css_set *cset; 2508 2509 lockdep_assert_held(&css_set_lock); 2510 2511 /* @task either already exited or can't exit until the end */ 2512 if (task->flags & PF_EXITING) 2513 return; 2514 2515 /* cgroup_threadgroup_rwsem protects racing against forks */ 2516 WARN_ON_ONCE(list_empty(&task->cg_list)); 2517 2518 cset = task_css_set(task); 2519 if (!cset->mg_src_cgrp) 2520 return; 2521 2522 mgctx->tset.nr_tasks++; 2523 2524 list_move_tail(&task->cg_list, &cset->mg_tasks); 2525 if (list_empty(&cset->mg_node)) 2526 list_add_tail(&cset->mg_node, 2527 &mgctx->tset.src_csets); 2528 if (list_empty(&cset->mg_dst_cset->mg_node)) 2529 list_add_tail(&cset->mg_dst_cset->mg_node, 2530 &mgctx->tset.dst_csets); 2531 } 2532 2533 /** 2534 * cgroup_taskset_first - reset taskset and return the first task 2535 * @tset: taskset of interest 2536 * @dst_cssp: output variable for the destination css 2537 * 2538 * @tset iteration is initialized and the first task is returned. 2539 */ 2540 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2541 struct cgroup_subsys_state **dst_cssp) 2542 { 2543 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2544 tset->cur_task = NULL; 2545 2546 return cgroup_taskset_next(tset, dst_cssp); 2547 } 2548 2549 /** 2550 * cgroup_taskset_next - iterate to the next task in taskset 2551 * @tset: taskset of interest 2552 * @dst_cssp: output variable for the destination css 2553 * 2554 * Return the next task in @tset. Iteration must have been initialized 2555 * with cgroup_taskset_first(). 2556 */ 2557 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2558 struct cgroup_subsys_state **dst_cssp) 2559 { 2560 struct css_set *cset = tset->cur_cset; 2561 struct task_struct *task = tset->cur_task; 2562 2563 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2564 if (!task) 2565 task = list_first_entry(&cset->mg_tasks, 2566 struct task_struct, cg_list); 2567 else 2568 task = list_next_entry(task, cg_list); 2569 2570 if (&task->cg_list != &cset->mg_tasks) { 2571 tset->cur_cset = cset; 2572 tset->cur_task = task; 2573 2574 /* 2575 * This function may be called both before and 2576 * after cgroup_migrate_execute(). The two cases 2577 * can be distinguished by looking at whether @cset 2578 * has its ->mg_dst_cset set. 2579 */ 2580 if (cset->mg_dst_cset) 2581 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2582 else 2583 *dst_cssp = cset->subsys[tset->ssid]; 2584 2585 return task; 2586 } 2587 2588 cset = list_next_entry(cset, mg_node); 2589 task = NULL; 2590 } 2591 2592 return NULL; 2593 } 2594 2595 /** 2596 * cgroup_migrate_execute - migrate a taskset 2597 * @mgctx: migration context 2598 * 2599 * Migrate tasks in @mgctx as setup by migration preparation functions. 2600 * This function fails iff one of the ->can_attach callbacks fails and 2601 * guarantees that either all or none of the tasks in @mgctx are migrated. 2602 * @mgctx is consumed regardless of success. 2603 */ 2604 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2605 { 2606 struct cgroup_taskset *tset = &mgctx->tset; 2607 struct cgroup_subsys *ss; 2608 struct task_struct *task, *tmp_task; 2609 struct css_set *cset, *tmp_cset; 2610 int ssid, failed_ssid, ret; 2611 2612 /* check that we can legitimately attach to the cgroup */ 2613 if (tset->nr_tasks) { 2614 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2615 if (ss->can_attach) { 2616 tset->ssid = ssid; 2617 ret = ss->can_attach(tset); 2618 if (ret) { 2619 failed_ssid = ssid; 2620 goto out_cancel_attach; 2621 } 2622 } 2623 } while_each_subsys_mask(); 2624 } 2625 2626 /* 2627 * Now that we're guaranteed success, proceed to move all tasks to 2628 * the new cgroup. There are no failure cases after here, so this 2629 * is the commit point. 2630 */ 2631 spin_lock_irq(&css_set_lock); 2632 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2633 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2634 struct css_set *from_cset = task_css_set(task); 2635 struct css_set *to_cset = cset->mg_dst_cset; 2636 2637 get_css_set(to_cset); 2638 to_cset->nr_tasks++; 2639 css_set_move_task(task, from_cset, to_cset, true); 2640 from_cset->nr_tasks--; 2641 /* 2642 * If the source or destination cgroup is frozen, 2643 * the task might require to change its state. 2644 */ 2645 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2646 to_cset->dfl_cgrp); 2647 put_css_set_locked(from_cset); 2648 2649 } 2650 } 2651 spin_unlock_irq(&css_set_lock); 2652 2653 /* 2654 * Migration is committed, all target tasks are now on dst_csets. 2655 * Nothing is sensitive to fork() after this point. Notify 2656 * controllers that migration is complete. 2657 */ 2658 tset->csets = &tset->dst_csets; 2659 2660 if (tset->nr_tasks) { 2661 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2662 if (ss->attach) { 2663 tset->ssid = ssid; 2664 ss->attach(tset); 2665 } 2666 } while_each_subsys_mask(); 2667 } 2668 2669 ret = 0; 2670 goto out_release_tset; 2671 2672 out_cancel_attach: 2673 if (tset->nr_tasks) { 2674 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2675 if (ssid == failed_ssid) 2676 break; 2677 if (ss->cancel_attach) { 2678 tset->ssid = ssid; 2679 ss->cancel_attach(tset); 2680 } 2681 } while_each_subsys_mask(); 2682 } 2683 out_release_tset: 2684 spin_lock_irq(&css_set_lock); 2685 list_splice_init(&tset->dst_csets, &tset->src_csets); 2686 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2687 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2688 list_del_init(&cset->mg_node); 2689 } 2690 spin_unlock_irq(&css_set_lock); 2691 2692 /* 2693 * Re-initialize the cgroup_taskset structure in case it is reused 2694 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2695 * iteration. 2696 */ 2697 tset->nr_tasks = 0; 2698 tset->csets = &tset->src_csets; 2699 return ret; 2700 } 2701 2702 /** 2703 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2704 * @dst_cgrp: destination cgroup to test 2705 * 2706 * On the default hierarchy, except for the mixable, (possible) thread root 2707 * and threaded cgroups, subtree_control must be zero for migration 2708 * destination cgroups with tasks so that child cgroups don't compete 2709 * against tasks. 2710 */ 2711 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2712 { 2713 /* v1 doesn't have any restriction */ 2714 if (!cgroup_on_dfl(dst_cgrp)) 2715 return 0; 2716 2717 /* verify @dst_cgrp can host resources */ 2718 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2719 return -EOPNOTSUPP; 2720 2721 /* 2722 * If @dst_cgrp is already or can become a thread root or is 2723 * threaded, it doesn't matter. 2724 */ 2725 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2726 return 0; 2727 2728 /* apply no-internal-process constraint */ 2729 if (dst_cgrp->subtree_control) 2730 return -EBUSY; 2731 2732 return 0; 2733 } 2734 2735 /** 2736 * cgroup_migrate_finish - cleanup after attach 2737 * @mgctx: migration context 2738 * 2739 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2740 * those functions for details. 2741 */ 2742 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2743 { 2744 struct css_set *cset, *tmp_cset; 2745 2746 lockdep_assert_held(&cgroup_mutex); 2747 2748 spin_lock_irq(&css_set_lock); 2749 2750 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2751 mg_src_preload_node) { 2752 cset->mg_src_cgrp = NULL; 2753 cset->mg_dst_cgrp = NULL; 2754 cset->mg_dst_cset = NULL; 2755 list_del_init(&cset->mg_src_preload_node); 2756 put_css_set_locked(cset); 2757 } 2758 2759 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2760 mg_dst_preload_node) { 2761 cset->mg_src_cgrp = NULL; 2762 cset->mg_dst_cgrp = NULL; 2763 cset->mg_dst_cset = NULL; 2764 list_del_init(&cset->mg_dst_preload_node); 2765 put_css_set_locked(cset); 2766 } 2767 2768 spin_unlock_irq(&css_set_lock); 2769 } 2770 2771 /** 2772 * cgroup_migrate_add_src - add a migration source css_set 2773 * @src_cset: the source css_set to add 2774 * @dst_cgrp: the destination cgroup 2775 * @mgctx: migration context 2776 * 2777 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2778 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2779 * up by cgroup_migrate_finish(). 2780 * 2781 * This function may be called without holding cgroup_threadgroup_rwsem 2782 * even if the target is a process. Threads may be created and destroyed 2783 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2784 * into play and the preloaded css_sets are guaranteed to cover all 2785 * migrations. 2786 */ 2787 void cgroup_migrate_add_src(struct css_set *src_cset, 2788 struct cgroup *dst_cgrp, 2789 struct cgroup_mgctx *mgctx) 2790 { 2791 struct cgroup *src_cgrp; 2792 2793 lockdep_assert_held(&cgroup_mutex); 2794 lockdep_assert_held(&css_set_lock); 2795 2796 /* 2797 * If ->dead, @src_set is associated with one or more dead cgroups 2798 * and doesn't contain any migratable tasks. Ignore it early so 2799 * that the rest of migration path doesn't get confused by it. 2800 */ 2801 if (src_cset->dead) 2802 return; 2803 2804 if (!list_empty(&src_cset->mg_src_preload_node)) 2805 return; 2806 2807 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2808 2809 WARN_ON(src_cset->mg_src_cgrp); 2810 WARN_ON(src_cset->mg_dst_cgrp); 2811 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2812 WARN_ON(!list_empty(&src_cset->mg_node)); 2813 2814 src_cset->mg_src_cgrp = src_cgrp; 2815 src_cset->mg_dst_cgrp = dst_cgrp; 2816 get_css_set(src_cset); 2817 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2818 } 2819 2820 /** 2821 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2822 * @mgctx: migration context 2823 * 2824 * Tasks are about to be moved and all the source css_sets have been 2825 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2826 * pins all destination css_sets, links each to its source, and append them 2827 * to @mgctx->preloaded_dst_csets. 2828 * 2829 * This function must be called after cgroup_migrate_add_src() has been 2830 * called on each migration source css_set. After migration is performed 2831 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2832 * @mgctx. 2833 */ 2834 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2835 { 2836 struct css_set *src_cset, *tmp_cset; 2837 2838 lockdep_assert_held(&cgroup_mutex); 2839 2840 /* look up the dst cset for each src cset and link it to src */ 2841 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2842 mg_src_preload_node) { 2843 struct css_set *dst_cset; 2844 struct cgroup_subsys *ss; 2845 int ssid; 2846 2847 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2848 if (!dst_cset) 2849 return -ENOMEM; 2850 2851 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2852 2853 /* 2854 * If src cset equals dst, it's noop. Drop the src. 2855 * cgroup_migrate() will skip the cset too. Note that we 2856 * can't handle src == dst as some nodes are used by both. 2857 */ 2858 if (src_cset == dst_cset) { 2859 src_cset->mg_src_cgrp = NULL; 2860 src_cset->mg_dst_cgrp = NULL; 2861 list_del_init(&src_cset->mg_src_preload_node); 2862 put_css_set(src_cset); 2863 put_css_set(dst_cset); 2864 continue; 2865 } 2866 2867 src_cset->mg_dst_cset = dst_cset; 2868 2869 if (list_empty(&dst_cset->mg_dst_preload_node)) 2870 list_add_tail(&dst_cset->mg_dst_preload_node, 2871 &mgctx->preloaded_dst_csets); 2872 else 2873 put_css_set(dst_cset); 2874 2875 for_each_subsys(ss, ssid) 2876 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2877 mgctx->ss_mask |= 1 << ssid; 2878 } 2879 2880 return 0; 2881 } 2882 2883 /** 2884 * cgroup_migrate - migrate a process or task to a cgroup 2885 * @leader: the leader of the process or the task to migrate 2886 * @threadgroup: whether @leader points to the whole process or a single task 2887 * @mgctx: migration context 2888 * 2889 * Migrate a process or task denoted by @leader. If migrating a process, 2890 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2891 * responsible for invoking cgroup_migrate_add_src() and 2892 * cgroup_migrate_prepare_dst() on the targets before invoking this 2893 * function and following up with cgroup_migrate_finish(). 2894 * 2895 * As long as a controller's ->can_attach() doesn't fail, this function is 2896 * guaranteed to succeed. This means that, excluding ->can_attach() 2897 * failure, when migrating multiple targets, the success or failure can be 2898 * decided for all targets by invoking group_migrate_prepare_dst() before 2899 * actually starting migrating. 2900 */ 2901 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2902 struct cgroup_mgctx *mgctx) 2903 { 2904 struct task_struct *task; 2905 2906 /* 2907 * The following thread iteration should be inside an RCU critical 2908 * section to prevent tasks from being freed while taking the snapshot. 2909 * spin_lock_irq() implies RCU critical section here. 2910 */ 2911 spin_lock_irq(&css_set_lock); 2912 task = leader; 2913 do { 2914 cgroup_migrate_add_task(task, mgctx); 2915 if (!threadgroup) 2916 break; 2917 } while_each_thread(leader, task); 2918 spin_unlock_irq(&css_set_lock); 2919 2920 return cgroup_migrate_execute(mgctx); 2921 } 2922 2923 /** 2924 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2925 * @dst_cgrp: the cgroup to attach to 2926 * @leader: the task or the leader of the threadgroup to be attached 2927 * @threadgroup: attach the whole threadgroup? 2928 * 2929 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2930 */ 2931 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2932 bool threadgroup) 2933 { 2934 DEFINE_CGROUP_MGCTX(mgctx); 2935 struct task_struct *task; 2936 int ret = 0; 2937 2938 /* look up all src csets */ 2939 spin_lock_irq(&css_set_lock); 2940 rcu_read_lock(); 2941 task = leader; 2942 do { 2943 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2944 if (!threadgroup) 2945 break; 2946 } while_each_thread(leader, task); 2947 rcu_read_unlock(); 2948 spin_unlock_irq(&css_set_lock); 2949 2950 /* prepare dst csets and commit */ 2951 ret = cgroup_migrate_prepare_dst(&mgctx); 2952 if (!ret) 2953 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2954 2955 cgroup_migrate_finish(&mgctx); 2956 2957 if (!ret) 2958 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2959 2960 return ret; 2961 } 2962 2963 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2964 bool *threadgroup_locked) 2965 { 2966 struct task_struct *tsk; 2967 pid_t pid; 2968 2969 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2970 return ERR_PTR(-EINVAL); 2971 2972 /* 2973 * If we migrate a single thread, we don't care about threadgroup 2974 * stability. If the thread is `current`, it won't exit(2) under our 2975 * hands or change PID through exec(2). We exclude 2976 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2977 * callers by cgroup_mutex. 2978 * Therefore, we can skip the global lock. 2979 */ 2980 lockdep_assert_held(&cgroup_mutex); 2981 *threadgroup_locked = pid || threadgroup; 2982 cgroup_attach_lock(*threadgroup_locked); 2983 2984 rcu_read_lock(); 2985 if (pid) { 2986 tsk = find_task_by_vpid(pid); 2987 if (!tsk) { 2988 tsk = ERR_PTR(-ESRCH); 2989 goto out_unlock_threadgroup; 2990 } 2991 } else { 2992 tsk = current; 2993 } 2994 2995 if (threadgroup) 2996 tsk = tsk->group_leader; 2997 2998 /* 2999 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 3000 * If userland migrates such a kthread to a non-root cgroup, it can 3001 * become trapped in a cpuset, or RT kthread may be born in a 3002 * cgroup with no rt_runtime allocated. Just say no. 3003 */ 3004 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 3005 tsk = ERR_PTR(-EINVAL); 3006 goto out_unlock_threadgroup; 3007 } 3008 3009 get_task_struct(tsk); 3010 goto out_unlock_rcu; 3011 3012 out_unlock_threadgroup: 3013 cgroup_attach_unlock(*threadgroup_locked); 3014 *threadgroup_locked = false; 3015 out_unlock_rcu: 3016 rcu_read_unlock(); 3017 return tsk; 3018 } 3019 3020 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 3021 { 3022 struct cgroup_subsys *ss; 3023 int ssid; 3024 3025 /* release reference from cgroup_procs_write_start() */ 3026 put_task_struct(task); 3027 3028 cgroup_attach_unlock(threadgroup_locked); 3029 3030 for_each_subsys(ss, ssid) 3031 if (ss->post_attach) 3032 ss->post_attach(); 3033 } 3034 3035 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3036 { 3037 struct cgroup_subsys *ss; 3038 bool printed = false; 3039 int ssid; 3040 3041 do_each_subsys_mask(ss, ssid, ss_mask) { 3042 if (printed) 3043 seq_putc(seq, ' '); 3044 seq_puts(seq, ss->name); 3045 printed = true; 3046 } while_each_subsys_mask(); 3047 if (printed) 3048 seq_putc(seq, '\n'); 3049 } 3050 3051 /* show controllers which are enabled from the parent */ 3052 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3053 { 3054 struct cgroup *cgrp = seq_css(seq)->cgroup; 3055 3056 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3057 return 0; 3058 } 3059 3060 /* show controllers which are enabled for a given cgroup's children */ 3061 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3062 { 3063 struct cgroup *cgrp = seq_css(seq)->cgroup; 3064 3065 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3066 return 0; 3067 } 3068 3069 /** 3070 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3071 * @cgrp: root of the subtree to update csses for 3072 * 3073 * @cgrp's control masks have changed and its subtree's css associations 3074 * need to be updated accordingly. This function looks up all css_sets 3075 * which are attached to the subtree, creates the matching updated css_sets 3076 * and migrates the tasks to the new ones. 3077 */ 3078 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3079 { 3080 DEFINE_CGROUP_MGCTX(mgctx); 3081 struct cgroup_subsys_state *d_css; 3082 struct cgroup *dsct; 3083 struct css_set *src_cset; 3084 bool has_tasks; 3085 int ret; 3086 3087 lockdep_assert_held(&cgroup_mutex); 3088 3089 /* look up all csses currently attached to @cgrp's subtree */ 3090 spin_lock_irq(&css_set_lock); 3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3092 struct cgrp_cset_link *link; 3093 3094 /* 3095 * As cgroup_update_dfl_csses() is only called by 3096 * cgroup_apply_control(). The csses associated with the 3097 * given cgrp will not be affected by changes made to 3098 * its subtree_control file. We can skip them. 3099 */ 3100 if (dsct == cgrp) 3101 continue; 3102 3103 list_for_each_entry(link, &dsct->cset_links, cset_link) 3104 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3105 } 3106 spin_unlock_irq(&css_set_lock); 3107 3108 /* 3109 * We need to write-lock threadgroup_rwsem while migrating tasks. 3110 * However, if there are no source csets for @cgrp, changing its 3111 * controllers isn't gonna produce any task migrations and the 3112 * write-locking can be skipped safely. 3113 */ 3114 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3115 cgroup_attach_lock(has_tasks); 3116 3117 /* NULL dst indicates self on default hierarchy */ 3118 ret = cgroup_migrate_prepare_dst(&mgctx); 3119 if (ret) 3120 goto out_finish; 3121 3122 spin_lock_irq(&css_set_lock); 3123 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3124 mg_src_preload_node) { 3125 struct task_struct *task, *ntask; 3126 3127 /* all tasks in src_csets need to be migrated */ 3128 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3129 cgroup_migrate_add_task(task, &mgctx); 3130 } 3131 spin_unlock_irq(&css_set_lock); 3132 3133 ret = cgroup_migrate_execute(&mgctx); 3134 out_finish: 3135 cgroup_migrate_finish(&mgctx); 3136 cgroup_attach_unlock(has_tasks); 3137 return ret; 3138 } 3139 3140 /** 3141 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3142 * @cgrp: root of the target subtree 3143 * 3144 * Because css offlining is asynchronous, userland may try to re-enable a 3145 * controller while the previous css is still around. This function grabs 3146 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3147 */ 3148 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3149 __acquires(&cgroup_mutex) 3150 { 3151 struct cgroup *dsct; 3152 struct cgroup_subsys_state *d_css; 3153 struct cgroup_subsys *ss; 3154 int ssid; 3155 3156 restart: 3157 cgroup_lock(); 3158 3159 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3160 for_each_subsys(ss, ssid) { 3161 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3162 DEFINE_WAIT(wait); 3163 3164 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3165 continue; 3166 3167 cgroup_get_live(dsct); 3168 prepare_to_wait(&dsct->offline_waitq, &wait, 3169 TASK_UNINTERRUPTIBLE); 3170 3171 cgroup_unlock(); 3172 schedule(); 3173 finish_wait(&dsct->offline_waitq, &wait); 3174 3175 cgroup_put(dsct); 3176 goto restart; 3177 } 3178 } 3179 } 3180 3181 /** 3182 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3183 * @cgrp: root of the target subtree 3184 * 3185 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3186 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3187 * itself. 3188 */ 3189 static void cgroup_save_control(struct cgroup *cgrp) 3190 { 3191 struct cgroup *dsct; 3192 struct cgroup_subsys_state *d_css; 3193 3194 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3195 dsct->old_subtree_control = dsct->subtree_control; 3196 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3197 dsct->old_dom_cgrp = dsct->dom_cgrp; 3198 } 3199 } 3200 3201 /** 3202 * cgroup_propagate_control - refresh control masks of a subtree 3203 * @cgrp: root of the target subtree 3204 * 3205 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3206 * ->subtree_control and propagate controller availability through the 3207 * subtree so that descendants don't have unavailable controllers enabled. 3208 */ 3209 static void cgroup_propagate_control(struct cgroup *cgrp) 3210 { 3211 struct cgroup *dsct; 3212 struct cgroup_subsys_state *d_css; 3213 3214 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3215 dsct->subtree_control &= cgroup_control(dsct); 3216 dsct->subtree_ss_mask = 3217 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3218 cgroup_ss_mask(dsct)); 3219 } 3220 } 3221 3222 /** 3223 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3224 * @cgrp: root of the target subtree 3225 * 3226 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3227 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3228 * itself. 3229 */ 3230 static void cgroup_restore_control(struct cgroup *cgrp) 3231 { 3232 struct cgroup *dsct; 3233 struct cgroup_subsys_state *d_css; 3234 3235 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3236 dsct->subtree_control = dsct->old_subtree_control; 3237 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3238 dsct->dom_cgrp = dsct->old_dom_cgrp; 3239 } 3240 } 3241 3242 static bool css_visible(struct cgroup_subsys_state *css) 3243 { 3244 struct cgroup_subsys *ss = css->ss; 3245 struct cgroup *cgrp = css->cgroup; 3246 3247 if (cgroup_control(cgrp) & (1 << ss->id)) 3248 return true; 3249 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3250 return false; 3251 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3252 } 3253 3254 /** 3255 * cgroup_apply_control_enable - enable or show csses according to control 3256 * @cgrp: root of the target subtree 3257 * 3258 * Walk @cgrp's subtree and create new csses or make the existing ones 3259 * visible. A css is created invisible if it's being implicitly enabled 3260 * through dependency. An invisible css is made visible when the userland 3261 * explicitly enables it. 3262 * 3263 * Returns 0 on success, -errno on failure. On failure, csses which have 3264 * been processed already aren't cleaned up. The caller is responsible for 3265 * cleaning up with cgroup_apply_control_disable(). 3266 */ 3267 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3268 { 3269 struct cgroup *dsct; 3270 struct cgroup_subsys_state *d_css; 3271 struct cgroup_subsys *ss; 3272 int ssid, ret; 3273 3274 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3275 for_each_subsys(ss, ssid) { 3276 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3277 3278 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3279 continue; 3280 3281 if (!css) { 3282 css = css_create(dsct, ss); 3283 if (IS_ERR(css)) 3284 return PTR_ERR(css); 3285 } 3286 3287 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3288 3289 if (css_visible(css)) { 3290 ret = css_populate_dir(css); 3291 if (ret) 3292 return ret; 3293 } 3294 } 3295 } 3296 3297 return 0; 3298 } 3299 3300 /** 3301 * cgroup_apply_control_disable - kill or hide csses according to control 3302 * @cgrp: root of the target subtree 3303 * 3304 * Walk @cgrp's subtree and kill and hide csses so that they match 3305 * cgroup_ss_mask() and cgroup_visible_mask(). 3306 * 3307 * A css is hidden when the userland requests it to be disabled while other 3308 * subsystems are still depending on it. The css must not actively control 3309 * resources and be in the vanilla state if it's made visible again later. 3310 * Controllers which may be depended upon should provide ->css_reset() for 3311 * this purpose. 3312 */ 3313 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3314 { 3315 struct cgroup *dsct; 3316 struct cgroup_subsys_state *d_css; 3317 struct cgroup_subsys *ss; 3318 int ssid; 3319 3320 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3321 for_each_subsys(ss, ssid) { 3322 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3323 3324 if (!css) 3325 continue; 3326 3327 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3328 3329 if (css->parent && 3330 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3331 kill_css(css); 3332 } else if (!css_visible(css)) { 3333 css_clear_dir(css); 3334 if (ss->css_reset) 3335 ss->css_reset(css); 3336 } 3337 } 3338 } 3339 } 3340 3341 /** 3342 * cgroup_apply_control - apply control mask updates to the subtree 3343 * @cgrp: root of the target subtree 3344 * 3345 * subsystems can be enabled and disabled in a subtree using the following 3346 * steps. 3347 * 3348 * 1. Call cgroup_save_control() to stash the current state. 3349 * 2. Update ->subtree_control masks in the subtree as desired. 3350 * 3. Call cgroup_apply_control() to apply the changes. 3351 * 4. Optionally perform other related operations. 3352 * 5. Call cgroup_finalize_control() to finish up. 3353 * 3354 * This function implements step 3 and propagates the mask changes 3355 * throughout @cgrp's subtree, updates csses accordingly and perform 3356 * process migrations. 3357 */ 3358 static int cgroup_apply_control(struct cgroup *cgrp) 3359 { 3360 int ret; 3361 3362 cgroup_propagate_control(cgrp); 3363 3364 ret = cgroup_apply_control_enable(cgrp); 3365 if (ret) 3366 return ret; 3367 3368 /* 3369 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3370 * making the following cgroup_update_dfl_csses() properly update 3371 * css associations of all tasks in the subtree. 3372 */ 3373 return cgroup_update_dfl_csses(cgrp); 3374 } 3375 3376 /** 3377 * cgroup_finalize_control - finalize control mask update 3378 * @cgrp: root of the target subtree 3379 * @ret: the result of the update 3380 * 3381 * Finalize control mask update. See cgroup_apply_control() for more info. 3382 */ 3383 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3384 { 3385 if (ret) { 3386 cgroup_restore_control(cgrp); 3387 cgroup_propagate_control(cgrp); 3388 } 3389 3390 cgroup_apply_control_disable(cgrp); 3391 } 3392 3393 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3394 { 3395 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3396 3397 /* if nothing is getting enabled, nothing to worry about */ 3398 if (!enable) 3399 return 0; 3400 3401 /* can @cgrp host any resources? */ 3402 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3403 return -EOPNOTSUPP; 3404 3405 /* mixables don't care */ 3406 if (cgroup_is_mixable(cgrp)) 3407 return 0; 3408 3409 if (domain_enable) { 3410 /* can't enable domain controllers inside a thread subtree */ 3411 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3412 return -EOPNOTSUPP; 3413 } else { 3414 /* 3415 * Threaded controllers can handle internal competitions 3416 * and are always allowed inside a (prospective) thread 3417 * subtree. 3418 */ 3419 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3420 return 0; 3421 } 3422 3423 /* 3424 * Controllers can't be enabled for a cgroup with tasks to avoid 3425 * child cgroups competing against tasks. 3426 */ 3427 if (cgroup_has_tasks(cgrp)) 3428 return -EBUSY; 3429 3430 return 0; 3431 } 3432 3433 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3434 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3435 char *buf, size_t nbytes, 3436 loff_t off) 3437 { 3438 u16 enable = 0, disable = 0; 3439 struct cgroup *cgrp, *child; 3440 struct cgroup_subsys *ss; 3441 char *tok; 3442 int ssid, ret; 3443 3444 /* 3445 * Parse input - space separated list of subsystem names prefixed 3446 * with either + or -. 3447 */ 3448 buf = strstrip(buf); 3449 while ((tok = strsep(&buf, " "))) { 3450 if (tok[0] == '\0') 3451 continue; 3452 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3453 if (!cgroup_ssid_enabled(ssid) || 3454 strcmp(tok + 1, ss->name)) 3455 continue; 3456 3457 if (*tok == '+') { 3458 enable |= 1 << ssid; 3459 disable &= ~(1 << ssid); 3460 } else if (*tok == '-') { 3461 disable |= 1 << ssid; 3462 enable &= ~(1 << ssid); 3463 } else { 3464 return -EINVAL; 3465 } 3466 break; 3467 } while_each_subsys_mask(); 3468 if (ssid == CGROUP_SUBSYS_COUNT) 3469 return -EINVAL; 3470 } 3471 3472 cgrp = cgroup_kn_lock_live(of->kn, true); 3473 if (!cgrp) 3474 return -ENODEV; 3475 3476 for_each_subsys(ss, ssid) { 3477 if (enable & (1 << ssid)) { 3478 if (cgrp->subtree_control & (1 << ssid)) { 3479 enable &= ~(1 << ssid); 3480 continue; 3481 } 3482 3483 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3484 ret = -ENOENT; 3485 goto out_unlock; 3486 } 3487 } else if (disable & (1 << ssid)) { 3488 if (!(cgrp->subtree_control & (1 << ssid))) { 3489 disable &= ~(1 << ssid); 3490 continue; 3491 } 3492 3493 /* a child has it enabled? */ 3494 cgroup_for_each_live_child(child, cgrp) { 3495 if (child->subtree_control & (1 << ssid)) { 3496 ret = -EBUSY; 3497 goto out_unlock; 3498 } 3499 } 3500 } 3501 } 3502 3503 if (!enable && !disable) { 3504 ret = 0; 3505 goto out_unlock; 3506 } 3507 3508 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3509 if (ret) 3510 goto out_unlock; 3511 3512 /* save and update control masks and prepare csses */ 3513 cgroup_save_control(cgrp); 3514 3515 cgrp->subtree_control |= enable; 3516 cgrp->subtree_control &= ~disable; 3517 3518 ret = cgroup_apply_control(cgrp); 3519 cgroup_finalize_control(cgrp, ret); 3520 if (ret) 3521 goto out_unlock; 3522 3523 kernfs_activate(cgrp->kn); 3524 out_unlock: 3525 cgroup_kn_unlock(of->kn); 3526 return ret ?: nbytes; 3527 } 3528 3529 /** 3530 * cgroup_enable_threaded - make @cgrp threaded 3531 * @cgrp: the target cgroup 3532 * 3533 * Called when "threaded" is written to the cgroup.type interface file and 3534 * tries to make @cgrp threaded and join the parent's resource domain. 3535 * This function is never called on the root cgroup as cgroup.type doesn't 3536 * exist on it. 3537 */ 3538 static int cgroup_enable_threaded(struct cgroup *cgrp) 3539 { 3540 struct cgroup *parent = cgroup_parent(cgrp); 3541 struct cgroup *dom_cgrp = parent->dom_cgrp; 3542 struct cgroup *dsct; 3543 struct cgroup_subsys_state *d_css; 3544 int ret; 3545 3546 lockdep_assert_held(&cgroup_mutex); 3547 3548 /* noop if already threaded */ 3549 if (cgroup_is_threaded(cgrp)) 3550 return 0; 3551 3552 /* 3553 * If @cgroup is populated or has domain controllers enabled, it 3554 * can't be switched. While the below cgroup_can_be_thread_root() 3555 * test can catch the same conditions, that's only when @parent is 3556 * not mixable, so let's check it explicitly. 3557 */ 3558 if (cgroup_is_populated(cgrp) || 3559 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3560 return -EOPNOTSUPP; 3561 3562 /* we're joining the parent's domain, ensure its validity */ 3563 if (!cgroup_is_valid_domain(dom_cgrp) || 3564 !cgroup_can_be_thread_root(dom_cgrp)) 3565 return -EOPNOTSUPP; 3566 3567 /* 3568 * The following shouldn't cause actual migrations and should 3569 * always succeed. 3570 */ 3571 cgroup_save_control(cgrp); 3572 3573 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3574 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3575 dsct->dom_cgrp = dom_cgrp; 3576 3577 ret = cgroup_apply_control(cgrp); 3578 if (!ret) 3579 parent->nr_threaded_children++; 3580 3581 cgroup_finalize_control(cgrp, ret); 3582 return ret; 3583 } 3584 3585 static int cgroup_type_show(struct seq_file *seq, void *v) 3586 { 3587 struct cgroup *cgrp = seq_css(seq)->cgroup; 3588 3589 if (cgroup_is_threaded(cgrp)) 3590 seq_puts(seq, "threaded\n"); 3591 else if (!cgroup_is_valid_domain(cgrp)) 3592 seq_puts(seq, "domain invalid\n"); 3593 else if (cgroup_is_thread_root(cgrp)) 3594 seq_puts(seq, "domain threaded\n"); 3595 else 3596 seq_puts(seq, "domain\n"); 3597 3598 return 0; 3599 } 3600 3601 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3602 size_t nbytes, loff_t off) 3603 { 3604 struct cgroup *cgrp; 3605 int ret; 3606 3607 /* only switching to threaded mode is supported */ 3608 if (strcmp(strstrip(buf), "threaded")) 3609 return -EINVAL; 3610 3611 /* drain dying csses before we re-apply (threaded) subtree control */ 3612 cgrp = cgroup_kn_lock_live(of->kn, true); 3613 if (!cgrp) 3614 return -ENOENT; 3615 3616 /* threaded can only be enabled */ 3617 ret = cgroup_enable_threaded(cgrp); 3618 3619 cgroup_kn_unlock(of->kn); 3620 return ret ?: nbytes; 3621 } 3622 3623 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 int descendants = READ_ONCE(cgrp->max_descendants); 3627 3628 if (descendants == INT_MAX) 3629 seq_puts(seq, "max\n"); 3630 else 3631 seq_printf(seq, "%d\n", descendants); 3632 3633 return 0; 3634 } 3635 3636 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3637 char *buf, size_t nbytes, loff_t off) 3638 { 3639 struct cgroup *cgrp; 3640 int descendants; 3641 ssize_t ret; 3642 3643 buf = strstrip(buf); 3644 if (!strcmp(buf, "max")) { 3645 descendants = INT_MAX; 3646 } else { 3647 ret = kstrtoint(buf, 0, &descendants); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 if (descendants < 0) 3653 return -ERANGE; 3654 3655 cgrp = cgroup_kn_lock_live(of->kn, false); 3656 if (!cgrp) 3657 return -ENOENT; 3658 3659 cgrp->max_descendants = descendants; 3660 3661 cgroup_kn_unlock(of->kn); 3662 3663 return nbytes; 3664 } 3665 3666 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3667 { 3668 struct cgroup *cgrp = seq_css(seq)->cgroup; 3669 int depth = READ_ONCE(cgrp->max_depth); 3670 3671 if (depth == INT_MAX) 3672 seq_puts(seq, "max\n"); 3673 else 3674 seq_printf(seq, "%d\n", depth); 3675 3676 return 0; 3677 } 3678 3679 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3680 char *buf, size_t nbytes, loff_t off) 3681 { 3682 struct cgroup *cgrp; 3683 ssize_t ret; 3684 int depth; 3685 3686 buf = strstrip(buf); 3687 if (!strcmp(buf, "max")) { 3688 depth = INT_MAX; 3689 } else { 3690 ret = kstrtoint(buf, 0, &depth); 3691 if (ret) 3692 return ret; 3693 } 3694 3695 if (depth < 0) 3696 return -ERANGE; 3697 3698 cgrp = cgroup_kn_lock_live(of->kn, false); 3699 if (!cgrp) 3700 return -ENOENT; 3701 3702 cgrp->max_depth = depth; 3703 3704 cgroup_kn_unlock(of->kn); 3705 3706 return nbytes; 3707 } 3708 3709 static int cgroup_events_show(struct seq_file *seq, void *v) 3710 { 3711 struct cgroup *cgrp = seq_css(seq)->cgroup; 3712 3713 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3714 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3715 3716 return 0; 3717 } 3718 3719 static int cgroup_stat_show(struct seq_file *seq, void *v) 3720 { 3721 struct cgroup *cgroup = seq_css(seq)->cgroup; 3722 struct cgroup_subsys_state *css; 3723 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3724 int ssid; 3725 3726 seq_printf(seq, "nr_descendants %d\n", 3727 cgroup->nr_descendants); 3728 3729 /* 3730 * Show the number of live and dying csses associated with each of 3731 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3732 * 3733 * Without proper lock protection, racing is possible. So the 3734 * numbers may not be consistent when that happens. 3735 */ 3736 rcu_read_lock(); 3737 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3738 dying_cnt[ssid] = -1; 3739 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3740 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3741 continue; 3742 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3743 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3744 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3745 css ? (css->nr_descendants + 1) : 0); 3746 } 3747 3748 seq_printf(seq, "nr_dying_descendants %d\n", 3749 cgroup->nr_dying_descendants); 3750 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3751 if (dying_cnt[ssid] >= 0) 3752 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3753 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3754 } 3755 rcu_read_unlock(); 3756 return 0; 3757 } 3758 3759 #ifdef CONFIG_CGROUP_SCHED 3760 /** 3761 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3762 * @cgrp: the cgroup of interest 3763 * @ss: the subsystem of interest 3764 * 3765 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3766 * or is offline, %NULL is returned. 3767 */ 3768 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3769 struct cgroup_subsys *ss) 3770 { 3771 struct cgroup_subsys_state *css; 3772 3773 rcu_read_lock(); 3774 css = cgroup_css(cgrp, ss); 3775 if (css && !css_tryget_online(css)) 3776 css = NULL; 3777 rcu_read_unlock(); 3778 3779 return css; 3780 } 3781 3782 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3783 { 3784 struct cgroup *cgrp = seq_css(seq)->cgroup; 3785 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3786 struct cgroup_subsys_state *css; 3787 int ret; 3788 3789 if (!ss->css_extra_stat_show) 3790 return 0; 3791 3792 css = cgroup_tryget_css(cgrp, ss); 3793 if (!css) 3794 return 0; 3795 3796 ret = ss->css_extra_stat_show(seq, css); 3797 css_put(css); 3798 return ret; 3799 } 3800 3801 static int cgroup_local_stat_show(struct seq_file *seq, 3802 struct cgroup *cgrp, int ssid) 3803 { 3804 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3805 struct cgroup_subsys_state *css; 3806 int ret; 3807 3808 if (!ss->css_local_stat_show) 3809 return 0; 3810 3811 css = cgroup_tryget_css(cgrp, ss); 3812 if (!css) 3813 return 0; 3814 3815 ret = ss->css_local_stat_show(seq, css); 3816 css_put(css); 3817 return ret; 3818 } 3819 #endif 3820 3821 static int cpu_stat_show(struct seq_file *seq, void *v) 3822 { 3823 int ret = 0; 3824 3825 cgroup_base_stat_cputime_show(seq); 3826 #ifdef CONFIG_CGROUP_SCHED 3827 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3828 #endif 3829 return ret; 3830 } 3831 3832 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3833 { 3834 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3835 int ret = 0; 3836 3837 #ifdef CONFIG_CGROUP_SCHED 3838 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3839 #endif 3840 return ret; 3841 } 3842 3843 #ifdef CONFIG_PSI 3844 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3845 { 3846 struct cgroup *cgrp = seq_css(seq)->cgroup; 3847 struct psi_group *psi = cgroup_psi(cgrp); 3848 3849 return psi_show(seq, psi, PSI_IO); 3850 } 3851 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3852 { 3853 struct cgroup *cgrp = seq_css(seq)->cgroup; 3854 struct psi_group *psi = cgroup_psi(cgrp); 3855 3856 return psi_show(seq, psi, PSI_MEM); 3857 } 3858 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3859 { 3860 struct cgroup *cgrp = seq_css(seq)->cgroup; 3861 struct psi_group *psi = cgroup_psi(cgrp); 3862 3863 return psi_show(seq, psi, PSI_CPU); 3864 } 3865 3866 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3867 size_t nbytes, enum psi_res res) 3868 { 3869 struct cgroup_file_ctx *ctx = of->priv; 3870 struct psi_trigger *new; 3871 struct cgroup *cgrp; 3872 struct psi_group *psi; 3873 3874 cgrp = cgroup_kn_lock_live(of->kn, false); 3875 if (!cgrp) 3876 return -ENODEV; 3877 3878 cgroup_get(cgrp); 3879 cgroup_kn_unlock(of->kn); 3880 3881 /* Allow only one trigger per file descriptor */ 3882 if (ctx->psi.trigger) { 3883 cgroup_put(cgrp); 3884 return -EBUSY; 3885 } 3886 3887 psi = cgroup_psi(cgrp); 3888 new = psi_trigger_create(psi, buf, res, of->file, of); 3889 if (IS_ERR(new)) { 3890 cgroup_put(cgrp); 3891 return PTR_ERR(new); 3892 } 3893 3894 smp_store_release(&ctx->psi.trigger, new); 3895 cgroup_put(cgrp); 3896 3897 return nbytes; 3898 } 3899 3900 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3901 char *buf, size_t nbytes, 3902 loff_t off) 3903 { 3904 return pressure_write(of, buf, nbytes, PSI_IO); 3905 } 3906 3907 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3908 char *buf, size_t nbytes, 3909 loff_t off) 3910 { 3911 return pressure_write(of, buf, nbytes, PSI_MEM); 3912 } 3913 3914 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3915 char *buf, size_t nbytes, 3916 loff_t off) 3917 { 3918 return pressure_write(of, buf, nbytes, PSI_CPU); 3919 } 3920 3921 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3922 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3923 { 3924 struct cgroup *cgrp = seq_css(seq)->cgroup; 3925 struct psi_group *psi = cgroup_psi(cgrp); 3926 3927 return psi_show(seq, psi, PSI_IRQ); 3928 } 3929 3930 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3931 char *buf, size_t nbytes, 3932 loff_t off) 3933 { 3934 return pressure_write(of, buf, nbytes, PSI_IRQ); 3935 } 3936 #endif 3937 3938 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3939 { 3940 struct cgroup *cgrp = seq_css(seq)->cgroup; 3941 struct psi_group *psi = cgroup_psi(cgrp); 3942 3943 seq_printf(seq, "%d\n", psi->enabled); 3944 3945 return 0; 3946 } 3947 3948 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3949 char *buf, size_t nbytes, 3950 loff_t off) 3951 { 3952 ssize_t ret; 3953 int enable; 3954 struct cgroup *cgrp; 3955 struct psi_group *psi; 3956 3957 ret = kstrtoint(strstrip(buf), 0, &enable); 3958 if (ret) 3959 return ret; 3960 3961 if (enable < 0 || enable > 1) 3962 return -ERANGE; 3963 3964 cgrp = cgroup_kn_lock_live(of->kn, false); 3965 if (!cgrp) 3966 return -ENOENT; 3967 3968 psi = cgroup_psi(cgrp); 3969 if (psi->enabled != enable) { 3970 int i; 3971 3972 /* show or hide {cpu,memory,io,irq}.pressure files */ 3973 for (i = 0; i < NR_PSI_RESOURCES; i++) 3974 cgroup_file_show(&cgrp->psi_files[i], enable); 3975 3976 psi->enabled = enable; 3977 if (enable) 3978 psi_cgroup_restart(psi); 3979 } 3980 3981 cgroup_kn_unlock(of->kn); 3982 3983 return nbytes; 3984 } 3985 3986 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3987 poll_table *pt) 3988 { 3989 struct cgroup_file_ctx *ctx = of->priv; 3990 3991 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3992 } 3993 3994 static void cgroup_pressure_release(struct kernfs_open_file *of) 3995 { 3996 struct cgroup_file_ctx *ctx = of->priv; 3997 3998 psi_trigger_destroy(ctx->psi.trigger); 3999 } 4000 4001 bool cgroup_psi_enabled(void) 4002 { 4003 if (static_branch_likely(&psi_disabled)) 4004 return false; 4005 4006 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 4007 } 4008 4009 #else /* CONFIG_PSI */ 4010 bool cgroup_psi_enabled(void) 4011 { 4012 return false; 4013 } 4014 4015 #endif /* CONFIG_PSI */ 4016 4017 static int cgroup_freeze_show(struct seq_file *seq, void *v) 4018 { 4019 struct cgroup *cgrp = seq_css(seq)->cgroup; 4020 4021 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 4022 4023 return 0; 4024 } 4025 4026 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 4027 char *buf, size_t nbytes, loff_t off) 4028 { 4029 struct cgroup *cgrp; 4030 ssize_t ret; 4031 int freeze; 4032 4033 ret = kstrtoint(strstrip(buf), 0, &freeze); 4034 if (ret) 4035 return ret; 4036 4037 if (freeze < 0 || freeze > 1) 4038 return -ERANGE; 4039 4040 cgrp = cgroup_kn_lock_live(of->kn, false); 4041 if (!cgrp) 4042 return -ENOENT; 4043 4044 cgroup_freeze(cgrp, freeze); 4045 4046 cgroup_kn_unlock(of->kn); 4047 4048 return nbytes; 4049 } 4050 4051 static void __cgroup_kill(struct cgroup *cgrp) 4052 { 4053 struct css_task_iter it; 4054 struct task_struct *task; 4055 4056 lockdep_assert_held(&cgroup_mutex); 4057 4058 spin_lock_irq(&css_set_lock); 4059 cgrp->kill_seq++; 4060 spin_unlock_irq(&css_set_lock); 4061 4062 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4063 while ((task = css_task_iter_next(&it))) { 4064 /* Ignore kernel threads here. */ 4065 if (task->flags & PF_KTHREAD) 4066 continue; 4067 4068 /* Skip tasks that are already dying. */ 4069 if (__fatal_signal_pending(task)) 4070 continue; 4071 4072 send_sig(SIGKILL, task, 0); 4073 } 4074 css_task_iter_end(&it); 4075 } 4076 4077 static void cgroup_kill(struct cgroup *cgrp) 4078 { 4079 struct cgroup_subsys_state *css; 4080 struct cgroup *dsct; 4081 4082 lockdep_assert_held(&cgroup_mutex); 4083 4084 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4085 __cgroup_kill(dsct); 4086 } 4087 4088 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4089 size_t nbytes, loff_t off) 4090 { 4091 ssize_t ret = 0; 4092 int kill; 4093 struct cgroup *cgrp; 4094 4095 ret = kstrtoint(strstrip(buf), 0, &kill); 4096 if (ret) 4097 return ret; 4098 4099 if (kill != 1) 4100 return -ERANGE; 4101 4102 cgrp = cgroup_kn_lock_live(of->kn, false); 4103 if (!cgrp) 4104 return -ENOENT; 4105 4106 /* 4107 * Killing is a process directed operation, i.e. the whole thread-group 4108 * is taken down so act like we do for cgroup.procs and only make this 4109 * writable in non-threaded cgroups. 4110 */ 4111 if (cgroup_is_threaded(cgrp)) 4112 ret = -EOPNOTSUPP; 4113 else 4114 cgroup_kill(cgrp); 4115 4116 cgroup_kn_unlock(of->kn); 4117 4118 return ret ?: nbytes; 4119 } 4120 4121 static int cgroup_file_open(struct kernfs_open_file *of) 4122 { 4123 struct cftype *cft = of_cft(of); 4124 struct cgroup_file_ctx *ctx; 4125 int ret; 4126 4127 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4128 if (!ctx) 4129 return -ENOMEM; 4130 4131 ctx->ns = current->nsproxy->cgroup_ns; 4132 get_cgroup_ns(ctx->ns); 4133 of->priv = ctx; 4134 4135 if (!cft->open) 4136 return 0; 4137 4138 ret = cft->open(of); 4139 if (ret) { 4140 put_cgroup_ns(ctx->ns); 4141 kfree(ctx); 4142 } 4143 return ret; 4144 } 4145 4146 static void cgroup_file_release(struct kernfs_open_file *of) 4147 { 4148 struct cftype *cft = of_cft(of); 4149 struct cgroup_file_ctx *ctx = of->priv; 4150 4151 if (cft->release) 4152 cft->release(of); 4153 put_cgroup_ns(ctx->ns); 4154 kfree(ctx); 4155 } 4156 4157 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4158 size_t nbytes, loff_t off) 4159 { 4160 struct cgroup_file_ctx *ctx = of->priv; 4161 struct cgroup *cgrp = kn_priv(of->kn); 4162 struct cftype *cft = of_cft(of); 4163 struct cgroup_subsys_state *css; 4164 int ret; 4165 4166 if (!nbytes) 4167 return 0; 4168 4169 /* 4170 * If namespaces are delegation boundaries, disallow writes to 4171 * files in an non-init namespace root from inside the namespace 4172 * except for the files explicitly marked delegatable - 4173 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4174 */ 4175 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4176 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4177 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4178 return -EPERM; 4179 4180 if (cft->write) 4181 return cft->write(of, buf, nbytes, off); 4182 4183 /* 4184 * kernfs guarantees that a file isn't deleted with operations in 4185 * flight, which means that the matching css is and stays alive and 4186 * doesn't need to be pinned. The RCU locking is not necessary 4187 * either. It's just for the convenience of using cgroup_css(). 4188 */ 4189 rcu_read_lock(); 4190 css = cgroup_css(cgrp, cft->ss); 4191 rcu_read_unlock(); 4192 4193 if (cft->write_u64) { 4194 unsigned long long v; 4195 ret = kstrtoull(buf, 0, &v); 4196 if (!ret) 4197 ret = cft->write_u64(css, cft, v); 4198 } else if (cft->write_s64) { 4199 long long v; 4200 ret = kstrtoll(buf, 0, &v); 4201 if (!ret) 4202 ret = cft->write_s64(css, cft, v); 4203 } else { 4204 ret = -EINVAL; 4205 } 4206 4207 return ret ?: nbytes; 4208 } 4209 4210 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4211 { 4212 struct cftype *cft = of_cft(of); 4213 4214 if (cft->poll) 4215 return cft->poll(of, pt); 4216 4217 return kernfs_generic_poll(of, pt); 4218 } 4219 4220 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4221 { 4222 return seq_cft(seq)->seq_start(seq, ppos); 4223 } 4224 4225 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4226 { 4227 return seq_cft(seq)->seq_next(seq, v, ppos); 4228 } 4229 4230 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4231 { 4232 if (seq_cft(seq)->seq_stop) 4233 seq_cft(seq)->seq_stop(seq, v); 4234 } 4235 4236 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4237 { 4238 struct cftype *cft = seq_cft(m); 4239 struct cgroup_subsys_state *css = seq_css(m); 4240 4241 if (cft->seq_show) 4242 return cft->seq_show(m, arg); 4243 4244 if (cft->read_u64) 4245 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4246 else if (cft->read_s64) 4247 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4248 else 4249 return -EINVAL; 4250 return 0; 4251 } 4252 4253 static struct kernfs_ops cgroup_kf_single_ops = { 4254 .atomic_write_len = PAGE_SIZE, 4255 .open = cgroup_file_open, 4256 .release = cgroup_file_release, 4257 .write = cgroup_file_write, 4258 .poll = cgroup_file_poll, 4259 .seq_show = cgroup_seqfile_show, 4260 }; 4261 4262 static struct kernfs_ops cgroup_kf_ops = { 4263 .atomic_write_len = PAGE_SIZE, 4264 .open = cgroup_file_open, 4265 .release = cgroup_file_release, 4266 .write = cgroup_file_write, 4267 .poll = cgroup_file_poll, 4268 .seq_start = cgroup_seqfile_start, 4269 .seq_next = cgroup_seqfile_next, 4270 .seq_stop = cgroup_seqfile_stop, 4271 .seq_show = cgroup_seqfile_show, 4272 }; 4273 4274 static void cgroup_file_notify_timer(struct timer_list *timer) 4275 { 4276 cgroup_file_notify(container_of(timer, struct cgroup_file, 4277 notify_timer)); 4278 } 4279 4280 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4281 struct cftype *cft) 4282 { 4283 char name[CGROUP_FILE_NAME_MAX]; 4284 struct kernfs_node *kn; 4285 struct lock_class_key *key = NULL; 4286 4287 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4288 key = &cft->lockdep_key; 4289 #endif 4290 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4291 cgroup_file_mode(cft), 4292 current_fsuid(), current_fsgid(), 4293 0, cft->kf_ops, cft, 4294 NULL, key); 4295 if (IS_ERR(kn)) 4296 return PTR_ERR(kn); 4297 4298 if (cft->file_offset) { 4299 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4300 4301 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4302 4303 spin_lock_irq(&cgroup_file_kn_lock); 4304 cfile->kn = kn; 4305 spin_unlock_irq(&cgroup_file_kn_lock); 4306 } 4307 4308 return 0; 4309 } 4310 4311 /** 4312 * cgroup_addrm_files - add or remove files to a cgroup directory 4313 * @css: the target css 4314 * @cgrp: the target cgroup (usually css->cgroup) 4315 * @cfts: array of cftypes to be added 4316 * @is_add: whether to add or remove 4317 * 4318 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4319 * For removals, this function never fails. 4320 */ 4321 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4322 struct cgroup *cgrp, struct cftype cfts[], 4323 bool is_add) 4324 { 4325 struct cftype *cft, *cft_end = NULL; 4326 int ret = 0; 4327 4328 lockdep_assert_held(&cgroup_mutex); 4329 4330 restart: 4331 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4332 /* does cft->flags tell us to skip this file on @cgrp? */ 4333 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4334 continue; 4335 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4336 continue; 4337 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4338 continue; 4339 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4340 continue; 4341 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4342 continue; 4343 if (is_add) { 4344 ret = cgroup_add_file(css, cgrp, cft); 4345 if (ret) { 4346 pr_warn("%s: failed to add %s, err=%d\n", 4347 __func__, cft->name, ret); 4348 cft_end = cft; 4349 is_add = false; 4350 goto restart; 4351 } 4352 } else { 4353 cgroup_rm_file(cgrp, cft); 4354 } 4355 } 4356 return ret; 4357 } 4358 4359 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4360 { 4361 struct cgroup_subsys *ss = cfts[0].ss; 4362 struct cgroup *root = &ss->root->cgrp; 4363 struct cgroup_subsys_state *css; 4364 int ret = 0; 4365 4366 lockdep_assert_held(&cgroup_mutex); 4367 4368 /* add/rm files for all cgroups created before */ 4369 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4370 struct cgroup *cgrp = css->cgroup; 4371 4372 if (!(css->flags & CSS_VISIBLE)) 4373 continue; 4374 4375 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4376 if (ret) 4377 break; 4378 } 4379 4380 if (is_add && !ret) 4381 kernfs_activate(root->kn); 4382 return ret; 4383 } 4384 4385 static void cgroup_exit_cftypes(struct cftype *cfts) 4386 { 4387 struct cftype *cft; 4388 4389 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4390 /* free copy for custom atomic_write_len, see init_cftypes() */ 4391 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4392 kfree(cft->kf_ops); 4393 cft->kf_ops = NULL; 4394 cft->ss = NULL; 4395 4396 /* revert flags set by cgroup core while adding @cfts */ 4397 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4398 __CFTYPE_ADDED); 4399 } 4400 } 4401 4402 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4403 { 4404 struct cftype *cft; 4405 int ret = 0; 4406 4407 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4408 struct kernfs_ops *kf_ops; 4409 4410 WARN_ON(cft->ss || cft->kf_ops); 4411 4412 if (cft->flags & __CFTYPE_ADDED) { 4413 ret = -EBUSY; 4414 break; 4415 } 4416 4417 if (cft->seq_start) 4418 kf_ops = &cgroup_kf_ops; 4419 else 4420 kf_ops = &cgroup_kf_single_ops; 4421 4422 /* 4423 * Ugh... if @cft wants a custom max_write_len, we need to 4424 * make a copy of kf_ops to set its atomic_write_len. 4425 */ 4426 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4427 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4428 if (!kf_ops) { 4429 ret = -ENOMEM; 4430 break; 4431 } 4432 kf_ops->atomic_write_len = cft->max_write_len; 4433 } 4434 4435 cft->kf_ops = kf_ops; 4436 cft->ss = ss; 4437 cft->flags |= __CFTYPE_ADDED; 4438 } 4439 4440 if (ret) 4441 cgroup_exit_cftypes(cfts); 4442 return ret; 4443 } 4444 4445 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4446 { 4447 lockdep_assert_held(&cgroup_mutex); 4448 4449 list_del(&cfts->node); 4450 cgroup_apply_cftypes(cfts, false); 4451 cgroup_exit_cftypes(cfts); 4452 } 4453 4454 /** 4455 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4456 * @cfts: zero-length name terminated array of cftypes 4457 * 4458 * Unregister @cfts. Files described by @cfts are removed from all 4459 * existing cgroups and all future cgroups won't have them either. This 4460 * function can be called anytime whether @cfts' subsys is attached or not. 4461 * 4462 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4463 * registered. 4464 */ 4465 int cgroup_rm_cftypes(struct cftype *cfts) 4466 { 4467 if (!cfts || cfts[0].name[0] == '\0') 4468 return 0; 4469 4470 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4471 return -ENOENT; 4472 4473 cgroup_lock(); 4474 cgroup_rm_cftypes_locked(cfts); 4475 cgroup_unlock(); 4476 return 0; 4477 } 4478 4479 /** 4480 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4481 * @ss: target cgroup subsystem 4482 * @cfts: zero-length name terminated array of cftypes 4483 * 4484 * Register @cfts to @ss. Files described by @cfts are created for all 4485 * existing cgroups to which @ss is attached and all future cgroups will 4486 * have them too. This function can be called anytime whether @ss is 4487 * attached or not. 4488 * 4489 * Returns 0 on successful registration, -errno on failure. Note that this 4490 * function currently returns 0 as long as @cfts registration is successful 4491 * even if some file creation attempts on existing cgroups fail. 4492 */ 4493 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4494 { 4495 int ret; 4496 4497 if (!cgroup_ssid_enabled(ss->id)) 4498 return 0; 4499 4500 if (!cfts || cfts[0].name[0] == '\0') 4501 return 0; 4502 4503 ret = cgroup_init_cftypes(ss, cfts); 4504 if (ret) 4505 return ret; 4506 4507 cgroup_lock(); 4508 4509 list_add_tail(&cfts->node, &ss->cfts); 4510 ret = cgroup_apply_cftypes(cfts, true); 4511 if (ret) 4512 cgroup_rm_cftypes_locked(cfts); 4513 4514 cgroup_unlock(); 4515 return ret; 4516 } 4517 4518 /** 4519 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4520 * @ss: target cgroup subsystem 4521 * @cfts: zero-length name terminated array of cftypes 4522 * 4523 * Similar to cgroup_add_cftypes() but the added files are only used for 4524 * the default hierarchy. 4525 */ 4526 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4527 { 4528 struct cftype *cft; 4529 4530 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4531 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4532 return cgroup_add_cftypes(ss, cfts); 4533 } 4534 4535 /** 4536 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4537 * @ss: target cgroup subsystem 4538 * @cfts: zero-length name terminated array of cftypes 4539 * 4540 * Similar to cgroup_add_cftypes() but the added files are only used for 4541 * the legacy hierarchies. 4542 */ 4543 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4544 { 4545 struct cftype *cft; 4546 4547 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4548 cft->flags |= __CFTYPE_NOT_ON_DFL; 4549 return cgroup_add_cftypes(ss, cfts); 4550 } 4551 4552 /** 4553 * cgroup_file_notify - generate a file modified event for a cgroup_file 4554 * @cfile: target cgroup_file 4555 * 4556 * @cfile must have been obtained by setting cftype->file_offset. 4557 */ 4558 void cgroup_file_notify(struct cgroup_file *cfile) 4559 { 4560 unsigned long flags; 4561 4562 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4563 if (cfile->kn) { 4564 unsigned long last = cfile->notified_at; 4565 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4566 4567 if (time_in_range(jiffies, last, next)) { 4568 timer_reduce(&cfile->notify_timer, next); 4569 } else { 4570 kernfs_notify(cfile->kn); 4571 cfile->notified_at = jiffies; 4572 } 4573 } 4574 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4575 } 4576 4577 /** 4578 * cgroup_file_show - show or hide a hidden cgroup file 4579 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4580 * @show: whether to show or hide 4581 */ 4582 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4583 { 4584 struct kernfs_node *kn; 4585 4586 spin_lock_irq(&cgroup_file_kn_lock); 4587 kn = cfile->kn; 4588 kernfs_get(kn); 4589 spin_unlock_irq(&cgroup_file_kn_lock); 4590 4591 if (kn) 4592 kernfs_show(kn, show); 4593 4594 kernfs_put(kn); 4595 } 4596 4597 /** 4598 * css_next_child - find the next child of a given css 4599 * @pos: the current position (%NULL to initiate traversal) 4600 * @parent: css whose children to walk 4601 * 4602 * This function returns the next child of @parent and should be called 4603 * under either cgroup_mutex or RCU read lock. The only requirement is 4604 * that @parent and @pos are accessible. The next sibling is guaranteed to 4605 * be returned regardless of their states. 4606 * 4607 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4608 * css which finished ->css_online() is guaranteed to be visible in the 4609 * future iterations and will stay visible until the last reference is put. 4610 * A css which hasn't finished ->css_online() or already finished 4611 * ->css_offline() may show up during traversal. It's each subsystem's 4612 * responsibility to synchronize against on/offlining. 4613 */ 4614 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4615 struct cgroup_subsys_state *parent) 4616 { 4617 struct cgroup_subsys_state *next; 4618 4619 cgroup_assert_mutex_or_rcu_locked(); 4620 4621 /* 4622 * @pos could already have been unlinked from the sibling list. 4623 * Once a cgroup is removed, its ->sibling.next is no longer 4624 * updated when its next sibling changes. CSS_RELEASED is set when 4625 * @pos is taken off list, at which time its next pointer is valid, 4626 * and, as releases are serialized, the one pointed to by the next 4627 * pointer is guaranteed to not have started release yet. This 4628 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4629 * critical section, the one pointed to by its next pointer is 4630 * guaranteed to not have finished its RCU grace period even if we 4631 * have dropped rcu_read_lock() in-between iterations. 4632 * 4633 * If @pos has CSS_RELEASED set, its next pointer can't be 4634 * dereferenced; however, as each css is given a monotonically 4635 * increasing unique serial number and always appended to the 4636 * sibling list, the next one can be found by walking the parent's 4637 * children until the first css with higher serial number than 4638 * @pos's. While this path can be slower, it happens iff iteration 4639 * races against release and the race window is very small. 4640 */ 4641 if (!pos) { 4642 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4643 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4644 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4645 } else { 4646 list_for_each_entry_rcu(next, &parent->children, sibling, 4647 lockdep_is_held(&cgroup_mutex)) 4648 if (next->serial_nr > pos->serial_nr) 4649 break; 4650 } 4651 4652 /* 4653 * @next, if not pointing to the head, can be dereferenced and is 4654 * the next sibling. 4655 */ 4656 if (&next->sibling != &parent->children) 4657 return next; 4658 return NULL; 4659 } 4660 4661 /** 4662 * css_next_descendant_pre - find the next descendant for pre-order walk 4663 * @pos: the current position (%NULL to initiate traversal) 4664 * @root: css whose descendants to walk 4665 * 4666 * To be used by css_for_each_descendant_pre(). Find the next descendant 4667 * to visit for pre-order traversal of @root's descendants. @root is 4668 * included in the iteration and the first node to be visited. 4669 * 4670 * While this function requires cgroup_mutex or RCU read locking, it 4671 * doesn't require the whole traversal to be contained in a single critical 4672 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4673 * This function will return the correct next descendant as long as both @pos 4674 * and @root are accessible and @pos is a descendant of @root. 4675 * 4676 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4677 * css which finished ->css_online() is guaranteed to be visible in the 4678 * future iterations and will stay visible until the last reference is put. 4679 * A css which hasn't finished ->css_online() or already finished 4680 * ->css_offline() may show up during traversal. It's each subsystem's 4681 * responsibility to synchronize against on/offlining. 4682 */ 4683 struct cgroup_subsys_state * 4684 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4685 struct cgroup_subsys_state *root) 4686 { 4687 struct cgroup_subsys_state *next; 4688 4689 cgroup_assert_mutex_or_rcu_locked(); 4690 4691 /* if first iteration, visit @root */ 4692 if (!pos) 4693 return root; 4694 4695 /* visit the first child if exists */ 4696 next = css_next_child(NULL, pos); 4697 if (next) 4698 return next; 4699 4700 /* no child, visit my or the closest ancestor's next sibling */ 4701 while (pos != root) { 4702 next = css_next_child(pos, pos->parent); 4703 if (next) 4704 return next; 4705 pos = pos->parent; 4706 } 4707 4708 return NULL; 4709 } 4710 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4711 4712 /** 4713 * css_rightmost_descendant - return the rightmost descendant of a css 4714 * @pos: css of interest 4715 * 4716 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4717 * is returned. This can be used during pre-order traversal to skip 4718 * subtree of @pos. 4719 * 4720 * While this function requires cgroup_mutex or RCU read locking, it 4721 * doesn't require the whole traversal to be contained in a single critical 4722 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4723 * This function will return the correct rightmost descendant as long as @pos 4724 * is accessible. 4725 */ 4726 struct cgroup_subsys_state * 4727 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4728 { 4729 struct cgroup_subsys_state *last, *tmp; 4730 4731 cgroup_assert_mutex_or_rcu_locked(); 4732 4733 do { 4734 last = pos; 4735 /* ->prev isn't RCU safe, walk ->next till the end */ 4736 pos = NULL; 4737 css_for_each_child(tmp, last) 4738 pos = tmp; 4739 } while (pos); 4740 4741 return last; 4742 } 4743 4744 static struct cgroup_subsys_state * 4745 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4746 { 4747 struct cgroup_subsys_state *last; 4748 4749 do { 4750 last = pos; 4751 pos = css_next_child(NULL, pos); 4752 } while (pos); 4753 4754 return last; 4755 } 4756 4757 /** 4758 * css_next_descendant_post - find the next descendant for post-order walk 4759 * @pos: the current position (%NULL to initiate traversal) 4760 * @root: css whose descendants to walk 4761 * 4762 * To be used by css_for_each_descendant_post(). Find the next descendant 4763 * to visit for post-order traversal of @root's descendants. @root is 4764 * included in the iteration and the last node to be visited. 4765 * 4766 * While this function requires cgroup_mutex or RCU read locking, it 4767 * doesn't require the whole traversal to be contained in a single critical 4768 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4769 * This function will return the correct next descendant as long as both @pos 4770 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4771 * 4772 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4773 * css which finished ->css_online() is guaranteed to be visible in the 4774 * future iterations and will stay visible until the last reference is put. 4775 * A css which hasn't finished ->css_online() or already finished 4776 * ->css_offline() may show up during traversal. It's each subsystem's 4777 * responsibility to synchronize against on/offlining. 4778 */ 4779 struct cgroup_subsys_state * 4780 css_next_descendant_post(struct cgroup_subsys_state *pos, 4781 struct cgroup_subsys_state *root) 4782 { 4783 struct cgroup_subsys_state *next; 4784 4785 cgroup_assert_mutex_or_rcu_locked(); 4786 4787 /* if first iteration, visit leftmost descendant which may be @root */ 4788 if (!pos) 4789 return css_leftmost_descendant(root); 4790 4791 /* if we visited @root, we're done */ 4792 if (pos == root) 4793 return NULL; 4794 4795 /* if there's an unvisited sibling, visit its leftmost descendant */ 4796 next = css_next_child(pos, pos->parent); 4797 if (next) 4798 return css_leftmost_descendant(next); 4799 4800 /* no sibling left, visit parent */ 4801 return pos->parent; 4802 } 4803 4804 /** 4805 * css_has_online_children - does a css have online children 4806 * @css: the target css 4807 * 4808 * Returns %true if @css has any online children; otherwise, %false. This 4809 * function can be called from any context but the caller is responsible 4810 * for synchronizing against on/offlining as necessary. 4811 */ 4812 bool css_has_online_children(struct cgroup_subsys_state *css) 4813 { 4814 struct cgroup_subsys_state *child; 4815 bool ret = false; 4816 4817 rcu_read_lock(); 4818 css_for_each_child(child, css) { 4819 if (child->flags & CSS_ONLINE) { 4820 ret = true; 4821 break; 4822 } 4823 } 4824 rcu_read_unlock(); 4825 return ret; 4826 } 4827 4828 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4829 { 4830 struct list_head *l; 4831 struct cgrp_cset_link *link; 4832 struct css_set *cset; 4833 4834 lockdep_assert_held(&css_set_lock); 4835 4836 /* find the next threaded cset */ 4837 if (it->tcset_pos) { 4838 l = it->tcset_pos->next; 4839 4840 if (l != it->tcset_head) { 4841 it->tcset_pos = l; 4842 return container_of(l, struct css_set, 4843 threaded_csets_node); 4844 } 4845 4846 it->tcset_pos = NULL; 4847 } 4848 4849 /* find the next cset */ 4850 l = it->cset_pos; 4851 l = l->next; 4852 if (l == it->cset_head) { 4853 it->cset_pos = NULL; 4854 return NULL; 4855 } 4856 4857 if (it->ss) { 4858 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4859 } else { 4860 link = list_entry(l, struct cgrp_cset_link, cset_link); 4861 cset = link->cset; 4862 } 4863 4864 it->cset_pos = l; 4865 4866 /* initialize threaded css_set walking */ 4867 if (it->flags & CSS_TASK_ITER_THREADED) { 4868 if (it->cur_dcset) 4869 put_css_set_locked(it->cur_dcset); 4870 it->cur_dcset = cset; 4871 get_css_set(cset); 4872 4873 it->tcset_head = &cset->threaded_csets; 4874 it->tcset_pos = &cset->threaded_csets; 4875 } 4876 4877 return cset; 4878 } 4879 4880 /** 4881 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4882 * @it: the iterator to advance 4883 * 4884 * Advance @it to the next css_set to walk. 4885 */ 4886 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4887 { 4888 struct css_set *cset; 4889 4890 lockdep_assert_held(&css_set_lock); 4891 4892 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4893 while ((cset = css_task_iter_next_css_set(it))) { 4894 if (!list_empty(&cset->tasks)) { 4895 it->cur_tasks_head = &cset->tasks; 4896 break; 4897 } else if (!list_empty(&cset->mg_tasks)) { 4898 it->cur_tasks_head = &cset->mg_tasks; 4899 break; 4900 } else if (!list_empty(&cset->dying_tasks)) { 4901 it->cur_tasks_head = &cset->dying_tasks; 4902 break; 4903 } 4904 } 4905 if (!cset) { 4906 it->task_pos = NULL; 4907 return; 4908 } 4909 it->task_pos = it->cur_tasks_head->next; 4910 4911 /* 4912 * We don't keep css_sets locked across iteration steps and thus 4913 * need to take steps to ensure that iteration can be resumed after 4914 * the lock is re-acquired. Iteration is performed at two levels - 4915 * css_sets and tasks in them. 4916 * 4917 * Once created, a css_set never leaves its cgroup lists, so a 4918 * pinned css_set is guaranteed to stay put and we can resume 4919 * iteration afterwards. 4920 * 4921 * Tasks may leave @cset across iteration steps. This is resolved 4922 * by registering each iterator with the css_set currently being 4923 * walked and making css_set_move_task() advance iterators whose 4924 * next task is leaving. 4925 */ 4926 if (it->cur_cset) { 4927 list_del(&it->iters_node); 4928 put_css_set_locked(it->cur_cset); 4929 } 4930 get_css_set(cset); 4931 it->cur_cset = cset; 4932 list_add(&it->iters_node, &cset->task_iters); 4933 } 4934 4935 static void css_task_iter_skip(struct css_task_iter *it, 4936 struct task_struct *task) 4937 { 4938 lockdep_assert_held(&css_set_lock); 4939 4940 if (it->task_pos == &task->cg_list) { 4941 it->task_pos = it->task_pos->next; 4942 it->flags |= CSS_TASK_ITER_SKIPPED; 4943 } 4944 } 4945 4946 static void css_task_iter_advance(struct css_task_iter *it) 4947 { 4948 struct task_struct *task; 4949 4950 lockdep_assert_held(&css_set_lock); 4951 repeat: 4952 if (it->task_pos) { 4953 /* 4954 * Advance iterator to find next entry. We go through cset 4955 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4956 * the next cset. 4957 */ 4958 if (it->flags & CSS_TASK_ITER_SKIPPED) 4959 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4960 else 4961 it->task_pos = it->task_pos->next; 4962 4963 if (it->task_pos == &it->cur_cset->tasks) { 4964 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4965 it->task_pos = it->cur_tasks_head->next; 4966 } 4967 if (it->task_pos == &it->cur_cset->mg_tasks) { 4968 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4969 it->task_pos = it->cur_tasks_head->next; 4970 } 4971 if (it->task_pos == &it->cur_cset->dying_tasks) 4972 css_task_iter_advance_css_set(it); 4973 } else { 4974 /* called from start, proceed to the first cset */ 4975 css_task_iter_advance_css_set(it); 4976 } 4977 4978 if (!it->task_pos) 4979 return; 4980 4981 task = list_entry(it->task_pos, struct task_struct, cg_list); 4982 4983 if (it->flags & CSS_TASK_ITER_PROCS) { 4984 /* if PROCS, skip over tasks which aren't group leaders */ 4985 if (!thread_group_leader(task)) 4986 goto repeat; 4987 4988 /* and dying leaders w/o live member threads */ 4989 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4990 !atomic_read(&task->signal->live)) 4991 goto repeat; 4992 } else { 4993 /* skip all dying ones */ 4994 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4995 goto repeat; 4996 } 4997 } 4998 4999 /** 5000 * css_task_iter_start - initiate task iteration 5001 * @css: the css to walk tasks of 5002 * @flags: CSS_TASK_ITER_* flags 5003 * @it: the task iterator to use 5004 * 5005 * Initiate iteration through the tasks of @css. The caller can call 5006 * css_task_iter_next() to walk through the tasks until the function 5007 * returns NULL. On completion of iteration, css_task_iter_end() must be 5008 * called. 5009 */ 5010 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 5011 struct css_task_iter *it) 5012 { 5013 unsigned long irqflags; 5014 5015 memset(it, 0, sizeof(*it)); 5016 5017 spin_lock_irqsave(&css_set_lock, irqflags); 5018 5019 it->ss = css->ss; 5020 it->flags = flags; 5021 5022 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 5023 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 5024 else 5025 it->cset_pos = &css->cgroup->cset_links; 5026 5027 it->cset_head = it->cset_pos; 5028 5029 css_task_iter_advance(it); 5030 5031 spin_unlock_irqrestore(&css_set_lock, irqflags); 5032 } 5033 5034 /** 5035 * css_task_iter_next - return the next task for the iterator 5036 * @it: the task iterator being iterated 5037 * 5038 * The "next" function for task iteration. @it should have been 5039 * initialized via css_task_iter_start(). Returns NULL when the iteration 5040 * reaches the end. 5041 */ 5042 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5043 { 5044 unsigned long irqflags; 5045 5046 if (it->cur_task) { 5047 put_task_struct(it->cur_task); 5048 it->cur_task = NULL; 5049 } 5050 5051 spin_lock_irqsave(&css_set_lock, irqflags); 5052 5053 /* @it may be half-advanced by skips, finish advancing */ 5054 if (it->flags & CSS_TASK_ITER_SKIPPED) 5055 css_task_iter_advance(it); 5056 5057 if (it->task_pos) { 5058 it->cur_task = list_entry(it->task_pos, struct task_struct, 5059 cg_list); 5060 get_task_struct(it->cur_task); 5061 css_task_iter_advance(it); 5062 } 5063 5064 spin_unlock_irqrestore(&css_set_lock, irqflags); 5065 5066 return it->cur_task; 5067 } 5068 5069 /** 5070 * css_task_iter_end - finish task iteration 5071 * @it: the task iterator to finish 5072 * 5073 * Finish task iteration started by css_task_iter_start(). 5074 */ 5075 void css_task_iter_end(struct css_task_iter *it) 5076 { 5077 unsigned long irqflags; 5078 5079 if (it->cur_cset) { 5080 spin_lock_irqsave(&css_set_lock, irqflags); 5081 list_del(&it->iters_node); 5082 put_css_set_locked(it->cur_cset); 5083 spin_unlock_irqrestore(&css_set_lock, irqflags); 5084 } 5085 5086 if (it->cur_dcset) 5087 put_css_set(it->cur_dcset); 5088 5089 if (it->cur_task) 5090 put_task_struct(it->cur_task); 5091 } 5092 5093 static void cgroup_procs_release(struct kernfs_open_file *of) 5094 { 5095 struct cgroup_file_ctx *ctx = of->priv; 5096 5097 if (ctx->procs.started) 5098 css_task_iter_end(&ctx->procs.iter); 5099 } 5100 5101 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5102 { 5103 struct kernfs_open_file *of = s->private; 5104 struct cgroup_file_ctx *ctx = of->priv; 5105 5106 if (pos) 5107 (*pos)++; 5108 5109 return css_task_iter_next(&ctx->procs.iter); 5110 } 5111 5112 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5113 unsigned int iter_flags) 5114 { 5115 struct kernfs_open_file *of = s->private; 5116 struct cgroup *cgrp = seq_css(s)->cgroup; 5117 struct cgroup_file_ctx *ctx = of->priv; 5118 struct css_task_iter *it = &ctx->procs.iter; 5119 5120 /* 5121 * When a seq_file is seeked, it's always traversed sequentially 5122 * from position 0, so we can simply keep iterating on !0 *pos. 5123 */ 5124 if (!ctx->procs.started) { 5125 if (WARN_ON_ONCE((*pos))) 5126 return ERR_PTR(-EINVAL); 5127 css_task_iter_start(&cgrp->self, iter_flags, it); 5128 ctx->procs.started = true; 5129 } else if (!(*pos)) { 5130 css_task_iter_end(it); 5131 css_task_iter_start(&cgrp->self, iter_flags, it); 5132 } else 5133 return it->cur_task; 5134 5135 return cgroup_procs_next(s, NULL, NULL); 5136 } 5137 5138 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5139 { 5140 struct cgroup *cgrp = seq_css(s)->cgroup; 5141 5142 /* 5143 * All processes of a threaded subtree belong to the domain cgroup 5144 * of the subtree. Only threads can be distributed across the 5145 * subtree. Reject reads on cgroup.procs in the subtree proper. 5146 * They're always empty anyway. 5147 */ 5148 if (cgroup_is_threaded(cgrp)) 5149 return ERR_PTR(-EOPNOTSUPP); 5150 5151 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5152 CSS_TASK_ITER_THREADED); 5153 } 5154 5155 static int cgroup_procs_show(struct seq_file *s, void *v) 5156 { 5157 seq_printf(s, "%d\n", task_pid_vnr(v)); 5158 return 0; 5159 } 5160 5161 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5162 { 5163 int ret; 5164 struct inode *inode; 5165 5166 lockdep_assert_held(&cgroup_mutex); 5167 5168 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5169 if (!inode) 5170 return -ENOMEM; 5171 5172 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5173 iput(inode); 5174 return ret; 5175 } 5176 5177 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5178 struct cgroup *dst_cgrp, 5179 struct super_block *sb, 5180 struct cgroup_namespace *ns) 5181 { 5182 struct cgroup *com_cgrp = src_cgrp; 5183 int ret; 5184 5185 lockdep_assert_held(&cgroup_mutex); 5186 5187 /* find the common ancestor */ 5188 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5189 com_cgrp = cgroup_parent(com_cgrp); 5190 5191 /* %current should be authorized to migrate to the common ancestor */ 5192 ret = cgroup_may_write(com_cgrp, sb); 5193 if (ret) 5194 return ret; 5195 5196 /* 5197 * If namespaces are delegation boundaries, %current must be able 5198 * to see both source and destination cgroups from its namespace. 5199 */ 5200 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5201 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5202 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5203 return -ENOENT; 5204 5205 return 0; 5206 } 5207 5208 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5209 struct cgroup *dst_cgrp, 5210 struct super_block *sb, bool threadgroup, 5211 struct cgroup_namespace *ns) 5212 { 5213 int ret = 0; 5214 5215 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5216 if (ret) 5217 return ret; 5218 5219 ret = cgroup_migrate_vet_dst(dst_cgrp); 5220 if (ret) 5221 return ret; 5222 5223 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5224 ret = -EOPNOTSUPP; 5225 5226 return ret; 5227 } 5228 5229 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5230 bool threadgroup) 5231 { 5232 struct cgroup_file_ctx *ctx = of->priv; 5233 struct cgroup *src_cgrp, *dst_cgrp; 5234 struct task_struct *task; 5235 const struct cred *saved_cred; 5236 ssize_t ret; 5237 bool threadgroup_locked; 5238 5239 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5240 if (!dst_cgrp) 5241 return -ENODEV; 5242 5243 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5244 ret = PTR_ERR_OR_ZERO(task); 5245 if (ret) 5246 goto out_unlock; 5247 5248 /* find the source cgroup */ 5249 spin_lock_irq(&css_set_lock); 5250 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5251 spin_unlock_irq(&css_set_lock); 5252 5253 /* 5254 * Process and thread migrations follow same delegation rule. Check 5255 * permissions using the credentials from file open to protect against 5256 * inherited fd attacks. 5257 */ 5258 saved_cred = override_creds(of->file->f_cred); 5259 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5260 of->file->f_path.dentry->d_sb, 5261 threadgroup, ctx->ns); 5262 revert_creds(saved_cred); 5263 if (ret) 5264 goto out_finish; 5265 5266 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5267 5268 out_finish: 5269 cgroup_procs_write_finish(task, threadgroup_locked); 5270 out_unlock: 5271 cgroup_kn_unlock(of->kn); 5272 5273 return ret; 5274 } 5275 5276 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5277 char *buf, size_t nbytes, loff_t off) 5278 { 5279 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5280 } 5281 5282 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5283 { 5284 return __cgroup_procs_start(s, pos, 0); 5285 } 5286 5287 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5288 char *buf, size_t nbytes, loff_t off) 5289 { 5290 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5291 } 5292 5293 /* cgroup core interface files for the default hierarchy */ 5294 static struct cftype cgroup_base_files[] = { 5295 { 5296 .name = "cgroup.type", 5297 .flags = CFTYPE_NOT_ON_ROOT, 5298 .seq_show = cgroup_type_show, 5299 .write = cgroup_type_write, 5300 }, 5301 { 5302 .name = "cgroup.procs", 5303 .flags = CFTYPE_NS_DELEGATABLE, 5304 .file_offset = offsetof(struct cgroup, procs_file), 5305 .release = cgroup_procs_release, 5306 .seq_start = cgroup_procs_start, 5307 .seq_next = cgroup_procs_next, 5308 .seq_show = cgroup_procs_show, 5309 .write = cgroup_procs_write, 5310 }, 5311 { 5312 .name = "cgroup.threads", 5313 .flags = CFTYPE_NS_DELEGATABLE, 5314 .release = cgroup_procs_release, 5315 .seq_start = cgroup_threads_start, 5316 .seq_next = cgroup_procs_next, 5317 .seq_show = cgroup_procs_show, 5318 .write = cgroup_threads_write, 5319 }, 5320 { 5321 .name = "cgroup.controllers", 5322 .seq_show = cgroup_controllers_show, 5323 }, 5324 { 5325 .name = "cgroup.subtree_control", 5326 .flags = CFTYPE_NS_DELEGATABLE, 5327 .seq_show = cgroup_subtree_control_show, 5328 .write = cgroup_subtree_control_write, 5329 }, 5330 { 5331 .name = "cgroup.events", 5332 .flags = CFTYPE_NOT_ON_ROOT, 5333 .file_offset = offsetof(struct cgroup, events_file), 5334 .seq_show = cgroup_events_show, 5335 }, 5336 { 5337 .name = "cgroup.max.descendants", 5338 .seq_show = cgroup_max_descendants_show, 5339 .write = cgroup_max_descendants_write, 5340 }, 5341 { 5342 .name = "cgroup.max.depth", 5343 .seq_show = cgroup_max_depth_show, 5344 .write = cgroup_max_depth_write, 5345 }, 5346 { 5347 .name = "cgroup.stat", 5348 .seq_show = cgroup_stat_show, 5349 }, 5350 { 5351 .name = "cgroup.freeze", 5352 .flags = CFTYPE_NOT_ON_ROOT, 5353 .seq_show = cgroup_freeze_show, 5354 .write = cgroup_freeze_write, 5355 }, 5356 { 5357 .name = "cgroup.kill", 5358 .flags = CFTYPE_NOT_ON_ROOT, 5359 .write = cgroup_kill_write, 5360 }, 5361 { 5362 .name = "cpu.stat", 5363 .seq_show = cpu_stat_show, 5364 }, 5365 { 5366 .name = "cpu.stat.local", 5367 .seq_show = cpu_local_stat_show, 5368 }, 5369 { } /* terminate */ 5370 }; 5371 5372 static struct cftype cgroup_psi_files[] = { 5373 #ifdef CONFIG_PSI 5374 { 5375 .name = "io.pressure", 5376 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5377 .seq_show = cgroup_io_pressure_show, 5378 .write = cgroup_io_pressure_write, 5379 .poll = cgroup_pressure_poll, 5380 .release = cgroup_pressure_release, 5381 }, 5382 { 5383 .name = "memory.pressure", 5384 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5385 .seq_show = cgroup_memory_pressure_show, 5386 .write = cgroup_memory_pressure_write, 5387 .poll = cgroup_pressure_poll, 5388 .release = cgroup_pressure_release, 5389 }, 5390 { 5391 .name = "cpu.pressure", 5392 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5393 .seq_show = cgroup_cpu_pressure_show, 5394 .write = cgroup_cpu_pressure_write, 5395 .poll = cgroup_pressure_poll, 5396 .release = cgroup_pressure_release, 5397 }, 5398 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5399 { 5400 .name = "irq.pressure", 5401 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5402 .seq_show = cgroup_irq_pressure_show, 5403 .write = cgroup_irq_pressure_write, 5404 .poll = cgroup_pressure_poll, 5405 .release = cgroup_pressure_release, 5406 }, 5407 #endif 5408 { 5409 .name = "cgroup.pressure", 5410 .seq_show = cgroup_pressure_show, 5411 .write = cgroup_pressure_write, 5412 }, 5413 #endif /* CONFIG_PSI */ 5414 { } /* terminate */ 5415 }; 5416 5417 /* 5418 * css destruction is four-stage process. 5419 * 5420 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5421 * Implemented in kill_css(). 5422 * 5423 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5424 * and thus css_tryget_online() is guaranteed to fail, the css can be 5425 * offlined by invoking offline_css(). After offlining, the base ref is 5426 * put. Implemented in css_killed_work_fn(). 5427 * 5428 * 3. When the percpu_ref reaches zero, the only possible remaining 5429 * accessors are inside RCU read sections. css_release() schedules the 5430 * RCU callback. 5431 * 5432 * 4. After the grace period, the css can be freed. Implemented in 5433 * css_free_rwork_fn(). 5434 * 5435 * It is actually hairier because both step 2 and 4 require process context 5436 * and thus involve punting to css->destroy_work adding two additional 5437 * steps to the already complex sequence. 5438 */ 5439 static void css_free_rwork_fn(struct work_struct *work) 5440 { 5441 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5442 struct cgroup_subsys_state, destroy_rwork); 5443 struct cgroup_subsys *ss = css->ss; 5444 struct cgroup *cgrp = css->cgroup; 5445 5446 percpu_ref_exit(&css->refcnt); 5447 5448 if (ss) { 5449 /* css free path */ 5450 struct cgroup_subsys_state *parent = css->parent; 5451 int id = css->id; 5452 5453 ss->css_free(css); 5454 cgroup_idr_remove(&ss->css_idr, id); 5455 cgroup_put(cgrp); 5456 5457 if (parent) 5458 css_put(parent); 5459 } else { 5460 /* cgroup free path */ 5461 atomic_dec(&cgrp->root->nr_cgrps); 5462 if (!cgroup_on_dfl(cgrp)) 5463 cgroup1_pidlist_destroy_all(cgrp); 5464 cancel_work_sync(&cgrp->release_agent_work); 5465 bpf_cgrp_storage_free(cgrp); 5466 5467 if (cgroup_parent(cgrp)) { 5468 /* 5469 * We get a ref to the parent, and put the ref when 5470 * this cgroup is being freed, so it's guaranteed 5471 * that the parent won't be destroyed before its 5472 * children. 5473 */ 5474 cgroup_put(cgroup_parent(cgrp)); 5475 kernfs_put(cgrp->kn); 5476 psi_cgroup_free(cgrp); 5477 cgroup_rstat_exit(cgrp); 5478 kfree(cgrp); 5479 } else { 5480 /* 5481 * This is root cgroup's refcnt reaching zero, 5482 * which indicates that the root should be 5483 * released. 5484 */ 5485 cgroup_destroy_root(cgrp->root); 5486 } 5487 } 5488 } 5489 5490 static void css_release_work_fn(struct work_struct *work) 5491 { 5492 struct cgroup_subsys_state *css = 5493 container_of(work, struct cgroup_subsys_state, destroy_work); 5494 struct cgroup_subsys *ss = css->ss; 5495 struct cgroup *cgrp = css->cgroup; 5496 5497 cgroup_lock(); 5498 5499 css->flags |= CSS_RELEASED; 5500 list_del_rcu(&css->sibling); 5501 5502 if (ss) { 5503 struct cgroup *parent_cgrp; 5504 5505 /* css release path */ 5506 if (!list_empty(&css->rstat_css_node)) { 5507 cgroup_rstat_flush(cgrp); 5508 list_del_rcu(&css->rstat_css_node); 5509 } 5510 5511 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5512 if (ss->css_released) 5513 ss->css_released(css); 5514 5515 cgrp->nr_dying_subsys[ss->id]--; 5516 /* 5517 * When a css is released and ready to be freed, its 5518 * nr_descendants must be zero. However, the corresponding 5519 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5520 * is activated and deactivated multiple times with one or 5521 * more of its previous activation leaving behind dying csses. 5522 */ 5523 WARN_ON_ONCE(css->nr_descendants); 5524 parent_cgrp = cgroup_parent(cgrp); 5525 while (parent_cgrp) { 5526 parent_cgrp->nr_dying_subsys[ss->id]--; 5527 parent_cgrp = cgroup_parent(parent_cgrp); 5528 } 5529 } else { 5530 struct cgroup *tcgrp; 5531 5532 /* cgroup release path */ 5533 TRACE_CGROUP_PATH(release, cgrp); 5534 5535 cgroup_rstat_flush(cgrp); 5536 5537 spin_lock_irq(&css_set_lock); 5538 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5539 tcgrp = cgroup_parent(tcgrp)) 5540 tcgrp->nr_dying_descendants--; 5541 spin_unlock_irq(&css_set_lock); 5542 5543 /* 5544 * There are two control paths which try to determine 5545 * cgroup from dentry without going through kernfs - 5546 * cgroupstats_build() and css_tryget_online_from_dir(). 5547 * Those are supported by RCU protecting clearing of 5548 * cgrp->kn->priv backpointer. 5549 */ 5550 if (cgrp->kn) 5551 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5552 NULL); 5553 } 5554 5555 cgroup_unlock(); 5556 5557 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5558 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5559 } 5560 5561 static void css_release(struct percpu_ref *ref) 5562 { 5563 struct cgroup_subsys_state *css = 5564 container_of(ref, struct cgroup_subsys_state, refcnt); 5565 5566 INIT_WORK(&css->destroy_work, css_release_work_fn); 5567 queue_work(cgroup_destroy_wq, &css->destroy_work); 5568 } 5569 5570 static void init_and_link_css(struct cgroup_subsys_state *css, 5571 struct cgroup_subsys *ss, struct cgroup *cgrp) 5572 { 5573 lockdep_assert_held(&cgroup_mutex); 5574 5575 cgroup_get_live(cgrp); 5576 5577 memset(css, 0, sizeof(*css)); 5578 css->cgroup = cgrp; 5579 css->ss = ss; 5580 css->id = -1; 5581 INIT_LIST_HEAD(&css->sibling); 5582 INIT_LIST_HEAD(&css->children); 5583 INIT_LIST_HEAD(&css->rstat_css_node); 5584 css->serial_nr = css_serial_nr_next++; 5585 atomic_set(&css->online_cnt, 0); 5586 5587 if (cgroup_parent(cgrp)) { 5588 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5589 css_get(css->parent); 5590 } 5591 5592 if (ss->css_rstat_flush) 5593 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5594 5595 BUG_ON(cgroup_css(cgrp, ss)); 5596 } 5597 5598 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5599 static int online_css(struct cgroup_subsys_state *css) 5600 { 5601 struct cgroup_subsys *ss = css->ss; 5602 int ret = 0; 5603 5604 lockdep_assert_held(&cgroup_mutex); 5605 5606 if (ss->css_online) 5607 ret = ss->css_online(css); 5608 if (!ret) { 5609 css->flags |= CSS_ONLINE; 5610 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5611 5612 atomic_inc(&css->online_cnt); 5613 if (css->parent) { 5614 atomic_inc(&css->parent->online_cnt); 5615 while ((css = css->parent)) 5616 css->nr_descendants++; 5617 } 5618 } 5619 return ret; 5620 } 5621 5622 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5623 static void offline_css(struct cgroup_subsys_state *css) 5624 { 5625 struct cgroup_subsys *ss = css->ss; 5626 5627 lockdep_assert_held(&cgroup_mutex); 5628 5629 if (!(css->flags & CSS_ONLINE)) 5630 return; 5631 5632 if (ss->css_offline) 5633 ss->css_offline(css); 5634 5635 css->flags &= ~CSS_ONLINE; 5636 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5637 5638 wake_up_all(&css->cgroup->offline_waitq); 5639 5640 css->cgroup->nr_dying_subsys[ss->id]++; 5641 /* 5642 * Parent css and cgroup cannot be freed until after the freeing 5643 * of child css, see css_free_rwork_fn(). 5644 */ 5645 while ((css = css->parent)) { 5646 css->nr_descendants--; 5647 css->cgroup->nr_dying_subsys[ss->id]++; 5648 } 5649 } 5650 5651 /** 5652 * css_create - create a cgroup_subsys_state 5653 * @cgrp: the cgroup new css will be associated with 5654 * @ss: the subsys of new css 5655 * 5656 * Create a new css associated with @cgrp - @ss pair. On success, the new 5657 * css is online and installed in @cgrp. This function doesn't create the 5658 * interface files. Returns 0 on success, -errno on failure. 5659 */ 5660 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5661 struct cgroup_subsys *ss) 5662 { 5663 struct cgroup *parent = cgroup_parent(cgrp); 5664 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5665 struct cgroup_subsys_state *css; 5666 int err; 5667 5668 lockdep_assert_held(&cgroup_mutex); 5669 5670 css = ss->css_alloc(parent_css); 5671 if (!css) 5672 css = ERR_PTR(-ENOMEM); 5673 if (IS_ERR(css)) 5674 return css; 5675 5676 init_and_link_css(css, ss, cgrp); 5677 5678 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5679 if (err) 5680 goto err_free_css; 5681 5682 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5683 if (err < 0) 5684 goto err_free_css; 5685 css->id = err; 5686 5687 /* @css is ready to be brought online now, make it visible */ 5688 list_add_tail_rcu(&css->sibling, &parent_css->children); 5689 cgroup_idr_replace(&ss->css_idr, css, css->id); 5690 5691 err = online_css(css); 5692 if (err) 5693 goto err_list_del; 5694 5695 return css; 5696 5697 err_list_del: 5698 list_del_rcu(&css->sibling); 5699 err_free_css: 5700 list_del_rcu(&css->rstat_css_node); 5701 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5702 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5703 return ERR_PTR(err); 5704 } 5705 5706 /* 5707 * The returned cgroup is fully initialized including its control mask, but 5708 * it doesn't have the control mask applied. 5709 */ 5710 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5711 umode_t mode) 5712 { 5713 struct cgroup_root *root = parent->root; 5714 struct cgroup *cgrp, *tcgrp; 5715 struct kernfs_node *kn; 5716 int level = parent->level + 1; 5717 int ret; 5718 5719 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5720 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5721 if (!cgrp) 5722 return ERR_PTR(-ENOMEM); 5723 5724 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5725 if (ret) 5726 goto out_free_cgrp; 5727 5728 ret = cgroup_rstat_init(cgrp); 5729 if (ret) 5730 goto out_cancel_ref; 5731 5732 /* create the directory */ 5733 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5734 current_fsuid(), current_fsgid(), 5735 cgrp, NULL); 5736 if (IS_ERR(kn)) { 5737 ret = PTR_ERR(kn); 5738 goto out_stat_exit; 5739 } 5740 cgrp->kn = kn; 5741 5742 init_cgroup_housekeeping(cgrp); 5743 5744 cgrp->self.parent = &parent->self; 5745 cgrp->root = root; 5746 cgrp->level = level; 5747 5748 ret = psi_cgroup_alloc(cgrp); 5749 if (ret) 5750 goto out_kernfs_remove; 5751 5752 if (cgrp->root == &cgrp_dfl_root) { 5753 ret = cgroup_bpf_inherit(cgrp); 5754 if (ret) 5755 goto out_psi_free; 5756 } 5757 5758 /* 5759 * New cgroup inherits effective freeze counter, and 5760 * if the parent has to be frozen, the child has too. 5761 */ 5762 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5763 if (cgrp->freezer.e_freeze) { 5764 /* 5765 * Set the CGRP_FREEZE flag, so when a process will be 5766 * attached to the child cgroup, it will become frozen. 5767 * At this point the new cgroup is unpopulated, so we can 5768 * consider it frozen immediately. 5769 */ 5770 set_bit(CGRP_FREEZE, &cgrp->flags); 5771 set_bit(CGRP_FROZEN, &cgrp->flags); 5772 } 5773 5774 spin_lock_irq(&css_set_lock); 5775 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5776 cgrp->ancestors[tcgrp->level] = tcgrp; 5777 5778 if (tcgrp != cgrp) { 5779 tcgrp->nr_descendants++; 5780 5781 /* 5782 * If the new cgroup is frozen, all ancestor cgroups 5783 * get a new frozen descendant, but their state can't 5784 * change because of this. 5785 */ 5786 if (cgrp->freezer.e_freeze) 5787 tcgrp->freezer.nr_frozen_descendants++; 5788 } 5789 } 5790 spin_unlock_irq(&css_set_lock); 5791 5792 if (notify_on_release(parent)) 5793 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5794 5795 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5796 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5797 5798 cgrp->self.serial_nr = css_serial_nr_next++; 5799 5800 /* allocation complete, commit to creation */ 5801 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5802 atomic_inc(&root->nr_cgrps); 5803 cgroup_get_live(parent); 5804 5805 /* 5806 * On the default hierarchy, a child doesn't automatically inherit 5807 * subtree_control from the parent. Each is configured manually. 5808 */ 5809 if (!cgroup_on_dfl(cgrp)) 5810 cgrp->subtree_control = cgroup_control(cgrp); 5811 5812 cgroup_propagate_control(cgrp); 5813 5814 return cgrp; 5815 5816 out_psi_free: 5817 psi_cgroup_free(cgrp); 5818 out_kernfs_remove: 5819 kernfs_remove(cgrp->kn); 5820 out_stat_exit: 5821 cgroup_rstat_exit(cgrp); 5822 out_cancel_ref: 5823 percpu_ref_exit(&cgrp->self.refcnt); 5824 out_free_cgrp: 5825 kfree(cgrp); 5826 return ERR_PTR(ret); 5827 } 5828 5829 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5830 { 5831 struct cgroup *cgroup; 5832 int ret = false; 5833 int level = 0; 5834 5835 lockdep_assert_held(&cgroup_mutex); 5836 5837 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5838 if (cgroup->nr_descendants >= cgroup->max_descendants) 5839 goto fail; 5840 5841 if (level >= cgroup->max_depth) 5842 goto fail; 5843 5844 level++; 5845 } 5846 5847 ret = true; 5848 fail: 5849 return ret; 5850 } 5851 5852 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5853 { 5854 struct cgroup *parent, *cgrp; 5855 int ret; 5856 5857 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5858 if (strchr(name, '\n')) 5859 return -EINVAL; 5860 5861 parent = cgroup_kn_lock_live(parent_kn, false); 5862 if (!parent) 5863 return -ENODEV; 5864 5865 if (!cgroup_check_hierarchy_limits(parent)) { 5866 ret = -EAGAIN; 5867 goto out_unlock; 5868 } 5869 5870 cgrp = cgroup_create(parent, name, mode); 5871 if (IS_ERR(cgrp)) { 5872 ret = PTR_ERR(cgrp); 5873 goto out_unlock; 5874 } 5875 5876 /* 5877 * This extra ref will be put in css_free_rwork_fn() and guarantees 5878 * that @cgrp->kn is always accessible. 5879 */ 5880 kernfs_get(cgrp->kn); 5881 5882 ret = css_populate_dir(&cgrp->self); 5883 if (ret) 5884 goto out_destroy; 5885 5886 ret = cgroup_apply_control_enable(cgrp); 5887 if (ret) 5888 goto out_destroy; 5889 5890 TRACE_CGROUP_PATH(mkdir, cgrp); 5891 5892 /* let's create and online css's */ 5893 kernfs_activate(cgrp->kn); 5894 5895 ret = 0; 5896 goto out_unlock; 5897 5898 out_destroy: 5899 cgroup_destroy_locked(cgrp); 5900 out_unlock: 5901 cgroup_kn_unlock(parent_kn); 5902 return ret; 5903 } 5904 5905 /* 5906 * This is called when the refcnt of a css is confirmed to be killed. 5907 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5908 * initiate destruction and put the css ref from kill_css(). 5909 */ 5910 static void css_killed_work_fn(struct work_struct *work) 5911 { 5912 struct cgroup_subsys_state *css = 5913 container_of(work, struct cgroup_subsys_state, destroy_work); 5914 5915 cgroup_lock(); 5916 5917 do { 5918 offline_css(css); 5919 css_put(css); 5920 /* @css can't go away while we're holding cgroup_mutex */ 5921 css = css->parent; 5922 } while (css && atomic_dec_and_test(&css->online_cnt)); 5923 5924 cgroup_unlock(); 5925 } 5926 5927 /* css kill confirmation processing requires process context, bounce */ 5928 static void css_killed_ref_fn(struct percpu_ref *ref) 5929 { 5930 struct cgroup_subsys_state *css = 5931 container_of(ref, struct cgroup_subsys_state, refcnt); 5932 5933 if (atomic_dec_and_test(&css->online_cnt)) { 5934 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5935 queue_work(cgroup_destroy_wq, &css->destroy_work); 5936 } 5937 } 5938 5939 /** 5940 * kill_css - destroy a css 5941 * @css: css to destroy 5942 * 5943 * This function initiates destruction of @css by removing cgroup interface 5944 * files and putting its base reference. ->css_offline() will be invoked 5945 * asynchronously once css_tryget_online() is guaranteed to fail and when 5946 * the reference count reaches zero, @css will be released. 5947 */ 5948 static void kill_css(struct cgroup_subsys_state *css) 5949 { 5950 lockdep_assert_held(&cgroup_mutex); 5951 5952 if (css->flags & CSS_DYING) 5953 return; 5954 5955 /* 5956 * Call css_killed(), if defined, before setting the CSS_DYING flag 5957 */ 5958 if (css->ss->css_killed) 5959 css->ss->css_killed(css); 5960 5961 css->flags |= CSS_DYING; 5962 5963 /* 5964 * This must happen before css is disassociated with its cgroup. 5965 * See seq_css() for details. 5966 */ 5967 css_clear_dir(css); 5968 5969 /* 5970 * Killing would put the base ref, but we need to keep it alive 5971 * until after ->css_offline(). 5972 */ 5973 css_get(css); 5974 5975 /* 5976 * cgroup core guarantees that, by the time ->css_offline() is 5977 * invoked, no new css reference will be given out via 5978 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5979 * proceed to offlining css's because percpu_ref_kill() doesn't 5980 * guarantee that the ref is seen as killed on all CPUs on return. 5981 * 5982 * Use percpu_ref_kill_and_confirm() to get notifications as each 5983 * css is confirmed to be seen as killed on all CPUs. 5984 */ 5985 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5986 } 5987 5988 /** 5989 * cgroup_destroy_locked - the first stage of cgroup destruction 5990 * @cgrp: cgroup to be destroyed 5991 * 5992 * css's make use of percpu refcnts whose killing latency shouldn't be 5993 * exposed to userland and are RCU protected. Also, cgroup core needs to 5994 * guarantee that css_tryget_online() won't succeed by the time 5995 * ->css_offline() is invoked. To satisfy all the requirements, 5996 * destruction is implemented in the following two steps. 5997 * 5998 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5999 * userland visible parts and start killing the percpu refcnts of 6000 * css's. Set up so that the next stage will be kicked off once all 6001 * the percpu refcnts are confirmed to be killed. 6002 * 6003 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 6004 * rest of destruction. Once all cgroup references are gone, the 6005 * cgroup is RCU-freed. 6006 * 6007 * This function implements s1. After this step, @cgrp is gone as far as 6008 * the userland is concerned and a new cgroup with the same name may be 6009 * created. As cgroup doesn't care about the names internally, this 6010 * doesn't cause any problem. 6011 */ 6012 static int cgroup_destroy_locked(struct cgroup *cgrp) 6013 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 6014 { 6015 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 6016 struct cgroup_subsys_state *css; 6017 struct cgrp_cset_link *link; 6018 int ssid; 6019 6020 lockdep_assert_held(&cgroup_mutex); 6021 6022 /* 6023 * Only migration can raise populated from zero and we're already 6024 * holding cgroup_mutex. 6025 */ 6026 if (cgroup_is_populated(cgrp)) 6027 return -EBUSY; 6028 6029 /* 6030 * Make sure there's no live children. We can't test emptiness of 6031 * ->self.children as dead children linger on it while being 6032 * drained; otherwise, "rmdir parent/child parent" may fail. 6033 */ 6034 if (css_has_online_children(&cgrp->self)) 6035 return -EBUSY; 6036 6037 /* 6038 * Mark @cgrp and the associated csets dead. The former prevents 6039 * further task migration and child creation by disabling 6040 * cgroup_kn_lock_live(). The latter makes the csets ignored by 6041 * the migration path. 6042 */ 6043 cgrp->self.flags &= ~CSS_ONLINE; 6044 6045 spin_lock_irq(&css_set_lock); 6046 list_for_each_entry(link, &cgrp->cset_links, cset_link) 6047 link->cset->dead = true; 6048 spin_unlock_irq(&css_set_lock); 6049 6050 /* initiate massacre of all css's */ 6051 for_each_css(css, ssid, cgrp) 6052 kill_css(css); 6053 6054 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6055 css_clear_dir(&cgrp->self); 6056 kernfs_remove(cgrp->kn); 6057 6058 if (cgroup_is_threaded(cgrp)) 6059 parent->nr_threaded_children--; 6060 6061 spin_lock_irq(&css_set_lock); 6062 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6063 tcgrp->nr_descendants--; 6064 tcgrp->nr_dying_descendants++; 6065 /* 6066 * If the dying cgroup is frozen, decrease frozen descendants 6067 * counters of ancestor cgroups. 6068 */ 6069 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6070 tcgrp->freezer.nr_frozen_descendants--; 6071 } 6072 spin_unlock_irq(&css_set_lock); 6073 6074 cgroup1_check_for_release(parent); 6075 6076 if (cgrp->root == &cgrp_dfl_root) 6077 cgroup_bpf_offline(cgrp); 6078 6079 /* put the base reference */ 6080 percpu_ref_kill(&cgrp->self.refcnt); 6081 6082 return 0; 6083 }; 6084 6085 int cgroup_rmdir(struct kernfs_node *kn) 6086 { 6087 struct cgroup *cgrp; 6088 int ret = 0; 6089 6090 cgrp = cgroup_kn_lock_live(kn, false); 6091 if (!cgrp) 6092 return 0; 6093 6094 ret = cgroup_destroy_locked(cgrp); 6095 if (!ret) 6096 TRACE_CGROUP_PATH(rmdir, cgrp); 6097 6098 cgroup_kn_unlock(kn); 6099 return ret; 6100 } 6101 6102 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6103 .show_options = cgroup_show_options, 6104 .mkdir = cgroup_mkdir, 6105 .rmdir = cgroup_rmdir, 6106 .show_path = cgroup_show_path, 6107 }; 6108 6109 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6110 { 6111 struct cgroup_subsys_state *css; 6112 6113 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6114 6115 cgroup_lock(); 6116 6117 idr_init(&ss->css_idr); 6118 INIT_LIST_HEAD(&ss->cfts); 6119 6120 /* Create the root cgroup state for this subsystem */ 6121 ss->root = &cgrp_dfl_root; 6122 css = ss->css_alloc(NULL); 6123 /* We don't handle early failures gracefully */ 6124 BUG_ON(IS_ERR(css)); 6125 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6126 6127 /* 6128 * Root csses are never destroyed and we can't initialize 6129 * percpu_ref during early init. Disable refcnting. 6130 */ 6131 css->flags |= CSS_NO_REF; 6132 6133 if (early) { 6134 /* allocation can't be done safely during early init */ 6135 css->id = 1; 6136 } else { 6137 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6138 BUG_ON(css->id < 0); 6139 } 6140 6141 /* Update the init_css_set to contain a subsys 6142 * pointer to this state - since the subsystem is 6143 * newly registered, all tasks and hence the 6144 * init_css_set is in the subsystem's root cgroup. */ 6145 init_css_set.subsys[ss->id] = css; 6146 6147 have_fork_callback |= (bool)ss->fork << ss->id; 6148 have_exit_callback |= (bool)ss->exit << ss->id; 6149 have_release_callback |= (bool)ss->release << ss->id; 6150 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6151 6152 /* At system boot, before all subsystems have been 6153 * registered, no tasks have been forked, so we don't 6154 * need to invoke fork callbacks here. */ 6155 BUG_ON(!list_empty(&init_task.tasks)); 6156 6157 BUG_ON(online_css(css)); 6158 6159 cgroup_unlock(); 6160 } 6161 6162 /** 6163 * cgroup_init_early - cgroup initialization at system boot 6164 * 6165 * Initialize cgroups at system boot, and initialize any 6166 * subsystems that request early init. 6167 */ 6168 int __init cgroup_init_early(void) 6169 { 6170 static struct cgroup_fs_context __initdata ctx; 6171 struct cgroup_subsys *ss; 6172 int i; 6173 6174 ctx.root = &cgrp_dfl_root; 6175 init_cgroup_root(&ctx); 6176 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6177 6178 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6179 6180 for_each_subsys(ss, i) { 6181 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6182 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6183 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6184 ss->id, ss->name); 6185 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6186 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6187 6188 ss->id = i; 6189 ss->name = cgroup_subsys_name[i]; 6190 if (!ss->legacy_name) 6191 ss->legacy_name = cgroup_subsys_name[i]; 6192 6193 if (ss->early_init) 6194 cgroup_init_subsys(ss, true); 6195 } 6196 return 0; 6197 } 6198 6199 /** 6200 * cgroup_init - cgroup initialization 6201 * 6202 * Register cgroup filesystem and /proc file, and initialize 6203 * any subsystems that didn't request early init. 6204 */ 6205 int __init cgroup_init(void) 6206 { 6207 struct cgroup_subsys *ss; 6208 int ssid; 6209 6210 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6211 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6212 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6213 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6214 6215 cgroup_rstat_boot(); 6216 6217 get_user_ns(init_cgroup_ns.user_ns); 6218 6219 cgroup_lock(); 6220 6221 /* 6222 * Add init_css_set to the hash table so that dfl_root can link to 6223 * it during init. 6224 */ 6225 hash_add(css_set_table, &init_css_set.hlist, 6226 css_set_hash(init_css_set.subsys)); 6227 6228 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6229 6230 cgroup_unlock(); 6231 6232 for_each_subsys(ss, ssid) { 6233 if (ss->early_init) { 6234 struct cgroup_subsys_state *css = 6235 init_css_set.subsys[ss->id]; 6236 6237 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6238 GFP_KERNEL); 6239 BUG_ON(css->id < 0); 6240 } else { 6241 cgroup_init_subsys(ss, false); 6242 } 6243 6244 list_add_tail(&init_css_set.e_cset_node[ssid], 6245 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6246 6247 /* 6248 * Setting dfl_root subsys_mask needs to consider the 6249 * disabled flag and cftype registration needs kmalloc, 6250 * both of which aren't available during early_init. 6251 */ 6252 if (!cgroup_ssid_enabled(ssid)) 6253 continue; 6254 6255 if (cgroup1_ssid_disabled(ssid)) 6256 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6257 ss->legacy_name); 6258 6259 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6260 6261 /* implicit controllers must be threaded too */ 6262 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6263 6264 if (ss->implicit_on_dfl) 6265 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6266 else if (!ss->dfl_cftypes) 6267 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6268 6269 if (ss->threaded) 6270 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6271 6272 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6273 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6274 } else { 6275 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6276 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6277 } 6278 6279 if (ss->bind) 6280 ss->bind(init_css_set.subsys[ssid]); 6281 6282 cgroup_lock(); 6283 css_populate_dir(init_css_set.subsys[ssid]); 6284 cgroup_unlock(); 6285 } 6286 6287 /* init_css_set.subsys[] has been updated, re-hash */ 6288 hash_del(&init_css_set.hlist); 6289 hash_add(css_set_table, &init_css_set.hlist, 6290 css_set_hash(init_css_set.subsys)); 6291 6292 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6293 WARN_ON(register_filesystem(&cgroup_fs_type)); 6294 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6295 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6296 #ifdef CONFIG_CPUSETS_V1 6297 WARN_ON(register_filesystem(&cpuset_fs_type)); 6298 #endif 6299 6300 return 0; 6301 } 6302 6303 static int __init cgroup_wq_init(void) 6304 { 6305 /* 6306 * There isn't much point in executing destruction path in 6307 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6308 * Use 1 for @max_active. 6309 * 6310 * We would prefer to do this in cgroup_init() above, but that 6311 * is called before init_workqueues(): so leave this until after. 6312 */ 6313 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6314 BUG_ON(!cgroup_destroy_wq); 6315 return 0; 6316 } 6317 core_initcall(cgroup_wq_init); 6318 6319 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6320 { 6321 struct kernfs_node *kn; 6322 6323 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6324 if (!kn) 6325 return; 6326 kernfs_path(kn, buf, buflen); 6327 kernfs_put(kn); 6328 } 6329 6330 /* 6331 * cgroup_get_from_id : get the cgroup associated with cgroup id 6332 * @id: cgroup id 6333 * On success return the cgrp or ERR_PTR on failure 6334 * Only cgroups within current task's cgroup NS are valid. 6335 */ 6336 struct cgroup *cgroup_get_from_id(u64 id) 6337 { 6338 struct kernfs_node *kn; 6339 struct cgroup *cgrp, *root_cgrp; 6340 6341 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6342 if (!kn) 6343 return ERR_PTR(-ENOENT); 6344 6345 if (kernfs_type(kn) != KERNFS_DIR) { 6346 kernfs_put(kn); 6347 return ERR_PTR(-ENOENT); 6348 } 6349 6350 rcu_read_lock(); 6351 6352 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6353 if (cgrp && !cgroup_tryget(cgrp)) 6354 cgrp = NULL; 6355 6356 rcu_read_unlock(); 6357 kernfs_put(kn); 6358 6359 if (!cgrp) 6360 return ERR_PTR(-ENOENT); 6361 6362 root_cgrp = current_cgns_cgroup_dfl(); 6363 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6364 cgroup_put(cgrp); 6365 return ERR_PTR(-ENOENT); 6366 } 6367 6368 return cgrp; 6369 } 6370 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6371 6372 /* 6373 * proc_cgroup_show() 6374 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6375 * - Used for /proc/<pid>/cgroup. 6376 */ 6377 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6378 struct pid *pid, struct task_struct *tsk) 6379 { 6380 char *buf; 6381 int retval; 6382 struct cgroup_root *root; 6383 6384 retval = -ENOMEM; 6385 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6386 if (!buf) 6387 goto out; 6388 6389 rcu_read_lock(); 6390 spin_lock_irq(&css_set_lock); 6391 6392 for_each_root(root) { 6393 struct cgroup_subsys *ss; 6394 struct cgroup *cgrp; 6395 int ssid, count = 0; 6396 6397 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6398 continue; 6399 6400 cgrp = task_cgroup_from_root(tsk, root); 6401 /* The root has already been unmounted. */ 6402 if (!cgrp) 6403 continue; 6404 6405 seq_printf(m, "%d:", root->hierarchy_id); 6406 if (root != &cgrp_dfl_root) 6407 for_each_subsys(ss, ssid) 6408 if (root->subsys_mask & (1 << ssid)) 6409 seq_printf(m, "%s%s", count++ ? "," : "", 6410 ss->legacy_name); 6411 if (strlen(root->name)) 6412 seq_printf(m, "%sname=%s", count ? "," : "", 6413 root->name); 6414 seq_putc(m, ':'); 6415 /* 6416 * On traditional hierarchies, all zombie tasks show up as 6417 * belonging to the root cgroup. On the default hierarchy, 6418 * while a zombie doesn't show up in "cgroup.procs" and 6419 * thus can't be migrated, its /proc/PID/cgroup keeps 6420 * reporting the cgroup it belonged to before exiting. If 6421 * the cgroup is removed before the zombie is reaped, 6422 * " (deleted)" is appended to the cgroup path. 6423 */ 6424 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6425 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6426 current->nsproxy->cgroup_ns); 6427 if (retval == -E2BIG) 6428 retval = -ENAMETOOLONG; 6429 if (retval < 0) 6430 goto out_unlock; 6431 6432 seq_puts(m, buf); 6433 } else { 6434 seq_puts(m, "/"); 6435 } 6436 6437 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6438 seq_puts(m, " (deleted)\n"); 6439 else 6440 seq_putc(m, '\n'); 6441 } 6442 6443 retval = 0; 6444 out_unlock: 6445 spin_unlock_irq(&css_set_lock); 6446 rcu_read_unlock(); 6447 kfree(buf); 6448 out: 6449 return retval; 6450 } 6451 6452 /** 6453 * cgroup_fork - initialize cgroup related fields during copy_process() 6454 * @child: pointer to task_struct of forking parent process. 6455 * 6456 * A task is associated with the init_css_set until cgroup_post_fork() 6457 * attaches it to the target css_set. 6458 */ 6459 void cgroup_fork(struct task_struct *child) 6460 { 6461 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6462 INIT_LIST_HEAD(&child->cg_list); 6463 } 6464 6465 /** 6466 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6467 * @f: file corresponding to cgroup_dir 6468 * 6469 * Find the cgroup from a file pointer associated with a cgroup directory. 6470 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6471 * cgroup cannot be found. 6472 */ 6473 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6474 { 6475 struct cgroup_subsys_state *css; 6476 6477 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6478 if (IS_ERR(css)) 6479 return ERR_CAST(css); 6480 6481 return css->cgroup; 6482 } 6483 6484 /** 6485 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6486 * cgroup2. 6487 * @f: file corresponding to cgroup2_dir 6488 */ 6489 static struct cgroup *cgroup_get_from_file(struct file *f) 6490 { 6491 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6492 6493 if (IS_ERR(cgrp)) 6494 return ERR_CAST(cgrp); 6495 6496 if (!cgroup_on_dfl(cgrp)) { 6497 cgroup_put(cgrp); 6498 return ERR_PTR(-EBADF); 6499 } 6500 6501 return cgrp; 6502 } 6503 6504 /** 6505 * cgroup_css_set_fork - find or create a css_set for a child process 6506 * @kargs: the arguments passed to create the child process 6507 * 6508 * This functions finds or creates a new css_set which the child 6509 * process will be attached to in cgroup_post_fork(). By default, 6510 * the child process will be given the same css_set as its parent. 6511 * 6512 * If CLONE_INTO_CGROUP is specified this function will try to find an 6513 * existing css_set which includes the requested cgroup and if not create 6514 * a new css_set that the child will be attached to later. If this function 6515 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6516 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6517 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6518 * to the target cgroup. 6519 */ 6520 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6521 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6522 { 6523 int ret; 6524 struct cgroup *dst_cgrp = NULL; 6525 struct css_set *cset; 6526 struct super_block *sb; 6527 6528 if (kargs->flags & CLONE_INTO_CGROUP) 6529 cgroup_lock(); 6530 6531 cgroup_threadgroup_change_begin(current); 6532 6533 spin_lock_irq(&css_set_lock); 6534 cset = task_css_set(current); 6535 get_css_set(cset); 6536 if (kargs->cgrp) 6537 kargs->kill_seq = kargs->cgrp->kill_seq; 6538 else 6539 kargs->kill_seq = cset->dfl_cgrp->kill_seq; 6540 spin_unlock_irq(&css_set_lock); 6541 6542 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6543 kargs->cset = cset; 6544 return 0; 6545 } 6546 6547 CLASS(fd_raw, f)(kargs->cgroup); 6548 if (fd_empty(f)) { 6549 ret = -EBADF; 6550 goto err; 6551 } 6552 sb = fd_file(f)->f_path.dentry->d_sb; 6553 6554 dst_cgrp = cgroup_get_from_file(fd_file(f)); 6555 if (IS_ERR(dst_cgrp)) { 6556 ret = PTR_ERR(dst_cgrp); 6557 dst_cgrp = NULL; 6558 goto err; 6559 } 6560 6561 if (cgroup_is_dead(dst_cgrp)) { 6562 ret = -ENODEV; 6563 goto err; 6564 } 6565 6566 /* 6567 * Verify that we the target cgroup is writable for us. This is 6568 * usually done by the vfs layer but since we're not going through 6569 * the vfs layer here we need to do it "manually". 6570 */ 6571 ret = cgroup_may_write(dst_cgrp, sb); 6572 if (ret) 6573 goto err; 6574 6575 /* 6576 * Spawning a task directly into a cgroup works by passing a file 6577 * descriptor to the target cgroup directory. This can even be an O_PATH 6578 * file descriptor. But it can never be a cgroup.procs file descriptor. 6579 * This was done on purpose so spawning into a cgroup could be 6580 * conceptualized as an atomic 6581 * 6582 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6583 * write(fd, <child-pid>, ...); 6584 * 6585 * sequence, i.e. it's a shorthand for the caller opening and writing 6586 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6587 * to always use the caller's credentials. 6588 */ 6589 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6590 !(kargs->flags & CLONE_THREAD), 6591 current->nsproxy->cgroup_ns); 6592 if (ret) 6593 goto err; 6594 6595 kargs->cset = find_css_set(cset, dst_cgrp); 6596 if (!kargs->cset) { 6597 ret = -ENOMEM; 6598 goto err; 6599 } 6600 6601 put_css_set(cset); 6602 kargs->cgrp = dst_cgrp; 6603 return ret; 6604 6605 err: 6606 cgroup_threadgroup_change_end(current); 6607 cgroup_unlock(); 6608 if (dst_cgrp) 6609 cgroup_put(dst_cgrp); 6610 put_css_set(cset); 6611 if (kargs->cset) 6612 put_css_set(kargs->cset); 6613 return ret; 6614 } 6615 6616 /** 6617 * cgroup_css_set_put_fork - drop references we took during fork 6618 * @kargs: the arguments passed to create the child process 6619 * 6620 * Drop references to the prepared css_set and target cgroup if 6621 * CLONE_INTO_CGROUP was requested. 6622 */ 6623 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6624 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6625 { 6626 struct cgroup *cgrp = kargs->cgrp; 6627 struct css_set *cset = kargs->cset; 6628 6629 cgroup_threadgroup_change_end(current); 6630 6631 if (cset) { 6632 put_css_set(cset); 6633 kargs->cset = NULL; 6634 } 6635 6636 if (kargs->flags & CLONE_INTO_CGROUP) { 6637 cgroup_unlock(); 6638 if (cgrp) { 6639 cgroup_put(cgrp); 6640 kargs->cgrp = NULL; 6641 } 6642 } 6643 } 6644 6645 /** 6646 * cgroup_can_fork - called on a new task before the process is exposed 6647 * @child: the child process 6648 * @kargs: the arguments passed to create the child process 6649 * 6650 * This prepares a new css_set for the child process which the child will 6651 * be attached to in cgroup_post_fork(). 6652 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6653 * callback returns an error, the fork aborts with that error code. This 6654 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6655 */ 6656 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6657 { 6658 struct cgroup_subsys *ss; 6659 int i, j, ret; 6660 6661 ret = cgroup_css_set_fork(kargs); 6662 if (ret) 6663 return ret; 6664 6665 do_each_subsys_mask(ss, i, have_canfork_callback) { 6666 ret = ss->can_fork(child, kargs->cset); 6667 if (ret) 6668 goto out_revert; 6669 } while_each_subsys_mask(); 6670 6671 return 0; 6672 6673 out_revert: 6674 for_each_subsys(ss, j) { 6675 if (j >= i) 6676 break; 6677 if (ss->cancel_fork) 6678 ss->cancel_fork(child, kargs->cset); 6679 } 6680 6681 cgroup_css_set_put_fork(kargs); 6682 6683 return ret; 6684 } 6685 6686 /** 6687 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6688 * @child: the child process 6689 * @kargs: the arguments passed to create the child process 6690 * 6691 * This calls the cancel_fork() callbacks if a fork failed *after* 6692 * cgroup_can_fork() succeeded and cleans up references we took to 6693 * prepare a new css_set for the child process in cgroup_can_fork(). 6694 */ 6695 void cgroup_cancel_fork(struct task_struct *child, 6696 struct kernel_clone_args *kargs) 6697 { 6698 struct cgroup_subsys *ss; 6699 int i; 6700 6701 for_each_subsys(ss, i) 6702 if (ss->cancel_fork) 6703 ss->cancel_fork(child, kargs->cset); 6704 6705 cgroup_css_set_put_fork(kargs); 6706 } 6707 6708 /** 6709 * cgroup_post_fork - finalize cgroup setup for the child process 6710 * @child: the child process 6711 * @kargs: the arguments passed to create the child process 6712 * 6713 * Attach the child process to its css_set calling the subsystem fork() 6714 * callbacks. 6715 */ 6716 void cgroup_post_fork(struct task_struct *child, 6717 struct kernel_clone_args *kargs) 6718 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6719 { 6720 unsigned int cgrp_kill_seq = 0; 6721 unsigned long cgrp_flags = 0; 6722 bool kill = false; 6723 struct cgroup_subsys *ss; 6724 struct css_set *cset; 6725 int i; 6726 6727 cset = kargs->cset; 6728 kargs->cset = NULL; 6729 6730 spin_lock_irq(&css_set_lock); 6731 6732 /* init tasks are special, only link regular threads */ 6733 if (likely(child->pid)) { 6734 if (kargs->cgrp) { 6735 cgrp_flags = kargs->cgrp->flags; 6736 cgrp_kill_seq = kargs->cgrp->kill_seq; 6737 } else { 6738 cgrp_flags = cset->dfl_cgrp->flags; 6739 cgrp_kill_seq = cset->dfl_cgrp->kill_seq; 6740 } 6741 6742 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6743 cset->nr_tasks++; 6744 css_set_move_task(child, NULL, cset, false); 6745 } else { 6746 put_css_set(cset); 6747 cset = NULL; 6748 } 6749 6750 if (!(child->flags & PF_KTHREAD)) { 6751 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6752 /* 6753 * If the cgroup has to be frozen, the new task has 6754 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6755 * get the task into the frozen state. 6756 */ 6757 spin_lock(&child->sighand->siglock); 6758 WARN_ON_ONCE(child->frozen); 6759 child->jobctl |= JOBCTL_TRAP_FREEZE; 6760 spin_unlock(&child->sighand->siglock); 6761 6762 /* 6763 * Calling cgroup_update_frozen() isn't required here, 6764 * because it will be called anyway a bit later from 6765 * do_freezer_trap(). So we avoid cgroup's transient 6766 * switch from the frozen state and back. 6767 */ 6768 } 6769 6770 /* 6771 * If the cgroup is to be killed notice it now and take the 6772 * child down right after we finished preparing it for 6773 * userspace. 6774 */ 6775 kill = kargs->kill_seq != cgrp_kill_seq; 6776 } 6777 6778 spin_unlock_irq(&css_set_lock); 6779 6780 /* 6781 * Call ss->fork(). This must happen after @child is linked on 6782 * css_set; otherwise, @child might change state between ->fork() 6783 * and addition to css_set. 6784 */ 6785 do_each_subsys_mask(ss, i, have_fork_callback) { 6786 ss->fork(child); 6787 } while_each_subsys_mask(); 6788 6789 /* Make the new cset the root_cset of the new cgroup namespace. */ 6790 if (kargs->flags & CLONE_NEWCGROUP) { 6791 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6792 6793 get_css_set(cset); 6794 child->nsproxy->cgroup_ns->root_cset = cset; 6795 put_css_set(rcset); 6796 } 6797 6798 /* Cgroup has to be killed so take down child immediately. */ 6799 if (unlikely(kill)) 6800 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6801 6802 cgroup_css_set_put_fork(kargs); 6803 } 6804 6805 /** 6806 * cgroup_exit - detach cgroup from exiting task 6807 * @tsk: pointer to task_struct of exiting process 6808 * 6809 * Description: Detach cgroup from @tsk. 6810 * 6811 */ 6812 void cgroup_exit(struct task_struct *tsk) 6813 { 6814 struct cgroup_subsys *ss; 6815 struct css_set *cset; 6816 int i; 6817 6818 spin_lock_irq(&css_set_lock); 6819 6820 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6821 cset = task_css_set(tsk); 6822 css_set_move_task(tsk, cset, NULL, false); 6823 cset->nr_tasks--; 6824 /* matches the signal->live check in css_task_iter_advance() */ 6825 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6826 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6827 6828 if (dl_task(tsk)) 6829 dec_dl_tasks_cs(tsk); 6830 6831 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6832 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6833 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6834 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6835 6836 spin_unlock_irq(&css_set_lock); 6837 6838 /* see cgroup_post_fork() for details */ 6839 do_each_subsys_mask(ss, i, have_exit_callback) { 6840 ss->exit(tsk); 6841 } while_each_subsys_mask(); 6842 } 6843 6844 void cgroup_release(struct task_struct *task) 6845 { 6846 struct cgroup_subsys *ss; 6847 int ssid; 6848 6849 do_each_subsys_mask(ss, ssid, have_release_callback) { 6850 ss->release(task); 6851 } while_each_subsys_mask(); 6852 6853 if (!list_empty(&task->cg_list)) { 6854 spin_lock_irq(&css_set_lock); 6855 css_set_skip_task_iters(task_css_set(task), task); 6856 list_del_init(&task->cg_list); 6857 spin_unlock_irq(&css_set_lock); 6858 } 6859 } 6860 6861 void cgroup_free(struct task_struct *task) 6862 { 6863 struct css_set *cset = task_css_set(task); 6864 put_css_set(cset); 6865 } 6866 6867 static int __init cgroup_disable(char *str) 6868 { 6869 struct cgroup_subsys *ss; 6870 char *token; 6871 int i; 6872 6873 while ((token = strsep(&str, ",")) != NULL) { 6874 if (!*token) 6875 continue; 6876 6877 for_each_subsys(ss, i) { 6878 if (strcmp(token, ss->name) && 6879 strcmp(token, ss->legacy_name)) 6880 continue; 6881 6882 static_branch_disable(cgroup_subsys_enabled_key[i]); 6883 pr_info("Disabling %s control group subsystem\n", 6884 ss->name); 6885 } 6886 6887 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6888 if (strcmp(token, cgroup_opt_feature_names[i])) 6889 continue; 6890 cgroup_feature_disable_mask |= 1 << i; 6891 pr_info("Disabling %s control group feature\n", 6892 cgroup_opt_feature_names[i]); 6893 break; 6894 } 6895 } 6896 return 1; 6897 } 6898 __setup("cgroup_disable=", cgroup_disable); 6899 6900 void __init __weak enable_debug_cgroup(void) { } 6901 6902 static int __init enable_cgroup_debug(char *str) 6903 { 6904 cgroup_debug = true; 6905 enable_debug_cgroup(); 6906 return 1; 6907 } 6908 __setup("cgroup_debug", enable_cgroup_debug); 6909 6910 static int __init cgroup_favordynmods_setup(char *str) 6911 { 6912 return (kstrtobool(str, &have_favordynmods) == 0); 6913 } 6914 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6915 6916 /** 6917 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6918 * @dentry: directory dentry of interest 6919 * @ss: subsystem of interest 6920 * 6921 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6922 * to get the corresponding css and return it. If such css doesn't exist 6923 * or can't be pinned, an ERR_PTR value is returned. 6924 */ 6925 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6926 struct cgroup_subsys *ss) 6927 { 6928 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6929 struct file_system_type *s_type = dentry->d_sb->s_type; 6930 struct cgroup_subsys_state *css = NULL; 6931 struct cgroup *cgrp; 6932 6933 /* is @dentry a cgroup dir? */ 6934 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6935 !kn || kernfs_type(kn) != KERNFS_DIR) 6936 return ERR_PTR(-EBADF); 6937 6938 rcu_read_lock(); 6939 6940 /* 6941 * This path doesn't originate from kernfs and @kn could already 6942 * have been or be removed at any point. @kn->priv is RCU 6943 * protected for this access. See css_release_work_fn() for details. 6944 */ 6945 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6946 if (cgrp) 6947 css = cgroup_css(cgrp, ss); 6948 6949 if (!css || !css_tryget_online(css)) 6950 css = ERR_PTR(-ENOENT); 6951 6952 rcu_read_unlock(); 6953 return css; 6954 } 6955 6956 /** 6957 * css_from_id - lookup css by id 6958 * @id: the cgroup id 6959 * @ss: cgroup subsys to be looked into 6960 * 6961 * Returns the css if there's valid one with @id, otherwise returns NULL. 6962 * Should be called under rcu_read_lock(). 6963 */ 6964 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6965 { 6966 WARN_ON_ONCE(!rcu_read_lock_held()); 6967 return idr_find(&ss->css_idr, id); 6968 } 6969 6970 /** 6971 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6972 * @path: path on the default hierarchy 6973 * 6974 * Find the cgroup at @path on the default hierarchy, increment its 6975 * reference count and return it. Returns pointer to the found cgroup on 6976 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6977 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6978 */ 6979 struct cgroup *cgroup_get_from_path(const char *path) 6980 { 6981 struct kernfs_node *kn; 6982 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6983 struct cgroup *root_cgrp; 6984 6985 root_cgrp = current_cgns_cgroup_dfl(); 6986 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6987 if (!kn) 6988 goto out; 6989 6990 if (kernfs_type(kn) != KERNFS_DIR) { 6991 cgrp = ERR_PTR(-ENOTDIR); 6992 goto out_kernfs; 6993 } 6994 6995 rcu_read_lock(); 6996 6997 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6998 if (!cgrp || !cgroup_tryget(cgrp)) 6999 cgrp = ERR_PTR(-ENOENT); 7000 7001 rcu_read_unlock(); 7002 7003 out_kernfs: 7004 kernfs_put(kn); 7005 out: 7006 return cgrp; 7007 } 7008 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 7009 7010 /** 7011 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 7012 * @fd: fd obtained by open(cgroup_dir) 7013 * 7014 * Find the cgroup from a fd which should be obtained 7015 * by opening a cgroup directory. Returns a pointer to the 7016 * cgroup on success. ERR_PTR is returned if the cgroup 7017 * cannot be found. 7018 */ 7019 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 7020 { 7021 CLASS(fd_raw, f)(fd); 7022 if (fd_empty(f)) 7023 return ERR_PTR(-EBADF); 7024 7025 return cgroup_v1v2_get_from_file(fd_file(f)); 7026 } 7027 7028 /** 7029 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 7030 * cgroup2. 7031 * @fd: fd obtained by open(cgroup2_dir) 7032 */ 7033 struct cgroup *cgroup_get_from_fd(int fd) 7034 { 7035 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 7036 7037 if (IS_ERR(cgrp)) 7038 return ERR_CAST(cgrp); 7039 7040 if (!cgroup_on_dfl(cgrp)) { 7041 cgroup_put(cgrp); 7042 return ERR_PTR(-EBADF); 7043 } 7044 return cgrp; 7045 } 7046 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 7047 7048 static u64 power_of_ten(int power) 7049 { 7050 u64 v = 1; 7051 while (power--) 7052 v *= 10; 7053 return v; 7054 } 7055 7056 /** 7057 * cgroup_parse_float - parse a floating number 7058 * @input: input string 7059 * @dec_shift: number of decimal digits to shift 7060 * @v: output 7061 * 7062 * Parse a decimal floating point number in @input and store the result in 7063 * @v with decimal point right shifted @dec_shift times. For example, if 7064 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7065 * Returns 0 on success, -errno otherwise. 7066 * 7067 * There's nothing cgroup specific about this function except that it's 7068 * currently the only user. 7069 */ 7070 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7071 { 7072 s64 whole, frac = 0; 7073 int fstart = 0, fend = 0, flen; 7074 7075 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7076 return -EINVAL; 7077 if (frac < 0) 7078 return -EINVAL; 7079 7080 flen = fend > fstart ? fend - fstart : 0; 7081 if (flen < dec_shift) 7082 frac *= power_of_ten(dec_shift - flen); 7083 else 7084 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7085 7086 *v = whole * power_of_ten(dec_shift) + frac; 7087 return 0; 7088 } 7089 7090 /* 7091 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7092 * definition in cgroup-defs.h. 7093 */ 7094 #ifdef CONFIG_SOCK_CGROUP_DATA 7095 7096 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7097 { 7098 struct cgroup *cgroup; 7099 7100 rcu_read_lock(); 7101 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7102 if (in_interrupt()) { 7103 cgroup = &cgrp_dfl_root.cgrp; 7104 cgroup_get(cgroup); 7105 goto out; 7106 } 7107 7108 while (true) { 7109 struct css_set *cset; 7110 7111 cset = task_css_set(current); 7112 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7113 cgroup = cset->dfl_cgrp; 7114 break; 7115 } 7116 cpu_relax(); 7117 } 7118 out: 7119 skcd->cgroup = cgroup; 7120 cgroup_bpf_get(cgroup); 7121 rcu_read_unlock(); 7122 } 7123 7124 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7125 { 7126 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7127 7128 /* 7129 * We might be cloning a socket which is left in an empty 7130 * cgroup and the cgroup might have already been rmdir'd. 7131 * Don't use cgroup_get_live(). 7132 */ 7133 cgroup_get(cgrp); 7134 cgroup_bpf_get(cgrp); 7135 } 7136 7137 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7138 { 7139 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7140 7141 cgroup_bpf_put(cgrp); 7142 cgroup_put(cgrp); 7143 } 7144 7145 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7146 7147 #ifdef CONFIG_SYSFS 7148 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7149 ssize_t size, const char *prefix) 7150 { 7151 struct cftype *cft; 7152 ssize_t ret = 0; 7153 7154 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7155 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7156 continue; 7157 7158 if (prefix) 7159 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7160 7161 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7162 7163 if (WARN_ON(ret >= size)) 7164 break; 7165 } 7166 7167 return ret; 7168 } 7169 7170 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7171 char *buf) 7172 { 7173 struct cgroup_subsys *ss; 7174 int ssid; 7175 ssize_t ret = 0; 7176 7177 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7178 PAGE_SIZE - ret, NULL); 7179 if (cgroup_psi_enabled()) 7180 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7181 PAGE_SIZE - ret, NULL); 7182 7183 for_each_subsys(ss, ssid) 7184 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7185 PAGE_SIZE - ret, 7186 cgroup_subsys_name[ssid]); 7187 7188 return ret; 7189 } 7190 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7191 7192 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7193 char *buf) 7194 { 7195 return snprintf(buf, PAGE_SIZE, 7196 "nsdelegate\n" 7197 "favordynmods\n" 7198 "memory_localevents\n" 7199 "memory_recursiveprot\n" 7200 "memory_hugetlb_accounting\n" 7201 "pids_localevents\n"); 7202 } 7203 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7204 7205 static struct attribute *cgroup_sysfs_attrs[] = { 7206 &cgroup_delegate_attr.attr, 7207 &cgroup_features_attr.attr, 7208 NULL, 7209 }; 7210 7211 static const struct attribute_group cgroup_sysfs_attr_group = { 7212 .attrs = cgroup_sysfs_attrs, 7213 .name = "cgroup", 7214 }; 7215 7216 static int __init cgroup_sysfs_init(void) 7217 { 7218 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7219 } 7220 subsys_initcall(cgroup_sysfs_init); 7221 7222 #endif /* CONFIG_SYSFS */ 7223