1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_UNPRIV 1UL 161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 162 POISON_POINTER_DELTA)) 163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 164 165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 166 { 167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 168 } 169 170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 171 { 172 return aux->map_state & BPF_MAP_PTR_UNPRIV; 173 } 174 175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 176 const struct bpf_map *map, bool unpriv) 177 { 178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 179 unpriv |= bpf_map_ptr_unpriv(aux); 180 aux->map_state = (unsigned long)map | 181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 182 } 183 184 struct bpf_call_arg_meta { 185 struct bpf_map *map_ptr; 186 bool raw_mode; 187 bool pkt_access; 188 int regno; 189 int access_size; 190 s64 msize_smax_value; 191 u64 msize_umax_value; 192 }; 193 194 static DEFINE_MUTEX(bpf_verifier_lock); 195 196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 197 va_list args) 198 { 199 unsigned int n; 200 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 202 203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 204 "verifier log line truncated - local buffer too short\n"); 205 206 n = min(log->len_total - log->len_used - 1, n); 207 log->kbuf[n] = '\0'; 208 209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 210 log->len_used += n; 211 else 212 log->ubuf = NULL; 213 } 214 215 /* log_level controls verbosity level of eBPF verifier. 216 * bpf_verifier_log_write() is used to dump the verification trace to the log, 217 * so the user can figure out what's wrong with the program 218 */ 219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 220 const char *fmt, ...) 221 { 222 va_list args; 223 224 if (!bpf_verifier_log_needed(&env->log)) 225 return; 226 227 va_start(args, fmt); 228 bpf_verifier_vlog(&env->log, fmt, args); 229 va_end(args); 230 } 231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 232 233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 234 { 235 struct bpf_verifier_env *env = private_data; 236 va_list args; 237 238 if (!bpf_verifier_log_needed(&env->log)) 239 return; 240 241 va_start(args, fmt); 242 bpf_verifier_vlog(&env->log, fmt, args); 243 va_end(args); 244 } 245 246 static bool type_is_pkt_pointer(enum bpf_reg_type type) 247 { 248 return type == PTR_TO_PACKET || 249 type == PTR_TO_PACKET_META; 250 } 251 252 /* string representation of 'enum bpf_reg_type' */ 253 static const char * const reg_type_str[] = { 254 [NOT_INIT] = "?", 255 [SCALAR_VALUE] = "inv", 256 [PTR_TO_CTX] = "ctx", 257 [CONST_PTR_TO_MAP] = "map_ptr", 258 [PTR_TO_MAP_VALUE] = "map_value", 259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 260 [PTR_TO_STACK] = "fp", 261 [PTR_TO_PACKET] = "pkt", 262 [PTR_TO_PACKET_META] = "pkt_meta", 263 [PTR_TO_PACKET_END] = "pkt_end", 264 }; 265 266 static char slot_type_char[] = { 267 [STACK_INVALID] = '?', 268 [STACK_SPILL] = 'r', 269 [STACK_MISC] = 'm', 270 [STACK_ZERO] = '0', 271 }; 272 273 static void print_liveness(struct bpf_verifier_env *env, 274 enum bpf_reg_liveness live) 275 { 276 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 277 verbose(env, "_"); 278 if (live & REG_LIVE_READ) 279 verbose(env, "r"); 280 if (live & REG_LIVE_WRITTEN) 281 verbose(env, "w"); 282 } 283 284 static struct bpf_func_state *func(struct bpf_verifier_env *env, 285 const struct bpf_reg_state *reg) 286 { 287 struct bpf_verifier_state *cur = env->cur_state; 288 289 return cur->frame[reg->frameno]; 290 } 291 292 static void print_verifier_state(struct bpf_verifier_env *env, 293 const struct bpf_func_state *state) 294 { 295 const struct bpf_reg_state *reg; 296 enum bpf_reg_type t; 297 int i; 298 299 if (state->frameno) 300 verbose(env, " frame%d:", state->frameno); 301 for (i = 0; i < MAX_BPF_REG; i++) { 302 reg = &state->regs[i]; 303 t = reg->type; 304 if (t == NOT_INIT) 305 continue; 306 verbose(env, " R%d", i); 307 print_liveness(env, reg->live); 308 verbose(env, "=%s", reg_type_str[t]); 309 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 310 tnum_is_const(reg->var_off)) { 311 /* reg->off should be 0 for SCALAR_VALUE */ 312 verbose(env, "%lld", reg->var_off.value + reg->off); 313 if (t == PTR_TO_STACK) 314 verbose(env, ",call_%d", func(env, reg)->callsite); 315 } else { 316 verbose(env, "(id=%d", reg->id); 317 if (t != SCALAR_VALUE) 318 verbose(env, ",off=%d", reg->off); 319 if (type_is_pkt_pointer(t)) 320 verbose(env, ",r=%d", reg->range); 321 else if (t == CONST_PTR_TO_MAP || 322 t == PTR_TO_MAP_VALUE || 323 t == PTR_TO_MAP_VALUE_OR_NULL) 324 verbose(env, ",ks=%d,vs=%d", 325 reg->map_ptr->key_size, 326 reg->map_ptr->value_size); 327 if (tnum_is_const(reg->var_off)) { 328 /* Typically an immediate SCALAR_VALUE, but 329 * could be a pointer whose offset is too big 330 * for reg->off 331 */ 332 verbose(env, ",imm=%llx", reg->var_off.value); 333 } else { 334 if (reg->smin_value != reg->umin_value && 335 reg->smin_value != S64_MIN) 336 verbose(env, ",smin_value=%lld", 337 (long long)reg->smin_value); 338 if (reg->smax_value != reg->umax_value && 339 reg->smax_value != S64_MAX) 340 verbose(env, ",smax_value=%lld", 341 (long long)reg->smax_value); 342 if (reg->umin_value != 0) 343 verbose(env, ",umin_value=%llu", 344 (unsigned long long)reg->umin_value); 345 if (reg->umax_value != U64_MAX) 346 verbose(env, ",umax_value=%llu", 347 (unsigned long long)reg->umax_value); 348 if (!tnum_is_unknown(reg->var_off)) { 349 char tn_buf[48]; 350 351 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 352 verbose(env, ",var_off=%s", tn_buf); 353 } 354 } 355 verbose(env, ")"); 356 } 357 } 358 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 359 char types_buf[BPF_REG_SIZE + 1]; 360 bool valid = false; 361 int j; 362 363 for (j = 0; j < BPF_REG_SIZE; j++) { 364 if (state->stack[i].slot_type[j] != STACK_INVALID) 365 valid = true; 366 types_buf[j] = slot_type_char[ 367 state->stack[i].slot_type[j]]; 368 } 369 types_buf[BPF_REG_SIZE] = 0; 370 if (!valid) 371 continue; 372 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 373 print_liveness(env, state->stack[i].spilled_ptr.live); 374 if (state->stack[i].slot_type[0] == STACK_SPILL) 375 verbose(env, "=%s", 376 reg_type_str[state->stack[i].spilled_ptr.type]); 377 else 378 verbose(env, "=%s", types_buf); 379 } 380 verbose(env, "\n"); 381 } 382 383 static int copy_stack_state(struct bpf_func_state *dst, 384 const struct bpf_func_state *src) 385 { 386 if (!src->stack) 387 return 0; 388 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 389 /* internal bug, make state invalid to reject the program */ 390 memset(dst, 0, sizeof(*dst)); 391 return -EFAULT; 392 } 393 memcpy(dst->stack, src->stack, 394 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 395 return 0; 396 } 397 398 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 399 * make it consume minimal amount of memory. check_stack_write() access from 400 * the program calls into realloc_func_state() to grow the stack size. 401 * Note there is a non-zero parent pointer inside each reg of bpf_verifier_state 402 * which this function copies over. It points to corresponding reg in previous 403 * bpf_verifier_state which is never reallocated 404 */ 405 static int realloc_func_state(struct bpf_func_state *state, int size, 406 bool copy_old) 407 { 408 u32 old_size = state->allocated_stack; 409 struct bpf_stack_state *new_stack; 410 int slot = size / BPF_REG_SIZE; 411 412 if (size <= old_size || !size) { 413 if (copy_old) 414 return 0; 415 state->allocated_stack = slot * BPF_REG_SIZE; 416 if (!size && old_size) { 417 kfree(state->stack); 418 state->stack = NULL; 419 } 420 return 0; 421 } 422 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 423 GFP_KERNEL); 424 if (!new_stack) 425 return -ENOMEM; 426 if (copy_old) { 427 if (state->stack) 428 memcpy(new_stack, state->stack, 429 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 430 memset(new_stack + old_size / BPF_REG_SIZE, 0, 431 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 432 } 433 state->allocated_stack = slot * BPF_REG_SIZE; 434 kfree(state->stack); 435 state->stack = new_stack; 436 return 0; 437 } 438 439 static void free_func_state(struct bpf_func_state *state) 440 { 441 if (!state) 442 return; 443 kfree(state->stack); 444 kfree(state); 445 } 446 447 static void free_verifier_state(struct bpf_verifier_state *state, 448 bool free_self) 449 { 450 int i; 451 452 for (i = 0; i <= state->curframe; i++) { 453 free_func_state(state->frame[i]); 454 state->frame[i] = NULL; 455 } 456 if (free_self) 457 kfree(state); 458 } 459 460 /* copy verifier state from src to dst growing dst stack space 461 * when necessary to accommodate larger src stack 462 */ 463 static int copy_func_state(struct bpf_func_state *dst, 464 const struct bpf_func_state *src) 465 { 466 int err; 467 468 err = realloc_func_state(dst, src->allocated_stack, false); 469 if (err) 470 return err; 471 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 472 return copy_stack_state(dst, src); 473 } 474 475 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 476 const struct bpf_verifier_state *src) 477 { 478 struct bpf_func_state *dst; 479 int i, err; 480 481 /* if dst has more stack frames then src frame, free them */ 482 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 483 free_func_state(dst_state->frame[i]); 484 dst_state->frame[i] = NULL; 485 } 486 dst_state->curframe = src->curframe; 487 for (i = 0; i <= src->curframe; i++) { 488 dst = dst_state->frame[i]; 489 if (!dst) { 490 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 491 if (!dst) 492 return -ENOMEM; 493 dst_state->frame[i] = dst; 494 } 495 err = copy_func_state(dst, src->frame[i]); 496 if (err) 497 return err; 498 } 499 return 0; 500 } 501 502 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 503 int *insn_idx) 504 { 505 struct bpf_verifier_state *cur = env->cur_state; 506 struct bpf_verifier_stack_elem *elem, *head = env->head; 507 int err; 508 509 if (env->head == NULL) 510 return -ENOENT; 511 512 if (cur) { 513 err = copy_verifier_state(cur, &head->st); 514 if (err) 515 return err; 516 } 517 if (insn_idx) 518 *insn_idx = head->insn_idx; 519 if (prev_insn_idx) 520 *prev_insn_idx = head->prev_insn_idx; 521 elem = head->next; 522 free_verifier_state(&head->st, false); 523 kfree(head); 524 env->head = elem; 525 env->stack_size--; 526 return 0; 527 } 528 529 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 530 int insn_idx, int prev_insn_idx) 531 { 532 struct bpf_verifier_state *cur = env->cur_state; 533 struct bpf_verifier_stack_elem *elem; 534 int err; 535 536 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 537 if (!elem) 538 goto err; 539 540 elem->insn_idx = insn_idx; 541 elem->prev_insn_idx = prev_insn_idx; 542 elem->next = env->head; 543 env->head = elem; 544 env->stack_size++; 545 err = copy_verifier_state(&elem->st, cur); 546 if (err) 547 goto err; 548 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 549 verbose(env, "BPF program is too complex\n"); 550 goto err; 551 } 552 return &elem->st; 553 err: 554 free_verifier_state(env->cur_state, true); 555 env->cur_state = NULL; 556 /* pop all elements and return */ 557 while (!pop_stack(env, NULL, NULL)); 558 return NULL; 559 } 560 561 #define CALLER_SAVED_REGS 6 562 static const int caller_saved[CALLER_SAVED_REGS] = { 563 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 564 }; 565 566 static void __mark_reg_not_init(struct bpf_reg_state *reg); 567 568 /* Mark the unknown part of a register (variable offset or scalar value) as 569 * known to have the value @imm. 570 */ 571 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 572 { 573 /* Clear id, off, and union(map_ptr, range) */ 574 memset(((u8 *)reg) + sizeof(reg->type), 0, 575 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 576 reg->var_off = tnum_const(imm); 577 reg->smin_value = (s64)imm; 578 reg->smax_value = (s64)imm; 579 reg->umin_value = imm; 580 reg->umax_value = imm; 581 } 582 583 /* Mark the 'variable offset' part of a register as zero. This should be 584 * used only on registers holding a pointer type. 585 */ 586 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 587 { 588 __mark_reg_known(reg, 0); 589 } 590 591 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 592 { 593 __mark_reg_known(reg, 0); 594 reg->type = SCALAR_VALUE; 595 } 596 597 static void mark_reg_known_zero(struct bpf_verifier_env *env, 598 struct bpf_reg_state *regs, u32 regno) 599 { 600 if (WARN_ON(regno >= MAX_BPF_REG)) { 601 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 602 /* Something bad happened, let's kill all regs */ 603 for (regno = 0; regno < MAX_BPF_REG; regno++) 604 __mark_reg_not_init(regs + regno); 605 return; 606 } 607 __mark_reg_known_zero(regs + regno); 608 } 609 610 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 611 { 612 return type_is_pkt_pointer(reg->type); 613 } 614 615 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 616 { 617 return reg_is_pkt_pointer(reg) || 618 reg->type == PTR_TO_PACKET_END; 619 } 620 621 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 622 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 623 enum bpf_reg_type which) 624 { 625 /* The register can already have a range from prior markings. 626 * This is fine as long as it hasn't been advanced from its 627 * origin. 628 */ 629 return reg->type == which && 630 reg->id == 0 && 631 reg->off == 0 && 632 tnum_equals_const(reg->var_off, 0); 633 } 634 635 /* Attempts to improve min/max values based on var_off information */ 636 static void __update_reg_bounds(struct bpf_reg_state *reg) 637 { 638 /* min signed is max(sign bit) | min(other bits) */ 639 reg->smin_value = max_t(s64, reg->smin_value, 640 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 641 /* max signed is min(sign bit) | max(other bits) */ 642 reg->smax_value = min_t(s64, reg->smax_value, 643 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 644 reg->umin_value = max(reg->umin_value, reg->var_off.value); 645 reg->umax_value = min(reg->umax_value, 646 reg->var_off.value | reg->var_off.mask); 647 } 648 649 /* Uses signed min/max values to inform unsigned, and vice-versa */ 650 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 651 { 652 /* Learn sign from signed bounds. 653 * If we cannot cross the sign boundary, then signed and unsigned bounds 654 * are the same, so combine. This works even in the negative case, e.g. 655 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 656 */ 657 if (reg->smin_value >= 0 || reg->smax_value < 0) { 658 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 659 reg->umin_value); 660 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 661 reg->umax_value); 662 return; 663 } 664 /* Learn sign from unsigned bounds. Signed bounds cross the sign 665 * boundary, so we must be careful. 666 */ 667 if ((s64)reg->umax_value >= 0) { 668 /* Positive. We can't learn anything from the smin, but smax 669 * is positive, hence safe. 670 */ 671 reg->smin_value = reg->umin_value; 672 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 673 reg->umax_value); 674 } else if ((s64)reg->umin_value < 0) { 675 /* Negative. We can't learn anything from the smax, but smin 676 * is negative, hence safe. 677 */ 678 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 679 reg->umin_value); 680 reg->smax_value = reg->umax_value; 681 } 682 } 683 684 /* Attempts to improve var_off based on unsigned min/max information */ 685 static void __reg_bound_offset(struct bpf_reg_state *reg) 686 { 687 reg->var_off = tnum_intersect(reg->var_off, 688 tnum_range(reg->umin_value, 689 reg->umax_value)); 690 } 691 692 /* Reset the min/max bounds of a register */ 693 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 694 { 695 reg->smin_value = S64_MIN; 696 reg->smax_value = S64_MAX; 697 reg->umin_value = 0; 698 reg->umax_value = U64_MAX; 699 } 700 701 /* Mark a register as having a completely unknown (scalar) value. */ 702 static void __mark_reg_unknown(struct bpf_reg_state *reg) 703 { 704 /* 705 * Clear type, id, off, and union(map_ptr, range) and 706 * padding between 'type' and union 707 */ 708 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 709 reg->type = SCALAR_VALUE; 710 reg->var_off = tnum_unknown; 711 reg->frameno = 0; 712 __mark_reg_unbounded(reg); 713 } 714 715 static void mark_reg_unknown(struct bpf_verifier_env *env, 716 struct bpf_reg_state *regs, u32 regno) 717 { 718 if (WARN_ON(regno >= MAX_BPF_REG)) { 719 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 720 /* Something bad happened, let's kill all regs except FP */ 721 for (regno = 0; regno < BPF_REG_FP; regno++) 722 __mark_reg_not_init(regs + regno); 723 return; 724 } 725 __mark_reg_unknown(regs + regno); 726 } 727 728 static void __mark_reg_not_init(struct bpf_reg_state *reg) 729 { 730 __mark_reg_unknown(reg); 731 reg->type = NOT_INIT; 732 } 733 734 static void mark_reg_not_init(struct bpf_verifier_env *env, 735 struct bpf_reg_state *regs, u32 regno) 736 { 737 if (WARN_ON(regno >= MAX_BPF_REG)) { 738 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 739 /* Something bad happened, let's kill all regs except FP */ 740 for (regno = 0; regno < BPF_REG_FP; regno++) 741 __mark_reg_not_init(regs + regno); 742 return; 743 } 744 __mark_reg_not_init(regs + regno); 745 } 746 747 static void init_reg_state(struct bpf_verifier_env *env, 748 struct bpf_func_state *state) 749 { 750 struct bpf_reg_state *regs = state->regs; 751 int i; 752 753 for (i = 0; i < MAX_BPF_REG; i++) { 754 mark_reg_not_init(env, regs, i); 755 regs[i].live = REG_LIVE_NONE; 756 regs[i].parent = NULL; 757 } 758 759 /* frame pointer */ 760 regs[BPF_REG_FP].type = PTR_TO_STACK; 761 mark_reg_known_zero(env, regs, BPF_REG_FP); 762 regs[BPF_REG_FP].frameno = state->frameno; 763 764 /* 1st arg to a function */ 765 regs[BPF_REG_1].type = PTR_TO_CTX; 766 mark_reg_known_zero(env, regs, BPF_REG_1); 767 } 768 769 #define BPF_MAIN_FUNC (-1) 770 static void init_func_state(struct bpf_verifier_env *env, 771 struct bpf_func_state *state, 772 int callsite, int frameno, int subprogno) 773 { 774 state->callsite = callsite; 775 state->frameno = frameno; 776 state->subprogno = subprogno; 777 init_reg_state(env, state); 778 } 779 780 enum reg_arg_type { 781 SRC_OP, /* register is used as source operand */ 782 DST_OP, /* register is used as destination operand */ 783 DST_OP_NO_MARK /* same as above, check only, don't mark */ 784 }; 785 786 static int cmp_subprogs(const void *a, const void *b) 787 { 788 return ((struct bpf_subprog_info *)a)->start - 789 ((struct bpf_subprog_info *)b)->start; 790 } 791 792 static int find_subprog(struct bpf_verifier_env *env, int off) 793 { 794 struct bpf_subprog_info *p; 795 796 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 797 sizeof(env->subprog_info[0]), cmp_subprogs); 798 if (!p) 799 return -ENOENT; 800 return p - env->subprog_info; 801 802 } 803 804 static int add_subprog(struct bpf_verifier_env *env, int off) 805 { 806 int insn_cnt = env->prog->len; 807 int ret; 808 809 if (off >= insn_cnt || off < 0) { 810 verbose(env, "call to invalid destination\n"); 811 return -EINVAL; 812 } 813 ret = find_subprog(env, off); 814 if (ret >= 0) 815 return 0; 816 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 817 verbose(env, "too many subprograms\n"); 818 return -E2BIG; 819 } 820 env->subprog_info[env->subprog_cnt++].start = off; 821 sort(env->subprog_info, env->subprog_cnt, 822 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 823 return 0; 824 } 825 826 static int check_subprogs(struct bpf_verifier_env *env) 827 { 828 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 829 struct bpf_subprog_info *subprog = env->subprog_info; 830 struct bpf_insn *insn = env->prog->insnsi; 831 int insn_cnt = env->prog->len; 832 833 /* Add entry function. */ 834 ret = add_subprog(env, 0); 835 if (ret < 0) 836 return ret; 837 838 /* determine subprog starts. The end is one before the next starts */ 839 for (i = 0; i < insn_cnt; i++) { 840 if (insn[i].code != (BPF_JMP | BPF_CALL)) 841 continue; 842 if (insn[i].src_reg != BPF_PSEUDO_CALL) 843 continue; 844 if (!env->allow_ptr_leaks) { 845 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 846 return -EPERM; 847 } 848 if (bpf_prog_is_dev_bound(env->prog->aux)) { 849 verbose(env, "function calls in offloaded programs are not supported yet\n"); 850 return -EINVAL; 851 } 852 ret = add_subprog(env, i + insn[i].imm + 1); 853 if (ret < 0) 854 return ret; 855 } 856 857 /* Add a fake 'exit' subprog which could simplify subprog iteration 858 * logic. 'subprog_cnt' should not be increased. 859 */ 860 subprog[env->subprog_cnt].start = insn_cnt; 861 862 if (env->log.level > 1) 863 for (i = 0; i < env->subprog_cnt; i++) 864 verbose(env, "func#%d @%d\n", i, subprog[i].start); 865 866 /* now check that all jumps are within the same subprog */ 867 subprog_start = subprog[cur_subprog].start; 868 subprog_end = subprog[cur_subprog + 1].start; 869 for (i = 0; i < insn_cnt; i++) { 870 u8 code = insn[i].code; 871 872 if (BPF_CLASS(code) != BPF_JMP) 873 goto next; 874 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 875 goto next; 876 off = i + insn[i].off + 1; 877 if (off < subprog_start || off >= subprog_end) { 878 verbose(env, "jump out of range from insn %d to %d\n", i, off); 879 return -EINVAL; 880 } 881 next: 882 if (i == subprog_end - 1) { 883 /* to avoid fall-through from one subprog into another 884 * the last insn of the subprog should be either exit 885 * or unconditional jump back 886 */ 887 if (code != (BPF_JMP | BPF_EXIT) && 888 code != (BPF_JMP | BPF_JA)) { 889 verbose(env, "last insn is not an exit or jmp\n"); 890 return -EINVAL; 891 } 892 subprog_start = subprog_end; 893 cur_subprog++; 894 if (cur_subprog < env->subprog_cnt) 895 subprog_end = subprog[cur_subprog + 1].start; 896 } 897 } 898 return 0; 899 } 900 901 /* Parentage chain of this register (or stack slot) should take care of all 902 * issues like callee-saved registers, stack slot allocation time, etc. 903 */ 904 static int mark_reg_read(struct bpf_verifier_env *env, 905 const struct bpf_reg_state *state, 906 struct bpf_reg_state *parent) 907 { 908 bool writes = parent == state->parent; /* Observe write marks */ 909 910 while (parent) { 911 /* if read wasn't screened by an earlier write ... */ 912 if (writes && state->live & REG_LIVE_WRITTEN) 913 break; 914 /* ... then we depend on parent's value */ 915 parent->live |= REG_LIVE_READ; 916 state = parent; 917 parent = state->parent; 918 writes = true; 919 } 920 return 0; 921 } 922 923 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 924 enum reg_arg_type t) 925 { 926 struct bpf_verifier_state *vstate = env->cur_state; 927 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 928 struct bpf_reg_state *regs = state->regs; 929 930 if (regno >= MAX_BPF_REG) { 931 verbose(env, "R%d is invalid\n", regno); 932 return -EINVAL; 933 } 934 935 if (t == SRC_OP) { 936 /* check whether register used as source operand can be read */ 937 if (regs[regno].type == NOT_INIT) { 938 verbose(env, "R%d !read_ok\n", regno); 939 return -EACCES; 940 } 941 /* We don't need to worry about FP liveness because it's read-only */ 942 if (regno != BPF_REG_FP) 943 return mark_reg_read(env, ®s[regno], 944 regs[regno].parent); 945 } else { 946 /* check whether register used as dest operand can be written to */ 947 if (regno == BPF_REG_FP) { 948 verbose(env, "frame pointer is read only\n"); 949 return -EACCES; 950 } 951 regs[regno].live |= REG_LIVE_WRITTEN; 952 if (t == DST_OP) 953 mark_reg_unknown(env, regs, regno); 954 } 955 return 0; 956 } 957 958 static bool is_spillable_regtype(enum bpf_reg_type type) 959 { 960 switch (type) { 961 case PTR_TO_MAP_VALUE: 962 case PTR_TO_MAP_VALUE_OR_NULL: 963 case PTR_TO_STACK: 964 case PTR_TO_CTX: 965 case PTR_TO_PACKET: 966 case PTR_TO_PACKET_META: 967 case PTR_TO_PACKET_END: 968 case CONST_PTR_TO_MAP: 969 return true; 970 default: 971 return false; 972 } 973 } 974 975 /* Does this register contain a constant zero? */ 976 static bool register_is_null(struct bpf_reg_state *reg) 977 { 978 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 979 } 980 981 /* check_stack_read/write functions track spill/fill of registers, 982 * stack boundary and alignment are checked in check_mem_access() 983 */ 984 static int check_stack_write(struct bpf_verifier_env *env, 985 struct bpf_func_state *state, /* func where register points to */ 986 int off, int size, int value_regno, int insn_idx) 987 { 988 struct bpf_func_state *cur; /* state of the current function */ 989 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 990 enum bpf_reg_type type; 991 992 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 993 true); 994 if (err) 995 return err; 996 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 997 * so it's aligned access and [off, off + size) are within stack limits 998 */ 999 if (!env->allow_ptr_leaks && 1000 state->stack[spi].slot_type[0] == STACK_SPILL && 1001 size != BPF_REG_SIZE) { 1002 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1003 return -EACCES; 1004 } 1005 1006 cur = env->cur_state->frame[env->cur_state->curframe]; 1007 if (value_regno >= 0 && 1008 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1009 1010 /* register containing pointer is being spilled into stack */ 1011 if (size != BPF_REG_SIZE) { 1012 verbose(env, "invalid size of register spill\n"); 1013 return -EACCES; 1014 } 1015 1016 if (state != cur && type == PTR_TO_STACK) { 1017 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1018 return -EINVAL; 1019 } 1020 1021 /* save register state */ 1022 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1023 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1024 1025 for (i = 0; i < BPF_REG_SIZE; i++) { 1026 if (state->stack[spi].slot_type[i] == STACK_MISC && 1027 !env->allow_ptr_leaks) { 1028 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1029 int soff = (-spi - 1) * BPF_REG_SIZE; 1030 1031 /* detected reuse of integer stack slot with a pointer 1032 * which means either llvm is reusing stack slot or 1033 * an attacker is trying to exploit CVE-2018-3639 1034 * (speculative store bypass) 1035 * Have to sanitize that slot with preemptive 1036 * store of zero. 1037 */ 1038 if (*poff && *poff != soff) { 1039 /* disallow programs where single insn stores 1040 * into two different stack slots, since verifier 1041 * cannot sanitize them 1042 */ 1043 verbose(env, 1044 "insn %d cannot access two stack slots fp%d and fp%d", 1045 insn_idx, *poff, soff); 1046 return -EINVAL; 1047 } 1048 *poff = soff; 1049 } 1050 state->stack[spi].slot_type[i] = STACK_SPILL; 1051 } 1052 } else { 1053 u8 type = STACK_MISC; 1054 1055 /* regular write of data into stack destroys any spilled ptr */ 1056 state->stack[spi].spilled_ptr.type = NOT_INIT; 1057 1058 /* only mark the slot as written if all 8 bytes were written 1059 * otherwise read propagation may incorrectly stop too soon 1060 * when stack slots are partially written. 1061 * This heuristic means that read propagation will be 1062 * conservative, since it will add reg_live_read marks 1063 * to stack slots all the way to first state when programs 1064 * writes+reads less than 8 bytes 1065 */ 1066 if (size == BPF_REG_SIZE) 1067 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1068 1069 /* when we zero initialize stack slots mark them as such */ 1070 if (value_regno >= 0 && 1071 register_is_null(&cur->regs[value_regno])) 1072 type = STACK_ZERO; 1073 1074 for (i = 0; i < size; i++) 1075 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1076 type; 1077 } 1078 return 0; 1079 } 1080 1081 static int check_stack_read(struct bpf_verifier_env *env, 1082 struct bpf_func_state *reg_state /* func where register points to */, 1083 int off, int size, int value_regno) 1084 { 1085 struct bpf_verifier_state *vstate = env->cur_state; 1086 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1087 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1088 u8 *stype; 1089 1090 if (reg_state->allocated_stack <= slot) { 1091 verbose(env, "invalid read from stack off %d+0 size %d\n", 1092 off, size); 1093 return -EACCES; 1094 } 1095 stype = reg_state->stack[spi].slot_type; 1096 1097 if (stype[0] == STACK_SPILL) { 1098 if (size != BPF_REG_SIZE) { 1099 verbose(env, "invalid size of register spill\n"); 1100 return -EACCES; 1101 } 1102 for (i = 1; i < BPF_REG_SIZE; i++) { 1103 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1104 verbose(env, "corrupted spill memory\n"); 1105 return -EACCES; 1106 } 1107 } 1108 1109 if (value_regno >= 0) { 1110 /* restore register state from stack */ 1111 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1112 /* mark reg as written since spilled pointer state likely 1113 * has its liveness marks cleared by is_state_visited() 1114 * which resets stack/reg liveness for state transitions 1115 */ 1116 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1117 } 1118 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1119 reg_state->stack[spi].spilled_ptr.parent); 1120 return 0; 1121 } else { 1122 int zeros = 0; 1123 1124 for (i = 0; i < size; i++) { 1125 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1126 continue; 1127 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1128 zeros++; 1129 continue; 1130 } 1131 verbose(env, "invalid read from stack off %d+%d size %d\n", 1132 off, i, size); 1133 return -EACCES; 1134 } 1135 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1136 reg_state->stack[spi].spilled_ptr.parent); 1137 if (value_regno >= 0) { 1138 if (zeros == size) { 1139 /* any size read into register is zero extended, 1140 * so the whole register == const_zero 1141 */ 1142 __mark_reg_const_zero(&state->regs[value_regno]); 1143 } else { 1144 /* have read misc data from the stack */ 1145 mark_reg_unknown(env, state->regs, value_regno); 1146 } 1147 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1148 } 1149 return 0; 1150 } 1151 } 1152 1153 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1154 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1155 int size, bool zero_size_allowed) 1156 { 1157 struct bpf_reg_state *regs = cur_regs(env); 1158 struct bpf_map *map = regs[regno].map_ptr; 1159 1160 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1161 off + size > map->value_size) { 1162 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1163 map->value_size, off, size); 1164 return -EACCES; 1165 } 1166 return 0; 1167 } 1168 1169 /* check read/write into a map element with possible variable offset */ 1170 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1171 int off, int size, bool zero_size_allowed) 1172 { 1173 struct bpf_verifier_state *vstate = env->cur_state; 1174 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1175 struct bpf_reg_state *reg = &state->regs[regno]; 1176 int err; 1177 1178 /* We may have adjusted the register to this map value, so we 1179 * need to try adding each of min_value and max_value to off 1180 * to make sure our theoretical access will be safe. 1181 */ 1182 if (env->log.level) 1183 print_verifier_state(env, state); 1184 /* The minimum value is only important with signed 1185 * comparisons where we can't assume the floor of a 1186 * value is 0. If we are using signed variables for our 1187 * index'es we need to make sure that whatever we use 1188 * will have a set floor within our range. 1189 */ 1190 if (reg->smin_value < 0) { 1191 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1192 regno); 1193 return -EACCES; 1194 } 1195 err = __check_map_access(env, regno, reg->smin_value + off, size, 1196 zero_size_allowed); 1197 if (err) { 1198 verbose(env, "R%d min value is outside of the array range\n", 1199 regno); 1200 return err; 1201 } 1202 1203 /* If we haven't set a max value then we need to bail since we can't be 1204 * sure we won't do bad things. 1205 * If reg->umax_value + off could overflow, treat that as unbounded too. 1206 */ 1207 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1208 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1209 regno); 1210 return -EACCES; 1211 } 1212 err = __check_map_access(env, regno, reg->umax_value + off, size, 1213 zero_size_allowed); 1214 if (err) 1215 verbose(env, "R%d max value is outside of the array range\n", 1216 regno); 1217 return err; 1218 } 1219 1220 #define MAX_PACKET_OFF 0xffff 1221 1222 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1223 const struct bpf_call_arg_meta *meta, 1224 enum bpf_access_type t) 1225 { 1226 switch (env->prog->type) { 1227 case BPF_PROG_TYPE_LWT_IN: 1228 case BPF_PROG_TYPE_LWT_OUT: 1229 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1230 case BPF_PROG_TYPE_SK_REUSEPORT: 1231 /* dst_input() and dst_output() can't write for now */ 1232 if (t == BPF_WRITE) 1233 return false; 1234 /* fallthrough */ 1235 case BPF_PROG_TYPE_SCHED_CLS: 1236 case BPF_PROG_TYPE_SCHED_ACT: 1237 case BPF_PROG_TYPE_XDP: 1238 case BPF_PROG_TYPE_LWT_XMIT: 1239 case BPF_PROG_TYPE_SK_SKB: 1240 case BPF_PROG_TYPE_SK_MSG: 1241 if (meta) 1242 return meta->pkt_access; 1243 1244 env->seen_direct_write = true; 1245 return true; 1246 default: 1247 return false; 1248 } 1249 } 1250 1251 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1252 int off, int size, bool zero_size_allowed) 1253 { 1254 struct bpf_reg_state *regs = cur_regs(env); 1255 struct bpf_reg_state *reg = ®s[regno]; 1256 1257 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1258 (u64)off + size > reg->range) { 1259 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1260 off, size, regno, reg->id, reg->off, reg->range); 1261 return -EACCES; 1262 } 1263 return 0; 1264 } 1265 1266 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1267 int size, bool zero_size_allowed) 1268 { 1269 struct bpf_reg_state *regs = cur_regs(env); 1270 struct bpf_reg_state *reg = ®s[regno]; 1271 int err; 1272 1273 /* We may have added a variable offset to the packet pointer; but any 1274 * reg->range we have comes after that. We are only checking the fixed 1275 * offset. 1276 */ 1277 1278 /* We don't allow negative numbers, because we aren't tracking enough 1279 * detail to prove they're safe. 1280 */ 1281 if (reg->smin_value < 0) { 1282 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1283 regno); 1284 return -EACCES; 1285 } 1286 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1287 if (err) { 1288 verbose(env, "R%d offset is outside of the packet\n", regno); 1289 return err; 1290 } 1291 return err; 1292 } 1293 1294 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1295 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1296 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1297 { 1298 struct bpf_insn_access_aux info = { 1299 .reg_type = *reg_type, 1300 }; 1301 1302 if (env->ops->is_valid_access && 1303 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1304 /* A non zero info.ctx_field_size indicates that this field is a 1305 * candidate for later verifier transformation to load the whole 1306 * field and then apply a mask when accessed with a narrower 1307 * access than actual ctx access size. A zero info.ctx_field_size 1308 * will only allow for whole field access and rejects any other 1309 * type of narrower access. 1310 */ 1311 *reg_type = info.reg_type; 1312 1313 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1314 /* remember the offset of last byte accessed in ctx */ 1315 if (env->prog->aux->max_ctx_offset < off + size) 1316 env->prog->aux->max_ctx_offset = off + size; 1317 return 0; 1318 } 1319 1320 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1321 return -EACCES; 1322 } 1323 1324 static bool __is_pointer_value(bool allow_ptr_leaks, 1325 const struct bpf_reg_state *reg) 1326 { 1327 if (allow_ptr_leaks) 1328 return false; 1329 1330 return reg->type != SCALAR_VALUE; 1331 } 1332 1333 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1334 { 1335 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1336 } 1337 1338 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1339 { 1340 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1341 1342 return reg->type == PTR_TO_CTX; 1343 } 1344 1345 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1346 { 1347 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1348 1349 return type_is_pkt_pointer(reg->type); 1350 } 1351 1352 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1353 const struct bpf_reg_state *reg, 1354 int off, int size, bool strict) 1355 { 1356 struct tnum reg_off; 1357 int ip_align; 1358 1359 /* Byte size accesses are always allowed. */ 1360 if (!strict || size == 1) 1361 return 0; 1362 1363 /* For platforms that do not have a Kconfig enabling 1364 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1365 * NET_IP_ALIGN is universally set to '2'. And on platforms 1366 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1367 * to this code only in strict mode where we want to emulate 1368 * the NET_IP_ALIGN==2 checking. Therefore use an 1369 * unconditional IP align value of '2'. 1370 */ 1371 ip_align = 2; 1372 1373 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1374 if (!tnum_is_aligned(reg_off, size)) { 1375 char tn_buf[48]; 1376 1377 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1378 verbose(env, 1379 "misaligned packet access off %d+%s+%d+%d size %d\n", 1380 ip_align, tn_buf, reg->off, off, size); 1381 return -EACCES; 1382 } 1383 1384 return 0; 1385 } 1386 1387 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1388 const struct bpf_reg_state *reg, 1389 const char *pointer_desc, 1390 int off, int size, bool strict) 1391 { 1392 struct tnum reg_off; 1393 1394 /* Byte size accesses are always allowed. */ 1395 if (!strict || size == 1) 1396 return 0; 1397 1398 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1399 if (!tnum_is_aligned(reg_off, size)) { 1400 char tn_buf[48]; 1401 1402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1403 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1404 pointer_desc, tn_buf, reg->off, off, size); 1405 return -EACCES; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int check_ptr_alignment(struct bpf_verifier_env *env, 1412 const struct bpf_reg_state *reg, int off, 1413 int size, bool strict_alignment_once) 1414 { 1415 bool strict = env->strict_alignment || strict_alignment_once; 1416 const char *pointer_desc = ""; 1417 1418 switch (reg->type) { 1419 case PTR_TO_PACKET: 1420 case PTR_TO_PACKET_META: 1421 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1422 * right in front, treat it the very same way. 1423 */ 1424 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1425 case PTR_TO_MAP_VALUE: 1426 pointer_desc = "value "; 1427 break; 1428 case PTR_TO_CTX: 1429 pointer_desc = "context "; 1430 break; 1431 case PTR_TO_STACK: 1432 pointer_desc = "stack "; 1433 /* The stack spill tracking logic in check_stack_write() 1434 * and check_stack_read() relies on stack accesses being 1435 * aligned. 1436 */ 1437 strict = true; 1438 break; 1439 default: 1440 break; 1441 } 1442 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1443 strict); 1444 } 1445 1446 static int update_stack_depth(struct bpf_verifier_env *env, 1447 const struct bpf_func_state *func, 1448 int off) 1449 { 1450 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1451 1452 if (stack >= -off) 1453 return 0; 1454 1455 /* update known max for given subprogram */ 1456 env->subprog_info[func->subprogno].stack_depth = -off; 1457 return 0; 1458 } 1459 1460 /* starting from main bpf function walk all instructions of the function 1461 * and recursively walk all callees that given function can call. 1462 * Ignore jump and exit insns. 1463 * Since recursion is prevented by check_cfg() this algorithm 1464 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1465 */ 1466 static int check_max_stack_depth(struct bpf_verifier_env *env) 1467 { 1468 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1469 struct bpf_subprog_info *subprog = env->subprog_info; 1470 struct bpf_insn *insn = env->prog->insnsi; 1471 int ret_insn[MAX_CALL_FRAMES]; 1472 int ret_prog[MAX_CALL_FRAMES]; 1473 1474 process_func: 1475 /* round up to 32-bytes, since this is granularity 1476 * of interpreter stack size 1477 */ 1478 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1479 if (depth > MAX_BPF_STACK) { 1480 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1481 frame + 1, depth); 1482 return -EACCES; 1483 } 1484 continue_func: 1485 subprog_end = subprog[idx + 1].start; 1486 for (; i < subprog_end; i++) { 1487 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1488 continue; 1489 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1490 continue; 1491 /* remember insn and function to return to */ 1492 ret_insn[frame] = i + 1; 1493 ret_prog[frame] = idx; 1494 1495 /* find the callee */ 1496 i = i + insn[i].imm + 1; 1497 idx = find_subprog(env, i); 1498 if (idx < 0) { 1499 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1500 i); 1501 return -EFAULT; 1502 } 1503 frame++; 1504 if (frame >= MAX_CALL_FRAMES) { 1505 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1506 return -EFAULT; 1507 } 1508 goto process_func; 1509 } 1510 /* end of for() loop means the last insn of the 'subprog' 1511 * was reached. Doesn't matter whether it was JA or EXIT 1512 */ 1513 if (frame == 0) 1514 return 0; 1515 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1516 frame--; 1517 i = ret_insn[frame]; 1518 idx = ret_prog[frame]; 1519 goto continue_func; 1520 } 1521 1522 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1523 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1524 const struct bpf_insn *insn, int idx) 1525 { 1526 int start = idx + insn->imm + 1, subprog; 1527 1528 subprog = find_subprog(env, start); 1529 if (subprog < 0) { 1530 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1531 start); 1532 return -EFAULT; 1533 } 1534 return env->subprog_info[subprog].stack_depth; 1535 } 1536 #endif 1537 1538 static int check_ctx_reg(struct bpf_verifier_env *env, 1539 const struct bpf_reg_state *reg, int regno) 1540 { 1541 /* Access to ctx or passing it to a helper is only allowed in 1542 * its original, unmodified form. 1543 */ 1544 1545 if (reg->off) { 1546 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1547 regno, reg->off); 1548 return -EACCES; 1549 } 1550 1551 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1552 char tn_buf[48]; 1553 1554 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1555 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1556 return -EACCES; 1557 } 1558 1559 return 0; 1560 } 1561 1562 /* truncate register to smaller size (in bytes) 1563 * must be called with size < BPF_REG_SIZE 1564 */ 1565 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1566 { 1567 u64 mask; 1568 1569 /* clear high bits in bit representation */ 1570 reg->var_off = tnum_cast(reg->var_off, size); 1571 1572 /* fix arithmetic bounds */ 1573 mask = ((u64)1 << (size * 8)) - 1; 1574 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1575 reg->umin_value &= mask; 1576 reg->umax_value &= mask; 1577 } else { 1578 reg->umin_value = 0; 1579 reg->umax_value = mask; 1580 } 1581 reg->smin_value = reg->umin_value; 1582 reg->smax_value = reg->umax_value; 1583 } 1584 1585 /* check whether memory at (regno + off) is accessible for t = (read | write) 1586 * if t==write, value_regno is a register which value is stored into memory 1587 * if t==read, value_regno is a register which will receive the value from memory 1588 * if t==write && value_regno==-1, some unknown value is stored into memory 1589 * if t==read && value_regno==-1, don't care what we read from memory 1590 */ 1591 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1592 int off, int bpf_size, enum bpf_access_type t, 1593 int value_regno, bool strict_alignment_once) 1594 { 1595 struct bpf_reg_state *regs = cur_regs(env); 1596 struct bpf_reg_state *reg = regs + regno; 1597 struct bpf_func_state *state; 1598 int size, err = 0; 1599 1600 size = bpf_size_to_bytes(bpf_size); 1601 if (size < 0) 1602 return size; 1603 1604 /* alignment checks will add in reg->off themselves */ 1605 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1606 if (err) 1607 return err; 1608 1609 /* for access checks, reg->off is just part of off */ 1610 off += reg->off; 1611 1612 if (reg->type == PTR_TO_MAP_VALUE) { 1613 if (t == BPF_WRITE && value_regno >= 0 && 1614 is_pointer_value(env, value_regno)) { 1615 verbose(env, "R%d leaks addr into map\n", value_regno); 1616 return -EACCES; 1617 } 1618 1619 err = check_map_access(env, regno, off, size, false); 1620 if (!err && t == BPF_READ && value_regno >= 0) 1621 mark_reg_unknown(env, regs, value_regno); 1622 1623 } else if (reg->type == PTR_TO_CTX) { 1624 enum bpf_reg_type reg_type = SCALAR_VALUE; 1625 1626 if (t == BPF_WRITE && value_regno >= 0 && 1627 is_pointer_value(env, value_regno)) { 1628 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1629 return -EACCES; 1630 } 1631 1632 err = check_ctx_reg(env, reg, regno); 1633 if (err < 0) 1634 return err; 1635 1636 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1637 if (!err && t == BPF_READ && value_regno >= 0) { 1638 /* ctx access returns either a scalar, or a 1639 * PTR_TO_PACKET[_META,_END]. In the latter 1640 * case, we know the offset is zero. 1641 */ 1642 if (reg_type == SCALAR_VALUE) 1643 mark_reg_unknown(env, regs, value_regno); 1644 else 1645 mark_reg_known_zero(env, regs, 1646 value_regno); 1647 regs[value_regno].type = reg_type; 1648 } 1649 1650 } else if (reg->type == PTR_TO_STACK) { 1651 /* stack accesses must be at a fixed offset, so that we can 1652 * determine what type of data were returned. 1653 * See check_stack_read(). 1654 */ 1655 if (!tnum_is_const(reg->var_off)) { 1656 char tn_buf[48]; 1657 1658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1659 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1660 tn_buf, off, size); 1661 return -EACCES; 1662 } 1663 off += reg->var_off.value; 1664 if (off >= 0 || off < -MAX_BPF_STACK) { 1665 verbose(env, "invalid stack off=%d size=%d\n", off, 1666 size); 1667 return -EACCES; 1668 } 1669 1670 state = func(env, reg); 1671 err = update_stack_depth(env, state, off); 1672 if (err) 1673 return err; 1674 1675 if (t == BPF_WRITE) 1676 err = check_stack_write(env, state, off, size, 1677 value_regno, insn_idx); 1678 else 1679 err = check_stack_read(env, state, off, size, 1680 value_regno); 1681 } else if (reg_is_pkt_pointer(reg)) { 1682 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1683 verbose(env, "cannot write into packet\n"); 1684 return -EACCES; 1685 } 1686 if (t == BPF_WRITE && value_regno >= 0 && 1687 is_pointer_value(env, value_regno)) { 1688 verbose(env, "R%d leaks addr into packet\n", 1689 value_regno); 1690 return -EACCES; 1691 } 1692 err = check_packet_access(env, regno, off, size, false); 1693 if (!err && t == BPF_READ && value_regno >= 0) 1694 mark_reg_unknown(env, regs, value_regno); 1695 } else { 1696 verbose(env, "R%d invalid mem access '%s'\n", regno, 1697 reg_type_str[reg->type]); 1698 return -EACCES; 1699 } 1700 1701 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1702 regs[value_regno].type == SCALAR_VALUE) { 1703 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1704 coerce_reg_to_size(®s[value_regno], size); 1705 } 1706 return err; 1707 } 1708 1709 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1710 { 1711 int err; 1712 1713 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1714 insn->imm != 0) { 1715 verbose(env, "BPF_XADD uses reserved fields\n"); 1716 return -EINVAL; 1717 } 1718 1719 /* check src1 operand */ 1720 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1721 if (err) 1722 return err; 1723 1724 /* check src2 operand */ 1725 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1726 if (err) 1727 return err; 1728 1729 if (is_pointer_value(env, insn->src_reg)) { 1730 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1731 return -EACCES; 1732 } 1733 1734 if (is_ctx_reg(env, insn->dst_reg) || 1735 is_pkt_reg(env, insn->dst_reg)) { 1736 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1737 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1738 "context" : "packet"); 1739 return -EACCES; 1740 } 1741 1742 /* check whether atomic_add can read the memory */ 1743 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1744 BPF_SIZE(insn->code), BPF_READ, -1, true); 1745 if (err) 1746 return err; 1747 1748 /* check whether atomic_add can write into the same memory */ 1749 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1750 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1751 } 1752 1753 /* when register 'regno' is passed into function that will read 'access_size' 1754 * bytes from that pointer, make sure that it's within stack boundary 1755 * and all elements of stack are initialized. 1756 * Unlike most pointer bounds-checking functions, this one doesn't take an 1757 * 'off' argument, so it has to add in reg->off itself. 1758 */ 1759 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1760 int access_size, bool zero_size_allowed, 1761 struct bpf_call_arg_meta *meta) 1762 { 1763 struct bpf_reg_state *reg = cur_regs(env) + regno; 1764 struct bpf_func_state *state = func(env, reg); 1765 int off, i, slot, spi; 1766 1767 if (reg->type != PTR_TO_STACK) { 1768 /* Allow zero-byte read from NULL, regardless of pointer type */ 1769 if (zero_size_allowed && access_size == 0 && 1770 register_is_null(reg)) 1771 return 0; 1772 1773 verbose(env, "R%d type=%s expected=%s\n", regno, 1774 reg_type_str[reg->type], 1775 reg_type_str[PTR_TO_STACK]); 1776 return -EACCES; 1777 } 1778 1779 /* Only allow fixed-offset stack reads */ 1780 if (!tnum_is_const(reg->var_off)) { 1781 char tn_buf[48]; 1782 1783 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1784 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1785 regno, tn_buf); 1786 return -EACCES; 1787 } 1788 off = reg->off + reg->var_off.value; 1789 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1790 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1791 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1792 regno, off, access_size); 1793 return -EACCES; 1794 } 1795 1796 if (meta && meta->raw_mode) { 1797 meta->access_size = access_size; 1798 meta->regno = regno; 1799 return 0; 1800 } 1801 1802 for (i = 0; i < access_size; i++) { 1803 u8 *stype; 1804 1805 slot = -(off + i) - 1; 1806 spi = slot / BPF_REG_SIZE; 1807 if (state->allocated_stack <= slot) 1808 goto err; 1809 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1810 if (*stype == STACK_MISC) 1811 goto mark; 1812 if (*stype == STACK_ZERO) { 1813 /* helper can write anything into the stack */ 1814 *stype = STACK_MISC; 1815 goto mark; 1816 } 1817 err: 1818 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1819 off, i, access_size); 1820 return -EACCES; 1821 mark: 1822 /* reading any byte out of 8-byte 'spill_slot' will cause 1823 * the whole slot to be marked as 'read' 1824 */ 1825 mark_reg_read(env, &state->stack[spi].spilled_ptr, 1826 state->stack[spi].spilled_ptr.parent); 1827 } 1828 return update_stack_depth(env, state, off); 1829 } 1830 1831 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1832 int access_size, bool zero_size_allowed, 1833 struct bpf_call_arg_meta *meta) 1834 { 1835 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1836 1837 switch (reg->type) { 1838 case PTR_TO_PACKET: 1839 case PTR_TO_PACKET_META: 1840 return check_packet_access(env, regno, reg->off, access_size, 1841 zero_size_allowed); 1842 case PTR_TO_MAP_VALUE: 1843 return check_map_access(env, regno, reg->off, access_size, 1844 zero_size_allowed); 1845 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1846 return check_stack_boundary(env, regno, access_size, 1847 zero_size_allowed, meta); 1848 } 1849 } 1850 1851 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1852 { 1853 return type == ARG_PTR_TO_MEM || 1854 type == ARG_PTR_TO_MEM_OR_NULL || 1855 type == ARG_PTR_TO_UNINIT_MEM; 1856 } 1857 1858 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1859 { 1860 return type == ARG_CONST_SIZE || 1861 type == ARG_CONST_SIZE_OR_ZERO; 1862 } 1863 1864 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1865 enum bpf_arg_type arg_type, 1866 struct bpf_call_arg_meta *meta) 1867 { 1868 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1869 enum bpf_reg_type expected_type, type = reg->type; 1870 int err = 0; 1871 1872 if (arg_type == ARG_DONTCARE) 1873 return 0; 1874 1875 err = check_reg_arg(env, regno, SRC_OP); 1876 if (err) 1877 return err; 1878 1879 if (arg_type == ARG_ANYTHING) { 1880 if (is_pointer_value(env, regno)) { 1881 verbose(env, "R%d leaks addr into helper function\n", 1882 regno); 1883 return -EACCES; 1884 } 1885 return 0; 1886 } 1887 1888 if (type_is_pkt_pointer(type) && 1889 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1890 verbose(env, "helper access to the packet is not allowed\n"); 1891 return -EACCES; 1892 } 1893 1894 if (arg_type == ARG_PTR_TO_MAP_KEY || 1895 arg_type == ARG_PTR_TO_MAP_VALUE) { 1896 expected_type = PTR_TO_STACK; 1897 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1898 type != expected_type) 1899 goto err_type; 1900 } else if (arg_type == ARG_CONST_SIZE || 1901 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1902 expected_type = SCALAR_VALUE; 1903 if (type != expected_type) 1904 goto err_type; 1905 } else if (arg_type == ARG_CONST_MAP_PTR) { 1906 expected_type = CONST_PTR_TO_MAP; 1907 if (type != expected_type) 1908 goto err_type; 1909 } else if (arg_type == ARG_PTR_TO_CTX) { 1910 expected_type = PTR_TO_CTX; 1911 if (type != expected_type) 1912 goto err_type; 1913 err = check_ctx_reg(env, reg, regno); 1914 if (err < 0) 1915 return err; 1916 } else if (arg_type_is_mem_ptr(arg_type)) { 1917 expected_type = PTR_TO_STACK; 1918 /* One exception here. In case function allows for NULL to be 1919 * passed in as argument, it's a SCALAR_VALUE type. Final test 1920 * happens during stack boundary checking. 1921 */ 1922 if (register_is_null(reg) && 1923 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1924 /* final test in check_stack_boundary() */; 1925 else if (!type_is_pkt_pointer(type) && 1926 type != PTR_TO_MAP_VALUE && 1927 type != expected_type) 1928 goto err_type; 1929 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1930 } else { 1931 verbose(env, "unsupported arg_type %d\n", arg_type); 1932 return -EFAULT; 1933 } 1934 1935 if (arg_type == ARG_CONST_MAP_PTR) { 1936 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1937 meta->map_ptr = reg->map_ptr; 1938 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1939 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1940 * check that [key, key + map->key_size) are within 1941 * stack limits and initialized 1942 */ 1943 if (!meta->map_ptr) { 1944 /* in function declaration map_ptr must come before 1945 * map_key, so that it's verified and known before 1946 * we have to check map_key here. Otherwise it means 1947 * that kernel subsystem misconfigured verifier 1948 */ 1949 verbose(env, "invalid map_ptr to access map->key\n"); 1950 return -EACCES; 1951 } 1952 err = check_helper_mem_access(env, regno, 1953 meta->map_ptr->key_size, false, 1954 NULL); 1955 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1956 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1957 * check [value, value + map->value_size) validity 1958 */ 1959 if (!meta->map_ptr) { 1960 /* kernel subsystem misconfigured verifier */ 1961 verbose(env, "invalid map_ptr to access map->value\n"); 1962 return -EACCES; 1963 } 1964 err = check_helper_mem_access(env, regno, 1965 meta->map_ptr->value_size, false, 1966 NULL); 1967 } else if (arg_type_is_mem_size(arg_type)) { 1968 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1969 1970 /* remember the mem_size which may be used later 1971 * to refine return values. 1972 */ 1973 meta->msize_smax_value = reg->smax_value; 1974 meta->msize_umax_value = reg->umax_value; 1975 1976 /* The register is SCALAR_VALUE; the access check 1977 * happens using its boundaries. 1978 */ 1979 if (!tnum_is_const(reg->var_off)) 1980 /* For unprivileged variable accesses, disable raw 1981 * mode so that the program is required to 1982 * initialize all the memory that the helper could 1983 * just partially fill up. 1984 */ 1985 meta = NULL; 1986 1987 if (reg->smin_value < 0) { 1988 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1989 regno); 1990 return -EACCES; 1991 } 1992 1993 if (reg->umin_value == 0) { 1994 err = check_helper_mem_access(env, regno - 1, 0, 1995 zero_size_allowed, 1996 meta); 1997 if (err) 1998 return err; 1999 } 2000 2001 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2002 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2003 regno); 2004 return -EACCES; 2005 } 2006 err = check_helper_mem_access(env, regno - 1, 2007 reg->umax_value, 2008 zero_size_allowed, meta); 2009 } 2010 2011 return err; 2012 err_type: 2013 verbose(env, "R%d type=%s expected=%s\n", regno, 2014 reg_type_str[type], reg_type_str[expected_type]); 2015 return -EACCES; 2016 } 2017 2018 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2019 struct bpf_map *map, int func_id) 2020 { 2021 if (!map) 2022 return 0; 2023 2024 /* We need a two way check, first is from map perspective ... */ 2025 switch (map->map_type) { 2026 case BPF_MAP_TYPE_PROG_ARRAY: 2027 if (func_id != BPF_FUNC_tail_call) 2028 goto error; 2029 break; 2030 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2031 if (func_id != BPF_FUNC_perf_event_read && 2032 func_id != BPF_FUNC_perf_event_output && 2033 func_id != BPF_FUNC_perf_event_read_value) 2034 goto error; 2035 break; 2036 case BPF_MAP_TYPE_STACK_TRACE: 2037 if (func_id != BPF_FUNC_get_stackid) 2038 goto error; 2039 break; 2040 case BPF_MAP_TYPE_CGROUP_ARRAY: 2041 if (func_id != BPF_FUNC_skb_under_cgroup && 2042 func_id != BPF_FUNC_current_task_under_cgroup) 2043 goto error; 2044 break; 2045 case BPF_MAP_TYPE_CGROUP_STORAGE: 2046 if (func_id != BPF_FUNC_get_local_storage) 2047 goto error; 2048 break; 2049 /* devmap returns a pointer to a live net_device ifindex that we cannot 2050 * allow to be modified from bpf side. So do not allow lookup elements 2051 * for now. 2052 */ 2053 case BPF_MAP_TYPE_DEVMAP: 2054 if (func_id != BPF_FUNC_redirect_map) 2055 goto error; 2056 break; 2057 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2058 * appear. 2059 */ 2060 case BPF_MAP_TYPE_CPUMAP: 2061 case BPF_MAP_TYPE_XSKMAP: 2062 if (func_id != BPF_FUNC_redirect_map) 2063 goto error; 2064 break; 2065 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2066 case BPF_MAP_TYPE_HASH_OF_MAPS: 2067 if (func_id != BPF_FUNC_map_lookup_elem) 2068 goto error; 2069 break; 2070 case BPF_MAP_TYPE_SOCKMAP: 2071 if (func_id != BPF_FUNC_sk_redirect_map && 2072 func_id != BPF_FUNC_sock_map_update && 2073 func_id != BPF_FUNC_map_delete_elem && 2074 func_id != BPF_FUNC_msg_redirect_map) 2075 goto error; 2076 break; 2077 case BPF_MAP_TYPE_SOCKHASH: 2078 if (func_id != BPF_FUNC_sk_redirect_hash && 2079 func_id != BPF_FUNC_sock_hash_update && 2080 func_id != BPF_FUNC_map_delete_elem && 2081 func_id != BPF_FUNC_msg_redirect_hash) 2082 goto error; 2083 break; 2084 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2085 if (func_id != BPF_FUNC_sk_select_reuseport) 2086 goto error; 2087 break; 2088 default: 2089 break; 2090 } 2091 2092 /* ... and second from the function itself. */ 2093 switch (func_id) { 2094 case BPF_FUNC_tail_call: 2095 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2096 goto error; 2097 if (env->subprog_cnt > 1) { 2098 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2099 return -EINVAL; 2100 } 2101 break; 2102 case BPF_FUNC_perf_event_read: 2103 case BPF_FUNC_perf_event_output: 2104 case BPF_FUNC_perf_event_read_value: 2105 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2106 goto error; 2107 break; 2108 case BPF_FUNC_get_stackid: 2109 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2110 goto error; 2111 break; 2112 case BPF_FUNC_current_task_under_cgroup: 2113 case BPF_FUNC_skb_under_cgroup: 2114 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2115 goto error; 2116 break; 2117 case BPF_FUNC_redirect_map: 2118 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2119 map->map_type != BPF_MAP_TYPE_CPUMAP && 2120 map->map_type != BPF_MAP_TYPE_XSKMAP) 2121 goto error; 2122 break; 2123 case BPF_FUNC_sk_redirect_map: 2124 case BPF_FUNC_msg_redirect_map: 2125 case BPF_FUNC_sock_map_update: 2126 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2127 goto error; 2128 break; 2129 case BPF_FUNC_sk_redirect_hash: 2130 case BPF_FUNC_msg_redirect_hash: 2131 case BPF_FUNC_sock_hash_update: 2132 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2133 goto error; 2134 break; 2135 case BPF_FUNC_get_local_storage: 2136 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE) 2137 goto error; 2138 break; 2139 case BPF_FUNC_sk_select_reuseport: 2140 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2141 goto error; 2142 break; 2143 default: 2144 break; 2145 } 2146 2147 return 0; 2148 error: 2149 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2150 map->map_type, func_id_name(func_id), func_id); 2151 return -EINVAL; 2152 } 2153 2154 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2155 { 2156 int count = 0; 2157 2158 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2159 count++; 2160 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2161 count++; 2162 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2163 count++; 2164 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2165 count++; 2166 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2167 count++; 2168 2169 /* We only support one arg being in raw mode at the moment, 2170 * which is sufficient for the helper functions we have 2171 * right now. 2172 */ 2173 return count <= 1; 2174 } 2175 2176 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2177 enum bpf_arg_type arg_next) 2178 { 2179 return (arg_type_is_mem_ptr(arg_curr) && 2180 !arg_type_is_mem_size(arg_next)) || 2181 (!arg_type_is_mem_ptr(arg_curr) && 2182 arg_type_is_mem_size(arg_next)); 2183 } 2184 2185 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2186 { 2187 /* bpf_xxx(..., buf, len) call will access 'len' 2188 * bytes from memory 'buf'. Both arg types need 2189 * to be paired, so make sure there's no buggy 2190 * helper function specification. 2191 */ 2192 if (arg_type_is_mem_size(fn->arg1_type) || 2193 arg_type_is_mem_ptr(fn->arg5_type) || 2194 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2195 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2196 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2197 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2198 return false; 2199 2200 return true; 2201 } 2202 2203 static int check_func_proto(const struct bpf_func_proto *fn) 2204 { 2205 return check_raw_mode_ok(fn) && 2206 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2207 } 2208 2209 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2210 * are now invalid, so turn them into unknown SCALAR_VALUE. 2211 */ 2212 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2213 struct bpf_func_state *state) 2214 { 2215 struct bpf_reg_state *regs = state->regs, *reg; 2216 int i; 2217 2218 for (i = 0; i < MAX_BPF_REG; i++) 2219 if (reg_is_pkt_pointer_any(®s[i])) 2220 mark_reg_unknown(env, regs, i); 2221 2222 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2223 if (state->stack[i].slot_type[0] != STACK_SPILL) 2224 continue; 2225 reg = &state->stack[i].spilled_ptr; 2226 if (reg_is_pkt_pointer_any(reg)) 2227 __mark_reg_unknown(reg); 2228 } 2229 } 2230 2231 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2232 { 2233 struct bpf_verifier_state *vstate = env->cur_state; 2234 int i; 2235 2236 for (i = 0; i <= vstate->curframe; i++) 2237 __clear_all_pkt_pointers(env, vstate->frame[i]); 2238 } 2239 2240 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2241 int *insn_idx) 2242 { 2243 struct bpf_verifier_state *state = env->cur_state; 2244 struct bpf_func_state *caller, *callee; 2245 int i, subprog, target_insn; 2246 2247 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2248 verbose(env, "the call stack of %d frames is too deep\n", 2249 state->curframe + 2); 2250 return -E2BIG; 2251 } 2252 2253 target_insn = *insn_idx + insn->imm; 2254 subprog = find_subprog(env, target_insn + 1); 2255 if (subprog < 0) { 2256 verbose(env, "verifier bug. No program starts at insn %d\n", 2257 target_insn + 1); 2258 return -EFAULT; 2259 } 2260 2261 caller = state->frame[state->curframe]; 2262 if (state->frame[state->curframe + 1]) { 2263 verbose(env, "verifier bug. Frame %d already allocated\n", 2264 state->curframe + 1); 2265 return -EFAULT; 2266 } 2267 2268 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2269 if (!callee) 2270 return -ENOMEM; 2271 state->frame[state->curframe + 1] = callee; 2272 2273 /* callee cannot access r0, r6 - r9 for reading and has to write 2274 * into its own stack before reading from it. 2275 * callee can read/write into caller's stack 2276 */ 2277 init_func_state(env, callee, 2278 /* remember the callsite, it will be used by bpf_exit */ 2279 *insn_idx /* callsite */, 2280 state->curframe + 1 /* frameno within this callchain */, 2281 subprog /* subprog number within this prog */); 2282 2283 /* copy r1 - r5 args that callee can access. The copy includes parent 2284 * pointers, which connects us up to the liveness chain 2285 */ 2286 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2287 callee->regs[i] = caller->regs[i]; 2288 2289 /* after the call registers r0 - r5 were scratched */ 2290 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2291 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2292 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2293 } 2294 2295 /* only increment it after check_reg_arg() finished */ 2296 state->curframe++; 2297 2298 /* and go analyze first insn of the callee */ 2299 *insn_idx = target_insn; 2300 2301 if (env->log.level) { 2302 verbose(env, "caller:\n"); 2303 print_verifier_state(env, caller); 2304 verbose(env, "callee:\n"); 2305 print_verifier_state(env, callee); 2306 } 2307 return 0; 2308 } 2309 2310 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2311 { 2312 struct bpf_verifier_state *state = env->cur_state; 2313 struct bpf_func_state *caller, *callee; 2314 struct bpf_reg_state *r0; 2315 2316 callee = state->frame[state->curframe]; 2317 r0 = &callee->regs[BPF_REG_0]; 2318 if (r0->type == PTR_TO_STACK) { 2319 /* technically it's ok to return caller's stack pointer 2320 * (or caller's caller's pointer) back to the caller, 2321 * since these pointers are valid. Only current stack 2322 * pointer will be invalid as soon as function exits, 2323 * but let's be conservative 2324 */ 2325 verbose(env, "cannot return stack pointer to the caller\n"); 2326 return -EINVAL; 2327 } 2328 2329 state->curframe--; 2330 caller = state->frame[state->curframe]; 2331 /* return to the caller whatever r0 had in the callee */ 2332 caller->regs[BPF_REG_0] = *r0; 2333 2334 *insn_idx = callee->callsite + 1; 2335 if (env->log.level) { 2336 verbose(env, "returning from callee:\n"); 2337 print_verifier_state(env, callee); 2338 verbose(env, "to caller at %d:\n", *insn_idx); 2339 print_verifier_state(env, caller); 2340 } 2341 /* clear everything in the callee */ 2342 free_func_state(callee); 2343 state->frame[state->curframe + 1] = NULL; 2344 return 0; 2345 } 2346 2347 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2348 int func_id, 2349 struct bpf_call_arg_meta *meta) 2350 { 2351 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2352 2353 if (ret_type != RET_INTEGER || 2354 (func_id != BPF_FUNC_get_stack && 2355 func_id != BPF_FUNC_probe_read_str)) 2356 return; 2357 2358 ret_reg->smax_value = meta->msize_smax_value; 2359 ret_reg->umax_value = meta->msize_umax_value; 2360 __reg_deduce_bounds(ret_reg); 2361 __reg_bound_offset(ret_reg); 2362 } 2363 2364 static int 2365 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2366 int func_id, int insn_idx) 2367 { 2368 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2369 2370 if (func_id != BPF_FUNC_tail_call && 2371 func_id != BPF_FUNC_map_lookup_elem && 2372 func_id != BPF_FUNC_map_update_elem && 2373 func_id != BPF_FUNC_map_delete_elem) 2374 return 0; 2375 2376 if (meta->map_ptr == NULL) { 2377 verbose(env, "kernel subsystem misconfigured verifier\n"); 2378 return -EINVAL; 2379 } 2380 2381 if (!BPF_MAP_PTR(aux->map_state)) 2382 bpf_map_ptr_store(aux, meta->map_ptr, 2383 meta->map_ptr->unpriv_array); 2384 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2385 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2386 meta->map_ptr->unpriv_array); 2387 return 0; 2388 } 2389 2390 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2391 { 2392 const struct bpf_func_proto *fn = NULL; 2393 struct bpf_reg_state *regs; 2394 struct bpf_call_arg_meta meta; 2395 bool changes_data; 2396 int i, err; 2397 2398 /* find function prototype */ 2399 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2400 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2401 func_id); 2402 return -EINVAL; 2403 } 2404 2405 if (env->ops->get_func_proto) 2406 fn = env->ops->get_func_proto(func_id, env->prog); 2407 if (!fn) { 2408 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2409 func_id); 2410 return -EINVAL; 2411 } 2412 2413 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2414 if (!env->prog->gpl_compatible && fn->gpl_only) { 2415 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2416 return -EINVAL; 2417 } 2418 2419 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2420 changes_data = bpf_helper_changes_pkt_data(fn->func); 2421 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2422 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2423 func_id_name(func_id), func_id); 2424 return -EINVAL; 2425 } 2426 2427 memset(&meta, 0, sizeof(meta)); 2428 meta.pkt_access = fn->pkt_access; 2429 2430 err = check_func_proto(fn); 2431 if (err) { 2432 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2433 func_id_name(func_id), func_id); 2434 return err; 2435 } 2436 2437 /* check args */ 2438 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2439 if (err) 2440 return err; 2441 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2442 if (err) 2443 return err; 2444 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2445 if (err) 2446 return err; 2447 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2448 if (err) 2449 return err; 2450 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2451 if (err) 2452 return err; 2453 2454 err = record_func_map(env, &meta, func_id, insn_idx); 2455 if (err) 2456 return err; 2457 2458 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2459 * is inferred from register state. 2460 */ 2461 for (i = 0; i < meta.access_size; i++) { 2462 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2463 BPF_WRITE, -1, false); 2464 if (err) 2465 return err; 2466 } 2467 2468 regs = cur_regs(env); 2469 2470 /* check that flags argument in get_local_storage(map, flags) is 0, 2471 * this is required because get_local_storage() can't return an error. 2472 */ 2473 if (func_id == BPF_FUNC_get_local_storage && 2474 !register_is_null(®s[BPF_REG_2])) { 2475 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2476 return -EINVAL; 2477 } 2478 2479 /* reset caller saved regs */ 2480 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2481 mark_reg_not_init(env, regs, caller_saved[i]); 2482 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2483 } 2484 2485 /* update return register (already marked as written above) */ 2486 if (fn->ret_type == RET_INTEGER) { 2487 /* sets type to SCALAR_VALUE */ 2488 mark_reg_unknown(env, regs, BPF_REG_0); 2489 } else if (fn->ret_type == RET_VOID) { 2490 regs[BPF_REG_0].type = NOT_INIT; 2491 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2492 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2493 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2494 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2495 else 2496 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2497 /* There is no offset yet applied, variable or fixed */ 2498 mark_reg_known_zero(env, regs, BPF_REG_0); 2499 /* remember map_ptr, so that check_map_access() 2500 * can check 'value_size' boundary of memory access 2501 * to map element returned from bpf_map_lookup_elem() 2502 */ 2503 if (meta.map_ptr == NULL) { 2504 verbose(env, 2505 "kernel subsystem misconfigured verifier\n"); 2506 return -EINVAL; 2507 } 2508 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2509 regs[BPF_REG_0].id = ++env->id_gen; 2510 } else { 2511 verbose(env, "unknown return type %d of func %s#%d\n", 2512 fn->ret_type, func_id_name(func_id), func_id); 2513 return -EINVAL; 2514 } 2515 2516 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2517 2518 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2519 if (err) 2520 return err; 2521 2522 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2523 const char *err_str; 2524 2525 #ifdef CONFIG_PERF_EVENTS 2526 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2527 err_str = "cannot get callchain buffer for func %s#%d\n"; 2528 #else 2529 err = -ENOTSUPP; 2530 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2531 #endif 2532 if (err) { 2533 verbose(env, err_str, func_id_name(func_id), func_id); 2534 return err; 2535 } 2536 2537 env->prog->has_callchain_buf = true; 2538 } 2539 2540 if (changes_data) 2541 clear_all_pkt_pointers(env); 2542 return 0; 2543 } 2544 2545 static bool signed_add_overflows(s64 a, s64 b) 2546 { 2547 /* Do the add in u64, where overflow is well-defined */ 2548 s64 res = (s64)((u64)a + (u64)b); 2549 2550 if (b < 0) 2551 return res > a; 2552 return res < a; 2553 } 2554 2555 static bool signed_sub_overflows(s64 a, s64 b) 2556 { 2557 /* Do the sub in u64, where overflow is well-defined */ 2558 s64 res = (s64)((u64)a - (u64)b); 2559 2560 if (b < 0) 2561 return res < a; 2562 return res > a; 2563 } 2564 2565 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2566 const struct bpf_reg_state *reg, 2567 enum bpf_reg_type type) 2568 { 2569 bool known = tnum_is_const(reg->var_off); 2570 s64 val = reg->var_off.value; 2571 s64 smin = reg->smin_value; 2572 2573 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2574 verbose(env, "math between %s pointer and %lld is not allowed\n", 2575 reg_type_str[type], val); 2576 return false; 2577 } 2578 2579 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2580 verbose(env, "%s pointer offset %d is not allowed\n", 2581 reg_type_str[type], reg->off); 2582 return false; 2583 } 2584 2585 if (smin == S64_MIN) { 2586 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2587 reg_type_str[type]); 2588 return false; 2589 } 2590 2591 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2592 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2593 smin, reg_type_str[type]); 2594 return false; 2595 } 2596 2597 return true; 2598 } 2599 2600 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2601 * Caller should also handle BPF_MOV case separately. 2602 * If we return -EACCES, caller may want to try again treating pointer as a 2603 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2604 */ 2605 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2606 struct bpf_insn *insn, 2607 const struct bpf_reg_state *ptr_reg, 2608 const struct bpf_reg_state *off_reg) 2609 { 2610 struct bpf_verifier_state *vstate = env->cur_state; 2611 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2612 struct bpf_reg_state *regs = state->regs, *dst_reg; 2613 bool known = tnum_is_const(off_reg->var_off); 2614 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2615 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2616 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2617 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2618 u8 opcode = BPF_OP(insn->code); 2619 u32 dst = insn->dst_reg; 2620 2621 dst_reg = ®s[dst]; 2622 2623 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2624 smin_val > smax_val || umin_val > umax_val) { 2625 /* Taint dst register if offset had invalid bounds derived from 2626 * e.g. dead branches. 2627 */ 2628 __mark_reg_unknown(dst_reg); 2629 return 0; 2630 } 2631 2632 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2633 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2634 verbose(env, 2635 "R%d 32-bit pointer arithmetic prohibited\n", 2636 dst); 2637 return -EACCES; 2638 } 2639 2640 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2641 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2642 dst); 2643 return -EACCES; 2644 } 2645 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2646 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2647 dst); 2648 return -EACCES; 2649 } 2650 if (ptr_reg->type == PTR_TO_PACKET_END) { 2651 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2652 dst); 2653 return -EACCES; 2654 } 2655 2656 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2657 * The id may be overwritten later if we create a new variable offset. 2658 */ 2659 dst_reg->type = ptr_reg->type; 2660 dst_reg->id = ptr_reg->id; 2661 2662 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2663 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2664 return -EINVAL; 2665 2666 switch (opcode) { 2667 case BPF_ADD: 2668 /* We can take a fixed offset as long as it doesn't overflow 2669 * the s32 'off' field 2670 */ 2671 if (known && (ptr_reg->off + smin_val == 2672 (s64)(s32)(ptr_reg->off + smin_val))) { 2673 /* pointer += K. Accumulate it into fixed offset */ 2674 dst_reg->smin_value = smin_ptr; 2675 dst_reg->smax_value = smax_ptr; 2676 dst_reg->umin_value = umin_ptr; 2677 dst_reg->umax_value = umax_ptr; 2678 dst_reg->var_off = ptr_reg->var_off; 2679 dst_reg->off = ptr_reg->off + smin_val; 2680 dst_reg->range = ptr_reg->range; 2681 break; 2682 } 2683 /* A new variable offset is created. Note that off_reg->off 2684 * == 0, since it's a scalar. 2685 * dst_reg gets the pointer type and since some positive 2686 * integer value was added to the pointer, give it a new 'id' 2687 * if it's a PTR_TO_PACKET. 2688 * this creates a new 'base' pointer, off_reg (variable) gets 2689 * added into the variable offset, and we copy the fixed offset 2690 * from ptr_reg. 2691 */ 2692 if (signed_add_overflows(smin_ptr, smin_val) || 2693 signed_add_overflows(smax_ptr, smax_val)) { 2694 dst_reg->smin_value = S64_MIN; 2695 dst_reg->smax_value = S64_MAX; 2696 } else { 2697 dst_reg->smin_value = smin_ptr + smin_val; 2698 dst_reg->smax_value = smax_ptr + smax_val; 2699 } 2700 if (umin_ptr + umin_val < umin_ptr || 2701 umax_ptr + umax_val < umax_ptr) { 2702 dst_reg->umin_value = 0; 2703 dst_reg->umax_value = U64_MAX; 2704 } else { 2705 dst_reg->umin_value = umin_ptr + umin_val; 2706 dst_reg->umax_value = umax_ptr + umax_val; 2707 } 2708 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2709 dst_reg->off = ptr_reg->off; 2710 if (reg_is_pkt_pointer(ptr_reg)) { 2711 dst_reg->id = ++env->id_gen; 2712 /* something was added to pkt_ptr, set range to zero */ 2713 dst_reg->range = 0; 2714 } 2715 break; 2716 case BPF_SUB: 2717 if (dst_reg == off_reg) { 2718 /* scalar -= pointer. Creates an unknown scalar */ 2719 verbose(env, "R%d tried to subtract pointer from scalar\n", 2720 dst); 2721 return -EACCES; 2722 } 2723 /* We don't allow subtraction from FP, because (according to 2724 * test_verifier.c test "invalid fp arithmetic", JITs might not 2725 * be able to deal with it. 2726 */ 2727 if (ptr_reg->type == PTR_TO_STACK) { 2728 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2729 dst); 2730 return -EACCES; 2731 } 2732 if (known && (ptr_reg->off - smin_val == 2733 (s64)(s32)(ptr_reg->off - smin_val))) { 2734 /* pointer -= K. Subtract it from fixed offset */ 2735 dst_reg->smin_value = smin_ptr; 2736 dst_reg->smax_value = smax_ptr; 2737 dst_reg->umin_value = umin_ptr; 2738 dst_reg->umax_value = umax_ptr; 2739 dst_reg->var_off = ptr_reg->var_off; 2740 dst_reg->id = ptr_reg->id; 2741 dst_reg->off = ptr_reg->off - smin_val; 2742 dst_reg->range = ptr_reg->range; 2743 break; 2744 } 2745 /* A new variable offset is created. If the subtrahend is known 2746 * nonnegative, then any reg->range we had before is still good. 2747 */ 2748 if (signed_sub_overflows(smin_ptr, smax_val) || 2749 signed_sub_overflows(smax_ptr, smin_val)) { 2750 /* Overflow possible, we know nothing */ 2751 dst_reg->smin_value = S64_MIN; 2752 dst_reg->smax_value = S64_MAX; 2753 } else { 2754 dst_reg->smin_value = smin_ptr - smax_val; 2755 dst_reg->smax_value = smax_ptr - smin_val; 2756 } 2757 if (umin_ptr < umax_val) { 2758 /* Overflow possible, we know nothing */ 2759 dst_reg->umin_value = 0; 2760 dst_reg->umax_value = U64_MAX; 2761 } else { 2762 /* Cannot overflow (as long as bounds are consistent) */ 2763 dst_reg->umin_value = umin_ptr - umax_val; 2764 dst_reg->umax_value = umax_ptr - umin_val; 2765 } 2766 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2767 dst_reg->off = ptr_reg->off; 2768 if (reg_is_pkt_pointer(ptr_reg)) { 2769 dst_reg->id = ++env->id_gen; 2770 /* something was added to pkt_ptr, set range to zero */ 2771 if (smin_val < 0) 2772 dst_reg->range = 0; 2773 } 2774 break; 2775 case BPF_AND: 2776 case BPF_OR: 2777 case BPF_XOR: 2778 /* bitwise ops on pointers are troublesome, prohibit. */ 2779 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2780 dst, bpf_alu_string[opcode >> 4]); 2781 return -EACCES; 2782 default: 2783 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2784 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2785 dst, bpf_alu_string[opcode >> 4]); 2786 return -EACCES; 2787 } 2788 2789 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2790 return -EINVAL; 2791 2792 __update_reg_bounds(dst_reg); 2793 __reg_deduce_bounds(dst_reg); 2794 __reg_bound_offset(dst_reg); 2795 return 0; 2796 } 2797 2798 /* WARNING: This function does calculations on 64-bit values, but the actual 2799 * execution may occur on 32-bit values. Therefore, things like bitshifts 2800 * need extra checks in the 32-bit case. 2801 */ 2802 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2803 struct bpf_insn *insn, 2804 struct bpf_reg_state *dst_reg, 2805 struct bpf_reg_state src_reg) 2806 { 2807 struct bpf_reg_state *regs = cur_regs(env); 2808 u8 opcode = BPF_OP(insn->code); 2809 bool src_known, dst_known; 2810 s64 smin_val, smax_val; 2811 u64 umin_val, umax_val; 2812 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2813 2814 smin_val = src_reg.smin_value; 2815 smax_val = src_reg.smax_value; 2816 umin_val = src_reg.umin_value; 2817 umax_val = src_reg.umax_value; 2818 src_known = tnum_is_const(src_reg.var_off); 2819 dst_known = tnum_is_const(dst_reg->var_off); 2820 2821 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2822 smin_val > smax_val || umin_val > umax_val) { 2823 /* Taint dst register if offset had invalid bounds derived from 2824 * e.g. dead branches. 2825 */ 2826 __mark_reg_unknown(dst_reg); 2827 return 0; 2828 } 2829 2830 if (!src_known && 2831 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2832 __mark_reg_unknown(dst_reg); 2833 return 0; 2834 } 2835 2836 switch (opcode) { 2837 case BPF_ADD: 2838 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2839 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2840 dst_reg->smin_value = S64_MIN; 2841 dst_reg->smax_value = S64_MAX; 2842 } else { 2843 dst_reg->smin_value += smin_val; 2844 dst_reg->smax_value += smax_val; 2845 } 2846 if (dst_reg->umin_value + umin_val < umin_val || 2847 dst_reg->umax_value + umax_val < umax_val) { 2848 dst_reg->umin_value = 0; 2849 dst_reg->umax_value = U64_MAX; 2850 } else { 2851 dst_reg->umin_value += umin_val; 2852 dst_reg->umax_value += umax_val; 2853 } 2854 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2855 break; 2856 case BPF_SUB: 2857 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2858 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2859 /* Overflow possible, we know nothing */ 2860 dst_reg->smin_value = S64_MIN; 2861 dst_reg->smax_value = S64_MAX; 2862 } else { 2863 dst_reg->smin_value -= smax_val; 2864 dst_reg->smax_value -= smin_val; 2865 } 2866 if (dst_reg->umin_value < umax_val) { 2867 /* Overflow possible, we know nothing */ 2868 dst_reg->umin_value = 0; 2869 dst_reg->umax_value = U64_MAX; 2870 } else { 2871 /* Cannot overflow (as long as bounds are consistent) */ 2872 dst_reg->umin_value -= umax_val; 2873 dst_reg->umax_value -= umin_val; 2874 } 2875 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2876 break; 2877 case BPF_MUL: 2878 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2879 if (smin_val < 0 || dst_reg->smin_value < 0) { 2880 /* Ain't nobody got time to multiply that sign */ 2881 __mark_reg_unbounded(dst_reg); 2882 __update_reg_bounds(dst_reg); 2883 break; 2884 } 2885 /* Both values are positive, so we can work with unsigned and 2886 * copy the result to signed (unless it exceeds S64_MAX). 2887 */ 2888 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2889 /* Potential overflow, we know nothing */ 2890 __mark_reg_unbounded(dst_reg); 2891 /* (except what we can learn from the var_off) */ 2892 __update_reg_bounds(dst_reg); 2893 break; 2894 } 2895 dst_reg->umin_value *= umin_val; 2896 dst_reg->umax_value *= umax_val; 2897 if (dst_reg->umax_value > S64_MAX) { 2898 /* Overflow possible, we know nothing */ 2899 dst_reg->smin_value = S64_MIN; 2900 dst_reg->smax_value = S64_MAX; 2901 } else { 2902 dst_reg->smin_value = dst_reg->umin_value; 2903 dst_reg->smax_value = dst_reg->umax_value; 2904 } 2905 break; 2906 case BPF_AND: 2907 if (src_known && dst_known) { 2908 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2909 src_reg.var_off.value); 2910 break; 2911 } 2912 /* We get our minimum from the var_off, since that's inherently 2913 * bitwise. Our maximum is the minimum of the operands' maxima. 2914 */ 2915 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2916 dst_reg->umin_value = dst_reg->var_off.value; 2917 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2918 if (dst_reg->smin_value < 0 || smin_val < 0) { 2919 /* Lose signed bounds when ANDing negative numbers, 2920 * ain't nobody got time for that. 2921 */ 2922 dst_reg->smin_value = S64_MIN; 2923 dst_reg->smax_value = S64_MAX; 2924 } else { 2925 /* ANDing two positives gives a positive, so safe to 2926 * cast result into s64. 2927 */ 2928 dst_reg->smin_value = dst_reg->umin_value; 2929 dst_reg->smax_value = dst_reg->umax_value; 2930 } 2931 /* We may learn something more from the var_off */ 2932 __update_reg_bounds(dst_reg); 2933 break; 2934 case BPF_OR: 2935 if (src_known && dst_known) { 2936 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2937 src_reg.var_off.value); 2938 break; 2939 } 2940 /* We get our maximum from the var_off, and our minimum is the 2941 * maximum of the operands' minima 2942 */ 2943 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2944 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2945 dst_reg->umax_value = dst_reg->var_off.value | 2946 dst_reg->var_off.mask; 2947 if (dst_reg->smin_value < 0 || smin_val < 0) { 2948 /* Lose signed bounds when ORing negative numbers, 2949 * ain't nobody got time for that. 2950 */ 2951 dst_reg->smin_value = S64_MIN; 2952 dst_reg->smax_value = S64_MAX; 2953 } else { 2954 /* ORing two positives gives a positive, so safe to 2955 * cast result into s64. 2956 */ 2957 dst_reg->smin_value = dst_reg->umin_value; 2958 dst_reg->smax_value = dst_reg->umax_value; 2959 } 2960 /* We may learn something more from the var_off */ 2961 __update_reg_bounds(dst_reg); 2962 break; 2963 case BPF_LSH: 2964 if (umax_val >= insn_bitness) { 2965 /* Shifts greater than 31 or 63 are undefined. 2966 * This includes shifts by a negative number. 2967 */ 2968 mark_reg_unknown(env, regs, insn->dst_reg); 2969 break; 2970 } 2971 /* We lose all sign bit information (except what we can pick 2972 * up from var_off) 2973 */ 2974 dst_reg->smin_value = S64_MIN; 2975 dst_reg->smax_value = S64_MAX; 2976 /* If we might shift our top bit out, then we know nothing */ 2977 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2978 dst_reg->umin_value = 0; 2979 dst_reg->umax_value = U64_MAX; 2980 } else { 2981 dst_reg->umin_value <<= umin_val; 2982 dst_reg->umax_value <<= umax_val; 2983 } 2984 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2985 /* We may learn something more from the var_off */ 2986 __update_reg_bounds(dst_reg); 2987 break; 2988 case BPF_RSH: 2989 if (umax_val >= insn_bitness) { 2990 /* Shifts greater than 31 or 63 are undefined. 2991 * This includes shifts by a negative number. 2992 */ 2993 mark_reg_unknown(env, regs, insn->dst_reg); 2994 break; 2995 } 2996 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2997 * be negative, then either: 2998 * 1) src_reg might be zero, so the sign bit of the result is 2999 * unknown, so we lose our signed bounds 3000 * 2) it's known negative, thus the unsigned bounds capture the 3001 * signed bounds 3002 * 3) the signed bounds cross zero, so they tell us nothing 3003 * about the result 3004 * If the value in dst_reg is known nonnegative, then again the 3005 * unsigned bounts capture the signed bounds. 3006 * Thus, in all cases it suffices to blow away our signed bounds 3007 * and rely on inferring new ones from the unsigned bounds and 3008 * var_off of the result. 3009 */ 3010 dst_reg->smin_value = S64_MIN; 3011 dst_reg->smax_value = S64_MAX; 3012 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3013 dst_reg->umin_value >>= umax_val; 3014 dst_reg->umax_value >>= umin_val; 3015 /* We may learn something more from the var_off */ 3016 __update_reg_bounds(dst_reg); 3017 break; 3018 case BPF_ARSH: 3019 if (umax_val >= insn_bitness) { 3020 /* Shifts greater than 31 or 63 are undefined. 3021 * This includes shifts by a negative number. 3022 */ 3023 mark_reg_unknown(env, regs, insn->dst_reg); 3024 break; 3025 } 3026 3027 /* Upon reaching here, src_known is true and 3028 * umax_val is equal to umin_val. 3029 */ 3030 dst_reg->smin_value >>= umin_val; 3031 dst_reg->smax_value >>= umin_val; 3032 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3033 3034 /* blow away the dst_reg umin_value/umax_value and rely on 3035 * dst_reg var_off to refine the result. 3036 */ 3037 dst_reg->umin_value = 0; 3038 dst_reg->umax_value = U64_MAX; 3039 __update_reg_bounds(dst_reg); 3040 break; 3041 default: 3042 mark_reg_unknown(env, regs, insn->dst_reg); 3043 break; 3044 } 3045 3046 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3047 /* 32-bit ALU ops are (32,32)->32 */ 3048 coerce_reg_to_size(dst_reg, 4); 3049 coerce_reg_to_size(&src_reg, 4); 3050 } 3051 3052 __reg_deduce_bounds(dst_reg); 3053 __reg_bound_offset(dst_reg); 3054 return 0; 3055 } 3056 3057 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3058 * and var_off. 3059 */ 3060 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3061 struct bpf_insn *insn) 3062 { 3063 struct bpf_verifier_state *vstate = env->cur_state; 3064 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3065 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3066 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3067 u8 opcode = BPF_OP(insn->code); 3068 3069 dst_reg = ®s[insn->dst_reg]; 3070 src_reg = NULL; 3071 if (dst_reg->type != SCALAR_VALUE) 3072 ptr_reg = dst_reg; 3073 if (BPF_SRC(insn->code) == BPF_X) { 3074 src_reg = ®s[insn->src_reg]; 3075 if (src_reg->type != SCALAR_VALUE) { 3076 if (dst_reg->type != SCALAR_VALUE) { 3077 /* Combining two pointers by any ALU op yields 3078 * an arbitrary scalar. Disallow all math except 3079 * pointer subtraction 3080 */ 3081 if (opcode == BPF_SUB){ 3082 mark_reg_unknown(env, regs, insn->dst_reg); 3083 return 0; 3084 } 3085 verbose(env, "R%d pointer %s pointer prohibited\n", 3086 insn->dst_reg, 3087 bpf_alu_string[opcode >> 4]); 3088 return -EACCES; 3089 } else { 3090 /* scalar += pointer 3091 * This is legal, but we have to reverse our 3092 * src/dest handling in computing the range 3093 */ 3094 return adjust_ptr_min_max_vals(env, insn, 3095 src_reg, dst_reg); 3096 } 3097 } else if (ptr_reg) { 3098 /* pointer += scalar */ 3099 return adjust_ptr_min_max_vals(env, insn, 3100 dst_reg, src_reg); 3101 } 3102 } else { 3103 /* Pretend the src is a reg with a known value, since we only 3104 * need to be able to read from this state. 3105 */ 3106 off_reg.type = SCALAR_VALUE; 3107 __mark_reg_known(&off_reg, insn->imm); 3108 src_reg = &off_reg; 3109 if (ptr_reg) /* pointer += K */ 3110 return adjust_ptr_min_max_vals(env, insn, 3111 ptr_reg, src_reg); 3112 } 3113 3114 /* Got here implies adding two SCALAR_VALUEs */ 3115 if (WARN_ON_ONCE(ptr_reg)) { 3116 print_verifier_state(env, state); 3117 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3118 return -EINVAL; 3119 } 3120 if (WARN_ON(!src_reg)) { 3121 print_verifier_state(env, state); 3122 verbose(env, "verifier internal error: no src_reg\n"); 3123 return -EINVAL; 3124 } 3125 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3126 } 3127 3128 /* check validity of 32-bit and 64-bit arithmetic operations */ 3129 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3130 { 3131 struct bpf_reg_state *regs = cur_regs(env); 3132 u8 opcode = BPF_OP(insn->code); 3133 int err; 3134 3135 if (opcode == BPF_END || opcode == BPF_NEG) { 3136 if (opcode == BPF_NEG) { 3137 if (BPF_SRC(insn->code) != 0 || 3138 insn->src_reg != BPF_REG_0 || 3139 insn->off != 0 || insn->imm != 0) { 3140 verbose(env, "BPF_NEG uses reserved fields\n"); 3141 return -EINVAL; 3142 } 3143 } else { 3144 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3145 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3146 BPF_CLASS(insn->code) == BPF_ALU64) { 3147 verbose(env, "BPF_END uses reserved fields\n"); 3148 return -EINVAL; 3149 } 3150 } 3151 3152 /* check src operand */ 3153 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3154 if (err) 3155 return err; 3156 3157 if (is_pointer_value(env, insn->dst_reg)) { 3158 verbose(env, "R%d pointer arithmetic prohibited\n", 3159 insn->dst_reg); 3160 return -EACCES; 3161 } 3162 3163 /* check dest operand */ 3164 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3165 if (err) 3166 return err; 3167 3168 } else if (opcode == BPF_MOV) { 3169 3170 if (BPF_SRC(insn->code) == BPF_X) { 3171 if (insn->imm != 0 || insn->off != 0) { 3172 verbose(env, "BPF_MOV uses reserved fields\n"); 3173 return -EINVAL; 3174 } 3175 3176 /* check src operand */ 3177 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3178 if (err) 3179 return err; 3180 } else { 3181 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3182 verbose(env, "BPF_MOV uses reserved fields\n"); 3183 return -EINVAL; 3184 } 3185 } 3186 3187 /* check dest operand, mark as required later */ 3188 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3189 if (err) 3190 return err; 3191 3192 if (BPF_SRC(insn->code) == BPF_X) { 3193 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3194 /* case: R1 = R2 3195 * copy register state to dest reg 3196 */ 3197 regs[insn->dst_reg] = regs[insn->src_reg]; 3198 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3199 } else { 3200 /* R1 = (u32) R2 */ 3201 if (is_pointer_value(env, insn->src_reg)) { 3202 verbose(env, 3203 "R%d partial copy of pointer\n", 3204 insn->src_reg); 3205 return -EACCES; 3206 } 3207 mark_reg_unknown(env, regs, insn->dst_reg); 3208 coerce_reg_to_size(®s[insn->dst_reg], 4); 3209 } 3210 } else { 3211 /* case: R = imm 3212 * remember the value we stored into this reg 3213 */ 3214 /* clear any state __mark_reg_known doesn't set */ 3215 mark_reg_unknown(env, regs, insn->dst_reg); 3216 regs[insn->dst_reg].type = SCALAR_VALUE; 3217 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3218 __mark_reg_known(regs + insn->dst_reg, 3219 insn->imm); 3220 } else { 3221 __mark_reg_known(regs + insn->dst_reg, 3222 (u32)insn->imm); 3223 } 3224 } 3225 3226 } else if (opcode > BPF_END) { 3227 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3228 return -EINVAL; 3229 3230 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3231 3232 if (BPF_SRC(insn->code) == BPF_X) { 3233 if (insn->imm != 0 || insn->off != 0) { 3234 verbose(env, "BPF_ALU uses reserved fields\n"); 3235 return -EINVAL; 3236 } 3237 /* check src1 operand */ 3238 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3239 if (err) 3240 return err; 3241 } else { 3242 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3243 verbose(env, "BPF_ALU uses reserved fields\n"); 3244 return -EINVAL; 3245 } 3246 } 3247 3248 /* check src2 operand */ 3249 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3250 if (err) 3251 return err; 3252 3253 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3254 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3255 verbose(env, "div by zero\n"); 3256 return -EINVAL; 3257 } 3258 3259 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3260 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3261 return -EINVAL; 3262 } 3263 3264 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3265 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3266 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3267 3268 if (insn->imm < 0 || insn->imm >= size) { 3269 verbose(env, "invalid shift %d\n", insn->imm); 3270 return -EINVAL; 3271 } 3272 } 3273 3274 /* check dest operand */ 3275 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3276 if (err) 3277 return err; 3278 3279 return adjust_reg_min_max_vals(env, insn); 3280 } 3281 3282 return 0; 3283 } 3284 3285 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3286 struct bpf_reg_state *dst_reg, 3287 enum bpf_reg_type type, 3288 bool range_right_open) 3289 { 3290 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3291 struct bpf_reg_state *regs = state->regs, *reg; 3292 u16 new_range; 3293 int i, j; 3294 3295 if (dst_reg->off < 0 || 3296 (dst_reg->off == 0 && range_right_open)) 3297 /* This doesn't give us any range */ 3298 return; 3299 3300 if (dst_reg->umax_value > MAX_PACKET_OFF || 3301 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3302 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3303 * than pkt_end, but that's because it's also less than pkt. 3304 */ 3305 return; 3306 3307 new_range = dst_reg->off; 3308 if (range_right_open) 3309 new_range--; 3310 3311 /* Examples for register markings: 3312 * 3313 * pkt_data in dst register: 3314 * 3315 * r2 = r3; 3316 * r2 += 8; 3317 * if (r2 > pkt_end) goto <handle exception> 3318 * <access okay> 3319 * 3320 * r2 = r3; 3321 * r2 += 8; 3322 * if (r2 < pkt_end) goto <access okay> 3323 * <handle exception> 3324 * 3325 * Where: 3326 * r2 == dst_reg, pkt_end == src_reg 3327 * r2=pkt(id=n,off=8,r=0) 3328 * r3=pkt(id=n,off=0,r=0) 3329 * 3330 * pkt_data in src register: 3331 * 3332 * r2 = r3; 3333 * r2 += 8; 3334 * if (pkt_end >= r2) goto <access okay> 3335 * <handle exception> 3336 * 3337 * r2 = r3; 3338 * r2 += 8; 3339 * if (pkt_end <= r2) goto <handle exception> 3340 * <access okay> 3341 * 3342 * Where: 3343 * pkt_end == dst_reg, r2 == src_reg 3344 * r2=pkt(id=n,off=8,r=0) 3345 * r3=pkt(id=n,off=0,r=0) 3346 * 3347 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3348 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3349 * and [r3, r3 + 8-1) respectively is safe to access depending on 3350 * the check. 3351 */ 3352 3353 /* If our ids match, then we must have the same max_value. And we 3354 * don't care about the other reg's fixed offset, since if it's too big 3355 * the range won't allow anything. 3356 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3357 */ 3358 for (i = 0; i < MAX_BPF_REG; i++) 3359 if (regs[i].type == type && regs[i].id == dst_reg->id) 3360 /* keep the maximum range already checked */ 3361 regs[i].range = max(regs[i].range, new_range); 3362 3363 for (j = 0; j <= vstate->curframe; j++) { 3364 state = vstate->frame[j]; 3365 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3366 if (state->stack[i].slot_type[0] != STACK_SPILL) 3367 continue; 3368 reg = &state->stack[i].spilled_ptr; 3369 if (reg->type == type && reg->id == dst_reg->id) 3370 reg->range = max(reg->range, new_range); 3371 } 3372 } 3373 } 3374 3375 /* Adjusts the register min/max values in the case that the dst_reg is the 3376 * variable register that we are working on, and src_reg is a constant or we're 3377 * simply doing a BPF_K check. 3378 * In JEQ/JNE cases we also adjust the var_off values. 3379 */ 3380 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3381 struct bpf_reg_state *false_reg, u64 val, 3382 u8 opcode) 3383 { 3384 /* If the dst_reg is a pointer, we can't learn anything about its 3385 * variable offset from the compare (unless src_reg were a pointer into 3386 * the same object, but we don't bother with that. 3387 * Since false_reg and true_reg have the same type by construction, we 3388 * only need to check one of them for pointerness. 3389 */ 3390 if (__is_pointer_value(false, false_reg)) 3391 return; 3392 3393 switch (opcode) { 3394 case BPF_JEQ: 3395 /* If this is false then we know nothing Jon Snow, but if it is 3396 * true then we know for sure. 3397 */ 3398 __mark_reg_known(true_reg, val); 3399 break; 3400 case BPF_JNE: 3401 /* If this is true we know nothing Jon Snow, but if it is false 3402 * we know the value for sure; 3403 */ 3404 __mark_reg_known(false_reg, val); 3405 break; 3406 case BPF_JGT: 3407 false_reg->umax_value = min(false_reg->umax_value, val); 3408 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3409 break; 3410 case BPF_JSGT: 3411 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3412 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3413 break; 3414 case BPF_JLT: 3415 false_reg->umin_value = max(false_reg->umin_value, val); 3416 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3417 break; 3418 case BPF_JSLT: 3419 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3420 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3421 break; 3422 case BPF_JGE: 3423 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3424 true_reg->umin_value = max(true_reg->umin_value, val); 3425 break; 3426 case BPF_JSGE: 3427 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3428 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3429 break; 3430 case BPF_JLE: 3431 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3432 true_reg->umax_value = min(true_reg->umax_value, val); 3433 break; 3434 case BPF_JSLE: 3435 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3436 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3437 break; 3438 default: 3439 break; 3440 } 3441 3442 __reg_deduce_bounds(false_reg); 3443 __reg_deduce_bounds(true_reg); 3444 /* We might have learned some bits from the bounds. */ 3445 __reg_bound_offset(false_reg); 3446 __reg_bound_offset(true_reg); 3447 /* Intersecting with the old var_off might have improved our bounds 3448 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3449 * then new var_off is (0; 0x7f...fc) which improves our umax. 3450 */ 3451 __update_reg_bounds(false_reg); 3452 __update_reg_bounds(true_reg); 3453 } 3454 3455 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3456 * the variable reg. 3457 */ 3458 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3459 struct bpf_reg_state *false_reg, u64 val, 3460 u8 opcode) 3461 { 3462 if (__is_pointer_value(false, false_reg)) 3463 return; 3464 3465 switch (opcode) { 3466 case BPF_JEQ: 3467 /* If this is false then we know nothing Jon Snow, but if it is 3468 * true then we know for sure. 3469 */ 3470 __mark_reg_known(true_reg, val); 3471 break; 3472 case BPF_JNE: 3473 /* If this is true we know nothing Jon Snow, but if it is false 3474 * we know the value for sure; 3475 */ 3476 __mark_reg_known(false_reg, val); 3477 break; 3478 case BPF_JGT: 3479 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3480 false_reg->umin_value = max(false_reg->umin_value, val); 3481 break; 3482 case BPF_JSGT: 3483 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3484 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3485 break; 3486 case BPF_JLT: 3487 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3488 false_reg->umax_value = min(false_reg->umax_value, val); 3489 break; 3490 case BPF_JSLT: 3491 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3492 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3493 break; 3494 case BPF_JGE: 3495 true_reg->umax_value = min(true_reg->umax_value, val); 3496 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3497 break; 3498 case BPF_JSGE: 3499 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3500 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3501 break; 3502 case BPF_JLE: 3503 true_reg->umin_value = max(true_reg->umin_value, val); 3504 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3505 break; 3506 case BPF_JSLE: 3507 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3508 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3509 break; 3510 default: 3511 break; 3512 } 3513 3514 __reg_deduce_bounds(false_reg); 3515 __reg_deduce_bounds(true_reg); 3516 /* We might have learned some bits from the bounds. */ 3517 __reg_bound_offset(false_reg); 3518 __reg_bound_offset(true_reg); 3519 /* Intersecting with the old var_off might have improved our bounds 3520 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3521 * then new var_off is (0; 0x7f...fc) which improves our umax. 3522 */ 3523 __update_reg_bounds(false_reg); 3524 __update_reg_bounds(true_reg); 3525 } 3526 3527 /* Regs are known to be equal, so intersect their min/max/var_off */ 3528 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3529 struct bpf_reg_state *dst_reg) 3530 { 3531 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3532 dst_reg->umin_value); 3533 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3534 dst_reg->umax_value); 3535 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3536 dst_reg->smin_value); 3537 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3538 dst_reg->smax_value); 3539 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3540 dst_reg->var_off); 3541 /* We might have learned new bounds from the var_off. */ 3542 __update_reg_bounds(src_reg); 3543 __update_reg_bounds(dst_reg); 3544 /* We might have learned something about the sign bit. */ 3545 __reg_deduce_bounds(src_reg); 3546 __reg_deduce_bounds(dst_reg); 3547 /* We might have learned some bits from the bounds. */ 3548 __reg_bound_offset(src_reg); 3549 __reg_bound_offset(dst_reg); 3550 /* Intersecting with the old var_off might have improved our bounds 3551 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3552 * then new var_off is (0; 0x7f...fc) which improves our umax. 3553 */ 3554 __update_reg_bounds(src_reg); 3555 __update_reg_bounds(dst_reg); 3556 } 3557 3558 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3559 struct bpf_reg_state *true_dst, 3560 struct bpf_reg_state *false_src, 3561 struct bpf_reg_state *false_dst, 3562 u8 opcode) 3563 { 3564 switch (opcode) { 3565 case BPF_JEQ: 3566 __reg_combine_min_max(true_src, true_dst); 3567 break; 3568 case BPF_JNE: 3569 __reg_combine_min_max(false_src, false_dst); 3570 break; 3571 } 3572 } 3573 3574 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3575 bool is_null) 3576 { 3577 struct bpf_reg_state *reg = ®s[regno]; 3578 3579 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3580 /* Old offset (both fixed and variable parts) should 3581 * have been known-zero, because we don't allow pointer 3582 * arithmetic on pointers that might be NULL. 3583 */ 3584 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3585 !tnum_equals_const(reg->var_off, 0) || 3586 reg->off)) { 3587 __mark_reg_known_zero(reg); 3588 reg->off = 0; 3589 } 3590 if (is_null) { 3591 reg->type = SCALAR_VALUE; 3592 } else if (reg->map_ptr->inner_map_meta) { 3593 reg->type = CONST_PTR_TO_MAP; 3594 reg->map_ptr = reg->map_ptr->inner_map_meta; 3595 } else { 3596 reg->type = PTR_TO_MAP_VALUE; 3597 } 3598 /* We don't need id from this point onwards anymore, thus we 3599 * should better reset it, so that state pruning has chances 3600 * to take effect. 3601 */ 3602 reg->id = 0; 3603 } 3604 } 3605 3606 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3607 * be folded together at some point. 3608 */ 3609 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3610 bool is_null) 3611 { 3612 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3613 struct bpf_reg_state *regs = state->regs; 3614 u32 id = regs[regno].id; 3615 int i, j; 3616 3617 for (i = 0; i < MAX_BPF_REG; i++) 3618 mark_map_reg(regs, i, id, is_null); 3619 3620 for (j = 0; j <= vstate->curframe; j++) { 3621 state = vstate->frame[j]; 3622 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3623 if (state->stack[i].slot_type[0] != STACK_SPILL) 3624 continue; 3625 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3626 } 3627 } 3628 } 3629 3630 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3631 struct bpf_reg_state *dst_reg, 3632 struct bpf_reg_state *src_reg, 3633 struct bpf_verifier_state *this_branch, 3634 struct bpf_verifier_state *other_branch) 3635 { 3636 if (BPF_SRC(insn->code) != BPF_X) 3637 return false; 3638 3639 switch (BPF_OP(insn->code)) { 3640 case BPF_JGT: 3641 if ((dst_reg->type == PTR_TO_PACKET && 3642 src_reg->type == PTR_TO_PACKET_END) || 3643 (dst_reg->type == PTR_TO_PACKET_META && 3644 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3645 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3646 find_good_pkt_pointers(this_branch, dst_reg, 3647 dst_reg->type, false); 3648 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3649 src_reg->type == PTR_TO_PACKET) || 3650 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3651 src_reg->type == PTR_TO_PACKET_META)) { 3652 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3653 find_good_pkt_pointers(other_branch, src_reg, 3654 src_reg->type, true); 3655 } else { 3656 return false; 3657 } 3658 break; 3659 case BPF_JLT: 3660 if ((dst_reg->type == PTR_TO_PACKET && 3661 src_reg->type == PTR_TO_PACKET_END) || 3662 (dst_reg->type == PTR_TO_PACKET_META && 3663 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3664 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3665 find_good_pkt_pointers(other_branch, dst_reg, 3666 dst_reg->type, true); 3667 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3668 src_reg->type == PTR_TO_PACKET) || 3669 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3670 src_reg->type == PTR_TO_PACKET_META)) { 3671 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3672 find_good_pkt_pointers(this_branch, src_reg, 3673 src_reg->type, false); 3674 } else { 3675 return false; 3676 } 3677 break; 3678 case BPF_JGE: 3679 if ((dst_reg->type == PTR_TO_PACKET && 3680 src_reg->type == PTR_TO_PACKET_END) || 3681 (dst_reg->type == PTR_TO_PACKET_META && 3682 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3683 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3684 find_good_pkt_pointers(this_branch, dst_reg, 3685 dst_reg->type, true); 3686 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3687 src_reg->type == PTR_TO_PACKET) || 3688 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3689 src_reg->type == PTR_TO_PACKET_META)) { 3690 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3691 find_good_pkt_pointers(other_branch, src_reg, 3692 src_reg->type, false); 3693 } else { 3694 return false; 3695 } 3696 break; 3697 case BPF_JLE: 3698 if ((dst_reg->type == PTR_TO_PACKET && 3699 src_reg->type == PTR_TO_PACKET_END) || 3700 (dst_reg->type == PTR_TO_PACKET_META && 3701 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3702 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3703 find_good_pkt_pointers(other_branch, dst_reg, 3704 dst_reg->type, false); 3705 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3706 src_reg->type == PTR_TO_PACKET) || 3707 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3708 src_reg->type == PTR_TO_PACKET_META)) { 3709 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3710 find_good_pkt_pointers(this_branch, src_reg, 3711 src_reg->type, true); 3712 } else { 3713 return false; 3714 } 3715 break; 3716 default: 3717 return false; 3718 } 3719 3720 return true; 3721 } 3722 3723 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3724 struct bpf_insn *insn, int *insn_idx) 3725 { 3726 struct bpf_verifier_state *this_branch = env->cur_state; 3727 struct bpf_verifier_state *other_branch; 3728 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3729 struct bpf_reg_state *dst_reg, *other_branch_regs; 3730 u8 opcode = BPF_OP(insn->code); 3731 int err; 3732 3733 if (opcode > BPF_JSLE) { 3734 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3735 return -EINVAL; 3736 } 3737 3738 if (BPF_SRC(insn->code) == BPF_X) { 3739 if (insn->imm != 0) { 3740 verbose(env, "BPF_JMP uses reserved fields\n"); 3741 return -EINVAL; 3742 } 3743 3744 /* check src1 operand */ 3745 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3746 if (err) 3747 return err; 3748 3749 if (is_pointer_value(env, insn->src_reg)) { 3750 verbose(env, "R%d pointer comparison prohibited\n", 3751 insn->src_reg); 3752 return -EACCES; 3753 } 3754 } else { 3755 if (insn->src_reg != BPF_REG_0) { 3756 verbose(env, "BPF_JMP uses reserved fields\n"); 3757 return -EINVAL; 3758 } 3759 } 3760 3761 /* check src2 operand */ 3762 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3763 if (err) 3764 return err; 3765 3766 dst_reg = ®s[insn->dst_reg]; 3767 3768 /* detect if R == 0 where R was initialized to zero earlier */ 3769 if (BPF_SRC(insn->code) == BPF_K && 3770 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3771 dst_reg->type == SCALAR_VALUE && 3772 tnum_is_const(dst_reg->var_off)) { 3773 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3774 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3775 /* if (imm == imm) goto pc+off; 3776 * only follow the goto, ignore fall-through 3777 */ 3778 *insn_idx += insn->off; 3779 return 0; 3780 } else { 3781 /* if (imm != imm) goto pc+off; 3782 * only follow fall-through branch, since 3783 * that's where the program will go 3784 */ 3785 return 0; 3786 } 3787 } 3788 3789 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3790 if (!other_branch) 3791 return -EFAULT; 3792 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3793 3794 /* detect if we are comparing against a constant value so we can adjust 3795 * our min/max values for our dst register. 3796 * this is only legit if both are scalars (or pointers to the same 3797 * object, I suppose, but we don't support that right now), because 3798 * otherwise the different base pointers mean the offsets aren't 3799 * comparable. 3800 */ 3801 if (BPF_SRC(insn->code) == BPF_X) { 3802 if (dst_reg->type == SCALAR_VALUE && 3803 regs[insn->src_reg].type == SCALAR_VALUE) { 3804 if (tnum_is_const(regs[insn->src_reg].var_off)) 3805 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3806 dst_reg, regs[insn->src_reg].var_off.value, 3807 opcode); 3808 else if (tnum_is_const(dst_reg->var_off)) 3809 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3810 ®s[insn->src_reg], 3811 dst_reg->var_off.value, opcode); 3812 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3813 /* Comparing for equality, we can combine knowledge */ 3814 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3815 &other_branch_regs[insn->dst_reg], 3816 ®s[insn->src_reg], 3817 ®s[insn->dst_reg], opcode); 3818 } 3819 } else if (dst_reg->type == SCALAR_VALUE) { 3820 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3821 dst_reg, insn->imm, opcode); 3822 } 3823 3824 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3825 if (BPF_SRC(insn->code) == BPF_K && 3826 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3827 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3828 /* Mark all identical map registers in each branch as either 3829 * safe or unknown depending R == 0 or R != 0 conditional. 3830 */ 3831 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3832 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3833 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3834 this_branch, other_branch) && 3835 is_pointer_value(env, insn->dst_reg)) { 3836 verbose(env, "R%d pointer comparison prohibited\n", 3837 insn->dst_reg); 3838 return -EACCES; 3839 } 3840 if (env->log.level) 3841 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3842 return 0; 3843 } 3844 3845 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3846 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3847 { 3848 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3849 3850 return (struct bpf_map *) (unsigned long) imm64; 3851 } 3852 3853 /* verify BPF_LD_IMM64 instruction */ 3854 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3855 { 3856 struct bpf_reg_state *regs = cur_regs(env); 3857 int err; 3858 3859 if (BPF_SIZE(insn->code) != BPF_DW) { 3860 verbose(env, "invalid BPF_LD_IMM insn\n"); 3861 return -EINVAL; 3862 } 3863 if (insn->off != 0) { 3864 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3865 return -EINVAL; 3866 } 3867 3868 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3869 if (err) 3870 return err; 3871 3872 if (insn->src_reg == 0) { 3873 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3874 3875 regs[insn->dst_reg].type = SCALAR_VALUE; 3876 __mark_reg_known(®s[insn->dst_reg], imm); 3877 return 0; 3878 } 3879 3880 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3881 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3882 3883 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3884 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3885 return 0; 3886 } 3887 3888 static bool may_access_skb(enum bpf_prog_type type) 3889 { 3890 switch (type) { 3891 case BPF_PROG_TYPE_SOCKET_FILTER: 3892 case BPF_PROG_TYPE_SCHED_CLS: 3893 case BPF_PROG_TYPE_SCHED_ACT: 3894 return true; 3895 default: 3896 return false; 3897 } 3898 } 3899 3900 /* verify safety of LD_ABS|LD_IND instructions: 3901 * - they can only appear in the programs where ctx == skb 3902 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3903 * preserve R6-R9, and store return value into R0 3904 * 3905 * Implicit input: 3906 * ctx == skb == R6 == CTX 3907 * 3908 * Explicit input: 3909 * SRC == any register 3910 * IMM == 32-bit immediate 3911 * 3912 * Output: 3913 * R0 - 8/16/32-bit skb data converted to cpu endianness 3914 */ 3915 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3916 { 3917 struct bpf_reg_state *regs = cur_regs(env); 3918 u8 mode = BPF_MODE(insn->code); 3919 int i, err; 3920 3921 if (!may_access_skb(env->prog->type)) { 3922 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3923 return -EINVAL; 3924 } 3925 3926 if (!env->ops->gen_ld_abs) { 3927 verbose(env, "bpf verifier is misconfigured\n"); 3928 return -EINVAL; 3929 } 3930 3931 if (env->subprog_cnt > 1) { 3932 /* when program has LD_ABS insn JITs and interpreter assume 3933 * that r1 == ctx == skb which is not the case for callees 3934 * that can have arbitrary arguments. It's problematic 3935 * for main prog as well since JITs would need to analyze 3936 * all functions in order to make proper register save/restore 3937 * decisions in the main prog. Hence disallow LD_ABS with calls 3938 */ 3939 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3940 return -EINVAL; 3941 } 3942 3943 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3944 BPF_SIZE(insn->code) == BPF_DW || 3945 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3946 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3947 return -EINVAL; 3948 } 3949 3950 /* check whether implicit source operand (register R6) is readable */ 3951 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3952 if (err) 3953 return err; 3954 3955 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3956 verbose(env, 3957 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3958 return -EINVAL; 3959 } 3960 3961 if (mode == BPF_IND) { 3962 /* check explicit source operand */ 3963 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3964 if (err) 3965 return err; 3966 } 3967 3968 /* reset caller saved regs to unreadable */ 3969 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3970 mark_reg_not_init(env, regs, caller_saved[i]); 3971 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3972 } 3973 3974 /* mark destination R0 register as readable, since it contains 3975 * the value fetched from the packet. 3976 * Already marked as written above. 3977 */ 3978 mark_reg_unknown(env, regs, BPF_REG_0); 3979 return 0; 3980 } 3981 3982 static int check_return_code(struct bpf_verifier_env *env) 3983 { 3984 struct bpf_reg_state *reg; 3985 struct tnum range = tnum_range(0, 1); 3986 3987 switch (env->prog->type) { 3988 case BPF_PROG_TYPE_CGROUP_SKB: 3989 case BPF_PROG_TYPE_CGROUP_SOCK: 3990 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 3991 case BPF_PROG_TYPE_SOCK_OPS: 3992 case BPF_PROG_TYPE_CGROUP_DEVICE: 3993 break; 3994 default: 3995 return 0; 3996 } 3997 3998 reg = cur_regs(env) + BPF_REG_0; 3999 if (reg->type != SCALAR_VALUE) { 4000 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4001 reg_type_str[reg->type]); 4002 return -EINVAL; 4003 } 4004 4005 if (!tnum_in(range, reg->var_off)) { 4006 verbose(env, "At program exit the register R0 "); 4007 if (!tnum_is_unknown(reg->var_off)) { 4008 char tn_buf[48]; 4009 4010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4011 verbose(env, "has value %s", tn_buf); 4012 } else { 4013 verbose(env, "has unknown scalar value"); 4014 } 4015 verbose(env, " should have been 0 or 1\n"); 4016 return -EINVAL; 4017 } 4018 return 0; 4019 } 4020 4021 /* non-recursive DFS pseudo code 4022 * 1 procedure DFS-iterative(G,v): 4023 * 2 label v as discovered 4024 * 3 let S be a stack 4025 * 4 S.push(v) 4026 * 5 while S is not empty 4027 * 6 t <- S.pop() 4028 * 7 if t is what we're looking for: 4029 * 8 return t 4030 * 9 for all edges e in G.adjacentEdges(t) do 4031 * 10 if edge e is already labelled 4032 * 11 continue with the next edge 4033 * 12 w <- G.adjacentVertex(t,e) 4034 * 13 if vertex w is not discovered and not explored 4035 * 14 label e as tree-edge 4036 * 15 label w as discovered 4037 * 16 S.push(w) 4038 * 17 continue at 5 4039 * 18 else if vertex w is discovered 4040 * 19 label e as back-edge 4041 * 20 else 4042 * 21 // vertex w is explored 4043 * 22 label e as forward- or cross-edge 4044 * 23 label t as explored 4045 * 24 S.pop() 4046 * 4047 * convention: 4048 * 0x10 - discovered 4049 * 0x11 - discovered and fall-through edge labelled 4050 * 0x12 - discovered and fall-through and branch edges labelled 4051 * 0x20 - explored 4052 */ 4053 4054 enum { 4055 DISCOVERED = 0x10, 4056 EXPLORED = 0x20, 4057 FALLTHROUGH = 1, 4058 BRANCH = 2, 4059 }; 4060 4061 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4062 4063 static int *insn_stack; /* stack of insns to process */ 4064 static int cur_stack; /* current stack index */ 4065 static int *insn_state; 4066 4067 /* t, w, e - match pseudo-code above: 4068 * t - index of current instruction 4069 * w - next instruction 4070 * e - edge 4071 */ 4072 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4073 { 4074 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4075 return 0; 4076 4077 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4078 return 0; 4079 4080 if (w < 0 || w >= env->prog->len) { 4081 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4082 return -EINVAL; 4083 } 4084 4085 if (e == BRANCH) 4086 /* mark branch target for state pruning */ 4087 env->explored_states[w] = STATE_LIST_MARK; 4088 4089 if (insn_state[w] == 0) { 4090 /* tree-edge */ 4091 insn_state[t] = DISCOVERED | e; 4092 insn_state[w] = DISCOVERED; 4093 if (cur_stack >= env->prog->len) 4094 return -E2BIG; 4095 insn_stack[cur_stack++] = w; 4096 return 1; 4097 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4098 verbose(env, "back-edge from insn %d to %d\n", t, w); 4099 return -EINVAL; 4100 } else if (insn_state[w] == EXPLORED) { 4101 /* forward- or cross-edge */ 4102 insn_state[t] = DISCOVERED | e; 4103 } else { 4104 verbose(env, "insn state internal bug\n"); 4105 return -EFAULT; 4106 } 4107 return 0; 4108 } 4109 4110 /* non-recursive depth-first-search to detect loops in BPF program 4111 * loop == back-edge in directed graph 4112 */ 4113 static int check_cfg(struct bpf_verifier_env *env) 4114 { 4115 struct bpf_insn *insns = env->prog->insnsi; 4116 int insn_cnt = env->prog->len; 4117 int ret = 0; 4118 int i, t; 4119 4120 ret = check_subprogs(env); 4121 if (ret < 0) 4122 return ret; 4123 4124 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4125 if (!insn_state) 4126 return -ENOMEM; 4127 4128 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4129 if (!insn_stack) { 4130 kfree(insn_state); 4131 return -ENOMEM; 4132 } 4133 4134 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4135 insn_stack[0] = 0; /* 0 is the first instruction */ 4136 cur_stack = 1; 4137 4138 peek_stack: 4139 if (cur_stack == 0) 4140 goto check_state; 4141 t = insn_stack[cur_stack - 1]; 4142 4143 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4144 u8 opcode = BPF_OP(insns[t].code); 4145 4146 if (opcode == BPF_EXIT) { 4147 goto mark_explored; 4148 } else if (opcode == BPF_CALL) { 4149 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4150 if (ret == 1) 4151 goto peek_stack; 4152 else if (ret < 0) 4153 goto err_free; 4154 if (t + 1 < insn_cnt) 4155 env->explored_states[t + 1] = STATE_LIST_MARK; 4156 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4157 env->explored_states[t] = STATE_LIST_MARK; 4158 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4159 if (ret == 1) 4160 goto peek_stack; 4161 else if (ret < 0) 4162 goto err_free; 4163 } 4164 } else if (opcode == BPF_JA) { 4165 if (BPF_SRC(insns[t].code) != BPF_K) { 4166 ret = -EINVAL; 4167 goto err_free; 4168 } 4169 /* unconditional jump with single edge */ 4170 ret = push_insn(t, t + insns[t].off + 1, 4171 FALLTHROUGH, env); 4172 if (ret == 1) 4173 goto peek_stack; 4174 else if (ret < 0) 4175 goto err_free; 4176 /* tell verifier to check for equivalent states 4177 * after every call and jump 4178 */ 4179 if (t + 1 < insn_cnt) 4180 env->explored_states[t + 1] = STATE_LIST_MARK; 4181 } else { 4182 /* conditional jump with two edges */ 4183 env->explored_states[t] = STATE_LIST_MARK; 4184 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4185 if (ret == 1) 4186 goto peek_stack; 4187 else if (ret < 0) 4188 goto err_free; 4189 4190 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4191 if (ret == 1) 4192 goto peek_stack; 4193 else if (ret < 0) 4194 goto err_free; 4195 } 4196 } else { 4197 /* all other non-branch instructions with single 4198 * fall-through edge 4199 */ 4200 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4201 if (ret == 1) 4202 goto peek_stack; 4203 else if (ret < 0) 4204 goto err_free; 4205 } 4206 4207 mark_explored: 4208 insn_state[t] = EXPLORED; 4209 if (cur_stack-- <= 0) { 4210 verbose(env, "pop stack internal bug\n"); 4211 ret = -EFAULT; 4212 goto err_free; 4213 } 4214 goto peek_stack; 4215 4216 check_state: 4217 for (i = 0; i < insn_cnt; i++) { 4218 if (insn_state[i] != EXPLORED) { 4219 verbose(env, "unreachable insn %d\n", i); 4220 ret = -EINVAL; 4221 goto err_free; 4222 } 4223 } 4224 ret = 0; /* cfg looks good */ 4225 4226 err_free: 4227 kfree(insn_state); 4228 kfree(insn_stack); 4229 return ret; 4230 } 4231 4232 /* check %cur's range satisfies %old's */ 4233 static bool range_within(struct bpf_reg_state *old, 4234 struct bpf_reg_state *cur) 4235 { 4236 return old->umin_value <= cur->umin_value && 4237 old->umax_value >= cur->umax_value && 4238 old->smin_value <= cur->smin_value && 4239 old->smax_value >= cur->smax_value; 4240 } 4241 4242 /* Maximum number of register states that can exist at once */ 4243 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4244 struct idpair { 4245 u32 old; 4246 u32 cur; 4247 }; 4248 4249 /* If in the old state two registers had the same id, then they need to have 4250 * the same id in the new state as well. But that id could be different from 4251 * the old state, so we need to track the mapping from old to new ids. 4252 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4253 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4254 * regs with a different old id could still have new id 9, we don't care about 4255 * that. 4256 * So we look through our idmap to see if this old id has been seen before. If 4257 * so, we require the new id to match; otherwise, we add the id pair to the map. 4258 */ 4259 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4260 { 4261 unsigned int i; 4262 4263 for (i = 0; i < ID_MAP_SIZE; i++) { 4264 if (!idmap[i].old) { 4265 /* Reached an empty slot; haven't seen this id before */ 4266 idmap[i].old = old_id; 4267 idmap[i].cur = cur_id; 4268 return true; 4269 } 4270 if (idmap[i].old == old_id) 4271 return idmap[i].cur == cur_id; 4272 } 4273 /* We ran out of idmap slots, which should be impossible */ 4274 WARN_ON_ONCE(1); 4275 return false; 4276 } 4277 4278 /* Returns true if (rold safe implies rcur safe) */ 4279 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4280 struct idpair *idmap) 4281 { 4282 bool equal; 4283 4284 if (!(rold->live & REG_LIVE_READ)) 4285 /* explored state didn't use this */ 4286 return true; 4287 4288 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4289 4290 if (rold->type == PTR_TO_STACK) 4291 /* two stack pointers are equal only if they're pointing to 4292 * the same stack frame, since fp-8 in foo != fp-8 in bar 4293 */ 4294 return equal && rold->frameno == rcur->frameno; 4295 4296 if (equal) 4297 return true; 4298 4299 if (rold->type == NOT_INIT) 4300 /* explored state can't have used this */ 4301 return true; 4302 if (rcur->type == NOT_INIT) 4303 return false; 4304 switch (rold->type) { 4305 case SCALAR_VALUE: 4306 if (rcur->type == SCALAR_VALUE) { 4307 /* new val must satisfy old val knowledge */ 4308 return range_within(rold, rcur) && 4309 tnum_in(rold->var_off, rcur->var_off); 4310 } else { 4311 /* We're trying to use a pointer in place of a scalar. 4312 * Even if the scalar was unbounded, this could lead to 4313 * pointer leaks because scalars are allowed to leak 4314 * while pointers are not. We could make this safe in 4315 * special cases if root is calling us, but it's 4316 * probably not worth the hassle. 4317 */ 4318 return false; 4319 } 4320 case PTR_TO_MAP_VALUE: 4321 /* If the new min/max/var_off satisfy the old ones and 4322 * everything else matches, we are OK. 4323 * We don't care about the 'id' value, because nothing 4324 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4325 */ 4326 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4327 range_within(rold, rcur) && 4328 tnum_in(rold->var_off, rcur->var_off); 4329 case PTR_TO_MAP_VALUE_OR_NULL: 4330 /* a PTR_TO_MAP_VALUE could be safe to use as a 4331 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4332 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4333 * checked, doing so could have affected others with the same 4334 * id, and we can't check for that because we lost the id when 4335 * we converted to a PTR_TO_MAP_VALUE. 4336 */ 4337 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4338 return false; 4339 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4340 return false; 4341 /* Check our ids match any regs they're supposed to */ 4342 return check_ids(rold->id, rcur->id, idmap); 4343 case PTR_TO_PACKET_META: 4344 case PTR_TO_PACKET: 4345 if (rcur->type != rold->type) 4346 return false; 4347 /* We must have at least as much range as the old ptr 4348 * did, so that any accesses which were safe before are 4349 * still safe. This is true even if old range < old off, 4350 * since someone could have accessed through (ptr - k), or 4351 * even done ptr -= k in a register, to get a safe access. 4352 */ 4353 if (rold->range > rcur->range) 4354 return false; 4355 /* If the offsets don't match, we can't trust our alignment; 4356 * nor can we be sure that we won't fall out of range. 4357 */ 4358 if (rold->off != rcur->off) 4359 return false; 4360 /* id relations must be preserved */ 4361 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4362 return false; 4363 /* new val must satisfy old val knowledge */ 4364 return range_within(rold, rcur) && 4365 tnum_in(rold->var_off, rcur->var_off); 4366 case PTR_TO_CTX: 4367 case CONST_PTR_TO_MAP: 4368 case PTR_TO_PACKET_END: 4369 /* Only valid matches are exact, which memcmp() above 4370 * would have accepted 4371 */ 4372 default: 4373 /* Don't know what's going on, just say it's not safe */ 4374 return false; 4375 } 4376 4377 /* Shouldn't get here; if we do, say it's not safe */ 4378 WARN_ON_ONCE(1); 4379 return false; 4380 } 4381 4382 static bool stacksafe(struct bpf_func_state *old, 4383 struct bpf_func_state *cur, 4384 struct idpair *idmap) 4385 { 4386 int i, spi; 4387 4388 /* if explored stack has more populated slots than current stack 4389 * such stacks are not equivalent 4390 */ 4391 if (old->allocated_stack > cur->allocated_stack) 4392 return false; 4393 4394 /* walk slots of the explored stack and ignore any additional 4395 * slots in the current stack, since explored(safe) state 4396 * didn't use them 4397 */ 4398 for (i = 0; i < old->allocated_stack; i++) { 4399 spi = i / BPF_REG_SIZE; 4400 4401 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4402 /* explored state didn't use this */ 4403 continue; 4404 4405 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4406 continue; 4407 /* if old state was safe with misc data in the stack 4408 * it will be safe with zero-initialized stack. 4409 * The opposite is not true 4410 */ 4411 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4412 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4413 continue; 4414 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4415 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4416 /* Ex: old explored (safe) state has STACK_SPILL in 4417 * this stack slot, but current has has STACK_MISC -> 4418 * this verifier states are not equivalent, 4419 * return false to continue verification of this path 4420 */ 4421 return false; 4422 if (i % BPF_REG_SIZE) 4423 continue; 4424 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4425 continue; 4426 if (!regsafe(&old->stack[spi].spilled_ptr, 4427 &cur->stack[spi].spilled_ptr, 4428 idmap)) 4429 /* when explored and current stack slot are both storing 4430 * spilled registers, check that stored pointers types 4431 * are the same as well. 4432 * Ex: explored safe path could have stored 4433 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4434 * but current path has stored: 4435 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4436 * such verifier states are not equivalent. 4437 * return false to continue verification of this path 4438 */ 4439 return false; 4440 } 4441 return true; 4442 } 4443 4444 /* compare two verifier states 4445 * 4446 * all states stored in state_list are known to be valid, since 4447 * verifier reached 'bpf_exit' instruction through them 4448 * 4449 * this function is called when verifier exploring different branches of 4450 * execution popped from the state stack. If it sees an old state that has 4451 * more strict register state and more strict stack state then this execution 4452 * branch doesn't need to be explored further, since verifier already 4453 * concluded that more strict state leads to valid finish. 4454 * 4455 * Therefore two states are equivalent if register state is more conservative 4456 * and explored stack state is more conservative than the current one. 4457 * Example: 4458 * explored current 4459 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4460 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4461 * 4462 * In other words if current stack state (one being explored) has more 4463 * valid slots than old one that already passed validation, it means 4464 * the verifier can stop exploring and conclude that current state is valid too 4465 * 4466 * Similarly with registers. If explored state has register type as invalid 4467 * whereas register type in current state is meaningful, it means that 4468 * the current state will reach 'bpf_exit' instruction safely 4469 */ 4470 static bool func_states_equal(struct bpf_func_state *old, 4471 struct bpf_func_state *cur) 4472 { 4473 struct idpair *idmap; 4474 bool ret = false; 4475 int i; 4476 4477 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4478 /* If we failed to allocate the idmap, just say it's not safe */ 4479 if (!idmap) 4480 return false; 4481 4482 for (i = 0; i < MAX_BPF_REG; i++) { 4483 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4484 goto out_free; 4485 } 4486 4487 if (!stacksafe(old, cur, idmap)) 4488 goto out_free; 4489 ret = true; 4490 out_free: 4491 kfree(idmap); 4492 return ret; 4493 } 4494 4495 static bool states_equal(struct bpf_verifier_env *env, 4496 struct bpf_verifier_state *old, 4497 struct bpf_verifier_state *cur) 4498 { 4499 int i; 4500 4501 if (old->curframe != cur->curframe) 4502 return false; 4503 4504 /* for states to be equal callsites have to be the same 4505 * and all frame states need to be equivalent 4506 */ 4507 for (i = 0; i <= old->curframe; i++) { 4508 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4509 return false; 4510 if (!func_states_equal(old->frame[i], cur->frame[i])) 4511 return false; 4512 } 4513 return true; 4514 } 4515 4516 /* A write screens off any subsequent reads; but write marks come from the 4517 * straight-line code between a state and its parent. When we arrive at an 4518 * equivalent state (jump target or such) we didn't arrive by the straight-line 4519 * code, so read marks in the state must propagate to the parent regardless 4520 * of the state's write marks. That's what 'parent == state->parent' comparison 4521 * in mark_reg_read() is for. 4522 */ 4523 static int propagate_liveness(struct bpf_verifier_env *env, 4524 const struct bpf_verifier_state *vstate, 4525 struct bpf_verifier_state *vparent) 4526 { 4527 int i, frame, err = 0; 4528 struct bpf_func_state *state, *parent; 4529 4530 if (vparent->curframe != vstate->curframe) { 4531 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4532 vparent->curframe, vstate->curframe); 4533 return -EFAULT; 4534 } 4535 /* Propagate read liveness of registers... */ 4536 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4537 /* We don't need to worry about FP liveness because it's read-only */ 4538 for (i = 0; i < BPF_REG_FP; i++) { 4539 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4540 continue; 4541 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4542 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 4543 &vparent->frame[vstate->curframe]->regs[i]); 4544 if (err) 4545 return err; 4546 } 4547 } 4548 4549 /* ... and stack slots */ 4550 for (frame = 0; frame <= vstate->curframe; frame++) { 4551 state = vstate->frame[frame]; 4552 parent = vparent->frame[frame]; 4553 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4554 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4555 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4556 continue; 4557 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4558 mark_reg_read(env, &state->stack[i].spilled_ptr, 4559 &parent->stack[i].spilled_ptr); 4560 } 4561 } 4562 return err; 4563 } 4564 4565 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4566 { 4567 struct bpf_verifier_state_list *new_sl; 4568 struct bpf_verifier_state_list *sl; 4569 struct bpf_verifier_state *cur = env->cur_state, *new; 4570 int i, j, err; 4571 4572 sl = env->explored_states[insn_idx]; 4573 if (!sl) 4574 /* this 'insn_idx' instruction wasn't marked, so we will not 4575 * be doing state search here 4576 */ 4577 return 0; 4578 4579 while (sl != STATE_LIST_MARK) { 4580 if (states_equal(env, &sl->state, cur)) { 4581 /* reached equivalent register/stack state, 4582 * prune the search. 4583 * Registers read by the continuation are read by us. 4584 * If we have any write marks in env->cur_state, they 4585 * will prevent corresponding reads in the continuation 4586 * from reaching our parent (an explored_state). Our 4587 * own state will get the read marks recorded, but 4588 * they'll be immediately forgotten as we're pruning 4589 * this state and will pop a new one. 4590 */ 4591 err = propagate_liveness(env, &sl->state, cur); 4592 if (err) 4593 return err; 4594 return 1; 4595 } 4596 sl = sl->next; 4597 } 4598 4599 /* there were no equivalent states, remember current one. 4600 * technically the current state is not proven to be safe yet, 4601 * but it will either reach outer most bpf_exit (which means it's safe) 4602 * or it will be rejected. Since there are no loops, we won't be 4603 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4604 * again on the way to bpf_exit 4605 */ 4606 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4607 if (!new_sl) 4608 return -ENOMEM; 4609 4610 /* add new state to the head of linked list */ 4611 new = &new_sl->state; 4612 err = copy_verifier_state(new, cur); 4613 if (err) { 4614 free_verifier_state(new, false); 4615 kfree(new_sl); 4616 return err; 4617 } 4618 new_sl->next = env->explored_states[insn_idx]; 4619 env->explored_states[insn_idx] = new_sl; 4620 /* connect new state to parentage chain */ 4621 for (i = 0; i < BPF_REG_FP; i++) 4622 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 4623 /* clear write marks in current state: the writes we did are not writes 4624 * our child did, so they don't screen off its reads from us. 4625 * (There are no read marks in current state, because reads always mark 4626 * their parent and current state never has children yet. Only 4627 * explored_states can get read marks.) 4628 */ 4629 for (i = 0; i < BPF_REG_FP; i++) 4630 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4631 4632 /* all stack frames are accessible from callee, clear them all */ 4633 for (j = 0; j <= cur->curframe; j++) { 4634 struct bpf_func_state *frame = cur->frame[j]; 4635 struct bpf_func_state *newframe = new->frame[j]; 4636 4637 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 4638 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4639 frame->stack[i].spilled_ptr.parent = 4640 &newframe->stack[i].spilled_ptr; 4641 } 4642 } 4643 return 0; 4644 } 4645 4646 static int do_check(struct bpf_verifier_env *env) 4647 { 4648 struct bpf_verifier_state *state; 4649 struct bpf_insn *insns = env->prog->insnsi; 4650 struct bpf_reg_state *regs; 4651 int insn_cnt = env->prog->len, i; 4652 int insn_idx, prev_insn_idx = 0; 4653 int insn_processed = 0; 4654 bool do_print_state = false; 4655 4656 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4657 if (!state) 4658 return -ENOMEM; 4659 state->curframe = 0; 4660 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4661 if (!state->frame[0]) { 4662 kfree(state); 4663 return -ENOMEM; 4664 } 4665 env->cur_state = state; 4666 init_func_state(env, state->frame[0], 4667 BPF_MAIN_FUNC /* callsite */, 4668 0 /* frameno */, 4669 0 /* subprogno, zero == main subprog */); 4670 insn_idx = 0; 4671 for (;;) { 4672 struct bpf_insn *insn; 4673 u8 class; 4674 int err; 4675 4676 if (insn_idx >= insn_cnt) { 4677 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4678 insn_idx, insn_cnt); 4679 return -EFAULT; 4680 } 4681 4682 insn = &insns[insn_idx]; 4683 class = BPF_CLASS(insn->code); 4684 4685 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4686 verbose(env, 4687 "BPF program is too large. Processed %d insn\n", 4688 insn_processed); 4689 return -E2BIG; 4690 } 4691 4692 err = is_state_visited(env, insn_idx); 4693 if (err < 0) 4694 return err; 4695 if (err == 1) { 4696 /* found equivalent state, can prune the search */ 4697 if (env->log.level) { 4698 if (do_print_state) 4699 verbose(env, "\nfrom %d to %d: safe\n", 4700 prev_insn_idx, insn_idx); 4701 else 4702 verbose(env, "%d: safe\n", insn_idx); 4703 } 4704 goto process_bpf_exit; 4705 } 4706 4707 if (need_resched()) 4708 cond_resched(); 4709 4710 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4711 if (env->log.level > 1) 4712 verbose(env, "%d:", insn_idx); 4713 else 4714 verbose(env, "\nfrom %d to %d:", 4715 prev_insn_idx, insn_idx); 4716 print_verifier_state(env, state->frame[state->curframe]); 4717 do_print_state = false; 4718 } 4719 4720 if (env->log.level) { 4721 const struct bpf_insn_cbs cbs = { 4722 .cb_print = verbose, 4723 .private_data = env, 4724 }; 4725 4726 verbose(env, "%d: ", insn_idx); 4727 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4728 } 4729 4730 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4731 err = bpf_prog_offload_verify_insn(env, insn_idx, 4732 prev_insn_idx); 4733 if (err) 4734 return err; 4735 } 4736 4737 regs = cur_regs(env); 4738 env->insn_aux_data[insn_idx].seen = true; 4739 if (class == BPF_ALU || class == BPF_ALU64) { 4740 err = check_alu_op(env, insn); 4741 if (err) 4742 return err; 4743 4744 } else if (class == BPF_LDX) { 4745 enum bpf_reg_type *prev_src_type, src_reg_type; 4746 4747 /* check for reserved fields is already done */ 4748 4749 /* check src operand */ 4750 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4751 if (err) 4752 return err; 4753 4754 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4755 if (err) 4756 return err; 4757 4758 src_reg_type = regs[insn->src_reg].type; 4759 4760 /* check that memory (src_reg + off) is readable, 4761 * the state of dst_reg will be updated by this func 4762 */ 4763 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4764 BPF_SIZE(insn->code), BPF_READ, 4765 insn->dst_reg, false); 4766 if (err) 4767 return err; 4768 4769 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4770 4771 if (*prev_src_type == NOT_INIT) { 4772 /* saw a valid insn 4773 * dst_reg = *(u32 *)(src_reg + off) 4774 * save type to validate intersecting paths 4775 */ 4776 *prev_src_type = src_reg_type; 4777 4778 } else if (src_reg_type != *prev_src_type && 4779 (src_reg_type == PTR_TO_CTX || 4780 *prev_src_type == PTR_TO_CTX)) { 4781 /* ABuser program is trying to use the same insn 4782 * dst_reg = *(u32*) (src_reg + off) 4783 * with different pointer types: 4784 * src_reg == ctx in one branch and 4785 * src_reg == stack|map in some other branch. 4786 * Reject it. 4787 */ 4788 verbose(env, "same insn cannot be used with different pointers\n"); 4789 return -EINVAL; 4790 } 4791 4792 } else if (class == BPF_STX) { 4793 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4794 4795 if (BPF_MODE(insn->code) == BPF_XADD) { 4796 err = check_xadd(env, insn_idx, insn); 4797 if (err) 4798 return err; 4799 insn_idx++; 4800 continue; 4801 } 4802 4803 /* check src1 operand */ 4804 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4805 if (err) 4806 return err; 4807 /* check src2 operand */ 4808 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4809 if (err) 4810 return err; 4811 4812 dst_reg_type = regs[insn->dst_reg].type; 4813 4814 /* check that memory (dst_reg + off) is writeable */ 4815 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4816 BPF_SIZE(insn->code), BPF_WRITE, 4817 insn->src_reg, false); 4818 if (err) 4819 return err; 4820 4821 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4822 4823 if (*prev_dst_type == NOT_INIT) { 4824 *prev_dst_type = dst_reg_type; 4825 } else if (dst_reg_type != *prev_dst_type && 4826 (dst_reg_type == PTR_TO_CTX || 4827 *prev_dst_type == PTR_TO_CTX)) { 4828 verbose(env, "same insn cannot be used with different pointers\n"); 4829 return -EINVAL; 4830 } 4831 4832 } else if (class == BPF_ST) { 4833 if (BPF_MODE(insn->code) != BPF_MEM || 4834 insn->src_reg != BPF_REG_0) { 4835 verbose(env, "BPF_ST uses reserved fields\n"); 4836 return -EINVAL; 4837 } 4838 /* check src operand */ 4839 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4840 if (err) 4841 return err; 4842 4843 if (is_ctx_reg(env, insn->dst_reg)) { 4844 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4845 insn->dst_reg); 4846 return -EACCES; 4847 } 4848 4849 /* check that memory (dst_reg + off) is writeable */ 4850 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4851 BPF_SIZE(insn->code), BPF_WRITE, 4852 -1, false); 4853 if (err) 4854 return err; 4855 4856 } else if (class == BPF_JMP) { 4857 u8 opcode = BPF_OP(insn->code); 4858 4859 if (opcode == BPF_CALL) { 4860 if (BPF_SRC(insn->code) != BPF_K || 4861 insn->off != 0 || 4862 (insn->src_reg != BPF_REG_0 && 4863 insn->src_reg != BPF_PSEUDO_CALL) || 4864 insn->dst_reg != BPF_REG_0) { 4865 verbose(env, "BPF_CALL uses reserved fields\n"); 4866 return -EINVAL; 4867 } 4868 4869 if (insn->src_reg == BPF_PSEUDO_CALL) 4870 err = check_func_call(env, insn, &insn_idx); 4871 else 4872 err = check_helper_call(env, insn->imm, insn_idx); 4873 if (err) 4874 return err; 4875 4876 } else if (opcode == BPF_JA) { 4877 if (BPF_SRC(insn->code) != BPF_K || 4878 insn->imm != 0 || 4879 insn->src_reg != BPF_REG_0 || 4880 insn->dst_reg != BPF_REG_0) { 4881 verbose(env, "BPF_JA uses reserved fields\n"); 4882 return -EINVAL; 4883 } 4884 4885 insn_idx += insn->off + 1; 4886 continue; 4887 4888 } else if (opcode == BPF_EXIT) { 4889 if (BPF_SRC(insn->code) != BPF_K || 4890 insn->imm != 0 || 4891 insn->src_reg != BPF_REG_0 || 4892 insn->dst_reg != BPF_REG_0) { 4893 verbose(env, "BPF_EXIT uses reserved fields\n"); 4894 return -EINVAL; 4895 } 4896 4897 if (state->curframe) { 4898 /* exit from nested function */ 4899 prev_insn_idx = insn_idx; 4900 err = prepare_func_exit(env, &insn_idx); 4901 if (err) 4902 return err; 4903 do_print_state = true; 4904 continue; 4905 } 4906 4907 /* eBPF calling convetion is such that R0 is used 4908 * to return the value from eBPF program. 4909 * Make sure that it's readable at this time 4910 * of bpf_exit, which means that program wrote 4911 * something into it earlier 4912 */ 4913 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4914 if (err) 4915 return err; 4916 4917 if (is_pointer_value(env, BPF_REG_0)) { 4918 verbose(env, "R0 leaks addr as return value\n"); 4919 return -EACCES; 4920 } 4921 4922 err = check_return_code(env); 4923 if (err) 4924 return err; 4925 process_bpf_exit: 4926 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4927 if (err < 0) { 4928 if (err != -ENOENT) 4929 return err; 4930 break; 4931 } else { 4932 do_print_state = true; 4933 continue; 4934 } 4935 } else { 4936 err = check_cond_jmp_op(env, insn, &insn_idx); 4937 if (err) 4938 return err; 4939 } 4940 } else if (class == BPF_LD) { 4941 u8 mode = BPF_MODE(insn->code); 4942 4943 if (mode == BPF_ABS || mode == BPF_IND) { 4944 err = check_ld_abs(env, insn); 4945 if (err) 4946 return err; 4947 4948 } else if (mode == BPF_IMM) { 4949 err = check_ld_imm(env, insn); 4950 if (err) 4951 return err; 4952 4953 insn_idx++; 4954 env->insn_aux_data[insn_idx].seen = true; 4955 } else { 4956 verbose(env, "invalid BPF_LD mode\n"); 4957 return -EINVAL; 4958 } 4959 } else { 4960 verbose(env, "unknown insn class %d\n", class); 4961 return -EINVAL; 4962 } 4963 4964 insn_idx++; 4965 } 4966 4967 verbose(env, "processed %d insns (limit %d), stack depth ", 4968 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4969 for (i = 0; i < env->subprog_cnt; i++) { 4970 u32 depth = env->subprog_info[i].stack_depth; 4971 4972 verbose(env, "%d", depth); 4973 if (i + 1 < env->subprog_cnt) 4974 verbose(env, "+"); 4975 } 4976 verbose(env, "\n"); 4977 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 4978 return 0; 4979 } 4980 4981 static int check_map_prealloc(struct bpf_map *map) 4982 { 4983 return (map->map_type != BPF_MAP_TYPE_HASH && 4984 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4985 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4986 !(map->map_flags & BPF_F_NO_PREALLOC); 4987 } 4988 4989 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4990 struct bpf_map *map, 4991 struct bpf_prog *prog) 4992 4993 { 4994 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4995 * preallocated hash maps, since doing memory allocation 4996 * in overflow_handler can crash depending on where nmi got 4997 * triggered. 4998 */ 4999 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5000 if (!check_map_prealloc(map)) { 5001 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5002 return -EINVAL; 5003 } 5004 if (map->inner_map_meta && 5005 !check_map_prealloc(map->inner_map_meta)) { 5006 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5007 return -EINVAL; 5008 } 5009 } 5010 5011 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5012 !bpf_offload_prog_map_match(prog, map)) { 5013 verbose(env, "offload device mismatch between prog and map\n"); 5014 return -EINVAL; 5015 } 5016 5017 return 0; 5018 } 5019 5020 /* look for pseudo eBPF instructions that access map FDs and 5021 * replace them with actual map pointers 5022 */ 5023 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5024 { 5025 struct bpf_insn *insn = env->prog->insnsi; 5026 int insn_cnt = env->prog->len; 5027 int i, j, err; 5028 5029 err = bpf_prog_calc_tag(env->prog); 5030 if (err) 5031 return err; 5032 5033 for (i = 0; i < insn_cnt; i++, insn++) { 5034 if (BPF_CLASS(insn->code) == BPF_LDX && 5035 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5036 verbose(env, "BPF_LDX uses reserved fields\n"); 5037 return -EINVAL; 5038 } 5039 5040 if (BPF_CLASS(insn->code) == BPF_STX && 5041 ((BPF_MODE(insn->code) != BPF_MEM && 5042 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5043 verbose(env, "BPF_STX uses reserved fields\n"); 5044 return -EINVAL; 5045 } 5046 5047 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5048 struct bpf_map *map; 5049 struct fd f; 5050 5051 if (i == insn_cnt - 1 || insn[1].code != 0 || 5052 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5053 insn[1].off != 0) { 5054 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5055 return -EINVAL; 5056 } 5057 5058 if (insn->src_reg == 0) 5059 /* valid generic load 64-bit imm */ 5060 goto next_insn; 5061 5062 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5063 verbose(env, 5064 "unrecognized bpf_ld_imm64 insn\n"); 5065 return -EINVAL; 5066 } 5067 5068 f = fdget(insn->imm); 5069 map = __bpf_map_get(f); 5070 if (IS_ERR(map)) { 5071 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5072 insn->imm); 5073 return PTR_ERR(map); 5074 } 5075 5076 err = check_map_prog_compatibility(env, map, env->prog); 5077 if (err) { 5078 fdput(f); 5079 return err; 5080 } 5081 5082 /* store map pointer inside BPF_LD_IMM64 instruction */ 5083 insn[0].imm = (u32) (unsigned long) map; 5084 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5085 5086 /* check whether we recorded this map already */ 5087 for (j = 0; j < env->used_map_cnt; j++) 5088 if (env->used_maps[j] == map) { 5089 fdput(f); 5090 goto next_insn; 5091 } 5092 5093 if (env->used_map_cnt >= MAX_USED_MAPS) { 5094 fdput(f); 5095 return -E2BIG; 5096 } 5097 5098 /* hold the map. If the program is rejected by verifier, 5099 * the map will be released by release_maps() or it 5100 * will be used by the valid program until it's unloaded 5101 * and all maps are released in free_used_maps() 5102 */ 5103 map = bpf_map_inc(map, false); 5104 if (IS_ERR(map)) { 5105 fdput(f); 5106 return PTR_ERR(map); 5107 } 5108 env->used_maps[env->used_map_cnt++] = map; 5109 5110 if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE && 5111 bpf_cgroup_storage_assign(env->prog, map)) { 5112 verbose(env, 5113 "only one cgroup storage is allowed\n"); 5114 fdput(f); 5115 return -EBUSY; 5116 } 5117 5118 fdput(f); 5119 next_insn: 5120 insn++; 5121 i++; 5122 continue; 5123 } 5124 5125 /* Basic sanity check before we invest more work here. */ 5126 if (!bpf_opcode_in_insntable(insn->code)) { 5127 verbose(env, "unknown opcode %02x\n", insn->code); 5128 return -EINVAL; 5129 } 5130 } 5131 5132 /* now all pseudo BPF_LD_IMM64 instructions load valid 5133 * 'struct bpf_map *' into a register instead of user map_fd. 5134 * These pointers will be used later by verifier to validate map access. 5135 */ 5136 return 0; 5137 } 5138 5139 /* drop refcnt of maps used by the rejected program */ 5140 static void release_maps(struct bpf_verifier_env *env) 5141 { 5142 int i; 5143 5144 if (env->prog->aux->cgroup_storage) 5145 bpf_cgroup_storage_release(env->prog, 5146 env->prog->aux->cgroup_storage); 5147 5148 for (i = 0; i < env->used_map_cnt; i++) 5149 bpf_map_put(env->used_maps[i]); 5150 } 5151 5152 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5153 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5154 { 5155 struct bpf_insn *insn = env->prog->insnsi; 5156 int insn_cnt = env->prog->len; 5157 int i; 5158 5159 for (i = 0; i < insn_cnt; i++, insn++) 5160 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5161 insn->src_reg = 0; 5162 } 5163 5164 /* single env->prog->insni[off] instruction was replaced with the range 5165 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5166 * [0, off) and [off, end) to new locations, so the patched range stays zero 5167 */ 5168 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5169 u32 off, u32 cnt) 5170 { 5171 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5172 int i; 5173 5174 if (cnt == 1) 5175 return 0; 5176 new_data = vzalloc(array_size(prog_len, 5177 sizeof(struct bpf_insn_aux_data))); 5178 if (!new_data) 5179 return -ENOMEM; 5180 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5181 memcpy(new_data + off + cnt - 1, old_data + off, 5182 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5183 for (i = off; i < off + cnt - 1; i++) 5184 new_data[i].seen = true; 5185 env->insn_aux_data = new_data; 5186 vfree(old_data); 5187 return 0; 5188 } 5189 5190 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5191 { 5192 int i; 5193 5194 if (len == 1) 5195 return; 5196 /* NOTE: fake 'exit' subprog should be updated as well. */ 5197 for (i = 0; i <= env->subprog_cnt; i++) { 5198 if (env->subprog_info[i].start < off) 5199 continue; 5200 env->subprog_info[i].start += len - 1; 5201 } 5202 } 5203 5204 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5205 const struct bpf_insn *patch, u32 len) 5206 { 5207 struct bpf_prog *new_prog; 5208 5209 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5210 if (!new_prog) 5211 return NULL; 5212 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5213 return NULL; 5214 adjust_subprog_starts(env, off, len); 5215 return new_prog; 5216 } 5217 5218 /* The verifier does more data flow analysis than llvm and will not 5219 * explore branches that are dead at run time. Malicious programs can 5220 * have dead code too. Therefore replace all dead at-run-time code 5221 * with 'ja -1'. 5222 * 5223 * Just nops are not optimal, e.g. if they would sit at the end of the 5224 * program and through another bug we would manage to jump there, then 5225 * we'd execute beyond program memory otherwise. Returning exception 5226 * code also wouldn't work since we can have subprogs where the dead 5227 * code could be located. 5228 */ 5229 static void sanitize_dead_code(struct bpf_verifier_env *env) 5230 { 5231 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5232 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5233 struct bpf_insn *insn = env->prog->insnsi; 5234 const int insn_cnt = env->prog->len; 5235 int i; 5236 5237 for (i = 0; i < insn_cnt; i++) { 5238 if (aux_data[i].seen) 5239 continue; 5240 memcpy(insn + i, &trap, sizeof(trap)); 5241 } 5242 } 5243 5244 /* convert load instructions that access fields of 'struct __sk_buff' 5245 * into sequence of instructions that access fields of 'struct sk_buff' 5246 */ 5247 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5248 { 5249 const struct bpf_verifier_ops *ops = env->ops; 5250 int i, cnt, size, ctx_field_size, delta = 0; 5251 const int insn_cnt = env->prog->len; 5252 struct bpf_insn insn_buf[16], *insn; 5253 struct bpf_prog *new_prog; 5254 enum bpf_access_type type; 5255 bool is_narrower_load; 5256 u32 target_size; 5257 5258 if (ops->gen_prologue) { 5259 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5260 env->prog); 5261 if (cnt >= ARRAY_SIZE(insn_buf)) { 5262 verbose(env, "bpf verifier is misconfigured\n"); 5263 return -EINVAL; 5264 } else if (cnt) { 5265 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5266 if (!new_prog) 5267 return -ENOMEM; 5268 5269 env->prog = new_prog; 5270 delta += cnt - 1; 5271 } 5272 } 5273 5274 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5275 return 0; 5276 5277 insn = env->prog->insnsi + delta; 5278 5279 for (i = 0; i < insn_cnt; i++, insn++) { 5280 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5281 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5282 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5283 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5284 type = BPF_READ; 5285 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5286 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5287 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5288 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5289 type = BPF_WRITE; 5290 else 5291 continue; 5292 5293 if (type == BPF_WRITE && 5294 env->insn_aux_data[i + delta].sanitize_stack_off) { 5295 struct bpf_insn patch[] = { 5296 /* Sanitize suspicious stack slot with zero. 5297 * There are no memory dependencies for this store, 5298 * since it's only using frame pointer and immediate 5299 * constant of zero 5300 */ 5301 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5302 env->insn_aux_data[i + delta].sanitize_stack_off, 5303 0), 5304 /* the original STX instruction will immediately 5305 * overwrite the same stack slot with appropriate value 5306 */ 5307 *insn, 5308 }; 5309 5310 cnt = ARRAY_SIZE(patch); 5311 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5312 if (!new_prog) 5313 return -ENOMEM; 5314 5315 delta += cnt - 1; 5316 env->prog = new_prog; 5317 insn = new_prog->insnsi + i + delta; 5318 continue; 5319 } 5320 5321 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5322 continue; 5323 5324 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5325 size = BPF_LDST_BYTES(insn); 5326 5327 /* If the read access is a narrower load of the field, 5328 * convert to a 4/8-byte load, to minimum program type specific 5329 * convert_ctx_access changes. If conversion is successful, 5330 * we will apply proper mask to the result. 5331 */ 5332 is_narrower_load = size < ctx_field_size; 5333 if (is_narrower_load) { 5334 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5335 u32 off = insn->off; 5336 u8 size_code; 5337 5338 if (type == BPF_WRITE) { 5339 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5340 return -EINVAL; 5341 } 5342 5343 size_code = BPF_H; 5344 if (ctx_field_size == 4) 5345 size_code = BPF_W; 5346 else if (ctx_field_size == 8) 5347 size_code = BPF_DW; 5348 5349 insn->off = off & ~(size_default - 1); 5350 insn->code = BPF_LDX | BPF_MEM | size_code; 5351 } 5352 5353 target_size = 0; 5354 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5355 &target_size); 5356 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5357 (ctx_field_size && !target_size)) { 5358 verbose(env, "bpf verifier is misconfigured\n"); 5359 return -EINVAL; 5360 } 5361 5362 if (is_narrower_load && size < target_size) { 5363 if (ctx_field_size <= 4) 5364 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5365 (1 << size * 8) - 1); 5366 else 5367 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5368 (1 << size * 8) - 1); 5369 } 5370 5371 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5372 if (!new_prog) 5373 return -ENOMEM; 5374 5375 delta += cnt - 1; 5376 5377 /* keep walking new program and skip insns we just inserted */ 5378 env->prog = new_prog; 5379 insn = new_prog->insnsi + i + delta; 5380 } 5381 5382 return 0; 5383 } 5384 5385 static int jit_subprogs(struct bpf_verifier_env *env) 5386 { 5387 struct bpf_prog *prog = env->prog, **func, *tmp; 5388 int i, j, subprog_start, subprog_end = 0, len, subprog; 5389 struct bpf_insn *insn; 5390 void *old_bpf_func; 5391 int err = -ENOMEM; 5392 5393 if (env->subprog_cnt <= 1) 5394 return 0; 5395 5396 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5397 if (insn->code != (BPF_JMP | BPF_CALL) || 5398 insn->src_reg != BPF_PSEUDO_CALL) 5399 continue; 5400 /* Upon error here we cannot fall back to interpreter but 5401 * need a hard reject of the program. Thus -EFAULT is 5402 * propagated in any case. 5403 */ 5404 subprog = find_subprog(env, i + insn->imm + 1); 5405 if (subprog < 0) { 5406 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5407 i + insn->imm + 1); 5408 return -EFAULT; 5409 } 5410 /* temporarily remember subprog id inside insn instead of 5411 * aux_data, since next loop will split up all insns into funcs 5412 */ 5413 insn->off = subprog; 5414 /* remember original imm in case JIT fails and fallback 5415 * to interpreter will be needed 5416 */ 5417 env->insn_aux_data[i].call_imm = insn->imm; 5418 /* point imm to __bpf_call_base+1 from JITs point of view */ 5419 insn->imm = 1; 5420 } 5421 5422 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5423 if (!func) 5424 goto out_undo_insn; 5425 5426 for (i = 0; i < env->subprog_cnt; i++) { 5427 subprog_start = subprog_end; 5428 subprog_end = env->subprog_info[i + 1].start; 5429 5430 len = subprog_end - subprog_start; 5431 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5432 if (!func[i]) 5433 goto out_free; 5434 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5435 len * sizeof(struct bpf_insn)); 5436 func[i]->type = prog->type; 5437 func[i]->len = len; 5438 if (bpf_prog_calc_tag(func[i])) 5439 goto out_free; 5440 func[i]->is_func = 1; 5441 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5442 * Long term would need debug info to populate names 5443 */ 5444 func[i]->aux->name[0] = 'F'; 5445 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5446 func[i]->jit_requested = 1; 5447 func[i] = bpf_int_jit_compile(func[i]); 5448 if (!func[i]->jited) { 5449 err = -ENOTSUPP; 5450 goto out_free; 5451 } 5452 cond_resched(); 5453 } 5454 /* at this point all bpf functions were successfully JITed 5455 * now populate all bpf_calls with correct addresses and 5456 * run last pass of JIT 5457 */ 5458 for (i = 0; i < env->subprog_cnt; i++) { 5459 insn = func[i]->insnsi; 5460 for (j = 0; j < func[i]->len; j++, insn++) { 5461 if (insn->code != (BPF_JMP | BPF_CALL) || 5462 insn->src_reg != BPF_PSEUDO_CALL) 5463 continue; 5464 subprog = insn->off; 5465 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5466 func[subprog]->bpf_func - 5467 __bpf_call_base; 5468 } 5469 5470 /* we use the aux data to keep a list of the start addresses 5471 * of the JITed images for each function in the program 5472 * 5473 * for some architectures, such as powerpc64, the imm field 5474 * might not be large enough to hold the offset of the start 5475 * address of the callee's JITed image from __bpf_call_base 5476 * 5477 * in such cases, we can lookup the start address of a callee 5478 * by using its subprog id, available from the off field of 5479 * the call instruction, as an index for this list 5480 */ 5481 func[i]->aux->func = func; 5482 func[i]->aux->func_cnt = env->subprog_cnt; 5483 } 5484 for (i = 0; i < env->subprog_cnt; i++) { 5485 old_bpf_func = func[i]->bpf_func; 5486 tmp = bpf_int_jit_compile(func[i]); 5487 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5488 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5489 err = -ENOTSUPP; 5490 goto out_free; 5491 } 5492 cond_resched(); 5493 } 5494 5495 /* finally lock prog and jit images for all functions and 5496 * populate kallsysm 5497 */ 5498 for (i = 0; i < env->subprog_cnt; i++) { 5499 bpf_prog_lock_ro(func[i]); 5500 bpf_prog_kallsyms_add(func[i]); 5501 } 5502 5503 /* Last step: make now unused interpreter insns from main 5504 * prog consistent for later dump requests, so they can 5505 * later look the same as if they were interpreted only. 5506 */ 5507 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5508 if (insn->code != (BPF_JMP | BPF_CALL) || 5509 insn->src_reg != BPF_PSEUDO_CALL) 5510 continue; 5511 insn->off = env->insn_aux_data[i].call_imm; 5512 subprog = find_subprog(env, i + insn->off + 1); 5513 insn->imm = subprog; 5514 } 5515 5516 prog->jited = 1; 5517 prog->bpf_func = func[0]->bpf_func; 5518 prog->aux->func = func; 5519 prog->aux->func_cnt = env->subprog_cnt; 5520 return 0; 5521 out_free: 5522 for (i = 0; i < env->subprog_cnt; i++) 5523 if (func[i]) 5524 bpf_jit_free(func[i]); 5525 kfree(func); 5526 out_undo_insn: 5527 /* cleanup main prog to be interpreted */ 5528 prog->jit_requested = 0; 5529 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5530 if (insn->code != (BPF_JMP | BPF_CALL) || 5531 insn->src_reg != BPF_PSEUDO_CALL) 5532 continue; 5533 insn->off = 0; 5534 insn->imm = env->insn_aux_data[i].call_imm; 5535 } 5536 return err; 5537 } 5538 5539 static int fixup_call_args(struct bpf_verifier_env *env) 5540 { 5541 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5542 struct bpf_prog *prog = env->prog; 5543 struct bpf_insn *insn = prog->insnsi; 5544 int i, depth; 5545 #endif 5546 int err; 5547 5548 err = 0; 5549 if (env->prog->jit_requested) { 5550 err = jit_subprogs(env); 5551 if (err == 0) 5552 return 0; 5553 if (err == -EFAULT) 5554 return err; 5555 } 5556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5557 for (i = 0; i < prog->len; i++, insn++) { 5558 if (insn->code != (BPF_JMP | BPF_CALL) || 5559 insn->src_reg != BPF_PSEUDO_CALL) 5560 continue; 5561 depth = get_callee_stack_depth(env, insn, i); 5562 if (depth < 0) 5563 return depth; 5564 bpf_patch_call_args(insn, depth); 5565 } 5566 err = 0; 5567 #endif 5568 return err; 5569 } 5570 5571 /* fixup insn->imm field of bpf_call instructions 5572 * and inline eligible helpers as explicit sequence of BPF instructions 5573 * 5574 * this function is called after eBPF program passed verification 5575 */ 5576 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5577 { 5578 struct bpf_prog *prog = env->prog; 5579 struct bpf_insn *insn = prog->insnsi; 5580 const struct bpf_func_proto *fn; 5581 const int insn_cnt = prog->len; 5582 const struct bpf_map_ops *ops; 5583 struct bpf_insn_aux_data *aux; 5584 struct bpf_insn insn_buf[16]; 5585 struct bpf_prog *new_prog; 5586 struct bpf_map *map_ptr; 5587 int i, cnt, delta = 0; 5588 5589 for (i = 0; i < insn_cnt; i++, insn++) { 5590 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5591 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5592 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5593 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5594 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5595 struct bpf_insn mask_and_div[] = { 5596 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5597 /* Rx div 0 -> 0 */ 5598 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5599 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5600 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5601 *insn, 5602 }; 5603 struct bpf_insn mask_and_mod[] = { 5604 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5605 /* Rx mod 0 -> Rx */ 5606 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5607 *insn, 5608 }; 5609 struct bpf_insn *patchlet; 5610 5611 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5612 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5613 patchlet = mask_and_div + (is64 ? 1 : 0); 5614 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5615 } else { 5616 patchlet = mask_and_mod + (is64 ? 1 : 0); 5617 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5618 } 5619 5620 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5621 if (!new_prog) 5622 return -ENOMEM; 5623 5624 delta += cnt - 1; 5625 env->prog = prog = new_prog; 5626 insn = new_prog->insnsi + i + delta; 5627 continue; 5628 } 5629 5630 if (BPF_CLASS(insn->code) == BPF_LD && 5631 (BPF_MODE(insn->code) == BPF_ABS || 5632 BPF_MODE(insn->code) == BPF_IND)) { 5633 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5634 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5635 verbose(env, "bpf verifier is misconfigured\n"); 5636 return -EINVAL; 5637 } 5638 5639 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5640 if (!new_prog) 5641 return -ENOMEM; 5642 5643 delta += cnt - 1; 5644 env->prog = prog = new_prog; 5645 insn = new_prog->insnsi + i + delta; 5646 continue; 5647 } 5648 5649 if (insn->code != (BPF_JMP | BPF_CALL)) 5650 continue; 5651 if (insn->src_reg == BPF_PSEUDO_CALL) 5652 continue; 5653 5654 if (insn->imm == BPF_FUNC_get_route_realm) 5655 prog->dst_needed = 1; 5656 if (insn->imm == BPF_FUNC_get_prandom_u32) 5657 bpf_user_rnd_init_once(); 5658 if (insn->imm == BPF_FUNC_override_return) 5659 prog->kprobe_override = 1; 5660 if (insn->imm == BPF_FUNC_tail_call) { 5661 /* If we tail call into other programs, we 5662 * cannot make any assumptions since they can 5663 * be replaced dynamically during runtime in 5664 * the program array. 5665 */ 5666 prog->cb_access = 1; 5667 env->prog->aux->stack_depth = MAX_BPF_STACK; 5668 5669 /* mark bpf_tail_call as different opcode to avoid 5670 * conditional branch in the interpeter for every normal 5671 * call and to prevent accidental JITing by JIT compiler 5672 * that doesn't support bpf_tail_call yet 5673 */ 5674 insn->imm = 0; 5675 insn->code = BPF_JMP | BPF_TAIL_CALL; 5676 5677 aux = &env->insn_aux_data[i + delta]; 5678 if (!bpf_map_ptr_unpriv(aux)) 5679 continue; 5680 5681 /* instead of changing every JIT dealing with tail_call 5682 * emit two extra insns: 5683 * if (index >= max_entries) goto out; 5684 * index &= array->index_mask; 5685 * to avoid out-of-bounds cpu speculation 5686 */ 5687 if (bpf_map_ptr_poisoned(aux)) { 5688 verbose(env, "tail_call abusing map_ptr\n"); 5689 return -EINVAL; 5690 } 5691 5692 map_ptr = BPF_MAP_PTR(aux->map_state); 5693 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5694 map_ptr->max_entries, 2); 5695 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5696 container_of(map_ptr, 5697 struct bpf_array, 5698 map)->index_mask); 5699 insn_buf[2] = *insn; 5700 cnt = 3; 5701 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5702 if (!new_prog) 5703 return -ENOMEM; 5704 5705 delta += cnt - 1; 5706 env->prog = prog = new_prog; 5707 insn = new_prog->insnsi + i + delta; 5708 continue; 5709 } 5710 5711 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5712 * and other inlining handlers are currently limited to 64 bit 5713 * only. 5714 */ 5715 if (prog->jit_requested && BITS_PER_LONG == 64 && 5716 (insn->imm == BPF_FUNC_map_lookup_elem || 5717 insn->imm == BPF_FUNC_map_update_elem || 5718 insn->imm == BPF_FUNC_map_delete_elem)) { 5719 aux = &env->insn_aux_data[i + delta]; 5720 if (bpf_map_ptr_poisoned(aux)) 5721 goto patch_call_imm; 5722 5723 map_ptr = BPF_MAP_PTR(aux->map_state); 5724 ops = map_ptr->ops; 5725 if (insn->imm == BPF_FUNC_map_lookup_elem && 5726 ops->map_gen_lookup) { 5727 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 5728 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5729 verbose(env, "bpf verifier is misconfigured\n"); 5730 return -EINVAL; 5731 } 5732 5733 new_prog = bpf_patch_insn_data(env, i + delta, 5734 insn_buf, cnt); 5735 if (!new_prog) 5736 return -ENOMEM; 5737 5738 delta += cnt - 1; 5739 env->prog = prog = new_prog; 5740 insn = new_prog->insnsi + i + delta; 5741 continue; 5742 } 5743 5744 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 5745 (void *(*)(struct bpf_map *map, void *key))NULL)); 5746 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 5747 (int (*)(struct bpf_map *map, void *key))NULL)); 5748 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 5749 (int (*)(struct bpf_map *map, void *key, void *value, 5750 u64 flags))NULL)); 5751 switch (insn->imm) { 5752 case BPF_FUNC_map_lookup_elem: 5753 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 5754 __bpf_call_base; 5755 continue; 5756 case BPF_FUNC_map_update_elem: 5757 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 5758 __bpf_call_base; 5759 continue; 5760 case BPF_FUNC_map_delete_elem: 5761 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 5762 __bpf_call_base; 5763 continue; 5764 } 5765 5766 goto patch_call_imm; 5767 } 5768 5769 patch_call_imm: 5770 fn = env->ops->get_func_proto(insn->imm, env->prog); 5771 /* all functions that have prototype and verifier allowed 5772 * programs to call them, must be real in-kernel functions 5773 */ 5774 if (!fn->func) { 5775 verbose(env, 5776 "kernel subsystem misconfigured func %s#%d\n", 5777 func_id_name(insn->imm), insn->imm); 5778 return -EFAULT; 5779 } 5780 insn->imm = fn->func - __bpf_call_base; 5781 } 5782 5783 return 0; 5784 } 5785 5786 static void free_states(struct bpf_verifier_env *env) 5787 { 5788 struct bpf_verifier_state_list *sl, *sln; 5789 int i; 5790 5791 if (!env->explored_states) 5792 return; 5793 5794 for (i = 0; i < env->prog->len; i++) { 5795 sl = env->explored_states[i]; 5796 5797 if (sl) 5798 while (sl != STATE_LIST_MARK) { 5799 sln = sl->next; 5800 free_verifier_state(&sl->state, false); 5801 kfree(sl); 5802 sl = sln; 5803 } 5804 } 5805 5806 kfree(env->explored_states); 5807 } 5808 5809 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5810 { 5811 struct bpf_verifier_env *env; 5812 struct bpf_verifier_log *log; 5813 int ret = -EINVAL; 5814 5815 /* no program is valid */ 5816 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5817 return -EINVAL; 5818 5819 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5820 * allocate/free it every time bpf_check() is called 5821 */ 5822 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5823 if (!env) 5824 return -ENOMEM; 5825 log = &env->log; 5826 5827 env->insn_aux_data = 5828 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 5829 (*prog)->len)); 5830 ret = -ENOMEM; 5831 if (!env->insn_aux_data) 5832 goto err_free_env; 5833 env->prog = *prog; 5834 env->ops = bpf_verifier_ops[env->prog->type]; 5835 5836 /* grab the mutex to protect few globals used by verifier */ 5837 mutex_lock(&bpf_verifier_lock); 5838 5839 if (attr->log_level || attr->log_buf || attr->log_size) { 5840 /* user requested verbose verifier output 5841 * and supplied buffer to store the verification trace 5842 */ 5843 log->level = attr->log_level; 5844 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5845 log->len_total = attr->log_size; 5846 5847 ret = -EINVAL; 5848 /* log attributes have to be sane */ 5849 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5850 !log->level || !log->ubuf) 5851 goto err_unlock; 5852 } 5853 5854 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5855 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5856 env->strict_alignment = true; 5857 5858 ret = replace_map_fd_with_map_ptr(env); 5859 if (ret < 0) 5860 goto skip_full_check; 5861 5862 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5863 ret = bpf_prog_offload_verifier_prep(env); 5864 if (ret) 5865 goto skip_full_check; 5866 } 5867 5868 env->explored_states = kcalloc(env->prog->len, 5869 sizeof(struct bpf_verifier_state_list *), 5870 GFP_USER); 5871 ret = -ENOMEM; 5872 if (!env->explored_states) 5873 goto skip_full_check; 5874 5875 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5876 5877 ret = check_cfg(env); 5878 if (ret < 0) 5879 goto skip_full_check; 5880 5881 ret = do_check(env); 5882 if (env->cur_state) { 5883 free_verifier_state(env->cur_state, true); 5884 env->cur_state = NULL; 5885 } 5886 5887 skip_full_check: 5888 while (!pop_stack(env, NULL, NULL)); 5889 free_states(env); 5890 5891 if (ret == 0) 5892 sanitize_dead_code(env); 5893 5894 if (ret == 0) 5895 ret = check_max_stack_depth(env); 5896 5897 if (ret == 0) 5898 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5899 ret = convert_ctx_accesses(env); 5900 5901 if (ret == 0) 5902 ret = fixup_bpf_calls(env); 5903 5904 if (ret == 0) 5905 ret = fixup_call_args(env); 5906 5907 if (log->level && bpf_verifier_log_full(log)) 5908 ret = -ENOSPC; 5909 if (log->level && !log->ubuf) { 5910 ret = -EFAULT; 5911 goto err_release_maps; 5912 } 5913 5914 if (ret == 0 && env->used_map_cnt) { 5915 /* if program passed verifier, update used_maps in bpf_prog_info */ 5916 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5917 sizeof(env->used_maps[0]), 5918 GFP_KERNEL); 5919 5920 if (!env->prog->aux->used_maps) { 5921 ret = -ENOMEM; 5922 goto err_release_maps; 5923 } 5924 5925 memcpy(env->prog->aux->used_maps, env->used_maps, 5926 sizeof(env->used_maps[0]) * env->used_map_cnt); 5927 env->prog->aux->used_map_cnt = env->used_map_cnt; 5928 5929 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5930 * bpf_ld_imm64 instructions 5931 */ 5932 convert_pseudo_ld_imm64(env); 5933 } 5934 5935 err_release_maps: 5936 if (!env->prog->aux->used_maps) 5937 /* if we didn't copy map pointers into bpf_prog_info, release 5938 * them now. Otherwise free_used_maps() will release them. 5939 */ 5940 release_maps(env); 5941 *prog = env->prog; 5942 err_unlock: 5943 mutex_unlock(&bpf_verifier_lock); 5944 vfree(env->insn_aux_data); 5945 err_free_env: 5946 kfree(env); 5947 return ret; 5948 } 5949