1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/ctype.h> 5 #include <linux/kmod.h> 6 #include <linux/sort.h> 7 #include <linux/delay.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/magic.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/vmalloc.h> 15 #include <linux/delayacct.h> 16 #include <linux/pid_namespace.h> 17 #include <linux/cgroupstats.h> 18 #include <linux/fs_parser.h> 19 20 #include <trace/events/cgroup.h> 21 22 /* 23 * pidlists linger the following amount before being destroyed. The goal 24 * is avoiding frequent destruction in the middle of consecutive read calls 25 * Expiring in the middle is a performance problem not a correctness one. 26 * 1 sec should be enough. 27 */ 28 #define CGROUP_PIDLIST_DESTROY_DELAY HZ 29 30 /* Controllers blocked by the commandline in v1 */ 31 static u16 cgroup_no_v1_mask; 32 33 /* disable named v1 mounts */ 34 static bool cgroup_no_v1_named; 35 36 /* Show unavailable controllers in /proc/cgroups */ 37 static bool proc_show_all; 38 39 /* 40 * pidlist destructions need to be flushed on cgroup destruction. Use a 41 * separate workqueue as flush domain. 42 */ 43 static struct workqueue_struct *cgroup_pidlist_destroy_wq; 44 45 /* protects cgroup_subsys->release_agent_path */ 46 static DEFINE_SPINLOCK(release_agent_path_lock); 47 48 bool cgroup1_ssid_disabled(int ssid) 49 { 50 return cgroup_no_v1_mask & (1 << ssid); 51 } 52 53 static bool cgroup1_subsys_absent(struct cgroup_subsys *ss) 54 { 55 /* Check also dfl_cftypes for file-less controllers, i.e. perf_event */ 56 return ss->legacy_cftypes == NULL && ss->dfl_cftypes; 57 } 58 59 /** 60 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 61 * @from: attach to all cgroups of a given task 62 * @tsk: the task to be attached 63 * 64 * Return: %0 on success or a negative errno code on failure 65 */ 66 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 67 { 68 struct cgroup_root *root; 69 int retval = 0; 70 71 cgroup_lock(); 72 cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL); 73 for_each_root(root) { 74 struct cgroup *from_cgrp; 75 76 spin_lock_irq(&css_set_lock); 77 from_cgrp = task_cgroup_from_root(from, root); 78 spin_unlock_irq(&css_set_lock); 79 80 retval = cgroup_attach_task(from_cgrp, tsk, false); 81 if (retval) 82 break; 83 } 84 cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL); 85 cgroup_unlock(); 86 87 return retval; 88 } 89 EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 90 91 /** 92 * cgroup_transfer_tasks - move tasks from one cgroup to another 93 * @to: cgroup to which the tasks will be moved 94 * @from: cgroup in which the tasks currently reside 95 * 96 * Locking rules between cgroup_post_fork() and the migration path 97 * guarantee that, if a task is forking while being migrated, the new child 98 * is guaranteed to be either visible in the source cgroup after the 99 * parent's migration is complete or put into the target cgroup. No task 100 * can slip out of migration through forking. 101 * 102 * Return: %0 on success or a negative errno code on failure 103 */ 104 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 105 { 106 DEFINE_CGROUP_MGCTX(mgctx); 107 struct cgrp_cset_link *link; 108 struct css_task_iter it; 109 struct task_struct *task; 110 int ret; 111 112 if (cgroup_on_dfl(to)) 113 return -EINVAL; 114 115 ret = cgroup_migrate_vet_dst(to); 116 if (ret) 117 return ret; 118 119 cgroup_lock(); 120 121 cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL); 122 123 /* all tasks in @from are being moved, all csets are source */ 124 spin_lock_irq(&css_set_lock); 125 list_for_each_entry(link, &from->cset_links, cset_link) 126 cgroup_migrate_add_src(link->cset, to, &mgctx); 127 spin_unlock_irq(&css_set_lock); 128 129 ret = cgroup_migrate_prepare_dst(&mgctx); 130 if (ret) 131 goto out_err; 132 133 /* 134 * Migrate tasks one-by-one until @from is empty. This fails iff 135 * ->can_attach() fails. 136 */ 137 do { 138 css_task_iter_start(&from->self, 0, &it); 139 140 do { 141 task = css_task_iter_next(&it); 142 } while (task && (task->flags & PF_EXITING)); 143 144 if (task) 145 get_task_struct(task); 146 css_task_iter_end(&it); 147 148 if (task) { 149 ret = cgroup_migrate(task, false, &mgctx); 150 if (!ret) 151 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 152 put_task_struct(task); 153 } 154 } while (task && !ret); 155 out_err: 156 cgroup_migrate_finish(&mgctx); 157 cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL); 158 cgroup_unlock(); 159 return ret; 160 } 161 162 /* 163 * Stuff for reading the 'tasks'/'procs' files. 164 * 165 * Reading this file can return large amounts of data if a cgroup has 166 * *lots* of attached tasks. So it may need several calls to read(), 167 * but we cannot guarantee that the information we produce is correct 168 * unless we produce it entirely atomically. 169 * 170 */ 171 172 /* which pidlist file are we talking about? */ 173 enum cgroup_filetype { 174 CGROUP_FILE_PROCS, 175 CGROUP_FILE_TASKS, 176 }; 177 178 /* 179 * A pidlist is a list of pids that virtually represents the contents of one 180 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 181 * a pair (one each for procs, tasks) for each pid namespace that's relevant 182 * to the cgroup. 183 */ 184 struct cgroup_pidlist { 185 /* 186 * used to find which pidlist is wanted. doesn't change as long as 187 * this particular list stays in the list. 188 */ 189 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 190 /* array of xids */ 191 pid_t *list; 192 /* how many elements the above list has */ 193 int length; 194 /* each of these stored in a list by its cgroup */ 195 struct list_head links; 196 /* pointer to the cgroup we belong to, for list removal purposes */ 197 struct cgroup *owner; 198 /* for delayed destruction */ 199 struct delayed_work destroy_dwork; 200 }; 201 202 /* 203 * Used to destroy all pidlists lingering waiting for destroy timer. None 204 * should be left afterwards. 205 */ 206 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 207 { 208 struct cgroup_pidlist *l, *tmp_l; 209 210 mutex_lock(&cgrp->pidlist_mutex); 211 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 212 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 213 mutex_unlock(&cgrp->pidlist_mutex); 214 215 flush_workqueue(cgroup_pidlist_destroy_wq); 216 BUG_ON(!list_empty(&cgrp->pidlists)); 217 } 218 219 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 220 { 221 struct delayed_work *dwork = to_delayed_work(work); 222 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 223 destroy_dwork); 224 struct cgroup_pidlist *tofree = NULL; 225 226 mutex_lock(&l->owner->pidlist_mutex); 227 228 /* 229 * Destroy iff we didn't get queued again. The state won't change 230 * as destroy_dwork can only be queued while locked. 231 */ 232 if (!delayed_work_pending(dwork)) { 233 list_del(&l->links); 234 kvfree(l->list); 235 put_pid_ns(l->key.ns); 236 tofree = l; 237 } 238 239 mutex_unlock(&l->owner->pidlist_mutex); 240 kfree(tofree); 241 } 242 243 /* 244 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 245 * Returns the number of unique elements. 246 */ 247 static int pidlist_uniq(pid_t *list, int length) 248 { 249 int src, dest = 1; 250 251 /* 252 * we presume the 0th element is unique, so i starts at 1. trivial 253 * edge cases first; no work needs to be done for either 254 */ 255 if (length == 0 || length == 1) 256 return length; 257 /* src and dest walk down the list; dest counts unique elements */ 258 for (src = 1; src < length; src++) { 259 /* find next unique element */ 260 while (list[src] == list[src-1]) { 261 src++; 262 if (src == length) 263 goto after; 264 } 265 /* dest always points to where the next unique element goes */ 266 list[dest] = list[src]; 267 dest++; 268 } 269 after: 270 return dest; 271 } 272 273 /* 274 * The two pid files - task and cgroup.procs - guaranteed that the result 275 * is sorted, which forced this whole pidlist fiasco. As pid order is 276 * different per namespace, each namespace needs differently sorted list, 277 * making it impossible to use, for example, single rbtree of member tasks 278 * sorted by task pointer. As pidlists can be fairly large, allocating one 279 * per open file is dangerous, so cgroup had to implement shared pool of 280 * pidlists keyed by cgroup and namespace. 281 */ 282 static int cmppid(const void *a, const void *b) 283 { 284 return *(pid_t *)a - *(pid_t *)b; 285 } 286 287 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 288 enum cgroup_filetype type) 289 { 290 struct cgroup_pidlist *l; 291 /* don't need task_nsproxy() if we're looking at ourself */ 292 struct pid_namespace *ns = task_active_pid_ns(current); 293 294 lockdep_assert_held(&cgrp->pidlist_mutex); 295 296 list_for_each_entry(l, &cgrp->pidlists, links) 297 if (l->key.type == type && l->key.ns == ns) 298 return l; 299 return NULL; 300 } 301 302 /* 303 * find the appropriate pidlist for our purpose (given procs vs tasks) 304 * returns with the lock on that pidlist already held, and takes care 305 * of the use count, or returns NULL with no locks held if we're out of 306 * memory. 307 */ 308 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 309 enum cgroup_filetype type) 310 { 311 struct cgroup_pidlist *l; 312 313 lockdep_assert_held(&cgrp->pidlist_mutex); 314 315 l = cgroup_pidlist_find(cgrp, type); 316 if (l) 317 return l; 318 319 /* entry not found; create a new one */ 320 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 321 if (!l) 322 return l; 323 324 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 325 l->key.type = type; 326 /* don't need task_nsproxy() if we're looking at ourself */ 327 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 328 l->owner = cgrp; 329 list_add(&l->links, &cgrp->pidlists); 330 return l; 331 } 332 333 /* 334 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 335 */ 336 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 337 struct cgroup_pidlist **lp) 338 { 339 pid_t *array; 340 int length; 341 int pid, n = 0; /* used for populating the array */ 342 struct css_task_iter it; 343 struct task_struct *tsk; 344 struct cgroup_pidlist *l; 345 346 lockdep_assert_held(&cgrp->pidlist_mutex); 347 348 /* 349 * If cgroup gets more users after we read count, we won't have 350 * enough space - tough. This race is indistinguishable to the 351 * caller from the case that the additional cgroup users didn't 352 * show up until sometime later on. 353 */ 354 length = cgroup_task_count(cgrp); 355 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 356 if (!array) 357 return -ENOMEM; 358 /* now, populate the array */ 359 css_task_iter_start(&cgrp->self, 0, &it); 360 while ((tsk = css_task_iter_next(&it))) { 361 if (unlikely(n == length)) 362 break; 363 /* get tgid or pid for procs or tasks file respectively */ 364 if (type == CGROUP_FILE_PROCS) 365 pid = task_tgid_vnr(tsk); 366 else 367 pid = task_pid_vnr(tsk); 368 if (pid > 0) /* make sure to only use valid results */ 369 array[n++] = pid; 370 } 371 css_task_iter_end(&it); 372 length = n; 373 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ 374 sort(array, length, sizeof(pid_t), cmppid, NULL); 375 length = pidlist_uniq(array, length); 376 377 l = cgroup_pidlist_find_create(cgrp, type); 378 if (!l) { 379 kvfree(array); 380 return -ENOMEM; 381 } 382 383 /* store array, freeing old if necessary */ 384 kvfree(l->list); 385 l->list = array; 386 l->length = length; 387 *lp = l; 388 return 0; 389 } 390 391 /* 392 * seq_file methods for the tasks/procs files. The seq_file position is the 393 * next pid to display; the seq_file iterator is a pointer to the pid 394 * in the cgroup->l->list array. 395 */ 396 397 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 398 { 399 /* 400 * Initially we receive a position value that corresponds to 401 * one more than the last pid shown (or 0 on the first call or 402 * after a seek to the start). Use a binary-search to find the 403 * next pid to display, if any 404 */ 405 struct kernfs_open_file *of = s->private; 406 struct cgroup_file_ctx *ctx = of->priv; 407 struct cgroup *cgrp = seq_css(s)->cgroup; 408 struct cgroup_pidlist *l; 409 enum cgroup_filetype type = seq_cft(s)->private; 410 int index = 0, pid = *pos; 411 int *iter, ret; 412 413 mutex_lock(&cgrp->pidlist_mutex); 414 415 /* 416 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 417 * start() after open. If the matching pidlist is around, we can use 418 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 419 * directly. It could already have been destroyed. 420 */ 421 if (ctx->procs1.pidlist) 422 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 423 424 /* 425 * Either this is the first start() after open or the matching 426 * pidlist has been destroyed inbetween. Create a new one. 427 */ 428 if (!ctx->procs1.pidlist) { 429 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 430 if (ret) 431 return ERR_PTR(ret); 432 } 433 l = ctx->procs1.pidlist; 434 435 if (pid) { 436 int end = l->length; 437 438 while (index < end) { 439 int mid = (index + end) / 2; 440 if (l->list[mid] == pid) { 441 index = mid; 442 break; 443 } else if (l->list[mid] < pid) 444 index = mid + 1; 445 else 446 end = mid; 447 } 448 } 449 /* If we're off the end of the array, we're done */ 450 if (index >= l->length) 451 return NULL; 452 /* Update the abstract position to be the actual pid that we found */ 453 iter = l->list + index; 454 *pos = *iter; 455 return iter; 456 } 457 458 static void cgroup_pidlist_stop(struct seq_file *s, void *v) 459 { 460 struct kernfs_open_file *of = s->private; 461 struct cgroup_file_ctx *ctx = of->priv; 462 struct cgroup_pidlist *l = ctx->procs1.pidlist; 463 464 if (l) 465 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 466 CGROUP_PIDLIST_DESTROY_DELAY); 467 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 468 } 469 470 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 471 { 472 struct kernfs_open_file *of = s->private; 473 struct cgroup_file_ctx *ctx = of->priv; 474 struct cgroup_pidlist *l = ctx->procs1.pidlist; 475 pid_t *p = v; 476 pid_t *end = l->list + l->length; 477 /* 478 * Advance to the next pid in the array. If this goes off the 479 * end, we're done 480 */ 481 p++; 482 if (p >= end) { 483 (*pos)++; 484 return NULL; 485 } else { 486 *pos = *p; 487 return p; 488 } 489 } 490 491 static int cgroup_pidlist_show(struct seq_file *s, void *v) 492 { 493 seq_printf(s, "%d\n", *(int *)v); 494 495 return 0; 496 } 497 498 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, 499 char *buf, size_t nbytes, loff_t off, 500 bool threadgroup) 501 { 502 struct cgroup *cgrp; 503 struct task_struct *task; 504 const struct cred *cred, *tcred; 505 ssize_t ret; 506 enum cgroup_attach_lock_mode lock_mode; 507 508 cgrp = cgroup_kn_lock_live(of->kn, false); 509 if (!cgrp) 510 return -ENODEV; 511 512 task = cgroup_procs_write_start(buf, threadgroup, &lock_mode); 513 ret = PTR_ERR_OR_ZERO(task); 514 if (ret) 515 goto out_unlock; 516 517 /* 518 * Even if we're attaching all tasks in the thread group, we only need 519 * to check permissions on one of them. Check permissions using the 520 * credentials from file open to protect against inherited fd attacks. 521 */ 522 cred = of->file->f_cred; 523 tcred = get_task_cred(task); 524 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 525 !uid_eq(cred->euid, tcred->uid) && 526 !uid_eq(cred->euid, tcred->suid)) 527 ret = -EACCES; 528 put_cred(tcred); 529 if (ret) 530 goto out_finish; 531 532 ret = cgroup_attach_task(cgrp, task, threadgroup); 533 534 out_finish: 535 cgroup_procs_write_finish(task, lock_mode); 536 out_unlock: 537 cgroup_kn_unlock(of->kn); 538 539 return ret ?: nbytes; 540 } 541 542 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, 543 char *buf, size_t nbytes, loff_t off) 544 { 545 return __cgroup1_procs_write(of, buf, nbytes, off, true); 546 } 547 548 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, 549 char *buf, size_t nbytes, loff_t off) 550 { 551 return __cgroup1_procs_write(of, buf, nbytes, off, false); 552 } 553 554 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 555 char *buf, size_t nbytes, loff_t off) 556 { 557 struct cgroup *cgrp; 558 struct cgroup_file_ctx *ctx; 559 560 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 561 562 /* 563 * Release agent gets called with all capabilities, 564 * require capabilities to set release agent. 565 */ 566 ctx = of->priv; 567 if ((ctx->ns->user_ns != &init_user_ns) || 568 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) 569 return -EPERM; 570 571 cgrp = cgroup_kn_lock_live(of->kn, false); 572 if (!cgrp) 573 return -ENODEV; 574 spin_lock(&release_agent_path_lock); 575 strscpy(cgrp->root->release_agent_path, strstrip(buf), 576 sizeof(cgrp->root->release_agent_path)); 577 spin_unlock(&release_agent_path_lock); 578 cgroup_kn_unlock(of->kn); 579 return nbytes; 580 } 581 582 static int cgroup_release_agent_show(struct seq_file *seq, void *v) 583 { 584 struct cgroup *cgrp = seq_css(seq)->cgroup; 585 586 spin_lock(&release_agent_path_lock); 587 seq_puts(seq, cgrp->root->release_agent_path); 588 spin_unlock(&release_agent_path_lock); 589 seq_putc(seq, '\n'); 590 return 0; 591 } 592 593 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 594 { 595 seq_puts(seq, "0\n"); 596 return 0; 597 } 598 599 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 600 struct cftype *cft) 601 { 602 return notify_on_release(css->cgroup); 603 } 604 605 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 606 struct cftype *cft, u64 val) 607 { 608 if (val) 609 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 610 else 611 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 612 return 0; 613 } 614 615 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 616 struct cftype *cft) 617 { 618 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 619 } 620 621 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 622 struct cftype *cft, u64 val) 623 { 624 if (val) 625 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 626 else 627 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 628 return 0; 629 } 630 631 /* cgroup core interface files for the legacy hierarchies */ 632 struct cftype cgroup1_base_files[] = { 633 { 634 .name = "cgroup.procs", 635 .seq_start = cgroup_pidlist_start, 636 .seq_next = cgroup_pidlist_next, 637 .seq_stop = cgroup_pidlist_stop, 638 .seq_show = cgroup_pidlist_show, 639 .private = CGROUP_FILE_PROCS, 640 .write = cgroup1_procs_write, 641 }, 642 { 643 .name = "cgroup.clone_children", 644 .read_u64 = cgroup_clone_children_read, 645 .write_u64 = cgroup_clone_children_write, 646 }, 647 { 648 .name = "cgroup.sane_behavior", 649 .flags = CFTYPE_ONLY_ON_ROOT, 650 .seq_show = cgroup_sane_behavior_show, 651 }, 652 { 653 .name = "tasks", 654 .seq_start = cgroup_pidlist_start, 655 .seq_next = cgroup_pidlist_next, 656 .seq_stop = cgroup_pidlist_stop, 657 .seq_show = cgroup_pidlist_show, 658 .private = CGROUP_FILE_TASKS, 659 .write = cgroup1_tasks_write, 660 }, 661 { 662 .name = "notify_on_release", 663 .read_u64 = cgroup_read_notify_on_release, 664 .write_u64 = cgroup_write_notify_on_release, 665 }, 666 { 667 .name = "release_agent", 668 .flags = CFTYPE_ONLY_ON_ROOT, 669 .seq_show = cgroup_release_agent_show, 670 .write = cgroup_release_agent_write, 671 .max_write_len = PATH_MAX - 1, 672 }, 673 { } /* terminate */ 674 }; 675 676 /* Display information about each subsystem and each hierarchy */ 677 int proc_cgroupstats_show(struct seq_file *m, void *v) 678 { 679 struct cgroup_subsys *ss; 680 bool cgrp_v1_visible = false; 681 int i; 682 683 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 684 /* 685 * Grab the subsystems state racily. No need to add avenue to 686 * cgroup_mutex contention. 687 */ 688 689 for_each_subsys(ss, i) { 690 cgrp_v1_visible |= ss->root != &cgrp_dfl_root; 691 692 if (!proc_show_all && cgroup1_subsys_absent(ss)) 693 continue; 694 695 seq_printf(m, "%s\t%d\t%d\t%d\n", 696 ss->legacy_name, ss->root->hierarchy_id, 697 atomic_read(&ss->root->nr_cgrps), 698 cgroup_ssid_enabled(i)); 699 } 700 701 if (cgrp_dfl_visible && !cgrp_v1_visible) 702 pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n"); 703 704 705 return 0; 706 } 707 708 /** 709 * cgroupstats_build - build and fill cgroupstats 710 * @stats: cgroupstats to fill information into 711 * @dentry: A dentry entry belonging to the cgroup for which stats have 712 * been requested. 713 * 714 * Build and fill cgroupstats so that taskstats can export it to user 715 * space. 716 * 717 * Return: %0 on success or a negative errno code on failure 718 */ 719 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 720 { 721 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 722 struct cgroup *cgrp; 723 struct css_task_iter it; 724 struct task_struct *tsk; 725 726 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 727 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 728 kernfs_type(kn) != KERNFS_DIR) 729 return -EINVAL; 730 731 /* 732 * We aren't being called from kernfs and there's no guarantee on 733 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 734 * @kn->priv is RCU safe. Let's do the RCU dancing. 735 */ 736 rcu_read_lock(); 737 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 738 if (!cgrp || !cgroup_tryget(cgrp)) { 739 rcu_read_unlock(); 740 return -ENOENT; 741 } 742 rcu_read_unlock(); 743 744 css_task_iter_start(&cgrp->self, 0, &it); 745 while ((tsk = css_task_iter_next(&it))) { 746 switch (READ_ONCE(tsk->__state)) { 747 case TASK_RUNNING: 748 stats->nr_running++; 749 break; 750 case TASK_INTERRUPTIBLE: 751 stats->nr_sleeping++; 752 break; 753 case TASK_UNINTERRUPTIBLE: 754 stats->nr_uninterruptible++; 755 break; 756 case TASK_STOPPED: 757 stats->nr_stopped++; 758 break; 759 default: 760 if (tsk->in_iowait) 761 stats->nr_io_wait++; 762 break; 763 } 764 } 765 css_task_iter_end(&it); 766 767 cgroup_put(cgrp); 768 return 0; 769 } 770 771 void cgroup1_check_for_release(struct cgroup *cgrp) 772 { 773 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 774 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 775 schedule_work(&cgrp->release_agent_work); 776 } 777 778 /* 779 * Notify userspace when a cgroup is released, by running the 780 * configured release agent with the name of the cgroup (path 781 * relative to the root of cgroup file system) as the argument. 782 * 783 * Most likely, this user command will try to rmdir this cgroup. 784 * 785 * This races with the possibility that some other task will be 786 * attached to this cgroup before it is removed, or that some other 787 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 788 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 789 * unused, and this cgroup will be reprieved from its death sentence, 790 * to continue to serve a useful existence. Next time it's released, 791 * we will get notified again, if it still has 'notify_on_release' set. 792 * 793 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 794 * means only wait until the task is successfully execve()'d. The 795 * separate release agent task is forked by call_usermodehelper(), 796 * then control in this thread returns here, without waiting for the 797 * release agent task. We don't bother to wait because the caller of 798 * this routine has no use for the exit status of the release agent 799 * task, so no sense holding our caller up for that. 800 */ 801 void cgroup1_release_agent(struct work_struct *work) 802 { 803 struct cgroup *cgrp = 804 container_of(work, struct cgroup, release_agent_work); 805 char *pathbuf, *agentbuf; 806 char *argv[3], *envp[3]; 807 int ret; 808 809 /* snoop agent path and exit early if empty */ 810 if (!cgrp->root->release_agent_path[0]) 811 return; 812 813 /* prepare argument buffers */ 814 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 815 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 816 if (!pathbuf || !agentbuf) 817 goto out_free; 818 819 spin_lock(&release_agent_path_lock); 820 strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 821 spin_unlock(&release_agent_path_lock); 822 if (!agentbuf[0]) 823 goto out_free; 824 825 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 826 if (ret < 0) 827 goto out_free; 828 829 argv[0] = agentbuf; 830 argv[1] = pathbuf; 831 argv[2] = NULL; 832 833 /* minimal command environment */ 834 envp[0] = "HOME=/"; 835 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 836 envp[2] = NULL; 837 838 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 839 out_free: 840 kfree(agentbuf); 841 kfree(pathbuf); 842 } 843 844 /* 845 * cgroup_rename - Only allow simple rename of directories in place. 846 */ 847 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 848 const char *new_name_str) 849 { 850 struct cgroup *cgrp = kn->priv; 851 int ret; 852 853 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 854 if (strchr(new_name_str, '\n')) 855 return -EINVAL; 856 857 if (kernfs_type(kn) != KERNFS_DIR) 858 return -ENOTDIR; 859 if (rcu_access_pointer(kn->__parent) != new_parent) 860 return -EIO; 861 862 /* 863 * We're gonna grab cgroup_mutex which nests outside kernfs 864 * active_ref. kernfs_rename() doesn't require active_ref 865 * protection. Break them before grabbing cgroup_mutex. 866 */ 867 kernfs_break_active_protection(new_parent); 868 kernfs_break_active_protection(kn); 869 870 cgroup_lock(); 871 872 ret = kernfs_rename(kn, new_parent, new_name_str); 873 if (!ret) 874 TRACE_CGROUP_PATH(rename, cgrp); 875 876 cgroup_unlock(); 877 878 kernfs_unbreak_active_protection(kn); 879 kernfs_unbreak_active_protection(new_parent); 880 return ret; 881 } 882 883 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 884 { 885 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 886 struct cgroup_subsys *ss; 887 int ssid; 888 889 for_each_subsys(ss, ssid) 890 if (root->subsys_mask & (1 << ssid)) 891 seq_show_option(seq, ss->legacy_name, NULL); 892 if (root->flags & CGRP_ROOT_NOPREFIX) 893 seq_puts(seq, ",noprefix"); 894 if (root->flags & CGRP_ROOT_XATTR) 895 seq_puts(seq, ",xattr"); 896 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) 897 seq_puts(seq, ",cpuset_v2_mode"); 898 if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) 899 seq_puts(seq, ",favordynmods"); 900 901 spin_lock(&release_agent_path_lock); 902 if (strlen(root->release_agent_path)) 903 seq_show_option(seq, "release_agent", 904 root->release_agent_path); 905 spin_unlock(&release_agent_path_lock); 906 907 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 908 seq_puts(seq, ",clone_children"); 909 if (strlen(root->name)) 910 seq_show_option(seq, "name", root->name); 911 return 0; 912 } 913 914 enum cgroup1_param { 915 Opt_all, 916 Opt_clone_children, 917 Opt_cpuset_v2_mode, 918 Opt_name, 919 Opt_none, 920 Opt_noprefix, 921 Opt_release_agent, 922 Opt_xattr, 923 Opt_favordynmods, 924 Opt_nofavordynmods, 925 }; 926 927 const struct fs_parameter_spec cgroup1_fs_parameters[] = { 928 fsparam_flag ("all", Opt_all), 929 fsparam_flag ("clone_children", Opt_clone_children), 930 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 931 fsparam_string("name", Opt_name), 932 fsparam_flag ("none", Opt_none), 933 fsparam_flag ("noprefix", Opt_noprefix), 934 fsparam_string("release_agent", Opt_release_agent), 935 fsparam_flag ("xattr", Opt_xattr), 936 fsparam_flag ("favordynmods", Opt_favordynmods), 937 fsparam_flag ("nofavordynmods", Opt_nofavordynmods), 938 {} 939 }; 940 941 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 942 { 943 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 944 struct cgroup_subsys *ss; 945 struct fs_parse_result result; 946 int opt, i; 947 948 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 949 if (opt == -ENOPARAM) { 950 int ret; 951 952 ret = vfs_parse_fs_param_source(fc, param); 953 if (ret != -ENOPARAM) 954 return ret; 955 for_each_subsys(ss, i) { 956 if (strcmp(param->key, ss->legacy_name) || 957 cgroup1_subsys_absent(ss)) 958 continue; 959 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) 960 return invalfc(fc, "Disabled controller '%s'", 961 param->key); 962 ctx->subsys_mask |= (1 << i); 963 return 0; 964 } 965 return invalfc(fc, "Unknown subsys name '%s'", param->key); 966 } 967 if (opt < 0) 968 return opt; 969 970 switch (opt) { 971 case Opt_none: 972 /* Explicitly have no subsystems */ 973 ctx->none = true; 974 break; 975 case Opt_all: 976 ctx->all_ss = true; 977 break; 978 case Opt_noprefix: 979 ctx->flags |= CGRP_ROOT_NOPREFIX; 980 break; 981 case Opt_clone_children: 982 ctx->cpuset_clone_children = true; 983 break; 984 case Opt_cpuset_v2_mode: 985 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 986 break; 987 case Opt_xattr: 988 ctx->flags |= CGRP_ROOT_XATTR; 989 break; 990 case Opt_favordynmods: 991 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 992 break; 993 case Opt_nofavordynmods: 994 ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 995 break; 996 case Opt_release_agent: 997 /* Specifying two release agents is forbidden */ 998 if (ctx->release_agent) 999 return invalfc(fc, "release_agent respecified"); 1000 /* 1001 * Release agent gets called with all capabilities, 1002 * require capabilities to set release agent. 1003 */ 1004 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) 1005 return invalfc(fc, "Setting release_agent not allowed"); 1006 ctx->release_agent = param->string; 1007 param->string = NULL; 1008 break; 1009 case Opt_name: 1010 /* blocked by boot param? */ 1011 if (cgroup_no_v1_named) 1012 return -ENOENT; 1013 /* Can't specify an empty name */ 1014 if (!param->size) 1015 return invalfc(fc, "Empty name"); 1016 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) 1017 return invalfc(fc, "Name too long"); 1018 /* Must match [\w.-]+ */ 1019 for (i = 0; i < param->size; i++) { 1020 char c = param->string[i]; 1021 if (isalnum(c)) 1022 continue; 1023 if ((c == '.') || (c == '-') || (c == '_')) 1024 continue; 1025 return invalfc(fc, "Invalid name"); 1026 } 1027 /* Specifying two names is forbidden */ 1028 if (ctx->name) 1029 return invalfc(fc, "name respecified"); 1030 ctx->name = param->string; 1031 param->string = NULL; 1032 break; 1033 } 1034 return 0; 1035 } 1036 1037 static int check_cgroupfs_options(struct fs_context *fc) 1038 { 1039 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1040 u16 mask = U16_MAX; 1041 u16 enabled = 0; 1042 struct cgroup_subsys *ss; 1043 int i; 1044 1045 #ifdef CONFIG_CPUSETS 1046 mask = ~((u16)1 << cpuset_cgrp_id); 1047 #endif 1048 for_each_subsys(ss, i) 1049 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) && 1050 !cgroup1_subsys_absent(ss)) 1051 enabled |= 1 << i; 1052 1053 ctx->subsys_mask &= enabled; 1054 1055 /* 1056 * In absence of 'none', 'name=' and subsystem name options, 1057 * let's default to 'all'. 1058 */ 1059 if (!ctx->subsys_mask && !ctx->none && !ctx->name) 1060 ctx->all_ss = true; 1061 1062 if (ctx->all_ss) { 1063 /* Mutually exclusive option 'all' + subsystem name */ 1064 if (ctx->subsys_mask) 1065 return invalfc(fc, "subsys name conflicts with all"); 1066 /* 'all' => select all the subsystems */ 1067 ctx->subsys_mask = enabled; 1068 } 1069 1070 /* 1071 * We either have to specify by name or by subsystems. (So all 1072 * empty hierarchies must have a name). 1073 */ 1074 if (!ctx->subsys_mask && !ctx->name) 1075 return invalfc(fc, "Need name or subsystem set"); 1076 1077 /* 1078 * Option noprefix was introduced just for backward compatibility 1079 * with the old cpuset, so we allow noprefix only if mounting just 1080 * the cpuset subsystem. 1081 */ 1082 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) 1083 return invalfc(fc, "noprefix used incorrectly"); 1084 1085 /* Can't specify "none" and some subsystems */ 1086 if (ctx->subsys_mask && ctx->none) 1087 return invalfc(fc, "none used incorrectly"); 1088 1089 return 0; 1090 } 1091 1092 int cgroup1_reconfigure(struct fs_context *fc) 1093 { 1094 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1095 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1096 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1097 int ret = 0; 1098 u16 added_mask, removed_mask; 1099 1100 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1101 1102 /* See what subsystems are wanted */ 1103 ret = check_cgroupfs_options(fc); 1104 if (ret) 1105 goto out_unlock; 1106 1107 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) 1108 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1109 task_tgid_nr(current), current->comm); 1110 1111 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1112 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1113 1114 /* Don't allow flags or name to change at remount */ 1115 if ((ctx->flags ^ root->flags) || 1116 (ctx->name && strcmp(ctx->name, root->name))) { 1117 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", 1118 ctx->flags, ctx->name ?: "", root->flags, root->name); 1119 ret = -EINVAL; 1120 goto out_unlock; 1121 } 1122 1123 /* remounting is not allowed for populated hierarchies */ 1124 if (!list_empty(&root->cgrp.self.children)) { 1125 ret = -EBUSY; 1126 goto out_unlock; 1127 } 1128 1129 ret = rebind_subsystems(root, added_mask); 1130 if (ret) 1131 goto out_unlock; 1132 1133 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1134 1135 if (ctx->release_agent) { 1136 spin_lock(&release_agent_path_lock); 1137 strscpy(root->release_agent_path, ctx->release_agent); 1138 spin_unlock(&release_agent_path_lock); 1139 } 1140 1141 trace_cgroup_remount(root); 1142 1143 out_unlock: 1144 cgroup_unlock(); 1145 return ret; 1146 } 1147 1148 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1149 .rename = cgroup1_rename, 1150 .show_options = cgroup1_show_options, 1151 .mkdir = cgroup_mkdir, 1152 .rmdir = cgroup_rmdir, 1153 .show_path = cgroup_show_path, 1154 }; 1155 1156 /* 1157 * The guts of cgroup1 mount - find or create cgroup_root to use. 1158 * Called with cgroup_mutex held; returns 0 on success, -E... on 1159 * error and positive - in case when the candidate is busy dying. 1160 * On success it stashes a reference to cgroup_root into given 1161 * cgroup_fs_context; that reference is *NOT* counting towards the 1162 * cgroup_root refcount. 1163 */ 1164 static int cgroup1_root_to_use(struct fs_context *fc) 1165 { 1166 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1167 struct cgroup_root *root; 1168 struct cgroup_subsys *ss; 1169 int i, ret; 1170 1171 /* First find the desired set of subsystems */ 1172 ret = check_cgroupfs_options(fc); 1173 if (ret) 1174 return ret; 1175 1176 /* 1177 * Destruction of cgroup root is asynchronous, so subsystems may 1178 * still be dying after the previous unmount. Let's drain the 1179 * dying subsystems. We just need to ensure that the ones 1180 * unmounted previously finish dying and don't care about new ones 1181 * starting. Testing ref liveliness is good enough. 1182 */ 1183 for_each_subsys(ss, i) { 1184 if (!(ctx->subsys_mask & (1 << i)) || 1185 ss->root == &cgrp_dfl_root) 1186 continue; 1187 1188 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) 1189 return 1; /* restart */ 1190 cgroup_put(&ss->root->cgrp); 1191 } 1192 1193 for_each_root(root) { 1194 bool name_match = false; 1195 1196 if (root == &cgrp_dfl_root) 1197 continue; 1198 1199 /* 1200 * If we asked for a name then it must match. Also, if 1201 * name matches but sybsys_mask doesn't, we should fail. 1202 * Remember whether name matched. 1203 */ 1204 if (ctx->name) { 1205 if (strcmp(ctx->name, root->name)) 1206 continue; 1207 name_match = true; 1208 } 1209 1210 /* 1211 * If we asked for subsystems (or explicitly for no 1212 * subsystems) then they must match. 1213 */ 1214 if ((ctx->subsys_mask || ctx->none) && 1215 (ctx->subsys_mask != root->subsys_mask)) { 1216 if (!name_match) 1217 continue; 1218 return -EBUSY; 1219 } 1220 1221 if (root->flags ^ ctx->flags) 1222 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1223 1224 ctx->root = root; 1225 return 0; 1226 } 1227 1228 /* 1229 * No such thing, create a new one. name= matching without subsys 1230 * specification is allowed for already existing hierarchies but we 1231 * can't create new one without subsys specification. 1232 */ 1233 if (!ctx->subsys_mask && !ctx->none) 1234 return invalfc(fc, "No subsys list or none specified"); 1235 1236 /* Hierarchies may only be created in the initial cgroup namespace. */ 1237 if (ctx->ns != &init_cgroup_ns) 1238 return -EPERM; 1239 1240 root = kzalloc(sizeof(*root), GFP_KERNEL); 1241 if (!root) 1242 return -ENOMEM; 1243 1244 ctx->root = root; 1245 init_cgroup_root(ctx); 1246 1247 ret = cgroup_setup_root(root, ctx->subsys_mask); 1248 if (!ret) 1249 cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); 1250 else 1251 cgroup_free_root(root); 1252 1253 return ret; 1254 } 1255 1256 int cgroup1_get_tree(struct fs_context *fc) 1257 { 1258 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1259 int ret; 1260 1261 /* Check if the caller has permission to mount. */ 1262 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) 1263 return -EPERM; 1264 1265 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1266 1267 ret = cgroup1_root_to_use(fc); 1268 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) 1269 ret = 1; /* restart */ 1270 1271 cgroup_unlock(); 1272 1273 if (!ret) 1274 ret = cgroup_do_get_tree(fc); 1275 1276 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1277 fc_drop_locked(fc); 1278 ret = 1; 1279 } 1280 1281 if (unlikely(ret > 0)) { 1282 msleep(10); 1283 return restart_syscall(); 1284 } 1285 return ret; 1286 } 1287 1288 /** 1289 * task_get_cgroup1 - Acquires the associated cgroup of a task within a 1290 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 1291 * hierarchy ID. 1292 * @tsk: The target task 1293 * @hierarchy_id: The ID of a cgroup1 hierarchy 1294 * 1295 * On success, the cgroup is returned. On failure, ERR_PTR is returned. 1296 * We limit it to cgroup1 only. 1297 */ 1298 struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id) 1299 { 1300 struct cgroup *cgrp = ERR_PTR(-ENOENT); 1301 struct cgroup_root *root; 1302 unsigned long flags; 1303 1304 rcu_read_lock(); 1305 for_each_root(root) { 1306 /* cgroup1 only*/ 1307 if (root == &cgrp_dfl_root) 1308 continue; 1309 if (root->hierarchy_id != hierarchy_id) 1310 continue; 1311 spin_lock_irqsave(&css_set_lock, flags); 1312 cgrp = task_cgroup_from_root(tsk, root); 1313 if (!cgrp || !cgroup_tryget(cgrp)) 1314 cgrp = ERR_PTR(-ENOENT); 1315 spin_unlock_irqrestore(&css_set_lock, flags); 1316 break; 1317 } 1318 rcu_read_unlock(); 1319 return cgrp; 1320 } 1321 1322 static int __init cgroup1_wq_init(void) 1323 { 1324 /* 1325 * Used to destroy pidlists and separate to serve as flush domain. 1326 * Cap @max_active to 1 too. 1327 */ 1328 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 1329 WQ_PERCPU, 1); 1330 BUG_ON(!cgroup_pidlist_destroy_wq); 1331 return 0; 1332 } 1333 core_initcall(cgroup1_wq_init); 1334 1335 static int __init cgroup_no_v1(char *str) 1336 { 1337 struct cgroup_subsys *ss; 1338 char *token; 1339 int i; 1340 1341 while ((token = strsep(&str, ",")) != NULL) { 1342 if (!*token) 1343 continue; 1344 1345 if (!strcmp(token, "all")) { 1346 cgroup_no_v1_mask = U16_MAX; 1347 continue; 1348 } 1349 1350 if (!strcmp(token, "named")) { 1351 cgroup_no_v1_named = true; 1352 continue; 1353 } 1354 1355 for_each_subsys(ss, i) { 1356 if (strcmp(token, ss->name) && 1357 strcmp(token, ss->legacy_name)) 1358 continue; 1359 1360 cgroup_no_v1_mask |= 1 << i; 1361 break; 1362 } 1363 } 1364 return 1; 1365 } 1366 __setup("cgroup_no_v1=", cgroup_no_v1); 1367 1368 static int __init cgroup_v1_proc(char *str) 1369 { 1370 return (kstrtobool(str, &proc_show_all) == 0); 1371 } 1372 __setup("cgroup_v1_proc=", cgroup_v1_proc); 1373