1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/bpf.h> 18 #include <linux/bpf_verifier.h> 19 #include <linux/filter.h> 20 #include <net/netlink.h> 21 #include <linux/file.h> 22 #include <linux/vmalloc.h> 23 #include <linux/stringify.h> 24 #include <linux/bsearch.h> 25 #include <linux/sort.h> 26 #include <linux/perf_event.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 }; 175 176 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 177 #define BPF_COMPLEXITY_LIMIT_STACK 1024 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 struct bpf_call_arg_meta { 204 struct bpf_map *map_ptr; 205 bool raw_mode; 206 bool pkt_access; 207 int regno; 208 int access_size; 209 s64 msize_smax_value; 210 u64 msize_umax_value; 211 int ptr_id; 212 }; 213 214 static DEFINE_MUTEX(bpf_verifier_lock); 215 216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 217 va_list args) 218 { 219 unsigned int n; 220 221 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 222 223 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 224 "verifier log line truncated - local buffer too short\n"); 225 226 n = min(log->len_total - log->len_used - 1, n); 227 log->kbuf[n] = '\0'; 228 229 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 230 log->len_used += n; 231 else 232 log->ubuf = NULL; 233 } 234 235 /* log_level controls verbosity level of eBPF verifier. 236 * bpf_verifier_log_write() is used to dump the verification trace to the log, 237 * so the user can figure out what's wrong with the program 238 */ 239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 240 const char *fmt, ...) 241 { 242 va_list args; 243 244 if (!bpf_verifier_log_needed(&env->log)) 245 return; 246 247 va_start(args, fmt); 248 bpf_verifier_vlog(&env->log, fmt, args); 249 va_end(args); 250 } 251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 252 253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 254 { 255 struct bpf_verifier_env *env = private_data; 256 va_list args; 257 258 if (!bpf_verifier_log_needed(&env->log)) 259 return; 260 261 va_start(args, fmt); 262 bpf_verifier_vlog(&env->log, fmt, args); 263 va_end(args); 264 } 265 266 static bool type_is_pkt_pointer(enum bpf_reg_type type) 267 { 268 return type == PTR_TO_PACKET || 269 type == PTR_TO_PACKET_META; 270 } 271 272 static bool reg_type_may_be_null(enum bpf_reg_type type) 273 { 274 return type == PTR_TO_MAP_VALUE_OR_NULL || 275 type == PTR_TO_SOCKET_OR_NULL; 276 } 277 278 static bool type_is_refcounted(enum bpf_reg_type type) 279 { 280 return type == PTR_TO_SOCKET; 281 } 282 283 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 284 { 285 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 286 } 287 288 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 289 { 290 return type_is_refcounted(reg->type); 291 } 292 293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 294 { 295 return type_is_refcounted_or_null(reg->type); 296 } 297 298 static bool arg_type_is_refcounted(enum bpf_arg_type type) 299 { 300 return type == ARG_PTR_TO_SOCKET; 301 } 302 303 /* Determine whether the function releases some resources allocated by another 304 * function call. The first reference type argument will be assumed to be 305 * released by release_reference(). 306 */ 307 static bool is_release_function(enum bpf_func_id func_id) 308 { 309 return func_id == BPF_FUNC_sk_release; 310 } 311 312 /* string representation of 'enum bpf_reg_type' */ 313 static const char * const reg_type_str[] = { 314 [NOT_INIT] = "?", 315 [SCALAR_VALUE] = "inv", 316 [PTR_TO_CTX] = "ctx", 317 [CONST_PTR_TO_MAP] = "map_ptr", 318 [PTR_TO_MAP_VALUE] = "map_value", 319 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 320 [PTR_TO_STACK] = "fp", 321 [PTR_TO_PACKET] = "pkt", 322 [PTR_TO_PACKET_META] = "pkt_meta", 323 [PTR_TO_PACKET_END] = "pkt_end", 324 [PTR_TO_FLOW_KEYS] = "flow_keys", 325 [PTR_TO_SOCKET] = "sock", 326 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 327 }; 328 329 static char slot_type_char[] = { 330 [STACK_INVALID] = '?', 331 [STACK_SPILL] = 'r', 332 [STACK_MISC] = 'm', 333 [STACK_ZERO] = '0', 334 }; 335 336 static void print_liveness(struct bpf_verifier_env *env, 337 enum bpf_reg_liveness live) 338 { 339 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 340 verbose(env, "_"); 341 if (live & REG_LIVE_READ) 342 verbose(env, "r"); 343 if (live & REG_LIVE_WRITTEN) 344 verbose(env, "w"); 345 } 346 347 static struct bpf_func_state *func(struct bpf_verifier_env *env, 348 const struct bpf_reg_state *reg) 349 { 350 struct bpf_verifier_state *cur = env->cur_state; 351 352 return cur->frame[reg->frameno]; 353 } 354 355 static void print_verifier_state(struct bpf_verifier_env *env, 356 const struct bpf_func_state *state) 357 { 358 const struct bpf_reg_state *reg; 359 enum bpf_reg_type t; 360 int i; 361 362 if (state->frameno) 363 verbose(env, " frame%d:", state->frameno); 364 for (i = 0; i < MAX_BPF_REG; i++) { 365 reg = &state->regs[i]; 366 t = reg->type; 367 if (t == NOT_INIT) 368 continue; 369 verbose(env, " R%d", i); 370 print_liveness(env, reg->live); 371 verbose(env, "=%s", reg_type_str[t]); 372 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 373 tnum_is_const(reg->var_off)) { 374 /* reg->off should be 0 for SCALAR_VALUE */ 375 verbose(env, "%lld", reg->var_off.value + reg->off); 376 if (t == PTR_TO_STACK) 377 verbose(env, ",call_%d", func(env, reg)->callsite); 378 } else { 379 verbose(env, "(id=%d", reg->id); 380 if (t != SCALAR_VALUE) 381 verbose(env, ",off=%d", reg->off); 382 if (type_is_pkt_pointer(t)) 383 verbose(env, ",r=%d", reg->range); 384 else if (t == CONST_PTR_TO_MAP || 385 t == PTR_TO_MAP_VALUE || 386 t == PTR_TO_MAP_VALUE_OR_NULL) 387 verbose(env, ",ks=%d,vs=%d", 388 reg->map_ptr->key_size, 389 reg->map_ptr->value_size); 390 if (tnum_is_const(reg->var_off)) { 391 /* Typically an immediate SCALAR_VALUE, but 392 * could be a pointer whose offset is too big 393 * for reg->off 394 */ 395 verbose(env, ",imm=%llx", reg->var_off.value); 396 } else { 397 if (reg->smin_value != reg->umin_value && 398 reg->smin_value != S64_MIN) 399 verbose(env, ",smin_value=%lld", 400 (long long)reg->smin_value); 401 if (reg->smax_value != reg->umax_value && 402 reg->smax_value != S64_MAX) 403 verbose(env, ",smax_value=%lld", 404 (long long)reg->smax_value); 405 if (reg->umin_value != 0) 406 verbose(env, ",umin_value=%llu", 407 (unsigned long long)reg->umin_value); 408 if (reg->umax_value != U64_MAX) 409 verbose(env, ",umax_value=%llu", 410 (unsigned long long)reg->umax_value); 411 if (!tnum_is_unknown(reg->var_off)) { 412 char tn_buf[48]; 413 414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 415 verbose(env, ",var_off=%s", tn_buf); 416 } 417 } 418 verbose(env, ")"); 419 } 420 } 421 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 422 char types_buf[BPF_REG_SIZE + 1]; 423 bool valid = false; 424 int j; 425 426 for (j = 0; j < BPF_REG_SIZE; j++) { 427 if (state->stack[i].slot_type[j] != STACK_INVALID) 428 valid = true; 429 types_buf[j] = slot_type_char[ 430 state->stack[i].slot_type[j]]; 431 } 432 types_buf[BPF_REG_SIZE] = 0; 433 if (!valid) 434 continue; 435 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 436 print_liveness(env, state->stack[i].spilled_ptr.live); 437 if (state->stack[i].slot_type[0] == STACK_SPILL) 438 verbose(env, "=%s", 439 reg_type_str[state->stack[i].spilled_ptr.type]); 440 else 441 verbose(env, "=%s", types_buf); 442 } 443 if (state->acquired_refs && state->refs[0].id) { 444 verbose(env, " refs=%d", state->refs[0].id); 445 for (i = 1; i < state->acquired_refs; i++) 446 if (state->refs[i].id) 447 verbose(env, ",%d", state->refs[i].id); 448 } 449 verbose(env, "\n"); 450 } 451 452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 453 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 454 const struct bpf_func_state *src) \ 455 { \ 456 if (!src->FIELD) \ 457 return 0; \ 458 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 459 /* internal bug, make state invalid to reject the program */ \ 460 memset(dst, 0, sizeof(*dst)); \ 461 return -EFAULT; \ 462 } \ 463 memcpy(dst->FIELD, src->FIELD, \ 464 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 465 return 0; \ 466 } 467 /* copy_reference_state() */ 468 COPY_STATE_FN(reference, acquired_refs, refs, 1) 469 /* copy_stack_state() */ 470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 471 #undef COPY_STATE_FN 472 473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 475 bool copy_old) \ 476 { \ 477 u32 old_size = state->COUNT; \ 478 struct bpf_##NAME##_state *new_##FIELD; \ 479 int slot = size / SIZE; \ 480 \ 481 if (size <= old_size || !size) { \ 482 if (copy_old) \ 483 return 0; \ 484 state->COUNT = slot * SIZE; \ 485 if (!size && old_size) { \ 486 kfree(state->FIELD); \ 487 state->FIELD = NULL; \ 488 } \ 489 return 0; \ 490 } \ 491 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 492 GFP_KERNEL); \ 493 if (!new_##FIELD) \ 494 return -ENOMEM; \ 495 if (copy_old) { \ 496 if (state->FIELD) \ 497 memcpy(new_##FIELD, state->FIELD, \ 498 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 499 memset(new_##FIELD + old_size / SIZE, 0, \ 500 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 501 } \ 502 state->COUNT = slot * SIZE; \ 503 kfree(state->FIELD); \ 504 state->FIELD = new_##FIELD; \ 505 return 0; \ 506 } 507 /* realloc_reference_state() */ 508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 509 /* realloc_stack_state() */ 510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 511 #undef REALLOC_STATE_FN 512 513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 514 * make it consume minimal amount of memory. check_stack_write() access from 515 * the program calls into realloc_func_state() to grow the stack size. 516 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 517 * which realloc_stack_state() copies over. It points to previous 518 * bpf_verifier_state which is never reallocated. 519 */ 520 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 521 int refs_size, bool copy_old) 522 { 523 int err = realloc_reference_state(state, refs_size, copy_old); 524 if (err) 525 return err; 526 return realloc_stack_state(state, stack_size, copy_old); 527 } 528 529 /* Acquire a pointer id from the env and update the state->refs to include 530 * this new pointer reference. 531 * On success, returns a valid pointer id to associate with the register 532 * On failure, returns a negative errno. 533 */ 534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 535 { 536 struct bpf_func_state *state = cur_func(env); 537 int new_ofs = state->acquired_refs; 538 int id, err; 539 540 err = realloc_reference_state(state, state->acquired_refs + 1, true); 541 if (err) 542 return err; 543 id = ++env->id_gen; 544 state->refs[new_ofs].id = id; 545 state->refs[new_ofs].insn_idx = insn_idx; 546 547 return id; 548 } 549 550 /* release function corresponding to acquire_reference_state(). Idempotent. */ 551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 552 { 553 int i, last_idx; 554 555 if (!ptr_id) 556 return -EFAULT; 557 558 last_idx = state->acquired_refs - 1; 559 for (i = 0; i < state->acquired_refs; i++) { 560 if (state->refs[i].id == ptr_id) { 561 if (last_idx && i != last_idx) 562 memcpy(&state->refs[i], &state->refs[last_idx], 563 sizeof(*state->refs)); 564 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 565 state->acquired_refs--; 566 return 0; 567 } 568 } 569 return -EFAULT; 570 } 571 572 /* variation on the above for cases where we expect that there must be an 573 * outstanding reference for the specified ptr_id. 574 */ 575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 576 { 577 struct bpf_func_state *state = cur_func(env); 578 int err; 579 580 err = __release_reference_state(state, ptr_id); 581 if (WARN_ON_ONCE(err != 0)) 582 verbose(env, "verifier internal error: can't release reference\n"); 583 return err; 584 } 585 586 static int transfer_reference_state(struct bpf_func_state *dst, 587 struct bpf_func_state *src) 588 { 589 int err = realloc_reference_state(dst, src->acquired_refs, false); 590 if (err) 591 return err; 592 err = copy_reference_state(dst, src); 593 if (err) 594 return err; 595 return 0; 596 } 597 598 static void free_func_state(struct bpf_func_state *state) 599 { 600 if (!state) 601 return; 602 kfree(state->refs); 603 kfree(state->stack); 604 kfree(state); 605 } 606 607 static void free_verifier_state(struct bpf_verifier_state *state, 608 bool free_self) 609 { 610 int i; 611 612 for (i = 0; i <= state->curframe; i++) { 613 free_func_state(state->frame[i]); 614 state->frame[i] = NULL; 615 } 616 if (free_self) 617 kfree(state); 618 } 619 620 /* copy verifier state from src to dst growing dst stack space 621 * when necessary to accommodate larger src stack 622 */ 623 static int copy_func_state(struct bpf_func_state *dst, 624 const struct bpf_func_state *src) 625 { 626 int err; 627 628 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 629 false); 630 if (err) 631 return err; 632 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 633 err = copy_reference_state(dst, src); 634 if (err) 635 return err; 636 return copy_stack_state(dst, src); 637 } 638 639 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 640 const struct bpf_verifier_state *src) 641 { 642 struct bpf_func_state *dst; 643 int i, err; 644 645 /* if dst has more stack frames then src frame, free them */ 646 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 647 free_func_state(dst_state->frame[i]); 648 dst_state->frame[i] = NULL; 649 } 650 dst_state->curframe = src->curframe; 651 for (i = 0; i <= src->curframe; i++) { 652 dst = dst_state->frame[i]; 653 if (!dst) { 654 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 655 if (!dst) 656 return -ENOMEM; 657 dst_state->frame[i] = dst; 658 } 659 err = copy_func_state(dst, src->frame[i]); 660 if (err) 661 return err; 662 } 663 return 0; 664 } 665 666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 667 int *insn_idx) 668 { 669 struct bpf_verifier_state *cur = env->cur_state; 670 struct bpf_verifier_stack_elem *elem, *head = env->head; 671 int err; 672 673 if (env->head == NULL) 674 return -ENOENT; 675 676 if (cur) { 677 err = copy_verifier_state(cur, &head->st); 678 if (err) 679 return err; 680 } 681 if (insn_idx) 682 *insn_idx = head->insn_idx; 683 if (prev_insn_idx) 684 *prev_insn_idx = head->prev_insn_idx; 685 elem = head->next; 686 free_verifier_state(&head->st, false); 687 kfree(head); 688 env->head = elem; 689 env->stack_size--; 690 return 0; 691 } 692 693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 694 int insn_idx, int prev_insn_idx) 695 { 696 struct bpf_verifier_state *cur = env->cur_state; 697 struct bpf_verifier_stack_elem *elem; 698 int err; 699 700 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 701 if (!elem) 702 goto err; 703 704 elem->insn_idx = insn_idx; 705 elem->prev_insn_idx = prev_insn_idx; 706 elem->next = env->head; 707 env->head = elem; 708 env->stack_size++; 709 err = copy_verifier_state(&elem->st, cur); 710 if (err) 711 goto err; 712 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 713 verbose(env, "BPF program is too complex\n"); 714 goto err; 715 } 716 return &elem->st; 717 err: 718 free_verifier_state(env->cur_state, true); 719 env->cur_state = NULL; 720 /* pop all elements and return */ 721 while (!pop_stack(env, NULL, NULL)); 722 return NULL; 723 } 724 725 #define CALLER_SAVED_REGS 6 726 static const int caller_saved[CALLER_SAVED_REGS] = { 727 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 728 }; 729 730 static void __mark_reg_not_init(struct bpf_reg_state *reg); 731 732 /* Mark the unknown part of a register (variable offset or scalar value) as 733 * known to have the value @imm. 734 */ 735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 736 { 737 /* Clear id, off, and union(map_ptr, range) */ 738 memset(((u8 *)reg) + sizeof(reg->type), 0, 739 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 740 reg->var_off = tnum_const(imm); 741 reg->smin_value = (s64)imm; 742 reg->smax_value = (s64)imm; 743 reg->umin_value = imm; 744 reg->umax_value = imm; 745 } 746 747 /* Mark the 'variable offset' part of a register as zero. This should be 748 * used only on registers holding a pointer type. 749 */ 750 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 751 { 752 __mark_reg_known(reg, 0); 753 } 754 755 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 756 { 757 __mark_reg_known(reg, 0); 758 reg->type = SCALAR_VALUE; 759 } 760 761 static void mark_reg_known_zero(struct bpf_verifier_env *env, 762 struct bpf_reg_state *regs, u32 regno) 763 { 764 if (WARN_ON(regno >= MAX_BPF_REG)) { 765 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 766 /* Something bad happened, let's kill all regs */ 767 for (regno = 0; regno < MAX_BPF_REG; regno++) 768 __mark_reg_not_init(regs + regno); 769 return; 770 } 771 __mark_reg_known_zero(regs + regno); 772 } 773 774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 775 { 776 return type_is_pkt_pointer(reg->type); 777 } 778 779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 780 { 781 return reg_is_pkt_pointer(reg) || 782 reg->type == PTR_TO_PACKET_END; 783 } 784 785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 787 enum bpf_reg_type which) 788 { 789 /* The register can already have a range from prior markings. 790 * This is fine as long as it hasn't been advanced from its 791 * origin. 792 */ 793 return reg->type == which && 794 reg->id == 0 && 795 reg->off == 0 && 796 tnum_equals_const(reg->var_off, 0); 797 } 798 799 /* Attempts to improve min/max values based on var_off information */ 800 static void __update_reg_bounds(struct bpf_reg_state *reg) 801 { 802 /* min signed is max(sign bit) | min(other bits) */ 803 reg->smin_value = max_t(s64, reg->smin_value, 804 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 805 /* max signed is min(sign bit) | max(other bits) */ 806 reg->smax_value = min_t(s64, reg->smax_value, 807 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 808 reg->umin_value = max(reg->umin_value, reg->var_off.value); 809 reg->umax_value = min(reg->umax_value, 810 reg->var_off.value | reg->var_off.mask); 811 } 812 813 /* Uses signed min/max values to inform unsigned, and vice-versa */ 814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 815 { 816 /* Learn sign from signed bounds. 817 * If we cannot cross the sign boundary, then signed and unsigned bounds 818 * are the same, so combine. This works even in the negative case, e.g. 819 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 820 */ 821 if (reg->smin_value >= 0 || reg->smax_value < 0) { 822 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 823 reg->umin_value); 824 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 825 reg->umax_value); 826 return; 827 } 828 /* Learn sign from unsigned bounds. Signed bounds cross the sign 829 * boundary, so we must be careful. 830 */ 831 if ((s64)reg->umax_value >= 0) { 832 /* Positive. We can't learn anything from the smin, but smax 833 * is positive, hence safe. 834 */ 835 reg->smin_value = reg->umin_value; 836 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 837 reg->umax_value); 838 } else if ((s64)reg->umin_value < 0) { 839 /* Negative. We can't learn anything from the smax, but smin 840 * is negative, hence safe. 841 */ 842 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 843 reg->umin_value); 844 reg->smax_value = reg->umax_value; 845 } 846 } 847 848 /* Attempts to improve var_off based on unsigned min/max information */ 849 static void __reg_bound_offset(struct bpf_reg_state *reg) 850 { 851 reg->var_off = tnum_intersect(reg->var_off, 852 tnum_range(reg->umin_value, 853 reg->umax_value)); 854 } 855 856 /* Reset the min/max bounds of a register */ 857 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 858 { 859 reg->smin_value = S64_MIN; 860 reg->smax_value = S64_MAX; 861 reg->umin_value = 0; 862 reg->umax_value = U64_MAX; 863 } 864 865 /* Mark a register as having a completely unknown (scalar) value. */ 866 static void __mark_reg_unknown(struct bpf_reg_state *reg) 867 { 868 /* 869 * Clear type, id, off, and union(map_ptr, range) and 870 * padding between 'type' and union 871 */ 872 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 873 reg->type = SCALAR_VALUE; 874 reg->var_off = tnum_unknown; 875 reg->frameno = 0; 876 __mark_reg_unbounded(reg); 877 } 878 879 static void mark_reg_unknown(struct bpf_verifier_env *env, 880 struct bpf_reg_state *regs, u32 regno) 881 { 882 if (WARN_ON(regno >= MAX_BPF_REG)) { 883 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 884 /* Something bad happened, let's kill all regs except FP */ 885 for (regno = 0; regno < BPF_REG_FP; regno++) 886 __mark_reg_not_init(regs + regno); 887 return; 888 } 889 __mark_reg_unknown(regs + regno); 890 } 891 892 static void __mark_reg_not_init(struct bpf_reg_state *reg) 893 { 894 __mark_reg_unknown(reg); 895 reg->type = NOT_INIT; 896 } 897 898 static void mark_reg_not_init(struct bpf_verifier_env *env, 899 struct bpf_reg_state *regs, u32 regno) 900 { 901 if (WARN_ON(regno >= MAX_BPF_REG)) { 902 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 903 /* Something bad happened, let's kill all regs except FP */ 904 for (regno = 0; regno < BPF_REG_FP; regno++) 905 __mark_reg_not_init(regs + regno); 906 return; 907 } 908 __mark_reg_not_init(regs + regno); 909 } 910 911 static void init_reg_state(struct bpf_verifier_env *env, 912 struct bpf_func_state *state) 913 { 914 struct bpf_reg_state *regs = state->regs; 915 int i; 916 917 for (i = 0; i < MAX_BPF_REG; i++) { 918 mark_reg_not_init(env, regs, i); 919 regs[i].live = REG_LIVE_NONE; 920 regs[i].parent = NULL; 921 } 922 923 /* frame pointer */ 924 regs[BPF_REG_FP].type = PTR_TO_STACK; 925 mark_reg_known_zero(env, regs, BPF_REG_FP); 926 regs[BPF_REG_FP].frameno = state->frameno; 927 928 /* 1st arg to a function */ 929 regs[BPF_REG_1].type = PTR_TO_CTX; 930 mark_reg_known_zero(env, regs, BPF_REG_1); 931 } 932 933 #define BPF_MAIN_FUNC (-1) 934 static void init_func_state(struct bpf_verifier_env *env, 935 struct bpf_func_state *state, 936 int callsite, int frameno, int subprogno) 937 { 938 state->callsite = callsite; 939 state->frameno = frameno; 940 state->subprogno = subprogno; 941 init_reg_state(env, state); 942 } 943 944 enum reg_arg_type { 945 SRC_OP, /* register is used as source operand */ 946 DST_OP, /* register is used as destination operand */ 947 DST_OP_NO_MARK /* same as above, check only, don't mark */ 948 }; 949 950 static int cmp_subprogs(const void *a, const void *b) 951 { 952 return ((struct bpf_subprog_info *)a)->start - 953 ((struct bpf_subprog_info *)b)->start; 954 } 955 956 static int find_subprog(struct bpf_verifier_env *env, int off) 957 { 958 struct bpf_subprog_info *p; 959 960 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 961 sizeof(env->subprog_info[0]), cmp_subprogs); 962 if (!p) 963 return -ENOENT; 964 return p - env->subprog_info; 965 966 } 967 968 static int add_subprog(struct bpf_verifier_env *env, int off) 969 { 970 int insn_cnt = env->prog->len; 971 int ret; 972 973 if (off >= insn_cnt || off < 0) { 974 verbose(env, "call to invalid destination\n"); 975 return -EINVAL; 976 } 977 ret = find_subprog(env, off); 978 if (ret >= 0) 979 return 0; 980 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 981 verbose(env, "too many subprograms\n"); 982 return -E2BIG; 983 } 984 env->subprog_info[env->subprog_cnt++].start = off; 985 sort(env->subprog_info, env->subprog_cnt, 986 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 987 return 0; 988 } 989 990 static int check_subprogs(struct bpf_verifier_env *env) 991 { 992 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 993 struct bpf_subprog_info *subprog = env->subprog_info; 994 struct bpf_insn *insn = env->prog->insnsi; 995 int insn_cnt = env->prog->len; 996 997 /* Add entry function. */ 998 ret = add_subprog(env, 0); 999 if (ret < 0) 1000 return ret; 1001 1002 /* determine subprog starts. The end is one before the next starts */ 1003 for (i = 0; i < insn_cnt; i++) { 1004 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1005 continue; 1006 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1007 continue; 1008 if (!env->allow_ptr_leaks) { 1009 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1010 return -EPERM; 1011 } 1012 ret = add_subprog(env, i + insn[i].imm + 1); 1013 if (ret < 0) 1014 return ret; 1015 } 1016 1017 /* Add a fake 'exit' subprog which could simplify subprog iteration 1018 * logic. 'subprog_cnt' should not be increased. 1019 */ 1020 subprog[env->subprog_cnt].start = insn_cnt; 1021 1022 if (env->log.level > 1) 1023 for (i = 0; i < env->subprog_cnt; i++) 1024 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1025 1026 /* now check that all jumps are within the same subprog */ 1027 subprog_start = subprog[cur_subprog].start; 1028 subprog_end = subprog[cur_subprog + 1].start; 1029 for (i = 0; i < insn_cnt; i++) { 1030 u8 code = insn[i].code; 1031 1032 if (BPF_CLASS(code) != BPF_JMP) 1033 goto next; 1034 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1035 goto next; 1036 off = i + insn[i].off + 1; 1037 if (off < subprog_start || off >= subprog_end) { 1038 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1039 return -EINVAL; 1040 } 1041 next: 1042 if (i == subprog_end - 1) { 1043 /* to avoid fall-through from one subprog into another 1044 * the last insn of the subprog should be either exit 1045 * or unconditional jump back 1046 */ 1047 if (code != (BPF_JMP | BPF_EXIT) && 1048 code != (BPF_JMP | BPF_JA)) { 1049 verbose(env, "last insn is not an exit or jmp\n"); 1050 return -EINVAL; 1051 } 1052 subprog_start = subprog_end; 1053 cur_subprog++; 1054 if (cur_subprog < env->subprog_cnt) 1055 subprog_end = subprog[cur_subprog + 1].start; 1056 } 1057 } 1058 return 0; 1059 } 1060 1061 /* Parentage chain of this register (or stack slot) should take care of all 1062 * issues like callee-saved registers, stack slot allocation time, etc. 1063 */ 1064 static int mark_reg_read(struct bpf_verifier_env *env, 1065 const struct bpf_reg_state *state, 1066 struct bpf_reg_state *parent) 1067 { 1068 bool writes = parent == state->parent; /* Observe write marks */ 1069 1070 while (parent) { 1071 /* if read wasn't screened by an earlier write ... */ 1072 if (writes && state->live & REG_LIVE_WRITTEN) 1073 break; 1074 /* ... then we depend on parent's value */ 1075 parent->live |= REG_LIVE_READ; 1076 state = parent; 1077 parent = state->parent; 1078 writes = true; 1079 } 1080 return 0; 1081 } 1082 1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1084 enum reg_arg_type t) 1085 { 1086 struct bpf_verifier_state *vstate = env->cur_state; 1087 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1088 struct bpf_reg_state *regs = state->regs; 1089 1090 if (regno >= MAX_BPF_REG) { 1091 verbose(env, "R%d is invalid\n", regno); 1092 return -EINVAL; 1093 } 1094 1095 if (t == SRC_OP) { 1096 /* check whether register used as source operand can be read */ 1097 if (regs[regno].type == NOT_INIT) { 1098 verbose(env, "R%d !read_ok\n", regno); 1099 return -EACCES; 1100 } 1101 /* We don't need to worry about FP liveness because it's read-only */ 1102 if (regno != BPF_REG_FP) 1103 return mark_reg_read(env, ®s[regno], 1104 regs[regno].parent); 1105 } else { 1106 /* check whether register used as dest operand can be written to */ 1107 if (regno == BPF_REG_FP) { 1108 verbose(env, "frame pointer is read only\n"); 1109 return -EACCES; 1110 } 1111 regs[regno].live |= REG_LIVE_WRITTEN; 1112 if (t == DST_OP) 1113 mark_reg_unknown(env, regs, regno); 1114 } 1115 return 0; 1116 } 1117 1118 static bool is_spillable_regtype(enum bpf_reg_type type) 1119 { 1120 switch (type) { 1121 case PTR_TO_MAP_VALUE: 1122 case PTR_TO_MAP_VALUE_OR_NULL: 1123 case PTR_TO_STACK: 1124 case PTR_TO_CTX: 1125 case PTR_TO_PACKET: 1126 case PTR_TO_PACKET_META: 1127 case PTR_TO_PACKET_END: 1128 case PTR_TO_FLOW_KEYS: 1129 case CONST_PTR_TO_MAP: 1130 case PTR_TO_SOCKET: 1131 case PTR_TO_SOCKET_OR_NULL: 1132 return true; 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 /* Does this register contain a constant zero? */ 1139 static bool register_is_null(struct bpf_reg_state *reg) 1140 { 1141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1142 } 1143 1144 /* check_stack_read/write functions track spill/fill of registers, 1145 * stack boundary and alignment are checked in check_mem_access() 1146 */ 1147 static int check_stack_write(struct bpf_verifier_env *env, 1148 struct bpf_func_state *state, /* func where register points to */ 1149 int off, int size, int value_regno, int insn_idx) 1150 { 1151 struct bpf_func_state *cur; /* state of the current function */ 1152 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1153 enum bpf_reg_type type; 1154 1155 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1156 state->acquired_refs, true); 1157 if (err) 1158 return err; 1159 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1160 * so it's aligned access and [off, off + size) are within stack limits 1161 */ 1162 if (!env->allow_ptr_leaks && 1163 state->stack[spi].slot_type[0] == STACK_SPILL && 1164 size != BPF_REG_SIZE) { 1165 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1166 return -EACCES; 1167 } 1168 1169 cur = env->cur_state->frame[env->cur_state->curframe]; 1170 if (value_regno >= 0 && 1171 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1172 1173 /* register containing pointer is being spilled into stack */ 1174 if (size != BPF_REG_SIZE) { 1175 verbose(env, "invalid size of register spill\n"); 1176 return -EACCES; 1177 } 1178 1179 if (state != cur && type == PTR_TO_STACK) { 1180 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1181 return -EINVAL; 1182 } 1183 1184 /* save register state */ 1185 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1186 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1187 1188 for (i = 0; i < BPF_REG_SIZE; i++) { 1189 if (state->stack[spi].slot_type[i] == STACK_MISC && 1190 !env->allow_ptr_leaks) { 1191 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1192 int soff = (-spi - 1) * BPF_REG_SIZE; 1193 1194 /* detected reuse of integer stack slot with a pointer 1195 * which means either llvm is reusing stack slot or 1196 * an attacker is trying to exploit CVE-2018-3639 1197 * (speculative store bypass) 1198 * Have to sanitize that slot with preemptive 1199 * store of zero. 1200 */ 1201 if (*poff && *poff != soff) { 1202 /* disallow programs where single insn stores 1203 * into two different stack slots, since verifier 1204 * cannot sanitize them 1205 */ 1206 verbose(env, 1207 "insn %d cannot access two stack slots fp%d and fp%d", 1208 insn_idx, *poff, soff); 1209 return -EINVAL; 1210 } 1211 *poff = soff; 1212 } 1213 state->stack[spi].slot_type[i] = STACK_SPILL; 1214 } 1215 } else { 1216 u8 type = STACK_MISC; 1217 1218 /* regular write of data into stack destroys any spilled ptr */ 1219 state->stack[spi].spilled_ptr.type = NOT_INIT; 1220 1221 /* only mark the slot as written if all 8 bytes were written 1222 * otherwise read propagation may incorrectly stop too soon 1223 * when stack slots are partially written. 1224 * This heuristic means that read propagation will be 1225 * conservative, since it will add reg_live_read marks 1226 * to stack slots all the way to first state when programs 1227 * writes+reads less than 8 bytes 1228 */ 1229 if (size == BPF_REG_SIZE) 1230 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1231 1232 /* when we zero initialize stack slots mark them as such */ 1233 if (value_regno >= 0 && 1234 register_is_null(&cur->regs[value_regno])) 1235 type = STACK_ZERO; 1236 1237 for (i = 0; i < size; i++) 1238 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1239 type; 1240 } 1241 return 0; 1242 } 1243 1244 static int check_stack_read(struct bpf_verifier_env *env, 1245 struct bpf_func_state *reg_state /* func where register points to */, 1246 int off, int size, int value_regno) 1247 { 1248 struct bpf_verifier_state *vstate = env->cur_state; 1249 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1250 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1251 u8 *stype; 1252 1253 if (reg_state->allocated_stack <= slot) { 1254 verbose(env, "invalid read from stack off %d+0 size %d\n", 1255 off, size); 1256 return -EACCES; 1257 } 1258 stype = reg_state->stack[spi].slot_type; 1259 1260 if (stype[0] == STACK_SPILL) { 1261 if (size != BPF_REG_SIZE) { 1262 verbose(env, "invalid size of register spill\n"); 1263 return -EACCES; 1264 } 1265 for (i = 1; i < BPF_REG_SIZE; i++) { 1266 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1267 verbose(env, "corrupted spill memory\n"); 1268 return -EACCES; 1269 } 1270 } 1271 1272 if (value_regno >= 0) { 1273 /* restore register state from stack */ 1274 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1275 /* mark reg as written since spilled pointer state likely 1276 * has its liveness marks cleared by is_state_visited() 1277 * which resets stack/reg liveness for state transitions 1278 */ 1279 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1280 } 1281 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1282 reg_state->stack[spi].spilled_ptr.parent); 1283 return 0; 1284 } else { 1285 int zeros = 0; 1286 1287 for (i = 0; i < size; i++) { 1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1289 continue; 1290 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1291 zeros++; 1292 continue; 1293 } 1294 verbose(env, "invalid read from stack off %d+%d size %d\n", 1295 off, i, size); 1296 return -EACCES; 1297 } 1298 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1299 reg_state->stack[spi].spilled_ptr.parent); 1300 if (value_regno >= 0) { 1301 if (zeros == size) { 1302 /* any size read into register is zero extended, 1303 * so the whole register == const_zero 1304 */ 1305 __mark_reg_const_zero(&state->regs[value_regno]); 1306 } else { 1307 /* have read misc data from the stack */ 1308 mark_reg_unknown(env, state->regs, value_regno); 1309 } 1310 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1311 } 1312 return 0; 1313 } 1314 } 1315 1316 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1318 int size, bool zero_size_allowed) 1319 { 1320 struct bpf_reg_state *regs = cur_regs(env); 1321 struct bpf_map *map = regs[regno].map_ptr; 1322 1323 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1324 off + size > map->value_size) { 1325 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1326 map->value_size, off, size); 1327 return -EACCES; 1328 } 1329 return 0; 1330 } 1331 1332 /* check read/write into a map element with possible variable offset */ 1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1334 int off, int size, bool zero_size_allowed) 1335 { 1336 struct bpf_verifier_state *vstate = env->cur_state; 1337 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1338 struct bpf_reg_state *reg = &state->regs[regno]; 1339 int err; 1340 1341 /* We may have adjusted the register to this map value, so we 1342 * need to try adding each of min_value and max_value to off 1343 * to make sure our theoretical access will be safe. 1344 */ 1345 if (env->log.level) 1346 print_verifier_state(env, state); 1347 /* The minimum value is only important with signed 1348 * comparisons where we can't assume the floor of a 1349 * value is 0. If we are using signed variables for our 1350 * index'es we need to make sure that whatever we use 1351 * will have a set floor within our range. 1352 */ 1353 if (reg->smin_value < 0) { 1354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1355 regno); 1356 return -EACCES; 1357 } 1358 err = __check_map_access(env, regno, reg->smin_value + off, size, 1359 zero_size_allowed); 1360 if (err) { 1361 verbose(env, "R%d min value is outside of the array range\n", 1362 regno); 1363 return err; 1364 } 1365 1366 /* If we haven't set a max value then we need to bail since we can't be 1367 * sure we won't do bad things. 1368 * If reg->umax_value + off could overflow, treat that as unbounded too. 1369 */ 1370 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1371 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1372 regno); 1373 return -EACCES; 1374 } 1375 err = __check_map_access(env, regno, reg->umax_value + off, size, 1376 zero_size_allowed); 1377 if (err) 1378 verbose(env, "R%d max value is outside of the array range\n", 1379 regno); 1380 return err; 1381 } 1382 1383 #define MAX_PACKET_OFF 0xffff 1384 1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1386 const struct bpf_call_arg_meta *meta, 1387 enum bpf_access_type t) 1388 { 1389 switch (env->prog->type) { 1390 case BPF_PROG_TYPE_LWT_IN: 1391 case BPF_PROG_TYPE_LWT_OUT: 1392 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1393 case BPF_PROG_TYPE_SK_REUSEPORT: 1394 /* dst_input() and dst_output() can't write for now */ 1395 if (t == BPF_WRITE) 1396 return false; 1397 /* fallthrough */ 1398 case BPF_PROG_TYPE_SCHED_CLS: 1399 case BPF_PROG_TYPE_SCHED_ACT: 1400 case BPF_PROG_TYPE_XDP: 1401 case BPF_PROG_TYPE_LWT_XMIT: 1402 case BPF_PROG_TYPE_SK_SKB: 1403 case BPF_PROG_TYPE_SK_MSG: 1404 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1405 if (meta) 1406 return meta->pkt_access; 1407 1408 env->seen_direct_write = true; 1409 return true; 1410 default: 1411 return false; 1412 } 1413 } 1414 1415 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1416 int off, int size, bool zero_size_allowed) 1417 { 1418 struct bpf_reg_state *regs = cur_regs(env); 1419 struct bpf_reg_state *reg = ®s[regno]; 1420 1421 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1422 (u64)off + size > reg->range) { 1423 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1424 off, size, regno, reg->id, reg->off, reg->range); 1425 return -EACCES; 1426 } 1427 return 0; 1428 } 1429 1430 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1431 int size, bool zero_size_allowed) 1432 { 1433 struct bpf_reg_state *regs = cur_regs(env); 1434 struct bpf_reg_state *reg = ®s[regno]; 1435 int err; 1436 1437 /* We may have added a variable offset to the packet pointer; but any 1438 * reg->range we have comes after that. We are only checking the fixed 1439 * offset. 1440 */ 1441 1442 /* We don't allow negative numbers, because we aren't tracking enough 1443 * detail to prove they're safe. 1444 */ 1445 if (reg->smin_value < 0) { 1446 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1447 regno); 1448 return -EACCES; 1449 } 1450 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1451 if (err) { 1452 verbose(env, "R%d offset is outside of the packet\n", regno); 1453 return err; 1454 } 1455 return err; 1456 } 1457 1458 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1459 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1460 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1461 { 1462 struct bpf_insn_access_aux info = { 1463 .reg_type = *reg_type, 1464 }; 1465 1466 if (env->ops->is_valid_access && 1467 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1468 /* A non zero info.ctx_field_size indicates that this field is a 1469 * candidate for later verifier transformation to load the whole 1470 * field and then apply a mask when accessed with a narrower 1471 * access than actual ctx access size. A zero info.ctx_field_size 1472 * will only allow for whole field access and rejects any other 1473 * type of narrower access. 1474 */ 1475 *reg_type = info.reg_type; 1476 1477 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1478 /* remember the offset of last byte accessed in ctx */ 1479 if (env->prog->aux->max_ctx_offset < off + size) 1480 env->prog->aux->max_ctx_offset = off + size; 1481 return 0; 1482 } 1483 1484 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1485 return -EACCES; 1486 } 1487 1488 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1489 int size) 1490 { 1491 if (size < 0 || off < 0 || 1492 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1493 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1494 off, size); 1495 return -EACCES; 1496 } 1497 return 0; 1498 } 1499 1500 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1501 int size, enum bpf_access_type t) 1502 { 1503 struct bpf_reg_state *regs = cur_regs(env); 1504 struct bpf_reg_state *reg = ®s[regno]; 1505 struct bpf_insn_access_aux info; 1506 1507 if (reg->smin_value < 0) { 1508 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1509 regno); 1510 return -EACCES; 1511 } 1512 1513 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1514 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1515 off, size); 1516 return -EACCES; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static bool __is_pointer_value(bool allow_ptr_leaks, 1523 const struct bpf_reg_state *reg) 1524 { 1525 if (allow_ptr_leaks) 1526 return false; 1527 1528 return reg->type != SCALAR_VALUE; 1529 } 1530 1531 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1532 { 1533 return cur_regs(env) + regno; 1534 } 1535 1536 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1537 { 1538 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1539 } 1540 1541 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1542 { 1543 const struct bpf_reg_state *reg = reg_state(env, regno); 1544 1545 return reg->type == PTR_TO_CTX || 1546 reg->type == PTR_TO_SOCKET; 1547 } 1548 1549 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1550 { 1551 const struct bpf_reg_state *reg = reg_state(env, regno); 1552 1553 return type_is_pkt_pointer(reg->type); 1554 } 1555 1556 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1557 { 1558 const struct bpf_reg_state *reg = reg_state(env, regno); 1559 1560 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1561 return reg->type == PTR_TO_FLOW_KEYS; 1562 } 1563 1564 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1565 const struct bpf_reg_state *reg, 1566 int off, int size, bool strict) 1567 { 1568 struct tnum reg_off; 1569 int ip_align; 1570 1571 /* Byte size accesses are always allowed. */ 1572 if (!strict || size == 1) 1573 return 0; 1574 1575 /* For platforms that do not have a Kconfig enabling 1576 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1577 * NET_IP_ALIGN is universally set to '2'. And on platforms 1578 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1579 * to this code only in strict mode where we want to emulate 1580 * the NET_IP_ALIGN==2 checking. Therefore use an 1581 * unconditional IP align value of '2'. 1582 */ 1583 ip_align = 2; 1584 1585 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1586 if (!tnum_is_aligned(reg_off, size)) { 1587 char tn_buf[48]; 1588 1589 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1590 verbose(env, 1591 "misaligned packet access off %d+%s+%d+%d size %d\n", 1592 ip_align, tn_buf, reg->off, off, size); 1593 return -EACCES; 1594 } 1595 1596 return 0; 1597 } 1598 1599 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1600 const struct bpf_reg_state *reg, 1601 const char *pointer_desc, 1602 int off, int size, bool strict) 1603 { 1604 struct tnum reg_off; 1605 1606 /* Byte size accesses are always allowed. */ 1607 if (!strict || size == 1) 1608 return 0; 1609 1610 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1611 if (!tnum_is_aligned(reg_off, size)) { 1612 char tn_buf[48]; 1613 1614 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1615 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1616 pointer_desc, tn_buf, reg->off, off, size); 1617 return -EACCES; 1618 } 1619 1620 return 0; 1621 } 1622 1623 static int check_ptr_alignment(struct bpf_verifier_env *env, 1624 const struct bpf_reg_state *reg, int off, 1625 int size, bool strict_alignment_once) 1626 { 1627 bool strict = env->strict_alignment || strict_alignment_once; 1628 const char *pointer_desc = ""; 1629 1630 switch (reg->type) { 1631 case PTR_TO_PACKET: 1632 case PTR_TO_PACKET_META: 1633 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1634 * right in front, treat it the very same way. 1635 */ 1636 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1637 case PTR_TO_FLOW_KEYS: 1638 pointer_desc = "flow keys "; 1639 break; 1640 case PTR_TO_MAP_VALUE: 1641 pointer_desc = "value "; 1642 break; 1643 case PTR_TO_CTX: 1644 pointer_desc = "context "; 1645 break; 1646 case PTR_TO_STACK: 1647 pointer_desc = "stack "; 1648 /* The stack spill tracking logic in check_stack_write() 1649 * and check_stack_read() relies on stack accesses being 1650 * aligned. 1651 */ 1652 strict = true; 1653 break; 1654 case PTR_TO_SOCKET: 1655 pointer_desc = "sock "; 1656 break; 1657 default: 1658 break; 1659 } 1660 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1661 strict); 1662 } 1663 1664 static int update_stack_depth(struct bpf_verifier_env *env, 1665 const struct bpf_func_state *func, 1666 int off) 1667 { 1668 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1669 1670 if (stack >= -off) 1671 return 0; 1672 1673 /* update known max for given subprogram */ 1674 env->subprog_info[func->subprogno].stack_depth = -off; 1675 return 0; 1676 } 1677 1678 /* starting from main bpf function walk all instructions of the function 1679 * and recursively walk all callees that given function can call. 1680 * Ignore jump and exit insns. 1681 * Since recursion is prevented by check_cfg() this algorithm 1682 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1683 */ 1684 static int check_max_stack_depth(struct bpf_verifier_env *env) 1685 { 1686 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1687 struct bpf_subprog_info *subprog = env->subprog_info; 1688 struct bpf_insn *insn = env->prog->insnsi; 1689 int ret_insn[MAX_CALL_FRAMES]; 1690 int ret_prog[MAX_CALL_FRAMES]; 1691 1692 process_func: 1693 /* round up to 32-bytes, since this is granularity 1694 * of interpreter stack size 1695 */ 1696 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1697 if (depth > MAX_BPF_STACK) { 1698 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1699 frame + 1, depth); 1700 return -EACCES; 1701 } 1702 continue_func: 1703 subprog_end = subprog[idx + 1].start; 1704 for (; i < subprog_end; i++) { 1705 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1706 continue; 1707 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1708 continue; 1709 /* remember insn and function to return to */ 1710 ret_insn[frame] = i + 1; 1711 ret_prog[frame] = idx; 1712 1713 /* find the callee */ 1714 i = i + insn[i].imm + 1; 1715 idx = find_subprog(env, i); 1716 if (idx < 0) { 1717 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1718 i); 1719 return -EFAULT; 1720 } 1721 frame++; 1722 if (frame >= MAX_CALL_FRAMES) { 1723 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1724 return -EFAULT; 1725 } 1726 goto process_func; 1727 } 1728 /* end of for() loop means the last insn of the 'subprog' 1729 * was reached. Doesn't matter whether it was JA or EXIT 1730 */ 1731 if (frame == 0) 1732 return 0; 1733 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1734 frame--; 1735 i = ret_insn[frame]; 1736 idx = ret_prog[frame]; 1737 goto continue_func; 1738 } 1739 1740 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1741 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1742 const struct bpf_insn *insn, int idx) 1743 { 1744 int start = idx + insn->imm + 1, subprog; 1745 1746 subprog = find_subprog(env, start); 1747 if (subprog < 0) { 1748 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1749 start); 1750 return -EFAULT; 1751 } 1752 return env->subprog_info[subprog].stack_depth; 1753 } 1754 #endif 1755 1756 static int check_ctx_reg(struct bpf_verifier_env *env, 1757 const struct bpf_reg_state *reg, int regno) 1758 { 1759 /* Access to ctx or passing it to a helper is only allowed in 1760 * its original, unmodified form. 1761 */ 1762 1763 if (reg->off) { 1764 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1765 regno, reg->off); 1766 return -EACCES; 1767 } 1768 1769 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1770 char tn_buf[48]; 1771 1772 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1773 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1774 return -EACCES; 1775 } 1776 1777 return 0; 1778 } 1779 1780 /* truncate register to smaller size (in bytes) 1781 * must be called with size < BPF_REG_SIZE 1782 */ 1783 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1784 { 1785 u64 mask; 1786 1787 /* clear high bits in bit representation */ 1788 reg->var_off = tnum_cast(reg->var_off, size); 1789 1790 /* fix arithmetic bounds */ 1791 mask = ((u64)1 << (size * 8)) - 1; 1792 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1793 reg->umin_value &= mask; 1794 reg->umax_value &= mask; 1795 } else { 1796 reg->umin_value = 0; 1797 reg->umax_value = mask; 1798 } 1799 reg->smin_value = reg->umin_value; 1800 reg->smax_value = reg->umax_value; 1801 } 1802 1803 /* check whether memory at (regno + off) is accessible for t = (read | write) 1804 * if t==write, value_regno is a register which value is stored into memory 1805 * if t==read, value_regno is a register which will receive the value from memory 1806 * if t==write && value_regno==-1, some unknown value is stored into memory 1807 * if t==read && value_regno==-1, don't care what we read from memory 1808 */ 1809 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1810 int off, int bpf_size, enum bpf_access_type t, 1811 int value_regno, bool strict_alignment_once) 1812 { 1813 struct bpf_reg_state *regs = cur_regs(env); 1814 struct bpf_reg_state *reg = regs + regno; 1815 struct bpf_func_state *state; 1816 int size, err = 0; 1817 1818 size = bpf_size_to_bytes(bpf_size); 1819 if (size < 0) 1820 return size; 1821 1822 /* alignment checks will add in reg->off themselves */ 1823 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1824 if (err) 1825 return err; 1826 1827 /* for access checks, reg->off is just part of off */ 1828 off += reg->off; 1829 1830 if (reg->type == PTR_TO_MAP_VALUE) { 1831 if (t == BPF_WRITE && value_regno >= 0 && 1832 is_pointer_value(env, value_regno)) { 1833 verbose(env, "R%d leaks addr into map\n", value_regno); 1834 return -EACCES; 1835 } 1836 1837 err = check_map_access(env, regno, off, size, false); 1838 if (!err && t == BPF_READ && value_regno >= 0) 1839 mark_reg_unknown(env, regs, value_regno); 1840 1841 } else if (reg->type == PTR_TO_CTX) { 1842 enum bpf_reg_type reg_type = SCALAR_VALUE; 1843 1844 if (t == BPF_WRITE && value_regno >= 0 && 1845 is_pointer_value(env, value_regno)) { 1846 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1847 return -EACCES; 1848 } 1849 1850 err = check_ctx_reg(env, reg, regno); 1851 if (err < 0) 1852 return err; 1853 1854 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1855 if (!err && t == BPF_READ && value_regno >= 0) { 1856 /* ctx access returns either a scalar, or a 1857 * PTR_TO_PACKET[_META,_END]. In the latter 1858 * case, we know the offset is zero. 1859 */ 1860 if (reg_type == SCALAR_VALUE) 1861 mark_reg_unknown(env, regs, value_regno); 1862 else 1863 mark_reg_known_zero(env, regs, 1864 value_regno); 1865 regs[value_regno].type = reg_type; 1866 } 1867 1868 } else if (reg->type == PTR_TO_STACK) { 1869 /* stack accesses must be at a fixed offset, so that we can 1870 * determine what type of data were returned. 1871 * See check_stack_read(). 1872 */ 1873 if (!tnum_is_const(reg->var_off)) { 1874 char tn_buf[48]; 1875 1876 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1877 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1878 tn_buf, off, size); 1879 return -EACCES; 1880 } 1881 off += reg->var_off.value; 1882 if (off >= 0 || off < -MAX_BPF_STACK) { 1883 verbose(env, "invalid stack off=%d size=%d\n", off, 1884 size); 1885 return -EACCES; 1886 } 1887 1888 state = func(env, reg); 1889 err = update_stack_depth(env, state, off); 1890 if (err) 1891 return err; 1892 1893 if (t == BPF_WRITE) 1894 err = check_stack_write(env, state, off, size, 1895 value_regno, insn_idx); 1896 else 1897 err = check_stack_read(env, state, off, size, 1898 value_regno); 1899 } else if (reg_is_pkt_pointer(reg)) { 1900 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1901 verbose(env, "cannot write into packet\n"); 1902 return -EACCES; 1903 } 1904 if (t == BPF_WRITE && value_regno >= 0 && 1905 is_pointer_value(env, value_regno)) { 1906 verbose(env, "R%d leaks addr into packet\n", 1907 value_regno); 1908 return -EACCES; 1909 } 1910 err = check_packet_access(env, regno, off, size, false); 1911 if (!err && t == BPF_READ && value_regno >= 0) 1912 mark_reg_unknown(env, regs, value_regno); 1913 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1914 if (t == BPF_WRITE && value_regno >= 0 && 1915 is_pointer_value(env, value_regno)) { 1916 verbose(env, "R%d leaks addr into flow keys\n", 1917 value_regno); 1918 return -EACCES; 1919 } 1920 1921 err = check_flow_keys_access(env, off, size); 1922 if (!err && t == BPF_READ && value_regno >= 0) 1923 mark_reg_unknown(env, regs, value_regno); 1924 } else if (reg->type == PTR_TO_SOCKET) { 1925 if (t == BPF_WRITE) { 1926 verbose(env, "cannot write into socket\n"); 1927 return -EACCES; 1928 } 1929 err = check_sock_access(env, regno, off, size, t); 1930 if (!err && value_regno >= 0) 1931 mark_reg_unknown(env, regs, value_regno); 1932 } else { 1933 verbose(env, "R%d invalid mem access '%s'\n", regno, 1934 reg_type_str[reg->type]); 1935 return -EACCES; 1936 } 1937 1938 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1939 regs[value_regno].type == SCALAR_VALUE) { 1940 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1941 coerce_reg_to_size(®s[value_regno], size); 1942 } 1943 return err; 1944 } 1945 1946 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1947 { 1948 int err; 1949 1950 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1951 insn->imm != 0) { 1952 verbose(env, "BPF_XADD uses reserved fields\n"); 1953 return -EINVAL; 1954 } 1955 1956 /* check src1 operand */ 1957 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1958 if (err) 1959 return err; 1960 1961 /* check src2 operand */ 1962 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1963 if (err) 1964 return err; 1965 1966 if (is_pointer_value(env, insn->src_reg)) { 1967 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1968 return -EACCES; 1969 } 1970 1971 if (is_ctx_reg(env, insn->dst_reg) || 1972 is_pkt_reg(env, insn->dst_reg) || 1973 is_flow_key_reg(env, insn->dst_reg)) { 1974 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1975 insn->dst_reg, 1976 reg_type_str[reg_state(env, insn->dst_reg)->type]); 1977 return -EACCES; 1978 } 1979 1980 /* check whether atomic_add can read the memory */ 1981 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1982 BPF_SIZE(insn->code), BPF_READ, -1, true); 1983 if (err) 1984 return err; 1985 1986 /* check whether atomic_add can write into the same memory */ 1987 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1988 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1989 } 1990 1991 /* when register 'regno' is passed into function that will read 'access_size' 1992 * bytes from that pointer, make sure that it's within stack boundary 1993 * and all elements of stack are initialized. 1994 * Unlike most pointer bounds-checking functions, this one doesn't take an 1995 * 'off' argument, so it has to add in reg->off itself. 1996 */ 1997 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1998 int access_size, bool zero_size_allowed, 1999 struct bpf_call_arg_meta *meta) 2000 { 2001 struct bpf_reg_state *reg = reg_state(env, regno); 2002 struct bpf_func_state *state = func(env, reg); 2003 int off, i, slot, spi; 2004 2005 if (reg->type != PTR_TO_STACK) { 2006 /* Allow zero-byte read from NULL, regardless of pointer type */ 2007 if (zero_size_allowed && access_size == 0 && 2008 register_is_null(reg)) 2009 return 0; 2010 2011 verbose(env, "R%d type=%s expected=%s\n", regno, 2012 reg_type_str[reg->type], 2013 reg_type_str[PTR_TO_STACK]); 2014 return -EACCES; 2015 } 2016 2017 /* Only allow fixed-offset stack reads */ 2018 if (!tnum_is_const(reg->var_off)) { 2019 char tn_buf[48]; 2020 2021 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2022 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2023 regno, tn_buf); 2024 return -EACCES; 2025 } 2026 off = reg->off + reg->var_off.value; 2027 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2028 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2029 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2030 regno, off, access_size); 2031 return -EACCES; 2032 } 2033 2034 if (meta && meta->raw_mode) { 2035 meta->access_size = access_size; 2036 meta->regno = regno; 2037 return 0; 2038 } 2039 2040 for (i = 0; i < access_size; i++) { 2041 u8 *stype; 2042 2043 slot = -(off + i) - 1; 2044 spi = slot / BPF_REG_SIZE; 2045 if (state->allocated_stack <= slot) 2046 goto err; 2047 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2048 if (*stype == STACK_MISC) 2049 goto mark; 2050 if (*stype == STACK_ZERO) { 2051 /* helper can write anything into the stack */ 2052 *stype = STACK_MISC; 2053 goto mark; 2054 } 2055 err: 2056 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2057 off, i, access_size); 2058 return -EACCES; 2059 mark: 2060 /* reading any byte out of 8-byte 'spill_slot' will cause 2061 * the whole slot to be marked as 'read' 2062 */ 2063 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2064 state->stack[spi].spilled_ptr.parent); 2065 } 2066 return update_stack_depth(env, state, off); 2067 } 2068 2069 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2070 int access_size, bool zero_size_allowed, 2071 struct bpf_call_arg_meta *meta) 2072 { 2073 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2074 2075 switch (reg->type) { 2076 case PTR_TO_PACKET: 2077 case PTR_TO_PACKET_META: 2078 return check_packet_access(env, regno, reg->off, access_size, 2079 zero_size_allowed); 2080 case PTR_TO_MAP_VALUE: 2081 return check_map_access(env, regno, reg->off, access_size, 2082 zero_size_allowed); 2083 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2084 return check_stack_boundary(env, regno, access_size, 2085 zero_size_allowed, meta); 2086 } 2087 } 2088 2089 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2090 { 2091 return type == ARG_PTR_TO_MEM || 2092 type == ARG_PTR_TO_MEM_OR_NULL || 2093 type == ARG_PTR_TO_UNINIT_MEM; 2094 } 2095 2096 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2097 { 2098 return type == ARG_CONST_SIZE || 2099 type == ARG_CONST_SIZE_OR_ZERO; 2100 } 2101 2102 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2103 enum bpf_arg_type arg_type, 2104 struct bpf_call_arg_meta *meta) 2105 { 2106 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2107 enum bpf_reg_type expected_type, type = reg->type; 2108 int err = 0; 2109 2110 if (arg_type == ARG_DONTCARE) 2111 return 0; 2112 2113 err = check_reg_arg(env, regno, SRC_OP); 2114 if (err) 2115 return err; 2116 2117 if (arg_type == ARG_ANYTHING) { 2118 if (is_pointer_value(env, regno)) { 2119 verbose(env, "R%d leaks addr into helper function\n", 2120 regno); 2121 return -EACCES; 2122 } 2123 return 0; 2124 } 2125 2126 if (type_is_pkt_pointer(type) && 2127 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2128 verbose(env, "helper access to the packet is not allowed\n"); 2129 return -EACCES; 2130 } 2131 2132 if (arg_type == ARG_PTR_TO_MAP_KEY || 2133 arg_type == ARG_PTR_TO_MAP_VALUE || 2134 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2135 expected_type = PTR_TO_STACK; 2136 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2137 type != expected_type) 2138 goto err_type; 2139 } else if (arg_type == ARG_CONST_SIZE || 2140 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2141 expected_type = SCALAR_VALUE; 2142 if (type != expected_type) 2143 goto err_type; 2144 } else if (arg_type == ARG_CONST_MAP_PTR) { 2145 expected_type = CONST_PTR_TO_MAP; 2146 if (type != expected_type) 2147 goto err_type; 2148 } else if (arg_type == ARG_PTR_TO_CTX) { 2149 expected_type = PTR_TO_CTX; 2150 if (type != expected_type) 2151 goto err_type; 2152 err = check_ctx_reg(env, reg, regno); 2153 if (err < 0) 2154 return err; 2155 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2156 expected_type = PTR_TO_SOCKET; 2157 if (type != expected_type) 2158 goto err_type; 2159 if (meta->ptr_id || !reg->id) { 2160 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2161 meta->ptr_id, reg->id); 2162 return -EFAULT; 2163 } 2164 meta->ptr_id = reg->id; 2165 } else if (arg_type_is_mem_ptr(arg_type)) { 2166 expected_type = PTR_TO_STACK; 2167 /* One exception here. In case function allows for NULL to be 2168 * passed in as argument, it's a SCALAR_VALUE type. Final test 2169 * happens during stack boundary checking. 2170 */ 2171 if (register_is_null(reg) && 2172 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2173 /* final test in check_stack_boundary() */; 2174 else if (!type_is_pkt_pointer(type) && 2175 type != PTR_TO_MAP_VALUE && 2176 type != expected_type) 2177 goto err_type; 2178 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2179 } else { 2180 verbose(env, "unsupported arg_type %d\n", arg_type); 2181 return -EFAULT; 2182 } 2183 2184 if (arg_type == ARG_CONST_MAP_PTR) { 2185 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2186 meta->map_ptr = reg->map_ptr; 2187 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2188 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2189 * check that [key, key + map->key_size) are within 2190 * stack limits and initialized 2191 */ 2192 if (!meta->map_ptr) { 2193 /* in function declaration map_ptr must come before 2194 * map_key, so that it's verified and known before 2195 * we have to check map_key here. Otherwise it means 2196 * that kernel subsystem misconfigured verifier 2197 */ 2198 verbose(env, "invalid map_ptr to access map->key\n"); 2199 return -EACCES; 2200 } 2201 err = check_helper_mem_access(env, regno, 2202 meta->map_ptr->key_size, false, 2203 NULL); 2204 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2205 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2206 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2207 * check [value, value + map->value_size) validity 2208 */ 2209 if (!meta->map_ptr) { 2210 /* kernel subsystem misconfigured verifier */ 2211 verbose(env, "invalid map_ptr to access map->value\n"); 2212 return -EACCES; 2213 } 2214 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2215 err = check_helper_mem_access(env, regno, 2216 meta->map_ptr->value_size, false, 2217 meta); 2218 } else if (arg_type_is_mem_size(arg_type)) { 2219 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2220 2221 /* remember the mem_size which may be used later 2222 * to refine return values. 2223 */ 2224 meta->msize_smax_value = reg->smax_value; 2225 meta->msize_umax_value = reg->umax_value; 2226 2227 /* The register is SCALAR_VALUE; the access check 2228 * happens using its boundaries. 2229 */ 2230 if (!tnum_is_const(reg->var_off)) 2231 /* For unprivileged variable accesses, disable raw 2232 * mode so that the program is required to 2233 * initialize all the memory that the helper could 2234 * just partially fill up. 2235 */ 2236 meta = NULL; 2237 2238 if (reg->smin_value < 0) { 2239 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2240 regno); 2241 return -EACCES; 2242 } 2243 2244 if (reg->umin_value == 0) { 2245 err = check_helper_mem_access(env, regno - 1, 0, 2246 zero_size_allowed, 2247 meta); 2248 if (err) 2249 return err; 2250 } 2251 2252 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2253 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2254 regno); 2255 return -EACCES; 2256 } 2257 err = check_helper_mem_access(env, regno - 1, 2258 reg->umax_value, 2259 zero_size_allowed, meta); 2260 } 2261 2262 return err; 2263 err_type: 2264 verbose(env, "R%d type=%s expected=%s\n", regno, 2265 reg_type_str[type], reg_type_str[expected_type]); 2266 return -EACCES; 2267 } 2268 2269 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2270 struct bpf_map *map, int func_id) 2271 { 2272 if (!map) 2273 return 0; 2274 2275 /* We need a two way check, first is from map perspective ... */ 2276 switch (map->map_type) { 2277 case BPF_MAP_TYPE_PROG_ARRAY: 2278 if (func_id != BPF_FUNC_tail_call) 2279 goto error; 2280 break; 2281 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2282 if (func_id != BPF_FUNC_perf_event_read && 2283 func_id != BPF_FUNC_perf_event_output && 2284 func_id != BPF_FUNC_perf_event_read_value) 2285 goto error; 2286 break; 2287 case BPF_MAP_TYPE_STACK_TRACE: 2288 if (func_id != BPF_FUNC_get_stackid) 2289 goto error; 2290 break; 2291 case BPF_MAP_TYPE_CGROUP_ARRAY: 2292 if (func_id != BPF_FUNC_skb_under_cgroup && 2293 func_id != BPF_FUNC_current_task_under_cgroup) 2294 goto error; 2295 break; 2296 case BPF_MAP_TYPE_CGROUP_STORAGE: 2297 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2298 if (func_id != BPF_FUNC_get_local_storage) 2299 goto error; 2300 break; 2301 /* devmap returns a pointer to a live net_device ifindex that we cannot 2302 * allow to be modified from bpf side. So do not allow lookup elements 2303 * for now. 2304 */ 2305 case BPF_MAP_TYPE_DEVMAP: 2306 if (func_id != BPF_FUNC_redirect_map) 2307 goto error; 2308 break; 2309 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2310 * appear. 2311 */ 2312 case BPF_MAP_TYPE_CPUMAP: 2313 case BPF_MAP_TYPE_XSKMAP: 2314 if (func_id != BPF_FUNC_redirect_map) 2315 goto error; 2316 break; 2317 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2318 case BPF_MAP_TYPE_HASH_OF_MAPS: 2319 if (func_id != BPF_FUNC_map_lookup_elem) 2320 goto error; 2321 break; 2322 case BPF_MAP_TYPE_SOCKMAP: 2323 if (func_id != BPF_FUNC_sk_redirect_map && 2324 func_id != BPF_FUNC_sock_map_update && 2325 func_id != BPF_FUNC_map_delete_elem && 2326 func_id != BPF_FUNC_msg_redirect_map) 2327 goto error; 2328 break; 2329 case BPF_MAP_TYPE_SOCKHASH: 2330 if (func_id != BPF_FUNC_sk_redirect_hash && 2331 func_id != BPF_FUNC_sock_hash_update && 2332 func_id != BPF_FUNC_map_delete_elem && 2333 func_id != BPF_FUNC_msg_redirect_hash) 2334 goto error; 2335 break; 2336 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2337 if (func_id != BPF_FUNC_sk_select_reuseport) 2338 goto error; 2339 break; 2340 case BPF_MAP_TYPE_QUEUE: 2341 case BPF_MAP_TYPE_STACK: 2342 if (func_id != BPF_FUNC_map_peek_elem && 2343 func_id != BPF_FUNC_map_pop_elem && 2344 func_id != BPF_FUNC_map_push_elem) 2345 goto error; 2346 break; 2347 default: 2348 break; 2349 } 2350 2351 /* ... and second from the function itself. */ 2352 switch (func_id) { 2353 case BPF_FUNC_tail_call: 2354 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2355 goto error; 2356 if (env->subprog_cnt > 1) { 2357 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2358 return -EINVAL; 2359 } 2360 break; 2361 case BPF_FUNC_perf_event_read: 2362 case BPF_FUNC_perf_event_output: 2363 case BPF_FUNC_perf_event_read_value: 2364 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2365 goto error; 2366 break; 2367 case BPF_FUNC_get_stackid: 2368 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2369 goto error; 2370 break; 2371 case BPF_FUNC_current_task_under_cgroup: 2372 case BPF_FUNC_skb_under_cgroup: 2373 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2374 goto error; 2375 break; 2376 case BPF_FUNC_redirect_map: 2377 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2378 map->map_type != BPF_MAP_TYPE_CPUMAP && 2379 map->map_type != BPF_MAP_TYPE_XSKMAP) 2380 goto error; 2381 break; 2382 case BPF_FUNC_sk_redirect_map: 2383 case BPF_FUNC_msg_redirect_map: 2384 case BPF_FUNC_sock_map_update: 2385 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2386 goto error; 2387 break; 2388 case BPF_FUNC_sk_redirect_hash: 2389 case BPF_FUNC_msg_redirect_hash: 2390 case BPF_FUNC_sock_hash_update: 2391 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2392 goto error; 2393 break; 2394 case BPF_FUNC_get_local_storage: 2395 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2396 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2397 goto error; 2398 break; 2399 case BPF_FUNC_sk_select_reuseport: 2400 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2401 goto error; 2402 break; 2403 case BPF_FUNC_map_peek_elem: 2404 case BPF_FUNC_map_pop_elem: 2405 case BPF_FUNC_map_push_elem: 2406 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2407 map->map_type != BPF_MAP_TYPE_STACK) 2408 goto error; 2409 break; 2410 default: 2411 break; 2412 } 2413 2414 return 0; 2415 error: 2416 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2417 map->map_type, func_id_name(func_id), func_id); 2418 return -EINVAL; 2419 } 2420 2421 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2422 { 2423 int count = 0; 2424 2425 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2426 count++; 2427 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2428 count++; 2429 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2430 count++; 2431 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2432 count++; 2433 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2434 count++; 2435 2436 /* We only support one arg being in raw mode at the moment, 2437 * which is sufficient for the helper functions we have 2438 * right now. 2439 */ 2440 return count <= 1; 2441 } 2442 2443 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2444 enum bpf_arg_type arg_next) 2445 { 2446 return (arg_type_is_mem_ptr(arg_curr) && 2447 !arg_type_is_mem_size(arg_next)) || 2448 (!arg_type_is_mem_ptr(arg_curr) && 2449 arg_type_is_mem_size(arg_next)); 2450 } 2451 2452 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2453 { 2454 /* bpf_xxx(..., buf, len) call will access 'len' 2455 * bytes from memory 'buf'. Both arg types need 2456 * to be paired, so make sure there's no buggy 2457 * helper function specification. 2458 */ 2459 if (arg_type_is_mem_size(fn->arg1_type) || 2460 arg_type_is_mem_ptr(fn->arg5_type) || 2461 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2462 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2463 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2464 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2465 return false; 2466 2467 return true; 2468 } 2469 2470 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2471 { 2472 int count = 0; 2473 2474 if (arg_type_is_refcounted(fn->arg1_type)) 2475 count++; 2476 if (arg_type_is_refcounted(fn->arg2_type)) 2477 count++; 2478 if (arg_type_is_refcounted(fn->arg3_type)) 2479 count++; 2480 if (arg_type_is_refcounted(fn->arg4_type)) 2481 count++; 2482 if (arg_type_is_refcounted(fn->arg5_type)) 2483 count++; 2484 2485 /* We only support one arg being unreferenced at the moment, 2486 * which is sufficient for the helper functions we have right now. 2487 */ 2488 return count <= 1; 2489 } 2490 2491 static int check_func_proto(const struct bpf_func_proto *fn) 2492 { 2493 return check_raw_mode_ok(fn) && 2494 check_arg_pair_ok(fn) && 2495 check_refcount_ok(fn) ? 0 : -EINVAL; 2496 } 2497 2498 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2499 * are now invalid, so turn them into unknown SCALAR_VALUE. 2500 */ 2501 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2502 struct bpf_func_state *state) 2503 { 2504 struct bpf_reg_state *regs = state->regs, *reg; 2505 int i; 2506 2507 for (i = 0; i < MAX_BPF_REG; i++) 2508 if (reg_is_pkt_pointer_any(®s[i])) 2509 mark_reg_unknown(env, regs, i); 2510 2511 bpf_for_each_spilled_reg(i, state, reg) { 2512 if (!reg) 2513 continue; 2514 if (reg_is_pkt_pointer_any(reg)) 2515 __mark_reg_unknown(reg); 2516 } 2517 } 2518 2519 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2520 { 2521 struct bpf_verifier_state *vstate = env->cur_state; 2522 int i; 2523 2524 for (i = 0; i <= vstate->curframe; i++) 2525 __clear_all_pkt_pointers(env, vstate->frame[i]); 2526 } 2527 2528 static void release_reg_references(struct bpf_verifier_env *env, 2529 struct bpf_func_state *state, int id) 2530 { 2531 struct bpf_reg_state *regs = state->regs, *reg; 2532 int i; 2533 2534 for (i = 0; i < MAX_BPF_REG; i++) 2535 if (regs[i].id == id) 2536 mark_reg_unknown(env, regs, i); 2537 2538 bpf_for_each_spilled_reg(i, state, reg) { 2539 if (!reg) 2540 continue; 2541 if (reg_is_refcounted(reg) && reg->id == id) 2542 __mark_reg_unknown(reg); 2543 } 2544 } 2545 2546 /* The pointer with the specified id has released its reference to kernel 2547 * resources. Identify all copies of the same pointer and clear the reference. 2548 */ 2549 static int release_reference(struct bpf_verifier_env *env, 2550 struct bpf_call_arg_meta *meta) 2551 { 2552 struct bpf_verifier_state *vstate = env->cur_state; 2553 int i; 2554 2555 for (i = 0; i <= vstate->curframe; i++) 2556 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2557 2558 return release_reference_state(env, meta->ptr_id); 2559 } 2560 2561 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2562 int *insn_idx) 2563 { 2564 struct bpf_verifier_state *state = env->cur_state; 2565 struct bpf_func_state *caller, *callee; 2566 int i, err, subprog, target_insn; 2567 2568 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2569 verbose(env, "the call stack of %d frames is too deep\n", 2570 state->curframe + 2); 2571 return -E2BIG; 2572 } 2573 2574 target_insn = *insn_idx + insn->imm; 2575 subprog = find_subprog(env, target_insn + 1); 2576 if (subprog < 0) { 2577 verbose(env, "verifier bug. No program starts at insn %d\n", 2578 target_insn + 1); 2579 return -EFAULT; 2580 } 2581 2582 caller = state->frame[state->curframe]; 2583 if (state->frame[state->curframe + 1]) { 2584 verbose(env, "verifier bug. Frame %d already allocated\n", 2585 state->curframe + 1); 2586 return -EFAULT; 2587 } 2588 2589 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2590 if (!callee) 2591 return -ENOMEM; 2592 state->frame[state->curframe + 1] = callee; 2593 2594 /* callee cannot access r0, r6 - r9 for reading and has to write 2595 * into its own stack before reading from it. 2596 * callee can read/write into caller's stack 2597 */ 2598 init_func_state(env, callee, 2599 /* remember the callsite, it will be used by bpf_exit */ 2600 *insn_idx /* callsite */, 2601 state->curframe + 1 /* frameno within this callchain */, 2602 subprog /* subprog number within this prog */); 2603 2604 /* Transfer references to the callee */ 2605 err = transfer_reference_state(callee, caller); 2606 if (err) 2607 return err; 2608 2609 /* copy r1 - r5 args that callee can access. The copy includes parent 2610 * pointers, which connects us up to the liveness chain 2611 */ 2612 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2613 callee->regs[i] = caller->regs[i]; 2614 2615 /* after the call registers r0 - r5 were scratched */ 2616 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2617 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2618 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2619 } 2620 2621 /* only increment it after check_reg_arg() finished */ 2622 state->curframe++; 2623 2624 /* and go analyze first insn of the callee */ 2625 *insn_idx = target_insn; 2626 2627 if (env->log.level) { 2628 verbose(env, "caller:\n"); 2629 print_verifier_state(env, caller); 2630 verbose(env, "callee:\n"); 2631 print_verifier_state(env, callee); 2632 } 2633 return 0; 2634 } 2635 2636 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2637 { 2638 struct bpf_verifier_state *state = env->cur_state; 2639 struct bpf_func_state *caller, *callee; 2640 struct bpf_reg_state *r0; 2641 int err; 2642 2643 callee = state->frame[state->curframe]; 2644 r0 = &callee->regs[BPF_REG_0]; 2645 if (r0->type == PTR_TO_STACK) { 2646 /* technically it's ok to return caller's stack pointer 2647 * (or caller's caller's pointer) back to the caller, 2648 * since these pointers are valid. Only current stack 2649 * pointer will be invalid as soon as function exits, 2650 * but let's be conservative 2651 */ 2652 verbose(env, "cannot return stack pointer to the caller\n"); 2653 return -EINVAL; 2654 } 2655 2656 state->curframe--; 2657 caller = state->frame[state->curframe]; 2658 /* return to the caller whatever r0 had in the callee */ 2659 caller->regs[BPF_REG_0] = *r0; 2660 2661 /* Transfer references to the caller */ 2662 err = transfer_reference_state(caller, callee); 2663 if (err) 2664 return err; 2665 2666 *insn_idx = callee->callsite + 1; 2667 if (env->log.level) { 2668 verbose(env, "returning from callee:\n"); 2669 print_verifier_state(env, callee); 2670 verbose(env, "to caller at %d:\n", *insn_idx); 2671 print_verifier_state(env, caller); 2672 } 2673 /* clear everything in the callee */ 2674 free_func_state(callee); 2675 state->frame[state->curframe + 1] = NULL; 2676 return 0; 2677 } 2678 2679 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2680 int func_id, 2681 struct bpf_call_arg_meta *meta) 2682 { 2683 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2684 2685 if (ret_type != RET_INTEGER || 2686 (func_id != BPF_FUNC_get_stack && 2687 func_id != BPF_FUNC_probe_read_str)) 2688 return; 2689 2690 ret_reg->smax_value = meta->msize_smax_value; 2691 ret_reg->umax_value = meta->msize_umax_value; 2692 __reg_deduce_bounds(ret_reg); 2693 __reg_bound_offset(ret_reg); 2694 } 2695 2696 static int 2697 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2698 int func_id, int insn_idx) 2699 { 2700 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2701 2702 if (func_id != BPF_FUNC_tail_call && 2703 func_id != BPF_FUNC_map_lookup_elem && 2704 func_id != BPF_FUNC_map_update_elem && 2705 func_id != BPF_FUNC_map_delete_elem && 2706 func_id != BPF_FUNC_map_push_elem && 2707 func_id != BPF_FUNC_map_pop_elem && 2708 func_id != BPF_FUNC_map_peek_elem) 2709 return 0; 2710 2711 if (meta->map_ptr == NULL) { 2712 verbose(env, "kernel subsystem misconfigured verifier\n"); 2713 return -EINVAL; 2714 } 2715 2716 if (!BPF_MAP_PTR(aux->map_state)) 2717 bpf_map_ptr_store(aux, meta->map_ptr, 2718 meta->map_ptr->unpriv_array); 2719 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2720 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2721 meta->map_ptr->unpriv_array); 2722 return 0; 2723 } 2724 2725 static int check_reference_leak(struct bpf_verifier_env *env) 2726 { 2727 struct bpf_func_state *state = cur_func(env); 2728 int i; 2729 2730 for (i = 0; i < state->acquired_refs; i++) { 2731 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2732 state->refs[i].id, state->refs[i].insn_idx); 2733 } 2734 return state->acquired_refs ? -EINVAL : 0; 2735 } 2736 2737 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2738 { 2739 const struct bpf_func_proto *fn = NULL; 2740 struct bpf_reg_state *regs; 2741 struct bpf_call_arg_meta meta; 2742 bool changes_data; 2743 int i, err; 2744 2745 /* find function prototype */ 2746 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2747 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2748 func_id); 2749 return -EINVAL; 2750 } 2751 2752 if (env->ops->get_func_proto) 2753 fn = env->ops->get_func_proto(func_id, env->prog); 2754 if (!fn) { 2755 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2756 func_id); 2757 return -EINVAL; 2758 } 2759 2760 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2761 if (!env->prog->gpl_compatible && fn->gpl_only) { 2762 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2763 return -EINVAL; 2764 } 2765 2766 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2767 changes_data = bpf_helper_changes_pkt_data(fn->func); 2768 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2769 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2770 func_id_name(func_id), func_id); 2771 return -EINVAL; 2772 } 2773 2774 memset(&meta, 0, sizeof(meta)); 2775 meta.pkt_access = fn->pkt_access; 2776 2777 err = check_func_proto(fn); 2778 if (err) { 2779 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2780 func_id_name(func_id), func_id); 2781 return err; 2782 } 2783 2784 /* check args */ 2785 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2786 if (err) 2787 return err; 2788 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2789 if (err) 2790 return err; 2791 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2792 if (err) 2793 return err; 2794 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2795 if (err) 2796 return err; 2797 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2798 if (err) 2799 return err; 2800 2801 err = record_func_map(env, &meta, func_id, insn_idx); 2802 if (err) 2803 return err; 2804 2805 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2806 * is inferred from register state. 2807 */ 2808 for (i = 0; i < meta.access_size; i++) { 2809 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2810 BPF_WRITE, -1, false); 2811 if (err) 2812 return err; 2813 } 2814 2815 if (func_id == BPF_FUNC_tail_call) { 2816 err = check_reference_leak(env); 2817 if (err) { 2818 verbose(env, "tail_call would lead to reference leak\n"); 2819 return err; 2820 } 2821 } else if (is_release_function(func_id)) { 2822 err = release_reference(env, &meta); 2823 if (err) 2824 return err; 2825 } 2826 2827 regs = cur_regs(env); 2828 2829 /* check that flags argument in get_local_storage(map, flags) is 0, 2830 * this is required because get_local_storage() can't return an error. 2831 */ 2832 if (func_id == BPF_FUNC_get_local_storage && 2833 !register_is_null(®s[BPF_REG_2])) { 2834 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2835 return -EINVAL; 2836 } 2837 2838 /* reset caller saved regs */ 2839 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2840 mark_reg_not_init(env, regs, caller_saved[i]); 2841 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2842 } 2843 2844 /* update return register (already marked as written above) */ 2845 if (fn->ret_type == RET_INTEGER) { 2846 /* sets type to SCALAR_VALUE */ 2847 mark_reg_unknown(env, regs, BPF_REG_0); 2848 } else if (fn->ret_type == RET_VOID) { 2849 regs[BPF_REG_0].type = NOT_INIT; 2850 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2851 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2852 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2853 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2854 else 2855 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2856 /* There is no offset yet applied, variable or fixed */ 2857 mark_reg_known_zero(env, regs, BPF_REG_0); 2858 /* remember map_ptr, so that check_map_access() 2859 * can check 'value_size' boundary of memory access 2860 * to map element returned from bpf_map_lookup_elem() 2861 */ 2862 if (meta.map_ptr == NULL) { 2863 verbose(env, 2864 "kernel subsystem misconfigured verifier\n"); 2865 return -EINVAL; 2866 } 2867 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2868 regs[BPF_REG_0].id = ++env->id_gen; 2869 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2870 int id = acquire_reference_state(env, insn_idx); 2871 if (id < 0) 2872 return id; 2873 mark_reg_known_zero(env, regs, BPF_REG_0); 2874 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2875 regs[BPF_REG_0].id = id; 2876 } else { 2877 verbose(env, "unknown return type %d of func %s#%d\n", 2878 fn->ret_type, func_id_name(func_id), func_id); 2879 return -EINVAL; 2880 } 2881 2882 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2883 2884 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2885 if (err) 2886 return err; 2887 2888 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2889 const char *err_str; 2890 2891 #ifdef CONFIG_PERF_EVENTS 2892 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2893 err_str = "cannot get callchain buffer for func %s#%d\n"; 2894 #else 2895 err = -ENOTSUPP; 2896 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2897 #endif 2898 if (err) { 2899 verbose(env, err_str, func_id_name(func_id), func_id); 2900 return err; 2901 } 2902 2903 env->prog->has_callchain_buf = true; 2904 } 2905 2906 if (changes_data) 2907 clear_all_pkt_pointers(env); 2908 return 0; 2909 } 2910 2911 static bool signed_add_overflows(s64 a, s64 b) 2912 { 2913 /* Do the add in u64, where overflow is well-defined */ 2914 s64 res = (s64)((u64)a + (u64)b); 2915 2916 if (b < 0) 2917 return res > a; 2918 return res < a; 2919 } 2920 2921 static bool signed_sub_overflows(s64 a, s64 b) 2922 { 2923 /* Do the sub in u64, where overflow is well-defined */ 2924 s64 res = (s64)((u64)a - (u64)b); 2925 2926 if (b < 0) 2927 return res < a; 2928 return res > a; 2929 } 2930 2931 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2932 const struct bpf_reg_state *reg, 2933 enum bpf_reg_type type) 2934 { 2935 bool known = tnum_is_const(reg->var_off); 2936 s64 val = reg->var_off.value; 2937 s64 smin = reg->smin_value; 2938 2939 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2940 verbose(env, "math between %s pointer and %lld is not allowed\n", 2941 reg_type_str[type], val); 2942 return false; 2943 } 2944 2945 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2946 verbose(env, "%s pointer offset %d is not allowed\n", 2947 reg_type_str[type], reg->off); 2948 return false; 2949 } 2950 2951 if (smin == S64_MIN) { 2952 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2953 reg_type_str[type]); 2954 return false; 2955 } 2956 2957 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2958 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2959 smin, reg_type_str[type]); 2960 return false; 2961 } 2962 2963 return true; 2964 } 2965 2966 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2967 * Caller should also handle BPF_MOV case separately. 2968 * If we return -EACCES, caller may want to try again treating pointer as a 2969 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2970 */ 2971 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2972 struct bpf_insn *insn, 2973 const struct bpf_reg_state *ptr_reg, 2974 const struct bpf_reg_state *off_reg) 2975 { 2976 struct bpf_verifier_state *vstate = env->cur_state; 2977 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2978 struct bpf_reg_state *regs = state->regs, *dst_reg; 2979 bool known = tnum_is_const(off_reg->var_off); 2980 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2981 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2982 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2983 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2984 u8 opcode = BPF_OP(insn->code); 2985 u32 dst = insn->dst_reg; 2986 2987 dst_reg = ®s[dst]; 2988 2989 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2990 smin_val > smax_val || umin_val > umax_val) { 2991 /* Taint dst register if offset had invalid bounds derived from 2992 * e.g. dead branches. 2993 */ 2994 __mark_reg_unknown(dst_reg); 2995 return 0; 2996 } 2997 2998 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2999 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3000 verbose(env, 3001 "R%d 32-bit pointer arithmetic prohibited\n", 3002 dst); 3003 return -EACCES; 3004 } 3005 3006 switch (ptr_reg->type) { 3007 case PTR_TO_MAP_VALUE_OR_NULL: 3008 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3009 dst, reg_type_str[ptr_reg->type]); 3010 return -EACCES; 3011 case CONST_PTR_TO_MAP: 3012 case PTR_TO_PACKET_END: 3013 case PTR_TO_SOCKET: 3014 case PTR_TO_SOCKET_OR_NULL: 3015 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3016 dst, reg_type_str[ptr_reg->type]); 3017 return -EACCES; 3018 default: 3019 break; 3020 } 3021 3022 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3023 * The id may be overwritten later if we create a new variable offset. 3024 */ 3025 dst_reg->type = ptr_reg->type; 3026 dst_reg->id = ptr_reg->id; 3027 3028 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3029 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3030 return -EINVAL; 3031 3032 switch (opcode) { 3033 case BPF_ADD: 3034 /* We can take a fixed offset as long as it doesn't overflow 3035 * the s32 'off' field 3036 */ 3037 if (known && (ptr_reg->off + smin_val == 3038 (s64)(s32)(ptr_reg->off + smin_val))) { 3039 /* pointer += K. Accumulate it into fixed offset */ 3040 dst_reg->smin_value = smin_ptr; 3041 dst_reg->smax_value = smax_ptr; 3042 dst_reg->umin_value = umin_ptr; 3043 dst_reg->umax_value = umax_ptr; 3044 dst_reg->var_off = ptr_reg->var_off; 3045 dst_reg->off = ptr_reg->off + smin_val; 3046 dst_reg->range = ptr_reg->range; 3047 break; 3048 } 3049 /* A new variable offset is created. Note that off_reg->off 3050 * == 0, since it's a scalar. 3051 * dst_reg gets the pointer type and since some positive 3052 * integer value was added to the pointer, give it a new 'id' 3053 * if it's a PTR_TO_PACKET. 3054 * this creates a new 'base' pointer, off_reg (variable) gets 3055 * added into the variable offset, and we copy the fixed offset 3056 * from ptr_reg. 3057 */ 3058 if (signed_add_overflows(smin_ptr, smin_val) || 3059 signed_add_overflows(smax_ptr, smax_val)) { 3060 dst_reg->smin_value = S64_MIN; 3061 dst_reg->smax_value = S64_MAX; 3062 } else { 3063 dst_reg->smin_value = smin_ptr + smin_val; 3064 dst_reg->smax_value = smax_ptr + smax_val; 3065 } 3066 if (umin_ptr + umin_val < umin_ptr || 3067 umax_ptr + umax_val < umax_ptr) { 3068 dst_reg->umin_value = 0; 3069 dst_reg->umax_value = U64_MAX; 3070 } else { 3071 dst_reg->umin_value = umin_ptr + umin_val; 3072 dst_reg->umax_value = umax_ptr + umax_val; 3073 } 3074 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3075 dst_reg->off = ptr_reg->off; 3076 if (reg_is_pkt_pointer(ptr_reg)) { 3077 dst_reg->id = ++env->id_gen; 3078 /* something was added to pkt_ptr, set range to zero */ 3079 dst_reg->range = 0; 3080 } 3081 break; 3082 case BPF_SUB: 3083 if (dst_reg == off_reg) { 3084 /* scalar -= pointer. Creates an unknown scalar */ 3085 verbose(env, "R%d tried to subtract pointer from scalar\n", 3086 dst); 3087 return -EACCES; 3088 } 3089 /* We don't allow subtraction from FP, because (according to 3090 * test_verifier.c test "invalid fp arithmetic", JITs might not 3091 * be able to deal with it. 3092 */ 3093 if (ptr_reg->type == PTR_TO_STACK) { 3094 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3095 dst); 3096 return -EACCES; 3097 } 3098 if (known && (ptr_reg->off - smin_val == 3099 (s64)(s32)(ptr_reg->off - smin_val))) { 3100 /* pointer -= K. Subtract it from fixed offset */ 3101 dst_reg->smin_value = smin_ptr; 3102 dst_reg->smax_value = smax_ptr; 3103 dst_reg->umin_value = umin_ptr; 3104 dst_reg->umax_value = umax_ptr; 3105 dst_reg->var_off = ptr_reg->var_off; 3106 dst_reg->id = ptr_reg->id; 3107 dst_reg->off = ptr_reg->off - smin_val; 3108 dst_reg->range = ptr_reg->range; 3109 break; 3110 } 3111 /* A new variable offset is created. If the subtrahend is known 3112 * nonnegative, then any reg->range we had before is still good. 3113 */ 3114 if (signed_sub_overflows(smin_ptr, smax_val) || 3115 signed_sub_overflows(smax_ptr, smin_val)) { 3116 /* Overflow possible, we know nothing */ 3117 dst_reg->smin_value = S64_MIN; 3118 dst_reg->smax_value = S64_MAX; 3119 } else { 3120 dst_reg->smin_value = smin_ptr - smax_val; 3121 dst_reg->smax_value = smax_ptr - smin_val; 3122 } 3123 if (umin_ptr < umax_val) { 3124 /* Overflow possible, we know nothing */ 3125 dst_reg->umin_value = 0; 3126 dst_reg->umax_value = U64_MAX; 3127 } else { 3128 /* Cannot overflow (as long as bounds are consistent) */ 3129 dst_reg->umin_value = umin_ptr - umax_val; 3130 dst_reg->umax_value = umax_ptr - umin_val; 3131 } 3132 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3133 dst_reg->off = ptr_reg->off; 3134 if (reg_is_pkt_pointer(ptr_reg)) { 3135 dst_reg->id = ++env->id_gen; 3136 /* something was added to pkt_ptr, set range to zero */ 3137 if (smin_val < 0) 3138 dst_reg->range = 0; 3139 } 3140 break; 3141 case BPF_AND: 3142 case BPF_OR: 3143 case BPF_XOR: 3144 /* bitwise ops on pointers are troublesome, prohibit. */ 3145 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3146 dst, bpf_alu_string[opcode >> 4]); 3147 return -EACCES; 3148 default: 3149 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3150 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3151 dst, bpf_alu_string[opcode >> 4]); 3152 return -EACCES; 3153 } 3154 3155 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3156 return -EINVAL; 3157 3158 __update_reg_bounds(dst_reg); 3159 __reg_deduce_bounds(dst_reg); 3160 __reg_bound_offset(dst_reg); 3161 return 0; 3162 } 3163 3164 /* WARNING: This function does calculations on 64-bit values, but the actual 3165 * execution may occur on 32-bit values. Therefore, things like bitshifts 3166 * need extra checks in the 32-bit case. 3167 */ 3168 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3169 struct bpf_insn *insn, 3170 struct bpf_reg_state *dst_reg, 3171 struct bpf_reg_state src_reg) 3172 { 3173 struct bpf_reg_state *regs = cur_regs(env); 3174 u8 opcode = BPF_OP(insn->code); 3175 bool src_known, dst_known; 3176 s64 smin_val, smax_val; 3177 u64 umin_val, umax_val; 3178 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3179 3180 if (insn_bitness == 32) { 3181 /* Relevant for 32-bit RSH: Information can propagate towards 3182 * LSB, so it isn't sufficient to only truncate the output to 3183 * 32 bits. 3184 */ 3185 coerce_reg_to_size(dst_reg, 4); 3186 coerce_reg_to_size(&src_reg, 4); 3187 } 3188 3189 smin_val = src_reg.smin_value; 3190 smax_val = src_reg.smax_value; 3191 umin_val = src_reg.umin_value; 3192 umax_val = src_reg.umax_value; 3193 src_known = tnum_is_const(src_reg.var_off); 3194 dst_known = tnum_is_const(dst_reg->var_off); 3195 3196 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3197 smin_val > smax_val || umin_val > umax_val) { 3198 /* Taint dst register if offset had invalid bounds derived from 3199 * e.g. dead branches. 3200 */ 3201 __mark_reg_unknown(dst_reg); 3202 return 0; 3203 } 3204 3205 if (!src_known && 3206 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3207 __mark_reg_unknown(dst_reg); 3208 return 0; 3209 } 3210 3211 switch (opcode) { 3212 case BPF_ADD: 3213 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3214 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3215 dst_reg->smin_value = S64_MIN; 3216 dst_reg->smax_value = S64_MAX; 3217 } else { 3218 dst_reg->smin_value += smin_val; 3219 dst_reg->smax_value += smax_val; 3220 } 3221 if (dst_reg->umin_value + umin_val < umin_val || 3222 dst_reg->umax_value + umax_val < umax_val) { 3223 dst_reg->umin_value = 0; 3224 dst_reg->umax_value = U64_MAX; 3225 } else { 3226 dst_reg->umin_value += umin_val; 3227 dst_reg->umax_value += umax_val; 3228 } 3229 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3230 break; 3231 case BPF_SUB: 3232 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3233 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3234 /* Overflow possible, we know nothing */ 3235 dst_reg->smin_value = S64_MIN; 3236 dst_reg->smax_value = S64_MAX; 3237 } else { 3238 dst_reg->smin_value -= smax_val; 3239 dst_reg->smax_value -= smin_val; 3240 } 3241 if (dst_reg->umin_value < umax_val) { 3242 /* Overflow possible, we know nothing */ 3243 dst_reg->umin_value = 0; 3244 dst_reg->umax_value = U64_MAX; 3245 } else { 3246 /* Cannot overflow (as long as bounds are consistent) */ 3247 dst_reg->umin_value -= umax_val; 3248 dst_reg->umax_value -= umin_val; 3249 } 3250 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3251 break; 3252 case BPF_MUL: 3253 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3254 if (smin_val < 0 || dst_reg->smin_value < 0) { 3255 /* Ain't nobody got time to multiply that sign */ 3256 __mark_reg_unbounded(dst_reg); 3257 __update_reg_bounds(dst_reg); 3258 break; 3259 } 3260 /* Both values are positive, so we can work with unsigned and 3261 * copy the result to signed (unless it exceeds S64_MAX). 3262 */ 3263 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3264 /* Potential overflow, we know nothing */ 3265 __mark_reg_unbounded(dst_reg); 3266 /* (except what we can learn from the var_off) */ 3267 __update_reg_bounds(dst_reg); 3268 break; 3269 } 3270 dst_reg->umin_value *= umin_val; 3271 dst_reg->umax_value *= umax_val; 3272 if (dst_reg->umax_value > S64_MAX) { 3273 /* Overflow possible, we know nothing */ 3274 dst_reg->smin_value = S64_MIN; 3275 dst_reg->smax_value = S64_MAX; 3276 } else { 3277 dst_reg->smin_value = dst_reg->umin_value; 3278 dst_reg->smax_value = dst_reg->umax_value; 3279 } 3280 break; 3281 case BPF_AND: 3282 if (src_known && dst_known) { 3283 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3284 src_reg.var_off.value); 3285 break; 3286 } 3287 /* We get our minimum from the var_off, since that's inherently 3288 * bitwise. Our maximum is the minimum of the operands' maxima. 3289 */ 3290 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3291 dst_reg->umin_value = dst_reg->var_off.value; 3292 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3293 if (dst_reg->smin_value < 0 || smin_val < 0) { 3294 /* Lose signed bounds when ANDing negative numbers, 3295 * ain't nobody got time for that. 3296 */ 3297 dst_reg->smin_value = S64_MIN; 3298 dst_reg->smax_value = S64_MAX; 3299 } else { 3300 /* ANDing two positives gives a positive, so safe to 3301 * cast result into s64. 3302 */ 3303 dst_reg->smin_value = dst_reg->umin_value; 3304 dst_reg->smax_value = dst_reg->umax_value; 3305 } 3306 /* We may learn something more from the var_off */ 3307 __update_reg_bounds(dst_reg); 3308 break; 3309 case BPF_OR: 3310 if (src_known && dst_known) { 3311 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3312 src_reg.var_off.value); 3313 break; 3314 } 3315 /* We get our maximum from the var_off, and our minimum is the 3316 * maximum of the operands' minima 3317 */ 3318 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3319 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3320 dst_reg->umax_value = dst_reg->var_off.value | 3321 dst_reg->var_off.mask; 3322 if (dst_reg->smin_value < 0 || smin_val < 0) { 3323 /* Lose signed bounds when ORing negative numbers, 3324 * ain't nobody got time for that. 3325 */ 3326 dst_reg->smin_value = S64_MIN; 3327 dst_reg->smax_value = S64_MAX; 3328 } else { 3329 /* ORing two positives gives a positive, so safe to 3330 * cast result into s64. 3331 */ 3332 dst_reg->smin_value = dst_reg->umin_value; 3333 dst_reg->smax_value = dst_reg->umax_value; 3334 } 3335 /* We may learn something more from the var_off */ 3336 __update_reg_bounds(dst_reg); 3337 break; 3338 case BPF_LSH: 3339 if (umax_val >= insn_bitness) { 3340 /* Shifts greater than 31 or 63 are undefined. 3341 * This includes shifts by a negative number. 3342 */ 3343 mark_reg_unknown(env, regs, insn->dst_reg); 3344 break; 3345 } 3346 /* We lose all sign bit information (except what we can pick 3347 * up from var_off) 3348 */ 3349 dst_reg->smin_value = S64_MIN; 3350 dst_reg->smax_value = S64_MAX; 3351 /* If we might shift our top bit out, then we know nothing */ 3352 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3353 dst_reg->umin_value = 0; 3354 dst_reg->umax_value = U64_MAX; 3355 } else { 3356 dst_reg->umin_value <<= umin_val; 3357 dst_reg->umax_value <<= umax_val; 3358 } 3359 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3360 /* We may learn something more from the var_off */ 3361 __update_reg_bounds(dst_reg); 3362 break; 3363 case BPF_RSH: 3364 if (umax_val >= insn_bitness) { 3365 /* Shifts greater than 31 or 63 are undefined. 3366 * This includes shifts by a negative number. 3367 */ 3368 mark_reg_unknown(env, regs, insn->dst_reg); 3369 break; 3370 } 3371 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3372 * be negative, then either: 3373 * 1) src_reg might be zero, so the sign bit of the result is 3374 * unknown, so we lose our signed bounds 3375 * 2) it's known negative, thus the unsigned bounds capture the 3376 * signed bounds 3377 * 3) the signed bounds cross zero, so they tell us nothing 3378 * about the result 3379 * If the value in dst_reg is known nonnegative, then again the 3380 * unsigned bounts capture the signed bounds. 3381 * Thus, in all cases it suffices to blow away our signed bounds 3382 * and rely on inferring new ones from the unsigned bounds and 3383 * var_off of the result. 3384 */ 3385 dst_reg->smin_value = S64_MIN; 3386 dst_reg->smax_value = S64_MAX; 3387 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3388 dst_reg->umin_value >>= umax_val; 3389 dst_reg->umax_value >>= umin_val; 3390 /* We may learn something more from the var_off */ 3391 __update_reg_bounds(dst_reg); 3392 break; 3393 case BPF_ARSH: 3394 if (umax_val >= insn_bitness) { 3395 /* Shifts greater than 31 or 63 are undefined. 3396 * This includes shifts by a negative number. 3397 */ 3398 mark_reg_unknown(env, regs, insn->dst_reg); 3399 break; 3400 } 3401 3402 /* Upon reaching here, src_known is true and 3403 * umax_val is equal to umin_val. 3404 */ 3405 dst_reg->smin_value >>= umin_val; 3406 dst_reg->smax_value >>= umin_val; 3407 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3408 3409 /* blow away the dst_reg umin_value/umax_value and rely on 3410 * dst_reg var_off to refine the result. 3411 */ 3412 dst_reg->umin_value = 0; 3413 dst_reg->umax_value = U64_MAX; 3414 __update_reg_bounds(dst_reg); 3415 break; 3416 default: 3417 mark_reg_unknown(env, regs, insn->dst_reg); 3418 break; 3419 } 3420 3421 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3422 /* 32-bit ALU ops are (32,32)->32 */ 3423 coerce_reg_to_size(dst_reg, 4); 3424 } 3425 3426 __reg_deduce_bounds(dst_reg); 3427 __reg_bound_offset(dst_reg); 3428 return 0; 3429 } 3430 3431 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3432 * and var_off. 3433 */ 3434 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3435 struct bpf_insn *insn) 3436 { 3437 struct bpf_verifier_state *vstate = env->cur_state; 3438 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3439 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3440 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3441 u8 opcode = BPF_OP(insn->code); 3442 3443 dst_reg = ®s[insn->dst_reg]; 3444 src_reg = NULL; 3445 if (dst_reg->type != SCALAR_VALUE) 3446 ptr_reg = dst_reg; 3447 if (BPF_SRC(insn->code) == BPF_X) { 3448 src_reg = ®s[insn->src_reg]; 3449 if (src_reg->type != SCALAR_VALUE) { 3450 if (dst_reg->type != SCALAR_VALUE) { 3451 /* Combining two pointers by any ALU op yields 3452 * an arbitrary scalar. Disallow all math except 3453 * pointer subtraction 3454 */ 3455 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3456 mark_reg_unknown(env, regs, insn->dst_reg); 3457 return 0; 3458 } 3459 verbose(env, "R%d pointer %s pointer prohibited\n", 3460 insn->dst_reg, 3461 bpf_alu_string[opcode >> 4]); 3462 return -EACCES; 3463 } else { 3464 /* scalar += pointer 3465 * This is legal, but we have to reverse our 3466 * src/dest handling in computing the range 3467 */ 3468 return adjust_ptr_min_max_vals(env, insn, 3469 src_reg, dst_reg); 3470 } 3471 } else if (ptr_reg) { 3472 /* pointer += scalar */ 3473 return adjust_ptr_min_max_vals(env, insn, 3474 dst_reg, src_reg); 3475 } 3476 } else { 3477 /* Pretend the src is a reg with a known value, since we only 3478 * need to be able to read from this state. 3479 */ 3480 off_reg.type = SCALAR_VALUE; 3481 __mark_reg_known(&off_reg, insn->imm); 3482 src_reg = &off_reg; 3483 if (ptr_reg) /* pointer += K */ 3484 return adjust_ptr_min_max_vals(env, insn, 3485 ptr_reg, src_reg); 3486 } 3487 3488 /* Got here implies adding two SCALAR_VALUEs */ 3489 if (WARN_ON_ONCE(ptr_reg)) { 3490 print_verifier_state(env, state); 3491 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3492 return -EINVAL; 3493 } 3494 if (WARN_ON(!src_reg)) { 3495 print_verifier_state(env, state); 3496 verbose(env, "verifier internal error: no src_reg\n"); 3497 return -EINVAL; 3498 } 3499 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3500 } 3501 3502 /* check validity of 32-bit and 64-bit arithmetic operations */ 3503 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3504 { 3505 struct bpf_reg_state *regs = cur_regs(env); 3506 u8 opcode = BPF_OP(insn->code); 3507 int err; 3508 3509 if (opcode == BPF_END || opcode == BPF_NEG) { 3510 if (opcode == BPF_NEG) { 3511 if (BPF_SRC(insn->code) != 0 || 3512 insn->src_reg != BPF_REG_0 || 3513 insn->off != 0 || insn->imm != 0) { 3514 verbose(env, "BPF_NEG uses reserved fields\n"); 3515 return -EINVAL; 3516 } 3517 } else { 3518 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3519 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3520 BPF_CLASS(insn->code) == BPF_ALU64) { 3521 verbose(env, "BPF_END uses reserved fields\n"); 3522 return -EINVAL; 3523 } 3524 } 3525 3526 /* check src operand */ 3527 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3528 if (err) 3529 return err; 3530 3531 if (is_pointer_value(env, insn->dst_reg)) { 3532 verbose(env, "R%d pointer arithmetic prohibited\n", 3533 insn->dst_reg); 3534 return -EACCES; 3535 } 3536 3537 /* check dest operand */ 3538 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3539 if (err) 3540 return err; 3541 3542 } else if (opcode == BPF_MOV) { 3543 3544 if (BPF_SRC(insn->code) == BPF_X) { 3545 if (insn->imm != 0 || insn->off != 0) { 3546 verbose(env, "BPF_MOV uses reserved fields\n"); 3547 return -EINVAL; 3548 } 3549 3550 /* check src operand */ 3551 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3552 if (err) 3553 return err; 3554 } else { 3555 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3556 verbose(env, "BPF_MOV uses reserved fields\n"); 3557 return -EINVAL; 3558 } 3559 } 3560 3561 /* check dest operand, mark as required later */ 3562 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3563 if (err) 3564 return err; 3565 3566 if (BPF_SRC(insn->code) == BPF_X) { 3567 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3568 /* case: R1 = R2 3569 * copy register state to dest reg 3570 */ 3571 regs[insn->dst_reg] = regs[insn->src_reg]; 3572 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3573 } else { 3574 /* R1 = (u32) R2 */ 3575 if (is_pointer_value(env, insn->src_reg)) { 3576 verbose(env, 3577 "R%d partial copy of pointer\n", 3578 insn->src_reg); 3579 return -EACCES; 3580 } 3581 mark_reg_unknown(env, regs, insn->dst_reg); 3582 coerce_reg_to_size(®s[insn->dst_reg], 4); 3583 } 3584 } else { 3585 /* case: R = imm 3586 * remember the value we stored into this reg 3587 */ 3588 /* clear any state __mark_reg_known doesn't set */ 3589 mark_reg_unknown(env, regs, insn->dst_reg); 3590 regs[insn->dst_reg].type = SCALAR_VALUE; 3591 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3592 __mark_reg_known(regs + insn->dst_reg, 3593 insn->imm); 3594 } else { 3595 __mark_reg_known(regs + insn->dst_reg, 3596 (u32)insn->imm); 3597 } 3598 } 3599 3600 } else if (opcode > BPF_END) { 3601 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3602 return -EINVAL; 3603 3604 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3605 3606 if (BPF_SRC(insn->code) == BPF_X) { 3607 if (insn->imm != 0 || insn->off != 0) { 3608 verbose(env, "BPF_ALU uses reserved fields\n"); 3609 return -EINVAL; 3610 } 3611 /* check src1 operand */ 3612 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3613 if (err) 3614 return err; 3615 } else { 3616 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3617 verbose(env, "BPF_ALU uses reserved fields\n"); 3618 return -EINVAL; 3619 } 3620 } 3621 3622 /* check src2 operand */ 3623 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3624 if (err) 3625 return err; 3626 3627 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3628 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3629 verbose(env, "div by zero\n"); 3630 return -EINVAL; 3631 } 3632 3633 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3634 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3635 return -EINVAL; 3636 } 3637 3638 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3639 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3640 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3641 3642 if (insn->imm < 0 || insn->imm >= size) { 3643 verbose(env, "invalid shift %d\n", insn->imm); 3644 return -EINVAL; 3645 } 3646 } 3647 3648 /* check dest operand */ 3649 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3650 if (err) 3651 return err; 3652 3653 return adjust_reg_min_max_vals(env, insn); 3654 } 3655 3656 return 0; 3657 } 3658 3659 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3660 struct bpf_reg_state *dst_reg, 3661 enum bpf_reg_type type, 3662 bool range_right_open) 3663 { 3664 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3665 struct bpf_reg_state *regs = state->regs, *reg; 3666 u16 new_range; 3667 int i, j; 3668 3669 if (dst_reg->off < 0 || 3670 (dst_reg->off == 0 && range_right_open)) 3671 /* This doesn't give us any range */ 3672 return; 3673 3674 if (dst_reg->umax_value > MAX_PACKET_OFF || 3675 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3676 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3677 * than pkt_end, but that's because it's also less than pkt. 3678 */ 3679 return; 3680 3681 new_range = dst_reg->off; 3682 if (range_right_open) 3683 new_range--; 3684 3685 /* Examples for register markings: 3686 * 3687 * pkt_data in dst register: 3688 * 3689 * r2 = r3; 3690 * r2 += 8; 3691 * if (r2 > pkt_end) goto <handle exception> 3692 * <access okay> 3693 * 3694 * r2 = r3; 3695 * r2 += 8; 3696 * if (r2 < pkt_end) goto <access okay> 3697 * <handle exception> 3698 * 3699 * Where: 3700 * r2 == dst_reg, pkt_end == src_reg 3701 * r2=pkt(id=n,off=8,r=0) 3702 * r3=pkt(id=n,off=0,r=0) 3703 * 3704 * pkt_data in src register: 3705 * 3706 * r2 = r3; 3707 * r2 += 8; 3708 * if (pkt_end >= r2) goto <access okay> 3709 * <handle exception> 3710 * 3711 * r2 = r3; 3712 * r2 += 8; 3713 * if (pkt_end <= r2) goto <handle exception> 3714 * <access okay> 3715 * 3716 * Where: 3717 * pkt_end == dst_reg, r2 == src_reg 3718 * r2=pkt(id=n,off=8,r=0) 3719 * r3=pkt(id=n,off=0,r=0) 3720 * 3721 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3722 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3723 * and [r3, r3 + 8-1) respectively is safe to access depending on 3724 * the check. 3725 */ 3726 3727 /* If our ids match, then we must have the same max_value. And we 3728 * don't care about the other reg's fixed offset, since if it's too big 3729 * the range won't allow anything. 3730 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3731 */ 3732 for (i = 0; i < MAX_BPF_REG; i++) 3733 if (regs[i].type == type && regs[i].id == dst_reg->id) 3734 /* keep the maximum range already checked */ 3735 regs[i].range = max(regs[i].range, new_range); 3736 3737 for (j = 0; j <= vstate->curframe; j++) { 3738 state = vstate->frame[j]; 3739 bpf_for_each_spilled_reg(i, state, reg) { 3740 if (!reg) 3741 continue; 3742 if (reg->type == type && reg->id == dst_reg->id) 3743 reg->range = max(reg->range, new_range); 3744 } 3745 } 3746 } 3747 3748 /* Adjusts the register min/max values in the case that the dst_reg is the 3749 * variable register that we are working on, and src_reg is a constant or we're 3750 * simply doing a BPF_K check. 3751 * In JEQ/JNE cases we also adjust the var_off values. 3752 */ 3753 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3754 struct bpf_reg_state *false_reg, u64 val, 3755 u8 opcode) 3756 { 3757 /* If the dst_reg is a pointer, we can't learn anything about its 3758 * variable offset from the compare (unless src_reg were a pointer into 3759 * the same object, but we don't bother with that. 3760 * Since false_reg and true_reg have the same type by construction, we 3761 * only need to check one of them for pointerness. 3762 */ 3763 if (__is_pointer_value(false, false_reg)) 3764 return; 3765 3766 switch (opcode) { 3767 case BPF_JEQ: 3768 /* If this is false then we know nothing Jon Snow, but if it is 3769 * true then we know for sure. 3770 */ 3771 __mark_reg_known(true_reg, val); 3772 break; 3773 case BPF_JNE: 3774 /* If this is true we know nothing Jon Snow, but if it is false 3775 * we know the value for sure; 3776 */ 3777 __mark_reg_known(false_reg, val); 3778 break; 3779 case BPF_JGT: 3780 false_reg->umax_value = min(false_reg->umax_value, val); 3781 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3782 break; 3783 case BPF_JSGT: 3784 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3785 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3786 break; 3787 case BPF_JLT: 3788 false_reg->umin_value = max(false_reg->umin_value, val); 3789 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3790 break; 3791 case BPF_JSLT: 3792 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3793 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3794 break; 3795 case BPF_JGE: 3796 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3797 true_reg->umin_value = max(true_reg->umin_value, val); 3798 break; 3799 case BPF_JSGE: 3800 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3801 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3802 break; 3803 case BPF_JLE: 3804 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3805 true_reg->umax_value = min(true_reg->umax_value, val); 3806 break; 3807 case BPF_JSLE: 3808 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3809 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3810 break; 3811 default: 3812 break; 3813 } 3814 3815 __reg_deduce_bounds(false_reg); 3816 __reg_deduce_bounds(true_reg); 3817 /* We might have learned some bits from the bounds. */ 3818 __reg_bound_offset(false_reg); 3819 __reg_bound_offset(true_reg); 3820 /* Intersecting with the old var_off might have improved our bounds 3821 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3822 * then new var_off is (0; 0x7f...fc) which improves our umax. 3823 */ 3824 __update_reg_bounds(false_reg); 3825 __update_reg_bounds(true_reg); 3826 } 3827 3828 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3829 * the variable reg. 3830 */ 3831 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3832 struct bpf_reg_state *false_reg, u64 val, 3833 u8 opcode) 3834 { 3835 if (__is_pointer_value(false, false_reg)) 3836 return; 3837 3838 switch (opcode) { 3839 case BPF_JEQ: 3840 /* If this is false then we know nothing Jon Snow, but if it is 3841 * true then we know for sure. 3842 */ 3843 __mark_reg_known(true_reg, val); 3844 break; 3845 case BPF_JNE: 3846 /* If this is true we know nothing Jon Snow, but if it is false 3847 * we know the value for sure; 3848 */ 3849 __mark_reg_known(false_reg, val); 3850 break; 3851 case BPF_JGT: 3852 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3853 false_reg->umin_value = max(false_reg->umin_value, val); 3854 break; 3855 case BPF_JSGT: 3856 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3857 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3858 break; 3859 case BPF_JLT: 3860 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3861 false_reg->umax_value = min(false_reg->umax_value, val); 3862 break; 3863 case BPF_JSLT: 3864 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3865 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3866 break; 3867 case BPF_JGE: 3868 true_reg->umax_value = min(true_reg->umax_value, val); 3869 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3870 break; 3871 case BPF_JSGE: 3872 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3873 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3874 break; 3875 case BPF_JLE: 3876 true_reg->umin_value = max(true_reg->umin_value, val); 3877 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3878 break; 3879 case BPF_JSLE: 3880 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3881 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3882 break; 3883 default: 3884 break; 3885 } 3886 3887 __reg_deduce_bounds(false_reg); 3888 __reg_deduce_bounds(true_reg); 3889 /* We might have learned some bits from the bounds. */ 3890 __reg_bound_offset(false_reg); 3891 __reg_bound_offset(true_reg); 3892 /* Intersecting with the old var_off might have improved our bounds 3893 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3894 * then new var_off is (0; 0x7f...fc) which improves our umax. 3895 */ 3896 __update_reg_bounds(false_reg); 3897 __update_reg_bounds(true_reg); 3898 } 3899 3900 /* Regs are known to be equal, so intersect their min/max/var_off */ 3901 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3902 struct bpf_reg_state *dst_reg) 3903 { 3904 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3905 dst_reg->umin_value); 3906 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3907 dst_reg->umax_value); 3908 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3909 dst_reg->smin_value); 3910 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3911 dst_reg->smax_value); 3912 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3913 dst_reg->var_off); 3914 /* We might have learned new bounds from the var_off. */ 3915 __update_reg_bounds(src_reg); 3916 __update_reg_bounds(dst_reg); 3917 /* We might have learned something about the sign bit. */ 3918 __reg_deduce_bounds(src_reg); 3919 __reg_deduce_bounds(dst_reg); 3920 /* We might have learned some bits from the bounds. */ 3921 __reg_bound_offset(src_reg); 3922 __reg_bound_offset(dst_reg); 3923 /* Intersecting with the old var_off might have improved our bounds 3924 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3925 * then new var_off is (0; 0x7f...fc) which improves our umax. 3926 */ 3927 __update_reg_bounds(src_reg); 3928 __update_reg_bounds(dst_reg); 3929 } 3930 3931 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3932 struct bpf_reg_state *true_dst, 3933 struct bpf_reg_state *false_src, 3934 struct bpf_reg_state *false_dst, 3935 u8 opcode) 3936 { 3937 switch (opcode) { 3938 case BPF_JEQ: 3939 __reg_combine_min_max(true_src, true_dst); 3940 break; 3941 case BPF_JNE: 3942 __reg_combine_min_max(false_src, false_dst); 3943 break; 3944 } 3945 } 3946 3947 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 3948 struct bpf_reg_state *reg, u32 id, 3949 bool is_null) 3950 { 3951 if (reg_type_may_be_null(reg->type) && reg->id == id) { 3952 /* Old offset (both fixed and variable parts) should 3953 * have been known-zero, because we don't allow pointer 3954 * arithmetic on pointers that might be NULL. 3955 */ 3956 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3957 !tnum_equals_const(reg->var_off, 0) || 3958 reg->off)) { 3959 __mark_reg_known_zero(reg); 3960 reg->off = 0; 3961 } 3962 if (is_null) { 3963 reg->type = SCALAR_VALUE; 3964 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3965 if (reg->map_ptr->inner_map_meta) { 3966 reg->type = CONST_PTR_TO_MAP; 3967 reg->map_ptr = reg->map_ptr->inner_map_meta; 3968 } else { 3969 reg->type = PTR_TO_MAP_VALUE; 3970 } 3971 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 3972 reg->type = PTR_TO_SOCKET; 3973 } 3974 if (is_null || !reg_is_refcounted(reg)) { 3975 /* We don't need id from this point onwards anymore, 3976 * thus we should better reset it, so that state 3977 * pruning has chances to take effect. 3978 */ 3979 reg->id = 0; 3980 } 3981 } 3982 } 3983 3984 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3985 * be folded together at some point. 3986 */ 3987 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 3988 bool is_null) 3989 { 3990 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3991 struct bpf_reg_state *reg, *regs = state->regs; 3992 u32 id = regs[regno].id; 3993 int i, j; 3994 3995 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 3996 __release_reference_state(state, id); 3997 3998 for (i = 0; i < MAX_BPF_REG; i++) 3999 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4000 4001 for (j = 0; j <= vstate->curframe; j++) { 4002 state = vstate->frame[j]; 4003 bpf_for_each_spilled_reg(i, state, reg) { 4004 if (!reg) 4005 continue; 4006 mark_ptr_or_null_reg(state, reg, id, is_null); 4007 } 4008 } 4009 } 4010 4011 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4012 struct bpf_reg_state *dst_reg, 4013 struct bpf_reg_state *src_reg, 4014 struct bpf_verifier_state *this_branch, 4015 struct bpf_verifier_state *other_branch) 4016 { 4017 if (BPF_SRC(insn->code) != BPF_X) 4018 return false; 4019 4020 switch (BPF_OP(insn->code)) { 4021 case BPF_JGT: 4022 if ((dst_reg->type == PTR_TO_PACKET && 4023 src_reg->type == PTR_TO_PACKET_END) || 4024 (dst_reg->type == PTR_TO_PACKET_META && 4025 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4026 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4027 find_good_pkt_pointers(this_branch, dst_reg, 4028 dst_reg->type, false); 4029 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4030 src_reg->type == PTR_TO_PACKET) || 4031 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4032 src_reg->type == PTR_TO_PACKET_META)) { 4033 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4034 find_good_pkt_pointers(other_branch, src_reg, 4035 src_reg->type, true); 4036 } else { 4037 return false; 4038 } 4039 break; 4040 case BPF_JLT: 4041 if ((dst_reg->type == PTR_TO_PACKET && 4042 src_reg->type == PTR_TO_PACKET_END) || 4043 (dst_reg->type == PTR_TO_PACKET_META && 4044 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4045 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4046 find_good_pkt_pointers(other_branch, dst_reg, 4047 dst_reg->type, true); 4048 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4049 src_reg->type == PTR_TO_PACKET) || 4050 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4051 src_reg->type == PTR_TO_PACKET_META)) { 4052 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4053 find_good_pkt_pointers(this_branch, src_reg, 4054 src_reg->type, false); 4055 } else { 4056 return false; 4057 } 4058 break; 4059 case BPF_JGE: 4060 if ((dst_reg->type == PTR_TO_PACKET && 4061 src_reg->type == PTR_TO_PACKET_END) || 4062 (dst_reg->type == PTR_TO_PACKET_META && 4063 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4064 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4065 find_good_pkt_pointers(this_branch, dst_reg, 4066 dst_reg->type, true); 4067 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4068 src_reg->type == PTR_TO_PACKET) || 4069 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4070 src_reg->type == PTR_TO_PACKET_META)) { 4071 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4072 find_good_pkt_pointers(other_branch, src_reg, 4073 src_reg->type, false); 4074 } else { 4075 return false; 4076 } 4077 break; 4078 case BPF_JLE: 4079 if ((dst_reg->type == PTR_TO_PACKET && 4080 src_reg->type == PTR_TO_PACKET_END) || 4081 (dst_reg->type == PTR_TO_PACKET_META && 4082 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4083 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4084 find_good_pkt_pointers(other_branch, dst_reg, 4085 dst_reg->type, false); 4086 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4087 src_reg->type == PTR_TO_PACKET) || 4088 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4089 src_reg->type == PTR_TO_PACKET_META)) { 4090 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4091 find_good_pkt_pointers(this_branch, src_reg, 4092 src_reg->type, true); 4093 } else { 4094 return false; 4095 } 4096 break; 4097 default: 4098 return false; 4099 } 4100 4101 return true; 4102 } 4103 4104 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4105 struct bpf_insn *insn, int *insn_idx) 4106 { 4107 struct bpf_verifier_state *this_branch = env->cur_state; 4108 struct bpf_verifier_state *other_branch; 4109 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4110 struct bpf_reg_state *dst_reg, *other_branch_regs; 4111 u8 opcode = BPF_OP(insn->code); 4112 int err; 4113 4114 if (opcode > BPF_JSLE) { 4115 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4116 return -EINVAL; 4117 } 4118 4119 if (BPF_SRC(insn->code) == BPF_X) { 4120 if (insn->imm != 0) { 4121 verbose(env, "BPF_JMP uses reserved fields\n"); 4122 return -EINVAL; 4123 } 4124 4125 /* check src1 operand */ 4126 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4127 if (err) 4128 return err; 4129 4130 if (is_pointer_value(env, insn->src_reg)) { 4131 verbose(env, "R%d pointer comparison prohibited\n", 4132 insn->src_reg); 4133 return -EACCES; 4134 } 4135 } else { 4136 if (insn->src_reg != BPF_REG_0) { 4137 verbose(env, "BPF_JMP uses reserved fields\n"); 4138 return -EINVAL; 4139 } 4140 } 4141 4142 /* check src2 operand */ 4143 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4144 if (err) 4145 return err; 4146 4147 dst_reg = ®s[insn->dst_reg]; 4148 4149 /* detect if R == 0 where R was initialized to zero earlier */ 4150 if (BPF_SRC(insn->code) == BPF_K && 4151 (opcode == BPF_JEQ || opcode == BPF_JNE) && 4152 dst_reg->type == SCALAR_VALUE && 4153 tnum_is_const(dst_reg->var_off)) { 4154 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 4155 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 4156 /* if (imm == imm) goto pc+off; 4157 * only follow the goto, ignore fall-through 4158 */ 4159 *insn_idx += insn->off; 4160 return 0; 4161 } else { 4162 /* if (imm != imm) goto pc+off; 4163 * only follow fall-through branch, since 4164 * that's where the program will go 4165 */ 4166 return 0; 4167 } 4168 } 4169 4170 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4171 if (!other_branch) 4172 return -EFAULT; 4173 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4174 4175 /* detect if we are comparing against a constant value so we can adjust 4176 * our min/max values for our dst register. 4177 * this is only legit if both are scalars (or pointers to the same 4178 * object, I suppose, but we don't support that right now), because 4179 * otherwise the different base pointers mean the offsets aren't 4180 * comparable. 4181 */ 4182 if (BPF_SRC(insn->code) == BPF_X) { 4183 if (dst_reg->type == SCALAR_VALUE && 4184 regs[insn->src_reg].type == SCALAR_VALUE) { 4185 if (tnum_is_const(regs[insn->src_reg].var_off)) 4186 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4187 dst_reg, regs[insn->src_reg].var_off.value, 4188 opcode); 4189 else if (tnum_is_const(dst_reg->var_off)) 4190 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4191 ®s[insn->src_reg], 4192 dst_reg->var_off.value, opcode); 4193 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4194 /* Comparing for equality, we can combine knowledge */ 4195 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4196 &other_branch_regs[insn->dst_reg], 4197 ®s[insn->src_reg], 4198 ®s[insn->dst_reg], opcode); 4199 } 4200 } else if (dst_reg->type == SCALAR_VALUE) { 4201 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4202 dst_reg, insn->imm, opcode); 4203 } 4204 4205 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4206 if (BPF_SRC(insn->code) == BPF_K && 4207 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4208 reg_type_may_be_null(dst_reg->type)) { 4209 /* Mark all identical registers in each branch as either 4210 * safe or unknown depending R == 0 or R != 0 conditional. 4211 */ 4212 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4213 opcode == BPF_JNE); 4214 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4215 opcode == BPF_JEQ); 4216 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4217 this_branch, other_branch) && 4218 is_pointer_value(env, insn->dst_reg)) { 4219 verbose(env, "R%d pointer comparison prohibited\n", 4220 insn->dst_reg); 4221 return -EACCES; 4222 } 4223 if (env->log.level) 4224 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4225 return 0; 4226 } 4227 4228 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4229 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4230 { 4231 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4232 4233 return (struct bpf_map *) (unsigned long) imm64; 4234 } 4235 4236 /* verify BPF_LD_IMM64 instruction */ 4237 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4238 { 4239 struct bpf_reg_state *regs = cur_regs(env); 4240 int err; 4241 4242 if (BPF_SIZE(insn->code) != BPF_DW) { 4243 verbose(env, "invalid BPF_LD_IMM insn\n"); 4244 return -EINVAL; 4245 } 4246 if (insn->off != 0) { 4247 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4248 return -EINVAL; 4249 } 4250 4251 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4252 if (err) 4253 return err; 4254 4255 if (insn->src_reg == 0) { 4256 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4257 4258 regs[insn->dst_reg].type = SCALAR_VALUE; 4259 __mark_reg_known(®s[insn->dst_reg], imm); 4260 return 0; 4261 } 4262 4263 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4264 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4265 4266 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4267 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4268 return 0; 4269 } 4270 4271 static bool may_access_skb(enum bpf_prog_type type) 4272 { 4273 switch (type) { 4274 case BPF_PROG_TYPE_SOCKET_FILTER: 4275 case BPF_PROG_TYPE_SCHED_CLS: 4276 case BPF_PROG_TYPE_SCHED_ACT: 4277 return true; 4278 default: 4279 return false; 4280 } 4281 } 4282 4283 /* verify safety of LD_ABS|LD_IND instructions: 4284 * - they can only appear in the programs where ctx == skb 4285 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4286 * preserve R6-R9, and store return value into R0 4287 * 4288 * Implicit input: 4289 * ctx == skb == R6 == CTX 4290 * 4291 * Explicit input: 4292 * SRC == any register 4293 * IMM == 32-bit immediate 4294 * 4295 * Output: 4296 * R0 - 8/16/32-bit skb data converted to cpu endianness 4297 */ 4298 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4299 { 4300 struct bpf_reg_state *regs = cur_regs(env); 4301 u8 mode = BPF_MODE(insn->code); 4302 int i, err; 4303 4304 if (!may_access_skb(env->prog->type)) { 4305 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4306 return -EINVAL; 4307 } 4308 4309 if (!env->ops->gen_ld_abs) { 4310 verbose(env, "bpf verifier is misconfigured\n"); 4311 return -EINVAL; 4312 } 4313 4314 if (env->subprog_cnt > 1) { 4315 /* when program has LD_ABS insn JITs and interpreter assume 4316 * that r1 == ctx == skb which is not the case for callees 4317 * that can have arbitrary arguments. It's problematic 4318 * for main prog as well since JITs would need to analyze 4319 * all functions in order to make proper register save/restore 4320 * decisions in the main prog. Hence disallow LD_ABS with calls 4321 */ 4322 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4323 return -EINVAL; 4324 } 4325 4326 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4327 BPF_SIZE(insn->code) == BPF_DW || 4328 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4329 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4330 return -EINVAL; 4331 } 4332 4333 /* check whether implicit source operand (register R6) is readable */ 4334 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4335 if (err) 4336 return err; 4337 4338 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4339 * gen_ld_abs() may terminate the program at runtime, leading to 4340 * reference leak. 4341 */ 4342 err = check_reference_leak(env); 4343 if (err) { 4344 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4345 return err; 4346 } 4347 4348 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4349 verbose(env, 4350 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4351 return -EINVAL; 4352 } 4353 4354 if (mode == BPF_IND) { 4355 /* check explicit source operand */ 4356 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4357 if (err) 4358 return err; 4359 } 4360 4361 /* reset caller saved regs to unreadable */ 4362 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4363 mark_reg_not_init(env, regs, caller_saved[i]); 4364 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4365 } 4366 4367 /* mark destination R0 register as readable, since it contains 4368 * the value fetched from the packet. 4369 * Already marked as written above. 4370 */ 4371 mark_reg_unknown(env, regs, BPF_REG_0); 4372 return 0; 4373 } 4374 4375 static int check_return_code(struct bpf_verifier_env *env) 4376 { 4377 struct bpf_reg_state *reg; 4378 struct tnum range = tnum_range(0, 1); 4379 4380 switch (env->prog->type) { 4381 case BPF_PROG_TYPE_CGROUP_SKB: 4382 case BPF_PROG_TYPE_CGROUP_SOCK: 4383 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4384 case BPF_PROG_TYPE_SOCK_OPS: 4385 case BPF_PROG_TYPE_CGROUP_DEVICE: 4386 break; 4387 default: 4388 return 0; 4389 } 4390 4391 reg = cur_regs(env) + BPF_REG_0; 4392 if (reg->type != SCALAR_VALUE) { 4393 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4394 reg_type_str[reg->type]); 4395 return -EINVAL; 4396 } 4397 4398 if (!tnum_in(range, reg->var_off)) { 4399 verbose(env, "At program exit the register R0 "); 4400 if (!tnum_is_unknown(reg->var_off)) { 4401 char tn_buf[48]; 4402 4403 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4404 verbose(env, "has value %s", tn_buf); 4405 } else { 4406 verbose(env, "has unknown scalar value"); 4407 } 4408 verbose(env, " should have been 0 or 1\n"); 4409 return -EINVAL; 4410 } 4411 return 0; 4412 } 4413 4414 /* non-recursive DFS pseudo code 4415 * 1 procedure DFS-iterative(G,v): 4416 * 2 label v as discovered 4417 * 3 let S be a stack 4418 * 4 S.push(v) 4419 * 5 while S is not empty 4420 * 6 t <- S.pop() 4421 * 7 if t is what we're looking for: 4422 * 8 return t 4423 * 9 for all edges e in G.adjacentEdges(t) do 4424 * 10 if edge e is already labelled 4425 * 11 continue with the next edge 4426 * 12 w <- G.adjacentVertex(t,e) 4427 * 13 if vertex w is not discovered and not explored 4428 * 14 label e as tree-edge 4429 * 15 label w as discovered 4430 * 16 S.push(w) 4431 * 17 continue at 5 4432 * 18 else if vertex w is discovered 4433 * 19 label e as back-edge 4434 * 20 else 4435 * 21 // vertex w is explored 4436 * 22 label e as forward- or cross-edge 4437 * 23 label t as explored 4438 * 24 S.pop() 4439 * 4440 * convention: 4441 * 0x10 - discovered 4442 * 0x11 - discovered and fall-through edge labelled 4443 * 0x12 - discovered and fall-through and branch edges labelled 4444 * 0x20 - explored 4445 */ 4446 4447 enum { 4448 DISCOVERED = 0x10, 4449 EXPLORED = 0x20, 4450 FALLTHROUGH = 1, 4451 BRANCH = 2, 4452 }; 4453 4454 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4455 4456 static int *insn_stack; /* stack of insns to process */ 4457 static int cur_stack; /* current stack index */ 4458 static int *insn_state; 4459 4460 /* t, w, e - match pseudo-code above: 4461 * t - index of current instruction 4462 * w - next instruction 4463 * e - edge 4464 */ 4465 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4466 { 4467 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4468 return 0; 4469 4470 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4471 return 0; 4472 4473 if (w < 0 || w >= env->prog->len) { 4474 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4475 return -EINVAL; 4476 } 4477 4478 if (e == BRANCH) 4479 /* mark branch target for state pruning */ 4480 env->explored_states[w] = STATE_LIST_MARK; 4481 4482 if (insn_state[w] == 0) { 4483 /* tree-edge */ 4484 insn_state[t] = DISCOVERED | e; 4485 insn_state[w] = DISCOVERED; 4486 if (cur_stack >= env->prog->len) 4487 return -E2BIG; 4488 insn_stack[cur_stack++] = w; 4489 return 1; 4490 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4491 verbose(env, "back-edge from insn %d to %d\n", t, w); 4492 return -EINVAL; 4493 } else if (insn_state[w] == EXPLORED) { 4494 /* forward- or cross-edge */ 4495 insn_state[t] = DISCOVERED | e; 4496 } else { 4497 verbose(env, "insn state internal bug\n"); 4498 return -EFAULT; 4499 } 4500 return 0; 4501 } 4502 4503 /* non-recursive depth-first-search to detect loops in BPF program 4504 * loop == back-edge in directed graph 4505 */ 4506 static int check_cfg(struct bpf_verifier_env *env) 4507 { 4508 struct bpf_insn *insns = env->prog->insnsi; 4509 int insn_cnt = env->prog->len; 4510 int ret = 0; 4511 int i, t; 4512 4513 ret = check_subprogs(env); 4514 if (ret < 0) 4515 return ret; 4516 4517 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4518 if (!insn_state) 4519 return -ENOMEM; 4520 4521 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4522 if (!insn_stack) { 4523 kfree(insn_state); 4524 return -ENOMEM; 4525 } 4526 4527 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4528 insn_stack[0] = 0; /* 0 is the first instruction */ 4529 cur_stack = 1; 4530 4531 peek_stack: 4532 if (cur_stack == 0) 4533 goto check_state; 4534 t = insn_stack[cur_stack - 1]; 4535 4536 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4537 u8 opcode = BPF_OP(insns[t].code); 4538 4539 if (opcode == BPF_EXIT) { 4540 goto mark_explored; 4541 } else if (opcode == BPF_CALL) { 4542 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4543 if (ret == 1) 4544 goto peek_stack; 4545 else if (ret < 0) 4546 goto err_free; 4547 if (t + 1 < insn_cnt) 4548 env->explored_states[t + 1] = STATE_LIST_MARK; 4549 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4550 env->explored_states[t] = STATE_LIST_MARK; 4551 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4552 if (ret == 1) 4553 goto peek_stack; 4554 else if (ret < 0) 4555 goto err_free; 4556 } 4557 } else if (opcode == BPF_JA) { 4558 if (BPF_SRC(insns[t].code) != BPF_K) { 4559 ret = -EINVAL; 4560 goto err_free; 4561 } 4562 /* unconditional jump with single edge */ 4563 ret = push_insn(t, t + insns[t].off + 1, 4564 FALLTHROUGH, env); 4565 if (ret == 1) 4566 goto peek_stack; 4567 else if (ret < 0) 4568 goto err_free; 4569 /* tell verifier to check for equivalent states 4570 * after every call and jump 4571 */ 4572 if (t + 1 < insn_cnt) 4573 env->explored_states[t + 1] = STATE_LIST_MARK; 4574 } else { 4575 /* conditional jump with two edges */ 4576 env->explored_states[t] = STATE_LIST_MARK; 4577 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4578 if (ret == 1) 4579 goto peek_stack; 4580 else if (ret < 0) 4581 goto err_free; 4582 4583 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4584 if (ret == 1) 4585 goto peek_stack; 4586 else if (ret < 0) 4587 goto err_free; 4588 } 4589 } else { 4590 /* all other non-branch instructions with single 4591 * fall-through edge 4592 */ 4593 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4594 if (ret == 1) 4595 goto peek_stack; 4596 else if (ret < 0) 4597 goto err_free; 4598 } 4599 4600 mark_explored: 4601 insn_state[t] = EXPLORED; 4602 if (cur_stack-- <= 0) { 4603 verbose(env, "pop stack internal bug\n"); 4604 ret = -EFAULT; 4605 goto err_free; 4606 } 4607 goto peek_stack; 4608 4609 check_state: 4610 for (i = 0; i < insn_cnt; i++) { 4611 if (insn_state[i] != EXPLORED) { 4612 verbose(env, "unreachable insn %d\n", i); 4613 ret = -EINVAL; 4614 goto err_free; 4615 } 4616 } 4617 ret = 0; /* cfg looks good */ 4618 4619 err_free: 4620 kfree(insn_state); 4621 kfree(insn_stack); 4622 return ret; 4623 } 4624 4625 /* check %cur's range satisfies %old's */ 4626 static bool range_within(struct bpf_reg_state *old, 4627 struct bpf_reg_state *cur) 4628 { 4629 return old->umin_value <= cur->umin_value && 4630 old->umax_value >= cur->umax_value && 4631 old->smin_value <= cur->smin_value && 4632 old->smax_value >= cur->smax_value; 4633 } 4634 4635 /* Maximum number of register states that can exist at once */ 4636 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4637 struct idpair { 4638 u32 old; 4639 u32 cur; 4640 }; 4641 4642 /* If in the old state two registers had the same id, then they need to have 4643 * the same id in the new state as well. But that id could be different from 4644 * the old state, so we need to track the mapping from old to new ids. 4645 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4646 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4647 * regs with a different old id could still have new id 9, we don't care about 4648 * that. 4649 * So we look through our idmap to see if this old id has been seen before. If 4650 * so, we require the new id to match; otherwise, we add the id pair to the map. 4651 */ 4652 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4653 { 4654 unsigned int i; 4655 4656 for (i = 0; i < ID_MAP_SIZE; i++) { 4657 if (!idmap[i].old) { 4658 /* Reached an empty slot; haven't seen this id before */ 4659 idmap[i].old = old_id; 4660 idmap[i].cur = cur_id; 4661 return true; 4662 } 4663 if (idmap[i].old == old_id) 4664 return idmap[i].cur == cur_id; 4665 } 4666 /* We ran out of idmap slots, which should be impossible */ 4667 WARN_ON_ONCE(1); 4668 return false; 4669 } 4670 4671 /* Returns true if (rold safe implies rcur safe) */ 4672 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4673 struct idpair *idmap) 4674 { 4675 bool equal; 4676 4677 if (!(rold->live & REG_LIVE_READ)) 4678 /* explored state didn't use this */ 4679 return true; 4680 4681 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4682 4683 if (rold->type == PTR_TO_STACK) 4684 /* two stack pointers are equal only if they're pointing to 4685 * the same stack frame, since fp-8 in foo != fp-8 in bar 4686 */ 4687 return equal && rold->frameno == rcur->frameno; 4688 4689 if (equal) 4690 return true; 4691 4692 if (rold->type == NOT_INIT) 4693 /* explored state can't have used this */ 4694 return true; 4695 if (rcur->type == NOT_INIT) 4696 return false; 4697 switch (rold->type) { 4698 case SCALAR_VALUE: 4699 if (rcur->type == SCALAR_VALUE) { 4700 /* new val must satisfy old val knowledge */ 4701 return range_within(rold, rcur) && 4702 tnum_in(rold->var_off, rcur->var_off); 4703 } else { 4704 /* We're trying to use a pointer in place of a scalar. 4705 * Even if the scalar was unbounded, this could lead to 4706 * pointer leaks because scalars are allowed to leak 4707 * while pointers are not. We could make this safe in 4708 * special cases if root is calling us, but it's 4709 * probably not worth the hassle. 4710 */ 4711 return false; 4712 } 4713 case PTR_TO_MAP_VALUE: 4714 /* If the new min/max/var_off satisfy the old ones and 4715 * everything else matches, we are OK. 4716 * We don't care about the 'id' value, because nothing 4717 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4718 */ 4719 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4720 range_within(rold, rcur) && 4721 tnum_in(rold->var_off, rcur->var_off); 4722 case PTR_TO_MAP_VALUE_OR_NULL: 4723 /* a PTR_TO_MAP_VALUE could be safe to use as a 4724 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4725 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4726 * checked, doing so could have affected others with the same 4727 * id, and we can't check for that because we lost the id when 4728 * we converted to a PTR_TO_MAP_VALUE. 4729 */ 4730 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4731 return false; 4732 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4733 return false; 4734 /* Check our ids match any regs they're supposed to */ 4735 return check_ids(rold->id, rcur->id, idmap); 4736 case PTR_TO_PACKET_META: 4737 case PTR_TO_PACKET: 4738 if (rcur->type != rold->type) 4739 return false; 4740 /* We must have at least as much range as the old ptr 4741 * did, so that any accesses which were safe before are 4742 * still safe. This is true even if old range < old off, 4743 * since someone could have accessed through (ptr - k), or 4744 * even done ptr -= k in a register, to get a safe access. 4745 */ 4746 if (rold->range > rcur->range) 4747 return false; 4748 /* If the offsets don't match, we can't trust our alignment; 4749 * nor can we be sure that we won't fall out of range. 4750 */ 4751 if (rold->off != rcur->off) 4752 return false; 4753 /* id relations must be preserved */ 4754 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4755 return false; 4756 /* new val must satisfy old val knowledge */ 4757 return range_within(rold, rcur) && 4758 tnum_in(rold->var_off, rcur->var_off); 4759 case PTR_TO_CTX: 4760 case CONST_PTR_TO_MAP: 4761 case PTR_TO_PACKET_END: 4762 case PTR_TO_FLOW_KEYS: 4763 case PTR_TO_SOCKET: 4764 case PTR_TO_SOCKET_OR_NULL: 4765 /* Only valid matches are exact, which memcmp() above 4766 * would have accepted 4767 */ 4768 default: 4769 /* Don't know what's going on, just say it's not safe */ 4770 return false; 4771 } 4772 4773 /* Shouldn't get here; if we do, say it's not safe */ 4774 WARN_ON_ONCE(1); 4775 return false; 4776 } 4777 4778 static bool stacksafe(struct bpf_func_state *old, 4779 struct bpf_func_state *cur, 4780 struct idpair *idmap) 4781 { 4782 int i, spi; 4783 4784 /* if explored stack has more populated slots than current stack 4785 * such stacks are not equivalent 4786 */ 4787 if (old->allocated_stack > cur->allocated_stack) 4788 return false; 4789 4790 /* walk slots of the explored stack and ignore any additional 4791 * slots in the current stack, since explored(safe) state 4792 * didn't use them 4793 */ 4794 for (i = 0; i < old->allocated_stack; i++) { 4795 spi = i / BPF_REG_SIZE; 4796 4797 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4798 /* explored state didn't use this */ 4799 continue; 4800 4801 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4802 continue; 4803 /* if old state was safe with misc data in the stack 4804 * it will be safe with zero-initialized stack. 4805 * The opposite is not true 4806 */ 4807 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4808 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4809 continue; 4810 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4811 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4812 /* Ex: old explored (safe) state has STACK_SPILL in 4813 * this stack slot, but current has has STACK_MISC -> 4814 * this verifier states are not equivalent, 4815 * return false to continue verification of this path 4816 */ 4817 return false; 4818 if (i % BPF_REG_SIZE) 4819 continue; 4820 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4821 continue; 4822 if (!regsafe(&old->stack[spi].spilled_ptr, 4823 &cur->stack[spi].spilled_ptr, 4824 idmap)) 4825 /* when explored and current stack slot are both storing 4826 * spilled registers, check that stored pointers types 4827 * are the same as well. 4828 * Ex: explored safe path could have stored 4829 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4830 * but current path has stored: 4831 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4832 * such verifier states are not equivalent. 4833 * return false to continue verification of this path 4834 */ 4835 return false; 4836 } 4837 return true; 4838 } 4839 4840 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 4841 { 4842 if (old->acquired_refs != cur->acquired_refs) 4843 return false; 4844 return !memcmp(old->refs, cur->refs, 4845 sizeof(*old->refs) * old->acquired_refs); 4846 } 4847 4848 /* compare two verifier states 4849 * 4850 * all states stored in state_list are known to be valid, since 4851 * verifier reached 'bpf_exit' instruction through them 4852 * 4853 * this function is called when verifier exploring different branches of 4854 * execution popped from the state stack. If it sees an old state that has 4855 * more strict register state and more strict stack state then this execution 4856 * branch doesn't need to be explored further, since verifier already 4857 * concluded that more strict state leads to valid finish. 4858 * 4859 * Therefore two states are equivalent if register state is more conservative 4860 * and explored stack state is more conservative than the current one. 4861 * Example: 4862 * explored current 4863 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4864 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4865 * 4866 * In other words if current stack state (one being explored) has more 4867 * valid slots than old one that already passed validation, it means 4868 * the verifier can stop exploring and conclude that current state is valid too 4869 * 4870 * Similarly with registers. If explored state has register type as invalid 4871 * whereas register type in current state is meaningful, it means that 4872 * the current state will reach 'bpf_exit' instruction safely 4873 */ 4874 static bool func_states_equal(struct bpf_func_state *old, 4875 struct bpf_func_state *cur) 4876 { 4877 struct idpair *idmap; 4878 bool ret = false; 4879 int i; 4880 4881 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4882 /* If we failed to allocate the idmap, just say it's not safe */ 4883 if (!idmap) 4884 return false; 4885 4886 for (i = 0; i < MAX_BPF_REG; i++) { 4887 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4888 goto out_free; 4889 } 4890 4891 if (!stacksafe(old, cur, idmap)) 4892 goto out_free; 4893 4894 if (!refsafe(old, cur)) 4895 goto out_free; 4896 ret = true; 4897 out_free: 4898 kfree(idmap); 4899 return ret; 4900 } 4901 4902 static bool states_equal(struct bpf_verifier_env *env, 4903 struct bpf_verifier_state *old, 4904 struct bpf_verifier_state *cur) 4905 { 4906 int i; 4907 4908 if (old->curframe != cur->curframe) 4909 return false; 4910 4911 /* for states to be equal callsites have to be the same 4912 * and all frame states need to be equivalent 4913 */ 4914 for (i = 0; i <= old->curframe; i++) { 4915 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4916 return false; 4917 if (!func_states_equal(old->frame[i], cur->frame[i])) 4918 return false; 4919 } 4920 return true; 4921 } 4922 4923 /* A write screens off any subsequent reads; but write marks come from the 4924 * straight-line code between a state and its parent. When we arrive at an 4925 * equivalent state (jump target or such) we didn't arrive by the straight-line 4926 * code, so read marks in the state must propagate to the parent regardless 4927 * of the state's write marks. That's what 'parent == state->parent' comparison 4928 * in mark_reg_read() is for. 4929 */ 4930 static int propagate_liveness(struct bpf_verifier_env *env, 4931 const struct bpf_verifier_state *vstate, 4932 struct bpf_verifier_state *vparent) 4933 { 4934 int i, frame, err = 0; 4935 struct bpf_func_state *state, *parent; 4936 4937 if (vparent->curframe != vstate->curframe) { 4938 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4939 vparent->curframe, vstate->curframe); 4940 return -EFAULT; 4941 } 4942 /* Propagate read liveness of registers... */ 4943 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4944 /* We don't need to worry about FP liveness because it's read-only */ 4945 for (i = 0; i < BPF_REG_FP; i++) { 4946 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4947 continue; 4948 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4949 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 4950 &vparent->frame[vstate->curframe]->regs[i]); 4951 if (err) 4952 return err; 4953 } 4954 } 4955 4956 /* ... and stack slots */ 4957 for (frame = 0; frame <= vstate->curframe; frame++) { 4958 state = vstate->frame[frame]; 4959 parent = vparent->frame[frame]; 4960 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4961 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4962 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4963 continue; 4964 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4965 mark_reg_read(env, &state->stack[i].spilled_ptr, 4966 &parent->stack[i].spilled_ptr); 4967 } 4968 } 4969 return err; 4970 } 4971 4972 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4973 { 4974 struct bpf_verifier_state_list *new_sl; 4975 struct bpf_verifier_state_list *sl; 4976 struct bpf_verifier_state *cur = env->cur_state, *new; 4977 int i, j, err; 4978 4979 sl = env->explored_states[insn_idx]; 4980 if (!sl) 4981 /* this 'insn_idx' instruction wasn't marked, so we will not 4982 * be doing state search here 4983 */ 4984 return 0; 4985 4986 while (sl != STATE_LIST_MARK) { 4987 if (states_equal(env, &sl->state, cur)) { 4988 /* reached equivalent register/stack state, 4989 * prune the search. 4990 * Registers read by the continuation are read by us. 4991 * If we have any write marks in env->cur_state, they 4992 * will prevent corresponding reads in the continuation 4993 * from reaching our parent (an explored_state). Our 4994 * own state will get the read marks recorded, but 4995 * they'll be immediately forgotten as we're pruning 4996 * this state and will pop a new one. 4997 */ 4998 err = propagate_liveness(env, &sl->state, cur); 4999 if (err) 5000 return err; 5001 return 1; 5002 } 5003 sl = sl->next; 5004 } 5005 5006 /* there were no equivalent states, remember current one. 5007 * technically the current state is not proven to be safe yet, 5008 * but it will either reach outer most bpf_exit (which means it's safe) 5009 * or it will be rejected. Since there are no loops, we won't be 5010 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5011 * again on the way to bpf_exit 5012 */ 5013 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5014 if (!new_sl) 5015 return -ENOMEM; 5016 5017 /* add new state to the head of linked list */ 5018 new = &new_sl->state; 5019 err = copy_verifier_state(new, cur); 5020 if (err) { 5021 free_verifier_state(new, false); 5022 kfree(new_sl); 5023 return err; 5024 } 5025 new_sl->next = env->explored_states[insn_idx]; 5026 env->explored_states[insn_idx] = new_sl; 5027 /* connect new state to parentage chain */ 5028 for (i = 0; i < BPF_REG_FP; i++) 5029 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 5030 /* clear write marks in current state: the writes we did are not writes 5031 * our child did, so they don't screen off its reads from us. 5032 * (There are no read marks in current state, because reads always mark 5033 * their parent and current state never has children yet. Only 5034 * explored_states can get read marks.) 5035 */ 5036 for (i = 0; i < BPF_REG_FP; i++) 5037 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5038 5039 /* all stack frames are accessible from callee, clear them all */ 5040 for (j = 0; j <= cur->curframe; j++) { 5041 struct bpf_func_state *frame = cur->frame[j]; 5042 struct bpf_func_state *newframe = new->frame[j]; 5043 5044 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5045 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5046 frame->stack[i].spilled_ptr.parent = 5047 &newframe->stack[i].spilled_ptr; 5048 } 5049 } 5050 return 0; 5051 } 5052 5053 /* Return true if it's OK to have the same insn return a different type. */ 5054 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5055 { 5056 switch (type) { 5057 case PTR_TO_CTX: 5058 case PTR_TO_SOCKET: 5059 case PTR_TO_SOCKET_OR_NULL: 5060 return false; 5061 default: 5062 return true; 5063 } 5064 } 5065 5066 /* If an instruction was previously used with particular pointer types, then we 5067 * need to be careful to avoid cases such as the below, where it may be ok 5068 * for one branch accessing the pointer, but not ok for the other branch: 5069 * 5070 * R1 = sock_ptr 5071 * goto X; 5072 * ... 5073 * R1 = some_other_valid_ptr; 5074 * goto X; 5075 * ... 5076 * R2 = *(u32 *)(R1 + 0); 5077 */ 5078 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5079 { 5080 return src != prev && (!reg_type_mismatch_ok(src) || 5081 !reg_type_mismatch_ok(prev)); 5082 } 5083 5084 static int do_check(struct bpf_verifier_env *env) 5085 { 5086 struct bpf_verifier_state *state; 5087 struct bpf_insn *insns = env->prog->insnsi; 5088 struct bpf_reg_state *regs; 5089 int insn_cnt = env->prog->len, i; 5090 int insn_idx, prev_insn_idx = 0; 5091 int insn_processed = 0; 5092 bool do_print_state = false; 5093 5094 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5095 if (!state) 5096 return -ENOMEM; 5097 state->curframe = 0; 5098 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5099 if (!state->frame[0]) { 5100 kfree(state); 5101 return -ENOMEM; 5102 } 5103 env->cur_state = state; 5104 init_func_state(env, state->frame[0], 5105 BPF_MAIN_FUNC /* callsite */, 5106 0 /* frameno */, 5107 0 /* subprogno, zero == main subprog */); 5108 insn_idx = 0; 5109 for (;;) { 5110 struct bpf_insn *insn; 5111 u8 class; 5112 int err; 5113 5114 if (insn_idx >= insn_cnt) { 5115 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5116 insn_idx, insn_cnt); 5117 return -EFAULT; 5118 } 5119 5120 insn = &insns[insn_idx]; 5121 class = BPF_CLASS(insn->code); 5122 5123 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5124 verbose(env, 5125 "BPF program is too large. Processed %d insn\n", 5126 insn_processed); 5127 return -E2BIG; 5128 } 5129 5130 err = is_state_visited(env, insn_idx); 5131 if (err < 0) 5132 return err; 5133 if (err == 1) { 5134 /* found equivalent state, can prune the search */ 5135 if (env->log.level) { 5136 if (do_print_state) 5137 verbose(env, "\nfrom %d to %d: safe\n", 5138 prev_insn_idx, insn_idx); 5139 else 5140 verbose(env, "%d: safe\n", insn_idx); 5141 } 5142 goto process_bpf_exit; 5143 } 5144 5145 if (need_resched()) 5146 cond_resched(); 5147 5148 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5149 if (env->log.level > 1) 5150 verbose(env, "%d:", insn_idx); 5151 else 5152 verbose(env, "\nfrom %d to %d:", 5153 prev_insn_idx, insn_idx); 5154 print_verifier_state(env, state->frame[state->curframe]); 5155 do_print_state = false; 5156 } 5157 5158 if (env->log.level) { 5159 const struct bpf_insn_cbs cbs = { 5160 .cb_print = verbose, 5161 .private_data = env, 5162 }; 5163 5164 verbose(env, "%d: ", insn_idx); 5165 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5166 } 5167 5168 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5169 err = bpf_prog_offload_verify_insn(env, insn_idx, 5170 prev_insn_idx); 5171 if (err) 5172 return err; 5173 } 5174 5175 regs = cur_regs(env); 5176 env->insn_aux_data[insn_idx].seen = true; 5177 5178 if (class == BPF_ALU || class == BPF_ALU64) { 5179 err = check_alu_op(env, insn); 5180 if (err) 5181 return err; 5182 5183 } else if (class == BPF_LDX) { 5184 enum bpf_reg_type *prev_src_type, src_reg_type; 5185 5186 /* check for reserved fields is already done */ 5187 5188 /* check src operand */ 5189 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5190 if (err) 5191 return err; 5192 5193 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5194 if (err) 5195 return err; 5196 5197 src_reg_type = regs[insn->src_reg].type; 5198 5199 /* check that memory (src_reg + off) is readable, 5200 * the state of dst_reg will be updated by this func 5201 */ 5202 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5203 BPF_SIZE(insn->code), BPF_READ, 5204 insn->dst_reg, false); 5205 if (err) 5206 return err; 5207 5208 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5209 5210 if (*prev_src_type == NOT_INIT) { 5211 /* saw a valid insn 5212 * dst_reg = *(u32 *)(src_reg + off) 5213 * save type to validate intersecting paths 5214 */ 5215 *prev_src_type = src_reg_type; 5216 5217 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5218 /* ABuser program is trying to use the same insn 5219 * dst_reg = *(u32*) (src_reg + off) 5220 * with different pointer types: 5221 * src_reg == ctx in one branch and 5222 * src_reg == stack|map in some other branch. 5223 * Reject it. 5224 */ 5225 verbose(env, "same insn cannot be used with different pointers\n"); 5226 return -EINVAL; 5227 } 5228 5229 } else if (class == BPF_STX) { 5230 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5231 5232 if (BPF_MODE(insn->code) == BPF_XADD) { 5233 err = check_xadd(env, insn_idx, insn); 5234 if (err) 5235 return err; 5236 insn_idx++; 5237 continue; 5238 } 5239 5240 /* check src1 operand */ 5241 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5242 if (err) 5243 return err; 5244 /* check src2 operand */ 5245 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5246 if (err) 5247 return err; 5248 5249 dst_reg_type = regs[insn->dst_reg].type; 5250 5251 /* check that memory (dst_reg + off) is writeable */ 5252 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5253 BPF_SIZE(insn->code), BPF_WRITE, 5254 insn->src_reg, false); 5255 if (err) 5256 return err; 5257 5258 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5259 5260 if (*prev_dst_type == NOT_INIT) { 5261 *prev_dst_type = dst_reg_type; 5262 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5263 verbose(env, "same insn cannot be used with different pointers\n"); 5264 return -EINVAL; 5265 } 5266 5267 } else if (class == BPF_ST) { 5268 if (BPF_MODE(insn->code) != BPF_MEM || 5269 insn->src_reg != BPF_REG_0) { 5270 verbose(env, "BPF_ST uses reserved fields\n"); 5271 return -EINVAL; 5272 } 5273 /* check src operand */ 5274 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5275 if (err) 5276 return err; 5277 5278 if (is_ctx_reg(env, insn->dst_reg)) { 5279 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5280 insn->dst_reg, 5281 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5282 return -EACCES; 5283 } 5284 5285 /* check that memory (dst_reg + off) is writeable */ 5286 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5287 BPF_SIZE(insn->code), BPF_WRITE, 5288 -1, false); 5289 if (err) 5290 return err; 5291 5292 } else if (class == BPF_JMP) { 5293 u8 opcode = BPF_OP(insn->code); 5294 5295 if (opcode == BPF_CALL) { 5296 if (BPF_SRC(insn->code) != BPF_K || 5297 insn->off != 0 || 5298 (insn->src_reg != BPF_REG_0 && 5299 insn->src_reg != BPF_PSEUDO_CALL) || 5300 insn->dst_reg != BPF_REG_0) { 5301 verbose(env, "BPF_CALL uses reserved fields\n"); 5302 return -EINVAL; 5303 } 5304 5305 if (insn->src_reg == BPF_PSEUDO_CALL) 5306 err = check_func_call(env, insn, &insn_idx); 5307 else 5308 err = check_helper_call(env, insn->imm, insn_idx); 5309 if (err) 5310 return err; 5311 5312 } else if (opcode == BPF_JA) { 5313 if (BPF_SRC(insn->code) != BPF_K || 5314 insn->imm != 0 || 5315 insn->src_reg != BPF_REG_0 || 5316 insn->dst_reg != BPF_REG_0) { 5317 verbose(env, "BPF_JA uses reserved fields\n"); 5318 return -EINVAL; 5319 } 5320 5321 insn_idx += insn->off + 1; 5322 continue; 5323 5324 } else if (opcode == BPF_EXIT) { 5325 if (BPF_SRC(insn->code) != BPF_K || 5326 insn->imm != 0 || 5327 insn->src_reg != BPF_REG_0 || 5328 insn->dst_reg != BPF_REG_0) { 5329 verbose(env, "BPF_EXIT uses reserved fields\n"); 5330 return -EINVAL; 5331 } 5332 5333 if (state->curframe) { 5334 /* exit from nested function */ 5335 prev_insn_idx = insn_idx; 5336 err = prepare_func_exit(env, &insn_idx); 5337 if (err) 5338 return err; 5339 do_print_state = true; 5340 continue; 5341 } 5342 5343 err = check_reference_leak(env); 5344 if (err) 5345 return err; 5346 5347 /* eBPF calling convetion is such that R0 is used 5348 * to return the value from eBPF program. 5349 * Make sure that it's readable at this time 5350 * of bpf_exit, which means that program wrote 5351 * something into it earlier 5352 */ 5353 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5354 if (err) 5355 return err; 5356 5357 if (is_pointer_value(env, BPF_REG_0)) { 5358 verbose(env, "R0 leaks addr as return value\n"); 5359 return -EACCES; 5360 } 5361 5362 err = check_return_code(env); 5363 if (err) 5364 return err; 5365 process_bpf_exit: 5366 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5367 if (err < 0) { 5368 if (err != -ENOENT) 5369 return err; 5370 break; 5371 } else { 5372 do_print_state = true; 5373 continue; 5374 } 5375 } else { 5376 err = check_cond_jmp_op(env, insn, &insn_idx); 5377 if (err) 5378 return err; 5379 } 5380 } else if (class == BPF_LD) { 5381 u8 mode = BPF_MODE(insn->code); 5382 5383 if (mode == BPF_ABS || mode == BPF_IND) { 5384 err = check_ld_abs(env, insn); 5385 if (err) 5386 return err; 5387 5388 } else if (mode == BPF_IMM) { 5389 err = check_ld_imm(env, insn); 5390 if (err) 5391 return err; 5392 5393 insn_idx++; 5394 env->insn_aux_data[insn_idx].seen = true; 5395 } else { 5396 verbose(env, "invalid BPF_LD mode\n"); 5397 return -EINVAL; 5398 } 5399 } else { 5400 verbose(env, "unknown insn class %d\n", class); 5401 return -EINVAL; 5402 } 5403 5404 insn_idx++; 5405 } 5406 5407 verbose(env, "processed %d insns (limit %d), stack depth ", 5408 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5409 for (i = 0; i < env->subprog_cnt; i++) { 5410 u32 depth = env->subprog_info[i].stack_depth; 5411 5412 verbose(env, "%d", depth); 5413 if (i + 1 < env->subprog_cnt) 5414 verbose(env, "+"); 5415 } 5416 verbose(env, "\n"); 5417 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5418 return 0; 5419 } 5420 5421 static int check_map_prealloc(struct bpf_map *map) 5422 { 5423 return (map->map_type != BPF_MAP_TYPE_HASH && 5424 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5425 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5426 !(map->map_flags & BPF_F_NO_PREALLOC); 5427 } 5428 5429 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5430 struct bpf_map *map, 5431 struct bpf_prog *prog) 5432 5433 { 5434 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5435 * preallocated hash maps, since doing memory allocation 5436 * in overflow_handler can crash depending on where nmi got 5437 * triggered. 5438 */ 5439 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5440 if (!check_map_prealloc(map)) { 5441 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5442 return -EINVAL; 5443 } 5444 if (map->inner_map_meta && 5445 !check_map_prealloc(map->inner_map_meta)) { 5446 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5447 return -EINVAL; 5448 } 5449 } 5450 5451 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5452 !bpf_offload_prog_map_match(prog, map)) { 5453 verbose(env, "offload device mismatch between prog and map\n"); 5454 return -EINVAL; 5455 } 5456 5457 return 0; 5458 } 5459 5460 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 5461 { 5462 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 5463 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 5464 } 5465 5466 /* look for pseudo eBPF instructions that access map FDs and 5467 * replace them with actual map pointers 5468 */ 5469 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5470 { 5471 struct bpf_insn *insn = env->prog->insnsi; 5472 int insn_cnt = env->prog->len; 5473 int i, j, err; 5474 5475 err = bpf_prog_calc_tag(env->prog); 5476 if (err) 5477 return err; 5478 5479 for (i = 0; i < insn_cnt; i++, insn++) { 5480 if (BPF_CLASS(insn->code) == BPF_LDX && 5481 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5482 verbose(env, "BPF_LDX uses reserved fields\n"); 5483 return -EINVAL; 5484 } 5485 5486 if (BPF_CLASS(insn->code) == BPF_STX && 5487 ((BPF_MODE(insn->code) != BPF_MEM && 5488 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5489 verbose(env, "BPF_STX uses reserved fields\n"); 5490 return -EINVAL; 5491 } 5492 5493 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5494 struct bpf_map *map; 5495 struct fd f; 5496 5497 if (i == insn_cnt - 1 || insn[1].code != 0 || 5498 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5499 insn[1].off != 0) { 5500 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5501 return -EINVAL; 5502 } 5503 5504 if (insn->src_reg == 0) 5505 /* valid generic load 64-bit imm */ 5506 goto next_insn; 5507 5508 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5509 verbose(env, 5510 "unrecognized bpf_ld_imm64 insn\n"); 5511 return -EINVAL; 5512 } 5513 5514 f = fdget(insn->imm); 5515 map = __bpf_map_get(f); 5516 if (IS_ERR(map)) { 5517 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5518 insn->imm); 5519 return PTR_ERR(map); 5520 } 5521 5522 err = check_map_prog_compatibility(env, map, env->prog); 5523 if (err) { 5524 fdput(f); 5525 return err; 5526 } 5527 5528 /* store map pointer inside BPF_LD_IMM64 instruction */ 5529 insn[0].imm = (u32) (unsigned long) map; 5530 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5531 5532 /* check whether we recorded this map already */ 5533 for (j = 0; j < env->used_map_cnt; j++) 5534 if (env->used_maps[j] == map) { 5535 fdput(f); 5536 goto next_insn; 5537 } 5538 5539 if (env->used_map_cnt >= MAX_USED_MAPS) { 5540 fdput(f); 5541 return -E2BIG; 5542 } 5543 5544 /* hold the map. If the program is rejected by verifier, 5545 * the map will be released by release_maps() or it 5546 * will be used by the valid program until it's unloaded 5547 * and all maps are released in free_used_maps() 5548 */ 5549 map = bpf_map_inc(map, false); 5550 if (IS_ERR(map)) { 5551 fdput(f); 5552 return PTR_ERR(map); 5553 } 5554 env->used_maps[env->used_map_cnt++] = map; 5555 5556 if (bpf_map_is_cgroup_storage(map) && 5557 bpf_cgroup_storage_assign(env->prog, map)) { 5558 verbose(env, "only one cgroup storage of each type is allowed\n"); 5559 fdput(f); 5560 return -EBUSY; 5561 } 5562 5563 fdput(f); 5564 next_insn: 5565 insn++; 5566 i++; 5567 continue; 5568 } 5569 5570 /* Basic sanity check before we invest more work here. */ 5571 if (!bpf_opcode_in_insntable(insn->code)) { 5572 verbose(env, "unknown opcode %02x\n", insn->code); 5573 return -EINVAL; 5574 } 5575 } 5576 5577 /* now all pseudo BPF_LD_IMM64 instructions load valid 5578 * 'struct bpf_map *' into a register instead of user map_fd. 5579 * These pointers will be used later by verifier to validate map access. 5580 */ 5581 return 0; 5582 } 5583 5584 /* drop refcnt of maps used by the rejected program */ 5585 static void release_maps(struct bpf_verifier_env *env) 5586 { 5587 enum bpf_cgroup_storage_type stype; 5588 int i; 5589 5590 for_each_cgroup_storage_type(stype) { 5591 if (!env->prog->aux->cgroup_storage[stype]) 5592 continue; 5593 bpf_cgroup_storage_release(env->prog, 5594 env->prog->aux->cgroup_storage[stype]); 5595 } 5596 5597 for (i = 0; i < env->used_map_cnt; i++) 5598 bpf_map_put(env->used_maps[i]); 5599 } 5600 5601 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5602 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5603 { 5604 struct bpf_insn *insn = env->prog->insnsi; 5605 int insn_cnt = env->prog->len; 5606 int i; 5607 5608 for (i = 0; i < insn_cnt; i++, insn++) 5609 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5610 insn->src_reg = 0; 5611 } 5612 5613 /* single env->prog->insni[off] instruction was replaced with the range 5614 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5615 * [0, off) and [off, end) to new locations, so the patched range stays zero 5616 */ 5617 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5618 u32 off, u32 cnt) 5619 { 5620 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5621 int i; 5622 5623 if (cnt == 1) 5624 return 0; 5625 new_data = vzalloc(array_size(prog_len, 5626 sizeof(struct bpf_insn_aux_data))); 5627 if (!new_data) 5628 return -ENOMEM; 5629 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5630 memcpy(new_data + off + cnt - 1, old_data + off, 5631 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5632 for (i = off; i < off + cnt - 1; i++) 5633 new_data[i].seen = true; 5634 env->insn_aux_data = new_data; 5635 vfree(old_data); 5636 return 0; 5637 } 5638 5639 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5640 { 5641 int i; 5642 5643 if (len == 1) 5644 return; 5645 /* NOTE: fake 'exit' subprog should be updated as well. */ 5646 for (i = 0; i <= env->subprog_cnt; i++) { 5647 if (env->subprog_info[i].start < off) 5648 continue; 5649 env->subprog_info[i].start += len - 1; 5650 } 5651 } 5652 5653 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5654 const struct bpf_insn *patch, u32 len) 5655 { 5656 struct bpf_prog *new_prog; 5657 5658 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5659 if (!new_prog) 5660 return NULL; 5661 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5662 return NULL; 5663 adjust_subprog_starts(env, off, len); 5664 return new_prog; 5665 } 5666 5667 /* The verifier does more data flow analysis than llvm and will not 5668 * explore branches that are dead at run time. Malicious programs can 5669 * have dead code too. Therefore replace all dead at-run-time code 5670 * with 'ja -1'. 5671 * 5672 * Just nops are not optimal, e.g. if they would sit at the end of the 5673 * program and through another bug we would manage to jump there, then 5674 * we'd execute beyond program memory otherwise. Returning exception 5675 * code also wouldn't work since we can have subprogs where the dead 5676 * code could be located. 5677 */ 5678 static void sanitize_dead_code(struct bpf_verifier_env *env) 5679 { 5680 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5681 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5682 struct bpf_insn *insn = env->prog->insnsi; 5683 const int insn_cnt = env->prog->len; 5684 int i; 5685 5686 for (i = 0; i < insn_cnt; i++) { 5687 if (aux_data[i].seen) 5688 continue; 5689 memcpy(insn + i, &trap, sizeof(trap)); 5690 } 5691 } 5692 5693 /* convert load instructions that access fields of a context type into a 5694 * sequence of instructions that access fields of the underlying structure: 5695 * struct __sk_buff -> struct sk_buff 5696 * struct bpf_sock_ops -> struct sock 5697 */ 5698 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5699 { 5700 const struct bpf_verifier_ops *ops = env->ops; 5701 int i, cnt, size, ctx_field_size, delta = 0; 5702 const int insn_cnt = env->prog->len; 5703 struct bpf_insn insn_buf[16], *insn; 5704 struct bpf_prog *new_prog; 5705 enum bpf_access_type type; 5706 bool is_narrower_load; 5707 u32 target_size; 5708 5709 if (ops->gen_prologue) { 5710 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5711 env->prog); 5712 if (cnt >= ARRAY_SIZE(insn_buf)) { 5713 verbose(env, "bpf verifier is misconfigured\n"); 5714 return -EINVAL; 5715 } else if (cnt) { 5716 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5717 if (!new_prog) 5718 return -ENOMEM; 5719 5720 env->prog = new_prog; 5721 delta += cnt - 1; 5722 } 5723 } 5724 5725 if (bpf_prog_is_dev_bound(env->prog->aux)) 5726 return 0; 5727 5728 insn = env->prog->insnsi + delta; 5729 5730 for (i = 0; i < insn_cnt; i++, insn++) { 5731 bpf_convert_ctx_access_t convert_ctx_access; 5732 5733 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5734 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5735 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5736 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5737 type = BPF_READ; 5738 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5739 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5740 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5741 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5742 type = BPF_WRITE; 5743 else 5744 continue; 5745 5746 if (type == BPF_WRITE && 5747 env->insn_aux_data[i + delta].sanitize_stack_off) { 5748 struct bpf_insn patch[] = { 5749 /* Sanitize suspicious stack slot with zero. 5750 * There are no memory dependencies for this store, 5751 * since it's only using frame pointer and immediate 5752 * constant of zero 5753 */ 5754 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5755 env->insn_aux_data[i + delta].sanitize_stack_off, 5756 0), 5757 /* the original STX instruction will immediately 5758 * overwrite the same stack slot with appropriate value 5759 */ 5760 *insn, 5761 }; 5762 5763 cnt = ARRAY_SIZE(patch); 5764 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5765 if (!new_prog) 5766 return -ENOMEM; 5767 5768 delta += cnt - 1; 5769 env->prog = new_prog; 5770 insn = new_prog->insnsi + i + delta; 5771 continue; 5772 } 5773 5774 switch (env->insn_aux_data[i + delta].ptr_type) { 5775 case PTR_TO_CTX: 5776 if (!ops->convert_ctx_access) 5777 continue; 5778 convert_ctx_access = ops->convert_ctx_access; 5779 break; 5780 case PTR_TO_SOCKET: 5781 convert_ctx_access = bpf_sock_convert_ctx_access; 5782 break; 5783 default: 5784 continue; 5785 } 5786 5787 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5788 size = BPF_LDST_BYTES(insn); 5789 5790 /* If the read access is a narrower load of the field, 5791 * convert to a 4/8-byte load, to minimum program type specific 5792 * convert_ctx_access changes. If conversion is successful, 5793 * we will apply proper mask to the result. 5794 */ 5795 is_narrower_load = size < ctx_field_size; 5796 if (is_narrower_load) { 5797 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5798 u32 off = insn->off; 5799 u8 size_code; 5800 5801 if (type == BPF_WRITE) { 5802 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5803 return -EINVAL; 5804 } 5805 5806 size_code = BPF_H; 5807 if (ctx_field_size == 4) 5808 size_code = BPF_W; 5809 else if (ctx_field_size == 8) 5810 size_code = BPF_DW; 5811 5812 insn->off = off & ~(size_default - 1); 5813 insn->code = BPF_LDX | BPF_MEM | size_code; 5814 } 5815 5816 target_size = 0; 5817 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 5818 &target_size); 5819 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5820 (ctx_field_size && !target_size)) { 5821 verbose(env, "bpf verifier is misconfigured\n"); 5822 return -EINVAL; 5823 } 5824 5825 if (is_narrower_load && size < target_size) { 5826 if (ctx_field_size <= 4) 5827 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5828 (1 << size * 8) - 1); 5829 else 5830 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5831 (1 << size * 8) - 1); 5832 } 5833 5834 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5835 if (!new_prog) 5836 return -ENOMEM; 5837 5838 delta += cnt - 1; 5839 5840 /* keep walking new program and skip insns we just inserted */ 5841 env->prog = new_prog; 5842 insn = new_prog->insnsi + i + delta; 5843 } 5844 5845 return 0; 5846 } 5847 5848 static int jit_subprogs(struct bpf_verifier_env *env) 5849 { 5850 struct bpf_prog *prog = env->prog, **func, *tmp; 5851 int i, j, subprog_start, subprog_end = 0, len, subprog; 5852 struct bpf_insn *insn; 5853 void *old_bpf_func; 5854 int err = -ENOMEM; 5855 5856 if (env->subprog_cnt <= 1) 5857 return 0; 5858 5859 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5860 if (insn->code != (BPF_JMP | BPF_CALL) || 5861 insn->src_reg != BPF_PSEUDO_CALL) 5862 continue; 5863 /* Upon error here we cannot fall back to interpreter but 5864 * need a hard reject of the program. Thus -EFAULT is 5865 * propagated in any case. 5866 */ 5867 subprog = find_subprog(env, i + insn->imm + 1); 5868 if (subprog < 0) { 5869 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5870 i + insn->imm + 1); 5871 return -EFAULT; 5872 } 5873 /* temporarily remember subprog id inside insn instead of 5874 * aux_data, since next loop will split up all insns into funcs 5875 */ 5876 insn->off = subprog; 5877 /* remember original imm in case JIT fails and fallback 5878 * to interpreter will be needed 5879 */ 5880 env->insn_aux_data[i].call_imm = insn->imm; 5881 /* point imm to __bpf_call_base+1 from JITs point of view */ 5882 insn->imm = 1; 5883 } 5884 5885 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5886 if (!func) 5887 goto out_undo_insn; 5888 5889 for (i = 0; i < env->subprog_cnt; i++) { 5890 subprog_start = subprog_end; 5891 subprog_end = env->subprog_info[i + 1].start; 5892 5893 len = subprog_end - subprog_start; 5894 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5895 if (!func[i]) 5896 goto out_free; 5897 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5898 len * sizeof(struct bpf_insn)); 5899 func[i]->type = prog->type; 5900 func[i]->len = len; 5901 if (bpf_prog_calc_tag(func[i])) 5902 goto out_free; 5903 func[i]->is_func = 1; 5904 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5905 * Long term would need debug info to populate names 5906 */ 5907 func[i]->aux->name[0] = 'F'; 5908 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5909 func[i]->jit_requested = 1; 5910 func[i] = bpf_int_jit_compile(func[i]); 5911 if (!func[i]->jited) { 5912 err = -ENOTSUPP; 5913 goto out_free; 5914 } 5915 cond_resched(); 5916 } 5917 /* at this point all bpf functions were successfully JITed 5918 * now populate all bpf_calls with correct addresses and 5919 * run last pass of JIT 5920 */ 5921 for (i = 0; i < env->subprog_cnt; i++) { 5922 insn = func[i]->insnsi; 5923 for (j = 0; j < func[i]->len; j++, insn++) { 5924 if (insn->code != (BPF_JMP | BPF_CALL) || 5925 insn->src_reg != BPF_PSEUDO_CALL) 5926 continue; 5927 subprog = insn->off; 5928 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5929 func[subprog]->bpf_func - 5930 __bpf_call_base; 5931 } 5932 5933 /* we use the aux data to keep a list of the start addresses 5934 * of the JITed images for each function in the program 5935 * 5936 * for some architectures, such as powerpc64, the imm field 5937 * might not be large enough to hold the offset of the start 5938 * address of the callee's JITed image from __bpf_call_base 5939 * 5940 * in such cases, we can lookup the start address of a callee 5941 * by using its subprog id, available from the off field of 5942 * the call instruction, as an index for this list 5943 */ 5944 func[i]->aux->func = func; 5945 func[i]->aux->func_cnt = env->subprog_cnt; 5946 } 5947 for (i = 0; i < env->subprog_cnt; i++) { 5948 old_bpf_func = func[i]->bpf_func; 5949 tmp = bpf_int_jit_compile(func[i]); 5950 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5951 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5952 err = -ENOTSUPP; 5953 goto out_free; 5954 } 5955 cond_resched(); 5956 } 5957 5958 /* finally lock prog and jit images for all functions and 5959 * populate kallsysm 5960 */ 5961 for (i = 0; i < env->subprog_cnt; i++) { 5962 bpf_prog_lock_ro(func[i]); 5963 bpf_prog_kallsyms_add(func[i]); 5964 } 5965 5966 /* Last step: make now unused interpreter insns from main 5967 * prog consistent for later dump requests, so they can 5968 * later look the same as if they were interpreted only. 5969 */ 5970 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5971 if (insn->code != (BPF_JMP | BPF_CALL) || 5972 insn->src_reg != BPF_PSEUDO_CALL) 5973 continue; 5974 insn->off = env->insn_aux_data[i].call_imm; 5975 subprog = find_subprog(env, i + insn->off + 1); 5976 insn->imm = subprog; 5977 } 5978 5979 prog->jited = 1; 5980 prog->bpf_func = func[0]->bpf_func; 5981 prog->aux->func = func; 5982 prog->aux->func_cnt = env->subprog_cnt; 5983 return 0; 5984 out_free: 5985 for (i = 0; i < env->subprog_cnt; i++) 5986 if (func[i]) 5987 bpf_jit_free(func[i]); 5988 kfree(func); 5989 out_undo_insn: 5990 /* cleanup main prog to be interpreted */ 5991 prog->jit_requested = 0; 5992 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5993 if (insn->code != (BPF_JMP | BPF_CALL) || 5994 insn->src_reg != BPF_PSEUDO_CALL) 5995 continue; 5996 insn->off = 0; 5997 insn->imm = env->insn_aux_data[i].call_imm; 5998 } 5999 return err; 6000 } 6001 6002 static int fixup_call_args(struct bpf_verifier_env *env) 6003 { 6004 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6005 struct bpf_prog *prog = env->prog; 6006 struct bpf_insn *insn = prog->insnsi; 6007 int i, depth; 6008 #endif 6009 int err = 0; 6010 6011 if (env->prog->jit_requested && 6012 !bpf_prog_is_dev_bound(env->prog->aux)) { 6013 err = jit_subprogs(env); 6014 if (err == 0) 6015 return 0; 6016 if (err == -EFAULT) 6017 return err; 6018 } 6019 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6020 for (i = 0; i < prog->len; i++, insn++) { 6021 if (insn->code != (BPF_JMP | BPF_CALL) || 6022 insn->src_reg != BPF_PSEUDO_CALL) 6023 continue; 6024 depth = get_callee_stack_depth(env, insn, i); 6025 if (depth < 0) 6026 return depth; 6027 bpf_patch_call_args(insn, depth); 6028 } 6029 err = 0; 6030 #endif 6031 return err; 6032 } 6033 6034 /* fixup insn->imm field of bpf_call instructions 6035 * and inline eligible helpers as explicit sequence of BPF instructions 6036 * 6037 * this function is called after eBPF program passed verification 6038 */ 6039 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6040 { 6041 struct bpf_prog *prog = env->prog; 6042 struct bpf_insn *insn = prog->insnsi; 6043 const struct bpf_func_proto *fn; 6044 const int insn_cnt = prog->len; 6045 const struct bpf_map_ops *ops; 6046 struct bpf_insn_aux_data *aux; 6047 struct bpf_insn insn_buf[16]; 6048 struct bpf_prog *new_prog; 6049 struct bpf_map *map_ptr; 6050 int i, cnt, delta = 0; 6051 6052 for (i = 0; i < insn_cnt; i++, insn++) { 6053 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6054 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6055 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6056 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6057 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6058 struct bpf_insn mask_and_div[] = { 6059 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6060 /* Rx div 0 -> 0 */ 6061 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6062 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6063 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6064 *insn, 6065 }; 6066 struct bpf_insn mask_and_mod[] = { 6067 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6068 /* Rx mod 0 -> Rx */ 6069 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6070 *insn, 6071 }; 6072 struct bpf_insn *patchlet; 6073 6074 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6075 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6076 patchlet = mask_and_div + (is64 ? 1 : 0); 6077 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6078 } else { 6079 patchlet = mask_and_mod + (is64 ? 1 : 0); 6080 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6081 } 6082 6083 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6084 if (!new_prog) 6085 return -ENOMEM; 6086 6087 delta += cnt - 1; 6088 env->prog = prog = new_prog; 6089 insn = new_prog->insnsi + i + delta; 6090 continue; 6091 } 6092 6093 if (BPF_CLASS(insn->code) == BPF_LD && 6094 (BPF_MODE(insn->code) == BPF_ABS || 6095 BPF_MODE(insn->code) == BPF_IND)) { 6096 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6097 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6098 verbose(env, "bpf verifier is misconfigured\n"); 6099 return -EINVAL; 6100 } 6101 6102 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6103 if (!new_prog) 6104 return -ENOMEM; 6105 6106 delta += cnt - 1; 6107 env->prog = prog = new_prog; 6108 insn = new_prog->insnsi + i + delta; 6109 continue; 6110 } 6111 6112 if (insn->code != (BPF_JMP | BPF_CALL)) 6113 continue; 6114 if (insn->src_reg == BPF_PSEUDO_CALL) 6115 continue; 6116 6117 if (insn->imm == BPF_FUNC_get_route_realm) 6118 prog->dst_needed = 1; 6119 if (insn->imm == BPF_FUNC_get_prandom_u32) 6120 bpf_user_rnd_init_once(); 6121 if (insn->imm == BPF_FUNC_override_return) 6122 prog->kprobe_override = 1; 6123 if (insn->imm == BPF_FUNC_tail_call) { 6124 /* If we tail call into other programs, we 6125 * cannot make any assumptions since they can 6126 * be replaced dynamically during runtime in 6127 * the program array. 6128 */ 6129 prog->cb_access = 1; 6130 env->prog->aux->stack_depth = MAX_BPF_STACK; 6131 6132 /* mark bpf_tail_call as different opcode to avoid 6133 * conditional branch in the interpeter for every normal 6134 * call and to prevent accidental JITing by JIT compiler 6135 * that doesn't support bpf_tail_call yet 6136 */ 6137 insn->imm = 0; 6138 insn->code = BPF_JMP | BPF_TAIL_CALL; 6139 6140 aux = &env->insn_aux_data[i + delta]; 6141 if (!bpf_map_ptr_unpriv(aux)) 6142 continue; 6143 6144 /* instead of changing every JIT dealing with tail_call 6145 * emit two extra insns: 6146 * if (index >= max_entries) goto out; 6147 * index &= array->index_mask; 6148 * to avoid out-of-bounds cpu speculation 6149 */ 6150 if (bpf_map_ptr_poisoned(aux)) { 6151 verbose(env, "tail_call abusing map_ptr\n"); 6152 return -EINVAL; 6153 } 6154 6155 map_ptr = BPF_MAP_PTR(aux->map_state); 6156 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6157 map_ptr->max_entries, 2); 6158 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6159 container_of(map_ptr, 6160 struct bpf_array, 6161 map)->index_mask); 6162 insn_buf[2] = *insn; 6163 cnt = 3; 6164 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6165 if (!new_prog) 6166 return -ENOMEM; 6167 6168 delta += cnt - 1; 6169 env->prog = prog = new_prog; 6170 insn = new_prog->insnsi + i + delta; 6171 continue; 6172 } 6173 6174 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6175 * and other inlining handlers are currently limited to 64 bit 6176 * only. 6177 */ 6178 if (prog->jit_requested && BITS_PER_LONG == 64 && 6179 (insn->imm == BPF_FUNC_map_lookup_elem || 6180 insn->imm == BPF_FUNC_map_update_elem || 6181 insn->imm == BPF_FUNC_map_delete_elem || 6182 insn->imm == BPF_FUNC_map_push_elem || 6183 insn->imm == BPF_FUNC_map_pop_elem || 6184 insn->imm == BPF_FUNC_map_peek_elem)) { 6185 aux = &env->insn_aux_data[i + delta]; 6186 if (bpf_map_ptr_poisoned(aux)) 6187 goto patch_call_imm; 6188 6189 map_ptr = BPF_MAP_PTR(aux->map_state); 6190 ops = map_ptr->ops; 6191 if (insn->imm == BPF_FUNC_map_lookup_elem && 6192 ops->map_gen_lookup) { 6193 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6194 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6195 verbose(env, "bpf verifier is misconfigured\n"); 6196 return -EINVAL; 6197 } 6198 6199 new_prog = bpf_patch_insn_data(env, i + delta, 6200 insn_buf, cnt); 6201 if (!new_prog) 6202 return -ENOMEM; 6203 6204 delta += cnt - 1; 6205 env->prog = prog = new_prog; 6206 insn = new_prog->insnsi + i + delta; 6207 continue; 6208 } 6209 6210 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6211 (void *(*)(struct bpf_map *map, void *key))NULL)); 6212 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6213 (int (*)(struct bpf_map *map, void *key))NULL)); 6214 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6215 (int (*)(struct bpf_map *map, void *key, void *value, 6216 u64 flags))NULL)); 6217 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6218 (int (*)(struct bpf_map *map, void *value, 6219 u64 flags))NULL)); 6220 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6221 (int (*)(struct bpf_map *map, void *value))NULL)); 6222 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6223 (int (*)(struct bpf_map *map, void *value))NULL)); 6224 6225 switch (insn->imm) { 6226 case BPF_FUNC_map_lookup_elem: 6227 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6228 __bpf_call_base; 6229 continue; 6230 case BPF_FUNC_map_update_elem: 6231 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6232 __bpf_call_base; 6233 continue; 6234 case BPF_FUNC_map_delete_elem: 6235 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6236 __bpf_call_base; 6237 continue; 6238 case BPF_FUNC_map_push_elem: 6239 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6240 __bpf_call_base; 6241 continue; 6242 case BPF_FUNC_map_pop_elem: 6243 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6244 __bpf_call_base; 6245 continue; 6246 case BPF_FUNC_map_peek_elem: 6247 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6248 __bpf_call_base; 6249 continue; 6250 } 6251 6252 goto patch_call_imm; 6253 } 6254 6255 patch_call_imm: 6256 fn = env->ops->get_func_proto(insn->imm, env->prog); 6257 /* all functions that have prototype and verifier allowed 6258 * programs to call them, must be real in-kernel functions 6259 */ 6260 if (!fn->func) { 6261 verbose(env, 6262 "kernel subsystem misconfigured func %s#%d\n", 6263 func_id_name(insn->imm), insn->imm); 6264 return -EFAULT; 6265 } 6266 insn->imm = fn->func - __bpf_call_base; 6267 } 6268 6269 return 0; 6270 } 6271 6272 static void free_states(struct bpf_verifier_env *env) 6273 { 6274 struct bpf_verifier_state_list *sl, *sln; 6275 int i; 6276 6277 if (!env->explored_states) 6278 return; 6279 6280 for (i = 0; i < env->prog->len; i++) { 6281 sl = env->explored_states[i]; 6282 6283 if (sl) 6284 while (sl != STATE_LIST_MARK) { 6285 sln = sl->next; 6286 free_verifier_state(&sl->state, false); 6287 kfree(sl); 6288 sl = sln; 6289 } 6290 } 6291 6292 kfree(env->explored_states); 6293 } 6294 6295 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 6296 { 6297 struct bpf_verifier_env *env; 6298 struct bpf_verifier_log *log; 6299 int ret = -EINVAL; 6300 6301 /* no program is valid */ 6302 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6303 return -EINVAL; 6304 6305 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6306 * allocate/free it every time bpf_check() is called 6307 */ 6308 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6309 if (!env) 6310 return -ENOMEM; 6311 log = &env->log; 6312 6313 env->insn_aux_data = 6314 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6315 (*prog)->len)); 6316 ret = -ENOMEM; 6317 if (!env->insn_aux_data) 6318 goto err_free_env; 6319 env->prog = *prog; 6320 env->ops = bpf_verifier_ops[env->prog->type]; 6321 6322 /* grab the mutex to protect few globals used by verifier */ 6323 mutex_lock(&bpf_verifier_lock); 6324 6325 if (attr->log_level || attr->log_buf || attr->log_size) { 6326 /* user requested verbose verifier output 6327 * and supplied buffer to store the verification trace 6328 */ 6329 log->level = attr->log_level; 6330 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6331 log->len_total = attr->log_size; 6332 6333 ret = -EINVAL; 6334 /* log attributes have to be sane */ 6335 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6336 !log->level || !log->ubuf) 6337 goto err_unlock; 6338 } 6339 6340 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6341 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6342 env->strict_alignment = true; 6343 6344 ret = replace_map_fd_with_map_ptr(env); 6345 if (ret < 0) 6346 goto skip_full_check; 6347 6348 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6349 ret = bpf_prog_offload_verifier_prep(env); 6350 if (ret) 6351 goto skip_full_check; 6352 } 6353 6354 env->explored_states = kcalloc(env->prog->len, 6355 sizeof(struct bpf_verifier_state_list *), 6356 GFP_USER); 6357 ret = -ENOMEM; 6358 if (!env->explored_states) 6359 goto skip_full_check; 6360 6361 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6362 6363 ret = check_cfg(env); 6364 if (ret < 0) 6365 goto skip_full_check; 6366 6367 ret = do_check(env); 6368 if (env->cur_state) { 6369 free_verifier_state(env->cur_state, true); 6370 env->cur_state = NULL; 6371 } 6372 6373 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6374 ret = bpf_prog_offload_finalize(env); 6375 6376 skip_full_check: 6377 while (!pop_stack(env, NULL, NULL)); 6378 free_states(env); 6379 6380 if (ret == 0) 6381 sanitize_dead_code(env); 6382 6383 if (ret == 0) 6384 ret = check_max_stack_depth(env); 6385 6386 if (ret == 0) 6387 /* program is valid, convert *(u32*)(ctx + off) accesses */ 6388 ret = convert_ctx_accesses(env); 6389 6390 if (ret == 0) 6391 ret = fixup_bpf_calls(env); 6392 6393 if (ret == 0) 6394 ret = fixup_call_args(env); 6395 6396 if (log->level && bpf_verifier_log_full(log)) 6397 ret = -ENOSPC; 6398 if (log->level && !log->ubuf) { 6399 ret = -EFAULT; 6400 goto err_release_maps; 6401 } 6402 6403 if (ret == 0 && env->used_map_cnt) { 6404 /* if program passed verifier, update used_maps in bpf_prog_info */ 6405 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6406 sizeof(env->used_maps[0]), 6407 GFP_KERNEL); 6408 6409 if (!env->prog->aux->used_maps) { 6410 ret = -ENOMEM; 6411 goto err_release_maps; 6412 } 6413 6414 memcpy(env->prog->aux->used_maps, env->used_maps, 6415 sizeof(env->used_maps[0]) * env->used_map_cnt); 6416 env->prog->aux->used_map_cnt = env->used_map_cnt; 6417 6418 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6419 * bpf_ld_imm64 instructions 6420 */ 6421 convert_pseudo_ld_imm64(env); 6422 } 6423 6424 err_release_maps: 6425 if (!env->prog->aux->used_maps) 6426 /* if we didn't copy map pointers into bpf_prog_info, release 6427 * them now. Otherwise free_used_maps() will release them. 6428 */ 6429 release_maps(env); 6430 *prog = env->prog; 6431 err_unlock: 6432 mutex_unlock(&bpf_verifier_lock); 6433 vfree(env->insn_aux_data); 6434 err_free_env: 6435 kfree(env); 6436 return ret; 6437 } 6438