1 /* 2 * linux/kernel/capability.c 3 * 4 * Copyright (C) 1997 Andrew Main <zefram@fysh.org> 5 * 6 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> 7 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/audit.h> 13 #include <linux/capability.h> 14 #include <linux/mm.h> 15 #include <linux/export.h> 16 #include <linux/security.h> 17 #include <linux/syscalls.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/user_namespace.h> 20 #include <asm/uaccess.h> 21 22 /* 23 * Leveraged for setting/resetting capabilities 24 */ 25 26 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; 27 EXPORT_SYMBOL(__cap_empty_set); 28 29 int file_caps_enabled = 1; 30 31 static int __init file_caps_disable(char *str) 32 { 33 file_caps_enabled = 0; 34 return 1; 35 } 36 __setup("no_file_caps", file_caps_disable); 37 38 /* 39 * More recent versions of libcap are available from: 40 * 41 * http://www.kernel.org/pub/linux/libs/security/linux-privs/ 42 */ 43 44 static void warn_legacy_capability_use(void) 45 { 46 char name[sizeof(current->comm)]; 47 48 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", 49 get_task_comm(name, current)); 50 } 51 52 /* 53 * Version 2 capabilities worked fine, but the linux/capability.h file 54 * that accompanied their introduction encouraged their use without 55 * the necessary user-space source code changes. As such, we have 56 * created a version 3 with equivalent functionality to version 2, but 57 * with a header change to protect legacy source code from using 58 * version 2 when it wanted to use version 1. If your system has code 59 * that trips the following warning, it is using version 2 specific 60 * capabilities and may be doing so insecurely. 61 * 62 * The remedy is to either upgrade your version of libcap (to 2.10+, 63 * if the application is linked against it), or recompile your 64 * application with modern kernel headers and this warning will go 65 * away. 66 */ 67 68 static void warn_deprecated_v2(void) 69 { 70 char name[sizeof(current->comm)]; 71 72 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", 73 get_task_comm(name, current)); 74 } 75 76 /* 77 * Version check. Return the number of u32s in each capability flag 78 * array, or a negative value on error. 79 */ 80 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) 81 { 82 __u32 version; 83 84 if (get_user(version, &header->version)) 85 return -EFAULT; 86 87 switch (version) { 88 case _LINUX_CAPABILITY_VERSION_1: 89 warn_legacy_capability_use(); 90 *tocopy = _LINUX_CAPABILITY_U32S_1; 91 break; 92 case _LINUX_CAPABILITY_VERSION_2: 93 warn_deprecated_v2(); 94 /* 95 * fall through - v3 is otherwise equivalent to v2. 96 */ 97 case _LINUX_CAPABILITY_VERSION_3: 98 *tocopy = _LINUX_CAPABILITY_U32S_3; 99 break; 100 default: 101 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) 102 return -EFAULT; 103 return -EINVAL; 104 } 105 106 return 0; 107 } 108 109 /* 110 * The only thing that can change the capabilities of the current 111 * process is the current process. As such, we can't be in this code 112 * at the same time as we are in the process of setting capabilities 113 * in this process. The net result is that we can limit our use of 114 * locks to when we are reading the caps of another process. 115 */ 116 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, 117 kernel_cap_t *pIp, kernel_cap_t *pPp) 118 { 119 int ret; 120 121 if (pid && (pid != task_pid_vnr(current))) { 122 struct task_struct *target; 123 124 rcu_read_lock(); 125 126 target = find_task_by_vpid(pid); 127 if (!target) 128 ret = -ESRCH; 129 else 130 ret = security_capget(target, pEp, pIp, pPp); 131 132 rcu_read_unlock(); 133 } else 134 ret = security_capget(current, pEp, pIp, pPp); 135 136 return ret; 137 } 138 139 /** 140 * sys_capget - get the capabilities of a given process. 141 * @header: pointer to struct that contains capability version and 142 * target pid data 143 * @dataptr: pointer to struct that contains the effective, permitted, 144 * and inheritable capabilities that are returned 145 * 146 * Returns 0 on success and < 0 on error. 147 */ 148 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) 149 { 150 int ret = 0; 151 pid_t pid; 152 unsigned tocopy; 153 kernel_cap_t pE, pI, pP; 154 155 ret = cap_validate_magic(header, &tocopy); 156 if ((dataptr == NULL) || (ret != 0)) 157 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; 158 159 if (get_user(pid, &header->pid)) 160 return -EFAULT; 161 162 if (pid < 0) 163 return -EINVAL; 164 165 ret = cap_get_target_pid(pid, &pE, &pI, &pP); 166 if (!ret) { 167 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 168 unsigned i; 169 170 for (i = 0; i < tocopy; i++) { 171 kdata[i].effective = pE.cap[i]; 172 kdata[i].permitted = pP.cap[i]; 173 kdata[i].inheritable = pI.cap[i]; 174 } 175 176 /* 177 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, 178 * we silently drop the upper capabilities here. This 179 * has the effect of making older libcap 180 * implementations implicitly drop upper capability 181 * bits when they perform a: capget/modify/capset 182 * sequence. 183 * 184 * This behavior is considered fail-safe 185 * behavior. Upgrading the application to a newer 186 * version of libcap will enable access to the newer 187 * capabilities. 188 * 189 * An alternative would be to return an error here 190 * (-ERANGE), but that causes legacy applications to 191 * unexpectedly fail; the capget/modify/capset aborts 192 * before modification is attempted and the application 193 * fails. 194 */ 195 if (copy_to_user(dataptr, kdata, tocopy 196 * sizeof(struct __user_cap_data_struct))) { 197 return -EFAULT; 198 } 199 } 200 201 return ret; 202 } 203 204 /** 205 * sys_capset - set capabilities for a process or (*) a group of processes 206 * @header: pointer to struct that contains capability version and 207 * target pid data 208 * @data: pointer to struct that contains the effective, permitted, 209 * and inheritable capabilities 210 * 211 * Set capabilities for the current process only. The ability to any other 212 * process(es) has been deprecated and removed. 213 * 214 * The restrictions on setting capabilities are specified as: 215 * 216 * I: any raised capabilities must be a subset of the old permitted 217 * P: any raised capabilities must be a subset of the old permitted 218 * E: must be set to a subset of new permitted 219 * 220 * Returns 0 on success and < 0 on error. 221 */ 222 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) 223 { 224 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; 225 unsigned i, tocopy, copybytes; 226 kernel_cap_t inheritable, permitted, effective; 227 struct cred *new; 228 int ret; 229 pid_t pid; 230 231 ret = cap_validate_magic(header, &tocopy); 232 if (ret != 0) 233 return ret; 234 235 if (get_user(pid, &header->pid)) 236 return -EFAULT; 237 238 /* may only affect current now */ 239 if (pid != 0 && pid != task_pid_vnr(current)) 240 return -EPERM; 241 242 copybytes = tocopy * sizeof(struct __user_cap_data_struct); 243 if (copybytes > sizeof(kdata)) 244 return -EFAULT; 245 246 if (copy_from_user(&kdata, data, copybytes)) 247 return -EFAULT; 248 249 for (i = 0; i < tocopy; i++) { 250 effective.cap[i] = kdata[i].effective; 251 permitted.cap[i] = kdata[i].permitted; 252 inheritable.cap[i] = kdata[i].inheritable; 253 } 254 while (i < _KERNEL_CAPABILITY_U32S) { 255 effective.cap[i] = 0; 256 permitted.cap[i] = 0; 257 inheritable.cap[i] = 0; 258 i++; 259 } 260 261 effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 262 permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 263 inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 264 265 new = prepare_creds(); 266 if (!new) 267 return -ENOMEM; 268 269 ret = security_capset(new, current_cred(), 270 &effective, &inheritable, &permitted); 271 if (ret < 0) 272 goto error; 273 274 audit_log_capset(new, current_cred()); 275 276 return commit_creds(new); 277 278 error: 279 abort_creds(new); 280 return ret; 281 } 282 283 /** 284 * has_ns_capability - Does a task have a capability in a specific user ns 285 * @t: The task in question 286 * @ns: target user namespace 287 * @cap: The capability to be tested for 288 * 289 * Return true if the specified task has the given superior capability 290 * currently in effect to the specified user namespace, false if not. 291 * 292 * Note that this does not set PF_SUPERPRIV on the task. 293 */ 294 bool has_ns_capability(struct task_struct *t, 295 struct user_namespace *ns, int cap) 296 { 297 int ret; 298 299 rcu_read_lock(); 300 ret = security_capable(__task_cred(t), ns, cap); 301 rcu_read_unlock(); 302 303 return (ret == 0); 304 } 305 306 /** 307 * has_capability - Does a task have a capability in init_user_ns 308 * @t: The task in question 309 * @cap: The capability to be tested for 310 * 311 * Return true if the specified task has the given superior capability 312 * currently in effect to the initial user namespace, false if not. 313 * 314 * Note that this does not set PF_SUPERPRIV on the task. 315 */ 316 bool has_capability(struct task_struct *t, int cap) 317 { 318 return has_ns_capability(t, &init_user_ns, cap); 319 } 320 321 /** 322 * has_ns_capability_noaudit - Does a task have a capability (unaudited) 323 * in a specific user ns. 324 * @t: The task in question 325 * @ns: target user namespace 326 * @cap: The capability to be tested for 327 * 328 * Return true if the specified task has the given superior capability 329 * currently in effect to the specified user namespace, false if not. 330 * Do not write an audit message for the check. 331 * 332 * Note that this does not set PF_SUPERPRIV on the task. 333 */ 334 bool has_ns_capability_noaudit(struct task_struct *t, 335 struct user_namespace *ns, int cap) 336 { 337 int ret; 338 339 rcu_read_lock(); 340 ret = security_capable_noaudit(__task_cred(t), ns, cap); 341 rcu_read_unlock(); 342 343 return (ret == 0); 344 } 345 346 /** 347 * has_capability_noaudit - Does a task have a capability (unaudited) in the 348 * initial user ns 349 * @t: The task in question 350 * @cap: The capability to be tested for 351 * 352 * Return true if the specified task has the given superior capability 353 * currently in effect to init_user_ns, false if not. Don't write an 354 * audit message for the check. 355 * 356 * Note that this does not set PF_SUPERPRIV on the task. 357 */ 358 bool has_capability_noaudit(struct task_struct *t, int cap) 359 { 360 return has_ns_capability_noaudit(t, &init_user_ns, cap); 361 } 362 363 /** 364 * ns_capable - Determine if the current task has a superior capability in effect 365 * @ns: The usernamespace we want the capability in 366 * @cap: The capability to be tested for 367 * 368 * Return true if the current task has the given superior capability currently 369 * available for use, false if not. 370 * 371 * This sets PF_SUPERPRIV on the task if the capability is available on the 372 * assumption that it's about to be used. 373 */ 374 bool ns_capable(struct user_namespace *ns, int cap) 375 { 376 if (unlikely(!cap_valid(cap))) { 377 pr_crit("capable() called with invalid cap=%u\n", cap); 378 BUG(); 379 } 380 381 if (security_capable(current_cred(), ns, cap) == 0) { 382 current->flags |= PF_SUPERPRIV; 383 return true; 384 } 385 return false; 386 } 387 EXPORT_SYMBOL(ns_capable); 388 389 /** 390 * file_ns_capable - Determine if the file's opener had a capability in effect 391 * @file: The file we want to check 392 * @ns: The usernamespace we want the capability in 393 * @cap: The capability to be tested for 394 * 395 * Return true if task that opened the file had a capability in effect 396 * when the file was opened. 397 * 398 * This does not set PF_SUPERPRIV because the caller may not 399 * actually be privileged. 400 */ 401 bool file_ns_capable(const struct file *file, struct user_namespace *ns, 402 int cap) 403 { 404 if (WARN_ON_ONCE(!cap_valid(cap))) 405 return false; 406 407 if (security_capable(file->f_cred, ns, cap) == 0) 408 return true; 409 410 return false; 411 } 412 EXPORT_SYMBOL(file_ns_capable); 413 414 /** 415 * capable - Determine if the current task has a superior capability in effect 416 * @cap: The capability to be tested for 417 * 418 * Return true if the current task has the given superior capability currently 419 * available for use, false if not. 420 * 421 * This sets PF_SUPERPRIV on the task if the capability is available on the 422 * assumption that it's about to be used. 423 */ 424 bool capable(int cap) 425 { 426 return ns_capable(&init_user_ns, cap); 427 } 428 EXPORT_SYMBOL(capable); 429 430 /** 431 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped 432 * @inode: The inode in question 433 * @cap: The capability in question 434 * 435 * Return true if the current task has the given capability targeted at 436 * its own user namespace and that the given inode's uid and gid are 437 * mapped into the current user namespace. 438 */ 439 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap) 440 { 441 struct user_namespace *ns = current_user_ns(); 442 443 return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid) && 444 kgid_has_mapping(ns, inode->i_gid); 445 } 446 EXPORT_SYMBOL(capable_wrt_inode_uidgid); 447