xref: /linux/kernel/bpf/verifier.c (revision fe8ecccc10b3adc071de05ca7af728ca1a4ac9aa)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 };
175 
176 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
177 #define BPF_COMPLEXITY_LIMIT_STACK	1024
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_state = (unsigned long)map |
200 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	bool pkt_access;
207 	int regno;
208 	int access_size;
209 	s64 msize_smax_value;
210 	u64 msize_umax_value;
211 	int ptr_id;
212 };
213 
214 static DEFINE_MUTEX(bpf_verifier_lock);
215 
216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 		       va_list args)
218 {
219 	unsigned int n;
220 
221 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
222 
223 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 		  "verifier log line truncated - local buffer too short\n");
225 
226 	n = min(log->len_total - log->len_used - 1, n);
227 	log->kbuf[n] = '\0';
228 
229 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 		log->len_used += n;
231 	else
232 		log->ubuf = NULL;
233 }
234 
235 /* log_level controls verbosity level of eBPF verifier.
236  * bpf_verifier_log_write() is used to dump the verification trace to the log,
237  * so the user can figure out what's wrong with the program
238  */
239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 					   const char *fmt, ...)
241 {
242 	va_list args;
243 
244 	if (!bpf_verifier_log_needed(&env->log))
245 		return;
246 
247 	va_start(args, fmt);
248 	bpf_verifier_vlog(&env->log, fmt, args);
249 	va_end(args);
250 }
251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252 
253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254 {
255 	struct bpf_verifier_env *env = private_data;
256 	va_list args;
257 
258 	if (!bpf_verifier_log_needed(&env->log))
259 		return;
260 
261 	va_start(args, fmt);
262 	bpf_verifier_vlog(&env->log, fmt, args);
263 	va_end(args);
264 }
265 
266 static bool type_is_pkt_pointer(enum bpf_reg_type type)
267 {
268 	return type == PTR_TO_PACKET ||
269 	       type == PTR_TO_PACKET_META;
270 }
271 
272 static bool reg_type_may_be_null(enum bpf_reg_type type)
273 {
274 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 	       type == PTR_TO_SOCKET_OR_NULL;
276 }
277 
278 static bool type_is_refcounted(enum bpf_reg_type type)
279 {
280 	return type == PTR_TO_SOCKET;
281 }
282 
283 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284 {
285 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286 }
287 
288 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289 {
290 	return type_is_refcounted(reg->type);
291 }
292 
293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294 {
295 	return type_is_refcounted_or_null(reg->type);
296 }
297 
298 static bool arg_type_is_refcounted(enum bpf_arg_type type)
299 {
300 	return type == ARG_PTR_TO_SOCKET;
301 }
302 
303 /* Determine whether the function releases some resources allocated by another
304  * function call. The first reference type argument will be assumed to be
305  * released by release_reference().
306  */
307 static bool is_release_function(enum bpf_func_id func_id)
308 {
309 	return func_id == BPF_FUNC_sk_release;
310 }
311 
312 /* string representation of 'enum bpf_reg_type' */
313 static const char * const reg_type_str[] = {
314 	[NOT_INIT]		= "?",
315 	[SCALAR_VALUE]		= "inv",
316 	[PTR_TO_CTX]		= "ctx",
317 	[CONST_PTR_TO_MAP]	= "map_ptr",
318 	[PTR_TO_MAP_VALUE]	= "map_value",
319 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
320 	[PTR_TO_STACK]		= "fp",
321 	[PTR_TO_PACKET]		= "pkt",
322 	[PTR_TO_PACKET_META]	= "pkt_meta",
323 	[PTR_TO_PACKET_END]	= "pkt_end",
324 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
325 	[PTR_TO_SOCKET]		= "sock",
326 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
327 };
328 
329 static char slot_type_char[] = {
330 	[STACK_INVALID]	= '?',
331 	[STACK_SPILL]	= 'r',
332 	[STACK_MISC]	= 'm',
333 	[STACK_ZERO]	= '0',
334 };
335 
336 static void print_liveness(struct bpf_verifier_env *env,
337 			   enum bpf_reg_liveness live)
338 {
339 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 	    verbose(env, "_");
341 	if (live & REG_LIVE_READ)
342 		verbose(env, "r");
343 	if (live & REG_LIVE_WRITTEN)
344 		verbose(env, "w");
345 }
346 
347 static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 				   const struct bpf_reg_state *reg)
349 {
350 	struct bpf_verifier_state *cur = env->cur_state;
351 
352 	return cur->frame[reg->frameno];
353 }
354 
355 static void print_verifier_state(struct bpf_verifier_env *env,
356 				 const struct bpf_func_state *state)
357 {
358 	const struct bpf_reg_state *reg;
359 	enum bpf_reg_type t;
360 	int i;
361 
362 	if (state->frameno)
363 		verbose(env, " frame%d:", state->frameno);
364 	for (i = 0; i < MAX_BPF_REG; i++) {
365 		reg = &state->regs[i];
366 		t = reg->type;
367 		if (t == NOT_INIT)
368 			continue;
369 		verbose(env, " R%d", i);
370 		print_liveness(env, reg->live);
371 		verbose(env, "=%s", reg_type_str[t]);
372 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 		    tnum_is_const(reg->var_off)) {
374 			/* reg->off should be 0 for SCALAR_VALUE */
375 			verbose(env, "%lld", reg->var_off.value + reg->off);
376 			if (t == PTR_TO_STACK)
377 				verbose(env, ",call_%d", func(env, reg)->callsite);
378 		} else {
379 			verbose(env, "(id=%d", reg->id);
380 			if (t != SCALAR_VALUE)
381 				verbose(env, ",off=%d", reg->off);
382 			if (type_is_pkt_pointer(t))
383 				verbose(env, ",r=%d", reg->range);
384 			else if (t == CONST_PTR_TO_MAP ||
385 				 t == PTR_TO_MAP_VALUE ||
386 				 t == PTR_TO_MAP_VALUE_OR_NULL)
387 				verbose(env, ",ks=%d,vs=%d",
388 					reg->map_ptr->key_size,
389 					reg->map_ptr->value_size);
390 			if (tnum_is_const(reg->var_off)) {
391 				/* Typically an immediate SCALAR_VALUE, but
392 				 * could be a pointer whose offset is too big
393 				 * for reg->off
394 				 */
395 				verbose(env, ",imm=%llx", reg->var_off.value);
396 			} else {
397 				if (reg->smin_value != reg->umin_value &&
398 				    reg->smin_value != S64_MIN)
399 					verbose(env, ",smin_value=%lld",
400 						(long long)reg->smin_value);
401 				if (reg->smax_value != reg->umax_value &&
402 				    reg->smax_value != S64_MAX)
403 					verbose(env, ",smax_value=%lld",
404 						(long long)reg->smax_value);
405 				if (reg->umin_value != 0)
406 					verbose(env, ",umin_value=%llu",
407 						(unsigned long long)reg->umin_value);
408 				if (reg->umax_value != U64_MAX)
409 					verbose(env, ",umax_value=%llu",
410 						(unsigned long long)reg->umax_value);
411 				if (!tnum_is_unknown(reg->var_off)) {
412 					char tn_buf[48];
413 
414 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
415 					verbose(env, ",var_off=%s", tn_buf);
416 				}
417 			}
418 			verbose(env, ")");
419 		}
420 	}
421 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
422 		char types_buf[BPF_REG_SIZE + 1];
423 		bool valid = false;
424 		int j;
425 
426 		for (j = 0; j < BPF_REG_SIZE; j++) {
427 			if (state->stack[i].slot_type[j] != STACK_INVALID)
428 				valid = true;
429 			types_buf[j] = slot_type_char[
430 					state->stack[i].slot_type[j]];
431 		}
432 		types_buf[BPF_REG_SIZE] = 0;
433 		if (!valid)
434 			continue;
435 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 		print_liveness(env, state->stack[i].spilled_ptr.live);
437 		if (state->stack[i].slot_type[0] == STACK_SPILL)
438 			verbose(env, "=%s",
439 				reg_type_str[state->stack[i].spilled_ptr.type]);
440 		else
441 			verbose(env, "=%s", types_buf);
442 	}
443 	if (state->acquired_refs && state->refs[0].id) {
444 		verbose(env, " refs=%d", state->refs[0].id);
445 		for (i = 1; i < state->acquired_refs; i++)
446 			if (state->refs[i].id)
447 				verbose(env, ",%d", state->refs[i].id);
448 	}
449 	verbose(env, "\n");
450 }
451 
452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
453 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
454 			       const struct bpf_func_state *src)	\
455 {									\
456 	if (!src->FIELD)						\
457 		return 0;						\
458 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
459 		/* internal bug, make state invalid to reject the program */ \
460 		memset(dst, 0, sizeof(*dst));				\
461 		return -EFAULT;						\
462 	}								\
463 	memcpy(dst->FIELD, src->FIELD,					\
464 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
465 	return 0;							\
466 }
467 /* copy_reference_state() */
468 COPY_STATE_FN(reference, acquired_refs, refs, 1)
469 /* copy_stack_state() */
470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471 #undef COPY_STATE_FN
472 
473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 				  bool copy_old)			\
476 {									\
477 	u32 old_size = state->COUNT;					\
478 	struct bpf_##NAME##_state *new_##FIELD;				\
479 	int slot = size / SIZE;						\
480 									\
481 	if (size <= old_size || !size) {				\
482 		if (copy_old)						\
483 			return 0;					\
484 		state->COUNT = slot * SIZE;				\
485 		if (!size && old_size) {				\
486 			kfree(state->FIELD);				\
487 			state->FIELD = NULL;				\
488 		}							\
489 		return 0;						\
490 	}								\
491 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 				    GFP_KERNEL);			\
493 	if (!new_##FIELD)						\
494 		return -ENOMEM;						\
495 	if (copy_old) {							\
496 		if (state->FIELD)					\
497 			memcpy(new_##FIELD, state->FIELD,		\
498 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 		memset(new_##FIELD + old_size / SIZE, 0,		\
500 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 	}								\
502 	state->COUNT = slot * SIZE;					\
503 	kfree(state->FIELD);						\
504 	state->FIELD = new_##FIELD;					\
505 	return 0;							\
506 }
507 /* realloc_reference_state() */
508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
509 /* realloc_stack_state() */
510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511 #undef REALLOC_STATE_FN
512 
513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514  * make it consume minimal amount of memory. check_stack_write() access from
515  * the program calls into realloc_func_state() to grow the stack size.
516  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517  * which realloc_stack_state() copies over. It points to previous
518  * bpf_verifier_state which is never reallocated.
519  */
520 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 			      int refs_size, bool copy_old)
522 {
523 	int err = realloc_reference_state(state, refs_size, copy_old);
524 	if (err)
525 		return err;
526 	return realloc_stack_state(state, stack_size, copy_old);
527 }
528 
529 /* Acquire a pointer id from the env and update the state->refs to include
530  * this new pointer reference.
531  * On success, returns a valid pointer id to associate with the register
532  * On failure, returns a negative errno.
533  */
534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
535 {
536 	struct bpf_func_state *state = cur_func(env);
537 	int new_ofs = state->acquired_refs;
538 	int id, err;
539 
540 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 	if (err)
542 		return err;
543 	id = ++env->id_gen;
544 	state->refs[new_ofs].id = id;
545 	state->refs[new_ofs].insn_idx = insn_idx;
546 
547 	return id;
548 }
549 
550 /* release function corresponding to acquire_reference_state(). Idempotent. */
551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552 {
553 	int i, last_idx;
554 
555 	if (!ptr_id)
556 		return -EFAULT;
557 
558 	last_idx = state->acquired_refs - 1;
559 	for (i = 0; i < state->acquired_refs; i++) {
560 		if (state->refs[i].id == ptr_id) {
561 			if (last_idx && i != last_idx)
562 				memcpy(&state->refs[i], &state->refs[last_idx],
563 				       sizeof(*state->refs));
564 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 			state->acquired_refs--;
566 			return 0;
567 		}
568 	}
569 	return -EFAULT;
570 }
571 
572 /* variation on the above for cases where we expect that there must be an
573  * outstanding reference for the specified ptr_id.
574  */
575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576 {
577 	struct bpf_func_state *state = cur_func(env);
578 	int err;
579 
580 	err = __release_reference_state(state, ptr_id);
581 	if (WARN_ON_ONCE(err != 0))
582 		verbose(env, "verifier internal error: can't release reference\n");
583 	return err;
584 }
585 
586 static int transfer_reference_state(struct bpf_func_state *dst,
587 				    struct bpf_func_state *src)
588 {
589 	int err = realloc_reference_state(dst, src->acquired_refs, false);
590 	if (err)
591 		return err;
592 	err = copy_reference_state(dst, src);
593 	if (err)
594 		return err;
595 	return 0;
596 }
597 
598 static void free_func_state(struct bpf_func_state *state)
599 {
600 	if (!state)
601 		return;
602 	kfree(state->refs);
603 	kfree(state->stack);
604 	kfree(state);
605 }
606 
607 static void free_verifier_state(struct bpf_verifier_state *state,
608 				bool free_self)
609 {
610 	int i;
611 
612 	for (i = 0; i <= state->curframe; i++) {
613 		free_func_state(state->frame[i]);
614 		state->frame[i] = NULL;
615 	}
616 	if (free_self)
617 		kfree(state);
618 }
619 
620 /* copy verifier state from src to dst growing dst stack space
621  * when necessary to accommodate larger src stack
622  */
623 static int copy_func_state(struct bpf_func_state *dst,
624 			   const struct bpf_func_state *src)
625 {
626 	int err;
627 
628 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 				 false);
630 	if (err)
631 		return err;
632 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 	err = copy_reference_state(dst, src);
634 	if (err)
635 		return err;
636 	return copy_stack_state(dst, src);
637 }
638 
639 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 			       const struct bpf_verifier_state *src)
641 {
642 	struct bpf_func_state *dst;
643 	int i, err;
644 
645 	/* if dst has more stack frames then src frame, free them */
646 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 		free_func_state(dst_state->frame[i]);
648 		dst_state->frame[i] = NULL;
649 	}
650 	dst_state->curframe = src->curframe;
651 	for (i = 0; i <= src->curframe; i++) {
652 		dst = dst_state->frame[i];
653 		if (!dst) {
654 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 			if (!dst)
656 				return -ENOMEM;
657 			dst_state->frame[i] = dst;
658 		}
659 		err = copy_func_state(dst, src->frame[i]);
660 		if (err)
661 			return err;
662 	}
663 	return 0;
664 }
665 
666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 		     int *insn_idx)
668 {
669 	struct bpf_verifier_state *cur = env->cur_state;
670 	struct bpf_verifier_stack_elem *elem, *head = env->head;
671 	int err;
672 
673 	if (env->head == NULL)
674 		return -ENOENT;
675 
676 	if (cur) {
677 		err = copy_verifier_state(cur, &head->st);
678 		if (err)
679 			return err;
680 	}
681 	if (insn_idx)
682 		*insn_idx = head->insn_idx;
683 	if (prev_insn_idx)
684 		*prev_insn_idx = head->prev_insn_idx;
685 	elem = head->next;
686 	free_verifier_state(&head->st, false);
687 	kfree(head);
688 	env->head = elem;
689 	env->stack_size--;
690 	return 0;
691 }
692 
693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 					     int insn_idx, int prev_insn_idx)
695 {
696 	struct bpf_verifier_state *cur = env->cur_state;
697 	struct bpf_verifier_stack_elem *elem;
698 	int err;
699 
700 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
701 	if (!elem)
702 		goto err;
703 
704 	elem->insn_idx = insn_idx;
705 	elem->prev_insn_idx = prev_insn_idx;
706 	elem->next = env->head;
707 	env->head = elem;
708 	env->stack_size++;
709 	err = copy_verifier_state(&elem->st, cur);
710 	if (err)
711 		goto err;
712 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
713 		verbose(env, "BPF program is too complex\n");
714 		goto err;
715 	}
716 	return &elem->st;
717 err:
718 	free_verifier_state(env->cur_state, true);
719 	env->cur_state = NULL;
720 	/* pop all elements and return */
721 	while (!pop_stack(env, NULL, NULL));
722 	return NULL;
723 }
724 
725 #define CALLER_SAVED_REGS 6
726 static const int caller_saved[CALLER_SAVED_REGS] = {
727 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728 };
729 
730 static void __mark_reg_not_init(struct bpf_reg_state *reg);
731 
732 /* Mark the unknown part of a register (variable offset or scalar value) as
733  * known to have the value @imm.
734  */
735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736 {
737 	/* Clear id, off, and union(map_ptr, range) */
738 	memset(((u8 *)reg) + sizeof(reg->type), 0,
739 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
740 	reg->var_off = tnum_const(imm);
741 	reg->smin_value = (s64)imm;
742 	reg->smax_value = (s64)imm;
743 	reg->umin_value = imm;
744 	reg->umax_value = imm;
745 }
746 
747 /* Mark the 'variable offset' part of a register as zero.  This should be
748  * used only on registers holding a pointer type.
749  */
750 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
751 {
752 	__mark_reg_known(reg, 0);
753 }
754 
755 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756 {
757 	__mark_reg_known(reg, 0);
758 	reg->type = SCALAR_VALUE;
759 }
760 
761 static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 				struct bpf_reg_state *regs, u32 regno)
763 {
764 	if (WARN_ON(regno >= MAX_BPF_REG)) {
765 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
766 		/* Something bad happened, let's kill all regs */
767 		for (regno = 0; regno < MAX_BPF_REG; regno++)
768 			__mark_reg_not_init(regs + regno);
769 		return;
770 	}
771 	__mark_reg_known_zero(regs + regno);
772 }
773 
774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775 {
776 	return type_is_pkt_pointer(reg->type);
777 }
778 
779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780 {
781 	return reg_is_pkt_pointer(reg) ||
782 	       reg->type == PTR_TO_PACKET_END;
783 }
784 
785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 				    enum bpf_reg_type which)
788 {
789 	/* The register can already have a range from prior markings.
790 	 * This is fine as long as it hasn't been advanced from its
791 	 * origin.
792 	 */
793 	return reg->type == which &&
794 	       reg->id == 0 &&
795 	       reg->off == 0 &&
796 	       tnum_equals_const(reg->var_off, 0);
797 }
798 
799 /* Attempts to improve min/max values based on var_off information */
800 static void __update_reg_bounds(struct bpf_reg_state *reg)
801 {
802 	/* min signed is max(sign bit) | min(other bits) */
803 	reg->smin_value = max_t(s64, reg->smin_value,
804 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 	/* max signed is min(sign bit) | max(other bits) */
806 	reg->smax_value = min_t(s64, reg->smax_value,
807 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 	reg->umax_value = min(reg->umax_value,
810 			      reg->var_off.value | reg->var_off.mask);
811 }
812 
813 /* Uses signed min/max values to inform unsigned, and vice-versa */
814 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815 {
816 	/* Learn sign from signed bounds.
817 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 	 * are the same, so combine.  This works even in the negative case, e.g.
819 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 	 */
821 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 							  reg->umin_value);
824 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 							  reg->umax_value);
826 		return;
827 	}
828 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
829 	 * boundary, so we must be careful.
830 	 */
831 	if ((s64)reg->umax_value >= 0) {
832 		/* Positive.  We can't learn anything from the smin, but smax
833 		 * is positive, hence safe.
834 		 */
835 		reg->smin_value = reg->umin_value;
836 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 							  reg->umax_value);
838 	} else if ((s64)reg->umin_value < 0) {
839 		/* Negative.  We can't learn anything from the smax, but smin
840 		 * is negative, hence safe.
841 		 */
842 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 							  reg->umin_value);
844 		reg->smax_value = reg->umax_value;
845 	}
846 }
847 
848 /* Attempts to improve var_off based on unsigned min/max information */
849 static void __reg_bound_offset(struct bpf_reg_state *reg)
850 {
851 	reg->var_off = tnum_intersect(reg->var_off,
852 				      tnum_range(reg->umin_value,
853 						 reg->umax_value));
854 }
855 
856 /* Reset the min/max bounds of a register */
857 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858 {
859 	reg->smin_value = S64_MIN;
860 	reg->smax_value = S64_MAX;
861 	reg->umin_value = 0;
862 	reg->umax_value = U64_MAX;
863 }
864 
865 /* Mark a register as having a completely unknown (scalar) value. */
866 static void __mark_reg_unknown(struct bpf_reg_state *reg)
867 {
868 	/*
869 	 * Clear type, id, off, and union(map_ptr, range) and
870 	 * padding between 'type' and union
871 	 */
872 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
873 	reg->type = SCALAR_VALUE;
874 	reg->var_off = tnum_unknown;
875 	reg->frameno = 0;
876 	__mark_reg_unbounded(reg);
877 }
878 
879 static void mark_reg_unknown(struct bpf_verifier_env *env,
880 			     struct bpf_reg_state *regs, u32 regno)
881 {
882 	if (WARN_ON(regno >= MAX_BPF_REG)) {
883 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
884 		/* Something bad happened, let's kill all regs except FP */
885 		for (regno = 0; regno < BPF_REG_FP; regno++)
886 			__mark_reg_not_init(regs + regno);
887 		return;
888 	}
889 	__mark_reg_unknown(regs + regno);
890 }
891 
892 static void __mark_reg_not_init(struct bpf_reg_state *reg)
893 {
894 	__mark_reg_unknown(reg);
895 	reg->type = NOT_INIT;
896 }
897 
898 static void mark_reg_not_init(struct bpf_verifier_env *env,
899 			      struct bpf_reg_state *regs, u32 regno)
900 {
901 	if (WARN_ON(regno >= MAX_BPF_REG)) {
902 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
903 		/* Something bad happened, let's kill all regs except FP */
904 		for (regno = 0; regno < BPF_REG_FP; regno++)
905 			__mark_reg_not_init(regs + regno);
906 		return;
907 	}
908 	__mark_reg_not_init(regs + regno);
909 }
910 
911 static void init_reg_state(struct bpf_verifier_env *env,
912 			   struct bpf_func_state *state)
913 {
914 	struct bpf_reg_state *regs = state->regs;
915 	int i;
916 
917 	for (i = 0; i < MAX_BPF_REG; i++) {
918 		mark_reg_not_init(env, regs, i);
919 		regs[i].live = REG_LIVE_NONE;
920 		regs[i].parent = NULL;
921 	}
922 
923 	/* frame pointer */
924 	regs[BPF_REG_FP].type = PTR_TO_STACK;
925 	mark_reg_known_zero(env, regs, BPF_REG_FP);
926 	regs[BPF_REG_FP].frameno = state->frameno;
927 
928 	/* 1st arg to a function */
929 	regs[BPF_REG_1].type = PTR_TO_CTX;
930 	mark_reg_known_zero(env, regs, BPF_REG_1);
931 }
932 
933 #define BPF_MAIN_FUNC (-1)
934 static void init_func_state(struct bpf_verifier_env *env,
935 			    struct bpf_func_state *state,
936 			    int callsite, int frameno, int subprogno)
937 {
938 	state->callsite = callsite;
939 	state->frameno = frameno;
940 	state->subprogno = subprogno;
941 	init_reg_state(env, state);
942 }
943 
944 enum reg_arg_type {
945 	SRC_OP,		/* register is used as source operand */
946 	DST_OP,		/* register is used as destination operand */
947 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
948 };
949 
950 static int cmp_subprogs(const void *a, const void *b)
951 {
952 	return ((struct bpf_subprog_info *)a)->start -
953 	       ((struct bpf_subprog_info *)b)->start;
954 }
955 
956 static int find_subprog(struct bpf_verifier_env *env, int off)
957 {
958 	struct bpf_subprog_info *p;
959 
960 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 		    sizeof(env->subprog_info[0]), cmp_subprogs);
962 	if (!p)
963 		return -ENOENT;
964 	return p - env->subprog_info;
965 
966 }
967 
968 static int add_subprog(struct bpf_verifier_env *env, int off)
969 {
970 	int insn_cnt = env->prog->len;
971 	int ret;
972 
973 	if (off >= insn_cnt || off < 0) {
974 		verbose(env, "call to invalid destination\n");
975 		return -EINVAL;
976 	}
977 	ret = find_subprog(env, off);
978 	if (ret >= 0)
979 		return 0;
980 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
981 		verbose(env, "too many subprograms\n");
982 		return -E2BIG;
983 	}
984 	env->subprog_info[env->subprog_cnt++].start = off;
985 	sort(env->subprog_info, env->subprog_cnt,
986 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
987 	return 0;
988 }
989 
990 static int check_subprogs(struct bpf_verifier_env *env)
991 {
992 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
993 	struct bpf_subprog_info *subprog = env->subprog_info;
994 	struct bpf_insn *insn = env->prog->insnsi;
995 	int insn_cnt = env->prog->len;
996 
997 	/* Add entry function. */
998 	ret = add_subprog(env, 0);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/* determine subprog starts. The end is one before the next starts */
1003 	for (i = 0; i < insn_cnt; i++) {
1004 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 			continue;
1006 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 			continue;
1008 		if (!env->allow_ptr_leaks) {
1009 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 			return -EPERM;
1011 		}
1012 		ret = add_subprog(env, i + insn[i].imm + 1);
1013 		if (ret < 0)
1014 			return ret;
1015 	}
1016 
1017 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1018 	 * logic. 'subprog_cnt' should not be increased.
1019 	 */
1020 	subprog[env->subprog_cnt].start = insn_cnt;
1021 
1022 	if (env->log.level > 1)
1023 		for (i = 0; i < env->subprog_cnt; i++)
1024 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1025 
1026 	/* now check that all jumps are within the same subprog */
1027 	subprog_start = subprog[cur_subprog].start;
1028 	subprog_end = subprog[cur_subprog + 1].start;
1029 	for (i = 0; i < insn_cnt; i++) {
1030 		u8 code = insn[i].code;
1031 
1032 		if (BPF_CLASS(code) != BPF_JMP)
1033 			goto next;
1034 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 			goto next;
1036 		off = i + insn[i].off + 1;
1037 		if (off < subprog_start || off >= subprog_end) {
1038 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 			return -EINVAL;
1040 		}
1041 next:
1042 		if (i == subprog_end - 1) {
1043 			/* to avoid fall-through from one subprog into another
1044 			 * the last insn of the subprog should be either exit
1045 			 * or unconditional jump back
1046 			 */
1047 			if (code != (BPF_JMP | BPF_EXIT) &&
1048 			    code != (BPF_JMP | BPF_JA)) {
1049 				verbose(env, "last insn is not an exit or jmp\n");
1050 				return -EINVAL;
1051 			}
1052 			subprog_start = subprog_end;
1053 			cur_subprog++;
1054 			if (cur_subprog < env->subprog_cnt)
1055 				subprog_end = subprog[cur_subprog + 1].start;
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
1061 /* Parentage chain of this register (or stack slot) should take care of all
1062  * issues like callee-saved registers, stack slot allocation time, etc.
1063  */
1064 static int mark_reg_read(struct bpf_verifier_env *env,
1065 			 const struct bpf_reg_state *state,
1066 			 struct bpf_reg_state *parent)
1067 {
1068 	bool writes = parent == state->parent; /* Observe write marks */
1069 
1070 	while (parent) {
1071 		/* if read wasn't screened by an earlier write ... */
1072 		if (writes && state->live & REG_LIVE_WRITTEN)
1073 			break;
1074 		/* ... then we depend on parent's value */
1075 		parent->live |= REG_LIVE_READ;
1076 		state = parent;
1077 		parent = state->parent;
1078 		writes = true;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1084 			 enum reg_arg_type t)
1085 {
1086 	struct bpf_verifier_state *vstate = env->cur_state;
1087 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 	struct bpf_reg_state *regs = state->regs;
1089 
1090 	if (regno >= MAX_BPF_REG) {
1091 		verbose(env, "R%d is invalid\n", regno);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (t == SRC_OP) {
1096 		/* check whether register used as source operand can be read */
1097 		if (regs[regno].type == NOT_INIT) {
1098 			verbose(env, "R%d !read_ok\n", regno);
1099 			return -EACCES;
1100 		}
1101 		/* We don't need to worry about FP liveness because it's read-only */
1102 		if (regno != BPF_REG_FP)
1103 			return mark_reg_read(env, &regs[regno],
1104 					     regs[regno].parent);
1105 	} else {
1106 		/* check whether register used as dest operand can be written to */
1107 		if (regno == BPF_REG_FP) {
1108 			verbose(env, "frame pointer is read only\n");
1109 			return -EACCES;
1110 		}
1111 		regs[regno].live |= REG_LIVE_WRITTEN;
1112 		if (t == DST_OP)
1113 			mark_reg_unknown(env, regs, regno);
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool is_spillable_regtype(enum bpf_reg_type type)
1119 {
1120 	switch (type) {
1121 	case PTR_TO_MAP_VALUE:
1122 	case PTR_TO_MAP_VALUE_OR_NULL:
1123 	case PTR_TO_STACK:
1124 	case PTR_TO_CTX:
1125 	case PTR_TO_PACKET:
1126 	case PTR_TO_PACKET_META:
1127 	case PTR_TO_PACKET_END:
1128 	case PTR_TO_FLOW_KEYS:
1129 	case CONST_PTR_TO_MAP:
1130 	case PTR_TO_SOCKET:
1131 	case PTR_TO_SOCKET_OR_NULL:
1132 		return true;
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 
1138 /* Does this register contain a constant zero? */
1139 static bool register_is_null(struct bpf_reg_state *reg)
1140 {
1141 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142 }
1143 
1144 /* check_stack_read/write functions track spill/fill of registers,
1145  * stack boundary and alignment are checked in check_mem_access()
1146  */
1147 static int check_stack_write(struct bpf_verifier_env *env,
1148 			     struct bpf_func_state *state, /* func where register points to */
1149 			     int off, int size, int value_regno, int insn_idx)
1150 {
1151 	struct bpf_func_state *cur; /* state of the current function */
1152 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1153 	enum bpf_reg_type type;
1154 
1155 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1156 				 state->acquired_refs, true);
1157 	if (err)
1158 		return err;
1159 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 	 * so it's aligned access and [off, off + size) are within stack limits
1161 	 */
1162 	if (!env->allow_ptr_leaks &&
1163 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 	    size != BPF_REG_SIZE) {
1165 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 		return -EACCES;
1167 	}
1168 
1169 	cur = env->cur_state->frame[env->cur_state->curframe];
1170 	if (value_regno >= 0 &&
1171 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1172 
1173 		/* register containing pointer is being spilled into stack */
1174 		if (size != BPF_REG_SIZE) {
1175 			verbose(env, "invalid size of register spill\n");
1176 			return -EACCES;
1177 		}
1178 
1179 		if (state != cur && type == PTR_TO_STACK) {
1180 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 			return -EINVAL;
1182 		}
1183 
1184 		/* save register state */
1185 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1186 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1187 
1188 		for (i = 0; i < BPF_REG_SIZE; i++) {
1189 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 			    !env->allow_ptr_leaks) {
1191 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 				int soff = (-spi - 1) * BPF_REG_SIZE;
1193 
1194 				/* detected reuse of integer stack slot with a pointer
1195 				 * which means either llvm is reusing stack slot or
1196 				 * an attacker is trying to exploit CVE-2018-3639
1197 				 * (speculative store bypass)
1198 				 * Have to sanitize that slot with preemptive
1199 				 * store of zero.
1200 				 */
1201 				if (*poff && *poff != soff) {
1202 					/* disallow programs where single insn stores
1203 					 * into two different stack slots, since verifier
1204 					 * cannot sanitize them
1205 					 */
1206 					verbose(env,
1207 						"insn %d cannot access two stack slots fp%d and fp%d",
1208 						insn_idx, *poff, soff);
1209 					return -EINVAL;
1210 				}
1211 				*poff = soff;
1212 			}
1213 			state->stack[spi].slot_type[i] = STACK_SPILL;
1214 		}
1215 	} else {
1216 		u8 type = STACK_MISC;
1217 
1218 		/* regular write of data into stack destroys any spilled ptr */
1219 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1220 
1221 		/* only mark the slot as written if all 8 bytes were written
1222 		 * otherwise read propagation may incorrectly stop too soon
1223 		 * when stack slots are partially written.
1224 		 * This heuristic means that read propagation will be
1225 		 * conservative, since it will add reg_live_read marks
1226 		 * to stack slots all the way to first state when programs
1227 		 * writes+reads less than 8 bytes
1228 		 */
1229 		if (size == BPF_REG_SIZE)
1230 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231 
1232 		/* when we zero initialize stack slots mark them as such */
1233 		if (value_regno >= 0 &&
1234 		    register_is_null(&cur->regs[value_regno]))
1235 			type = STACK_ZERO;
1236 
1237 		for (i = 0; i < size; i++)
1238 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1239 				type;
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int check_stack_read(struct bpf_verifier_env *env,
1245 			    struct bpf_func_state *reg_state /* func where register points to */,
1246 			    int off, int size, int value_regno)
1247 {
1248 	struct bpf_verifier_state *vstate = env->cur_state;
1249 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1250 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 	u8 *stype;
1252 
1253 	if (reg_state->allocated_stack <= slot) {
1254 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 			off, size);
1256 		return -EACCES;
1257 	}
1258 	stype = reg_state->stack[spi].slot_type;
1259 
1260 	if (stype[0] == STACK_SPILL) {
1261 		if (size != BPF_REG_SIZE) {
1262 			verbose(env, "invalid size of register spill\n");
1263 			return -EACCES;
1264 		}
1265 		for (i = 1; i < BPF_REG_SIZE; i++) {
1266 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1267 				verbose(env, "corrupted spill memory\n");
1268 				return -EACCES;
1269 			}
1270 		}
1271 
1272 		if (value_regno >= 0) {
1273 			/* restore register state from stack */
1274 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1275 			/* mark reg as written since spilled pointer state likely
1276 			 * has its liveness marks cleared by is_state_visited()
1277 			 * which resets stack/reg liveness for state transitions
1278 			 */
1279 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1280 		}
1281 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 			      reg_state->stack[spi].spilled_ptr.parent);
1283 		return 0;
1284 	} else {
1285 		int zeros = 0;
1286 
1287 		for (i = 0; i < size; i++) {
1288 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 				continue;
1290 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 				zeros++;
1292 				continue;
1293 			}
1294 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 				off, i, size);
1296 			return -EACCES;
1297 		}
1298 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 			      reg_state->stack[spi].spilled_ptr.parent);
1300 		if (value_regno >= 0) {
1301 			if (zeros == size) {
1302 				/* any size read into register is zero extended,
1303 				 * so the whole register == const_zero
1304 				 */
1305 				__mark_reg_const_zero(&state->regs[value_regno]);
1306 			} else {
1307 				/* have read misc data from the stack */
1308 				mark_reg_unknown(env, state->regs, value_regno);
1309 			}
1310 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1311 		}
1312 		return 0;
1313 	}
1314 }
1315 
1316 /* check read/write into map element returned by bpf_map_lookup_elem() */
1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1318 			      int size, bool zero_size_allowed)
1319 {
1320 	struct bpf_reg_state *regs = cur_regs(env);
1321 	struct bpf_map *map = regs[regno].map_ptr;
1322 
1323 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 	    off + size > map->value_size) {
1325 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1326 			map->value_size, off, size);
1327 		return -EACCES;
1328 	}
1329 	return 0;
1330 }
1331 
1332 /* check read/write into a map element with possible variable offset */
1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1334 			    int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_verifier_state *vstate = env->cur_state;
1337 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1338 	struct bpf_reg_state *reg = &state->regs[regno];
1339 	int err;
1340 
1341 	/* We may have adjusted the register to this map value, so we
1342 	 * need to try adding each of min_value and max_value to off
1343 	 * to make sure our theoretical access will be safe.
1344 	 */
1345 	if (env->log.level)
1346 		print_verifier_state(env, state);
1347 	/* The minimum value is only important with signed
1348 	 * comparisons where we can't assume the floor of a
1349 	 * value is 0.  If we are using signed variables for our
1350 	 * index'es we need to make sure that whatever we use
1351 	 * will have a set floor within our range.
1352 	 */
1353 	if (reg->smin_value < 0) {
1354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1355 			regno);
1356 		return -EACCES;
1357 	}
1358 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 				 zero_size_allowed);
1360 	if (err) {
1361 		verbose(env, "R%d min value is outside of the array range\n",
1362 			regno);
1363 		return err;
1364 	}
1365 
1366 	/* If we haven't set a max value then we need to bail since we can't be
1367 	 * sure we won't do bad things.
1368 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1369 	 */
1370 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1371 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1372 			regno);
1373 		return -EACCES;
1374 	}
1375 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 				 zero_size_allowed);
1377 	if (err)
1378 		verbose(env, "R%d max value is outside of the array range\n",
1379 			regno);
1380 	return err;
1381 }
1382 
1383 #define MAX_PACKET_OFF 0xffff
1384 
1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1386 				       const struct bpf_call_arg_meta *meta,
1387 				       enum bpf_access_type t)
1388 {
1389 	switch (env->prog->type) {
1390 	case BPF_PROG_TYPE_LWT_IN:
1391 	case BPF_PROG_TYPE_LWT_OUT:
1392 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1393 	case BPF_PROG_TYPE_SK_REUSEPORT:
1394 		/* dst_input() and dst_output() can't write for now */
1395 		if (t == BPF_WRITE)
1396 			return false;
1397 		/* fallthrough */
1398 	case BPF_PROG_TYPE_SCHED_CLS:
1399 	case BPF_PROG_TYPE_SCHED_ACT:
1400 	case BPF_PROG_TYPE_XDP:
1401 	case BPF_PROG_TYPE_LWT_XMIT:
1402 	case BPF_PROG_TYPE_SK_SKB:
1403 	case BPF_PROG_TYPE_SK_MSG:
1404 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1405 		if (meta)
1406 			return meta->pkt_access;
1407 
1408 		env->seen_direct_write = true;
1409 		return true;
1410 	default:
1411 		return false;
1412 	}
1413 }
1414 
1415 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1416 				 int off, int size, bool zero_size_allowed)
1417 {
1418 	struct bpf_reg_state *regs = cur_regs(env);
1419 	struct bpf_reg_state *reg = &regs[regno];
1420 
1421 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1422 	    (u64)off + size > reg->range) {
1423 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1424 			off, size, regno, reg->id, reg->off, reg->range);
1425 		return -EACCES;
1426 	}
1427 	return 0;
1428 }
1429 
1430 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1431 			       int size, bool zero_size_allowed)
1432 {
1433 	struct bpf_reg_state *regs = cur_regs(env);
1434 	struct bpf_reg_state *reg = &regs[regno];
1435 	int err;
1436 
1437 	/* We may have added a variable offset to the packet pointer; but any
1438 	 * reg->range we have comes after that.  We are only checking the fixed
1439 	 * offset.
1440 	 */
1441 
1442 	/* We don't allow negative numbers, because we aren't tracking enough
1443 	 * detail to prove they're safe.
1444 	 */
1445 	if (reg->smin_value < 0) {
1446 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1447 			regno);
1448 		return -EACCES;
1449 	}
1450 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1451 	if (err) {
1452 		verbose(env, "R%d offset is outside of the packet\n", regno);
1453 		return err;
1454 	}
1455 	return err;
1456 }
1457 
1458 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1459 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1460 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1461 {
1462 	struct bpf_insn_access_aux info = {
1463 		.reg_type = *reg_type,
1464 	};
1465 
1466 	if (env->ops->is_valid_access &&
1467 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1468 		/* A non zero info.ctx_field_size indicates that this field is a
1469 		 * candidate for later verifier transformation to load the whole
1470 		 * field and then apply a mask when accessed with a narrower
1471 		 * access than actual ctx access size. A zero info.ctx_field_size
1472 		 * will only allow for whole field access and rejects any other
1473 		 * type of narrower access.
1474 		 */
1475 		*reg_type = info.reg_type;
1476 
1477 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1478 		/* remember the offset of last byte accessed in ctx */
1479 		if (env->prog->aux->max_ctx_offset < off + size)
1480 			env->prog->aux->max_ctx_offset = off + size;
1481 		return 0;
1482 	}
1483 
1484 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1485 	return -EACCES;
1486 }
1487 
1488 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1489 				  int size)
1490 {
1491 	if (size < 0 || off < 0 ||
1492 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1493 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1494 			off, size);
1495 		return -EACCES;
1496 	}
1497 	return 0;
1498 }
1499 
1500 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1501 			     int size, enum bpf_access_type t)
1502 {
1503 	struct bpf_reg_state *regs = cur_regs(env);
1504 	struct bpf_reg_state *reg = &regs[regno];
1505 	struct bpf_insn_access_aux info;
1506 
1507 	if (reg->smin_value < 0) {
1508 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1509 			regno);
1510 		return -EACCES;
1511 	}
1512 
1513 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1514 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1515 			off, size);
1516 		return -EACCES;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static bool __is_pointer_value(bool allow_ptr_leaks,
1523 			       const struct bpf_reg_state *reg)
1524 {
1525 	if (allow_ptr_leaks)
1526 		return false;
1527 
1528 	return reg->type != SCALAR_VALUE;
1529 }
1530 
1531 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1532 {
1533 	return cur_regs(env) + regno;
1534 }
1535 
1536 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1537 {
1538 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1539 }
1540 
1541 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1542 {
1543 	const struct bpf_reg_state *reg = reg_state(env, regno);
1544 
1545 	return reg->type == PTR_TO_CTX ||
1546 	       reg->type == PTR_TO_SOCKET;
1547 }
1548 
1549 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1550 {
1551 	const struct bpf_reg_state *reg = reg_state(env, regno);
1552 
1553 	return type_is_pkt_pointer(reg->type);
1554 }
1555 
1556 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1557 {
1558 	const struct bpf_reg_state *reg = reg_state(env, regno);
1559 
1560 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1561 	return reg->type == PTR_TO_FLOW_KEYS;
1562 }
1563 
1564 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1565 				   const struct bpf_reg_state *reg,
1566 				   int off, int size, bool strict)
1567 {
1568 	struct tnum reg_off;
1569 	int ip_align;
1570 
1571 	/* Byte size accesses are always allowed. */
1572 	if (!strict || size == 1)
1573 		return 0;
1574 
1575 	/* For platforms that do not have a Kconfig enabling
1576 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1577 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1578 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1579 	 * to this code only in strict mode where we want to emulate
1580 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1581 	 * unconditional IP align value of '2'.
1582 	 */
1583 	ip_align = 2;
1584 
1585 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1586 	if (!tnum_is_aligned(reg_off, size)) {
1587 		char tn_buf[48];
1588 
1589 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1590 		verbose(env,
1591 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1592 			ip_align, tn_buf, reg->off, off, size);
1593 		return -EACCES;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1600 				       const struct bpf_reg_state *reg,
1601 				       const char *pointer_desc,
1602 				       int off, int size, bool strict)
1603 {
1604 	struct tnum reg_off;
1605 
1606 	/* Byte size accesses are always allowed. */
1607 	if (!strict || size == 1)
1608 		return 0;
1609 
1610 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1611 	if (!tnum_is_aligned(reg_off, size)) {
1612 		char tn_buf[48];
1613 
1614 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1615 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1616 			pointer_desc, tn_buf, reg->off, off, size);
1617 		return -EACCES;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static int check_ptr_alignment(struct bpf_verifier_env *env,
1624 			       const struct bpf_reg_state *reg, int off,
1625 			       int size, bool strict_alignment_once)
1626 {
1627 	bool strict = env->strict_alignment || strict_alignment_once;
1628 	const char *pointer_desc = "";
1629 
1630 	switch (reg->type) {
1631 	case PTR_TO_PACKET:
1632 	case PTR_TO_PACKET_META:
1633 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1634 		 * right in front, treat it the very same way.
1635 		 */
1636 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1637 	case PTR_TO_FLOW_KEYS:
1638 		pointer_desc = "flow keys ";
1639 		break;
1640 	case PTR_TO_MAP_VALUE:
1641 		pointer_desc = "value ";
1642 		break;
1643 	case PTR_TO_CTX:
1644 		pointer_desc = "context ";
1645 		break;
1646 	case PTR_TO_STACK:
1647 		pointer_desc = "stack ";
1648 		/* The stack spill tracking logic in check_stack_write()
1649 		 * and check_stack_read() relies on stack accesses being
1650 		 * aligned.
1651 		 */
1652 		strict = true;
1653 		break;
1654 	case PTR_TO_SOCKET:
1655 		pointer_desc = "sock ";
1656 		break;
1657 	default:
1658 		break;
1659 	}
1660 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1661 					   strict);
1662 }
1663 
1664 static int update_stack_depth(struct bpf_verifier_env *env,
1665 			      const struct bpf_func_state *func,
1666 			      int off)
1667 {
1668 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1669 
1670 	if (stack >= -off)
1671 		return 0;
1672 
1673 	/* update known max for given subprogram */
1674 	env->subprog_info[func->subprogno].stack_depth = -off;
1675 	return 0;
1676 }
1677 
1678 /* starting from main bpf function walk all instructions of the function
1679  * and recursively walk all callees that given function can call.
1680  * Ignore jump and exit insns.
1681  * Since recursion is prevented by check_cfg() this algorithm
1682  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1683  */
1684 static int check_max_stack_depth(struct bpf_verifier_env *env)
1685 {
1686 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1687 	struct bpf_subprog_info *subprog = env->subprog_info;
1688 	struct bpf_insn *insn = env->prog->insnsi;
1689 	int ret_insn[MAX_CALL_FRAMES];
1690 	int ret_prog[MAX_CALL_FRAMES];
1691 
1692 process_func:
1693 	/* round up to 32-bytes, since this is granularity
1694 	 * of interpreter stack size
1695 	 */
1696 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1697 	if (depth > MAX_BPF_STACK) {
1698 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1699 			frame + 1, depth);
1700 		return -EACCES;
1701 	}
1702 continue_func:
1703 	subprog_end = subprog[idx + 1].start;
1704 	for (; i < subprog_end; i++) {
1705 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1706 			continue;
1707 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1708 			continue;
1709 		/* remember insn and function to return to */
1710 		ret_insn[frame] = i + 1;
1711 		ret_prog[frame] = idx;
1712 
1713 		/* find the callee */
1714 		i = i + insn[i].imm + 1;
1715 		idx = find_subprog(env, i);
1716 		if (idx < 0) {
1717 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1718 				  i);
1719 			return -EFAULT;
1720 		}
1721 		frame++;
1722 		if (frame >= MAX_CALL_FRAMES) {
1723 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1724 			return -EFAULT;
1725 		}
1726 		goto process_func;
1727 	}
1728 	/* end of for() loop means the last insn of the 'subprog'
1729 	 * was reached. Doesn't matter whether it was JA or EXIT
1730 	 */
1731 	if (frame == 0)
1732 		return 0;
1733 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1734 	frame--;
1735 	i = ret_insn[frame];
1736 	idx = ret_prog[frame];
1737 	goto continue_func;
1738 }
1739 
1740 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1741 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1742 				  const struct bpf_insn *insn, int idx)
1743 {
1744 	int start = idx + insn->imm + 1, subprog;
1745 
1746 	subprog = find_subprog(env, start);
1747 	if (subprog < 0) {
1748 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1749 			  start);
1750 		return -EFAULT;
1751 	}
1752 	return env->subprog_info[subprog].stack_depth;
1753 }
1754 #endif
1755 
1756 static int check_ctx_reg(struct bpf_verifier_env *env,
1757 			 const struct bpf_reg_state *reg, int regno)
1758 {
1759 	/* Access to ctx or passing it to a helper is only allowed in
1760 	 * its original, unmodified form.
1761 	 */
1762 
1763 	if (reg->off) {
1764 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1765 			regno, reg->off);
1766 		return -EACCES;
1767 	}
1768 
1769 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1770 		char tn_buf[48];
1771 
1772 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1773 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1774 		return -EACCES;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 /* truncate register to smaller size (in bytes)
1781  * must be called with size < BPF_REG_SIZE
1782  */
1783 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1784 {
1785 	u64 mask;
1786 
1787 	/* clear high bits in bit representation */
1788 	reg->var_off = tnum_cast(reg->var_off, size);
1789 
1790 	/* fix arithmetic bounds */
1791 	mask = ((u64)1 << (size * 8)) - 1;
1792 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1793 		reg->umin_value &= mask;
1794 		reg->umax_value &= mask;
1795 	} else {
1796 		reg->umin_value = 0;
1797 		reg->umax_value = mask;
1798 	}
1799 	reg->smin_value = reg->umin_value;
1800 	reg->smax_value = reg->umax_value;
1801 }
1802 
1803 /* check whether memory at (regno + off) is accessible for t = (read | write)
1804  * if t==write, value_regno is a register which value is stored into memory
1805  * if t==read, value_regno is a register which will receive the value from memory
1806  * if t==write && value_regno==-1, some unknown value is stored into memory
1807  * if t==read && value_regno==-1, don't care what we read from memory
1808  */
1809 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1810 			    int off, int bpf_size, enum bpf_access_type t,
1811 			    int value_regno, bool strict_alignment_once)
1812 {
1813 	struct bpf_reg_state *regs = cur_regs(env);
1814 	struct bpf_reg_state *reg = regs + regno;
1815 	struct bpf_func_state *state;
1816 	int size, err = 0;
1817 
1818 	size = bpf_size_to_bytes(bpf_size);
1819 	if (size < 0)
1820 		return size;
1821 
1822 	/* alignment checks will add in reg->off themselves */
1823 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1824 	if (err)
1825 		return err;
1826 
1827 	/* for access checks, reg->off is just part of off */
1828 	off += reg->off;
1829 
1830 	if (reg->type == PTR_TO_MAP_VALUE) {
1831 		if (t == BPF_WRITE && value_regno >= 0 &&
1832 		    is_pointer_value(env, value_regno)) {
1833 			verbose(env, "R%d leaks addr into map\n", value_regno);
1834 			return -EACCES;
1835 		}
1836 
1837 		err = check_map_access(env, regno, off, size, false);
1838 		if (!err && t == BPF_READ && value_regno >= 0)
1839 			mark_reg_unknown(env, regs, value_regno);
1840 
1841 	} else if (reg->type == PTR_TO_CTX) {
1842 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1843 
1844 		if (t == BPF_WRITE && value_regno >= 0 &&
1845 		    is_pointer_value(env, value_regno)) {
1846 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1847 			return -EACCES;
1848 		}
1849 
1850 		err = check_ctx_reg(env, reg, regno);
1851 		if (err < 0)
1852 			return err;
1853 
1854 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1855 		if (!err && t == BPF_READ && value_regno >= 0) {
1856 			/* ctx access returns either a scalar, or a
1857 			 * PTR_TO_PACKET[_META,_END]. In the latter
1858 			 * case, we know the offset is zero.
1859 			 */
1860 			if (reg_type == SCALAR_VALUE)
1861 				mark_reg_unknown(env, regs, value_regno);
1862 			else
1863 				mark_reg_known_zero(env, regs,
1864 						    value_regno);
1865 			regs[value_regno].type = reg_type;
1866 		}
1867 
1868 	} else if (reg->type == PTR_TO_STACK) {
1869 		/* stack accesses must be at a fixed offset, so that we can
1870 		 * determine what type of data were returned.
1871 		 * See check_stack_read().
1872 		 */
1873 		if (!tnum_is_const(reg->var_off)) {
1874 			char tn_buf[48];
1875 
1876 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1877 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1878 				tn_buf, off, size);
1879 			return -EACCES;
1880 		}
1881 		off += reg->var_off.value;
1882 		if (off >= 0 || off < -MAX_BPF_STACK) {
1883 			verbose(env, "invalid stack off=%d size=%d\n", off,
1884 				size);
1885 			return -EACCES;
1886 		}
1887 
1888 		state = func(env, reg);
1889 		err = update_stack_depth(env, state, off);
1890 		if (err)
1891 			return err;
1892 
1893 		if (t == BPF_WRITE)
1894 			err = check_stack_write(env, state, off, size,
1895 						value_regno, insn_idx);
1896 		else
1897 			err = check_stack_read(env, state, off, size,
1898 					       value_regno);
1899 	} else if (reg_is_pkt_pointer(reg)) {
1900 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1901 			verbose(env, "cannot write into packet\n");
1902 			return -EACCES;
1903 		}
1904 		if (t == BPF_WRITE && value_regno >= 0 &&
1905 		    is_pointer_value(env, value_regno)) {
1906 			verbose(env, "R%d leaks addr into packet\n",
1907 				value_regno);
1908 			return -EACCES;
1909 		}
1910 		err = check_packet_access(env, regno, off, size, false);
1911 		if (!err && t == BPF_READ && value_regno >= 0)
1912 			mark_reg_unknown(env, regs, value_regno);
1913 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
1914 		if (t == BPF_WRITE && value_regno >= 0 &&
1915 		    is_pointer_value(env, value_regno)) {
1916 			verbose(env, "R%d leaks addr into flow keys\n",
1917 				value_regno);
1918 			return -EACCES;
1919 		}
1920 
1921 		err = check_flow_keys_access(env, off, size);
1922 		if (!err && t == BPF_READ && value_regno >= 0)
1923 			mark_reg_unknown(env, regs, value_regno);
1924 	} else if (reg->type == PTR_TO_SOCKET) {
1925 		if (t == BPF_WRITE) {
1926 			verbose(env, "cannot write into socket\n");
1927 			return -EACCES;
1928 		}
1929 		err = check_sock_access(env, regno, off, size, t);
1930 		if (!err && value_regno >= 0)
1931 			mark_reg_unknown(env, regs, value_regno);
1932 	} else {
1933 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1934 			reg_type_str[reg->type]);
1935 		return -EACCES;
1936 	}
1937 
1938 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1939 	    regs[value_regno].type == SCALAR_VALUE) {
1940 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1941 		coerce_reg_to_size(&regs[value_regno], size);
1942 	}
1943 	return err;
1944 }
1945 
1946 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1947 {
1948 	int err;
1949 
1950 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1951 	    insn->imm != 0) {
1952 		verbose(env, "BPF_XADD uses reserved fields\n");
1953 		return -EINVAL;
1954 	}
1955 
1956 	/* check src1 operand */
1957 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1958 	if (err)
1959 		return err;
1960 
1961 	/* check src2 operand */
1962 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1963 	if (err)
1964 		return err;
1965 
1966 	if (is_pointer_value(env, insn->src_reg)) {
1967 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1968 		return -EACCES;
1969 	}
1970 
1971 	if (is_ctx_reg(env, insn->dst_reg) ||
1972 	    is_pkt_reg(env, insn->dst_reg) ||
1973 	    is_flow_key_reg(env, insn->dst_reg)) {
1974 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1975 			insn->dst_reg,
1976 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
1977 		return -EACCES;
1978 	}
1979 
1980 	/* check whether atomic_add can read the memory */
1981 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1982 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1983 	if (err)
1984 		return err;
1985 
1986 	/* check whether atomic_add can write into the same memory */
1987 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1988 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1989 }
1990 
1991 /* when register 'regno' is passed into function that will read 'access_size'
1992  * bytes from that pointer, make sure that it's within stack boundary
1993  * and all elements of stack are initialized.
1994  * Unlike most pointer bounds-checking functions, this one doesn't take an
1995  * 'off' argument, so it has to add in reg->off itself.
1996  */
1997 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1998 				int access_size, bool zero_size_allowed,
1999 				struct bpf_call_arg_meta *meta)
2000 {
2001 	struct bpf_reg_state *reg = reg_state(env, regno);
2002 	struct bpf_func_state *state = func(env, reg);
2003 	int off, i, slot, spi;
2004 
2005 	if (reg->type != PTR_TO_STACK) {
2006 		/* Allow zero-byte read from NULL, regardless of pointer type */
2007 		if (zero_size_allowed && access_size == 0 &&
2008 		    register_is_null(reg))
2009 			return 0;
2010 
2011 		verbose(env, "R%d type=%s expected=%s\n", regno,
2012 			reg_type_str[reg->type],
2013 			reg_type_str[PTR_TO_STACK]);
2014 		return -EACCES;
2015 	}
2016 
2017 	/* Only allow fixed-offset stack reads */
2018 	if (!tnum_is_const(reg->var_off)) {
2019 		char tn_buf[48];
2020 
2021 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2022 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2023 			regno, tn_buf);
2024 		return -EACCES;
2025 	}
2026 	off = reg->off + reg->var_off.value;
2027 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2028 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2029 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2030 			regno, off, access_size);
2031 		return -EACCES;
2032 	}
2033 
2034 	if (meta && meta->raw_mode) {
2035 		meta->access_size = access_size;
2036 		meta->regno = regno;
2037 		return 0;
2038 	}
2039 
2040 	for (i = 0; i < access_size; i++) {
2041 		u8 *stype;
2042 
2043 		slot = -(off + i) - 1;
2044 		spi = slot / BPF_REG_SIZE;
2045 		if (state->allocated_stack <= slot)
2046 			goto err;
2047 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2048 		if (*stype == STACK_MISC)
2049 			goto mark;
2050 		if (*stype == STACK_ZERO) {
2051 			/* helper can write anything into the stack */
2052 			*stype = STACK_MISC;
2053 			goto mark;
2054 		}
2055 err:
2056 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2057 			off, i, access_size);
2058 		return -EACCES;
2059 mark:
2060 		/* reading any byte out of 8-byte 'spill_slot' will cause
2061 		 * the whole slot to be marked as 'read'
2062 		 */
2063 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2064 			      state->stack[spi].spilled_ptr.parent);
2065 	}
2066 	return update_stack_depth(env, state, off);
2067 }
2068 
2069 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2070 				   int access_size, bool zero_size_allowed,
2071 				   struct bpf_call_arg_meta *meta)
2072 {
2073 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2074 
2075 	switch (reg->type) {
2076 	case PTR_TO_PACKET:
2077 	case PTR_TO_PACKET_META:
2078 		return check_packet_access(env, regno, reg->off, access_size,
2079 					   zero_size_allowed);
2080 	case PTR_TO_MAP_VALUE:
2081 		return check_map_access(env, regno, reg->off, access_size,
2082 					zero_size_allowed);
2083 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2084 		return check_stack_boundary(env, regno, access_size,
2085 					    zero_size_allowed, meta);
2086 	}
2087 }
2088 
2089 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2090 {
2091 	return type == ARG_PTR_TO_MEM ||
2092 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2093 	       type == ARG_PTR_TO_UNINIT_MEM;
2094 }
2095 
2096 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2097 {
2098 	return type == ARG_CONST_SIZE ||
2099 	       type == ARG_CONST_SIZE_OR_ZERO;
2100 }
2101 
2102 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2103 			  enum bpf_arg_type arg_type,
2104 			  struct bpf_call_arg_meta *meta)
2105 {
2106 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2107 	enum bpf_reg_type expected_type, type = reg->type;
2108 	int err = 0;
2109 
2110 	if (arg_type == ARG_DONTCARE)
2111 		return 0;
2112 
2113 	err = check_reg_arg(env, regno, SRC_OP);
2114 	if (err)
2115 		return err;
2116 
2117 	if (arg_type == ARG_ANYTHING) {
2118 		if (is_pointer_value(env, regno)) {
2119 			verbose(env, "R%d leaks addr into helper function\n",
2120 				regno);
2121 			return -EACCES;
2122 		}
2123 		return 0;
2124 	}
2125 
2126 	if (type_is_pkt_pointer(type) &&
2127 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2128 		verbose(env, "helper access to the packet is not allowed\n");
2129 		return -EACCES;
2130 	}
2131 
2132 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2133 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2134 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2135 		expected_type = PTR_TO_STACK;
2136 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2137 		    type != expected_type)
2138 			goto err_type;
2139 	} else if (arg_type == ARG_CONST_SIZE ||
2140 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2141 		expected_type = SCALAR_VALUE;
2142 		if (type != expected_type)
2143 			goto err_type;
2144 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2145 		expected_type = CONST_PTR_TO_MAP;
2146 		if (type != expected_type)
2147 			goto err_type;
2148 	} else if (arg_type == ARG_PTR_TO_CTX) {
2149 		expected_type = PTR_TO_CTX;
2150 		if (type != expected_type)
2151 			goto err_type;
2152 		err = check_ctx_reg(env, reg, regno);
2153 		if (err < 0)
2154 			return err;
2155 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2156 		expected_type = PTR_TO_SOCKET;
2157 		if (type != expected_type)
2158 			goto err_type;
2159 		if (meta->ptr_id || !reg->id) {
2160 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2161 				meta->ptr_id, reg->id);
2162 			return -EFAULT;
2163 		}
2164 		meta->ptr_id = reg->id;
2165 	} else if (arg_type_is_mem_ptr(arg_type)) {
2166 		expected_type = PTR_TO_STACK;
2167 		/* One exception here. In case function allows for NULL to be
2168 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2169 		 * happens during stack boundary checking.
2170 		 */
2171 		if (register_is_null(reg) &&
2172 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2173 			/* final test in check_stack_boundary() */;
2174 		else if (!type_is_pkt_pointer(type) &&
2175 			 type != PTR_TO_MAP_VALUE &&
2176 			 type != expected_type)
2177 			goto err_type;
2178 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2179 	} else {
2180 		verbose(env, "unsupported arg_type %d\n", arg_type);
2181 		return -EFAULT;
2182 	}
2183 
2184 	if (arg_type == ARG_CONST_MAP_PTR) {
2185 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2186 		meta->map_ptr = reg->map_ptr;
2187 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2188 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2189 		 * check that [key, key + map->key_size) are within
2190 		 * stack limits and initialized
2191 		 */
2192 		if (!meta->map_ptr) {
2193 			/* in function declaration map_ptr must come before
2194 			 * map_key, so that it's verified and known before
2195 			 * we have to check map_key here. Otherwise it means
2196 			 * that kernel subsystem misconfigured verifier
2197 			 */
2198 			verbose(env, "invalid map_ptr to access map->key\n");
2199 			return -EACCES;
2200 		}
2201 		err = check_helper_mem_access(env, regno,
2202 					      meta->map_ptr->key_size, false,
2203 					      NULL);
2204 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2205 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2206 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2207 		 * check [value, value + map->value_size) validity
2208 		 */
2209 		if (!meta->map_ptr) {
2210 			/* kernel subsystem misconfigured verifier */
2211 			verbose(env, "invalid map_ptr to access map->value\n");
2212 			return -EACCES;
2213 		}
2214 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2215 		err = check_helper_mem_access(env, regno,
2216 					      meta->map_ptr->value_size, false,
2217 					      meta);
2218 	} else if (arg_type_is_mem_size(arg_type)) {
2219 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2220 
2221 		/* remember the mem_size which may be used later
2222 		 * to refine return values.
2223 		 */
2224 		meta->msize_smax_value = reg->smax_value;
2225 		meta->msize_umax_value = reg->umax_value;
2226 
2227 		/* The register is SCALAR_VALUE; the access check
2228 		 * happens using its boundaries.
2229 		 */
2230 		if (!tnum_is_const(reg->var_off))
2231 			/* For unprivileged variable accesses, disable raw
2232 			 * mode so that the program is required to
2233 			 * initialize all the memory that the helper could
2234 			 * just partially fill up.
2235 			 */
2236 			meta = NULL;
2237 
2238 		if (reg->smin_value < 0) {
2239 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2240 				regno);
2241 			return -EACCES;
2242 		}
2243 
2244 		if (reg->umin_value == 0) {
2245 			err = check_helper_mem_access(env, regno - 1, 0,
2246 						      zero_size_allowed,
2247 						      meta);
2248 			if (err)
2249 				return err;
2250 		}
2251 
2252 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2253 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2254 				regno);
2255 			return -EACCES;
2256 		}
2257 		err = check_helper_mem_access(env, regno - 1,
2258 					      reg->umax_value,
2259 					      zero_size_allowed, meta);
2260 	}
2261 
2262 	return err;
2263 err_type:
2264 	verbose(env, "R%d type=%s expected=%s\n", regno,
2265 		reg_type_str[type], reg_type_str[expected_type]);
2266 	return -EACCES;
2267 }
2268 
2269 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2270 					struct bpf_map *map, int func_id)
2271 {
2272 	if (!map)
2273 		return 0;
2274 
2275 	/* We need a two way check, first is from map perspective ... */
2276 	switch (map->map_type) {
2277 	case BPF_MAP_TYPE_PROG_ARRAY:
2278 		if (func_id != BPF_FUNC_tail_call)
2279 			goto error;
2280 		break;
2281 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2282 		if (func_id != BPF_FUNC_perf_event_read &&
2283 		    func_id != BPF_FUNC_perf_event_output &&
2284 		    func_id != BPF_FUNC_perf_event_read_value)
2285 			goto error;
2286 		break;
2287 	case BPF_MAP_TYPE_STACK_TRACE:
2288 		if (func_id != BPF_FUNC_get_stackid)
2289 			goto error;
2290 		break;
2291 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2292 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2293 		    func_id != BPF_FUNC_current_task_under_cgroup)
2294 			goto error;
2295 		break;
2296 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2297 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2298 		if (func_id != BPF_FUNC_get_local_storage)
2299 			goto error;
2300 		break;
2301 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2302 	 * allow to be modified from bpf side. So do not allow lookup elements
2303 	 * for now.
2304 	 */
2305 	case BPF_MAP_TYPE_DEVMAP:
2306 		if (func_id != BPF_FUNC_redirect_map)
2307 			goto error;
2308 		break;
2309 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2310 	 * appear.
2311 	 */
2312 	case BPF_MAP_TYPE_CPUMAP:
2313 	case BPF_MAP_TYPE_XSKMAP:
2314 		if (func_id != BPF_FUNC_redirect_map)
2315 			goto error;
2316 		break;
2317 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2318 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2319 		if (func_id != BPF_FUNC_map_lookup_elem)
2320 			goto error;
2321 		break;
2322 	case BPF_MAP_TYPE_SOCKMAP:
2323 		if (func_id != BPF_FUNC_sk_redirect_map &&
2324 		    func_id != BPF_FUNC_sock_map_update &&
2325 		    func_id != BPF_FUNC_map_delete_elem &&
2326 		    func_id != BPF_FUNC_msg_redirect_map)
2327 			goto error;
2328 		break;
2329 	case BPF_MAP_TYPE_SOCKHASH:
2330 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2331 		    func_id != BPF_FUNC_sock_hash_update &&
2332 		    func_id != BPF_FUNC_map_delete_elem &&
2333 		    func_id != BPF_FUNC_msg_redirect_hash)
2334 			goto error;
2335 		break;
2336 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2337 		if (func_id != BPF_FUNC_sk_select_reuseport)
2338 			goto error;
2339 		break;
2340 	case BPF_MAP_TYPE_QUEUE:
2341 	case BPF_MAP_TYPE_STACK:
2342 		if (func_id != BPF_FUNC_map_peek_elem &&
2343 		    func_id != BPF_FUNC_map_pop_elem &&
2344 		    func_id != BPF_FUNC_map_push_elem)
2345 			goto error;
2346 		break;
2347 	default:
2348 		break;
2349 	}
2350 
2351 	/* ... and second from the function itself. */
2352 	switch (func_id) {
2353 	case BPF_FUNC_tail_call:
2354 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2355 			goto error;
2356 		if (env->subprog_cnt > 1) {
2357 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2358 			return -EINVAL;
2359 		}
2360 		break;
2361 	case BPF_FUNC_perf_event_read:
2362 	case BPF_FUNC_perf_event_output:
2363 	case BPF_FUNC_perf_event_read_value:
2364 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2365 			goto error;
2366 		break;
2367 	case BPF_FUNC_get_stackid:
2368 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2369 			goto error;
2370 		break;
2371 	case BPF_FUNC_current_task_under_cgroup:
2372 	case BPF_FUNC_skb_under_cgroup:
2373 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2374 			goto error;
2375 		break;
2376 	case BPF_FUNC_redirect_map:
2377 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2378 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2379 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2380 			goto error;
2381 		break;
2382 	case BPF_FUNC_sk_redirect_map:
2383 	case BPF_FUNC_msg_redirect_map:
2384 	case BPF_FUNC_sock_map_update:
2385 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2386 			goto error;
2387 		break;
2388 	case BPF_FUNC_sk_redirect_hash:
2389 	case BPF_FUNC_msg_redirect_hash:
2390 	case BPF_FUNC_sock_hash_update:
2391 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2392 			goto error;
2393 		break;
2394 	case BPF_FUNC_get_local_storage:
2395 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2396 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2397 			goto error;
2398 		break;
2399 	case BPF_FUNC_sk_select_reuseport:
2400 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2401 			goto error;
2402 		break;
2403 	case BPF_FUNC_map_peek_elem:
2404 	case BPF_FUNC_map_pop_elem:
2405 	case BPF_FUNC_map_push_elem:
2406 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2407 		    map->map_type != BPF_MAP_TYPE_STACK)
2408 			goto error;
2409 		break;
2410 	default:
2411 		break;
2412 	}
2413 
2414 	return 0;
2415 error:
2416 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2417 		map->map_type, func_id_name(func_id), func_id);
2418 	return -EINVAL;
2419 }
2420 
2421 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2422 {
2423 	int count = 0;
2424 
2425 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2426 		count++;
2427 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2428 		count++;
2429 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2430 		count++;
2431 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2432 		count++;
2433 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2434 		count++;
2435 
2436 	/* We only support one arg being in raw mode at the moment,
2437 	 * which is sufficient for the helper functions we have
2438 	 * right now.
2439 	 */
2440 	return count <= 1;
2441 }
2442 
2443 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2444 				    enum bpf_arg_type arg_next)
2445 {
2446 	return (arg_type_is_mem_ptr(arg_curr) &&
2447 	        !arg_type_is_mem_size(arg_next)) ||
2448 	       (!arg_type_is_mem_ptr(arg_curr) &&
2449 		arg_type_is_mem_size(arg_next));
2450 }
2451 
2452 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2453 {
2454 	/* bpf_xxx(..., buf, len) call will access 'len'
2455 	 * bytes from memory 'buf'. Both arg types need
2456 	 * to be paired, so make sure there's no buggy
2457 	 * helper function specification.
2458 	 */
2459 	if (arg_type_is_mem_size(fn->arg1_type) ||
2460 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2461 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2462 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2463 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2464 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2465 		return false;
2466 
2467 	return true;
2468 }
2469 
2470 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2471 {
2472 	int count = 0;
2473 
2474 	if (arg_type_is_refcounted(fn->arg1_type))
2475 		count++;
2476 	if (arg_type_is_refcounted(fn->arg2_type))
2477 		count++;
2478 	if (arg_type_is_refcounted(fn->arg3_type))
2479 		count++;
2480 	if (arg_type_is_refcounted(fn->arg4_type))
2481 		count++;
2482 	if (arg_type_is_refcounted(fn->arg5_type))
2483 		count++;
2484 
2485 	/* We only support one arg being unreferenced at the moment,
2486 	 * which is sufficient for the helper functions we have right now.
2487 	 */
2488 	return count <= 1;
2489 }
2490 
2491 static int check_func_proto(const struct bpf_func_proto *fn)
2492 {
2493 	return check_raw_mode_ok(fn) &&
2494 	       check_arg_pair_ok(fn) &&
2495 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2496 }
2497 
2498 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2499  * are now invalid, so turn them into unknown SCALAR_VALUE.
2500  */
2501 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2502 				     struct bpf_func_state *state)
2503 {
2504 	struct bpf_reg_state *regs = state->regs, *reg;
2505 	int i;
2506 
2507 	for (i = 0; i < MAX_BPF_REG; i++)
2508 		if (reg_is_pkt_pointer_any(&regs[i]))
2509 			mark_reg_unknown(env, regs, i);
2510 
2511 	bpf_for_each_spilled_reg(i, state, reg) {
2512 		if (!reg)
2513 			continue;
2514 		if (reg_is_pkt_pointer_any(reg))
2515 			__mark_reg_unknown(reg);
2516 	}
2517 }
2518 
2519 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2520 {
2521 	struct bpf_verifier_state *vstate = env->cur_state;
2522 	int i;
2523 
2524 	for (i = 0; i <= vstate->curframe; i++)
2525 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2526 }
2527 
2528 static void release_reg_references(struct bpf_verifier_env *env,
2529 				   struct bpf_func_state *state, int id)
2530 {
2531 	struct bpf_reg_state *regs = state->regs, *reg;
2532 	int i;
2533 
2534 	for (i = 0; i < MAX_BPF_REG; i++)
2535 		if (regs[i].id == id)
2536 			mark_reg_unknown(env, regs, i);
2537 
2538 	bpf_for_each_spilled_reg(i, state, reg) {
2539 		if (!reg)
2540 			continue;
2541 		if (reg_is_refcounted(reg) && reg->id == id)
2542 			__mark_reg_unknown(reg);
2543 	}
2544 }
2545 
2546 /* The pointer with the specified id has released its reference to kernel
2547  * resources. Identify all copies of the same pointer and clear the reference.
2548  */
2549 static int release_reference(struct bpf_verifier_env *env,
2550 			     struct bpf_call_arg_meta *meta)
2551 {
2552 	struct bpf_verifier_state *vstate = env->cur_state;
2553 	int i;
2554 
2555 	for (i = 0; i <= vstate->curframe; i++)
2556 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2557 
2558 	return release_reference_state(env, meta->ptr_id);
2559 }
2560 
2561 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2562 			   int *insn_idx)
2563 {
2564 	struct bpf_verifier_state *state = env->cur_state;
2565 	struct bpf_func_state *caller, *callee;
2566 	int i, err, subprog, target_insn;
2567 
2568 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2569 		verbose(env, "the call stack of %d frames is too deep\n",
2570 			state->curframe + 2);
2571 		return -E2BIG;
2572 	}
2573 
2574 	target_insn = *insn_idx + insn->imm;
2575 	subprog = find_subprog(env, target_insn + 1);
2576 	if (subprog < 0) {
2577 		verbose(env, "verifier bug. No program starts at insn %d\n",
2578 			target_insn + 1);
2579 		return -EFAULT;
2580 	}
2581 
2582 	caller = state->frame[state->curframe];
2583 	if (state->frame[state->curframe + 1]) {
2584 		verbose(env, "verifier bug. Frame %d already allocated\n",
2585 			state->curframe + 1);
2586 		return -EFAULT;
2587 	}
2588 
2589 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2590 	if (!callee)
2591 		return -ENOMEM;
2592 	state->frame[state->curframe + 1] = callee;
2593 
2594 	/* callee cannot access r0, r6 - r9 for reading and has to write
2595 	 * into its own stack before reading from it.
2596 	 * callee can read/write into caller's stack
2597 	 */
2598 	init_func_state(env, callee,
2599 			/* remember the callsite, it will be used by bpf_exit */
2600 			*insn_idx /* callsite */,
2601 			state->curframe + 1 /* frameno within this callchain */,
2602 			subprog /* subprog number within this prog */);
2603 
2604 	/* Transfer references to the callee */
2605 	err = transfer_reference_state(callee, caller);
2606 	if (err)
2607 		return err;
2608 
2609 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2610 	 * pointers, which connects us up to the liveness chain
2611 	 */
2612 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2613 		callee->regs[i] = caller->regs[i];
2614 
2615 	/* after the call registers r0 - r5 were scratched */
2616 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2617 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2618 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2619 	}
2620 
2621 	/* only increment it after check_reg_arg() finished */
2622 	state->curframe++;
2623 
2624 	/* and go analyze first insn of the callee */
2625 	*insn_idx = target_insn;
2626 
2627 	if (env->log.level) {
2628 		verbose(env, "caller:\n");
2629 		print_verifier_state(env, caller);
2630 		verbose(env, "callee:\n");
2631 		print_verifier_state(env, callee);
2632 	}
2633 	return 0;
2634 }
2635 
2636 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2637 {
2638 	struct bpf_verifier_state *state = env->cur_state;
2639 	struct bpf_func_state *caller, *callee;
2640 	struct bpf_reg_state *r0;
2641 	int err;
2642 
2643 	callee = state->frame[state->curframe];
2644 	r0 = &callee->regs[BPF_REG_0];
2645 	if (r0->type == PTR_TO_STACK) {
2646 		/* technically it's ok to return caller's stack pointer
2647 		 * (or caller's caller's pointer) back to the caller,
2648 		 * since these pointers are valid. Only current stack
2649 		 * pointer will be invalid as soon as function exits,
2650 		 * but let's be conservative
2651 		 */
2652 		verbose(env, "cannot return stack pointer to the caller\n");
2653 		return -EINVAL;
2654 	}
2655 
2656 	state->curframe--;
2657 	caller = state->frame[state->curframe];
2658 	/* return to the caller whatever r0 had in the callee */
2659 	caller->regs[BPF_REG_0] = *r0;
2660 
2661 	/* Transfer references to the caller */
2662 	err = transfer_reference_state(caller, callee);
2663 	if (err)
2664 		return err;
2665 
2666 	*insn_idx = callee->callsite + 1;
2667 	if (env->log.level) {
2668 		verbose(env, "returning from callee:\n");
2669 		print_verifier_state(env, callee);
2670 		verbose(env, "to caller at %d:\n", *insn_idx);
2671 		print_verifier_state(env, caller);
2672 	}
2673 	/* clear everything in the callee */
2674 	free_func_state(callee);
2675 	state->frame[state->curframe + 1] = NULL;
2676 	return 0;
2677 }
2678 
2679 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2680 				   int func_id,
2681 				   struct bpf_call_arg_meta *meta)
2682 {
2683 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2684 
2685 	if (ret_type != RET_INTEGER ||
2686 	    (func_id != BPF_FUNC_get_stack &&
2687 	     func_id != BPF_FUNC_probe_read_str))
2688 		return;
2689 
2690 	ret_reg->smax_value = meta->msize_smax_value;
2691 	ret_reg->umax_value = meta->msize_umax_value;
2692 	__reg_deduce_bounds(ret_reg);
2693 	__reg_bound_offset(ret_reg);
2694 }
2695 
2696 static int
2697 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2698 		int func_id, int insn_idx)
2699 {
2700 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2701 
2702 	if (func_id != BPF_FUNC_tail_call &&
2703 	    func_id != BPF_FUNC_map_lookup_elem &&
2704 	    func_id != BPF_FUNC_map_update_elem &&
2705 	    func_id != BPF_FUNC_map_delete_elem &&
2706 	    func_id != BPF_FUNC_map_push_elem &&
2707 	    func_id != BPF_FUNC_map_pop_elem &&
2708 	    func_id != BPF_FUNC_map_peek_elem)
2709 		return 0;
2710 
2711 	if (meta->map_ptr == NULL) {
2712 		verbose(env, "kernel subsystem misconfigured verifier\n");
2713 		return -EINVAL;
2714 	}
2715 
2716 	if (!BPF_MAP_PTR(aux->map_state))
2717 		bpf_map_ptr_store(aux, meta->map_ptr,
2718 				  meta->map_ptr->unpriv_array);
2719 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2720 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2721 				  meta->map_ptr->unpriv_array);
2722 	return 0;
2723 }
2724 
2725 static int check_reference_leak(struct bpf_verifier_env *env)
2726 {
2727 	struct bpf_func_state *state = cur_func(env);
2728 	int i;
2729 
2730 	for (i = 0; i < state->acquired_refs; i++) {
2731 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2732 			state->refs[i].id, state->refs[i].insn_idx);
2733 	}
2734 	return state->acquired_refs ? -EINVAL : 0;
2735 }
2736 
2737 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2738 {
2739 	const struct bpf_func_proto *fn = NULL;
2740 	struct bpf_reg_state *regs;
2741 	struct bpf_call_arg_meta meta;
2742 	bool changes_data;
2743 	int i, err;
2744 
2745 	/* find function prototype */
2746 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2747 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2748 			func_id);
2749 		return -EINVAL;
2750 	}
2751 
2752 	if (env->ops->get_func_proto)
2753 		fn = env->ops->get_func_proto(func_id, env->prog);
2754 	if (!fn) {
2755 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2756 			func_id);
2757 		return -EINVAL;
2758 	}
2759 
2760 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2761 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2762 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2763 		return -EINVAL;
2764 	}
2765 
2766 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2767 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2768 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2769 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2770 			func_id_name(func_id), func_id);
2771 		return -EINVAL;
2772 	}
2773 
2774 	memset(&meta, 0, sizeof(meta));
2775 	meta.pkt_access = fn->pkt_access;
2776 
2777 	err = check_func_proto(fn);
2778 	if (err) {
2779 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2780 			func_id_name(func_id), func_id);
2781 		return err;
2782 	}
2783 
2784 	/* check args */
2785 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2786 	if (err)
2787 		return err;
2788 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2789 	if (err)
2790 		return err;
2791 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2792 	if (err)
2793 		return err;
2794 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2795 	if (err)
2796 		return err;
2797 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2798 	if (err)
2799 		return err;
2800 
2801 	err = record_func_map(env, &meta, func_id, insn_idx);
2802 	if (err)
2803 		return err;
2804 
2805 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2806 	 * is inferred from register state.
2807 	 */
2808 	for (i = 0; i < meta.access_size; i++) {
2809 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2810 				       BPF_WRITE, -1, false);
2811 		if (err)
2812 			return err;
2813 	}
2814 
2815 	if (func_id == BPF_FUNC_tail_call) {
2816 		err = check_reference_leak(env);
2817 		if (err) {
2818 			verbose(env, "tail_call would lead to reference leak\n");
2819 			return err;
2820 		}
2821 	} else if (is_release_function(func_id)) {
2822 		err = release_reference(env, &meta);
2823 		if (err)
2824 			return err;
2825 	}
2826 
2827 	regs = cur_regs(env);
2828 
2829 	/* check that flags argument in get_local_storage(map, flags) is 0,
2830 	 * this is required because get_local_storage() can't return an error.
2831 	 */
2832 	if (func_id == BPF_FUNC_get_local_storage &&
2833 	    !register_is_null(&regs[BPF_REG_2])) {
2834 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2835 		return -EINVAL;
2836 	}
2837 
2838 	/* reset caller saved regs */
2839 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2840 		mark_reg_not_init(env, regs, caller_saved[i]);
2841 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2842 	}
2843 
2844 	/* update return register (already marked as written above) */
2845 	if (fn->ret_type == RET_INTEGER) {
2846 		/* sets type to SCALAR_VALUE */
2847 		mark_reg_unknown(env, regs, BPF_REG_0);
2848 	} else if (fn->ret_type == RET_VOID) {
2849 		regs[BPF_REG_0].type = NOT_INIT;
2850 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2851 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2852 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2853 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2854 		else
2855 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2856 		/* There is no offset yet applied, variable or fixed */
2857 		mark_reg_known_zero(env, regs, BPF_REG_0);
2858 		/* remember map_ptr, so that check_map_access()
2859 		 * can check 'value_size' boundary of memory access
2860 		 * to map element returned from bpf_map_lookup_elem()
2861 		 */
2862 		if (meta.map_ptr == NULL) {
2863 			verbose(env,
2864 				"kernel subsystem misconfigured verifier\n");
2865 			return -EINVAL;
2866 		}
2867 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2868 		regs[BPF_REG_0].id = ++env->id_gen;
2869 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2870 		int id = acquire_reference_state(env, insn_idx);
2871 		if (id < 0)
2872 			return id;
2873 		mark_reg_known_zero(env, regs, BPF_REG_0);
2874 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2875 		regs[BPF_REG_0].id = id;
2876 	} else {
2877 		verbose(env, "unknown return type %d of func %s#%d\n",
2878 			fn->ret_type, func_id_name(func_id), func_id);
2879 		return -EINVAL;
2880 	}
2881 
2882 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2883 
2884 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2885 	if (err)
2886 		return err;
2887 
2888 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2889 		const char *err_str;
2890 
2891 #ifdef CONFIG_PERF_EVENTS
2892 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2893 		err_str = "cannot get callchain buffer for func %s#%d\n";
2894 #else
2895 		err = -ENOTSUPP;
2896 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2897 #endif
2898 		if (err) {
2899 			verbose(env, err_str, func_id_name(func_id), func_id);
2900 			return err;
2901 		}
2902 
2903 		env->prog->has_callchain_buf = true;
2904 	}
2905 
2906 	if (changes_data)
2907 		clear_all_pkt_pointers(env);
2908 	return 0;
2909 }
2910 
2911 static bool signed_add_overflows(s64 a, s64 b)
2912 {
2913 	/* Do the add in u64, where overflow is well-defined */
2914 	s64 res = (s64)((u64)a + (u64)b);
2915 
2916 	if (b < 0)
2917 		return res > a;
2918 	return res < a;
2919 }
2920 
2921 static bool signed_sub_overflows(s64 a, s64 b)
2922 {
2923 	/* Do the sub in u64, where overflow is well-defined */
2924 	s64 res = (s64)((u64)a - (u64)b);
2925 
2926 	if (b < 0)
2927 		return res < a;
2928 	return res > a;
2929 }
2930 
2931 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2932 				  const struct bpf_reg_state *reg,
2933 				  enum bpf_reg_type type)
2934 {
2935 	bool known = tnum_is_const(reg->var_off);
2936 	s64 val = reg->var_off.value;
2937 	s64 smin = reg->smin_value;
2938 
2939 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2940 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2941 			reg_type_str[type], val);
2942 		return false;
2943 	}
2944 
2945 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2946 		verbose(env, "%s pointer offset %d is not allowed\n",
2947 			reg_type_str[type], reg->off);
2948 		return false;
2949 	}
2950 
2951 	if (smin == S64_MIN) {
2952 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2953 			reg_type_str[type]);
2954 		return false;
2955 	}
2956 
2957 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2958 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2959 			smin, reg_type_str[type]);
2960 		return false;
2961 	}
2962 
2963 	return true;
2964 }
2965 
2966 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2967  * Caller should also handle BPF_MOV case separately.
2968  * If we return -EACCES, caller may want to try again treating pointer as a
2969  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2970  */
2971 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2972 				   struct bpf_insn *insn,
2973 				   const struct bpf_reg_state *ptr_reg,
2974 				   const struct bpf_reg_state *off_reg)
2975 {
2976 	struct bpf_verifier_state *vstate = env->cur_state;
2977 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2978 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2979 	bool known = tnum_is_const(off_reg->var_off);
2980 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2981 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2982 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2983 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2984 	u8 opcode = BPF_OP(insn->code);
2985 	u32 dst = insn->dst_reg;
2986 
2987 	dst_reg = &regs[dst];
2988 
2989 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2990 	    smin_val > smax_val || umin_val > umax_val) {
2991 		/* Taint dst register if offset had invalid bounds derived from
2992 		 * e.g. dead branches.
2993 		 */
2994 		__mark_reg_unknown(dst_reg);
2995 		return 0;
2996 	}
2997 
2998 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2999 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3000 		verbose(env,
3001 			"R%d 32-bit pointer arithmetic prohibited\n",
3002 			dst);
3003 		return -EACCES;
3004 	}
3005 
3006 	switch (ptr_reg->type) {
3007 	case PTR_TO_MAP_VALUE_OR_NULL:
3008 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3009 			dst, reg_type_str[ptr_reg->type]);
3010 		return -EACCES;
3011 	case CONST_PTR_TO_MAP:
3012 	case PTR_TO_PACKET_END:
3013 	case PTR_TO_SOCKET:
3014 	case PTR_TO_SOCKET_OR_NULL:
3015 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3016 			dst, reg_type_str[ptr_reg->type]);
3017 		return -EACCES;
3018 	default:
3019 		break;
3020 	}
3021 
3022 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3023 	 * The id may be overwritten later if we create a new variable offset.
3024 	 */
3025 	dst_reg->type = ptr_reg->type;
3026 	dst_reg->id = ptr_reg->id;
3027 
3028 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3029 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3030 		return -EINVAL;
3031 
3032 	switch (opcode) {
3033 	case BPF_ADD:
3034 		/* We can take a fixed offset as long as it doesn't overflow
3035 		 * the s32 'off' field
3036 		 */
3037 		if (known && (ptr_reg->off + smin_val ==
3038 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3039 			/* pointer += K.  Accumulate it into fixed offset */
3040 			dst_reg->smin_value = smin_ptr;
3041 			dst_reg->smax_value = smax_ptr;
3042 			dst_reg->umin_value = umin_ptr;
3043 			dst_reg->umax_value = umax_ptr;
3044 			dst_reg->var_off = ptr_reg->var_off;
3045 			dst_reg->off = ptr_reg->off + smin_val;
3046 			dst_reg->range = ptr_reg->range;
3047 			break;
3048 		}
3049 		/* A new variable offset is created.  Note that off_reg->off
3050 		 * == 0, since it's a scalar.
3051 		 * dst_reg gets the pointer type and since some positive
3052 		 * integer value was added to the pointer, give it a new 'id'
3053 		 * if it's a PTR_TO_PACKET.
3054 		 * this creates a new 'base' pointer, off_reg (variable) gets
3055 		 * added into the variable offset, and we copy the fixed offset
3056 		 * from ptr_reg.
3057 		 */
3058 		if (signed_add_overflows(smin_ptr, smin_val) ||
3059 		    signed_add_overflows(smax_ptr, smax_val)) {
3060 			dst_reg->smin_value = S64_MIN;
3061 			dst_reg->smax_value = S64_MAX;
3062 		} else {
3063 			dst_reg->smin_value = smin_ptr + smin_val;
3064 			dst_reg->smax_value = smax_ptr + smax_val;
3065 		}
3066 		if (umin_ptr + umin_val < umin_ptr ||
3067 		    umax_ptr + umax_val < umax_ptr) {
3068 			dst_reg->umin_value = 0;
3069 			dst_reg->umax_value = U64_MAX;
3070 		} else {
3071 			dst_reg->umin_value = umin_ptr + umin_val;
3072 			dst_reg->umax_value = umax_ptr + umax_val;
3073 		}
3074 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3075 		dst_reg->off = ptr_reg->off;
3076 		if (reg_is_pkt_pointer(ptr_reg)) {
3077 			dst_reg->id = ++env->id_gen;
3078 			/* something was added to pkt_ptr, set range to zero */
3079 			dst_reg->range = 0;
3080 		}
3081 		break;
3082 	case BPF_SUB:
3083 		if (dst_reg == off_reg) {
3084 			/* scalar -= pointer.  Creates an unknown scalar */
3085 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3086 				dst);
3087 			return -EACCES;
3088 		}
3089 		/* We don't allow subtraction from FP, because (according to
3090 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3091 		 * be able to deal with it.
3092 		 */
3093 		if (ptr_reg->type == PTR_TO_STACK) {
3094 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3095 				dst);
3096 			return -EACCES;
3097 		}
3098 		if (known && (ptr_reg->off - smin_val ==
3099 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3100 			/* pointer -= K.  Subtract it from fixed offset */
3101 			dst_reg->smin_value = smin_ptr;
3102 			dst_reg->smax_value = smax_ptr;
3103 			dst_reg->umin_value = umin_ptr;
3104 			dst_reg->umax_value = umax_ptr;
3105 			dst_reg->var_off = ptr_reg->var_off;
3106 			dst_reg->id = ptr_reg->id;
3107 			dst_reg->off = ptr_reg->off - smin_val;
3108 			dst_reg->range = ptr_reg->range;
3109 			break;
3110 		}
3111 		/* A new variable offset is created.  If the subtrahend is known
3112 		 * nonnegative, then any reg->range we had before is still good.
3113 		 */
3114 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3115 		    signed_sub_overflows(smax_ptr, smin_val)) {
3116 			/* Overflow possible, we know nothing */
3117 			dst_reg->smin_value = S64_MIN;
3118 			dst_reg->smax_value = S64_MAX;
3119 		} else {
3120 			dst_reg->smin_value = smin_ptr - smax_val;
3121 			dst_reg->smax_value = smax_ptr - smin_val;
3122 		}
3123 		if (umin_ptr < umax_val) {
3124 			/* Overflow possible, we know nothing */
3125 			dst_reg->umin_value = 0;
3126 			dst_reg->umax_value = U64_MAX;
3127 		} else {
3128 			/* Cannot overflow (as long as bounds are consistent) */
3129 			dst_reg->umin_value = umin_ptr - umax_val;
3130 			dst_reg->umax_value = umax_ptr - umin_val;
3131 		}
3132 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3133 		dst_reg->off = ptr_reg->off;
3134 		if (reg_is_pkt_pointer(ptr_reg)) {
3135 			dst_reg->id = ++env->id_gen;
3136 			/* something was added to pkt_ptr, set range to zero */
3137 			if (smin_val < 0)
3138 				dst_reg->range = 0;
3139 		}
3140 		break;
3141 	case BPF_AND:
3142 	case BPF_OR:
3143 	case BPF_XOR:
3144 		/* bitwise ops on pointers are troublesome, prohibit. */
3145 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3146 			dst, bpf_alu_string[opcode >> 4]);
3147 		return -EACCES;
3148 	default:
3149 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3150 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3151 			dst, bpf_alu_string[opcode >> 4]);
3152 		return -EACCES;
3153 	}
3154 
3155 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3156 		return -EINVAL;
3157 
3158 	__update_reg_bounds(dst_reg);
3159 	__reg_deduce_bounds(dst_reg);
3160 	__reg_bound_offset(dst_reg);
3161 	return 0;
3162 }
3163 
3164 /* WARNING: This function does calculations on 64-bit values, but the actual
3165  * execution may occur on 32-bit values. Therefore, things like bitshifts
3166  * need extra checks in the 32-bit case.
3167  */
3168 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3169 				      struct bpf_insn *insn,
3170 				      struct bpf_reg_state *dst_reg,
3171 				      struct bpf_reg_state src_reg)
3172 {
3173 	struct bpf_reg_state *regs = cur_regs(env);
3174 	u8 opcode = BPF_OP(insn->code);
3175 	bool src_known, dst_known;
3176 	s64 smin_val, smax_val;
3177 	u64 umin_val, umax_val;
3178 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3179 
3180 	if (insn_bitness == 32) {
3181 		/* Relevant for 32-bit RSH: Information can propagate towards
3182 		 * LSB, so it isn't sufficient to only truncate the output to
3183 		 * 32 bits.
3184 		 */
3185 		coerce_reg_to_size(dst_reg, 4);
3186 		coerce_reg_to_size(&src_reg, 4);
3187 	}
3188 
3189 	smin_val = src_reg.smin_value;
3190 	smax_val = src_reg.smax_value;
3191 	umin_val = src_reg.umin_value;
3192 	umax_val = src_reg.umax_value;
3193 	src_known = tnum_is_const(src_reg.var_off);
3194 	dst_known = tnum_is_const(dst_reg->var_off);
3195 
3196 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3197 	    smin_val > smax_val || umin_val > umax_val) {
3198 		/* Taint dst register if offset had invalid bounds derived from
3199 		 * e.g. dead branches.
3200 		 */
3201 		__mark_reg_unknown(dst_reg);
3202 		return 0;
3203 	}
3204 
3205 	if (!src_known &&
3206 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3207 		__mark_reg_unknown(dst_reg);
3208 		return 0;
3209 	}
3210 
3211 	switch (opcode) {
3212 	case BPF_ADD:
3213 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3214 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3215 			dst_reg->smin_value = S64_MIN;
3216 			dst_reg->smax_value = S64_MAX;
3217 		} else {
3218 			dst_reg->smin_value += smin_val;
3219 			dst_reg->smax_value += smax_val;
3220 		}
3221 		if (dst_reg->umin_value + umin_val < umin_val ||
3222 		    dst_reg->umax_value + umax_val < umax_val) {
3223 			dst_reg->umin_value = 0;
3224 			dst_reg->umax_value = U64_MAX;
3225 		} else {
3226 			dst_reg->umin_value += umin_val;
3227 			dst_reg->umax_value += umax_val;
3228 		}
3229 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3230 		break;
3231 	case BPF_SUB:
3232 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3233 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3234 			/* Overflow possible, we know nothing */
3235 			dst_reg->smin_value = S64_MIN;
3236 			dst_reg->smax_value = S64_MAX;
3237 		} else {
3238 			dst_reg->smin_value -= smax_val;
3239 			dst_reg->smax_value -= smin_val;
3240 		}
3241 		if (dst_reg->umin_value < umax_val) {
3242 			/* Overflow possible, we know nothing */
3243 			dst_reg->umin_value = 0;
3244 			dst_reg->umax_value = U64_MAX;
3245 		} else {
3246 			/* Cannot overflow (as long as bounds are consistent) */
3247 			dst_reg->umin_value -= umax_val;
3248 			dst_reg->umax_value -= umin_val;
3249 		}
3250 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3251 		break;
3252 	case BPF_MUL:
3253 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3254 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3255 			/* Ain't nobody got time to multiply that sign */
3256 			__mark_reg_unbounded(dst_reg);
3257 			__update_reg_bounds(dst_reg);
3258 			break;
3259 		}
3260 		/* Both values are positive, so we can work with unsigned and
3261 		 * copy the result to signed (unless it exceeds S64_MAX).
3262 		 */
3263 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3264 			/* Potential overflow, we know nothing */
3265 			__mark_reg_unbounded(dst_reg);
3266 			/* (except what we can learn from the var_off) */
3267 			__update_reg_bounds(dst_reg);
3268 			break;
3269 		}
3270 		dst_reg->umin_value *= umin_val;
3271 		dst_reg->umax_value *= umax_val;
3272 		if (dst_reg->umax_value > S64_MAX) {
3273 			/* Overflow possible, we know nothing */
3274 			dst_reg->smin_value = S64_MIN;
3275 			dst_reg->smax_value = S64_MAX;
3276 		} else {
3277 			dst_reg->smin_value = dst_reg->umin_value;
3278 			dst_reg->smax_value = dst_reg->umax_value;
3279 		}
3280 		break;
3281 	case BPF_AND:
3282 		if (src_known && dst_known) {
3283 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3284 						  src_reg.var_off.value);
3285 			break;
3286 		}
3287 		/* We get our minimum from the var_off, since that's inherently
3288 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3289 		 */
3290 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3291 		dst_reg->umin_value = dst_reg->var_off.value;
3292 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3293 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3294 			/* Lose signed bounds when ANDing negative numbers,
3295 			 * ain't nobody got time for that.
3296 			 */
3297 			dst_reg->smin_value = S64_MIN;
3298 			dst_reg->smax_value = S64_MAX;
3299 		} else {
3300 			/* ANDing two positives gives a positive, so safe to
3301 			 * cast result into s64.
3302 			 */
3303 			dst_reg->smin_value = dst_reg->umin_value;
3304 			dst_reg->smax_value = dst_reg->umax_value;
3305 		}
3306 		/* We may learn something more from the var_off */
3307 		__update_reg_bounds(dst_reg);
3308 		break;
3309 	case BPF_OR:
3310 		if (src_known && dst_known) {
3311 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3312 						  src_reg.var_off.value);
3313 			break;
3314 		}
3315 		/* We get our maximum from the var_off, and our minimum is the
3316 		 * maximum of the operands' minima
3317 		 */
3318 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3319 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3320 		dst_reg->umax_value = dst_reg->var_off.value |
3321 				      dst_reg->var_off.mask;
3322 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3323 			/* Lose signed bounds when ORing negative numbers,
3324 			 * ain't nobody got time for that.
3325 			 */
3326 			dst_reg->smin_value = S64_MIN;
3327 			dst_reg->smax_value = S64_MAX;
3328 		} else {
3329 			/* ORing two positives gives a positive, so safe to
3330 			 * cast result into s64.
3331 			 */
3332 			dst_reg->smin_value = dst_reg->umin_value;
3333 			dst_reg->smax_value = dst_reg->umax_value;
3334 		}
3335 		/* We may learn something more from the var_off */
3336 		__update_reg_bounds(dst_reg);
3337 		break;
3338 	case BPF_LSH:
3339 		if (umax_val >= insn_bitness) {
3340 			/* Shifts greater than 31 or 63 are undefined.
3341 			 * This includes shifts by a negative number.
3342 			 */
3343 			mark_reg_unknown(env, regs, insn->dst_reg);
3344 			break;
3345 		}
3346 		/* We lose all sign bit information (except what we can pick
3347 		 * up from var_off)
3348 		 */
3349 		dst_reg->smin_value = S64_MIN;
3350 		dst_reg->smax_value = S64_MAX;
3351 		/* If we might shift our top bit out, then we know nothing */
3352 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3353 			dst_reg->umin_value = 0;
3354 			dst_reg->umax_value = U64_MAX;
3355 		} else {
3356 			dst_reg->umin_value <<= umin_val;
3357 			dst_reg->umax_value <<= umax_val;
3358 		}
3359 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3360 		/* We may learn something more from the var_off */
3361 		__update_reg_bounds(dst_reg);
3362 		break;
3363 	case BPF_RSH:
3364 		if (umax_val >= insn_bitness) {
3365 			/* Shifts greater than 31 or 63 are undefined.
3366 			 * This includes shifts by a negative number.
3367 			 */
3368 			mark_reg_unknown(env, regs, insn->dst_reg);
3369 			break;
3370 		}
3371 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3372 		 * be negative, then either:
3373 		 * 1) src_reg might be zero, so the sign bit of the result is
3374 		 *    unknown, so we lose our signed bounds
3375 		 * 2) it's known negative, thus the unsigned bounds capture the
3376 		 *    signed bounds
3377 		 * 3) the signed bounds cross zero, so they tell us nothing
3378 		 *    about the result
3379 		 * If the value in dst_reg is known nonnegative, then again the
3380 		 * unsigned bounts capture the signed bounds.
3381 		 * Thus, in all cases it suffices to blow away our signed bounds
3382 		 * and rely on inferring new ones from the unsigned bounds and
3383 		 * var_off of the result.
3384 		 */
3385 		dst_reg->smin_value = S64_MIN;
3386 		dst_reg->smax_value = S64_MAX;
3387 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3388 		dst_reg->umin_value >>= umax_val;
3389 		dst_reg->umax_value >>= umin_val;
3390 		/* We may learn something more from the var_off */
3391 		__update_reg_bounds(dst_reg);
3392 		break;
3393 	case BPF_ARSH:
3394 		if (umax_val >= insn_bitness) {
3395 			/* Shifts greater than 31 or 63 are undefined.
3396 			 * This includes shifts by a negative number.
3397 			 */
3398 			mark_reg_unknown(env, regs, insn->dst_reg);
3399 			break;
3400 		}
3401 
3402 		/* Upon reaching here, src_known is true and
3403 		 * umax_val is equal to umin_val.
3404 		 */
3405 		dst_reg->smin_value >>= umin_val;
3406 		dst_reg->smax_value >>= umin_val;
3407 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3408 
3409 		/* blow away the dst_reg umin_value/umax_value and rely on
3410 		 * dst_reg var_off to refine the result.
3411 		 */
3412 		dst_reg->umin_value = 0;
3413 		dst_reg->umax_value = U64_MAX;
3414 		__update_reg_bounds(dst_reg);
3415 		break;
3416 	default:
3417 		mark_reg_unknown(env, regs, insn->dst_reg);
3418 		break;
3419 	}
3420 
3421 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3422 		/* 32-bit ALU ops are (32,32)->32 */
3423 		coerce_reg_to_size(dst_reg, 4);
3424 	}
3425 
3426 	__reg_deduce_bounds(dst_reg);
3427 	__reg_bound_offset(dst_reg);
3428 	return 0;
3429 }
3430 
3431 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3432  * and var_off.
3433  */
3434 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3435 				   struct bpf_insn *insn)
3436 {
3437 	struct bpf_verifier_state *vstate = env->cur_state;
3438 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3439 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3440 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3441 	u8 opcode = BPF_OP(insn->code);
3442 
3443 	dst_reg = &regs[insn->dst_reg];
3444 	src_reg = NULL;
3445 	if (dst_reg->type != SCALAR_VALUE)
3446 		ptr_reg = dst_reg;
3447 	if (BPF_SRC(insn->code) == BPF_X) {
3448 		src_reg = &regs[insn->src_reg];
3449 		if (src_reg->type != SCALAR_VALUE) {
3450 			if (dst_reg->type != SCALAR_VALUE) {
3451 				/* Combining two pointers by any ALU op yields
3452 				 * an arbitrary scalar. Disallow all math except
3453 				 * pointer subtraction
3454 				 */
3455 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3456 					mark_reg_unknown(env, regs, insn->dst_reg);
3457 					return 0;
3458 				}
3459 				verbose(env, "R%d pointer %s pointer prohibited\n",
3460 					insn->dst_reg,
3461 					bpf_alu_string[opcode >> 4]);
3462 				return -EACCES;
3463 			} else {
3464 				/* scalar += pointer
3465 				 * This is legal, but we have to reverse our
3466 				 * src/dest handling in computing the range
3467 				 */
3468 				return adjust_ptr_min_max_vals(env, insn,
3469 							       src_reg, dst_reg);
3470 			}
3471 		} else if (ptr_reg) {
3472 			/* pointer += scalar */
3473 			return adjust_ptr_min_max_vals(env, insn,
3474 						       dst_reg, src_reg);
3475 		}
3476 	} else {
3477 		/* Pretend the src is a reg with a known value, since we only
3478 		 * need to be able to read from this state.
3479 		 */
3480 		off_reg.type = SCALAR_VALUE;
3481 		__mark_reg_known(&off_reg, insn->imm);
3482 		src_reg = &off_reg;
3483 		if (ptr_reg) /* pointer += K */
3484 			return adjust_ptr_min_max_vals(env, insn,
3485 						       ptr_reg, src_reg);
3486 	}
3487 
3488 	/* Got here implies adding two SCALAR_VALUEs */
3489 	if (WARN_ON_ONCE(ptr_reg)) {
3490 		print_verifier_state(env, state);
3491 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3492 		return -EINVAL;
3493 	}
3494 	if (WARN_ON(!src_reg)) {
3495 		print_verifier_state(env, state);
3496 		verbose(env, "verifier internal error: no src_reg\n");
3497 		return -EINVAL;
3498 	}
3499 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3500 }
3501 
3502 /* check validity of 32-bit and 64-bit arithmetic operations */
3503 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3504 {
3505 	struct bpf_reg_state *regs = cur_regs(env);
3506 	u8 opcode = BPF_OP(insn->code);
3507 	int err;
3508 
3509 	if (opcode == BPF_END || opcode == BPF_NEG) {
3510 		if (opcode == BPF_NEG) {
3511 			if (BPF_SRC(insn->code) != 0 ||
3512 			    insn->src_reg != BPF_REG_0 ||
3513 			    insn->off != 0 || insn->imm != 0) {
3514 				verbose(env, "BPF_NEG uses reserved fields\n");
3515 				return -EINVAL;
3516 			}
3517 		} else {
3518 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3519 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3520 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3521 				verbose(env, "BPF_END uses reserved fields\n");
3522 				return -EINVAL;
3523 			}
3524 		}
3525 
3526 		/* check src operand */
3527 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3528 		if (err)
3529 			return err;
3530 
3531 		if (is_pointer_value(env, insn->dst_reg)) {
3532 			verbose(env, "R%d pointer arithmetic prohibited\n",
3533 				insn->dst_reg);
3534 			return -EACCES;
3535 		}
3536 
3537 		/* check dest operand */
3538 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3539 		if (err)
3540 			return err;
3541 
3542 	} else if (opcode == BPF_MOV) {
3543 
3544 		if (BPF_SRC(insn->code) == BPF_X) {
3545 			if (insn->imm != 0 || insn->off != 0) {
3546 				verbose(env, "BPF_MOV uses reserved fields\n");
3547 				return -EINVAL;
3548 			}
3549 
3550 			/* check src operand */
3551 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3552 			if (err)
3553 				return err;
3554 		} else {
3555 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3556 				verbose(env, "BPF_MOV uses reserved fields\n");
3557 				return -EINVAL;
3558 			}
3559 		}
3560 
3561 		/* check dest operand, mark as required later */
3562 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3563 		if (err)
3564 			return err;
3565 
3566 		if (BPF_SRC(insn->code) == BPF_X) {
3567 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3568 				/* case: R1 = R2
3569 				 * copy register state to dest reg
3570 				 */
3571 				regs[insn->dst_reg] = regs[insn->src_reg];
3572 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3573 			} else {
3574 				/* R1 = (u32) R2 */
3575 				if (is_pointer_value(env, insn->src_reg)) {
3576 					verbose(env,
3577 						"R%d partial copy of pointer\n",
3578 						insn->src_reg);
3579 					return -EACCES;
3580 				}
3581 				mark_reg_unknown(env, regs, insn->dst_reg);
3582 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3583 			}
3584 		} else {
3585 			/* case: R = imm
3586 			 * remember the value we stored into this reg
3587 			 */
3588 			/* clear any state __mark_reg_known doesn't set */
3589 			mark_reg_unknown(env, regs, insn->dst_reg);
3590 			regs[insn->dst_reg].type = SCALAR_VALUE;
3591 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3592 				__mark_reg_known(regs + insn->dst_reg,
3593 						 insn->imm);
3594 			} else {
3595 				__mark_reg_known(regs + insn->dst_reg,
3596 						 (u32)insn->imm);
3597 			}
3598 		}
3599 
3600 	} else if (opcode > BPF_END) {
3601 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3602 		return -EINVAL;
3603 
3604 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3605 
3606 		if (BPF_SRC(insn->code) == BPF_X) {
3607 			if (insn->imm != 0 || insn->off != 0) {
3608 				verbose(env, "BPF_ALU uses reserved fields\n");
3609 				return -EINVAL;
3610 			}
3611 			/* check src1 operand */
3612 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3613 			if (err)
3614 				return err;
3615 		} else {
3616 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3617 				verbose(env, "BPF_ALU uses reserved fields\n");
3618 				return -EINVAL;
3619 			}
3620 		}
3621 
3622 		/* check src2 operand */
3623 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3624 		if (err)
3625 			return err;
3626 
3627 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3628 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3629 			verbose(env, "div by zero\n");
3630 			return -EINVAL;
3631 		}
3632 
3633 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3634 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3635 			return -EINVAL;
3636 		}
3637 
3638 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3639 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3640 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3641 
3642 			if (insn->imm < 0 || insn->imm >= size) {
3643 				verbose(env, "invalid shift %d\n", insn->imm);
3644 				return -EINVAL;
3645 			}
3646 		}
3647 
3648 		/* check dest operand */
3649 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3650 		if (err)
3651 			return err;
3652 
3653 		return adjust_reg_min_max_vals(env, insn);
3654 	}
3655 
3656 	return 0;
3657 }
3658 
3659 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3660 				   struct bpf_reg_state *dst_reg,
3661 				   enum bpf_reg_type type,
3662 				   bool range_right_open)
3663 {
3664 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3665 	struct bpf_reg_state *regs = state->regs, *reg;
3666 	u16 new_range;
3667 	int i, j;
3668 
3669 	if (dst_reg->off < 0 ||
3670 	    (dst_reg->off == 0 && range_right_open))
3671 		/* This doesn't give us any range */
3672 		return;
3673 
3674 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3675 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3676 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3677 		 * than pkt_end, but that's because it's also less than pkt.
3678 		 */
3679 		return;
3680 
3681 	new_range = dst_reg->off;
3682 	if (range_right_open)
3683 		new_range--;
3684 
3685 	/* Examples for register markings:
3686 	 *
3687 	 * pkt_data in dst register:
3688 	 *
3689 	 *   r2 = r3;
3690 	 *   r2 += 8;
3691 	 *   if (r2 > pkt_end) goto <handle exception>
3692 	 *   <access okay>
3693 	 *
3694 	 *   r2 = r3;
3695 	 *   r2 += 8;
3696 	 *   if (r2 < pkt_end) goto <access okay>
3697 	 *   <handle exception>
3698 	 *
3699 	 *   Where:
3700 	 *     r2 == dst_reg, pkt_end == src_reg
3701 	 *     r2=pkt(id=n,off=8,r=0)
3702 	 *     r3=pkt(id=n,off=0,r=0)
3703 	 *
3704 	 * pkt_data in src register:
3705 	 *
3706 	 *   r2 = r3;
3707 	 *   r2 += 8;
3708 	 *   if (pkt_end >= r2) goto <access okay>
3709 	 *   <handle exception>
3710 	 *
3711 	 *   r2 = r3;
3712 	 *   r2 += 8;
3713 	 *   if (pkt_end <= r2) goto <handle exception>
3714 	 *   <access okay>
3715 	 *
3716 	 *   Where:
3717 	 *     pkt_end == dst_reg, r2 == src_reg
3718 	 *     r2=pkt(id=n,off=8,r=0)
3719 	 *     r3=pkt(id=n,off=0,r=0)
3720 	 *
3721 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3722 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3723 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3724 	 * the check.
3725 	 */
3726 
3727 	/* If our ids match, then we must have the same max_value.  And we
3728 	 * don't care about the other reg's fixed offset, since if it's too big
3729 	 * the range won't allow anything.
3730 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3731 	 */
3732 	for (i = 0; i < MAX_BPF_REG; i++)
3733 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3734 			/* keep the maximum range already checked */
3735 			regs[i].range = max(regs[i].range, new_range);
3736 
3737 	for (j = 0; j <= vstate->curframe; j++) {
3738 		state = vstate->frame[j];
3739 		bpf_for_each_spilled_reg(i, state, reg) {
3740 			if (!reg)
3741 				continue;
3742 			if (reg->type == type && reg->id == dst_reg->id)
3743 				reg->range = max(reg->range, new_range);
3744 		}
3745 	}
3746 }
3747 
3748 /* Adjusts the register min/max values in the case that the dst_reg is the
3749  * variable register that we are working on, and src_reg is a constant or we're
3750  * simply doing a BPF_K check.
3751  * In JEQ/JNE cases we also adjust the var_off values.
3752  */
3753 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3754 			    struct bpf_reg_state *false_reg, u64 val,
3755 			    u8 opcode)
3756 {
3757 	/* If the dst_reg is a pointer, we can't learn anything about its
3758 	 * variable offset from the compare (unless src_reg were a pointer into
3759 	 * the same object, but we don't bother with that.
3760 	 * Since false_reg and true_reg have the same type by construction, we
3761 	 * only need to check one of them for pointerness.
3762 	 */
3763 	if (__is_pointer_value(false, false_reg))
3764 		return;
3765 
3766 	switch (opcode) {
3767 	case BPF_JEQ:
3768 		/* If this is false then we know nothing Jon Snow, but if it is
3769 		 * true then we know for sure.
3770 		 */
3771 		__mark_reg_known(true_reg, val);
3772 		break;
3773 	case BPF_JNE:
3774 		/* If this is true we know nothing Jon Snow, but if it is false
3775 		 * we know the value for sure;
3776 		 */
3777 		__mark_reg_known(false_reg, val);
3778 		break;
3779 	case BPF_JGT:
3780 		false_reg->umax_value = min(false_reg->umax_value, val);
3781 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3782 		break;
3783 	case BPF_JSGT:
3784 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3785 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3786 		break;
3787 	case BPF_JLT:
3788 		false_reg->umin_value = max(false_reg->umin_value, val);
3789 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3790 		break;
3791 	case BPF_JSLT:
3792 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3793 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3794 		break;
3795 	case BPF_JGE:
3796 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3797 		true_reg->umin_value = max(true_reg->umin_value, val);
3798 		break;
3799 	case BPF_JSGE:
3800 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3801 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3802 		break;
3803 	case BPF_JLE:
3804 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3805 		true_reg->umax_value = min(true_reg->umax_value, val);
3806 		break;
3807 	case BPF_JSLE:
3808 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3809 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3810 		break;
3811 	default:
3812 		break;
3813 	}
3814 
3815 	__reg_deduce_bounds(false_reg);
3816 	__reg_deduce_bounds(true_reg);
3817 	/* We might have learned some bits from the bounds. */
3818 	__reg_bound_offset(false_reg);
3819 	__reg_bound_offset(true_reg);
3820 	/* Intersecting with the old var_off might have improved our bounds
3821 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3822 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3823 	 */
3824 	__update_reg_bounds(false_reg);
3825 	__update_reg_bounds(true_reg);
3826 }
3827 
3828 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3829  * the variable reg.
3830  */
3831 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3832 				struct bpf_reg_state *false_reg, u64 val,
3833 				u8 opcode)
3834 {
3835 	if (__is_pointer_value(false, false_reg))
3836 		return;
3837 
3838 	switch (opcode) {
3839 	case BPF_JEQ:
3840 		/* If this is false then we know nothing Jon Snow, but if it is
3841 		 * true then we know for sure.
3842 		 */
3843 		__mark_reg_known(true_reg, val);
3844 		break;
3845 	case BPF_JNE:
3846 		/* If this is true we know nothing Jon Snow, but if it is false
3847 		 * we know the value for sure;
3848 		 */
3849 		__mark_reg_known(false_reg, val);
3850 		break;
3851 	case BPF_JGT:
3852 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3853 		false_reg->umin_value = max(false_reg->umin_value, val);
3854 		break;
3855 	case BPF_JSGT:
3856 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3857 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3858 		break;
3859 	case BPF_JLT:
3860 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3861 		false_reg->umax_value = min(false_reg->umax_value, val);
3862 		break;
3863 	case BPF_JSLT:
3864 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3865 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3866 		break;
3867 	case BPF_JGE:
3868 		true_reg->umax_value = min(true_reg->umax_value, val);
3869 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3870 		break;
3871 	case BPF_JSGE:
3872 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3873 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3874 		break;
3875 	case BPF_JLE:
3876 		true_reg->umin_value = max(true_reg->umin_value, val);
3877 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3878 		break;
3879 	case BPF_JSLE:
3880 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3881 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3882 		break;
3883 	default:
3884 		break;
3885 	}
3886 
3887 	__reg_deduce_bounds(false_reg);
3888 	__reg_deduce_bounds(true_reg);
3889 	/* We might have learned some bits from the bounds. */
3890 	__reg_bound_offset(false_reg);
3891 	__reg_bound_offset(true_reg);
3892 	/* Intersecting with the old var_off might have improved our bounds
3893 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3894 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3895 	 */
3896 	__update_reg_bounds(false_reg);
3897 	__update_reg_bounds(true_reg);
3898 }
3899 
3900 /* Regs are known to be equal, so intersect their min/max/var_off */
3901 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3902 				  struct bpf_reg_state *dst_reg)
3903 {
3904 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3905 							dst_reg->umin_value);
3906 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3907 							dst_reg->umax_value);
3908 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3909 							dst_reg->smin_value);
3910 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3911 							dst_reg->smax_value);
3912 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3913 							     dst_reg->var_off);
3914 	/* We might have learned new bounds from the var_off. */
3915 	__update_reg_bounds(src_reg);
3916 	__update_reg_bounds(dst_reg);
3917 	/* We might have learned something about the sign bit. */
3918 	__reg_deduce_bounds(src_reg);
3919 	__reg_deduce_bounds(dst_reg);
3920 	/* We might have learned some bits from the bounds. */
3921 	__reg_bound_offset(src_reg);
3922 	__reg_bound_offset(dst_reg);
3923 	/* Intersecting with the old var_off might have improved our bounds
3924 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3925 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3926 	 */
3927 	__update_reg_bounds(src_reg);
3928 	__update_reg_bounds(dst_reg);
3929 }
3930 
3931 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3932 				struct bpf_reg_state *true_dst,
3933 				struct bpf_reg_state *false_src,
3934 				struct bpf_reg_state *false_dst,
3935 				u8 opcode)
3936 {
3937 	switch (opcode) {
3938 	case BPF_JEQ:
3939 		__reg_combine_min_max(true_src, true_dst);
3940 		break;
3941 	case BPF_JNE:
3942 		__reg_combine_min_max(false_src, false_dst);
3943 		break;
3944 	}
3945 }
3946 
3947 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3948 				 struct bpf_reg_state *reg, u32 id,
3949 				 bool is_null)
3950 {
3951 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
3952 		/* Old offset (both fixed and variable parts) should
3953 		 * have been known-zero, because we don't allow pointer
3954 		 * arithmetic on pointers that might be NULL.
3955 		 */
3956 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3957 				 !tnum_equals_const(reg->var_off, 0) ||
3958 				 reg->off)) {
3959 			__mark_reg_known_zero(reg);
3960 			reg->off = 0;
3961 		}
3962 		if (is_null) {
3963 			reg->type = SCALAR_VALUE;
3964 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3965 			if (reg->map_ptr->inner_map_meta) {
3966 				reg->type = CONST_PTR_TO_MAP;
3967 				reg->map_ptr = reg->map_ptr->inner_map_meta;
3968 			} else {
3969 				reg->type = PTR_TO_MAP_VALUE;
3970 			}
3971 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3972 			reg->type = PTR_TO_SOCKET;
3973 		}
3974 		if (is_null || !reg_is_refcounted(reg)) {
3975 			/* We don't need id from this point onwards anymore,
3976 			 * thus we should better reset it, so that state
3977 			 * pruning has chances to take effect.
3978 			 */
3979 			reg->id = 0;
3980 		}
3981 	}
3982 }
3983 
3984 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3985  * be folded together at some point.
3986  */
3987 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
3988 				  bool is_null)
3989 {
3990 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3991 	struct bpf_reg_state *reg, *regs = state->regs;
3992 	u32 id = regs[regno].id;
3993 	int i, j;
3994 
3995 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
3996 		__release_reference_state(state, id);
3997 
3998 	for (i = 0; i < MAX_BPF_REG; i++)
3999 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4000 
4001 	for (j = 0; j <= vstate->curframe; j++) {
4002 		state = vstate->frame[j];
4003 		bpf_for_each_spilled_reg(i, state, reg) {
4004 			if (!reg)
4005 				continue;
4006 			mark_ptr_or_null_reg(state, reg, id, is_null);
4007 		}
4008 	}
4009 }
4010 
4011 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4012 				   struct bpf_reg_state *dst_reg,
4013 				   struct bpf_reg_state *src_reg,
4014 				   struct bpf_verifier_state *this_branch,
4015 				   struct bpf_verifier_state *other_branch)
4016 {
4017 	if (BPF_SRC(insn->code) != BPF_X)
4018 		return false;
4019 
4020 	switch (BPF_OP(insn->code)) {
4021 	case BPF_JGT:
4022 		if ((dst_reg->type == PTR_TO_PACKET &&
4023 		     src_reg->type == PTR_TO_PACKET_END) ||
4024 		    (dst_reg->type == PTR_TO_PACKET_META &&
4025 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4026 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4027 			find_good_pkt_pointers(this_branch, dst_reg,
4028 					       dst_reg->type, false);
4029 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4030 			    src_reg->type == PTR_TO_PACKET) ||
4031 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4032 			    src_reg->type == PTR_TO_PACKET_META)) {
4033 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4034 			find_good_pkt_pointers(other_branch, src_reg,
4035 					       src_reg->type, true);
4036 		} else {
4037 			return false;
4038 		}
4039 		break;
4040 	case BPF_JLT:
4041 		if ((dst_reg->type == PTR_TO_PACKET &&
4042 		     src_reg->type == PTR_TO_PACKET_END) ||
4043 		    (dst_reg->type == PTR_TO_PACKET_META &&
4044 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4045 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4046 			find_good_pkt_pointers(other_branch, dst_reg,
4047 					       dst_reg->type, true);
4048 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4049 			    src_reg->type == PTR_TO_PACKET) ||
4050 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4051 			    src_reg->type == PTR_TO_PACKET_META)) {
4052 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4053 			find_good_pkt_pointers(this_branch, src_reg,
4054 					       src_reg->type, false);
4055 		} else {
4056 			return false;
4057 		}
4058 		break;
4059 	case BPF_JGE:
4060 		if ((dst_reg->type == PTR_TO_PACKET &&
4061 		     src_reg->type == PTR_TO_PACKET_END) ||
4062 		    (dst_reg->type == PTR_TO_PACKET_META &&
4063 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4064 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4065 			find_good_pkt_pointers(this_branch, dst_reg,
4066 					       dst_reg->type, true);
4067 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4068 			    src_reg->type == PTR_TO_PACKET) ||
4069 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4070 			    src_reg->type == PTR_TO_PACKET_META)) {
4071 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4072 			find_good_pkt_pointers(other_branch, src_reg,
4073 					       src_reg->type, false);
4074 		} else {
4075 			return false;
4076 		}
4077 		break;
4078 	case BPF_JLE:
4079 		if ((dst_reg->type == PTR_TO_PACKET &&
4080 		     src_reg->type == PTR_TO_PACKET_END) ||
4081 		    (dst_reg->type == PTR_TO_PACKET_META &&
4082 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4083 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4084 			find_good_pkt_pointers(other_branch, dst_reg,
4085 					       dst_reg->type, false);
4086 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4087 			    src_reg->type == PTR_TO_PACKET) ||
4088 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4089 			    src_reg->type == PTR_TO_PACKET_META)) {
4090 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4091 			find_good_pkt_pointers(this_branch, src_reg,
4092 					       src_reg->type, true);
4093 		} else {
4094 			return false;
4095 		}
4096 		break;
4097 	default:
4098 		return false;
4099 	}
4100 
4101 	return true;
4102 }
4103 
4104 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4105 			     struct bpf_insn *insn, int *insn_idx)
4106 {
4107 	struct bpf_verifier_state *this_branch = env->cur_state;
4108 	struct bpf_verifier_state *other_branch;
4109 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4110 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4111 	u8 opcode = BPF_OP(insn->code);
4112 	int err;
4113 
4114 	if (opcode > BPF_JSLE) {
4115 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4116 		return -EINVAL;
4117 	}
4118 
4119 	if (BPF_SRC(insn->code) == BPF_X) {
4120 		if (insn->imm != 0) {
4121 			verbose(env, "BPF_JMP uses reserved fields\n");
4122 			return -EINVAL;
4123 		}
4124 
4125 		/* check src1 operand */
4126 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4127 		if (err)
4128 			return err;
4129 
4130 		if (is_pointer_value(env, insn->src_reg)) {
4131 			verbose(env, "R%d pointer comparison prohibited\n",
4132 				insn->src_reg);
4133 			return -EACCES;
4134 		}
4135 	} else {
4136 		if (insn->src_reg != BPF_REG_0) {
4137 			verbose(env, "BPF_JMP uses reserved fields\n");
4138 			return -EINVAL;
4139 		}
4140 	}
4141 
4142 	/* check src2 operand */
4143 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4144 	if (err)
4145 		return err;
4146 
4147 	dst_reg = &regs[insn->dst_reg];
4148 
4149 	/* detect if R == 0 where R was initialized to zero earlier */
4150 	if (BPF_SRC(insn->code) == BPF_K &&
4151 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4152 	    dst_reg->type == SCALAR_VALUE &&
4153 	    tnum_is_const(dst_reg->var_off)) {
4154 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4155 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
4156 			/* if (imm == imm) goto pc+off;
4157 			 * only follow the goto, ignore fall-through
4158 			 */
4159 			*insn_idx += insn->off;
4160 			return 0;
4161 		} else {
4162 			/* if (imm != imm) goto pc+off;
4163 			 * only follow fall-through branch, since
4164 			 * that's where the program will go
4165 			 */
4166 			return 0;
4167 		}
4168 	}
4169 
4170 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4171 	if (!other_branch)
4172 		return -EFAULT;
4173 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4174 
4175 	/* detect if we are comparing against a constant value so we can adjust
4176 	 * our min/max values for our dst register.
4177 	 * this is only legit if both are scalars (or pointers to the same
4178 	 * object, I suppose, but we don't support that right now), because
4179 	 * otherwise the different base pointers mean the offsets aren't
4180 	 * comparable.
4181 	 */
4182 	if (BPF_SRC(insn->code) == BPF_X) {
4183 		if (dst_reg->type == SCALAR_VALUE &&
4184 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4185 			if (tnum_is_const(regs[insn->src_reg].var_off))
4186 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4187 						dst_reg, regs[insn->src_reg].var_off.value,
4188 						opcode);
4189 			else if (tnum_is_const(dst_reg->var_off))
4190 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4191 						    &regs[insn->src_reg],
4192 						    dst_reg->var_off.value, opcode);
4193 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4194 				/* Comparing for equality, we can combine knowledge */
4195 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4196 						    &other_branch_regs[insn->dst_reg],
4197 						    &regs[insn->src_reg],
4198 						    &regs[insn->dst_reg], opcode);
4199 		}
4200 	} else if (dst_reg->type == SCALAR_VALUE) {
4201 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4202 					dst_reg, insn->imm, opcode);
4203 	}
4204 
4205 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4206 	if (BPF_SRC(insn->code) == BPF_K &&
4207 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4208 	    reg_type_may_be_null(dst_reg->type)) {
4209 		/* Mark all identical registers in each branch as either
4210 		 * safe or unknown depending R == 0 or R != 0 conditional.
4211 		 */
4212 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4213 				      opcode == BPF_JNE);
4214 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4215 				      opcode == BPF_JEQ);
4216 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4217 					   this_branch, other_branch) &&
4218 		   is_pointer_value(env, insn->dst_reg)) {
4219 		verbose(env, "R%d pointer comparison prohibited\n",
4220 			insn->dst_reg);
4221 		return -EACCES;
4222 	}
4223 	if (env->log.level)
4224 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4225 	return 0;
4226 }
4227 
4228 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4229 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4230 {
4231 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4232 
4233 	return (struct bpf_map *) (unsigned long) imm64;
4234 }
4235 
4236 /* verify BPF_LD_IMM64 instruction */
4237 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4238 {
4239 	struct bpf_reg_state *regs = cur_regs(env);
4240 	int err;
4241 
4242 	if (BPF_SIZE(insn->code) != BPF_DW) {
4243 		verbose(env, "invalid BPF_LD_IMM insn\n");
4244 		return -EINVAL;
4245 	}
4246 	if (insn->off != 0) {
4247 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4248 		return -EINVAL;
4249 	}
4250 
4251 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4252 	if (err)
4253 		return err;
4254 
4255 	if (insn->src_reg == 0) {
4256 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4257 
4258 		regs[insn->dst_reg].type = SCALAR_VALUE;
4259 		__mark_reg_known(&regs[insn->dst_reg], imm);
4260 		return 0;
4261 	}
4262 
4263 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4264 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4265 
4266 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4267 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4268 	return 0;
4269 }
4270 
4271 static bool may_access_skb(enum bpf_prog_type type)
4272 {
4273 	switch (type) {
4274 	case BPF_PROG_TYPE_SOCKET_FILTER:
4275 	case BPF_PROG_TYPE_SCHED_CLS:
4276 	case BPF_PROG_TYPE_SCHED_ACT:
4277 		return true;
4278 	default:
4279 		return false;
4280 	}
4281 }
4282 
4283 /* verify safety of LD_ABS|LD_IND instructions:
4284  * - they can only appear in the programs where ctx == skb
4285  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4286  *   preserve R6-R9, and store return value into R0
4287  *
4288  * Implicit input:
4289  *   ctx == skb == R6 == CTX
4290  *
4291  * Explicit input:
4292  *   SRC == any register
4293  *   IMM == 32-bit immediate
4294  *
4295  * Output:
4296  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4297  */
4298 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4299 {
4300 	struct bpf_reg_state *regs = cur_regs(env);
4301 	u8 mode = BPF_MODE(insn->code);
4302 	int i, err;
4303 
4304 	if (!may_access_skb(env->prog->type)) {
4305 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4306 		return -EINVAL;
4307 	}
4308 
4309 	if (!env->ops->gen_ld_abs) {
4310 		verbose(env, "bpf verifier is misconfigured\n");
4311 		return -EINVAL;
4312 	}
4313 
4314 	if (env->subprog_cnt > 1) {
4315 		/* when program has LD_ABS insn JITs and interpreter assume
4316 		 * that r1 == ctx == skb which is not the case for callees
4317 		 * that can have arbitrary arguments. It's problematic
4318 		 * for main prog as well since JITs would need to analyze
4319 		 * all functions in order to make proper register save/restore
4320 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4321 		 */
4322 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4323 		return -EINVAL;
4324 	}
4325 
4326 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4327 	    BPF_SIZE(insn->code) == BPF_DW ||
4328 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4329 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4330 		return -EINVAL;
4331 	}
4332 
4333 	/* check whether implicit source operand (register R6) is readable */
4334 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4335 	if (err)
4336 		return err;
4337 
4338 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4339 	 * gen_ld_abs() may terminate the program at runtime, leading to
4340 	 * reference leak.
4341 	 */
4342 	err = check_reference_leak(env);
4343 	if (err) {
4344 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4345 		return err;
4346 	}
4347 
4348 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4349 		verbose(env,
4350 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4351 		return -EINVAL;
4352 	}
4353 
4354 	if (mode == BPF_IND) {
4355 		/* check explicit source operand */
4356 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4357 		if (err)
4358 			return err;
4359 	}
4360 
4361 	/* reset caller saved regs to unreadable */
4362 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4363 		mark_reg_not_init(env, regs, caller_saved[i]);
4364 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4365 	}
4366 
4367 	/* mark destination R0 register as readable, since it contains
4368 	 * the value fetched from the packet.
4369 	 * Already marked as written above.
4370 	 */
4371 	mark_reg_unknown(env, regs, BPF_REG_0);
4372 	return 0;
4373 }
4374 
4375 static int check_return_code(struct bpf_verifier_env *env)
4376 {
4377 	struct bpf_reg_state *reg;
4378 	struct tnum range = tnum_range(0, 1);
4379 
4380 	switch (env->prog->type) {
4381 	case BPF_PROG_TYPE_CGROUP_SKB:
4382 	case BPF_PROG_TYPE_CGROUP_SOCK:
4383 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4384 	case BPF_PROG_TYPE_SOCK_OPS:
4385 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4386 		break;
4387 	default:
4388 		return 0;
4389 	}
4390 
4391 	reg = cur_regs(env) + BPF_REG_0;
4392 	if (reg->type != SCALAR_VALUE) {
4393 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4394 			reg_type_str[reg->type]);
4395 		return -EINVAL;
4396 	}
4397 
4398 	if (!tnum_in(range, reg->var_off)) {
4399 		verbose(env, "At program exit the register R0 ");
4400 		if (!tnum_is_unknown(reg->var_off)) {
4401 			char tn_buf[48];
4402 
4403 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4404 			verbose(env, "has value %s", tn_buf);
4405 		} else {
4406 			verbose(env, "has unknown scalar value");
4407 		}
4408 		verbose(env, " should have been 0 or 1\n");
4409 		return -EINVAL;
4410 	}
4411 	return 0;
4412 }
4413 
4414 /* non-recursive DFS pseudo code
4415  * 1  procedure DFS-iterative(G,v):
4416  * 2      label v as discovered
4417  * 3      let S be a stack
4418  * 4      S.push(v)
4419  * 5      while S is not empty
4420  * 6            t <- S.pop()
4421  * 7            if t is what we're looking for:
4422  * 8                return t
4423  * 9            for all edges e in G.adjacentEdges(t) do
4424  * 10               if edge e is already labelled
4425  * 11                   continue with the next edge
4426  * 12               w <- G.adjacentVertex(t,e)
4427  * 13               if vertex w is not discovered and not explored
4428  * 14                   label e as tree-edge
4429  * 15                   label w as discovered
4430  * 16                   S.push(w)
4431  * 17                   continue at 5
4432  * 18               else if vertex w is discovered
4433  * 19                   label e as back-edge
4434  * 20               else
4435  * 21                   // vertex w is explored
4436  * 22                   label e as forward- or cross-edge
4437  * 23           label t as explored
4438  * 24           S.pop()
4439  *
4440  * convention:
4441  * 0x10 - discovered
4442  * 0x11 - discovered and fall-through edge labelled
4443  * 0x12 - discovered and fall-through and branch edges labelled
4444  * 0x20 - explored
4445  */
4446 
4447 enum {
4448 	DISCOVERED = 0x10,
4449 	EXPLORED = 0x20,
4450 	FALLTHROUGH = 1,
4451 	BRANCH = 2,
4452 };
4453 
4454 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4455 
4456 static int *insn_stack;	/* stack of insns to process */
4457 static int cur_stack;	/* current stack index */
4458 static int *insn_state;
4459 
4460 /* t, w, e - match pseudo-code above:
4461  * t - index of current instruction
4462  * w - next instruction
4463  * e - edge
4464  */
4465 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4466 {
4467 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4468 		return 0;
4469 
4470 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4471 		return 0;
4472 
4473 	if (w < 0 || w >= env->prog->len) {
4474 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4475 		return -EINVAL;
4476 	}
4477 
4478 	if (e == BRANCH)
4479 		/* mark branch target for state pruning */
4480 		env->explored_states[w] = STATE_LIST_MARK;
4481 
4482 	if (insn_state[w] == 0) {
4483 		/* tree-edge */
4484 		insn_state[t] = DISCOVERED | e;
4485 		insn_state[w] = DISCOVERED;
4486 		if (cur_stack >= env->prog->len)
4487 			return -E2BIG;
4488 		insn_stack[cur_stack++] = w;
4489 		return 1;
4490 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4491 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4492 		return -EINVAL;
4493 	} else if (insn_state[w] == EXPLORED) {
4494 		/* forward- or cross-edge */
4495 		insn_state[t] = DISCOVERED | e;
4496 	} else {
4497 		verbose(env, "insn state internal bug\n");
4498 		return -EFAULT;
4499 	}
4500 	return 0;
4501 }
4502 
4503 /* non-recursive depth-first-search to detect loops in BPF program
4504  * loop == back-edge in directed graph
4505  */
4506 static int check_cfg(struct bpf_verifier_env *env)
4507 {
4508 	struct bpf_insn *insns = env->prog->insnsi;
4509 	int insn_cnt = env->prog->len;
4510 	int ret = 0;
4511 	int i, t;
4512 
4513 	ret = check_subprogs(env);
4514 	if (ret < 0)
4515 		return ret;
4516 
4517 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4518 	if (!insn_state)
4519 		return -ENOMEM;
4520 
4521 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4522 	if (!insn_stack) {
4523 		kfree(insn_state);
4524 		return -ENOMEM;
4525 	}
4526 
4527 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4528 	insn_stack[0] = 0; /* 0 is the first instruction */
4529 	cur_stack = 1;
4530 
4531 peek_stack:
4532 	if (cur_stack == 0)
4533 		goto check_state;
4534 	t = insn_stack[cur_stack - 1];
4535 
4536 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4537 		u8 opcode = BPF_OP(insns[t].code);
4538 
4539 		if (opcode == BPF_EXIT) {
4540 			goto mark_explored;
4541 		} else if (opcode == BPF_CALL) {
4542 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4543 			if (ret == 1)
4544 				goto peek_stack;
4545 			else if (ret < 0)
4546 				goto err_free;
4547 			if (t + 1 < insn_cnt)
4548 				env->explored_states[t + 1] = STATE_LIST_MARK;
4549 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4550 				env->explored_states[t] = STATE_LIST_MARK;
4551 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4552 				if (ret == 1)
4553 					goto peek_stack;
4554 				else if (ret < 0)
4555 					goto err_free;
4556 			}
4557 		} else if (opcode == BPF_JA) {
4558 			if (BPF_SRC(insns[t].code) != BPF_K) {
4559 				ret = -EINVAL;
4560 				goto err_free;
4561 			}
4562 			/* unconditional jump with single edge */
4563 			ret = push_insn(t, t + insns[t].off + 1,
4564 					FALLTHROUGH, env);
4565 			if (ret == 1)
4566 				goto peek_stack;
4567 			else if (ret < 0)
4568 				goto err_free;
4569 			/* tell verifier to check for equivalent states
4570 			 * after every call and jump
4571 			 */
4572 			if (t + 1 < insn_cnt)
4573 				env->explored_states[t + 1] = STATE_LIST_MARK;
4574 		} else {
4575 			/* conditional jump with two edges */
4576 			env->explored_states[t] = STATE_LIST_MARK;
4577 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4578 			if (ret == 1)
4579 				goto peek_stack;
4580 			else if (ret < 0)
4581 				goto err_free;
4582 
4583 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4584 			if (ret == 1)
4585 				goto peek_stack;
4586 			else if (ret < 0)
4587 				goto err_free;
4588 		}
4589 	} else {
4590 		/* all other non-branch instructions with single
4591 		 * fall-through edge
4592 		 */
4593 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4594 		if (ret == 1)
4595 			goto peek_stack;
4596 		else if (ret < 0)
4597 			goto err_free;
4598 	}
4599 
4600 mark_explored:
4601 	insn_state[t] = EXPLORED;
4602 	if (cur_stack-- <= 0) {
4603 		verbose(env, "pop stack internal bug\n");
4604 		ret = -EFAULT;
4605 		goto err_free;
4606 	}
4607 	goto peek_stack;
4608 
4609 check_state:
4610 	for (i = 0; i < insn_cnt; i++) {
4611 		if (insn_state[i] != EXPLORED) {
4612 			verbose(env, "unreachable insn %d\n", i);
4613 			ret = -EINVAL;
4614 			goto err_free;
4615 		}
4616 	}
4617 	ret = 0; /* cfg looks good */
4618 
4619 err_free:
4620 	kfree(insn_state);
4621 	kfree(insn_stack);
4622 	return ret;
4623 }
4624 
4625 /* check %cur's range satisfies %old's */
4626 static bool range_within(struct bpf_reg_state *old,
4627 			 struct bpf_reg_state *cur)
4628 {
4629 	return old->umin_value <= cur->umin_value &&
4630 	       old->umax_value >= cur->umax_value &&
4631 	       old->smin_value <= cur->smin_value &&
4632 	       old->smax_value >= cur->smax_value;
4633 }
4634 
4635 /* Maximum number of register states that can exist at once */
4636 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4637 struct idpair {
4638 	u32 old;
4639 	u32 cur;
4640 };
4641 
4642 /* If in the old state two registers had the same id, then they need to have
4643  * the same id in the new state as well.  But that id could be different from
4644  * the old state, so we need to track the mapping from old to new ids.
4645  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4646  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4647  * regs with a different old id could still have new id 9, we don't care about
4648  * that.
4649  * So we look through our idmap to see if this old id has been seen before.  If
4650  * so, we require the new id to match; otherwise, we add the id pair to the map.
4651  */
4652 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4653 {
4654 	unsigned int i;
4655 
4656 	for (i = 0; i < ID_MAP_SIZE; i++) {
4657 		if (!idmap[i].old) {
4658 			/* Reached an empty slot; haven't seen this id before */
4659 			idmap[i].old = old_id;
4660 			idmap[i].cur = cur_id;
4661 			return true;
4662 		}
4663 		if (idmap[i].old == old_id)
4664 			return idmap[i].cur == cur_id;
4665 	}
4666 	/* We ran out of idmap slots, which should be impossible */
4667 	WARN_ON_ONCE(1);
4668 	return false;
4669 }
4670 
4671 /* Returns true if (rold safe implies rcur safe) */
4672 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4673 		    struct idpair *idmap)
4674 {
4675 	bool equal;
4676 
4677 	if (!(rold->live & REG_LIVE_READ))
4678 		/* explored state didn't use this */
4679 		return true;
4680 
4681 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4682 
4683 	if (rold->type == PTR_TO_STACK)
4684 		/* two stack pointers are equal only if they're pointing to
4685 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4686 		 */
4687 		return equal && rold->frameno == rcur->frameno;
4688 
4689 	if (equal)
4690 		return true;
4691 
4692 	if (rold->type == NOT_INIT)
4693 		/* explored state can't have used this */
4694 		return true;
4695 	if (rcur->type == NOT_INIT)
4696 		return false;
4697 	switch (rold->type) {
4698 	case SCALAR_VALUE:
4699 		if (rcur->type == SCALAR_VALUE) {
4700 			/* new val must satisfy old val knowledge */
4701 			return range_within(rold, rcur) &&
4702 			       tnum_in(rold->var_off, rcur->var_off);
4703 		} else {
4704 			/* We're trying to use a pointer in place of a scalar.
4705 			 * Even if the scalar was unbounded, this could lead to
4706 			 * pointer leaks because scalars are allowed to leak
4707 			 * while pointers are not. We could make this safe in
4708 			 * special cases if root is calling us, but it's
4709 			 * probably not worth the hassle.
4710 			 */
4711 			return false;
4712 		}
4713 	case PTR_TO_MAP_VALUE:
4714 		/* If the new min/max/var_off satisfy the old ones and
4715 		 * everything else matches, we are OK.
4716 		 * We don't care about the 'id' value, because nothing
4717 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4718 		 */
4719 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4720 		       range_within(rold, rcur) &&
4721 		       tnum_in(rold->var_off, rcur->var_off);
4722 	case PTR_TO_MAP_VALUE_OR_NULL:
4723 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4724 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4725 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4726 		 * checked, doing so could have affected others with the same
4727 		 * id, and we can't check for that because we lost the id when
4728 		 * we converted to a PTR_TO_MAP_VALUE.
4729 		 */
4730 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4731 			return false;
4732 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4733 			return false;
4734 		/* Check our ids match any regs they're supposed to */
4735 		return check_ids(rold->id, rcur->id, idmap);
4736 	case PTR_TO_PACKET_META:
4737 	case PTR_TO_PACKET:
4738 		if (rcur->type != rold->type)
4739 			return false;
4740 		/* We must have at least as much range as the old ptr
4741 		 * did, so that any accesses which were safe before are
4742 		 * still safe.  This is true even if old range < old off,
4743 		 * since someone could have accessed through (ptr - k), or
4744 		 * even done ptr -= k in a register, to get a safe access.
4745 		 */
4746 		if (rold->range > rcur->range)
4747 			return false;
4748 		/* If the offsets don't match, we can't trust our alignment;
4749 		 * nor can we be sure that we won't fall out of range.
4750 		 */
4751 		if (rold->off != rcur->off)
4752 			return false;
4753 		/* id relations must be preserved */
4754 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4755 			return false;
4756 		/* new val must satisfy old val knowledge */
4757 		return range_within(rold, rcur) &&
4758 		       tnum_in(rold->var_off, rcur->var_off);
4759 	case PTR_TO_CTX:
4760 	case CONST_PTR_TO_MAP:
4761 	case PTR_TO_PACKET_END:
4762 	case PTR_TO_FLOW_KEYS:
4763 	case PTR_TO_SOCKET:
4764 	case PTR_TO_SOCKET_OR_NULL:
4765 		/* Only valid matches are exact, which memcmp() above
4766 		 * would have accepted
4767 		 */
4768 	default:
4769 		/* Don't know what's going on, just say it's not safe */
4770 		return false;
4771 	}
4772 
4773 	/* Shouldn't get here; if we do, say it's not safe */
4774 	WARN_ON_ONCE(1);
4775 	return false;
4776 }
4777 
4778 static bool stacksafe(struct bpf_func_state *old,
4779 		      struct bpf_func_state *cur,
4780 		      struct idpair *idmap)
4781 {
4782 	int i, spi;
4783 
4784 	/* if explored stack has more populated slots than current stack
4785 	 * such stacks are not equivalent
4786 	 */
4787 	if (old->allocated_stack > cur->allocated_stack)
4788 		return false;
4789 
4790 	/* walk slots of the explored stack and ignore any additional
4791 	 * slots in the current stack, since explored(safe) state
4792 	 * didn't use them
4793 	 */
4794 	for (i = 0; i < old->allocated_stack; i++) {
4795 		spi = i / BPF_REG_SIZE;
4796 
4797 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4798 			/* explored state didn't use this */
4799 			continue;
4800 
4801 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4802 			continue;
4803 		/* if old state was safe with misc data in the stack
4804 		 * it will be safe with zero-initialized stack.
4805 		 * The opposite is not true
4806 		 */
4807 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4808 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4809 			continue;
4810 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4811 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4812 			/* Ex: old explored (safe) state has STACK_SPILL in
4813 			 * this stack slot, but current has has STACK_MISC ->
4814 			 * this verifier states are not equivalent,
4815 			 * return false to continue verification of this path
4816 			 */
4817 			return false;
4818 		if (i % BPF_REG_SIZE)
4819 			continue;
4820 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4821 			continue;
4822 		if (!regsafe(&old->stack[spi].spilled_ptr,
4823 			     &cur->stack[spi].spilled_ptr,
4824 			     idmap))
4825 			/* when explored and current stack slot are both storing
4826 			 * spilled registers, check that stored pointers types
4827 			 * are the same as well.
4828 			 * Ex: explored safe path could have stored
4829 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4830 			 * but current path has stored:
4831 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4832 			 * such verifier states are not equivalent.
4833 			 * return false to continue verification of this path
4834 			 */
4835 			return false;
4836 	}
4837 	return true;
4838 }
4839 
4840 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4841 {
4842 	if (old->acquired_refs != cur->acquired_refs)
4843 		return false;
4844 	return !memcmp(old->refs, cur->refs,
4845 		       sizeof(*old->refs) * old->acquired_refs);
4846 }
4847 
4848 /* compare two verifier states
4849  *
4850  * all states stored in state_list are known to be valid, since
4851  * verifier reached 'bpf_exit' instruction through them
4852  *
4853  * this function is called when verifier exploring different branches of
4854  * execution popped from the state stack. If it sees an old state that has
4855  * more strict register state and more strict stack state then this execution
4856  * branch doesn't need to be explored further, since verifier already
4857  * concluded that more strict state leads to valid finish.
4858  *
4859  * Therefore two states are equivalent if register state is more conservative
4860  * and explored stack state is more conservative than the current one.
4861  * Example:
4862  *       explored                   current
4863  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4864  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4865  *
4866  * In other words if current stack state (one being explored) has more
4867  * valid slots than old one that already passed validation, it means
4868  * the verifier can stop exploring and conclude that current state is valid too
4869  *
4870  * Similarly with registers. If explored state has register type as invalid
4871  * whereas register type in current state is meaningful, it means that
4872  * the current state will reach 'bpf_exit' instruction safely
4873  */
4874 static bool func_states_equal(struct bpf_func_state *old,
4875 			      struct bpf_func_state *cur)
4876 {
4877 	struct idpair *idmap;
4878 	bool ret = false;
4879 	int i;
4880 
4881 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4882 	/* If we failed to allocate the idmap, just say it's not safe */
4883 	if (!idmap)
4884 		return false;
4885 
4886 	for (i = 0; i < MAX_BPF_REG; i++) {
4887 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4888 			goto out_free;
4889 	}
4890 
4891 	if (!stacksafe(old, cur, idmap))
4892 		goto out_free;
4893 
4894 	if (!refsafe(old, cur))
4895 		goto out_free;
4896 	ret = true;
4897 out_free:
4898 	kfree(idmap);
4899 	return ret;
4900 }
4901 
4902 static bool states_equal(struct bpf_verifier_env *env,
4903 			 struct bpf_verifier_state *old,
4904 			 struct bpf_verifier_state *cur)
4905 {
4906 	int i;
4907 
4908 	if (old->curframe != cur->curframe)
4909 		return false;
4910 
4911 	/* for states to be equal callsites have to be the same
4912 	 * and all frame states need to be equivalent
4913 	 */
4914 	for (i = 0; i <= old->curframe; i++) {
4915 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4916 			return false;
4917 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4918 			return false;
4919 	}
4920 	return true;
4921 }
4922 
4923 /* A write screens off any subsequent reads; but write marks come from the
4924  * straight-line code between a state and its parent.  When we arrive at an
4925  * equivalent state (jump target or such) we didn't arrive by the straight-line
4926  * code, so read marks in the state must propagate to the parent regardless
4927  * of the state's write marks. That's what 'parent == state->parent' comparison
4928  * in mark_reg_read() is for.
4929  */
4930 static int propagate_liveness(struct bpf_verifier_env *env,
4931 			      const struct bpf_verifier_state *vstate,
4932 			      struct bpf_verifier_state *vparent)
4933 {
4934 	int i, frame, err = 0;
4935 	struct bpf_func_state *state, *parent;
4936 
4937 	if (vparent->curframe != vstate->curframe) {
4938 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4939 		     vparent->curframe, vstate->curframe);
4940 		return -EFAULT;
4941 	}
4942 	/* Propagate read liveness of registers... */
4943 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4944 	/* We don't need to worry about FP liveness because it's read-only */
4945 	for (i = 0; i < BPF_REG_FP; i++) {
4946 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4947 			continue;
4948 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4949 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4950 					    &vparent->frame[vstate->curframe]->regs[i]);
4951 			if (err)
4952 				return err;
4953 		}
4954 	}
4955 
4956 	/* ... and stack slots */
4957 	for (frame = 0; frame <= vstate->curframe; frame++) {
4958 		state = vstate->frame[frame];
4959 		parent = vparent->frame[frame];
4960 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4961 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4962 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4963 				continue;
4964 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4965 				mark_reg_read(env, &state->stack[i].spilled_ptr,
4966 					      &parent->stack[i].spilled_ptr);
4967 		}
4968 	}
4969 	return err;
4970 }
4971 
4972 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4973 {
4974 	struct bpf_verifier_state_list *new_sl;
4975 	struct bpf_verifier_state_list *sl;
4976 	struct bpf_verifier_state *cur = env->cur_state, *new;
4977 	int i, j, err;
4978 
4979 	sl = env->explored_states[insn_idx];
4980 	if (!sl)
4981 		/* this 'insn_idx' instruction wasn't marked, so we will not
4982 		 * be doing state search here
4983 		 */
4984 		return 0;
4985 
4986 	while (sl != STATE_LIST_MARK) {
4987 		if (states_equal(env, &sl->state, cur)) {
4988 			/* reached equivalent register/stack state,
4989 			 * prune the search.
4990 			 * Registers read by the continuation are read by us.
4991 			 * If we have any write marks in env->cur_state, they
4992 			 * will prevent corresponding reads in the continuation
4993 			 * from reaching our parent (an explored_state).  Our
4994 			 * own state will get the read marks recorded, but
4995 			 * they'll be immediately forgotten as we're pruning
4996 			 * this state and will pop a new one.
4997 			 */
4998 			err = propagate_liveness(env, &sl->state, cur);
4999 			if (err)
5000 				return err;
5001 			return 1;
5002 		}
5003 		sl = sl->next;
5004 	}
5005 
5006 	/* there were no equivalent states, remember current one.
5007 	 * technically the current state is not proven to be safe yet,
5008 	 * but it will either reach outer most bpf_exit (which means it's safe)
5009 	 * or it will be rejected. Since there are no loops, we won't be
5010 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5011 	 * again on the way to bpf_exit
5012 	 */
5013 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5014 	if (!new_sl)
5015 		return -ENOMEM;
5016 
5017 	/* add new state to the head of linked list */
5018 	new = &new_sl->state;
5019 	err = copy_verifier_state(new, cur);
5020 	if (err) {
5021 		free_verifier_state(new, false);
5022 		kfree(new_sl);
5023 		return err;
5024 	}
5025 	new_sl->next = env->explored_states[insn_idx];
5026 	env->explored_states[insn_idx] = new_sl;
5027 	/* connect new state to parentage chain */
5028 	for (i = 0; i < BPF_REG_FP; i++)
5029 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
5030 	/* clear write marks in current state: the writes we did are not writes
5031 	 * our child did, so they don't screen off its reads from us.
5032 	 * (There are no read marks in current state, because reads always mark
5033 	 * their parent and current state never has children yet.  Only
5034 	 * explored_states can get read marks.)
5035 	 */
5036 	for (i = 0; i < BPF_REG_FP; i++)
5037 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5038 
5039 	/* all stack frames are accessible from callee, clear them all */
5040 	for (j = 0; j <= cur->curframe; j++) {
5041 		struct bpf_func_state *frame = cur->frame[j];
5042 		struct bpf_func_state *newframe = new->frame[j];
5043 
5044 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5045 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5046 			frame->stack[i].spilled_ptr.parent =
5047 						&newframe->stack[i].spilled_ptr;
5048 		}
5049 	}
5050 	return 0;
5051 }
5052 
5053 /* Return true if it's OK to have the same insn return a different type. */
5054 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5055 {
5056 	switch (type) {
5057 	case PTR_TO_CTX:
5058 	case PTR_TO_SOCKET:
5059 	case PTR_TO_SOCKET_OR_NULL:
5060 		return false;
5061 	default:
5062 		return true;
5063 	}
5064 }
5065 
5066 /* If an instruction was previously used with particular pointer types, then we
5067  * need to be careful to avoid cases such as the below, where it may be ok
5068  * for one branch accessing the pointer, but not ok for the other branch:
5069  *
5070  * R1 = sock_ptr
5071  * goto X;
5072  * ...
5073  * R1 = some_other_valid_ptr;
5074  * goto X;
5075  * ...
5076  * R2 = *(u32 *)(R1 + 0);
5077  */
5078 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5079 {
5080 	return src != prev && (!reg_type_mismatch_ok(src) ||
5081 			       !reg_type_mismatch_ok(prev));
5082 }
5083 
5084 static int do_check(struct bpf_verifier_env *env)
5085 {
5086 	struct bpf_verifier_state *state;
5087 	struct bpf_insn *insns = env->prog->insnsi;
5088 	struct bpf_reg_state *regs;
5089 	int insn_cnt = env->prog->len, i;
5090 	int insn_idx, prev_insn_idx = 0;
5091 	int insn_processed = 0;
5092 	bool do_print_state = false;
5093 
5094 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5095 	if (!state)
5096 		return -ENOMEM;
5097 	state->curframe = 0;
5098 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5099 	if (!state->frame[0]) {
5100 		kfree(state);
5101 		return -ENOMEM;
5102 	}
5103 	env->cur_state = state;
5104 	init_func_state(env, state->frame[0],
5105 			BPF_MAIN_FUNC /* callsite */,
5106 			0 /* frameno */,
5107 			0 /* subprogno, zero == main subprog */);
5108 	insn_idx = 0;
5109 	for (;;) {
5110 		struct bpf_insn *insn;
5111 		u8 class;
5112 		int err;
5113 
5114 		if (insn_idx >= insn_cnt) {
5115 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5116 				insn_idx, insn_cnt);
5117 			return -EFAULT;
5118 		}
5119 
5120 		insn = &insns[insn_idx];
5121 		class = BPF_CLASS(insn->code);
5122 
5123 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5124 			verbose(env,
5125 				"BPF program is too large. Processed %d insn\n",
5126 				insn_processed);
5127 			return -E2BIG;
5128 		}
5129 
5130 		err = is_state_visited(env, insn_idx);
5131 		if (err < 0)
5132 			return err;
5133 		if (err == 1) {
5134 			/* found equivalent state, can prune the search */
5135 			if (env->log.level) {
5136 				if (do_print_state)
5137 					verbose(env, "\nfrom %d to %d: safe\n",
5138 						prev_insn_idx, insn_idx);
5139 				else
5140 					verbose(env, "%d: safe\n", insn_idx);
5141 			}
5142 			goto process_bpf_exit;
5143 		}
5144 
5145 		if (need_resched())
5146 			cond_resched();
5147 
5148 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5149 			if (env->log.level > 1)
5150 				verbose(env, "%d:", insn_idx);
5151 			else
5152 				verbose(env, "\nfrom %d to %d:",
5153 					prev_insn_idx, insn_idx);
5154 			print_verifier_state(env, state->frame[state->curframe]);
5155 			do_print_state = false;
5156 		}
5157 
5158 		if (env->log.level) {
5159 			const struct bpf_insn_cbs cbs = {
5160 				.cb_print	= verbose,
5161 				.private_data	= env,
5162 			};
5163 
5164 			verbose(env, "%d: ", insn_idx);
5165 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5166 		}
5167 
5168 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5169 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5170 							   prev_insn_idx);
5171 			if (err)
5172 				return err;
5173 		}
5174 
5175 		regs = cur_regs(env);
5176 		env->insn_aux_data[insn_idx].seen = true;
5177 
5178 		if (class == BPF_ALU || class == BPF_ALU64) {
5179 			err = check_alu_op(env, insn);
5180 			if (err)
5181 				return err;
5182 
5183 		} else if (class == BPF_LDX) {
5184 			enum bpf_reg_type *prev_src_type, src_reg_type;
5185 
5186 			/* check for reserved fields is already done */
5187 
5188 			/* check src operand */
5189 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5190 			if (err)
5191 				return err;
5192 
5193 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5194 			if (err)
5195 				return err;
5196 
5197 			src_reg_type = regs[insn->src_reg].type;
5198 
5199 			/* check that memory (src_reg + off) is readable,
5200 			 * the state of dst_reg will be updated by this func
5201 			 */
5202 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5203 					       BPF_SIZE(insn->code), BPF_READ,
5204 					       insn->dst_reg, false);
5205 			if (err)
5206 				return err;
5207 
5208 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5209 
5210 			if (*prev_src_type == NOT_INIT) {
5211 				/* saw a valid insn
5212 				 * dst_reg = *(u32 *)(src_reg + off)
5213 				 * save type to validate intersecting paths
5214 				 */
5215 				*prev_src_type = src_reg_type;
5216 
5217 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5218 				/* ABuser program is trying to use the same insn
5219 				 * dst_reg = *(u32*) (src_reg + off)
5220 				 * with different pointer types:
5221 				 * src_reg == ctx in one branch and
5222 				 * src_reg == stack|map in some other branch.
5223 				 * Reject it.
5224 				 */
5225 				verbose(env, "same insn cannot be used with different pointers\n");
5226 				return -EINVAL;
5227 			}
5228 
5229 		} else if (class == BPF_STX) {
5230 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5231 
5232 			if (BPF_MODE(insn->code) == BPF_XADD) {
5233 				err = check_xadd(env, insn_idx, insn);
5234 				if (err)
5235 					return err;
5236 				insn_idx++;
5237 				continue;
5238 			}
5239 
5240 			/* check src1 operand */
5241 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5242 			if (err)
5243 				return err;
5244 			/* check src2 operand */
5245 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5246 			if (err)
5247 				return err;
5248 
5249 			dst_reg_type = regs[insn->dst_reg].type;
5250 
5251 			/* check that memory (dst_reg + off) is writeable */
5252 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5253 					       BPF_SIZE(insn->code), BPF_WRITE,
5254 					       insn->src_reg, false);
5255 			if (err)
5256 				return err;
5257 
5258 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5259 
5260 			if (*prev_dst_type == NOT_INIT) {
5261 				*prev_dst_type = dst_reg_type;
5262 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5263 				verbose(env, "same insn cannot be used with different pointers\n");
5264 				return -EINVAL;
5265 			}
5266 
5267 		} else if (class == BPF_ST) {
5268 			if (BPF_MODE(insn->code) != BPF_MEM ||
5269 			    insn->src_reg != BPF_REG_0) {
5270 				verbose(env, "BPF_ST uses reserved fields\n");
5271 				return -EINVAL;
5272 			}
5273 			/* check src operand */
5274 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5275 			if (err)
5276 				return err;
5277 
5278 			if (is_ctx_reg(env, insn->dst_reg)) {
5279 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5280 					insn->dst_reg,
5281 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
5282 				return -EACCES;
5283 			}
5284 
5285 			/* check that memory (dst_reg + off) is writeable */
5286 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5287 					       BPF_SIZE(insn->code), BPF_WRITE,
5288 					       -1, false);
5289 			if (err)
5290 				return err;
5291 
5292 		} else if (class == BPF_JMP) {
5293 			u8 opcode = BPF_OP(insn->code);
5294 
5295 			if (opcode == BPF_CALL) {
5296 				if (BPF_SRC(insn->code) != BPF_K ||
5297 				    insn->off != 0 ||
5298 				    (insn->src_reg != BPF_REG_0 &&
5299 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5300 				    insn->dst_reg != BPF_REG_0) {
5301 					verbose(env, "BPF_CALL uses reserved fields\n");
5302 					return -EINVAL;
5303 				}
5304 
5305 				if (insn->src_reg == BPF_PSEUDO_CALL)
5306 					err = check_func_call(env, insn, &insn_idx);
5307 				else
5308 					err = check_helper_call(env, insn->imm, insn_idx);
5309 				if (err)
5310 					return err;
5311 
5312 			} else if (opcode == BPF_JA) {
5313 				if (BPF_SRC(insn->code) != BPF_K ||
5314 				    insn->imm != 0 ||
5315 				    insn->src_reg != BPF_REG_0 ||
5316 				    insn->dst_reg != BPF_REG_0) {
5317 					verbose(env, "BPF_JA uses reserved fields\n");
5318 					return -EINVAL;
5319 				}
5320 
5321 				insn_idx += insn->off + 1;
5322 				continue;
5323 
5324 			} else if (opcode == BPF_EXIT) {
5325 				if (BPF_SRC(insn->code) != BPF_K ||
5326 				    insn->imm != 0 ||
5327 				    insn->src_reg != BPF_REG_0 ||
5328 				    insn->dst_reg != BPF_REG_0) {
5329 					verbose(env, "BPF_EXIT uses reserved fields\n");
5330 					return -EINVAL;
5331 				}
5332 
5333 				if (state->curframe) {
5334 					/* exit from nested function */
5335 					prev_insn_idx = insn_idx;
5336 					err = prepare_func_exit(env, &insn_idx);
5337 					if (err)
5338 						return err;
5339 					do_print_state = true;
5340 					continue;
5341 				}
5342 
5343 				err = check_reference_leak(env);
5344 				if (err)
5345 					return err;
5346 
5347 				/* eBPF calling convetion is such that R0 is used
5348 				 * to return the value from eBPF program.
5349 				 * Make sure that it's readable at this time
5350 				 * of bpf_exit, which means that program wrote
5351 				 * something into it earlier
5352 				 */
5353 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5354 				if (err)
5355 					return err;
5356 
5357 				if (is_pointer_value(env, BPF_REG_0)) {
5358 					verbose(env, "R0 leaks addr as return value\n");
5359 					return -EACCES;
5360 				}
5361 
5362 				err = check_return_code(env);
5363 				if (err)
5364 					return err;
5365 process_bpf_exit:
5366 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5367 				if (err < 0) {
5368 					if (err != -ENOENT)
5369 						return err;
5370 					break;
5371 				} else {
5372 					do_print_state = true;
5373 					continue;
5374 				}
5375 			} else {
5376 				err = check_cond_jmp_op(env, insn, &insn_idx);
5377 				if (err)
5378 					return err;
5379 			}
5380 		} else if (class == BPF_LD) {
5381 			u8 mode = BPF_MODE(insn->code);
5382 
5383 			if (mode == BPF_ABS || mode == BPF_IND) {
5384 				err = check_ld_abs(env, insn);
5385 				if (err)
5386 					return err;
5387 
5388 			} else if (mode == BPF_IMM) {
5389 				err = check_ld_imm(env, insn);
5390 				if (err)
5391 					return err;
5392 
5393 				insn_idx++;
5394 				env->insn_aux_data[insn_idx].seen = true;
5395 			} else {
5396 				verbose(env, "invalid BPF_LD mode\n");
5397 				return -EINVAL;
5398 			}
5399 		} else {
5400 			verbose(env, "unknown insn class %d\n", class);
5401 			return -EINVAL;
5402 		}
5403 
5404 		insn_idx++;
5405 	}
5406 
5407 	verbose(env, "processed %d insns (limit %d), stack depth ",
5408 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5409 	for (i = 0; i < env->subprog_cnt; i++) {
5410 		u32 depth = env->subprog_info[i].stack_depth;
5411 
5412 		verbose(env, "%d", depth);
5413 		if (i + 1 < env->subprog_cnt)
5414 			verbose(env, "+");
5415 	}
5416 	verbose(env, "\n");
5417 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5418 	return 0;
5419 }
5420 
5421 static int check_map_prealloc(struct bpf_map *map)
5422 {
5423 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5424 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5425 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5426 		!(map->map_flags & BPF_F_NO_PREALLOC);
5427 }
5428 
5429 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5430 					struct bpf_map *map,
5431 					struct bpf_prog *prog)
5432 
5433 {
5434 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5435 	 * preallocated hash maps, since doing memory allocation
5436 	 * in overflow_handler can crash depending on where nmi got
5437 	 * triggered.
5438 	 */
5439 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5440 		if (!check_map_prealloc(map)) {
5441 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5442 			return -EINVAL;
5443 		}
5444 		if (map->inner_map_meta &&
5445 		    !check_map_prealloc(map->inner_map_meta)) {
5446 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5447 			return -EINVAL;
5448 		}
5449 	}
5450 
5451 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5452 	    !bpf_offload_prog_map_match(prog, map)) {
5453 		verbose(env, "offload device mismatch between prog and map\n");
5454 		return -EINVAL;
5455 	}
5456 
5457 	return 0;
5458 }
5459 
5460 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5461 {
5462 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5463 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5464 }
5465 
5466 /* look for pseudo eBPF instructions that access map FDs and
5467  * replace them with actual map pointers
5468  */
5469 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5470 {
5471 	struct bpf_insn *insn = env->prog->insnsi;
5472 	int insn_cnt = env->prog->len;
5473 	int i, j, err;
5474 
5475 	err = bpf_prog_calc_tag(env->prog);
5476 	if (err)
5477 		return err;
5478 
5479 	for (i = 0; i < insn_cnt; i++, insn++) {
5480 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5481 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5482 			verbose(env, "BPF_LDX uses reserved fields\n");
5483 			return -EINVAL;
5484 		}
5485 
5486 		if (BPF_CLASS(insn->code) == BPF_STX &&
5487 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5488 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5489 			verbose(env, "BPF_STX uses reserved fields\n");
5490 			return -EINVAL;
5491 		}
5492 
5493 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5494 			struct bpf_map *map;
5495 			struct fd f;
5496 
5497 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5498 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5499 			    insn[1].off != 0) {
5500 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5501 				return -EINVAL;
5502 			}
5503 
5504 			if (insn->src_reg == 0)
5505 				/* valid generic load 64-bit imm */
5506 				goto next_insn;
5507 
5508 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5509 				verbose(env,
5510 					"unrecognized bpf_ld_imm64 insn\n");
5511 				return -EINVAL;
5512 			}
5513 
5514 			f = fdget(insn->imm);
5515 			map = __bpf_map_get(f);
5516 			if (IS_ERR(map)) {
5517 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5518 					insn->imm);
5519 				return PTR_ERR(map);
5520 			}
5521 
5522 			err = check_map_prog_compatibility(env, map, env->prog);
5523 			if (err) {
5524 				fdput(f);
5525 				return err;
5526 			}
5527 
5528 			/* store map pointer inside BPF_LD_IMM64 instruction */
5529 			insn[0].imm = (u32) (unsigned long) map;
5530 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5531 
5532 			/* check whether we recorded this map already */
5533 			for (j = 0; j < env->used_map_cnt; j++)
5534 				if (env->used_maps[j] == map) {
5535 					fdput(f);
5536 					goto next_insn;
5537 				}
5538 
5539 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5540 				fdput(f);
5541 				return -E2BIG;
5542 			}
5543 
5544 			/* hold the map. If the program is rejected by verifier,
5545 			 * the map will be released by release_maps() or it
5546 			 * will be used by the valid program until it's unloaded
5547 			 * and all maps are released in free_used_maps()
5548 			 */
5549 			map = bpf_map_inc(map, false);
5550 			if (IS_ERR(map)) {
5551 				fdput(f);
5552 				return PTR_ERR(map);
5553 			}
5554 			env->used_maps[env->used_map_cnt++] = map;
5555 
5556 			if (bpf_map_is_cgroup_storage(map) &&
5557 			    bpf_cgroup_storage_assign(env->prog, map)) {
5558 				verbose(env, "only one cgroup storage of each type is allowed\n");
5559 				fdput(f);
5560 				return -EBUSY;
5561 			}
5562 
5563 			fdput(f);
5564 next_insn:
5565 			insn++;
5566 			i++;
5567 			continue;
5568 		}
5569 
5570 		/* Basic sanity check before we invest more work here. */
5571 		if (!bpf_opcode_in_insntable(insn->code)) {
5572 			verbose(env, "unknown opcode %02x\n", insn->code);
5573 			return -EINVAL;
5574 		}
5575 	}
5576 
5577 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5578 	 * 'struct bpf_map *' into a register instead of user map_fd.
5579 	 * These pointers will be used later by verifier to validate map access.
5580 	 */
5581 	return 0;
5582 }
5583 
5584 /* drop refcnt of maps used by the rejected program */
5585 static void release_maps(struct bpf_verifier_env *env)
5586 {
5587 	enum bpf_cgroup_storage_type stype;
5588 	int i;
5589 
5590 	for_each_cgroup_storage_type(stype) {
5591 		if (!env->prog->aux->cgroup_storage[stype])
5592 			continue;
5593 		bpf_cgroup_storage_release(env->prog,
5594 			env->prog->aux->cgroup_storage[stype]);
5595 	}
5596 
5597 	for (i = 0; i < env->used_map_cnt; i++)
5598 		bpf_map_put(env->used_maps[i]);
5599 }
5600 
5601 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5602 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5603 {
5604 	struct bpf_insn *insn = env->prog->insnsi;
5605 	int insn_cnt = env->prog->len;
5606 	int i;
5607 
5608 	for (i = 0; i < insn_cnt; i++, insn++)
5609 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5610 			insn->src_reg = 0;
5611 }
5612 
5613 /* single env->prog->insni[off] instruction was replaced with the range
5614  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5615  * [0, off) and [off, end) to new locations, so the patched range stays zero
5616  */
5617 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5618 				u32 off, u32 cnt)
5619 {
5620 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5621 	int i;
5622 
5623 	if (cnt == 1)
5624 		return 0;
5625 	new_data = vzalloc(array_size(prog_len,
5626 				      sizeof(struct bpf_insn_aux_data)));
5627 	if (!new_data)
5628 		return -ENOMEM;
5629 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5630 	memcpy(new_data + off + cnt - 1, old_data + off,
5631 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5632 	for (i = off; i < off + cnt - 1; i++)
5633 		new_data[i].seen = true;
5634 	env->insn_aux_data = new_data;
5635 	vfree(old_data);
5636 	return 0;
5637 }
5638 
5639 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5640 {
5641 	int i;
5642 
5643 	if (len == 1)
5644 		return;
5645 	/* NOTE: fake 'exit' subprog should be updated as well. */
5646 	for (i = 0; i <= env->subprog_cnt; i++) {
5647 		if (env->subprog_info[i].start < off)
5648 			continue;
5649 		env->subprog_info[i].start += len - 1;
5650 	}
5651 }
5652 
5653 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5654 					    const struct bpf_insn *patch, u32 len)
5655 {
5656 	struct bpf_prog *new_prog;
5657 
5658 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5659 	if (!new_prog)
5660 		return NULL;
5661 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5662 		return NULL;
5663 	adjust_subprog_starts(env, off, len);
5664 	return new_prog;
5665 }
5666 
5667 /* The verifier does more data flow analysis than llvm and will not
5668  * explore branches that are dead at run time. Malicious programs can
5669  * have dead code too. Therefore replace all dead at-run-time code
5670  * with 'ja -1'.
5671  *
5672  * Just nops are not optimal, e.g. if they would sit at the end of the
5673  * program and through another bug we would manage to jump there, then
5674  * we'd execute beyond program memory otherwise. Returning exception
5675  * code also wouldn't work since we can have subprogs where the dead
5676  * code could be located.
5677  */
5678 static void sanitize_dead_code(struct bpf_verifier_env *env)
5679 {
5680 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5681 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5682 	struct bpf_insn *insn = env->prog->insnsi;
5683 	const int insn_cnt = env->prog->len;
5684 	int i;
5685 
5686 	for (i = 0; i < insn_cnt; i++) {
5687 		if (aux_data[i].seen)
5688 			continue;
5689 		memcpy(insn + i, &trap, sizeof(trap));
5690 	}
5691 }
5692 
5693 /* convert load instructions that access fields of a context type into a
5694  * sequence of instructions that access fields of the underlying structure:
5695  *     struct __sk_buff    -> struct sk_buff
5696  *     struct bpf_sock_ops -> struct sock
5697  */
5698 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5699 {
5700 	const struct bpf_verifier_ops *ops = env->ops;
5701 	int i, cnt, size, ctx_field_size, delta = 0;
5702 	const int insn_cnt = env->prog->len;
5703 	struct bpf_insn insn_buf[16], *insn;
5704 	struct bpf_prog *new_prog;
5705 	enum bpf_access_type type;
5706 	bool is_narrower_load;
5707 	u32 target_size;
5708 
5709 	if (ops->gen_prologue) {
5710 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5711 					env->prog);
5712 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5713 			verbose(env, "bpf verifier is misconfigured\n");
5714 			return -EINVAL;
5715 		} else if (cnt) {
5716 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5717 			if (!new_prog)
5718 				return -ENOMEM;
5719 
5720 			env->prog = new_prog;
5721 			delta += cnt - 1;
5722 		}
5723 	}
5724 
5725 	if (bpf_prog_is_dev_bound(env->prog->aux))
5726 		return 0;
5727 
5728 	insn = env->prog->insnsi + delta;
5729 
5730 	for (i = 0; i < insn_cnt; i++, insn++) {
5731 		bpf_convert_ctx_access_t convert_ctx_access;
5732 
5733 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5734 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5735 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5736 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5737 			type = BPF_READ;
5738 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5739 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5740 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5741 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5742 			type = BPF_WRITE;
5743 		else
5744 			continue;
5745 
5746 		if (type == BPF_WRITE &&
5747 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5748 			struct bpf_insn patch[] = {
5749 				/* Sanitize suspicious stack slot with zero.
5750 				 * There are no memory dependencies for this store,
5751 				 * since it's only using frame pointer and immediate
5752 				 * constant of zero
5753 				 */
5754 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5755 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5756 					   0),
5757 				/* the original STX instruction will immediately
5758 				 * overwrite the same stack slot with appropriate value
5759 				 */
5760 				*insn,
5761 			};
5762 
5763 			cnt = ARRAY_SIZE(patch);
5764 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5765 			if (!new_prog)
5766 				return -ENOMEM;
5767 
5768 			delta    += cnt - 1;
5769 			env->prog = new_prog;
5770 			insn      = new_prog->insnsi + i + delta;
5771 			continue;
5772 		}
5773 
5774 		switch (env->insn_aux_data[i + delta].ptr_type) {
5775 		case PTR_TO_CTX:
5776 			if (!ops->convert_ctx_access)
5777 				continue;
5778 			convert_ctx_access = ops->convert_ctx_access;
5779 			break;
5780 		case PTR_TO_SOCKET:
5781 			convert_ctx_access = bpf_sock_convert_ctx_access;
5782 			break;
5783 		default:
5784 			continue;
5785 		}
5786 
5787 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5788 		size = BPF_LDST_BYTES(insn);
5789 
5790 		/* If the read access is a narrower load of the field,
5791 		 * convert to a 4/8-byte load, to minimum program type specific
5792 		 * convert_ctx_access changes. If conversion is successful,
5793 		 * we will apply proper mask to the result.
5794 		 */
5795 		is_narrower_load = size < ctx_field_size;
5796 		if (is_narrower_load) {
5797 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5798 			u32 off = insn->off;
5799 			u8 size_code;
5800 
5801 			if (type == BPF_WRITE) {
5802 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5803 				return -EINVAL;
5804 			}
5805 
5806 			size_code = BPF_H;
5807 			if (ctx_field_size == 4)
5808 				size_code = BPF_W;
5809 			else if (ctx_field_size == 8)
5810 				size_code = BPF_DW;
5811 
5812 			insn->off = off & ~(size_default - 1);
5813 			insn->code = BPF_LDX | BPF_MEM | size_code;
5814 		}
5815 
5816 		target_size = 0;
5817 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5818 					 &target_size);
5819 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5820 		    (ctx_field_size && !target_size)) {
5821 			verbose(env, "bpf verifier is misconfigured\n");
5822 			return -EINVAL;
5823 		}
5824 
5825 		if (is_narrower_load && size < target_size) {
5826 			if (ctx_field_size <= 4)
5827 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5828 								(1 << size * 8) - 1);
5829 			else
5830 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5831 								(1 << size * 8) - 1);
5832 		}
5833 
5834 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5835 		if (!new_prog)
5836 			return -ENOMEM;
5837 
5838 		delta += cnt - 1;
5839 
5840 		/* keep walking new program and skip insns we just inserted */
5841 		env->prog = new_prog;
5842 		insn      = new_prog->insnsi + i + delta;
5843 	}
5844 
5845 	return 0;
5846 }
5847 
5848 static int jit_subprogs(struct bpf_verifier_env *env)
5849 {
5850 	struct bpf_prog *prog = env->prog, **func, *tmp;
5851 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5852 	struct bpf_insn *insn;
5853 	void *old_bpf_func;
5854 	int err = -ENOMEM;
5855 
5856 	if (env->subprog_cnt <= 1)
5857 		return 0;
5858 
5859 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5860 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5861 		    insn->src_reg != BPF_PSEUDO_CALL)
5862 			continue;
5863 		/* Upon error here we cannot fall back to interpreter but
5864 		 * need a hard reject of the program. Thus -EFAULT is
5865 		 * propagated in any case.
5866 		 */
5867 		subprog = find_subprog(env, i + insn->imm + 1);
5868 		if (subprog < 0) {
5869 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5870 				  i + insn->imm + 1);
5871 			return -EFAULT;
5872 		}
5873 		/* temporarily remember subprog id inside insn instead of
5874 		 * aux_data, since next loop will split up all insns into funcs
5875 		 */
5876 		insn->off = subprog;
5877 		/* remember original imm in case JIT fails and fallback
5878 		 * to interpreter will be needed
5879 		 */
5880 		env->insn_aux_data[i].call_imm = insn->imm;
5881 		/* point imm to __bpf_call_base+1 from JITs point of view */
5882 		insn->imm = 1;
5883 	}
5884 
5885 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5886 	if (!func)
5887 		goto out_undo_insn;
5888 
5889 	for (i = 0; i < env->subprog_cnt; i++) {
5890 		subprog_start = subprog_end;
5891 		subprog_end = env->subprog_info[i + 1].start;
5892 
5893 		len = subprog_end - subprog_start;
5894 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5895 		if (!func[i])
5896 			goto out_free;
5897 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5898 		       len * sizeof(struct bpf_insn));
5899 		func[i]->type = prog->type;
5900 		func[i]->len = len;
5901 		if (bpf_prog_calc_tag(func[i]))
5902 			goto out_free;
5903 		func[i]->is_func = 1;
5904 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5905 		 * Long term would need debug info to populate names
5906 		 */
5907 		func[i]->aux->name[0] = 'F';
5908 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5909 		func[i]->jit_requested = 1;
5910 		func[i] = bpf_int_jit_compile(func[i]);
5911 		if (!func[i]->jited) {
5912 			err = -ENOTSUPP;
5913 			goto out_free;
5914 		}
5915 		cond_resched();
5916 	}
5917 	/* at this point all bpf functions were successfully JITed
5918 	 * now populate all bpf_calls with correct addresses and
5919 	 * run last pass of JIT
5920 	 */
5921 	for (i = 0; i < env->subprog_cnt; i++) {
5922 		insn = func[i]->insnsi;
5923 		for (j = 0; j < func[i]->len; j++, insn++) {
5924 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5925 			    insn->src_reg != BPF_PSEUDO_CALL)
5926 				continue;
5927 			subprog = insn->off;
5928 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5929 				func[subprog]->bpf_func -
5930 				__bpf_call_base;
5931 		}
5932 
5933 		/* we use the aux data to keep a list of the start addresses
5934 		 * of the JITed images for each function in the program
5935 		 *
5936 		 * for some architectures, such as powerpc64, the imm field
5937 		 * might not be large enough to hold the offset of the start
5938 		 * address of the callee's JITed image from __bpf_call_base
5939 		 *
5940 		 * in such cases, we can lookup the start address of a callee
5941 		 * by using its subprog id, available from the off field of
5942 		 * the call instruction, as an index for this list
5943 		 */
5944 		func[i]->aux->func = func;
5945 		func[i]->aux->func_cnt = env->subprog_cnt;
5946 	}
5947 	for (i = 0; i < env->subprog_cnt; i++) {
5948 		old_bpf_func = func[i]->bpf_func;
5949 		tmp = bpf_int_jit_compile(func[i]);
5950 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5951 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5952 			err = -ENOTSUPP;
5953 			goto out_free;
5954 		}
5955 		cond_resched();
5956 	}
5957 
5958 	/* finally lock prog and jit images for all functions and
5959 	 * populate kallsysm
5960 	 */
5961 	for (i = 0; i < env->subprog_cnt; i++) {
5962 		bpf_prog_lock_ro(func[i]);
5963 		bpf_prog_kallsyms_add(func[i]);
5964 	}
5965 
5966 	/* Last step: make now unused interpreter insns from main
5967 	 * prog consistent for later dump requests, so they can
5968 	 * later look the same as if they were interpreted only.
5969 	 */
5970 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5971 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5972 		    insn->src_reg != BPF_PSEUDO_CALL)
5973 			continue;
5974 		insn->off = env->insn_aux_data[i].call_imm;
5975 		subprog = find_subprog(env, i + insn->off + 1);
5976 		insn->imm = subprog;
5977 	}
5978 
5979 	prog->jited = 1;
5980 	prog->bpf_func = func[0]->bpf_func;
5981 	prog->aux->func = func;
5982 	prog->aux->func_cnt = env->subprog_cnt;
5983 	return 0;
5984 out_free:
5985 	for (i = 0; i < env->subprog_cnt; i++)
5986 		if (func[i])
5987 			bpf_jit_free(func[i]);
5988 	kfree(func);
5989 out_undo_insn:
5990 	/* cleanup main prog to be interpreted */
5991 	prog->jit_requested = 0;
5992 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5993 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5994 		    insn->src_reg != BPF_PSEUDO_CALL)
5995 			continue;
5996 		insn->off = 0;
5997 		insn->imm = env->insn_aux_data[i].call_imm;
5998 	}
5999 	return err;
6000 }
6001 
6002 static int fixup_call_args(struct bpf_verifier_env *env)
6003 {
6004 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6005 	struct bpf_prog *prog = env->prog;
6006 	struct bpf_insn *insn = prog->insnsi;
6007 	int i, depth;
6008 #endif
6009 	int err = 0;
6010 
6011 	if (env->prog->jit_requested &&
6012 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
6013 		err = jit_subprogs(env);
6014 		if (err == 0)
6015 			return 0;
6016 		if (err == -EFAULT)
6017 			return err;
6018 	}
6019 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6020 	for (i = 0; i < prog->len; i++, insn++) {
6021 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6022 		    insn->src_reg != BPF_PSEUDO_CALL)
6023 			continue;
6024 		depth = get_callee_stack_depth(env, insn, i);
6025 		if (depth < 0)
6026 			return depth;
6027 		bpf_patch_call_args(insn, depth);
6028 	}
6029 	err = 0;
6030 #endif
6031 	return err;
6032 }
6033 
6034 /* fixup insn->imm field of bpf_call instructions
6035  * and inline eligible helpers as explicit sequence of BPF instructions
6036  *
6037  * this function is called after eBPF program passed verification
6038  */
6039 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6040 {
6041 	struct bpf_prog *prog = env->prog;
6042 	struct bpf_insn *insn = prog->insnsi;
6043 	const struct bpf_func_proto *fn;
6044 	const int insn_cnt = prog->len;
6045 	const struct bpf_map_ops *ops;
6046 	struct bpf_insn_aux_data *aux;
6047 	struct bpf_insn insn_buf[16];
6048 	struct bpf_prog *new_prog;
6049 	struct bpf_map *map_ptr;
6050 	int i, cnt, delta = 0;
6051 
6052 	for (i = 0; i < insn_cnt; i++, insn++) {
6053 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6054 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6055 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6056 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6057 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6058 			struct bpf_insn mask_and_div[] = {
6059 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6060 				/* Rx div 0 -> 0 */
6061 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6062 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6063 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6064 				*insn,
6065 			};
6066 			struct bpf_insn mask_and_mod[] = {
6067 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6068 				/* Rx mod 0 -> Rx */
6069 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6070 				*insn,
6071 			};
6072 			struct bpf_insn *patchlet;
6073 
6074 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6075 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6076 				patchlet = mask_and_div + (is64 ? 1 : 0);
6077 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6078 			} else {
6079 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6080 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6081 			}
6082 
6083 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6084 			if (!new_prog)
6085 				return -ENOMEM;
6086 
6087 			delta    += cnt - 1;
6088 			env->prog = prog = new_prog;
6089 			insn      = new_prog->insnsi + i + delta;
6090 			continue;
6091 		}
6092 
6093 		if (BPF_CLASS(insn->code) == BPF_LD &&
6094 		    (BPF_MODE(insn->code) == BPF_ABS ||
6095 		     BPF_MODE(insn->code) == BPF_IND)) {
6096 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6097 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6098 				verbose(env, "bpf verifier is misconfigured\n");
6099 				return -EINVAL;
6100 			}
6101 
6102 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6103 			if (!new_prog)
6104 				return -ENOMEM;
6105 
6106 			delta    += cnt - 1;
6107 			env->prog = prog = new_prog;
6108 			insn      = new_prog->insnsi + i + delta;
6109 			continue;
6110 		}
6111 
6112 		if (insn->code != (BPF_JMP | BPF_CALL))
6113 			continue;
6114 		if (insn->src_reg == BPF_PSEUDO_CALL)
6115 			continue;
6116 
6117 		if (insn->imm == BPF_FUNC_get_route_realm)
6118 			prog->dst_needed = 1;
6119 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6120 			bpf_user_rnd_init_once();
6121 		if (insn->imm == BPF_FUNC_override_return)
6122 			prog->kprobe_override = 1;
6123 		if (insn->imm == BPF_FUNC_tail_call) {
6124 			/* If we tail call into other programs, we
6125 			 * cannot make any assumptions since they can
6126 			 * be replaced dynamically during runtime in
6127 			 * the program array.
6128 			 */
6129 			prog->cb_access = 1;
6130 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6131 
6132 			/* mark bpf_tail_call as different opcode to avoid
6133 			 * conditional branch in the interpeter for every normal
6134 			 * call and to prevent accidental JITing by JIT compiler
6135 			 * that doesn't support bpf_tail_call yet
6136 			 */
6137 			insn->imm = 0;
6138 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6139 
6140 			aux = &env->insn_aux_data[i + delta];
6141 			if (!bpf_map_ptr_unpriv(aux))
6142 				continue;
6143 
6144 			/* instead of changing every JIT dealing with tail_call
6145 			 * emit two extra insns:
6146 			 * if (index >= max_entries) goto out;
6147 			 * index &= array->index_mask;
6148 			 * to avoid out-of-bounds cpu speculation
6149 			 */
6150 			if (bpf_map_ptr_poisoned(aux)) {
6151 				verbose(env, "tail_call abusing map_ptr\n");
6152 				return -EINVAL;
6153 			}
6154 
6155 			map_ptr = BPF_MAP_PTR(aux->map_state);
6156 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6157 						  map_ptr->max_entries, 2);
6158 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6159 						    container_of(map_ptr,
6160 								 struct bpf_array,
6161 								 map)->index_mask);
6162 			insn_buf[2] = *insn;
6163 			cnt = 3;
6164 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6165 			if (!new_prog)
6166 				return -ENOMEM;
6167 
6168 			delta    += cnt - 1;
6169 			env->prog = prog = new_prog;
6170 			insn      = new_prog->insnsi + i + delta;
6171 			continue;
6172 		}
6173 
6174 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6175 		 * and other inlining handlers are currently limited to 64 bit
6176 		 * only.
6177 		 */
6178 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6179 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6180 		     insn->imm == BPF_FUNC_map_update_elem ||
6181 		     insn->imm == BPF_FUNC_map_delete_elem ||
6182 		     insn->imm == BPF_FUNC_map_push_elem   ||
6183 		     insn->imm == BPF_FUNC_map_pop_elem    ||
6184 		     insn->imm == BPF_FUNC_map_peek_elem)) {
6185 			aux = &env->insn_aux_data[i + delta];
6186 			if (bpf_map_ptr_poisoned(aux))
6187 				goto patch_call_imm;
6188 
6189 			map_ptr = BPF_MAP_PTR(aux->map_state);
6190 			ops = map_ptr->ops;
6191 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6192 			    ops->map_gen_lookup) {
6193 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6194 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6195 					verbose(env, "bpf verifier is misconfigured\n");
6196 					return -EINVAL;
6197 				}
6198 
6199 				new_prog = bpf_patch_insn_data(env, i + delta,
6200 							       insn_buf, cnt);
6201 				if (!new_prog)
6202 					return -ENOMEM;
6203 
6204 				delta    += cnt - 1;
6205 				env->prog = prog = new_prog;
6206 				insn      = new_prog->insnsi + i + delta;
6207 				continue;
6208 			}
6209 
6210 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6211 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6212 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6213 				     (int (*)(struct bpf_map *map, void *key))NULL));
6214 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6215 				     (int (*)(struct bpf_map *map, void *key, void *value,
6216 					      u64 flags))NULL));
6217 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6218 				     (int (*)(struct bpf_map *map, void *value,
6219 					      u64 flags))NULL));
6220 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6221 				     (int (*)(struct bpf_map *map, void *value))NULL));
6222 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6223 				     (int (*)(struct bpf_map *map, void *value))NULL));
6224 
6225 			switch (insn->imm) {
6226 			case BPF_FUNC_map_lookup_elem:
6227 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6228 					    __bpf_call_base;
6229 				continue;
6230 			case BPF_FUNC_map_update_elem:
6231 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6232 					    __bpf_call_base;
6233 				continue;
6234 			case BPF_FUNC_map_delete_elem:
6235 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6236 					    __bpf_call_base;
6237 				continue;
6238 			case BPF_FUNC_map_push_elem:
6239 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6240 					    __bpf_call_base;
6241 				continue;
6242 			case BPF_FUNC_map_pop_elem:
6243 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6244 					    __bpf_call_base;
6245 				continue;
6246 			case BPF_FUNC_map_peek_elem:
6247 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6248 					    __bpf_call_base;
6249 				continue;
6250 			}
6251 
6252 			goto patch_call_imm;
6253 		}
6254 
6255 patch_call_imm:
6256 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6257 		/* all functions that have prototype and verifier allowed
6258 		 * programs to call them, must be real in-kernel functions
6259 		 */
6260 		if (!fn->func) {
6261 			verbose(env,
6262 				"kernel subsystem misconfigured func %s#%d\n",
6263 				func_id_name(insn->imm), insn->imm);
6264 			return -EFAULT;
6265 		}
6266 		insn->imm = fn->func - __bpf_call_base;
6267 	}
6268 
6269 	return 0;
6270 }
6271 
6272 static void free_states(struct bpf_verifier_env *env)
6273 {
6274 	struct bpf_verifier_state_list *sl, *sln;
6275 	int i;
6276 
6277 	if (!env->explored_states)
6278 		return;
6279 
6280 	for (i = 0; i < env->prog->len; i++) {
6281 		sl = env->explored_states[i];
6282 
6283 		if (sl)
6284 			while (sl != STATE_LIST_MARK) {
6285 				sln = sl->next;
6286 				free_verifier_state(&sl->state, false);
6287 				kfree(sl);
6288 				sl = sln;
6289 			}
6290 	}
6291 
6292 	kfree(env->explored_states);
6293 }
6294 
6295 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6296 {
6297 	struct bpf_verifier_env *env;
6298 	struct bpf_verifier_log *log;
6299 	int ret = -EINVAL;
6300 
6301 	/* no program is valid */
6302 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6303 		return -EINVAL;
6304 
6305 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6306 	 * allocate/free it every time bpf_check() is called
6307 	 */
6308 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6309 	if (!env)
6310 		return -ENOMEM;
6311 	log = &env->log;
6312 
6313 	env->insn_aux_data =
6314 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6315 				   (*prog)->len));
6316 	ret = -ENOMEM;
6317 	if (!env->insn_aux_data)
6318 		goto err_free_env;
6319 	env->prog = *prog;
6320 	env->ops = bpf_verifier_ops[env->prog->type];
6321 
6322 	/* grab the mutex to protect few globals used by verifier */
6323 	mutex_lock(&bpf_verifier_lock);
6324 
6325 	if (attr->log_level || attr->log_buf || attr->log_size) {
6326 		/* user requested verbose verifier output
6327 		 * and supplied buffer to store the verification trace
6328 		 */
6329 		log->level = attr->log_level;
6330 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6331 		log->len_total = attr->log_size;
6332 
6333 		ret = -EINVAL;
6334 		/* log attributes have to be sane */
6335 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6336 		    !log->level || !log->ubuf)
6337 			goto err_unlock;
6338 	}
6339 
6340 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6341 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6342 		env->strict_alignment = true;
6343 
6344 	ret = replace_map_fd_with_map_ptr(env);
6345 	if (ret < 0)
6346 		goto skip_full_check;
6347 
6348 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6349 		ret = bpf_prog_offload_verifier_prep(env);
6350 		if (ret)
6351 			goto skip_full_check;
6352 	}
6353 
6354 	env->explored_states = kcalloc(env->prog->len,
6355 				       sizeof(struct bpf_verifier_state_list *),
6356 				       GFP_USER);
6357 	ret = -ENOMEM;
6358 	if (!env->explored_states)
6359 		goto skip_full_check;
6360 
6361 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6362 
6363 	ret = check_cfg(env);
6364 	if (ret < 0)
6365 		goto skip_full_check;
6366 
6367 	ret = do_check(env);
6368 	if (env->cur_state) {
6369 		free_verifier_state(env->cur_state, true);
6370 		env->cur_state = NULL;
6371 	}
6372 
6373 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6374 		ret = bpf_prog_offload_finalize(env);
6375 
6376 skip_full_check:
6377 	while (!pop_stack(env, NULL, NULL));
6378 	free_states(env);
6379 
6380 	if (ret == 0)
6381 		sanitize_dead_code(env);
6382 
6383 	if (ret == 0)
6384 		ret = check_max_stack_depth(env);
6385 
6386 	if (ret == 0)
6387 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6388 		ret = convert_ctx_accesses(env);
6389 
6390 	if (ret == 0)
6391 		ret = fixup_bpf_calls(env);
6392 
6393 	if (ret == 0)
6394 		ret = fixup_call_args(env);
6395 
6396 	if (log->level && bpf_verifier_log_full(log))
6397 		ret = -ENOSPC;
6398 	if (log->level && !log->ubuf) {
6399 		ret = -EFAULT;
6400 		goto err_release_maps;
6401 	}
6402 
6403 	if (ret == 0 && env->used_map_cnt) {
6404 		/* if program passed verifier, update used_maps in bpf_prog_info */
6405 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6406 							  sizeof(env->used_maps[0]),
6407 							  GFP_KERNEL);
6408 
6409 		if (!env->prog->aux->used_maps) {
6410 			ret = -ENOMEM;
6411 			goto err_release_maps;
6412 		}
6413 
6414 		memcpy(env->prog->aux->used_maps, env->used_maps,
6415 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6416 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6417 
6418 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6419 		 * bpf_ld_imm64 instructions
6420 		 */
6421 		convert_pseudo_ld_imm64(env);
6422 	}
6423 
6424 err_release_maps:
6425 	if (!env->prog->aux->used_maps)
6426 		/* if we didn't copy map pointers into bpf_prog_info, release
6427 		 * them now. Otherwise free_used_maps() will release them.
6428 		 */
6429 		release_maps(env);
6430 	*prog = env->prog;
6431 err_unlock:
6432 	mutex_unlock(&bpf_verifier_lock);
6433 	vfree(env->insn_aux_data);
6434 err_free_env:
6435 	kfree(env);
6436 	return ret;
6437 }
6438