xref: /linux/kernel/cgroup/cgroup-v1.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
22 
23 /*
24  * pidlists linger the following amount before being destroyed.  The goal
25  * is avoiding frequent destruction in the middle of consecutive read calls
26  * Expiring in the middle is a performance problem not a correctness one.
27  * 1 sec should be enough.
28  */
29 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
30 
31 /* Controllers blocked by the commandline in v1 */
32 static u16 cgroup_no_v1_mask;
33 
34 /* disable named v1 mounts */
35 static bool cgroup_no_v1_named;
36 
37 /*
38  * pidlist destructions need to be flushed on cgroup destruction.  Use a
39  * separate workqueue as flush domain.
40  */
41 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
42 
43 /*
44  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
45  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
46  */
47 static DEFINE_SPINLOCK(release_agent_path_lock);
48 
49 bool cgroup1_ssid_disabled(int ssid)
50 {
51 	return cgroup_no_v1_mask & (1 << ssid);
52 }
53 
54 /**
55  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
56  * @from: attach to all cgroups of a given task
57  * @tsk: the task to be attached
58  */
59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
60 {
61 	struct cgroup_root *root;
62 	int retval = 0;
63 
64 	mutex_lock(&cgroup_mutex);
65 	percpu_down_write(&cgroup_threadgroup_rwsem);
66 	for_each_root(root) {
67 		struct cgroup *from_cgrp;
68 
69 		if (root == &cgrp_dfl_root)
70 			continue;
71 
72 		spin_lock_irq(&css_set_lock);
73 		from_cgrp = task_cgroup_from_root(from, root);
74 		spin_unlock_irq(&css_set_lock);
75 
76 		retval = cgroup_attach_task(from_cgrp, tsk, false);
77 		if (retval)
78 			break;
79 	}
80 	percpu_up_write(&cgroup_threadgroup_rwsem);
81 	mutex_unlock(&cgroup_mutex);
82 
83 	return retval;
84 }
85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
86 
87 /**
88  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
89  * @to: cgroup to which the tasks will be moved
90  * @from: cgroup in which the tasks currently reside
91  *
92  * Locking rules between cgroup_post_fork() and the migration path
93  * guarantee that, if a task is forking while being migrated, the new child
94  * is guaranteed to be either visible in the source cgroup after the
95  * parent's migration is complete or put into the target cgroup.  No task
96  * can slip out of migration through forking.
97  */
98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
99 {
100 	DEFINE_CGROUP_MGCTX(mgctx);
101 	struct cgrp_cset_link *link;
102 	struct css_task_iter it;
103 	struct task_struct *task;
104 	int ret;
105 
106 	if (cgroup_on_dfl(to))
107 		return -EINVAL;
108 
109 	ret = cgroup_migrate_vet_dst(to);
110 	if (ret)
111 		return ret;
112 
113 	mutex_lock(&cgroup_mutex);
114 
115 	percpu_down_write(&cgroup_threadgroup_rwsem);
116 
117 	/* all tasks in @from are being moved, all csets are source */
118 	spin_lock_irq(&css_set_lock);
119 	list_for_each_entry(link, &from->cset_links, cset_link)
120 		cgroup_migrate_add_src(link->cset, to, &mgctx);
121 	spin_unlock_irq(&css_set_lock);
122 
123 	ret = cgroup_migrate_prepare_dst(&mgctx);
124 	if (ret)
125 		goto out_err;
126 
127 	/*
128 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
129 	 * ->can_attach() fails.
130 	 */
131 	do {
132 		css_task_iter_start(&from->self, 0, &it);
133 
134 		do {
135 			task = css_task_iter_next(&it);
136 		} while (task && (task->flags & PF_EXITING));
137 
138 		if (task)
139 			get_task_struct(task);
140 		css_task_iter_end(&it);
141 
142 		if (task) {
143 			ret = cgroup_migrate(task, false, &mgctx);
144 			if (!ret)
145 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
146 			put_task_struct(task);
147 		}
148 	} while (task && !ret);
149 out_err:
150 	cgroup_migrate_finish(&mgctx);
151 	percpu_up_write(&cgroup_threadgroup_rwsem);
152 	mutex_unlock(&cgroup_mutex);
153 	return ret;
154 }
155 
156 /*
157  * Stuff for reading the 'tasks'/'procs' files.
158  *
159  * Reading this file can return large amounts of data if a cgroup has
160  * *lots* of attached tasks. So it may need several calls to read(),
161  * but we cannot guarantee that the information we produce is correct
162  * unless we produce it entirely atomically.
163  *
164  */
165 
166 /* which pidlist file are we talking about? */
167 enum cgroup_filetype {
168 	CGROUP_FILE_PROCS,
169 	CGROUP_FILE_TASKS,
170 };
171 
172 /*
173  * A pidlist is a list of pids that virtually represents the contents of one
174  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
175  * a pair (one each for procs, tasks) for each pid namespace that's relevant
176  * to the cgroup.
177  */
178 struct cgroup_pidlist {
179 	/*
180 	 * used to find which pidlist is wanted. doesn't change as long as
181 	 * this particular list stays in the list.
182 	*/
183 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
184 	/* array of xids */
185 	pid_t *list;
186 	/* how many elements the above list has */
187 	int length;
188 	/* each of these stored in a list by its cgroup */
189 	struct list_head links;
190 	/* pointer to the cgroup we belong to, for list removal purposes */
191 	struct cgroup *owner;
192 	/* for delayed destruction */
193 	struct delayed_work destroy_dwork;
194 };
195 
196 /*
197  * The following two functions "fix" the issue where there are more pids
198  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
199  * TODO: replace with a kernel-wide solution to this problem
200  */
201 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
202 static void *pidlist_allocate(int count)
203 {
204 	if (PIDLIST_TOO_LARGE(count))
205 		return vmalloc(array_size(count, sizeof(pid_t)));
206 	else
207 		return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
208 }
209 
210 static void pidlist_free(void *p)
211 {
212 	kvfree(p);
213 }
214 
215 /*
216  * Used to destroy all pidlists lingering waiting for destroy timer.  None
217  * should be left afterwards.
218  */
219 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
220 {
221 	struct cgroup_pidlist *l, *tmp_l;
222 
223 	mutex_lock(&cgrp->pidlist_mutex);
224 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
225 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
226 	mutex_unlock(&cgrp->pidlist_mutex);
227 
228 	flush_workqueue(cgroup_pidlist_destroy_wq);
229 	BUG_ON(!list_empty(&cgrp->pidlists));
230 }
231 
232 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
233 {
234 	struct delayed_work *dwork = to_delayed_work(work);
235 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
236 						destroy_dwork);
237 	struct cgroup_pidlist *tofree = NULL;
238 
239 	mutex_lock(&l->owner->pidlist_mutex);
240 
241 	/*
242 	 * Destroy iff we didn't get queued again.  The state won't change
243 	 * as destroy_dwork can only be queued while locked.
244 	 */
245 	if (!delayed_work_pending(dwork)) {
246 		list_del(&l->links);
247 		pidlist_free(l->list);
248 		put_pid_ns(l->key.ns);
249 		tofree = l;
250 	}
251 
252 	mutex_unlock(&l->owner->pidlist_mutex);
253 	kfree(tofree);
254 }
255 
256 /*
257  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
258  * Returns the number of unique elements.
259  */
260 static int pidlist_uniq(pid_t *list, int length)
261 {
262 	int src, dest = 1;
263 
264 	/*
265 	 * we presume the 0th element is unique, so i starts at 1. trivial
266 	 * edge cases first; no work needs to be done for either
267 	 */
268 	if (length == 0 || length == 1)
269 		return length;
270 	/* src and dest walk down the list; dest counts unique elements */
271 	for (src = 1; src < length; src++) {
272 		/* find next unique element */
273 		while (list[src] == list[src-1]) {
274 			src++;
275 			if (src == length)
276 				goto after;
277 		}
278 		/* dest always points to where the next unique element goes */
279 		list[dest] = list[src];
280 		dest++;
281 	}
282 after:
283 	return dest;
284 }
285 
286 /*
287  * The two pid files - task and cgroup.procs - guaranteed that the result
288  * is sorted, which forced this whole pidlist fiasco.  As pid order is
289  * different per namespace, each namespace needs differently sorted list,
290  * making it impossible to use, for example, single rbtree of member tasks
291  * sorted by task pointer.  As pidlists can be fairly large, allocating one
292  * per open file is dangerous, so cgroup had to implement shared pool of
293  * pidlists keyed by cgroup and namespace.
294  */
295 static int cmppid(const void *a, const void *b)
296 {
297 	return *(pid_t *)a - *(pid_t *)b;
298 }
299 
300 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
301 						  enum cgroup_filetype type)
302 {
303 	struct cgroup_pidlist *l;
304 	/* don't need task_nsproxy() if we're looking at ourself */
305 	struct pid_namespace *ns = task_active_pid_ns(current);
306 
307 	lockdep_assert_held(&cgrp->pidlist_mutex);
308 
309 	list_for_each_entry(l, &cgrp->pidlists, links)
310 		if (l->key.type == type && l->key.ns == ns)
311 			return l;
312 	return NULL;
313 }
314 
315 /*
316  * find the appropriate pidlist for our purpose (given procs vs tasks)
317  * returns with the lock on that pidlist already held, and takes care
318  * of the use count, or returns NULL with no locks held if we're out of
319  * memory.
320  */
321 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
322 						enum cgroup_filetype type)
323 {
324 	struct cgroup_pidlist *l;
325 
326 	lockdep_assert_held(&cgrp->pidlist_mutex);
327 
328 	l = cgroup_pidlist_find(cgrp, type);
329 	if (l)
330 		return l;
331 
332 	/* entry not found; create a new one */
333 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
334 	if (!l)
335 		return l;
336 
337 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
338 	l->key.type = type;
339 	/* don't need task_nsproxy() if we're looking at ourself */
340 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
341 	l->owner = cgrp;
342 	list_add(&l->links, &cgrp->pidlists);
343 	return l;
344 }
345 
346 /*
347  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
348  */
349 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
350 			      struct cgroup_pidlist **lp)
351 {
352 	pid_t *array;
353 	int length;
354 	int pid, n = 0; /* used for populating the array */
355 	struct css_task_iter it;
356 	struct task_struct *tsk;
357 	struct cgroup_pidlist *l;
358 
359 	lockdep_assert_held(&cgrp->pidlist_mutex);
360 
361 	/*
362 	 * If cgroup gets more users after we read count, we won't have
363 	 * enough space - tough.  This race is indistinguishable to the
364 	 * caller from the case that the additional cgroup users didn't
365 	 * show up until sometime later on.
366 	 */
367 	length = cgroup_task_count(cgrp);
368 	array = pidlist_allocate(length);
369 	if (!array)
370 		return -ENOMEM;
371 	/* now, populate the array */
372 	css_task_iter_start(&cgrp->self, 0, &it);
373 	while ((tsk = css_task_iter_next(&it))) {
374 		if (unlikely(n == length))
375 			break;
376 		/* get tgid or pid for procs or tasks file respectively */
377 		if (type == CGROUP_FILE_PROCS)
378 			pid = task_tgid_vnr(tsk);
379 		else
380 			pid = task_pid_vnr(tsk);
381 		if (pid > 0) /* make sure to only use valid results */
382 			array[n++] = pid;
383 	}
384 	css_task_iter_end(&it);
385 	length = n;
386 	/* now sort & (if procs) strip out duplicates */
387 	sort(array, length, sizeof(pid_t), cmppid, NULL);
388 	if (type == CGROUP_FILE_PROCS)
389 		length = pidlist_uniq(array, length);
390 
391 	l = cgroup_pidlist_find_create(cgrp, type);
392 	if (!l) {
393 		pidlist_free(array);
394 		return -ENOMEM;
395 	}
396 
397 	/* store array, freeing old if necessary */
398 	pidlist_free(l->list);
399 	l->list = array;
400 	l->length = length;
401 	*lp = l;
402 	return 0;
403 }
404 
405 /*
406  * seq_file methods for the tasks/procs files. The seq_file position is the
407  * next pid to display; the seq_file iterator is a pointer to the pid
408  * in the cgroup->l->list array.
409  */
410 
411 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
412 {
413 	/*
414 	 * Initially we receive a position value that corresponds to
415 	 * one more than the last pid shown (or 0 on the first call or
416 	 * after a seek to the start). Use a binary-search to find the
417 	 * next pid to display, if any
418 	 */
419 	struct kernfs_open_file *of = s->private;
420 	struct cgroup *cgrp = seq_css(s)->cgroup;
421 	struct cgroup_pidlist *l;
422 	enum cgroup_filetype type = seq_cft(s)->private;
423 	int index = 0, pid = *pos;
424 	int *iter, ret;
425 
426 	mutex_lock(&cgrp->pidlist_mutex);
427 
428 	/*
429 	 * !NULL @of->priv indicates that this isn't the first start()
430 	 * after open.  If the matching pidlist is around, we can use that.
431 	 * Look for it.  Note that @of->priv can't be used directly.  It
432 	 * could already have been destroyed.
433 	 */
434 	if (of->priv)
435 		of->priv = cgroup_pidlist_find(cgrp, type);
436 
437 	/*
438 	 * Either this is the first start() after open or the matching
439 	 * pidlist has been destroyed inbetween.  Create a new one.
440 	 */
441 	if (!of->priv) {
442 		ret = pidlist_array_load(cgrp, type,
443 					 (struct cgroup_pidlist **)&of->priv);
444 		if (ret)
445 			return ERR_PTR(ret);
446 	}
447 	l = of->priv;
448 
449 	if (pid) {
450 		int end = l->length;
451 
452 		while (index < end) {
453 			int mid = (index + end) / 2;
454 			if (l->list[mid] == pid) {
455 				index = mid;
456 				break;
457 			} else if (l->list[mid] <= pid)
458 				index = mid + 1;
459 			else
460 				end = mid;
461 		}
462 	}
463 	/* If we're off the end of the array, we're done */
464 	if (index >= l->length)
465 		return NULL;
466 	/* Update the abstract position to be the actual pid that we found */
467 	iter = l->list + index;
468 	*pos = *iter;
469 	return iter;
470 }
471 
472 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
473 {
474 	struct kernfs_open_file *of = s->private;
475 	struct cgroup_pidlist *l = of->priv;
476 
477 	if (l)
478 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
479 				 CGROUP_PIDLIST_DESTROY_DELAY);
480 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
481 }
482 
483 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
484 {
485 	struct kernfs_open_file *of = s->private;
486 	struct cgroup_pidlist *l = of->priv;
487 	pid_t *p = v;
488 	pid_t *end = l->list + l->length;
489 	/*
490 	 * Advance to the next pid in the array. If this goes off the
491 	 * end, we're done
492 	 */
493 	p++;
494 	if (p >= end) {
495 		return NULL;
496 	} else {
497 		*pos = *p;
498 		return p;
499 	}
500 }
501 
502 static int cgroup_pidlist_show(struct seq_file *s, void *v)
503 {
504 	seq_printf(s, "%d\n", *(int *)v);
505 
506 	return 0;
507 }
508 
509 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
510 				     char *buf, size_t nbytes, loff_t off,
511 				     bool threadgroup)
512 {
513 	struct cgroup *cgrp;
514 	struct task_struct *task;
515 	const struct cred *cred, *tcred;
516 	ssize_t ret;
517 
518 	cgrp = cgroup_kn_lock_live(of->kn, false);
519 	if (!cgrp)
520 		return -ENODEV;
521 
522 	task = cgroup_procs_write_start(buf, threadgroup);
523 	ret = PTR_ERR_OR_ZERO(task);
524 	if (ret)
525 		goto out_unlock;
526 
527 	/*
528 	 * Even if we're attaching all tasks in the thread group, we only
529 	 * need to check permissions on one of them.
530 	 */
531 	cred = current_cred();
532 	tcred = get_task_cred(task);
533 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
534 	    !uid_eq(cred->euid, tcred->uid) &&
535 	    !uid_eq(cred->euid, tcred->suid))
536 		ret = -EACCES;
537 	put_cred(tcred);
538 	if (ret)
539 		goto out_finish;
540 
541 	ret = cgroup_attach_task(cgrp, task, threadgroup);
542 
543 out_finish:
544 	cgroup_procs_write_finish(task);
545 out_unlock:
546 	cgroup_kn_unlock(of->kn);
547 
548 	return ret ?: nbytes;
549 }
550 
551 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
552 				   char *buf, size_t nbytes, loff_t off)
553 {
554 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
555 }
556 
557 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
558 				   char *buf, size_t nbytes, loff_t off)
559 {
560 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
561 }
562 
563 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
564 					  char *buf, size_t nbytes, loff_t off)
565 {
566 	struct cgroup *cgrp;
567 
568 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
569 
570 	cgrp = cgroup_kn_lock_live(of->kn, false);
571 	if (!cgrp)
572 		return -ENODEV;
573 	spin_lock(&release_agent_path_lock);
574 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
575 		sizeof(cgrp->root->release_agent_path));
576 	spin_unlock(&release_agent_path_lock);
577 	cgroup_kn_unlock(of->kn);
578 	return nbytes;
579 }
580 
581 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
582 {
583 	struct cgroup *cgrp = seq_css(seq)->cgroup;
584 
585 	spin_lock(&release_agent_path_lock);
586 	seq_puts(seq, cgrp->root->release_agent_path);
587 	spin_unlock(&release_agent_path_lock);
588 	seq_putc(seq, '\n');
589 	return 0;
590 }
591 
592 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
593 {
594 	seq_puts(seq, "0\n");
595 	return 0;
596 }
597 
598 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
599 					 struct cftype *cft)
600 {
601 	return notify_on_release(css->cgroup);
602 }
603 
604 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
605 					  struct cftype *cft, u64 val)
606 {
607 	if (val)
608 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
609 	else
610 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
611 	return 0;
612 }
613 
614 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
615 				      struct cftype *cft)
616 {
617 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
618 }
619 
620 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
621 				       struct cftype *cft, u64 val)
622 {
623 	if (val)
624 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
625 	else
626 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
627 	return 0;
628 }
629 
630 /* cgroup core interface files for the legacy hierarchies */
631 struct cftype cgroup1_base_files[] = {
632 	{
633 		.name = "cgroup.procs",
634 		.seq_start = cgroup_pidlist_start,
635 		.seq_next = cgroup_pidlist_next,
636 		.seq_stop = cgroup_pidlist_stop,
637 		.seq_show = cgroup_pidlist_show,
638 		.private = CGROUP_FILE_PROCS,
639 		.write = cgroup1_procs_write,
640 	},
641 	{
642 		.name = "cgroup.clone_children",
643 		.read_u64 = cgroup_clone_children_read,
644 		.write_u64 = cgroup_clone_children_write,
645 	},
646 	{
647 		.name = "cgroup.sane_behavior",
648 		.flags = CFTYPE_ONLY_ON_ROOT,
649 		.seq_show = cgroup_sane_behavior_show,
650 	},
651 	{
652 		.name = "tasks",
653 		.seq_start = cgroup_pidlist_start,
654 		.seq_next = cgroup_pidlist_next,
655 		.seq_stop = cgroup_pidlist_stop,
656 		.seq_show = cgroup_pidlist_show,
657 		.private = CGROUP_FILE_TASKS,
658 		.write = cgroup1_tasks_write,
659 	},
660 	{
661 		.name = "notify_on_release",
662 		.read_u64 = cgroup_read_notify_on_release,
663 		.write_u64 = cgroup_write_notify_on_release,
664 	},
665 	{
666 		.name = "release_agent",
667 		.flags = CFTYPE_ONLY_ON_ROOT,
668 		.seq_show = cgroup_release_agent_show,
669 		.write = cgroup_release_agent_write,
670 		.max_write_len = PATH_MAX - 1,
671 	},
672 	{ }	/* terminate */
673 };
674 
675 /* Display information about each subsystem and each hierarchy */
676 int proc_cgroupstats_show(struct seq_file *m, void *v)
677 {
678 	struct cgroup_subsys *ss;
679 	int i;
680 
681 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
682 	/*
683 	 * ideally we don't want subsystems moving around while we do this.
684 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
685 	 * subsys/hierarchy state.
686 	 */
687 	mutex_lock(&cgroup_mutex);
688 
689 	for_each_subsys(ss, i)
690 		seq_printf(m, "%s\t%d\t%d\t%d\n",
691 			   ss->legacy_name, ss->root->hierarchy_id,
692 			   atomic_read(&ss->root->nr_cgrps),
693 			   cgroup_ssid_enabled(i));
694 
695 	mutex_unlock(&cgroup_mutex);
696 	return 0;
697 }
698 
699 /**
700  * cgroupstats_build - build and fill cgroupstats
701  * @stats: cgroupstats to fill information into
702  * @dentry: A dentry entry belonging to the cgroup for which stats have
703  * been requested.
704  *
705  * Build and fill cgroupstats so that taskstats can export it to user
706  * space.
707  */
708 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
709 {
710 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
711 	struct cgroup *cgrp;
712 	struct css_task_iter it;
713 	struct task_struct *tsk;
714 
715 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
716 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
717 	    kernfs_type(kn) != KERNFS_DIR)
718 		return -EINVAL;
719 
720 	mutex_lock(&cgroup_mutex);
721 
722 	/*
723 	 * We aren't being called from kernfs and there's no guarantee on
724 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
725 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
726 	 */
727 	rcu_read_lock();
728 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
729 	if (!cgrp || cgroup_is_dead(cgrp)) {
730 		rcu_read_unlock();
731 		mutex_unlock(&cgroup_mutex);
732 		return -ENOENT;
733 	}
734 	rcu_read_unlock();
735 
736 	css_task_iter_start(&cgrp->self, 0, &it);
737 	while ((tsk = css_task_iter_next(&it))) {
738 		switch (tsk->state) {
739 		case TASK_RUNNING:
740 			stats->nr_running++;
741 			break;
742 		case TASK_INTERRUPTIBLE:
743 			stats->nr_sleeping++;
744 			break;
745 		case TASK_UNINTERRUPTIBLE:
746 			stats->nr_uninterruptible++;
747 			break;
748 		case TASK_STOPPED:
749 			stats->nr_stopped++;
750 			break;
751 		default:
752 			if (delayacct_is_task_waiting_on_io(tsk))
753 				stats->nr_io_wait++;
754 			break;
755 		}
756 	}
757 	css_task_iter_end(&it);
758 
759 	mutex_unlock(&cgroup_mutex);
760 	return 0;
761 }
762 
763 void cgroup1_check_for_release(struct cgroup *cgrp)
764 {
765 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
766 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
767 		schedule_work(&cgrp->release_agent_work);
768 }
769 
770 /*
771  * Notify userspace when a cgroup is released, by running the
772  * configured release agent with the name of the cgroup (path
773  * relative to the root of cgroup file system) as the argument.
774  *
775  * Most likely, this user command will try to rmdir this cgroup.
776  *
777  * This races with the possibility that some other task will be
778  * attached to this cgroup before it is removed, or that some other
779  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
780  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
781  * unused, and this cgroup will be reprieved from its death sentence,
782  * to continue to serve a useful existence.  Next time it's released,
783  * we will get notified again, if it still has 'notify_on_release' set.
784  *
785  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
786  * means only wait until the task is successfully execve()'d.  The
787  * separate release agent task is forked by call_usermodehelper(),
788  * then control in this thread returns here, without waiting for the
789  * release agent task.  We don't bother to wait because the caller of
790  * this routine has no use for the exit status of the release agent
791  * task, so no sense holding our caller up for that.
792  */
793 void cgroup1_release_agent(struct work_struct *work)
794 {
795 	struct cgroup *cgrp =
796 		container_of(work, struct cgroup, release_agent_work);
797 	char *pathbuf = NULL, *agentbuf = NULL;
798 	char *argv[3], *envp[3];
799 	int ret;
800 
801 	mutex_lock(&cgroup_mutex);
802 
803 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
804 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
805 	if (!pathbuf || !agentbuf)
806 		goto out;
807 
808 	spin_lock_irq(&css_set_lock);
809 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
810 	spin_unlock_irq(&css_set_lock);
811 	if (ret < 0 || ret >= PATH_MAX)
812 		goto out;
813 
814 	argv[0] = agentbuf;
815 	argv[1] = pathbuf;
816 	argv[2] = NULL;
817 
818 	/* minimal command environment */
819 	envp[0] = "HOME=/";
820 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
821 	envp[2] = NULL;
822 
823 	mutex_unlock(&cgroup_mutex);
824 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
825 	goto out_free;
826 out:
827 	mutex_unlock(&cgroup_mutex);
828 out_free:
829 	kfree(agentbuf);
830 	kfree(pathbuf);
831 }
832 
833 /*
834  * cgroup_rename - Only allow simple rename of directories in place.
835  */
836 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
837 			  const char *new_name_str)
838 {
839 	struct cgroup *cgrp = kn->priv;
840 	int ret;
841 
842 	if (kernfs_type(kn) != KERNFS_DIR)
843 		return -ENOTDIR;
844 	if (kn->parent != new_parent)
845 		return -EIO;
846 
847 	/*
848 	 * We're gonna grab cgroup_mutex which nests outside kernfs
849 	 * active_ref.  kernfs_rename() doesn't require active_ref
850 	 * protection.  Break them before grabbing cgroup_mutex.
851 	 */
852 	kernfs_break_active_protection(new_parent);
853 	kernfs_break_active_protection(kn);
854 
855 	mutex_lock(&cgroup_mutex);
856 
857 	ret = kernfs_rename(kn, new_parent, new_name_str);
858 	if (!ret)
859 		TRACE_CGROUP_PATH(rename, cgrp);
860 
861 	mutex_unlock(&cgroup_mutex);
862 
863 	kernfs_unbreak_active_protection(kn);
864 	kernfs_unbreak_active_protection(new_parent);
865 	return ret;
866 }
867 
868 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
869 {
870 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
871 	struct cgroup_subsys *ss;
872 	int ssid;
873 
874 	for_each_subsys(ss, ssid)
875 		if (root->subsys_mask & (1 << ssid))
876 			seq_show_option(seq, ss->legacy_name, NULL);
877 	if (root->flags & CGRP_ROOT_NOPREFIX)
878 		seq_puts(seq, ",noprefix");
879 	if (root->flags & CGRP_ROOT_XATTR)
880 		seq_puts(seq, ",xattr");
881 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
882 		seq_puts(seq, ",cpuset_v2_mode");
883 
884 	spin_lock(&release_agent_path_lock);
885 	if (strlen(root->release_agent_path))
886 		seq_show_option(seq, "release_agent",
887 				root->release_agent_path);
888 	spin_unlock(&release_agent_path_lock);
889 
890 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
891 		seq_puts(seq, ",clone_children");
892 	if (strlen(root->name))
893 		seq_show_option(seq, "name", root->name);
894 	return 0;
895 }
896 
897 enum cgroup1_param {
898 	Opt_all,
899 	Opt_clone_children,
900 	Opt_cpuset_v2_mode,
901 	Opt_name,
902 	Opt_none,
903 	Opt_noprefix,
904 	Opt_release_agent,
905 	Opt_xattr,
906 };
907 
908 static const struct fs_parameter_spec cgroup1_param_specs[] = {
909 	fsparam_flag  ("all",		Opt_all),
910 	fsparam_flag  ("clone_children", Opt_clone_children),
911 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
912 	fsparam_string("name",		Opt_name),
913 	fsparam_flag  ("none",		Opt_none),
914 	fsparam_flag  ("noprefix",	Opt_noprefix),
915 	fsparam_string("release_agent",	Opt_release_agent),
916 	fsparam_flag  ("xattr",		Opt_xattr),
917 	{}
918 };
919 
920 const struct fs_parameter_description cgroup1_fs_parameters = {
921 	.name		= "cgroup1",
922 	.specs		= cgroup1_param_specs,
923 };
924 
925 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
926 {
927 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
928 	struct cgroup_subsys *ss;
929 	struct fs_parse_result result;
930 	int opt, i;
931 
932 	opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
933 	if (opt == -ENOPARAM) {
934 		if (strcmp(param->key, "source") == 0) {
935 			fc->source = param->string;
936 			param->string = NULL;
937 			return 0;
938 		}
939 		for_each_subsys(ss, i) {
940 			if (strcmp(param->key, ss->legacy_name))
941 				continue;
942 			ctx->subsys_mask |= (1 << i);
943 			return 0;
944 		}
945 		return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
946 	}
947 	if (opt < 0)
948 		return opt;
949 
950 	switch (opt) {
951 	case Opt_none:
952 		/* Explicitly have no subsystems */
953 		ctx->none = true;
954 		break;
955 	case Opt_all:
956 		ctx->all_ss = true;
957 		break;
958 	case Opt_noprefix:
959 		ctx->flags |= CGRP_ROOT_NOPREFIX;
960 		break;
961 	case Opt_clone_children:
962 		ctx->cpuset_clone_children = true;
963 		break;
964 	case Opt_cpuset_v2_mode:
965 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
966 		break;
967 	case Opt_xattr:
968 		ctx->flags |= CGRP_ROOT_XATTR;
969 		break;
970 	case Opt_release_agent:
971 		/* Specifying two release agents is forbidden */
972 		if (ctx->release_agent)
973 			return cg_invalf(fc, "cgroup1: release_agent respecified");
974 		ctx->release_agent = param->string;
975 		param->string = NULL;
976 		break;
977 	case Opt_name:
978 		/* blocked by boot param? */
979 		if (cgroup_no_v1_named)
980 			return -ENOENT;
981 		/* Can't specify an empty name */
982 		if (!param->size)
983 			return cg_invalf(fc, "cgroup1: Empty name");
984 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
985 			return cg_invalf(fc, "cgroup1: Name too long");
986 		/* Must match [\w.-]+ */
987 		for (i = 0; i < param->size; i++) {
988 			char c = param->string[i];
989 			if (isalnum(c))
990 				continue;
991 			if ((c == '.') || (c == '-') || (c == '_'))
992 				continue;
993 			return cg_invalf(fc, "cgroup1: Invalid name");
994 		}
995 		/* Specifying two names is forbidden */
996 		if (ctx->name)
997 			return cg_invalf(fc, "cgroup1: name respecified");
998 		ctx->name = param->string;
999 		param->string = NULL;
1000 		break;
1001 	}
1002 	return 0;
1003 }
1004 
1005 static int check_cgroupfs_options(struct fs_context *fc)
1006 {
1007 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1008 	u16 mask = U16_MAX;
1009 	u16 enabled = 0;
1010 	struct cgroup_subsys *ss;
1011 	int i;
1012 
1013 #ifdef CONFIG_CPUSETS
1014 	mask = ~((u16)1 << cpuset_cgrp_id);
1015 #endif
1016 	for_each_subsys(ss, i)
1017 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1018 			enabled |= 1 << i;
1019 
1020 	ctx->subsys_mask &= enabled;
1021 
1022 	/*
1023 	 * In absense of 'none', 'name=' or subsystem name options,
1024 	 * let's default to 'all'.
1025 	 */
1026 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1027 		ctx->all_ss = true;
1028 
1029 	if (ctx->all_ss) {
1030 		/* Mutually exclusive option 'all' + subsystem name */
1031 		if (ctx->subsys_mask)
1032 			return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1033 		/* 'all' => select all the subsystems */
1034 		ctx->subsys_mask = enabled;
1035 	}
1036 
1037 	/*
1038 	 * We either have to specify by name or by subsystems. (So all
1039 	 * empty hierarchies must have a name).
1040 	 */
1041 	if (!ctx->subsys_mask && !ctx->name)
1042 		return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1043 
1044 	/*
1045 	 * Option noprefix was introduced just for backward compatibility
1046 	 * with the old cpuset, so we allow noprefix only if mounting just
1047 	 * the cpuset subsystem.
1048 	 */
1049 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1050 		return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1051 
1052 	/* Can't specify "none" and some subsystems */
1053 	if (ctx->subsys_mask && ctx->none)
1054 		return cg_invalf(fc, "cgroup1: none used incorrectly");
1055 
1056 	return 0;
1057 }
1058 
1059 int cgroup1_reconfigure(struct fs_context *fc)
1060 {
1061 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1062 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1063 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1064 	int ret = 0;
1065 	u16 added_mask, removed_mask;
1066 
1067 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1068 
1069 	/* See what subsystems are wanted */
1070 	ret = check_cgroupfs_options(fc);
1071 	if (ret)
1072 		goto out_unlock;
1073 
1074 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1075 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1076 			task_tgid_nr(current), current->comm);
1077 
1078 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1079 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1080 
1081 	/* Don't allow flags or name to change at remount */
1082 	if ((ctx->flags ^ root->flags) ||
1083 	    (ctx->name && strcmp(ctx->name, root->name))) {
1084 		cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1085 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1086 		ret = -EINVAL;
1087 		goto out_unlock;
1088 	}
1089 
1090 	/* remounting is not allowed for populated hierarchies */
1091 	if (!list_empty(&root->cgrp.self.children)) {
1092 		ret = -EBUSY;
1093 		goto out_unlock;
1094 	}
1095 
1096 	ret = rebind_subsystems(root, added_mask);
1097 	if (ret)
1098 		goto out_unlock;
1099 
1100 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1101 
1102 	if (ctx->release_agent) {
1103 		spin_lock(&release_agent_path_lock);
1104 		strcpy(root->release_agent_path, ctx->release_agent);
1105 		spin_unlock(&release_agent_path_lock);
1106 	}
1107 
1108 	trace_cgroup_remount(root);
1109 
1110  out_unlock:
1111 	mutex_unlock(&cgroup_mutex);
1112 	return ret;
1113 }
1114 
1115 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1116 	.rename			= cgroup1_rename,
1117 	.show_options		= cgroup1_show_options,
1118 	.mkdir			= cgroup_mkdir,
1119 	.rmdir			= cgroup_rmdir,
1120 	.show_path		= cgroup_show_path,
1121 };
1122 
1123 /*
1124  * The guts of cgroup1 mount - find or create cgroup_root to use.
1125  * Called with cgroup_mutex held; returns 0 on success, -E... on
1126  * error and positive - in case when the candidate is busy dying.
1127  * On success it stashes a reference to cgroup_root into given
1128  * cgroup_fs_context; that reference is *NOT* counting towards the
1129  * cgroup_root refcount.
1130  */
1131 static int cgroup1_root_to_use(struct fs_context *fc)
1132 {
1133 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1134 	struct cgroup_root *root;
1135 	struct cgroup_subsys *ss;
1136 	int i, ret;
1137 
1138 	/* First find the desired set of subsystems */
1139 	ret = check_cgroupfs_options(fc);
1140 	if (ret)
1141 		return ret;
1142 
1143 	/*
1144 	 * Destruction of cgroup root is asynchronous, so subsystems may
1145 	 * still be dying after the previous unmount.  Let's drain the
1146 	 * dying subsystems.  We just need to ensure that the ones
1147 	 * unmounted previously finish dying and don't care about new ones
1148 	 * starting.  Testing ref liveliness is good enough.
1149 	 */
1150 	for_each_subsys(ss, i) {
1151 		if (!(ctx->subsys_mask & (1 << i)) ||
1152 		    ss->root == &cgrp_dfl_root)
1153 			continue;
1154 
1155 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1156 			return 1;	/* restart */
1157 		cgroup_put(&ss->root->cgrp);
1158 	}
1159 
1160 	for_each_root(root) {
1161 		bool name_match = false;
1162 
1163 		if (root == &cgrp_dfl_root)
1164 			continue;
1165 
1166 		/*
1167 		 * If we asked for a name then it must match.  Also, if
1168 		 * name matches but sybsys_mask doesn't, we should fail.
1169 		 * Remember whether name matched.
1170 		 */
1171 		if (ctx->name) {
1172 			if (strcmp(ctx->name, root->name))
1173 				continue;
1174 			name_match = true;
1175 		}
1176 
1177 		/*
1178 		 * If we asked for subsystems (or explicitly for no
1179 		 * subsystems) then they must match.
1180 		 */
1181 		if ((ctx->subsys_mask || ctx->none) &&
1182 		    (ctx->subsys_mask != root->subsys_mask)) {
1183 			if (!name_match)
1184 				continue;
1185 			return -EBUSY;
1186 		}
1187 
1188 		if (root->flags ^ ctx->flags)
1189 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1190 
1191 		ctx->root = root;
1192 		return 0;
1193 	}
1194 
1195 	/*
1196 	 * No such thing, create a new one.  name= matching without subsys
1197 	 * specification is allowed for already existing hierarchies but we
1198 	 * can't create new one without subsys specification.
1199 	 */
1200 	if (!ctx->subsys_mask && !ctx->none)
1201 		return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1202 
1203 	/* Hierarchies may only be created in the initial cgroup namespace. */
1204 	if (ctx->ns != &init_cgroup_ns)
1205 		return -EPERM;
1206 
1207 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1208 	if (!root)
1209 		return -ENOMEM;
1210 
1211 	ctx->root = root;
1212 	init_cgroup_root(ctx);
1213 
1214 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1215 	if (ret)
1216 		cgroup_free_root(root);
1217 	return ret;
1218 }
1219 
1220 int cgroup1_get_tree(struct fs_context *fc)
1221 {
1222 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1223 	int ret;
1224 
1225 	/* Check if the caller has permission to mount. */
1226 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1227 		return -EPERM;
1228 
1229 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1230 
1231 	ret = cgroup1_root_to_use(fc);
1232 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1233 		ret = 1;	/* restart */
1234 
1235 	mutex_unlock(&cgroup_mutex);
1236 
1237 	if (!ret)
1238 		ret = cgroup_do_get_tree(fc);
1239 
1240 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1241 		struct super_block *sb = fc->root->d_sb;
1242 		dput(fc->root);
1243 		deactivate_locked_super(sb);
1244 		ret = 1;
1245 	}
1246 
1247 	if (unlikely(ret > 0)) {
1248 		msleep(10);
1249 		return restart_syscall();
1250 	}
1251 	return ret;
1252 }
1253 
1254 static int __init cgroup1_wq_init(void)
1255 {
1256 	/*
1257 	 * Used to destroy pidlists and separate to serve as flush domain.
1258 	 * Cap @max_active to 1 too.
1259 	 */
1260 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1261 						    0, 1);
1262 	BUG_ON(!cgroup_pidlist_destroy_wq);
1263 	return 0;
1264 }
1265 core_initcall(cgroup1_wq_init);
1266 
1267 static int __init cgroup_no_v1(char *str)
1268 {
1269 	struct cgroup_subsys *ss;
1270 	char *token;
1271 	int i;
1272 
1273 	while ((token = strsep(&str, ",")) != NULL) {
1274 		if (!*token)
1275 			continue;
1276 
1277 		if (!strcmp(token, "all")) {
1278 			cgroup_no_v1_mask = U16_MAX;
1279 			continue;
1280 		}
1281 
1282 		if (!strcmp(token, "named")) {
1283 			cgroup_no_v1_named = true;
1284 			continue;
1285 		}
1286 
1287 		for_each_subsys(ss, i) {
1288 			if (strcmp(token, ss->name) &&
1289 			    strcmp(token, ss->legacy_name))
1290 				continue;
1291 
1292 			cgroup_no_v1_mask |= 1 << i;
1293 		}
1294 	}
1295 	return 1;
1296 }
1297 __setup("cgroup_no_v1=", cgroup_no_v1);
1298