1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK || 330 type == PTR_TO_XDP_SOCK; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL || 337 type == PTR_TO_SOCK_COMMON_OR_NULL || 338 type == PTR_TO_TCP_SOCK_OR_NULL; 339 } 340 341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 342 { 343 return reg->type == PTR_TO_MAP_VALUE && 344 map_value_has_spin_lock(reg->map_ptr); 345 } 346 347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 348 { 349 return type == PTR_TO_SOCKET || 350 type == PTR_TO_SOCKET_OR_NULL || 351 type == PTR_TO_TCP_SOCK || 352 type == PTR_TO_TCP_SOCK_OR_NULL; 353 } 354 355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 356 { 357 return type == ARG_PTR_TO_SOCK_COMMON; 358 } 359 360 /* Determine whether the function releases some resources allocated by another 361 * function call. The first reference type argument will be assumed to be 362 * released by release_reference(). 363 */ 364 static bool is_release_function(enum bpf_func_id func_id) 365 { 366 return func_id == BPF_FUNC_sk_release; 367 } 368 369 static bool is_acquire_function(enum bpf_func_id func_id) 370 { 371 return func_id == BPF_FUNC_sk_lookup_tcp || 372 func_id == BPF_FUNC_sk_lookup_udp || 373 func_id == BPF_FUNC_skc_lookup_tcp; 374 } 375 376 static bool is_ptr_cast_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_tcp_sock || 379 func_id == BPF_FUNC_sk_fullsock; 380 } 381 382 /* string representation of 'enum bpf_reg_type' */ 383 static const char * const reg_type_str[] = { 384 [NOT_INIT] = "?", 385 [SCALAR_VALUE] = "inv", 386 [PTR_TO_CTX] = "ctx", 387 [CONST_PTR_TO_MAP] = "map_ptr", 388 [PTR_TO_MAP_VALUE] = "map_value", 389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 390 [PTR_TO_STACK] = "fp", 391 [PTR_TO_PACKET] = "pkt", 392 [PTR_TO_PACKET_META] = "pkt_meta", 393 [PTR_TO_PACKET_END] = "pkt_end", 394 [PTR_TO_FLOW_KEYS] = "flow_keys", 395 [PTR_TO_SOCKET] = "sock", 396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 397 [PTR_TO_SOCK_COMMON] = "sock_common", 398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 399 [PTR_TO_TCP_SOCK] = "tcp_sock", 400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 401 [PTR_TO_TP_BUFFER] = "tp_buffer", 402 [PTR_TO_XDP_SOCK] = "xdp_sock", 403 }; 404 405 static char slot_type_char[] = { 406 [STACK_INVALID] = '?', 407 [STACK_SPILL] = 'r', 408 [STACK_MISC] = 'm', 409 [STACK_ZERO] = '0', 410 }; 411 412 static void print_liveness(struct bpf_verifier_env *env, 413 enum bpf_reg_liveness live) 414 { 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 416 verbose(env, "_"); 417 if (live & REG_LIVE_READ) 418 verbose(env, "r"); 419 if (live & REG_LIVE_WRITTEN) 420 verbose(env, "w"); 421 if (live & REG_LIVE_DONE) 422 verbose(env, "D"); 423 } 424 425 static struct bpf_func_state *func(struct bpf_verifier_env *env, 426 const struct bpf_reg_state *reg) 427 { 428 struct bpf_verifier_state *cur = env->cur_state; 429 430 return cur->frame[reg->frameno]; 431 } 432 433 static void print_verifier_state(struct bpf_verifier_env *env, 434 const struct bpf_func_state *state) 435 { 436 const struct bpf_reg_state *reg; 437 enum bpf_reg_type t; 438 int i; 439 440 if (state->frameno) 441 verbose(env, " frame%d:", state->frameno); 442 for (i = 0; i < MAX_BPF_REG; i++) { 443 reg = &state->regs[i]; 444 t = reg->type; 445 if (t == NOT_INIT) 446 continue; 447 verbose(env, " R%d", i); 448 print_liveness(env, reg->live); 449 verbose(env, "=%s", reg_type_str[t]); 450 if (t == SCALAR_VALUE && reg->precise) 451 verbose(env, "P"); 452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 453 tnum_is_const(reg->var_off)) { 454 /* reg->off should be 0 for SCALAR_VALUE */ 455 verbose(env, "%lld", reg->var_off.value + reg->off); 456 } else { 457 verbose(env, "(id=%d", reg->id); 458 if (reg_type_may_be_refcounted_or_null(t)) 459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 460 if (t != SCALAR_VALUE) 461 verbose(env, ",off=%d", reg->off); 462 if (type_is_pkt_pointer(t)) 463 verbose(env, ",r=%d", reg->range); 464 else if (t == CONST_PTR_TO_MAP || 465 t == PTR_TO_MAP_VALUE || 466 t == PTR_TO_MAP_VALUE_OR_NULL) 467 verbose(env, ",ks=%d,vs=%d", 468 reg->map_ptr->key_size, 469 reg->map_ptr->value_size); 470 if (tnum_is_const(reg->var_off)) { 471 /* Typically an immediate SCALAR_VALUE, but 472 * could be a pointer whose offset is too big 473 * for reg->off 474 */ 475 verbose(env, ",imm=%llx", reg->var_off.value); 476 } else { 477 if (reg->smin_value != reg->umin_value && 478 reg->smin_value != S64_MIN) 479 verbose(env, ",smin_value=%lld", 480 (long long)reg->smin_value); 481 if (reg->smax_value != reg->umax_value && 482 reg->smax_value != S64_MAX) 483 verbose(env, ",smax_value=%lld", 484 (long long)reg->smax_value); 485 if (reg->umin_value != 0) 486 verbose(env, ",umin_value=%llu", 487 (unsigned long long)reg->umin_value); 488 if (reg->umax_value != U64_MAX) 489 verbose(env, ",umax_value=%llu", 490 (unsigned long long)reg->umax_value); 491 if (!tnum_is_unknown(reg->var_off)) { 492 char tn_buf[48]; 493 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 495 verbose(env, ",var_off=%s", tn_buf); 496 } 497 } 498 verbose(env, ")"); 499 } 500 } 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 502 char types_buf[BPF_REG_SIZE + 1]; 503 bool valid = false; 504 int j; 505 506 for (j = 0; j < BPF_REG_SIZE; j++) { 507 if (state->stack[i].slot_type[j] != STACK_INVALID) 508 valid = true; 509 types_buf[j] = slot_type_char[ 510 state->stack[i].slot_type[j]]; 511 } 512 types_buf[BPF_REG_SIZE] = 0; 513 if (!valid) 514 continue; 515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 516 print_liveness(env, state->stack[i].spilled_ptr.live); 517 if (state->stack[i].slot_type[0] == STACK_SPILL) { 518 reg = &state->stack[i].spilled_ptr; 519 t = reg->type; 520 verbose(env, "=%s", reg_type_str[t]); 521 if (t == SCALAR_VALUE && reg->precise) 522 verbose(env, "P"); 523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 524 verbose(env, "%lld", reg->var_off.value + reg->off); 525 } else { 526 verbose(env, "=%s", types_buf); 527 } 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void clear_jmp_history(struct bpf_verifier_state *state) 677 { 678 kfree(state->jmp_history); 679 state->jmp_history = NULL; 680 state->jmp_history_cnt = 0; 681 } 682 683 static void free_verifier_state(struct bpf_verifier_state *state, 684 bool free_self) 685 { 686 int i; 687 688 for (i = 0; i <= state->curframe; i++) { 689 free_func_state(state->frame[i]); 690 state->frame[i] = NULL; 691 } 692 clear_jmp_history(state); 693 if (free_self) 694 kfree(state); 695 } 696 697 /* copy verifier state from src to dst growing dst stack space 698 * when necessary to accommodate larger src stack 699 */ 700 static int copy_func_state(struct bpf_func_state *dst, 701 const struct bpf_func_state *src) 702 { 703 int err; 704 705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 706 false); 707 if (err) 708 return err; 709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 710 err = copy_reference_state(dst, src); 711 if (err) 712 return err; 713 return copy_stack_state(dst, src); 714 } 715 716 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 717 const struct bpf_verifier_state *src) 718 { 719 struct bpf_func_state *dst; 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 721 int i, err; 722 723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 724 kfree(dst_state->jmp_history); 725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 726 if (!dst_state->jmp_history) 727 return -ENOMEM; 728 } 729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 730 dst_state->jmp_history_cnt = src->jmp_history_cnt; 731 732 /* if dst has more stack frames then src frame, free them */ 733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 734 free_func_state(dst_state->frame[i]); 735 dst_state->frame[i] = NULL; 736 } 737 dst_state->speculative = src->speculative; 738 dst_state->curframe = src->curframe; 739 dst_state->active_spin_lock = src->active_spin_lock; 740 dst_state->branches = src->branches; 741 dst_state->parent = src->parent; 742 dst_state->first_insn_idx = src->first_insn_idx; 743 dst_state->last_insn_idx = src->last_insn_idx; 744 for (i = 0; i <= src->curframe; i++) { 745 dst = dst_state->frame[i]; 746 if (!dst) { 747 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 748 if (!dst) 749 return -ENOMEM; 750 dst_state->frame[i] = dst; 751 } 752 err = copy_func_state(dst, src->frame[i]); 753 if (err) 754 return err; 755 } 756 return 0; 757 } 758 759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 760 { 761 while (st) { 762 u32 br = --st->branches; 763 764 /* WARN_ON(br > 1) technically makes sense here, 765 * but see comment in push_stack(), hence: 766 */ 767 WARN_ONCE((int)br < 0, 768 "BUG update_branch_counts:branches_to_explore=%d\n", 769 br); 770 if (br) 771 break; 772 st = st->parent; 773 } 774 } 775 776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 777 int *insn_idx) 778 { 779 struct bpf_verifier_state *cur = env->cur_state; 780 struct bpf_verifier_stack_elem *elem, *head = env->head; 781 int err; 782 783 if (env->head == NULL) 784 return -ENOENT; 785 786 if (cur) { 787 err = copy_verifier_state(cur, &head->st); 788 if (err) 789 return err; 790 } 791 if (insn_idx) 792 *insn_idx = head->insn_idx; 793 if (prev_insn_idx) 794 *prev_insn_idx = head->prev_insn_idx; 795 elem = head->next; 796 free_verifier_state(&head->st, false); 797 kfree(head); 798 env->head = elem; 799 env->stack_size--; 800 return 0; 801 } 802 803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 804 int insn_idx, int prev_insn_idx, 805 bool speculative) 806 { 807 struct bpf_verifier_state *cur = env->cur_state; 808 struct bpf_verifier_stack_elem *elem; 809 int err; 810 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 812 if (!elem) 813 goto err; 814 815 elem->insn_idx = insn_idx; 816 elem->prev_insn_idx = prev_insn_idx; 817 elem->next = env->head; 818 env->head = elem; 819 env->stack_size++; 820 err = copy_verifier_state(&elem->st, cur); 821 if (err) 822 goto err; 823 elem->st.speculative |= speculative; 824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 825 verbose(env, "The sequence of %d jumps is too complex.\n", 826 env->stack_size); 827 goto err; 828 } 829 if (elem->st.parent) { 830 ++elem->st.parent->branches; 831 /* WARN_ON(branches > 2) technically makes sense here, 832 * but 833 * 1. speculative states will bump 'branches' for non-branch 834 * instructions 835 * 2. is_state_visited() heuristics may decide not to create 836 * a new state for a sequence of branches and all such current 837 * and cloned states will be pointing to a single parent state 838 * which might have large 'branches' count. 839 */ 840 } 841 return &elem->st; 842 err: 843 free_verifier_state(env->cur_state, true); 844 env->cur_state = NULL; 845 /* pop all elements and return */ 846 while (!pop_stack(env, NULL, NULL)); 847 return NULL; 848 } 849 850 #define CALLER_SAVED_REGS 6 851 static const int caller_saved[CALLER_SAVED_REGS] = { 852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 853 }; 854 855 static void __mark_reg_not_init(struct bpf_reg_state *reg); 856 857 /* Mark the unknown part of a register (variable offset or scalar value) as 858 * known to have the value @imm. 859 */ 860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 861 { 862 /* Clear id, off, and union(map_ptr, range) */ 863 memset(((u8 *)reg) + sizeof(reg->type), 0, 864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 865 reg->var_off = tnum_const(imm); 866 reg->smin_value = (s64)imm; 867 reg->smax_value = (s64)imm; 868 reg->umin_value = imm; 869 reg->umax_value = imm; 870 } 871 872 /* Mark the 'variable offset' part of a register as zero. This should be 873 * used only on registers holding a pointer type. 874 */ 875 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 876 { 877 __mark_reg_known(reg, 0); 878 } 879 880 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 881 { 882 __mark_reg_known(reg, 0); 883 reg->type = SCALAR_VALUE; 884 } 885 886 static void mark_reg_known_zero(struct bpf_verifier_env *env, 887 struct bpf_reg_state *regs, u32 regno) 888 { 889 if (WARN_ON(regno >= MAX_BPF_REG)) { 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 891 /* Something bad happened, let's kill all regs */ 892 for (regno = 0; regno < MAX_BPF_REG; regno++) 893 __mark_reg_not_init(regs + regno); 894 return; 895 } 896 __mark_reg_known_zero(regs + regno); 897 } 898 899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 900 { 901 return type_is_pkt_pointer(reg->type); 902 } 903 904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 905 { 906 return reg_is_pkt_pointer(reg) || 907 reg->type == PTR_TO_PACKET_END; 908 } 909 910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 912 enum bpf_reg_type which) 913 { 914 /* The register can already have a range from prior markings. 915 * This is fine as long as it hasn't been advanced from its 916 * origin. 917 */ 918 return reg->type == which && 919 reg->id == 0 && 920 reg->off == 0 && 921 tnum_equals_const(reg->var_off, 0); 922 } 923 924 /* Attempts to improve min/max values based on var_off information */ 925 static void __update_reg_bounds(struct bpf_reg_state *reg) 926 { 927 /* min signed is max(sign bit) | min(other bits) */ 928 reg->smin_value = max_t(s64, reg->smin_value, 929 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 930 /* max signed is min(sign bit) | max(other bits) */ 931 reg->smax_value = min_t(s64, reg->smax_value, 932 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 933 reg->umin_value = max(reg->umin_value, reg->var_off.value); 934 reg->umax_value = min(reg->umax_value, 935 reg->var_off.value | reg->var_off.mask); 936 } 937 938 /* Uses signed min/max values to inform unsigned, and vice-versa */ 939 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 940 { 941 /* Learn sign from signed bounds. 942 * If we cannot cross the sign boundary, then signed and unsigned bounds 943 * are the same, so combine. This works even in the negative case, e.g. 944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 945 */ 946 if (reg->smin_value >= 0 || reg->smax_value < 0) { 947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 948 reg->umin_value); 949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 950 reg->umax_value); 951 return; 952 } 953 /* Learn sign from unsigned bounds. Signed bounds cross the sign 954 * boundary, so we must be careful. 955 */ 956 if ((s64)reg->umax_value >= 0) { 957 /* Positive. We can't learn anything from the smin, but smax 958 * is positive, hence safe. 959 */ 960 reg->smin_value = reg->umin_value; 961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 962 reg->umax_value); 963 } else if ((s64)reg->umin_value < 0) { 964 /* Negative. We can't learn anything from the smax, but smin 965 * is negative, hence safe. 966 */ 967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 968 reg->umin_value); 969 reg->smax_value = reg->umax_value; 970 } 971 } 972 973 /* Attempts to improve var_off based on unsigned min/max information */ 974 static void __reg_bound_offset(struct bpf_reg_state *reg) 975 { 976 reg->var_off = tnum_intersect(reg->var_off, 977 tnum_range(reg->umin_value, 978 reg->umax_value)); 979 } 980 981 /* Reset the min/max bounds of a register */ 982 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 983 { 984 reg->smin_value = S64_MIN; 985 reg->smax_value = S64_MAX; 986 reg->umin_value = 0; 987 reg->umax_value = U64_MAX; 988 989 /* constant backtracking is enabled for root only for now */ 990 reg->precise = capable(CAP_SYS_ADMIN) ? false : true; 991 } 992 993 /* Mark a register as having a completely unknown (scalar) value. */ 994 static void __mark_reg_unknown(struct bpf_reg_state *reg) 995 { 996 /* 997 * Clear type, id, off, and union(map_ptr, range) and 998 * padding between 'type' and union 999 */ 1000 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1001 reg->type = SCALAR_VALUE; 1002 reg->var_off = tnum_unknown; 1003 reg->frameno = 0; 1004 __mark_reg_unbounded(reg); 1005 } 1006 1007 static void mark_reg_unknown(struct bpf_verifier_env *env, 1008 struct bpf_reg_state *regs, u32 regno) 1009 { 1010 if (WARN_ON(regno >= MAX_BPF_REG)) { 1011 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1012 /* Something bad happened, let's kill all regs except FP */ 1013 for (regno = 0; regno < BPF_REG_FP; regno++) 1014 __mark_reg_not_init(regs + regno); 1015 return; 1016 } 1017 __mark_reg_unknown(regs + regno); 1018 } 1019 1020 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1021 { 1022 __mark_reg_unknown(reg); 1023 reg->type = NOT_INIT; 1024 } 1025 1026 static void mark_reg_not_init(struct bpf_verifier_env *env, 1027 struct bpf_reg_state *regs, u32 regno) 1028 { 1029 if (WARN_ON(regno >= MAX_BPF_REG)) { 1030 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1031 /* Something bad happened, let's kill all regs except FP */ 1032 for (regno = 0; regno < BPF_REG_FP; regno++) 1033 __mark_reg_not_init(regs + regno); 1034 return; 1035 } 1036 __mark_reg_not_init(regs + regno); 1037 } 1038 1039 #define DEF_NOT_SUBREG (0) 1040 static void init_reg_state(struct bpf_verifier_env *env, 1041 struct bpf_func_state *state) 1042 { 1043 struct bpf_reg_state *regs = state->regs; 1044 int i; 1045 1046 for (i = 0; i < MAX_BPF_REG; i++) { 1047 mark_reg_not_init(env, regs, i); 1048 regs[i].live = REG_LIVE_NONE; 1049 regs[i].parent = NULL; 1050 regs[i].subreg_def = DEF_NOT_SUBREG; 1051 } 1052 1053 /* frame pointer */ 1054 regs[BPF_REG_FP].type = PTR_TO_STACK; 1055 mark_reg_known_zero(env, regs, BPF_REG_FP); 1056 regs[BPF_REG_FP].frameno = state->frameno; 1057 1058 /* 1st arg to a function */ 1059 regs[BPF_REG_1].type = PTR_TO_CTX; 1060 mark_reg_known_zero(env, regs, BPF_REG_1); 1061 } 1062 1063 #define BPF_MAIN_FUNC (-1) 1064 static void init_func_state(struct bpf_verifier_env *env, 1065 struct bpf_func_state *state, 1066 int callsite, int frameno, int subprogno) 1067 { 1068 state->callsite = callsite; 1069 state->frameno = frameno; 1070 state->subprogno = subprogno; 1071 init_reg_state(env, state); 1072 } 1073 1074 enum reg_arg_type { 1075 SRC_OP, /* register is used as source operand */ 1076 DST_OP, /* register is used as destination operand */ 1077 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1078 }; 1079 1080 static int cmp_subprogs(const void *a, const void *b) 1081 { 1082 return ((struct bpf_subprog_info *)a)->start - 1083 ((struct bpf_subprog_info *)b)->start; 1084 } 1085 1086 static int find_subprog(struct bpf_verifier_env *env, int off) 1087 { 1088 struct bpf_subprog_info *p; 1089 1090 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1091 sizeof(env->subprog_info[0]), cmp_subprogs); 1092 if (!p) 1093 return -ENOENT; 1094 return p - env->subprog_info; 1095 1096 } 1097 1098 static int add_subprog(struct bpf_verifier_env *env, int off) 1099 { 1100 int insn_cnt = env->prog->len; 1101 int ret; 1102 1103 if (off >= insn_cnt || off < 0) { 1104 verbose(env, "call to invalid destination\n"); 1105 return -EINVAL; 1106 } 1107 ret = find_subprog(env, off); 1108 if (ret >= 0) 1109 return 0; 1110 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1111 verbose(env, "too many subprograms\n"); 1112 return -E2BIG; 1113 } 1114 env->subprog_info[env->subprog_cnt++].start = off; 1115 sort(env->subprog_info, env->subprog_cnt, 1116 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1117 return 0; 1118 } 1119 1120 static int check_subprogs(struct bpf_verifier_env *env) 1121 { 1122 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1123 struct bpf_subprog_info *subprog = env->subprog_info; 1124 struct bpf_insn *insn = env->prog->insnsi; 1125 int insn_cnt = env->prog->len; 1126 1127 /* Add entry function. */ 1128 ret = add_subprog(env, 0); 1129 if (ret < 0) 1130 return ret; 1131 1132 /* determine subprog starts. The end is one before the next starts */ 1133 for (i = 0; i < insn_cnt; i++) { 1134 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1135 continue; 1136 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1137 continue; 1138 if (!env->allow_ptr_leaks) { 1139 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1140 return -EPERM; 1141 } 1142 ret = add_subprog(env, i + insn[i].imm + 1); 1143 if (ret < 0) 1144 return ret; 1145 } 1146 1147 /* Add a fake 'exit' subprog which could simplify subprog iteration 1148 * logic. 'subprog_cnt' should not be increased. 1149 */ 1150 subprog[env->subprog_cnt].start = insn_cnt; 1151 1152 if (env->log.level & BPF_LOG_LEVEL2) 1153 for (i = 0; i < env->subprog_cnt; i++) 1154 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1155 1156 /* now check that all jumps are within the same subprog */ 1157 subprog_start = subprog[cur_subprog].start; 1158 subprog_end = subprog[cur_subprog + 1].start; 1159 for (i = 0; i < insn_cnt; i++) { 1160 u8 code = insn[i].code; 1161 1162 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1163 goto next; 1164 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1165 goto next; 1166 off = i + insn[i].off + 1; 1167 if (off < subprog_start || off >= subprog_end) { 1168 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1169 return -EINVAL; 1170 } 1171 next: 1172 if (i == subprog_end - 1) { 1173 /* to avoid fall-through from one subprog into another 1174 * the last insn of the subprog should be either exit 1175 * or unconditional jump back 1176 */ 1177 if (code != (BPF_JMP | BPF_EXIT) && 1178 code != (BPF_JMP | BPF_JA)) { 1179 verbose(env, "last insn is not an exit or jmp\n"); 1180 return -EINVAL; 1181 } 1182 subprog_start = subprog_end; 1183 cur_subprog++; 1184 if (cur_subprog < env->subprog_cnt) 1185 subprog_end = subprog[cur_subprog + 1].start; 1186 } 1187 } 1188 return 0; 1189 } 1190 1191 /* Parentage chain of this register (or stack slot) should take care of all 1192 * issues like callee-saved registers, stack slot allocation time, etc. 1193 */ 1194 static int mark_reg_read(struct bpf_verifier_env *env, 1195 const struct bpf_reg_state *state, 1196 struct bpf_reg_state *parent, u8 flag) 1197 { 1198 bool writes = parent == state->parent; /* Observe write marks */ 1199 int cnt = 0; 1200 1201 while (parent) { 1202 /* if read wasn't screened by an earlier write ... */ 1203 if (writes && state->live & REG_LIVE_WRITTEN) 1204 break; 1205 if (parent->live & REG_LIVE_DONE) { 1206 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1207 reg_type_str[parent->type], 1208 parent->var_off.value, parent->off); 1209 return -EFAULT; 1210 } 1211 /* The first condition is more likely to be true than the 1212 * second, checked it first. 1213 */ 1214 if ((parent->live & REG_LIVE_READ) == flag || 1215 parent->live & REG_LIVE_READ64) 1216 /* The parentage chain never changes and 1217 * this parent was already marked as LIVE_READ. 1218 * There is no need to keep walking the chain again and 1219 * keep re-marking all parents as LIVE_READ. 1220 * This case happens when the same register is read 1221 * multiple times without writes into it in-between. 1222 * Also, if parent has the stronger REG_LIVE_READ64 set, 1223 * then no need to set the weak REG_LIVE_READ32. 1224 */ 1225 break; 1226 /* ... then we depend on parent's value */ 1227 parent->live |= flag; 1228 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1229 if (flag == REG_LIVE_READ64) 1230 parent->live &= ~REG_LIVE_READ32; 1231 state = parent; 1232 parent = state->parent; 1233 writes = true; 1234 cnt++; 1235 } 1236 1237 if (env->longest_mark_read_walk < cnt) 1238 env->longest_mark_read_walk = cnt; 1239 return 0; 1240 } 1241 1242 /* This function is supposed to be used by the following 32-bit optimization 1243 * code only. It returns TRUE if the source or destination register operates 1244 * on 64-bit, otherwise return FALSE. 1245 */ 1246 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1247 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1248 { 1249 u8 code, class, op; 1250 1251 code = insn->code; 1252 class = BPF_CLASS(code); 1253 op = BPF_OP(code); 1254 if (class == BPF_JMP) { 1255 /* BPF_EXIT for "main" will reach here. Return TRUE 1256 * conservatively. 1257 */ 1258 if (op == BPF_EXIT) 1259 return true; 1260 if (op == BPF_CALL) { 1261 /* BPF to BPF call will reach here because of marking 1262 * caller saved clobber with DST_OP_NO_MARK for which we 1263 * don't care the register def because they are anyway 1264 * marked as NOT_INIT already. 1265 */ 1266 if (insn->src_reg == BPF_PSEUDO_CALL) 1267 return false; 1268 /* Helper call will reach here because of arg type 1269 * check, conservatively return TRUE. 1270 */ 1271 if (t == SRC_OP) 1272 return true; 1273 1274 return false; 1275 } 1276 } 1277 1278 if (class == BPF_ALU64 || class == BPF_JMP || 1279 /* BPF_END always use BPF_ALU class. */ 1280 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1281 return true; 1282 1283 if (class == BPF_ALU || class == BPF_JMP32) 1284 return false; 1285 1286 if (class == BPF_LDX) { 1287 if (t != SRC_OP) 1288 return BPF_SIZE(code) == BPF_DW; 1289 /* LDX source must be ptr. */ 1290 return true; 1291 } 1292 1293 if (class == BPF_STX) { 1294 if (reg->type != SCALAR_VALUE) 1295 return true; 1296 return BPF_SIZE(code) == BPF_DW; 1297 } 1298 1299 if (class == BPF_LD) { 1300 u8 mode = BPF_MODE(code); 1301 1302 /* LD_IMM64 */ 1303 if (mode == BPF_IMM) 1304 return true; 1305 1306 /* Both LD_IND and LD_ABS return 32-bit data. */ 1307 if (t != SRC_OP) 1308 return false; 1309 1310 /* Implicit ctx ptr. */ 1311 if (regno == BPF_REG_6) 1312 return true; 1313 1314 /* Explicit source could be any width. */ 1315 return true; 1316 } 1317 1318 if (class == BPF_ST) 1319 /* The only source register for BPF_ST is a ptr. */ 1320 return true; 1321 1322 /* Conservatively return true at default. */ 1323 return true; 1324 } 1325 1326 /* Return TRUE if INSN doesn't have explicit value define. */ 1327 static bool insn_no_def(struct bpf_insn *insn) 1328 { 1329 u8 class = BPF_CLASS(insn->code); 1330 1331 return (class == BPF_JMP || class == BPF_JMP32 || 1332 class == BPF_STX || class == BPF_ST); 1333 } 1334 1335 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1336 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1337 { 1338 if (insn_no_def(insn)) 1339 return false; 1340 1341 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1342 } 1343 1344 static void mark_insn_zext(struct bpf_verifier_env *env, 1345 struct bpf_reg_state *reg) 1346 { 1347 s32 def_idx = reg->subreg_def; 1348 1349 if (def_idx == DEF_NOT_SUBREG) 1350 return; 1351 1352 env->insn_aux_data[def_idx - 1].zext_dst = true; 1353 /* The dst will be zero extended, so won't be sub-register anymore. */ 1354 reg->subreg_def = DEF_NOT_SUBREG; 1355 } 1356 1357 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1358 enum reg_arg_type t) 1359 { 1360 struct bpf_verifier_state *vstate = env->cur_state; 1361 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1362 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1363 struct bpf_reg_state *reg, *regs = state->regs; 1364 bool rw64; 1365 1366 if (regno >= MAX_BPF_REG) { 1367 verbose(env, "R%d is invalid\n", regno); 1368 return -EINVAL; 1369 } 1370 1371 reg = ®s[regno]; 1372 rw64 = is_reg64(env, insn, regno, reg, t); 1373 if (t == SRC_OP) { 1374 /* check whether register used as source operand can be read */ 1375 if (reg->type == NOT_INIT) { 1376 verbose(env, "R%d !read_ok\n", regno); 1377 return -EACCES; 1378 } 1379 /* We don't need to worry about FP liveness because it's read-only */ 1380 if (regno == BPF_REG_FP) 1381 return 0; 1382 1383 if (rw64) 1384 mark_insn_zext(env, reg); 1385 1386 return mark_reg_read(env, reg, reg->parent, 1387 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1388 } else { 1389 /* check whether register used as dest operand can be written to */ 1390 if (regno == BPF_REG_FP) { 1391 verbose(env, "frame pointer is read only\n"); 1392 return -EACCES; 1393 } 1394 reg->live |= REG_LIVE_WRITTEN; 1395 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1396 if (t == DST_OP) 1397 mark_reg_unknown(env, regs, regno); 1398 } 1399 return 0; 1400 } 1401 1402 /* for any branch, call, exit record the history of jmps in the given state */ 1403 static int push_jmp_history(struct bpf_verifier_env *env, 1404 struct bpf_verifier_state *cur) 1405 { 1406 u32 cnt = cur->jmp_history_cnt; 1407 struct bpf_idx_pair *p; 1408 1409 cnt++; 1410 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1411 if (!p) 1412 return -ENOMEM; 1413 p[cnt - 1].idx = env->insn_idx; 1414 p[cnt - 1].prev_idx = env->prev_insn_idx; 1415 cur->jmp_history = p; 1416 cur->jmp_history_cnt = cnt; 1417 return 0; 1418 } 1419 1420 /* Backtrack one insn at a time. If idx is not at the top of recorded 1421 * history then previous instruction came from straight line execution. 1422 */ 1423 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1424 u32 *history) 1425 { 1426 u32 cnt = *history; 1427 1428 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1429 i = st->jmp_history[cnt - 1].prev_idx; 1430 (*history)--; 1431 } else { 1432 i--; 1433 } 1434 return i; 1435 } 1436 1437 /* For given verifier state backtrack_insn() is called from the last insn to 1438 * the first insn. Its purpose is to compute a bitmask of registers and 1439 * stack slots that needs precision in the parent verifier state. 1440 */ 1441 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1442 u32 *reg_mask, u64 *stack_mask) 1443 { 1444 const struct bpf_insn_cbs cbs = { 1445 .cb_print = verbose, 1446 .private_data = env, 1447 }; 1448 struct bpf_insn *insn = env->prog->insnsi + idx; 1449 u8 class = BPF_CLASS(insn->code); 1450 u8 opcode = BPF_OP(insn->code); 1451 u8 mode = BPF_MODE(insn->code); 1452 u32 dreg = 1u << insn->dst_reg; 1453 u32 sreg = 1u << insn->src_reg; 1454 u32 spi; 1455 1456 if (insn->code == 0) 1457 return 0; 1458 if (env->log.level & BPF_LOG_LEVEL) { 1459 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1460 verbose(env, "%d: ", idx); 1461 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1462 } 1463 1464 if (class == BPF_ALU || class == BPF_ALU64) { 1465 if (!(*reg_mask & dreg)) 1466 return 0; 1467 if (opcode == BPF_MOV) { 1468 if (BPF_SRC(insn->code) == BPF_X) { 1469 /* dreg = sreg 1470 * dreg needs precision after this insn 1471 * sreg needs precision before this insn 1472 */ 1473 *reg_mask &= ~dreg; 1474 *reg_mask |= sreg; 1475 } else { 1476 /* dreg = K 1477 * dreg needs precision after this insn. 1478 * Corresponding register is already marked 1479 * as precise=true in this verifier state. 1480 * No further markings in parent are necessary 1481 */ 1482 *reg_mask &= ~dreg; 1483 } 1484 } else { 1485 if (BPF_SRC(insn->code) == BPF_X) { 1486 /* dreg += sreg 1487 * both dreg and sreg need precision 1488 * before this insn 1489 */ 1490 *reg_mask |= sreg; 1491 } /* else dreg += K 1492 * dreg still needs precision before this insn 1493 */ 1494 } 1495 } else if (class == BPF_LDX) { 1496 if (!(*reg_mask & dreg)) 1497 return 0; 1498 *reg_mask &= ~dreg; 1499 1500 /* scalars can only be spilled into stack w/o losing precision. 1501 * Load from any other memory can be zero extended. 1502 * The desire to keep that precision is already indicated 1503 * by 'precise' mark in corresponding register of this state. 1504 * No further tracking necessary. 1505 */ 1506 if (insn->src_reg != BPF_REG_FP) 1507 return 0; 1508 if (BPF_SIZE(insn->code) != BPF_DW) 1509 return 0; 1510 1511 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1512 * that [fp - off] slot contains scalar that needs to be 1513 * tracked with precision 1514 */ 1515 spi = (-insn->off - 1) / BPF_REG_SIZE; 1516 if (spi >= 64) { 1517 verbose(env, "BUG spi %d\n", spi); 1518 WARN_ONCE(1, "verifier backtracking bug"); 1519 return -EFAULT; 1520 } 1521 *stack_mask |= 1ull << spi; 1522 } else if (class == BPF_STX) { 1523 if (*reg_mask & dreg) 1524 /* stx shouldn't be using _scalar_ dst_reg 1525 * to access memory. It means backtracking 1526 * encountered a case of pointer subtraction. 1527 */ 1528 return -ENOTSUPP; 1529 /* scalars can only be spilled into stack */ 1530 if (insn->dst_reg != BPF_REG_FP) 1531 return 0; 1532 if (BPF_SIZE(insn->code) != BPF_DW) 1533 return 0; 1534 spi = (-insn->off - 1) / BPF_REG_SIZE; 1535 if (spi >= 64) { 1536 verbose(env, "BUG spi %d\n", spi); 1537 WARN_ONCE(1, "verifier backtracking bug"); 1538 return -EFAULT; 1539 } 1540 if (!(*stack_mask & (1ull << spi))) 1541 return 0; 1542 *stack_mask &= ~(1ull << spi); 1543 *reg_mask |= sreg; 1544 } else if (class == BPF_JMP || class == BPF_JMP32) { 1545 if (opcode == BPF_CALL) { 1546 if (insn->src_reg == BPF_PSEUDO_CALL) 1547 return -ENOTSUPP; 1548 /* regular helper call sets R0 */ 1549 *reg_mask &= ~1; 1550 if (*reg_mask & 0x3f) { 1551 /* if backtracing was looking for registers R1-R5 1552 * they should have been found already. 1553 */ 1554 verbose(env, "BUG regs %x\n", *reg_mask); 1555 WARN_ONCE(1, "verifier backtracking bug"); 1556 return -EFAULT; 1557 } 1558 } else if (opcode == BPF_EXIT) { 1559 return -ENOTSUPP; 1560 } 1561 } else if (class == BPF_LD) { 1562 if (!(*reg_mask & dreg)) 1563 return 0; 1564 *reg_mask &= ~dreg; 1565 /* It's ld_imm64 or ld_abs or ld_ind. 1566 * For ld_imm64 no further tracking of precision 1567 * into parent is necessary 1568 */ 1569 if (mode == BPF_IND || mode == BPF_ABS) 1570 /* to be analyzed */ 1571 return -ENOTSUPP; 1572 } else if (class == BPF_ST) { 1573 if (*reg_mask & dreg) 1574 /* likely pointer subtraction */ 1575 return -ENOTSUPP; 1576 } 1577 return 0; 1578 } 1579 1580 /* the scalar precision tracking algorithm: 1581 * . at the start all registers have precise=false. 1582 * . scalar ranges are tracked as normal through alu and jmp insns. 1583 * . once precise value of the scalar register is used in: 1584 * . ptr + scalar alu 1585 * . if (scalar cond K|scalar) 1586 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1587 * backtrack through the verifier states and mark all registers and 1588 * stack slots with spilled constants that these scalar regisers 1589 * should be precise. 1590 * . during state pruning two registers (or spilled stack slots) 1591 * are equivalent if both are not precise. 1592 * 1593 * Note the verifier cannot simply walk register parentage chain, 1594 * since many different registers and stack slots could have been 1595 * used to compute single precise scalar. 1596 * 1597 * The approach of starting with precise=true for all registers and then 1598 * backtrack to mark a register as not precise when the verifier detects 1599 * that program doesn't care about specific value (e.g., when helper 1600 * takes register as ARG_ANYTHING parameter) is not safe. 1601 * 1602 * It's ok to walk single parentage chain of the verifier states. 1603 * It's possible that this backtracking will go all the way till 1st insn. 1604 * All other branches will be explored for needing precision later. 1605 * 1606 * The backtracking needs to deal with cases like: 1607 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1608 * r9 -= r8 1609 * r5 = r9 1610 * if r5 > 0x79f goto pc+7 1611 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1612 * r5 += 1 1613 * ... 1614 * call bpf_perf_event_output#25 1615 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1616 * 1617 * and this case: 1618 * r6 = 1 1619 * call foo // uses callee's r6 inside to compute r0 1620 * r0 += r6 1621 * if r0 == 0 goto 1622 * 1623 * to track above reg_mask/stack_mask needs to be independent for each frame. 1624 * 1625 * Also if parent's curframe > frame where backtracking started, 1626 * the verifier need to mark registers in both frames, otherwise callees 1627 * may incorrectly prune callers. This is similar to 1628 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1629 * 1630 * For now backtracking falls back into conservative marking. 1631 */ 1632 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1633 struct bpf_verifier_state *st) 1634 { 1635 struct bpf_func_state *func; 1636 struct bpf_reg_state *reg; 1637 int i, j; 1638 1639 /* big hammer: mark all scalars precise in this path. 1640 * pop_stack may still get !precise scalars. 1641 */ 1642 for (; st; st = st->parent) 1643 for (i = 0; i <= st->curframe; i++) { 1644 func = st->frame[i]; 1645 for (j = 0; j < BPF_REG_FP; j++) { 1646 reg = &func->regs[j]; 1647 if (reg->type != SCALAR_VALUE) 1648 continue; 1649 reg->precise = true; 1650 } 1651 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1652 if (func->stack[j].slot_type[0] != STACK_SPILL) 1653 continue; 1654 reg = &func->stack[j].spilled_ptr; 1655 if (reg->type != SCALAR_VALUE) 1656 continue; 1657 reg->precise = true; 1658 } 1659 } 1660 } 1661 1662 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1663 { 1664 struct bpf_verifier_state *st = env->cur_state; 1665 int first_idx = st->first_insn_idx; 1666 int last_idx = env->insn_idx; 1667 struct bpf_func_state *func; 1668 struct bpf_reg_state *reg; 1669 u32 reg_mask = 1u << regno; 1670 u64 stack_mask = 0; 1671 bool skip_first = true; 1672 int i, err; 1673 1674 if (!env->allow_ptr_leaks) 1675 /* backtracking is root only for now */ 1676 return 0; 1677 1678 func = st->frame[st->curframe]; 1679 reg = &func->regs[regno]; 1680 if (reg->type != SCALAR_VALUE) { 1681 WARN_ONCE(1, "backtracing misuse"); 1682 return -EFAULT; 1683 } 1684 if (reg->precise) 1685 return 0; 1686 func->regs[regno].precise = true; 1687 1688 for (;;) { 1689 DECLARE_BITMAP(mask, 64); 1690 bool new_marks = false; 1691 u32 history = st->jmp_history_cnt; 1692 1693 if (env->log.level & BPF_LOG_LEVEL) 1694 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1695 for (i = last_idx;;) { 1696 if (skip_first) { 1697 err = 0; 1698 skip_first = false; 1699 } else { 1700 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1701 } 1702 if (err == -ENOTSUPP) { 1703 mark_all_scalars_precise(env, st); 1704 return 0; 1705 } else if (err) { 1706 return err; 1707 } 1708 if (!reg_mask && !stack_mask) 1709 /* Found assignment(s) into tracked register in this state. 1710 * Since this state is already marked, just return. 1711 * Nothing to be tracked further in the parent state. 1712 */ 1713 return 0; 1714 if (i == first_idx) 1715 break; 1716 i = get_prev_insn_idx(st, i, &history); 1717 if (i >= env->prog->len) { 1718 /* This can happen if backtracking reached insn 0 1719 * and there are still reg_mask or stack_mask 1720 * to backtrack. 1721 * It means the backtracking missed the spot where 1722 * particular register was initialized with a constant. 1723 */ 1724 verbose(env, "BUG backtracking idx %d\n", i); 1725 WARN_ONCE(1, "verifier backtracking bug"); 1726 return -EFAULT; 1727 } 1728 } 1729 st = st->parent; 1730 if (!st) 1731 break; 1732 1733 func = st->frame[st->curframe]; 1734 bitmap_from_u64(mask, reg_mask); 1735 for_each_set_bit(i, mask, 32) { 1736 reg = &func->regs[i]; 1737 if (reg->type != SCALAR_VALUE) 1738 continue; 1739 if (!reg->precise) 1740 new_marks = true; 1741 reg->precise = true; 1742 } 1743 1744 bitmap_from_u64(mask, stack_mask); 1745 for_each_set_bit(i, mask, 64) { 1746 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1747 /* This can happen if backtracking 1748 * is propagating stack precision where 1749 * caller has larger stack frame 1750 * than callee, but backtrack_insn() should 1751 * have returned -ENOTSUPP. 1752 */ 1753 verbose(env, "BUG spi %d stack_size %d\n", 1754 i, func->allocated_stack); 1755 WARN_ONCE(1, "verifier backtracking bug"); 1756 return -EFAULT; 1757 } 1758 1759 if (func->stack[i].slot_type[0] != STACK_SPILL) 1760 continue; 1761 reg = &func->stack[i].spilled_ptr; 1762 if (reg->type != SCALAR_VALUE) 1763 continue; 1764 if (!reg->precise) 1765 new_marks = true; 1766 reg->precise = true; 1767 } 1768 if (env->log.level & BPF_LOG_LEVEL) { 1769 print_verifier_state(env, func); 1770 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1771 new_marks ? "didn't have" : "already had", 1772 reg_mask, stack_mask); 1773 } 1774 1775 if (!new_marks) 1776 break; 1777 1778 last_idx = st->last_insn_idx; 1779 first_idx = st->first_insn_idx; 1780 } 1781 return 0; 1782 } 1783 1784 1785 static bool is_spillable_regtype(enum bpf_reg_type type) 1786 { 1787 switch (type) { 1788 case PTR_TO_MAP_VALUE: 1789 case PTR_TO_MAP_VALUE_OR_NULL: 1790 case PTR_TO_STACK: 1791 case PTR_TO_CTX: 1792 case PTR_TO_PACKET: 1793 case PTR_TO_PACKET_META: 1794 case PTR_TO_PACKET_END: 1795 case PTR_TO_FLOW_KEYS: 1796 case CONST_PTR_TO_MAP: 1797 case PTR_TO_SOCKET: 1798 case PTR_TO_SOCKET_OR_NULL: 1799 case PTR_TO_SOCK_COMMON: 1800 case PTR_TO_SOCK_COMMON_OR_NULL: 1801 case PTR_TO_TCP_SOCK: 1802 case PTR_TO_TCP_SOCK_OR_NULL: 1803 case PTR_TO_XDP_SOCK: 1804 return true; 1805 default: 1806 return false; 1807 } 1808 } 1809 1810 /* Does this register contain a constant zero? */ 1811 static bool register_is_null(struct bpf_reg_state *reg) 1812 { 1813 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1814 } 1815 1816 static bool register_is_const(struct bpf_reg_state *reg) 1817 { 1818 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1819 } 1820 1821 static void save_register_state(struct bpf_func_state *state, 1822 int spi, struct bpf_reg_state *reg) 1823 { 1824 int i; 1825 1826 state->stack[spi].spilled_ptr = *reg; 1827 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1828 1829 for (i = 0; i < BPF_REG_SIZE; i++) 1830 state->stack[spi].slot_type[i] = STACK_SPILL; 1831 } 1832 1833 /* check_stack_read/write functions track spill/fill of registers, 1834 * stack boundary and alignment are checked in check_mem_access() 1835 */ 1836 static int check_stack_write(struct bpf_verifier_env *env, 1837 struct bpf_func_state *state, /* func where register points to */ 1838 int off, int size, int value_regno, int insn_idx) 1839 { 1840 struct bpf_func_state *cur; /* state of the current function */ 1841 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1842 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1843 struct bpf_reg_state *reg = NULL; 1844 1845 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1846 state->acquired_refs, true); 1847 if (err) 1848 return err; 1849 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1850 * so it's aligned access and [off, off + size) are within stack limits 1851 */ 1852 if (!env->allow_ptr_leaks && 1853 state->stack[spi].slot_type[0] == STACK_SPILL && 1854 size != BPF_REG_SIZE) { 1855 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1856 return -EACCES; 1857 } 1858 1859 cur = env->cur_state->frame[env->cur_state->curframe]; 1860 if (value_regno >= 0) 1861 reg = &cur->regs[value_regno]; 1862 1863 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1864 !register_is_null(reg) && env->allow_ptr_leaks) { 1865 if (dst_reg != BPF_REG_FP) { 1866 /* The backtracking logic can only recognize explicit 1867 * stack slot address like [fp - 8]. Other spill of 1868 * scalar via different register has to be conervative. 1869 * Backtrack from here and mark all registers as precise 1870 * that contributed into 'reg' being a constant. 1871 */ 1872 err = mark_chain_precision(env, value_regno); 1873 if (err) 1874 return err; 1875 } 1876 save_register_state(state, spi, reg); 1877 } else if (reg && is_spillable_regtype(reg->type)) { 1878 /* register containing pointer is being spilled into stack */ 1879 if (size != BPF_REG_SIZE) { 1880 verbose_linfo(env, insn_idx, "; "); 1881 verbose(env, "invalid size of register spill\n"); 1882 return -EACCES; 1883 } 1884 1885 if (state != cur && reg->type == PTR_TO_STACK) { 1886 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1887 return -EINVAL; 1888 } 1889 1890 if (!env->allow_ptr_leaks) { 1891 bool sanitize = false; 1892 1893 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1894 register_is_const(&state->stack[spi].spilled_ptr)) 1895 sanitize = true; 1896 for (i = 0; i < BPF_REG_SIZE; i++) 1897 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1898 sanitize = true; 1899 break; 1900 } 1901 if (sanitize) { 1902 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1903 int soff = (-spi - 1) * BPF_REG_SIZE; 1904 1905 /* detected reuse of integer stack slot with a pointer 1906 * which means either llvm is reusing stack slot or 1907 * an attacker is trying to exploit CVE-2018-3639 1908 * (speculative store bypass) 1909 * Have to sanitize that slot with preemptive 1910 * store of zero. 1911 */ 1912 if (*poff && *poff != soff) { 1913 /* disallow programs where single insn stores 1914 * into two different stack slots, since verifier 1915 * cannot sanitize them 1916 */ 1917 verbose(env, 1918 "insn %d cannot access two stack slots fp%d and fp%d", 1919 insn_idx, *poff, soff); 1920 return -EINVAL; 1921 } 1922 *poff = soff; 1923 } 1924 } 1925 save_register_state(state, spi, reg); 1926 } else { 1927 u8 type = STACK_MISC; 1928 1929 /* regular write of data into stack destroys any spilled ptr */ 1930 state->stack[spi].spilled_ptr.type = NOT_INIT; 1931 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1932 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1933 for (i = 0; i < BPF_REG_SIZE; i++) 1934 state->stack[spi].slot_type[i] = STACK_MISC; 1935 1936 /* only mark the slot as written if all 8 bytes were written 1937 * otherwise read propagation may incorrectly stop too soon 1938 * when stack slots are partially written. 1939 * This heuristic means that read propagation will be 1940 * conservative, since it will add reg_live_read marks 1941 * to stack slots all the way to first state when programs 1942 * writes+reads less than 8 bytes 1943 */ 1944 if (size == BPF_REG_SIZE) 1945 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1946 1947 /* when we zero initialize stack slots mark them as such */ 1948 if (reg && register_is_null(reg)) { 1949 /* backtracking doesn't work for STACK_ZERO yet. */ 1950 err = mark_chain_precision(env, value_regno); 1951 if (err) 1952 return err; 1953 type = STACK_ZERO; 1954 } 1955 1956 /* Mark slots affected by this stack write. */ 1957 for (i = 0; i < size; i++) 1958 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1959 type; 1960 } 1961 return 0; 1962 } 1963 1964 static int check_stack_read(struct bpf_verifier_env *env, 1965 struct bpf_func_state *reg_state /* func where register points to */, 1966 int off, int size, int value_regno) 1967 { 1968 struct bpf_verifier_state *vstate = env->cur_state; 1969 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1970 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1971 struct bpf_reg_state *reg; 1972 u8 *stype; 1973 1974 if (reg_state->allocated_stack <= slot) { 1975 verbose(env, "invalid read from stack off %d+0 size %d\n", 1976 off, size); 1977 return -EACCES; 1978 } 1979 stype = reg_state->stack[spi].slot_type; 1980 reg = ®_state->stack[spi].spilled_ptr; 1981 1982 if (stype[0] == STACK_SPILL) { 1983 if (size != BPF_REG_SIZE) { 1984 if (reg->type != SCALAR_VALUE) { 1985 verbose_linfo(env, env->insn_idx, "; "); 1986 verbose(env, "invalid size of register fill\n"); 1987 return -EACCES; 1988 } 1989 if (value_regno >= 0) { 1990 mark_reg_unknown(env, state->regs, value_regno); 1991 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1992 } 1993 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 1994 return 0; 1995 } 1996 for (i = 1; i < BPF_REG_SIZE; i++) { 1997 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1998 verbose(env, "corrupted spill memory\n"); 1999 return -EACCES; 2000 } 2001 } 2002 2003 if (value_regno >= 0) { 2004 /* restore register state from stack */ 2005 state->regs[value_regno] = *reg; 2006 /* mark reg as written since spilled pointer state likely 2007 * has its liveness marks cleared by is_state_visited() 2008 * which resets stack/reg liveness for state transitions 2009 */ 2010 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2011 } 2012 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2013 } else { 2014 int zeros = 0; 2015 2016 for (i = 0; i < size; i++) { 2017 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2018 continue; 2019 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2020 zeros++; 2021 continue; 2022 } 2023 verbose(env, "invalid read from stack off %d+%d size %d\n", 2024 off, i, size); 2025 return -EACCES; 2026 } 2027 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2028 if (value_regno >= 0) { 2029 if (zeros == size) { 2030 /* any size read into register is zero extended, 2031 * so the whole register == const_zero 2032 */ 2033 __mark_reg_const_zero(&state->regs[value_regno]); 2034 /* backtracking doesn't support STACK_ZERO yet, 2035 * so mark it precise here, so that later 2036 * backtracking can stop here. 2037 * Backtracking may not need this if this register 2038 * doesn't participate in pointer adjustment. 2039 * Forward propagation of precise flag is not 2040 * necessary either. This mark is only to stop 2041 * backtracking. Any register that contributed 2042 * to const 0 was marked precise before spill. 2043 */ 2044 state->regs[value_regno].precise = true; 2045 } else { 2046 /* have read misc data from the stack */ 2047 mark_reg_unknown(env, state->regs, value_regno); 2048 } 2049 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2050 } 2051 } 2052 return 0; 2053 } 2054 2055 static int check_stack_access(struct bpf_verifier_env *env, 2056 const struct bpf_reg_state *reg, 2057 int off, int size) 2058 { 2059 /* Stack accesses must be at a fixed offset, so that we 2060 * can determine what type of data were returned. See 2061 * check_stack_read(). 2062 */ 2063 if (!tnum_is_const(reg->var_off)) { 2064 char tn_buf[48]; 2065 2066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2067 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2068 tn_buf, off, size); 2069 return -EACCES; 2070 } 2071 2072 if (off >= 0 || off < -MAX_BPF_STACK) { 2073 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2074 return -EACCES; 2075 } 2076 2077 return 0; 2078 } 2079 2080 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2081 int off, int size, enum bpf_access_type type) 2082 { 2083 struct bpf_reg_state *regs = cur_regs(env); 2084 struct bpf_map *map = regs[regno].map_ptr; 2085 u32 cap = bpf_map_flags_to_cap(map); 2086 2087 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2088 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2089 map->value_size, off, size); 2090 return -EACCES; 2091 } 2092 2093 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2094 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2095 map->value_size, off, size); 2096 return -EACCES; 2097 } 2098 2099 return 0; 2100 } 2101 2102 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2103 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2104 int size, bool zero_size_allowed) 2105 { 2106 struct bpf_reg_state *regs = cur_regs(env); 2107 struct bpf_map *map = regs[regno].map_ptr; 2108 2109 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2110 off + size > map->value_size) { 2111 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2112 map->value_size, off, size); 2113 return -EACCES; 2114 } 2115 return 0; 2116 } 2117 2118 /* check read/write into a map element with possible variable offset */ 2119 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2120 int off, int size, bool zero_size_allowed) 2121 { 2122 struct bpf_verifier_state *vstate = env->cur_state; 2123 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2124 struct bpf_reg_state *reg = &state->regs[regno]; 2125 int err; 2126 2127 /* We may have adjusted the register to this map value, so we 2128 * need to try adding each of min_value and max_value to off 2129 * to make sure our theoretical access will be safe. 2130 */ 2131 if (env->log.level & BPF_LOG_LEVEL) 2132 print_verifier_state(env, state); 2133 2134 /* The minimum value is only important with signed 2135 * comparisons where we can't assume the floor of a 2136 * value is 0. If we are using signed variables for our 2137 * index'es we need to make sure that whatever we use 2138 * will have a set floor within our range. 2139 */ 2140 if (reg->smin_value < 0 && 2141 (reg->smin_value == S64_MIN || 2142 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2143 reg->smin_value + off < 0)) { 2144 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2145 regno); 2146 return -EACCES; 2147 } 2148 err = __check_map_access(env, regno, reg->smin_value + off, size, 2149 zero_size_allowed); 2150 if (err) { 2151 verbose(env, "R%d min value is outside of the array range\n", 2152 regno); 2153 return err; 2154 } 2155 2156 /* If we haven't set a max value then we need to bail since we can't be 2157 * sure we won't do bad things. 2158 * If reg->umax_value + off could overflow, treat that as unbounded too. 2159 */ 2160 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2161 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2162 regno); 2163 return -EACCES; 2164 } 2165 err = __check_map_access(env, regno, reg->umax_value + off, size, 2166 zero_size_allowed); 2167 if (err) 2168 verbose(env, "R%d max value is outside of the array range\n", 2169 regno); 2170 2171 if (map_value_has_spin_lock(reg->map_ptr)) { 2172 u32 lock = reg->map_ptr->spin_lock_off; 2173 2174 /* if any part of struct bpf_spin_lock can be touched by 2175 * load/store reject this program. 2176 * To check that [x1, x2) overlaps with [y1, y2) 2177 * it is sufficient to check x1 < y2 && y1 < x2. 2178 */ 2179 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2180 lock < reg->umax_value + off + size) { 2181 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2182 return -EACCES; 2183 } 2184 } 2185 return err; 2186 } 2187 2188 #define MAX_PACKET_OFF 0xffff 2189 2190 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2191 const struct bpf_call_arg_meta *meta, 2192 enum bpf_access_type t) 2193 { 2194 switch (env->prog->type) { 2195 /* Program types only with direct read access go here! */ 2196 case BPF_PROG_TYPE_LWT_IN: 2197 case BPF_PROG_TYPE_LWT_OUT: 2198 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2199 case BPF_PROG_TYPE_SK_REUSEPORT: 2200 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2201 case BPF_PROG_TYPE_CGROUP_SKB: 2202 if (t == BPF_WRITE) 2203 return false; 2204 /* fallthrough */ 2205 2206 /* Program types with direct read + write access go here! */ 2207 case BPF_PROG_TYPE_SCHED_CLS: 2208 case BPF_PROG_TYPE_SCHED_ACT: 2209 case BPF_PROG_TYPE_XDP: 2210 case BPF_PROG_TYPE_LWT_XMIT: 2211 case BPF_PROG_TYPE_SK_SKB: 2212 case BPF_PROG_TYPE_SK_MSG: 2213 if (meta) 2214 return meta->pkt_access; 2215 2216 env->seen_direct_write = true; 2217 return true; 2218 2219 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2220 if (t == BPF_WRITE) 2221 env->seen_direct_write = true; 2222 2223 return true; 2224 2225 default: 2226 return false; 2227 } 2228 } 2229 2230 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2231 int off, int size, bool zero_size_allowed) 2232 { 2233 struct bpf_reg_state *regs = cur_regs(env); 2234 struct bpf_reg_state *reg = ®s[regno]; 2235 2236 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2237 (u64)off + size > reg->range) { 2238 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2239 off, size, regno, reg->id, reg->off, reg->range); 2240 return -EACCES; 2241 } 2242 return 0; 2243 } 2244 2245 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2246 int size, bool zero_size_allowed) 2247 { 2248 struct bpf_reg_state *regs = cur_regs(env); 2249 struct bpf_reg_state *reg = ®s[regno]; 2250 int err; 2251 2252 /* We may have added a variable offset to the packet pointer; but any 2253 * reg->range we have comes after that. We are only checking the fixed 2254 * offset. 2255 */ 2256 2257 /* We don't allow negative numbers, because we aren't tracking enough 2258 * detail to prove they're safe. 2259 */ 2260 if (reg->smin_value < 0) { 2261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2262 regno); 2263 return -EACCES; 2264 } 2265 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2266 if (err) { 2267 verbose(env, "R%d offset is outside of the packet\n", regno); 2268 return err; 2269 } 2270 2271 /* __check_packet_access has made sure "off + size - 1" is within u16. 2272 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2273 * otherwise find_good_pkt_pointers would have refused to set range info 2274 * that __check_packet_access would have rejected this pkt access. 2275 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2276 */ 2277 env->prog->aux->max_pkt_offset = 2278 max_t(u32, env->prog->aux->max_pkt_offset, 2279 off + reg->umax_value + size - 1); 2280 2281 return err; 2282 } 2283 2284 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2285 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2286 enum bpf_access_type t, enum bpf_reg_type *reg_type) 2287 { 2288 struct bpf_insn_access_aux info = { 2289 .reg_type = *reg_type, 2290 }; 2291 2292 if (env->ops->is_valid_access && 2293 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2294 /* A non zero info.ctx_field_size indicates that this field is a 2295 * candidate for later verifier transformation to load the whole 2296 * field and then apply a mask when accessed with a narrower 2297 * access than actual ctx access size. A zero info.ctx_field_size 2298 * will only allow for whole field access and rejects any other 2299 * type of narrower access. 2300 */ 2301 *reg_type = info.reg_type; 2302 2303 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2304 /* remember the offset of last byte accessed in ctx */ 2305 if (env->prog->aux->max_ctx_offset < off + size) 2306 env->prog->aux->max_ctx_offset = off + size; 2307 return 0; 2308 } 2309 2310 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2311 return -EACCES; 2312 } 2313 2314 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2315 int size) 2316 { 2317 if (size < 0 || off < 0 || 2318 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2319 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2320 off, size); 2321 return -EACCES; 2322 } 2323 return 0; 2324 } 2325 2326 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2327 u32 regno, int off, int size, 2328 enum bpf_access_type t) 2329 { 2330 struct bpf_reg_state *regs = cur_regs(env); 2331 struct bpf_reg_state *reg = ®s[regno]; 2332 struct bpf_insn_access_aux info = {}; 2333 bool valid; 2334 2335 if (reg->smin_value < 0) { 2336 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2337 regno); 2338 return -EACCES; 2339 } 2340 2341 switch (reg->type) { 2342 case PTR_TO_SOCK_COMMON: 2343 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2344 break; 2345 case PTR_TO_SOCKET: 2346 valid = bpf_sock_is_valid_access(off, size, t, &info); 2347 break; 2348 case PTR_TO_TCP_SOCK: 2349 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2350 break; 2351 case PTR_TO_XDP_SOCK: 2352 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2353 break; 2354 default: 2355 valid = false; 2356 } 2357 2358 2359 if (valid) { 2360 env->insn_aux_data[insn_idx].ctx_field_size = 2361 info.ctx_field_size; 2362 return 0; 2363 } 2364 2365 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2366 regno, reg_type_str[reg->type], off, size); 2367 2368 return -EACCES; 2369 } 2370 2371 static bool __is_pointer_value(bool allow_ptr_leaks, 2372 const struct bpf_reg_state *reg) 2373 { 2374 if (allow_ptr_leaks) 2375 return false; 2376 2377 return reg->type != SCALAR_VALUE; 2378 } 2379 2380 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2381 { 2382 return cur_regs(env) + regno; 2383 } 2384 2385 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2386 { 2387 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2388 } 2389 2390 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2391 { 2392 const struct bpf_reg_state *reg = reg_state(env, regno); 2393 2394 return reg->type == PTR_TO_CTX; 2395 } 2396 2397 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2398 { 2399 const struct bpf_reg_state *reg = reg_state(env, regno); 2400 2401 return type_is_sk_pointer(reg->type); 2402 } 2403 2404 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2405 { 2406 const struct bpf_reg_state *reg = reg_state(env, regno); 2407 2408 return type_is_pkt_pointer(reg->type); 2409 } 2410 2411 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2412 { 2413 const struct bpf_reg_state *reg = reg_state(env, regno); 2414 2415 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2416 return reg->type == PTR_TO_FLOW_KEYS; 2417 } 2418 2419 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2420 const struct bpf_reg_state *reg, 2421 int off, int size, bool strict) 2422 { 2423 struct tnum reg_off; 2424 int ip_align; 2425 2426 /* Byte size accesses are always allowed. */ 2427 if (!strict || size == 1) 2428 return 0; 2429 2430 /* For platforms that do not have a Kconfig enabling 2431 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2432 * NET_IP_ALIGN is universally set to '2'. And on platforms 2433 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2434 * to this code only in strict mode where we want to emulate 2435 * the NET_IP_ALIGN==2 checking. Therefore use an 2436 * unconditional IP align value of '2'. 2437 */ 2438 ip_align = 2; 2439 2440 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2441 if (!tnum_is_aligned(reg_off, size)) { 2442 char tn_buf[48]; 2443 2444 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2445 verbose(env, 2446 "misaligned packet access off %d+%s+%d+%d size %d\n", 2447 ip_align, tn_buf, reg->off, off, size); 2448 return -EACCES; 2449 } 2450 2451 return 0; 2452 } 2453 2454 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2455 const struct bpf_reg_state *reg, 2456 const char *pointer_desc, 2457 int off, int size, bool strict) 2458 { 2459 struct tnum reg_off; 2460 2461 /* Byte size accesses are always allowed. */ 2462 if (!strict || size == 1) 2463 return 0; 2464 2465 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2466 if (!tnum_is_aligned(reg_off, size)) { 2467 char tn_buf[48]; 2468 2469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2470 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2471 pointer_desc, tn_buf, reg->off, off, size); 2472 return -EACCES; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int check_ptr_alignment(struct bpf_verifier_env *env, 2479 const struct bpf_reg_state *reg, int off, 2480 int size, bool strict_alignment_once) 2481 { 2482 bool strict = env->strict_alignment || strict_alignment_once; 2483 const char *pointer_desc = ""; 2484 2485 switch (reg->type) { 2486 case PTR_TO_PACKET: 2487 case PTR_TO_PACKET_META: 2488 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2489 * right in front, treat it the very same way. 2490 */ 2491 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2492 case PTR_TO_FLOW_KEYS: 2493 pointer_desc = "flow keys "; 2494 break; 2495 case PTR_TO_MAP_VALUE: 2496 pointer_desc = "value "; 2497 break; 2498 case PTR_TO_CTX: 2499 pointer_desc = "context "; 2500 break; 2501 case PTR_TO_STACK: 2502 pointer_desc = "stack "; 2503 /* The stack spill tracking logic in check_stack_write() 2504 * and check_stack_read() relies on stack accesses being 2505 * aligned. 2506 */ 2507 strict = true; 2508 break; 2509 case PTR_TO_SOCKET: 2510 pointer_desc = "sock "; 2511 break; 2512 case PTR_TO_SOCK_COMMON: 2513 pointer_desc = "sock_common "; 2514 break; 2515 case PTR_TO_TCP_SOCK: 2516 pointer_desc = "tcp_sock "; 2517 break; 2518 case PTR_TO_XDP_SOCK: 2519 pointer_desc = "xdp_sock "; 2520 break; 2521 default: 2522 break; 2523 } 2524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2525 strict); 2526 } 2527 2528 static int update_stack_depth(struct bpf_verifier_env *env, 2529 const struct bpf_func_state *func, 2530 int off) 2531 { 2532 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2533 2534 if (stack >= -off) 2535 return 0; 2536 2537 /* update known max for given subprogram */ 2538 env->subprog_info[func->subprogno].stack_depth = -off; 2539 return 0; 2540 } 2541 2542 /* starting from main bpf function walk all instructions of the function 2543 * and recursively walk all callees that given function can call. 2544 * Ignore jump and exit insns. 2545 * Since recursion is prevented by check_cfg() this algorithm 2546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2547 */ 2548 static int check_max_stack_depth(struct bpf_verifier_env *env) 2549 { 2550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2551 struct bpf_subprog_info *subprog = env->subprog_info; 2552 struct bpf_insn *insn = env->prog->insnsi; 2553 int ret_insn[MAX_CALL_FRAMES]; 2554 int ret_prog[MAX_CALL_FRAMES]; 2555 2556 process_func: 2557 /* round up to 32-bytes, since this is granularity 2558 * of interpreter stack size 2559 */ 2560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2561 if (depth > MAX_BPF_STACK) { 2562 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2563 frame + 1, depth); 2564 return -EACCES; 2565 } 2566 continue_func: 2567 subprog_end = subprog[idx + 1].start; 2568 for (; i < subprog_end; i++) { 2569 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2570 continue; 2571 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2572 continue; 2573 /* remember insn and function to return to */ 2574 ret_insn[frame] = i + 1; 2575 ret_prog[frame] = idx; 2576 2577 /* find the callee */ 2578 i = i + insn[i].imm + 1; 2579 idx = find_subprog(env, i); 2580 if (idx < 0) { 2581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2582 i); 2583 return -EFAULT; 2584 } 2585 frame++; 2586 if (frame >= MAX_CALL_FRAMES) { 2587 verbose(env, "the call stack of %d frames is too deep !\n", 2588 frame); 2589 return -E2BIG; 2590 } 2591 goto process_func; 2592 } 2593 /* end of for() loop means the last insn of the 'subprog' 2594 * was reached. Doesn't matter whether it was JA or EXIT 2595 */ 2596 if (frame == 0) 2597 return 0; 2598 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2599 frame--; 2600 i = ret_insn[frame]; 2601 idx = ret_prog[frame]; 2602 goto continue_func; 2603 } 2604 2605 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2606 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2607 const struct bpf_insn *insn, int idx) 2608 { 2609 int start = idx + insn->imm + 1, subprog; 2610 2611 subprog = find_subprog(env, start); 2612 if (subprog < 0) { 2613 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2614 start); 2615 return -EFAULT; 2616 } 2617 return env->subprog_info[subprog].stack_depth; 2618 } 2619 #endif 2620 2621 static int check_ctx_reg(struct bpf_verifier_env *env, 2622 const struct bpf_reg_state *reg, int regno) 2623 { 2624 /* Access to ctx or passing it to a helper is only allowed in 2625 * its original, unmodified form. 2626 */ 2627 2628 if (reg->off) { 2629 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2630 regno, reg->off); 2631 return -EACCES; 2632 } 2633 2634 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2635 char tn_buf[48]; 2636 2637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2638 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2639 return -EACCES; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2646 const struct bpf_reg_state *reg, 2647 int regno, int off, int size) 2648 { 2649 if (off < 0) { 2650 verbose(env, 2651 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2652 regno, off, size); 2653 return -EACCES; 2654 } 2655 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2656 char tn_buf[48]; 2657 2658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2659 verbose(env, 2660 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2661 regno, off, tn_buf); 2662 return -EACCES; 2663 } 2664 if (off + size > env->prog->aux->max_tp_access) 2665 env->prog->aux->max_tp_access = off + size; 2666 2667 return 0; 2668 } 2669 2670 2671 /* truncate register to smaller size (in bytes) 2672 * must be called with size < BPF_REG_SIZE 2673 */ 2674 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2675 { 2676 u64 mask; 2677 2678 /* clear high bits in bit representation */ 2679 reg->var_off = tnum_cast(reg->var_off, size); 2680 2681 /* fix arithmetic bounds */ 2682 mask = ((u64)1 << (size * 8)) - 1; 2683 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2684 reg->umin_value &= mask; 2685 reg->umax_value &= mask; 2686 } else { 2687 reg->umin_value = 0; 2688 reg->umax_value = mask; 2689 } 2690 reg->smin_value = reg->umin_value; 2691 reg->smax_value = reg->umax_value; 2692 } 2693 2694 /* check whether memory at (regno + off) is accessible for t = (read | write) 2695 * if t==write, value_regno is a register which value is stored into memory 2696 * if t==read, value_regno is a register which will receive the value from memory 2697 * if t==write && value_regno==-1, some unknown value is stored into memory 2698 * if t==read && value_regno==-1, don't care what we read from memory 2699 */ 2700 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2701 int off, int bpf_size, enum bpf_access_type t, 2702 int value_regno, bool strict_alignment_once) 2703 { 2704 struct bpf_reg_state *regs = cur_regs(env); 2705 struct bpf_reg_state *reg = regs + regno; 2706 struct bpf_func_state *state; 2707 int size, err = 0; 2708 2709 size = bpf_size_to_bytes(bpf_size); 2710 if (size < 0) 2711 return size; 2712 2713 /* alignment checks will add in reg->off themselves */ 2714 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2715 if (err) 2716 return err; 2717 2718 /* for access checks, reg->off is just part of off */ 2719 off += reg->off; 2720 2721 if (reg->type == PTR_TO_MAP_VALUE) { 2722 if (t == BPF_WRITE && value_regno >= 0 && 2723 is_pointer_value(env, value_regno)) { 2724 verbose(env, "R%d leaks addr into map\n", value_regno); 2725 return -EACCES; 2726 } 2727 err = check_map_access_type(env, regno, off, size, t); 2728 if (err) 2729 return err; 2730 err = check_map_access(env, regno, off, size, false); 2731 if (!err && t == BPF_READ && value_regno >= 0) 2732 mark_reg_unknown(env, regs, value_regno); 2733 2734 } else if (reg->type == PTR_TO_CTX) { 2735 enum bpf_reg_type reg_type = SCALAR_VALUE; 2736 2737 if (t == BPF_WRITE && value_regno >= 0 && 2738 is_pointer_value(env, value_regno)) { 2739 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2740 return -EACCES; 2741 } 2742 2743 err = check_ctx_reg(env, reg, regno); 2744 if (err < 0) 2745 return err; 2746 2747 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2748 if (!err && t == BPF_READ && value_regno >= 0) { 2749 /* ctx access returns either a scalar, or a 2750 * PTR_TO_PACKET[_META,_END]. In the latter 2751 * case, we know the offset is zero. 2752 */ 2753 if (reg_type == SCALAR_VALUE) { 2754 mark_reg_unknown(env, regs, value_regno); 2755 } else { 2756 mark_reg_known_zero(env, regs, 2757 value_regno); 2758 if (reg_type_may_be_null(reg_type)) 2759 regs[value_regno].id = ++env->id_gen; 2760 /* A load of ctx field could have different 2761 * actual load size with the one encoded in the 2762 * insn. When the dst is PTR, it is for sure not 2763 * a sub-register. 2764 */ 2765 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2766 } 2767 regs[value_regno].type = reg_type; 2768 } 2769 2770 } else if (reg->type == PTR_TO_STACK) { 2771 off += reg->var_off.value; 2772 err = check_stack_access(env, reg, off, size); 2773 if (err) 2774 return err; 2775 2776 state = func(env, reg); 2777 err = update_stack_depth(env, state, off); 2778 if (err) 2779 return err; 2780 2781 if (t == BPF_WRITE) 2782 err = check_stack_write(env, state, off, size, 2783 value_regno, insn_idx); 2784 else 2785 err = check_stack_read(env, state, off, size, 2786 value_regno); 2787 } else if (reg_is_pkt_pointer(reg)) { 2788 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2789 verbose(env, "cannot write into packet\n"); 2790 return -EACCES; 2791 } 2792 if (t == BPF_WRITE && value_regno >= 0 && 2793 is_pointer_value(env, value_regno)) { 2794 verbose(env, "R%d leaks addr into packet\n", 2795 value_regno); 2796 return -EACCES; 2797 } 2798 err = check_packet_access(env, regno, off, size, false); 2799 if (!err && t == BPF_READ && value_regno >= 0) 2800 mark_reg_unknown(env, regs, value_regno); 2801 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2802 if (t == BPF_WRITE && value_regno >= 0 && 2803 is_pointer_value(env, value_regno)) { 2804 verbose(env, "R%d leaks addr into flow keys\n", 2805 value_regno); 2806 return -EACCES; 2807 } 2808 2809 err = check_flow_keys_access(env, off, size); 2810 if (!err && t == BPF_READ && value_regno >= 0) 2811 mark_reg_unknown(env, regs, value_regno); 2812 } else if (type_is_sk_pointer(reg->type)) { 2813 if (t == BPF_WRITE) { 2814 verbose(env, "R%d cannot write into %s\n", 2815 regno, reg_type_str[reg->type]); 2816 return -EACCES; 2817 } 2818 err = check_sock_access(env, insn_idx, regno, off, size, t); 2819 if (!err && value_regno >= 0) 2820 mark_reg_unknown(env, regs, value_regno); 2821 } else if (reg->type == PTR_TO_TP_BUFFER) { 2822 err = check_tp_buffer_access(env, reg, regno, off, size); 2823 if (!err && t == BPF_READ && value_regno >= 0) 2824 mark_reg_unknown(env, regs, value_regno); 2825 } else { 2826 verbose(env, "R%d invalid mem access '%s'\n", regno, 2827 reg_type_str[reg->type]); 2828 return -EACCES; 2829 } 2830 2831 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2832 regs[value_regno].type == SCALAR_VALUE) { 2833 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2834 coerce_reg_to_size(®s[value_regno], size); 2835 } 2836 return err; 2837 } 2838 2839 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2840 { 2841 int err; 2842 2843 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2844 insn->imm != 0) { 2845 verbose(env, "BPF_XADD uses reserved fields\n"); 2846 return -EINVAL; 2847 } 2848 2849 /* check src1 operand */ 2850 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2851 if (err) 2852 return err; 2853 2854 /* check src2 operand */ 2855 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2856 if (err) 2857 return err; 2858 2859 if (is_pointer_value(env, insn->src_reg)) { 2860 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2861 return -EACCES; 2862 } 2863 2864 if (is_ctx_reg(env, insn->dst_reg) || 2865 is_pkt_reg(env, insn->dst_reg) || 2866 is_flow_key_reg(env, insn->dst_reg) || 2867 is_sk_reg(env, insn->dst_reg)) { 2868 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2869 insn->dst_reg, 2870 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2871 return -EACCES; 2872 } 2873 2874 /* check whether atomic_add can read the memory */ 2875 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2876 BPF_SIZE(insn->code), BPF_READ, -1, true); 2877 if (err) 2878 return err; 2879 2880 /* check whether atomic_add can write into the same memory */ 2881 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2882 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2883 } 2884 2885 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2886 int off, int access_size, 2887 bool zero_size_allowed) 2888 { 2889 struct bpf_reg_state *reg = reg_state(env, regno); 2890 2891 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2892 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2893 if (tnum_is_const(reg->var_off)) { 2894 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2895 regno, off, access_size); 2896 } else { 2897 char tn_buf[48]; 2898 2899 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2900 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2901 regno, tn_buf, access_size); 2902 } 2903 return -EACCES; 2904 } 2905 return 0; 2906 } 2907 2908 /* when register 'regno' is passed into function that will read 'access_size' 2909 * bytes from that pointer, make sure that it's within stack boundary 2910 * and all elements of stack are initialized. 2911 * Unlike most pointer bounds-checking functions, this one doesn't take an 2912 * 'off' argument, so it has to add in reg->off itself. 2913 */ 2914 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2915 int access_size, bool zero_size_allowed, 2916 struct bpf_call_arg_meta *meta) 2917 { 2918 struct bpf_reg_state *reg = reg_state(env, regno); 2919 struct bpf_func_state *state = func(env, reg); 2920 int err, min_off, max_off, i, j, slot, spi; 2921 2922 if (reg->type != PTR_TO_STACK) { 2923 /* Allow zero-byte read from NULL, regardless of pointer type */ 2924 if (zero_size_allowed && access_size == 0 && 2925 register_is_null(reg)) 2926 return 0; 2927 2928 verbose(env, "R%d type=%s expected=%s\n", regno, 2929 reg_type_str[reg->type], 2930 reg_type_str[PTR_TO_STACK]); 2931 return -EACCES; 2932 } 2933 2934 if (tnum_is_const(reg->var_off)) { 2935 min_off = max_off = reg->var_off.value + reg->off; 2936 err = __check_stack_boundary(env, regno, min_off, access_size, 2937 zero_size_allowed); 2938 if (err) 2939 return err; 2940 } else { 2941 /* Variable offset is prohibited for unprivileged mode for 2942 * simplicity since it requires corresponding support in 2943 * Spectre masking for stack ALU. 2944 * See also retrieve_ptr_limit(). 2945 */ 2946 if (!env->allow_ptr_leaks) { 2947 char tn_buf[48]; 2948 2949 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2950 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2951 regno, tn_buf); 2952 return -EACCES; 2953 } 2954 /* Only initialized buffer on stack is allowed to be accessed 2955 * with variable offset. With uninitialized buffer it's hard to 2956 * guarantee that whole memory is marked as initialized on 2957 * helper return since specific bounds are unknown what may 2958 * cause uninitialized stack leaking. 2959 */ 2960 if (meta && meta->raw_mode) 2961 meta = NULL; 2962 2963 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2964 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2965 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2966 regno); 2967 return -EACCES; 2968 } 2969 min_off = reg->smin_value + reg->off; 2970 max_off = reg->smax_value + reg->off; 2971 err = __check_stack_boundary(env, regno, min_off, access_size, 2972 zero_size_allowed); 2973 if (err) { 2974 verbose(env, "R%d min value is outside of stack bound\n", 2975 regno); 2976 return err; 2977 } 2978 err = __check_stack_boundary(env, regno, max_off, access_size, 2979 zero_size_allowed); 2980 if (err) { 2981 verbose(env, "R%d max value is outside of stack bound\n", 2982 regno); 2983 return err; 2984 } 2985 } 2986 2987 if (meta && meta->raw_mode) { 2988 meta->access_size = access_size; 2989 meta->regno = regno; 2990 return 0; 2991 } 2992 2993 for (i = min_off; i < max_off + access_size; i++) { 2994 u8 *stype; 2995 2996 slot = -i - 1; 2997 spi = slot / BPF_REG_SIZE; 2998 if (state->allocated_stack <= slot) 2999 goto err; 3000 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3001 if (*stype == STACK_MISC) 3002 goto mark; 3003 if (*stype == STACK_ZERO) { 3004 /* helper can write anything into the stack */ 3005 *stype = STACK_MISC; 3006 goto mark; 3007 } 3008 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3009 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3010 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3011 for (j = 0; j < BPF_REG_SIZE; j++) 3012 state->stack[spi].slot_type[j] = STACK_MISC; 3013 goto mark; 3014 } 3015 3016 err: 3017 if (tnum_is_const(reg->var_off)) { 3018 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3019 min_off, i - min_off, access_size); 3020 } else { 3021 char tn_buf[48]; 3022 3023 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3024 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3025 tn_buf, i - min_off, access_size); 3026 } 3027 return -EACCES; 3028 mark: 3029 /* reading any byte out of 8-byte 'spill_slot' will cause 3030 * the whole slot to be marked as 'read' 3031 */ 3032 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3033 state->stack[spi].spilled_ptr.parent, 3034 REG_LIVE_READ64); 3035 } 3036 return update_stack_depth(env, state, min_off); 3037 } 3038 3039 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3040 int access_size, bool zero_size_allowed, 3041 struct bpf_call_arg_meta *meta) 3042 { 3043 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3044 3045 switch (reg->type) { 3046 case PTR_TO_PACKET: 3047 case PTR_TO_PACKET_META: 3048 return check_packet_access(env, regno, reg->off, access_size, 3049 zero_size_allowed); 3050 case PTR_TO_MAP_VALUE: 3051 if (check_map_access_type(env, regno, reg->off, access_size, 3052 meta && meta->raw_mode ? BPF_WRITE : 3053 BPF_READ)) 3054 return -EACCES; 3055 return check_map_access(env, regno, reg->off, access_size, 3056 zero_size_allowed); 3057 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3058 return check_stack_boundary(env, regno, access_size, 3059 zero_size_allowed, meta); 3060 } 3061 } 3062 3063 /* Implementation details: 3064 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3065 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3066 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3067 * value_or_null->value transition, since the verifier only cares about 3068 * the range of access to valid map value pointer and doesn't care about actual 3069 * address of the map element. 3070 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3071 * reg->id > 0 after value_or_null->value transition. By doing so 3072 * two bpf_map_lookups will be considered two different pointers that 3073 * point to different bpf_spin_locks. 3074 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3075 * dead-locks. 3076 * Since only one bpf_spin_lock is allowed the checks are simpler than 3077 * reg_is_refcounted() logic. The verifier needs to remember only 3078 * one spin_lock instead of array of acquired_refs. 3079 * cur_state->active_spin_lock remembers which map value element got locked 3080 * and clears it after bpf_spin_unlock. 3081 */ 3082 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3083 bool is_lock) 3084 { 3085 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3086 struct bpf_verifier_state *cur = env->cur_state; 3087 bool is_const = tnum_is_const(reg->var_off); 3088 struct bpf_map *map = reg->map_ptr; 3089 u64 val = reg->var_off.value; 3090 3091 if (reg->type != PTR_TO_MAP_VALUE) { 3092 verbose(env, "R%d is not a pointer to map_value\n", regno); 3093 return -EINVAL; 3094 } 3095 if (!is_const) { 3096 verbose(env, 3097 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3098 regno); 3099 return -EINVAL; 3100 } 3101 if (!map->btf) { 3102 verbose(env, 3103 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3104 map->name); 3105 return -EINVAL; 3106 } 3107 if (!map_value_has_spin_lock(map)) { 3108 if (map->spin_lock_off == -E2BIG) 3109 verbose(env, 3110 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3111 map->name); 3112 else if (map->spin_lock_off == -ENOENT) 3113 verbose(env, 3114 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3115 map->name); 3116 else 3117 verbose(env, 3118 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3119 map->name); 3120 return -EINVAL; 3121 } 3122 if (map->spin_lock_off != val + reg->off) { 3123 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3124 val + reg->off); 3125 return -EINVAL; 3126 } 3127 if (is_lock) { 3128 if (cur->active_spin_lock) { 3129 verbose(env, 3130 "Locking two bpf_spin_locks are not allowed\n"); 3131 return -EINVAL; 3132 } 3133 cur->active_spin_lock = reg->id; 3134 } else { 3135 if (!cur->active_spin_lock) { 3136 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3137 return -EINVAL; 3138 } 3139 if (cur->active_spin_lock != reg->id) { 3140 verbose(env, "bpf_spin_unlock of different lock\n"); 3141 return -EINVAL; 3142 } 3143 cur->active_spin_lock = 0; 3144 } 3145 return 0; 3146 } 3147 3148 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3149 { 3150 return type == ARG_PTR_TO_MEM || 3151 type == ARG_PTR_TO_MEM_OR_NULL || 3152 type == ARG_PTR_TO_UNINIT_MEM; 3153 } 3154 3155 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3156 { 3157 return type == ARG_CONST_SIZE || 3158 type == ARG_CONST_SIZE_OR_ZERO; 3159 } 3160 3161 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3162 { 3163 return type == ARG_PTR_TO_INT || 3164 type == ARG_PTR_TO_LONG; 3165 } 3166 3167 static int int_ptr_type_to_size(enum bpf_arg_type type) 3168 { 3169 if (type == ARG_PTR_TO_INT) 3170 return sizeof(u32); 3171 else if (type == ARG_PTR_TO_LONG) 3172 return sizeof(u64); 3173 3174 return -EINVAL; 3175 } 3176 3177 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3178 enum bpf_arg_type arg_type, 3179 struct bpf_call_arg_meta *meta) 3180 { 3181 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3182 enum bpf_reg_type expected_type, type = reg->type; 3183 int err = 0; 3184 3185 if (arg_type == ARG_DONTCARE) 3186 return 0; 3187 3188 err = check_reg_arg(env, regno, SRC_OP); 3189 if (err) 3190 return err; 3191 3192 if (arg_type == ARG_ANYTHING) { 3193 if (is_pointer_value(env, regno)) { 3194 verbose(env, "R%d leaks addr into helper function\n", 3195 regno); 3196 return -EACCES; 3197 } 3198 return 0; 3199 } 3200 3201 if (type_is_pkt_pointer(type) && 3202 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3203 verbose(env, "helper access to the packet is not allowed\n"); 3204 return -EACCES; 3205 } 3206 3207 if (arg_type == ARG_PTR_TO_MAP_KEY || 3208 arg_type == ARG_PTR_TO_MAP_VALUE || 3209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3210 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3211 expected_type = PTR_TO_STACK; 3212 if (register_is_null(reg) && 3213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3214 /* final test in check_stack_boundary() */; 3215 else if (!type_is_pkt_pointer(type) && 3216 type != PTR_TO_MAP_VALUE && 3217 type != expected_type) 3218 goto err_type; 3219 } else if (arg_type == ARG_CONST_SIZE || 3220 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3221 expected_type = SCALAR_VALUE; 3222 if (type != expected_type) 3223 goto err_type; 3224 } else if (arg_type == ARG_CONST_MAP_PTR) { 3225 expected_type = CONST_PTR_TO_MAP; 3226 if (type != expected_type) 3227 goto err_type; 3228 } else if (arg_type == ARG_PTR_TO_CTX) { 3229 expected_type = PTR_TO_CTX; 3230 if (type != expected_type) 3231 goto err_type; 3232 err = check_ctx_reg(env, reg, regno); 3233 if (err < 0) 3234 return err; 3235 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3236 expected_type = PTR_TO_SOCK_COMMON; 3237 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3238 if (!type_is_sk_pointer(type)) 3239 goto err_type; 3240 if (reg->ref_obj_id) { 3241 if (meta->ref_obj_id) { 3242 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3243 regno, reg->ref_obj_id, 3244 meta->ref_obj_id); 3245 return -EFAULT; 3246 } 3247 meta->ref_obj_id = reg->ref_obj_id; 3248 } 3249 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3250 expected_type = PTR_TO_SOCKET; 3251 if (type != expected_type) 3252 goto err_type; 3253 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3254 if (meta->func_id == BPF_FUNC_spin_lock) { 3255 if (process_spin_lock(env, regno, true)) 3256 return -EACCES; 3257 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3258 if (process_spin_lock(env, regno, false)) 3259 return -EACCES; 3260 } else { 3261 verbose(env, "verifier internal error\n"); 3262 return -EFAULT; 3263 } 3264 } else if (arg_type_is_mem_ptr(arg_type)) { 3265 expected_type = PTR_TO_STACK; 3266 /* One exception here. In case function allows for NULL to be 3267 * passed in as argument, it's a SCALAR_VALUE type. Final test 3268 * happens during stack boundary checking. 3269 */ 3270 if (register_is_null(reg) && 3271 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3272 /* final test in check_stack_boundary() */; 3273 else if (!type_is_pkt_pointer(type) && 3274 type != PTR_TO_MAP_VALUE && 3275 type != expected_type) 3276 goto err_type; 3277 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3278 } else if (arg_type_is_int_ptr(arg_type)) { 3279 expected_type = PTR_TO_STACK; 3280 if (!type_is_pkt_pointer(type) && 3281 type != PTR_TO_MAP_VALUE && 3282 type != expected_type) 3283 goto err_type; 3284 } else { 3285 verbose(env, "unsupported arg_type %d\n", arg_type); 3286 return -EFAULT; 3287 } 3288 3289 if (arg_type == ARG_CONST_MAP_PTR) { 3290 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3291 meta->map_ptr = reg->map_ptr; 3292 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3293 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3294 * check that [key, key + map->key_size) are within 3295 * stack limits and initialized 3296 */ 3297 if (!meta->map_ptr) { 3298 /* in function declaration map_ptr must come before 3299 * map_key, so that it's verified and known before 3300 * we have to check map_key here. Otherwise it means 3301 * that kernel subsystem misconfigured verifier 3302 */ 3303 verbose(env, "invalid map_ptr to access map->key\n"); 3304 return -EACCES; 3305 } 3306 err = check_helper_mem_access(env, regno, 3307 meta->map_ptr->key_size, false, 3308 NULL); 3309 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3310 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3311 !register_is_null(reg)) || 3312 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3313 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3314 * check [value, value + map->value_size) validity 3315 */ 3316 if (!meta->map_ptr) { 3317 /* kernel subsystem misconfigured verifier */ 3318 verbose(env, "invalid map_ptr to access map->value\n"); 3319 return -EACCES; 3320 } 3321 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3322 err = check_helper_mem_access(env, regno, 3323 meta->map_ptr->value_size, false, 3324 meta); 3325 } else if (arg_type_is_mem_size(arg_type)) { 3326 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3327 3328 /* remember the mem_size which may be used later 3329 * to refine return values. 3330 */ 3331 meta->msize_smax_value = reg->smax_value; 3332 meta->msize_umax_value = reg->umax_value; 3333 3334 /* The register is SCALAR_VALUE; the access check 3335 * happens using its boundaries. 3336 */ 3337 if (!tnum_is_const(reg->var_off)) 3338 /* For unprivileged variable accesses, disable raw 3339 * mode so that the program is required to 3340 * initialize all the memory that the helper could 3341 * just partially fill up. 3342 */ 3343 meta = NULL; 3344 3345 if (reg->smin_value < 0) { 3346 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3347 regno); 3348 return -EACCES; 3349 } 3350 3351 if (reg->umin_value == 0) { 3352 err = check_helper_mem_access(env, regno - 1, 0, 3353 zero_size_allowed, 3354 meta); 3355 if (err) 3356 return err; 3357 } 3358 3359 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3360 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3361 regno); 3362 return -EACCES; 3363 } 3364 err = check_helper_mem_access(env, regno - 1, 3365 reg->umax_value, 3366 zero_size_allowed, meta); 3367 if (!err) 3368 err = mark_chain_precision(env, regno); 3369 } else if (arg_type_is_int_ptr(arg_type)) { 3370 int size = int_ptr_type_to_size(arg_type); 3371 3372 err = check_helper_mem_access(env, regno, size, false, meta); 3373 if (err) 3374 return err; 3375 err = check_ptr_alignment(env, reg, 0, size, true); 3376 } 3377 3378 return err; 3379 err_type: 3380 verbose(env, "R%d type=%s expected=%s\n", regno, 3381 reg_type_str[type], reg_type_str[expected_type]); 3382 return -EACCES; 3383 } 3384 3385 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3386 struct bpf_map *map, int func_id) 3387 { 3388 if (!map) 3389 return 0; 3390 3391 /* We need a two way check, first is from map perspective ... */ 3392 switch (map->map_type) { 3393 case BPF_MAP_TYPE_PROG_ARRAY: 3394 if (func_id != BPF_FUNC_tail_call) 3395 goto error; 3396 break; 3397 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3398 if (func_id != BPF_FUNC_perf_event_read && 3399 func_id != BPF_FUNC_perf_event_output && 3400 func_id != BPF_FUNC_perf_event_read_value) 3401 goto error; 3402 break; 3403 case BPF_MAP_TYPE_STACK_TRACE: 3404 if (func_id != BPF_FUNC_get_stackid) 3405 goto error; 3406 break; 3407 case BPF_MAP_TYPE_CGROUP_ARRAY: 3408 if (func_id != BPF_FUNC_skb_under_cgroup && 3409 func_id != BPF_FUNC_current_task_under_cgroup) 3410 goto error; 3411 break; 3412 case BPF_MAP_TYPE_CGROUP_STORAGE: 3413 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3414 if (func_id != BPF_FUNC_get_local_storage) 3415 goto error; 3416 break; 3417 /* devmap returns a pointer to a live net_device ifindex that we cannot 3418 * allow to be modified from bpf side. So do not allow lookup elements 3419 * for now. 3420 */ 3421 case BPF_MAP_TYPE_DEVMAP: 3422 if (func_id != BPF_FUNC_redirect_map) 3423 goto error; 3424 break; 3425 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3426 * appear. 3427 */ 3428 case BPF_MAP_TYPE_CPUMAP: 3429 if (func_id != BPF_FUNC_redirect_map) 3430 goto error; 3431 break; 3432 case BPF_MAP_TYPE_XSKMAP: 3433 if (func_id != BPF_FUNC_redirect_map && 3434 func_id != BPF_FUNC_map_lookup_elem) 3435 goto error; 3436 break; 3437 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3438 case BPF_MAP_TYPE_HASH_OF_MAPS: 3439 if (func_id != BPF_FUNC_map_lookup_elem) 3440 goto error; 3441 break; 3442 case BPF_MAP_TYPE_SOCKMAP: 3443 if (func_id != BPF_FUNC_sk_redirect_map && 3444 func_id != BPF_FUNC_sock_map_update && 3445 func_id != BPF_FUNC_map_delete_elem && 3446 func_id != BPF_FUNC_msg_redirect_map) 3447 goto error; 3448 break; 3449 case BPF_MAP_TYPE_SOCKHASH: 3450 if (func_id != BPF_FUNC_sk_redirect_hash && 3451 func_id != BPF_FUNC_sock_hash_update && 3452 func_id != BPF_FUNC_map_delete_elem && 3453 func_id != BPF_FUNC_msg_redirect_hash) 3454 goto error; 3455 break; 3456 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3457 if (func_id != BPF_FUNC_sk_select_reuseport) 3458 goto error; 3459 break; 3460 case BPF_MAP_TYPE_QUEUE: 3461 case BPF_MAP_TYPE_STACK: 3462 if (func_id != BPF_FUNC_map_peek_elem && 3463 func_id != BPF_FUNC_map_pop_elem && 3464 func_id != BPF_FUNC_map_push_elem) 3465 goto error; 3466 break; 3467 case BPF_MAP_TYPE_SK_STORAGE: 3468 if (func_id != BPF_FUNC_sk_storage_get && 3469 func_id != BPF_FUNC_sk_storage_delete) 3470 goto error; 3471 break; 3472 default: 3473 break; 3474 } 3475 3476 /* ... and second from the function itself. */ 3477 switch (func_id) { 3478 case BPF_FUNC_tail_call: 3479 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3480 goto error; 3481 if (env->subprog_cnt > 1) { 3482 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3483 return -EINVAL; 3484 } 3485 break; 3486 case BPF_FUNC_perf_event_read: 3487 case BPF_FUNC_perf_event_output: 3488 case BPF_FUNC_perf_event_read_value: 3489 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3490 goto error; 3491 break; 3492 case BPF_FUNC_get_stackid: 3493 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3494 goto error; 3495 break; 3496 case BPF_FUNC_current_task_under_cgroup: 3497 case BPF_FUNC_skb_under_cgroup: 3498 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3499 goto error; 3500 break; 3501 case BPF_FUNC_redirect_map: 3502 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3503 map->map_type != BPF_MAP_TYPE_CPUMAP && 3504 map->map_type != BPF_MAP_TYPE_XSKMAP) 3505 goto error; 3506 break; 3507 case BPF_FUNC_sk_redirect_map: 3508 case BPF_FUNC_msg_redirect_map: 3509 case BPF_FUNC_sock_map_update: 3510 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3511 goto error; 3512 break; 3513 case BPF_FUNC_sk_redirect_hash: 3514 case BPF_FUNC_msg_redirect_hash: 3515 case BPF_FUNC_sock_hash_update: 3516 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3517 goto error; 3518 break; 3519 case BPF_FUNC_get_local_storage: 3520 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3521 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3522 goto error; 3523 break; 3524 case BPF_FUNC_sk_select_reuseport: 3525 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3526 goto error; 3527 break; 3528 case BPF_FUNC_map_peek_elem: 3529 case BPF_FUNC_map_pop_elem: 3530 case BPF_FUNC_map_push_elem: 3531 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3532 map->map_type != BPF_MAP_TYPE_STACK) 3533 goto error; 3534 break; 3535 case BPF_FUNC_sk_storage_get: 3536 case BPF_FUNC_sk_storage_delete: 3537 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3538 goto error; 3539 break; 3540 default: 3541 break; 3542 } 3543 3544 return 0; 3545 error: 3546 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3547 map->map_type, func_id_name(func_id), func_id); 3548 return -EINVAL; 3549 } 3550 3551 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3552 { 3553 int count = 0; 3554 3555 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3556 count++; 3557 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3558 count++; 3559 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3560 count++; 3561 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3562 count++; 3563 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3564 count++; 3565 3566 /* We only support one arg being in raw mode at the moment, 3567 * which is sufficient for the helper functions we have 3568 * right now. 3569 */ 3570 return count <= 1; 3571 } 3572 3573 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3574 enum bpf_arg_type arg_next) 3575 { 3576 return (arg_type_is_mem_ptr(arg_curr) && 3577 !arg_type_is_mem_size(arg_next)) || 3578 (!arg_type_is_mem_ptr(arg_curr) && 3579 arg_type_is_mem_size(arg_next)); 3580 } 3581 3582 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3583 { 3584 /* bpf_xxx(..., buf, len) call will access 'len' 3585 * bytes from memory 'buf'. Both arg types need 3586 * to be paired, so make sure there's no buggy 3587 * helper function specification. 3588 */ 3589 if (arg_type_is_mem_size(fn->arg1_type) || 3590 arg_type_is_mem_ptr(fn->arg5_type) || 3591 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3592 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3593 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3594 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3595 return false; 3596 3597 return true; 3598 } 3599 3600 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3601 { 3602 int count = 0; 3603 3604 if (arg_type_may_be_refcounted(fn->arg1_type)) 3605 count++; 3606 if (arg_type_may_be_refcounted(fn->arg2_type)) 3607 count++; 3608 if (arg_type_may_be_refcounted(fn->arg3_type)) 3609 count++; 3610 if (arg_type_may_be_refcounted(fn->arg4_type)) 3611 count++; 3612 if (arg_type_may_be_refcounted(fn->arg5_type)) 3613 count++; 3614 3615 /* A reference acquiring function cannot acquire 3616 * another refcounted ptr. 3617 */ 3618 if (is_acquire_function(func_id) && count) 3619 return false; 3620 3621 /* We only support one arg being unreferenced at the moment, 3622 * which is sufficient for the helper functions we have right now. 3623 */ 3624 return count <= 1; 3625 } 3626 3627 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3628 { 3629 return check_raw_mode_ok(fn) && 3630 check_arg_pair_ok(fn) && 3631 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3632 } 3633 3634 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3635 * are now invalid, so turn them into unknown SCALAR_VALUE. 3636 */ 3637 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3638 struct bpf_func_state *state) 3639 { 3640 struct bpf_reg_state *regs = state->regs, *reg; 3641 int i; 3642 3643 for (i = 0; i < MAX_BPF_REG; i++) 3644 if (reg_is_pkt_pointer_any(®s[i])) 3645 mark_reg_unknown(env, regs, i); 3646 3647 bpf_for_each_spilled_reg(i, state, reg) { 3648 if (!reg) 3649 continue; 3650 if (reg_is_pkt_pointer_any(reg)) 3651 __mark_reg_unknown(reg); 3652 } 3653 } 3654 3655 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3656 { 3657 struct bpf_verifier_state *vstate = env->cur_state; 3658 int i; 3659 3660 for (i = 0; i <= vstate->curframe; i++) 3661 __clear_all_pkt_pointers(env, vstate->frame[i]); 3662 } 3663 3664 static void release_reg_references(struct bpf_verifier_env *env, 3665 struct bpf_func_state *state, 3666 int ref_obj_id) 3667 { 3668 struct bpf_reg_state *regs = state->regs, *reg; 3669 int i; 3670 3671 for (i = 0; i < MAX_BPF_REG; i++) 3672 if (regs[i].ref_obj_id == ref_obj_id) 3673 mark_reg_unknown(env, regs, i); 3674 3675 bpf_for_each_spilled_reg(i, state, reg) { 3676 if (!reg) 3677 continue; 3678 if (reg->ref_obj_id == ref_obj_id) 3679 __mark_reg_unknown(reg); 3680 } 3681 } 3682 3683 /* The pointer with the specified id has released its reference to kernel 3684 * resources. Identify all copies of the same pointer and clear the reference. 3685 */ 3686 static int release_reference(struct bpf_verifier_env *env, 3687 int ref_obj_id) 3688 { 3689 struct bpf_verifier_state *vstate = env->cur_state; 3690 int err; 3691 int i; 3692 3693 err = release_reference_state(cur_func(env), ref_obj_id); 3694 if (err) 3695 return err; 3696 3697 for (i = 0; i <= vstate->curframe; i++) 3698 release_reg_references(env, vstate->frame[i], ref_obj_id); 3699 3700 return 0; 3701 } 3702 3703 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3704 int *insn_idx) 3705 { 3706 struct bpf_verifier_state *state = env->cur_state; 3707 struct bpf_func_state *caller, *callee; 3708 int i, err, subprog, target_insn; 3709 3710 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3711 verbose(env, "the call stack of %d frames is too deep\n", 3712 state->curframe + 2); 3713 return -E2BIG; 3714 } 3715 3716 target_insn = *insn_idx + insn->imm; 3717 subprog = find_subprog(env, target_insn + 1); 3718 if (subprog < 0) { 3719 verbose(env, "verifier bug. No program starts at insn %d\n", 3720 target_insn + 1); 3721 return -EFAULT; 3722 } 3723 3724 caller = state->frame[state->curframe]; 3725 if (state->frame[state->curframe + 1]) { 3726 verbose(env, "verifier bug. Frame %d already allocated\n", 3727 state->curframe + 1); 3728 return -EFAULT; 3729 } 3730 3731 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3732 if (!callee) 3733 return -ENOMEM; 3734 state->frame[state->curframe + 1] = callee; 3735 3736 /* callee cannot access r0, r6 - r9 for reading and has to write 3737 * into its own stack before reading from it. 3738 * callee can read/write into caller's stack 3739 */ 3740 init_func_state(env, callee, 3741 /* remember the callsite, it will be used by bpf_exit */ 3742 *insn_idx /* callsite */, 3743 state->curframe + 1 /* frameno within this callchain */, 3744 subprog /* subprog number within this prog */); 3745 3746 /* Transfer references to the callee */ 3747 err = transfer_reference_state(callee, caller); 3748 if (err) 3749 return err; 3750 3751 /* copy r1 - r5 args that callee can access. The copy includes parent 3752 * pointers, which connects us up to the liveness chain 3753 */ 3754 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3755 callee->regs[i] = caller->regs[i]; 3756 3757 /* after the call registers r0 - r5 were scratched */ 3758 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3759 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3760 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3761 } 3762 3763 /* only increment it after check_reg_arg() finished */ 3764 state->curframe++; 3765 3766 /* and go analyze first insn of the callee */ 3767 *insn_idx = target_insn; 3768 3769 if (env->log.level & BPF_LOG_LEVEL) { 3770 verbose(env, "caller:\n"); 3771 print_verifier_state(env, caller); 3772 verbose(env, "callee:\n"); 3773 print_verifier_state(env, callee); 3774 } 3775 return 0; 3776 } 3777 3778 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3779 { 3780 struct bpf_verifier_state *state = env->cur_state; 3781 struct bpf_func_state *caller, *callee; 3782 struct bpf_reg_state *r0; 3783 int err; 3784 3785 callee = state->frame[state->curframe]; 3786 r0 = &callee->regs[BPF_REG_0]; 3787 if (r0->type == PTR_TO_STACK) { 3788 /* technically it's ok to return caller's stack pointer 3789 * (or caller's caller's pointer) back to the caller, 3790 * since these pointers are valid. Only current stack 3791 * pointer will be invalid as soon as function exits, 3792 * but let's be conservative 3793 */ 3794 verbose(env, "cannot return stack pointer to the caller\n"); 3795 return -EINVAL; 3796 } 3797 3798 state->curframe--; 3799 caller = state->frame[state->curframe]; 3800 /* return to the caller whatever r0 had in the callee */ 3801 caller->regs[BPF_REG_0] = *r0; 3802 3803 /* Transfer references to the caller */ 3804 err = transfer_reference_state(caller, callee); 3805 if (err) 3806 return err; 3807 3808 *insn_idx = callee->callsite + 1; 3809 if (env->log.level & BPF_LOG_LEVEL) { 3810 verbose(env, "returning from callee:\n"); 3811 print_verifier_state(env, callee); 3812 verbose(env, "to caller at %d:\n", *insn_idx); 3813 print_verifier_state(env, caller); 3814 } 3815 /* clear everything in the callee */ 3816 free_func_state(callee); 3817 state->frame[state->curframe + 1] = NULL; 3818 return 0; 3819 } 3820 3821 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3822 int func_id, 3823 struct bpf_call_arg_meta *meta) 3824 { 3825 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3826 3827 if (ret_type != RET_INTEGER || 3828 (func_id != BPF_FUNC_get_stack && 3829 func_id != BPF_FUNC_probe_read_str)) 3830 return; 3831 3832 ret_reg->smax_value = meta->msize_smax_value; 3833 ret_reg->umax_value = meta->msize_umax_value; 3834 __reg_deduce_bounds(ret_reg); 3835 __reg_bound_offset(ret_reg); 3836 } 3837 3838 static int 3839 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3840 int func_id, int insn_idx) 3841 { 3842 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3843 struct bpf_map *map = meta->map_ptr; 3844 3845 if (func_id != BPF_FUNC_tail_call && 3846 func_id != BPF_FUNC_map_lookup_elem && 3847 func_id != BPF_FUNC_map_update_elem && 3848 func_id != BPF_FUNC_map_delete_elem && 3849 func_id != BPF_FUNC_map_push_elem && 3850 func_id != BPF_FUNC_map_pop_elem && 3851 func_id != BPF_FUNC_map_peek_elem) 3852 return 0; 3853 3854 if (map == NULL) { 3855 verbose(env, "kernel subsystem misconfigured verifier\n"); 3856 return -EINVAL; 3857 } 3858 3859 /* In case of read-only, some additional restrictions 3860 * need to be applied in order to prevent altering the 3861 * state of the map from program side. 3862 */ 3863 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3864 (func_id == BPF_FUNC_map_delete_elem || 3865 func_id == BPF_FUNC_map_update_elem || 3866 func_id == BPF_FUNC_map_push_elem || 3867 func_id == BPF_FUNC_map_pop_elem)) { 3868 verbose(env, "write into map forbidden\n"); 3869 return -EACCES; 3870 } 3871 3872 if (!BPF_MAP_PTR(aux->map_state)) 3873 bpf_map_ptr_store(aux, meta->map_ptr, 3874 meta->map_ptr->unpriv_array); 3875 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3876 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3877 meta->map_ptr->unpriv_array); 3878 return 0; 3879 } 3880 3881 static int check_reference_leak(struct bpf_verifier_env *env) 3882 { 3883 struct bpf_func_state *state = cur_func(env); 3884 int i; 3885 3886 for (i = 0; i < state->acquired_refs; i++) { 3887 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3888 state->refs[i].id, state->refs[i].insn_idx); 3889 } 3890 return state->acquired_refs ? -EINVAL : 0; 3891 } 3892 3893 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3894 { 3895 const struct bpf_func_proto *fn = NULL; 3896 struct bpf_reg_state *regs; 3897 struct bpf_call_arg_meta meta; 3898 bool changes_data; 3899 int i, err; 3900 3901 /* find function prototype */ 3902 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3903 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3904 func_id); 3905 return -EINVAL; 3906 } 3907 3908 if (env->ops->get_func_proto) 3909 fn = env->ops->get_func_proto(func_id, env->prog); 3910 if (!fn) { 3911 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3912 func_id); 3913 return -EINVAL; 3914 } 3915 3916 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3917 if (!env->prog->gpl_compatible && fn->gpl_only) { 3918 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3919 return -EINVAL; 3920 } 3921 3922 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3923 changes_data = bpf_helper_changes_pkt_data(fn->func); 3924 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3925 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3926 func_id_name(func_id), func_id); 3927 return -EINVAL; 3928 } 3929 3930 memset(&meta, 0, sizeof(meta)); 3931 meta.pkt_access = fn->pkt_access; 3932 3933 err = check_func_proto(fn, func_id); 3934 if (err) { 3935 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3936 func_id_name(func_id), func_id); 3937 return err; 3938 } 3939 3940 meta.func_id = func_id; 3941 /* check args */ 3942 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3943 if (err) 3944 return err; 3945 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3946 if (err) 3947 return err; 3948 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3949 if (err) 3950 return err; 3951 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3952 if (err) 3953 return err; 3954 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3955 if (err) 3956 return err; 3957 3958 err = record_func_map(env, &meta, func_id, insn_idx); 3959 if (err) 3960 return err; 3961 3962 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3963 * is inferred from register state. 3964 */ 3965 for (i = 0; i < meta.access_size; i++) { 3966 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3967 BPF_WRITE, -1, false); 3968 if (err) 3969 return err; 3970 } 3971 3972 if (func_id == BPF_FUNC_tail_call) { 3973 err = check_reference_leak(env); 3974 if (err) { 3975 verbose(env, "tail_call would lead to reference leak\n"); 3976 return err; 3977 } 3978 } else if (is_release_function(func_id)) { 3979 err = release_reference(env, meta.ref_obj_id); 3980 if (err) { 3981 verbose(env, "func %s#%d reference has not been acquired before\n", 3982 func_id_name(func_id), func_id); 3983 return err; 3984 } 3985 } 3986 3987 regs = cur_regs(env); 3988 3989 /* check that flags argument in get_local_storage(map, flags) is 0, 3990 * this is required because get_local_storage() can't return an error. 3991 */ 3992 if (func_id == BPF_FUNC_get_local_storage && 3993 !register_is_null(®s[BPF_REG_2])) { 3994 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3995 return -EINVAL; 3996 } 3997 3998 /* reset caller saved regs */ 3999 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4000 mark_reg_not_init(env, regs, caller_saved[i]); 4001 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4002 } 4003 4004 /* helper call returns 64-bit value. */ 4005 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4006 4007 /* update return register (already marked as written above) */ 4008 if (fn->ret_type == RET_INTEGER) { 4009 /* sets type to SCALAR_VALUE */ 4010 mark_reg_unknown(env, regs, BPF_REG_0); 4011 } else if (fn->ret_type == RET_VOID) { 4012 regs[BPF_REG_0].type = NOT_INIT; 4013 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4014 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4015 /* There is no offset yet applied, variable or fixed */ 4016 mark_reg_known_zero(env, regs, BPF_REG_0); 4017 /* remember map_ptr, so that check_map_access() 4018 * can check 'value_size' boundary of memory access 4019 * to map element returned from bpf_map_lookup_elem() 4020 */ 4021 if (meta.map_ptr == NULL) { 4022 verbose(env, 4023 "kernel subsystem misconfigured verifier\n"); 4024 return -EINVAL; 4025 } 4026 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4027 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4028 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4029 if (map_value_has_spin_lock(meta.map_ptr)) 4030 regs[BPF_REG_0].id = ++env->id_gen; 4031 } else { 4032 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4033 regs[BPF_REG_0].id = ++env->id_gen; 4034 } 4035 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4036 mark_reg_known_zero(env, regs, BPF_REG_0); 4037 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4038 regs[BPF_REG_0].id = ++env->id_gen; 4039 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4040 mark_reg_known_zero(env, regs, BPF_REG_0); 4041 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4042 regs[BPF_REG_0].id = ++env->id_gen; 4043 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4044 mark_reg_known_zero(env, regs, BPF_REG_0); 4045 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4046 regs[BPF_REG_0].id = ++env->id_gen; 4047 } else { 4048 verbose(env, "unknown return type %d of func %s#%d\n", 4049 fn->ret_type, func_id_name(func_id), func_id); 4050 return -EINVAL; 4051 } 4052 4053 if (is_ptr_cast_function(func_id)) { 4054 /* For release_reference() */ 4055 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4056 } else if (is_acquire_function(func_id)) { 4057 int id = acquire_reference_state(env, insn_idx); 4058 4059 if (id < 0) 4060 return id; 4061 /* For mark_ptr_or_null_reg() */ 4062 regs[BPF_REG_0].id = id; 4063 /* For release_reference() */ 4064 regs[BPF_REG_0].ref_obj_id = id; 4065 } 4066 4067 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4068 4069 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4070 if (err) 4071 return err; 4072 4073 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4074 const char *err_str; 4075 4076 #ifdef CONFIG_PERF_EVENTS 4077 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4078 err_str = "cannot get callchain buffer for func %s#%d\n"; 4079 #else 4080 err = -ENOTSUPP; 4081 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4082 #endif 4083 if (err) { 4084 verbose(env, err_str, func_id_name(func_id), func_id); 4085 return err; 4086 } 4087 4088 env->prog->has_callchain_buf = true; 4089 } 4090 4091 if (changes_data) 4092 clear_all_pkt_pointers(env); 4093 return 0; 4094 } 4095 4096 static bool signed_add_overflows(s64 a, s64 b) 4097 { 4098 /* Do the add in u64, where overflow is well-defined */ 4099 s64 res = (s64)((u64)a + (u64)b); 4100 4101 if (b < 0) 4102 return res > a; 4103 return res < a; 4104 } 4105 4106 static bool signed_sub_overflows(s64 a, s64 b) 4107 { 4108 /* Do the sub in u64, where overflow is well-defined */ 4109 s64 res = (s64)((u64)a - (u64)b); 4110 4111 if (b < 0) 4112 return res < a; 4113 return res > a; 4114 } 4115 4116 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4117 const struct bpf_reg_state *reg, 4118 enum bpf_reg_type type) 4119 { 4120 bool known = tnum_is_const(reg->var_off); 4121 s64 val = reg->var_off.value; 4122 s64 smin = reg->smin_value; 4123 4124 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4125 verbose(env, "math between %s pointer and %lld is not allowed\n", 4126 reg_type_str[type], val); 4127 return false; 4128 } 4129 4130 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4131 verbose(env, "%s pointer offset %d is not allowed\n", 4132 reg_type_str[type], reg->off); 4133 return false; 4134 } 4135 4136 if (smin == S64_MIN) { 4137 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4138 reg_type_str[type]); 4139 return false; 4140 } 4141 4142 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4143 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4144 smin, reg_type_str[type]); 4145 return false; 4146 } 4147 4148 return true; 4149 } 4150 4151 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4152 { 4153 return &env->insn_aux_data[env->insn_idx]; 4154 } 4155 4156 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4157 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4158 { 4159 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4160 (opcode == BPF_SUB && !off_is_neg); 4161 u32 off; 4162 4163 switch (ptr_reg->type) { 4164 case PTR_TO_STACK: 4165 /* Indirect variable offset stack access is prohibited in 4166 * unprivileged mode so it's not handled here. 4167 */ 4168 off = ptr_reg->off + ptr_reg->var_off.value; 4169 if (mask_to_left) 4170 *ptr_limit = MAX_BPF_STACK + off; 4171 else 4172 *ptr_limit = -off; 4173 return 0; 4174 case PTR_TO_MAP_VALUE: 4175 if (mask_to_left) { 4176 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4177 } else { 4178 off = ptr_reg->smin_value + ptr_reg->off; 4179 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4180 } 4181 return 0; 4182 default: 4183 return -EINVAL; 4184 } 4185 } 4186 4187 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4188 const struct bpf_insn *insn) 4189 { 4190 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4191 } 4192 4193 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4194 u32 alu_state, u32 alu_limit) 4195 { 4196 /* If we arrived here from different branches with different 4197 * state or limits to sanitize, then this won't work. 4198 */ 4199 if (aux->alu_state && 4200 (aux->alu_state != alu_state || 4201 aux->alu_limit != alu_limit)) 4202 return -EACCES; 4203 4204 /* Corresponding fixup done in fixup_bpf_calls(). */ 4205 aux->alu_state = alu_state; 4206 aux->alu_limit = alu_limit; 4207 return 0; 4208 } 4209 4210 static int sanitize_val_alu(struct bpf_verifier_env *env, 4211 struct bpf_insn *insn) 4212 { 4213 struct bpf_insn_aux_data *aux = cur_aux(env); 4214 4215 if (can_skip_alu_sanitation(env, insn)) 4216 return 0; 4217 4218 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4219 } 4220 4221 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4222 struct bpf_insn *insn, 4223 const struct bpf_reg_state *ptr_reg, 4224 struct bpf_reg_state *dst_reg, 4225 bool off_is_neg) 4226 { 4227 struct bpf_verifier_state *vstate = env->cur_state; 4228 struct bpf_insn_aux_data *aux = cur_aux(env); 4229 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4230 u8 opcode = BPF_OP(insn->code); 4231 u32 alu_state, alu_limit; 4232 struct bpf_reg_state tmp; 4233 bool ret; 4234 4235 if (can_skip_alu_sanitation(env, insn)) 4236 return 0; 4237 4238 /* We already marked aux for masking from non-speculative 4239 * paths, thus we got here in the first place. We only care 4240 * to explore bad access from here. 4241 */ 4242 if (vstate->speculative) 4243 goto do_sim; 4244 4245 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4246 alu_state |= ptr_is_dst_reg ? 4247 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4248 4249 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4250 return 0; 4251 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4252 return -EACCES; 4253 do_sim: 4254 /* Simulate and find potential out-of-bounds access under 4255 * speculative execution from truncation as a result of 4256 * masking when off was not within expected range. If off 4257 * sits in dst, then we temporarily need to move ptr there 4258 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4259 * for cases where we use K-based arithmetic in one direction 4260 * and truncated reg-based in the other in order to explore 4261 * bad access. 4262 */ 4263 if (!ptr_is_dst_reg) { 4264 tmp = *dst_reg; 4265 *dst_reg = *ptr_reg; 4266 } 4267 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4268 if (!ptr_is_dst_reg && ret) 4269 *dst_reg = tmp; 4270 return !ret ? -EFAULT : 0; 4271 } 4272 4273 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4274 * Caller should also handle BPF_MOV case separately. 4275 * If we return -EACCES, caller may want to try again treating pointer as a 4276 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4277 */ 4278 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4279 struct bpf_insn *insn, 4280 const struct bpf_reg_state *ptr_reg, 4281 const struct bpf_reg_state *off_reg) 4282 { 4283 struct bpf_verifier_state *vstate = env->cur_state; 4284 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4285 struct bpf_reg_state *regs = state->regs, *dst_reg; 4286 bool known = tnum_is_const(off_reg->var_off); 4287 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4288 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4289 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4290 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4291 u32 dst = insn->dst_reg, src = insn->src_reg; 4292 u8 opcode = BPF_OP(insn->code); 4293 int ret; 4294 4295 dst_reg = ®s[dst]; 4296 4297 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4298 smin_val > smax_val || umin_val > umax_val) { 4299 /* Taint dst register if offset had invalid bounds derived from 4300 * e.g. dead branches. 4301 */ 4302 __mark_reg_unknown(dst_reg); 4303 return 0; 4304 } 4305 4306 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4307 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4308 verbose(env, 4309 "R%d 32-bit pointer arithmetic prohibited\n", 4310 dst); 4311 return -EACCES; 4312 } 4313 4314 switch (ptr_reg->type) { 4315 case PTR_TO_MAP_VALUE_OR_NULL: 4316 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4317 dst, reg_type_str[ptr_reg->type]); 4318 return -EACCES; 4319 case CONST_PTR_TO_MAP: 4320 case PTR_TO_PACKET_END: 4321 case PTR_TO_SOCKET: 4322 case PTR_TO_SOCKET_OR_NULL: 4323 case PTR_TO_SOCK_COMMON: 4324 case PTR_TO_SOCK_COMMON_OR_NULL: 4325 case PTR_TO_TCP_SOCK: 4326 case PTR_TO_TCP_SOCK_OR_NULL: 4327 case PTR_TO_XDP_SOCK: 4328 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4329 dst, reg_type_str[ptr_reg->type]); 4330 return -EACCES; 4331 case PTR_TO_MAP_VALUE: 4332 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4333 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4334 off_reg == dst_reg ? dst : src); 4335 return -EACCES; 4336 } 4337 /* fall-through */ 4338 default: 4339 break; 4340 } 4341 4342 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4343 * The id may be overwritten later if we create a new variable offset. 4344 */ 4345 dst_reg->type = ptr_reg->type; 4346 dst_reg->id = ptr_reg->id; 4347 4348 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4349 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4350 return -EINVAL; 4351 4352 switch (opcode) { 4353 case BPF_ADD: 4354 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4355 if (ret < 0) { 4356 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4357 return ret; 4358 } 4359 /* We can take a fixed offset as long as it doesn't overflow 4360 * the s32 'off' field 4361 */ 4362 if (known && (ptr_reg->off + smin_val == 4363 (s64)(s32)(ptr_reg->off + smin_val))) { 4364 /* pointer += K. Accumulate it into fixed offset */ 4365 dst_reg->smin_value = smin_ptr; 4366 dst_reg->smax_value = smax_ptr; 4367 dst_reg->umin_value = umin_ptr; 4368 dst_reg->umax_value = umax_ptr; 4369 dst_reg->var_off = ptr_reg->var_off; 4370 dst_reg->off = ptr_reg->off + smin_val; 4371 dst_reg->raw = ptr_reg->raw; 4372 break; 4373 } 4374 /* A new variable offset is created. Note that off_reg->off 4375 * == 0, since it's a scalar. 4376 * dst_reg gets the pointer type and since some positive 4377 * integer value was added to the pointer, give it a new 'id' 4378 * if it's a PTR_TO_PACKET. 4379 * this creates a new 'base' pointer, off_reg (variable) gets 4380 * added into the variable offset, and we copy the fixed offset 4381 * from ptr_reg. 4382 */ 4383 if (signed_add_overflows(smin_ptr, smin_val) || 4384 signed_add_overflows(smax_ptr, smax_val)) { 4385 dst_reg->smin_value = S64_MIN; 4386 dst_reg->smax_value = S64_MAX; 4387 } else { 4388 dst_reg->smin_value = smin_ptr + smin_val; 4389 dst_reg->smax_value = smax_ptr + smax_val; 4390 } 4391 if (umin_ptr + umin_val < umin_ptr || 4392 umax_ptr + umax_val < umax_ptr) { 4393 dst_reg->umin_value = 0; 4394 dst_reg->umax_value = U64_MAX; 4395 } else { 4396 dst_reg->umin_value = umin_ptr + umin_val; 4397 dst_reg->umax_value = umax_ptr + umax_val; 4398 } 4399 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4400 dst_reg->off = ptr_reg->off; 4401 dst_reg->raw = ptr_reg->raw; 4402 if (reg_is_pkt_pointer(ptr_reg)) { 4403 dst_reg->id = ++env->id_gen; 4404 /* something was added to pkt_ptr, set range to zero */ 4405 dst_reg->raw = 0; 4406 } 4407 break; 4408 case BPF_SUB: 4409 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4410 if (ret < 0) { 4411 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4412 return ret; 4413 } 4414 if (dst_reg == off_reg) { 4415 /* scalar -= pointer. Creates an unknown scalar */ 4416 verbose(env, "R%d tried to subtract pointer from scalar\n", 4417 dst); 4418 return -EACCES; 4419 } 4420 /* We don't allow subtraction from FP, because (according to 4421 * test_verifier.c test "invalid fp arithmetic", JITs might not 4422 * be able to deal with it. 4423 */ 4424 if (ptr_reg->type == PTR_TO_STACK) { 4425 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4426 dst); 4427 return -EACCES; 4428 } 4429 if (known && (ptr_reg->off - smin_val == 4430 (s64)(s32)(ptr_reg->off - smin_val))) { 4431 /* pointer -= K. Subtract it from fixed offset */ 4432 dst_reg->smin_value = smin_ptr; 4433 dst_reg->smax_value = smax_ptr; 4434 dst_reg->umin_value = umin_ptr; 4435 dst_reg->umax_value = umax_ptr; 4436 dst_reg->var_off = ptr_reg->var_off; 4437 dst_reg->id = ptr_reg->id; 4438 dst_reg->off = ptr_reg->off - smin_val; 4439 dst_reg->raw = ptr_reg->raw; 4440 break; 4441 } 4442 /* A new variable offset is created. If the subtrahend is known 4443 * nonnegative, then any reg->range we had before is still good. 4444 */ 4445 if (signed_sub_overflows(smin_ptr, smax_val) || 4446 signed_sub_overflows(smax_ptr, smin_val)) { 4447 /* Overflow possible, we know nothing */ 4448 dst_reg->smin_value = S64_MIN; 4449 dst_reg->smax_value = S64_MAX; 4450 } else { 4451 dst_reg->smin_value = smin_ptr - smax_val; 4452 dst_reg->smax_value = smax_ptr - smin_val; 4453 } 4454 if (umin_ptr < umax_val) { 4455 /* Overflow possible, we know nothing */ 4456 dst_reg->umin_value = 0; 4457 dst_reg->umax_value = U64_MAX; 4458 } else { 4459 /* Cannot overflow (as long as bounds are consistent) */ 4460 dst_reg->umin_value = umin_ptr - umax_val; 4461 dst_reg->umax_value = umax_ptr - umin_val; 4462 } 4463 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4464 dst_reg->off = ptr_reg->off; 4465 dst_reg->raw = ptr_reg->raw; 4466 if (reg_is_pkt_pointer(ptr_reg)) { 4467 dst_reg->id = ++env->id_gen; 4468 /* something was added to pkt_ptr, set range to zero */ 4469 if (smin_val < 0) 4470 dst_reg->raw = 0; 4471 } 4472 break; 4473 case BPF_AND: 4474 case BPF_OR: 4475 case BPF_XOR: 4476 /* bitwise ops on pointers are troublesome, prohibit. */ 4477 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4478 dst, bpf_alu_string[opcode >> 4]); 4479 return -EACCES; 4480 default: 4481 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4482 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4483 dst, bpf_alu_string[opcode >> 4]); 4484 return -EACCES; 4485 } 4486 4487 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4488 return -EINVAL; 4489 4490 __update_reg_bounds(dst_reg); 4491 __reg_deduce_bounds(dst_reg); 4492 __reg_bound_offset(dst_reg); 4493 4494 /* For unprivileged we require that resulting offset must be in bounds 4495 * in order to be able to sanitize access later on. 4496 */ 4497 if (!env->allow_ptr_leaks) { 4498 if (dst_reg->type == PTR_TO_MAP_VALUE && 4499 check_map_access(env, dst, dst_reg->off, 1, false)) { 4500 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4501 "prohibited for !root\n", dst); 4502 return -EACCES; 4503 } else if (dst_reg->type == PTR_TO_STACK && 4504 check_stack_access(env, dst_reg, dst_reg->off + 4505 dst_reg->var_off.value, 1)) { 4506 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4507 "prohibited for !root\n", dst); 4508 return -EACCES; 4509 } 4510 } 4511 4512 return 0; 4513 } 4514 4515 /* WARNING: This function does calculations on 64-bit values, but the actual 4516 * execution may occur on 32-bit values. Therefore, things like bitshifts 4517 * need extra checks in the 32-bit case. 4518 */ 4519 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4520 struct bpf_insn *insn, 4521 struct bpf_reg_state *dst_reg, 4522 struct bpf_reg_state src_reg) 4523 { 4524 struct bpf_reg_state *regs = cur_regs(env); 4525 u8 opcode = BPF_OP(insn->code); 4526 bool src_known, dst_known; 4527 s64 smin_val, smax_val; 4528 u64 umin_val, umax_val; 4529 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4530 u32 dst = insn->dst_reg; 4531 int ret; 4532 4533 if (insn_bitness == 32) { 4534 /* Relevant for 32-bit RSH: Information can propagate towards 4535 * LSB, so it isn't sufficient to only truncate the output to 4536 * 32 bits. 4537 */ 4538 coerce_reg_to_size(dst_reg, 4); 4539 coerce_reg_to_size(&src_reg, 4); 4540 } 4541 4542 smin_val = src_reg.smin_value; 4543 smax_val = src_reg.smax_value; 4544 umin_val = src_reg.umin_value; 4545 umax_val = src_reg.umax_value; 4546 src_known = tnum_is_const(src_reg.var_off); 4547 dst_known = tnum_is_const(dst_reg->var_off); 4548 4549 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4550 smin_val > smax_val || umin_val > umax_val) { 4551 /* Taint dst register if offset had invalid bounds derived from 4552 * e.g. dead branches. 4553 */ 4554 __mark_reg_unknown(dst_reg); 4555 return 0; 4556 } 4557 4558 if (!src_known && 4559 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4560 __mark_reg_unknown(dst_reg); 4561 return 0; 4562 } 4563 4564 switch (opcode) { 4565 case BPF_ADD: 4566 ret = sanitize_val_alu(env, insn); 4567 if (ret < 0) { 4568 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4569 return ret; 4570 } 4571 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4572 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4573 dst_reg->smin_value = S64_MIN; 4574 dst_reg->smax_value = S64_MAX; 4575 } else { 4576 dst_reg->smin_value += smin_val; 4577 dst_reg->smax_value += smax_val; 4578 } 4579 if (dst_reg->umin_value + umin_val < umin_val || 4580 dst_reg->umax_value + umax_val < umax_val) { 4581 dst_reg->umin_value = 0; 4582 dst_reg->umax_value = U64_MAX; 4583 } else { 4584 dst_reg->umin_value += umin_val; 4585 dst_reg->umax_value += umax_val; 4586 } 4587 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4588 break; 4589 case BPF_SUB: 4590 ret = sanitize_val_alu(env, insn); 4591 if (ret < 0) { 4592 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4593 return ret; 4594 } 4595 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4596 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4597 /* Overflow possible, we know nothing */ 4598 dst_reg->smin_value = S64_MIN; 4599 dst_reg->smax_value = S64_MAX; 4600 } else { 4601 dst_reg->smin_value -= smax_val; 4602 dst_reg->smax_value -= smin_val; 4603 } 4604 if (dst_reg->umin_value < umax_val) { 4605 /* Overflow possible, we know nothing */ 4606 dst_reg->umin_value = 0; 4607 dst_reg->umax_value = U64_MAX; 4608 } else { 4609 /* Cannot overflow (as long as bounds are consistent) */ 4610 dst_reg->umin_value -= umax_val; 4611 dst_reg->umax_value -= umin_val; 4612 } 4613 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4614 break; 4615 case BPF_MUL: 4616 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4617 if (smin_val < 0 || dst_reg->smin_value < 0) { 4618 /* Ain't nobody got time to multiply that sign */ 4619 __mark_reg_unbounded(dst_reg); 4620 __update_reg_bounds(dst_reg); 4621 break; 4622 } 4623 /* Both values are positive, so we can work with unsigned and 4624 * copy the result to signed (unless it exceeds S64_MAX). 4625 */ 4626 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4627 /* Potential overflow, we know nothing */ 4628 __mark_reg_unbounded(dst_reg); 4629 /* (except what we can learn from the var_off) */ 4630 __update_reg_bounds(dst_reg); 4631 break; 4632 } 4633 dst_reg->umin_value *= umin_val; 4634 dst_reg->umax_value *= umax_val; 4635 if (dst_reg->umax_value > S64_MAX) { 4636 /* Overflow possible, we know nothing */ 4637 dst_reg->smin_value = S64_MIN; 4638 dst_reg->smax_value = S64_MAX; 4639 } else { 4640 dst_reg->smin_value = dst_reg->umin_value; 4641 dst_reg->smax_value = dst_reg->umax_value; 4642 } 4643 break; 4644 case BPF_AND: 4645 if (src_known && dst_known) { 4646 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4647 src_reg.var_off.value); 4648 break; 4649 } 4650 /* We get our minimum from the var_off, since that's inherently 4651 * bitwise. Our maximum is the minimum of the operands' maxima. 4652 */ 4653 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4654 dst_reg->umin_value = dst_reg->var_off.value; 4655 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4656 if (dst_reg->smin_value < 0 || smin_val < 0) { 4657 /* Lose signed bounds when ANDing negative numbers, 4658 * ain't nobody got time for that. 4659 */ 4660 dst_reg->smin_value = S64_MIN; 4661 dst_reg->smax_value = S64_MAX; 4662 } else { 4663 /* ANDing two positives gives a positive, so safe to 4664 * cast result into s64. 4665 */ 4666 dst_reg->smin_value = dst_reg->umin_value; 4667 dst_reg->smax_value = dst_reg->umax_value; 4668 } 4669 /* We may learn something more from the var_off */ 4670 __update_reg_bounds(dst_reg); 4671 break; 4672 case BPF_OR: 4673 if (src_known && dst_known) { 4674 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4675 src_reg.var_off.value); 4676 break; 4677 } 4678 /* We get our maximum from the var_off, and our minimum is the 4679 * maximum of the operands' minima 4680 */ 4681 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4682 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4683 dst_reg->umax_value = dst_reg->var_off.value | 4684 dst_reg->var_off.mask; 4685 if (dst_reg->smin_value < 0 || smin_val < 0) { 4686 /* Lose signed bounds when ORing negative numbers, 4687 * ain't nobody got time for that. 4688 */ 4689 dst_reg->smin_value = S64_MIN; 4690 dst_reg->smax_value = S64_MAX; 4691 } else { 4692 /* ORing two positives gives a positive, so safe to 4693 * cast result into s64. 4694 */ 4695 dst_reg->smin_value = dst_reg->umin_value; 4696 dst_reg->smax_value = dst_reg->umax_value; 4697 } 4698 /* We may learn something more from the var_off */ 4699 __update_reg_bounds(dst_reg); 4700 break; 4701 case BPF_LSH: 4702 if (umax_val >= insn_bitness) { 4703 /* Shifts greater than 31 or 63 are undefined. 4704 * This includes shifts by a negative number. 4705 */ 4706 mark_reg_unknown(env, regs, insn->dst_reg); 4707 break; 4708 } 4709 /* We lose all sign bit information (except what we can pick 4710 * up from var_off) 4711 */ 4712 dst_reg->smin_value = S64_MIN; 4713 dst_reg->smax_value = S64_MAX; 4714 /* If we might shift our top bit out, then we know nothing */ 4715 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4716 dst_reg->umin_value = 0; 4717 dst_reg->umax_value = U64_MAX; 4718 } else { 4719 dst_reg->umin_value <<= umin_val; 4720 dst_reg->umax_value <<= umax_val; 4721 } 4722 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4723 /* We may learn something more from the var_off */ 4724 __update_reg_bounds(dst_reg); 4725 break; 4726 case BPF_RSH: 4727 if (umax_val >= insn_bitness) { 4728 /* Shifts greater than 31 or 63 are undefined. 4729 * This includes shifts by a negative number. 4730 */ 4731 mark_reg_unknown(env, regs, insn->dst_reg); 4732 break; 4733 } 4734 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4735 * be negative, then either: 4736 * 1) src_reg might be zero, so the sign bit of the result is 4737 * unknown, so we lose our signed bounds 4738 * 2) it's known negative, thus the unsigned bounds capture the 4739 * signed bounds 4740 * 3) the signed bounds cross zero, so they tell us nothing 4741 * about the result 4742 * If the value in dst_reg is known nonnegative, then again the 4743 * unsigned bounts capture the signed bounds. 4744 * Thus, in all cases it suffices to blow away our signed bounds 4745 * and rely on inferring new ones from the unsigned bounds and 4746 * var_off of the result. 4747 */ 4748 dst_reg->smin_value = S64_MIN; 4749 dst_reg->smax_value = S64_MAX; 4750 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4751 dst_reg->umin_value >>= umax_val; 4752 dst_reg->umax_value >>= umin_val; 4753 /* We may learn something more from the var_off */ 4754 __update_reg_bounds(dst_reg); 4755 break; 4756 case BPF_ARSH: 4757 if (umax_val >= insn_bitness) { 4758 /* Shifts greater than 31 or 63 are undefined. 4759 * This includes shifts by a negative number. 4760 */ 4761 mark_reg_unknown(env, regs, insn->dst_reg); 4762 break; 4763 } 4764 4765 /* Upon reaching here, src_known is true and 4766 * umax_val is equal to umin_val. 4767 */ 4768 dst_reg->smin_value >>= umin_val; 4769 dst_reg->smax_value >>= umin_val; 4770 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4771 4772 /* blow away the dst_reg umin_value/umax_value and rely on 4773 * dst_reg var_off to refine the result. 4774 */ 4775 dst_reg->umin_value = 0; 4776 dst_reg->umax_value = U64_MAX; 4777 __update_reg_bounds(dst_reg); 4778 break; 4779 default: 4780 mark_reg_unknown(env, regs, insn->dst_reg); 4781 break; 4782 } 4783 4784 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4785 /* 32-bit ALU ops are (32,32)->32 */ 4786 coerce_reg_to_size(dst_reg, 4); 4787 } 4788 4789 __reg_deduce_bounds(dst_reg); 4790 __reg_bound_offset(dst_reg); 4791 return 0; 4792 } 4793 4794 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4795 * and var_off. 4796 */ 4797 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4798 struct bpf_insn *insn) 4799 { 4800 struct bpf_verifier_state *vstate = env->cur_state; 4801 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4802 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4803 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4804 u8 opcode = BPF_OP(insn->code); 4805 int err; 4806 4807 dst_reg = ®s[insn->dst_reg]; 4808 src_reg = NULL; 4809 if (dst_reg->type != SCALAR_VALUE) 4810 ptr_reg = dst_reg; 4811 if (BPF_SRC(insn->code) == BPF_X) { 4812 src_reg = ®s[insn->src_reg]; 4813 if (src_reg->type != SCALAR_VALUE) { 4814 if (dst_reg->type != SCALAR_VALUE) { 4815 /* Combining two pointers by any ALU op yields 4816 * an arbitrary scalar. Disallow all math except 4817 * pointer subtraction 4818 */ 4819 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4820 mark_reg_unknown(env, regs, insn->dst_reg); 4821 return 0; 4822 } 4823 verbose(env, "R%d pointer %s pointer prohibited\n", 4824 insn->dst_reg, 4825 bpf_alu_string[opcode >> 4]); 4826 return -EACCES; 4827 } else { 4828 /* scalar += pointer 4829 * This is legal, but we have to reverse our 4830 * src/dest handling in computing the range 4831 */ 4832 err = mark_chain_precision(env, insn->dst_reg); 4833 if (err) 4834 return err; 4835 return adjust_ptr_min_max_vals(env, insn, 4836 src_reg, dst_reg); 4837 } 4838 } else if (ptr_reg) { 4839 /* pointer += scalar */ 4840 err = mark_chain_precision(env, insn->src_reg); 4841 if (err) 4842 return err; 4843 return adjust_ptr_min_max_vals(env, insn, 4844 dst_reg, src_reg); 4845 } 4846 } else { 4847 /* Pretend the src is a reg with a known value, since we only 4848 * need to be able to read from this state. 4849 */ 4850 off_reg.type = SCALAR_VALUE; 4851 __mark_reg_known(&off_reg, insn->imm); 4852 src_reg = &off_reg; 4853 if (ptr_reg) /* pointer += K */ 4854 return adjust_ptr_min_max_vals(env, insn, 4855 ptr_reg, src_reg); 4856 } 4857 4858 /* Got here implies adding two SCALAR_VALUEs */ 4859 if (WARN_ON_ONCE(ptr_reg)) { 4860 print_verifier_state(env, state); 4861 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4862 return -EINVAL; 4863 } 4864 if (WARN_ON(!src_reg)) { 4865 print_verifier_state(env, state); 4866 verbose(env, "verifier internal error: no src_reg\n"); 4867 return -EINVAL; 4868 } 4869 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4870 } 4871 4872 /* check validity of 32-bit and 64-bit arithmetic operations */ 4873 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4874 { 4875 struct bpf_reg_state *regs = cur_regs(env); 4876 u8 opcode = BPF_OP(insn->code); 4877 int err; 4878 4879 if (opcode == BPF_END || opcode == BPF_NEG) { 4880 if (opcode == BPF_NEG) { 4881 if (BPF_SRC(insn->code) != 0 || 4882 insn->src_reg != BPF_REG_0 || 4883 insn->off != 0 || insn->imm != 0) { 4884 verbose(env, "BPF_NEG uses reserved fields\n"); 4885 return -EINVAL; 4886 } 4887 } else { 4888 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4889 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4890 BPF_CLASS(insn->code) == BPF_ALU64) { 4891 verbose(env, "BPF_END uses reserved fields\n"); 4892 return -EINVAL; 4893 } 4894 } 4895 4896 /* check src operand */ 4897 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4898 if (err) 4899 return err; 4900 4901 if (is_pointer_value(env, insn->dst_reg)) { 4902 verbose(env, "R%d pointer arithmetic prohibited\n", 4903 insn->dst_reg); 4904 return -EACCES; 4905 } 4906 4907 /* check dest operand */ 4908 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4909 if (err) 4910 return err; 4911 4912 } else if (opcode == BPF_MOV) { 4913 4914 if (BPF_SRC(insn->code) == BPF_X) { 4915 if (insn->imm != 0 || insn->off != 0) { 4916 verbose(env, "BPF_MOV uses reserved fields\n"); 4917 return -EINVAL; 4918 } 4919 4920 /* check src operand */ 4921 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4922 if (err) 4923 return err; 4924 } else { 4925 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4926 verbose(env, "BPF_MOV uses reserved fields\n"); 4927 return -EINVAL; 4928 } 4929 } 4930 4931 /* check dest operand, mark as required later */ 4932 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4933 if (err) 4934 return err; 4935 4936 if (BPF_SRC(insn->code) == BPF_X) { 4937 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4938 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4939 4940 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4941 /* case: R1 = R2 4942 * copy register state to dest reg 4943 */ 4944 *dst_reg = *src_reg; 4945 dst_reg->live |= REG_LIVE_WRITTEN; 4946 dst_reg->subreg_def = DEF_NOT_SUBREG; 4947 } else { 4948 /* R1 = (u32) R2 */ 4949 if (is_pointer_value(env, insn->src_reg)) { 4950 verbose(env, 4951 "R%d partial copy of pointer\n", 4952 insn->src_reg); 4953 return -EACCES; 4954 } else if (src_reg->type == SCALAR_VALUE) { 4955 *dst_reg = *src_reg; 4956 dst_reg->live |= REG_LIVE_WRITTEN; 4957 dst_reg->subreg_def = env->insn_idx + 1; 4958 } else { 4959 mark_reg_unknown(env, regs, 4960 insn->dst_reg); 4961 } 4962 coerce_reg_to_size(dst_reg, 4); 4963 } 4964 } else { 4965 /* case: R = imm 4966 * remember the value we stored into this reg 4967 */ 4968 /* clear any state __mark_reg_known doesn't set */ 4969 mark_reg_unknown(env, regs, insn->dst_reg); 4970 regs[insn->dst_reg].type = SCALAR_VALUE; 4971 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4972 __mark_reg_known(regs + insn->dst_reg, 4973 insn->imm); 4974 } else { 4975 __mark_reg_known(regs + insn->dst_reg, 4976 (u32)insn->imm); 4977 } 4978 } 4979 4980 } else if (opcode > BPF_END) { 4981 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4982 return -EINVAL; 4983 4984 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4985 4986 if (BPF_SRC(insn->code) == BPF_X) { 4987 if (insn->imm != 0 || insn->off != 0) { 4988 verbose(env, "BPF_ALU uses reserved fields\n"); 4989 return -EINVAL; 4990 } 4991 /* check src1 operand */ 4992 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4993 if (err) 4994 return err; 4995 } else { 4996 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4997 verbose(env, "BPF_ALU uses reserved fields\n"); 4998 return -EINVAL; 4999 } 5000 } 5001 5002 /* check src2 operand */ 5003 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5004 if (err) 5005 return err; 5006 5007 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5008 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5009 verbose(env, "div by zero\n"); 5010 return -EINVAL; 5011 } 5012 5013 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5014 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5015 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5016 5017 if (insn->imm < 0 || insn->imm >= size) { 5018 verbose(env, "invalid shift %d\n", insn->imm); 5019 return -EINVAL; 5020 } 5021 } 5022 5023 /* check dest operand */ 5024 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5025 if (err) 5026 return err; 5027 5028 return adjust_reg_min_max_vals(env, insn); 5029 } 5030 5031 return 0; 5032 } 5033 5034 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5035 struct bpf_reg_state *dst_reg, 5036 enum bpf_reg_type type, u16 new_range) 5037 { 5038 struct bpf_reg_state *reg; 5039 int i; 5040 5041 for (i = 0; i < MAX_BPF_REG; i++) { 5042 reg = &state->regs[i]; 5043 if (reg->type == type && reg->id == dst_reg->id) 5044 /* keep the maximum range already checked */ 5045 reg->range = max(reg->range, new_range); 5046 } 5047 5048 bpf_for_each_spilled_reg(i, state, reg) { 5049 if (!reg) 5050 continue; 5051 if (reg->type == type && reg->id == dst_reg->id) 5052 reg->range = max(reg->range, new_range); 5053 } 5054 } 5055 5056 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5057 struct bpf_reg_state *dst_reg, 5058 enum bpf_reg_type type, 5059 bool range_right_open) 5060 { 5061 u16 new_range; 5062 int i; 5063 5064 if (dst_reg->off < 0 || 5065 (dst_reg->off == 0 && range_right_open)) 5066 /* This doesn't give us any range */ 5067 return; 5068 5069 if (dst_reg->umax_value > MAX_PACKET_OFF || 5070 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5071 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5072 * than pkt_end, but that's because it's also less than pkt. 5073 */ 5074 return; 5075 5076 new_range = dst_reg->off; 5077 if (range_right_open) 5078 new_range--; 5079 5080 /* Examples for register markings: 5081 * 5082 * pkt_data in dst register: 5083 * 5084 * r2 = r3; 5085 * r2 += 8; 5086 * if (r2 > pkt_end) goto <handle exception> 5087 * <access okay> 5088 * 5089 * r2 = r3; 5090 * r2 += 8; 5091 * if (r2 < pkt_end) goto <access okay> 5092 * <handle exception> 5093 * 5094 * Where: 5095 * r2 == dst_reg, pkt_end == src_reg 5096 * r2=pkt(id=n,off=8,r=0) 5097 * r3=pkt(id=n,off=0,r=0) 5098 * 5099 * pkt_data in src register: 5100 * 5101 * r2 = r3; 5102 * r2 += 8; 5103 * if (pkt_end >= r2) goto <access okay> 5104 * <handle exception> 5105 * 5106 * r2 = r3; 5107 * r2 += 8; 5108 * if (pkt_end <= r2) goto <handle exception> 5109 * <access okay> 5110 * 5111 * Where: 5112 * pkt_end == dst_reg, r2 == src_reg 5113 * r2=pkt(id=n,off=8,r=0) 5114 * r3=pkt(id=n,off=0,r=0) 5115 * 5116 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5117 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5118 * and [r3, r3 + 8-1) respectively is safe to access depending on 5119 * the check. 5120 */ 5121 5122 /* If our ids match, then we must have the same max_value. And we 5123 * don't care about the other reg's fixed offset, since if it's too big 5124 * the range won't allow anything. 5125 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5126 */ 5127 for (i = 0; i <= vstate->curframe; i++) 5128 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5129 new_range); 5130 } 5131 5132 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5133 * and return: 5134 * 1 - branch will be taken and "goto target" will be executed 5135 * 0 - branch will not be taken and fall-through to next insn 5136 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5137 */ 5138 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5139 bool is_jmp32) 5140 { 5141 struct bpf_reg_state reg_lo; 5142 s64 sval; 5143 5144 if (__is_pointer_value(false, reg)) 5145 return -1; 5146 5147 if (is_jmp32) { 5148 reg_lo = *reg; 5149 reg = ®_lo; 5150 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5151 * could truncate high bits and update umin/umax according to 5152 * information of low bits. 5153 */ 5154 coerce_reg_to_size(reg, 4); 5155 /* smin/smax need special handling. For example, after coerce, 5156 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5157 * used as operand to JMP32. It is a negative number from s32's 5158 * point of view, while it is a positive number when seen as 5159 * s64. The smin/smax are kept as s64, therefore, when used with 5160 * JMP32, they need to be transformed into s32, then sign 5161 * extended back to s64. 5162 * 5163 * Also, smin/smax were copied from umin/umax. If umin/umax has 5164 * different sign bit, then min/max relationship doesn't 5165 * maintain after casting into s32, for this case, set smin/smax 5166 * to safest range. 5167 */ 5168 if ((reg->umax_value ^ reg->umin_value) & 5169 (1ULL << 31)) { 5170 reg->smin_value = S32_MIN; 5171 reg->smax_value = S32_MAX; 5172 } 5173 reg->smin_value = (s64)(s32)reg->smin_value; 5174 reg->smax_value = (s64)(s32)reg->smax_value; 5175 5176 val = (u32)val; 5177 sval = (s64)(s32)val; 5178 } else { 5179 sval = (s64)val; 5180 } 5181 5182 switch (opcode) { 5183 case BPF_JEQ: 5184 if (tnum_is_const(reg->var_off)) 5185 return !!tnum_equals_const(reg->var_off, val); 5186 break; 5187 case BPF_JNE: 5188 if (tnum_is_const(reg->var_off)) 5189 return !tnum_equals_const(reg->var_off, val); 5190 break; 5191 case BPF_JSET: 5192 if ((~reg->var_off.mask & reg->var_off.value) & val) 5193 return 1; 5194 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5195 return 0; 5196 break; 5197 case BPF_JGT: 5198 if (reg->umin_value > val) 5199 return 1; 5200 else if (reg->umax_value <= val) 5201 return 0; 5202 break; 5203 case BPF_JSGT: 5204 if (reg->smin_value > sval) 5205 return 1; 5206 else if (reg->smax_value < sval) 5207 return 0; 5208 break; 5209 case BPF_JLT: 5210 if (reg->umax_value < val) 5211 return 1; 5212 else if (reg->umin_value >= val) 5213 return 0; 5214 break; 5215 case BPF_JSLT: 5216 if (reg->smax_value < sval) 5217 return 1; 5218 else if (reg->smin_value >= sval) 5219 return 0; 5220 break; 5221 case BPF_JGE: 5222 if (reg->umin_value >= val) 5223 return 1; 5224 else if (reg->umax_value < val) 5225 return 0; 5226 break; 5227 case BPF_JSGE: 5228 if (reg->smin_value >= sval) 5229 return 1; 5230 else if (reg->smax_value < sval) 5231 return 0; 5232 break; 5233 case BPF_JLE: 5234 if (reg->umax_value <= val) 5235 return 1; 5236 else if (reg->umin_value > val) 5237 return 0; 5238 break; 5239 case BPF_JSLE: 5240 if (reg->smax_value <= sval) 5241 return 1; 5242 else if (reg->smin_value > sval) 5243 return 0; 5244 break; 5245 } 5246 5247 return -1; 5248 } 5249 5250 /* Generate min value of the high 32-bit from TNUM info. */ 5251 static u64 gen_hi_min(struct tnum var) 5252 { 5253 return var.value & ~0xffffffffULL; 5254 } 5255 5256 /* Generate max value of the high 32-bit from TNUM info. */ 5257 static u64 gen_hi_max(struct tnum var) 5258 { 5259 return (var.value | var.mask) & ~0xffffffffULL; 5260 } 5261 5262 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5263 * are with the same signedness. 5264 */ 5265 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5266 { 5267 return ((s32)sval >= 0 && 5268 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5269 ((s32)sval < 0 && 5270 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5271 } 5272 5273 /* Adjusts the register min/max values in the case that the dst_reg is the 5274 * variable register that we are working on, and src_reg is a constant or we're 5275 * simply doing a BPF_K check. 5276 * In JEQ/JNE cases we also adjust the var_off values. 5277 */ 5278 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5279 struct bpf_reg_state *false_reg, u64 val, 5280 u8 opcode, bool is_jmp32) 5281 { 5282 s64 sval; 5283 5284 /* If the dst_reg is a pointer, we can't learn anything about its 5285 * variable offset from the compare (unless src_reg were a pointer into 5286 * the same object, but we don't bother with that. 5287 * Since false_reg and true_reg have the same type by construction, we 5288 * only need to check one of them for pointerness. 5289 */ 5290 if (__is_pointer_value(false, false_reg)) 5291 return; 5292 5293 val = is_jmp32 ? (u32)val : val; 5294 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5295 5296 switch (opcode) { 5297 case BPF_JEQ: 5298 case BPF_JNE: 5299 { 5300 struct bpf_reg_state *reg = 5301 opcode == BPF_JEQ ? true_reg : false_reg; 5302 5303 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5304 * if it is true we know the value for sure. Likewise for 5305 * BPF_JNE. 5306 */ 5307 if (is_jmp32) { 5308 u64 old_v = reg->var_off.value; 5309 u64 hi_mask = ~0xffffffffULL; 5310 5311 reg->var_off.value = (old_v & hi_mask) | val; 5312 reg->var_off.mask &= hi_mask; 5313 } else { 5314 __mark_reg_known(reg, val); 5315 } 5316 break; 5317 } 5318 case BPF_JSET: 5319 false_reg->var_off = tnum_and(false_reg->var_off, 5320 tnum_const(~val)); 5321 if (is_power_of_2(val)) 5322 true_reg->var_off = tnum_or(true_reg->var_off, 5323 tnum_const(val)); 5324 break; 5325 case BPF_JGE: 5326 case BPF_JGT: 5327 { 5328 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5329 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5330 5331 if (is_jmp32) { 5332 false_umax += gen_hi_max(false_reg->var_off); 5333 true_umin += gen_hi_min(true_reg->var_off); 5334 } 5335 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5336 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5337 break; 5338 } 5339 case BPF_JSGE: 5340 case BPF_JSGT: 5341 { 5342 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5343 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5344 5345 /* If the full s64 was not sign-extended from s32 then don't 5346 * deduct further info. 5347 */ 5348 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5349 break; 5350 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5351 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5352 break; 5353 } 5354 case BPF_JLE: 5355 case BPF_JLT: 5356 { 5357 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5358 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5359 5360 if (is_jmp32) { 5361 false_umin += gen_hi_min(false_reg->var_off); 5362 true_umax += gen_hi_max(true_reg->var_off); 5363 } 5364 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5365 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5366 break; 5367 } 5368 case BPF_JSLE: 5369 case BPF_JSLT: 5370 { 5371 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5372 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5373 5374 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5375 break; 5376 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5377 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5378 break; 5379 } 5380 default: 5381 break; 5382 } 5383 5384 __reg_deduce_bounds(false_reg); 5385 __reg_deduce_bounds(true_reg); 5386 /* We might have learned some bits from the bounds. */ 5387 __reg_bound_offset(false_reg); 5388 __reg_bound_offset(true_reg); 5389 /* Intersecting with the old var_off might have improved our bounds 5390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5391 * then new var_off is (0; 0x7f...fc) which improves our umax. 5392 */ 5393 __update_reg_bounds(false_reg); 5394 __update_reg_bounds(true_reg); 5395 } 5396 5397 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5398 * the variable reg. 5399 */ 5400 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5401 struct bpf_reg_state *false_reg, u64 val, 5402 u8 opcode, bool is_jmp32) 5403 { 5404 s64 sval; 5405 5406 if (__is_pointer_value(false, false_reg)) 5407 return; 5408 5409 val = is_jmp32 ? (u32)val : val; 5410 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5411 5412 switch (opcode) { 5413 case BPF_JEQ: 5414 case BPF_JNE: 5415 { 5416 struct bpf_reg_state *reg = 5417 opcode == BPF_JEQ ? true_reg : false_reg; 5418 5419 if (is_jmp32) { 5420 u64 old_v = reg->var_off.value; 5421 u64 hi_mask = ~0xffffffffULL; 5422 5423 reg->var_off.value = (old_v & hi_mask) | val; 5424 reg->var_off.mask &= hi_mask; 5425 } else { 5426 __mark_reg_known(reg, val); 5427 } 5428 break; 5429 } 5430 case BPF_JSET: 5431 false_reg->var_off = tnum_and(false_reg->var_off, 5432 tnum_const(~val)); 5433 if (is_power_of_2(val)) 5434 true_reg->var_off = tnum_or(true_reg->var_off, 5435 tnum_const(val)); 5436 break; 5437 case BPF_JGE: 5438 case BPF_JGT: 5439 { 5440 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5441 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5442 5443 if (is_jmp32) { 5444 false_umin += gen_hi_min(false_reg->var_off); 5445 true_umax += gen_hi_max(true_reg->var_off); 5446 } 5447 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5448 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5449 break; 5450 } 5451 case BPF_JSGE: 5452 case BPF_JSGT: 5453 { 5454 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5455 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5456 5457 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5458 break; 5459 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5460 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5461 break; 5462 } 5463 case BPF_JLE: 5464 case BPF_JLT: 5465 { 5466 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5467 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5468 5469 if (is_jmp32) { 5470 false_umax += gen_hi_max(false_reg->var_off); 5471 true_umin += gen_hi_min(true_reg->var_off); 5472 } 5473 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5474 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5475 break; 5476 } 5477 case BPF_JSLE: 5478 case BPF_JSLT: 5479 { 5480 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5481 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5482 5483 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5484 break; 5485 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5486 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5487 break; 5488 } 5489 default: 5490 break; 5491 } 5492 5493 __reg_deduce_bounds(false_reg); 5494 __reg_deduce_bounds(true_reg); 5495 /* We might have learned some bits from the bounds. */ 5496 __reg_bound_offset(false_reg); 5497 __reg_bound_offset(true_reg); 5498 /* Intersecting with the old var_off might have improved our bounds 5499 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5500 * then new var_off is (0; 0x7f...fc) which improves our umax. 5501 */ 5502 __update_reg_bounds(false_reg); 5503 __update_reg_bounds(true_reg); 5504 } 5505 5506 /* Regs are known to be equal, so intersect their min/max/var_off */ 5507 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5508 struct bpf_reg_state *dst_reg) 5509 { 5510 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5511 dst_reg->umin_value); 5512 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5513 dst_reg->umax_value); 5514 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5515 dst_reg->smin_value); 5516 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5517 dst_reg->smax_value); 5518 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5519 dst_reg->var_off); 5520 /* We might have learned new bounds from the var_off. */ 5521 __update_reg_bounds(src_reg); 5522 __update_reg_bounds(dst_reg); 5523 /* We might have learned something about the sign bit. */ 5524 __reg_deduce_bounds(src_reg); 5525 __reg_deduce_bounds(dst_reg); 5526 /* We might have learned some bits from the bounds. */ 5527 __reg_bound_offset(src_reg); 5528 __reg_bound_offset(dst_reg); 5529 /* Intersecting with the old var_off might have improved our bounds 5530 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5531 * then new var_off is (0; 0x7f...fc) which improves our umax. 5532 */ 5533 __update_reg_bounds(src_reg); 5534 __update_reg_bounds(dst_reg); 5535 } 5536 5537 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5538 struct bpf_reg_state *true_dst, 5539 struct bpf_reg_state *false_src, 5540 struct bpf_reg_state *false_dst, 5541 u8 opcode) 5542 { 5543 switch (opcode) { 5544 case BPF_JEQ: 5545 __reg_combine_min_max(true_src, true_dst); 5546 break; 5547 case BPF_JNE: 5548 __reg_combine_min_max(false_src, false_dst); 5549 break; 5550 } 5551 } 5552 5553 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5554 struct bpf_reg_state *reg, u32 id, 5555 bool is_null) 5556 { 5557 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5558 /* Old offset (both fixed and variable parts) should 5559 * have been known-zero, because we don't allow pointer 5560 * arithmetic on pointers that might be NULL. 5561 */ 5562 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5563 !tnum_equals_const(reg->var_off, 0) || 5564 reg->off)) { 5565 __mark_reg_known_zero(reg); 5566 reg->off = 0; 5567 } 5568 if (is_null) { 5569 reg->type = SCALAR_VALUE; 5570 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5571 if (reg->map_ptr->inner_map_meta) { 5572 reg->type = CONST_PTR_TO_MAP; 5573 reg->map_ptr = reg->map_ptr->inner_map_meta; 5574 } else if (reg->map_ptr->map_type == 5575 BPF_MAP_TYPE_XSKMAP) { 5576 reg->type = PTR_TO_XDP_SOCK; 5577 } else { 5578 reg->type = PTR_TO_MAP_VALUE; 5579 } 5580 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5581 reg->type = PTR_TO_SOCKET; 5582 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5583 reg->type = PTR_TO_SOCK_COMMON; 5584 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5585 reg->type = PTR_TO_TCP_SOCK; 5586 } 5587 if (is_null) { 5588 /* We don't need id and ref_obj_id from this point 5589 * onwards anymore, thus we should better reset it, 5590 * so that state pruning has chances to take effect. 5591 */ 5592 reg->id = 0; 5593 reg->ref_obj_id = 0; 5594 } else if (!reg_may_point_to_spin_lock(reg)) { 5595 /* For not-NULL ptr, reg->ref_obj_id will be reset 5596 * in release_reg_references(). 5597 * 5598 * reg->id is still used by spin_lock ptr. Other 5599 * than spin_lock ptr type, reg->id can be reset. 5600 */ 5601 reg->id = 0; 5602 } 5603 } 5604 } 5605 5606 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5607 bool is_null) 5608 { 5609 struct bpf_reg_state *reg; 5610 int i; 5611 5612 for (i = 0; i < MAX_BPF_REG; i++) 5613 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5614 5615 bpf_for_each_spilled_reg(i, state, reg) { 5616 if (!reg) 5617 continue; 5618 mark_ptr_or_null_reg(state, reg, id, is_null); 5619 } 5620 } 5621 5622 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5623 * be folded together at some point. 5624 */ 5625 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5626 bool is_null) 5627 { 5628 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5629 struct bpf_reg_state *regs = state->regs; 5630 u32 ref_obj_id = regs[regno].ref_obj_id; 5631 u32 id = regs[regno].id; 5632 int i; 5633 5634 if (ref_obj_id && ref_obj_id == id && is_null) 5635 /* regs[regno] is in the " == NULL" branch. 5636 * No one could have freed the reference state before 5637 * doing the NULL check. 5638 */ 5639 WARN_ON_ONCE(release_reference_state(state, id)); 5640 5641 for (i = 0; i <= vstate->curframe; i++) 5642 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5643 } 5644 5645 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5646 struct bpf_reg_state *dst_reg, 5647 struct bpf_reg_state *src_reg, 5648 struct bpf_verifier_state *this_branch, 5649 struct bpf_verifier_state *other_branch) 5650 { 5651 if (BPF_SRC(insn->code) != BPF_X) 5652 return false; 5653 5654 /* Pointers are always 64-bit. */ 5655 if (BPF_CLASS(insn->code) == BPF_JMP32) 5656 return false; 5657 5658 switch (BPF_OP(insn->code)) { 5659 case BPF_JGT: 5660 if ((dst_reg->type == PTR_TO_PACKET && 5661 src_reg->type == PTR_TO_PACKET_END) || 5662 (dst_reg->type == PTR_TO_PACKET_META && 5663 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5664 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5665 find_good_pkt_pointers(this_branch, dst_reg, 5666 dst_reg->type, false); 5667 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5668 src_reg->type == PTR_TO_PACKET) || 5669 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5670 src_reg->type == PTR_TO_PACKET_META)) { 5671 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5672 find_good_pkt_pointers(other_branch, src_reg, 5673 src_reg->type, true); 5674 } else { 5675 return false; 5676 } 5677 break; 5678 case BPF_JLT: 5679 if ((dst_reg->type == PTR_TO_PACKET && 5680 src_reg->type == PTR_TO_PACKET_END) || 5681 (dst_reg->type == PTR_TO_PACKET_META && 5682 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5683 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5684 find_good_pkt_pointers(other_branch, dst_reg, 5685 dst_reg->type, true); 5686 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5687 src_reg->type == PTR_TO_PACKET) || 5688 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5689 src_reg->type == PTR_TO_PACKET_META)) { 5690 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5691 find_good_pkt_pointers(this_branch, src_reg, 5692 src_reg->type, false); 5693 } else { 5694 return false; 5695 } 5696 break; 5697 case BPF_JGE: 5698 if ((dst_reg->type == PTR_TO_PACKET && 5699 src_reg->type == PTR_TO_PACKET_END) || 5700 (dst_reg->type == PTR_TO_PACKET_META && 5701 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5702 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5703 find_good_pkt_pointers(this_branch, dst_reg, 5704 dst_reg->type, true); 5705 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5706 src_reg->type == PTR_TO_PACKET) || 5707 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5708 src_reg->type == PTR_TO_PACKET_META)) { 5709 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5710 find_good_pkt_pointers(other_branch, src_reg, 5711 src_reg->type, false); 5712 } else { 5713 return false; 5714 } 5715 break; 5716 case BPF_JLE: 5717 if ((dst_reg->type == PTR_TO_PACKET && 5718 src_reg->type == PTR_TO_PACKET_END) || 5719 (dst_reg->type == PTR_TO_PACKET_META && 5720 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5721 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5722 find_good_pkt_pointers(other_branch, dst_reg, 5723 dst_reg->type, false); 5724 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5725 src_reg->type == PTR_TO_PACKET) || 5726 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5727 src_reg->type == PTR_TO_PACKET_META)) { 5728 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5729 find_good_pkt_pointers(this_branch, src_reg, 5730 src_reg->type, true); 5731 } else { 5732 return false; 5733 } 5734 break; 5735 default: 5736 return false; 5737 } 5738 5739 return true; 5740 } 5741 5742 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5743 struct bpf_insn *insn, int *insn_idx) 5744 { 5745 struct bpf_verifier_state *this_branch = env->cur_state; 5746 struct bpf_verifier_state *other_branch; 5747 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5748 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5749 u8 opcode = BPF_OP(insn->code); 5750 bool is_jmp32; 5751 int pred = -1; 5752 int err; 5753 5754 /* Only conditional jumps are expected to reach here. */ 5755 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5756 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5757 return -EINVAL; 5758 } 5759 5760 if (BPF_SRC(insn->code) == BPF_X) { 5761 if (insn->imm != 0) { 5762 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5763 return -EINVAL; 5764 } 5765 5766 /* check src1 operand */ 5767 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5768 if (err) 5769 return err; 5770 5771 if (is_pointer_value(env, insn->src_reg)) { 5772 verbose(env, "R%d pointer comparison prohibited\n", 5773 insn->src_reg); 5774 return -EACCES; 5775 } 5776 src_reg = ®s[insn->src_reg]; 5777 } else { 5778 if (insn->src_reg != BPF_REG_0) { 5779 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5780 return -EINVAL; 5781 } 5782 } 5783 5784 /* check src2 operand */ 5785 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5786 if (err) 5787 return err; 5788 5789 dst_reg = ®s[insn->dst_reg]; 5790 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5791 5792 if (BPF_SRC(insn->code) == BPF_K) 5793 pred = is_branch_taken(dst_reg, insn->imm, 5794 opcode, is_jmp32); 5795 else if (src_reg->type == SCALAR_VALUE && 5796 tnum_is_const(src_reg->var_off)) 5797 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 5798 opcode, is_jmp32); 5799 if (pred >= 0) { 5800 err = mark_chain_precision(env, insn->dst_reg); 5801 if (BPF_SRC(insn->code) == BPF_X && !err) 5802 err = mark_chain_precision(env, insn->src_reg); 5803 if (err) 5804 return err; 5805 } 5806 if (pred == 1) { 5807 /* only follow the goto, ignore fall-through */ 5808 *insn_idx += insn->off; 5809 return 0; 5810 } else if (pred == 0) { 5811 /* only follow fall-through branch, since 5812 * that's where the program will go 5813 */ 5814 return 0; 5815 } 5816 5817 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5818 false); 5819 if (!other_branch) 5820 return -EFAULT; 5821 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5822 5823 /* detect if we are comparing against a constant value so we can adjust 5824 * our min/max values for our dst register. 5825 * this is only legit if both are scalars (or pointers to the same 5826 * object, I suppose, but we don't support that right now), because 5827 * otherwise the different base pointers mean the offsets aren't 5828 * comparable. 5829 */ 5830 if (BPF_SRC(insn->code) == BPF_X) { 5831 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5832 struct bpf_reg_state lo_reg0 = *dst_reg; 5833 struct bpf_reg_state lo_reg1 = *src_reg; 5834 struct bpf_reg_state *src_lo, *dst_lo; 5835 5836 dst_lo = &lo_reg0; 5837 src_lo = &lo_reg1; 5838 coerce_reg_to_size(dst_lo, 4); 5839 coerce_reg_to_size(src_lo, 4); 5840 5841 if (dst_reg->type == SCALAR_VALUE && 5842 src_reg->type == SCALAR_VALUE) { 5843 if (tnum_is_const(src_reg->var_off) || 5844 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5845 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5846 dst_reg, 5847 is_jmp32 5848 ? src_lo->var_off.value 5849 : src_reg->var_off.value, 5850 opcode, is_jmp32); 5851 else if (tnum_is_const(dst_reg->var_off) || 5852 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5853 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5854 src_reg, 5855 is_jmp32 5856 ? dst_lo->var_off.value 5857 : dst_reg->var_off.value, 5858 opcode, is_jmp32); 5859 else if (!is_jmp32 && 5860 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5861 /* Comparing for equality, we can combine knowledge */ 5862 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5863 &other_branch_regs[insn->dst_reg], 5864 src_reg, dst_reg, opcode); 5865 } 5866 } else if (dst_reg->type == SCALAR_VALUE) { 5867 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5868 dst_reg, insn->imm, opcode, is_jmp32); 5869 } 5870 5871 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5872 * NOTE: these optimizations below are related with pointer comparison 5873 * which will never be JMP32. 5874 */ 5875 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5876 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5877 reg_type_may_be_null(dst_reg->type)) { 5878 /* Mark all identical registers in each branch as either 5879 * safe or unknown depending R == 0 or R != 0 conditional. 5880 */ 5881 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5882 opcode == BPF_JNE); 5883 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5884 opcode == BPF_JEQ); 5885 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5886 this_branch, other_branch) && 5887 is_pointer_value(env, insn->dst_reg)) { 5888 verbose(env, "R%d pointer comparison prohibited\n", 5889 insn->dst_reg); 5890 return -EACCES; 5891 } 5892 if (env->log.level & BPF_LOG_LEVEL) 5893 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5894 return 0; 5895 } 5896 5897 /* verify BPF_LD_IMM64 instruction */ 5898 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5899 { 5900 struct bpf_insn_aux_data *aux = cur_aux(env); 5901 struct bpf_reg_state *regs = cur_regs(env); 5902 struct bpf_map *map; 5903 int err; 5904 5905 if (BPF_SIZE(insn->code) != BPF_DW) { 5906 verbose(env, "invalid BPF_LD_IMM insn\n"); 5907 return -EINVAL; 5908 } 5909 if (insn->off != 0) { 5910 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5911 return -EINVAL; 5912 } 5913 5914 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5915 if (err) 5916 return err; 5917 5918 if (insn->src_reg == 0) { 5919 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5920 5921 regs[insn->dst_reg].type = SCALAR_VALUE; 5922 __mark_reg_known(®s[insn->dst_reg], imm); 5923 return 0; 5924 } 5925 5926 map = env->used_maps[aux->map_index]; 5927 mark_reg_known_zero(env, regs, insn->dst_reg); 5928 regs[insn->dst_reg].map_ptr = map; 5929 5930 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5931 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5932 regs[insn->dst_reg].off = aux->map_off; 5933 if (map_value_has_spin_lock(map)) 5934 regs[insn->dst_reg].id = ++env->id_gen; 5935 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5936 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5937 } else { 5938 verbose(env, "bpf verifier is misconfigured\n"); 5939 return -EINVAL; 5940 } 5941 5942 return 0; 5943 } 5944 5945 static bool may_access_skb(enum bpf_prog_type type) 5946 { 5947 switch (type) { 5948 case BPF_PROG_TYPE_SOCKET_FILTER: 5949 case BPF_PROG_TYPE_SCHED_CLS: 5950 case BPF_PROG_TYPE_SCHED_ACT: 5951 return true; 5952 default: 5953 return false; 5954 } 5955 } 5956 5957 /* verify safety of LD_ABS|LD_IND instructions: 5958 * - they can only appear in the programs where ctx == skb 5959 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5960 * preserve R6-R9, and store return value into R0 5961 * 5962 * Implicit input: 5963 * ctx == skb == R6 == CTX 5964 * 5965 * Explicit input: 5966 * SRC == any register 5967 * IMM == 32-bit immediate 5968 * 5969 * Output: 5970 * R0 - 8/16/32-bit skb data converted to cpu endianness 5971 */ 5972 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5973 { 5974 struct bpf_reg_state *regs = cur_regs(env); 5975 u8 mode = BPF_MODE(insn->code); 5976 int i, err; 5977 5978 if (!may_access_skb(env->prog->type)) { 5979 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5980 return -EINVAL; 5981 } 5982 5983 if (!env->ops->gen_ld_abs) { 5984 verbose(env, "bpf verifier is misconfigured\n"); 5985 return -EINVAL; 5986 } 5987 5988 if (env->subprog_cnt > 1) { 5989 /* when program has LD_ABS insn JITs and interpreter assume 5990 * that r1 == ctx == skb which is not the case for callees 5991 * that can have arbitrary arguments. It's problematic 5992 * for main prog as well since JITs would need to analyze 5993 * all functions in order to make proper register save/restore 5994 * decisions in the main prog. Hence disallow LD_ABS with calls 5995 */ 5996 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5997 return -EINVAL; 5998 } 5999 6000 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6001 BPF_SIZE(insn->code) == BPF_DW || 6002 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6003 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6004 return -EINVAL; 6005 } 6006 6007 /* check whether implicit source operand (register R6) is readable */ 6008 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6009 if (err) 6010 return err; 6011 6012 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6013 * gen_ld_abs() may terminate the program at runtime, leading to 6014 * reference leak. 6015 */ 6016 err = check_reference_leak(env); 6017 if (err) { 6018 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6019 return err; 6020 } 6021 6022 if (env->cur_state->active_spin_lock) { 6023 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6024 return -EINVAL; 6025 } 6026 6027 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6028 verbose(env, 6029 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6030 return -EINVAL; 6031 } 6032 6033 if (mode == BPF_IND) { 6034 /* check explicit source operand */ 6035 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6036 if (err) 6037 return err; 6038 } 6039 6040 /* reset caller saved regs to unreadable */ 6041 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6042 mark_reg_not_init(env, regs, caller_saved[i]); 6043 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6044 } 6045 6046 /* mark destination R0 register as readable, since it contains 6047 * the value fetched from the packet. 6048 * Already marked as written above. 6049 */ 6050 mark_reg_unknown(env, regs, BPF_REG_0); 6051 /* ld_abs load up to 32-bit skb data. */ 6052 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6053 return 0; 6054 } 6055 6056 static int check_return_code(struct bpf_verifier_env *env) 6057 { 6058 struct tnum enforce_attach_type_range = tnum_unknown; 6059 struct bpf_reg_state *reg; 6060 struct tnum range = tnum_range(0, 1); 6061 6062 switch (env->prog->type) { 6063 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6064 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6065 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6066 range = tnum_range(1, 1); 6067 case BPF_PROG_TYPE_CGROUP_SKB: 6068 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6069 range = tnum_range(0, 3); 6070 enforce_attach_type_range = tnum_range(2, 3); 6071 } 6072 case BPF_PROG_TYPE_CGROUP_SOCK: 6073 case BPF_PROG_TYPE_SOCK_OPS: 6074 case BPF_PROG_TYPE_CGROUP_DEVICE: 6075 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6076 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6077 break; 6078 default: 6079 return 0; 6080 } 6081 6082 reg = cur_regs(env) + BPF_REG_0; 6083 if (reg->type != SCALAR_VALUE) { 6084 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6085 reg_type_str[reg->type]); 6086 return -EINVAL; 6087 } 6088 6089 if (!tnum_in(range, reg->var_off)) { 6090 char tn_buf[48]; 6091 6092 verbose(env, "At program exit the register R0 "); 6093 if (!tnum_is_unknown(reg->var_off)) { 6094 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6095 verbose(env, "has value %s", tn_buf); 6096 } else { 6097 verbose(env, "has unknown scalar value"); 6098 } 6099 tnum_strn(tn_buf, sizeof(tn_buf), range); 6100 verbose(env, " should have been in %s\n", tn_buf); 6101 return -EINVAL; 6102 } 6103 6104 if (!tnum_is_unknown(enforce_attach_type_range) && 6105 tnum_in(enforce_attach_type_range, reg->var_off)) 6106 env->prog->enforce_expected_attach_type = 1; 6107 return 0; 6108 } 6109 6110 /* non-recursive DFS pseudo code 6111 * 1 procedure DFS-iterative(G,v): 6112 * 2 label v as discovered 6113 * 3 let S be a stack 6114 * 4 S.push(v) 6115 * 5 while S is not empty 6116 * 6 t <- S.pop() 6117 * 7 if t is what we're looking for: 6118 * 8 return t 6119 * 9 for all edges e in G.adjacentEdges(t) do 6120 * 10 if edge e is already labelled 6121 * 11 continue with the next edge 6122 * 12 w <- G.adjacentVertex(t,e) 6123 * 13 if vertex w is not discovered and not explored 6124 * 14 label e as tree-edge 6125 * 15 label w as discovered 6126 * 16 S.push(w) 6127 * 17 continue at 5 6128 * 18 else if vertex w is discovered 6129 * 19 label e as back-edge 6130 * 20 else 6131 * 21 // vertex w is explored 6132 * 22 label e as forward- or cross-edge 6133 * 23 label t as explored 6134 * 24 S.pop() 6135 * 6136 * convention: 6137 * 0x10 - discovered 6138 * 0x11 - discovered and fall-through edge labelled 6139 * 0x12 - discovered and fall-through and branch edges labelled 6140 * 0x20 - explored 6141 */ 6142 6143 enum { 6144 DISCOVERED = 0x10, 6145 EXPLORED = 0x20, 6146 FALLTHROUGH = 1, 6147 BRANCH = 2, 6148 }; 6149 6150 static u32 state_htab_size(struct bpf_verifier_env *env) 6151 { 6152 return env->prog->len; 6153 } 6154 6155 static struct bpf_verifier_state_list **explored_state( 6156 struct bpf_verifier_env *env, 6157 int idx) 6158 { 6159 struct bpf_verifier_state *cur = env->cur_state; 6160 struct bpf_func_state *state = cur->frame[cur->curframe]; 6161 6162 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6163 } 6164 6165 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6166 { 6167 env->insn_aux_data[idx].prune_point = true; 6168 } 6169 6170 /* t, w, e - match pseudo-code above: 6171 * t - index of current instruction 6172 * w - next instruction 6173 * e - edge 6174 */ 6175 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6176 bool loop_ok) 6177 { 6178 int *insn_stack = env->cfg.insn_stack; 6179 int *insn_state = env->cfg.insn_state; 6180 6181 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6182 return 0; 6183 6184 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6185 return 0; 6186 6187 if (w < 0 || w >= env->prog->len) { 6188 verbose_linfo(env, t, "%d: ", t); 6189 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6190 return -EINVAL; 6191 } 6192 6193 if (e == BRANCH) 6194 /* mark branch target for state pruning */ 6195 init_explored_state(env, w); 6196 6197 if (insn_state[w] == 0) { 6198 /* tree-edge */ 6199 insn_state[t] = DISCOVERED | e; 6200 insn_state[w] = DISCOVERED; 6201 if (env->cfg.cur_stack >= env->prog->len) 6202 return -E2BIG; 6203 insn_stack[env->cfg.cur_stack++] = w; 6204 return 1; 6205 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6206 if (loop_ok && env->allow_ptr_leaks) 6207 return 0; 6208 verbose_linfo(env, t, "%d: ", t); 6209 verbose_linfo(env, w, "%d: ", w); 6210 verbose(env, "back-edge from insn %d to %d\n", t, w); 6211 return -EINVAL; 6212 } else if (insn_state[w] == EXPLORED) { 6213 /* forward- or cross-edge */ 6214 insn_state[t] = DISCOVERED | e; 6215 } else { 6216 verbose(env, "insn state internal bug\n"); 6217 return -EFAULT; 6218 } 6219 return 0; 6220 } 6221 6222 /* non-recursive depth-first-search to detect loops in BPF program 6223 * loop == back-edge in directed graph 6224 */ 6225 static int check_cfg(struct bpf_verifier_env *env) 6226 { 6227 struct bpf_insn *insns = env->prog->insnsi; 6228 int insn_cnt = env->prog->len; 6229 int *insn_stack, *insn_state; 6230 int ret = 0; 6231 int i, t; 6232 6233 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6234 if (!insn_state) 6235 return -ENOMEM; 6236 6237 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6238 if (!insn_stack) { 6239 kvfree(insn_state); 6240 return -ENOMEM; 6241 } 6242 6243 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6244 insn_stack[0] = 0; /* 0 is the first instruction */ 6245 env->cfg.cur_stack = 1; 6246 6247 peek_stack: 6248 if (env->cfg.cur_stack == 0) 6249 goto check_state; 6250 t = insn_stack[env->cfg.cur_stack - 1]; 6251 6252 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6253 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6254 u8 opcode = BPF_OP(insns[t].code); 6255 6256 if (opcode == BPF_EXIT) { 6257 goto mark_explored; 6258 } else if (opcode == BPF_CALL) { 6259 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6260 if (ret == 1) 6261 goto peek_stack; 6262 else if (ret < 0) 6263 goto err_free; 6264 if (t + 1 < insn_cnt) 6265 init_explored_state(env, t + 1); 6266 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6267 init_explored_state(env, t); 6268 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6269 env, false); 6270 if (ret == 1) 6271 goto peek_stack; 6272 else if (ret < 0) 6273 goto err_free; 6274 } 6275 } else if (opcode == BPF_JA) { 6276 if (BPF_SRC(insns[t].code) != BPF_K) { 6277 ret = -EINVAL; 6278 goto err_free; 6279 } 6280 /* unconditional jump with single edge */ 6281 ret = push_insn(t, t + insns[t].off + 1, 6282 FALLTHROUGH, env, true); 6283 if (ret == 1) 6284 goto peek_stack; 6285 else if (ret < 0) 6286 goto err_free; 6287 /* unconditional jmp is not a good pruning point, 6288 * but it's marked, since backtracking needs 6289 * to record jmp history in is_state_visited(). 6290 */ 6291 init_explored_state(env, t + insns[t].off + 1); 6292 /* tell verifier to check for equivalent states 6293 * after every call and jump 6294 */ 6295 if (t + 1 < insn_cnt) 6296 init_explored_state(env, t + 1); 6297 } else { 6298 /* conditional jump with two edges */ 6299 init_explored_state(env, t); 6300 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6301 if (ret == 1) 6302 goto peek_stack; 6303 else if (ret < 0) 6304 goto err_free; 6305 6306 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6307 if (ret == 1) 6308 goto peek_stack; 6309 else if (ret < 0) 6310 goto err_free; 6311 } 6312 } else { 6313 /* all other non-branch instructions with single 6314 * fall-through edge 6315 */ 6316 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6317 if (ret == 1) 6318 goto peek_stack; 6319 else if (ret < 0) 6320 goto err_free; 6321 } 6322 6323 mark_explored: 6324 insn_state[t] = EXPLORED; 6325 if (env->cfg.cur_stack-- <= 0) { 6326 verbose(env, "pop stack internal bug\n"); 6327 ret = -EFAULT; 6328 goto err_free; 6329 } 6330 goto peek_stack; 6331 6332 check_state: 6333 for (i = 0; i < insn_cnt; i++) { 6334 if (insn_state[i] != EXPLORED) { 6335 verbose(env, "unreachable insn %d\n", i); 6336 ret = -EINVAL; 6337 goto err_free; 6338 } 6339 } 6340 ret = 0; /* cfg looks good */ 6341 6342 err_free: 6343 kvfree(insn_state); 6344 kvfree(insn_stack); 6345 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6346 return ret; 6347 } 6348 6349 /* The minimum supported BTF func info size */ 6350 #define MIN_BPF_FUNCINFO_SIZE 8 6351 #define MAX_FUNCINFO_REC_SIZE 252 6352 6353 static int check_btf_func(struct bpf_verifier_env *env, 6354 const union bpf_attr *attr, 6355 union bpf_attr __user *uattr) 6356 { 6357 u32 i, nfuncs, urec_size, min_size; 6358 u32 krec_size = sizeof(struct bpf_func_info); 6359 struct bpf_func_info *krecord; 6360 const struct btf_type *type; 6361 struct bpf_prog *prog; 6362 const struct btf *btf; 6363 void __user *urecord; 6364 u32 prev_offset = 0; 6365 int ret = 0; 6366 6367 nfuncs = attr->func_info_cnt; 6368 if (!nfuncs) 6369 return 0; 6370 6371 if (nfuncs != env->subprog_cnt) { 6372 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6373 return -EINVAL; 6374 } 6375 6376 urec_size = attr->func_info_rec_size; 6377 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6378 urec_size > MAX_FUNCINFO_REC_SIZE || 6379 urec_size % sizeof(u32)) { 6380 verbose(env, "invalid func info rec size %u\n", urec_size); 6381 return -EINVAL; 6382 } 6383 6384 prog = env->prog; 6385 btf = prog->aux->btf; 6386 6387 urecord = u64_to_user_ptr(attr->func_info); 6388 min_size = min_t(u32, krec_size, urec_size); 6389 6390 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6391 if (!krecord) 6392 return -ENOMEM; 6393 6394 for (i = 0; i < nfuncs; i++) { 6395 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6396 if (ret) { 6397 if (ret == -E2BIG) { 6398 verbose(env, "nonzero tailing record in func info"); 6399 /* set the size kernel expects so loader can zero 6400 * out the rest of the record. 6401 */ 6402 if (put_user(min_size, &uattr->func_info_rec_size)) 6403 ret = -EFAULT; 6404 } 6405 goto err_free; 6406 } 6407 6408 if (copy_from_user(&krecord[i], urecord, min_size)) { 6409 ret = -EFAULT; 6410 goto err_free; 6411 } 6412 6413 /* check insn_off */ 6414 if (i == 0) { 6415 if (krecord[i].insn_off) { 6416 verbose(env, 6417 "nonzero insn_off %u for the first func info record", 6418 krecord[i].insn_off); 6419 ret = -EINVAL; 6420 goto err_free; 6421 } 6422 } else if (krecord[i].insn_off <= prev_offset) { 6423 verbose(env, 6424 "same or smaller insn offset (%u) than previous func info record (%u)", 6425 krecord[i].insn_off, prev_offset); 6426 ret = -EINVAL; 6427 goto err_free; 6428 } 6429 6430 if (env->subprog_info[i].start != krecord[i].insn_off) { 6431 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6432 ret = -EINVAL; 6433 goto err_free; 6434 } 6435 6436 /* check type_id */ 6437 type = btf_type_by_id(btf, krecord[i].type_id); 6438 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6439 verbose(env, "invalid type id %d in func info", 6440 krecord[i].type_id); 6441 ret = -EINVAL; 6442 goto err_free; 6443 } 6444 6445 prev_offset = krecord[i].insn_off; 6446 urecord += urec_size; 6447 } 6448 6449 prog->aux->func_info = krecord; 6450 prog->aux->func_info_cnt = nfuncs; 6451 return 0; 6452 6453 err_free: 6454 kvfree(krecord); 6455 return ret; 6456 } 6457 6458 static void adjust_btf_func(struct bpf_verifier_env *env) 6459 { 6460 int i; 6461 6462 if (!env->prog->aux->func_info) 6463 return; 6464 6465 for (i = 0; i < env->subprog_cnt; i++) 6466 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6467 } 6468 6469 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6470 sizeof(((struct bpf_line_info *)(0))->line_col)) 6471 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6472 6473 static int check_btf_line(struct bpf_verifier_env *env, 6474 const union bpf_attr *attr, 6475 union bpf_attr __user *uattr) 6476 { 6477 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6478 struct bpf_subprog_info *sub; 6479 struct bpf_line_info *linfo; 6480 struct bpf_prog *prog; 6481 const struct btf *btf; 6482 void __user *ulinfo; 6483 int err; 6484 6485 nr_linfo = attr->line_info_cnt; 6486 if (!nr_linfo) 6487 return 0; 6488 6489 rec_size = attr->line_info_rec_size; 6490 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6491 rec_size > MAX_LINEINFO_REC_SIZE || 6492 rec_size & (sizeof(u32) - 1)) 6493 return -EINVAL; 6494 6495 /* Need to zero it in case the userspace may 6496 * pass in a smaller bpf_line_info object. 6497 */ 6498 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6499 GFP_KERNEL | __GFP_NOWARN); 6500 if (!linfo) 6501 return -ENOMEM; 6502 6503 prog = env->prog; 6504 btf = prog->aux->btf; 6505 6506 s = 0; 6507 sub = env->subprog_info; 6508 ulinfo = u64_to_user_ptr(attr->line_info); 6509 expected_size = sizeof(struct bpf_line_info); 6510 ncopy = min_t(u32, expected_size, rec_size); 6511 for (i = 0; i < nr_linfo; i++) { 6512 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6513 if (err) { 6514 if (err == -E2BIG) { 6515 verbose(env, "nonzero tailing record in line_info"); 6516 if (put_user(expected_size, 6517 &uattr->line_info_rec_size)) 6518 err = -EFAULT; 6519 } 6520 goto err_free; 6521 } 6522 6523 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6524 err = -EFAULT; 6525 goto err_free; 6526 } 6527 6528 /* 6529 * Check insn_off to ensure 6530 * 1) strictly increasing AND 6531 * 2) bounded by prog->len 6532 * 6533 * The linfo[0].insn_off == 0 check logically falls into 6534 * the later "missing bpf_line_info for func..." case 6535 * because the first linfo[0].insn_off must be the 6536 * first sub also and the first sub must have 6537 * subprog_info[0].start == 0. 6538 */ 6539 if ((i && linfo[i].insn_off <= prev_offset) || 6540 linfo[i].insn_off >= prog->len) { 6541 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6542 i, linfo[i].insn_off, prev_offset, 6543 prog->len); 6544 err = -EINVAL; 6545 goto err_free; 6546 } 6547 6548 if (!prog->insnsi[linfo[i].insn_off].code) { 6549 verbose(env, 6550 "Invalid insn code at line_info[%u].insn_off\n", 6551 i); 6552 err = -EINVAL; 6553 goto err_free; 6554 } 6555 6556 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6557 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6558 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6559 err = -EINVAL; 6560 goto err_free; 6561 } 6562 6563 if (s != env->subprog_cnt) { 6564 if (linfo[i].insn_off == sub[s].start) { 6565 sub[s].linfo_idx = i; 6566 s++; 6567 } else if (sub[s].start < linfo[i].insn_off) { 6568 verbose(env, "missing bpf_line_info for func#%u\n", s); 6569 err = -EINVAL; 6570 goto err_free; 6571 } 6572 } 6573 6574 prev_offset = linfo[i].insn_off; 6575 ulinfo += rec_size; 6576 } 6577 6578 if (s != env->subprog_cnt) { 6579 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6580 env->subprog_cnt - s, s); 6581 err = -EINVAL; 6582 goto err_free; 6583 } 6584 6585 prog->aux->linfo = linfo; 6586 prog->aux->nr_linfo = nr_linfo; 6587 6588 return 0; 6589 6590 err_free: 6591 kvfree(linfo); 6592 return err; 6593 } 6594 6595 static int check_btf_info(struct bpf_verifier_env *env, 6596 const union bpf_attr *attr, 6597 union bpf_attr __user *uattr) 6598 { 6599 struct btf *btf; 6600 int err; 6601 6602 if (!attr->func_info_cnt && !attr->line_info_cnt) 6603 return 0; 6604 6605 btf = btf_get_by_fd(attr->prog_btf_fd); 6606 if (IS_ERR(btf)) 6607 return PTR_ERR(btf); 6608 env->prog->aux->btf = btf; 6609 6610 err = check_btf_func(env, attr, uattr); 6611 if (err) 6612 return err; 6613 6614 err = check_btf_line(env, attr, uattr); 6615 if (err) 6616 return err; 6617 6618 return 0; 6619 } 6620 6621 /* check %cur's range satisfies %old's */ 6622 static bool range_within(struct bpf_reg_state *old, 6623 struct bpf_reg_state *cur) 6624 { 6625 return old->umin_value <= cur->umin_value && 6626 old->umax_value >= cur->umax_value && 6627 old->smin_value <= cur->smin_value && 6628 old->smax_value >= cur->smax_value; 6629 } 6630 6631 /* Maximum number of register states that can exist at once */ 6632 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6633 struct idpair { 6634 u32 old; 6635 u32 cur; 6636 }; 6637 6638 /* If in the old state two registers had the same id, then they need to have 6639 * the same id in the new state as well. But that id could be different from 6640 * the old state, so we need to track the mapping from old to new ids. 6641 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6642 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6643 * regs with a different old id could still have new id 9, we don't care about 6644 * that. 6645 * So we look through our idmap to see if this old id has been seen before. If 6646 * so, we require the new id to match; otherwise, we add the id pair to the map. 6647 */ 6648 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6649 { 6650 unsigned int i; 6651 6652 for (i = 0; i < ID_MAP_SIZE; i++) { 6653 if (!idmap[i].old) { 6654 /* Reached an empty slot; haven't seen this id before */ 6655 idmap[i].old = old_id; 6656 idmap[i].cur = cur_id; 6657 return true; 6658 } 6659 if (idmap[i].old == old_id) 6660 return idmap[i].cur == cur_id; 6661 } 6662 /* We ran out of idmap slots, which should be impossible */ 6663 WARN_ON_ONCE(1); 6664 return false; 6665 } 6666 6667 static void clean_func_state(struct bpf_verifier_env *env, 6668 struct bpf_func_state *st) 6669 { 6670 enum bpf_reg_liveness live; 6671 int i, j; 6672 6673 for (i = 0; i < BPF_REG_FP; i++) { 6674 live = st->regs[i].live; 6675 /* liveness must not touch this register anymore */ 6676 st->regs[i].live |= REG_LIVE_DONE; 6677 if (!(live & REG_LIVE_READ)) 6678 /* since the register is unused, clear its state 6679 * to make further comparison simpler 6680 */ 6681 __mark_reg_not_init(&st->regs[i]); 6682 } 6683 6684 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6685 live = st->stack[i].spilled_ptr.live; 6686 /* liveness must not touch this stack slot anymore */ 6687 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6688 if (!(live & REG_LIVE_READ)) { 6689 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6690 for (j = 0; j < BPF_REG_SIZE; j++) 6691 st->stack[i].slot_type[j] = STACK_INVALID; 6692 } 6693 } 6694 } 6695 6696 static void clean_verifier_state(struct bpf_verifier_env *env, 6697 struct bpf_verifier_state *st) 6698 { 6699 int i; 6700 6701 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6702 /* all regs in this state in all frames were already marked */ 6703 return; 6704 6705 for (i = 0; i <= st->curframe; i++) 6706 clean_func_state(env, st->frame[i]); 6707 } 6708 6709 /* the parentage chains form a tree. 6710 * the verifier states are added to state lists at given insn and 6711 * pushed into state stack for future exploration. 6712 * when the verifier reaches bpf_exit insn some of the verifer states 6713 * stored in the state lists have their final liveness state already, 6714 * but a lot of states will get revised from liveness point of view when 6715 * the verifier explores other branches. 6716 * Example: 6717 * 1: r0 = 1 6718 * 2: if r1 == 100 goto pc+1 6719 * 3: r0 = 2 6720 * 4: exit 6721 * when the verifier reaches exit insn the register r0 in the state list of 6722 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6723 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6724 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6725 * 6726 * Since the verifier pushes the branch states as it sees them while exploring 6727 * the program the condition of walking the branch instruction for the second 6728 * time means that all states below this branch were already explored and 6729 * their final liveness markes are already propagated. 6730 * Hence when the verifier completes the search of state list in is_state_visited() 6731 * we can call this clean_live_states() function to mark all liveness states 6732 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6733 * will not be used. 6734 * This function also clears the registers and stack for states that !READ 6735 * to simplify state merging. 6736 * 6737 * Important note here that walking the same branch instruction in the callee 6738 * doesn't meant that the states are DONE. The verifier has to compare 6739 * the callsites 6740 */ 6741 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6742 struct bpf_verifier_state *cur) 6743 { 6744 struct bpf_verifier_state_list *sl; 6745 int i; 6746 6747 sl = *explored_state(env, insn); 6748 while (sl) { 6749 if (sl->state.branches) 6750 goto next; 6751 if (sl->state.insn_idx != insn || 6752 sl->state.curframe != cur->curframe) 6753 goto next; 6754 for (i = 0; i <= cur->curframe; i++) 6755 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6756 goto next; 6757 clean_verifier_state(env, &sl->state); 6758 next: 6759 sl = sl->next; 6760 } 6761 } 6762 6763 /* Returns true if (rold safe implies rcur safe) */ 6764 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6765 struct idpair *idmap) 6766 { 6767 bool equal; 6768 6769 if (!(rold->live & REG_LIVE_READ)) 6770 /* explored state didn't use this */ 6771 return true; 6772 6773 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6774 6775 if (rold->type == PTR_TO_STACK) 6776 /* two stack pointers are equal only if they're pointing to 6777 * the same stack frame, since fp-8 in foo != fp-8 in bar 6778 */ 6779 return equal && rold->frameno == rcur->frameno; 6780 6781 if (equal) 6782 return true; 6783 6784 if (rold->type == NOT_INIT) 6785 /* explored state can't have used this */ 6786 return true; 6787 if (rcur->type == NOT_INIT) 6788 return false; 6789 switch (rold->type) { 6790 case SCALAR_VALUE: 6791 if (rcur->type == SCALAR_VALUE) { 6792 if (!rold->precise && !rcur->precise) 6793 return true; 6794 /* new val must satisfy old val knowledge */ 6795 return range_within(rold, rcur) && 6796 tnum_in(rold->var_off, rcur->var_off); 6797 } else { 6798 /* We're trying to use a pointer in place of a scalar. 6799 * Even if the scalar was unbounded, this could lead to 6800 * pointer leaks because scalars are allowed to leak 6801 * while pointers are not. We could make this safe in 6802 * special cases if root is calling us, but it's 6803 * probably not worth the hassle. 6804 */ 6805 return false; 6806 } 6807 case PTR_TO_MAP_VALUE: 6808 /* If the new min/max/var_off satisfy the old ones and 6809 * everything else matches, we are OK. 6810 * 'id' is not compared, since it's only used for maps with 6811 * bpf_spin_lock inside map element and in such cases if 6812 * the rest of the prog is valid for one map element then 6813 * it's valid for all map elements regardless of the key 6814 * used in bpf_map_lookup() 6815 */ 6816 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6817 range_within(rold, rcur) && 6818 tnum_in(rold->var_off, rcur->var_off); 6819 case PTR_TO_MAP_VALUE_OR_NULL: 6820 /* a PTR_TO_MAP_VALUE could be safe to use as a 6821 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6822 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6823 * checked, doing so could have affected others with the same 6824 * id, and we can't check for that because we lost the id when 6825 * we converted to a PTR_TO_MAP_VALUE. 6826 */ 6827 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6828 return false; 6829 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6830 return false; 6831 /* Check our ids match any regs they're supposed to */ 6832 return check_ids(rold->id, rcur->id, idmap); 6833 case PTR_TO_PACKET_META: 6834 case PTR_TO_PACKET: 6835 if (rcur->type != rold->type) 6836 return false; 6837 /* We must have at least as much range as the old ptr 6838 * did, so that any accesses which were safe before are 6839 * still safe. This is true even if old range < old off, 6840 * since someone could have accessed through (ptr - k), or 6841 * even done ptr -= k in a register, to get a safe access. 6842 */ 6843 if (rold->range > rcur->range) 6844 return false; 6845 /* If the offsets don't match, we can't trust our alignment; 6846 * nor can we be sure that we won't fall out of range. 6847 */ 6848 if (rold->off != rcur->off) 6849 return false; 6850 /* id relations must be preserved */ 6851 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6852 return false; 6853 /* new val must satisfy old val knowledge */ 6854 return range_within(rold, rcur) && 6855 tnum_in(rold->var_off, rcur->var_off); 6856 case PTR_TO_CTX: 6857 case CONST_PTR_TO_MAP: 6858 case PTR_TO_PACKET_END: 6859 case PTR_TO_FLOW_KEYS: 6860 case PTR_TO_SOCKET: 6861 case PTR_TO_SOCKET_OR_NULL: 6862 case PTR_TO_SOCK_COMMON: 6863 case PTR_TO_SOCK_COMMON_OR_NULL: 6864 case PTR_TO_TCP_SOCK: 6865 case PTR_TO_TCP_SOCK_OR_NULL: 6866 case PTR_TO_XDP_SOCK: 6867 /* Only valid matches are exact, which memcmp() above 6868 * would have accepted 6869 */ 6870 default: 6871 /* Don't know what's going on, just say it's not safe */ 6872 return false; 6873 } 6874 6875 /* Shouldn't get here; if we do, say it's not safe */ 6876 WARN_ON_ONCE(1); 6877 return false; 6878 } 6879 6880 static bool stacksafe(struct bpf_func_state *old, 6881 struct bpf_func_state *cur, 6882 struct idpair *idmap) 6883 { 6884 int i, spi; 6885 6886 /* walk slots of the explored stack and ignore any additional 6887 * slots in the current stack, since explored(safe) state 6888 * didn't use them 6889 */ 6890 for (i = 0; i < old->allocated_stack; i++) { 6891 spi = i / BPF_REG_SIZE; 6892 6893 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6894 i += BPF_REG_SIZE - 1; 6895 /* explored state didn't use this */ 6896 continue; 6897 } 6898 6899 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6900 continue; 6901 6902 /* explored stack has more populated slots than current stack 6903 * and these slots were used 6904 */ 6905 if (i >= cur->allocated_stack) 6906 return false; 6907 6908 /* if old state was safe with misc data in the stack 6909 * it will be safe with zero-initialized stack. 6910 * The opposite is not true 6911 */ 6912 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6913 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6914 continue; 6915 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6916 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6917 /* Ex: old explored (safe) state has STACK_SPILL in 6918 * this stack slot, but current has has STACK_MISC -> 6919 * this verifier states are not equivalent, 6920 * return false to continue verification of this path 6921 */ 6922 return false; 6923 if (i % BPF_REG_SIZE) 6924 continue; 6925 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6926 continue; 6927 if (!regsafe(&old->stack[spi].spilled_ptr, 6928 &cur->stack[spi].spilled_ptr, 6929 idmap)) 6930 /* when explored and current stack slot are both storing 6931 * spilled registers, check that stored pointers types 6932 * are the same as well. 6933 * Ex: explored safe path could have stored 6934 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6935 * but current path has stored: 6936 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6937 * such verifier states are not equivalent. 6938 * return false to continue verification of this path 6939 */ 6940 return false; 6941 } 6942 return true; 6943 } 6944 6945 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6946 { 6947 if (old->acquired_refs != cur->acquired_refs) 6948 return false; 6949 return !memcmp(old->refs, cur->refs, 6950 sizeof(*old->refs) * old->acquired_refs); 6951 } 6952 6953 /* compare two verifier states 6954 * 6955 * all states stored in state_list are known to be valid, since 6956 * verifier reached 'bpf_exit' instruction through them 6957 * 6958 * this function is called when verifier exploring different branches of 6959 * execution popped from the state stack. If it sees an old state that has 6960 * more strict register state and more strict stack state then this execution 6961 * branch doesn't need to be explored further, since verifier already 6962 * concluded that more strict state leads to valid finish. 6963 * 6964 * Therefore two states are equivalent if register state is more conservative 6965 * and explored stack state is more conservative than the current one. 6966 * Example: 6967 * explored current 6968 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6969 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6970 * 6971 * In other words if current stack state (one being explored) has more 6972 * valid slots than old one that already passed validation, it means 6973 * the verifier can stop exploring and conclude that current state is valid too 6974 * 6975 * Similarly with registers. If explored state has register type as invalid 6976 * whereas register type in current state is meaningful, it means that 6977 * the current state will reach 'bpf_exit' instruction safely 6978 */ 6979 static bool func_states_equal(struct bpf_func_state *old, 6980 struct bpf_func_state *cur) 6981 { 6982 struct idpair *idmap; 6983 bool ret = false; 6984 int i; 6985 6986 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6987 /* If we failed to allocate the idmap, just say it's not safe */ 6988 if (!idmap) 6989 return false; 6990 6991 for (i = 0; i < MAX_BPF_REG; i++) { 6992 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6993 goto out_free; 6994 } 6995 6996 if (!stacksafe(old, cur, idmap)) 6997 goto out_free; 6998 6999 if (!refsafe(old, cur)) 7000 goto out_free; 7001 ret = true; 7002 out_free: 7003 kfree(idmap); 7004 return ret; 7005 } 7006 7007 static bool states_equal(struct bpf_verifier_env *env, 7008 struct bpf_verifier_state *old, 7009 struct bpf_verifier_state *cur) 7010 { 7011 int i; 7012 7013 if (old->curframe != cur->curframe) 7014 return false; 7015 7016 /* Verification state from speculative execution simulation 7017 * must never prune a non-speculative execution one. 7018 */ 7019 if (old->speculative && !cur->speculative) 7020 return false; 7021 7022 if (old->active_spin_lock != cur->active_spin_lock) 7023 return false; 7024 7025 /* for states to be equal callsites have to be the same 7026 * and all frame states need to be equivalent 7027 */ 7028 for (i = 0; i <= old->curframe; i++) { 7029 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7030 return false; 7031 if (!func_states_equal(old->frame[i], cur->frame[i])) 7032 return false; 7033 } 7034 return true; 7035 } 7036 7037 /* Return 0 if no propagation happened. Return negative error code if error 7038 * happened. Otherwise, return the propagated bit. 7039 */ 7040 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7041 struct bpf_reg_state *reg, 7042 struct bpf_reg_state *parent_reg) 7043 { 7044 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7045 u8 flag = reg->live & REG_LIVE_READ; 7046 int err; 7047 7048 /* When comes here, read flags of PARENT_REG or REG could be any of 7049 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7050 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7051 */ 7052 if (parent_flag == REG_LIVE_READ64 || 7053 /* Or if there is no read flag from REG. */ 7054 !flag || 7055 /* Or if the read flag from REG is the same as PARENT_REG. */ 7056 parent_flag == flag) 7057 return 0; 7058 7059 err = mark_reg_read(env, reg, parent_reg, flag); 7060 if (err) 7061 return err; 7062 7063 return flag; 7064 } 7065 7066 /* A write screens off any subsequent reads; but write marks come from the 7067 * straight-line code between a state and its parent. When we arrive at an 7068 * equivalent state (jump target or such) we didn't arrive by the straight-line 7069 * code, so read marks in the state must propagate to the parent regardless 7070 * of the state's write marks. That's what 'parent == state->parent' comparison 7071 * in mark_reg_read() is for. 7072 */ 7073 static int propagate_liveness(struct bpf_verifier_env *env, 7074 const struct bpf_verifier_state *vstate, 7075 struct bpf_verifier_state *vparent) 7076 { 7077 struct bpf_reg_state *state_reg, *parent_reg; 7078 struct bpf_func_state *state, *parent; 7079 int i, frame, err = 0; 7080 7081 if (vparent->curframe != vstate->curframe) { 7082 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7083 vparent->curframe, vstate->curframe); 7084 return -EFAULT; 7085 } 7086 /* Propagate read liveness of registers... */ 7087 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7088 for (frame = 0; frame <= vstate->curframe; frame++) { 7089 parent = vparent->frame[frame]; 7090 state = vstate->frame[frame]; 7091 parent_reg = parent->regs; 7092 state_reg = state->regs; 7093 /* We don't need to worry about FP liveness, it's read-only */ 7094 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7095 err = propagate_liveness_reg(env, &state_reg[i], 7096 &parent_reg[i]); 7097 if (err < 0) 7098 return err; 7099 if (err == REG_LIVE_READ64) 7100 mark_insn_zext(env, &parent_reg[i]); 7101 } 7102 7103 /* Propagate stack slots. */ 7104 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7105 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7106 parent_reg = &parent->stack[i].spilled_ptr; 7107 state_reg = &state->stack[i].spilled_ptr; 7108 err = propagate_liveness_reg(env, state_reg, 7109 parent_reg); 7110 if (err < 0) 7111 return err; 7112 } 7113 } 7114 return 0; 7115 } 7116 7117 static bool states_maybe_looping(struct bpf_verifier_state *old, 7118 struct bpf_verifier_state *cur) 7119 { 7120 struct bpf_func_state *fold, *fcur; 7121 int i, fr = cur->curframe; 7122 7123 if (old->curframe != fr) 7124 return false; 7125 7126 fold = old->frame[fr]; 7127 fcur = cur->frame[fr]; 7128 for (i = 0; i < MAX_BPF_REG; i++) 7129 if (memcmp(&fold->regs[i], &fcur->regs[i], 7130 offsetof(struct bpf_reg_state, parent))) 7131 return false; 7132 return true; 7133 } 7134 7135 7136 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7137 { 7138 struct bpf_verifier_state_list *new_sl; 7139 struct bpf_verifier_state_list *sl, **pprev; 7140 struct bpf_verifier_state *cur = env->cur_state, *new; 7141 int i, j, err, states_cnt = 0; 7142 bool add_new_state = false; 7143 7144 cur->last_insn_idx = env->prev_insn_idx; 7145 if (!env->insn_aux_data[insn_idx].prune_point) 7146 /* this 'insn_idx' instruction wasn't marked, so we will not 7147 * be doing state search here 7148 */ 7149 return 0; 7150 7151 /* bpf progs typically have pruning point every 4 instructions 7152 * http://vger.kernel.org/bpfconf2019.html#session-1 7153 * Do not add new state for future pruning if the verifier hasn't seen 7154 * at least 2 jumps and at least 8 instructions. 7155 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7156 * In tests that amounts to up to 50% reduction into total verifier 7157 * memory consumption and 20% verifier time speedup. 7158 */ 7159 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7160 env->insn_processed - env->prev_insn_processed >= 8) 7161 add_new_state = true; 7162 7163 pprev = explored_state(env, insn_idx); 7164 sl = *pprev; 7165 7166 clean_live_states(env, insn_idx, cur); 7167 7168 while (sl) { 7169 states_cnt++; 7170 if (sl->state.insn_idx != insn_idx) 7171 goto next; 7172 if (sl->state.branches) { 7173 if (states_maybe_looping(&sl->state, cur) && 7174 states_equal(env, &sl->state, cur)) { 7175 verbose_linfo(env, insn_idx, "; "); 7176 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7177 return -EINVAL; 7178 } 7179 /* if the verifier is processing a loop, avoid adding new state 7180 * too often, since different loop iterations have distinct 7181 * states and may not help future pruning. 7182 * This threshold shouldn't be too low to make sure that 7183 * a loop with large bound will be rejected quickly. 7184 * The most abusive loop will be: 7185 * r1 += 1 7186 * if r1 < 1000000 goto pc-2 7187 * 1M insn_procssed limit / 100 == 10k peak states. 7188 * This threshold shouldn't be too high either, since states 7189 * at the end of the loop are likely to be useful in pruning. 7190 */ 7191 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7192 env->insn_processed - env->prev_insn_processed < 100) 7193 add_new_state = false; 7194 goto miss; 7195 } 7196 if (states_equal(env, &sl->state, cur)) { 7197 sl->hit_cnt++; 7198 /* reached equivalent register/stack state, 7199 * prune the search. 7200 * Registers read by the continuation are read by us. 7201 * If we have any write marks in env->cur_state, they 7202 * will prevent corresponding reads in the continuation 7203 * from reaching our parent (an explored_state). Our 7204 * own state will get the read marks recorded, but 7205 * they'll be immediately forgotten as we're pruning 7206 * this state and will pop a new one. 7207 */ 7208 err = propagate_liveness(env, &sl->state, cur); 7209 if (err) 7210 return err; 7211 return 1; 7212 } 7213 miss: 7214 /* when new state is not going to be added do not increase miss count. 7215 * Otherwise several loop iterations will remove the state 7216 * recorded earlier. The goal of these heuristics is to have 7217 * states from some iterations of the loop (some in the beginning 7218 * and some at the end) to help pruning. 7219 */ 7220 if (add_new_state) 7221 sl->miss_cnt++; 7222 /* heuristic to determine whether this state is beneficial 7223 * to keep checking from state equivalence point of view. 7224 * Higher numbers increase max_states_per_insn and verification time, 7225 * but do not meaningfully decrease insn_processed. 7226 */ 7227 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7228 /* the state is unlikely to be useful. Remove it to 7229 * speed up verification 7230 */ 7231 *pprev = sl->next; 7232 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7233 u32 br = sl->state.branches; 7234 7235 WARN_ONCE(br, 7236 "BUG live_done but branches_to_explore %d\n", 7237 br); 7238 free_verifier_state(&sl->state, false); 7239 kfree(sl); 7240 env->peak_states--; 7241 } else { 7242 /* cannot free this state, since parentage chain may 7243 * walk it later. Add it for free_list instead to 7244 * be freed at the end of verification 7245 */ 7246 sl->next = env->free_list; 7247 env->free_list = sl; 7248 } 7249 sl = *pprev; 7250 continue; 7251 } 7252 next: 7253 pprev = &sl->next; 7254 sl = *pprev; 7255 } 7256 7257 if (env->max_states_per_insn < states_cnt) 7258 env->max_states_per_insn = states_cnt; 7259 7260 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7261 return push_jmp_history(env, cur); 7262 7263 if (!add_new_state) 7264 return push_jmp_history(env, cur); 7265 7266 /* There were no equivalent states, remember the current one. 7267 * Technically the current state is not proven to be safe yet, 7268 * but it will either reach outer most bpf_exit (which means it's safe) 7269 * or it will be rejected. When there are no loops the verifier won't be 7270 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7271 * again on the way to bpf_exit. 7272 * When looping the sl->state.branches will be > 0 and this state 7273 * will not be considered for equivalence until branches == 0. 7274 */ 7275 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7276 if (!new_sl) 7277 return -ENOMEM; 7278 env->total_states++; 7279 env->peak_states++; 7280 env->prev_jmps_processed = env->jmps_processed; 7281 env->prev_insn_processed = env->insn_processed; 7282 7283 /* add new state to the head of linked list */ 7284 new = &new_sl->state; 7285 err = copy_verifier_state(new, cur); 7286 if (err) { 7287 free_verifier_state(new, false); 7288 kfree(new_sl); 7289 return err; 7290 } 7291 new->insn_idx = insn_idx; 7292 WARN_ONCE(new->branches != 1, 7293 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7294 7295 cur->parent = new; 7296 cur->first_insn_idx = insn_idx; 7297 clear_jmp_history(cur); 7298 new_sl->next = *explored_state(env, insn_idx); 7299 *explored_state(env, insn_idx) = new_sl; 7300 /* connect new state to parentage chain. Current frame needs all 7301 * registers connected. Only r6 - r9 of the callers are alive (pushed 7302 * to the stack implicitly by JITs) so in callers' frames connect just 7303 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7304 * the state of the call instruction (with WRITTEN set), and r0 comes 7305 * from callee with its full parentage chain, anyway. 7306 */ 7307 /* clear write marks in current state: the writes we did are not writes 7308 * our child did, so they don't screen off its reads from us. 7309 * (There are no read marks in current state, because reads always mark 7310 * their parent and current state never has children yet. Only 7311 * explored_states can get read marks.) 7312 */ 7313 for (j = 0; j <= cur->curframe; j++) { 7314 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7315 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7316 for (i = 0; i < BPF_REG_FP; i++) 7317 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7318 } 7319 7320 /* all stack frames are accessible from callee, clear them all */ 7321 for (j = 0; j <= cur->curframe; j++) { 7322 struct bpf_func_state *frame = cur->frame[j]; 7323 struct bpf_func_state *newframe = new->frame[j]; 7324 7325 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7326 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7327 frame->stack[i].spilled_ptr.parent = 7328 &newframe->stack[i].spilled_ptr; 7329 } 7330 } 7331 return 0; 7332 } 7333 7334 /* Return true if it's OK to have the same insn return a different type. */ 7335 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7336 { 7337 switch (type) { 7338 case PTR_TO_CTX: 7339 case PTR_TO_SOCKET: 7340 case PTR_TO_SOCKET_OR_NULL: 7341 case PTR_TO_SOCK_COMMON: 7342 case PTR_TO_SOCK_COMMON_OR_NULL: 7343 case PTR_TO_TCP_SOCK: 7344 case PTR_TO_TCP_SOCK_OR_NULL: 7345 case PTR_TO_XDP_SOCK: 7346 return false; 7347 default: 7348 return true; 7349 } 7350 } 7351 7352 /* If an instruction was previously used with particular pointer types, then we 7353 * need to be careful to avoid cases such as the below, where it may be ok 7354 * for one branch accessing the pointer, but not ok for the other branch: 7355 * 7356 * R1 = sock_ptr 7357 * goto X; 7358 * ... 7359 * R1 = some_other_valid_ptr; 7360 * goto X; 7361 * ... 7362 * R2 = *(u32 *)(R1 + 0); 7363 */ 7364 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7365 { 7366 return src != prev && (!reg_type_mismatch_ok(src) || 7367 !reg_type_mismatch_ok(prev)); 7368 } 7369 7370 static int do_check(struct bpf_verifier_env *env) 7371 { 7372 struct bpf_verifier_state *state; 7373 struct bpf_insn *insns = env->prog->insnsi; 7374 struct bpf_reg_state *regs; 7375 int insn_cnt = env->prog->len; 7376 bool do_print_state = false; 7377 int prev_insn_idx = -1; 7378 7379 env->prev_linfo = NULL; 7380 7381 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7382 if (!state) 7383 return -ENOMEM; 7384 state->curframe = 0; 7385 state->speculative = false; 7386 state->branches = 1; 7387 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7388 if (!state->frame[0]) { 7389 kfree(state); 7390 return -ENOMEM; 7391 } 7392 env->cur_state = state; 7393 init_func_state(env, state->frame[0], 7394 BPF_MAIN_FUNC /* callsite */, 7395 0 /* frameno */, 7396 0 /* subprogno, zero == main subprog */); 7397 7398 for (;;) { 7399 struct bpf_insn *insn; 7400 u8 class; 7401 int err; 7402 7403 env->prev_insn_idx = prev_insn_idx; 7404 if (env->insn_idx >= insn_cnt) { 7405 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7406 env->insn_idx, insn_cnt); 7407 return -EFAULT; 7408 } 7409 7410 insn = &insns[env->insn_idx]; 7411 class = BPF_CLASS(insn->code); 7412 7413 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7414 verbose(env, 7415 "BPF program is too large. Processed %d insn\n", 7416 env->insn_processed); 7417 return -E2BIG; 7418 } 7419 7420 err = is_state_visited(env, env->insn_idx); 7421 if (err < 0) 7422 return err; 7423 if (err == 1) { 7424 /* found equivalent state, can prune the search */ 7425 if (env->log.level & BPF_LOG_LEVEL) { 7426 if (do_print_state) 7427 verbose(env, "\nfrom %d to %d%s: safe\n", 7428 env->prev_insn_idx, env->insn_idx, 7429 env->cur_state->speculative ? 7430 " (speculative execution)" : ""); 7431 else 7432 verbose(env, "%d: safe\n", env->insn_idx); 7433 } 7434 goto process_bpf_exit; 7435 } 7436 7437 if (signal_pending(current)) 7438 return -EAGAIN; 7439 7440 if (need_resched()) 7441 cond_resched(); 7442 7443 if (env->log.level & BPF_LOG_LEVEL2 || 7444 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7445 if (env->log.level & BPF_LOG_LEVEL2) 7446 verbose(env, "%d:", env->insn_idx); 7447 else 7448 verbose(env, "\nfrom %d to %d%s:", 7449 env->prev_insn_idx, env->insn_idx, 7450 env->cur_state->speculative ? 7451 " (speculative execution)" : ""); 7452 print_verifier_state(env, state->frame[state->curframe]); 7453 do_print_state = false; 7454 } 7455 7456 if (env->log.level & BPF_LOG_LEVEL) { 7457 const struct bpf_insn_cbs cbs = { 7458 .cb_print = verbose, 7459 .private_data = env, 7460 }; 7461 7462 verbose_linfo(env, env->insn_idx, "; "); 7463 verbose(env, "%d: ", env->insn_idx); 7464 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7465 } 7466 7467 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7468 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7469 env->prev_insn_idx); 7470 if (err) 7471 return err; 7472 } 7473 7474 regs = cur_regs(env); 7475 env->insn_aux_data[env->insn_idx].seen = true; 7476 prev_insn_idx = env->insn_idx; 7477 7478 if (class == BPF_ALU || class == BPF_ALU64) { 7479 err = check_alu_op(env, insn); 7480 if (err) 7481 return err; 7482 7483 } else if (class == BPF_LDX) { 7484 enum bpf_reg_type *prev_src_type, src_reg_type; 7485 7486 /* check for reserved fields is already done */ 7487 7488 /* check src operand */ 7489 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7490 if (err) 7491 return err; 7492 7493 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7494 if (err) 7495 return err; 7496 7497 src_reg_type = regs[insn->src_reg].type; 7498 7499 /* check that memory (src_reg + off) is readable, 7500 * the state of dst_reg will be updated by this func 7501 */ 7502 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7503 insn->off, BPF_SIZE(insn->code), 7504 BPF_READ, insn->dst_reg, false); 7505 if (err) 7506 return err; 7507 7508 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7509 7510 if (*prev_src_type == NOT_INIT) { 7511 /* saw a valid insn 7512 * dst_reg = *(u32 *)(src_reg + off) 7513 * save type to validate intersecting paths 7514 */ 7515 *prev_src_type = src_reg_type; 7516 7517 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7518 /* ABuser program is trying to use the same insn 7519 * dst_reg = *(u32*) (src_reg + off) 7520 * with different pointer types: 7521 * src_reg == ctx in one branch and 7522 * src_reg == stack|map in some other branch. 7523 * Reject it. 7524 */ 7525 verbose(env, "same insn cannot be used with different pointers\n"); 7526 return -EINVAL; 7527 } 7528 7529 } else if (class == BPF_STX) { 7530 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7531 7532 if (BPF_MODE(insn->code) == BPF_XADD) { 7533 err = check_xadd(env, env->insn_idx, insn); 7534 if (err) 7535 return err; 7536 env->insn_idx++; 7537 continue; 7538 } 7539 7540 /* check src1 operand */ 7541 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7542 if (err) 7543 return err; 7544 /* check src2 operand */ 7545 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7546 if (err) 7547 return err; 7548 7549 dst_reg_type = regs[insn->dst_reg].type; 7550 7551 /* check that memory (dst_reg + off) is writeable */ 7552 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7553 insn->off, BPF_SIZE(insn->code), 7554 BPF_WRITE, insn->src_reg, false); 7555 if (err) 7556 return err; 7557 7558 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7559 7560 if (*prev_dst_type == NOT_INIT) { 7561 *prev_dst_type = dst_reg_type; 7562 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7563 verbose(env, "same insn cannot be used with different pointers\n"); 7564 return -EINVAL; 7565 } 7566 7567 } else if (class == BPF_ST) { 7568 if (BPF_MODE(insn->code) != BPF_MEM || 7569 insn->src_reg != BPF_REG_0) { 7570 verbose(env, "BPF_ST uses reserved fields\n"); 7571 return -EINVAL; 7572 } 7573 /* check src operand */ 7574 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7575 if (err) 7576 return err; 7577 7578 if (is_ctx_reg(env, insn->dst_reg)) { 7579 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7580 insn->dst_reg, 7581 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7582 return -EACCES; 7583 } 7584 7585 /* check that memory (dst_reg + off) is writeable */ 7586 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7587 insn->off, BPF_SIZE(insn->code), 7588 BPF_WRITE, -1, false); 7589 if (err) 7590 return err; 7591 7592 } else if (class == BPF_JMP || class == BPF_JMP32) { 7593 u8 opcode = BPF_OP(insn->code); 7594 7595 env->jmps_processed++; 7596 if (opcode == BPF_CALL) { 7597 if (BPF_SRC(insn->code) != BPF_K || 7598 insn->off != 0 || 7599 (insn->src_reg != BPF_REG_0 && 7600 insn->src_reg != BPF_PSEUDO_CALL) || 7601 insn->dst_reg != BPF_REG_0 || 7602 class == BPF_JMP32) { 7603 verbose(env, "BPF_CALL uses reserved fields\n"); 7604 return -EINVAL; 7605 } 7606 7607 if (env->cur_state->active_spin_lock && 7608 (insn->src_reg == BPF_PSEUDO_CALL || 7609 insn->imm != BPF_FUNC_spin_unlock)) { 7610 verbose(env, "function calls are not allowed while holding a lock\n"); 7611 return -EINVAL; 7612 } 7613 if (insn->src_reg == BPF_PSEUDO_CALL) 7614 err = check_func_call(env, insn, &env->insn_idx); 7615 else 7616 err = check_helper_call(env, insn->imm, env->insn_idx); 7617 if (err) 7618 return err; 7619 7620 } else if (opcode == BPF_JA) { 7621 if (BPF_SRC(insn->code) != BPF_K || 7622 insn->imm != 0 || 7623 insn->src_reg != BPF_REG_0 || 7624 insn->dst_reg != BPF_REG_0 || 7625 class == BPF_JMP32) { 7626 verbose(env, "BPF_JA uses reserved fields\n"); 7627 return -EINVAL; 7628 } 7629 7630 env->insn_idx += insn->off + 1; 7631 continue; 7632 7633 } else if (opcode == BPF_EXIT) { 7634 if (BPF_SRC(insn->code) != BPF_K || 7635 insn->imm != 0 || 7636 insn->src_reg != BPF_REG_0 || 7637 insn->dst_reg != BPF_REG_0 || 7638 class == BPF_JMP32) { 7639 verbose(env, "BPF_EXIT uses reserved fields\n"); 7640 return -EINVAL; 7641 } 7642 7643 if (env->cur_state->active_spin_lock) { 7644 verbose(env, "bpf_spin_unlock is missing\n"); 7645 return -EINVAL; 7646 } 7647 7648 if (state->curframe) { 7649 /* exit from nested function */ 7650 err = prepare_func_exit(env, &env->insn_idx); 7651 if (err) 7652 return err; 7653 do_print_state = true; 7654 continue; 7655 } 7656 7657 err = check_reference_leak(env); 7658 if (err) 7659 return err; 7660 7661 /* eBPF calling convetion is such that R0 is used 7662 * to return the value from eBPF program. 7663 * Make sure that it's readable at this time 7664 * of bpf_exit, which means that program wrote 7665 * something into it earlier 7666 */ 7667 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7668 if (err) 7669 return err; 7670 7671 if (is_pointer_value(env, BPF_REG_0)) { 7672 verbose(env, "R0 leaks addr as return value\n"); 7673 return -EACCES; 7674 } 7675 7676 err = check_return_code(env); 7677 if (err) 7678 return err; 7679 process_bpf_exit: 7680 update_branch_counts(env, env->cur_state); 7681 err = pop_stack(env, &prev_insn_idx, 7682 &env->insn_idx); 7683 if (err < 0) { 7684 if (err != -ENOENT) 7685 return err; 7686 break; 7687 } else { 7688 do_print_state = true; 7689 continue; 7690 } 7691 } else { 7692 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7693 if (err) 7694 return err; 7695 } 7696 } else if (class == BPF_LD) { 7697 u8 mode = BPF_MODE(insn->code); 7698 7699 if (mode == BPF_ABS || mode == BPF_IND) { 7700 err = check_ld_abs(env, insn); 7701 if (err) 7702 return err; 7703 7704 } else if (mode == BPF_IMM) { 7705 err = check_ld_imm(env, insn); 7706 if (err) 7707 return err; 7708 7709 env->insn_idx++; 7710 env->insn_aux_data[env->insn_idx].seen = true; 7711 } else { 7712 verbose(env, "invalid BPF_LD mode\n"); 7713 return -EINVAL; 7714 } 7715 } else { 7716 verbose(env, "unknown insn class %d\n", class); 7717 return -EINVAL; 7718 } 7719 7720 env->insn_idx++; 7721 } 7722 7723 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7724 return 0; 7725 } 7726 7727 static int check_map_prealloc(struct bpf_map *map) 7728 { 7729 return (map->map_type != BPF_MAP_TYPE_HASH && 7730 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7731 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7732 !(map->map_flags & BPF_F_NO_PREALLOC); 7733 } 7734 7735 static bool is_tracing_prog_type(enum bpf_prog_type type) 7736 { 7737 switch (type) { 7738 case BPF_PROG_TYPE_KPROBE: 7739 case BPF_PROG_TYPE_TRACEPOINT: 7740 case BPF_PROG_TYPE_PERF_EVENT: 7741 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7742 return true; 7743 default: 7744 return false; 7745 } 7746 } 7747 7748 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7749 struct bpf_map *map, 7750 struct bpf_prog *prog) 7751 7752 { 7753 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7754 * preallocated hash maps, since doing memory allocation 7755 * in overflow_handler can crash depending on where nmi got 7756 * triggered. 7757 */ 7758 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7759 if (!check_map_prealloc(map)) { 7760 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7761 return -EINVAL; 7762 } 7763 if (map->inner_map_meta && 7764 !check_map_prealloc(map->inner_map_meta)) { 7765 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7766 return -EINVAL; 7767 } 7768 } 7769 7770 if ((is_tracing_prog_type(prog->type) || 7771 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7772 map_value_has_spin_lock(map)) { 7773 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7774 return -EINVAL; 7775 } 7776 7777 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7778 !bpf_offload_prog_map_match(prog, map)) { 7779 verbose(env, "offload device mismatch between prog and map\n"); 7780 return -EINVAL; 7781 } 7782 7783 return 0; 7784 } 7785 7786 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7787 { 7788 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7789 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7790 } 7791 7792 /* look for pseudo eBPF instructions that access map FDs and 7793 * replace them with actual map pointers 7794 */ 7795 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7796 { 7797 struct bpf_insn *insn = env->prog->insnsi; 7798 int insn_cnt = env->prog->len; 7799 int i, j, err; 7800 7801 err = bpf_prog_calc_tag(env->prog); 7802 if (err) 7803 return err; 7804 7805 for (i = 0; i < insn_cnt; i++, insn++) { 7806 if (BPF_CLASS(insn->code) == BPF_LDX && 7807 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7808 verbose(env, "BPF_LDX uses reserved fields\n"); 7809 return -EINVAL; 7810 } 7811 7812 if (BPF_CLASS(insn->code) == BPF_STX && 7813 ((BPF_MODE(insn->code) != BPF_MEM && 7814 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7815 verbose(env, "BPF_STX uses reserved fields\n"); 7816 return -EINVAL; 7817 } 7818 7819 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7820 struct bpf_insn_aux_data *aux; 7821 struct bpf_map *map; 7822 struct fd f; 7823 u64 addr; 7824 7825 if (i == insn_cnt - 1 || insn[1].code != 0 || 7826 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7827 insn[1].off != 0) { 7828 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7829 return -EINVAL; 7830 } 7831 7832 if (insn[0].src_reg == 0) 7833 /* valid generic load 64-bit imm */ 7834 goto next_insn; 7835 7836 /* In final convert_pseudo_ld_imm64() step, this is 7837 * converted into regular 64-bit imm load insn. 7838 */ 7839 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7840 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7841 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7842 insn[1].imm != 0)) { 7843 verbose(env, 7844 "unrecognized bpf_ld_imm64 insn\n"); 7845 return -EINVAL; 7846 } 7847 7848 f = fdget(insn[0].imm); 7849 map = __bpf_map_get(f); 7850 if (IS_ERR(map)) { 7851 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7852 insn[0].imm); 7853 return PTR_ERR(map); 7854 } 7855 7856 err = check_map_prog_compatibility(env, map, env->prog); 7857 if (err) { 7858 fdput(f); 7859 return err; 7860 } 7861 7862 aux = &env->insn_aux_data[i]; 7863 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7864 addr = (unsigned long)map; 7865 } else { 7866 u32 off = insn[1].imm; 7867 7868 if (off >= BPF_MAX_VAR_OFF) { 7869 verbose(env, "direct value offset of %u is not allowed\n", off); 7870 fdput(f); 7871 return -EINVAL; 7872 } 7873 7874 if (!map->ops->map_direct_value_addr) { 7875 verbose(env, "no direct value access support for this map type\n"); 7876 fdput(f); 7877 return -EINVAL; 7878 } 7879 7880 err = map->ops->map_direct_value_addr(map, &addr, off); 7881 if (err) { 7882 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7883 map->value_size, off); 7884 fdput(f); 7885 return err; 7886 } 7887 7888 aux->map_off = off; 7889 addr += off; 7890 } 7891 7892 insn[0].imm = (u32)addr; 7893 insn[1].imm = addr >> 32; 7894 7895 /* check whether we recorded this map already */ 7896 for (j = 0; j < env->used_map_cnt; j++) { 7897 if (env->used_maps[j] == map) { 7898 aux->map_index = j; 7899 fdput(f); 7900 goto next_insn; 7901 } 7902 } 7903 7904 if (env->used_map_cnt >= MAX_USED_MAPS) { 7905 fdput(f); 7906 return -E2BIG; 7907 } 7908 7909 /* hold the map. If the program is rejected by verifier, 7910 * the map will be released by release_maps() or it 7911 * will be used by the valid program until it's unloaded 7912 * and all maps are released in free_used_maps() 7913 */ 7914 map = bpf_map_inc(map, false); 7915 if (IS_ERR(map)) { 7916 fdput(f); 7917 return PTR_ERR(map); 7918 } 7919 7920 aux->map_index = env->used_map_cnt; 7921 env->used_maps[env->used_map_cnt++] = map; 7922 7923 if (bpf_map_is_cgroup_storage(map) && 7924 bpf_cgroup_storage_assign(env->prog, map)) { 7925 verbose(env, "only one cgroup storage of each type is allowed\n"); 7926 fdput(f); 7927 return -EBUSY; 7928 } 7929 7930 fdput(f); 7931 next_insn: 7932 insn++; 7933 i++; 7934 continue; 7935 } 7936 7937 /* Basic sanity check before we invest more work here. */ 7938 if (!bpf_opcode_in_insntable(insn->code)) { 7939 verbose(env, "unknown opcode %02x\n", insn->code); 7940 return -EINVAL; 7941 } 7942 } 7943 7944 /* now all pseudo BPF_LD_IMM64 instructions load valid 7945 * 'struct bpf_map *' into a register instead of user map_fd. 7946 * These pointers will be used later by verifier to validate map access. 7947 */ 7948 return 0; 7949 } 7950 7951 /* drop refcnt of maps used by the rejected program */ 7952 static void release_maps(struct bpf_verifier_env *env) 7953 { 7954 enum bpf_cgroup_storage_type stype; 7955 int i; 7956 7957 for_each_cgroup_storage_type(stype) { 7958 if (!env->prog->aux->cgroup_storage[stype]) 7959 continue; 7960 bpf_cgroup_storage_release(env->prog, 7961 env->prog->aux->cgroup_storage[stype]); 7962 } 7963 7964 for (i = 0; i < env->used_map_cnt; i++) 7965 bpf_map_put(env->used_maps[i]); 7966 } 7967 7968 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7969 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7970 { 7971 struct bpf_insn *insn = env->prog->insnsi; 7972 int insn_cnt = env->prog->len; 7973 int i; 7974 7975 for (i = 0; i < insn_cnt; i++, insn++) 7976 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7977 insn->src_reg = 0; 7978 } 7979 7980 /* single env->prog->insni[off] instruction was replaced with the range 7981 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7982 * [0, off) and [off, end) to new locations, so the patched range stays zero 7983 */ 7984 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 7985 struct bpf_prog *new_prog, u32 off, u32 cnt) 7986 { 7987 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7988 struct bpf_insn *insn = new_prog->insnsi; 7989 u32 prog_len; 7990 int i; 7991 7992 /* aux info at OFF always needs adjustment, no matter fast path 7993 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 7994 * original insn at old prog. 7995 */ 7996 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 7997 7998 if (cnt == 1) 7999 return 0; 8000 prog_len = new_prog->len; 8001 new_data = vzalloc(array_size(prog_len, 8002 sizeof(struct bpf_insn_aux_data))); 8003 if (!new_data) 8004 return -ENOMEM; 8005 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8006 memcpy(new_data + off + cnt - 1, old_data + off, 8007 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8008 for (i = off; i < off + cnt - 1; i++) { 8009 new_data[i].seen = true; 8010 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8011 } 8012 env->insn_aux_data = new_data; 8013 vfree(old_data); 8014 return 0; 8015 } 8016 8017 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8018 { 8019 int i; 8020 8021 if (len == 1) 8022 return; 8023 /* NOTE: fake 'exit' subprog should be updated as well. */ 8024 for (i = 0; i <= env->subprog_cnt; i++) { 8025 if (env->subprog_info[i].start <= off) 8026 continue; 8027 env->subprog_info[i].start += len - 1; 8028 } 8029 } 8030 8031 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8032 const struct bpf_insn *patch, u32 len) 8033 { 8034 struct bpf_prog *new_prog; 8035 8036 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8037 if (IS_ERR(new_prog)) { 8038 if (PTR_ERR(new_prog) == -ERANGE) 8039 verbose(env, 8040 "insn %d cannot be patched due to 16-bit range\n", 8041 env->insn_aux_data[off].orig_idx); 8042 return NULL; 8043 } 8044 if (adjust_insn_aux_data(env, new_prog, off, len)) 8045 return NULL; 8046 adjust_subprog_starts(env, off, len); 8047 return new_prog; 8048 } 8049 8050 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8051 u32 off, u32 cnt) 8052 { 8053 int i, j; 8054 8055 /* find first prog starting at or after off (first to remove) */ 8056 for (i = 0; i < env->subprog_cnt; i++) 8057 if (env->subprog_info[i].start >= off) 8058 break; 8059 /* find first prog starting at or after off + cnt (first to stay) */ 8060 for (j = i; j < env->subprog_cnt; j++) 8061 if (env->subprog_info[j].start >= off + cnt) 8062 break; 8063 /* if j doesn't start exactly at off + cnt, we are just removing 8064 * the front of previous prog 8065 */ 8066 if (env->subprog_info[j].start != off + cnt) 8067 j--; 8068 8069 if (j > i) { 8070 struct bpf_prog_aux *aux = env->prog->aux; 8071 int move; 8072 8073 /* move fake 'exit' subprog as well */ 8074 move = env->subprog_cnt + 1 - j; 8075 8076 memmove(env->subprog_info + i, 8077 env->subprog_info + j, 8078 sizeof(*env->subprog_info) * move); 8079 env->subprog_cnt -= j - i; 8080 8081 /* remove func_info */ 8082 if (aux->func_info) { 8083 move = aux->func_info_cnt - j; 8084 8085 memmove(aux->func_info + i, 8086 aux->func_info + j, 8087 sizeof(*aux->func_info) * move); 8088 aux->func_info_cnt -= j - i; 8089 /* func_info->insn_off is set after all code rewrites, 8090 * in adjust_btf_func() - no need to adjust 8091 */ 8092 } 8093 } else { 8094 /* convert i from "first prog to remove" to "first to adjust" */ 8095 if (env->subprog_info[i].start == off) 8096 i++; 8097 } 8098 8099 /* update fake 'exit' subprog as well */ 8100 for (; i <= env->subprog_cnt; i++) 8101 env->subprog_info[i].start -= cnt; 8102 8103 return 0; 8104 } 8105 8106 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8107 u32 cnt) 8108 { 8109 struct bpf_prog *prog = env->prog; 8110 u32 i, l_off, l_cnt, nr_linfo; 8111 struct bpf_line_info *linfo; 8112 8113 nr_linfo = prog->aux->nr_linfo; 8114 if (!nr_linfo) 8115 return 0; 8116 8117 linfo = prog->aux->linfo; 8118 8119 /* find first line info to remove, count lines to be removed */ 8120 for (i = 0; i < nr_linfo; i++) 8121 if (linfo[i].insn_off >= off) 8122 break; 8123 8124 l_off = i; 8125 l_cnt = 0; 8126 for (; i < nr_linfo; i++) 8127 if (linfo[i].insn_off < off + cnt) 8128 l_cnt++; 8129 else 8130 break; 8131 8132 /* First live insn doesn't match first live linfo, it needs to "inherit" 8133 * last removed linfo. prog is already modified, so prog->len == off 8134 * means no live instructions after (tail of the program was removed). 8135 */ 8136 if (prog->len != off && l_cnt && 8137 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8138 l_cnt--; 8139 linfo[--i].insn_off = off + cnt; 8140 } 8141 8142 /* remove the line info which refer to the removed instructions */ 8143 if (l_cnt) { 8144 memmove(linfo + l_off, linfo + i, 8145 sizeof(*linfo) * (nr_linfo - i)); 8146 8147 prog->aux->nr_linfo -= l_cnt; 8148 nr_linfo = prog->aux->nr_linfo; 8149 } 8150 8151 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8152 for (i = l_off; i < nr_linfo; i++) 8153 linfo[i].insn_off -= cnt; 8154 8155 /* fix up all subprogs (incl. 'exit') which start >= off */ 8156 for (i = 0; i <= env->subprog_cnt; i++) 8157 if (env->subprog_info[i].linfo_idx > l_off) { 8158 /* program may have started in the removed region but 8159 * may not be fully removed 8160 */ 8161 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8162 env->subprog_info[i].linfo_idx -= l_cnt; 8163 else 8164 env->subprog_info[i].linfo_idx = l_off; 8165 } 8166 8167 return 0; 8168 } 8169 8170 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8171 { 8172 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8173 unsigned int orig_prog_len = env->prog->len; 8174 int err; 8175 8176 if (bpf_prog_is_dev_bound(env->prog->aux)) 8177 bpf_prog_offload_remove_insns(env, off, cnt); 8178 8179 err = bpf_remove_insns(env->prog, off, cnt); 8180 if (err) 8181 return err; 8182 8183 err = adjust_subprog_starts_after_remove(env, off, cnt); 8184 if (err) 8185 return err; 8186 8187 err = bpf_adj_linfo_after_remove(env, off, cnt); 8188 if (err) 8189 return err; 8190 8191 memmove(aux_data + off, aux_data + off + cnt, 8192 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8193 8194 return 0; 8195 } 8196 8197 /* The verifier does more data flow analysis than llvm and will not 8198 * explore branches that are dead at run time. Malicious programs can 8199 * have dead code too. Therefore replace all dead at-run-time code 8200 * with 'ja -1'. 8201 * 8202 * Just nops are not optimal, e.g. if they would sit at the end of the 8203 * program and through another bug we would manage to jump there, then 8204 * we'd execute beyond program memory otherwise. Returning exception 8205 * code also wouldn't work since we can have subprogs where the dead 8206 * code could be located. 8207 */ 8208 static void sanitize_dead_code(struct bpf_verifier_env *env) 8209 { 8210 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8211 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8212 struct bpf_insn *insn = env->prog->insnsi; 8213 const int insn_cnt = env->prog->len; 8214 int i; 8215 8216 for (i = 0; i < insn_cnt; i++) { 8217 if (aux_data[i].seen) 8218 continue; 8219 memcpy(insn + i, &trap, sizeof(trap)); 8220 } 8221 } 8222 8223 static bool insn_is_cond_jump(u8 code) 8224 { 8225 u8 op; 8226 8227 if (BPF_CLASS(code) == BPF_JMP32) 8228 return true; 8229 8230 if (BPF_CLASS(code) != BPF_JMP) 8231 return false; 8232 8233 op = BPF_OP(code); 8234 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8235 } 8236 8237 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8238 { 8239 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8240 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8241 struct bpf_insn *insn = env->prog->insnsi; 8242 const int insn_cnt = env->prog->len; 8243 int i; 8244 8245 for (i = 0; i < insn_cnt; i++, insn++) { 8246 if (!insn_is_cond_jump(insn->code)) 8247 continue; 8248 8249 if (!aux_data[i + 1].seen) 8250 ja.off = insn->off; 8251 else if (!aux_data[i + 1 + insn->off].seen) 8252 ja.off = 0; 8253 else 8254 continue; 8255 8256 if (bpf_prog_is_dev_bound(env->prog->aux)) 8257 bpf_prog_offload_replace_insn(env, i, &ja); 8258 8259 memcpy(insn, &ja, sizeof(ja)); 8260 } 8261 } 8262 8263 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8264 { 8265 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8266 int insn_cnt = env->prog->len; 8267 int i, err; 8268 8269 for (i = 0; i < insn_cnt; i++) { 8270 int j; 8271 8272 j = 0; 8273 while (i + j < insn_cnt && !aux_data[i + j].seen) 8274 j++; 8275 if (!j) 8276 continue; 8277 8278 err = verifier_remove_insns(env, i, j); 8279 if (err) 8280 return err; 8281 insn_cnt = env->prog->len; 8282 } 8283 8284 return 0; 8285 } 8286 8287 static int opt_remove_nops(struct bpf_verifier_env *env) 8288 { 8289 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8290 struct bpf_insn *insn = env->prog->insnsi; 8291 int insn_cnt = env->prog->len; 8292 int i, err; 8293 8294 for (i = 0; i < insn_cnt; i++) { 8295 if (memcmp(&insn[i], &ja, sizeof(ja))) 8296 continue; 8297 8298 err = verifier_remove_insns(env, i, 1); 8299 if (err) 8300 return err; 8301 insn_cnt--; 8302 i--; 8303 } 8304 8305 return 0; 8306 } 8307 8308 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8309 const union bpf_attr *attr) 8310 { 8311 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8312 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8313 int i, patch_len, delta = 0, len = env->prog->len; 8314 struct bpf_insn *insns = env->prog->insnsi; 8315 struct bpf_prog *new_prog; 8316 bool rnd_hi32; 8317 8318 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8319 zext_patch[1] = BPF_ZEXT_REG(0); 8320 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8321 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8322 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8323 for (i = 0; i < len; i++) { 8324 int adj_idx = i + delta; 8325 struct bpf_insn insn; 8326 8327 insn = insns[adj_idx]; 8328 if (!aux[adj_idx].zext_dst) { 8329 u8 code, class; 8330 u32 imm_rnd; 8331 8332 if (!rnd_hi32) 8333 continue; 8334 8335 code = insn.code; 8336 class = BPF_CLASS(code); 8337 if (insn_no_def(&insn)) 8338 continue; 8339 8340 /* NOTE: arg "reg" (the fourth one) is only used for 8341 * BPF_STX which has been ruled out in above 8342 * check, it is safe to pass NULL here. 8343 */ 8344 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8345 if (class == BPF_LD && 8346 BPF_MODE(code) == BPF_IMM) 8347 i++; 8348 continue; 8349 } 8350 8351 /* ctx load could be transformed into wider load. */ 8352 if (class == BPF_LDX && 8353 aux[adj_idx].ptr_type == PTR_TO_CTX) 8354 continue; 8355 8356 imm_rnd = get_random_int(); 8357 rnd_hi32_patch[0] = insn; 8358 rnd_hi32_patch[1].imm = imm_rnd; 8359 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8360 patch = rnd_hi32_patch; 8361 patch_len = 4; 8362 goto apply_patch_buffer; 8363 } 8364 8365 if (!bpf_jit_needs_zext()) 8366 continue; 8367 8368 zext_patch[0] = insn; 8369 zext_patch[1].dst_reg = insn.dst_reg; 8370 zext_patch[1].src_reg = insn.dst_reg; 8371 patch = zext_patch; 8372 patch_len = 2; 8373 apply_patch_buffer: 8374 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8375 if (!new_prog) 8376 return -ENOMEM; 8377 env->prog = new_prog; 8378 insns = new_prog->insnsi; 8379 aux = env->insn_aux_data; 8380 delta += patch_len - 1; 8381 } 8382 8383 return 0; 8384 } 8385 8386 /* convert load instructions that access fields of a context type into a 8387 * sequence of instructions that access fields of the underlying structure: 8388 * struct __sk_buff -> struct sk_buff 8389 * struct bpf_sock_ops -> struct sock 8390 */ 8391 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8392 { 8393 const struct bpf_verifier_ops *ops = env->ops; 8394 int i, cnt, size, ctx_field_size, delta = 0; 8395 const int insn_cnt = env->prog->len; 8396 struct bpf_insn insn_buf[16], *insn; 8397 u32 target_size, size_default, off; 8398 struct bpf_prog *new_prog; 8399 enum bpf_access_type type; 8400 bool is_narrower_load; 8401 8402 if (ops->gen_prologue || env->seen_direct_write) { 8403 if (!ops->gen_prologue) { 8404 verbose(env, "bpf verifier is misconfigured\n"); 8405 return -EINVAL; 8406 } 8407 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8408 env->prog); 8409 if (cnt >= ARRAY_SIZE(insn_buf)) { 8410 verbose(env, "bpf verifier is misconfigured\n"); 8411 return -EINVAL; 8412 } else if (cnt) { 8413 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8414 if (!new_prog) 8415 return -ENOMEM; 8416 8417 env->prog = new_prog; 8418 delta += cnt - 1; 8419 } 8420 } 8421 8422 if (bpf_prog_is_dev_bound(env->prog->aux)) 8423 return 0; 8424 8425 insn = env->prog->insnsi + delta; 8426 8427 for (i = 0; i < insn_cnt; i++, insn++) { 8428 bpf_convert_ctx_access_t convert_ctx_access; 8429 8430 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8431 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8432 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8433 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8434 type = BPF_READ; 8435 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8436 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8437 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8438 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8439 type = BPF_WRITE; 8440 else 8441 continue; 8442 8443 if (type == BPF_WRITE && 8444 env->insn_aux_data[i + delta].sanitize_stack_off) { 8445 struct bpf_insn patch[] = { 8446 /* Sanitize suspicious stack slot with zero. 8447 * There are no memory dependencies for this store, 8448 * since it's only using frame pointer and immediate 8449 * constant of zero 8450 */ 8451 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8452 env->insn_aux_data[i + delta].sanitize_stack_off, 8453 0), 8454 /* the original STX instruction will immediately 8455 * overwrite the same stack slot with appropriate value 8456 */ 8457 *insn, 8458 }; 8459 8460 cnt = ARRAY_SIZE(patch); 8461 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8462 if (!new_prog) 8463 return -ENOMEM; 8464 8465 delta += cnt - 1; 8466 env->prog = new_prog; 8467 insn = new_prog->insnsi + i + delta; 8468 continue; 8469 } 8470 8471 switch (env->insn_aux_data[i + delta].ptr_type) { 8472 case PTR_TO_CTX: 8473 if (!ops->convert_ctx_access) 8474 continue; 8475 convert_ctx_access = ops->convert_ctx_access; 8476 break; 8477 case PTR_TO_SOCKET: 8478 case PTR_TO_SOCK_COMMON: 8479 convert_ctx_access = bpf_sock_convert_ctx_access; 8480 break; 8481 case PTR_TO_TCP_SOCK: 8482 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8483 break; 8484 case PTR_TO_XDP_SOCK: 8485 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8486 break; 8487 default: 8488 continue; 8489 } 8490 8491 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8492 size = BPF_LDST_BYTES(insn); 8493 8494 /* If the read access is a narrower load of the field, 8495 * convert to a 4/8-byte load, to minimum program type specific 8496 * convert_ctx_access changes. If conversion is successful, 8497 * we will apply proper mask to the result. 8498 */ 8499 is_narrower_load = size < ctx_field_size; 8500 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8501 off = insn->off; 8502 if (is_narrower_load) { 8503 u8 size_code; 8504 8505 if (type == BPF_WRITE) { 8506 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8507 return -EINVAL; 8508 } 8509 8510 size_code = BPF_H; 8511 if (ctx_field_size == 4) 8512 size_code = BPF_W; 8513 else if (ctx_field_size == 8) 8514 size_code = BPF_DW; 8515 8516 insn->off = off & ~(size_default - 1); 8517 insn->code = BPF_LDX | BPF_MEM | size_code; 8518 } 8519 8520 target_size = 0; 8521 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8522 &target_size); 8523 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8524 (ctx_field_size && !target_size)) { 8525 verbose(env, "bpf verifier is misconfigured\n"); 8526 return -EINVAL; 8527 } 8528 8529 if (is_narrower_load && size < target_size) { 8530 u8 shift = (off & (size_default - 1)) * 8; 8531 8532 if (ctx_field_size <= 4) { 8533 if (shift) 8534 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8535 insn->dst_reg, 8536 shift); 8537 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8538 (1 << size * 8) - 1); 8539 } else { 8540 if (shift) 8541 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8542 insn->dst_reg, 8543 shift); 8544 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8545 (1ULL << size * 8) - 1); 8546 } 8547 } 8548 8549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8550 if (!new_prog) 8551 return -ENOMEM; 8552 8553 delta += cnt - 1; 8554 8555 /* keep walking new program and skip insns we just inserted */ 8556 env->prog = new_prog; 8557 insn = new_prog->insnsi + i + delta; 8558 } 8559 8560 return 0; 8561 } 8562 8563 static int jit_subprogs(struct bpf_verifier_env *env) 8564 { 8565 struct bpf_prog *prog = env->prog, **func, *tmp; 8566 int i, j, subprog_start, subprog_end = 0, len, subprog; 8567 struct bpf_insn *insn; 8568 void *old_bpf_func; 8569 int err; 8570 8571 if (env->subprog_cnt <= 1) 8572 return 0; 8573 8574 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8575 if (insn->code != (BPF_JMP | BPF_CALL) || 8576 insn->src_reg != BPF_PSEUDO_CALL) 8577 continue; 8578 /* Upon error here we cannot fall back to interpreter but 8579 * need a hard reject of the program. Thus -EFAULT is 8580 * propagated in any case. 8581 */ 8582 subprog = find_subprog(env, i + insn->imm + 1); 8583 if (subprog < 0) { 8584 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8585 i + insn->imm + 1); 8586 return -EFAULT; 8587 } 8588 /* temporarily remember subprog id inside insn instead of 8589 * aux_data, since next loop will split up all insns into funcs 8590 */ 8591 insn->off = subprog; 8592 /* remember original imm in case JIT fails and fallback 8593 * to interpreter will be needed 8594 */ 8595 env->insn_aux_data[i].call_imm = insn->imm; 8596 /* point imm to __bpf_call_base+1 from JITs point of view */ 8597 insn->imm = 1; 8598 } 8599 8600 err = bpf_prog_alloc_jited_linfo(prog); 8601 if (err) 8602 goto out_undo_insn; 8603 8604 err = -ENOMEM; 8605 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8606 if (!func) 8607 goto out_undo_insn; 8608 8609 for (i = 0; i < env->subprog_cnt; i++) { 8610 subprog_start = subprog_end; 8611 subprog_end = env->subprog_info[i + 1].start; 8612 8613 len = subprog_end - subprog_start; 8614 /* BPF_PROG_RUN doesn't call subprogs directly, 8615 * hence main prog stats include the runtime of subprogs. 8616 * subprogs don't have IDs and not reachable via prog_get_next_id 8617 * func[i]->aux->stats will never be accessed and stays NULL 8618 */ 8619 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8620 if (!func[i]) 8621 goto out_free; 8622 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8623 len * sizeof(struct bpf_insn)); 8624 func[i]->type = prog->type; 8625 func[i]->len = len; 8626 if (bpf_prog_calc_tag(func[i])) 8627 goto out_free; 8628 func[i]->is_func = 1; 8629 func[i]->aux->func_idx = i; 8630 /* the btf and func_info will be freed only at prog->aux */ 8631 func[i]->aux->btf = prog->aux->btf; 8632 func[i]->aux->func_info = prog->aux->func_info; 8633 8634 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8635 * Long term would need debug info to populate names 8636 */ 8637 func[i]->aux->name[0] = 'F'; 8638 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8639 func[i]->jit_requested = 1; 8640 func[i]->aux->linfo = prog->aux->linfo; 8641 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8642 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8643 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8644 func[i] = bpf_int_jit_compile(func[i]); 8645 if (!func[i]->jited) { 8646 err = -ENOTSUPP; 8647 goto out_free; 8648 } 8649 cond_resched(); 8650 } 8651 /* at this point all bpf functions were successfully JITed 8652 * now populate all bpf_calls with correct addresses and 8653 * run last pass of JIT 8654 */ 8655 for (i = 0; i < env->subprog_cnt; i++) { 8656 insn = func[i]->insnsi; 8657 for (j = 0; j < func[i]->len; j++, insn++) { 8658 if (insn->code != (BPF_JMP | BPF_CALL) || 8659 insn->src_reg != BPF_PSEUDO_CALL) 8660 continue; 8661 subprog = insn->off; 8662 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8663 __bpf_call_base; 8664 } 8665 8666 /* we use the aux data to keep a list of the start addresses 8667 * of the JITed images for each function in the program 8668 * 8669 * for some architectures, such as powerpc64, the imm field 8670 * might not be large enough to hold the offset of the start 8671 * address of the callee's JITed image from __bpf_call_base 8672 * 8673 * in such cases, we can lookup the start address of a callee 8674 * by using its subprog id, available from the off field of 8675 * the call instruction, as an index for this list 8676 */ 8677 func[i]->aux->func = func; 8678 func[i]->aux->func_cnt = env->subprog_cnt; 8679 } 8680 for (i = 0; i < env->subprog_cnt; i++) { 8681 old_bpf_func = func[i]->bpf_func; 8682 tmp = bpf_int_jit_compile(func[i]); 8683 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8684 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8685 err = -ENOTSUPP; 8686 goto out_free; 8687 } 8688 cond_resched(); 8689 } 8690 8691 /* finally lock prog and jit images for all functions and 8692 * populate kallsysm 8693 */ 8694 for (i = 0; i < env->subprog_cnt; i++) { 8695 bpf_prog_lock_ro(func[i]); 8696 bpf_prog_kallsyms_add(func[i]); 8697 } 8698 8699 /* Last step: make now unused interpreter insns from main 8700 * prog consistent for later dump requests, so they can 8701 * later look the same as if they were interpreted only. 8702 */ 8703 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8704 if (insn->code != (BPF_JMP | BPF_CALL) || 8705 insn->src_reg != BPF_PSEUDO_CALL) 8706 continue; 8707 insn->off = env->insn_aux_data[i].call_imm; 8708 subprog = find_subprog(env, i + insn->off + 1); 8709 insn->imm = subprog; 8710 } 8711 8712 prog->jited = 1; 8713 prog->bpf_func = func[0]->bpf_func; 8714 prog->aux->func = func; 8715 prog->aux->func_cnt = env->subprog_cnt; 8716 bpf_prog_free_unused_jited_linfo(prog); 8717 return 0; 8718 out_free: 8719 for (i = 0; i < env->subprog_cnt; i++) 8720 if (func[i]) 8721 bpf_jit_free(func[i]); 8722 kfree(func); 8723 out_undo_insn: 8724 /* cleanup main prog to be interpreted */ 8725 prog->jit_requested = 0; 8726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8727 if (insn->code != (BPF_JMP | BPF_CALL) || 8728 insn->src_reg != BPF_PSEUDO_CALL) 8729 continue; 8730 insn->off = 0; 8731 insn->imm = env->insn_aux_data[i].call_imm; 8732 } 8733 bpf_prog_free_jited_linfo(prog); 8734 return err; 8735 } 8736 8737 static int fixup_call_args(struct bpf_verifier_env *env) 8738 { 8739 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8740 struct bpf_prog *prog = env->prog; 8741 struct bpf_insn *insn = prog->insnsi; 8742 int i, depth; 8743 #endif 8744 int err = 0; 8745 8746 if (env->prog->jit_requested && 8747 !bpf_prog_is_dev_bound(env->prog->aux)) { 8748 err = jit_subprogs(env); 8749 if (err == 0) 8750 return 0; 8751 if (err == -EFAULT) 8752 return err; 8753 } 8754 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8755 for (i = 0; i < prog->len; i++, insn++) { 8756 if (insn->code != (BPF_JMP | BPF_CALL) || 8757 insn->src_reg != BPF_PSEUDO_CALL) 8758 continue; 8759 depth = get_callee_stack_depth(env, insn, i); 8760 if (depth < 0) 8761 return depth; 8762 bpf_patch_call_args(insn, depth); 8763 } 8764 err = 0; 8765 #endif 8766 return err; 8767 } 8768 8769 /* fixup insn->imm field of bpf_call instructions 8770 * and inline eligible helpers as explicit sequence of BPF instructions 8771 * 8772 * this function is called after eBPF program passed verification 8773 */ 8774 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8775 { 8776 struct bpf_prog *prog = env->prog; 8777 struct bpf_insn *insn = prog->insnsi; 8778 const struct bpf_func_proto *fn; 8779 const int insn_cnt = prog->len; 8780 const struct bpf_map_ops *ops; 8781 struct bpf_insn_aux_data *aux; 8782 struct bpf_insn insn_buf[16]; 8783 struct bpf_prog *new_prog; 8784 struct bpf_map *map_ptr; 8785 int i, cnt, delta = 0; 8786 8787 for (i = 0; i < insn_cnt; i++, insn++) { 8788 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8789 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8790 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8791 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8792 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8793 struct bpf_insn mask_and_div[] = { 8794 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8795 /* Rx div 0 -> 0 */ 8796 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8797 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8798 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8799 *insn, 8800 }; 8801 struct bpf_insn mask_and_mod[] = { 8802 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8803 /* Rx mod 0 -> Rx */ 8804 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8805 *insn, 8806 }; 8807 struct bpf_insn *patchlet; 8808 8809 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8810 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8811 patchlet = mask_and_div + (is64 ? 1 : 0); 8812 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8813 } else { 8814 patchlet = mask_and_mod + (is64 ? 1 : 0); 8815 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8816 } 8817 8818 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8819 if (!new_prog) 8820 return -ENOMEM; 8821 8822 delta += cnt - 1; 8823 env->prog = prog = new_prog; 8824 insn = new_prog->insnsi + i + delta; 8825 continue; 8826 } 8827 8828 if (BPF_CLASS(insn->code) == BPF_LD && 8829 (BPF_MODE(insn->code) == BPF_ABS || 8830 BPF_MODE(insn->code) == BPF_IND)) { 8831 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8832 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8833 verbose(env, "bpf verifier is misconfigured\n"); 8834 return -EINVAL; 8835 } 8836 8837 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8838 if (!new_prog) 8839 return -ENOMEM; 8840 8841 delta += cnt - 1; 8842 env->prog = prog = new_prog; 8843 insn = new_prog->insnsi + i + delta; 8844 continue; 8845 } 8846 8847 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8848 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8849 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8850 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8851 struct bpf_insn insn_buf[16]; 8852 struct bpf_insn *patch = &insn_buf[0]; 8853 bool issrc, isneg; 8854 u32 off_reg; 8855 8856 aux = &env->insn_aux_data[i + delta]; 8857 if (!aux->alu_state || 8858 aux->alu_state == BPF_ALU_NON_POINTER) 8859 continue; 8860 8861 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8862 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8863 BPF_ALU_SANITIZE_SRC; 8864 8865 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8866 if (isneg) 8867 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8868 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8869 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8870 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8871 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8872 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8873 if (issrc) { 8874 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8875 off_reg); 8876 insn->src_reg = BPF_REG_AX; 8877 } else { 8878 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8879 BPF_REG_AX); 8880 } 8881 if (isneg) 8882 insn->code = insn->code == code_add ? 8883 code_sub : code_add; 8884 *patch++ = *insn; 8885 if (issrc && isneg) 8886 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8887 cnt = patch - insn_buf; 8888 8889 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8890 if (!new_prog) 8891 return -ENOMEM; 8892 8893 delta += cnt - 1; 8894 env->prog = prog = new_prog; 8895 insn = new_prog->insnsi + i + delta; 8896 continue; 8897 } 8898 8899 if (insn->code != (BPF_JMP | BPF_CALL)) 8900 continue; 8901 if (insn->src_reg == BPF_PSEUDO_CALL) 8902 continue; 8903 8904 if (insn->imm == BPF_FUNC_get_route_realm) 8905 prog->dst_needed = 1; 8906 if (insn->imm == BPF_FUNC_get_prandom_u32) 8907 bpf_user_rnd_init_once(); 8908 if (insn->imm == BPF_FUNC_override_return) 8909 prog->kprobe_override = 1; 8910 if (insn->imm == BPF_FUNC_tail_call) { 8911 /* If we tail call into other programs, we 8912 * cannot make any assumptions since they can 8913 * be replaced dynamically during runtime in 8914 * the program array. 8915 */ 8916 prog->cb_access = 1; 8917 env->prog->aux->stack_depth = MAX_BPF_STACK; 8918 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 8919 8920 /* mark bpf_tail_call as different opcode to avoid 8921 * conditional branch in the interpeter for every normal 8922 * call and to prevent accidental JITing by JIT compiler 8923 * that doesn't support bpf_tail_call yet 8924 */ 8925 insn->imm = 0; 8926 insn->code = BPF_JMP | BPF_TAIL_CALL; 8927 8928 aux = &env->insn_aux_data[i + delta]; 8929 if (!bpf_map_ptr_unpriv(aux)) 8930 continue; 8931 8932 /* instead of changing every JIT dealing with tail_call 8933 * emit two extra insns: 8934 * if (index >= max_entries) goto out; 8935 * index &= array->index_mask; 8936 * to avoid out-of-bounds cpu speculation 8937 */ 8938 if (bpf_map_ptr_poisoned(aux)) { 8939 verbose(env, "tail_call abusing map_ptr\n"); 8940 return -EINVAL; 8941 } 8942 8943 map_ptr = BPF_MAP_PTR(aux->map_state); 8944 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 8945 map_ptr->max_entries, 2); 8946 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 8947 container_of(map_ptr, 8948 struct bpf_array, 8949 map)->index_mask); 8950 insn_buf[2] = *insn; 8951 cnt = 3; 8952 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8953 if (!new_prog) 8954 return -ENOMEM; 8955 8956 delta += cnt - 1; 8957 env->prog = prog = new_prog; 8958 insn = new_prog->insnsi + i + delta; 8959 continue; 8960 } 8961 8962 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 8963 * and other inlining handlers are currently limited to 64 bit 8964 * only. 8965 */ 8966 if (prog->jit_requested && BITS_PER_LONG == 64 && 8967 (insn->imm == BPF_FUNC_map_lookup_elem || 8968 insn->imm == BPF_FUNC_map_update_elem || 8969 insn->imm == BPF_FUNC_map_delete_elem || 8970 insn->imm == BPF_FUNC_map_push_elem || 8971 insn->imm == BPF_FUNC_map_pop_elem || 8972 insn->imm == BPF_FUNC_map_peek_elem)) { 8973 aux = &env->insn_aux_data[i + delta]; 8974 if (bpf_map_ptr_poisoned(aux)) 8975 goto patch_call_imm; 8976 8977 map_ptr = BPF_MAP_PTR(aux->map_state); 8978 ops = map_ptr->ops; 8979 if (insn->imm == BPF_FUNC_map_lookup_elem && 8980 ops->map_gen_lookup) { 8981 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 8982 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8983 verbose(env, "bpf verifier is misconfigured\n"); 8984 return -EINVAL; 8985 } 8986 8987 new_prog = bpf_patch_insn_data(env, i + delta, 8988 insn_buf, cnt); 8989 if (!new_prog) 8990 return -ENOMEM; 8991 8992 delta += cnt - 1; 8993 env->prog = prog = new_prog; 8994 insn = new_prog->insnsi + i + delta; 8995 continue; 8996 } 8997 8998 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 8999 (void *(*)(struct bpf_map *map, void *key))NULL)); 9000 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9001 (int (*)(struct bpf_map *map, void *key))NULL)); 9002 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9003 (int (*)(struct bpf_map *map, void *key, void *value, 9004 u64 flags))NULL)); 9005 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9006 (int (*)(struct bpf_map *map, void *value, 9007 u64 flags))NULL)); 9008 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9009 (int (*)(struct bpf_map *map, void *value))NULL)); 9010 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9011 (int (*)(struct bpf_map *map, void *value))NULL)); 9012 9013 switch (insn->imm) { 9014 case BPF_FUNC_map_lookup_elem: 9015 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9016 __bpf_call_base; 9017 continue; 9018 case BPF_FUNC_map_update_elem: 9019 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9020 __bpf_call_base; 9021 continue; 9022 case BPF_FUNC_map_delete_elem: 9023 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9024 __bpf_call_base; 9025 continue; 9026 case BPF_FUNC_map_push_elem: 9027 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9028 __bpf_call_base; 9029 continue; 9030 case BPF_FUNC_map_pop_elem: 9031 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9032 __bpf_call_base; 9033 continue; 9034 case BPF_FUNC_map_peek_elem: 9035 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9036 __bpf_call_base; 9037 continue; 9038 } 9039 9040 goto patch_call_imm; 9041 } 9042 9043 patch_call_imm: 9044 fn = env->ops->get_func_proto(insn->imm, env->prog); 9045 /* all functions that have prototype and verifier allowed 9046 * programs to call them, must be real in-kernel functions 9047 */ 9048 if (!fn->func) { 9049 verbose(env, 9050 "kernel subsystem misconfigured func %s#%d\n", 9051 func_id_name(insn->imm), insn->imm); 9052 return -EFAULT; 9053 } 9054 insn->imm = fn->func - __bpf_call_base; 9055 } 9056 9057 return 0; 9058 } 9059 9060 static void free_states(struct bpf_verifier_env *env) 9061 { 9062 struct bpf_verifier_state_list *sl, *sln; 9063 int i; 9064 9065 sl = env->free_list; 9066 while (sl) { 9067 sln = sl->next; 9068 free_verifier_state(&sl->state, false); 9069 kfree(sl); 9070 sl = sln; 9071 } 9072 9073 if (!env->explored_states) 9074 return; 9075 9076 for (i = 0; i < state_htab_size(env); i++) { 9077 sl = env->explored_states[i]; 9078 9079 while (sl) { 9080 sln = sl->next; 9081 free_verifier_state(&sl->state, false); 9082 kfree(sl); 9083 sl = sln; 9084 } 9085 } 9086 9087 kvfree(env->explored_states); 9088 } 9089 9090 static void print_verification_stats(struct bpf_verifier_env *env) 9091 { 9092 int i; 9093 9094 if (env->log.level & BPF_LOG_STATS) { 9095 verbose(env, "verification time %lld usec\n", 9096 div_u64(env->verification_time, 1000)); 9097 verbose(env, "stack depth "); 9098 for (i = 0; i < env->subprog_cnt; i++) { 9099 u32 depth = env->subprog_info[i].stack_depth; 9100 9101 verbose(env, "%d", depth); 9102 if (i + 1 < env->subprog_cnt) 9103 verbose(env, "+"); 9104 } 9105 verbose(env, "\n"); 9106 } 9107 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9108 "total_states %d peak_states %d mark_read %d\n", 9109 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9110 env->max_states_per_insn, env->total_states, 9111 env->peak_states, env->longest_mark_read_walk); 9112 } 9113 9114 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9115 union bpf_attr __user *uattr) 9116 { 9117 u64 start_time = ktime_get_ns(); 9118 struct bpf_verifier_env *env; 9119 struct bpf_verifier_log *log; 9120 int i, len, ret = -EINVAL; 9121 bool is_priv; 9122 9123 /* no program is valid */ 9124 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9125 return -EINVAL; 9126 9127 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9128 * allocate/free it every time bpf_check() is called 9129 */ 9130 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9131 if (!env) 9132 return -ENOMEM; 9133 log = &env->log; 9134 9135 len = (*prog)->len; 9136 env->insn_aux_data = 9137 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9138 ret = -ENOMEM; 9139 if (!env->insn_aux_data) 9140 goto err_free_env; 9141 for (i = 0; i < len; i++) 9142 env->insn_aux_data[i].orig_idx = i; 9143 env->prog = *prog; 9144 env->ops = bpf_verifier_ops[env->prog->type]; 9145 is_priv = capable(CAP_SYS_ADMIN); 9146 9147 /* grab the mutex to protect few globals used by verifier */ 9148 if (!is_priv) 9149 mutex_lock(&bpf_verifier_lock); 9150 9151 if (attr->log_level || attr->log_buf || attr->log_size) { 9152 /* user requested verbose verifier output 9153 * and supplied buffer to store the verification trace 9154 */ 9155 log->level = attr->log_level; 9156 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9157 log->len_total = attr->log_size; 9158 9159 ret = -EINVAL; 9160 /* log attributes have to be sane */ 9161 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9162 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9163 goto err_unlock; 9164 } 9165 9166 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9167 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9168 env->strict_alignment = true; 9169 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9170 env->strict_alignment = false; 9171 9172 env->allow_ptr_leaks = is_priv; 9173 9174 ret = replace_map_fd_with_map_ptr(env); 9175 if (ret < 0) 9176 goto skip_full_check; 9177 9178 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9179 ret = bpf_prog_offload_verifier_prep(env->prog); 9180 if (ret) 9181 goto skip_full_check; 9182 } 9183 9184 env->explored_states = kvcalloc(state_htab_size(env), 9185 sizeof(struct bpf_verifier_state_list *), 9186 GFP_USER); 9187 ret = -ENOMEM; 9188 if (!env->explored_states) 9189 goto skip_full_check; 9190 9191 ret = check_subprogs(env); 9192 if (ret < 0) 9193 goto skip_full_check; 9194 9195 ret = check_btf_info(env, attr, uattr); 9196 if (ret < 0) 9197 goto skip_full_check; 9198 9199 ret = check_cfg(env); 9200 if (ret < 0) 9201 goto skip_full_check; 9202 9203 ret = do_check(env); 9204 if (env->cur_state) { 9205 free_verifier_state(env->cur_state, true); 9206 env->cur_state = NULL; 9207 } 9208 9209 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9210 ret = bpf_prog_offload_finalize(env); 9211 9212 skip_full_check: 9213 while (!pop_stack(env, NULL, NULL)); 9214 free_states(env); 9215 9216 if (ret == 0) 9217 ret = check_max_stack_depth(env); 9218 9219 /* instruction rewrites happen after this point */ 9220 if (is_priv) { 9221 if (ret == 0) 9222 opt_hard_wire_dead_code_branches(env); 9223 if (ret == 0) 9224 ret = opt_remove_dead_code(env); 9225 if (ret == 0) 9226 ret = opt_remove_nops(env); 9227 } else { 9228 if (ret == 0) 9229 sanitize_dead_code(env); 9230 } 9231 9232 if (ret == 0) 9233 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9234 ret = convert_ctx_accesses(env); 9235 9236 if (ret == 0) 9237 ret = fixup_bpf_calls(env); 9238 9239 /* do 32-bit optimization after insn patching has done so those patched 9240 * insns could be handled correctly. 9241 */ 9242 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9243 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9244 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9245 : false; 9246 } 9247 9248 if (ret == 0) 9249 ret = fixup_call_args(env); 9250 9251 env->verification_time = ktime_get_ns() - start_time; 9252 print_verification_stats(env); 9253 9254 if (log->level && bpf_verifier_log_full(log)) 9255 ret = -ENOSPC; 9256 if (log->level && !log->ubuf) { 9257 ret = -EFAULT; 9258 goto err_release_maps; 9259 } 9260 9261 if (ret == 0 && env->used_map_cnt) { 9262 /* if program passed verifier, update used_maps in bpf_prog_info */ 9263 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9264 sizeof(env->used_maps[0]), 9265 GFP_KERNEL); 9266 9267 if (!env->prog->aux->used_maps) { 9268 ret = -ENOMEM; 9269 goto err_release_maps; 9270 } 9271 9272 memcpy(env->prog->aux->used_maps, env->used_maps, 9273 sizeof(env->used_maps[0]) * env->used_map_cnt); 9274 env->prog->aux->used_map_cnt = env->used_map_cnt; 9275 9276 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9277 * bpf_ld_imm64 instructions 9278 */ 9279 convert_pseudo_ld_imm64(env); 9280 } 9281 9282 if (ret == 0) 9283 adjust_btf_func(env); 9284 9285 err_release_maps: 9286 if (!env->prog->aux->used_maps) 9287 /* if we didn't copy map pointers into bpf_prog_info, release 9288 * them now. Otherwise free_used_maps() will release them. 9289 */ 9290 release_maps(env); 9291 *prog = env->prog; 9292 err_unlock: 9293 if (!is_priv) 9294 mutex_unlock(&bpf_verifier_lock); 9295 vfree(env->insn_aux_data); 9296 err_free_env: 9297 kfree(env); 9298 return ret; 9299 } 9300