xref: /linux/kernel/cgroup/cgroup-v1.c (revision 5e3c6a312a0946d2d83e32359612cbb925a8bed0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 /*
22  * pidlists linger the following amount before being destroyed.  The goal
23  * is avoiding frequent destruction in the middle of consecutive read calls
24  * Expiring in the middle is a performance problem not a correctness one.
25  * 1 sec should be enough.
26  */
27 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28 
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31 
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34 
35 /*
36  * pidlist destructions need to be flushed on cgroup destruction.  Use a
37  * separate workqueue as flush domain.
38  */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40 
41 /*
42  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
43  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
44  */
45 static DEFINE_SPINLOCK(release_agent_path_lock);
46 
47 bool cgroup1_ssid_disabled(int ssid)
48 {
49 	return cgroup_no_v1_mask & (1 << ssid);
50 }
51 
52 /**
53  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
54  * @from: attach to all cgroups of a given task
55  * @tsk: the task to be attached
56  */
57 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
58 {
59 	struct cgroup_root *root;
60 	int retval = 0;
61 
62 	mutex_lock(&cgroup_mutex);
63 	percpu_down_write(&cgroup_threadgroup_rwsem);
64 	for_each_root(root) {
65 		struct cgroup *from_cgrp;
66 
67 		if (root == &cgrp_dfl_root)
68 			continue;
69 
70 		spin_lock_irq(&css_set_lock);
71 		from_cgrp = task_cgroup_from_root(from, root);
72 		spin_unlock_irq(&css_set_lock);
73 
74 		retval = cgroup_attach_task(from_cgrp, tsk, false);
75 		if (retval)
76 			break;
77 	}
78 	percpu_up_write(&cgroup_threadgroup_rwsem);
79 	mutex_unlock(&cgroup_mutex);
80 
81 	return retval;
82 }
83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
84 
85 /**
86  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
87  * @to: cgroup to which the tasks will be moved
88  * @from: cgroup in which the tasks currently reside
89  *
90  * Locking rules between cgroup_post_fork() and the migration path
91  * guarantee that, if a task is forking while being migrated, the new child
92  * is guaranteed to be either visible in the source cgroup after the
93  * parent's migration is complete or put into the target cgroup.  No task
94  * can slip out of migration through forking.
95  */
96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
97 {
98 	DEFINE_CGROUP_MGCTX(mgctx);
99 	struct cgrp_cset_link *link;
100 	struct css_task_iter it;
101 	struct task_struct *task;
102 	int ret;
103 
104 	if (cgroup_on_dfl(to))
105 		return -EINVAL;
106 
107 	ret = cgroup_migrate_vet_dst(to);
108 	if (ret)
109 		return ret;
110 
111 	mutex_lock(&cgroup_mutex);
112 
113 	percpu_down_write(&cgroup_threadgroup_rwsem);
114 
115 	/* all tasks in @from are being moved, all csets are source */
116 	spin_lock_irq(&css_set_lock);
117 	list_for_each_entry(link, &from->cset_links, cset_link)
118 		cgroup_migrate_add_src(link->cset, to, &mgctx);
119 	spin_unlock_irq(&css_set_lock);
120 
121 	ret = cgroup_migrate_prepare_dst(&mgctx);
122 	if (ret)
123 		goto out_err;
124 
125 	/*
126 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
127 	 * ->can_attach() fails.
128 	 */
129 	do {
130 		css_task_iter_start(&from->self, 0, &it);
131 
132 		do {
133 			task = css_task_iter_next(&it);
134 		} while (task && (task->flags & PF_EXITING));
135 
136 		if (task)
137 			get_task_struct(task);
138 		css_task_iter_end(&it);
139 
140 		if (task) {
141 			ret = cgroup_migrate(task, false, &mgctx);
142 			if (!ret)
143 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
144 			put_task_struct(task);
145 		}
146 	} while (task && !ret);
147 out_err:
148 	cgroup_migrate_finish(&mgctx);
149 	percpu_up_write(&cgroup_threadgroup_rwsem);
150 	mutex_unlock(&cgroup_mutex);
151 	return ret;
152 }
153 
154 /*
155  * Stuff for reading the 'tasks'/'procs' files.
156  *
157  * Reading this file can return large amounts of data if a cgroup has
158  * *lots* of attached tasks. So it may need several calls to read(),
159  * but we cannot guarantee that the information we produce is correct
160  * unless we produce it entirely atomically.
161  *
162  */
163 
164 /* which pidlist file are we talking about? */
165 enum cgroup_filetype {
166 	CGROUP_FILE_PROCS,
167 	CGROUP_FILE_TASKS,
168 };
169 
170 /*
171  * A pidlist is a list of pids that virtually represents the contents of one
172  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
173  * a pair (one each for procs, tasks) for each pid namespace that's relevant
174  * to the cgroup.
175  */
176 struct cgroup_pidlist {
177 	/*
178 	 * used to find which pidlist is wanted. doesn't change as long as
179 	 * this particular list stays in the list.
180 	*/
181 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
182 	/* array of xids */
183 	pid_t *list;
184 	/* how many elements the above list has */
185 	int length;
186 	/* each of these stored in a list by its cgroup */
187 	struct list_head links;
188 	/* pointer to the cgroup we belong to, for list removal purposes */
189 	struct cgroup *owner;
190 	/* for delayed destruction */
191 	struct delayed_work destroy_dwork;
192 };
193 
194 /*
195  * Used to destroy all pidlists lingering waiting for destroy timer.  None
196  * should be left afterwards.
197  */
198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
199 {
200 	struct cgroup_pidlist *l, *tmp_l;
201 
202 	mutex_lock(&cgrp->pidlist_mutex);
203 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
204 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
205 	mutex_unlock(&cgrp->pidlist_mutex);
206 
207 	flush_workqueue(cgroup_pidlist_destroy_wq);
208 	BUG_ON(!list_empty(&cgrp->pidlists));
209 }
210 
211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
212 {
213 	struct delayed_work *dwork = to_delayed_work(work);
214 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
215 						destroy_dwork);
216 	struct cgroup_pidlist *tofree = NULL;
217 
218 	mutex_lock(&l->owner->pidlist_mutex);
219 
220 	/*
221 	 * Destroy iff we didn't get queued again.  The state won't change
222 	 * as destroy_dwork can only be queued while locked.
223 	 */
224 	if (!delayed_work_pending(dwork)) {
225 		list_del(&l->links);
226 		kvfree(l->list);
227 		put_pid_ns(l->key.ns);
228 		tofree = l;
229 	}
230 
231 	mutex_unlock(&l->owner->pidlist_mutex);
232 	kfree(tofree);
233 }
234 
235 /*
236  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
237  * Returns the number of unique elements.
238  */
239 static int pidlist_uniq(pid_t *list, int length)
240 {
241 	int src, dest = 1;
242 
243 	/*
244 	 * we presume the 0th element is unique, so i starts at 1. trivial
245 	 * edge cases first; no work needs to be done for either
246 	 */
247 	if (length == 0 || length == 1)
248 		return length;
249 	/* src and dest walk down the list; dest counts unique elements */
250 	for (src = 1; src < length; src++) {
251 		/* find next unique element */
252 		while (list[src] == list[src-1]) {
253 			src++;
254 			if (src == length)
255 				goto after;
256 		}
257 		/* dest always points to where the next unique element goes */
258 		list[dest] = list[src];
259 		dest++;
260 	}
261 after:
262 	return dest;
263 }
264 
265 /*
266  * The two pid files - task and cgroup.procs - guaranteed that the result
267  * is sorted, which forced this whole pidlist fiasco.  As pid order is
268  * different per namespace, each namespace needs differently sorted list,
269  * making it impossible to use, for example, single rbtree of member tasks
270  * sorted by task pointer.  As pidlists can be fairly large, allocating one
271  * per open file is dangerous, so cgroup had to implement shared pool of
272  * pidlists keyed by cgroup and namespace.
273  */
274 static int cmppid(const void *a, const void *b)
275 {
276 	return *(pid_t *)a - *(pid_t *)b;
277 }
278 
279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
280 						  enum cgroup_filetype type)
281 {
282 	struct cgroup_pidlist *l;
283 	/* don't need task_nsproxy() if we're looking at ourself */
284 	struct pid_namespace *ns = task_active_pid_ns(current);
285 
286 	lockdep_assert_held(&cgrp->pidlist_mutex);
287 
288 	list_for_each_entry(l, &cgrp->pidlists, links)
289 		if (l->key.type == type && l->key.ns == ns)
290 			return l;
291 	return NULL;
292 }
293 
294 /*
295  * find the appropriate pidlist for our purpose (given procs vs tasks)
296  * returns with the lock on that pidlist already held, and takes care
297  * of the use count, or returns NULL with no locks held if we're out of
298  * memory.
299  */
300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
301 						enum cgroup_filetype type)
302 {
303 	struct cgroup_pidlist *l;
304 
305 	lockdep_assert_held(&cgrp->pidlist_mutex);
306 
307 	l = cgroup_pidlist_find(cgrp, type);
308 	if (l)
309 		return l;
310 
311 	/* entry not found; create a new one */
312 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
313 	if (!l)
314 		return l;
315 
316 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
317 	l->key.type = type;
318 	/* don't need task_nsproxy() if we're looking at ourself */
319 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
320 	l->owner = cgrp;
321 	list_add(&l->links, &cgrp->pidlists);
322 	return l;
323 }
324 
325 /*
326  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
327  */
328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
329 			      struct cgroup_pidlist **lp)
330 {
331 	pid_t *array;
332 	int length;
333 	int pid, n = 0; /* used for populating the array */
334 	struct css_task_iter it;
335 	struct task_struct *tsk;
336 	struct cgroup_pidlist *l;
337 
338 	lockdep_assert_held(&cgrp->pidlist_mutex);
339 
340 	/*
341 	 * If cgroup gets more users after we read count, we won't have
342 	 * enough space - tough.  This race is indistinguishable to the
343 	 * caller from the case that the additional cgroup users didn't
344 	 * show up until sometime later on.
345 	 */
346 	length = cgroup_task_count(cgrp);
347 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
348 	if (!array)
349 		return -ENOMEM;
350 	/* now, populate the array */
351 	css_task_iter_start(&cgrp->self, 0, &it);
352 	while ((tsk = css_task_iter_next(&it))) {
353 		if (unlikely(n == length))
354 			break;
355 		/* get tgid or pid for procs or tasks file respectively */
356 		if (type == CGROUP_FILE_PROCS)
357 			pid = task_tgid_vnr(tsk);
358 		else
359 			pid = task_pid_vnr(tsk);
360 		if (pid > 0) /* make sure to only use valid results */
361 			array[n++] = pid;
362 	}
363 	css_task_iter_end(&it);
364 	length = n;
365 	/* now sort & (if procs) strip out duplicates */
366 	sort(array, length, sizeof(pid_t), cmppid, NULL);
367 	if (type == CGROUP_FILE_PROCS)
368 		length = pidlist_uniq(array, length);
369 
370 	l = cgroup_pidlist_find_create(cgrp, type);
371 	if (!l) {
372 		kvfree(array);
373 		return -ENOMEM;
374 	}
375 
376 	/* store array, freeing old if necessary */
377 	kvfree(l->list);
378 	l->list = array;
379 	l->length = length;
380 	*lp = l;
381 	return 0;
382 }
383 
384 /*
385  * seq_file methods for the tasks/procs files. The seq_file position is the
386  * next pid to display; the seq_file iterator is a pointer to the pid
387  * in the cgroup->l->list array.
388  */
389 
390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
391 {
392 	/*
393 	 * Initially we receive a position value that corresponds to
394 	 * one more than the last pid shown (or 0 on the first call or
395 	 * after a seek to the start). Use a binary-search to find the
396 	 * next pid to display, if any
397 	 */
398 	struct kernfs_open_file *of = s->private;
399 	struct cgroup *cgrp = seq_css(s)->cgroup;
400 	struct cgroup_pidlist *l;
401 	enum cgroup_filetype type = seq_cft(s)->private;
402 	int index = 0, pid = *pos;
403 	int *iter, ret;
404 
405 	mutex_lock(&cgrp->pidlist_mutex);
406 
407 	/*
408 	 * !NULL @of->priv indicates that this isn't the first start()
409 	 * after open.  If the matching pidlist is around, we can use that.
410 	 * Look for it.  Note that @of->priv can't be used directly.  It
411 	 * could already have been destroyed.
412 	 */
413 	if (of->priv)
414 		of->priv = cgroup_pidlist_find(cgrp, type);
415 
416 	/*
417 	 * Either this is the first start() after open or the matching
418 	 * pidlist has been destroyed inbetween.  Create a new one.
419 	 */
420 	if (!of->priv) {
421 		ret = pidlist_array_load(cgrp, type,
422 					 (struct cgroup_pidlist **)&of->priv);
423 		if (ret)
424 			return ERR_PTR(ret);
425 	}
426 	l = of->priv;
427 
428 	if (pid) {
429 		int end = l->length;
430 
431 		while (index < end) {
432 			int mid = (index + end) / 2;
433 			if (l->list[mid] == pid) {
434 				index = mid;
435 				break;
436 			} else if (l->list[mid] <= pid)
437 				index = mid + 1;
438 			else
439 				end = mid;
440 		}
441 	}
442 	/* If we're off the end of the array, we're done */
443 	if (index >= l->length)
444 		return NULL;
445 	/* Update the abstract position to be the actual pid that we found */
446 	iter = l->list + index;
447 	*pos = *iter;
448 	return iter;
449 }
450 
451 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
452 {
453 	struct kernfs_open_file *of = s->private;
454 	struct cgroup_pidlist *l = of->priv;
455 
456 	if (l)
457 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
458 				 CGROUP_PIDLIST_DESTROY_DELAY);
459 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
460 }
461 
462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
463 {
464 	struct kernfs_open_file *of = s->private;
465 	struct cgroup_pidlist *l = of->priv;
466 	pid_t *p = v;
467 	pid_t *end = l->list + l->length;
468 	/*
469 	 * Advance to the next pid in the array. If this goes off the
470 	 * end, we're done
471 	 */
472 	p++;
473 	if (p >= end) {
474 		return NULL;
475 	} else {
476 		*pos = *p;
477 		return p;
478 	}
479 }
480 
481 static int cgroup_pidlist_show(struct seq_file *s, void *v)
482 {
483 	seq_printf(s, "%d\n", *(int *)v);
484 
485 	return 0;
486 }
487 
488 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
489 				     char *buf, size_t nbytes, loff_t off,
490 				     bool threadgroup)
491 {
492 	struct cgroup *cgrp;
493 	struct task_struct *task;
494 	const struct cred *cred, *tcred;
495 	ssize_t ret;
496 	bool locked;
497 
498 	cgrp = cgroup_kn_lock_live(of->kn, false);
499 	if (!cgrp)
500 		return -ENODEV;
501 
502 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
503 	ret = PTR_ERR_OR_ZERO(task);
504 	if (ret)
505 		goto out_unlock;
506 
507 	/*
508 	 * Even if we're attaching all tasks in the thread group, we only
509 	 * need to check permissions on one of them.
510 	 */
511 	cred = current_cred();
512 	tcred = get_task_cred(task);
513 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
514 	    !uid_eq(cred->euid, tcred->uid) &&
515 	    !uid_eq(cred->euid, tcred->suid))
516 		ret = -EACCES;
517 	put_cred(tcred);
518 	if (ret)
519 		goto out_finish;
520 
521 	ret = cgroup_attach_task(cgrp, task, threadgroup);
522 
523 out_finish:
524 	cgroup_procs_write_finish(task, locked);
525 out_unlock:
526 	cgroup_kn_unlock(of->kn);
527 
528 	return ret ?: nbytes;
529 }
530 
531 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
532 				   char *buf, size_t nbytes, loff_t off)
533 {
534 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
535 }
536 
537 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
538 				   char *buf, size_t nbytes, loff_t off)
539 {
540 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
541 }
542 
543 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
544 					  char *buf, size_t nbytes, loff_t off)
545 {
546 	struct cgroup *cgrp;
547 
548 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
549 
550 	cgrp = cgroup_kn_lock_live(of->kn, false);
551 	if (!cgrp)
552 		return -ENODEV;
553 	spin_lock(&release_agent_path_lock);
554 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
555 		sizeof(cgrp->root->release_agent_path));
556 	spin_unlock(&release_agent_path_lock);
557 	cgroup_kn_unlock(of->kn);
558 	return nbytes;
559 }
560 
561 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
562 {
563 	struct cgroup *cgrp = seq_css(seq)->cgroup;
564 
565 	spin_lock(&release_agent_path_lock);
566 	seq_puts(seq, cgrp->root->release_agent_path);
567 	spin_unlock(&release_agent_path_lock);
568 	seq_putc(seq, '\n');
569 	return 0;
570 }
571 
572 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
573 {
574 	seq_puts(seq, "0\n");
575 	return 0;
576 }
577 
578 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
579 					 struct cftype *cft)
580 {
581 	return notify_on_release(css->cgroup);
582 }
583 
584 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
585 					  struct cftype *cft, u64 val)
586 {
587 	if (val)
588 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
589 	else
590 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
591 	return 0;
592 }
593 
594 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
595 				      struct cftype *cft)
596 {
597 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
598 }
599 
600 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
601 				       struct cftype *cft, u64 val)
602 {
603 	if (val)
604 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
605 	else
606 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
607 	return 0;
608 }
609 
610 /* cgroup core interface files for the legacy hierarchies */
611 struct cftype cgroup1_base_files[] = {
612 	{
613 		.name = "cgroup.procs",
614 		.seq_start = cgroup_pidlist_start,
615 		.seq_next = cgroup_pidlist_next,
616 		.seq_stop = cgroup_pidlist_stop,
617 		.seq_show = cgroup_pidlist_show,
618 		.private = CGROUP_FILE_PROCS,
619 		.write = cgroup1_procs_write,
620 	},
621 	{
622 		.name = "cgroup.clone_children",
623 		.read_u64 = cgroup_clone_children_read,
624 		.write_u64 = cgroup_clone_children_write,
625 	},
626 	{
627 		.name = "cgroup.sane_behavior",
628 		.flags = CFTYPE_ONLY_ON_ROOT,
629 		.seq_show = cgroup_sane_behavior_show,
630 	},
631 	{
632 		.name = "tasks",
633 		.seq_start = cgroup_pidlist_start,
634 		.seq_next = cgroup_pidlist_next,
635 		.seq_stop = cgroup_pidlist_stop,
636 		.seq_show = cgroup_pidlist_show,
637 		.private = CGROUP_FILE_TASKS,
638 		.write = cgroup1_tasks_write,
639 	},
640 	{
641 		.name = "notify_on_release",
642 		.read_u64 = cgroup_read_notify_on_release,
643 		.write_u64 = cgroup_write_notify_on_release,
644 	},
645 	{
646 		.name = "release_agent",
647 		.flags = CFTYPE_ONLY_ON_ROOT,
648 		.seq_show = cgroup_release_agent_show,
649 		.write = cgroup_release_agent_write,
650 		.max_write_len = PATH_MAX - 1,
651 	},
652 	{ }	/* terminate */
653 };
654 
655 /* Display information about each subsystem and each hierarchy */
656 int proc_cgroupstats_show(struct seq_file *m, void *v)
657 {
658 	struct cgroup_subsys *ss;
659 	int i;
660 
661 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
662 	/*
663 	 * ideally we don't want subsystems moving around while we do this.
664 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
665 	 * subsys/hierarchy state.
666 	 */
667 	mutex_lock(&cgroup_mutex);
668 
669 	for_each_subsys(ss, i)
670 		seq_printf(m, "%s\t%d\t%d\t%d\n",
671 			   ss->legacy_name, ss->root->hierarchy_id,
672 			   atomic_read(&ss->root->nr_cgrps),
673 			   cgroup_ssid_enabled(i));
674 
675 	mutex_unlock(&cgroup_mutex);
676 	return 0;
677 }
678 
679 /**
680  * cgroupstats_build - build and fill cgroupstats
681  * @stats: cgroupstats to fill information into
682  * @dentry: A dentry entry belonging to the cgroup for which stats have
683  * been requested.
684  *
685  * Build and fill cgroupstats so that taskstats can export it to user
686  * space.
687  */
688 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
689 {
690 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
691 	struct cgroup *cgrp;
692 	struct css_task_iter it;
693 	struct task_struct *tsk;
694 
695 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
696 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
697 	    kernfs_type(kn) != KERNFS_DIR)
698 		return -EINVAL;
699 
700 	mutex_lock(&cgroup_mutex);
701 
702 	/*
703 	 * We aren't being called from kernfs and there's no guarantee on
704 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
705 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
706 	 */
707 	rcu_read_lock();
708 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
709 	if (!cgrp || cgroup_is_dead(cgrp)) {
710 		rcu_read_unlock();
711 		mutex_unlock(&cgroup_mutex);
712 		return -ENOENT;
713 	}
714 	rcu_read_unlock();
715 
716 	css_task_iter_start(&cgrp->self, 0, &it);
717 	while ((tsk = css_task_iter_next(&it))) {
718 		switch (tsk->state) {
719 		case TASK_RUNNING:
720 			stats->nr_running++;
721 			break;
722 		case TASK_INTERRUPTIBLE:
723 			stats->nr_sleeping++;
724 			break;
725 		case TASK_UNINTERRUPTIBLE:
726 			stats->nr_uninterruptible++;
727 			break;
728 		case TASK_STOPPED:
729 			stats->nr_stopped++;
730 			break;
731 		default:
732 			if (delayacct_is_task_waiting_on_io(tsk))
733 				stats->nr_io_wait++;
734 			break;
735 		}
736 	}
737 	css_task_iter_end(&it);
738 
739 	mutex_unlock(&cgroup_mutex);
740 	return 0;
741 }
742 
743 void cgroup1_check_for_release(struct cgroup *cgrp)
744 {
745 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
746 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
747 		schedule_work(&cgrp->release_agent_work);
748 }
749 
750 /*
751  * Notify userspace when a cgroup is released, by running the
752  * configured release agent with the name of the cgroup (path
753  * relative to the root of cgroup file system) as the argument.
754  *
755  * Most likely, this user command will try to rmdir this cgroup.
756  *
757  * This races with the possibility that some other task will be
758  * attached to this cgroup before it is removed, or that some other
759  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
760  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
761  * unused, and this cgroup will be reprieved from its death sentence,
762  * to continue to serve a useful existence.  Next time it's released,
763  * we will get notified again, if it still has 'notify_on_release' set.
764  *
765  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
766  * means only wait until the task is successfully execve()'d.  The
767  * separate release agent task is forked by call_usermodehelper(),
768  * then control in this thread returns here, without waiting for the
769  * release agent task.  We don't bother to wait because the caller of
770  * this routine has no use for the exit status of the release agent
771  * task, so no sense holding our caller up for that.
772  */
773 void cgroup1_release_agent(struct work_struct *work)
774 {
775 	struct cgroup *cgrp =
776 		container_of(work, struct cgroup, release_agent_work);
777 	char *pathbuf = NULL, *agentbuf = NULL;
778 	char *argv[3], *envp[3];
779 	int ret;
780 
781 	mutex_lock(&cgroup_mutex);
782 
783 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
784 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
785 	if (!pathbuf || !agentbuf)
786 		goto out;
787 
788 	spin_lock_irq(&css_set_lock);
789 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
790 	spin_unlock_irq(&css_set_lock);
791 	if (ret < 0 || ret >= PATH_MAX)
792 		goto out;
793 
794 	argv[0] = agentbuf;
795 	argv[1] = pathbuf;
796 	argv[2] = NULL;
797 
798 	/* minimal command environment */
799 	envp[0] = "HOME=/";
800 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
801 	envp[2] = NULL;
802 
803 	mutex_unlock(&cgroup_mutex);
804 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
805 	goto out_free;
806 out:
807 	mutex_unlock(&cgroup_mutex);
808 out_free:
809 	kfree(agentbuf);
810 	kfree(pathbuf);
811 }
812 
813 /*
814  * cgroup_rename - Only allow simple rename of directories in place.
815  */
816 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
817 			  const char *new_name_str)
818 {
819 	struct cgroup *cgrp = kn->priv;
820 	int ret;
821 
822 	if (kernfs_type(kn) != KERNFS_DIR)
823 		return -ENOTDIR;
824 	if (kn->parent != new_parent)
825 		return -EIO;
826 
827 	/*
828 	 * We're gonna grab cgroup_mutex which nests outside kernfs
829 	 * active_ref.  kernfs_rename() doesn't require active_ref
830 	 * protection.  Break them before grabbing cgroup_mutex.
831 	 */
832 	kernfs_break_active_protection(new_parent);
833 	kernfs_break_active_protection(kn);
834 
835 	mutex_lock(&cgroup_mutex);
836 
837 	ret = kernfs_rename(kn, new_parent, new_name_str);
838 	if (!ret)
839 		TRACE_CGROUP_PATH(rename, cgrp);
840 
841 	mutex_unlock(&cgroup_mutex);
842 
843 	kernfs_unbreak_active_protection(kn);
844 	kernfs_unbreak_active_protection(new_parent);
845 	return ret;
846 }
847 
848 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
849 {
850 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
851 	struct cgroup_subsys *ss;
852 	int ssid;
853 
854 	for_each_subsys(ss, ssid)
855 		if (root->subsys_mask & (1 << ssid))
856 			seq_show_option(seq, ss->legacy_name, NULL);
857 	if (root->flags & CGRP_ROOT_NOPREFIX)
858 		seq_puts(seq, ",noprefix");
859 	if (root->flags & CGRP_ROOT_XATTR)
860 		seq_puts(seq, ",xattr");
861 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
862 		seq_puts(seq, ",cpuset_v2_mode");
863 
864 	spin_lock(&release_agent_path_lock);
865 	if (strlen(root->release_agent_path))
866 		seq_show_option(seq, "release_agent",
867 				root->release_agent_path);
868 	spin_unlock(&release_agent_path_lock);
869 
870 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
871 		seq_puts(seq, ",clone_children");
872 	if (strlen(root->name))
873 		seq_show_option(seq, "name", root->name);
874 	return 0;
875 }
876 
877 enum cgroup1_param {
878 	Opt_all,
879 	Opt_clone_children,
880 	Opt_cpuset_v2_mode,
881 	Opt_name,
882 	Opt_none,
883 	Opt_noprefix,
884 	Opt_release_agent,
885 	Opt_xattr,
886 };
887 
888 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
889 	fsparam_flag  ("all",		Opt_all),
890 	fsparam_flag  ("clone_children", Opt_clone_children),
891 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
892 	fsparam_string("name",		Opt_name),
893 	fsparam_flag  ("none",		Opt_none),
894 	fsparam_flag  ("noprefix",	Opt_noprefix),
895 	fsparam_string("release_agent",	Opt_release_agent),
896 	fsparam_flag  ("xattr",		Opt_xattr),
897 	{}
898 };
899 
900 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
901 {
902 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
903 	struct cgroup_subsys *ss;
904 	struct fs_parse_result result;
905 	int opt, i;
906 
907 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
908 	if (opt == -ENOPARAM) {
909 		if (strcmp(param->key, "source") == 0) {
910 			fc->source = param->string;
911 			param->string = NULL;
912 			return 0;
913 		}
914 		for_each_subsys(ss, i) {
915 			if (strcmp(param->key, ss->legacy_name))
916 				continue;
917 			ctx->subsys_mask |= (1 << i);
918 			return 0;
919 		}
920 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
921 	}
922 	if (opt < 0)
923 		return opt;
924 
925 	switch (opt) {
926 	case Opt_none:
927 		/* Explicitly have no subsystems */
928 		ctx->none = true;
929 		break;
930 	case Opt_all:
931 		ctx->all_ss = true;
932 		break;
933 	case Opt_noprefix:
934 		ctx->flags |= CGRP_ROOT_NOPREFIX;
935 		break;
936 	case Opt_clone_children:
937 		ctx->cpuset_clone_children = true;
938 		break;
939 	case Opt_cpuset_v2_mode:
940 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
941 		break;
942 	case Opt_xattr:
943 		ctx->flags |= CGRP_ROOT_XATTR;
944 		break;
945 	case Opt_release_agent:
946 		/* Specifying two release agents is forbidden */
947 		if (ctx->release_agent)
948 			return invalfc(fc, "release_agent respecified");
949 		ctx->release_agent = param->string;
950 		param->string = NULL;
951 		break;
952 	case Opt_name:
953 		/* blocked by boot param? */
954 		if (cgroup_no_v1_named)
955 			return -ENOENT;
956 		/* Can't specify an empty name */
957 		if (!param->size)
958 			return invalfc(fc, "Empty name");
959 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
960 			return invalfc(fc, "Name too long");
961 		/* Must match [\w.-]+ */
962 		for (i = 0; i < param->size; i++) {
963 			char c = param->string[i];
964 			if (isalnum(c))
965 				continue;
966 			if ((c == '.') || (c == '-') || (c == '_'))
967 				continue;
968 			return invalfc(fc, "Invalid name");
969 		}
970 		/* Specifying two names is forbidden */
971 		if (ctx->name)
972 			return invalfc(fc, "name respecified");
973 		ctx->name = param->string;
974 		param->string = NULL;
975 		break;
976 	}
977 	return 0;
978 }
979 
980 static int check_cgroupfs_options(struct fs_context *fc)
981 {
982 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
983 	u16 mask = U16_MAX;
984 	u16 enabled = 0;
985 	struct cgroup_subsys *ss;
986 	int i;
987 
988 #ifdef CONFIG_CPUSETS
989 	mask = ~((u16)1 << cpuset_cgrp_id);
990 #endif
991 	for_each_subsys(ss, i)
992 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
993 			enabled |= 1 << i;
994 
995 	ctx->subsys_mask &= enabled;
996 
997 	/*
998 	 * In absense of 'none', 'name=' or subsystem name options,
999 	 * let's default to 'all'.
1000 	 */
1001 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1002 		ctx->all_ss = true;
1003 
1004 	if (ctx->all_ss) {
1005 		/* Mutually exclusive option 'all' + subsystem name */
1006 		if (ctx->subsys_mask)
1007 			return invalfc(fc, "subsys name conflicts with all");
1008 		/* 'all' => select all the subsystems */
1009 		ctx->subsys_mask = enabled;
1010 	}
1011 
1012 	/*
1013 	 * We either have to specify by name or by subsystems. (So all
1014 	 * empty hierarchies must have a name).
1015 	 */
1016 	if (!ctx->subsys_mask && !ctx->name)
1017 		return invalfc(fc, "Need name or subsystem set");
1018 
1019 	/*
1020 	 * Option noprefix was introduced just for backward compatibility
1021 	 * with the old cpuset, so we allow noprefix only if mounting just
1022 	 * the cpuset subsystem.
1023 	 */
1024 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1025 		return invalfc(fc, "noprefix used incorrectly");
1026 
1027 	/* Can't specify "none" and some subsystems */
1028 	if (ctx->subsys_mask && ctx->none)
1029 		return invalfc(fc, "none used incorrectly");
1030 
1031 	return 0;
1032 }
1033 
1034 int cgroup1_reconfigure(struct fs_context *fc)
1035 {
1036 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1037 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1038 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1039 	int ret = 0;
1040 	u16 added_mask, removed_mask;
1041 
1042 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1043 
1044 	/* See what subsystems are wanted */
1045 	ret = check_cgroupfs_options(fc);
1046 	if (ret)
1047 		goto out_unlock;
1048 
1049 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1050 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1051 			task_tgid_nr(current), current->comm);
1052 
1053 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1054 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1055 
1056 	/* Don't allow flags or name to change at remount */
1057 	if ((ctx->flags ^ root->flags) ||
1058 	    (ctx->name && strcmp(ctx->name, root->name))) {
1059 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1060 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1061 		ret = -EINVAL;
1062 		goto out_unlock;
1063 	}
1064 
1065 	/* remounting is not allowed for populated hierarchies */
1066 	if (!list_empty(&root->cgrp.self.children)) {
1067 		ret = -EBUSY;
1068 		goto out_unlock;
1069 	}
1070 
1071 	ret = rebind_subsystems(root, added_mask);
1072 	if (ret)
1073 		goto out_unlock;
1074 
1075 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1076 
1077 	if (ctx->release_agent) {
1078 		spin_lock(&release_agent_path_lock);
1079 		strcpy(root->release_agent_path, ctx->release_agent);
1080 		spin_unlock(&release_agent_path_lock);
1081 	}
1082 
1083 	trace_cgroup_remount(root);
1084 
1085  out_unlock:
1086 	mutex_unlock(&cgroup_mutex);
1087 	return ret;
1088 }
1089 
1090 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1091 	.rename			= cgroup1_rename,
1092 	.show_options		= cgroup1_show_options,
1093 	.mkdir			= cgroup_mkdir,
1094 	.rmdir			= cgroup_rmdir,
1095 	.show_path		= cgroup_show_path,
1096 };
1097 
1098 /*
1099  * The guts of cgroup1 mount - find or create cgroup_root to use.
1100  * Called with cgroup_mutex held; returns 0 on success, -E... on
1101  * error and positive - in case when the candidate is busy dying.
1102  * On success it stashes a reference to cgroup_root into given
1103  * cgroup_fs_context; that reference is *NOT* counting towards the
1104  * cgroup_root refcount.
1105  */
1106 static int cgroup1_root_to_use(struct fs_context *fc)
1107 {
1108 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1109 	struct cgroup_root *root;
1110 	struct cgroup_subsys *ss;
1111 	int i, ret;
1112 
1113 	/* First find the desired set of subsystems */
1114 	ret = check_cgroupfs_options(fc);
1115 	if (ret)
1116 		return ret;
1117 
1118 	/*
1119 	 * Destruction of cgroup root is asynchronous, so subsystems may
1120 	 * still be dying after the previous unmount.  Let's drain the
1121 	 * dying subsystems.  We just need to ensure that the ones
1122 	 * unmounted previously finish dying and don't care about new ones
1123 	 * starting.  Testing ref liveliness is good enough.
1124 	 */
1125 	for_each_subsys(ss, i) {
1126 		if (!(ctx->subsys_mask & (1 << i)) ||
1127 		    ss->root == &cgrp_dfl_root)
1128 			continue;
1129 
1130 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1131 			return 1;	/* restart */
1132 		cgroup_put(&ss->root->cgrp);
1133 	}
1134 
1135 	for_each_root(root) {
1136 		bool name_match = false;
1137 
1138 		if (root == &cgrp_dfl_root)
1139 			continue;
1140 
1141 		/*
1142 		 * If we asked for a name then it must match.  Also, if
1143 		 * name matches but sybsys_mask doesn't, we should fail.
1144 		 * Remember whether name matched.
1145 		 */
1146 		if (ctx->name) {
1147 			if (strcmp(ctx->name, root->name))
1148 				continue;
1149 			name_match = true;
1150 		}
1151 
1152 		/*
1153 		 * If we asked for subsystems (or explicitly for no
1154 		 * subsystems) then they must match.
1155 		 */
1156 		if ((ctx->subsys_mask || ctx->none) &&
1157 		    (ctx->subsys_mask != root->subsys_mask)) {
1158 			if (!name_match)
1159 				continue;
1160 			return -EBUSY;
1161 		}
1162 
1163 		if (root->flags ^ ctx->flags)
1164 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1165 
1166 		ctx->root = root;
1167 		return 0;
1168 	}
1169 
1170 	/*
1171 	 * No such thing, create a new one.  name= matching without subsys
1172 	 * specification is allowed for already existing hierarchies but we
1173 	 * can't create new one without subsys specification.
1174 	 */
1175 	if (!ctx->subsys_mask && !ctx->none)
1176 		return invalfc(fc, "No subsys list or none specified");
1177 
1178 	/* Hierarchies may only be created in the initial cgroup namespace. */
1179 	if (ctx->ns != &init_cgroup_ns)
1180 		return -EPERM;
1181 
1182 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1183 	if (!root)
1184 		return -ENOMEM;
1185 
1186 	ctx->root = root;
1187 	init_cgroup_root(ctx);
1188 
1189 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1190 	if (ret)
1191 		cgroup_free_root(root);
1192 	return ret;
1193 }
1194 
1195 int cgroup1_get_tree(struct fs_context *fc)
1196 {
1197 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1198 	int ret;
1199 
1200 	/* Check if the caller has permission to mount. */
1201 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1202 		return -EPERM;
1203 
1204 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1205 
1206 	ret = cgroup1_root_to_use(fc);
1207 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1208 		ret = 1;	/* restart */
1209 
1210 	mutex_unlock(&cgroup_mutex);
1211 
1212 	if (!ret)
1213 		ret = cgroup_do_get_tree(fc);
1214 
1215 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1216 		struct super_block *sb = fc->root->d_sb;
1217 		dput(fc->root);
1218 		deactivate_locked_super(sb);
1219 		ret = 1;
1220 	}
1221 
1222 	if (unlikely(ret > 0)) {
1223 		msleep(10);
1224 		return restart_syscall();
1225 	}
1226 	return ret;
1227 }
1228 
1229 static int __init cgroup1_wq_init(void)
1230 {
1231 	/*
1232 	 * Used to destroy pidlists and separate to serve as flush domain.
1233 	 * Cap @max_active to 1 too.
1234 	 */
1235 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1236 						    0, 1);
1237 	BUG_ON(!cgroup_pidlist_destroy_wq);
1238 	return 0;
1239 }
1240 core_initcall(cgroup1_wq_init);
1241 
1242 static int __init cgroup_no_v1(char *str)
1243 {
1244 	struct cgroup_subsys *ss;
1245 	char *token;
1246 	int i;
1247 
1248 	while ((token = strsep(&str, ",")) != NULL) {
1249 		if (!*token)
1250 			continue;
1251 
1252 		if (!strcmp(token, "all")) {
1253 			cgroup_no_v1_mask = U16_MAX;
1254 			continue;
1255 		}
1256 
1257 		if (!strcmp(token, "named")) {
1258 			cgroup_no_v1_named = true;
1259 			continue;
1260 		}
1261 
1262 		for_each_subsys(ss, i) {
1263 			if (strcmp(token, ss->name) &&
1264 			    strcmp(token, ss->legacy_name))
1265 				continue;
1266 
1267 			cgroup_no_v1_mask |= 1 << i;
1268 		}
1269 	}
1270 	return 1;
1271 }
1272 __setup("cgroup_no_v1=", cgroup_no_v1);
1273