1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__) 22 23 /* 24 * pidlists linger the following amount before being destroyed. The goal 25 * is avoiding frequent destruction in the middle of consecutive read calls 26 * Expiring in the middle is a performance problem not a correctness one. 27 * 1 sec should be enough. 28 */ 29 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 30 31 /* Controllers blocked by the commandline in v1 */ 32 static u16 cgroup_no_v1_mask; 33 34 /* disable named v1 mounts */ 35 static bool cgroup_no_v1_named; 36 37 /* 38 * pidlist destructions need to be flushed on cgroup destruction. Use a 39 * separate workqueue as flush domain. 40 */ 41 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 42 43 /* 44 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 45 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 46 */ 47 static DEFINE_SPINLOCK(release_agent_path_lock); 48 49 bool cgroup1_ssid_disabled(int ssid) 50 { 51 return cgroup_no_v1_mask & (1 << ssid); 52 } 53 54 /** 55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 56 * @from: attach to all cgroups of a given task 57 * @tsk: the task to be attached 58 */ 59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 60 { 61 struct cgroup_root *root; 62 int retval = 0; 63 64 mutex_lock(&cgroup_mutex); 65 percpu_down_write(&cgroup_threadgroup_rwsem); 66 for_each_root(root) { 67 struct cgroup *from_cgrp; 68 69 if (root == &cgrp_dfl_root) 70 continue; 71 72 spin_lock_irq(&css_set_lock); 73 from_cgrp = task_cgroup_from_root(from, root); 74 spin_unlock_irq(&css_set_lock); 75 76 retval = cgroup_attach_task(from_cgrp, tsk, false); 77 if (retval) 78 break; 79 } 80 percpu_up_write(&cgroup_threadgroup_rwsem); 81 mutex_unlock(&cgroup_mutex); 82 83 return retval; 84 } 85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 86 87 /** 88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 89 * @to: cgroup to which the tasks will be moved 90 * @from: cgroup in which the tasks currently reside 91 * 92 * Locking rules between cgroup_post_fork() and the migration path 93 * guarantee that, if a task is forking while being migrated, the new child 94 * is guaranteed to be either visible in the source cgroup after the 95 * parent's migration is complete or put into the target cgroup. No task 96 * can slip out of migration through forking. 97 */ 98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 99 { 100 DEFINE_CGROUP_MGCTX(mgctx); 101 struct cgrp_cset_link *link; 102 struct css_task_iter it; 103 struct task_struct *task; 104 int ret; 105 106 if (cgroup_on_dfl(to)) 107 return -EINVAL; 108 109 ret = cgroup_migrate_vet_dst(to); 110 if (ret) 111 return ret; 112 113 mutex_lock(&cgroup_mutex); 114 115 percpu_down_write(&cgroup_threadgroup_rwsem); 116 117 /* all tasks in @from are being moved, all csets are source */ 118 spin_lock_irq(&css_set_lock); 119 list_for_each_entry(link, &from->cset_links, cset_link) 120 cgroup_migrate_add_src(link->cset, to, &mgctx); 121 spin_unlock_irq(&css_set_lock); 122 123 ret = cgroup_migrate_prepare_dst(&mgctx); 124 if (ret) 125 goto out_err; 126 127 /* 128 * Migrate tasks one-by-one until @from is empty. This fails iff 129 * ->can_attach() fails. 130 */ 131 do { 132 css_task_iter_start(&from->self, 0, &it); 133 134 do { 135 task = css_task_iter_next(&it); 136 } while (task && (task->flags & PF_EXITING)); 137 138 if (task) 139 get_task_struct(task); 140 css_task_iter_end(&it); 141 142 if (task) { 143 ret = cgroup_migrate(task, false, &mgctx); 144 if (!ret) 145 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 146 put_task_struct(task); 147 } 148 } while (task && !ret); 149 out_err: 150 cgroup_migrate_finish(&mgctx); 151 percpu_up_write(&cgroup_threadgroup_rwsem); 152 mutex_unlock(&cgroup_mutex); 153 return ret; 154 } 155 156 /* 157 * Stuff for reading the 'tasks'/'procs' files. 158 * 159 * Reading this file can return large amounts of data if a cgroup has 160 * *lots* of attached tasks. So it may need several calls to read(), 161 * but we cannot guarantee that the information we produce is correct 162 * unless we produce it entirely atomically. 163 * 164 */ 165 166 /* which pidlist file are we talking about? */ 167 enum cgroup_filetype { 168 CGROUP_FILE_PROCS, 169 CGROUP_FILE_TASKS, 170 }; 171 172 /* 173 * A pidlist is a list of pids that virtually represents the contents of one 174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 175 * a pair (one each for procs, tasks) for each pid namespace that's relevant 176 * to the cgroup. 177 */ 178 struct cgroup_pidlist { 179 /* 180 * used to find which pidlist is wanted. doesn't change as long as 181 * this particular list stays in the list. 182 */ 183 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 184 /* array of xids */ 185 pid_t *list; 186 /* how many elements the above list has */ 187 int length; 188 /* each of these stored in a list by its cgroup */ 189 struct list_head links; 190 /* pointer to the cgroup we belong to, for list removal purposes */ 191 struct cgroup *owner; 192 /* for delayed destruction */ 193 struct delayed_work destroy_dwork; 194 }; 195 196 /* 197 * The following two functions "fix" the issue where there are more pids 198 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 199 * TODO: replace with a kernel-wide solution to this problem 200 */ 201 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 202 static void *pidlist_allocate(int count) 203 { 204 if (PIDLIST_TOO_LARGE(count)) 205 return vmalloc(array_size(count, sizeof(pid_t))); 206 else 207 return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL); 208 } 209 210 static void pidlist_free(void *p) 211 { 212 kvfree(p); 213 } 214 215 /* 216 * Used to destroy all pidlists lingering waiting for destroy timer. None 217 * should be left afterwards. 218 */ 219 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 220 { 221 struct cgroup_pidlist *l, *tmp_l; 222 223 mutex_lock(&cgrp->pidlist_mutex); 224 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 225 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 226 mutex_unlock(&cgrp->pidlist_mutex); 227 228 flush_workqueue(cgroup_pidlist_destroy_wq); 229 BUG_ON(!list_empty(&cgrp->pidlists)); 230 } 231 232 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 233 { 234 struct delayed_work *dwork = to_delayed_work(work); 235 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 236 destroy_dwork); 237 struct cgroup_pidlist *tofree = NULL; 238 239 mutex_lock(&l->owner->pidlist_mutex); 240 241 /* 242 * Destroy iff we didn't get queued again. The state won't change 243 * as destroy_dwork can only be queued while locked. 244 */ 245 if (!delayed_work_pending(dwork)) { 246 list_del(&l->links); 247 pidlist_free(l->list); 248 put_pid_ns(l->key.ns); 249 tofree = l; 250 } 251 252 mutex_unlock(&l->owner->pidlist_mutex); 253 kfree(tofree); 254 } 255 256 /* 257 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 258 * Returns the number of unique elements. 259 */ 260 static int pidlist_uniq(pid_t *list, int length) 261 { 262 int src, dest = 1; 263 264 /* 265 * we presume the 0th element is unique, so i starts at 1. trivial 266 * edge cases first; no work needs to be done for either 267 */ 268 if (length == 0 || length == 1) 269 return length; 270 /* src and dest walk down the list; dest counts unique elements */ 271 for (src = 1; src < length; src++) { 272 /* find next unique element */ 273 while (list[src] == list[src-1]) { 274 src++; 275 if (src == length) 276 goto after; 277 } 278 /* dest always points to where the next unique element goes */ 279 list[dest] = list[src]; 280 dest++; 281 } 282 after: 283 return dest; 284 } 285 286 /* 287 * The two pid files - task and cgroup.procs - guaranteed that the result 288 * is sorted, which forced this whole pidlist fiasco. As pid order is 289 * different per namespace, each namespace needs differently sorted list, 290 * making it impossible to use, for example, single rbtree of member tasks 291 * sorted by task pointer. As pidlists can be fairly large, allocating one 292 * per open file is dangerous, so cgroup had to implement shared pool of 293 * pidlists keyed by cgroup and namespace. 294 */ 295 static int cmppid(const void *a, const void *b) 296 { 297 return *(pid_t *)a - *(pid_t *)b; 298 } 299 300 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 301 enum cgroup_filetype type) 302 { 303 struct cgroup_pidlist *l; 304 /* don't need task_nsproxy() if we're looking at ourself */ 305 struct pid_namespace *ns = task_active_pid_ns(current); 306 307 lockdep_assert_held(&cgrp->pidlist_mutex); 308 309 list_for_each_entry(l, &cgrp->pidlists, links) 310 if (l->key.type == type && l->key.ns == ns) 311 return l; 312 return NULL; 313 } 314 315 /* 316 * find the appropriate pidlist for our purpose (given procs vs tasks) 317 * returns with the lock on that pidlist already held, and takes care 318 * of the use count, or returns NULL with no locks held if we're out of 319 * memory. 320 */ 321 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 322 enum cgroup_filetype type) 323 { 324 struct cgroup_pidlist *l; 325 326 lockdep_assert_held(&cgrp->pidlist_mutex); 327 328 l = cgroup_pidlist_find(cgrp, type); 329 if (l) 330 return l; 331 332 /* entry not found; create a new one */ 333 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 334 if (!l) 335 return l; 336 337 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 338 l->key.type = type; 339 /* don't need task_nsproxy() if we're looking at ourself */ 340 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 341 l->owner = cgrp; 342 list_add(&l->links, &cgrp->pidlists); 343 return l; 344 } 345 346 /* 347 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 348 */ 349 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 350 struct cgroup_pidlist **lp) 351 { 352 pid_t *array; 353 int length; 354 int pid, n = 0; /* used for populating the array */ 355 struct css_task_iter it; 356 struct task_struct *tsk; 357 struct cgroup_pidlist *l; 358 359 lockdep_assert_held(&cgrp->pidlist_mutex); 360 361 /* 362 * If cgroup gets more users after we read count, we won't have 363 * enough space - tough. This race is indistinguishable to the 364 * caller from the case that the additional cgroup users didn't 365 * show up until sometime later on. 366 */ 367 length = cgroup_task_count(cgrp); 368 array = pidlist_allocate(length); 369 if (!array) 370 return -ENOMEM; 371 /* now, populate the array */ 372 css_task_iter_start(&cgrp->self, 0, &it); 373 while ((tsk = css_task_iter_next(&it))) { 374 if (unlikely(n == length)) 375 break; 376 /* get tgid or pid for procs or tasks file respectively */ 377 if (type == CGROUP_FILE_PROCS) 378 pid = task_tgid_vnr(tsk); 379 else 380 pid = task_pid_vnr(tsk); 381 if (pid > 0) /* make sure to only use valid results */ 382 array[n++] = pid; 383 } 384 css_task_iter_end(&it); 385 length = n; 386 /* now sort & (if procs) strip out duplicates */ 387 sort(array, length, sizeof(pid_t), cmppid, NULL); 388 if (type == CGROUP_FILE_PROCS) 389 length = pidlist_uniq(array, length); 390 391 l = cgroup_pidlist_find_create(cgrp, type); 392 if (!l) { 393 pidlist_free(array); 394 return -ENOMEM; 395 } 396 397 /* store array, freeing old if necessary */ 398 pidlist_free(l->list); 399 l->list = array; 400 l->length = length; 401 *lp = l; 402 return 0; 403 } 404 405 /* 406 * seq_file methods for the tasks/procs files. The seq_file position is the 407 * next pid to display; the seq_file iterator is a pointer to the pid 408 * in the cgroup->l->list array. 409 */ 410 411 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 412 { 413 /* 414 * Initially we receive a position value that corresponds to 415 * one more than the last pid shown (or 0 on the first call or 416 * after a seek to the start). Use a binary-search to find the 417 * next pid to display, if any 418 */ 419 struct kernfs_open_file *of = s->private; 420 struct cgroup *cgrp = seq_css(s)->cgroup; 421 struct cgroup_pidlist *l; 422 enum cgroup_filetype type = seq_cft(s)->private; 423 int index = 0, pid = *pos; 424 int *iter, ret; 425 426 mutex_lock(&cgrp->pidlist_mutex); 427 428 /* 429 * !NULL @of->priv indicates that this isn't the first start() 430 * after open. If the matching pidlist is around, we can use that. 431 * Look for it. Note that @of->priv can't be used directly. It 432 * could already have been destroyed. 433 */ 434 if (of->priv) 435 of->priv = cgroup_pidlist_find(cgrp, type); 436 437 /* 438 * Either this is the first start() after open or the matching 439 * pidlist has been destroyed inbetween. Create a new one. 440 */ 441 if (!of->priv) { 442 ret = pidlist_array_load(cgrp, type, 443 (struct cgroup_pidlist **)&of->priv); 444 if (ret) 445 return ERR_PTR(ret); 446 } 447 l = of->priv; 448 449 if (pid) { 450 int end = l->length; 451 452 while (index < end) { 453 int mid = (index + end) / 2; 454 if (l->list[mid] == pid) { 455 index = mid; 456 break; 457 } else if (l->list[mid] <= pid) 458 index = mid + 1; 459 else 460 end = mid; 461 } 462 } 463 /* If we're off the end of the array, we're done */ 464 if (index >= l->length) 465 return NULL; 466 /* Update the abstract position to be the actual pid that we found */ 467 iter = l->list + index; 468 *pos = *iter; 469 return iter; 470 } 471 472 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 473 { 474 struct kernfs_open_file *of = s->private; 475 struct cgroup_pidlist *l = of->priv; 476 477 if (l) 478 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 479 CGROUP_PIDLIST_DESTROY_DELAY); 480 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 481 } 482 483 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 484 { 485 struct kernfs_open_file *of = s->private; 486 struct cgroup_pidlist *l = of->priv; 487 pid_t *p = v; 488 pid_t *end = l->list + l->length; 489 /* 490 * Advance to the next pid in the array. If this goes off the 491 * end, we're done 492 */ 493 p++; 494 if (p >= end) { 495 return NULL; 496 } else { 497 *pos = *p; 498 return p; 499 } 500 } 501 502 static int cgroup_pidlist_show(struct seq_file *s, void *v) 503 { 504 seq_printf(s, "%d\n", *(int *)v); 505 506 return 0; 507 } 508 509 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 510 char *buf, size_t nbytes, loff_t off, 511 bool threadgroup) 512 { 513 struct cgroup *cgrp; 514 struct task_struct *task; 515 const struct cred *cred, *tcred; 516 ssize_t ret; 517 518 cgrp = cgroup_kn_lock_live(of->kn, false); 519 if (!cgrp) 520 return -ENODEV; 521 522 task = cgroup_procs_write_start(buf, threadgroup); 523 ret = PTR_ERR_OR_ZERO(task); 524 if (ret) 525 goto out_unlock; 526 527 /* 528 * Even if we're attaching all tasks in the thread group, we only 529 * need to check permissions on one of them. 530 */ 531 cred = current_cred(); 532 tcred = get_task_cred(task); 533 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 534 !uid_eq(cred->euid, tcred->uid) && 535 !uid_eq(cred->euid, tcred->suid)) 536 ret = -EACCES; 537 put_cred(tcred); 538 if (ret) 539 goto out_finish; 540 541 ret = cgroup_attach_task(cgrp, task, threadgroup); 542 543 out_finish: 544 cgroup_procs_write_finish(task); 545 out_unlock: 546 cgroup_kn_unlock(of->kn); 547 548 return ret ?: nbytes; 549 } 550 551 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 552 char *buf, size_t nbytes, loff_t off) 553 { 554 return __cgroup1_procs_write(of, buf, nbytes, off, true); 555 } 556 557 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 558 char *buf, size_t nbytes, loff_t off) 559 { 560 return __cgroup1_procs_write(of, buf, nbytes, off, false); 561 } 562 563 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 564 char *buf, size_t nbytes, loff_t off) 565 { 566 struct cgroup *cgrp; 567 568 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 569 570 cgrp = cgroup_kn_lock_live(of->kn, false); 571 if (!cgrp) 572 return -ENODEV; 573 spin_lock(&release_agent_path_lock); 574 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 575 sizeof(cgrp->root->release_agent_path)); 576 spin_unlock(&release_agent_path_lock); 577 cgroup_kn_unlock(of->kn); 578 return nbytes; 579 } 580 581 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 582 { 583 struct cgroup *cgrp = seq_css(seq)->cgroup; 584 585 spin_lock(&release_agent_path_lock); 586 seq_puts(seq, cgrp->root->release_agent_path); 587 spin_unlock(&release_agent_path_lock); 588 seq_putc(seq, '\n'); 589 return 0; 590 } 591 592 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 593 { 594 seq_puts(seq, "0\n"); 595 return 0; 596 } 597 598 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 599 struct cftype *cft) 600 { 601 return notify_on_release(css->cgroup); 602 } 603 604 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 605 struct cftype *cft, u64 val) 606 { 607 if (val) 608 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 609 else 610 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 611 return 0; 612 } 613 614 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 615 struct cftype *cft) 616 { 617 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 618 } 619 620 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 621 struct cftype *cft, u64 val) 622 { 623 if (val) 624 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 625 else 626 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 627 return 0; 628 } 629 630 /* cgroup core interface files for the legacy hierarchies */ 631 struct cftype cgroup1_base_files[] = { 632 { 633 .name = "cgroup.procs", 634 .seq_start = cgroup_pidlist_start, 635 .seq_next = cgroup_pidlist_next, 636 .seq_stop = cgroup_pidlist_stop, 637 .seq_show = cgroup_pidlist_show, 638 .private = CGROUP_FILE_PROCS, 639 .write = cgroup1_procs_write, 640 }, 641 { 642 .name = "cgroup.clone_children", 643 .read_u64 = cgroup_clone_children_read, 644 .write_u64 = cgroup_clone_children_write, 645 }, 646 { 647 .name = "cgroup.sane_behavior", 648 .flags = CFTYPE_ONLY_ON_ROOT, 649 .seq_show = cgroup_sane_behavior_show, 650 }, 651 { 652 .name = "tasks", 653 .seq_start = cgroup_pidlist_start, 654 .seq_next = cgroup_pidlist_next, 655 .seq_stop = cgroup_pidlist_stop, 656 .seq_show = cgroup_pidlist_show, 657 .private = CGROUP_FILE_TASKS, 658 .write = cgroup1_tasks_write, 659 }, 660 { 661 .name = "notify_on_release", 662 .read_u64 = cgroup_read_notify_on_release, 663 .write_u64 = cgroup_write_notify_on_release, 664 }, 665 { 666 .name = "release_agent", 667 .flags = CFTYPE_ONLY_ON_ROOT, 668 .seq_show = cgroup_release_agent_show, 669 .write = cgroup_release_agent_write, 670 .max_write_len = PATH_MAX - 1, 671 }, 672 { } /* terminate */ 673 }; 674 675 /* Display information about each subsystem and each hierarchy */ 676 int proc_cgroupstats_show(struct seq_file *m, void *v) 677 { 678 struct cgroup_subsys *ss; 679 int i; 680 681 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 682 /* 683 * ideally we don't want subsystems moving around while we do this. 684 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 685 * subsys/hierarchy state. 686 */ 687 mutex_lock(&cgroup_mutex); 688 689 for_each_subsys(ss, i) 690 seq_printf(m, "%s\t%d\t%d\t%d\n", 691 ss->legacy_name, ss->root->hierarchy_id, 692 atomic_read(&ss->root->nr_cgrps), 693 cgroup_ssid_enabled(i)); 694 695 mutex_unlock(&cgroup_mutex); 696 return 0; 697 } 698 699 /** 700 * cgroupstats_build - build and fill cgroupstats 701 * @stats: cgroupstats to fill information into 702 * @dentry: A dentry entry belonging to the cgroup for which stats have 703 * been requested. 704 * 705 * Build and fill cgroupstats so that taskstats can export it to user 706 * space. 707 */ 708 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 709 { 710 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 711 struct cgroup *cgrp; 712 struct css_task_iter it; 713 struct task_struct *tsk; 714 715 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 716 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 717 kernfs_type(kn) != KERNFS_DIR) 718 return -EINVAL; 719 720 mutex_lock(&cgroup_mutex); 721 722 /* 723 * We aren't being called from kernfs and there's no guarantee on 724 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 725 * @kn->priv is RCU safe. Let's do the RCU dancing. 726 */ 727 rcu_read_lock(); 728 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 729 if (!cgrp || cgroup_is_dead(cgrp)) { 730 rcu_read_unlock(); 731 mutex_unlock(&cgroup_mutex); 732 return -ENOENT; 733 } 734 rcu_read_unlock(); 735 736 css_task_iter_start(&cgrp->self, 0, &it); 737 while ((tsk = css_task_iter_next(&it))) { 738 switch (tsk->state) { 739 case TASK_RUNNING: 740 stats->nr_running++; 741 break; 742 case TASK_INTERRUPTIBLE: 743 stats->nr_sleeping++; 744 break; 745 case TASK_UNINTERRUPTIBLE: 746 stats->nr_uninterruptible++; 747 break; 748 case TASK_STOPPED: 749 stats->nr_stopped++; 750 break; 751 default: 752 if (delayacct_is_task_waiting_on_io(tsk)) 753 stats->nr_io_wait++; 754 break; 755 } 756 } 757 css_task_iter_end(&it); 758 759 mutex_unlock(&cgroup_mutex); 760 return 0; 761 } 762 763 void cgroup1_check_for_release(struct cgroup *cgrp) 764 { 765 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 766 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 767 schedule_work(&cgrp->release_agent_work); 768 } 769 770 /* 771 * Notify userspace when a cgroup is released, by running the 772 * configured release agent with the name of the cgroup (path 773 * relative to the root of cgroup file system) as the argument. 774 * 775 * Most likely, this user command will try to rmdir this cgroup. 776 * 777 * This races with the possibility that some other task will be 778 * attached to this cgroup before it is removed, or that some other 779 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 780 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 781 * unused, and this cgroup will be reprieved from its death sentence, 782 * to continue to serve a useful existence. Next time it's released, 783 * we will get notified again, if it still has 'notify_on_release' set. 784 * 785 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 786 * means only wait until the task is successfully execve()'d. The 787 * separate release agent task is forked by call_usermodehelper(), 788 * then control in this thread returns here, without waiting for the 789 * release agent task. We don't bother to wait because the caller of 790 * this routine has no use for the exit status of the release agent 791 * task, so no sense holding our caller up for that. 792 */ 793 void cgroup1_release_agent(struct work_struct *work) 794 { 795 struct cgroup *cgrp = 796 container_of(work, struct cgroup, release_agent_work); 797 char *pathbuf = NULL, *agentbuf = NULL; 798 char *argv[3], *envp[3]; 799 int ret; 800 801 mutex_lock(&cgroup_mutex); 802 803 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 804 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 805 if (!pathbuf || !agentbuf) 806 goto out; 807 808 spin_lock_irq(&css_set_lock); 809 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 810 spin_unlock_irq(&css_set_lock); 811 if (ret < 0 || ret >= PATH_MAX) 812 goto out; 813 814 argv[0] = agentbuf; 815 argv[1] = pathbuf; 816 argv[2] = NULL; 817 818 /* minimal command environment */ 819 envp[0] = "HOME=/"; 820 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 821 envp[2] = NULL; 822 823 mutex_unlock(&cgroup_mutex); 824 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 825 goto out_free; 826 out: 827 mutex_unlock(&cgroup_mutex); 828 out_free: 829 kfree(agentbuf); 830 kfree(pathbuf); 831 } 832 833 /* 834 * cgroup_rename - Only allow simple rename of directories in place. 835 */ 836 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 837 const char *new_name_str) 838 { 839 struct cgroup *cgrp = kn->priv; 840 int ret; 841 842 if (kernfs_type(kn) != KERNFS_DIR) 843 return -ENOTDIR; 844 if (kn->parent != new_parent) 845 return -EIO; 846 847 /* 848 * We're gonna grab cgroup_mutex which nests outside kernfs 849 * active_ref. kernfs_rename() doesn't require active_ref 850 * protection. Break them before grabbing cgroup_mutex. 851 */ 852 kernfs_break_active_protection(new_parent); 853 kernfs_break_active_protection(kn); 854 855 mutex_lock(&cgroup_mutex); 856 857 ret = kernfs_rename(kn, new_parent, new_name_str); 858 if (!ret) 859 TRACE_CGROUP_PATH(rename, cgrp); 860 861 mutex_unlock(&cgroup_mutex); 862 863 kernfs_unbreak_active_protection(kn); 864 kernfs_unbreak_active_protection(new_parent); 865 return ret; 866 } 867 868 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 869 { 870 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 871 struct cgroup_subsys *ss; 872 int ssid; 873 874 for_each_subsys(ss, ssid) 875 if (root->subsys_mask & (1 << ssid)) 876 seq_show_option(seq, ss->legacy_name, NULL); 877 if (root->flags & CGRP_ROOT_NOPREFIX) 878 seq_puts(seq, ",noprefix"); 879 if (root->flags & CGRP_ROOT_XATTR) 880 seq_puts(seq, ",xattr"); 881 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 882 seq_puts(seq, ",cpuset_v2_mode"); 883 884 spin_lock(&release_agent_path_lock); 885 if (strlen(root->release_agent_path)) 886 seq_show_option(seq, "release_agent", 887 root->release_agent_path); 888 spin_unlock(&release_agent_path_lock); 889 890 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 891 seq_puts(seq, ",clone_children"); 892 if (strlen(root->name)) 893 seq_show_option(seq, "name", root->name); 894 return 0; 895 } 896 897 enum cgroup1_param { 898 Opt_all, 899 Opt_clone_children, 900 Opt_cpuset_v2_mode, 901 Opt_name, 902 Opt_none, 903 Opt_noprefix, 904 Opt_release_agent, 905 Opt_xattr, 906 }; 907 908 static const struct fs_parameter_spec cgroup1_param_specs[] = { 909 fsparam_flag ("all", Opt_all), 910 fsparam_flag ("clone_children", Opt_clone_children), 911 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 912 fsparam_string("name", Opt_name), 913 fsparam_flag ("none", Opt_none), 914 fsparam_flag ("noprefix", Opt_noprefix), 915 fsparam_string("release_agent", Opt_release_agent), 916 fsparam_flag ("xattr", Opt_xattr), 917 {} 918 }; 919 920 const struct fs_parameter_description cgroup1_fs_parameters = { 921 .name = "cgroup1", 922 .specs = cgroup1_param_specs, 923 }; 924 925 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 926 { 927 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 928 struct cgroup_subsys *ss; 929 struct fs_parse_result result; 930 int opt, i; 931 932 opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result); 933 if (opt == -ENOPARAM) { 934 if (strcmp(param->key, "source") == 0) { 935 fc->source = param->string; 936 param->string = NULL; 937 return 0; 938 } 939 for_each_subsys(ss, i) { 940 if (strcmp(param->key, ss->legacy_name)) 941 continue; 942 ctx->subsys_mask |= (1 << i); 943 return 0; 944 } 945 return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key); 946 } 947 if (opt < 0) 948 return opt; 949 950 switch (opt) { 951 case Opt_none: 952 /* Explicitly have no subsystems */ 953 ctx->none = true; 954 break; 955 case Opt_all: 956 ctx->all_ss = true; 957 break; 958 case Opt_noprefix: 959 ctx->flags |= CGRP_ROOT_NOPREFIX; 960 break; 961 case Opt_clone_children: 962 ctx->cpuset_clone_children = true; 963 break; 964 case Opt_cpuset_v2_mode: 965 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 966 break; 967 case Opt_xattr: 968 ctx->flags |= CGRP_ROOT_XATTR; 969 break; 970 case Opt_release_agent: 971 /* Specifying two release agents is forbidden */ 972 if (ctx->release_agent) 973 return cg_invalf(fc, "cgroup1: release_agent respecified"); 974 ctx->release_agent = param->string; 975 param->string = NULL; 976 break; 977 case Opt_name: 978 /* blocked by boot param? */ 979 if (cgroup_no_v1_named) 980 return -ENOENT; 981 /* Can't specify an empty name */ 982 if (!param->size) 983 return cg_invalf(fc, "cgroup1: Empty name"); 984 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 985 return cg_invalf(fc, "cgroup1: Name too long"); 986 /* Must match [\w.-]+ */ 987 for (i = 0; i < param->size; i++) { 988 char c = param->string[i]; 989 if (isalnum(c)) 990 continue; 991 if ((c == '.') || (c == '-') || (c == '_')) 992 continue; 993 return cg_invalf(fc, "cgroup1: Invalid name"); 994 } 995 /* Specifying two names is forbidden */ 996 if (ctx->name) 997 return cg_invalf(fc, "cgroup1: name respecified"); 998 ctx->name = param->string; 999 param->string = NULL; 1000 break; 1001 } 1002 return 0; 1003 } 1004 1005 static int check_cgroupfs_options(struct fs_context *fc) 1006 { 1007 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1008 u16 mask = U16_MAX; 1009 u16 enabled = 0; 1010 struct cgroup_subsys *ss; 1011 int i; 1012 1013 #ifdef CONFIG_CPUSETS 1014 mask = ~((u16)1 << cpuset_cgrp_id); 1015 #endif 1016 for_each_subsys(ss, i) 1017 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) 1018 enabled |= 1 << i; 1019 1020 ctx->subsys_mask &= enabled; 1021 1022 /* 1023 * In absense of 'none', 'name=' or subsystem name options, 1024 * let's default to 'all'. 1025 */ 1026 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1027 ctx->all_ss = true; 1028 1029 if (ctx->all_ss) { 1030 /* Mutually exclusive option 'all' + subsystem name */ 1031 if (ctx->subsys_mask) 1032 return cg_invalf(fc, "cgroup1: subsys name conflicts with all"); 1033 /* 'all' => select all the subsystems */ 1034 ctx->subsys_mask = enabled; 1035 } 1036 1037 /* 1038 * We either have to specify by name or by subsystems. (So all 1039 * empty hierarchies must have a name). 1040 */ 1041 if (!ctx->subsys_mask && !ctx->name) 1042 return cg_invalf(fc, "cgroup1: Need name or subsystem set"); 1043 1044 /* 1045 * Option noprefix was introduced just for backward compatibility 1046 * with the old cpuset, so we allow noprefix only if mounting just 1047 * the cpuset subsystem. 1048 */ 1049 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1050 return cg_invalf(fc, "cgroup1: noprefix used incorrectly"); 1051 1052 /* Can't specify "none" and some subsystems */ 1053 if (ctx->subsys_mask && ctx->none) 1054 return cg_invalf(fc, "cgroup1: none used incorrectly"); 1055 1056 return 0; 1057 } 1058 1059 int cgroup1_reconfigure(struct fs_context *fc) 1060 { 1061 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1062 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1063 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1064 int ret = 0; 1065 u16 added_mask, removed_mask; 1066 1067 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1068 1069 /* See what subsystems are wanted */ 1070 ret = check_cgroupfs_options(fc); 1071 if (ret) 1072 goto out_unlock; 1073 1074 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1075 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1076 task_tgid_nr(current), current->comm); 1077 1078 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1079 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1080 1081 /* Don't allow flags or name to change at remount */ 1082 if ((ctx->flags ^ root->flags) || 1083 (ctx->name && strcmp(ctx->name, root->name))) { 1084 cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1085 ctx->flags, ctx->name ?: "", root->flags, root->name); 1086 ret = -EINVAL; 1087 goto out_unlock; 1088 } 1089 1090 /* remounting is not allowed for populated hierarchies */ 1091 if (!list_empty(&root->cgrp.self.children)) { 1092 ret = -EBUSY; 1093 goto out_unlock; 1094 } 1095 1096 ret = rebind_subsystems(root, added_mask); 1097 if (ret) 1098 goto out_unlock; 1099 1100 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1101 1102 if (ctx->release_agent) { 1103 spin_lock(&release_agent_path_lock); 1104 strcpy(root->release_agent_path, ctx->release_agent); 1105 spin_unlock(&release_agent_path_lock); 1106 } 1107 1108 trace_cgroup_remount(root); 1109 1110 out_unlock: 1111 mutex_unlock(&cgroup_mutex); 1112 return ret; 1113 } 1114 1115 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1116 .rename = cgroup1_rename, 1117 .show_options = cgroup1_show_options, 1118 .mkdir = cgroup_mkdir, 1119 .rmdir = cgroup_rmdir, 1120 .show_path = cgroup_show_path, 1121 }; 1122 1123 /* 1124 * The guts of cgroup1 mount - find or create cgroup_root to use. 1125 * Called with cgroup_mutex held; returns 0 on success, -E... on 1126 * error and positive - in case when the candidate is busy dying. 1127 * On success it stashes a reference to cgroup_root into given 1128 * cgroup_fs_context; that reference is *NOT* counting towards the 1129 * cgroup_root refcount. 1130 */ 1131 static int cgroup1_root_to_use(struct fs_context *fc) 1132 { 1133 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1134 struct cgroup_root *root; 1135 struct cgroup_subsys *ss; 1136 int i, ret; 1137 1138 /* First find the desired set of subsystems */ 1139 ret = check_cgroupfs_options(fc); 1140 if (ret) 1141 return ret; 1142 1143 /* 1144 * Destruction of cgroup root is asynchronous, so subsystems may 1145 * still be dying after the previous unmount. Let's drain the 1146 * dying subsystems. We just need to ensure that the ones 1147 * unmounted previously finish dying and don't care about new ones 1148 * starting. Testing ref liveliness is good enough. 1149 */ 1150 for_each_subsys(ss, i) { 1151 if (!(ctx->subsys_mask & (1 << i)) || 1152 ss->root == &cgrp_dfl_root) 1153 continue; 1154 1155 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1156 return 1; /* restart */ 1157 cgroup_put(&ss->root->cgrp); 1158 } 1159 1160 for_each_root(root) { 1161 bool name_match = false; 1162 1163 if (root == &cgrp_dfl_root) 1164 continue; 1165 1166 /* 1167 * If we asked for a name then it must match. Also, if 1168 * name matches but sybsys_mask doesn't, we should fail. 1169 * Remember whether name matched. 1170 */ 1171 if (ctx->name) { 1172 if (strcmp(ctx->name, root->name)) 1173 continue; 1174 name_match = true; 1175 } 1176 1177 /* 1178 * If we asked for subsystems (or explicitly for no 1179 * subsystems) then they must match. 1180 */ 1181 if ((ctx->subsys_mask || ctx->none) && 1182 (ctx->subsys_mask != root->subsys_mask)) { 1183 if (!name_match) 1184 continue; 1185 return -EBUSY; 1186 } 1187 1188 if (root->flags ^ ctx->flags) 1189 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1190 1191 ctx->root = root; 1192 return 0; 1193 } 1194 1195 /* 1196 * No such thing, create a new one. name= matching without subsys 1197 * specification is allowed for already existing hierarchies but we 1198 * can't create new one without subsys specification. 1199 */ 1200 if (!ctx->subsys_mask && !ctx->none) 1201 return cg_invalf(fc, "cgroup1: No subsys list or none specified"); 1202 1203 /* Hierarchies may only be created in the initial cgroup namespace. */ 1204 if (ctx->ns != &init_cgroup_ns) 1205 return -EPERM; 1206 1207 root = kzalloc(sizeof(*root), GFP_KERNEL); 1208 if (!root) 1209 return -ENOMEM; 1210 1211 ctx->root = root; 1212 init_cgroup_root(ctx); 1213 1214 ret = cgroup_setup_root(root, ctx->subsys_mask); 1215 if (ret) 1216 cgroup_free_root(root); 1217 return ret; 1218 } 1219 1220 int cgroup1_get_tree(struct fs_context *fc) 1221 { 1222 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1223 int ret; 1224 1225 /* Check if the caller has permission to mount. */ 1226 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1227 return -EPERM; 1228 1229 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1230 1231 ret = cgroup1_root_to_use(fc); 1232 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1233 ret = 1; /* restart */ 1234 1235 mutex_unlock(&cgroup_mutex); 1236 1237 if (!ret) 1238 ret = cgroup_do_get_tree(fc); 1239 1240 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1241 struct super_block *sb = fc->root->d_sb; 1242 dput(fc->root); 1243 deactivate_locked_super(sb); 1244 ret = 1; 1245 } 1246 1247 if (unlikely(ret > 0)) { 1248 msleep(10); 1249 return restart_syscall(); 1250 } 1251 return ret; 1252 } 1253 1254 static int __init cgroup1_wq_init(void) 1255 { 1256 /* 1257 * Used to destroy pidlists and separate to serve as flush domain. 1258 * Cap @max_active to 1 too. 1259 */ 1260 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1261 0, 1); 1262 BUG_ON(!cgroup_pidlist_destroy_wq); 1263 return 0; 1264 } 1265 core_initcall(cgroup1_wq_init); 1266 1267 static int __init cgroup_no_v1(char *str) 1268 { 1269 struct cgroup_subsys *ss; 1270 char *token; 1271 int i; 1272 1273 while ((token = strsep(&str, ",")) != NULL) { 1274 if (!*token) 1275 continue; 1276 1277 if (!strcmp(token, "all")) { 1278 cgroup_no_v1_mask = U16_MAX; 1279 continue; 1280 } 1281 1282 if (!strcmp(token, "named")) { 1283 cgroup_no_v1_named = true; 1284 continue; 1285 } 1286 1287 for_each_subsys(ss, i) { 1288 if (strcmp(token, ss->name) && 1289 strcmp(token, ss->legacy_name)) 1290 continue; 1291 1292 cgroup_no_v1_mask |= 1 << i; 1293 } 1294 } 1295 return 1; 1296 } 1297 __setup("cgroup_no_v1=", cgroup_no_v1); 1298