1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 #include <linux/delayacct.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/cgroupstats.h> 17 #include <linux/fs_parser.h> 18 19 #include <trace/events/cgroup.h> 20 21 /* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29 /* Controllers blocked by the commandline in v1 */ 30 static u16 cgroup_no_v1_mask; 31 32 /* disable named v1 mounts */ 33 static bool cgroup_no_v1_named; 34 35 /* Show unavailable controllers in /proc/cgroups */ 36 static bool proc_show_all; 37 38 /* 39 * pidlist destructions need to be flushed on cgroup destruction. Use a 40 * separate workqueue as flush domain. 41 */ 42 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 43 44 /* protects cgroup_subsys->release_agent_path */ 45 static DEFINE_SPINLOCK(release_agent_path_lock); 46 47 bool cgroup1_ssid_disabled(int ssid) 48 { 49 return cgroup_no_v1_mask & (1 << ssid); 50 } 51 52 static bool cgroup1_subsys_absent(struct cgroup_subsys *ss) 53 { 54 /* Check also dfl_cftypes for file-less controllers, i.e. perf_event */ 55 return ss->legacy_cftypes == NULL && ss->dfl_cftypes; 56 } 57 58 /** 59 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 60 * @from: attach to all cgroups of a given task 61 * @tsk: the task to be attached 62 * 63 * Return: %0 on success or a negative errno code on failure 64 */ 65 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 66 { 67 struct cgroup_root *root; 68 int retval = 0; 69 70 cgroup_lock(); 71 cgroup_attach_lock(true); 72 for_each_root(root) { 73 struct cgroup *from_cgrp; 74 75 spin_lock_irq(&css_set_lock); 76 from_cgrp = task_cgroup_from_root(from, root); 77 spin_unlock_irq(&css_set_lock); 78 79 retval = cgroup_attach_task(from_cgrp, tsk, false); 80 if (retval) 81 break; 82 } 83 cgroup_attach_unlock(true); 84 cgroup_unlock(); 85 86 return retval; 87 } 88 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 89 90 /** 91 * cgroup_transfer_tasks - move tasks from one cgroup to another 92 * @to: cgroup to which the tasks will be moved 93 * @from: cgroup in which the tasks currently reside 94 * 95 * Locking rules between cgroup_post_fork() and the migration path 96 * guarantee that, if a task is forking while being migrated, the new child 97 * is guaranteed to be either visible in the source cgroup after the 98 * parent's migration is complete or put into the target cgroup. No task 99 * can slip out of migration through forking. 100 * 101 * Return: %0 on success or a negative errno code on failure 102 */ 103 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 104 { 105 DEFINE_CGROUP_MGCTX(mgctx); 106 struct cgrp_cset_link *link; 107 struct css_task_iter it; 108 struct task_struct *task; 109 int ret; 110 111 if (cgroup_on_dfl(to)) 112 return -EINVAL; 113 114 ret = cgroup_migrate_vet_dst(to); 115 if (ret) 116 return ret; 117 118 cgroup_lock(); 119 120 cgroup_attach_lock(true); 121 122 /* all tasks in @from are being moved, all csets are source */ 123 spin_lock_irq(&css_set_lock); 124 list_for_each_entry(link, &from->cset_links, cset_link) 125 cgroup_migrate_add_src(link->cset, to, &mgctx); 126 spin_unlock_irq(&css_set_lock); 127 128 ret = cgroup_migrate_prepare_dst(&mgctx); 129 if (ret) 130 goto out_err; 131 132 /* 133 * Migrate tasks one-by-one until @from is empty. This fails iff 134 * ->can_attach() fails. 135 */ 136 do { 137 css_task_iter_start(&from->self, 0, &it); 138 139 do { 140 task = css_task_iter_next(&it); 141 } while (task && (task->flags & PF_EXITING)); 142 143 if (task) 144 get_task_struct(task); 145 css_task_iter_end(&it); 146 147 if (task) { 148 ret = cgroup_migrate(task, false, &mgctx); 149 if (!ret) 150 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 151 put_task_struct(task); 152 } 153 } while (task && !ret); 154 out_err: 155 cgroup_migrate_finish(&mgctx); 156 cgroup_attach_unlock(true); 157 cgroup_unlock(); 158 return ret; 159 } 160 161 /* 162 * Stuff for reading the 'tasks'/'procs' files. 163 * 164 * Reading this file can return large amounts of data if a cgroup has 165 * *lots* of attached tasks. So it may need several calls to read(), 166 * but we cannot guarantee that the information we produce is correct 167 * unless we produce it entirely atomically. 168 * 169 */ 170 171 /* which pidlist file are we talking about? */ 172 enum cgroup_filetype { 173 CGROUP_FILE_PROCS, 174 CGROUP_FILE_TASKS, 175 }; 176 177 /* 178 * A pidlist is a list of pids that virtually represents the contents of one 179 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 180 * a pair (one each for procs, tasks) for each pid namespace that's relevant 181 * to the cgroup. 182 */ 183 struct cgroup_pidlist { 184 /* 185 * used to find which pidlist is wanted. doesn't change as long as 186 * this particular list stays in the list. 187 */ 188 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 189 /* array of xids */ 190 pid_t *list; 191 /* how many elements the above list has */ 192 int length; 193 /* each of these stored in a list by its cgroup */ 194 struct list_head links; 195 /* pointer to the cgroup we belong to, for list removal purposes */ 196 struct cgroup *owner; 197 /* for delayed destruction */ 198 struct delayed_work destroy_dwork; 199 }; 200 201 /* 202 * Used to destroy all pidlists lingering waiting for destroy timer. None 203 * should be left afterwards. 204 */ 205 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 206 { 207 struct cgroup_pidlist *l, *tmp_l; 208 209 mutex_lock(&cgrp->pidlist_mutex); 210 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 211 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 212 mutex_unlock(&cgrp->pidlist_mutex); 213 214 flush_workqueue(cgroup_pidlist_destroy_wq); 215 BUG_ON(!list_empty(&cgrp->pidlists)); 216 } 217 218 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 219 { 220 struct delayed_work *dwork = to_delayed_work(work); 221 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 222 destroy_dwork); 223 struct cgroup_pidlist *tofree = NULL; 224 225 mutex_lock(&l->owner->pidlist_mutex); 226 227 /* 228 * Destroy iff we didn't get queued again. The state won't change 229 * as destroy_dwork can only be queued while locked. 230 */ 231 if (!delayed_work_pending(dwork)) { 232 list_del(&l->links); 233 kvfree(l->list); 234 put_pid_ns(l->key.ns); 235 tofree = l; 236 } 237 238 mutex_unlock(&l->owner->pidlist_mutex); 239 kfree(tofree); 240 } 241 242 /* 243 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 244 * Returns the number of unique elements. 245 */ 246 static int pidlist_uniq(pid_t *list, int length) 247 { 248 int src, dest = 1; 249 250 /* 251 * we presume the 0th element is unique, so i starts at 1. trivial 252 * edge cases first; no work needs to be done for either 253 */ 254 if (length == 0 || length == 1) 255 return length; 256 /* src and dest walk down the list; dest counts unique elements */ 257 for (src = 1; src < length; src++) { 258 /* find next unique element */ 259 while (list[src] == list[src-1]) { 260 src++; 261 if (src == length) 262 goto after; 263 } 264 /* dest always points to where the next unique element goes */ 265 list[dest] = list[src]; 266 dest++; 267 } 268 after: 269 return dest; 270 } 271 272 /* 273 * The two pid files - task and cgroup.procs - guaranteed that the result 274 * is sorted, which forced this whole pidlist fiasco. As pid order is 275 * different per namespace, each namespace needs differently sorted list, 276 * making it impossible to use, for example, single rbtree of member tasks 277 * sorted by task pointer. As pidlists can be fairly large, allocating one 278 * per open file is dangerous, so cgroup had to implement shared pool of 279 * pidlists keyed by cgroup and namespace. 280 */ 281 static int cmppid(const void *a, const void *b) 282 { 283 return *(pid_t *)a - *(pid_t *)b; 284 } 285 286 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 287 enum cgroup_filetype type) 288 { 289 struct cgroup_pidlist *l; 290 /* don't need task_nsproxy() if we're looking at ourself */ 291 struct pid_namespace *ns = task_active_pid_ns(current); 292 293 lockdep_assert_held(&cgrp->pidlist_mutex); 294 295 list_for_each_entry(l, &cgrp->pidlists, links) 296 if (l->key.type == type && l->key.ns == ns) 297 return l; 298 return NULL; 299 } 300 301 /* 302 * find the appropriate pidlist for our purpose (given procs vs tasks) 303 * returns with the lock on that pidlist already held, and takes care 304 * of the use count, or returns NULL with no locks held if we're out of 305 * memory. 306 */ 307 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 308 enum cgroup_filetype type) 309 { 310 struct cgroup_pidlist *l; 311 312 lockdep_assert_held(&cgrp->pidlist_mutex); 313 314 l = cgroup_pidlist_find(cgrp, type); 315 if (l) 316 return l; 317 318 /* entry not found; create a new one */ 319 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 320 if (!l) 321 return l; 322 323 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 324 l->key.type = type; 325 /* don't need task_nsproxy() if we're looking at ourself */ 326 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 327 l->owner = cgrp; 328 list_add(&l->links, &cgrp->pidlists); 329 return l; 330 } 331 332 /* 333 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 334 */ 335 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 336 struct cgroup_pidlist **lp) 337 { 338 pid_t *array; 339 int length; 340 int pid, n = 0; /* used for populating the array */ 341 struct css_task_iter it; 342 struct task_struct *tsk; 343 struct cgroup_pidlist *l; 344 345 lockdep_assert_held(&cgrp->pidlist_mutex); 346 347 /* 348 * If cgroup gets more users after we read count, we won't have 349 * enough space - tough. This race is indistinguishable to the 350 * caller from the case that the additional cgroup users didn't 351 * show up until sometime later on. 352 */ 353 length = cgroup_task_count(cgrp); 354 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 355 if (!array) 356 return -ENOMEM; 357 /* now, populate the array */ 358 css_task_iter_start(&cgrp->self, 0, &it); 359 while ((tsk = css_task_iter_next(&it))) { 360 if (unlikely(n == length)) 361 break; 362 /* get tgid or pid for procs or tasks file respectively */ 363 if (type == CGROUP_FILE_PROCS) 364 pid = task_tgid_vnr(tsk); 365 else 366 pid = task_pid_vnr(tsk); 367 if (pid > 0) /* make sure to only use valid results */ 368 array[n++] = pid; 369 } 370 css_task_iter_end(&it); 371 length = n; 372 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ 373 sort(array, length, sizeof(pid_t), cmppid, NULL); 374 length = pidlist_uniq(array, length); 375 376 l = cgroup_pidlist_find_create(cgrp, type); 377 if (!l) { 378 kvfree(array); 379 return -ENOMEM; 380 } 381 382 /* store array, freeing old if necessary */ 383 kvfree(l->list); 384 l->list = array; 385 l->length = length; 386 *lp = l; 387 return 0; 388 } 389 390 /* 391 * seq_file methods for the tasks/procs files. The seq_file position is the 392 * next pid to display; the seq_file iterator is a pointer to the pid 393 * in the cgroup->l->list array. 394 */ 395 396 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 397 { 398 /* 399 * Initially we receive a position value that corresponds to 400 * one more than the last pid shown (or 0 on the first call or 401 * after a seek to the start). Use a binary-search to find the 402 * next pid to display, if any 403 */ 404 struct kernfs_open_file *of = s->private; 405 struct cgroup_file_ctx *ctx = of->priv; 406 struct cgroup *cgrp = seq_css(s)->cgroup; 407 struct cgroup_pidlist *l; 408 enum cgroup_filetype type = seq_cft(s)->private; 409 int index = 0, pid = *pos; 410 int *iter, ret; 411 412 mutex_lock(&cgrp->pidlist_mutex); 413 414 /* 415 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 416 * start() after open. If the matching pidlist is around, we can use 417 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 418 * directly. It could already have been destroyed. 419 */ 420 if (ctx->procs1.pidlist) 421 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 422 423 /* 424 * Either this is the first start() after open or the matching 425 * pidlist has been destroyed inbetween. Create a new one. 426 */ 427 if (!ctx->procs1.pidlist) { 428 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 429 if (ret) 430 return ERR_PTR(ret); 431 } 432 l = ctx->procs1.pidlist; 433 434 if (pid) { 435 int end = l->length; 436 437 while (index < end) { 438 int mid = (index + end) / 2; 439 if (l->list[mid] == pid) { 440 index = mid; 441 break; 442 } else if (l->list[mid] < pid) 443 index = mid + 1; 444 else 445 end = mid; 446 } 447 } 448 /* If we're off the end of the array, we're done */ 449 if (index >= l->length) 450 return NULL; 451 /* Update the abstract position to be the actual pid that we found */ 452 iter = l->list + index; 453 *pos = *iter; 454 return iter; 455 } 456 457 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 458 { 459 struct kernfs_open_file *of = s->private; 460 struct cgroup_file_ctx *ctx = of->priv; 461 struct cgroup_pidlist *l = ctx->procs1.pidlist; 462 463 if (l) 464 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 465 CGROUP_PIDLIST_DESTROY_DELAY); 466 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 467 } 468 469 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 470 { 471 struct kernfs_open_file *of = s->private; 472 struct cgroup_file_ctx *ctx = of->priv; 473 struct cgroup_pidlist *l = ctx->procs1.pidlist; 474 pid_t *p = v; 475 pid_t *end = l->list + l->length; 476 /* 477 * Advance to the next pid in the array. If this goes off the 478 * end, we're done 479 */ 480 p++; 481 if (p >= end) { 482 (*pos)++; 483 return NULL; 484 } else { 485 *pos = *p; 486 return p; 487 } 488 } 489 490 static int cgroup_pidlist_show(struct seq_file *s, void *v) 491 { 492 seq_printf(s, "%d\n", *(int *)v); 493 494 return 0; 495 } 496 497 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 498 char *buf, size_t nbytes, loff_t off, 499 bool threadgroup) 500 { 501 struct cgroup *cgrp; 502 struct task_struct *task; 503 const struct cred *cred, *tcred; 504 ssize_t ret; 505 bool locked; 506 507 cgrp = cgroup_kn_lock_live(of->kn, false); 508 if (!cgrp) 509 return -ENODEV; 510 511 task = cgroup_procs_write_start(buf, threadgroup, &locked); 512 ret = PTR_ERR_OR_ZERO(task); 513 if (ret) 514 goto out_unlock; 515 516 /* 517 * Even if we're attaching all tasks in the thread group, we only need 518 * to check permissions on one of them. Check permissions using the 519 * credentials from file open to protect against inherited fd attacks. 520 */ 521 cred = of->file->f_cred; 522 tcred = get_task_cred(task); 523 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 524 !uid_eq(cred->euid, tcred->uid) && 525 !uid_eq(cred->euid, tcred->suid)) 526 ret = -EACCES; 527 put_cred(tcred); 528 if (ret) 529 goto out_finish; 530 531 ret = cgroup_attach_task(cgrp, task, threadgroup); 532 533 out_finish: 534 cgroup_procs_write_finish(task, locked); 535 out_unlock: 536 cgroup_kn_unlock(of->kn); 537 538 return ret ?: nbytes; 539 } 540 541 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 542 char *buf, size_t nbytes, loff_t off) 543 { 544 return __cgroup1_procs_write(of, buf, nbytes, off, true); 545 } 546 547 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 548 char *buf, size_t nbytes, loff_t off) 549 { 550 return __cgroup1_procs_write(of, buf, nbytes, off, false); 551 } 552 553 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 554 char *buf, size_t nbytes, loff_t off) 555 { 556 struct cgroup *cgrp; 557 struct cgroup_file_ctx *ctx; 558 559 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 560 561 /* 562 * Release agent gets called with all capabilities, 563 * require capabilities to set release agent. 564 */ 565 ctx = of->priv; 566 if ((ctx->ns->user_ns != &init_user_ns) || 567 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) 568 return -EPERM; 569 570 cgrp = cgroup_kn_lock_live(of->kn, false); 571 if (!cgrp) 572 return -ENODEV; 573 spin_lock(&release_agent_path_lock); 574 strscpy(cgrp->root->release_agent_path, strstrip(buf), 575 sizeof(cgrp->root->release_agent_path)); 576 spin_unlock(&release_agent_path_lock); 577 cgroup_kn_unlock(of->kn); 578 return nbytes; 579 } 580 581 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 582 { 583 struct cgroup *cgrp = seq_css(seq)->cgroup; 584 585 spin_lock(&release_agent_path_lock); 586 seq_puts(seq, cgrp->root->release_agent_path); 587 spin_unlock(&release_agent_path_lock); 588 seq_putc(seq, '\n'); 589 return 0; 590 } 591 592 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 593 { 594 seq_puts(seq, "0\n"); 595 return 0; 596 } 597 598 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 599 struct cftype *cft) 600 { 601 return notify_on_release(css->cgroup); 602 } 603 604 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 605 struct cftype *cft, u64 val) 606 { 607 if (val) 608 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 609 else 610 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 611 return 0; 612 } 613 614 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 615 struct cftype *cft) 616 { 617 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 618 } 619 620 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 621 struct cftype *cft, u64 val) 622 { 623 if (val) 624 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 625 else 626 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 627 return 0; 628 } 629 630 /* cgroup core interface files for the legacy hierarchies */ 631 struct cftype cgroup1_base_files[] = { 632 { 633 .name = "cgroup.procs", 634 .seq_start = cgroup_pidlist_start, 635 .seq_next = cgroup_pidlist_next, 636 .seq_stop = cgroup_pidlist_stop, 637 .seq_show = cgroup_pidlist_show, 638 .private = CGROUP_FILE_PROCS, 639 .write = cgroup1_procs_write, 640 }, 641 { 642 .name = "cgroup.clone_children", 643 .read_u64 = cgroup_clone_children_read, 644 .write_u64 = cgroup_clone_children_write, 645 }, 646 { 647 .name = "cgroup.sane_behavior", 648 .flags = CFTYPE_ONLY_ON_ROOT, 649 .seq_show = cgroup_sane_behavior_show, 650 }, 651 { 652 .name = "tasks", 653 .seq_start = cgroup_pidlist_start, 654 .seq_next = cgroup_pidlist_next, 655 .seq_stop = cgroup_pidlist_stop, 656 .seq_show = cgroup_pidlist_show, 657 .private = CGROUP_FILE_TASKS, 658 .write = cgroup1_tasks_write, 659 }, 660 { 661 .name = "notify_on_release", 662 .read_u64 = cgroup_read_notify_on_release, 663 .write_u64 = cgroup_write_notify_on_release, 664 }, 665 { 666 .name = "release_agent", 667 .flags = CFTYPE_ONLY_ON_ROOT, 668 .seq_show = cgroup_release_agent_show, 669 .write = cgroup_release_agent_write, 670 .max_write_len = PATH_MAX - 1, 671 }, 672 { } /* terminate */ 673 }; 674 675 /* Display information about each subsystem and each hierarchy */ 676 int proc_cgroupstats_show(struct seq_file *m, void *v) 677 { 678 struct cgroup_subsys *ss; 679 bool cgrp_v1_visible = false; 680 int i; 681 682 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 683 /* 684 * Grab the subsystems state racily. No need to add avenue to 685 * cgroup_mutex contention. 686 */ 687 688 for_each_subsys(ss, i) { 689 cgrp_v1_visible |= ss->root != &cgrp_dfl_root; 690 691 if (!proc_show_all && cgroup1_subsys_absent(ss)) 692 continue; 693 694 seq_printf(m, "%s\t%d\t%d\t%d\n", 695 ss->legacy_name, ss->root->hierarchy_id, 696 atomic_read(&ss->root->nr_cgrps), 697 cgroup_ssid_enabled(i)); 698 } 699 700 if (cgrp_dfl_visible && !cgrp_v1_visible) 701 pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n"); 702 703 704 return 0; 705 } 706 707 /** 708 * cgroupstats_build - build and fill cgroupstats 709 * @stats: cgroupstats to fill information into 710 * @dentry: A dentry entry belonging to the cgroup for which stats have 711 * been requested. 712 * 713 * Build and fill cgroupstats so that taskstats can export it to user 714 * space. 715 * 716 * Return: %0 on success or a negative errno code on failure 717 */ 718 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 719 { 720 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 721 struct cgroup *cgrp; 722 struct css_task_iter it; 723 struct task_struct *tsk; 724 725 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 726 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 727 kernfs_type(kn) != KERNFS_DIR) 728 return -EINVAL; 729 730 /* 731 * We aren't being called from kernfs and there's no guarantee on 732 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 733 * @kn->priv is RCU safe. Let's do the RCU dancing. 734 */ 735 rcu_read_lock(); 736 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 737 if (!cgrp || !cgroup_tryget(cgrp)) { 738 rcu_read_unlock(); 739 return -ENOENT; 740 } 741 rcu_read_unlock(); 742 743 css_task_iter_start(&cgrp->self, 0, &it); 744 while ((tsk = css_task_iter_next(&it))) { 745 switch (READ_ONCE(tsk->__state)) { 746 case TASK_RUNNING: 747 stats->nr_running++; 748 break; 749 case TASK_INTERRUPTIBLE: 750 stats->nr_sleeping++; 751 break; 752 case TASK_UNINTERRUPTIBLE: 753 stats->nr_uninterruptible++; 754 break; 755 case TASK_STOPPED: 756 stats->nr_stopped++; 757 break; 758 default: 759 if (tsk->in_iowait) 760 stats->nr_io_wait++; 761 break; 762 } 763 } 764 css_task_iter_end(&it); 765 766 cgroup_put(cgrp); 767 return 0; 768 } 769 770 void cgroup1_check_for_release(struct cgroup *cgrp) 771 { 772 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 773 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 774 schedule_work(&cgrp->release_agent_work); 775 } 776 777 /* 778 * Notify userspace when a cgroup is released, by running the 779 * configured release agent with the name of the cgroup (path 780 * relative to the root of cgroup file system) as the argument. 781 * 782 * Most likely, this user command will try to rmdir this cgroup. 783 * 784 * This races with the possibility that some other task will be 785 * attached to this cgroup before it is removed, or that some other 786 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 787 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 788 * unused, and this cgroup will be reprieved from its death sentence, 789 * to continue to serve a useful existence. Next time it's released, 790 * we will get notified again, if it still has 'notify_on_release' set. 791 * 792 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 793 * means only wait until the task is successfully execve()'d. The 794 * separate release agent task is forked by call_usermodehelper(), 795 * then control in this thread returns here, without waiting for the 796 * release agent task. We don't bother to wait because the caller of 797 * this routine has no use for the exit status of the release agent 798 * task, so no sense holding our caller up for that. 799 */ 800 void cgroup1_release_agent(struct work_struct *work) 801 { 802 struct cgroup *cgrp = 803 container_of(work, struct cgroup, release_agent_work); 804 char *pathbuf, *agentbuf; 805 char *argv[3], *envp[3]; 806 int ret; 807 808 /* snoop agent path and exit early if empty */ 809 if (!cgrp->root->release_agent_path[0]) 810 return; 811 812 /* prepare argument buffers */ 813 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 814 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 815 if (!pathbuf || !agentbuf) 816 goto out_free; 817 818 spin_lock(&release_agent_path_lock); 819 strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 820 spin_unlock(&release_agent_path_lock); 821 if (!agentbuf[0]) 822 goto out_free; 823 824 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 825 if (ret < 0) 826 goto out_free; 827 828 argv[0] = agentbuf; 829 argv[1] = pathbuf; 830 argv[2] = NULL; 831 832 /* minimal command environment */ 833 envp[0] = "HOME=/"; 834 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 835 envp[2] = NULL; 836 837 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 838 out_free: 839 kfree(agentbuf); 840 kfree(pathbuf); 841 } 842 843 /* 844 * cgroup_rename - Only allow simple rename of directories in place. 845 */ 846 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 847 const char *new_name_str) 848 { 849 struct cgroup *cgrp = kn->priv; 850 int ret; 851 852 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 853 if (strchr(new_name_str, '\n')) 854 return -EINVAL; 855 856 if (kernfs_type(kn) != KERNFS_DIR) 857 return -ENOTDIR; 858 if (rcu_access_pointer(kn->__parent) != new_parent) 859 return -EIO; 860 861 /* 862 * We're gonna grab cgroup_mutex which nests outside kernfs 863 * active_ref. kernfs_rename() doesn't require active_ref 864 * protection. Break them before grabbing cgroup_mutex. 865 */ 866 kernfs_break_active_protection(new_parent); 867 kernfs_break_active_protection(kn); 868 869 cgroup_lock(); 870 871 ret = kernfs_rename(kn, new_parent, new_name_str); 872 if (!ret) 873 TRACE_CGROUP_PATH(rename, cgrp); 874 875 cgroup_unlock(); 876 877 kernfs_unbreak_active_protection(kn); 878 kernfs_unbreak_active_protection(new_parent); 879 return ret; 880 } 881 882 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 883 { 884 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 885 struct cgroup_subsys *ss; 886 int ssid; 887 888 for_each_subsys(ss, ssid) 889 if (root->subsys_mask & (1 << ssid)) 890 seq_show_option(seq, ss->legacy_name, NULL); 891 if (root->flags & CGRP_ROOT_NOPREFIX) 892 seq_puts(seq, ",noprefix"); 893 if (root->flags & CGRP_ROOT_XATTR) 894 seq_puts(seq, ",xattr"); 895 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 896 seq_puts(seq, ",cpuset_v2_mode"); 897 if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) 898 seq_puts(seq, ",favordynmods"); 899 900 spin_lock(&release_agent_path_lock); 901 if (strlen(root->release_agent_path)) 902 seq_show_option(seq, "release_agent", 903 root->release_agent_path); 904 spin_unlock(&release_agent_path_lock); 905 906 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 907 seq_puts(seq, ",clone_children"); 908 if (strlen(root->name)) 909 seq_show_option(seq, "name", root->name); 910 return 0; 911 } 912 913 enum cgroup1_param { 914 Opt_all, 915 Opt_clone_children, 916 Opt_cpuset_v2_mode, 917 Opt_name, 918 Opt_none, 919 Opt_noprefix, 920 Opt_release_agent, 921 Opt_xattr, 922 Opt_favordynmods, 923 Opt_nofavordynmods, 924 }; 925 926 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 927 fsparam_flag ("all", Opt_all), 928 fsparam_flag ("clone_children", Opt_clone_children), 929 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 930 fsparam_string("name", Opt_name), 931 fsparam_flag ("none", Opt_none), 932 fsparam_flag ("noprefix", Opt_noprefix), 933 fsparam_string("release_agent", Opt_release_agent), 934 fsparam_flag ("xattr", Opt_xattr), 935 fsparam_flag ("favordynmods", Opt_favordynmods), 936 fsparam_flag ("nofavordynmods", Opt_nofavordynmods), 937 {} 938 }; 939 940 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 941 { 942 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 943 struct cgroup_subsys *ss; 944 struct fs_parse_result result; 945 int opt, i; 946 947 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 948 if (opt == -ENOPARAM) { 949 int ret; 950 951 ret = vfs_parse_fs_param_source(fc, param); 952 if (ret != -ENOPARAM) 953 return ret; 954 for_each_subsys(ss, i) { 955 if (strcmp(param->key, ss->legacy_name) || 956 cgroup1_subsys_absent(ss)) 957 continue; 958 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 959 return invalfc(fc, "Disabled controller '%s'", 960 param->key); 961 ctx->subsys_mask |= (1 << i); 962 return 0; 963 } 964 return invalfc(fc, "Unknown subsys name '%s'", param->key); 965 } 966 if (opt < 0) 967 return opt; 968 969 switch (opt) { 970 case Opt_none: 971 /* Explicitly have no subsystems */ 972 ctx->none = true; 973 break; 974 case Opt_all: 975 ctx->all_ss = true; 976 break; 977 case Opt_noprefix: 978 ctx->flags |= CGRP_ROOT_NOPREFIX; 979 break; 980 case Opt_clone_children: 981 ctx->cpuset_clone_children = true; 982 break; 983 case Opt_cpuset_v2_mode: 984 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 985 break; 986 case Opt_xattr: 987 ctx->flags |= CGRP_ROOT_XATTR; 988 break; 989 case Opt_favordynmods: 990 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 991 break; 992 case Opt_nofavordynmods: 993 ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 994 break; 995 case Opt_release_agent: 996 /* Specifying two release agents is forbidden */ 997 if (ctx->release_agent) 998 return invalfc(fc, "release_agent respecified"); 999 /* 1000 * Release agent gets called with all capabilities, 1001 * require capabilities to set release agent. 1002 */ 1003 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) 1004 return invalfc(fc, "Setting release_agent not allowed"); 1005 ctx->release_agent = param->string; 1006 param->string = NULL; 1007 break; 1008 case Opt_name: 1009 /* blocked by boot param? */ 1010 if (cgroup_no_v1_named) 1011 return -ENOENT; 1012 /* Can't specify an empty name */ 1013 if (!param->size) 1014 return invalfc(fc, "Empty name"); 1015 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 1016 return invalfc(fc, "Name too long"); 1017 /* Must match [\w.-]+ */ 1018 for (i = 0; i < param->size; i++) { 1019 char c = param->string[i]; 1020 if (isalnum(c)) 1021 continue; 1022 if ((c == '.') || (c == '-') || (c == '_')) 1023 continue; 1024 return invalfc(fc, "Invalid name"); 1025 } 1026 /* Specifying two names is forbidden */ 1027 if (ctx->name) 1028 return invalfc(fc, "name respecified"); 1029 ctx->name = param->string; 1030 param->string = NULL; 1031 break; 1032 } 1033 return 0; 1034 } 1035 1036 static int check_cgroupfs_options(struct fs_context *fc) 1037 { 1038 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1039 u16 mask = U16_MAX; 1040 u16 enabled = 0; 1041 struct cgroup_subsys *ss; 1042 int i; 1043 1044 #ifdef CONFIG_CPUSETS 1045 mask = ~((u16)1 << cpuset_cgrp_id); 1046 #endif 1047 for_each_subsys(ss, i) 1048 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) && 1049 !cgroup1_subsys_absent(ss)) 1050 enabled |= 1 << i; 1051 1052 ctx->subsys_mask &= enabled; 1053 1054 /* 1055 * In absence of 'none', 'name=' and subsystem name options, 1056 * let's default to 'all'. 1057 */ 1058 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1059 ctx->all_ss = true; 1060 1061 if (ctx->all_ss) { 1062 /* Mutually exclusive option 'all' + subsystem name */ 1063 if (ctx->subsys_mask) 1064 return invalfc(fc, "subsys name conflicts with all"); 1065 /* 'all' => select all the subsystems */ 1066 ctx->subsys_mask = enabled; 1067 } 1068 1069 /* 1070 * We either have to specify by name or by subsystems. (So all 1071 * empty hierarchies must have a name). 1072 */ 1073 if (!ctx->subsys_mask && !ctx->name) 1074 return invalfc(fc, "Need name or subsystem set"); 1075 1076 /* 1077 * Option noprefix was introduced just for backward compatibility 1078 * with the old cpuset, so we allow noprefix only if mounting just 1079 * the cpuset subsystem. 1080 */ 1081 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1082 return invalfc(fc, "noprefix used incorrectly"); 1083 1084 /* Can't specify "none" and some subsystems */ 1085 if (ctx->subsys_mask && ctx->none) 1086 return invalfc(fc, "none used incorrectly"); 1087 1088 return 0; 1089 } 1090 1091 int cgroup1_reconfigure(struct fs_context *fc) 1092 { 1093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1094 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1095 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1096 int ret = 0; 1097 u16 added_mask, removed_mask; 1098 1099 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1100 1101 /* See what subsystems are wanted */ 1102 ret = check_cgroupfs_options(fc); 1103 if (ret) 1104 goto out_unlock; 1105 1106 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1107 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1108 task_tgid_nr(current), current->comm); 1109 1110 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1111 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1112 1113 /* Don't allow flags or name to change at remount */ 1114 if ((ctx->flags ^ root->flags) || 1115 (ctx->name && strcmp(ctx->name, root->name))) { 1116 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1117 ctx->flags, ctx->name ?: "", root->flags, root->name); 1118 ret = -EINVAL; 1119 goto out_unlock; 1120 } 1121 1122 /* remounting is not allowed for populated hierarchies */ 1123 if (!list_empty(&root->cgrp.self.children)) { 1124 ret = -EBUSY; 1125 goto out_unlock; 1126 } 1127 1128 ret = rebind_subsystems(root, added_mask); 1129 if (ret) 1130 goto out_unlock; 1131 1132 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1133 1134 if (ctx->release_agent) { 1135 spin_lock(&release_agent_path_lock); 1136 strcpy(root->release_agent_path, ctx->release_agent); 1137 spin_unlock(&release_agent_path_lock); 1138 } 1139 1140 trace_cgroup_remount(root); 1141 1142 out_unlock: 1143 cgroup_unlock(); 1144 return ret; 1145 } 1146 1147 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1148 .rename = cgroup1_rename, 1149 .show_options = cgroup1_show_options, 1150 .mkdir = cgroup_mkdir, 1151 .rmdir = cgroup_rmdir, 1152 .show_path = cgroup_show_path, 1153 }; 1154 1155 /* 1156 * The guts of cgroup1 mount - find or create cgroup_root to use. 1157 * Called with cgroup_mutex held; returns 0 on success, -E... on 1158 * error and positive - in case when the candidate is busy dying. 1159 * On success it stashes a reference to cgroup_root into given 1160 * cgroup_fs_context; that reference is *NOT* counting towards the 1161 * cgroup_root refcount. 1162 */ 1163 static int cgroup1_root_to_use(struct fs_context *fc) 1164 { 1165 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1166 struct cgroup_root *root; 1167 struct cgroup_subsys *ss; 1168 int i, ret; 1169 1170 /* First find the desired set of subsystems */ 1171 ret = check_cgroupfs_options(fc); 1172 if (ret) 1173 return ret; 1174 1175 /* 1176 * Destruction of cgroup root is asynchronous, so subsystems may 1177 * still be dying after the previous unmount. Let's drain the 1178 * dying subsystems. We just need to ensure that the ones 1179 * unmounted previously finish dying and don't care about new ones 1180 * starting. Testing ref liveliness is good enough. 1181 */ 1182 for_each_subsys(ss, i) { 1183 if (!(ctx->subsys_mask & (1 << i)) || 1184 ss->root == &cgrp_dfl_root) 1185 continue; 1186 1187 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1188 return 1; /* restart */ 1189 cgroup_put(&ss->root->cgrp); 1190 } 1191 1192 for_each_root(root) { 1193 bool name_match = false; 1194 1195 if (root == &cgrp_dfl_root) 1196 continue; 1197 1198 /* 1199 * If we asked for a name then it must match. Also, if 1200 * name matches but sybsys_mask doesn't, we should fail. 1201 * Remember whether name matched. 1202 */ 1203 if (ctx->name) { 1204 if (strcmp(ctx->name, root->name)) 1205 continue; 1206 name_match = true; 1207 } 1208 1209 /* 1210 * If we asked for subsystems (or explicitly for no 1211 * subsystems) then they must match. 1212 */ 1213 if ((ctx->subsys_mask || ctx->none) && 1214 (ctx->subsys_mask != root->subsys_mask)) { 1215 if (!name_match) 1216 continue; 1217 return -EBUSY; 1218 } 1219 1220 if (root->flags ^ ctx->flags) 1221 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1222 1223 ctx->root = root; 1224 return 0; 1225 } 1226 1227 /* 1228 * No such thing, create a new one. name= matching without subsys 1229 * specification is allowed for already existing hierarchies but we 1230 * can't create new one without subsys specification. 1231 */ 1232 if (!ctx->subsys_mask && !ctx->none) 1233 return invalfc(fc, "No subsys list or none specified"); 1234 1235 /* Hierarchies may only be created in the initial cgroup namespace. */ 1236 if (ctx->ns != &init_cgroup_ns) 1237 return -EPERM; 1238 1239 root = kzalloc(sizeof(*root), GFP_KERNEL); 1240 if (!root) 1241 return -ENOMEM; 1242 1243 ctx->root = root; 1244 init_cgroup_root(ctx); 1245 1246 ret = cgroup_setup_root(root, ctx->subsys_mask); 1247 if (!ret) 1248 cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); 1249 else 1250 cgroup_free_root(root); 1251 1252 return ret; 1253 } 1254 1255 int cgroup1_get_tree(struct fs_context *fc) 1256 { 1257 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1258 int ret; 1259 1260 /* Check if the caller has permission to mount. */ 1261 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1262 return -EPERM; 1263 1264 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1265 1266 ret = cgroup1_root_to_use(fc); 1267 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1268 ret = 1; /* restart */ 1269 1270 cgroup_unlock(); 1271 1272 if (!ret) 1273 ret = cgroup_do_get_tree(fc); 1274 1275 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1276 fc_drop_locked(fc); 1277 ret = 1; 1278 } 1279 1280 if (unlikely(ret > 0)) { 1281 msleep(10); 1282 return restart_syscall(); 1283 } 1284 return ret; 1285 } 1286 1287 /** 1288 * task_get_cgroup1 - Acquires the associated cgroup of a task within a 1289 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 1290 * hierarchy ID. 1291 * @tsk: The target task 1292 * @hierarchy_id: The ID of a cgroup1 hierarchy 1293 * 1294 * On success, the cgroup is returned. On failure, ERR_PTR is returned. 1295 * We limit it to cgroup1 only. 1296 */ 1297 struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id) 1298 { 1299 struct cgroup *cgrp = ERR_PTR(-ENOENT); 1300 struct cgroup_root *root; 1301 unsigned long flags; 1302 1303 rcu_read_lock(); 1304 for_each_root(root) { 1305 /* cgroup1 only*/ 1306 if (root == &cgrp_dfl_root) 1307 continue; 1308 if (root->hierarchy_id != hierarchy_id) 1309 continue; 1310 spin_lock_irqsave(&css_set_lock, flags); 1311 cgrp = task_cgroup_from_root(tsk, root); 1312 if (!cgrp || !cgroup_tryget(cgrp)) 1313 cgrp = ERR_PTR(-ENOENT); 1314 spin_unlock_irqrestore(&css_set_lock, flags); 1315 break; 1316 } 1317 rcu_read_unlock(); 1318 return cgrp; 1319 } 1320 1321 static int __init cgroup1_wq_init(void) 1322 { 1323 /* 1324 * Used to destroy pidlists and separate to serve as flush domain. 1325 * Cap @max_active to 1 too. 1326 */ 1327 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1328 0, 1); 1329 BUG_ON(!cgroup_pidlist_destroy_wq); 1330 return 0; 1331 } 1332 core_initcall(cgroup1_wq_init); 1333 1334 static int __init cgroup_no_v1(char *str) 1335 { 1336 struct cgroup_subsys *ss; 1337 char *token; 1338 int i; 1339 1340 while ((token = strsep(&str, ",")) != NULL) { 1341 if (!*token) 1342 continue; 1343 1344 if (!strcmp(token, "all")) { 1345 cgroup_no_v1_mask = U16_MAX; 1346 continue; 1347 } 1348 1349 if (!strcmp(token, "named")) { 1350 cgroup_no_v1_named = true; 1351 continue; 1352 } 1353 1354 for_each_subsys(ss, i) { 1355 if (strcmp(token, ss->name) && 1356 strcmp(token, ss->legacy_name)) 1357 continue; 1358 1359 cgroup_no_v1_mask |= 1 << i; 1360 break; 1361 } 1362 } 1363 return 1; 1364 } 1365 __setup("cgroup_no_v1=", cgroup_no_v1); 1366 1367 static int __init cgroup_v1_proc(char *str) 1368 { 1369 return (kstrtobool(str, &proc_show_all) == 0); 1370 } 1371 __setup("cgroup_v1_proc=", cgroup_v1_proc); 1372