1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 mark_verifier_state_clean(env); 1519 } 1520 1521 static inline u32 vlog_alignment(u32 pos) 1522 { 1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1525 } 1526 1527 static void print_insn_state(struct bpf_verifier_env *env, 1528 const struct bpf_func_state *state) 1529 { 1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1531 /* remove new line character */ 1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1534 } else { 1535 verbose(env, "%d:", env->insn_idx); 1536 } 1537 print_verifier_state(env, state, false); 1538 } 1539 1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1541 * small to hold src. This is different from krealloc since we don't want to preserve 1542 * the contents of dst. 1543 * 1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1545 * not be allocated. 1546 */ 1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1548 { 1549 size_t alloc_bytes; 1550 void *orig = dst; 1551 size_t bytes; 1552 1553 if (ZERO_OR_NULL_PTR(src)) 1554 goto out; 1555 1556 if (unlikely(check_mul_overflow(n, size, &bytes))) 1557 return NULL; 1558 1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1560 dst = krealloc(orig, alloc_bytes, flags); 1561 if (!dst) { 1562 kfree(orig); 1563 return NULL; 1564 } 1565 1566 memcpy(dst, src, bytes); 1567 out: 1568 return dst ? dst : ZERO_SIZE_PTR; 1569 } 1570 1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1572 * small to hold new_n items. new items are zeroed out if the array grows. 1573 * 1574 * Contrary to krealloc_array, does not free arr if new_n is zero. 1575 */ 1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1577 { 1578 size_t alloc_size; 1579 void *new_arr; 1580 1581 if (!new_n || old_n == new_n) 1582 goto out; 1583 1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1586 if (!new_arr) { 1587 kfree(arr); 1588 return NULL; 1589 } 1590 arr = new_arr; 1591 1592 if (new_n > old_n) 1593 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1594 1595 out: 1596 return arr ? arr : ZERO_SIZE_PTR; 1597 } 1598 1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1600 { 1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1602 sizeof(struct bpf_reference_state), GFP_KERNEL); 1603 if (!dst->refs) 1604 return -ENOMEM; 1605 1606 dst->acquired_refs = src->acquired_refs; 1607 return 0; 1608 } 1609 1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1611 { 1612 size_t n = src->allocated_stack / BPF_REG_SIZE; 1613 1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1615 GFP_KERNEL); 1616 if (!dst->stack) 1617 return -ENOMEM; 1618 1619 dst->allocated_stack = src->allocated_stack; 1620 return 0; 1621 } 1622 1623 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1624 { 1625 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1626 sizeof(struct bpf_reference_state)); 1627 if (!state->refs) 1628 return -ENOMEM; 1629 1630 state->acquired_refs = n; 1631 return 0; 1632 } 1633 1634 static int grow_stack_state(struct bpf_func_state *state, int size) 1635 { 1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1637 1638 if (old_n >= n) 1639 return 0; 1640 1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1642 if (!state->stack) 1643 return -ENOMEM; 1644 1645 state->allocated_stack = size; 1646 return 0; 1647 } 1648 1649 /* Acquire a pointer id from the env and update the state->refs to include 1650 * this new pointer reference. 1651 * On success, returns a valid pointer id to associate with the register 1652 * On failure, returns a negative errno. 1653 */ 1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1655 { 1656 struct bpf_func_state *state = cur_func(env); 1657 int new_ofs = state->acquired_refs; 1658 int id, err; 1659 1660 err = resize_reference_state(state, state->acquired_refs + 1); 1661 if (err) 1662 return err; 1663 id = ++env->id_gen; 1664 state->refs[new_ofs].id = id; 1665 state->refs[new_ofs].insn_idx = insn_idx; 1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1667 1668 return id; 1669 } 1670 1671 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1673 { 1674 int i, last_idx; 1675 1676 last_idx = state->acquired_refs - 1; 1677 for (i = 0; i < state->acquired_refs; i++) { 1678 if (state->refs[i].id == ptr_id) { 1679 /* Cannot release caller references in callbacks */ 1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1681 return -EINVAL; 1682 if (last_idx && i != last_idx) 1683 memcpy(&state->refs[i], &state->refs[last_idx], 1684 sizeof(*state->refs)); 1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1686 state->acquired_refs--; 1687 return 0; 1688 } 1689 } 1690 return -EINVAL; 1691 } 1692 1693 static void free_func_state(struct bpf_func_state *state) 1694 { 1695 if (!state) 1696 return; 1697 kfree(state->refs); 1698 kfree(state->stack); 1699 kfree(state); 1700 } 1701 1702 static void clear_jmp_history(struct bpf_verifier_state *state) 1703 { 1704 kfree(state->jmp_history); 1705 state->jmp_history = NULL; 1706 state->jmp_history_cnt = 0; 1707 } 1708 1709 static void free_verifier_state(struct bpf_verifier_state *state, 1710 bool free_self) 1711 { 1712 int i; 1713 1714 for (i = 0; i <= state->curframe; i++) { 1715 free_func_state(state->frame[i]); 1716 state->frame[i] = NULL; 1717 } 1718 clear_jmp_history(state); 1719 if (free_self) 1720 kfree(state); 1721 } 1722 1723 /* copy verifier state from src to dst growing dst stack space 1724 * when necessary to accommodate larger src stack 1725 */ 1726 static int copy_func_state(struct bpf_func_state *dst, 1727 const struct bpf_func_state *src) 1728 { 1729 int err; 1730 1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1732 err = copy_reference_state(dst, src); 1733 if (err) 1734 return err; 1735 return copy_stack_state(dst, src); 1736 } 1737 1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1739 const struct bpf_verifier_state *src) 1740 { 1741 struct bpf_func_state *dst; 1742 int i, err; 1743 1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1746 GFP_USER); 1747 if (!dst_state->jmp_history) 1748 return -ENOMEM; 1749 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1750 1751 /* if dst has more stack frames then src frame, free them */ 1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1753 free_func_state(dst_state->frame[i]); 1754 dst_state->frame[i] = NULL; 1755 } 1756 dst_state->speculative = src->speculative; 1757 dst_state->active_rcu_lock = src->active_rcu_lock; 1758 dst_state->curframe = src->curframe; 1759 dst_state->active_lock.ptr = src->active_lock.ptr; 1760 dst_state->active_lock.id = src->active_lock.id; 1761 dst_state->branches = src->branches; 1762 dst_state->parent = src->parent; 1763 dst_state->first_insn_idx = src->first_insn_idx; 1764 dst_state->last_insn_idx = src->last_insn_idx; 1765 for (i = 0; i <= src->curframe; i++) { 1766 dst = dst_state->frame[i]; 1767 if (!dst) { 1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1769 if (!dst) 1770 return -ENOMEM; 1771 dst_state->frame[i] = dst; 1772 } 1773 err = copy_func_state(dst, src->frame[i]); 1774 if (err) 1775 return err; 1776 } 1777 return 0; 1778 } 1779 1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1781 { 1782 while (st) { 1783 u32 br = --st->branches; 1784 1785 /* WARN_ON(br > 1) technically makes sense here, 1786 * but see comment in push_stack(), hence: 1787 */ 1788 WARN_ONCE((int)br < 0, 1789 "BUG update_branch_counts:branches_to_explore=%d\n", 1790 br); 1791 if (br) 1792 break; 1793 st = st->parent; 1794 } 1795 } 1796 1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1798 int *insn_idx, bool pop_log) 1799 { 1800 struct bpf_verifier_state *cur = env->cur_state; 1801 struct bpf_verifier_stack_elem *elem, *head = env->head; 1802 int err; 1803 1804 if (env->head == NULL) 1805 return -ENOENT; 1806 1807 if (cur) { 1808 err = copy_verifier_state(cur, &head->st); 1809 if (err) 1810 return err; 1811 } 1812 if (pop_log) 1813 bpf_vlog_reset(&env->log, head->log_pos); 1814 if (insn_idx) 1815 *insn_idx = head->insn_idx; 1816 if (prev_insn_idx) 1817 *prev_insn_idx = head->prev_insn_idx; 1818 elem = head->next; 1819 free_verifier_state(&head->st, false); 1820 kfree(head); 1821 env->head = elem; 1822 env->stack_size--; 1823 return 0; 1824 } 1825 1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1827 int insn_idx, int prev_insn_idx, 1828 bool speculative) 1829 { 1830 struct bpf_verifier_state *cur = env->cur_state; 1831 struct bpf_verifier_stack_elem *elem; 1832 int err; 1833 1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1835 if (!elem) 1836 goto err; 1837 1838 elem->insn_idx = insn_idx; 1839 elem->prev_insn_idx = prev_insn_idx; 1840 elem->next = env->head; 1841 elem->log_pos = env->log.end_pos; 1842 env->head = elem; 1843 env->stack_size++; 1844 err = copy_verifier_state(&elem->st, cur); 1845 if (err) 1846 goto err; 1847 elem->st.speculative |= speculative; 1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1849 verbose(env, "The sequence of %d jumps is too complex.\n", 1850 env->stack_size); 1851 goto err; 1852 } 1853 if (elem->st.parent) { 1854 ++elem->st.parent->branches; 1855 /* WARN_ON(branches > 2) technically makes sense here, 1856 * but 1857 * 1. speculative states will bump 'branches' for non-branch 1858 * instructions 1859 * 2. is_state_visited() heuristics may decide not to create 1860 * a new state for a sequence of branches and all such current 1861 * and cloned states will be pointing to a single parent state 1862 * which might have large 'branches' count. 1863 */ 1864 } 1865 return &elem->st; 1866 err: 1867 free_verifier_state(env->cur_state, true); 1868 env->cur_state = NULL; 1869 /* pop all elements and return */ 1870 while (!pop_stack(env, NULL, NULL, false)); 1871 return NULL; 1872 } 1873 1874 #define CALLER_SAVED_REGS 6 1875 static const int caller_saved[CALLER_SAVED_REGS] = { 1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1877 }; 1878 1879 /* This helper doesn't clear reg->id */ 1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1881 { 1882 reg->var_off = tnum_const(imm); 1883 reg->smin_value = (s64)imm; 1884 reg->smax_value = (s64)imm; 1885 reg->umin_value = imm; 1886 reg->umax_value = imm; 1887 1888 reg->s32_min_value = (s32)imm; 1889 reg->s32_max_value = (s32)imm; 1890 reg->u32_min_value = (u32)imm; 1891 reg->u32_max_value = (u32)imm; 1892 } 1893 1894 /* Mark the unknown part of a register (variable offset or scalar value) as 1895 * known to have the value @imm. 1896 */ 1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 /* Clear off and union(map_ptr, range) */ 1900 memset(((u8 *)reg) + sizeof(reg->type), 0, 1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1902 reg->id = 0; 1903 reg->ref_obj_id = 0; 1904 ___mark_reg_known(reg, imm); 1905 } 1906 1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1908 { 1909 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1910 reg->s32_min_value = (s32)imm; 1911 reg->s32_max_value = (s32)imm; 1912 reg->u32_min_value = (u32)imm; 1913 reg->u32_max_value = (u32)imm; 1914 } 1915 1916 /* Mark the 'variable offset' part of a register as zero. This should be 1917 * used only on registers holding a pointer type. 1918 */ 1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1920 { 1921 __mark_reg_known(reg, 0); 1922 } 1923 1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1925 { 1926 __mark_reg_known(reg, 0); 1927 reg->type = SCALAR_VALUE; 1928 } 1929 1930 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1931 struct bpf_reg_state *regs, u32 regno) 1932 { 1933 if (WARN_ON(regno >= MAX_BPF_REG)) { 1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1935 /* Something bad happened, let's kill all regs */ 1936 for (regno = 0; regno < MAX_BPF_REG; regno++) 1937 __mark_reg_not_init(env, regs + regno); 1938 return; 1939 } 1940 __mark_reg_known_zero(regs + regno); 1941 } 1942 1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1944 bool first_slot, int dynptr_id) 1945 { 1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1949 */ 1950 __mark_reg_known_zero(reg); 1951 reg->type = CONST_PTR_TO_DYNPTR; 1952 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1953 reg->id = dynptr_id; 1954 reg->dynptr.type = type; 1955 reg->dynptr.first_slot = first_slot; 1956 } 1957 1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1959 { 1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1961 const struct bpf_map *map = reg->map_ptr; 1962 1963 if (map->inner_map_meta) { 1964 reg->type = CONST_PTR_TO_MAP; 1965 reg->map_ptr = map->inner_map_meta; 1966 /* transfer reg's id which is unique for every map_lookup_elem 1967 * as UID of the inner map. 1968 */ 1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1970 reg->map_uid = reg->id; 1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1972 reg->type = PTR_TO_XDP_SOCK; 1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1975 reg->type = PTR_TO_SOCKET; 1976 } else { 1977 reg->type = PTR_TO_MAP_VALUE; 1978 } 1979 return; 1980 } 1981 1982 reg->type &= ~PTR_MAYBE_NULL; 1983 } 1984 1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1986 struct btf_field_graph_root *ds_head) 1987 { 1988 __mark_reg_known_zero(®s[regno]); 1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1990 regs[regno].btf = ds_head->btf; 1991 regs[regno].btf_id = ds_head->value_btf_id; 1992 regs[regno].off = ds_head->node_offset; 1993 } 1994 1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1996 { 1997 return type_is_pkt_pointer(reg->type); 1998 } 1999 2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2001 { 2002 return reg_is_pkt_pointer(reg) || 2003 reg->type == PTR_TO_PACKET_END; 2004 } 2005 2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2007 { 2008 return base_type(reg->type) == PTR_TO_MEM && 2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2010 } 2011 2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2014 enum bpf_reg_type which) 2015 { 2016 /* The register can already have a range from prior markings. 2017 * This is fine as long as it hasn't been advanced from its 2018 * origin. 2019 */ 2020 return reg->type == which && 2021 reg->id == 0 && 2022 reg->off == 0 && 2023 tnum_equals_const(reg->var_off, 0); 2024 } 2025 2026 /* Reset the min/max bounds of a register */ 2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2028 { 2029 reg->smin_value = S64_MIN; 2030 reg->smax_value = S64_MAX; 2031 reg->umin_value = 0; 2032 reg->umax_value = U64_MAX; 2033 2034 reg->s32_min_value = S32_MIN; 2035 reg->s32_max_value = S32_MAX; 2036 reg->u32_min_value = 0; 2037 reg->u32_max_value = U32_MAX; 2038 } 2039 2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2041 { 2042 reg->smin_value = S64_MIN; 2043 reg->smax_value = S64_MAX; 2044 reg->umin_value = 0; 2045 reg->umax_value = U64_MAX; 2046 } 2047 2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2049 { 2050 reg->s32_min_value = S32_MIN; 2051 reg->s32_max_value = S32_MAX; 2052 reg->u32_min_value = 0; 2053 reg->u32_max_value = U32_MAX; 2054 } 2055 2056 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2057 { 2058 struct tnum var32_off = tnum_subreg(reg->var_off); 2059 2060 /* min signed is max(sign bit) | min(other bits) */ 2061 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2062 var32_off.value | (var32_off.mask & S32_MIN)); 2063 /* max signed is min(sign bit) | max(other bits) */ 2064 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2065 var32_off.value | (var32_off.mask & S32_MAX)); 2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2067 reg->u32_max_value = min(reg->u32_max_value, 2068 (u32)(var32_off.value | var32_off.mask)); 2069 } 2070 2071 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2072 { 2073 /* min signed is max(sign bit) | min(other bits) */ 2074 reg->smin_value = max_t(s64, reg->smin_value, 2075 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2076 /* max signed is min(sign bit) | max(other bits) */ 2077 reg->smax_value = min_t(s64, reg->smax_value, 2078 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2079 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2080 reg->umax_value = min(reg->umax_value, 2081 reg->var_off.value | reg->var_off.mask); 2082 } 2083 2084 static void __update_reg_bounds(struct bpf_reg_state *reg) 2085 { 2086 __update_reg32_bounds(reg); 2087 __update_reg64_bounds(reg); 2088 } 2089 2090 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2092 { 2093 /* Learn sign from signed bounds. 2094 * If we cannot cross the sign boundary, then signed and unsigned bounds 2095 * are the same, so combine. This works even in the negative case, e.g. 2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2097 */ 2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2099 reg->s32_min_value = reg->u32_min_value = 2100 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2101 reg->s32_max_value = reg->u32_max_value = 2102 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2103 return; 2104 } 2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2106 * boundary, so we must be careful. 2107 */ 2108 if ((s32)reg->u32_max_value >= 0) { 2109 /* Positive. We can't learn anything from the smin, but smax 2110 * is positive, hence safe. 2111 */ 2112 reg->s32_min_value = reg->u32_min_value; 2113 reg->s32_max_value = reg->u32_max_value = 2114 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2115 } else if ((s32)reg->u32_min_value < 0) { 2116 /* Negative. We can't learn anything from the smax, but smin 2117 * is negative, hence safe. 2118 */ 2119 reg->s32_min_value = reg->u32_min_value = 2120 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2121 reg->s32_max_value = reg->u32_max_value; 2122 } 2123 } 2124 2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2126 { 2127 /* Learn sign from signed bounds. 2128 * If we cannot cross the sign boundary, then signed and unsigned bounds 2129 * are the same, so combine. This works even in the negative case, e.g. 2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2131 */ 2132 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2134 reg->umin_value); 2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2136 reg->umax_value); 2137 return; 2138 } 2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2140 * boundary, so we must be careful. 2141 */ 2142 if ((s64)reg->umax_value >= 0) { 2143 /* Positive. We can't learn anything from the smin, but smax 2144 * is positive, hence safe. 2145 */ 2146 reg->smin_value = reg->umin_value; 2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2148 reg->umax_value); 2149 } else if ((s64)reg->umin_value < 0) { 2150 /* Negative. We can't learn anything from the smax, but smin 2151 * is negative, hence safe. 2152 */ 2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2154 reg->umin_value); 2155 reg->smax_value = reg->umax_value; 2156 } 2157 } 2158 2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2160 { 2161 __reg32_deduce_bounds(reg); 2162 __reg64_deduce_bounds(reg); 2163 } 2164 2165 /* Attempts to improve var_off based on unsigned min/max information */ 2166 static void __reg_bound_offset(struct bpf_reg_state *reg) 2167 { 2168 struct tnum var64_off = tnum_intersect(reg->var_off, 2169 tnum_range(reg->umin_value, 2170 reg->umax_value)); 2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2172 tnum_range(reg->u32_min_value, 2173 reg->u32_max_value)); 2174 2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2176 } 2177 2178 static void reg_bounds_sync(struct bpf_reg_state *reg) 2179 { 2180 /* We might have learned new bounds from the var_off. */ 2181 __update_reg_bounds(reg); 2182 /* We might have learned something about the sign bit. */ 2183 __reg_deduce_bounds(reg); 2184 /* We might have learned some bits from the bounds. */ 2185 __reg_bound_offset(reg); 2186 /* Intersecting with the old var_off might have improved our bounds 2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2188 * then new var_off is (0; 0x7f...fc) which improves our umax. 2189 */ 2190 __update_reg_bounds(reg); 2191 } 2192 2193 static bool __reg32_bound_s64(s32 a) 2194 { 2195 return a >= 0 && a <= S32_MAX; 2196 } 2197 2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2199 { 2200 reg->umin_value = reg->u32_min_value; 2201 reg->umax_value = reg->u32_max_value; 2202 2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2204 * be positive otherwise set to worse case bounds and refine later 2205 * from tnum. 2206 */ 2207 if (__reg32_bound_s64(reg->s32_min_value) && 2208 __reg32_bound_s64(reg->s32_max_value)) { 2209 reg->smin_value = reg->s32_min_value; 2210 reg->smax_value = reg->s32_max_value; 2211 } else { 2212 reg->smin_value = 0; 2213 reg->smax_value = U32_MAX; 2214 } 2215 } 2216 2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2218 { 2219 /* special case when 64-bit register has upper 32-bit register 2220 * zeroed. Typically happens after zext or <<32, >>32 sequence 2221 * allowing us to use 32-bit bounds directly, 2222 */ 2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2224 __reg_assign_32_into_64(reg); 2225 } else { 2226 /* Otherwise the best we can do is push lower 32bit known and 2227 * unknown bits into register (var_off set from jmp logic) 2228 * then learn as much as possible from the 64-bit tnum 2229 * known and unknown bits. The previous smin/smax bounds are 2230 * invalid here because of jmp32 compare so mark them unknown 2231 * so they do not impact tnum bounds calculation. 2232 */ 2233 __mark_reg64_unbounded(reg); 2234 } 2235 reg_bounds_sync(reg); 2236 } 2237 2238 static bool __reg64_bound_s32(s64 a) 2239 { 2240 return a >= S32_MIN && a <= S32_MAX; 2241 } 2242 2243 static bool __reg64_bound_u32(u64 a) 2244 { 2245 return a >= U32_MIN && a <= U32_MAX; 2246 } 2247 2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2249 { 2250 __mark_reg32_unbounded(reg); 2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2252 reg->s32_min_value = (s32)reg->smin_value; 2253 reg->s32_max_value = (s32)reg->smax_value; 2254 } 2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2256 reg->u32_min_value = (u32)reg->umin_value; 2257 reg->u32_max_value = (u32)reg->umax_value; 2258 } 2259 reg_bounds_sync(reg); 2260 } 2261 2262 /* Mark a register as having a completely unknown (scalar) value. */ 2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2264 struct bpf_reg_state *reg) 2265 { 2266 /* 2267 * Clear type, off, and union(map_ptr, range) and 2268 * padding between 'type' and union 2269 */ 2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2271 reg->type = SCALAR_VALUE; 2272 reg->id = 0; 2273 reg->ref_obj_id = 0; 2274 reg->var_off = tnum_unknown; 2275 reg->frameno = 0; 2276 reg->precise = !env->bpf_capable; 2277 __mark_reg_unbounded(reg); 2278 } 2279 2280 static void mark_reg_unknown(struct bpf_verifier_env *env, 2281 struct bpf_reg_state *regs, u32 regno) 2282 { 2283 if (WARN_ON(regno >= MAX_BPF_REG)) { 2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2285 /* Something bad happened, let's kill all regs except FP */ 2286 for (regno = 0; regno < BPF_REG_FP; regno++) 2287 __mark_reg_not_init(env, regs + regno); 2288 return; 2289 } 2290 __mark_reg_unknown(env, regs + regno); 2291 } 2292 2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2294 struct bpf_reg_state *reg) 2295 { 2296 __mark_reg_unknown(env, reg); 2297 reg->type = NOT_INIT; 2298 } 2299 2300 static void mark_reg_not_init(struct bpf_verifier_env *env, 2301 struct bpf_reg_state *regs, u32 regno) 2302 { 2303 if (WARN_ON(regno >= MAX_BPF_REG)) { 2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2305 /* Something bad happened, let's kill all regs except FP */ 2306 for (regno = 0; regno < BPF_REG_FP; regno++) 2307 __mark_reg_not_init(env, regs + regno); 2308 return; 2309 } 2310 __mark_reg_not_init(env, regs + regno); 2311 } 2312 2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2314 struct bpf_reg_state *regs, u32 regno, 2315 enum bpf_reg_type reg_type, 2316 struct btf *btf, u32 btf_id, 2317 enum bpf_type_flag flag) 2318 { 2319 if (reg_type == SCALAR_VALUE) { 2320 mark_reg_unknown(env, regs, regno); 2321 return; 2322 } 2323 mark_reg_known_zero(env, regs, regno); 2324 regs[regno].type = PTR_TO_BTF_ID | flag; 2325 regs[regno].btf = btf; 2326 regs[regno].btf_id = btf_id; 2327 } 2328 2329 #define DEF_NOT_SUBREG (0) 2330 static void init_reg_state(struct bpf_verifier_env *env, 2331 struct bpf_func_state *state) 2332 { 2333 struct bpf_reg_state *regs = state->regs; 2334 int i; 2335 2336 for (i = 0; i < MAX_BPF_REG; i++) { 2337 mark_reg_not_init(env, regs, i); 2338 regs[i].live = REG_LIVE_NONE; 2339 regs[i].parent = NULL; 2340 regs[i].subreg_def = DEF_NOT_SUBREG; 2341 } 2342 2343 /* frame pointer */ 2344 regs[BPF_REG_FP].type = PTR_TO_STACK; 2345 mark_reg_known_zero(env, regs, BPF_REG_FP); 2346 regs[BPF_REG_FP].frameno = state->frameno; 2347 } 2348 2349 #define BPF_MAIN_FUNC (-1) 2350 static void init_func_state(struct bpf_verifier_env *env, 2351 struct bpf_func_state *state, 2352 int callsite, int frameno, int subprogno) 2353 { 2354 state->callsite = callsite; 2355 state->frameno = frameno; 2356 state->subprogno = subprogno; 2357 state->callback_ret_range = tnum_range(0, 0); 2358 init_reg_state(env, state); 2359 mark_verifier_state_scratched(env); 2360 } 2361 2362 /* Similar to push_stack(), but for async callbacks */ 2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2364 int insn_idx, int prev_insn_idx, 2365 int subprog) 2366 { 2367 struct bpf_verifier_stack_elem *elem; 2368 struct bpf_func_state *frame; 2369 2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2371 if (!elem) 2372 goto err; 2373 2374 elem->insn_idx = insn_idx; 2375 elem->prev_insn_idx = prev_insn_idx; 2376 elem->next = env->head; 2377 elem->log_pos = env->log.end_pos; 2378 env->head = elem; 2379 env->stack_size++; 2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2381 verbose(env, 2382 "The sequence of %d jumps is too complex for async cb.\n", 2383 env->stack_size); 2384 goto err; 2385 } 2386 /* Unlike push_stack() do not copy_verifier_state(). 2387 * The caller state doesn't matter. 2388 * This is async callback. It starts in a fresh stack. 2389 * Initialize it similar to do_check_common(). 2390 */ 2391 elem->st.branches = 1; 2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2393 if (!frame) 2394 goto err; 2395 init_func_state(env, frame, 2396 BPF_MAIN_FUNC /* callsite */, 2397 0 /* frameno within this callchain */, 2398 subprog /* subprog number within this prog */); 2399 elem->st.frame[0] = frame; 2400 return &elem->st; 2401 err: 2402 free_verifier_state(env->cur_state, true); 2403 env->cur_state = NULL; 2404 /* pop all elements and return */ 2405 while (!pop_stack(env, NULL, NULL, false)); 2406 return NULL; 2407 } 2408 2409 2410 enum reg_arg_type { 2411 SRC_OP, /* register is used as source operand */ 2412 DST_OP, /* register is used as destination operand */ 2413 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2414 }; 2415 2416 static int cmp_subprogs(const void *a, const void *b) 2417 { 2418 return ((struct bpf_subprog_info *)a)->start - 2419 ((struct bpf_subprog_info *)b)->start; 2420 } 2421 2422 static int find_subprog(struct bpf_verifier_env *env, int off) 2423 { 2424 struct bpf_subprog_info *p; 2425 2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2427 sizeof(env->subprog_info[0]), cmp_subprogs); 2428 if (!p) 2429 return -ENOENT; 2430 return p - env->subprog_info; 2431 2432 } 2433 2434 static int add_subprog(struct bpf_verifier_env *env, int off) 2435 { 2436 int insn_cnt = env->prog->len; 2437 int ret; 2438 2439 if (off >= insn_cnt || off < 0) { 2440 verbose(env, "call to invalid destination\n"); 2441 return -EINVAL; 2442 } 2443 ret = find_subprog(env, off); 2444 if (ret >= 0) 2445 return ret; 2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2447 verbose(env, "too many subprograms\n"); 2448 return -E2BIG; 2449 } 2450 /* determine subprog starts. The end is one before the next starts */ 2451 env->subprog_info[env->subprog_cnt++].start = off; 2452 sort(env->subprog_info, env->subprog_cnt, 2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2454 return env->subprog_cnt - 1; 2455 } 2456 2457 #define MAX_KFUNC_DESCS 256 2458 #define MAX_KFUNC_BTFS 256 2459 2460 struct bpf_kfunc_desc { 2461 struct btf_func_model func_model; 2462 u32 func_id; 2463 s32 imm; 2464 u16 offset; 2465 unsigned long addr; 2466 }; 2467 2468 struct bpf_kfunc_btf { 2469 struct btf *btf; 2470 struct module *module; 2471 u16 offset; 2472 }; 2473 2474 struct bpf_kfunc_desc_tab { 2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2476 * verification. JITs do lookups by bpf_insn, where func_id may not be 2477 * available, therefore at the end of verification do_misc_fixups() 2478 * sorts this by imm and offset. 2479 */ 2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2481 u32 nr_descs; 2482 }; 2483 2484 struct bpf_kfunc_btf_tab { 2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2486 u32 nr_descs; 2487 }; 2488 2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2490 { 2491 const struct bpf_kfunc_desc *d0 = a; 2492 const struct bpf_kfunc_desc *d1 = b; 2493 2494 /* func_id is not greater than BTF_MAX_TYPE */ 2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2496 } 2497 2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2499 { 2500 const struct bpf_kfunc_btf *d0 = a; 2501 const struct bpf_kfunc_btf *d1 = b; 2502 2503 return d0->offset - d1->offset; 2504 } 2505 2506 static const struct bpf_kfunc_desc * 2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2508 { 2509 struct bpf_kfunc_desc desc = { 2510 .func_id = func_id, 2511 .offset = offset, 2512 }; 2513 struct bpf_kfunc_desc_tab *tab; 2514 2515 tab = prog->aux->kfunc_tab; 2516 return bsearch(&desc, tab->descs, tab->nr_descs, 2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2518 } 2519 2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2521 u16 btf_fd_idx, u8 **func_addr) 2522 { 2523 const struct bpf_kfunc_desc *desc; 2524 2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2526 if (!desc) 2527 return -EFAULT; 2528 2529 *func_addr = (u8 *)desc->addr; 2530 return 0; 2531 } 2532 2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2534 s16 offset) 2535 { 2536 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2537 struct bpf_kfunc_btf_tab *tab; 2538 struct bpf_kfunc_btf *b; 2539 struct module *mod; 2540 struct btf *btf; 2541 int btf_fd; 2542 2543 tab = env->prog->aux->kfunc_btf_tab; 2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2546 if (!b) { 2547 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2548 verbose(env, "too many different module BTFs\n"); 2549 return ERR_PTR(-E2BIG); 2550 } 2551 2552 if (bpfptr_is_null(env->fd_array)) { 2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2554 return ERR_PTR(-EPROTO); 2555 } 2556 2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2558 offset * sizeof(btf_fd), 2559 sizeof(btf_fd))) 2560 return ERR_PTR(-EFAULT); 2561 2562 btf = btf_get_by_fd(btf_fd); 2563 if (IS_ERR(btf)) { 2564 verbose(env, "invalid module BTF fd specified\n"); 2565 return btf; 2566 } 2567 2568 if (!btf_is_module(btf)) { 2569 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2570 btf_put(btf); 2571 return ERR_PTR(-EINVAL); 2572 } 2573 2574 mod = btf_try_get_module(btf); 2575 if (!mod) { 2576 btf_put(btf); 2577 return ERR_PTR(-ENXIO); 2578 } 2579 2580 b = &tab->descs[tab->nr_descs++]; 2581 b->btf = btf; 2582 b->module = mod; 2583 b->offset = offset; 2584 2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2586 kfunc_btf_cmp_by_off, NULL); 2587 } 2588 return b->btf; 2589 } 2590 2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2592 { 2593 if (!tab) 2594 return; 2595 2596 while (tab->nr_descs--) { 2597 module_put(tab->descs[tab->nr_descs].module); 2598 btf_put(tab->descs[tab->nr_descs].btf); 2599 } 2600 kfree(tab); 2601 } 2602 2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2604 { 2605 if (offset) { 2606 if (offset < 0) { 2607 /* In the future, this can be allowed to increase limit 2608 * of fd index into fd_array, interpreted as u16. 2609 */ 2610 verbose(env, "negative offset disallowed for kernel module function call\n"); 2611 return ERR_PTR(-EINVAL); 2612 } 2613 2614 return __find_kfunc_desc_btf(env, offset); 2615 } 2616 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2617 } 2618 2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2620 { 2621 const struct btf_type *func, *func_proto; 2622 struct bpf_kfunc_btf_tab *btf_tab; 2623 struct bpf_kfunc_desc_tab *tab; 2624 struct bpf_prog_aux *prog_aux; 2625 struct bpf_kfunc_desc *desc; 2626 const char *func_name; 2627 struct btf *desc_btf; 2628 unsigned long call_imm; 2629 unsigned long addr; 2630 int err; 2631 2632 prog_aux = env->prog->aux; 2633 tab = prog_aux->kfunc_tab; 2634 btf_tab = prog_aux->kfunc_btf_tab; 2635 if (!tab) { 2636 if (!btf_vmlinux) { 2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->jit_requested) { 2642 verbose(env, "JIT is required for calling kernel function\n"); 2643 return -ENOTSUPP; 2644 } 2645 2646 if (!bpf_jit_supports_kfunc_call()) { 2647 verbose(env, "JIT does not support calling kernel function\n"); 2648 return -ENOTSUPP; 2649 } 2650 2651 if (!env->prog->gpl_compatible) { 2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2653 return -EINVAL; 2654 } 2655 2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2657 if (!tab) 2658 return -ENOMEM; 2659 prog_aux->kfunc_tab = tab; 2660 } 2661 2662 /* func_id == 0 is always invalid, but instead of returning an error, be 2663 * conservative and wait until the code elimination pass before returning 2664 * error, so that invalid calls that get pruned out can be in BPF programs 2665 * loaded from userspace. It is also required that offset be untouched 2666 * for such calls. 2667 */ 2668 if (!func_id && !offset) 2669 return 0; 2670 2671 if (!btf_tab && offset) { 2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2673 if (!btf_tab) 2674 return -ENOMEM; 2675 prog_aux->kfunc_btf_tab = btf_tab; 2676 } 2677 2678 desc_btf = find_kfunc_desc_btf(env, offset); 2679 if (IS_ERR(desc_btf)) { 2680 verbose(env, "failed to find BTF for kernel function\n"); 2681 return PTR_ERR(desc_btf); 2682 } 2683 2684 if (find_kfunc_desc(env->prog, func_id, offset)) 2685 return 0; 2686 2687 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2688 verbose(env, "too many different kernel function calls\n"); 2689 return -E2BIG; 2690 } 2691 2692 func = btf_type_by_id(desc_btf, func_id); 2693 if (!func || !btf_type_is_func(func)) { 2694 verbose(env, "kernel btf_id %u is not a function\n", 2695 func_id); 2696 return -EINVAL; 2697 } 2698 func_proto = btf_type_by_id(desc_btf, func->type); 2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2701 func_id); 2702 return -EINVAL; 2703 } 2704 2705 func_name = btf_name_by_offset(desc_btf, func->name_off); 2706 addr = kallsyms_lookup_name(func_name); 2707 if (!addr) { 2708 verbose(env, "cannot find address for kernel function %s\n", 2709 func_name); 2710 return -EINVAL; 2711 } 2712 specialize_kfunc(env, func_id, offset, &addr); 2713 2714 if (bpf_jit_supports_far_kfunc_call()) { 2715 call_imm = func_id; 2716 } else { 2717 call_imm = BPF_CALL_IMM(addr); 2718 /* Check whether the relative offset overflows desc->imm */ 2719 if ((unsigned long)(s32)call_imm != call_imm) { 2720 verbose(env, "address of kernel function %s is out of range\n", 2721 func_name); 2722 return -EINVAL; 2723 } 2724 } 2725 2726 if (bpf_dev_bound_kfunc_id(func_id)) { 2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2728 if (err) 2729 return err; 2730 } 2731 2732 desc = &tab->descs[tab->nr_descs++]; 2733 desc->func_id = func_id; 2734 desc->imm = call_imm; 2735 desc->offset = offset; 2736 desc->addr = addr; 2737 err = btf_distill_func_proto(&env->log, desc_btf, 2738 func_proto, func_name, 2739 &desc->func_model); 2740 if (!err) 2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2742 kfunc_desc_cmp_by_id_off, NULL); 2743 return err; 2744 } 2745 2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2747 { 2748 const struct bpf_kfunc_desc *d0 = a; 2749 const struct bpf_kfunc_desc *d1 = b; 2750 2751 if (d0->imm != d1->imm) 2752 return d0->imm < d1->imm ? -1 : 1; 2753 if (d0->offset != d1->offset) 2754 return d0->offset < d1->offset ? -1 : 1; 2755 return 0; 2756 } 2757 2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2759 { 2760 struct bpf_kfunc_desc_tab *tab; 2761 2762 tab = prog->aux->kfunc_tab; 2763 if (!tab) 2764 return; 2765 2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2767 kfunc_desc_cmp_by_imm_off, NULL); 2768 } 2769 2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2771 { 2772 return !!prog->aux->kfunc_tab; 2773 } 2774 2775 const struct btf_func_model * 2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2777 const struct bpf_insn *insn) 2778 { 2779 const struct bpf_kfunc_desc desc = { 2780 .imm = insn->imm, 2781 .offset = insn->off, 2782 }; 2783 const struct bpf_kfunc_desc *res; 2784 struct bpf_kfunc_desc_tab *tab; 2785 2786 tab = prog->aux->kfunc_tab; 2787 res = bsearch(&desc, tab->descs, tab->nr_descs, 2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2789 2790 return res ? &res->func_model : NULL; 2791 } 2792 2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2794 { 2795 struct bpf_subprog_info *subprog = env->subprog_info; 2796 struct bpf_insn *insn = env->prog->insnsi; 2797 int i, ret, insn_cnt = env->prog->len; 2798 2799 /* Add entry function. */ 2800 ret = add_subprog(env, 0); 2801 if (ret) 2802 return ret; 2803 2804 for (i = 0; i < insn_cnt; i++, insn++) { 2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2806 !bpf_pseudo_kfunc_call(insn)) 2807 continue; 2808 2809 if (!env->bpf_capable) { 2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2811 return -EPERM; 2812 } 2813 2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2815 ret = add_subprog(env, i + insn->imm + 1); 2816 else 2817 ret = add_kfunc_call(env, insn->imm, insn->off); 2818 2819 if (ret < 0) 2820 return ret; 2821 } 2822 2823 /* Add a fake 'exit' subprog which could simplify subprog iteration 2824 * logic. 'subprog_cnt' should not be increased. 2825 */ 2826 subprog[env->subprog_cnt].start = insn_cnt; 2827 2828 if (env->log.level & BPF_LOG_LEVEL2) 2829 for (i = 0; i < env->subprog_cnt; i++) 2830 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2831 2832 return 0; 2833 } 2834 2835 static int check_subprogs(struct bpf_verifier_env *env) 2836 { 2837 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2838 struct bpf_subprog_info *subprog = env->subprog_info; 2839 struct bpf_insn *insn = env->prog->insnsi; 2840 int insn_cnt = env->prog->len; 2841 2842 /* now check that all jumps are within the same subprog */ 2843 subprog_start = subprog[cur_subprog].start; 2844 subprog_end = subprog[cur_subprog + 1].start; 2845 for (i = 0; i < insn_cnt; i++) { 2846 u8 code = insn[i].code; 2847 2848 if (code == (BPF_JMP | BPF_CALL) && 2849 insn[i].src_reg == 0 && 2850 insn[i].imm == BPF_FUNC_tail_call) 2851 subprog[cur_subprog].has_tail_call = true; 2852 if (BPF_CLASS(code) == BPF_LD && 2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2854 subprog[cur_subprog].has_ld_abs = true; 2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2856 goto next; 2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2858 goto next; 2859 if (code == (BPF_JMP32 | BPF_JA)) 2860 off = i + insn[i].imm + 1; 2861 else 2862 off = i + insn[i].off + 1; 2863 if (off < subprog_start || off >= subprog_end) { 2864 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2865 return -EINVAL; 2866 } 2867 next: 2868 if (i == subprog_end - 1) { 2869 /* to avoid fall-through from one subprog into another 2870 * the last insn of the subprog should be either exit 2871 * or unconditional jump back 2872 */ 2873 if (code != (BPF_JMP | BPF_EXIT) && 2874 code != (BPF_JMP32 | BPF_JA) && 2875 code != (BPF_JMP | BPF_JA)) { 2876 verbose(env, "last insn is not an exit or jmp\n"); 2877 return -EINVAL; 2878 } 2879 subprog_start = subprog_end; 2880 cur_subprog++; 2881 if (cur_subprog < env->subprog_cnt) 2882 subprog_end = subprog[cur_subprog + 1].start; 2883 } 2884 } 2885 return 0; 2886 } 2887 2888 /* Parentage chain of this register (or stack slot) should take care of all 2889 * issues like callee-saved registers, stack slot allocation time, etc. 2890 */ 2891 static int mark_reg_read(struct bpf_verifier_env *env, 2892 const struct bpf_reg_state *state, 2893 struct bpf_reg_state *parent, u8 flag) 2894 { 2895 bool writes = parent == state->parent; /* Observe write marks */ 2896 int cnt = 0; 2897 2898 while (parent) { 2899 /* if read wasn't screened by an earlier write ... */ 2900 if (writes && state->live & REG_LIVE_WRITTEN) 2901 break; 2902 if (parent->live & REG_LIVE_DONE) { 2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2904 reg_type_str(env, parent->type), 2905 parent->var_off.value, parent->off); 2906 return -EFAULT; 2907 } 2908 /* The first condition is more likely to be true than the 2909 * second, checked it first. 2910 */ 2911 if ((parent->live & REG_LIVE_READ) == flag || 2912 parent->live & REG_LIVE_READ64) 2913 /* The parentage chain never changes and 2914 * this parent was already marked as LIVE_READ. 2915 * There is no need to keep walking the chain again and 2916 * keep re-marking all parents as LIVE_READ. 2917 * This case happens when the same register is read 2918 * multiple times without writes into it in-between. 2919 * Also, if parent has the stronger REG_LIVE_READ64 set, 2920 * then no need to set the weak REG_LIVE_READ32. 2921 */ 2922 break; 2923 /* ... then we depend on parent's value */ 2924 parent->live |= flag; 2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2926 if (flag == REG_LIVE_READ64) 2927 parent->live &= ~REG_LIVE_READ32; 2928 state = parent; 2929 parent = state->parent; 2930 writes = true; 2931 cnt++; 2932 } 2933 2934 if (env->longest_mark_read_walk < cnt) 2935 env->longest_mark_read_walk = cnt; 2936 return 0; 2937 } 2938 2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2940 { 2941 struct bpf_func_state *state = func(env, reg); 2942 int spi, ret; 2943 2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2946 * check_kfunc_call. 2947 */ 2948 if (reg->type == CONST_PTR_TO_DYNPTR) 2949 return 0; 2950 spi = dynptr_get_spi(env, reg); 2951 if (spi < 0) 2952 return spi; 2953 /* Caller ensures dynptr is valid and initialized, which means spi is in 2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2955 * read. 2956 */ 2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2959 if (ret) 2960 return ret; 2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2963 } 2964 2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2966 int spi, int nr_slots) 2967 { 2968 struct bpf_func_state *state = func(env, reg); 2969 int err, i; 2970 2971 for (i = 0; i < nr_slots; i++) { 2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2973 2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2975 if (err) 2976 return err; 2977 2978 mark_stack_slot_scratched(env, spi - i); 2979 } 2980 2981 return 0; 2982 } 2983 2984 /* This function is supposed to be used by the following 32-bit optimization 2985 * code only. It returns TRUE if the source or destination register operates 2986 * on 64-bit, otherwise return FALSE. 2987 */ 2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2990 { 2991 u8 code, class, op; 2992 2993 code = insn->code; 2994 class = BPF_CLASS(code); 2995 op = BPF_OP(code); 2996 if (class == BPF_JMP) { 2997 /* BPF_EXIT for "main" will reach here. Return TRUE 2998 * conservatively. 2999 */ 3000 if (op == BPF_EXIT) 3001 return true; 3002 if (op == BPF_CALL) { 3003 /* BPF to BPF call will reach here because of marking 3004 * caller saved clobber with DST_OP_NO_MARK for which we 3005 * don't care the register def because they are anyway 3006 * marked as NOT_INIT already. 3007 */ 3008 if (insn->src_reg == BPF_PSEUDO_CALL) 3009 return false; 3010 /* Helper call will reach here because of arg type 3011 * check, conservatively return TRUE. 3012 */ 3013 if (t == SRC_OP) 3014 return true; 3015 3016 return false; 3017 } 3018 } 3019 3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3021 return false; 3022 3023 if (class == BPF_ALU64 || class == BPF_JMP || 3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3025 return true; 3026 3027 if (class == BPF_ALU || class == BPF_JMP32) 3028 return false; 3029 3030 if (class == BPF_LDX) { 3031 if (t != SRC_OP) 3032 return BPF_SIZE(code) == BPF_DW; 3033 /* LDX source must be ptr. */ 3034 return true; 3035 } 3036 3037 if (class == BPF_STX) { 3038 /* BPF_STX (including atomic variants) has multiple source 3039 * operands, one of which is a ptr. Check whether the caller is 3040 * asking about it. 3041 */ 3042 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3043 return true; 3044 return BPF_SIZE(code) == BPF_DW; 3045 } 3046 3047 if (class == BPF_LD) { 3048 u8 mode = BPF_MODE(code); 3049 3050 /* LD_IMM64 */ 3051 if (mode == BPF_IMM) 3052 return true; 3053 3054 /* Both LD_IND and LD_ABS return 32-bit data. */ 3055 if (t != SRC_OP) 3056 return false; 3057 3058 /* Implicit ctx ptr. */ 3059 if (regno == BPF_REG_6) 3060 return true; 3061 3062 /* Explicit source could be any width. */ 3063 return true; 3064 } 3065 3066 if (class == BPF_ST) 3067 /* The only source register for BPF_ST is a ptr. */ 3068 return true; 3069 3070 /* Conservatively return true at default. */ 3071 return true; 3072 } 3073 3074 /* Return the regno defined by the insn, or -1. */ 3075 static int insn_def_regno(const struct bpf_insn *insn) 3076 { 3077 switch (BPF_CLASS(insn->code)) { 3078 case BPF_JMP: 3079 case BPF_JMP32: 3080 case BPF_ST: 3081 return -1; 3082 case BPF_STX: 3083 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3084 (insn->imm & BPF_FETCH)) { 3085 if (insn->imm == BPF_CMPXCHG) 3086 return BPF_REG_0; 3087 else 3088 return insn->src_reg; 3089 } else { 3090 return -1; 3091 } 3092 default: 3093 return insn->dst_reg; 3094 } 3095 } 3096 3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3099 { 3100 int dst_reg = insn_def_regno(insn); 3101 3102 if (dst_reg == -1) 3103 return false; 3104 3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3106 } 3107 3108 static void mark_insn_zext(struct bpf_verifier_env *env, 3109 struct bpf_reg_state *reg) 3110 { 3111 s32 def_idx = reg->subreg_def; 3112 3113 if (def_idx == DEF_NOT_SUBREG) 3114 return; 3115 3116 env->insn_aux_data[def_idx - 1].zext_dst = true; 3117 /* The dst will be zero extended, so won't be sub-register anymore. */ 3118 reg->subreg_def = DEF_NOT_SUBREG; 3119 } 3120 3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3122 enum reg_arg_type t) 3123 { 3124 struct bpf_verifier_state *vstate = env->cur_state; 3125 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3127 struct bpf_reg_state *reg, *regs = state->regs; 3128 bool rw64; 3129 3130 if (regno >= MAX_BPF_REG) { 3131 verbose(env, "R%d is invalid\n", regno); 3132 return -EINVAL; 3133 } 3134 3135 mark_reg_scratched(env, regno); 3136 3137 reg = ®s[regno]; 3138 rw64 = is_reg64(env, insn, regno, reg, t); 3139 if (t == SRC_OP) { 3140 /* check whether register used as source operand can be read */ 3141 if (reg->type == NOT_INIT) { 3142 verbose(env, "R%d !read_ok\n", regno); 3143 return -EACCES; 3144 } 3145 /* We don't need to worry about FP liveness because it's read-only */ 3146 if (regno == BPF_REG_FP) 3147 return 0; 3148 3149 if (rw64) 3150 mark_insn_zext(env, reg); 3151 3152 return mark_reg_read(env, reg, reg->parent, 3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3154 } else { 3155 /* check whether register used as dest operand can be written to */ 3156 if (regno == BPF_REG_FP) { 3157 verbose(env, "frame pointer is read only\n"); 3158 return -EACCES; 3159 } 3160 reg->live |= REG_LIVE_WRITTEN; 3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3162 if (t == DST_OP) 3163 mark_reg_unknown(env, regs, regno); 3164 } 3165 return 0; 3166 } 3167 3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3169 { 3170 env->insn_aux_data[idx].jmp_point = true; 3171 } 3172 3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3174 { 3175 return env->insn_aux_data[insn_idx].jmp_point; 3176 } 3177 3178 /* for any branch, call, exit record the history of jmps in the given state */ 3179 static int push_jmp_history(struct bpf_verifier_env *env, 3180 struct bpf_verifier_state *cur) 3181 { 3182 u32 cnt = cur->jmp_history_cnt; 3183 struct bpf_idx_pair *p; 3184 size_t alloc_size; 3185 3186 if (!is_jmp_point(env, env->insn_idx)) 3187 return 0; 3188 3189 cnt++; 3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3192 if (!p) 3193 return -ENOMEM; 3194 p[cnt - 1].idx = env->insn_idx; 3195 p[cnt - 1].prev_idx = env->prev_insn_idx; 3196 cur->jmp_history = p; 3197 cur->jmp_history_cnt = cnt; 3198 return 0; 3199 } 3200 3201 /* Backtrack one insn at a time. If idx is not at the top of recorded 3202 * history then previous instruction came from straight line execution. 3203 */ 3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3205 u32 *history) 3206 { 3207 u32 cnt = *history; 3208 3209 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3210 i = st->jmp_history[cnt - 1].prev_idx; 3211 (*history)--; 3212 } else { 3213 i--; 3214 } 3215 return i; 3216 } 3217 3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3219 { 3220 const struct btf_type *func; 3221 struct btf *desc_btf; 3222 3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3224 return NULL; 3225 3226 desc_btf = find_kfunc_desc_btf(data, insn->off); 3227 if (IS_ERR(desc_btf)) 3228 return "<error>"; 3229 3230 func = btf_type_by_id(desc_btf, insn->imm); 3231 return btf_name_by_offset(desc_btf, func->name_off); 3232 } 3233 3234 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3235 { 3236 bt->frame = frame; 3237 } 3238 3239 static inline void bt_reset(struct backtrack_state *bt) 3240 { 3241 struct bpf_verifier_env *env = bt->env; 3242 3243 memset(bt, 0, sizeof(*bt)); 3244 bt->env = env; 3245 } 3246 3247 static inline u32 bt_empty(struct backtrack_state *bt) 3248 { 3249 u64 mask = 0; 3250 int i; 3251 3252 for (i = 0; i <= bt->frame; i++) 3253 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3254 3255 return mask == 0; 3256 } 3257 3258 static inline int bt_subprog_enter(struct backtrack_state *bt) 3259 { 3260 if (bt->frame == MAX_CALL_FRAMES - 1) { 3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3262 WARN_ONCE(1, "verifier backtracking bug"); 3263 return -EFAULT; 3264 } 3265 bt->frame++; 3266 return 0; 3267 } 3268 3269 static inline int bt_subprog_exit(struct backtrack_state *bt) 3270 { 3271 if (bt->frame == 0) { 3272 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3273 WARN_ONCE(1, "verifier backtracking bug"); 3274 return -EFAULT; 3275 } 3276 bt->frame--; 3277 return 0; 3278 } 3279 3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3281 { 3282 bt->reg_masks[frame] |= 1 << reg; 3283 } 3284 3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3286 { 3287 bt->reg_masks[frame] &= ~(1 << reg); 3288 } 3289 3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3291 { 3292 bt_set_frame_reg(bt, bt->frame, reg); 3293 } 3294 3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3296 { 3297 bt_clear_frame_reg(bt, bt->frame, reg); 3298 } 3299 3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3301 { 3302 bt->stack_masks[frame] |= 1ull << slot; 3303 } 3304 3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3306 { 3307 bt->stack_masks[frame] &= ~(1ull << slot); 3308 } 3309 3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3311 { 3312 bt_set_frame_slot(bt, bt->frame, slot); 3313 } 3314 3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3316 { 3317 bt_clear_frame_slot(bt, bt->frame, slot); 3318 } 3319 3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3321 { 3322 return bt->reg_masks[frame]; 3323 } 3324 3325 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3326 { 3327 return bt->reg_masks[bt->frame]; 3328 } 3329 3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3331 { 3332 return bt->stack_masks[frame]; 3333 } 3334 3335 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3336 { 3337 return bt->stack_masks[bt->frame]; 3338 } 3339 3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3341 { 3342 return bt->reg_masks[bt->frame] & (1 << reg); 3343 } 3344 3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3346 { 3347 return bt->stack_masks[bt->frame] & (1ull << slot); 3348 } 3349 3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3352 { 3353 DECLARE_BITMAP(mask, 64); 3354 bool first = true; 3355 int i, n; 3356 3357 buf[0] = '\0'; 3358 3359 bitmap_from_u64(mask, reg_mask); 3360 for_each_set_bit(i, mask, 32) { 3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3362 first = false; 3363 buf += n; 3364 buf_sz -= n; 3365 if (buf_sz < 0) 3366 break; 3367 } 3368 } 3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3371 { 3372 DECLARE_BITMAP(mask, 64); 3373 bool first = true; 3374 int i, n; 3375 3376 buf[0] = '\0'; 3377 3378 bitmap_from_u64(mask, stack_mask); 3379 for_each_set_bit(i, mask, 64) { 3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3381 first = false; 3382 buf += n; 3383 buf_sz -= n; 3384 if (buf_sz < 0) 3385 break; 3386 } 3387 } 3388 3389 /* For given verifier state backtrack_insn() is called from the last insn to 3390 * the first insn. Its purpose is to compute a bitmask of registers and 3391 * stack slots that needs precision in the parent verifier state. 3392 * 3393 * @idx is an index of the instruction we are currently processing; 3394 * @subseq_idx is an index of the subsequent instruction that: 3395 * - *would be* executed next, if jump history is viewed in forward order; 3396 * - *was* processed previously during backtracking. 3397 */ 3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3399 struct backtrack_state *bt) 3400 { 3401 const struct bpf_insn_cbs cbs = { 3402 .cb_call = disasm_kfunc_name, 3403 .cb_print = verbose, 3404 .private_data = env, 3405 }; 3406 struct bpf_insn *insn = env->prog->insnsi + idx; 3407 u8 class = BPF_CLASS(insn->code); 3408 u8 opcode = BPF_OP(insn->code); 3409 u8 mode = BPF_MODE(insn->code); 3410 u32 dreg = insn->dst_reg; 3411 u32 sreg = insn->src_reg; 3412 u32 spi, i; 3413 3414 if (insn->code == 0) 3415 return 0; 3416 if (env->log.level & BPF_LOG_LEVEL2) { 3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3418 verbose(env, "mark_precise: frame%d: regs=%s ", 3419 bt->frame, env->tmp_str_buf); 3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3421 verbose(env, "stack=%s before ", env->tmp_str_buf); 3422 verbose(env, "%d: ", idx); 3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3424 } 3425 3426 if (class == BPF_ALU || class == BPF_ALU64) { 3427 if (!bt_is_reg_set(bt, dreg)) 3428 return 0; 3429 if (opcode == BPF_MOV) { 3430 if (BPF_SRC(insn->code) == BPF_X) { 3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3432 * dreg needs precision after this insn 3433 * sreg needs precision before this insn 3434 */ 3435 bt_clear_reg(bt, dreg); 3436 bt_set_reg(bt, sreg); 3437 } else { 3438 /* dreg = K 3439 * dreg needs precision after this insn. 3440 * Corresponding register is already marked 3441 * as precise=true in this verifier state. 3442 * No further markings in parent are necessary 3443 */ 3444 bt_clear_reg(bt, dreg); 3445 } 3446 } else { 3447 if (BPF_SRC(insn->code) == BPF_X) { 3448 /* dreg += sreg 3449 * both dreg and sreg need precision 3450 * before this insn 3451 */ 3452 bt_set_reg(bt, sreg); 3453 } /* else dreg += K 3454 * dreg still needs precision before this insn 3455 */ 3456 } 3457 } else if (class == BPF_LDX) { 3458 if (!bt_is_reg_set(bt, dreg)) 3459 return 0; 3460 bt_clear_reg(bt, dreg); 3461 3462 /* scalars can only be spilled into stack w/o losing precision. 3463 * Load from any other memory can be zero extended. 3464 * The desire to keep that precision is already indicated 3465 * by 'precise' mark in corresponding register of this state. 3466 * No further tracking necessary. 3467 */ 3468 if (insn->src_reg != BPF_REG_FP) 3469 return 0; 3470 3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3472 * that [fp - off] slot contains scalar that needs to be 3473 * tracked with precision 3474 */ 3475 spi = (-insn->off - 1) / BPF_REG_SIZE; 3476 if (spi >= 64) { 3477 verbose(env, "BUG spi %d\n", spi); 3478 WARN_ONCE(1, "verifier backtracking bug"); 3479 return -EFAULT; 3480 } 3481 bt_set_slot(bt, spi); 3482 } else if (class == BPF_STX || class == BPF_ST) { 3483 if (bt_is_reg_set(bt, dreg)) 3484 /* stx & st shouldn't be using _scalar_ dst_reg 3485 * to access memory. It means backtracking 3486 * encountered a case of pointer subtraction. 3487 */ 3488 return -ENOTSUPP; 3489 /* scalars can only be spilled into stack */ 3490 if (insn->dst_reg != BPF_REG_FP) 3491 return 0; 3492 spi = (-insn->off - 1) / BPF_REG_SIZE; 3493 if (spi >= 64) { 3494 verbose(env, "BUG spi %d\n", spi); 3495 WARN_ONCE(1, "verifier backtracking bug"); 3496 return -EFAULT; 3497 } 3498 if (!bt_is_slot_set(bt, spi)) 3499 return 0; 3500 bt_clear_slot(bt, spi); 3501 if (class == BPF_STX) 3502 bt_set_reg(bt, sreg); 3503 } else if (class == BPF_JMP || class == BPF_JMP32) { 3504 if (bpf_pseudo_call(insn)) { 3505 int subprog_insn_idx, subprog; 3506 3507 subprog_insn_idx = idx + insn->imm + 1; 3508 subprog = find_subprog(env, subprog_insn_idx); 3509 if (subprog < 0) 3510 return -EFAULT; 3511 3512 if (subprog_is_global(env, subprog)) { 3513 /* check that jump history doesn't have any 3514 * extra instructions from subprog; the next 3515 * instruction after call to global subprog 3516 * should be literally next instruction in 3517 * caller program 3518 */ 3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3520 /* r1-r5 are invalidated after subprog call, 3521 * so for global func call it shouldn't be set 3522 * anymore 3523 */ 3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3526 WARN_ONCE(1, "verifier backtracking bug"); 3527 return -EFAULT; 3528 } 3529 /* global subprog always sets R0 */ 3530 bt_clear_reg(bt, BPF_REG_0); 3531 return 0; 3532 } else { 3533 /* static subprog call instruction, which 3534 * means that we are exiting current subprog, 3535 * so only r1-r5 could be still requested as 3536 * precise, r0 and r6-r10 or any stack slot in 3537 * the current frame should be zero by now 3538 */ 3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3541 WARN_ONCE(1, "verifier backtracking bug"); 3542 return -EFAULT; 3543 } 3544 /* we don't track register spills perfectly, 3545 * so fallback to force-precise instead of failing */ 3546 if (bt_stack_mask(bt) != 0) 3547 return -ENOTSUPP; 3548 /* propagate r1-r5 to the caller */ 3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3550 if (bt_is_reg_set(bt, i)) { 3551 bt_clear_reg(bt, i); 3552 bt_set_frame_reg(bt, bt->frame - 1, i); 3553 } 3554 } 3555 if (bt_subprog_exit(bt)) 3556 return -EFAULT; 3557 return 0; 3558 } 3559 } else if ((bpf_helper_call(insn) && 3560 is_callback_calling_function(insn->imm) && 3561 !is_async_callback_calling_function(insn->imm)) || 3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3563 /* callback-calling helper or kfunc call, which means 3564 * we are exiting from subprog, but unlike the subprog 3565 * call handling above, we shouldn't propagate 3566 * precision of r1-r5 (if any requested), as they are 3567 * not actually arguments passed directly to callback 3568 * subprogs 3569 */ 3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3572 WARN_ONCE(1, "verifier backtracking bug"); 3573 return -EFAULT; 3574 } 3575 if (bt_stack_mask(bt) != 0) 3576 return -ENOTSUPP; 3577 /* clear r1-r5 in callback subprog's mask */ 3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3579 bt_clear_reg(bt, i); 3580 if (bt_subprog_exit(bt)) 3581 return -EFAULT; 3582 return 0; 3583 } else if (opcode == BPF_CALL) { 3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3585 * catch this error later. Make backtracking conservative 3586 * with ENOTSUPP. 3587 */ 3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3589 return -ENOTSUPP; 3590 /* regular helper call sets R0 */ 3591 bt_clear_reg(bt, BPF_REG_0); 3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3593 /* if backtracing was looking for registers R1-R5 3594 * they should have been found already. 3595 */ 3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3597 WARN_ONCE(1, "verifier backtracking bug"); 3598 return -EFAULT; 3599 } 3600 } else if (opcode == BPF_EXIT) { 3601 bool r0_precise; 3602 3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3604 /* if backtracing was looking for registers R1-R5 3605 * they should have been found already. 3606 */ 3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3608 WARN_ONCE(1, "verifier backtracking bug"); 3609 return -EFAULT; 3610 } 3611 3612 /* BPF_EXIT in subprog or callback always returns 3613 * right after the call instruction, so by checking 3614 * whether the instruction at subseq_idx-1 is subprog 3615 * call or not we can distinguish actual exit from 3616 * *subprog* from exit from *callback*. In the former 3617 * case, we need to propagate r0 precision, if 3618 * necessary. In the former we never do that. 3619 */ 3620 r0_precise = subseq_idx - 1 >= 0 && 3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3622 bt_is_reg_set(bt, BPF_REG_0); 3623 3624 bt_clear_reg(bt, BPF_REG_0); 3625 if (bt_subprog_enter(bt)) 3626 return -EFAULT; 3627 3628 if (r0_precise) 3629 bt_set_reg(bt, BPF_REG_0); 3630 /* r6-r9 and stack slots will stay set in caller frame 3631 * bitmasks until we return back from callee(s) 3632 */ 3633 return 0; 3634 } else if (BPF_SRC(insn->code) == BPF_X) { 3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3636 return 0; 3637 /* dreg <cond> sreg 3638 * Both dreg and sreg need precision before 3639 * this insn. If only sreg was marked precise 3640 * before it would be equally necessary to 3641 * propagate it to dreg. 3642 */ 3643 bt_set_reg(bt, dreg); 3644 bt_set_reg(bt, sreg); 3645 /* else dreg <cond> K 3646 * Only dreg still needs precision before 3647 * this insn, so for the K-based conditional 3648 * there is nothing new to be marked. 3649 */ 3650 } 3651 } else if (class == BPF_LD) { 3652 if (!bt_is_reg_set(bt, dreg)) 3653 return 0; 3654 bt_clear_reg(bt, dreg); 3655 /* It's ld_imm64 or ld_abs or ld_ind. 3656 * For ld_imm64 no further tracking of precision 3657 * into parent is necessary 3658 */ 3659 if (mode == BPF_IND || mode == BPF_ABS) 3660 /* to be analyzed */ 3661 return -ENOTSUPP; 3662 } 3663 return 0; 3664 } 3665 3666 /* the scalar precision tracking algorithm: 3667 * . at the start all registers have precise=false. 3668 * . scalar ranges are tracked as normal through alu and jmp insns. 3669 * . once precise value of the scalar register is used in: 3670 * . ptr + scalar alu 3671 * . if (scalar cond K|scalar) 3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3673 * backtrack through the verifier states and mark all registers and 3674 * stack slots with spilled constants that these scalar regisers 3675 * should be precise. 3676 * . during state pruning two registers (or spilled stack slots) 3677 * are equivalent if both are not precise. 3678 * 3679 * Note the verifier cannot simply walk register parentage chain, 3680 * since many different registers and stack slots could have been 3681 * used to compute single precise scalar. 3682 * 3683 * The approach of starting with precise=true for all registers and then 3684 * backtrack to mark a register as not precise when the verifier detects 3685 * that program doesn't care about specific value (e.g., when helper 3686 * takes register as ARG_ANYTHING parameter) is not safe. 3687 * 3688 * It's ok to walk single parentage chain of the verifier states. 3689 * It's possible that this backtracking will go all the way till 1st insn. 3690 * All other branches will be explored for needing precision later. 3691 * 3692 * The backtracking needs to deal with cases like: 3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3694 * r9 -= r8 3695 * r5 = r9 3696 * if r5 > 0x79f goto pc+7 3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3698 * r5 += 1 3699 * ... 3700 * call bpf_perf_event_output#25 3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3702 * 3703 * and this case: 3704 * r6 = 1 3705 * call foo // uses callee's r6 inside to compute r0 3706 * r0 += r6 3707 * if r0 == 0 goto 3708 * 3709 * to track above reg_mask/stack_mask needs to be independent for each frame. 3710 * 3711 * Also if parent's curframe > frame where backtracking started, 3712 * the verifier need to mark registers in both frames, otherwise callees 3713 * may incorrectly prune callers. This is similar to 3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3715 * 3716 * For now backtracking falls back into conservative marking. 3717 */ 3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3719 struct bpf_verifier_state *st) 3720 { 3721 struct bpf_func_state *func; 3722 struct bpf_reg_state *reg; 3723 int i, j; 3724 3725 if (env->log.level & BPF_LOG_LEVEL2) { 3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3727 st->curframe); 3728 } 3729 3730 /* big hammer: mark all scalars precise in this path. 3731 * pop_stack may still get !precise scalars. 3732 * We also skip current state and go straight to first parent state, 3733 * because precision markings in current non-checkpointed state are 3734 * not needed. See why in the comment in __mark_chain_precision below. 3735 */ 3736 for (st = st->parent; st; st = st->parent) { 3737 for (i = 0; i <= st->curframe; i++) { 3738 func = st->frame[i]; 3739 for (j = 0; j < BPF_REG_FP; j++) { 3740 reg = &func->regs[j]; 3741 if (reg->type != SCALAR_VALUE || reg->precise) 3742 continue; 3743 reg->precise = true; 3744 if (env->log.level & BPF_LOG_LEVEL2) { 3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3746 i, j); 3747 } 3748 } 3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3750 if (!is_spilled_reg(&func->stack[j])) 3751 continue; 3752 reg = &func->stack[j].spilled_ptr; 3753 if (reg->type != SCALAR_VALUE || reg->precise) 3754 continue; 3755 reg->precise = true; 3756 if (env->log.level & BPF_LOG_LEVEL2) { 3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3758 i, -(j + 1) * 8); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3766 { 3767 struct bpf_func_state *func; 3768 struct bpf_reg_state *reg; 3769 int i, j; 3770 3771 for (i = 0; i <= st->curframe; i++) { 3772 func = st->frame[i]; 3773 for (j = 0; j < BPF_REG_FP; j++) { 3774 reg = &func->regs[j]; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3780 if (!is_spilled_reg(&func->stack[j])) 3781 continue; 3782 reg = &func->stack[j].spilled_ptr; 3783 if (reg->type != SCALAR_VALUE) 3784 continue; 3785 reg->precise = false; 3786 } 3787 } 3788 } 3789 3790 static bool idset_contains(struct bpf_idset *s, u32 id) 3791 { 3792 u32 i; 3793 3794 for (i = 0; i < s->count; ++i) 3795 if (s->ids[i] == id) 3796 return true; 3797 3798 return false; 3799 } 3800 3801 static int idset_push(struct bpf_idset *s, u32 id) 3802 { 3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3804 return -EFAULT; 3805 s->ids[s->count++] = id; 3806 return 0; 3807 } 3808 3809 static void idset_reset(struct bpf_idset *s) 3810 { 3811 s->count = 0; 3812 } 3813 3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3815 * Mark all registers with these IDs as precise. 3816 */ 3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3818 { 3819 struct bpf_idset *precise_ids = &env->idset_scratch; 3820 struct backtrack_state *bt = &env->bt; 3821 struct bpf_func_state *func; 3822 struct bpf_reg_state *reg; 3823 DECLARE_BITMAP(mask, 64); 3824 int i, fr; 3825 3826 idset_reset(precise_ids); 3827 3828 for (fr = bt->frame; fr >= 0; fr--) { 3829 func = st->frame[fr]; 3830 3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3832 for_each_set_bit(i, mask, 32) { 3833 reg = &func->regs[i]; 3834 if (!reg->id || reg->type != SCALAR_VALUE) 3835 continue; 3836 if (idset_push(precise_ids, reg->id)) 3837 return -EFAULT; 3838 } 3839 3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3841 for_each_set_bit(i, mask, 64) { 3842 if (i >= func->allocated_stack / BPF_REG_SIZE) 3843 break; 3844 if (!is_spilled_scalar_reg(&func->stack[i])) 3845 continue; 3846 reg = &func->stack[i].spilled_ptr; 3847 if (!reg->id) 3848 continue; 3849 if (idset_push(precise_ids, reg->id)) 3850 return -EFAULT; 3851 } 3852 } 3853 3854 for (fr = 0; fr <= st->curframe; ++fr) { 3855 func = st->frame[fr]; 3856 3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3858 reg = &func->regs[i]; 3859 if (!reg->id) 3860 continue; 3861 if (!idset_contains(precise_ids, reg->id)) 3862 continue; 3863 bt_set_frame_reg(bt, fr, i); 3864 } 3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3866 if (!is_spilled_scalar_reg(&func->stack[i])) 3867 continue; 3868 reg = &func->stack[i].spilled_ptr; 3869 if (!reg->id) 3870 continue; 3871 if (!idset_contains(precise_ids, reg->id)) 3872 continue; 3873 bt_set_frame_slot(bt, fr, i); 3874 } 3875 } 3876 3877 return 0; 3878 } 3879 3880 /* 3881 * __mark_chain_precision() backtracks BPF program instruction sequence and 3882 * chain of verifier states making sure that register *regno* (if regno >= 0) 3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3884 * SCALARS, as well as any other registers and slots that contribute to 3885 * a tracked state of given registers/stack slots, depending on specific BPF 3886 * assembly instructions (see backtrack_insns() for exact instruction handling 3887 * logic). This backtracking relies on recorded jmp_history and is able to 3888 * traverse entire chain of parent states. This process ends only when all the 3889 * necessary registers/slots and their transitive dependencies are marked as 3890 * precise. 3891 * 3892 * One important and subtle aspect is that precise marks *do not matter* in 3893 * the currently verified state (current state). It is important to understand 3894 * why this is the case. 3895 * 3896 * First, note that current state is the state that is not yet "checkpointed", 3897 * i.e., it is not yet put into env->explored_states, and it has no children 3898 * states as well. It's ephemeral, and can end up either a) being discarded if 3899 * compatible explored state is found at some point or BPF_EXIT instruction is 3900 * reached or b) checkpointed and put into env->explored_states, branching out 3901 * into one or more children states. 3902 * 3903 * In the former case, precise markings in current state are completely 3904 * ignored by state comparison code (see regsafe() for details). Only 3905 * checkpointed ("old") state precise markings are important, and if old 3906 * state's register/slot is precise, regsafe() assumes current state's 3907 * register/slot as precise and checks value ranges exactly and precisely. If 3908 * states turn out to be compatible, current state's necessary precise 3909 * markings and any required parent states' precise markings are enforced 3910 * after the fact with propagate_precision() logic, after the fact. But it's 3911 * important to realize that in this case, even after marking current state 3912 * registers/slots as precise, we immediately discard current state. So what 3913 * actually matters is any of the precise markings propagated into current 3914 * state's parent states, which are always checkpointed (due to b) case above). 3915 * As such, for scenario a) it doesn't matter if current state has precise 3916 * markings set or not. 3917 * 3918 * Now, for the scenario b), checkpointing and forking into child(ren) 3919 * state(s). Note that before current state gets to checkpointing step, any 3920 * processed instruction always assumes precise SCALAR register/slot 3921 * knowledge: if precise value or range is useful to prune jump branch, BPF 3922 * verifier takes this opportunity enthusiastically. Similarly, when 3923 * register's value is used to calculate offset or memory address, exact 3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3925 * what we mentioned above about state comparison ignoring precise markings 3926 * during state comparison, BPF verifier ignores and also assumes precise 3927 * markings *at will* during instruction verification process. But as verifier 3928 * assumes precision, it also propagates any precision dependencies across 3929 * parent states, which are not yet finalized, so can be further restricted 3930 * based on new knowledge gained from restrictions enforced by their children 3931 * states. This is so that once those parent states are finalized, i.e., when 3932 * they have no more active children state, state comparison logic in 3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3934 * required for correctness. 3935 * 3936 * To build a bit more intuition, note also that once a state is checkpointed, 3937 * the path we took to get to that state is not important. This is crucial 3938 * property for state pruning. When state is checkpointed and finalized at 3939 * some instruction index, it can be correctly and safely used to "short 3940 * circuit" any *compatible* state that reaches exactly the same instruction 3941 * index. I.e., if we jumped to that instruction from a completely different 3942 * code path than original finalized state was derived from, it doesn't 3943 * matter, current state can be discarded because from that instruction 3944 * forward having a compatible state will ensure we will safely reach the 3945 * exit. States describe preconditions for further exploration, but completely 3946 * forget the history of how we got here. 3947 * 3948 * This also means that even if we needed precise SCALAR range to get to 3949 * finalized state, but from that point forward *that same* SCALAR register is 3950 * never used in a precise context (i.e., it's precise value is not needed for 3951 * correctness), it's correct and safe to mark such register as "imprecise" 3952 * (i.e., precise marking set to false). This is what we rely on when we do 3953 * not set precise marking in current state. If no child state requires 3954 * precision for any given SCALAR register, it's safe to dictate that it can 3955 * be imprecise. If any child state does require this register to be precise, 3956 * we'll mark it precise later retroactively during precise markings 3957 * propagation from child state to parent states. 3958 * 3959 * Skipping precise marking setting in current state is a mild version of 3960 * relying on the above observation. But we can utilize this property even 3961 * more aggressively by proactively forgetting any precise marking in the 3962 * current state (which we inherited from the parent state), right before we 3963 * checkpoint it and branch off into new child state. This is done by 3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3965 * finalized states which help in short circuiting more future states. 3966 */ 3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3968 { 3969 struct backtrack_state *bt = &env->bt; 3970 struct bpf_verifier_state *st = env->cur_state; 3971 int first_idx = st->first_insn_idx; 3972 int last_idx = env->insn_idx; 3973 int subseq_idx = -1; 3974 struct bpf_func_state *func; 3975 struct bpf_reg_state *reg; 3976 bool skip_first = true; 3977 int i, fr, err; 3978 3979 if (!env->bpf_capable) 3980 return 0; 3981 3982 /* set frame number from which we are starting to backtrack */ 3983 bt_init(bt, env->cur_state->curframe); 3984 3985 /* Do sanity checks against current state of register and/or stack 3986 * slot, but don't set precise flag in current state, as precision 3987 * tracking in the current state is unnecessary. 3988 */ 3989 func = st->frame[bt->frame]; 3990 if (regno >= 0) { 3991 reg = &func->regs[regno]; 3992 if (reg->type != SCALAR_VALUE) { 3993 WARN_ONCE(1, "backtracing misuse"); 3994 return -EFAULT; 3995 } 3996 bt_set_reg(bt, regno); 3997 } 3998 3999 if (bt_empty(bt)) 4000 return 0; 4001 4002 for (;;) { 4003 DECLARE_BITMAP(mask, 64); 4004 u32 history = st->jmp_history_cnt; 4005 4006 if (env->log.level & BPF_LOG_LEVEL2) { 4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4008 bt->frame, last_idx, first_idx, subseq_idx); 4009 } 4010 4011 /* If some register with scalar ID is marked as precise, 4012 * make sure that all registers sharing this ID are also precise. 4013 * This is needed to estimate effect of find_equal_scalars(). 4014 * Do this at the last instruction of each state, 4015 * bpf_reg_state::id fields are valid for these instructions. 4016 * 4017 * Allows to track precision in situation like below: 4018 * 4019 * r2 = unknown value 4020 * ... 4021 * --- state #0 --- 4022 * ... 4023 * r1 = r2 // r1 and r2 now share the same ID 4024 * ... 4025 * --- state #1 {r1.id = A, r2.id = A} --- 4026 * ... 4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4028 * ... 4029 * --- state #2 {r1.id = A, r2.id = A} --- 4030 * r3 = r10 4031 * r3 += r1 // need to mark both r1 and r2 4032 */ 4033 if (mark_precise_scalar_ids(env, st)) 4034 return -EFAULT; 4035 4036 if (last_idx < 0) { 4037 /* we are at the entry into subprog, which 4038 * is expected for global funcs, but only if 4039 * requested precise registers are R1-R5 4040 * (which are global func's input arguments) 4041 */ 4042 if (st->curframe == 0 && 4043 st->frame[0]->subprogno > 0 && 4044 st->frame[0]->callsite == BPF_MAIN_FUNC && 4045 bt_stack_mask(bt) == 0 && 4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4047 bitmap_from_u64(mask, bt_reg_mask(bt)); 4048 for_each_set_bit(i, mask, 32) { 4049 reg = &st->frame[0]->regs[i]; 4050 if (reg->type != SCALAR_VALUE) { 4051 bt_clear_reg(bt, i); 4052 continue; 4053 } 4054 reg->precise = true; 4055 } 4056 return 0; 4057 } 4058 4059 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4060 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4061 WARN_ONCE(1, "verifier backtracking bug"); 4062 return -EFAULT; 4063 } 4064 4065 for (i = last_idx;;) { 4066 if (skip_first) { 4067 err = 0; 4068 skip_first = false; 4069 } else { 4070 err = backtrack_insn(env, i, subseq_idx, bt); 4071 } 4072 if (err == -ENOTSUPP) { 4073 mark_all_scalars_precise(env, env->cur_state); 4074 bt_reset(bt); 4075 return 0; 4076 } else if (err) { 4077 return err; 4078 } 4079 if (bt_empty(bt)) 4080 /* Found assignment(s) into tracked register in this state. 4081 * Since this state is already marked, just return. 4082 * Nothing to be tracked further in the parent state. 4083 */ 4084 return 0; 4085 if (i == first_idx) 4086 break; 4087 subseq_idx = i; 4088 i = get_prev_insn_idx(st, i, &history); 4089 if (i >= env->prog->len) { 4090 /* This can happen if backtracking reached insn 0 4091 * and there are still reg_mask or stack_mask 4092 * to backtrack. 4093 * It means the backtracking missed the spot where 4094 * particular register was initialized with a constant. 4095 */ 4096 verbose(env, "BUG backtracking idx %d\n", i); 4097 WARN_ONCE(1, "verifier backtracking bug"); 4098 return -EFAULT; 4099 } 4100 } 4101 st = st->parent; 4102 if (!st) 4103 break; 4104 4105 for (fr = bt->frame; fr >= 0; fr--) { 4106 func = st->frame[fr]; 4107 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4108 for_each_set_bit(i, mask, 32) { 4109 reg = &func->regs[i]; 4110 if (reg->type != SCALAR_VALUE) { 4111 bt_clear_frame_reg(bt, fr, i); 4112 continue; 4113 } 4114 if (reg->precise) 4115 bt_clear_frame_reg(bt, fr, i); 4116 else 4117 reg->precise = true; 4118 } 4119 4120 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4121 for_each_set_bit(i, mask, 64) { 4122 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4123 /* the sequence of instructions: 4124 * 2: (bf) r3 = r10 4125 * 3: (7b) *(u64 *)(r3 -8) = r0 4126 * 4: (79) r4 = *(u64 *)(r10 -8) 4127 * doesn't contain jmps. It's backtracked 4128 * as a single block. 4129 * During backtracking insn 3 is not recognized as 4130 * stack access, so at the end of backtracking 4131 * stack slot fp-8 is still marked in stack_mask. 4132 * However the parent state may not have accessed 4133 * fp-8 and it's "unallocated" stack space. 4134 * In such case fallback to conservative. 4135 */ 4136 mark_all_scalars_precise(env, env->cur_state); 4137 bt_reset(bt); 4138 return 0; 4139 } 4140 4141 if (!is_spilled_scalar_reg(&func->stack[i])) { 4142 bt_clear_frame_slot(bt, fr, i); 4143 continue; 4144 } 4145 reg = &func->stack[i].spilled_ptr; 4146 if (reg->precise) 4147 bt_clear_frame_slot(bt, fr, i); 4148 else 4149 reg->precise = true; 4150 } 4151 if (env->log.level & BPF_LOG_LEVEL2) { 4152 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4153 bt_frame_reg_mask(bt, fr)); 4154 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4155 fr, env->tmp_str_buf); 4156 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4157 bt_frame_stack_mask(bt, fr)); 4158 verbose(env, "stack=%s: ", env->tmp_str_buf); 4159 print_verifier_state(env, func, true); 4160 } 4161 } 4162 4163 if (bt_empty(bt)) 4164 return 0; 4165 4166 subseq_idx = first_idx; 4167 last_idx = st->last_insn_idx; 4168 first_idx = st->first_insn_idx; 4169 } 4170 4171 /* if we still have requested precise regs or slots, we missed 4172 * something (e.g., stack access through non-r10 register), so 4173 * fallback to marking all precise 4174 */ 4175 if (!bt_empty(bt)) { 4176 mark_all_scalars_precise(env, env->cur_state); 4177 bt_reset(bt); 4178 } 4179 4180 return 0; 4181 } 4182 4183 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4184 { 4185 return __mark_chain_precision(env, regno); 4186 } 4187 4188 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4189 * desired reg and stack masks across all relevant frames 4190 */ 4191 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4192 { 4193 return __mark_chain_precision(env, -1); 4194 } 4195 4196 static bool is_spillable_regtype(enum bpf_reg_type type) 4197 { 4198 switch (base_type(type)) { 4199 case PTR_TO_MAP_VALUE: 4200 case PTR_TO_STACK: 4201 case PTR_TO_CTX: 4202 case PTR_TO_PACKET: 4203 case PTR_TO_PACKET_META: 4204 case PTR_TO_PACKET_END: 4205 case PTR_TO_FLOW_KEYS: 4206 case CONST_PTR_TO_MAP: 4207 case PTR_TO_SOCKET: 4208 case PTR_TO_SOCK_COMMON: 4209 case PTR_TO_TCP_SOCK: 4210 case PTR_TO_XDP_SOCK: 4211 case PTR_TO_BTF_ID: 4212 case PTR_TO_BUF: 4213 case PTR_TO_MEM: 4214 case PTR_TO_FUNC: 4215 case PTR_TO_MAP_KEY: 4216 return true; 4217 default: 4218 return false; 4219 } 4220 } 4221 4222 /* Does this register contain a constant zero? */ 4223 static bool register_is_null(struct bpf_reg_state *reg) 4224 { 4225 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4226 } 4227 4228 static bool register_is_const(struct bpf_reg_state *reg) 4229 { 4230 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4231 } 4232 4233 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4234 { 4235 return tnum_is_unknown(reg->var_off) && 4236 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4237 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4238 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4239 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4240 } 4241 4242 static bool register_is_bounded(struct bpf_reg_state *reg) 4243 { 4244 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4245 } 4246 4247 static bool __is_pointer_value(bool allow_ptr_leaks, 4248 const struct bpf_reg_state *reg) 4249 { 4250 if (allow_ptr_leaks) 4251 return false; 4252 4253 return reg->type != SCALAR_VALUE; 4254 } 4255 4256 /* Copy src state preserving dst->parent and dst->live fields */ 4257 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4258 { 4259 struct bpf_reg_state *parent = dst->parent; 4260 enum bpf_reg_liveness live = dst->live; 4261 4262 *dst = *src; 4263 dst->parent = parent; 4264 dst->live = live; 4265 } 4266 4267 static void save_register_state(struct bpf_func_state *state, 4268 int spi, struct bpf_reg_state *reg, 4269 int size) 4270 { 4271 int i; 4272 4273 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4274 if (size == BPF_REG_SIZE) 4275 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4276 4277 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4278 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4279 4280 /* size < 8 bytes spill */ 4281 for (; i; i--) 4282 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4283 } 4284 4285 static bool is_bpf_st_mem(struct bpf_insn *insn) 4286 { 4287 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4288 } 4289 4290 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4291 * stack boundary and alignment are checked in check_mem_access() 4292 */ 4293 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4294 /* stack frame we're writing to */ 4295 struct bpf_func_state *state, 4296 int off, int size, int value_regno, 4297 int insn_idx) 4298 { 4299 struct bpf_func_state *cur; /* state of the current function */ 4300 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4301 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4302 struct bpf_reg_state *reg = NULL; 4303 u32 dst_reg = insn->dst_reg; 4304 4305 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4306 if (err) 4307 return err; 4308 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4309 * so it's aligned access and [off, off + size) are within stack limits 4310 */ 4311 if (!env->allow_ptr_leaks && 4312 state->stack[spi].slot_type[0] == STACK_SPILL && 4313 size != BPF_REG_SIZE) { 4314 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4315 return -EACCES; 4316 } 4317 4318 cur = env->cur_state->frame[env->cur_state->curframe]; 4319 if (value_regno >= 0) 4320 reg = &cur->regs[value_regno]; 4321 if (!env->bypass_spec_v4) { 4322 bool sanitize = reg && is_spillable_regtype(reg->type); 4323 4324 for (i = 0; i < size; i++) { 4325 u8 type = state->stack[spi].slot_type[i]; 4326 4327 if (type != STACK_MISC && type != STACK_ZERO) { 4328 sanitize = true; 4329 break; 4330 } 4331 } 4332 4333 if (sanitize) 4334 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4335 } 4336 4337 err = destroy_if_dynptr_stack_slot(env, state, spi); 4338 if (err) 4339 return err; 4340 4341 mark_stack_slot_scratched(env, spi); 4342 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4343 !register_is_null(reg) && env->bpf_capable) { 4344 if (dst_reg != BPF_REG_FP) { 4345 /* The backtracking logic can only recognize explicit 4346 * stack slot address like [fp - 8]. Other spill of 4347 * scalar via different register has to be conservative. 4348 * Backtrack from here and mark all registers as precise 4349 * that contributed into 'reg' being a constant. 4350 */ 4351 err = mark_chain_precision(env, value_regno); 4352 if (err) 4353 return err; 4354 } 4355 save_register_state(state, spi, reg, size); 4356 /* Break the relation on a narrowing spill. */ 4357 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4358 state->stack[spi].spilled_ptr.id = 0; 4359 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4360 insn->imm != 0 && env->bpf_capable) { 4361 struct bpf_reg_state fake_reg = {}; 4362 4363 __mark_reg_known(&fake_reg, (u32)insn->imm); 4364 fake_reg.type = SCALAR_VALUE; 4365 save_register_state(state, spi, &fake_reg, size); 4366 } else if (reg && is_spillable_regtype(reg->type)) { 4367 /* register containing pointer is being spilled into stack */ 4368 if (size != BPF_REG_SIZE) { 4369 verbose_linfo(env, insn_idx, "; "); 4370 verbose(env, "invalid size of register spill\n"); 4371 return -EACCES; 4372 } 4373 if (state != cur && reg->type == PTR_TO_STACK) { 4374 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4375 return -EINVAL; 4376 } 4377 save_register_state(state, spi, reg, size); 4378 } else { 4379 u8 type = STACK_MISC; 4380 4381 /* regular write of data into stack destroys any spilled ptr */ 4382 state->stack[spi].spilled_ptr.type = NOT_INIT; 4383 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4384 if (is_stack_slot_special(&state->stack[spi])) 4385 for (i = 0; i < BPF_REG_SIZE; i++) 4386 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4387 4388 /* only mark the slot as written if all 8 bytes were written 4389 * otherwise read propagation may incorrectly stop too soon 4390 * when stack slots are partially written. 4391 * This heuristic means that read propagation will be 4392 * conservative, since it will add reg_live_read marks 4393 * to stack slots all the way to first state when programs 4394 * writes+reads less than 8 bytes 4395 */ 4396 if (size == BPF_REG_SIZE) 4397 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4398 4399 /* when we zero initialize stack slots mark them as such */ 4400 if ((reg && register_is_null(reg)) || 4401 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4402 /* backtracking doesn't work for STACK_ZERO yet. */ 4403 err = mark_chain_precision(env, value_regno); 4404 if (err) 4405 return err; 4406 type = STACK_ZERO; 4407 } 4408 4409 /* Mark slots affected by this stack write. */ 4410 for (i = 0; i < size; i++) 4411 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4412 type; 4413 } 4414 return 0; 4415 } 4416 4417 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4418 * known to contain a variable offset. 4419 * This function checks whether the write is permitted and conservatively 4420 * tracks the effects of the write, considering that each stack slot in the 4421 * dynamic range is potentially written to. 4422 * 4423 * 'off' includes 'regno->off'. 4424 * 'value_regno' can be -1, meaning that an unknown value is being written to 4425 * the stack. 4426 * 4427 * Spilled pointers in range are not marked as written because we don't know 4428 * what's going to be actually written. This means that read propagation for 4429 * future reads cannot be terminated by this write. 4430 * 4431 * For privileged programs, uninitialized stack slots are considered 4432 * initialized by this write (even though we don't know exactly what offsets 4433 * are going to be written to). The idea is that we don't want the verifier to 4434 * reject future reads that access slots written to through variable offsets. 4435 */ 4436 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4437 /* func where register points to */ 4438 struct bpf_func_state *state, 4439 int ptr_regno, int off, int size, 4440 int value_regno, int insn_idx) 4441 { 4442 struct bpf_func_state *cur; /* state of the current function */ 4443 int min_off, max_off; 4444 int i, err; 4445 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4446 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4447 bool writing_zero = false; 4448 /* set if the fact that we're writing a zero is used to let any 4449 * stack slots remain STACK_ZERO 4450 */ 4451 bool zero_used = false; 4452 4453 cur = env->cur_state->frame[env->cur_state->curframe]; 4454 ptr_reg = &cur->regs[ptr_regno]; 4455 min_off = ptr_reg->smin_value + off; 4456 max_off = ptr_reg->smax_value + off + size; 4457 if (value_regno >= 0) 4458 value_reg = &cur->regs[value_regno]; 4459 if ((value_reg && register_is_null(value_reg)) || 4460 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4461 writing_zero = true; 4462 4463 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4464 if (err) 4465 return err; 4466 4467 for (i = min_off; i < max_off; i++) { 4468 int spi; 4469 4470 spi = __get_spi(i); 4471 err = destroy_if_dynptr_stack_slot(env, state, spi); 4472 if (err) 4473 return err; 4474 } 4475 4476 /* Variable offset writes destroy any spilled pointers in range. */ 4477 for (i = min_off; i < max_off; i++) { 4478 u8 new_type, *stype; 4479 int slot, spi; 4480 4481 slot = -i - 1; 4482 spi = slot / BPF_REG_SIZE; 4483 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4484 mark_stack_slot_scratched(env, spi); 4485 4486 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4487 /* Reject the write if range we may write to has not 4488 * been initialized beforehand. If we didn't reject 4489 * here, the ptr status would be erased below (even 4490 * though not all slots are actually overwritten), 4491 * possibly opening the door to leaks. 4492 * 4493 * We do however catch STACK_INVALID case below, and 4494 * only allow reading possibly uninitialized memory 4495 * later for CAP_PERFMON, as the write may not happen to 4496 * that slot. 4497 */ 4498 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4499 insn_idx, i); 4500 return -EINVAL; 4501 } 4502 4503 /* Erase all spilled pointers. */ 4504 state->stack[spi].spilled_ptr.type = NOT_INIT; 4505 4506 /* Update the slot type. */ 4507 new_type = STACK_MISC; 4508 if (writing_zero && *stype == STACK_ZERO) { 4509 new_type = STACK_ZERO; 4510 zero_used = true; 4511 } 4512 /* If the slot is STACK_INVALID, we check whether it's OK to 4513 * pretend that it will be initialized by this write. The slot 4514 * might not actually be written to, and so if we mark it as 4515 * initialized future reads might leak uninitialized memory. 4516 * For privileged programs, we will accept such reads to slots 4517 * that may or may not be written because, if we're reject 4518 * them, the error would be too confusing. 4519 */ 4520 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4521 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4522 insn_idx, i); 4523 return -EINVAL; 4524 } 4525 *stype = new_type; 4526 } 4527 if (zero_used) { 4528 /* backtracking doesn't work for STACK_ZERO yet. */ 4529 err = mark_chain_precision(env, value_regno); 4530 if (err) 4531 return err; 4532 } 4533 return 0; 4534 } 4535 4536 /* When register 'dst_regno' is assigned some values from stack[min_off, 4537 * max_off), we set the register's type according to the types of the 4538 * respective stack slots. If all the stack values are known to be zeros, then 4539 * so is the destination reg. Otherwise, the register is considered to be 4540 * SCALAR. This function does not deal with register filling; the caller must 4541 * ensure that all spilled registers in the stack range have been marked as 4542 * read. 4543 */ 4544 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4545 /* func where src register points to */ 4546 struct bpf_func_state *ptr_state, 4547 int min_off, int max_off, int dst_regno) 4548 { 4549 struct bpf_verifier_state *vstate = env->cur_state; 4550 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4551 int i, slot, spi; 4552 u8 *stype; 4553 int zeros = 0; 4554 4555 for (i = min_off; i < max_off; i++) { 4556 slot = -i - 1; 4557 spi = slot / BPF_REG_SIZE; 4558 mark_stack_slot_scratched(env, spi); 4559 stype = ptr_state->stack[spi].slot_type; 4560 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4561 break; 4562 zeros++; 4563 } 4564 if (zeros == max_off - min_off) { 4565 /* any access_size read into register is zero extended, 4566 * so the whole register == const_zero 4567 */ 4568 __mark_reg_const_zero(&state->regs[dst_regno]); 4569 /* backtracking doesn't support STACK_ZERO yet, 4570 * so mark it precise here, so that later 4571 * backtracking can stop here. 4572 * Backtracking may not need this if this register 4573 * doesn't participate in pointer adjustment. 4574 * Forward propagation of precise flag is not 4575 * necessary either. This mark is only to stop 4576 * backtracking. Any register that contributed 4577 * to const 0 was marked precise before spill. 4578 */ 4579 state->regs[dst_regno].precise = true; 4580 } else { 4581 /* have read misc data from the stack */ 4582 mark_reg_unknown(env, state->regs, dst_regno); 4583 } 4584 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4585 } 4586 4587 /* Read the stack at 'off' and put the results into the register indicated by 4588 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4589 * spilled reg. 4590 * 4591 * 'dst_regno' can be -1, meaning that the read value is not going to a 4592 * register. 4593 * 4594 * The access is assumed to be within the current stack bounds. 4595 */ 4596 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4597 /* func where src register points to */ 4598 struct bpf_func_state *reg_state, 4599 int off, int size, int dst_regno) 4600 { 4601 struct bpf_verifier_state *vstate = env->cur_state; 4602 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4603 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4604 struct bpf_reg_state *reg; 4605 u8 *stype, type; 4606 4607 stype = reg_state->stack[spi].slot_type; 4608 reg = ®_state->stack[spi].spilled_ptr; 4609 4610 mark_stack_slot_scratched(env, spi); 4611 4612 if (is_spilled_reg(®_state->stack[spi])) { 4613 u8 spill_size = 1; 4614 4615 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4616 spill_size++; 4617 4618 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4619 if (reg->type != SCALAR_VALUE) { 4620 verbose_linfo(env, env->insn_idx, "; "); 4621 verbose(env, "invalid size of register fill\n"); 4622 return -EACCES; 4623 } 4624 4625 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4626 if (dst_regno < 0) 4627 return 0; 4628 4629 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4630 /* The earlier check_reg_arg() has decided the 4631 * subreg_def for this insn. Save it first. 4632 */ 4633 s32 subreg_def = state->regs[dst_regno].subreg_def; 4634 4635 copy_register_state(&state->regs[dst_regno], reg); 4636 state->regs[dst_regno].subreg_def = subreg_def; 4637 } else { 4638 for (i = 0; i < size; i++) { 4639 type = stype[(slot - i) % BPF_REG_SIZE]; 4640 if (type == STACK_SPILL) 4641 continue; 4642 if (type == STACK_MISC) 4643 continue; 4644 if (type == STACK_INVALID && env->allow_uninit_stack) 4645 continue; 4646 verbose(env, "invalid read from stack off %d+%d size %d\n", 4647 off, i, size); 4648 return -EACCES; 4649 } 4650 mark_reg_unknown(env, state->regs, dst_regno); 4651 } 4652 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4653 return 0; 4654 } 4655 4656 if (dst_regno >= 0) { 4657 /* restore register state from stack */ 4658 copy_register_state(&state->regs[dst_regno], reg); 4659 /* mark reg as written since spilled pointer state likely 4660 * has its liveness marks cleared by is_state_visited() 4661 * which resets stack/reg liveness for state transitions 4662 */ 4663 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4664 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4665 /* If dst_regno==-1, the caller is asking us whether 4666 * it is acceptable to use this value as a SCALAR_VALUE 4667 * (e.g. for XADD). 4668 * We must not allow unprivileged callers to do that 4669 * with spilled pointers. 4670 */ 4671 verbose(env, "leaking pointer from stack off %d\n", 4672 off); 4673 return -EACCES; 4674 } 4675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4676 } else { 4677 for (i = 0; i < size; i++) { 4678 type = stype[(slot - i) % BPF_REG_SIZE]; 4679 if (type == STACK_MISC) 4680 continue; 4681 if (type == STACK_ZERO) 4682 continue; 4683 if (type == STACK_INVALID && env->allow_uninit_stack) 4684 continue; 4685 verbose(env, "invalid read from stack off %d+%d size %d\n", 4686 off, i, size); 4687 return -EACCES; 4688 } 4689 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4690 if (dst_regno >= 0) 4691 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4692 } 4693 return 0; 4694 } 4695 4696 enum bpf_access_src { 4697 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4698 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4699 }; 4700 4701 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4702 int regno, int off, int access_size, 4703 bool zero_size_allowed, 4704 enum bpf_access_src type, 4705 struct bpf_call_arg_meta *meta); 4706 4707 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4708 { 4709 return cur_regs(env) + regno; 4710 } 4711 4712 /* Read the stack at 'ptr_regno + off' and put the result into the register 4713 * 'dst_regno'. 4714 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4715 * but not its variable offset. 4716 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4717 * 4718 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4719 * filling registers (i.e. reads of spilled register cannot be detected when 4720 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4721 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4722 * offset; for a fixed offset check_stack_read_fixed_off should be used 4723 * instead. 4724 */ 4725 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4726 int ptr_regno, int off, int size, int dst_regno) 4727 { 4728 /* The state of the source register. */ 4729 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4730 struct bpf_func_state *ptr_state = func(env, reg); 4731 int err; 4732 int min_off, max_off; 4733 4734 /* Note that we pass a NULL meta, so raw access will not be permitted. 4735 */ 4736 err = check_stack_range_initialized(env, ptr_regno, off, size, 4737 false, ACCESS_DIRECT, NULL); 4738 if (err) 4739 return err; 4740 4741 min_off = reg->smin_value + off; 4742 max_off = reg->smax_value + off; 4743 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4744 return 0; 4745 } 4746 4747 /* check_stack_read dispatches to check_stack_read_fixed_off or 4748 * check_stack_read_var_off. 4749 * 4750 * The caller must ensure that the offset falls within the allocated stack 4751 * bounds. 4752 * 4753 * 'dst_regno' is a register which will receive the value from the stack. It 4754 * can be -1, meaning that the read value is not going to a register. 4755 */ 4756 static int check_stack_read(struct bpf_verifier_env *env, 4757 int ptr_regno, int off, int size, 4758 int dst_regno) 4759 { 4760 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4761 struct bpf_func_state *state = func(env, reg); 4762 int err; 4763 /* Some accesses are only permitted with a static offset. */ 4764 bool var_off = !tnum_is_const(reg->var_off); 4765 4766 /* The offset is required to be static when reads don't go to a 4767 * register, in order to not leak pointers (see 4768 * check_stack_read_fixed_off). 4769 */ 4770 if (dst_regno < 0 && var_off) { 4771 char tn_buf[48]; 4772 4773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4774 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4775 tn_buf, off, size); 4776 return -EACCES; 4777 } 4778 /* Variable offset is prohibited for unprivileged mode for simplicity 4779 * since it requires corresponding support in Spectre masking for stack 4780 * ALU. See also retrieve_ptr_limit(). The check in 4781 * check_stack_access_for_ptr_arithmetic() called by 4782 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4783 * with variable offsets, therefore no check is required here. Further, 4784 * just checking it here would be insufficient as speculative stack 4785 * writes could still lead to unsafe speculative behaviour. 4786 */ 4787 if (!var_off) { 4788 off += reg->var_off.value; 4789 err = check_stack_read_fixed_off(env, state, off, size, 4790 dst_regno); 4791 } else { 4792 /* Variable offset stack reads need more conservative handling 4793 * than fixed offset ones. Note that dst_regno >= 0 on this 4794 * branch. 4795 */ 4796 err = check_stack_read_var_off(env, ptr_regno, off, size, 4797 dst_regno); 4798 } 4799 return err; 4800 } 4801 4802 4803 /* check_stack_write dispatches to check_stack_write_fixed_off or 4804 * check_stack_write_var_off. 4805 * 4806 * 'ptr_regno' is the register used as a pointer into the stack. 4807 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4808 * 'value_regno' is the register whose value we're writing to the stack. It can 4809 * be -1, meaning that we're not writing from a register. 4810 * 4811 * The caller must ensure that the offset falls within the maximum stack size. 4812 */ 4813 static int check_stack_write(struct bpf_verifier_env *env, 4814 int ptr_regno, int off, int size, 4815 int value_regno, int insn_idx) 4816 { 4817 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4818 struct bpf_func_state *state = func(env, reg); 4819 int err; 4820 4821 if (tnum_is_const(reg->var_off)) { 4822 off += reg->var_off.value; 4823 err = check_stack_write_fixed_off(env, state, off, size, 4824 value_regno, insn_idx); 4825 } else { 4826 /* Variable offset stack reads need more conservative handling 4827 * than fixed offset ones. 4828 */ 4829 err = check_stack_write_var_off(env, state, 4830 ptr_regno, off, size, 4831 value_regno, insn_idx); 4832 } 4833 return err; 4834 } 4835 4836 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4837 int off, int size, enum bpf_access_type type) 4838 { 4839 struct bpf_reg_state *regs = cur_regs(env); 4840 struct bpf_map *map = regs[regno].map_ptr; 4841 u32 cap = bpf_map_flags_to_cap(map); 4842 4843 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4844 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4845 map->value_size, off, size); 4846 return -EACCES; 4847 } 4848 4849 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4850 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4851 map->value_size, off, size); 4852 return -EACCES; 4853 } 4854 4855 return 0; 4856 } 4857 4858 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4859 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4860 int off, int size, u32 mem_size, 4861 bool zero_size_allowed) 4862 { 4863 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4864 struct bpf_reg_state *reg; 4865 4866 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4867 return 0; 4868 4869 reg = &cur_regs(env)[regno]; 4870 switch (reg->type) { 4871 case PTR_TO_MAP_KEY: 4872 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4873 mem_size, off, size); 4874 break; 4875 case PTR_TO_MAP_VALUE: 4876 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4877 mem_size, off, size); 4878 break; 4879 case PTR_TO_PACKET: 4880 case PTR_TO_PACKET_META: 4881 case PTR_TO_PACKET_END: 4882 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4883 off, size, regno, reg->id, off, mem_size); 4884 break; 4885 case PTR_TO_MEM: 4886 default: 4887 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4888 mem_size, off, size); 4889 } 4890 4891 return -EACCES; 4892 } 4893 4894 /* check read/write into a memory region with possible variable offset */ 4895 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4896 int off, int size, u32 mem_size, 4897 bool zero_size_allowed) 4898 { 4899 struct bpf_verifier_state *vstate = env->cur_state; 4900 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4901 struct bpf_reg_state *reg = &state->regs[regno]; 4902 int err; 4903 4904 /* We may have adjusted the register pointing to memory region, so we 4905 * need to try adding each of min_value and max_value to off 4906 * to make sure our theoretical access will be safe. 4907 * 4908 * The minimum value is only important with signed 4909 * comparisons where we can't assume the floor of a 4910 * value is 0. If we are using signed variables for our 4911 * index'es we need to make sure that whatever we use 4912 * will have a set floor within our range. 4913 */ 4914 if (reg->smin_value < 0 && 4915 (reg->smin_value == S64_MIN || 4916 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4917 reg->smin_value + off < 0)) { 4918 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4919 regno); 4920 return -EACCES; 4921 } 4922 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4923 mem_size, zero_size_allowed); 4924 if (err) { 4925 verbose(env, "R%d min value is outside of the allowed memory range\n", 4926 regno); 4927 return err; 4928 } 4929 4930 /* If we haven't set a max value then we need to bail since we can't be 4931 * sure we won't do bad things. 4932 * If reg->umax_value + off could overflow, treat that as unbounded too. 4933 */ 4934 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4935 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4936 regno); 4937 return -EACCES; 4938 } 4939 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4940 mem_size, zero_size_allowed); 4941 if (err) { 4942 verbose(env, "R%d max value is outside of the allowed memory range\n", 4943 regno); 4944 return err; 4945 } 4946 4947 return 0; 4948 } 4949 4950 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4951 const struct bpf_reg_state *reg, int regno, 4952 bool fixed_off_ok) 4953 { 4954 /* Access to this pointer-typed register or passing it to a helper 4955 * is only allowed in its original, unmodified form. 4956 */ 4957 4958 if (reg->off < 0) { 4959 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4960 reg_type_str(env, reg->type), regno, reg->off); 4961 return -EACCES; 4962 } 4963 4964 if (!fixed_off_ok && reg->off) { 4965 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4966 reg_type_str(env, reg->type), regno, reg->off); 4967 return -EACCES; 4968 } 4969 4970 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4971 char tn_buf[48]; 4972 4973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4974 verbose(env, "variable %s access var_off=%s disallowed\n", 4975 reg_type_str(env, reg->type), tn_buf); 4976 return -EACCES; 4977 } 4978 4979 return 0; 4980 } 4981 4982 int check_ptr_off_reg(struct bpf_verifier_env *env, 4983 const struct bpf_reg_state *reg, int regno) 4984 { 4985 return __check_ptr_off_reg(env, reg, regno, false); 4986 } 4987 4988 static int map_kptr_match_type(struct bpf_verifier_env *env, 4989 struct btf_field *kptr_field, 4990 struct bpf_reg_state *reg, u32 regno) 4991 { 4992 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4993 int perm_flags; 4994 const char *reg_name = ""; 4995 4996 if (btf_is_kernel(reg->btf)) { 4997 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4998 4999 /* Only unreferenced case accepts untrusted pointers */ 5000 if (kptr_field->type == BPF_KPTR_UNREF) 5001 perm_flags |= PTR_UNTRUSTED; 5002 } else { 5003 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5004 } 5005 5006 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5007 goto bad_type; 5008 5009 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5010 reg_name = btf_type_name(reg->btf, reg->btf_id); 5011 5012 /* For ref_ptr case, release function check should ensure we get one 5013 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5014 * normal store of unreferenced kptr, we must ensure var_off is zero. 5015 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5016 * reg->off and reg->ref_obj_id are not needed here. 5017 */ 5018 if (__check_ptr_off_reg(env, reg, regno, true)) 5019 return -EACCES; 5020 5021 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5022 * we also need to take into account the reg->off. 5023 * 5024 * We want to support cases like: 5025 * 5026 * struct foo { 5027 * struct bar br; 5028 * struct baz bz; 5029 * }; 5030 * 5031 * struct foo *v; 5032 * v = func(); // PTR_TO_BTF_ID 5033 * val->foo = v; // reg->off is zero, btf and btf_id match type 5034 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5035 * // first member type of struct after comparison fails 5036 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5037 * // to match type 5038 * 5039 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5040 * is zero. We must also ensure that btf_struct_ids_match does not walk 5041 * the struct to match type against first member of struct, i.e. reject 5042 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5043 * strict mode to true for type match. 5044 */ 5045 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5046 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5047 kptr_field->type == BPF_KPTR_REF)) 5048 goto bad_type; 5049 return 0; 5050 bad_type: 5051 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5052 reg_type_str(env, reg->type), reg_name); 5053 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5054 if (kptr_field->type == BPF_KPTR_UNREF) 5055 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5056 targ_name); 5057 else 5058 verbose(env, "\n"); 5059 return -EINVAL; 5060 } 5061 5062 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5063 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5064 */ 5065 static bool in_rcu_cs(struct bpf_verifier_env *env) 5066 { 5067 return env->cur_state->active_rcu_lock || 5068 env->cur_state->active_lock.ptr || 5069 !env->prog->aux->sleepable; 5070 } 5071 5072 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5073 BTF_SET_START(rcu_protected_types) 5074 BTF_ID(struct, prog_test_ref_kfunc) 5075 BTF_ID(struct, cgroup) 5076 BTF_ID(struct, bpf_cpumask) 5077 BTF_ID(struct, task_struct) 5078 BTF_SET_END(rcu_protected_types) 5079 5080 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5081 { 5082 if (!btf_is_kernel(btf)) 5083 return false; 5084 return btf_id_set_contains(&rcu_protected_types, btf_id); 5085 } 5086 5087 static bool rcu_safe_kptr(const struct btf_field *field) 5088 { 5089 const struct btf_field_kptr *kptr = &field->kptr; 5090 5091 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5092 } 5093 5094 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5095 int value_regno, int insn_idx, 5096 struct btf_field *kptr_field) 5097 { 5098 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5099 int class = BPF_CLASS(insn->code); 5100 struct bpf_reg_state *val_reg; 5101 5102 /* Things we already checked for in check_map_access and caller: 5103 * - Reject cases where variable offset may touch kptr 5104 * - size of access (must be BPF_DW) 5105 * - tnum_is_const(reg->var_off) 5106 * - kptr_field->offset == off + reg->var_off.value 5107 */ 5108 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5109 if (BPF_MODE(insn->code) != BPF_MEM) { 5110 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5111 return -EACCES; 5112 } 5113 5114 /* We only allow loading referenced kptr, since it will be marked as 5115 * untrusted, similar to unreferenced kptr. 5116 */ 5117 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5118 verbose(env, "store to referenced kptr disallowed\n"); 5119 return -EACCES; 5120 } 5121 5122 if (class == BPF_LDX) { 5123 val_reg = reg_state(env, value_regno); 5124 /* We can simply mark the value_regno receiving the pointer 5125 * value from map as PTR_TO_BTF_ID, with the correct type. 5126 */ 5127 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5128 kptr_field->kptr.btf_id, 5129 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5130 PTR_MAYBE_NULL | MEM_RCU : 5131 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5132 /* For mark_ptr_or_null_reg */ 5133 val_reg->id = ++env->id_gen; 5134 } else if (class == BPF_STX) { 5135 val_reg = reg_state(env, value_regno); 5136 if (!register_is_null(val_reg) && 5137 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5138 return -EACCES; 5139 } else if (class == BPF_ST) { 5140 if (insn->imm) { 5141 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5142 kptr_field->offset); 5143 return -EACCES; 5144 } 5145 } else { 5146 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5147 return -EACCES; 5148 } 5149 return 0; 5150 } 5151 5152 /* check read/write into a map element with possible variable offset */ 5153 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5154 int off, int size, bool zero_size_allowed, 5155 enum bpf_access_src src) 5156 { 5157 struct bpf_verifier_state *vstate = env->cur_state; 5158 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5159 struct bpf_reg_state *reg = &state->regs[regno]; 5160 struct bpf_map *map = reg->map_ptr; 5161 struct btf_record *rec; 5162 int err, i; 5163 5164 err = check_mem_region_access(env, regno, off, size, map->value_size, 5165 zero_size_allowed); 5166 if (err) 5167 return err; 5168 5169 if (IS_ERR_OR_NULL(map->record)) 5170 return 0; 5171 rec = map->record; 5172 for (i = 0; i < rec->cnt; i++) { 5173 struct btf_field *field = &rec->fields[i]; 5174 u32 p = field->offset; 5175 5176 /* If any part of a field can be touched by load/store, reject 5177 * this program. To check that [x1, x2) overlaps with [y1, y2), 5178 * it is sufficient to check x1 < y2 && y1 < x2. 5179 */ 5180 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5181 p < reg->umax_value + off + size) { 5182 switch (field->type) { 5183 case BPF_KPTR_UNREF: 5184 case BPF_KPTR_REF: 5185 if (src != ACCESS_DIRECT) { 5186 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5187 return -EACCES; 5188 } 5189 if (!tnum_is_const(reg->var_off)) { 5190 verbose(env, "kptr access cannot have variable offset\n"); 5191 return -EACCES; 5192 } 5193 if (p != off + reg->var_off.value) { 5194 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5195 p, off + reg->var_off.value); 5196 return -EACCES; 5197 } 5198 if (size != bpf_size_to_bytes(BPF_DW)) { 5199 verbose(env, "kptr access size must be BPF_DW\n"); 5200 return -EACCES; 5201 } 5202 break; 5203 default: 5204 verbose(env, "%s cannot be accessed directly by load/store\n", 5205 btf_field_type_name(field->type)); 5206 return -EACCES; 5207 } 5208 } 5209 } 5210 return 0; 5211 } 5212 5213 #define MAX_PACKET_OFF 0xffff 5214 5215 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5216 const struct bpf_call_arg_meta *meta, 5217 enum bpf_access_type t) 5218 { 5219 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5220 5221 switch (prog_type) { 5222 /* Program types only with direct read access go here! */ 5223 case BPF_PROG_TYPE_LWT_IN: 5224 case BPF_PROG_TYPE_LWT_OUT: 5225 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5226 case BPF_PROG_TYPE_SK_REUSEPORT: 5227 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5228 case BPF_PROG_TYPE_CGROUP_SKB: 5229 if (t == BPF_WRITE) 5230 return false; 5231 fallthrough; 5232 5233 /* Program types with direct read + write access go here! */ 5234 case BPF_PROG_TYPE_SCHED_CLS: 5235 case BPF_PROG_TYPE_SCHED_ACT: 5236 case BPF_PROG_TYPE_XDP: 5237 case BPF_PROG_TYPE_LWT_XMIT: 5238 case BPF_PROG_TYPE_SK_SKB: 5239 case BPF_PROG_TYPE_SK_MSG: 5240 if (meta) 5241 return meta->pkt_access; 5242 5243 env->seen_direct_write = true; 5244 return true; 5245 5246 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5247 if (t == BPF_WRITE) 5248 env->seen_direct_write = true; 5249 5250 return true; 5251 5252 default: 5253 return false; 5254 } 5255 } 5256 5257 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5258 int size, bool zero_size_allowed) 5259 { 5260 struct bpf_reg_state *regs = cur_regs(env); 5261 struct bpf_reg_state *reg = ®s[regno]; 5262 int err; 5263 5264 /* We may have added a variable offset to the packet pointer; but any 5265 * reg->range we have comes after that. We are only checking the fixed 5266 * offset. 5267 */ 5268 5269 /* We don't allow negative numbers, because we aren't tracking enough 5270 * detail to prove they're safe. 5271 */ 5272 if (reg->smin_value < 0) { 5273 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5274 regno); 5275 return -EACCES; 5276 } 5277 5278 err = reg->range < 0 ? -EINVAL : 5279 __check_mem_access(env, regno, off, size, reg->range, 5280 zero_size_allowed); 5281 if (err) { 5282 verbose(env, "R%d offset is outside of the packet\n", regno); 5283 return err; 5284 } 5285 5286 /* __check_mem_access has made sure "off + size - 1" is within u16. 5287 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5288 * otherwise find_good_pkt_pointers would have refused to set range info 5289 * that __check_mem_access would have rejected this pkt access. 5290 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5291 */ 5292 env->prog->aux->max_pkt_offset = 5293 max_t(u32, env->prog->aux->max_pkt_offset, 5294 off + reg->umax_value + size - 1); 5295 5296 return err; 5297 } 5298 5299 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5300 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5301 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5302 struct btf **btf, u32 *btf_id) 5303 { 5304 struct bpf_insn_access_aux info = { 5305 .reg_type = *reg_type, 5306 .log = &env->log, 5307 }; 5308 5309 if (env->ops->is_valid_access && 5310 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5311 /* A non zero info.ctx_field_size indicates that this field is a 5312 * candidate for later verifier transformation to load the whole 5313 * field and then apply a mask when accessed with a narrower 5314 * access than actual ctx access size. A zero info.ctx_field_size 5315 * will only allow for whole field access and rejects any other 5316 * type of narrower access. 5317 */ 5318 *reg_type = info.reg_type; 5319 5320 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5321 *btf = info.btf; 5322 *btf_id = info.btf_id; 5323 } else { 5324 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5325 } 5326 /* remember the offset of last byte accessed in ctx */ 5327 if (env->prog->aux->max_ctx_offset < off + size) 5328 env->prog->aux->max_ctx_offset = off + size; 5329 return 0; 5330 } 5331 5332 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5333 return -EACCES; 5334 } 5335 5336 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5337 int size) 5338 { 5339 if (size < 0 || off < 0 || 5340 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5341 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5342 off, size); 5343 return -EACCES; 5344 } 5345 return 0; 5346 } 5347 5348 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5349 u32 regno, int off, int size, 5350 enum bpf_access_type t) 5351 { 5352 struct bpf_reg_state *regs = cur_regs(env); 5353 struct bpf_reg_state *reg = ®s[regno]; 5354 struct bpf_insn_access_aux info = {}; 5355 bool valid; 5356 5357 if (reg->smin_value < 0) { 5358 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5359 regno); 5360 return -EACCES; 5361 } 5362 5363 switch (reg->type) { 5364 case PTR_TO_SOCK_COMMON: 5365 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5366 break; 5367 case PTR_TO_SOCKET: 5368 valid = bpf_sock_is_valid_access(off, size, t, &info); 5369 break; 5370 case PTR_TO_TCP_SOCK: 5371 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5372 break; 5373 case PTR_TO_XDP_SOCK: 5374 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5375 break; 5376 default: 5377 valid = false; 5378 } 5379 5380 5381 if (valid) { 5382 env->insn_aux_data[insn_idx].ctx_field_size = 5383 info.ctx_field_size; 5384 return 0; 5385 } 5386 5387 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5388 regno, reg_type_str(env, reg->type), off, size); 5389 5390 return -EACCES; 5391 } 5392 5393 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5394 { 5395 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5396 } 5397 5398 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5399 { 5400 const struct bpf_reg_state *reg = reg_state(env, regno); 5401 5402 return reg->type == PTR_TO_CTX; 5403 } 5404 5405 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5406 { 5407 const struct bpf_reg_state *reg = reg_state(env, regno); 5408 5409 return type_is_sk_pointer(reg->type); 5410 } 5411 5412 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5413 { 5414 const struct bpf_reg_state *reg = reg_state(env, regno); 5415 5416 return type_is_pkt_pointer(reg->type); 5417 } 5418 5419 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5420 { 5421 const struct bpf_reg_state *reg = reg_state(env, regno); 5422 5423 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5424 return reg->type == PTR_TO_FLOW_KEYS; 5425 } 5426 5427 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5428 #ifdef CONFIG_NET 5429 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5430 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5431 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5432 #endif 5433 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5434 }; 5435 5436 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5437 { 5438 /* A referenced register is always trusted. */ 5439 if (reg->ref_obj_id) 5440 return true; 5441 5442 /* Types listed in the reg2btf_ids are always trusted */ 5443 if (reg2btf_ids[base_type(reg->type)]) 5444 return true; 5445 5446 /* If a register is not referenced, it is trusted if it has the 5447 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5448 * other type modifiers may be safe, but we elect to take an opt-in 5449 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5450 * not. 5451 * 5452 * Eventually, we should make PTR_TRUSTED the single source of truth 5453 * for whether a register is trusted. 5454 */ 5455 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5456 !bpf_type_has_unsafe_modifiers(reg->type); 5457 } 5458 5459 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5460 { 5461 return reg->type & MEM_RCU; 5462 } 5463 5464 static void clear_trusted_flags(enum bpf_type_flag *flag) 5465 { 5466 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5467 } 5468 5469 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5470 const struct bpf_reg_state *reg, 5471 int off, int size, bool strict) 5472 { 5473 struct tnum reg_off; 5474 int ip_align; 5475 5476 /* Byte size accesses are always allowed. */ 5477 if (!strict || size == 1) 5478 return 0; 5479 5480 /* For platforms that do not have a Kconfig enabling 5481 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5482 * NET_IP_ALIGN is universally set to '2'. And on platforms 5483 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5484 * to this code only in strict mode where we want to emulate 5485 * the NET_IP_ALIGN==2 checking. Therefore use an 5486 * unconditional IP align value of '2'. 5487 */ 5488 ip_align = 2; 5489 5490 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5491 if (!tnum_is_aligned(reg_off, size)) { 5492 char tn_buf[48]; 5493 5494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5495 verbose(env, 5496 "misaligned packet access off %d+%s+%d+%d size %d\n", 5497 ip_align, tn_buf, reg->off, off, size); 5498 return -EACCES; 5499 } 5500 5501 return 0; 5502 } 5503 5504 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5505 const struct bpf_reg_state *reg, 5506 const char *pointer_desc, 5507 int off, int size, bool strict) 5508 { 5509 struct tnum reg_off; 5510 5511 /* Byte size accesses are always allowed. */ 5512 if (!strict || size == 1) 5513 return 0; 5514 5515 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5516 if (!tnum_is_aligned(reg_off, size)) { 5517 char tn_buf[48]; 5518 5519 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5520 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5521 pointer_desc, tn_buf, reg->off, off, size); 5522 return -EACCES; 5523 } 5524 5525 return 0; 5526 } 5527 5528 static int check_ptr_alignment(struct bpf_verifier_env *env, 5529 const struct bpf_reg_state *reg, int off, 5530 int size, bool strict_alignment_once) 5531 { 5532 bool strict = env->strict_alignment || strict_alignment_once; 5533 const char *pointer_desc = ""; 5534 5535 switch (reg->type) { 5536 case PTR_TO_PACKET: 5537 case PTR_TO_PACKET_META: 5538 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5539 * right in front, treat it the very same way. 5540 */ 5541 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5542 case PTR_TO_FLOW_KEYS: 5543 pointer_desc = "flow keys "; 5544 break; 5545 case PTR_TO_MAP_KEY: 5546 pointer_desc = "key "; 5547 break; 5548 case PTR_TO_MAP_VALUE: 5549 pointer_desc = "value "; 5550 break; 5551 case PTR_TO_CTX: 5552 pointer_desc = "context "; 5553 break; 5554 case PTR_TO_STACK: 5555 pointer_desc = "stack "; 5556 /* The stack spill tracking logic in check_stack_write_fixed_off() 5557 * and check_stack_read_fixed_off() relies on stack accesses being 5558 * aligned. 5559 */ 5560 strict = true; 5561 break; 5562 case PTR_TO_SOCKET: 5563 pointer_desc = "sock "; 5564 break; 5565 case PTR_TO_SOCK_COMMON: 5566 pointer_desc = "sock_common "; 5567 break; 5568 case PTR_TO_TCP_SOCK: 5569 pointer_desc = "tcp_sock "; 5570 break; 5571 case PTR_TO_XDP_SOCK: 5572 pointer_desc = "xdp_sock "; 5573 break; 5574 default: 5575 break; 5576 } 5577 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5578 strict); 5579 } 5580 5581 static int update_stack_depth(struct bpf_verifier_env *env, 5582 const struct bpf_func_state *func, 5583 int off) 5584 { 5585 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5586 5587 if (stack >= -off) 5588 return 0; 5589 5590 /* update known max for given subprogram */ 5591 env->subprog_info[func->subprogno].stack_depth = -off; 5592 return 0; 5593 } 5594 5595 /* starting from main bpf function walk all instructions of the function 5596 * and recursively walk all callees that given function can call. 5597 * Ignore jump and exit insns. 5598 * Since recursion is prevented by check_cfg() this algorithm 5599 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5600 */ 5601 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5602 { 5603 struct bpf_subprog_info *subprog = env->subprog_info; 5604 struct bpf_insn *insn = env->prog->insnsi; 5605 int depth = 0, frame = 0, i, subprog_end; 5606 bool tail_call_reachable = false; 5607 int ret_insn[MAX_CALL_FRAMES]; 5608 int ret_prog[MAX_CALL_FRAMES]; 5609 int j; 5610 5611 i = subprog[idx].start; 5612 process_func: 5613 /* protect against potential stack overflow that might happen when 5614 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5615 * depth for such case down to 256 so that the worst case scenario 5616 * would result in 8k stack size (32 which is tailcall limit * 256 = 5617 * 8k). 5618 * 5619 * To get the idea what might happen, see an example: 5620 * func1 -> sub rsp, 128 5621 * subfunc1 -> sub rsp, 256 5622 * tailcall1 -> add rsp, 256 5623 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5624 * subfunc2 -> sub rsp, 64 5625 * subfunc22 -> sub rsp, 128 5626 * tailcall2 -> add rsp, 128 5627 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5628 * 5629 * tailcall will unwind the current stack frame but it will not get rid 5630 * of caller's stack as shown on the example above. 5631 */ 5632 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5633 verbose(env, 5634 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5635 depth); 5636 return -EACCES; 5637 } 5638 /* round up to 32-bytes, since this is granularity 5639 * of interpreter stack size 5640 */ 5641 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5642 if (depth > MAX_BPF_STACK) { 5643 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5644 frame + 1, depth); 5645 return -EACCES; 5646 } 5647 continue_func: 5648 subprog_end = subprog[idx + 1].start; 5649 for (; i < subprog_end; i++) { 5650 int next_insn, sidx; 5651 5652 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5653 continue; 5654 /* remember insn and function to return to */ 5655 ret_insn[frame] = i + 1; 5656 ret_prog[frame] = idx; 5657 5658 /* find the callee */ 5659 next_insn = i + insn[i].imm + 1; 5660 sidx = find_subprog(env, next_insn); 5661 if (sidx < 0) { 5662 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5663 next_insn); 5664 return -EFAULT; 5665 } 5666 if (subprog[sidx].is_async_cb) { 5667 if (subprog[sidx].has_tail_call) { 5668 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5669 return -EFAULT; 5670 } 5671 /* async callbacks don't increase bpf prog stack size unless called directly */ 5672 if (!bpf_pseudo_call(insn + i)) 5673 continue; 5674 } 5675 i = next_insn; 5676 idx = sidx; 5677 5678 if (subprog[idx].has_tail_call) 5679 tail_call_reachable = true; 5680 5681 frame++; 5682 if (frame >= MAX_CALL_FRAMES) { 5683 verbose(env, "the call stack of %d frames is too deep !\n", 5684 frame); 5685 return -E2BIG; 5686 } 5687 goto process_func; 5688 } 5689 /* if tail call got detected across bpf2bpf calls then mark each of the 5690 * currently present subprog frames as tail call reachable subprogs; 5691 * this info will be utilized by JIT so that we will be preserving the 5692 * tail call counter throughout bpf2bpf calls combined with tailcalls 5693 */ 5694 if (tail_call_reachable) 5695 for (j = 0; j < frame; j++) 5696 subprog[ret_prog[j]].tail_call_reachable = true; 5697 if (subprog[0].tail_call_reachable) 5698 env->prog->aux->tail_call_reachable = true; 5699 5700 /* end of for() loop means the last insn of the 'subprog' 5701 * was reached. Doesn't matter whether it was JA or EXIT 5702 */ 5703 if (frame == 0) 5704 return 0; 5705 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5706 frame--; 5707 i = ret_insn[frame]; 5708 idx = ret_prog[frame]; 5709 goto continue_func; 5710 } 5711 5712 static int check_max_stack_depth(struct bpf_verifier_env *env) 5713 { 5714 struct bpf_subprog_info *si = env->subprog_info; 5715 int ret; 5716 5717 for (int i = 0; i < env->subprog_cnt; i++) { 5718 if (!i || si[i].is_async_cb) { 5719 ret = check_max_stack_depth_subprog(env, i); 5720 if (ret < 0) 5721 return ret; 5722 } 5723 continue; 5724 } 5725 return 0; 5726 } 5727 5728 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5729 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5730 const struct bpf_insn *insn, int idx) 5731 { 5732 int start = idx + insn->imm + 1, subprog; 5733 5734 subprog = find_subprog(env, start); 5735 if (subprog < 0) { 5736 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5737 start); 5738 return -EFAULT; 5739 } 5740 return env->subprog_info[subprog].stack_depth; 5741 } 5742 #endif 5743 5744 static int __check_buffer_access(struct bpf_verifier_env *env, 5745 const char *buf_info, 5746 const struct bpf_reg_state *reg, 5747 int regno, int off, int size) 5748 { 5749 if (off < 0) { 5750 verbose(env, 5751 "R%d invalid %s buffer access: off=%d, size=%d\n", 5752 regno, buf_info, off, size); 5753 return -EACCES; 5754 } 5755 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5756 char tn_buf[48]; 5757 5758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5759 verbose(env, 5760 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5761 regno, off, tn_buf); 5762 return -EACCES; 5763 } 5764 5765 return 0; 5766 } 5767 5768 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5769 const struct bpf_reg_state *reg, 5770 int regno, int off, int size) 5771 { 5772 int err; 5773 5774 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5775 if (err) 5776 return err; 5777 5778 if (off + size > env->prog->aux->max_tp_access) 5779 env->prog->aux->max_tp_access = off + size; 5780 5781 return 0; 5782 } 5783 5784 static int check_buffer_access(struct bpf_verifier_env *env, 5785 const struct bpf_reg_state *reg, 5786 int regno, int off, int size, 5787 bool zero_size_allowed, 5788 u32 *max_access) 5789 { 5790 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5791 int err; 5792 5793 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5794 if (err) 5795 return err; 5796 5797 if (off + size > *max_access) 5798 *max_access = off + size; 5799 5800 return 0; 5801 } 5802 5803 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5804 static void zext_32_to_64(struct bpf_reg_state *reg) 5805 { 5806 reg->var_off = tnum_subreg(reg->var_off); 5807 __reg_assign_32_into_64(reg); 5808 } 5809 5810 /* truncate register to smaller size (in bytes) 5811 * must be called with size < BPF_REG_SIZE 5812 */ 5813 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5814 { 5815 u64 mask; 5816 5817 /* clear high bits in bit representation */ 5818 reg->var_off = tnum_cast(reg->var_off, size); 5819 5820 /* fix arithmetic bounds */ 5821 mask = ((u64)1 << (size * 8)) - 1; 5822 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5823 reg->umin_value &= mask; 5824 reg->umax_value &= mask; 5825 } else { 5826 reg->umin_value = 0; 5827 reg->umax_value = mask; 5828 } 5829 reg->smin_value = reg->umin_value; 5830 reg->smax_value = reg->umax_value; 5831 5832 /* If size is smaller than 32bit register the 32bit register 5833 * values are also truncated so we push 64-bit bounds into 5834 * 32-bit bounds. Above were truncated < 32-bits already. 5835 */ 5836 if (size >= 4) 5837 return; 5838 __reg_combine_64_into_32(reg); 5839 } 5840 5841 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5842 { 5843 if (size == 1) { 5844 reg->smin_value = reg->s32_min_value = S8_MIN; 5845 reg->smax_value = reg->s32_max_value = S8_MAX; 5846 } else if (size == 2) { 5847 reg->smin_value = reg->s32_min_value = S16_MIN; 5848 reg->smax_value = reg->s32_max_value = S16_MAX; 5849 } else { 5850 /* size == 4 */ 5851 reg->smin_value = reg->s32_min_value = S32_MIN; 5852 reg->smax_value = reg->s32_max_value = S32_MAX; 5853 } 5854 reg->umin_value = reg->u32_min_value = 0; 5855 reg->umax_value = U64_MAX; 5856 reg->u32_max_value = U32_MAX; 5857 reg->var_off = tnum_unknown; 5858 } 5859 5860 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5861 { 5862 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5863 u64 top_smax_value, top_smin_value; 5864 u64 num_bits = size * 8; 5865 5866 if (tnum_is_const(reg->var_off)) { 5867 u64_cval = reg->var_off.value; 5868 if (size == 1) 5869 reg->var_off = tnum_const((s8)u64_cval); 5870 else if (size == 2) 5871 reg->var_off = tnum_const((s16)u64_cval); 5872 else 5873 /* size == 4 */ 5874 reg->var_off = tnum_const((s32)u64_cval); 5875 5876 u64_cval = reg->var_off.value; 5877 reg->smax_value = reg->smin_value = u64_cval; 5878 reg->umax_value = reg->umin_value = u64_cval; 5879 reg->s32_max_value = reg->s32_min_value = u64_cval; 5880 reg->u32_max_value = reg->u32_min_value = u64_cval; 5881 return; 5882 } 5883 5884 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5885 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5886 5887 if (top_smax_value != top_smin_value) 5888 goto out; 5889 5890 /* find the s64_min and s64_min after sign extension */ 5891 if (size == 1) { 5892 init_s64_max = (s8)reg->smax_value; 5893 init_s64_min = (s8)reg->smin_value; 5894 } else if (size == 2) { 5895 init_s64_max = (s16)reg->smax_value; 5896 init_s64_min = (s16)reg->smin_value; 5897 } else { 5898 init_s64_max = (s32)reg->smax_value; 5899 init_s64_min = (s32)reg->smin_value; 5900 } 5901 5902 s64_max = max(init_s64_max, init_s64_min); 5903 s64_min = min(init_s64_max, init_s64_min); 5904 5905 /* both of s64_max/s64_min positive or negative */ 5906 if ((s64_max >= 0) == (s64_min >= 0)) { 5907 reg->smin_value = reg->s32_min_value = s64_min; 5908 reg->smax_value = reg->s32_max_value = s64_max; 5909 reg->umin_value = reg->u32_min_value = s64_min; 5910 reg->umax_value = reg->u32_max_value = s64_max; 5911 reg->var_off = tnum_range(s64_min, s64_max); 5912 return; 5913 } 5914 5915 out: 5916 set_sext64_default_val(reg, size); 5917 } 5918 5919 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5920 { 5921 if (size == 1) { 5922 reg->s32_min_value = S8_MIN; 5923 reg->s32_max_value = S8_MAX; 5924 } else { 5925 /* size == 2 */ 5926 reg->s32_min_value = S16_MIN; 5927 reg->s32_max_value = S16_MAX; 5928 } 5929 reg->u32_min_value = 0; 5930 reg->u32_max_value = U32_MAX; 5931 } 5932 5933 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5934 { 5935 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5936 u32 top_smax_value, top_smin_value; 5937 u32 num_bits = size * 8; 5938 5939 if (tnum_is_const(reg->var_off)) { 5940 u32_val = reg->var_off.value; 5941 if (size == 1) 5942 reg->var_off = tnum_const((s8)u32_val); 5943 else 5944 reg->var_off = tnum_const((s16)u32_val); 5945 5946 u32_val = reg->var_off.value; 5947 reg->s32_min_value = reg->s32_max_value = u32_val; 5948 reg->u32_min_value = reg->u32_max_value = u32_val; 5949 return; 5950 } 5951 5952 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5953 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5954 5955 if (top_smax_value != top_smin_value) 5956 goto out; 5957 5958 /* find the s32_min and s32_min after sign extension */ 5959 if (size == 1) { 5960 init_s32_max = (s8)reg->s32_max_value; 5961 init_s32_min = (s8)reg->s32_min_value; 5962 } else { 5963 /* size == 2 */ 5964 init_s32_max = (s16)reg->s32_max_value; 5965 init_s32_min = (s16)reg->s32_min_value; 5966 } 5967 s32_max = max(init_s32_max, init_s32_min); 5968 s32_min = min(init_s32_max, init_s32_min); 5969 5970 if ((s32_min >= 0) == (s32_max >= 0)) { 5971 reg->s32_min_value = s32_min; 5972 reg->s32_max_value = s32_max; 5973 reg->u32_min_value = (u32)s32_min; 5974 reg->u32_max_value = (u32)s32_max; 5975 return; 5976 } 5977 5978 out: 5979 set_sext32_default_val(reg, size); 5980 } 5981 5982 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5983 { 5984 /* A map is considered read-only if the following condition are true: 5985 * 5986 * 1) BPF program side cannot change any of the map content. The 5987 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5988 * and was set at map creation time. 5989 * 2) The map value(s) have been initialized from user space by a 5990 * loader and then "frozen", such that no new map update/delete 5991 * operations from syscall side are possible for the rest of 5992 * the map's lifetime from that point onwards. 5993 * 3) Any parallel/pending map update/delete operations from syscall 5994 * side have been completed. Only after that point, it's safe to 5995 * assume that map value(s) are immutable. 5996 */ 5997 return (map->map_flags & BPF_F_RDONLY_PROG) && 5998 READ_ONCE(map->frozen) && 5999 !bpf_map_write_active(map); 6000 } 6001 6002 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6003 bool is_ldsx) 6004 { 6005 void *ptr; 6006 u64 addr; 6007 int err; 6008 6009 err = map->ops->map_direct_value_addr(map, &addr, off); 6010 if (err) 6011 return err; 6012 ptr = (void *)(long)addr + off; 6013 6014 switch (size) { 6015 case sizeof(u8): 6016 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6017 break; 6018 case sizeof(u16): 6019 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6020 break; 6021 case sizeof(u32): 6022 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6023 break; 6024 case sizeof(u64): 6025 *val = *(u64 *)ptr; 6026 break; 6027 default: 6028 return -EINVAL; 6029 } 6030 return 0; 6031 } 6032 6033 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6034 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6035 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6036 6037 /* 6038 * Allow list few fields as RCU trusted or full trusted. 6039 * This logic doesn't allow mix tagging and will be removed once GCC supports 6040 * btf_type_tag. 6041 */ 6042 6043 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6044 BTF_TYPE_SAFE_RCU(struct task_struct) { 6045 const cpumask_t *cpus_ptr; 6046 struct css_set __rcu *cgroups; 6047 struct task_struct __rcu *real_parent; 6048 struct task_struct *group_leader; 6049 }; 6050 6051 BTF_TYPE_SAFE_RCU(struct cgroup) { 6052 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6053 struct kernfs_node *kn; 6054 }; 6055 6056 BTF_TYPE_SAFE_RCU(struct css_set) { 6057 struct cgroup *dfl_cgrp; 6058 }; 6059 6060 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6061 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6062 struct file __rcu *exe_file; 6063 }; 6064 6065 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6066 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6067 */ 6068 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6069 struct sock *sk; 6070 }; 6071 6072 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6073 struct sock *sk; 6074 }; 6075 6076 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6077 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6078 struct seq_file *seq; 6079 }; 6080 6081 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6082 struct bpf_iter_meta *meta; 6083 struct task_struct *task; 6084 }; 6085 6086 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6087 struct file *file; 6088 }; 6089 6090 BTF_TYPE_SAFE_TRUSTED(struct file) { 6091 struct inode *f_inode; 6092 }; 6093 6094 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6095 /* no negative dentry-s in places where bpf can see it */ 6096 struct inode *d_inode; 6097 }; 6098 6099 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6100 struct sock *sk; 6101 }; 6102 6103 static bool type_is_rcu(struct bpf_verifier_env *env, 6104 struct bpf_reg_state *reg, 6105 const char *field_name, u32 btf_id) 6106 { 6107 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6108 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6109 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6110 6111 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6112 } 6113 6114 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6115 struct bpf_reg_state *reg, 6116 const char *field_name, u32 btf_id) 6117 { 6118 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6119 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6120 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6121 6122 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6123 } 6124 6125 static bool type_is_trusted(struct bpf_verifier_env *env, 6126 struct bpf_reg_state *reg, 6127 const char *field_name, u32 btf_id) 6128 { 6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6131 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6132 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6133 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6134 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6135 6136 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6137 } 6138 6139 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6140 struct bpf_reg_state *regs, 6141 int regno, int off, int size, 6142 enum bpf_access_type atype, 6143 int value_regno) 6144 { 6145 struct bpf_reg_state *reg = regs + regno; 6146 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6147 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6148 const char *field_name = NULL; 6149 enum bpf_type_flag flag = 0; 6150 u32 btf_id = 0; 6151 int ret; 6152 6153 if (!env->allow_ptr_leaks) { 6154 verbose(env, 6155 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6156 tname); 6157 return -EPERM; 6158 } 6159 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6160 verbose(env, 6161 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6162 tname); 6163 return -EINVAL; 6164 } 6165 if (off < 0) { 6166 verbose(env, 6167 "R%d is ptr_%s invalid negative access: off=%d\n", 6168 regno, tname, off); 6169 return -EACCES; 6170 } 6171 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6172 char tn_buf[48]; 6173 6174 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6175 verbose(env, 6176 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6177 regno, tname, off, tn_buf); 6178 return -EACCES; 6179 } 6180 6181 if (reg->type & MEM_USER) { 6182 verbose(env, 6183 "R%d is ptr_%s access user memory: off=%d\n", 6184 regno, tname, off); 6185 return -EACCES; 6186 } 6187 6188 if (reg->type & MEM_PERCPU) { 6189 verbose(env, 6190 "R%d is ptr_%s access percpu memory: off=%d\n", 6191 regno, tname, off); 6192 return -EACCES; 6193 } 6194 6195 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6196 if (!btf_is_kernel(reg->btf)) { 6197 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6198 return -EFAULT; 6199 } 6200 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6201 } else { 6202 /* Writes are permitted with default btf_struct_access for 6203 * program allocated objects (which always have ref_obj_id > 0), 6204 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6205 */ 6206 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6207 verbose(env, "only read is supported\n"); 6208 return -EACCES; 6209 } 6210 6211 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6212 !reg->ref_obj_id) { 6213 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6214 return -EFAULT; 6215 } 6216 6217 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6218 } 6219 6220 if (ret < 0) 6221 return ret; 6222 6223 if (ret != PTR_TO_BTF_ID) { 6224 /* just mark; */ 6225 6226 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6227 /* If this is an untrusted pointer, all pointers formed by walking it 6228 * also inherit the untrusted flag. 6229 */ 6230 flag = PTR_UNTRUSTED; 6231 6232 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6233 /* By default any pointer obtained from walking a trusted pointer is no 6234 * longer trusted, unless the field being accessed has explicitly been 6235 * marked as inheriting its parent's state of trust (either full or RCU). 6236 * For example: 6237 * 'cgroups' pointer is untrusted if task->cgroups dereference 6238 * happened in a sleepable program outside of bpf_rcu_read_lock() 6239 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6240 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6241 * 6242 * A regular RCU-protected pointer with __rcu tag can also be deemed 6243 * trusted if we are in an RCU CS. Such pointer can be NULL. 6244 */ 6245 if (type_is_trusted(env, reg, field_name, btf_id)) { 6246 flag |= PTR_TRUSTED; 6247 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6248 if (type_is_rcu(env, reg, field_name, btf_id)) { 6249 /* ignore __rcu tag and mark it MEM_RCU */ 6250 flag |= MEM_RCU; 6251 } else if (flag & MEM_RCU || 6252 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6253 /* __rcu tagged pointers can be NULL */ 6254 flag |= MEM_RCU | PTR_MAYBE_NULL; 6255 6256 /* We always trust them */ 6257 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6258 flag & PTR_UNTRUSTED) 6259 flag &= ~PTR_UNTRUSTED; 6260 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6261 /* keep as-is */ 6262 } else { 6263 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6264 clear_trusted_flags(&flag); 6265 } 6266 } else { 6267 /* 6268 * If not in RCU CS or MEM_RCU pointer can be NULL then 6269 * aggressively mark as untrusted otherwise such 6270 * pointers will be plain PTR_TO_BTF_ID without flags 6271 * and will be allowed to be passed into helpers for 6272 * compat reasons. 6273 */ 6274 flag = PTR_UNTRUSTED; 6275 } 6276 } else { 6277 /* Old compat. Deprecated */ 6278 clear_trusted_flags(&flag); 6279 } 6280 6281 if (atype == BPF_READ && value_regno >= 0) 6282 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6283 6284 return 0; 6285 } 6286 6287 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6288 struct bpf_reg_state *regs, 6289 int regno, int off, int size, 6290 enum bpf_access_type atype, 6291 int value_regno) 6292 { 6293 struct bpf_reg_state *reg = regs + regno; 6294 struct bpf_map *map = reg->map_ptr; 6295 struct bpf_reg_state map_reg; 6296 enum bpf_type_flag flag = 0; 6297 const struct btf_type *t; 6298 const char *tname; 6299 u32 btf_id; 6300 int ret; 6301 6302 if (!btf_vmlinux) { 6303 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6304 return -ENOTSUPP; 6305 } 6306 6307 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6308 verbose(env, "map_ptr access not supported for map type %d\n", 6309 map->map_type); 6310 return -ENOTSUPP; 6311 } 6312 6313 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6314 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6315 6316 if (!env->allow_ptr_leaks) { 6317 verbose(env, 6318 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6319 tname); 6320 return -EPERM; 6321 } 6322 6323 if (off < 0) { 6324 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6325 regno, tname, off); 6326 return -EACCES; 6327 } 6328 6329 if (atype != BPF_READ) { 6330 verbose(env, "only read from %s is supported\n", tname); 6331 return -EACCES; 6332 } 6333 6334 /* Simulate access to a PTR_TO_BTF_ID */ 6335 memset(&map_reg, 0, sizeof(map_reg)); 6336 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6337 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6338 if (ret < 0) 6339 return ret; 6340 6341 if (value_regno >= 0) 6342 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6343 6344 return 0; 6345 } 6346 6347 /* Check that the stack access at the given offset is within bounds. The 6348 * maximum valid offset is -1. 6349 * 6350 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6351 * -state->allocated_stack for reads. 6352 */ 6353 static int check_stack_slot_within_bounds(int off, 6354 struct bpf_func_state *state, 6355 enum bpf_access_type t) 6356 { 6357 int min_valid_off; 6358 6359 if (t == BPF_WRITE) 6360 min_valid_off = -MAX_BPF_STACK; 6361 else 6362 min_valid_off = -state->allocated_stack; 6363 6364 if (off < min_valid_off || off > -1) 6365 return -EACCES; 6366 return 0; 6367 } 6368 6369 /* Check that the stack access at 'regno + off' falls within the maximum stack 6370 * bounds. 6371 * 6372 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6373 */ 6374 static int check_stack_access_within_bounds( 6375 struct bpf_verifier_env *env, 6376 int regno, int off, int access_size, 6377 enum bpf_access_src src, enum bpf_access_type type) 6378 { 6379 struct bpf_reg_state *regs = cur_regs(env); 6380 struct bpf_reg_state *reg = regs + regno; 6381 struct bpf_func_state *state = func(env, reg); 6382 int min_off, max_off; 6383 int err; 6384 char *err_extra; 6385 6386 if (src == ACCESS_HELPER) 6387 /* We don't know if helpers are reading or writing (or both). */ 6388 err_extra = " indirect access to"; 6389 else if (type == BPF_READ) 6390 err_extra = " read from"; 6391 else 6392 err_extra = " write to"; 6393 6394 if (tnum_is_const(reg->var_off)) { 6395 min_off = reg->var_off.value + off; 6396 if (access_size > 0) 6397 max_off = min_off + access_size - 1; 6398 else 6399 max_off = min_off; 6400 } else { 6401 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6402 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6403 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6404 err_extra, regno); 6405 return -EACCES; 6406 } 6407 min_off = reg->smin_value + off; 6408 if (access_size > 0) 6409 max_off = reg->smax_value + off + access_size - 1; 6410 else 6411 max_off = min_off; 6412 } 6413 6414 err = check_stack_slot_within_bounds(min_off, state, type); 6415 if (!err) 6416 err = check_stack_slot_within_bounds(max_off, state, type); 6417 6418 if (err) { 6419 if (tnum_is_const(reg->var_off)) { 6420 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6421 err_extra, regno, off, access_size); 6422 } else { 6423 char tn_buf[48]; 6424 6425 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6426 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6427 err_extra, regno, tn_buf, access_size); 6428 } 6429 } 6430 return err; 6431 } 6432 6433 /* check whether memory at (regno + off) is accessible for t = (read | write) 6434 * if t==write, value_regno is a register which value is stored into memory 6435 * if t==read, value_regno is a register which will receive the value from memory 6436 * if t==write && value_regno==-1, some unknown value is stored into memory 6437 * if t==read && value_regno==-1, don't care what we read from memory 6438 */ 6439 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6440 int off, int bpf_size, enum bpf_access_type t, 6441 int value_regno, bool strict_alignment_once, bool is_ldsx) 6442 { 6443 struct bpf_reg_state *regs = cur_regs(env); 6444 struct bpf_reg_state *reg = regs + regno; 6445 struct bpf_func_state *state; 6446 int size, err = 0; 6447 6448 size = bpf_size_to_bytes(bpf_size); 6449 if (size < 0) 6450 return size; 6451 6452 /* alignment checks will add in reg->off themselves */ 6453 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6454 if (err) 6455 return err; 6456 6457 /* for access checks, reg->off is just part of off */ 6458 off += reg->off; 6459 6460 if (reg->type == PTR_TO_MAP_KEY) { 6461 if (t == BPF_WRITE) { 6462 verbose(env, "write to change key R%d not allowed\n", regno); 6463 return -EACCES; 6464 } 6465 6466 err = check_mem_region_access(env, regno, off, size, 6467 reg->map_ptr->key_size, false); 6468 if (err) 6469 return err; 6470 if (value_regno >= 0) 6471 mark_reg_unknown(env, regs, value_regno); 6472 } else if (reg->type == PTR_TO_MAP_VALUE) { 6473 struct btf_field *kptr_field = NULL; 6474 6475 if (t == BPF_WRITE && value_regno >= 0 && 6476 is_pointer_value(env, value_regno)) { 6477 verbose(env, "R%d leaks addr into map\n", value_regno); 6478 return -EACCES; 6479 } 6480 err = check_map_access_type(env, regno, off, size, t); 6481 if (err) 6482 return err; 6483 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6484 if (err) 6485 return err; 6486 if (tnum_is_const(reg->var_off)) 6487 kptr_field = btf_record_find(reg->map_ptr->record, 6488 off + reg->var_off.value, BPF_KPTR); 6489 if (kptr_field) { 6490 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6491 } else if (t == BPF_READ && value_regno >= 0) { 6492 struct bpf_map *map = reg->map_ptr; 6493 6494 /* if map is read-only, track its contents as scalars */ 6495 if (tnum_is_const(reg->var_off) && 6496 bpf_map_is_rdonly(map) && 6497 map->ops->map_direct_value_addr) { 6498 int map_off = off + reg->var_off.value; 6499 u64 val = 0; 6500 6501 err = bpf_map_direct_read(map, map_off, size, 6502 &val, is_ldsx); 6503 if (err) 6504 return err; 6505 6506 regs[value_regno].type = SCALAR_VALUE; 6507 __mark_reg_known(®s[value_regno], val); 6508 } else { 6509 mark_reg_unknown(env, regs, value_regno); 6510 } 6511 } 6512 } else if (base_type(reg->type) == PTR_TO_MEM) { 6513 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6514 6515 if (type_may_be_null(reg->type)) { 6516 verbose(env, "R%d invalid mem access '%s'\n", regno, 6517 reg_type_str(env, reg->type)); 6518 return -EACCES; 6519 } 6520 6521 if (t == BPF_WRITE && rdonly_mem) { 6522 verbose(env, "R%d cannot write into %s\n", 6523 regno, reg_type_str(env, reg->type)); 6524 return -EACCES; 6525 } 6526 6527 if (t == BPF_WRITE && value_regno >= 0 && 6528 is_pointer_value(env, value_regno)) { 6529 verbose(env, "R%d leaks addr into mem\n", value_regno); 6530 return -EACCES; 6531 } 6532 6533 err = check_mem_region_access(env, regno, off, size, 6534 reg->mem_size, false); 6535 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6536 mark_reg_unknown(env, regs, value_regno); 6537 } else if (reg->type == PTR_TO_CTX) { 6538 enum bpf_reg_type reg_type = SCALAR_VALUE; 6539 struct btf *btf = NULL; 6540 u32 btf_id = 0; 6541 6542 if (t == BPF_WRITE && value_regno >= 0 && 6543 is_pointer_value(env, value_regno)) { 6544 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6545 return -EACCES; 6546 } 6547 6548 err = check_ptr_off_reg(env, reg, regno); 6549 if (err < 0) 6550 return err; 6551 6552 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6553 &btf_id); 6554 if (err) 6555 verbose_linfo(env, insn_idx, "; "); 6556 if (!err && t == BPF_READ && value_regno >= 0) { 6557 /* ctx access returns either a scalar, or a 6558 * PTR_TO_PACKET[_META,_END]. In the latter 6559 * case, we know the offset is zero. 6560 */ 6561 if (reg_type == SCALAR_VALUE) { 6562 mark_reg_unknown(env, regs, value_regno); 6563 } else { 6564 mark_reg_known_zero(env, regs, 6565 value_regno); 6566 if (type_may_be_null(reg_type)) 6567 regs[value_regno].id = ++env->id_gen; 6568 /* A load of ctx field could have different 6569 * actual load size with the one encoded in the 6570 * insn. When the dst is PTR, it is for sure not 6571 * a sub-register. 6572 */ 6573 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6574 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6575 regs[value_regno].btf = btf; 6576 regs[value_regno].btf_id = btf_id; 6577 } 6578 } 6579 regs[value_regno].type = reg_type; 6580 } 6581 6582 } else if (reg->type == PTR_TO_STACK) { 6583 /* Basic bounds checks. */ 6584 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6585 if (err) 6586 return err; 6587 6588 state = func(env, reg); 6589 err = update_stack_depth(env, state, off); 6590 if (err) 6591 return err; 6592 6593 if (t == BPF_READ) 6594 err = check_stack_read(env, regno, off, size, 6595 value_regno); 6596 else 6597 err = check_stack_write(env, regno, off, size, 6598 value_regno, insn_idx); 6599 } else if (reg_is_pkt_pointer(reg)) { 6600 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6601 verbose(env, "cannot write into packet\n"); 6602 return -EACCES; 6603 } 6604 if (t == BPF_WRITE && value_regno >= 0 && 6605 is_pointer_value(env, value_regno)) { 6606 verbose(env, "R%d leaks addr into packet\n", 6607 value_regno); 6608 return -EACCES; 6609 } 6610 err = check_packet_access(env, regno, off, size, false); 6611 if (!err && t == BPF_READ && value_regno >= 0) 6612 mark_reg_unknown(env, regs, value_regno); 6613 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6614 if (t == BPF_WRITE && value_regno >= 0 && 6615 is_pointer_value(env, value_regno)) { 6616 verbose(env, "R%d leaks addr into flow keys\n", 6617 value_regno); 6618 return -EACCES; 6619 } 6620 6621 err = check_flow_keys_access(env, off, size); 6622 if (!err && t == BPF_READ && value_regno >= 0) 6623 mark_reg_unknown(env, regs, value_regno); 6624 } else if (type_is_sk_pointer(reg->type)) { 6625 if (t == BPF_WRITE) { 6626 verbose(env, "R%d cannot write into %s\n", 6627 regno, reg_type_str(env, reg->type)); 6628 return -EACCES; 6629 } 6630 err = check_sock_access(env, insn_idx, regno, off, size, t); 6631 if (!err && value_regno >= 0) 6632 mark_reg_unknown(env, regs, value_regno); 6633 } else if (reg->type == PTR_TO_TP_BUFFER) { 6634 err = check_tp_buffer_access(env, reg, regno, off, size); 6635 if (!err && t == BPF_READ && value_regno >= 0) 6636 mark_reg_unknown(env, regs, value_regno); 6637 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6638 !type_may_be_null(reg->type)) { 6639 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6640 value_regno); 6641 } else if (reg->type == CONST_PTR_TO_MAP) { 6642 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6643 value_regno); 6644 } else if (base_type(reg->type) == PTR_TO_BUF) { 6645 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6646 u32 *max_access; 6647 6648 if (rdonly_mem) { 6649 if (t == BPF_WRITE) { 6650 verbose(env, "R%d cannot write into %s\n", 6651 regno, reg_type_str(env, reg->type)); 6652 return -EACCES; 6653 } 6654 max_access = &env->prog->aux->max_rdonly_access; 6655 } else { 6656 max_access = &env->prog->aux->max_rdwr_access; 6657 } 6658 6659 err = check_buffer_access(env, reg, regno, off, size, false, 6660 max_access); 6661 6662 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6663 mark_reg_unknown(env, regs, value_regno); 6664 } else { 6665 verbose(env, "R%d invalid mem access '%s'\n", regno, 6666 reg_type_str(env, reg->type)); 6667 return -EACCES; 6668 } 6669 6670 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6671 regs[value_regno].type == SCALAR_VALUE) { 6672 if (!is_ldsx) 6673 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6674 coerce_reg_to_size(®s[value_regno], size); 6675 else 6676 coerce_reg_to_size_sx(®s[value_regno], size); 6677 } 6678 return err; 6679 } 6680 6681 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6682 { 6683 int load_reg; 6684 int err; 6685 6686 switch (insn->imm) { 6687 case BPF_ADD: 6688 case BPF_ADD | BPF_FETCH: 6689 case BPF_AND: 6690 case BPF_AND | BPF_FETCH: 6691 case BPF_OR: 6692 case BPF_OR | BPF_FETCH: 6693 case BPF_XOR: 6694 case BPF_XOR | BPF_FETCH: 6695 case BPF_XCHG: 6696 case BPF_CMPXCHG: 6697 break; 6698 default: 6699 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6700 return -EINVAL; 6701 } 6702 6703 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6704 verbose(env, "invalid atomic operand size\n"); 6705 return -EINVAL; 6706 } 6707 6708 /* check src1 operand */ 6709 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6710 if (err) 6711 return err; 6712 6713 /* check src2 operand */ 6714 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6715 if (err) 6716 return err; 6717 6718 if (insn->imm == BPF_CMPXCHG) { 6719 /* Check comparison of R0 with memory location */ 6720 const u32 aux_reg = BPF_REG_0; 6721 6722 err = check_reg_arg(env, aux_reg, SRC_OP); 6723 if (err) 6724 return err; 6725 6726 if (is_pointer_value(env, aux_reg)) { 6727 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6728 return -EACCES; 6729 } 6730 } 6731 6732 if (is_pointer_value(env, insn->src_reg)) { 6733 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6734 return -EACCES; 6735 } 6736 6737 if (is_ctx_reg(env, insn->dst_reg) || 6738 is_pkt_reg(env, insn->dst_reg) || 6739 is_flow_key_reg(env, insn->dst_reg) || 6740 is_sk_reg(env, insn->dst_reg)) { 6741 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6742 insn->dst_reg, 6743 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6744 return -EACCES; 6745 } 6746 6747 if (insn->imm & BPF_FETCH) { 6748 if (insn->imm == BPF_CMPXCHG) 6749 load_reg = BPF_REG_0; 6750 else 6751 load_reg = insn->src_reg; 6752 6753 /* check and record load of old value */ 6754 err = check_reg_arg(env, load_reg, DST_OP); 6755 if (err) 6756 return err; 6757 } else { 6758 /* This instruction accesses a memory location but doesn't 6759 * actually load it into a register. 6760 */ 6761 load_reg = -1; 6762 } 6763 6764 /* Check whether we can read the memory, with second call for fetch 6765 * case to simulate the register fill. 6766 */ 6767 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6768 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6769 if (!err && load_reg >= 0) 6770 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6771 BPF_SIZE(insn->code), BPF_READ, load_reg, 6772 true, false); 6773 if (err) 6774 return err; 6775 6776 /* Check whether we can write into the same memory. */ 6777 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6778 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6779 if (err) 6780 return err; 6781 6782 return 0; 6783 } 6784 6785 /* When register 'regno' is used to read the stack (either directly or through 6786 * a helper function) make sure that it's within stack boundary and, depending 6787 * on the access type, that all elements of the stack are initialized. 6788 * 6789 * 'off' includes 'regno->off', but not its dynamic part (if any). 6790 * 6791 * All registers that have been spilled on the stack in the slots within the 6792 * read offsets are marked as read. 6793 */ 6794 static int check_stack_range_initialized( 6795 struct bpf_verifier_env *env, int regno, int off, 6796 int access_size, bool zero_size_allowed, 6797 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6798 { 6799 struct bpf_reg_state *reg = reg_state(env, regno); 6800 struct bpf_func_state *state = func(env, reg); 6801 int err, min_off, max_off, i, j, slot, spi; 6802 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6803 enum bpf_access_type bounds_check_type; 6804 /* Some accesses can write anything into the stack, others are 6805 * read-only. 6806 */ 6807 bool clobber = false; 6808 6809 if (access_size == 0 && !zero_size_allowed) { 6810 verbose(env, "invalid zero-sized read\n"); 6811 return -EACCES; 6812 } 6813 6814 if (type == ACCESS_HELPER) { 6815 /* The bounds checks for writes are more permissive than for 6816 * reads. However, if raw_mode is not set, we'll do extra 6817 * checks below. 6818 */ 6819 bounds_check_type = BPF_WRITE; 6820 clobber = true; 6821 } else { 6822 bounds_check_type = BPF_READ; 6823 } 6824 err = check_stack_access_within_bounds(env, regno, off, access_size, 6825 type, bounds_check_type); 6826 if (err) 6827 return err; 6828 6829 6830 if (tnum_is_const(reg->var_off)) { 6831 min_off = max_off = reg->var_off.value + off; 6832 } else { 6833 /* Variable offset is prohibited for unprivileged mode for 6834 * simplicity since it requires corresponding support in 6835 * Spectre masking for stack ALU. 6836 * See also retrieve_ptr_limit(). 6837 */ 6838 if (!env->bypass_spec_v1) { 6839 char tn_buf[48]; 6840 6841 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6842 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6843 regno, err_extra, tn_buf); 6844 return -EACCES; 6845 } 6846 /* Only initialized buffer on stack is allowed to be accessed 6847 * with variable offset. With uninitialized buffer it's hard to 6848 * guarantee that whole memory is marked as initialized on 6849 * helper return since specific bounds are unknown what may 6850 * cause uninitialized stack leaking. 6851 */ 6852 if (meta && meta->raw_mode) 6853 meta = NULL; 6854 6855 min_off = reg->smin_value + off; 6856 max_off = reg->smax_value + off; 6857 } 6858 6859 if (meta && meta->raw_mode) { 6860 /* Ensure we won't be overwriting dynptrs when simulating byte 6861 * by byte access in check_helper_call using meta.access_size. 6862 * This would be a problem if we have a helper in the future 6863 * which takes: 6864 * 6865 * helper(uninit_mem, len, dynptr) 6866 * 6867 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6868 * may end up writing to dynptr itself when touching memory from 6869 * arg 1. This can be relaxed on a case by case basis for known 6870 * safe cases, but reject due to the possibilitiy of aliasing by 6871 * default. 6872 */ 6873 for (i = min_off; i < max_off + access_size; i++) { 6874 int stack_off = -i - 1; 6875 6876 spi = __get_spi(i); 6877 /* raw_mode may write past allocated_stack */ 6878 if (state->allocated_stack <= stack_off) 6879 continue; 6880 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6881 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6882 return -EACCES; 6883 } 6884 } 6885 meta->access_size = access_size; 6886 meta->regno = regno; 6887 return 0; 6888 } 6889 6890 for (i = min_off; i < max_off + access_size; i++) { 6891 u8 *stype; 6892 6893 slot = -i - 1; 6894 spi = slot / BPF_REG_SIZE; 6895 if (state->allocated_stack <= slot) 6896 goto err; 6897 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6898 if (*stype == STACK_MISC) 6899 goto mark; 6900 if ((*stype == STACK_ZERO) || 6901 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6902 if (clobber) { 6903 /* helper can write anything into the stack */ 6904 *stype = STACK_MISC; 6905 } 6906 goto mark; 6907 } 6908 6909 if (is_spilled_reg(&state->stack[spi]) && 6910 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6911 env->allow_ptr_leaks)) { 6912 if (clobber) { 6913 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6914 for (j = 0; j < BPF_REG_SIZE; j++) 6915 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6916 } 6917 goto mark; 6918 } 6919 6920 err: 6921 if (tnum_is_const(reg->var_off)) { 6922 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6923 err_extra, regno, min_off, i - min_off, access_size); 6924 } else { 6925 char tn_buf[48]; 6926 6927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6928 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6929 err_extra, regno, tn_buf, i - min_off, access_size); 6930 } 6931 return -EACCES; 6932 mark: 6933 /* reading any byte out of 8-byte 'spill_slot' will cause 6934 * the whole slot to be marked as 'read' 6935 */ 6936 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6937 state->stack[spi].spilled_ptr.parent, 6938 REG_LIVE_READ64); 6939 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6940 * be sure that whether stack slot is written to or not. Hence, 6941 * we must still conservatively propagate reads upwards even if 6942 * helper may write to the entire memory range. 6943 */ 6944 } 6945 return update_stack_depth(env, state, min_off); 6946 } 6947 6948 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6949 int access_size, bool zero_size_allowed, 6950 struct bpf_call_arg_meta *meta) 6951 { 6952 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6953 u32 *max_access; 6954 6955 switch (base_type(reg->type)) { 6956 case PTR_TO_PACKET: 6957 case PTR_TO_PACKET_META: 6958 return check_packet_access(env, regno, reg->off, access_size, 6959 zero_size_allowed); 6960 case PTR_TO_MAP_KEY: 6961 if (meta && meta->raw_mode) { 6962 verbose(env, "R%d cannot write into %s\n", regno, 6963 reg_type_str(env, reg->type)); 6964 return -EACCES; 6965 } 6966 return check_mem_region_access(env, regno, reg->off, access_size, 6967 reg->map_ptr->key_size, false); 6968 case PTR_TO_MAP_VALUE: 6969 if (check_map_access_type(env, regno, reg->off, access_size, 6970 meta && meta->raw_mode ? BPF_WRITE : 6971 BPF_READ)) 6972 return -EACCES; 6973 return check_map_access(env, regno, reg->off, access_size, 6974 zero_size_allowed, ACCESS_HELPER); 6975 case PTR_TO_MEM: 6976 if (type_is_rdonly_mem(reg->type)) { 6977 if (meta && meta->raw_mode) { 6978 verbose(env, "R%d cannot write into %s\n", regno, 6979 reg_type_str(env, reg->type)); 6980 return -EACCES; 6981 } 6982 } 6983 return check_mem_region_access(env, regno, reg->off, 6984 access_size, reg->mem_size, 6985 zero_size_allowed); 6986 case PTR_TO_BUF: 6987 if (type_is_rdonly_mem(reg->type)) { 6988 if (meta && meta->raw_mode) { 6989 verbose(env, "R%d cannot write into %s\n", regno, 6990 reg_type_str(env, reg->type)); 6991 return -EACCES; 6992 } 6993 6994 max_access = &env->prog->aux->max_rdonly_access; 6995 } else { 6996 max_access = &env->prog->aux->max_rdwr_access; 6997 } 6998 return check_buffer_access(env, reg, regno, reg->off, 6999 access_size, zero_size_allowed, 7000 max_access); 7001 case PTR_TO_STACK: 7002 return check_stack_range_initialized( 7003 env, 7004 regno, reg->off, access_size, 7005 zero_size_allowed, ACCESS_HELPER, meta); 7006 case PTR_TO_BTF_ID: 7007 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7008 access_size, BPF_READ, -1); 7009 case PTR_TO_CTX: 7010 /* in case the function doesn't know how to access the context, 7011 * (because we are in a program of type SYSCALL for example), we 7012 * can not statically check its size. 7013 * Dynamically check it now. 7014 */ 7015 if (!env->ops->convert_ctx_access) { 7016 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7017 int offset = access_size - 1; 7018 7019 /* Allow zero-byte read from PTR_TO_CTX */ 7020 if (access_size == 0) 7021 return zero_size_allowed ? 0 : -EACCES; 7022 7023 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7024 atype, -1, false, false); 7025 } 7026 7027 fallthrough; 7028 default: /* scalar_value or invalid ptr */ 7029 /* Allow zero-byte read from NULL, regardless of pointer type */ 7030 if (zero_size_allowed && access_size == 0 && 7031 register_is_null(reg)) 7032 return 0; 7033 7034 verbose(env, "R%d type=%s ", regno, 7035 reg_type_str(env, reg->type)); 7036 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7037 return -EACCES; 7038 } 7039 } 7040 7041 static int check_mem_size_reg(struct bpf_verifier_env *env, 7042 struct bpf_reg_state *reg, u32 regno, 7043 bool zero_size_allowed, 7044 struct bpf_call_arg_meta *meta) 7045 { 7046 int err; 7047 7048 /* This is used to refine r0 return value bounds for helpers 7049 * that enforce this value as an upper bound on return values. 7050 * See do_refine_retval_range() for helpers that can refine 7051 * the return value. C type of helper is u32 so we pull register 7052 * bound from umax_value however, if negative verifier errors 7053 * out. Only upper bounds can be learned because retval is an 7054 * int type and negative retvals are allowed. 7055 */ 7056 meta->msize_max_value = reg->umax_value; 7057 7058 /* The register is SCALAR_VALUE; the access check 7059 * happens using its boundaries. 7060 */ 7061 if (!tnum_is_const(reg->var_off)) 7062 /* For unprivileged variable accesses, disable raw 7063 * mode so that the program is required to 7064 * initialize all the memory that the helper could 7065 * just partially fill up. 7066 */ 7067 meta = NULL; 7068 7069 if (reg->smin_value < 0) { 7070 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7071 regno); 7072 return -EACCES; 7073 } 7074 7075 if (reg->umin_value == 0) { 7076 err = check_helper_mem_access(env, regno - 1, 0, 7077 zero_size_allowed, 7078 meta); 7079 if (err) 7080 return err; 7081 } 7082 7083 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7084 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7085 regno); 7086 return -EACCES; 7087 } 7088 err = check_helper_mem_access(env, regno - 1, 7089 reg->umax_value, 7090 zero_size_allowed, meta); 7091 if (!err) 7092 err = mark_chain_precision(env, regno); 7093 return err; 7094 } 7095 7096 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7097 u32 regno, u32 mem_size) 7098 { 7099 bool may_be_null = type_may_be_null(reg->type); 7100 struct bpf_reg_state saved_reg; 7101 struct bpf_call_arg_meta meta; 7102 int err; 7103 7104 if (register_is_null(reg)) 7105 return 0; 7106 7107 memset(&meta, 0, sizeof(meta)); 7108 /* Assuming that the register contains a value check if the memory 7109 * access is safe. Temporarily save and restore the register's state as 7110 * the conversion shouldn't be visible to a caller. 7111 */ 7112 if (may_be_null) { 7113 saved_reg = *reg; 7114 mark_ptr_not_null_reg(reg); 7115 } 7116 7117 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7118 /* Check access for BPF_WRITE */ 7119 meta.raw_mode = true; 7120 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7121 7122 if (may_be_null) 7123 *reg = saved_reg; 7124 7125 return err; 7126 } 7127 7128 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7129 u32 regno) 7130 { 7131 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7132 bool may_be_null = type_may_be_null(mem_reg->type); 7133 struct bpf_reg_state saved_reg; 7134 struct bpf_call_arg_meta meta; 7135 int err; 7136 7137 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7138 7139 memset(&meta, 0, sizeof(meta)); 7140 7141 if (may_be_null) { 7142 saved_reg = *mem_reg; 7143 mark_ptr_not_null_reg(mem_reg); 7144 } 7145 7146 err = check_mem_size_reg(env, reg, regno, true, &meta); 7147 /* Check access for BPF_WRITE */ 7148 meta.raw_mode = true; 7149 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7150 7151 if (may_be_null) 7152 *mem_reg = saved_reg; 7153 return err; 7154 } 7155 7156 /* Implementation details: 7157 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7158 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7159 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7160 * Two separate bpf_obj_new will also have different reg->id. 7161 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7162 * clears reg->id after value_or_null->value transition, since the verifier only 7163 * cares about the range of access to valid map value pointer and doesn't care 7164 * about actual address of the map element. 7165 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7166 * reg->id > 0 after value_or_null->value transition. By doing so 7167 * two bpf_map_lookups will be considered two different pointers that 7168 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7169 * returned from bpf_obj_new. 7170 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7171 * dead-locks. 7172 * Since only one bpf_spin_lock is allowed the checks are simpler than 7173 * reg_is_refcounted() logic. The verifier needs to remember only 7174 * one spin_lock instead of array of acquired_refs. 7175 * cur_state->active_lock remembers which map value element or allocated 7176 * object got locked and clears it after bpf_spin_unlock. 7177 */ 7178 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7179 bool is_lock) 7180 { 7181 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7182 struct bpf_verifier_state *cur = env->cur_state; 7183 bool is_const = tnum_is_const(reg->var_off); 7184 u64 val = reg->var_off.value; 7185 struct bpf_map *map = NULL; 7186 struct btf *btf = NULL; 7187 struct btf_record *rec; 7188 7189 if (!is_const) { 7190 verbose(env, 7191 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7192 regno); 7193 return -EINVAL; 7194 } 7195 if (reg->type == PTR_TO_MAP_VALUE) { 7196 map = reg->map_ptr; 7197 if (!map->btf) { 7198 verbose(env, 7199 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7200 map->name); 7201 return -EINVAL; 7202 } 7203 } else { 7204 btf = reg->btf; 7205 } 7206 7207 rec = reg_btf_record(reg); 7208 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7209 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7210 map ? map->name : "kptr"); 7211 return -EINVAL; 7212 } 7213 if (rec->spin_lock_off != val + reg->off) { 7214 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7215 val + reg->off, rec->spin_lock_off); 7216 return -EINVAL; 7217 } 7218 if (is_lock) { 7219 if (cur->active_lock.ptr) { 7220 verbose(env, 7221 "Locking two bpf_spin_locks are not allowed\n"); 7222 return -EINVAL; 7223 } 7224 if (map) 7225 cur->active_lock.ptr = map; 7226 else 7227 cur->active_lock.ptr = btf; 7228 cur->active_lock.id = reg->id; 7229 } else { 7230 void *ptr; 7231 7232 if (map) 7233 ptr = map; 7234 else 7235 ptr = btf; 7236 7237 if (!cur->active_lock.ptr) { 7238 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7239 return -EINVAL; 7240 } 7241 if (cur->active_lock.ptr != ptr || 7242 cur->active_lock.id != reg->id) { 7243 verbose(env, "bpf_spin_unlock of different lock\n"); 7244 return -EINVAL; 7245 } 7246 7247 invalidate_non_owning_refs(env); 7248 7249 cur->active_lock.ptr = NULL; 7250 cur->active_lock.id = 0; 7251 } 7252 return 0; 7253 } 7254 7255 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7256 struct bpf_call_arg_meta *meta) 7257 { 7258 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7259 bool is_const = tnum_is_const(reg->var_off); 7260 struct bpf_map *map = reg->map_ptr; 7261 u64 val = reg->var_off.value; 7262 7263 if (!is_const) { 7264 verbose(env, 7265 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7266 regno); 7267 return -EINVAL; 7268 } 7269 if (!map->btf) { 7270 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7271 map->name); 7272 return -EINVAL; 7273 } 7274 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7275 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7276 return -EINVAL; 7277 } 7278 if (map->record->timer_off != val + reg->off) { 7279 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7280 val + reg->off, map->record->timer_off); 7281 return -EINVAL; 7282 } 7283 if (meta->map_ptr) { 7284 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7285 return -EFAULT; 7286 } 7287 meta->map_uid = reg->map_uid; 7288 meta->map_ptr = map; 7289 return 0; 7290 } 7291 7292 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7293 struct bpf_call_arg_meta *meta) 7294 { 7295 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7296 struct bpf_map *map_ptr = reg->map_ptr; 7297 struct btf_field *kptr_field; 7298 u32 kptr_off; 7299 7300 if (!tnum_is_const(reg->var_off)) { 7301 verbose(env, 7302 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7303 regno); 7304 return -EINVAL; 7305 } 7306 if (!map_ptr->btf) { 7307 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7308 map_ptr->name); 7309 return -EINVAL; 7310 } 7311 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7312 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7313 return -EINVAL; 7314 } 7315 7316 meta->map_ptr = map_ptr; 7317 kptr_off = reg->off + reg->var_off.value; 7318 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7319 if (!kptr_field) { 7320 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7321 return -EACCES; 7322 } 7323 if (kptr_field->type != BPF_KPTR_REF) { 7324 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7325 return -EACCES; 7326 } 7327 meta->kptr_field = kptr_field; 7328 return 0; 7329 } 7330 7331 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7332 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7333 * 7334 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7335 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7336 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7337 * 7338 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7339 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7340 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7341 * mutate the view of the dynptr and also possibly destroy it. In the latter 7342 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7343 * memory that dynptr points to. 7344 * 7345 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7346 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7347 * readonly dynptr view yet, hence only the first case is tracked and checked. 7348 * 7349 * This is consistent with how C applies the const modifier to a struct object, 7350 * where the pointer itself inside bpf_dynptr becomes const but not what it 7351 * points to. 7352 * 7353 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7354 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7355 */ 7356 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7357 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7358 { 7359 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7360 int err; 7361 7362 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7363 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7364 */ 7365 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7366 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7367 return -EFAULT; 7368 } 7369 7370 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7371 * constructing a mutable bpf_dynptr object. 7372 * 7373 * Currently, this is only possible with PTR_TO_STACK 7374 * pointing to a region of at least 16 bytes which doesn't 7375 * contain an existing bpf_dynptr. 7376 * 7377 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7378 * mutated or destroyed. However, the memory it points to 7379 * may be mutated. 7380 * 7381 * None - Points to a initialized dynptr that can be mutated and 7382 * destroyed, including mutation of the memory it points 7383 * to. 7384 */ 7385 if (arg_type & MEM_UNINIT) { 7386 int i; 7387 7388 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7389 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7390 return -EINVAL; 7391 } 7392 7393 /* we write BPF_DW bits (8 bytes) at a time */ 7394 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7395 err = check_mem_access(env, insn_idx, regno, 7396 i, BPF_DW, BPF_WRITE, -1, false, false); 7397 if (err) 7398 return err; 7399 } 7400 7401 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7402 } else /* MEM_RDONLY and None case from above */ { 7403 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7404 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7405 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7406 return -EINVAL; 7407 } 7408 7409 if (!is_dynptr_reg_valid_init(env, reg)) { 7410 verbose(env, 7411 "Expected an initialized dynptr as arg #%d\n", 7412 regno); 7413 return -EINVAL; 7414 } 7415 7416 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7417 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7418 verbose(env, 7419 "Expected a dynptr of type %s as arg #%d\n", 7420 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7421 return -EINVAL; 7422 } 7423 7424 err = mark_dynptr_read(env, reg); 7425 } 7426 return err; 7427 } 7428 7429 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7430 { 7431 struct bpf_func_state *state = func(env, reg); 7432 7433 return state->stack[spi].spilled_ptr.ref_obj_id; 7434 } 7435 7436 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7437 { 7438 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7439 } 7440 7441 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7442 { 7443 return meta->kfunc_flags & KF_ITER_NEW; 7444 } 7445 7446 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7447 { 7448 return meta->kfunc_flags & KF_ITER_NEXT; 7449 } 7450 7451 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7452 { 7453 return meta->kfunc_flags & KF_ITER_DESTROY; 7454 } 7455 7456 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7457 { 7458 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7459 * kfunc is iter state pointer 7460 */ 7461 return arg == 0 && is_iter_kfunc(meta); 7462 } 7463 7464 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7465 struct bpf_kfunc_call_arg_meta *meta) 7466 { 7467 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7468 const struct btf_type *t; 7469 const struct btf_param *arg; 7470 int spi, err, i, nr_slots; 7471 u32 btf_id; 7472 7473 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7474 arg = &btf_params(meta->func_proto)[0]; 7475 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7476 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7477 nr_slots = t->size / BPF_REG_SIZE; 7478 7479 if (is_iter_new_kfunc(meta)) { 7480 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7481 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7482 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7483 iter_type_str(meta->btf, btf_id), regno); 7484 return -EINVAL; 7485 } 7486 7487 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7488 err = check_mem_access(env, insn_idx, regno, 7489 i, BPF_DW, BPF_WRITE, -1, false, false); 7490 if (err) 7491 return err; 7492 } 7493 7494 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7495 if (err) 7496 return err; 7497 } else { 7498 /* iter_next() or iter_destroy() expect initialized iter state*/ 7499 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7500 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7501 iter_type_str(meta->btf, btf_id), regno); 7502 return -EINVAL; 7503 } 7504 7505 spi = iter_get_spi(env, reg, nr_slots); 7506 if (spi < 0) 7507 return spi; 7508 7509 err = mark_iter_read(env, reg, spi, nr_slots); 7510 if (err) 7511 return err; 7512 7513 /* remember meta->iter info for process_iter_next_call() */ 7514 meta->iter.spi = spi; 7515 meta->iter.frameno = reg->frameno; 7516 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7517 7518 if (is_iter_destroy_kfunc(meta)) { 7519 err = unmark_stack_slots_iter(env, reg, nr_slots); 7520 if (err) 7521 return err; 7522 } 7523 } 7524 7525 return 0; 7526 } 7527 7528 /* process_iter_next_call() is called when verifier gets to iterator's next 7529 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7530 * to it as just "iter_next()" in comments below. 7531 * 7532 * BPF verifier relies on a crucial contract for any iter_next() 7533 * implementation: it should *eventually* return NULL, and once that happens 7534 * it should keep returning NULL. That is, once iterator exhausts elements to 7535 * iterate, it should never reset or spuriously return new elements. 7536 * 7537 * With the assumption of such contract, process_iter_next_call() simulates 7538 * a fork in the verifier state to validate loop logic correctness and safety 7539 * without having to simulate infinite amount of iterations. 7540 * 7541 * In current state, we first assume that iter_next() returned NULL and 7542 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7543 * conditions we should not form an infinite loop and should eventually reach 7544 * exit. 7545 * 7546 * Besides that, we also fork current state and enqueue it for later 7547 * verification. In a forked state we keep iterator state as ACTIVE 7548 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7549 * also bump iteration depth to prevent erroneous infinite loop detection 7550 * later on (see iter_active_depths_differ() comment for details). In this 7551 * state we assume that we'll eventually loop back to another iter_next() 7552 * calls (it could be in exactly same location or in some other instruction, 7553 * it doesn't matter, we don't make any unnecessary assumptions about this, 7554 * everything revolves around iterator state in a stack slot, not which 7555 * instruction is calling iter_next()). When that happens, we either will come 7556 * to iter_next() with equivalent state and can conclude that next iteration 7557 * will proceed in exactly the same way as we just verified, so it's safe to 7558 * assume that loop converges. If not, we'll go on another iteration 7559 * simulation with a different input state, until all possible starting states 7560 * are validated or we reach maximum number of instructions limit. 7561 * 7562 * This way, we will either exhaustively discover all possible input states 7563 * that iterator loop can start with and eventually will converge, or we'll 7564 * effectively regress into bounded loop simulation logic and either reach 7565 * maximum number of instructions if loop is not provably convergent, or there 7566 * is some statically known limit on number of iterations (e.g., if there is 7567 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7568 * 7569 * One very subtle but very important aspect is that we *always* simulate NULL 7570 * condition first (as the current state) before we simulate non-NULL case. 7571 * This has to do with intricacies of scalar precision tracking. By simulating 7572 * "exit condition" of iter_next() returning NULL first, we make sure all the 7573 * relevant precision marks *that will be set **after** we exit iterator loop* 7574 * are propagated backwards to common parent state of NULL and non-NULL 7575 * branches. Thanks to that, state equivalence checks done later in forked 7576 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7577 * precision marks are finalized and won't change. Because simulating another 7578 * ACTIVE iterator iteration won't change them (because given same input 7579 * states we'll end up with exactly same output states which we are currently 7580 * comparing; and verification after the loop already propagated back what 7581 * needs to be **additionally** tracked as precise). It's subtle, grok 7582 * precision tracking for more intuitive understanding. 7583 */ 7584 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7585 struct bpf_kfunc_call_arg_meta *meta) 7586 { 7587 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7588 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7589 struct bpf_reg_state *cur_iter, *queued_iter; 7590 int iter_frameno = meta->iter.frameno; 7591 int iter_spi = meta->iter.spi; 7592 7593 BTF_TYPE_EMIT(struct bpf_iter); 7594 7595 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7596 7597 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7598 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7599 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7600 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7601 return -EFAULT; 7602 } 7603 7604 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7605 /* branch out active iter state */ 7606 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7607 if (!queued_st) 7608 return -ENOMEM; 7609 7610 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7611 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7612 queued_iter->iter.depth++; 7613 7614 queued_fr = queued_st->frame[queued_st->curframe]; 7615 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7616 } 7617 7618 /* switch to DRAINED state, but keep the depth unchanged */ 7619 /* mark current iter state as drained and assume returned NULL */ 7620 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7621 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7622 7623 return 0; 7624 } 7625 7626 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7627 { 7628 return type == ARG_CONST_SIZE || 7629 type == ARG_CONST_SIZE_OR_ZERO; 7630 } 7631 7632 static bool arg_type_is_release(enum bpf_arg_type type) 7633 { 7634 return type & OBJ_RELEASE; 7635 } 7636 7637 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7638 { 7639 return base_type(type) == ARG_PTR_TO_DYNPTR; 7640 } 7641 7642 static int int_ptr_type_to_size(enum bpf_arg_type type) 7643 { 7644 if (type == ARG_PTR_TO_INT) 7645 return sizeof(u32); 7646 else if (type == ARG_PTR_TO_LONG) 7647 return sizeof(u64); 7648 7649 return -EINVAL; 7650 } 7651 7652 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7653 const struct bpf_call_arg_meta *meta, 7654 enum bpf_arg_type *arg_type) 7655 { 7656 if (!meta->map_ptr) { 7657 /* kernel subsystem misconfigured verifier */ 7658 verbose(env, "invalid map_ptr to access map->type\n"); 7659 return -EACCES; 7660 } 7661 7662 switch (meta->map_ptr->map_type) { 7663 case BPF_MAP_TYPE_SOCKMAP: 7664 case BPF_MAP_TYPE_SOCKHASH: 7665 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7666 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7667 } else { 7668 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7669 return -EINVAL; 7670 } 7671 break; 7672 case BPF_MAP_TYPE_BLOOM_FILTER: 7673 if (meta->func_id == BPF_FUNC_map_peek_elem) 7674 *arg_type = ARG_PTR_TO_MAP_VALUE; 7675 break; 7676 default: 7677 break; 7678 } 7679 return 0; 7680 } 7681 7682 struct bpf_reg_types { 7683 const enum bpf_reg_type types[10]; 7684 u32 *btf_id; 7685 }; 7686 7687 static const struct bpf_reg_types sock_types = { 7688 .types = { 7689 PTR_TO_SOCK_COMMON, 7690 PTR_TO_SOCKET, 7691 PTR_TO_TCP_SOCK, 7692 PTR_TO_XDP_SOCK, 7693 }, 7694 }; 7695 7696 #ifdef CONFIG_NET 7697 static const struct bpf_reg_types btf_id_sock_common_types = { 7698 .types = { 7699 PTR_TO_SOCK_COMMON, 7700 PTR_TO_SOCKET, 7701 PTR_TO_TCP_SOCK, 7702 PTR_TO_XDP_SOCK, 7703 PTR_TO_BTF_ID, 7704 PTR_TO_BTF_ID | PTR_TRUSTED, 7705 }, 7706 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7707 }; 7708 #endif 7709 7710 static const struct bpf_reg_types mem_types = { 7711 .types = { 7712 PTR_TO_STACK, 7713 PTR_TO_PACKET, 7714 PTR_TO_PACKET_META, 7715 PTR_TO_MAP_KEY, 7716 PTR_TO_MAP_VALUE, 7717 PTR_TO_MEM, 7718 PTR_TO_MEM | MEM_RINGBUF, 7719 PTR_TO_BUF, 7720 PTR_TO_BTF_ID | PTR_TRUSTED, 7721 }, 7722 }; 7723 7724 static const struct bpf_reg_types int_ptr_types = { 7725 .types = { 7726 PTR_TO_STACK, 7727 PTR_TO_PACKET, 7728 PTR_TO_PACKET_META, 7729 PTR_TO_MAP_KEY, 7730 PTR_TO_MAP_VALUE, 7731 }, 7732 }; 7733 7734 static const struct bpf_reg_types spin_lock_types = { 7735 .types = { 7736 PTR_TO_MAP_VALUE, 7737 PTR_TO_BTF_ID | MEM_ALLOC, 7738 } 7739 }; 7740 7741 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7742 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7743 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7744 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7745 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7746 static const struct bpf_reg_types btf_ptr_types = { 7747 .types = { 7748 PTR_TO_BTF_ID, 7749 PTR_TO_BTF_ID | PTR_TRUSTED, 7750 PTR_TO_BTF_ID | MEM_RCU, 7751 }, 7752 }; 7753 static const struct bpf_reg_types percpu_btf_ptr_types = { 7754 .types = { 7755 PTR_TO_BTF_ID | MEM_PERCPU, 7756 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7757 } 7758 }; 7759 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7760 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7761 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7762 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7763 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7764 static const struct bpf_reg_types dynptr_types = { 7765 .types = { 7766 PTR_TO_STACK, 7767 CONST_PTR_TO_DYNPTR, 7768 } 7769 }; 7770 7771 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7772 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7773 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7774 [ARG_CONST_SIZE] = &scalar_types, 7775 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7776 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7777 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7778 [ARG_PTR_TO_CTX] = &context_types, 7779 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7780 #ifdef CONFIG_NET 7781 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7782 #endif 7783 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7784 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7785 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7786 [ARG_PTR_TO_MEM] = &mem_types, 7787 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7788 [ARG_PTR_TO_INT] = &int_ptr_types, 7789 [ARG_PTR_TO_LONG] = &int_ptr_types, 7790 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7791 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7792 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7793 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7794 [ARG_PTR_TO_TIMER] = &timer_types, 7795 [ARG_PTR_TO_KPTR] = &kptr_types, 7796 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7797 }; 7798 7799 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7800 enum bpf_arg_type arg_type, 7801 const u32 *arg_btf_id, 7802 struct bpf_call_arg_meta *meta) 7803 { 7804 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7805 enum bpf_reg_type expected, type = reg->type; 7806 const struct bpf_reg_types *compatible; 7807 int i, j; 7808 7809 compatible = compatible_reg_types[base_type(arg_type)]; 7810 if (!compatible) { 7811 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7812 return -EFAULT; 7813 } 7814 7815 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7816 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7817 * 7818 * Same for MAYBE_NULL: 7819 * 7820 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7821 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7822 * 7823 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7824 * 7825 * Therefore we fold these flags depending on the arg_type before comparison. 7826 */ 7827 if (arg_type & MEM_RDONLY) 7828 type &= ~MEM_RDONLY; 7829 if (arg_type & PTR_MAYBE_NULL) 7830 type &= ~PTR_MAYBE_NULL; 7831 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7832 type &= ~DYNPTR_TYPE_FLAG_MASK; 7833 7834 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7835 type &= ~MEM_ALLOC; 7836 7837 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7838 expected = compatible->types[i]; 7839 if (expected == NOT_INIT) 7840 break; 7841 7842 if (type == expected) 7843 goto found; 7844 } 7845 7846 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7847 for (j = 0; j + 1 < i; j++) 7848 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7849 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7850 return -EACCES; 7851 7852 found: 7853 if (base_type(reg->type) != PTR_TO_BTF_ID) 7854 return 0; 7855 7856 if (compatible == &mem_types) { 7857 if (!(arg_type & MEM_RDONLY)) { 7858 verbose(env, 7859 "%s() may write into memory pointed by R%d type=%s\n", 7860 func_id_name(meta->func_id), 7861 regno, reg_type_str(env, reg->type)); 7862 return -EACCES; 7863 } 7864 return 0; 7865 } 7866 7867 switch ((int)reg->type) { 7868 case PTR_TO_BTF_ID: 7869 case PTR_TO_BTF_ID | PTR_TRUSTED: 7870 case PTR_TO_BTF_ID | MEM_RCU: 7871 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7872 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7873 { 7874 /* For bpf_sk_release, it needs to match against first member 7875 * 'struct sock_common', hence make an exception for it. This 7876 * allows bpf_sk_release to work for multiple socket types. 7877 */ 7878 bool strict_type_match = arg_type_is_release(arg_type) && 7879 meta->func_id != BPF_FUNC_sk_release; 7880 7881 if (type_may_be_null(reg->type) && 7882 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7883 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7884 return -EACCES; 7885 } 7886 7887 if (!arg_btf_id) { 7888 if (!compatible->btf_id) { 7889 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7890 return -EFAULT; 7891 } 7892 arg_btf_id = compatible->btf_id; 7893 } 7894 7895 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7896 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7897 return -EACCES; 7898 } else { 7899 if (arg_btf_id == BPF_PTR_POISON) { 7900 verbose(env, "verifier internal error:"); 7901 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7902 regno); 7903 return -EACCES; 7904 } 7905 7906 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7907 btf_vmlinux, *arg_btf_id, 7908 strict_type_match)) { 7909 verbose(env, "R%d is of type %s but %s is expected\n", 7910 regno, btf_type_name(reg->btf, reg->btf_id), 7911 btf_type_name(btf_vmlinux, *arg_btf_id)); 7912 return -EACCES; 7913 } 7914 } 7915 break; 7916 } 7917 case PTR_TO_BTF_ID | MEM_ALLOC: 7918 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7919 meta->func_id != BPF_FUNC_kptr_xchg) { 7920 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7921 return -EFAULT; 7922 } 7923 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7924 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7925 return -EACCES; 7926 } 7927 break; 7928 case PTR_TO_BTF_ID | MEM_PERCPU: 7929 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7930 /* Handled by helper specific checks */ 7931 break; 7932 default: 7933 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7934 return -EFAULT; 7935 } 7936 return 0; 7937 } 7938 7939 static struct btf_field * 7940 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7941 { 7942 struct btf_field *field; 7943 struct btf_record *rec; 7944 7945 rec = reg_btf_record(reg); 7946 if (!rec) 7947 return NULL; 7948 7949 field = btf_record_find(rec, off, fields); 7950 if (!field) 7951 return NULL; 7952 7953 return field; 7954 } 7955 7956 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7957 const struct bpf_reg_state *reg, int regno, 7958 enum bpf_arg_type arg_type) 7959 { 7960 u32 type = reg->type; 7961 7962 /* When referenced register is passed to release function, its fixed 7963 * offset must be 0. 7964 * 7965 * We will check arg_type_is_release reg has ref_obj_id when storing 7966 * meta->release_regno. 7967 */ 7968 if (arg_type_is_release(arg_type)) { 7969 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7970 * may not directly point to the object being released, but to 7971 * dynptr pointing to such object, which might be at some offset 7972 * on the stack. In that case, we simply to fallback to the 7973 * default handling. 7974 */ 7975 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7976 return 0; 7977 7978 /* Doing check_ptr_off_reg check for the offset will catch this 7979 * because fixed_off_ok is false, but checking here allows us 7980 * to give the user a better error message. 7981 */ 7982 if (reg->off) { 7983 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7984 regno); 7985 return -EINVAL; 7986 } 7987 return __check_ptr_off_reg(env, reg, regno, false); 7988 } 7989 7990 switch (type) { 7991 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7992 case PTR_TO_STACK: 7993 case PTR_TO_PACKET: 7994 case PTR_TO_PACKET_META: 7995 case PTR_TO_MAP_KEY: 7996 case PTR_TO_MAP_VALUE: 7997 case PTR_TO_MEM: 7998 case PTR_TO_MEM | MEM_RDONLY: 7999 case PTR_TO_MEM | MEM_RINGBUF: 8000 case PTR_TO_BUF: 8001 case PTR_TO_BUF | MEM_RDONLY: 8002 case SCALAR_VALUE: 8003 return 0; 8004 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8005 * fixed offset. 8006 */ 8007 case PTR_TO_BTF_ID: 8008 case PTR_TO_BTF_ID | MEM_ALLOC: 8009 case PTR_TO_BTF_ID | PTR_TRUSTED: 8010 case PTR_TO_BTF_ID | MEM_RCU: 8011 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8012 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8013 /* When referenced PTR_TO_BTF_ID is passed to release function, 8014 * its fixed offset must be 0. In the other cases, fixed offset 8015 * can be non-zero. This was already checked above. So pass 8016 * fixed_off_ok as true to allow fixed offset for all other 8017 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8018 * still need to do checks instead of returning. 8019 */ 8020 return __check_ptr_off_reg(env, reg, regno, true); 8021 default: 8022 return __check_ptr_off_reg(env, reg, regno, false); 8023 } 8024 } 8025 8026 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8027 const struct bpf_func_proto *fn, 8028 struct bpf_reg_state *regs) 8029 { 8030 struct bpf_reg_state *state = NULL; 8031 int i; 8032 8033 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8034 if (arg_type_is_dynptr(fn->arg_type[i])) { 8035 if (state) { 8036 verbose(env, "verifier internal error: multiple dynptr args\n"); 8037 return NULL; 8038 } 8039 state = ®s[BPF_REG_1 + i]; 8040 } 8041 8042 if (!state) 8043 verbose(env, "verifier internal error: no dynptr arg found\n"); 8044 8045 return state; 8046 } 8047 8048 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8049 { 8050 struct bpf_func_state *state = func(env, reg); 8051 int spi; 8052 8053 if (reg->type == CONST_PTR_TO_DYNPTR) 8054 return reg->id; 8055 spi = dynptr_get_spi(env, reg); 8056 if (spi < 0) 8057 return spi; 8058 return state->stack[spi].spilled_ptr.id; 8059 } 8060 8061 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8062 { 8063 struct bpf_func_state *state = func(env, reg); 8064 int spi; 8065 8066 if (reg->type == CONST_PTR_TO_DYNPTR) 8067 return reg->ref_obj_id; 8068 spi = dynptr_get_spi(env, reg); 8069 if (spi < 0) 8070 return spi; 8071 return state->stack[spi].spilled_ptr.ref_obj_id; 8072 } 8073 8074 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8075 struct bpf_reg_state *reg) 8076 { 8077 struct bpf_func_state *state = func(env, reg); 8078 int spi; 8079 8080 if (reg->type == CONST_PTR_TO_DYNPTR) 8081 return reg->dynptr.type; 8082 8083 spi = __get_spi(reg->off); 8084 if (spi < 0) { 8085 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8086 return BPF_DYNPTR_TYPE_INVALID; 8087 } 8088 8089 return state->stack[spi].spilled_ptr.dynptr.type; 8090 } 8091 8092 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8093 struct bpf_call_arg_meta *meta, 8094 const struct bpf_func_proto *fn, 8095 int insn_idx) 8096 { 8097 u32 regno = BPF_REG_1 + arg; 8098 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8099 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8100 enum bpf_reg_type type = reg->type; 8101 u32 *arg_btf_id = NULL; 8102 int err = 0; 8103 8104 if (arg_type == ARG_DONTCARE) 8105 return 0; 8106 8107 err = check_reg_arg(env, regno, SRC_OP); 8108 if (err) 8109 return err; 8110 8111 if (arg_type == ARG_ANYTHING) { 8112 if (is_pointer_value(env, regno)) { 8113 verbose(env, "R%d leaks addr into helper function\n", 8114 regno); 8115 return -EACCES; 8116 } 8117 return 0; 8118 } 8119 8120 if (type_is_pkt_pointer(type) && 8121 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8122 verbose(env, "helper access to the packet is not allowed\n"); 8123 return -EACCES; 8124 } 8125 8126 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8127 err = resolve_map_arg_type(env, meta, &arg_type); 8128 if (err) 8129 return err; 8130 } 8131 8132 if (register_is_null(reg) && type_may_be_null(arg_type)) 8133 /* A NULL register has a SCALAR_VALUE type, so skip 8134 * type checking. 8135 */ 8136 goto skip_type_check; 8137 8138 /* arg_btf_id and arg_size are in a union. */ 8139 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8140 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8141 arg_btf_id = fn->arg_btf_id[arg]; 8142 8143 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8144 if (err) 8145 return err; 8146 8147 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8148 if (err) 8149 return err; 8150 8151 skip_type_check: 8152 if (arg_type_is_release(arg_type)) { 8153 if (arg_type_is_dynptr(arg_type)) { 8154 struct bpf_func_state *state = func(env, reg); 8155 int spi; 8156 8157 /* Only dynptr created on stack can be released, thus 8158 * the get_spi and stack state checks for spilled_ptr 8159 * should only be done before process_dynptr_func for 8160 * PTR_TO_STACK. 8161 */ 8162 if (reg->type == PTR_TO_STACK) { 8163 spi = dynptr_get_spi(env, reg); 8164 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8165 verbose(env, "arg %d is an unacquired reference\n", regno); 8166 return -EINVAL; 8167 } 8168 } else { 8169 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8170 return -EINVAL; 8171 } 8172 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8173 verbose(env, "R%d must be referenced when passed to release function\n", 8174 regno); 8175 return -EINVAL; 8176 } 8177 if (meta->release_regno) { 8178 verbose(env, "verifier internal error: more than one release argument\n"); 8179 return -EFAULT; 8180 } 8181 meta->release_regno = regno; 8182 } 8183 8184 if (reg->ref_obj_id) { 8185 if (meta->ref_obj_id) { 8186 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8187 regno, reg->ref_obj_id, 8188 meta->ref_obj_id); 8189 return -EFAULT; 8190 } 8191 meta->ref_obj_id = reg->ref_obj_id; 8192 } 8193 8194 switch (base_type(arg_type)) { 8195 case ARG_CONST_MAP_PTR: 8196 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8197 if (meta->map_ptr) { 8198 /* Use map_uid (which is unique id of inner map) to reject: 8199 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8200 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8201 * if (inner_map1 && inner_map2) { 8202 * timer = bpf_map_lookup_elem(inner_map1); 8203 * if (timer) 8204 * // mismatch would have been allowed 8205 * bpf_timer_init(timer, inner_map2); 8206 * } 8207 * 8208 * Comparing map_ptr is enough to distinguish normal and outer maps. 8209 */ 8210 if (meta->map_ptr != reg->map_ptr || 8211 meta->map_uid != reg->map_uid) { 8212 verbose(env, 8213 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8214 meta->map_uid, reg->map_uid); 8215 return -EINVAL; 8216 } 8217 } 8218 meta->map_ptr = reg->map_ptr; 8219 meta->map_uid = reg->map_uid; 8220 break; 8221 case ARG_PTR_TO_MAP_KEY: 8222 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8223 * check that [key, key + map->key_size) are within 8224 * stack limits and initialized 8225 */ 8226 if (!meta->map_ptr) { 8227 /* in function declaration map_ptr must come before 8228 * map_key, so that it's verified and known before 8229 * we have to check map_key here. Otherwise it means 8230 * that kernel subsystem misconfigured verifier 8231 */ 8232 verbose(env, "invalid map_ptr to access map->key\n"); 8233 return -EACCES; 8234 } 8235 err = check_helper_mem_access(env, regno, 8236 meta->map_ptr->key_size, false, 8237 NULL); 8238 break; 8239 case ARG_PTR_TO_MAP_VALUE: 8240 if (type_may_be_null(arg_type) && register_is_null(reg)) 8241 return 0; 8242 8243 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8244 * check [value, value + map->value_size) validity 8245 */ 8246 if (!meta->map_ptr) { 8247 /* kernel subsystem misconfigured verifier */ 8248 verbose(env, "invalid map_ptr to access map->value\n"); 8249 return -EACCES; 8250 } 8251 meta->raw_mode = arg_type & MEM_UNINIT; 8252 err = check_helper_mem_access(env, regno, 8253 meta->map_ptr->value_size, false, 8254 meta); 8255 break; 8256 case ARG_PTR_TO_PERCPU_BTF_ID: 8257 if (!reg->btf_id) { 8258 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8259 return -EACCES; 8260 } 8261 meta->ret_btf = reg->btf; 8262 meta->ret_btf_id = reg->btf_id; 8263 break; 8264 case ARG_PTR_TO_SPIN_LOCK: 8265 if (in_rbtree_lock_required_cb(env)) { 8266 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8267 return -EACCES; 8268 } 8269 if (meta->func_id == BPF_FUNC_spin_lock) { 8270 err = process_spin_lock(env, regno, true); 8271 if (err) 8272 return err; 8273 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8274 err = process_spin_lock(env, regno, false); 8275 if (err) 8276 return err; 8277 } else { 8278 verbose(env, "verifier internal error\n"); 8279 return -EFAULT; 8280 } 8281 break; 8282 case ARG_PTR_TO_TIMER: 8283 err = process_timer_func(env, regno, meta); 8284 if (err) 8285 return err; 8286 break; 8287 case ARG_PTR_TO_FUNC: 8288 meta->subprogno = reg->subprogno; 8289 break; 8290 case ARG_PTR_TO_MEM: 8291 /* The access to this pointer is only checked when we hit the 8292 * next is_mem_size argument below. 8293 */ 8294 meta->raw_mode = arg_type & MEM_UNINIT; 8295 if (arg_type & MEM_FIXED_SIZE) { 8296 err = check_helper_mem_access(env, regno, 8297 fn->arg_size[arg], false, 8298 meta); 8299 } 8300 break; 8301 case ARG_CONST_SIZE: 8302 err = check_mem_size_reg(env, reg, regno, false, meta); 8303 break; 8304 case ARG_CONST_SIZE_OR_ZERO: 8305 err = check_mem_size_reg(env, reg, regno, true, meta); 8306 break; 8307 case ARG_PTR_TO_DYNPTR: 8308 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8309 if (err) 8310 return err; 8311 break; 8312 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8313 if (!tnum_is_const(reg->var_off)) { 8314 verbose(env, "R%d is not a known constant'\n", 8315 regno); 8316 return -EACCES; 8317 } 8318 meta->mem_size = reg->var_off.value; 8319 err = mark_chain_precision(env, regno); 8320 if (err) 8321 return err; 8322 break; 8323 case ARG_PTR_TO_INT: 8324 case ARG_PTR_TO_LONG: 8325 { 8326 int size = int_ptr_type_to_size(arg_type); 8327 8328 err = check_helper_mem_access(env, regno, size, false, meta); 8329 if (err) 8330 return err; 8331 err = check_ptr_alignment(env, reg, 0, size, true); 8332 break; 8333 } 8334 case ARG_PTR_TO_CONST_STR: 8335 { 8336 struct bpf_map *map = reg->map_ptr; 8337 int map_off; 8338 u64 map_addr; 8339 char *str_ptr; 8340 8341 if (!bpf_map_is_rdonly(map)) { 8342 verbose(env, "R%d does not point to a readonly map'\n", regno); 8343 return -EACCES; 8344 } 8345 8346 if (!tnum_is_const(reg->var_off)) { 8347 verbose(env, "R%d is not a constant address'\n", regno); 8348 return -EACCES; 8349 } 8350 8351 if (!map->ops->map_direct_value_addr) { 8352 verbose(env, "no direct value access support for this map type\n"); 8353 return -EACCES; 8354 } 8355 8356 err = check_map_access(env, regno, reg->off, 8357 map->value_size - reg->off, false, 8358 ACCESS_HELPER); 8359 if (err) 8360 return err; 8361 8362 map_off = reg->off + reg->var_off.value; 8363 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8364 if (err) { 8365 verbose(env, "direct value access on string failed\n"); 8366 return err; 8367 } 8368 8369 str_ptr = (char *)(long)(map_addr); 8370 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8371 verbose(env, "string is not zero-terminated\n"); 8372 return -EINVAL; 8373 } 8374 break; 8375 } 8376 case ARG_PTR_TO_KPTR: 8377 err = process_kptr_func(env, regno, meta); 8378 if (err) 8379 return err; 8380 break; 8381 } 8382 8383 return err; 8384 } 8385 8386 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8387 { 8388 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8389 enum bpf_prog_type type = resolve_prog_type(env->prog); 8390 8391 if (func_id != BPF_FUNC_map_update_elem) 8392 return false; 8393 8394 /* It's not possible to get access to a locked struct sock in these 8395 * contexts, so updating is safe. 8396 */ 8397 switch (type) { 8398 case BPF_PROG_TYPE_TRACING: 8399 if (eatype == BPF_TRACE_ITER) 8400 return true; 8401 break; 8402 case BPF_PROG_TYPE_SOCKET_FILTER: 8403 case BPF_PROG_TYPE_SCHED_CLS: 8404 case BPF_PROG_TYPE_SCHED_ACT: 8405 case BPF_PROG_TYPE_XDP: 8406 case BPF_PROG_TYPE_SK_REUSEPORT: 8407 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8408 case BPF_PROG_TYPE_SK_LOOKUP: 8409 return true; 8410 default: 8411 break; 8412 } 8413 8414 verbose(env, "cannot update sockmap in this context\n"); 8415 return false; 8416 } 8417 8418 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8419 { 8420 return env->prog->jit_requested && 8421 bpf_jit_supports_subprog_tailcalls(); 8422 } 8423 8424 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8425 struct bpf_map *map, int func_id) 8426 { 8427 if (!map) 8428 return 0; 8429 8430 /* We need a two way check, first is from map perspective ... */ 8431 switch (map->map_type) { 8432 case BPF_MAP_TYPE_PROG_ARRAY: 8433 if (func_id != BPF_FUNC_tail_call) 8434 goto error; 8435 break; 8436 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8437 if (func_id != BPF_FUNC_perf_event_read && 8438 func_id != BPF_FUNC_perf_event_output && 8439 func_id != BPF_FUNC_skb_output && 8440 func_id != BPF_FUNC_perf_event_read_value && 8441 func_id != BPF_FUNC_xdp_output) 8442 goto error; 8443 break; 8444 case BPF_MAP_TYPE_RINGBUF: 8445 if (func_id != BPF_FUNC_ringbuf_output && 8446 func_id != BPF_FUNC_ringbuf_reserve && 8447 func_id != BPF_FUNC_ringbuf_query && 8448 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8449 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8450 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8451 goto error; 8452 break; 8453 case BPF_MAP_TYPE_USER_RINGBUF: 8454 if (func_id != BPF_FUNC_user_ringbuf_drain) 8455 goto error; 8456 break; 8457 case BPF_MAP_TYPE_STACK_TRACE: 8458 if (func_id != BPF_FUNC_get_stackid) 8459 goto error; 8460 break; 8461 case BPF_MAP_TYPE_CGROUP_ARRAY: 8462 if (func_id != BPF_FUNC_skb_under_cgroup && 8463 func_id != BPF_FUNC_current_task_under_cgroup) 8464 goto error; 8465 break; 8466 case BPF_MAP_TYPE_CGROUP_STORAGE: 8467 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8468 if (func_id != BPF_FUNC_get_local_storage) 8469 goto error; 8470 break; 8471 case BPF_MAP_TYPE_DEVMAP: 8472 case BPF_MAP_TYPE_DEVMAP_HASH: 8473 if (func_id != BPF_FUNC_redirect_map && 8474 func_id != BPF_FUNC_map_lookup_elem) 8475 goto error; 8476 break; 8477 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8478 * appear. 8479 */ 8480 case BPF_MAP_TYPE_CPUMAP: 8481 if (func_id != BPF_FUNC_redirect_map) 8482 goto error; 8483 break; 8484 case BPF_MAP_TYPE_XSKMAP: 8485 if (func_id != BPF_FUNC_redirect_map && 8486 func_id != BPF_FUNC_map_lookup_elem) 8487 goto error; 8488 break; 8489 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8490 case BPF_MAP_TYPE_HASH_OF_MAPS: 8491 if (func_id != BPF_FUNC_map_lookup_elem) 8492 goto error; 8493 break; 8494 case BPF_MAP_TYPE_SOCKMAP: 8495 if (func_id != BPF_FUNC_sk_redirect_map && 8496 func_id != BPF_FUNC_sock_map_update && 8497 func_id != BPF_FUNC_map_delete_elem && 8498 func_id != BPF_FUNC_msg_redirect_map && 8499 func_id != BPF_FUNC_sk_select_reuseport && 8500 func_id != BPF_FUNC_map_lookup_elem && 8501 !may_update_sockmap(env, func_id)) 8502 goto error; 8503 break; 8504 case BPF_MAP_TYPE_SOCKHASH: 8505 if (func_id != BPF_FUNC_sk_redirect_hash && 8506 func_id != BPF_FUNC_sock_hash_update && 8507 func_id != BPF_FUNC_map_delete_elem && 8508 func_id != BPF_FUNC_msg_redirect_hash && 8509 func_id != BPF_FUNC_sk_select_reuseport && 8510 func_id != BPF_FUNC_map_lookup_elem && 8511 !may_update_sockmap(env, func_id)) 8512 goto error; 8513 break; 8514 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8515 if (func_id != BPF_FUNC_sk_select_reuseport) 8516 goto error; 8517 break; 8518 case BPF_MAP_TYPE_QUEUE: 8519 case BPF_MAP_TYPE_STACK: 8520 if (func_id != BPF_FUNC_map_peek_elem && 8521 func_id != BPF_FUNC_map_pop_elem && 8522 func_id != BPF_FUNC_map_push_elem) 8523 goto error; 8524 break; 8525 case BPF_MAP_TYPE_SK_STORAGE: 8526 if (func_id != BPF_FUNC_sk_storage_get && 8527 func_id != BPF_FUNC_sk_storage_delete && 8528 func_id != BPF_FUNC_kptr_xchg) 8529 goto error; 8530 break; 8531 case BPF_MAP_TYPE_INODE_STORAGE: 8532 if (func_id != BPF_FUNC_inode_storage_get && 8533 func_id != BPF_FUNC_inode_storage_delete && 8534 func_id != BPF_FUNC_kptr_xchg) 8535 goto error; 8536 break; 8537 case BPF_MAP_TYPE_TASK_STORAGE: 8538 if (func_id != BPF_FUNC_task_storage_get && 8539 func_id != BPF_FUNC_task_storage_delete && 8540 func_id != BPF_FUNC_kptr_xchg) 8541 goto error; 8542 break; 8543 case BPF_MAP_TYPE_CGRP_STORAGE: 8544 if (func_id != BPF_FUNC_cgrp_storage_get && 8545 func_id != BPF_FUNC_cgrp_storage_delete && 8546 func_id != BPF_FUNC_kptr_xchg) 8547 goto error; 8548 break; 8549 case BPF_MAP_TYPE_BLOOM_FILTER: 8550 if (func_id != BPF_FUNC_map_peek_elem && 8551 func_id != BPF_FUNC_map_push_elem) 8552 goto error; 8553 break; 8554 default: 8555 break; 8556 } 8557 8558 /* ... and second from the function itself. */ 8559 switch (func_id) { 8560 case BPF_FUNC_tail_call: 8561 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8562 goto error; 8563 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8564 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8565 return -EINVAL; 8566 } 8567 break; 8568 case BPF_FUNC_perf_event_read: 8569 case BPF_FUNC_perf_event_output: 8570 case BPF_FUNC_perf_event_read_value: 8571 case BPF_FUNC_skb_output: 8572 case BPF_FUNC_xdp_output: 8573 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8574 goto error; 8575 break; 8576 case BPF_FUNC_ringbuf_output: 8577 case BPF_FUNC_ringbuf_reserve: 8578 case BPF_FUNC_ringbuf_query: 8579 case BPF_FUNC_ringbuf_reserve_dynptr: 8580 case BPF_FUNC_ringbuf_submit_dynptr: 8581 case BPF_FUNC_ringbuf_discard_dynptr: 8582 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8583 goto error; 8584 break; 8585 case BPF_FUNC_user_ringbuf_drain: 8586 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8587 goto error; 8588 break; 8589 case BPF_FUNC_get_stackid: 8590 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8591 goto error; 8592 break; 8593 case BPF_FUNC_current_task_under_cgroup: 8594 case BPF_FUNC_skb_under_cgroup: 8595 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8596 goto error; 8597 break; 8598 case BPF_FUNC_redirect_map: 8599 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8600 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8601 map->map_type != BPF_MAP_TYPE_CPUMAP && 8602 map->map_type != BPF_MAP_TYPE_XSKMAP) 8603 goto error; 8604 break; 8605 case BPF_FUNC_sk_redirect_map: 8606 case BPF_FUNC_msg_redirect_map: 8607 case BPF_FUNC_sock_map_update: 8608 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8609 goto error; 8610 break; 8611 case BPF_FUNC_sk_redirect_hash: 8612 case BPF_FUNC_msg_redirect_hash: 8613 case BPF_FUNC_sock_hash_update: 8614 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8615 goto error; 8616 break; 8617 case BPF_FUNC_get_local_storage: 8618 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8619 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8620 goto error; 8621 break; 8622 case BPF_FUNC_sk_select_reuseport: 8623 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8624 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8625 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8626 goto error; 8627 break; 8628 case BPF_FUNC_map_pop_elem: 8629 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8630 map->map_type != BPF_MAP_TYPE_STACK) 8631 goto error; 8632 break; 8633 case BPF_FUNC_map_peek_elem: 8634 case BPF_FUNC_map_push_elem: 8635 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8636 map->map_type != BPF_MAP_TYPE_STACK && 8637 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8638 goto error; 8639 break; 8640 case BPF_FUNC_map_lookup_percpu_elem: 8641 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8642 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8643 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8644 goto error; 8645 break; 8646 case BPF_FUNC_sk_storage_get: 8647 case BPF_FUNC_sk_storage_delete: 8648 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8649 goto error; 8650 break; 8651 case BPF_FUNC_inode_storage_get: 8652 case BPF_FUNC_inode_storage_delete: 8653 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8654 goto error; 8655 break; 8656 case BPF_FUNC_task_storage_get: 8657 case BPF_FUNC_task_storage_delete: 8658 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8659 goto error; 8660 break; 8661 case BPF_FUNC_cgrp_storage_get: 8662 case BPF_FUNC_cgrp_storage_delete: 8663 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8664 goto error; 8665 break; 8666 default: 8667 break; 8668 } 8669 8670 return 0; 8671 error: 8672 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8673 map->map_type, func_id_name(func_id), func_id); 8674 return -EINVAL; 8675 } 8676 8677 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8678 { 8679 int count = 0; 8680 8681 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8682 count++; 8683 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8684 count++; 8685 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8686 count++; 8687 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8688 count++; 8689 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8690 count++; 8691 8692 /* We only support one arg being in raw mode at the moment, 8693 * which is sufficient for the helper functions we have 8694 * right now. 8695 */ 8696 return count <= 1; 8697 } 8698 8699 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8700 { 8701 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8702 bool has_size = fn->arg_size[arg] != 0; 8703 bool is_next_size = false; 8704 8705 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8706 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8707 8708 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8709 return is_next_size; 8710 8711 return has_size == is_next_size || is_next_size == is_fixed; 8712 } 8713 8714 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8715 { 8716 /* bpf_xxx(..., buf, len) call will access 'len' 8717 * bytes from memory 'buf'. Both arg types need 8718 * to be paired, so make sure there's no buggy 8719 * helper function specification. 8720 */ 8721 if (arg_type_is_mem_size(fn->arg1_type) || 8722 check_args_pair_invalid(fn, 0) || 8723 check_args_pair_invalid(fn, 1) || 8724 check_args_pair_invalid(fn, 2) || 8725 check_args_pair_invalid(fn, 3) || 8726 check_args_pair_invalid(fn, 4)) 8727 return false; 8728 8729 return true; 8730 } 8731 8732 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8733 { 8734 int i; 8735 8736 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8737 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8738 return !!fn->arg_btf_id[i]; 8739 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8740 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8741 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8742 /* arg_btf_id and arg_size are in a union. */ 8743 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8744 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8745 return false; 8746 } 8747 8748 return true; 8749 } 8750 8751 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8752 { 8753 return check_raw_mode_ok(fn) && 8754 check_arg_pair_ok(fn) && 8755 check_btf_id_ok(fn) ? 0 : -EINVAL; 8756 } 8757 8758 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8759 * are now invalid, so turn them into unknown SCALAR_VALUE. 8760 * 8761 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8762 * since these slices point to packet data. 8763 */ 8764 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8765 { 8766 struct bpf_func_state *state; 8767 struct bpf_reg_state *reg; 8768 8769 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8770 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8771 mark_reg_invalid(env, reg); 8772 })); 8773 } 8774 8775 enum { 8776 AT_PKT_END = -1, 8777 BEYOND_PKT_END = -2, 8778 }; 8779 8780 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8781 { 8782 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8783 struct bpf_reg_state *reg = &state->regs[regn]; 8784 8785 if (reg->type != PTR_TO_PACKET) 8786 /* PTR_TO_PACKET_META is not supported yet */ 8787 return; 8788 8789 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8790 * How far beyond pkt_end it goes is unknown. 8791 * if (!range_open) it's the case of pkt >= pkt_end 8792 * if (range_open) it's the case of pkt > pkt_end 8793 * hence this pointer is at least 1 byte bigger than pkt_end 8794 */ 8795 if (range_open) 8796 reg->range = BEYOND_PKT_END; 8797 else 8798 reg->range = AT_PKT_END; 8799 } 8800 8801 /* The pointer with the specified id has released its reference to kernel 8802 * resources. Identify all copies of the same pointer and clear the reference. 8803 */ 8804 static int release_reference(struct bpf_verifier_env *env, 8805 int ref_obj_id) 8806 { 8807 struct bpf_func_state *state; 8808 struct bpf_reg_state *reg; 8809 int err; 8810 8811 err = release_reference_state(cur_func(env), ref_obj_id); 8812 if (err) 8813 return err; 8814 8815 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8816 if (reg->ref_obj_id == ref_obj_id) 8817 mark_reg_invalid(env, reg); 8818 })); 8819 8820 return 0; 8821 } 8822 8823 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8824 { 8825 struct bpf_func_state *unused; 8826 struct bpf_reg_state *reg; 8827 8828 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8829 if (type_is_non_owning_ref(reg->type)) 8830 mark_reg_invalid(env, reg); 8831 })); 8832 } 8833 8834 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8835 struct bpf_reg_state *regs) 8836 { 8837 int i; 8838 8839 /* after the call registers r0 - r5 were scratched */ 8840 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8841 mark_reg_not_init(env, regs, caller_saved[i]); 8842 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8843 } 8844 } 8845 8846 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8847 struct bpf_func_state *caller, 8848 struct bpf_func_state *callee, 8849 int insn_idx); 8850 8851 static int set_callee_state(struct bpf_verifier_env *env, 8852 struct bpf_func_state *caller, 8853 struct bpf_func_state *callee, int insn_idx); 8854 8855 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8856 int *insn_idx, int subprog, 8857 set_callee_state_fn set_callee_state_cb) 8858 { 8859 struct bpf_verifier_state *state = env->cur_state; 8860 struct bpf_func_state *caller, *callee; 8861 int err; 8862 8863 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8864 verbose(env, "the call stack of %d frames is too deep\n", 8865 state->curframe + 2); 8866 return -E2BIG; 8867 } 8868 8869 caller = state->frame[state->curframe]; 8870 if (state->frame[state->curframe + 1]) { 8871 verbose(env, "verifier bug. Frame %d already allocated\n", 8872 state->curframe + 1); 8873 return -EFAULT; 8874 } 8875 8876 err = btf_check_subprog_call(env, subprog, caller->regs); 8877 if (err == -EFAULT) 8878 return err; 8879 if (subprog_is_global(env, subprog)) { 8880 if (err) { 8881 verbose(env, "Caller passes invalid args into func#%d\n", 8882 subprog); 8883 return err; 8884 } else { 8885 if (env->log.level & BPF_LOG_LEVEL) 8886 verbose(env, 8887 "Func#%d is global and valid. Skipping.\n", 8888 subprog); 8889 clear_caller_saved_regs(env, caller->regs); 8890 8891 /* All global functions return a 64-bit SCALAR_VALUE */ 8892 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8893 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8894 8895 /* continue with next insn after call */ 8896 return 0; 8897 } 8898 } 8899 8900 /* set_callee_state is used for direct subprog calls, but we are 8901 * interested in validating only BPF helpers that can call subprogs as 8902 * callbacks 8903 */ 8904 if (set_callee_state_cb != set_callee_state) { 8905 if (bpf_pseudo_kfunc_call(insn) && 8906 !is_callback_calling_kfunc(insn->imm)) { 8907 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8908 func_id_name(insn->imm), insn->imm); 8909 return -EFAULT; 8910 } else if (!bpf_pseudo_kfunc_call(insn) && 8911 !is_callback_calling_function(insn->imm)) { /* helper */ 8912 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8913 func_id_name(insn->imm), insn->imm); 8914 return -EFAULT; 8915 } 8916 } 8917 8918 if (insn->code == (BPF_JMP | BPF_CALL) && 8919 insn->src_reg == 0 && 8920 insn->imm == BPF_FUNC_timer_set_callback) { 8921 struct bpf_verifier_state *async_cb; 8922 8923 /* there is no real recursion here. timer callbacks are async */ 8924 env->subprog_info[subprog].is_async_cb = true; 8925 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8926 *insn_idx, subprog); 8927 if (!async_cb) 8928 return -EFAULT; 8929 callee = async_cb->frame[0]; 8930 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8931 8932 /* Convert bpf_timer_set_callback() args into timer callback args */ 8933 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8934 if (err) 8935 return err; 8936 8937 clear_caller_saved_regs(env, caller->regs); 8938 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8939 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8940 /* continue with next insn after call */ 8941 return 0; 8942 } 8943 8944 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8945 if (!callee) 8946 return -ENOMEM; 8947 state->frame[state->curframe + 1] = callee; 8948 8949 /* callee cannot access r0, r6 - r9 for reading and has to write 8950 * into its own stack before reading from it. 8951 * callee can read/write into caller's stack 8952 */ 8953 init_func_state(env, callee, 8954 /* remember the callsite, it will be used by bpf_exit */ 8955 *insn_idx /* callsite */, 8956 state->curframe + 1 /* frameno within this callchain */, 8957 subprog /* subprog number within this prog */); 8958 8959 /* Transfer references to the callee */ 8960 err = copy_reference_state(callee, caller); 8961 if (err) 8962 goto err_out; 8963 8964 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8965 if (err) 8966 goto err_out; 8967 8968 clear_caller_saved_regs(env, caller->regs); 8969 8970 /* only increment it after check_reg_arg() finished */ 8971 state->curframe++; 8972 8973 /* and go analyze first insn of the callee */ 8974 *insn_idx = env->subprog_info[subprog].start - 1; 8975 8976 if (env->log.level & BPF_LOG_LEVEL) { 8977 verbose(env, "caller:\n"); 8978 print_verifier_state(env, caller, true); 8979 verbose(env, "callee:\n"); 8980 print_verifier_state(env, callee, true); 8981 } 8982 return 0; 8983 8984 err_out: 8985 free_func_state(callee); 8986 state->frame[state->curframe + 1] = NULL; 8987 return err; 8988 } 8989 8990 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8991 struct bpf_func_state *caller, 8992 struct bpf_func_state *callee) 8993 { 8994 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8995 * void *callback_ctx, u64 flags); 8996 * callback_fn(struct bpf_map *map, void *key, void *value, 8997 * void *callback_ctx); 8998 */ 8999 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9000 9001 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9002 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9003 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9004 9005 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9006 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9007 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9008 9009 /* pointer to stack or null */ 9010 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9011 9012 /* unused */ 9013 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9014 return 0; 9015 } 9016 9017 static int set_callee_state(struct bpf_verifier_env *env, 9018 struct bpf_func_state *caller, 9019 struct bpf_func_state *callee, int insn_idx) 9020 { 9021 int i; 9022 9023 /* copy r1 - r5 args that callee can access. The copy includes parent 9024 * pointers, which connects us up to the liveness chain 9025 */ 9026 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9027 callee->regs[i] = caller->regs[i]; 9028 return 0; 9029 } 9030 9031 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9032 int *insn_idx) 9033 { 9034 int subprog, target_insn; 9035 9036 target_insn = *insn_idx + insn->imm + 1; 9037 subprog = find_subprog(env, target_insn); 9038 if (subprog < 0) { 9039 verbose(env, "verifier bug. No program starts at insn %d\n", 9040 target_insn); 9041 return -EFAULT; 9042 } 9043 9044 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9045 } 9046 9047 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9048 struct bpf_func_state *caller, 9049 struct bpf_func_state *callee, 9050 int insn_idx) 9051 { 9052 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9053 struct bpf_map *map; 9054 int err; 9055 9056 if (bpf_map_ptr_poisoned(insn_aux)) { 9057 verbose(env, "tail_call abusing map_ptr\n"); 9058 return -EINVAL; 9059 } 9060 9061 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9062 if (!map->ops->map_set_for_each_callback_args || 9063 !map->ops->map_for_each_callback) { 9064 verbose(env, "callback function not allowed for map\n"); 9065 return -ENOTSUPP; 9066 } 9067 9068 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9069 if (err) 9070 return err; 9071 9072 callee->in_callback_fn = true; 9073 callee->callback_ret_range = tnum_range(0, 1); 9074 return 0; 9075 } 9076 9077 static int set_loop_callback_state(struct bpf_verifier_env *env, 9078 struct bpf_func_state *caller, 9079 struct bpf_func_state *callee, 9080 int insn_idx) 9081 { 9082 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9083 * u64 flags); 9084 * callback_fn(u32 index, void *callback_ctx); 9085 */ 9086 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9087 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9088 9089 /* unused */ 9090 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9091 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9092 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9093 9094 callee->in_callback_fn = true; 9095 callee->callback_ret_range = tnum_range(0, 1); 9096 return 0; 9097 } 9098 9099 static int set_timer_callback_state(struct bpf_verifier_env *env, 9100 struct bpf_func_state *caller, 9101 struct bpf_func_state *callee, 9102 int insn_idx) 9103 { 9104 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9105 9106 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9107 * callback_fn(struct bpf_map *map, void *key, void *value); 9108 */ 9109 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9110 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9111 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9112 9113 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9114 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9115 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9116 9117 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9118 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9119 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9120 9121 /* unused */ 9122 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9123 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9124 callee->in_async_callback_fn = true; 9125 callee->callback_ret_range = tnum_range(0, 1); 9126 return 0; 9127 } 9128 9129 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9130 struct bpf_func_state *caller, 9131 struct bpf_func_state *callee, 9132 int insn_idx) 9133 { 9134 /* bpf_find_vma(struct task_struct *task, u64 addr, 9135 * void *callback_fn, void *callback_ctx, u64 flags) 9136 * (callback_fn)(struct task_struct *task, 9137 * struct vm_area_struct *vma, void *callback_ctx); 9138 */ 9139 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9140 9141 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9142 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9143 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9144 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9145 9146 /* pointer to stack or null */ 9147 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9148 9149 /* unused */ 9150 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9151 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9152 callee->in_callback_fn = true; 9153 callee->callback_ret_range = tnum_range(0, 1); 9154 return 0; 9155 } 9156 9157 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9158 struct bpf_func_state *caller, 9159 struct bpf_func_state *callee, 9160 int insn_idx) 9161 { 9162 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9163 * callback_ctx, u64 flags); 9164 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9165 */ 9166 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9167 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9168 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9169 9170 /* unused */ 9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9172 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9173 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9174 9175 callee->in_callback_fn = true; 9176 callee->callback_ret_range = tnum_range(0, 1); 9177 return 0; 9178 } 9179 9180 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9181 struct bpf_func_state *caller, 9182 struct bpf_func_state *callee, 9183 int insn_idx) 9184 { 9185 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9186 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9187 * 9188 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9189 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9190 * by this point, so look at 'root' 9191 */ 9192 struct btf_field *field; 9193 9194 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9195 BPF_RB_ROOT); 9196 if (!field || !field->graph_root.value_btf_id) 9197 return -EFAULT; 9198 9199 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9200 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9201 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9202 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9203 9204 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9205 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9206 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9207 callee->in_callback_fn = true; 9208 callee->callback_ret_range = tnum_range(0, 1); 9209 return 0; 9210 } 9211 9212 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9213 9214 /* Are we currently verifying the callback for a rbtree helper that must 9215 * be called with lock held? If so, no need to complain about unreleased 9216 * lock 9217 */ 9218 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9219 { 9220 struct bpf_verifier_state *state = env->cur_state; 9221 struct bpf_insn *insn = env->prog->insnsi; 9222 struct bpf_func_state *callee; 9223 int kfunc_btf_id; 9224 9225 if (!state->curframe) 9226 return false; 9227 9228 callee = state->frame[state->curframe]; 9229 9230 if (!callee->in_callback_fn) 9231 return false; 9232 9233 kfunc_btf_id = insn[callee->callsite].imm; 9234 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9235 } 9236 9237 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9238 { 9239 struct bpf_verifier_state *state = env->cur_state; 9240 struct bpf_func_state *caller, *callee; 9241 struct bpf_reg_state *r0; 9242 int err; 9243 9244 callee = state->frame[state->curframe]; 9245 r0 = &callee->regs[BPF_REG_0]; 9246 if (r0->type == PTR_TO_STACK) { 9247 /* technically it's ok to return caller's stack pointer 9248 * (or caller's caller's pointer) back to the caller, 9249 * since these pointers are valid. Only current stack 9250 * pointer will be invalid as soon as function exits, 9251 * but let's be conservative 9252 */ 9253 verbose(env, "cannot return stack pointer to the caller\n"); 9254 return -EINVAL; 9255 } 9256 9257 caller = state->frame[state->curframe - 1]; 9258 if (callee->in_callback_fn) { 9259 /* enforce R0 return value range [0, 1]. */ 9260 struct tnum range = callee->callback_ret_range; 9261 9262 if (r0->type != SCALAR_VALUE) { 9263 verbose(env, "R0 not a scalar value\n"); 9264 return -EACCES; 9265 } 9266 if (!tnum_in(range, r0->var_off)) { 9267 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9268 return -EINVAL; 9269 } 9270 } else { 9271 /* return to the caller whatever r0 had in the callee */ 9272 caller->regs[BPF_REG_0] = *r0; 9273 } 9274 9275 /* callback_fn frame should have released its own additions to parent's 9276 * reference state at this point, or check_reference_leak would 9277 * complain, hence it must be the same as the caller. There is no need 9278 * to copy it back. 9279 */ 9280 if (!callee->in_callback_fn) { 9281 /* Transfer references to the caller */ 9282 err = copy_reference_state(caller, callee); 9283 if (err) 9284 return err; 9285 } 9286 9287 *insn_idx = callee->callsite + 1; 9288 if (env->log.level & BPF_LOG_LEVEL) { 9289 verbose(env, "returning from callee:\n"); 9290 print_verifier_state(env, callee, true); 9291 verbose(env, "to caller at %d:\n", *insn_idx); 9292 print_verifier_state(env, caller, true); 9293 } 9294 /* clear everything in the callee */ 9295 free_func_state(callee); 9296 state->frame[state->curframe--] = NULL; 9297 return 0; 9298 } 9299 9300 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9301 int func_id, 9302 struct bpf_call_arg_meta *meta) 9303 { 9304 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9305 9306 if (ret_type != RET_INTEGER) 9307 return; 9308 9309 switch (func_id) { 9310 case BPF_FUNC_get_stack: 9311 case BPF_FUNC_get_task_stack: 9312 case BPF_FUNC_probe_read_str: 9313 case BPF_FUNC_probe_read_kernel_str: 9314 case BPF_FUNC_probe_read_user_str: 9315 ret_reg->smax_value = meta->msize_max_value; 9316 ret_reg->s32_max_value = meta->msize_max_value; 9317 ret_reg->smin_value = -MAX_ERRNO; 9318 ret_reg->s32_min_value = -MAX_ERRNO; 9319 reg_bounds_sync(ret_reg); 9320 break; 9321 case BPF_FUNC_get_smp_processor_id: 9322 ret_reg->umax_value = nr_cpu_ids - 1; 9323 ret_reg->u32_max_value = nr_cpu_ids - 1; 9324 ret_reg->smax_value = nr_cpu_ids - 1; 9325 ret_reg->s32_max_value = nr_cpu_ids - 1; 9326 ret_reg->umin_value = 0; 9327 ret_reg->u32_min_value = 0; 9328 ret_reg->smin_value = 0; 9329 ret_reg->s32_min_value = 0; 9330 reg_bounds_sync(ret_reg); 9331 break; 9332 } 9333 } 9334 9335 static int 9336 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9337 int func_id, int insn_idx) 9338 { 9339 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9340 struct bpf_map *map = meta->map_ptr; 9341 9342 if (func_id != BPF_FUNC_tail_call && 9343 func_id != BPF_FUNC_map_lookup_elem && 9344 func_id != BPF_FUNC_map_update_elem && 9345 func_id != BPF_FUNC_map_delete_elem && 9346 func_id != BPF_FUNC_map_push_elem && 9347 func_id != BPF_FUNC_map_pop_elem && 9348 func_id != BPF_FUNC_map_peek_elem && 9349 func_id != BPF_FUNC_for_each_map_elem && 9350 func_id != BPF_FUNC_redirect_map && 9351 func_id != BPF_FUNC_map_lookup_percpu_elem) 9352 return 0; 9353 9354 if (map == NULL) { 9355 verbose(env, "kernel subsystem misconfigured verifier\n"); 9356 return -EINVAL; 9357 } 9358 9359 /* In case of read-only, some additional restrictions 9360 * need to be applied in order to prevent altering the 9361 * state of the map from program side. 9362 */ 9363 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9364 (func_id == BPF_FUNC_map_delete_elem || 9365 func_id == BPF_FUNC_map_update_elem || 9366 func_id == BPF_FUNC_map_push_elem || 9367 func_id == BPF_FUNC_map_pop_elem)) { 9368 verbose(env, "write into map forbidden\n"); 9369 return -EACCES; 9370 } 9371 9372 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9373 bpf_map_ptr_store(aux, meta->map_ptr, 9374 !meta->map_ptr->bypass_spec_v1); 9375 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9376 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9377 !meta->map_ptr->bypass_spec_v1); 9378 return 0; 9379 } 9380 9381 static int 9382 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9383 int func_id, int insn_idx) 9384 { 9385 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9386 struct bpf_reg_state *regs = cur_regs(env), *reg; 9387 struct bpf_map *map = meta->map_ptr; 9388 u64 val, max; 9389 int err; 9390 9391 if (func_id != BPF_FUNC_tail_call) 9392 return 0; 9393 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9394 verbose(env, "kernel subsystem misconfigured verifier\n"); 9395 return -EINVAL; 9396 } 9397 9398 reg = ®s[BPF_REG_3]; 9399 val = reg->var_off.value; 9400 max = map->max_entries; 9401 9402 if (!(register_is_const(reg) && val < max)) { 9403 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9404 return 0; 9405 } 9406 9407 err = mark_chain_precision(env, BPF_REG_3); 9408 if (err) 9409 return err; 9410 if (bpf_map_key_unseen(aux)) 9411 bpf_map_key_store(aux, val); 9412 else if (!bpf_map_key_poisoned(aux) && 9413 bpf_map_key_immediate(aux) != val) 9414 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9415 return 0; 9416 } 9417 9418 static int check_reference_leak(struct bpf_verifier_env *env) 9419 { 9420 struct bpf_func_state *state = cur_func(env); 9421 bool refs_lingering = false; 9422 int i; 9423 9424 if (state->frameno && !state->in_callback_fn) 9425 return 0; 9426 9427 for (i = 0; i < state->acquired_refs; i++) { 9428 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9429 continue; 9430 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9431 state->refs[i].id, state->refs[i].insn_idx); 9432 refs_lingering = true; 9433 } 9434 return refs_lingering ? -EINVAL : 0; 9435 } 9436 9437 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9438 struct bpf_reg_state *regs) 9439 { 9440 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9441 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9442 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9443 struct bpf_bprintf_data data = {}; 9444 int err, fmt_map_off, num_args; 9445 u64 fmt_addr; 9446 char *fmt; 9447 9448 /* data must be an array of u64 */ 9449 if (data_len_reg->var_off.value % 8) 9450 return -EINVAL; 9451 num_args = data_len_reg->var_off.value / 8; 9452 9453 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9454 * and map_direct_value_addr is set. 9455 */ 9456 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9457 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9458 fmt_map_off); 9459 if (err) { 9460 verbose(env, "verifier bug\n"); 9461 return -EFAULT; 9462 } 9463 fmt = (char *)(long)fmt_addr + fmt_map_off; 9464 9465 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9466 * can focus on validating the format specifiers. 9467 */ 9468 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9469 if (err < 0) 9470 verbose(env, "Invalid format string\n"); 9471 9472 return err; 9473 } 9474 9475 static int check_get_func_ip(struct bpf_verifier_env *env) 9476 { 9477 enum bpf_prog_type type = resolve_prog_type(env->prog); 9478 int func_id = BPF_FUNC_get_func_ip; 9479 9480 if (type == BPF_PROG_TYPE_TRACING) { 9481 if (!bpf_prog_has_trampoline(env->prog)) { 9482 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9483 func_id_name(func_id), func_id); 9484 return -ENOTSUPP; 9485 } 9486 return 0; 9487 } else if (type == BPF_PROG_TYPE_KPROBE) { 9488 return 0; 9489 } 9490 9491 verbose(env, "func %s#%d not supported for program type %d\n", 9492 func_id_name(func_id), func_id, type); 9493 return -ENOTSUPP; 9494 } 9495 9496 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9497 { 9498 return &env->insn_aux_data[env->insn_idx]; 9499 } 9500 9501 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9502 { 9503 struct bpf_reg_state *regs = cur_regs(env); 9504 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9505 bool reg_is_null = register_is_null(reg); 9506 9507 if (reg_is_null) 9508 mark_chain_precision(env, BPF_REG_4); 9509 9510 return reg_is_null; 9511 } 9512 9513 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9514 { 9515 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9516 9517 if (!state->initialized) { 9518 state->initialized = 1; 9519 state->fit_for_inline = loop_flag_is_zero(env); 9520 state->callback_subprogno = subprogno; 9521 return; 9522 } 9523 9524 if (!state->fit_for_inline) 9525 return; 9526 9527 state->fit_for_inline = (loop_flag_is_zero(env) && 9528 state->callback_subprogno == subprogno); 9529 } 9530 9531 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9532 int *insn_idx_p) 9533 { 9534 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9535 const struct bpf_func_proto *fn = NULL; 9536 enum bpf_return_type ret_type; 9537 enum bpf_type_flag ret_flag; 9538 struct bpf_reg_state *regs; 9539 struct bpf_call_arg_meta meta; 9540 int insn_idx = *insn_idx_p; 9541 bool changes_data; 9542 int i, err, func_id; 9543 9544 /* find function prototype */ 9545 func_id = insn->imm; 9546 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9547 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9548 func_id); 9549 return -EINVAL; 9550 } 9551 9552 if (env->ops->get_func_proto) 9553 fn = env->ops->get_func_proto(func_id, env->prog); 9554 if (!fn) { 9555 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9556 func_id); 9557 return -EINVAL; 9558 } 9559 9560 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9561 if (!env->prog->gpl_compatible && fn->gpl_only) { 9562 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9563 return -EINVAL; 9564 } 9565 9566 if (fn->allowed && !fn->allowed(env->prog)) { 9567 verbose(env, "helper call is not allowed in probe\n"); 9568 return -EINVAL; 9569 } 9570 9571 if (!env->prog->aux->sleepable && fn->might_sleep) { 9572 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9573 return -EINVAL; 9574 } 9575 9576 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9577 changes_data = bpf_helper_changes_pkt_data(fn->func); 9578 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9579 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9580 func_id_name(func_id), func_id); 9581 return -EINVAL; 9582 } 9583 9584 memset(&meta, 0, sizeof(meta)); 9585 meta.pkt_access = fn->pkt_access; 9586 9587 err = check_func_proto(fn, func_id); 9588 if (err) { 9589 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9590 func_id_name(func_id), func_id); 9591 return err; 9592 } 9593 9594 if (env->cur_state->active_rcu_lock) { 9595 if (fn->might_sleep) { 9596 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9597 func_id_name(func_id), func_id); 9598 return -EINVAL; 9599 } 9600 9601 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9602 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9603 } 9604 9605 meta.func_id = func_id; 9606 /* check args */ 9607 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9608 err = check_func_arg(env, i, &meta, fn, insn_idx); 9609 if (err) 9610 return err; 9611 } 9612 9613 err = record_func_map(env, &meta, func_id, insn_idx); 9614 if (err) 9615 return err; 9616 9617 err = record_func_key(env, &meta, func_id, insn_idx); 9618 if (err) 9619 return err; 9620 9621 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9622 * is inferred from register state. 9623 */ 9624 for (i = 0; i < meta.access_size; i++) { 9625 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9626 BPF_WRITE, -1, false, false); 9627 if (err) 9628 return err; 9629 } 9630 9631 regs = cur_regs(env); 9632 9633 if (meta.release_regno) { 9634 err = -EINVAL; 9635 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9636 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9637 * is safe to do directly. 9638 */ 9639 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9640 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9641 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9642 return -EFAULT; 9643 } 9644 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9645 } else if (meta.ref_obj_id) { 9646 err = release_reference(env, meta.ref_obj_id); 9647 } else if (register_is_null(®s[meta.release_regno])) { 9648 /* meta.ref_obj_id can only be 0 if register that is meant to be 9649 * released is NULL, which must be > R0. 9650 */ 9651 err = 0; 9652 } 9653 if (err) { 9654 verbose(env, "func %s#%d reference has not been acquired before\n", 9655 func_id_name(func_id), func_id); 9656 return err; 9657 } 9658 } 9659 9660 switch (func_id) { 9661 case BPF_FUNC_tail_call: 9662 err = check_reference_leak(env); 9663 if (err) { 9664 verbose(env, "tail_call would lead to reference leak\n"); 9665 return err; 9666 } 9667 break; 9668 case BPF_FUNC_get_local_storage: 9669 /* check that flags argument in get_local_storage(map, flags) is 0, 9670 * this is required because get_local_storage() can't return an error. 9671 */ 9672 if (!register_is_null(®s[BPF_REG_2])) { 9673 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9674 return -EINVAL; 9675 } 9676 break; 9677 case BPF_FUNC_for_each_map_elem: 9678 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9679 set_map_elem_callback_state); 9680 break; 9681 case BPF_FUNC_timer_set_callback: 9682 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9683 set_timer_callback_state); 9684 break; 9685 case BPF_FUNC_find_vma: 9686 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9687 set_find_vma_callback_state); 9688 break; 9689 case BPF_FUNC_snprintf: 9690 err = check_bpf_snprintf_call(env, regs); 9691 break; 9692 case BPF_FUNC_loop: 9693 update_loop_inline_state(env, meta.subprogno); 9694 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9695 set_loop_callback_state); 9696 break; 9697 case BPF_FUNC_dynptr_from_mem: 9698 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9699 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9700 reg_type_str(env, regs[BPF_REG_1].type)); 9701 return -EACCES; 9702 } 9703 break; 9704 case BPF_FUNC_set_retval: 9705 if (prog_type == BPF_PROG_TYPE_LSM && 9706 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9707 if (!env->prog->aux->attach_func_proto->type) { 9708 /* Make sure programs that attach to void 9709 * hooks don't try to modify return value. 9710 */ 9711 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9712 return -EINVAL; 9713 } 9714 } 9715 break; 9716 case BPF_FUNC_dynptr_data: 9717 { 9718 struct bpf_reg_state *reg; 9719 int id, ref_obj_id; 9720 9721 reg = get_dynptr_arg_reg(env, fn, regs); 9722 if (!reg) 9723 return -EFAULT; 9724 9725 9726 if (meta.dynptr_id) { 9727 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9728 return -EFAULT; 9729 } 9730 if (meta.ref_obj_id) { 9731 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9732 return -EFAULT; 9733 } 9734 9735 id = dynptr_id(env, reg); 9736 if (id < 0) { 9737 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9738 return id; 9739 } 9740 9741 ref_obj_id = dynptr_ref_obj_id(env, reg); 9742 if (ref_obj_id < 0) { 9743 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9744 return ref_obj_id; 9745 } 9746 9747 meta.dynptr_id = id; 9748 meta.ref_obj_id = ref_obj_id; 9749 9750 break; 9751 } 9752 case BPF_FUNC_dynptr_write: 9753 { 9754 enum bpf_dynptr_type dynptr_type; 9755 struct bpf_reg_state *reg; 9756 9757 reg = get_dynptr_arg_reg(env, fn, regs); 9758 if (!reg) 9759 return -EFAULT; 9760 9761 dynptr_type = dynptr_get_type(env, reg); 9762 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9763 return -EFAULT; 9764 9765 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9766 /* this will trigger clear_all_pkt_pointers(), which will 9767 * invalidate all dynptr slices associated with the skb 9768 */ 9769 changes_data = true; 9770 9771 break; 9772 } 9773 case BPF_FUNC_user_ringbuf_drain: 9774 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9775 set_user_ringbuf_callback_state); 9776 break; 9777 } 9778 9779 if (err) 9780 return err; 9781 9782 /* reset caller saved regs */ 9783 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9784 mark_reg_not_init(env, regs, caller_saved[i]); 9785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9786 } 9787 9788 /* helper call returns 64-bit value. */ 9789 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9790 9791 /* update return register (already marked as written above) */ 9792 ret_type = fn->ret_type; 9793 ret_flag = type_flag(ret_type); 9794 9795 switch (base_type(ret_type)) { 9796 case RET_INTEGER: 9797 /* sets type to SCALAR_VALUE */ 9798 mark_reg_unknown(env, regs, BPF_REG_0); 9799 break; 9800 case RET_VOID: 9801 regs[BPF_REG_0].type = NOT_INIT; 9802 break; 9803 case RET_PTR_TO_MAP_VALUE: 9804 /* There is no offset yet applied, variable or fixed */ 9805 mark_reg_known_zero(env, regs, BPF_REG_0); 9806 /* remember map_ptr, so that check_map_access() 9807 * can check 'value_size' boundary of memory access 9808 * to map element returned from bpf_map_lookup_elem() 9809 */ 9810 if (meta.map_ptr == NULL) { 9811 verbose(env, 9812 "kernel subsystem misconfigured verifier\n"); 9813 return -EINVAL; 9814 } 9815 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9816 regs[BPF_REG_0].map_uid = meta.map_uid; 9817 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9818 if (!type_may_be_null(ret_type) && 9819 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9820 regs[BPF_REG_0].id = ++env->id_gen; 9821 } 9822 break; 9823 case RET_PTR_TO_SOCKET: 9824 mark_reg_known_zero(env, regs, BPF_REG_0); 9825 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9826 break; 9827 case RET_PTR_TO_SOCK_COMMON: 9828 mark_reg_known_zero(env, regs, BPF_REG_0); 9829 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9830 break; 9831 case RET_PTR_TO_TCP_SOCK: 9832 mark_reg_known_zero(env, regs, BPF_REG_0); 9833 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9834 break; 9835 case RET_PTR_TO_MEM: 9836 mark_reg_known_zero(env, regs, BPF_REG_0); 9837 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9838 regs[BPF_REG_0].mem_size = meta.mem_size; 9839 break; 9840 case RET_PTR_TO_MEM_OR_BTF_ID: 9841 { 9842 const struct btf_type *t; 9843 9844 mark_reg_known_zero(env, regs, BPF_REG_0); 9845 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9846 if (!btf_type_is_struct(t)) { 9847 u32 tsize; 9848 const struct btf_type *ret; 9849 const char *tname; 9850 9851 /* resolve the type size of ksym. */ 9852 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9853 if (IS_ERR(ret)) { 9854 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9855 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9856 tname, PTR_ERR(ret)); 9857 return -EINVAL; 9858 } 9859 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9860 regs[BPF_REG_0].mem_size = tsize; 9861 } else { 9862 /* MEM_RDONLY may be carried from ret_flag, but it 9863 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9864 * it will confuse the check of PTR_TO_BTF_ID in 9865 * check_mem_access(). 9866 */ 9867 ret_flag &= ~MEM_RDONLY; 9868 9869 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9870 regs[BPF_REG_0].btf = meta.ret_btf; 9871 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9872 } 9873 break; 9874 } 9875 case RET_PTR_TO_BTF_ID: 9876 { 9877 struct btf *ret_btf; 9878 int ret_btf_id; 9879 9880 mark_reg_known_zero(env, regs, BPF_REG_0); 9881 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9882 if (func_id == BPF_FUNC_kptr_xchg) { 9883 ret_btf = meta.kptr_field->kptr.btf; 9884 ret_btf_id = meta.kptr_field->kptr.btf_id; 9885 if (!btf_is_kernel(ret_btf)) 9886 regs[BPF_REG_0].type |= MEM_ALLOC; 9887 } else { 9888 if (fn->ret_btf_id == BPF_PTR_POISON) { 9889 verbose(env, "verifier internal error:"); 9890 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9891 func_id_name(func_id)); 9892 return -EINVAL; 9893 } 9894 ret_btf = btf_vmlinux; 9895 ret_btf_id = *fn->ret_btf_id; 9896 } 9897 if (ret_btf_id == 0) { 9898 verbose(env, "invalid return type %u of func %s#%d\n", 9899 base_type(ret_type), func_id_name(func_id), 9900 func_id); 9901 return -EINVAL; 9902 } 9903 regs[BPF_REG_0].btf = ret_btf; 9904 regs[BPF_REG_0].btf_id = ret_btf_id; 9905 break; 9906 } 9907 default: 9908 verbose(env, "unknown return type %u of func %s#%d\n", 9909 base_type(ret_type), func_id_name(func_id), func_id); 9910 return -EINVAL; 9911 } 9912 9913 if (type_may_be_null(regs[BPF_REG_0].type)) 9914 regs[BPF_REG_0].id = ++env->id_gen; 9915 9916 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9917 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9918 func_id_name(func_id), func_id); 9919 return -EFAULT; 9920 } 9921 9922 if (is_dynptr_ref_function(func_id)) 9923 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9924 9925 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9926 /* For release_reference() */ 9927 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9928 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9929 int id = acquire_reference_state(env, insn_idx); 9930 9931 if (id < 0) 9932 return id; 9933 /* For mark_ptr_or_null_reg() */ 9934 regs[BPF_REG_0].id = id; 9935 /* For release_reference() */ 9936 regs[BPF_REG_0].ref_obj_id = id; 9937 } 9938 9939 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9940 9941 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9942 if (err) 9943 return err; 9944 9945 if ((func_id == BPF_FUNC_get_stack || 9946 func_id == BPF_FUNC_get_task_stack) && 9947 !env->prog->has_callchain_buf) { 9948 const char *err_str; 9949 9950 #ifdef CONFIG_PERF_EVENTS 9951 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9952 err_str = "cannot get callchain buffer for func %s#%d\n"; 9953 #else 9954 err = -ENOTSUPP; 9955 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9956 #endif 9957 if (err) { 9958 verbose(env, err_str, func_id_name(func_id), func_id); 9959 return err; 9960 } 9961 9962 env->prog->has_callchain_buf = true; 9963 } 9964 9965 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9966 env->prog->call_get_stack = true; 9967 9968 if (func_id == BPF_FUNC_get_func_ip) { 9969 if (check_get_func_ip(env)) 9970 return -ENOTSUPP; 9971 env->prog->call_get_func_ip = true; 9972 } 9973 9974 if (changes_data) 9975 clear_all_pkt_pointers(env); 9976 return 0; 9977 } 9978 9979 /* mark_btf_func_reg_size() is used when the reg size is determined by 9980 * the BTF func_proto's return value size and argument. 9981 */ 9982 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9983 size_t reg_size) 9984 { 9985 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9986 9987 if (regno == BPF_REG_0) { 9988 /* Function return value */ 9989 reg->live |= REG_LIVE_WRITTEN; 9990 reg->subreg_def = reg_size == sizeof(u64) ? 9991 DEF_NOT_SUBREG : env->insn_idx + 1; 9992 } else { 9993 /* Function argument */ 9994 if (reg_size == sizeof(u64)) { 9995 mark_insn_zext(env, reg); 9996 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9997 } else { 9998 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9999 } 10000 } 10001 } 10002 10003 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10004 { 10005 return meta->kfunc_flags & KF_ACQUIRE; 10006 } 10007 10008 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10009 { 10010 return meta->kfunc_flags & KF_RELEASE; 10011 } 10012 10013 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10014 { 10015 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10016 } 10017 10018 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10019 { 10020 return meta->kfunc_flags & KF_SLEEPABLE; 10021 } 10022 10023 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10024 { 10025 return meta->kfunc_flags & KF_DESTRUCTIVE; 10026 } 10027 10028 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10029 { 10030 return meta->kfunc_flags & KF_RCU; 10031 } 10032 10033 static bool __kfunc_param_match_suffix(const struct btf *btf, 10034 const struct btf_param *arg, 10035 const char *suffix) 10036 { 10037 int suffix_len = strlen(suffix), len; 10038 const char *param_name; 10039 10040 /* In the future, this can be ported to use BTF tagging */ 10041 param_name = btf_name_by_offset(btf, arg->name_off); 10042 if (str_is_empty(param_name)) 10043 return false; 10044 len = strlen(param_name); 10045 if (len < suffix_len) 10046 return false; 10047 param_name += len - suffix_len; 10048 return !strncmp(param_name, suffix, suffix_len); 10049 } 10050 10051 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10052 const struct btf_param *arg, 10053 const struct bpf_reg_state *reg) 10054 { 10055 const struct btf_type *t; 10056 10057 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10058 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10059 return false; 10060 10061 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10062 } 10063 10064 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10065 const struct btf_param *arg, 10066 const struct bpf_reg_state *reg) 10067 { 10068 const struct btf_type *t; 10069 10070 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10071 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10072 return false; 10073 10074 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10075 } 10076 10077 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10078 { 10079 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10080 } 10081 10082 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10083 { 10084 return __kfunc_param_match_suffix(btf, arg, "__k"); 10085 } 10086 10087 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10088 { 10089 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10090 } 10091 10092 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10093 { 10094 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10095 } 10096 10097 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10098 { 10099 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10100 } 10101 10102 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10103 { 10104 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10105 } 10106 10107 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10108 const struct btf_param *arg, 10109 const char *name) 10110 { 10111 int len, target_len = strlen(name); 10112 const char *param_name; 10113 10114 param_name = btf_name_by_offset(btf, arg->name_off); 10115 if (str_is_empty(param_name)) 10116 return false; 10117 len = strlen(param_name); 10118 if (len != target_len) 10119 return false; 10120 if (strcmp(param_name, name)) 10121 return false; 10122 10123 return true; 10124 } 10125 10126 enum { 10127 KF_ARG_DYNPTR_ID, 10128 KF_ARG_LIST_HEAD_ID, 10129 KF_ARG_LIST_NODE_ID, 10130 KF_ARG_RB_ROOT_ID, 10131 KF_ARG_RB_NODE_ID, 10132 }; 10133 10134 BTF_ID_LIST(kf_arg_btf_ids) 10135 BTF_ID(struct, bpf_dynptr_kern) 10136 BTF_ID(struct, bpf_list_head) 10137 BTF_ID(struct, bpf_list_node) 10138 BTF_ID(struct, bpf_rb_root) 10139 BTF_ID(struct, bpf_rb_node) 10140 10141 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10142 const struct btf_param *arg, int type) 10143 { 10144 const struct btf_type *t; 10145 u32 res_id; 10146 10147 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10148 if (!t) 10149 return false; 10150 if (!btf_type_is_ptr(t)) 10151 return false; 10152 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10153 if (!t) 10154 return false; 10155 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10156 } 10157 10158 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10159 { 10160 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10161 } 10162 10163 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10164 { 10165 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10166 } 10167 10168 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10169 { 10170 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10171 } 10172 10173 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10174 { 10175 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10176 } 10177 10178 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10179 { 10180 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10181 } 10182 10183 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10184 const struct btf_param *arg) 10185 { 10186 const struct btf_type *t; 10187 10188 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10189 if (!t) 10190 return false; 10191 10192 return true; 10193 } 10194 10195 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10196 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10197 const struct btf *btf, 10198 const struct btf_type *t, int rec) 10199 { 10200 const struct btf_type *member_type; 10201 const struct btf_member *member; 10202 u32 i; 10203 10204 if (!btf_type_is_struct(t)) 10205 return false; 10206 10207 for_each_member(i, t, member) { 10208 const struct btf_array *array; 10209 10210 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10211 if (btf_type_is_struct(member_type)) { 10212 if (rec >= 3) { 10213 verbose(env, "max struct nesting depth exceeded\n"); 10214 return false; 10215 } 10216 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10217 return false; 10218 continue; 10219 } 10220 if (btf_type_is_array(member_type)) { 10221 array = btf_array(member_type); 10222 if (!array->nelems) 10223 return false; 10224 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10225 if (!btf_type_is_scalar(member_type)) 10226 return false; 10227 continue; 10228 } 10229 if (!btf_type_is_scalar(member_type)) 10230 return false; 10231 } 10232 return true; 10233 } 10234 10235 enum kfunc_ptr_arg_type { 10236 KF_ARG_PTR_TO_CTX, 10237 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10238 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10239 KF_ARG_PTR_TO_DYNPTR, 10240 KF_ARG_PTR_TO_ITER, 10241 KF_ARG_PTR_TO_LIST_HEAD, 10242 KF_ARG_PTR_TO_LIST_NODE, 10243 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10244 KF_ARG_PTR_TO_MEM, 10245 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10246 KF_ARG_PTR_TO_CALLBACK, 10247 KF_ARG_PTR_TO_RB_ROOT, 10248 KF_ARG_PTR_TO_RB_NODE, 10249 }; 10250 10251 enum special_kfunc_type { 10252 KF_bpf_obj_new_impl, 10253 KF_bpf_obj_drop_impl, 10254 KF_bpf_refcount_acquire_impl, 10255 KF_bpf_list_push_front_impl, 10256 KF_bpf_list_push_back_impl, 10257 KF_bpf_list_pop_front, 10258 KF_bpf_list_pop_back, 10259 KF_bpf_cast_to_kern_ctx, 10260 KF_bpf_rdonly_cast, 10261 KF_bpf_rcu_read_lock, 10262 KF_bpf_rcu_read_unlock, 10263 KF_bpf_rbtree_remove, 10264 KF_bpf_rbtree_add_impl, 10265 KF_bpf_rbtree_first, 10266 KF_bpf_dynptr_from_skb, 10267 KF_bpf_dynptr_from_xdp, 10268 KF_bpf_dynptr_slice, 10269 KF_bpf_dynptr_slice_rdwr, 10270 KF_bpf_dynptr_clone, 10271 }; 10272 10273 BTF_SET_START(special_kfunc_set) 10274 BTF_ID(func, bpf_obj_new_impl) 10275 BTF_ID(func, bpf_obj_drop_impl) 10276 BTF_ID(func, bpf_refcount_acquire_impl) 10277 BTF_ID(func, bpf_list_push_front_impl) 10278 BTF_ID(func, bpf_list_push_back_impl) 10279 BTF_ID(func, bpf_list_pop_front) 10280 BTF_ID(func, bpf_list_pop_back) 10281 BTF_ID(func, bpf_cast_to_kern_ctx) 10282 BTF_ID(func, bpf_rdonly_cast) 10283 BTF_ID(func, bpf_rbtree_remove) 10284 BTF_ID(func, bpf_rbtree_add_impl) 10285 BTF_ID(func, bpf_rbtree_first) 10286 BTF_ID(func, bpf_dynptr_from_skb) 10287 BTF_ID(func, bpf_dynptr_from_xdp) 10288 BTF_ID(func, bpf_dynptr_slice) 10289 BTF_ID(func, bpf_dynptr_slice_rdwr) 10290 BTF_ID(func, bpf_dynptr_clone) 10291 BTF_SET_END(special_kfunc_set) 10292 10293 BTF_ID_LIST(special_kfunc_list) 10294 BTF_ID(func, bpf_obj_new_impl) 10295 BTF_ID(func, bpf_obj_drop_impl) 10296 BTF_ID(func, bpf_refcount_acquire_impl) 10297 BTF_ID(func, bpf_list_push_front_impl) 10298 BTF_ID(func, bpf_list_push_back_impl) 10299 BTF_ID(func, bpf_list_pop_front) 10300 BTF_ID(func, bpf_list_pop_back) 10301 BTF_ID(func, bpf_cast_to_kern_ctx) 10302 BTF_ID(func, bpf_rdonly_cast) 10303 BTF_ID(func, bpf_rcu_read_lock) 10304 BTF_ID(func, bpf_rcu_read_unlock) 10305 BTF_ID(func, bpf_rbtree_remove) 10306 BTF_ID(func, bpf_rbtree_add_impl) 10307 BTF_ID(func, bpf_rbtree_first) 10308 BTF_ID(func, bpf_dynptr_from_skb) 10309 BTF_ID(func, bpf_dynptr_from_xdp) 10310 BTF_ID(func, bpf_dynptr_slice) 10311 BTF_ID(func, bpf_dynptr_slice_rdwr) 10312 BTF_ID(func, bpf_dynptr_clone) 10313 10314 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10315 { 10316 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10317 meta->arg_owning_ref) { 10318 return false; 10319 } 10320 10321 return meta->kfunc_flags & KF_RET_NULL; 10322 } 10323 10324 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10325 { 10326 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10327 } 10328 10329 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10330 { 10331 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10332 } 10333 10334 static enum kfunc_ptr_arg_type 10335 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10336 struct bpf_kfunc_call_arg_meta *meta, 10337 const struct btf_type *t, const struct btf_type *ref_t, 10338 const char *ref_tname, const struct btf_param *args, 10339 int argno, int nargs) 10340 { 10341 u32 regno = argno + 1; 10342 struct bpf_reg_state *regs = cur_regs(env); 10343 struct bpf_reg_state *reg = ®s[regno]; 10344 bool arg_mem_size = false; 10345 10346 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10347 return KF_ARG_PTR_TO_CTX; 10348 10349 /* In this function, we verify the kfunc's BTF as per the argument type, 10350 * leaving the rest of the verification with respect to the register 10351 * type to our caller. When a set of conditions hold in the BTF type of 10352 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10353 */ 10354 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10355 return KF_ARG_PTR_TO_CTX; 10356 10357 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10358 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10359 10360 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10361 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10362 10363 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10364 return KF_ARG_PTR_TO_DYNPTR; 10365 10366 if (is_kfunc_arg_iter(meta, argno)) 10367 return KF_ARG_PTR_TO_ITER; 10368 10369 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10370 return KF_ARG_PTR_TO_LIST_HEAD; 10371 10372 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10373 return KF_ARG_PTR_TO_LIST_NODE; 10374 10375 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10376 return KF_ARG_PTR_TO_RB_ROOT; 10377 10378 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10379 return KF_ARG_PTR_TO_RB_NODE; 10380 10381 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10382 if (!btf_type_is_struct(ref_t)) { 10383 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10384 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10385 return -EINVAL; 10386 } 10387 return KF_ARG_PTR_TO_BTF_ID; 10388 } 10389 10390 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10391 return KF_ARG_PTR_TO_CALLBACK; 10392 10393 10394 if (argno + 1 < nargs && 10395 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10396 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10397 arg_mem_size = true; 10398 10399 /* This is the catch all argument type of register types supported by 10400 * check_helper_mem_access. However, we only allow when argument type is 10401 * pointer to scalar, or struct composed (recursively) of scalars. When 10402 * arg_mem_size is true, the pointer can be void *. 10403 */ 10404 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10405 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10406 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10407 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10408 return -EINVAL; 10409 } 10410 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10411 } 10412 10413 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10414 struct bpf_reg_state *reg, 10415 const struct btf_type *ref_t, 10416 const char *ref_tname, u32 ref_id, 10417 struct bpf_kfunc_call_arg_meta *meta, 10418 int argno) 10419 { 10420 const struct btf_type *reg_ref_t; 10421 bool strict_type_match = false; 10422 const struct btf *reg_btf; 10423 const char *reg_ref_tname; 10424 u32 reg_ref_id; 10425 10426 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10427 reg_btf = reg->btf; 10428 reg_ref_id = reg->btf_id; 10429 } else { 10430 reg_btf = btf_vmlinux; 10431 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10432 } 10433 10434 /* Enforce strict type matching for calls to kfuncs that are acquiring 10435 * or releasing a reference, or are no-cast aliases. We do _not_ 10436 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10437 * as we want to enable BPF programs to pass types that are bitwise 10438 * equivalent without forcing them to explicitly cast with something 10439 * like bpf_cast_to_kern_ctx(). 10440 * 10441 * For example, say we had a type like the following: 10442 * 10443 * struct bpf_cpumask { 10444 * cpumask_t cpumask; 10445 * refcount_t usage; 10446 * }; 10447 * 10448 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10449 * to a struct cpumask, so it would be safe to pass a struct 10450 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10451 * 10452 * The philosophy here is similar to how we allow scalars of different 10453 * types to be passed to kfuncs as long as the size is the same. The 10454 * only difference here is that we're simply allowing 10455 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10456 * resolve types. 10457 */ 10458 if (is_kfunc_acquire(meta) || 10459 (is_kfunc_release(meta) && reg->ref_obj_id) || 10460 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10461 strict_type_match = true; 10462 10463 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10464 10465 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10466 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10467 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10468 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10469 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10470 btf_type_str(reg_ref_t), reg_ref_tname); 10471 return -EINVAL; 10472 } 10473 return 0; 10474 } 10475 10476 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10477 { 10478 struct bpf_verifier_state *state = env->cur_state; 10479 struct btf_record *rec = reg_btf_record(reg); 10480 10481 if (!state->active_lock.ptr) { 10482 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10483 return -EFAULT; 10484 } 10485 10486 if (type_flag(reg->type) & NON_OWN_REF) { 10487 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10488 return -EFAULT; 10489 } 10490 10491 reg->type |= NON_OWN_REF; 10492 if (rec->refcount_off >= 0) 10493 reg->type |= MEM_RCU; 10494 10495 return 0; 10496 } 10497 10498 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10499 { 10500 struct bpf_func_state *state, *unused; 10501 struct bpf_reg_state *reg; 10502 int i; 10503 10504 state = cur_func(env); 10505 10506 if (!ref_obj_id) { 10507 verbose(env, "verifier internal error: ref_obj_id is zero for " 10508 "owning -> non-owning conversion\n"); 10509 return -EFAULT; 10510 } 10511 10512 for (i = 0; i < state->acquired_refs; i++) { 10513 if (state->refs[i].id != ref_obj_id) 10514 continue; 10515 10516 /* Clear ref_obj_id here so release_reference doesn't clobber 10517 * the whole reg 10518 */ 10519 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10520 if (reg->ref_obj_id == ref_obj_id) { 10521 reg->ref_obj_id = 0; 10522 ref_set_non_owning(env, reg); 10523 } 10524 })); 10525 return 0; 10526 } 10527 10528 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10529 return -EFAULT; 10530 } 10531 10532 /* Implementation details: 10533 * 10534 * Each register points to some region of memory, which we define as an 10535 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10536 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10537 * allocation. The lock and the data it protects are colocated in the same 10538 * memory region. 10539 * 10540 * Hence, everytime a register holds a pointer value pointing to such 10541 * allocation, the verifier preserves a unique reg->id for it. 10542 * 10543 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10544 * bpf_spin_lock is called. 10545 * 10546 * To enable this, lock state in the verifier captures two values: 10547 * active_lock.ptr = Register's type specific pointer 10548 * active_lock.id = A unique ID for each register pointer value 10549 * 10550 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10551 * supported register types. 10552 * 10553 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10554 * allocated objects is the reg->btf pointer. 10555 * 10556 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10557 * can establish the provenance of the map value statically for each distinct 10558 * lookup into such maps. They always contain a single map value hence unique 10559 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10560 * 10561 * So, in case of global variables, they use array maps with max_entries = 1, 10562 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10563 * into the same map value as max_entries is 1, as described above). 10564 * 10565 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10566 * outer map pointer (in verifier context), but each lookup into an inner map 10567 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10568 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10569 * will get different reg->id assigned to each lookup, hence different 10570 * active_lock.id. 10571 * 10572 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10573 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10574 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10575 */ 10576 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10577 { 10578 void *ptr; 10579 u32 id; 10580 10581 switch ((int)reg->type) { 10582 case PTR_TO_MAP_VALUE: 10583 ptr = reg->map_ptr; 10584 break; 10585 case PTR_TO_BTF_ID | MEM_ALLOC: 10586 ptr = reg->btf; 10587 break; 10588 default: 10589 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10590 return -EFAULT; 10591 } 10592 id = reg->id; 10593 10594 if (!env->cur_state->active_lock.ptr) 10595 return -EINVAL; 10596 if (env->cur_state->active_lock.ptr != ptr || 10597 env->cur_state->active_lock.id != id) { 10598 verbose(env, "held lock and object are not in the same allocation\n"); 10599 return -EINVAL; 10600 } 10601 return 0; 10602 } 10603 10604 static bool is_bpf_list_api_kfunc(u32 btf_id) 10605 { 10606 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10607 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10608 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10609 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10610 } 10611 10612 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10613 { 10614 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10615 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10616 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10617 } 10618 10619 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10620 { 10621 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10622 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10623 } 10624 10625 static bool is_callback_calling_kfunc(u32 btf_id) 10626 { 10627 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10628 } 10629 10630 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10631 { 10632 return is_bpf_rbtree_api_kfunc(btf_id); 10633 } 10634 10635 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10636 enum btf_field_type head_field_type, 10637 u32 kfunc_btf_id) 10638 { 10639 bool ret; 10640 10641 switch (head_field_type) { 10642 case BPF_LIST_HEAD: 10643 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10644 break; 10645 case BPF_RB_ROOT: 10646 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10647 break; 10648 default: 10649 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10650 btf_field_type_name(head_field_type)); 10651 return false; 10652 } 10653 10654 if (!ret) 10655 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10656 btf_field_type_name(head_field_type)); 10657 return ret; 10658 } 10659 10660 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10661 enum btf_field_type node_field_type, 10662 u32 kfunc_btf_id) 10663 { 10664 bool ret; 10665 10666 switch (node_field_type) { 10667 case BPF_LIST_NODE: 10668 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10669 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10670 break; 10671 case BPF_RB_NODE: 10672 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10673 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10674 break; 10675 default: 10676 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10677 btf_field_type_name(node_field_type)); 10678 return false; 10679 } 10680 10681 if (!ret) 10682 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10683 btf_field_type_name(node_field_type)); 10684 return ret; 10685 } 10686 10687 static int 10688 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10689 struct bpf_reg_state *reg, u32 regno, 10690 struct bpf_kfunc_call_arg_meta *meta, 10691 enum btf_field_type head_field_type, 10692 struct btf_field **head_field) 10693 { 10694 const char *head_type_name; 10695 struct btf_field *field; 10696 struct btf_record *rec; 10697 u32 head_off; 10698 10699 if (meta->btf != btf_vmlinux) { 10700 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10701 return -EFAULT; 10702 } 10703 10704 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10705 return -EFAULT; 10706 10707 head_type_name = btf_field_type_name(head_field_type); 10708 if (!tnum_is_const(reg->var_off)) { 10709 verbose(env, 10710 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10711 regno, head_type_name); 10712 return -EINVAL; 10713 } 10714 10715 rec = reg_btf_record(reg); 10716 head_off = reg->off + reg->var_off.value; 10717 field = btf_record_find(rec, head_off, head_field_type); 10718 if (!field) { 10719 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10720 return -EINVAL; 10721 } 10722 10723 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10724 if (check_reg_allocation_locked(env, reg)) { 10725 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10726 rec->spin_lock_off, head_type_name); 10727 return -EINVAL; 10728 } 10729 10730 if (*head_field) { 10731 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10732 return -EFAULT; 10733 } 10734 *head_field = field; 10735 return 0; 10736 } 10737 10738 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10739 struct bpf_reg_state *reg, u32 regno, 10740 struct bpf_kfunc_call_arg_meta *meta) 10741 { 10742 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10743 &meta->arg_list_head.field); 10744 } 10745 10746 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10747 struct bpf_reg_state *reg, u32 regno, 10748 struct bpf_kfunc_call_arg_meta *meta) 10749 { 10750 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10751 &meta->arg_rbtree_root.field); 10752 } 10753 10754 static int 10755 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10756 struct bpf_reg_state *reg, u32 regno, 10757 struct bpf_kfunc_call_arg_meta *meta, 10758 enum btf_field_type head_field_type, 10759 enum btf_field_type node_field_type, 10760 struct btf_field **node_field) 10761 { 10762 const char *node_type_name; 10763 const struct btf_type *et, *t; 10764 struct btf_field *field; 10765 u32 node_off; 10766 10767 if (meta->btf != btf_vmlinux) { 10768 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10769 return -EFAULT; 10770 } 10771 10772 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10773 return -EFAULT; 10774 10775 node_type_name = btf_field_type_name(node_field_type); 10776 if (!tnum_is_const(reg->var_off)) { 10777 verbose(env, 10778 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10779 regno, node_type_name); 10780 return -EINVAL; 10781 } 10782 10783 node_off = reg->off + reg->var_off.value; 10784 field = reg_find_field_offset(reg, node_off, node_field_type); 10785 if (!field || field->offset != node_off) { 10786 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10787 return -EINVAL; 10788 } 10789 10790 field = *node_field; 10791 10792 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10793 t = btf_type_by_id(reg->btf, reg->btf_id); 10794 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10795 field->graph_root.value_btf_id, true)) { 10796 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10797 "in struct %s, but arg is at offset=%d in struct %s\n", 10798 btf_field_type_name(head_field_type), 10799 btf_field_type_name(node_field_type), 10800 field->graph_root.node_offset, 10801 btf_name_by_offset(field->graph_root.btf, et->name_off), 10802 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10803 return -EINVAL; 10804 } 10805 meta->arg_btf = reg->btf; 10806 meta->arg_btf_id = reg->btf_id; 10807 10808 if (node_off != field->graph_root.node_offset) { 10809 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10810 node_off, btf_field_type_name(node_field_type), 10811 field->graph_root.node_offset, 10812 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10813 return -EINVAL; 10814 } 10815 10816 return 0; 10817 } 10818 10819 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10820 struct bpf_reg_state *reg, u32 regno, 10821 struct bpf_kfunc_call_arg_meta *meta) 10822 { 10823 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10824 BPF_LIST_HEAD, BPF_LIST_NODE, 10825 &meta->arg_list_head.field); 10826 } 10827 10828 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10829 struct bpf_reg_state *reg, u32 regno, 10830 struct bpf_kfunc_call_arg_meta *meta) 10831 { 10832 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10833 BPF_RB_ROOT, BPF_RB_NODE, 10834 &meta->arg_rbtree_root.field); 10835 } 10836 10837 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10838 int insn_idx) 10839 { 10840 const char *func_name = meta->func_name, *ref_tname; 10841 const struct btf *btf = meta->btf; 10842 const struct btf_param *args; 10843 struct btf_record *rec; 10844 u32 i, nargs; 10845 int ret; 10846 10847 args = (const struct btf_param *)(meta->func_proto + 1); 10848 nargs = btf_type_vlen(meta->func_proto); 10849 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10850 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10851 MAX_BPF_FUNC_REG_ARGS); 10852 return -EINVAL; 10853 } 10854 10855 /* Check that BTF function arguments match actual types that the 10856 * verifier sees. 10857 */ 10858 for (i = 0; i < nargs; i++) { 10859 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10860 const struct btf_type *t, *ref_t, *resolve_ret; 10861 enum bpf_arg_type arg_type = ARG_DONTCARE; 10862 u32 regno = i + 1, ref_id, type_size; 10863 bool is_ret_buf_sz = false; 10864 int kf_arg_type; 10865 10866 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10867 10868 if (is_kfunc_arg_ignore(btf, &args[i])) 10869 continue; 10870 10871 if (btf_type_is_scalar(t)) { 10872 if (reg->type != SCALAR_VALUE) { 10873 verbose(env, "R%d is not a scalar\n", regno); 10874 return -EINVAL; 10875 } 10876 10877 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10878 if (meta->arg_constant.found) { 10879 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10880 return -EFAULT; 10881 } 10882 if (!tnum_is_const(reg->var_off)) { 10883 verbose(env, "R%d must be a known constant\n", regno); 10884 return -EINVAL; 10885 } 10886 ret = mark_chain_precision(env, regno); 10887 if (ret < 0) 10888 return ret; 10889 meta->arg_constant.found = true; 10890 meta->arg_constant.value = reg->var_off.value; 10891 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10892 meta->r0_rdonly = true; 10893 is_ret_buf_sz = true; 10894 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10895 is_ret_buf_sz = true; 10896 } 10897 10898 if (is_ret_buf_sz) { 10899 if (meta->r0_size) { 10900 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10901 return -EINVAL; 10902 } 10903 10904 if (!tnum_is_const(reg->var_off)) { 10905 verbose(env, "R%d is not a const\n", regno); 10906 return -EINVAL; 10907 } 10908 10909 meta->r0_size = reg->var_off.value; 10910 ret = mark_chain_precision(env, regno); 10911 if (ret) 10912 return ret; 10913 } 10914 continue; 10915 } 10916 10917 if (!btf_type_is_ptr(t)) { 10918 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10919 return -EINVAL; 10920 } 10921 10922 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10923 (register_is_null(reg) || type_may_be_null(reg->type))) { 10924 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10925 return -EACCES; 10926 } 10927 10928 if (reg->ref_obj_id) { 10929 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10930 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10931 regno, reg->ref_obj_id, 10932 meta->ref_obj_id); 10933 return -EFAULT; 10934 } 10935 meta->ref_obj_id = reg->ref_obj_id; 10936 if (is_kfunc_release(meta)) 10937 meta->release_regno = regno; 10938 } 10939 10940 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10941 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10942 10943 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10944 if (kf_arg_type < 0) 10945 return kf_arg_type; 10946 10947 switch (kf_arg_type) { 10948 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10949 case KF_ARG_PTR_TO_BTF_ID: 10950 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10951 break; 10952 10953 if (!is_trusted_reg(reg)) { 10954 if (!is_kfunc_rcu(meta)) { 10955 verbose(env, "R%d must be referenced or trusted\n", regno); 10956 return -EINVAL; 10957 } 10958 if (!is_rcu_reg(reg)) { 10959 verbose(env, "R%d must be a rcu pointer\n", regno); 10960 return -EINVAL; 10961 } 10962 } 10963 10964 fallthrough; 10965 case KF_ARG_PTR_TO_CTX: 10966 /* Trusted arguments have the same offset checks as release arguments */ 10967 arg_type |= OBJ_RELEASE; 10968 break; 10969 case KF_ARG_PTR_TO_DYNPTR: 10970 case KF_ARG_PTR_TO_ITER: 10971 case KF_ARG_PTR_TO_LIST_HEAD: 10972 case KF_ARG_PTR_TO_LIST_NODE: 10973 case KF_ARG_PTR_TO_RB_ROOT: 10974 case KF_ARG_PTR_TO_RB_NODE: 10975 case KF_ARG_PTR_TO_MEM: 10976 case KF_ARG_PTR_TO_MEM_SIZE: 10977 case KF_ARG_PTR_TO_CALLBACK: 10978 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10979 /* Trusted by default */ 10980 break; 10981 default: 10982 WARN_ON_ONCE(1); 10983 return -EFAULT; 10984 } 10985 10986 if (is_kfunc_release(meta) && reg->ref_obj_id) 10987 arg_type |= OBJ_RELEASE; 10988 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10989 if (ret < 0) 10990 return ret; 10991 10992 switch (kf_arg_type) { 10993 case KF_ARG_PTR_TO_CTX: 10994 if (reg->type != PTR_TO_CTX) { 10995 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10996 return -EINVAL; 10997 } 10998 10999 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11000 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11001 if (ret < 0) 11002 return -EINVAL; 11003 meta->ret_btf_id = ret; 11004 } 11005 break; 11006 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11007 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11008 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11009 return -EINVAL; 11010 } 11011 if (!reg->ref_obj_id) { 11012 verbose(env, "allocated object must be referenced\n"); 11013 return -EINVAL; 11014 } 11015 if (meta->btf == btf_vmlinux && 11016 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11017 meta->arg_btf = reg->btf; 11018 meta->arg_btf_id = reg->btf_id; 11019 } 11020 break; 11021 case KF_ARG_PTR_TO_DYNPTR: 11022 { 11023 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11024 int clone_ref_obj_id = 0; 11025 11026 if (reg->type != PTR_TO_STACK && 11027 reg->type != CONST_PTR_TO_DYNPTR) { 11028 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11029 return -EINVAL; 11030 } 11031 11032 if (reg->type == CONST_PTR_TO_DYNPTR) 11033 dynptr_arg_type |= MEM_RDONLY; 11034 11035 if (is_kfunc_arg_uninit(btf, &args[i])) 11036 dynptr_arg_type |= MEM_UNINIT; 11037 11038 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11039 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11040 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11041 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11042 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11043 (dynptr_arg_type & MEM_UNINIT)) { 11044 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11045 11046 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11047 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11048 return -EFAULT; 11049 } 11050 11051 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11052 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11053 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11054 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11055 return -EFAULT; 11056 } 11057 } 11058 11059 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11060 if (ret < 0) 11061 return ret; 11062 11063 if (!(dynptr_arg_type & MEM_UNINIT)) { 11064 int id = dynptr_id(env, reg); 11065 11066 if (id < 0) { 11067 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11068 return id; 11069 } 11070 meta->initialized_dynptr.id = id; 11071 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11072 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11073 } 11074 11075 break; 11076 } 11077 case KF_ARG_PTR_TO_ITER: 11078 ret = process_iter_arg(env, regno, insn_idx, meta); 11079 if (ret < 0) 11080 return ret; 11081 break; 11082 case KF_ARG_PTR_TO_LIST_HEAD: 11083 if (reg->type != PTR_TO_MAP_VALUE && 11084 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11085 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11086 return -EINVAL; 11087 } 11088 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11089 verbose(env, "allocated object must be referenced\n"); 11090 return -EINVAL; 11091 } 11092 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11093 if (ret < 0) 11094 return ret; 11095 break; 11096 case KF_ARG_PTR_TO_RB_ROOT: 11097 if (reg->type != PTR_TO_MAP_VALUE && 11098 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11099 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11100 return -EINVAL; 11101 } 11102 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11103 verbose(env, "allocated object must be referenced\n"); 11104 return -EINVAL; 11105 } 11106 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11107 if (ret < 0) 11108 return ret; 11109 break; 11110 case KF_ARG_PTR_TO_LIST_NODE: 11111 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11112 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11113 return -EINVAL; 11114 } 11115 if (!reg->ref_obj_id) { 11116 verbose(env, "allocated object must be referenced\n"); 11117 return -EINVAL; 11118 } 11119 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11120 if (ret < 0) 11121 return ret; 11122 break; 11123 case KF_ARG_PTR_TO_RB_NODE: 11124 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11125 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11126 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11127 return -EINVAL; 11128 } 11129 if (in_rbtree_lock_required_cb(env)) { 11130 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11131 return -EINVAL; 11132 } 11133 } else { 11134 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11135 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11136 return -EINVAL; 11137 } 11138 if (!reg->ref_obj_id) { 11139 verbose(env, "allocated object must be referenced\n"); 11140 return -EINVAL; 11141 } 11142 } 11143 11144 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11145 if (ret < 0) 11146 return ret; 11147 break; 11148 case KF_ARG_PTR_TO_BTF_ID: 11149 /* Only base_type is checked, further checks are done here */ 11150 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11151 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11152 !reg2btf_ids[base_type(reg->type)]) { 11153 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11154 verbose(env, "expected %s or socket\n", 11155 reg_type_str(env, base_type(reg->type) | 11156 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11157 return -EINVAL; 11158 } 11159 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11160 if (ret < 0) 11161 return ret; 11162 break; 11163 case KF_ARG_PTR_TO_MEM: 11164 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11165 if (IS_ERR(resolve_ret)) { 11166 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11167 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11168 return -EINVAL; 11169 } 11170 ret = check_mem_reg(env, reg, regno, type_size); 11171 if (ret < 0) 11172 return ret; 11173 break; 11174 case KF_ARG_PTR_TO_MEM_SIZE: 11175 { 11176 struct bpf_reg_state *buff_reg = ®s[regno]; 11177 const struct btf_param *buff_arg = &args[i]; 11178 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11179 const struct btf_param *size_arg = &args[i + 1]; 11180 11181 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11182 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11183 if (ret < 0) { 11184 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11185 return ret; 11186 } 11187 } 11188 11189 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11190 if (meta->arg_constant.found) { 11191 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11192 return -EFAULT; 11193 } 11194 if (!tnum_is_const(size_reg->var_off)) { 11195 verbose(env, "R%d must be a known constant\n", regno + 1); 11196 return -EINVAL; 11197 } 11198 meta->arg_constant.found = true; 11199 meta->arg_constant.value = size_reg->var_off.value; 11200 } 11201 11202 /* Skip next '__sz' or '__szk' argument */ 11203 i++; 11204 break; 11205 } 11206 case KF_ARG_PTR_TO_CALLBACK: 11207 meta->subprogno = reg->subprogno; 11208 break; 11209 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11210 if (!type_is_ptr_alloc_obj(reg->type)) { 11211 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11212 return -EINVAL; 11213 } 11214 if (!type_is_non_owning_ref(reg->type)) 11215 meta->arg_owning_ref = true; 11216 11217 rec = reg_btf_record(reg); 11218 if (!rec) { 11219 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11220 return -EFAULT; 11221 } 11222 11223 if (rec->refcount_off < 0) { 11224 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11225 return -EINVAL; 11226 } 11227 11228 meta->arg_btf = reg->btf; 11229 meta->arg_btf_id = reg->btf_id; 11230 break; 11231 } 11232 } 11233 11234 if (is_kfunc_release(meta) && !meta->release_regno) { 11235 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11236 func_name); 11237 return -EINVAL; 11238 } 11239 11240 return 0; 11241 } 11242 11243 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11244 struct bpf_insn *insn, 11245 struct bpf_kfunc_call_arg_meta *meta, 11246 const char **kfunc_name) 11247 { 11248 const struct btf_type *func, *func_proto; 11249 u32 func_id, *kfunc_flags; 11250 const char *func_name; 11251 struct btf *desc_btf; 11252 11253 if (kfunc_name) 11254 *kfunc_name = NULL; 11255 11256 if (!insn->imm) 11257 return -EINVAL; 11258 11259 desc_btf = find_kfunc_desc_btf(env, insn->off); 11260 if (IS_ERR(desc_btf)) 11261 return PTR_ERR(desc_btf); 11262 11263 func_id = insn->imm; 11264 func = btf_type_by_id(desc_btf, func_id); 11265 func_name = btf_name_by_offset(desc_btf, func->name_off); 11266 if (kfunc_name) 11267 *kfunc_name = func_name; 11268 func_proto = btf_type_by_id(desc_btf, func->type); 11269 11270 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11271 if (!kfunc_flags) { 11272 return -EACCES; 11273 } 11274 11275 memset(meta, 0, sizeof(*meta)); 11276 meta->btf = desc_btf; 11277 meta->func_id = func_id; 11278 meta->kfunc_flags = *kfunc_flags; 11279 meta->func_proto = func_proto; 11280 meta->func_name = func_name; 11281 11282 return 0; 11283 } 11284 11285 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11286 int *insn_idx_p) 11287 { 11288 const struct btf_type *t, *ptr_type; 11289 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11290 struct bpf_reg_state *regs = cur_regs(env); 11291 const char *func_name, *ptr_type_name; 11292 bool sleepable, rcu_lock, rcu_unlock; 11293 struct bpf_kfunc_call_arg_meta meta; 11294 struct bpf_insn_aux_data *insn_aux; 11295 int err, insn_idx = *insn_idx_p; 11296 const struct btf_param *args; 11297 const struct btf_type *ret_t; 11298 struct btf *desc_btf; 11299 11300 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11301 if (!insn->imm) 11302 return 0; 11303 11304 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11305 if (err == -EACCES && func_name) 11306 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11307 if (err) 11308 return err; 11309 desc_btf = meta.btf; 11310 insn_aux = &env->insn_aux_data[insn_idx]; 11311 11312 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11313 11314 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11315 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11316 return -EACCES; 11317 } 11318 11319 sleepable = is_kfunc_sleepable(&meta); 11320 if (sleepable && !env->prog->aux->sleepable) { 11321 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11322 return -EACCES; 11323 } 11324 11325 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11326 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11327 11328 if (env->cur_state->active_rcu_lock) { 11329 struct bpf_func_state *state; 11330 struct bpf_reg_state *reg; 11331 11332 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11333 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11334 return -EACCES; 11335 } 11336 11337 if (rcu_lock) { 11338 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11339 return -EINVAL; 11340 } else if (rcu_unlock) { 11341 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11342 if (reg->type & MEM_RCU) { 11343 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11344 reg->type |= PTR_UNTRUSTED; 11345 } 11346 })); 11347 env->cur_state->active_rcu_lock = false; 11348 } else if (sleepable) { 11349 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11350 return -EACCES; 11351 } 11352 } else if (rcu_lock) { 11353 env->cur_state->active_rcu_lock = true; 11354 } else if (rcu_unlock) { 11355 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11356 return -EINVAL; 11357 } 11358 11359 /* Check the arguments */ 11360 err = check_kfunc_args(env, &meta, insn_idx); 11361 if (err < 0) 11362 return err; 11363 /* In case of release function, we get register number of refcounted 11364 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11365 */ 11366 if (meta.release_regno) { 11367 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11368 if (err) { 11369 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11370 func_name, meta.func_id); 11371 return err; 11372 } 11373 } 11374 11375 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11376 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11377 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11378 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11379 insn_aux->insert_off = regs[BPF_REG_2].off; 11380 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11381 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11382 if (err) { 11383 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11384 func_name, meta.func_id); 11385 return err; 11386 } 11387 11388 err = release_reference(env, release_ref_obj_id); 11389 if (err) { 11390 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11391 func_name, meta.func_id); 11392 return err; 11393 } 11394 } 11395 11396 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11397 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11398 set_rbtree_add_callback_state); 11399 if (err) { 11400 verbose(env, "kfunc %s#%d failed callback verification\n", 11401 func_name, meta.func_id); 11402 return err; 11403 } 11404 } 11405 11406 for (i = 0; i < CALLER_SAVED_REGS; i++) 11407 mark_reg_not_init(env, regs, caller_saved[i]); 11408 11409 /* Check return type */ 11410 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11411 11412 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11413 /* Only exception is bpf_obj_new_impl */ 11414 if (meta.btf != btf_vmlinux || 11415 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11416 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11417 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11418 return -EINVAL; 11419 } 11420 } 11421 11422 if (btf_type_is_scalar(t)) { 11423 mark_reg_unknown(env, regs, BPF_REG_0); 11424 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11425 } else if (btf_type_is_ptr(t)) { 11426 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11427 11428 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11429 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11430 struct btf *ret_btf; 11431 u32 ret_btf_id; 11432 11433 if (unlikely(!bpf_global_ma_set)) 11434 return -ENOMEM; 11435 11436 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11437 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11438 return -EINVAL; 11439 } 11440 11441 ret_btf = env->prog->aux->btf; 11442 ret_btf_id = meta.arg_constant.value; 11443 11444 /* This may be NULL due to user not supplying a BTF */ 11445 if (!ret_btf) { 11446 verbose(env, "bpf_obj_new requires prog BTF\n"); 11447 return -EINVAL; 11448 } 11449 11450 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11451 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11452 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11453 return -EINVAL; 11454 } 11455 11456 mark_reg_known_zero(env, regs, BPF_REG_0); 11457 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11458 regs[BPF_REG_0].btf = ret_btf; 11459 regs[BPF_REG_0].btf_id = ret_btf_id; 11460 11461 insn_aux->obj_new_size = ret_t->size; 11462 insn_aux->kptr_struct_meta = 11463 btf_find_struct_meta(ret_btf, ret_btf_id); 11464 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11465 mark_reg_known_zero(env, regs, BPF_REG_0); 11466 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11467 regs[BPF_REG_0].btf = meta.arg_btf; 11468 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11469 11470 insn_aux->kptr_struct_meta = 11471 btf_find_struct_meta(meta.arg_btf, 11472 meta.arg_btf_id); 11473 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11474 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11475 struct btf_field *field = meta.arg_list_head.field; 11476 11477 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11478 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11479 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11480 struct btf_field *field = meta.arg_rbtree_root.field; 11481 11482 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11483 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11484 mark_reg_known_zero(env, regs, BPF_REG_0); 11485 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11486 regs[BPF_REG_0].btf = desc_btf; 11487 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11488 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11489 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11490 if (!ret_t || !btf_type_is_struct(ret_t)) { 11491 verbose(env, 11492 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11493 return -EINVAL; 11494 } 11495 11496 mark_reg_known_zero(env, regs, BPF_REG_0); 11497 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11498 regs[BPF_REG_0].btf = desc_btf; 11499 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11500 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11501 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11502 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11503 11504 mark_reg_known_zero(env, regs, BPF_REG_0); 11505 11506 if (!meta.arg_constant.found) { 11507 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11508 return -EFAULT; 11509 } 11510 11511 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11512 11513 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11514 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11515 11516 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11517 regs[BPF_REG_0].type |= MEM_RDONLY; 11518 } else { 11519 /* this will set env->seen_direct_write to true */ 11520 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11521 verbose(env, "the prog does not allow writes to packet data\n"); 11522 return -EINVAL; 11523 } 11524 } 11525 11526 if (!meta.initialized_dynptr.id) { 11527 verbose(env, "verifier internal error: no dynptr id\n"); 11528 return -EFAULT; 11529 } 11530 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11531 11532 /* we don't need to set BPF_REG_0's ref obj id 11533 * because packet slices are not refcounted (see 11534 * dynptr_type_refcounted) 11535 */ 11536 } else { 11537 verbose(env, "kernel function %s unhandled dynamic return type\n", 11538 meta.func_name); 11539 return -EFAULT; 11540 } 11541 } else if (!__btf_type_is_struct(ptr_type)) { 11542 if (!meta.r0_size) { 11543 __u32 sz; 11544 11545 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11546 meta.r0_size = sz; 11547 meta.r0_rdonly = true; 11548 } 11549 } 11550 if (!meta.r0_size) { 11551 ptr_type_name = btf_name_by_offset(desc_btf, 11552 ptr_type->name_off); 11553 verbose(env, 11554 "kernel function %s returns pointer type %s %s is not supported\n", 11555 func_name, 11556 btf_type_str(ptr_type), 11557 ptr_type_name); 11558 return -EINVAL; 11559 } 11560 11561 mark_reg_known_zero(env, regs, BPF_REG_0); 11562 regs[BPF_REG_0].type = PTR_TO_MEM; 11563 regs[BPF_REG_0].mem_size = meta.r0_size; 11564 11565 if (meta.r0_rdonly) 11566 regs[BPF_REG_0].type |= MEM_RDONLY; 11567 11568 /* Ensures we don't access the memory after a release_reference() */ 11569 if (meta.ref_obj_id) 11570 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11571 } else { 11572 mark_reg_known_zero(env, regs, BPF_REG_0); 11573 regs[BPF_REG_0].btf = desc_btf; 11574 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11575 regs[BPF_REG_0].btf_id = ptr_type_id; 11576 } 11577 11578 if (is_kfunc_ret_null(&meta)) { 11579 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11580 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11581 regs[BPF_REG_0].id = ++env->id_gen; 11582 } 11583 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11584 if (is_kfunc_acquire(&meta)) { 11585 int id = acquire_reference_state(env, insn_idx); 11586 11587 if (id < 0) 11588 return id; 11589 if (is_kfunc_ret_null(&meta)) 11590 regs[BPF_REG_0].id = id; 11591 regs[BPF_REG_0].ref_obj_id = id; 11592 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11593 ref_set_non_owning(env, ®s[BPF_REG_0]); 11594 } 11595 11596 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11597 regs[BPF_REG_0].id = ++env->id_gen; 11598 } else if (btf_type_is_void(t)) { 11599 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11600 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11601 insn_aux->kptr_struct_meta = 11602 btf_find_struct_meta(meta.arg_btf, 11603 meta.arg_btf_id); 11604 } 11605 } 11606 } 11607 11608 nargs = btf_type_vlen(meta.func_proto); 11609 args = (const struct btf_param *)(meta.func_proto + 1); 11610 for (i = 0; i < nargs; i++) { 11611 u32 regno = i + 1; 11612 11613 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11614 if (btf_type_is_ptr(t)) 11615 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11616 else 11617 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11618 mark_btf_func_reg_size(env, regno, t->size); 11619 } 11620 11621 if (is_iter_next_kfunc(&meta)) { 11622 err = process_iter_next_call(env, insn_idx, &meta); 11623 if (err) 11624 return err; 11625 } 11626 11627 return 0; 11628 } 11629 11630 static bool signed_add_overflows(s64 a, s64 b) 11631 { 11632 /* Do the add in u64, where overflow is well-defined */ 11633 s64 res = (s64)((u64)a + (u64)b); 11634 11635 if (b < 0) 11636 return res > a; 11637 return res < a; 11638 } 11639 11640 static bool signed_add32_overflows(s32 a, s32 b) 11641 { 11642 /* Do the add in u32, where overflow is well-defined */ 11643 s32 res = (s32)((u32)a + (u32)b); 11644 11645 if (b < 0) 11646 return res > a; 11647 return res < a; 11648 } 11649 11650 static bool signed_sub_overflows(s64 a, s64 b) 11651 { 11652 /* Do the sub in u64, where overflow is well-defined */ 11653 s64 res = (s64)((u64)a - (u64)b); 11654 11655 if (b < 0) 11656 return res < a; 11657 return res > a; 11658 } 11659 11660 static bool signed_sub32_overflows(s32 a, s32 b) 11661 { 11662 /* Do the sub in u32, where overflow is well-defined */ 11663 s32 res = (s32)((u32)a - (u32)b); 11664 11665 if (b < 0) 11666 return res < a; 11667 return res > a; 11668 } 11669 11670 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11671 const struct bpf_reg_state *reg, 11672 enum bpf_reg_type type) 11673 { 11674 bool known = tnum_is_const(reg->var_off); 11675 s64 val = reg->var_off.value; 11676 s64 smin = reg->smin_value; 11677 11678 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11679 verbose(env, "math between %s pointer and %lld is not allowed\n", 11680 reg_type_str(env, type), val); 11681 return false; 11682 } 11683 11684 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11685 verbose(env, "%s pointer offset %d is not allowed\n", 11686 reg_type_str(env, type), reg->off); 11687 return false; 11688 } 11689 11690 if (smin == S64_MIN) { 11691 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11692 reg_type_str(env, type)); 11693 return false; 11694 } 11695 11696 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11697 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11698 smin, reg_type_str(env, type)); 11699 return false; 11700 } 11701 11702 return true; 11703 } 11704 11705 enum { 11706 REASON_BOUNDS = -1, 11707 REASON_TYPE = -2, 11708 REASON_PATHS = -3, 11709 REASON_LIMIT = -4, 11710 REASON_STACK = -5, 11711 }; 11712 11713 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11714 u32 *alu_limit, bool mask_to_left) 11715 { 11716 u32 max = 0, ptr_limit = 0; 11717 11718 switch (ptr_reg->type) { 11719 case PTR_TO_STACK: 11720 /* Offset 0 is out-of-bounds, but acceptable start for the 11721 * left direction, see BPF_REG_FP. Also, unknown scalar 11722 * offset where we would need to deal with min/max bounds is 11723 * currently prohibited for unprivileged. 11724 */ 11725 max = MAX_BPF_STACK + mask_to_left; 11726 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11727 break; 11728 case PTR_TO_MAP_VALUE: 11729 max = ptr_reg->map_ptr->value_size; 11730 ptr_limit = (mask_to_left ? 11731 ptr_reg->smin_value : 11732 ptr_reg->umax_value) + ptr_reg->off; 11733 break; 11734 default: 11735 return REASON_TYPE; 11736 } 11737 11738 if (ptr_limit >= max) 11739 return REASON_LIMIT; 11740 *alu_limit = ptr_limit; 11741 return 0; 11742 } 11743 11744 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11745 const struct bpf_insn *insn) 11746 { 11747 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11748 } 11749 11750 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11751 u32 alu_state, u32 alu_limit) 11752 { 11753 /* If we arrived here from different branches with different 11754 * state or limits to sanitize, then this won't work. 11755 */ 11756 if (aux->alu_state && 11757 (aux->alu_state != alu_state || 11758 aux->alu_limit != alu_limit)) 11759 return REASON_PATHS; 11760 11761 /* Corresponding fixup done in do_misc_fixups(). */ 11762 aux->alu_state = alu_state; 11763 aux->alu_limit = alu_limit; 11764 return 0; 11765 } 11766 11767 static int sanitize_val_alu(struct bpf_verifier_env *env, 11768 struct bpf_insn *insn) 11769 { 11770 struct bpf_insn_aux_data *aux = cur_aux(env); 11771 11772 if (can_skip_alu_sanitation(env, insn)) 11773 return 0; 11774 11775 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11776 } 11777 11778 static bool sanitize_needed(u8 opcode) 11779 { 11780 return opcode == BPF_ADD || opcode == BPF_SUB; 11781 } 11782 11783 struct bpf_sanitize_info { 11784 struct bpf_insn_aux_data aux; 11785 bool mask_to_left; 11786 }; 11787 11788 static struct bpf_verifier_state * 11789 sanitize_speculative_path(struct bpf_verifier_env *env, 11790 const struct bpf_insn *insn, 11791 u32 next_idx, u32 curr_idx) 11792 { 11793 struct bpf_verifier_state *branch; 11794 struct bpf_reg_state *regs; 11795 11796 branch = push_stack(env, next_idx, curr_idx, true); 11797 if (branch && insn) { 11798 regs = branch->frame[branch->curframe]->regs; 11799 if (BPF_SRC(insn->code) == BPF_K) { 11800 mark_reg_unknown(env, regs, insn->dst_reg); 11801 } else if (BPF_SRC(insn->code) == BPF_X) { 11802 mark_reg_unknown(env, regs, insn->dst_reg); 11803 mark_reg_unknown(env, regs, insn->src_reg); 11804 } 11805 } 11806 return branch; 11807 } 11808 11809 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11810 struct bpf_insn *insn, 11811 const struct bpf_reg_state *ptr_reg, 11812 const struct bpf_reg_state *off_reg, 11813 struct bpf_reg_state *dst_reg, 11814 struct bpf_sanitize_info *info, 11815 const bool commit_window) 11816 { 11817 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11818 struct bpf_verifier_state *vstate = env->cur_state; 11819 bool off_is_imm = tnum_is_const(off_reg->var_off); 11820 bool off_is_neg = off_reg->smin_value < 0; 11821 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11822 u8 opcode = BPF_OP(insn->code); 11823 u32 alu_state, alu_limit; 11824 struct bpf_reg_state tmp; 11825 bool ret; 11826 int err; 11827 11828 if (can_skip_alu_sanitation(env, insn)) 11829 return 0; 11830 11831 /* We already marked aux for masking from non-speculative 11832 * paths, thus we got here in the first place. We only care 11833 * to explore bad access from here. 11834 */ 11835 if (vstate->speculative) 11836 goto do_sim; 11837 11838 if (!commit_window) { 11839 if (!tnum_is_const(off_reg->var_off) && 11840 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11841 return REASON_BOUNDS; 11842 11843 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11844 (opcode == BPF_SUB && !off_is_neg); 11845 } 11846 11847 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11848 if (err < 0) 11849 return err; 11850 11851 if (commit_window) { 11852 /* In commit phase we narrow the masking window based on 11853 * the observed pointer move after the simulated operation. 11854 */ 11855 alu_state = info->aux.alu_state; 11856 alu_limit = abs(info->aux.alu_limit - alu_limit); 11857 } else { 11858 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11859 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11860 alu_state |= ptr_is_dst_reg ? 11861 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11862 11863 /* Limit pruning on unknown scalars to enable deep search for 11864 * potential masking differences from other program paths. 11865 */ 11866 if (!off_is_imm) 11867 env->explore_alu_limits = true; 11868 } 11869 11870 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11871 if (err < 0) 11872 return err; 11873 do_sim: 11874 /* If we're in commit phase, we're done here given we already 11875 * pushed the truncated dst_reg into the speculative verification 11876 * stack. 11877 * 11878 * Also, when register is a known constant, we rewrite register-based 11879 * operation to immediate-based, and thus do not need masking (and as 11880 * a consequence, do not need to simulate the zero-truncation either). 11881 */ 11882 if (commit_window || off_is_imm) 11883 return 0; 11884 11885 /* Simulate and find potential out-of-bounds access under 11886 * speculative execution from truncation as a result of 11887 * masking when off was not within expected range. If off 11888 * sits in dst, then we temporarily need to move ptr there 11889 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11890 * for cases where we use K-based arithmetic in one direction 11891 * and truncated reg-based in the other in order to explore 11892 * bad access. 11893 */ 11894 if (!ptr_is_dst_reg) { 11895 tmp = *dst_reg; 11896 copy_register_state(dst_reg, ptr_reg); 11897 } 11898 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11899 env->insn_idx); 11900 if (!ptr_is_dst_reg && ret) 11901 *dst_reg = tmp; 11902 return !ret ? REASON_STACK : 0; 11903 } 11904 11905 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11906 { 11907 struct bpf_verifier_state *vstate = env->cur_state; 11908 11909 /* If we simulate paths under speculation, we don't update the 11910 * insn as 'seen' such that when we verify unreachable paths in 11911 * the non-speculative domain, sanitize_dead_code() can still 11912 * rewrite/sanitize them. 11913 */ 11914 if (!vstate->speculative) 11915 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11916 } 11917 11918 static int sanitize_err(struct bpf_verifier_env *env, 11919 const struct bpf_insn *insn, int reason, 11920 const struct bpf_reg_state *off_reg, 11921 const struct bpf_reg_state *dst_reg) 11922 { 11923 static const char *err = "pointer arithmetic with it prohibited for !root"; 11924 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11925 u32 dst = insn->dst_reg, src = insn->src_reg; 11926 11927 switch (reason) { 11928 case REASON_BOUNDS: 11929 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11930 off_reg == dst_reg ? dst : src, err); 11931 break; 11932 case REASON_TYPE: 11933 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11934 off_reg == dst_reg ? src : dst, err); 11935 break; 11936 case REASON_PATHS: 11937 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11938 dst, op, err); 11939 break; 11940 case REASON_LIMIT: 11941 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11942 dst, op, err); 11943 break; 11944 case REASON_STACK: 11945 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11946 dst, err); 11947 break; 11948 default: 11949 verbose(env, "verifier internal error: unknown reason (%d)\n", 11950 reason); 11951 break; 11952 } 11953 11954 return -EACCES; 11955 } 11956 11957 /* check that stack access falls within stack limits and that 'reg' doesn't 11958 * have a variable offset. 11959 * 11960 * Variable offset is prohibited for unprivileged mode for simplicity since it 11961 * requires corresponding support in Spectre masking for stack ALU. See also 11962 * retrieve_ptr_limit(). 11963 * 11964 * 11965 * 'off' includes 'reg->off'. 11966 */ 11967 static int check_stack_access_for_ptr_arithmetic( 11968 struct bpf_verifier_env *env, 11969 int regno, 11970 const struct bpf_reg_state *reg, 11971 int off) 11972 { 11973 if (!tnum_is_const(reg->var_off)) { 11974 char tn_buf[48]; 11975 11976 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11977 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11978 regno, tn_buf, off); 11979 return -EACCES; 11980 } 11981 11982 if (off >= 0 || off < -MAX_BPF_STACK) { 11983 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11984 "prohibited for !root; off=%d\n", regno, off); 11985 return -EACCES; 11986 } 11987 11988 return 0; 11989 } 11990 11991 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11992 const struct bpf_insn *insn, 11993 const struct bpf_reg_state *dst_reg) 11994 { 11995 u32 dst = insn->dst_reg; 11996 11997 /* For unprivileged we require that resulting offset must be in bounds 11998 * in order to be able to sanitize access later on. 11999 */ 12000 if (env->bypass_spec_v1) 12001 return 0; 12002 12003 switch (dst_reg->type) { 12004 case PTR_TO_STACK: 12005 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12006 dst_reg->off + dst_reg->var_off.value)) 12007 return -EACCES; 12008 break; 12009 case PTR_TO_MAP_VALUE: 12010 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12011 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12012 "prohibited for !root\n", dst); 12013 return -EACCES; 12014 } 12015 break; 12016 default: 12017 break; 12018 } 12019 12020 return 0; 12021 } 12022 12023 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12024 * Caller should also handle BPF_MOV case separately. 12025 * If we return -EACCES, caller may want to try again treating pointer as a 12026 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12027 */ 12028 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12029 struct bpf_insn *insn, 12030 const struct bpf_reg_state *ptr_reg, 12031 const struct bpf_reg_state *off_reg) 12032 { 12033 struct bpf_verifier_state *vstate = env->cur_state; 12034 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12035 struct bpf_reg_state *regs = state->regs, *dst_reg; 12036 bool known = tnum_is_const(off_reg->var_off); 12037 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12038 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12039 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12040 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12041 struct bpf_sanitize_info info = {}; 12042 u8 opcode = BPF_OP(insn->code); 12043 u32 dst = insn->dst_reg; 12044 int ret; 12045 12046 dst_reg = ®s[dst]; 12047 12048 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12049 smin_val > smax_val || umin_val > umax_val) { 12050 /* Taint dst register if offset had invalid bounds derived from 12051 * e.g. dead branches. 12052 */ 12053 __mark_reg_unknown(env, dst_reg); 12054 return 0; 12055 } 12056 12057 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12058 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12059 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12060 __mark_reg_unknown(env, dst_reg); 12061 return 0; 12062 } 12063 12064 verbose(env, 12065 "R%d 32-bit pointer arithmetic prohibited\n", 12066 dst); 12067 return -EACCES; 12068 } 12069 12070 if (ptr_reg->type & PTR_MAYBE_NULL) { 12071 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12072 dst, reg_type_str(env, ptr_reg->type)); 12073 return -EACCES; 12074 } 12075 12076 switch (base_type(ptr_reg->type)) { 12077 case CONST_PTR_TO_MAP: 12078 /* smin_val represents the known value */ 12079 if (known && smin_val == 0 && opcode == BPF_ADD) 12080 break; 12081 fallthrough; 12082 case PTR_TO_PACKET_END: 12083 case PTR_TO_SOCKET: 12084 case PTR_TO_SOCK_COMMON: 12085 case PTR_TO_TCP_SOCK: 12086 case PTR_TO_XDP_SOCK: 12087 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12088 dst, reg_type_str(env, ptr_reg->type)); 12089 return -EACCES; 12090 default: 12091 break; 12092 } 12093 12094 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12095 * The id may be overwritten later if we create a new variable offset. 12096 */ 12097 dst_reg->type = ptr_reg->type; 12098 dst_reg->id = ptr_reg->id; 12099 12100 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12101 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12102 return -EINVAL; 12103 12104 /* pointer types do not carry 32-bit bounds at the moment. */ 12105 __mark_reg32_unbounded(dst_reg); 12106 12107 if (sanitize_needed(opcode)) { 12108 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12109 &info, false); 12110 if (ret < 0) 12111 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12112 } 12113 12114 switch (opcode) { 12115 case BPF_ADD: 12116 /* We can take a fixed offset as long as it doesn't overflow 12117 * the s32 'off' field 12118 */ 12119 if (known && (ptr_reg->off + smin_val == 12120 (s64)(s32)(ptr_reg->off + smin_val))) { 12121 /* pointer += K. Accumulate it into fixed offset */ 12122 dst_reg->smin_value = smin_ptr; 12123 dst_reg->smax_value = smax_ptr; 12124 dst_reg->umin_value = umin_ptr; 12125 dst_reg->umax_value = umax_ptr; 12126 dst_reg->var_off = ptr_reg->var_off; 12127 dst_reg->off = ptr_reg->off + smin_val; 12128 dst_reg->raw = ptr_reg->raw; 12129 break; 12130 } 12131 /* A new variable offset is created. Note that off_reg->off 12132 * == 0, since it's a scalar. 12133 * dst_reg gets the pointer type and since some positive 12134 * integer value was added to the pointer, give it a new 'id' 12135 * if it's a PTR_TO_PACKET. 12136 * this creates a new 'base' pointer, off_reg (variable) gets 12137 * added into the variable offset, and we copy the fixed offset 12138 * from ptr_reg. 12139 */ 12140 if (signed_add_overflows(smin_ptr, smin_val) || 12141 signed_add_overflows(smax_ptr, smax_val)) { 12142 dst_reg->smin_value = S64_MIN; 12143 dst_reg->smax_value = S64_MAX; 12144 } else { 12145 dst_reg->smin_value = smin_ptr + smin_val; 12146 dst_reg->smax_value = smax_ptr + smax_val; 12147 } 12148 if (umin_ptr + umin_val < umin_ptr || 12149 umax_ptr + umax_val < umax_ptr) { 12150 dst_reg->umin_value = 0; 12151 dst_reg->umax_value = U64_MAX; 12152 } else { 12153 dst_reg->umin_value = umin_ptr + umin_val; 12154 dst_reg->umax_value = umax_ptr + umax_val; 12155 } 12156 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12157 dst_reg->off = ptr_reg->off; 12158 dst_reg->raw = ptr_reg->raw; 12159 if (reg_is_pkt_pointer(ptr_reg)) { 12160 dst_reg->id = ++env->id_gen; 12161 /* something was added to pkt_ptr, set range to zero */ 12162 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12163 } 12164 break; 12165 case BPF_SUB: 12166 if (dst_reg == off_reg) { 12167 /* scalar -= pointer. Creates an unknown scalar */ 12168 verbose(env, "R%d tried to subtract pointer from scalar\n", 12169 dst); 12170 return -EACCES; 12171 } 12172 /* We don't allow subtraction from FP, because (according to 12173 * test_verifier.c test "invalid fp arithmetic", JITs might not 12174 * be able to deal with it. 12175 */ 12176 if (ptr_reg->type == PTR_TO_STACK) { 12177 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12178 dst); 12179 return -EACCES; 12180 } 12181 if (known && (ptr_reg->off - smin_val == 12182 (s64)(s32)(ptr_reg->off - smin_val))) { 12183 /* pointer -= K. Subtract it from fixed offset */ 12184 dst_reg->smin_value = smin_ptr; 12185 dst_reg->smax_value = smax_ptr; 12186 dst_reg->umin_value = umin_ptr; 12187 dst_reg->umax_value = umax_ptr; 12188 dst_reg->var_off = ptr_reg->var_off; 12189 dst_reg->id = ptr_reg->id; 12190 dst_reg->off = ptr_reg->off - smin_val; 12191 dst_reg->raw = ptr_reg->raw; 12192 break; 12193 } 12194 /* A new variable offset is created. If the subtrahend is known 12195 * nonnegative, then any reg->range we had before is still good. 12196 */ 12197 if (signed_sub_overflows(smin_ptr, smax_val) || 12198 signed_sub_overflows(smax_ptr, smin_val)) { 12199 /* Overflow possible, we know nothing */ 12200 dst_reg->smin_value = S64_MIN; 12201 dst_reg->smax_value = S64_MAX; 12202 } else { 12203 dst_reg->smin_value = smin_ptr - smax_val; 12204 dst_reg->smax_value = smax_ptr - smin_val; 12205 } 12206 if (umin_ptr < umax_val) { 12207 /* Overflow possible, we know nothing */ 12208 dst_reg->umin_value = 0; 12209 dst_reg->umax_value = U64_MAX; 12210 } else { 12211 /* Cannot overflow (as long as bounds are consistent) */ 12212 dst_reg->umin_value = umin_ptr - umax_val; 12213 dst_reg->umax_value = umax_ptr - umin_val; 12214 } 12215 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12216 dst_reg->off = ptr_reg->off; 12217 dst_reg->raw = ptr_reg->raw; 12218 if (reg_is_pkt_pointer(ptr_reg)) { 12219 dst_reg->id = ++env->id_gen; 12220 /* something was added to pkt_ptr, set range to zero */ 12221 if (smin_val < 0) 12222 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12223 } 12224 break; 12225 case BPF_AND: 12226 case BPF_OR: 12227 case BPF_XOR: 12228 /* bitwise ops on pointers are troublesome, prohibit. */ 12229 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12230 dst, bpf_alu_string[opcode >> 4]); 12231 return -EACCES; 12232 default: 12233 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12234 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12235 dst, bpf_alu_string[opcode >> 4]); 12236 return -EACCES; 12237 } 12238 12239 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12240 return -EINVAL; 12241 reg_bounds_sync(dst_reg); 12242 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12243 return -EACCES; 12244 if (sanitize_needed(opcode)) { 12245 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12246 &info, true); 12247 if (ret < 0) 12248 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12249 } 12250 12251 return 0; 12252 } 12253 12254 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12255 struct bpf_reg_state *src_reg) 12256 { 12257 s32 smin_val = src_reg->s32_min_value; 12258 s32 smax_val = src_reg->s32_max_value; 12259 u32 umin_val = src_reg->u32_min_value; 12260 u32 umax_val = src_reg->u32_max_value; 12261 12262 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12263 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12264 dst_reg->s32_min_value = S32_MIN; 12265 dst_reg->s32_max_value = S32_MAX; 12266 } else { 12267 dst_reg->s32_min_value += smin_val; 12268 dst_reg->s32_max_value += smax_val; 12269 } 12270 if (dst_reg->u32_min_value + umin_val < umin_val || 12271 dst_reg->u32_max_value + umax_val < umax_val) { 12272 dst_reg->u32_min_value = 0; 12273 dst_reg->u32_max_value = U32_MAX; 12274 } else { 12275 dst_reg->u32_min_value += umin_val; 12276 dst_reg->u32_max_value += umax_val; 12277 } 12278 } 12279 12280 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12281 struct bpf_reg_state *src_reg) 12282 { 12283 s64 smin_val = src_reg->smin_value; 12284 s64 smax_val = src_reg->smax_value; 12285 u64 umin_val = src_reg->umin_value; 12286 u64 umax_val = src_reg->umax_value; 12287 12288 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12289 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12290 dst_reg->smin_value = S64_MIN; 12291 dst_reg->smax_value = S64_MAX; 12292 } else { 12293 dst_reg->smin_value += smin_val; 12294 dst_reg->smax_value += smax_val; 12295 } 12296 if (dst_reg->umin_value + umin_val < umin_val || 12297 dst_reg->umax_value + umax_val < umax_val) { 12298 dst_reg->umin_value = 0; 12299 dst_reg->umax_value = U64_MAX; 12300 } else { 12301 dst_reg->umin_value += umin_val; 12302 dst_reg->umax_value += umax_val; 12303 } 12304 } 12305 12306 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12307 struct bpf_reg_state *src_reg) 12308 { 12309 s32 smin_val = src_reg->s32_min_value; 12310 s32 smax_val = src_reg->s32_max_value; 12311 u32 umin_val = src_reg->u32_min_value; 12312 u32 umax_val = src_reg->u32_max_value; 12313 12314 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12315 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12316 /* Overflow possible, we know nothing */ 12317 dst_reg->s32_min_value = S32_MIN; 12318 dst_reg->s32_max_value = S32_MAX; 12319 } else { 12320 dst_reg->s32_min_value -= smax_val; 12321 dst_reg->s32_max_value -= smin_val; 12322 } 12323 if (dst_reg->u32_min_value < umax_val) { 12324 /* Overflow possible, we know nothing */ 12325 dst_reg->u32_min_value = 0; 12326 dst_reg->u32_max_value = U32_MAX; 12327 } else { 12328 /* Cannot overflow (as long as bounds are consistent) */ 12329 dst_reg->u32_min_value -= umax_val; 12330 dst_reg->u32_max_value -= umin_val; 12331 } 12332 } 12333 12334 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12335 struct bpf_reg_state *src_reg) 12336 { 12337 s64 smin_val = src_reg->smin_value; 12338 s64 smax_val = src_reg->smax_value; 12339 u64 umin_val = src_reg->umin_value; 12340 u64 umax_val = src_reg->umax_value; 12341 12342 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12343 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12344 /* Overflow possible, we know nothing */ 12345 dst_reg->smin_value = S64_MIN; 12346 dst_reg->smax_value = S64_MAX; 12347 } else { 12348 dst_reg->smin_value -= smax_val; 12349 dst_reg->smax_value -= smin_val; 12350 } 12351 if (dst_reg->umin_value < umax_val) { 12352 /* Overflow possible, we know nothing */ 12353 dst_reg->umin_value = 0; 12354 dst_reg->umax_value = U64_MAX; 12355 } else { 12356 /* Cannot overflow (as long as bounds are consistent) */ 12357 dst_reg->umin_value -= umax_val; 12358 dst_reg->umax_value -= umin_val; 12359 } 12360 } 12361 12362 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12363 struct bpf_reg_state *src_reg) 12364 { 12365 s32 smin_val = src_reg->s32_min_value; 12366 u32 umin_val = src_reg->u32_min_value; 12367 u32 umax_val = src_reg->u32_max_value; 12368 12369 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12370 /* Ain't nobody got time to multiply that sign */ 12371 __mark_reg32_unbounded(dst_reg); 12372 return; 12373 } 12374 /* Both values are positive, so we can work with unsigned and 12375 * copy the result to signed (unless it exceeds S32_MAX). 12376 */ 12377 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12378 /* Potential overflow, we know nothing */ 12379 __mark_reg32_unbounded(dst_reg); 12380 return; 12381 } 12382 dst_reg->u32_min_value *= umin_val; 12383 dst_reg->u32_max_value *= umax_val; 12384 if (dst_reg->u32_max_value > S32_MAX) { 12385 /* Overflow possible, we know nothing */ 12386 dst_reg->s32_min_value = S32_MIN; 12387 dst_reg->s32_max_value = S32_MAX; 12388 } else { 12389 dst_reg->s32_min_value = dst_reg->u32_min_value; 12390 dst_reg->s32_max_value = dst_reg->u32_max_value; 12391 } 12392 } 12393 12394 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12395 struct bpf_reg_state *src_reg) 12396 { 12397 s64 smin_val = src_reg->smin_value; 12398 u64 umin_val = src_reg->umin_value; 12399 u64 umax_val = src_reg->umax_value; 12400 12401 if (smin_val < 0 || dst_reg->smin_value < 0) { 12402 /* Ain't nobody got time to multiply that sign */ 12403 __mark_reg64_unbounded(dst_reg); 12404 return; 12405 } 12406 /* Both values are positive, so we can work with unsigned and 12407 * copy the result to signed (unless it exceeds S64_MAX). 12408 */ 12409 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12410 /* Potential overflow, we know nothing */ 12411 __mark_reg64_unbounded(dst_reg); 12412 return; 12413 } 12414 dst_reg->umin_value *= umin_val; 12415 dst_reg->umax_value *= umax_val; 12416 if (dst_reg->umax_value > S64_MAX) { 12417 /* Overflow possible, we know nothing */ 12418 dst_reg->smin_value = S64_MIN; 12419 dst_reg->smax_value = S64_MAX; 12420 } else { 12421 dst_reg->smin_value = dst_reg->umin_value; 12422 dst_reg->smax_value = dst_reg->umax_value; 12423 } 12424 } 12425 12426 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12427 struct bpf_reg_state *src_reg) 12428 { 12429 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12430 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12431 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12432 s32 smin_val = src_reg->s32_min_value; 12433 u32 umax_val = src_reg->u32_max_value; 12434 12435 if (src_known && dst_known) { 12436 __mark_reg32_known(dst_reg, var32_off.value); 12437 return; 12438 } 12439 12440 /* We get our minimum from the var_off, since that's inherently 12441 * bitwise. Our maximum is the minimum of the operands' maxima. 12442 */ 12443 dst_reg->u32_min_value = var32_off.value; 12444 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12445 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12446 /* Lose signed bounds when ANDing negative numbers, 12447 * ain't nobody got time for that. 12448 */ 12449 dst_reg->s32_min_value = S32_MIN; 12450 dst_reg->s32_max_value = S32_MAX; 12451 } else { 12452 /* ANDing two positives gives a positive, so safe to 12453 * cast result into s64. 12454 */ 12455 dst_reg->s32_min_value = dst_reg->u32_min_value; 12456 dst_reg->s32_max_value = dst_reg->u32_max_value; 12457 } 12458 } 12459 12460 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12461 struct bpf_reg_state *src_reg) 12462 { 12463 bool src_known = tnum_is_const(src_reg->var_off); 12464 bool dst_known = tnum_is_const(dst_reg->var_off); 12465 s64 smin_val = src_reg->smin_value; 12466 u64 umax_val = src_reg->umax_value; 12467 12468 if (src_known && dst_known) { 12469 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12470 return; 12471 } 12472 12473 /* We get our minimum from the var_off, since that's inherently 12474 * bitwise. Our maximum is the minimum of the operands' maxima. 12475 */ 12476 dst_reg->umin_value = dst_reg->var_off.value; 12477 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12478 if (dst_reg->smin_value < 0 || smin_val < 0) { 12479 /* Lose signed bounds when ANDing negative numbers, 12480 * ain't nobody got time for that. 12481 */ 12482 dst_reg->smin_value = S64_MIN; 12483 dst_reg->smax_value = S64_MAX; 12484 } else { 12485 /* ANDing two positives gives a positive, so safe to 12486 * cast result into s64. 12487 */ 12488 dst_reg->smin_value = dst_reg->umin_value; 12489 dst_reg->smax_value = dst_reg->umax_value; 12490 } 12491 /* We may learn something more from the var_off */ 12492 __update_reg_bounds(dst_reg); 12493 } 12494 12495 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12496 struct bpf_reg_state *src_reg) 12497 { 12498 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12499 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12500 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12501 s32 smin_val = src_reg->s32_min_value; 12502 u32 umin_val = src_reg->u32_min_value; 12503 12504 if (src_known && dst_known) { 12505 __mark_reg32_known(dst_reg, var32_off.value); 12506 return; 12507 } 12508 12509 /* We get our maximum from the var_off, and our minimum is the 12510 * maximum of the operands' minima 12511 */ 12512 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12513 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12514 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12515 /* Lose signed bounds when ORing negative numbers, 12516 * ain't nobody got time for that. 12517 */ 12518 dst_reg->s32_min_value = S32_MIN; 12519 dst_reg->s32_max_value = S32_MAX; 12520 } else { 12521 /* ORing two positives gives a positive, so safe to 12522 * cast result into s64. 12523 */ 12524 dst_reg->s32_min_value = dst_reg->u32_min_value; 12525 dst_reg->s32_max_value = dst_reg->u32_max_value; 12526 } 12527 } 12528 12529 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12530 struct bpf_reg_state *src_reg) 12531 { 12532 bool src_known = tnum_is_const(src_reg->var_off); 12533 bool dst_known = tnum_is_const(dst_reg->var_off); 12534 s64 smin_val = src_reg->smin_value; 12535 u64 umin_val = src_reg->umin_value; 12536 12537 if (src_known && dst_known) { 12538 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12539 return; 12540 } 12541 12542 /* We get our maximum from the var_off, and our minimum is the 12543 * maximum of the operands' minima 12544 */ 12545 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12546 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12547 if (dst_reg->smin_value < 0 || smin_val < 0) { 12548 /* Lose signed bounds when ORing negative numbers, 12549 * ain't nobody got time for that. 12550 */ 12551 dst_reg->smin_value = S64_MIN; 12552 dst_reg->smax_value = S64_MAX; 12553 } else { 12554 /* ORing two positives gives a positive, so safe to 12555 * cast result into s64. 12556 */ 12557 dst_reg->smin_value = dst_reg->umin_value; 12558 dst_reg->smax_value = dst_reg->umax_value; 12559 } 12560 /* We may learn something more from the var_off */ 12561 __update_reg_bounds(dst_reg); 12562 } 12563 12564 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12565 struct bpf_reg_state *src_reg) 12566 { 12567 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12568 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12569 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12570 s32 smin_val = src_reg->s32_min_value; 12571 12572 if (src_known && dst_known) { 12573 __mark_reg32_known(dst_reg, var32_off.value); 12574 return; 12575 } 12576 12577 /* We get both minimum and maximum from the var32_off. */ 12578 dst_reg->u32_min_value = var32_off.value; 12579 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12580 12581 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12582 /* XORing two positive sign numbers gives a positive, 12583 * so safe to cast u32 result into s32. 12584 */ 12585 dst_reg->s32_min_value = dst_reg->u32_min_value; 12586 dst_reg->s32_max_value = dst_reg->u32_max_value; 12587 } else { 12588 dst_reg->s32_min_value = S32_MIN; 12589 dst_reg->s32_max_value = S32_MAX; 12590 } 12591 } 12592 12593 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12594 struct bpf_reg_state *src_reg) 12595 { 12596 bool src_known = tnum_is_const(src_reg->var_off); 12597 bool dst_known = tnum_is_const(dst_reg->var_off); 12598 s64 smin_val = src_reg->smin_value; 12599 12600 if (src_known && dst_known) { 12601 /* dst_reg->var_off.value has been updated earlier */ 12602 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12603 return; 12604 } 12605 12606 /* We get both minimum and maximum from the var_off. */ 12607 dst_reg->umin_value = dst_reg->var_off.value; 12608 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12609 12610 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12611 /* XORing two positive sign numbers gives a positive, 12612 * so safe to cast u64 result into s64. 12613 */ 12614 dst_reg->smin_value = dst_reg->umin_value; 12615 dst_reg->smax_value = dst_reg->umax_value; 12616 } else { 12617 dst_reg->smin_value = S64_MIN; 12618 dst_reg->smax_value = S64_MAX; 12619 } 12620 12621 __update_reg_bounds(dst_reg); 12622 } 12623 12624 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12625 u64 umin_val, u64 umax_val) 12626 { 12627 /* We lose all sign bit information (except what we can pick 12628 * up from var_off) 12629 */ 12630 dst_reg->s32_min_value = S32_MIN; 12631 dst_reg->s32_max_value = S32_MAX; 12632 /* If we might shift our top bit out, then we know nothing */ 12633 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12634 dst_reg->u32_min_value = 0; 12635 dst_reg->u32_max_value = U32_MAX; 12636 } else { 12637 dst_reg->u32_min_value <<= umin_val; 12638 dst_reg->u32_max_value <<= umax_val; 12639 } 12640 } 12641 12642 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12643 struct bpf_reg_state *src_reg) 12644 { 12645 u32 umax_val = src_reg->u32_max_value; 12646 u32 umin_val = src_reg->u32_min_value; 12647 /* u32 alu operation will zext upper bits */ 12648 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12649 12650 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12651 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12652 /* Not required but being careful mark reg64 bounds as unknown so 12653 * that we are forced to pick them up from tnum and zext later and 12654 * if some path skips this step we are still safe. 12655 */ 12656 __mark_reg64_unbounded(dst_reg); 12657 __update_reg32_bounds(dst_reg); 12658 } 12659 12660 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12661 u64 umin_val, u64 umax_val) 12662 { 12663 /* Special case <<32 because it is a common compiler pattern to sign 12664 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12665 * positive we know this shift will also be positive so we can track 12666 * bounds correctly. Otherwise we lose all sign bit information except 12667 * what we can pick up from var_off. Perhaps we can generalize this 12668 * later to shifts of any length. 12669 */ 12670 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12671 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12672 else 12673 dst_reg->smax_value = S64_MAX; 12674 12675 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12676 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12677 else 12678 dst_reg->smin_value = S64_MIN; 12679 12680 /* If we might shift our top bit out, then we know nothing */ 12681 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12682 dst_reg->umin_value = 0; 12683 dst_reg->umax_value = U64_MAX; 12684 } else { 12685 dst_reg->umin_value <<= umin_val; 12686 dst_reg->umax_value <<= umax_val; 12687 } 12688 } 12689 12690 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12691 struct bpf_reg_state *src_reg) 12692 { 12693 u64 umax_val = src_reg->umax_value; 12694 u64 umin_val = src_reg->umin_value; 12695 12696 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12697 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12698 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12699 12700 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12701 /* We may learn something more from the var_off */ 12702 __update_reg_bounds(dst_reg); 12703 } 12704 12705 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12706 struct bpf_reg_state *src_reg) 12707 { 12708 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12709 u32 umax_val = src_reg->u32_max_value; 12710 u32 umin_val = src_reg->u32_min_value; 12711 12712 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12713 * be negative, then either: 12714 * 1) src_reg might be zero, so the sign bit of the result is 12715 * unknown, so we lose our signed bounds 12716 * 2) it's known negative, thus the unsigned bounds capture the 12717 * signed bounds 12718 * 3) the signed bounds cross zero, so they tell us nothing 12719 * about the result 12720 * If the value in dst_reg is known nonnegative, then again the 12721 * unsigned bounds capture the signed bounds. 12722 * Thus, in all cases it suffices to blow away our signed bounds 12723 * and rely on inferring new ones from the unsigned bounds and 12724 * var_off of the result. 12725 */ 12726 dst_reg->s32_min_value = S32_MIN; 12727 dst_reg->s32_max_value = S32_MAX; 12728 12729 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12730 dst_reg->u32_min_value >>= umax_val; 12731 dst_reg->u32_max_value >>= umin_val; 12732 12733 __mark_reg64_unbounded(dst_reg); 12734 __update_reg32_bounds(dst_reg); 12735 } 12736 12737 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12738 struct bpf_reg_state *src_reg) 12739 { 12740 u64 umax_val = src_reg->umax_value; 12741 u64 umin_val = src_reg->umin_value; 12742 12743 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12744 * be negative, then either: 12745 * 1) src_reg might be zero, so the sign bit of the result is 12746 * unknown, so we lose our signed bounds 12747 * 2) it's known negative, thus the unsigned bounds capture the 12748 * signed bounds 12749 * 3) the signed bounds cross zero, so they tell us nothing 12750 * about the result 12751 * If the value in dst_reg is known nonnegative, then again the 12752 * unsigned bounds capture the signed bounds. 12753 * Thus, in all cases it suffices to blow away our signed bounds 12754 * and rely on inferring new ones from the unsigned bounds and 12755 * var_off of the result. 12756 */ 12757 dst_reg->smin_value = S64_MIN; 12758 dst_reg->smax_value = S64_MAX; 12759 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12760 dst_reg->umin_value >>= umax_val; 12761 dst_reg->umax_value >>= umin_val; 12762 12763 /* Its not easy to operate on alu32 bounds here because it depends 12764 * on bits being shifted in. Take easy way out and mark unbounded 12765 * so we can recalculate later from tnum. 12766 */ 12767 __mark_reg32_unbounded(dst_reg); 12768 __update_reg_bounds(dst_reg); 12769 } 12770 12771 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12772 struct bpf_reg_state *src_reg) 12773 { 12774 u64 umin_val = src_reg->u32_min_value; 12775 12776 /* Upon reaching here, src_known is true and 12777 * umax_val is equal to umin_val. 12778 */ 12779 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12780 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12781 12782 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12783 12784 /* blow away the dst_reg umin_value/umax_value and rely on 12785 * dst_reg var_off to refine the result. 12786 */ 12787 dst_reg->u32_min_value = 0; 12788 dst_reg->u32_max_value = U32_MAX; 12789 12790 __mark_reg64_unbounded(dst_reg); 12791 __update_reg32_bounds(dst_reg); 12792 } 12793 12794 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12795 struct bpf_reg_state *src_reg) 12796 { 12797 u64 umin_val = src_reg->umin_value; 12798 12799 /* Upon reaching here, src_known is true and umax_val is equal 12800 * to umin_val. 12801 */ 12802 dst_reg->smin_value >>= umin_val; 12803 dst_reg->smax_value >>= umin_val; 12804 12805 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12806 12807 /* blow away the dst_reg umin_value/umax_value and rely on 12808 * dst_reg var_off to refine the result. 12809 */ 12810 dst_reg->umin_value = 0; 12811 dst_reg->umax_value = U64_MAX; 12812 12813 /* Its not easy to operate on alu32 bounds here because it depends 12814 * on bits being shifted in from upper 32-bits. Take easy way out 12815 * and mark unbounded so we can recalculate later from tnum. 12816 */ 12817 __mark_reg32_unbounded(dst_reg); 12818 __update_reg_bounds(dst_reg); 12819 } 12820 12821 /* WARNING: This function does calculations on 64-bit values, but the actual 12822 * execution may occur on 32-bit values. Therefore, things like bitshifts 12823 * need extra checks in the 32-bit case. 12824 */ 12825 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12826 struct bpf_insn *insn, 12827 struct bpf_reg_state *dst_reg, 12828 struct bpf_reg_state src_reg) 12829 { 12830 struct bpf_reg_state *regs = cur_regs(env); 12831 u8 opcode = BPF_OP(insn->code); 12832 bool src_known; 12833 s64 smin_val, smax_val; 12834 u64 umin_val, umax_val; 12835 s32 s32_min_val, s32_max_val; 12836 u32 u32_min_val, u32_max_val; 12837 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12838 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12839 int ret; 12840 12841 smin_val = src_reg.smin_value; 12842 smax_val = src_reg.smax_value; 12843 umin_val = src_reg.umin_value; 12844 umax_val = src_reg.umax_value; 12845 12846 s32_min_val = src_reg.s32_min_value; 12847 s32_max_val = src_reg.s32_max_value; 12848 u32_min_val = src_reg.u32_min_value; 12849 u32_max_val = src_reg.u32_max_value; 12850 12851 if (alu32) { 12852 src_known = tnum_subreg_is_const(src_reg.var_off); 12853 if ((src_known && 12854 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12855 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12856 /* Taint dst register if offset had invalid bounds 12857 * derived from e.g. dead branches. 12858 */ 12859 __mark_reg_unknown(env, dst_reg); 12860 return 0; 12861 } 12862 } else { 12863 src_known = tnum_is_const(src_reg.var_off); 12864 if ((src_known && 12865 (smin_val != smax_val || umin_val != umax_val)) || 12866 smin_val > smax_val || umin_val > umax_val) { 12867 /* Taint dst register if offset had invalid bounds 12868 * derived from e.g. dead branches. 12869 */ 12870 __mark_reg_unknown(env, dst_reg); 12871 return 0; 12872 } 12873 } 12874 12875 if (!src_known && 12876 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12877 __mark_reg_unknown(env, dst_reg); 12878 return 0; 12879 } 12880 12881 if (sanitize_needed(opcode)) { 12882 ret = sanitize_val_alu(env, insn); 12883 if (ret < 0) 12884 return sanitize_err(env, insn, ret, NULL, NULL); 12885 } 12886 12887 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12888 * There are two classes of instructions: The first class we track both 12889 * alu32 and alu64 sign/unsigned bounds independently this provides the 12890 * greatest amount of precision when alu operations are mixed with jmp32 12891 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12892 * and BPF_OR. This is possible because these ops have fairly easy to 12893 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12894 * See alu32 verifier tests for examples. The second class of 12895 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12896 * with regards to tracking sign/unsigned bounds because the bits may 12897 * cross subreg boundaries in the alu64 case. When this happens we mark 12898 * the reg unbounded in the subreg bound space and use the resulting 12899 * tnum to calculate an approximation of the sign/unsigned bounds. 12900 */ 12901 switch (opcode) { 12902 case BPF_ADD: 12903 scalar32_min_max_add(dst_reg, &src_reg); 12904 scalar_min_max_add(dst_reg, &src_reg); 12905 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12906 break; 12907 case BPF_SUB: 12908 scalar32_min_max_sub(dst_reg, &src_reg); 12909 scalar_min_max_sub(dst_reg, &src_reg); 12910 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12911 break; 12912 case BPF_MUL: 12913 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12914 scalar32_min_max_mul(dst_reg, &src_reg); 12915 scalar_min_max_mul(dst_reg, &src_reg); 12916 break; 12917 case BPF_AND: 12918 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12919 scalar32_min_max_and(dst_reg, &src_reg); 12920 scalar_min_max_and(dst_reg, &src_reg); 12921 break; 12922 case BPF_OR: 12923 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12924 scalar32_min_max_or(dst_reg, &src_reg); 12925 scalar_min_max_or(dst_reg, &src_reg); 12926 break; 12927 case BPF_XOR: 12928 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12929 scalar32_min_max_xor(dst_reg, &src_reg); 12930 scalar_min_max_xor(dst_reg, &src_reg); 12931 break; 12932 case BPF_LSH: 12933 if (umax_val >= insn_bitness) { 12934 /* Shifts greater than 31 or 63 are undefined. 12935 * This includes shifts by a negative number. 12936 */ 12937 mark_reg_unknown(env, regs, insn->dst_reg); 12938 break; 12939 } 12940 if (alu32) 12941 scalar32_min_max_lsh(dst_reg, &src_reg); 12942 else 12943 scalar_min_max_lsh(dst_reg, &src_reg); 12944 break; 12945 case BPF_RSH: 12946 if (umax_val >= insn_bitness) { 12947 /* Shifts greater than 31 or 63 are undefined. 12948 * This includes shifts by a negative number. 12949 */ 12950 mark_reg_unknown(env, regs, insn->dst_reg); 12951 break; 12952 } 12953 if (alu32) 12954 scalar32_min_max_rsh(dst_reg, &src_reg); 12955 else 12956 scalar_min_max_rsh(dst_reg, &src_reg); 12957 break; 12958 case BPF_ARSH: 12959 if (umax_val >= insn_bitness) { 12960 /* Shifts greater than 31 or 63 are undefined. 12961 * This includes shifts by a negative number. 12962 */ 12963 mark_reg_unknown(env, regs, insn->dst_reg); 12964 break; 12965 } 12966 if (alu32) 12967 scalar32_min_max_arsh(dst_reg, &src_reg); 12968 else 12969 scalar_min_max_arsh(dst_reg, &src_reg); 12970 break; 12971 default: 12972 mark_reg_unknown(env, regs, insn->dst_reg); 12973 break; 12974 } 12975 12976 /* ALU32 ops are zero extended into 64bit register */ 12977 if (alu32) 12978 zext_32_to_64(dst_reg); 12979 reg_bounds_sync(dst_reg); 12980 return 0; 12981 } 12982 12983 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12984 * and var_off. 12985 */ 12986 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12987 struct bpf_insn *insn) 12988 { 12989 struct bpf_verifier_state *vstate = env->cur_state; 12990 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12991 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12992 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12993 u8 opcode = BPF_OP(insn->code); 12994 int err; 12995 12996 dst_reg = ®s[insn->dst_reg]; 12997 src_reg = NULL; 12998 if (dst_reg->type != SCALAR_VALUE) 12999 ptr_reg = dst_reg; 13000 else 13001 /* Make sure ID is cleared otherwise dst_reg min/max could be 13002 * incorrectly propagated into other registers by find_equal_scalars() 13003 */ 13004 dst_reg->id = 0; 13005 if (BPF_SRC(insn->code) == BPF_X) { 13006 src_reg = ®s[insn->src_reg]; 13007 if (src_reg->type != SCALAR_VALUE) { 13008 if (dst_reg->type != SCALAR_VALUE) { 13009 /* Combining two pointers by any ALU op yields 13010 * an arbitrary scalar. Disallow all math except 13011 * pointer subtraction 13012 */ 13013 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13014 mark_reg_unknown(env, regs, insn->dst_reg); 13015 return 0; 13016 } 13017 verbose(env, "R%d pointer %s pointer prohibited\n", 13018 insn->dst_reg, 13019 bpf_alu_string[opcode >> 4]); 13020 return -EACCES; 13021 } else { 13022 /* scalar += pointer 13023 * This is legal, but we have to reverse our 13024 * src/dest handling in computing the range 13025 */ 13026 err = mark_chain_precision(env, insn->dst_reg); 13027 if (err) 13028 return err; 13029 return adjust_ptr_min_max_vals(env, insn, 13030 src_reg, dst_reg); 13031 } 13032 } else if (ptr_reg) { 13033 /* pointer += scalar */ 13034 err = mark_chain_precision(env, insn->src_reg); 13035 if (err) 13036 return err; 13037 return adjust_ptr_min_max_vals(env, insn, 13038 dst_reg, src_reg); 13039 } else if (dst_reg->precise) { 13040 /* if dst_reg is precise, src_reg should be precise as well */ 13041 err = mark_chain_precision(env, insn->src_reg); 13042 if (err) 13043 return err; 13044 } 13045 } else { 13046 /* Pretend the src is a reg with a known value, since we only 13047 * need to be able to read from this state. 13048 */ 13049 off_reg.type = SCALAR_VALUE; 13050 __mark_reg_known(&off_reg, insn->imm); 13051 src_reg = &off_reg; 13052 if (ptr_reg) /* pointer += K */ 13053 return adjust_ptr_min_max_vals(env, insn, 13054 ptr_reg, src_reg); 13055 } 13056 13057 /* Got here implies adding two SCALAR_VALUEs */ 13058 if (WARN_ON_ONCE(ptr_reg)) { 13059 print_verifier_state(env, state, true); 13060 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13061 return -EINVAL; 13062 } 13063 if (WARN_ON(!src_reg)) { 13064 print_verifier_state(env, state, true); 13065 verbose(env, "verifier internal error: no src_reg\n"); 13066 return -EINVAL; 13067 } 13068 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13069 } 13070 13071 /* check validity of 32-bit and 64-bit arithmetic operations */ 13072 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13073 { 13074 struct bpf_reg_state *regs = cur_regs(env); 13075 u8 opcode = BPF_OP(insn->code); 13076 int err; 13077 13078 if (opcode == BPF_END || opcode == BPF_NEG) { 13079 if (opcode == BPF_NEG) { 13080 if (BPF_SRC(insn->code) != BPF_K || 13081 insn->src_reg != BPF_REG_0 || 13082 insn->off != 0 || insn->imm != 0) { 13083 verbose(env, "BPF_NEG uses reserved fields\n"); 13084 return -EINVAL; 13085 } 13086 } else { 13087 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13088 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13089 (BPF_CLASS(insn->code) == BPF_ALU64 && 13090 BPF_SRC(insn->code) != BPF_TO_LE)) { 13091 verbose(env, "BPF_END uses reserved fields\n"); 13092 return -EINVAL; 13093 } 13094 } 13095 13096 /* check src operand */ 13097 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13098 if (err) 13099 return err; 13100 13101 if (is_pointer_value(env, insn->dst_reg)) { 13102 verbose(env, "R%d pointer arithmetic prohibited\n", 13103 insn->dst_reg); 13104 return -EACCES; 13105 } 13106 13107 /* check dest operand */ 13108 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13109 if (err) 13110 return err; 13111 13112 } else if (opcode == BPF_MOV) { 13113 13114 if (BPF_SRC(insn->code) == BPF_X) { 13115 if (insn->imm != 0) { 13116 verbose(env, "BPF_MOV uses reserved fields\n"); 13117 return -EINVAL; 13118 } 13119 13120 if (BPF_CLASS(insn->code) == BPF_ALU) { 13121 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13122 verbose(env, "BPF_MOV uses reserved fields\n"); 13123 return -EINVAL; 13124 } 13125 } else { 13126 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13127 insn->off != 32) { 13128 verbose(env, "BPF_MOV uses reserved fields\n"); 13129 return -EINVAL; 13130 } 13131 } 13132 13133 /* check src operand */ 13134 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13135 if (err) 13136 return err; 13137 } else { 13138 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13139 verbose(env, "BPF_MOV uses reserved fields\n"); 13140 return -EINVAL; 13141 } 13142 } 13143 13144 /* check dest operand, mark as required later */ 13145 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13146 if (err) 13147 return err; 13148 13149 if (BPF_SRC(insn->code) == BPF_X) { 13150 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13151 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13152 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13153 !tnum_is_const(src_reg->var_off); 13154 13155 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13156 if (insn->off == 0) { 13157 /* case: R1 = R2 13158 * copy register state to dest reg 13159 */ 13160 if (need_id) 13161 /* Assign src and dst registers the same ID 13162 * that will be used by find_equal_scalars() 13163 * to propagate min/max range. 13164 */ 13165 src_reg->id = ++env->id_gen; 13166 copy_register_state(dst_reg, src_reg); 13167 dst_reg->live |= REG_LIVE_WRITTEN; 13168 dst_reg->subreg_def = DEF_NOT_SUBREG; 13169 } else { 13170 /* case: R1 = (s8, s16 s32)R2 */ 13171 if (is_pointer_value(env, insn->src_reg)) { 13172 verbose(env, 13173 "R%d sign-extension part of pointer\n", 13174 insn->src_reg); 13175 return -EACCES; 13176 } else if (src_reg->type == SCALAR_VALUE) { 13177 bool no_sext; 13178 13179 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13180 if (no_sext && need_id) 13181 src_reg->id = ++env->id_gen; 13182 copy_register_state(dst_reg, src_reg); 13183 if (!no_sext) 13184 dst_reg->id = 0; 13185 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13186 dst_reg->live |= REG_LIVE_WRITTEN; 13187 dst_reg->subreg_def = DEF_NOT_SUBREG; 13188 } else { 13189 mark_reg_unknown(env, regs, insn->dst_reg); 13190 } 13191 } 13192 } else { 13193 /* R1 = (u32) R2 */ 13194 if (is_pointer_value(env, insn->src_reg)) { 13195 verbose(env, 13196 "R%d partial copy of pointer\n", 13197 insn->src_reg); 13198 return -EACCES; 13199 } else if (src_reg->type == SCALAR_VALUE) { 13200 if (insn->off == 0) { 13201 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13202 13203 if (is_src_reg_u32 && need_id) 13204 src_reg->id = ++env->id_gen; 13205 copy_register_state(dst_reg, src_reg); 13206 /* Make sure ID is cleared if src_reg is not in u32 13207 * range otherwise dst_reg min/max could be incorrectly 13208 * propagated into src_reg by find_equal_scalars() 13209 */ 13210 if (!is_src_reg_u32) 13211 dst_reg->id = 0; 13212 dst_reg->live |= REG_LIVE_WRITTEN; 13213 dst_reg->subreg_def = env->insn_idx + 1; 13214 } else { 13215 /* case: W1 = (s8, s16)W2 */ 13216 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13217 13218 if (no_sext && need_id) 13219 src_reg->id = ++env->id_gen; 13220 copy_register_state(dst_reg, src_reg); 13221 if (!no_sext) 13222 dst_reg->id = 0; 13223 dst_reg->live |= REG_LIVE_WRITTEN; 13224 dst_reg->subreg_def = env->insn_idx + 1; 13225 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13226 } 13227 } else { 13228 mark_reg_unknown(env, regs, 13229 insn->dst_reg); 13230 } 13231 zext_32_to_64(dst_reg); 13232 reg_bounds_sync(dst_reg); 13233 } 13234 } else { 13235 /* case: R = imm 13236 * remember the value we stored into this reg 13237 */ 13238 /* clear any state __mark_reg_known doesn't set */ 13239 mark_reg_unknown(env, regs, insn->dst_reg); 13240 regs[insn->dst_reg].type = SCALAR_VALUE; 13241 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13242 __mark_reg_known(regs + insn->dst_reg, 13243 insn->imm); 13244 } else { 13245 __mark_reg_known(regs + insn->dst_reg, 13246 (u32)insn->imm); 13247 } 13248 } 13249 13250 } else if (opcode > BPF_END) { 13251 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13252 return -EINVAL; 13253 13254 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13255 13256 if (BPF_SRC(insn->code) == BPF_X) { 13257 if (insn->imm != 0 || insn->off > 1 || 13258 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13259 verbose(env, "BPF_ALU uses reserved fields\n"); 13260 return -EINVAL; 13261 } 13262 /* check src1 operand */ 13263 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13264 if (err) 13265 return err; 13266 } else { 13267 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13268 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13269 verbose(env, "BPF_ALU uses reserved fields\n"); 13270 return -EINVAL; 13271 } 13272 } 13273 13274 /* check src2 operand */ 13275 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13276 if (err) 13277 return err; 13278 13279 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13280 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13281 verbose(env, "div by zero\n"); 13282 return -EINVAL; 13283 } 13284 13285 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13286 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13287 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13288 13289 if (insn->imm < 0 || insn->imm >= size) { 13290 verbose(env, "invalid shift %d\n", insn->imm); 13291 return -EINVAL; 13292 } 13293 } 13294 13295 /* check dest operand */ 13296 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13297 if (err) 13298 return err; 13299 13300 return adjust_reg_min_max_vals(env, insn); 13301 } 13302 13303 return 0; 13304 } 13305 13306 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13307 struct bpf_reg_state *dst_reg, 13308 enum bpf_reg_type type, 13309 bool range_right_open) 13310 { 13311 struct bpf_func_state *state; 13312 struct bpf_reg_state *reg; 13313 int new_range; 13314 13315 if (dst_reg->off < 0 || 13316 (dst_reg->off == 0 && range_right_open)) 13317 /* This doesn't give us any range */ 13318 return; 13319 13320 if (dst_reg->umax_value > MAX_PACKET_OFF || 13321 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13322 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13323 * than pkt_end, but that's because it's also less than pkt. 13324 */ 13325 return; 13326 13327 new_range = dst_reg->off; 13328 if (range_right_open) 13329 new_range++; 13330 13331 /* Examples for register markings: 13332 * 13333 * pkt_data in dst register: 13334 * 13335 * r2 = r3; 13336 * r2 += 8; 13337 * if (r2 > pkt_end) goto <handle exception> 13338 * <access okay> 13339 * 13340 * r2 = r3; 13341 * r2 += 8; 13342 * if (r2 < pkt_end) goto <access okay> 13343 * <handle exception> 13344 * 13345 * Where: 13346 * r2 == dst_reg, pkt_end == src_reg 13347 * r2=pkt(id=n,off=8,r=0) 13348 * r3=pkt(id=n,off=0,r=0) 13349 * 13350 * pkt_data in src register: 13351 * 13352 * r2 = r3; 13353 * r2 += 8; 13354 * if (pkt_end >= r2) goto <access okay> 13355 * <handle exception> 13356 * 13357 * r2 = r3; 13358 * r2 += 8; 13359 * if (pkt_end <= r2) goto <handle exception> 13360 * <access okay> 13361 * 13362 * Where: 13363 * pkt_end == dst_reg, r2 == src_reg 13364 * r2=pkt(id=n,off=8,r=0) 13365 * r3=pkt(id=n,off=0,r=0) 13366 * 13367 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13368 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13369 * and [r3, r3 + 8-1) respectively is safe to access depending on 13370 * the check. 13371 */ 13372 13373 /* If our ids match, then we must have the same max_value. And we 13374 * don't care about the other reg's fixed offset, since if it's too big 13375 * the range won't allow anything. 13376 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13377 */ 13378 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13379 if (reg->type == type && reg->id == dst_reg->id) 13380 /* keep the maximum range already checked */ 13381 reg->range = max(reg->range, new_range); 13382 })); 13383 } 13384 13385 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13386 { 13387 struct tnum subreg = tnum_subreg(reg->var_off); 13388 s32 sval = (s32)val; 13389 13390 switch (opcode) { 13391 case BPF_JEQ: 13392 if (tnum_is_const(subreg)) 13393 return !!tnum_equals_const(subreg, val); 13394 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13395 return 0; 13396 break; 13397 case BPF_JNE: 13398 if (tnum_is_const(subreg)) 13399 return !tnum_equals_const(subreg, val); 13400 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13401 return 1; 13402 break; 13403 case BPF_JSET: 13404 if ((~subreg.mask & subreg.value) & val) 13405 return 1; 13406 if (!((subreg.mask | subreg.value) & val)) 13407 return 0; 13408 break; 13409 case BPF_JGT: 13410 if (reg->u32_min_value > val) 13411 return 1; 13412 else if (reg->u32_max_value <= val) 13413 return 0; 13414 break; 13415 case BPF_JSGT: 13416 if (reg->s32_min_value > sval) 13417 return 1; 13418 else if (reg->s32_max_value <= sval) 13419 return 0; 13420 break; 13421 case BPF_JLT: 13422 if (reg->u32_max_value < val) 13423 return 1; 13424 else if (reg->u32_min_value >= val) 13425 return 0; 13426 break; 13427 case BPF_JSLT: 13428 if (reg->s32_max_value < sval) 13429 return 1; 13430 else if (reg->s32_min_value >= sval) 13431 return 0; 13432 break; 13433 case BPF_JGE: 13434 if (reg->u32_min_value >= val) 13435 return 1; 13436 else if (reg->u32_max_value < val) 13437 return 0; 13438 break; 13439 case BPF_JSGE: 13440 if (reg->s32_min_value >= sval) 13441 return 1; 13442 else if (reg->s32_max_value < sval) 13443 return 0; 13444 break; 13445 case BPF_JLE: 13446 if (reg->u32_max_value <= val) 13447 return 1; 13448 else if (reg->u32_min_value > val) 13449 return 0; 13450 break; 13451 case BPF_JSLE: 13452 if (reg->s32_max_value <= sval) 13453 return 1; 13454 else if (reg->s32_min_value > sval) 13455 return 0; 13456 break; 13457 } 13458 13459 return -1; 13460 } 13461 13462 13463 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13464 { 13465 s64 sval = (s64)val; 13466 13467 switch (opcode) { 13468 case BPF_JEQ: 13469 if (tnum_is_const(reg->var_off)) 13470 return !!tnum_equals_const(reg->var_off, val); 13471 else if (val < reg->umin_value || val > reg->umax_value) 13472 return 0; 13473 break; 13474 case BPF_JNE: 13475 if (tnum_is_const(reg->var_off)) 13476 return !tnum_equals_const(reg->var_off, val); 13477 else if (val < reg->umin_value || val > reg->umax_value) 13478 return 1; 13479 break; 13480 case BPF_JSET: 13481 if ((~reg->var_off.mask & reg->var_off.value) & val) 13482 return 1; 13483 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13484 return 0; 13485 break; 13486 case BPF_JGT: 13487 if (reg->umin_value > val) 13488 return 1; 13489 else if (reg->umax_value <= val) 13490 return 0; 13491 break; 13492 case BPF_JSGT: 13493 if (reg->smin_value > sval) 13494 return 1; 13495 else if (reg->smax_value <= sval) 13496 return 0; 13497 break; 13498 case BPF_JLT: 13499 if (reg->umax_value < val) 13500 return 1; 13501 else if (reg->umin_value >= val) 13502 return 0; 13503 break; 13504 case BPF_JSLT: 13505 if (reg->smax_value < sval) 13506 return 1; 13507 else if (reg->smin_value >= sval) 13508 return 0; 13509 break; 13510 case BPF_JGE: 13511 if (reg->umin_value >= val) 13512 return 1; 13513 else if (reg->umax_value < val) 13514 return 0; 13515 break; 13516 case BPF_JSGE: 13517 if (reg->smin_value >= sval) 13518 return 1; 13519 else if (reg->smax_value < sval) 13520 return 0; 13521 break; 13522 case BPF_JLE: 13523 if (reg->umax_value <= val) 13524 return 1; 13525 else if (reg->umin_value > val) 13526 return 0; 13527 break; 13528 case BPF_JSLE: 13529 if (reg->smax_value <= sval) 13530 return 1; 13531 else if (reg->smin_value > sval) 13532 return 0; 13533 break; 13534 } 13535 13536 return -1; 13537 } 13538 13539 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13540 * and return: 13541 * 1 - branch will be taken and "goto target" will be executed 13542 * 0 - branch will not be taken and fall-through to next insn 13543 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13544 * range [0,10] 13545 */ 13546 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13547 bool is_jmp32) 13548 { 13549 if (__is_pointer_value(false, reg)) { 13550 if (!reg_not_null(reg)) 13551 return -1; 13552 13553 /* If pointer is valid tests against zero will fail so we can 13554 * use this to direct branch taken. 13555 */ 13556 if (val != 0) 13557 return -1; 13558 13559 switch (opcode) { 13560 case BPF_JEQ: 13561 return 0; 13562 case BPF_JNE: 13563 return 1; 13564 default: 13565 return -1; 13566 } 13567 } 13568 13569 if (is_jmp32) 13570 return is_branch32_taken(reg, val, opcode); 13571 return is_branch64_taken(reg, val, opcode); 13572 } 13573 13574 static int flip_opcode(u32 opcode) 13575 { 13576 /* How can we transform "a <op> b" into "b <op> a"? */ 13577 static const u8 opcode_flip[16] = { 13578 /* these stay the same */ 13579 [BPF_JEQ >> 4] = BPF_JEQ, 13580 [BPF_JNE >> 4] = BPF_JNE, 13581 [BPF_JSET >> 4] = BPF_JSET, 13582 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13583 [BPF_JGE >> 4] = BPF_JLE, 13584 [BPF_JGT >> 4] = BPF_JLT, 13585 [BPF_JLE >> 4] = BPF_JGE, 13586 [BPF_JLT >> 4] = BPF_JGT, 13587 [BPF_JSGE >> 4] = BPF_JSLE, 13588 [BPF_JSGT >> 4] = BPF_JSLT, 13589 [BPF_JSLE >> 4] = BPF_JSGE, 13590 [BPF_JSLT >> 4] = BPF_JSGT 13591 }; 13592 return opcode_flip[opcode >> 4]; 13593 } 13594 13595 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13596 struct bpf_reg_state *src_reg, 13597 u8 opcode) 13598 { 13599 struct bpf_reg_state *pkt; 13600 13601 if (src_reg->type == PTR_TO_PACKET_END) { 13602 pkt = dst_reg; 13603 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13604 pkt = src_reg; 13605 opcode = flip_opcode(opcode); 13606 } else { 13607 return -1; 13608 } 13609 13610 if (pkt->range >= 0) 13611 return -1; 13612 13613 switch (opcode) { 13614 case BPF_JLE: 13615 /* pkt <= pkt_end */ 13616 fallthrough; 13617 case BPF_JGT: 13618 /* pkt > pkt_end */ 13619 if (pkt->range == BEYOND_PKT_END) 13620 /* pkt has at last one extra byte beyond pkt_end */ 13621 return opcode == BPF_JGT; 13622 break; 13623 case BPF_JLT: 13624 /* pkt < pkt_end */ 13625 fallthrough; 13626 case BPF_JGE: 13627 /* pkt >= pkt_end */ 13628 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13629 return opcode == BPF_JGE; 13630 break; 13631 } 13632 return -1; 13633 } 13634 13635 /* Adjusts the register min/max values in the case that the dst_reg is the 13636 * variable register that we are working on, and src_reg is a constant or we're 13637 * simply doing a BPF_K check. 13638 * In JEQ/JNE cases we also adjust the var_off values. 13639 */ 13640 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13641 struct bpf_reg_state *false_reg, 13642 u64 val, u32 val32, 13643 u8 opcode, bool is_jmp32) 13644 { 13645 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13646 struct tnum false_64off = false_reg->var_off; 13647 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13648 struct tnum true_64off = true_reg->var_off; 13649 s64 sval = (s64)val; 13650 s32 sval32 = (s32)val32; 13651 13652 /* If the dst_reg is a pointer, we can't learn anything about its 13653 * variable offset from the compare (unless src_reg were a pointer into 13654 * the same object, but we don't bother with that. 13655 * Since false_reg and true_reg have the same type by construction, we 13656 * only need to check one of them for pointerness. 13657 */ 13658 if (__is_pointer_value(false, false_reg)) 13659 return; 13660 13661 switch (opcode) { 13662 /* JEQ/JNE comparison doesn't change the register equivalence. 13663 * 13664 * r1 = r2; 13665 * if (r1 == 42) goto label; 13666 * ... 13667 * label: // here both r1 and r2 are known to be 42. 13668 * 13669 * Hence when marking register as known preserve it's ID. 13670 */ 13671 case BPF_JEQ: 13672 if (is_jmp32) { 13673 __mark_reg32_known(true_reg, val32); 13674 true_32off = tnum_subreg(true_reg->var_off); 13675 } else { 13676 ___mark_reg_known(true_reg, val); 13677 true_64off = true_reg->var_off; 13678 } 13679 break; 13680 case BPF_JNE: 13681 if (is_jmp32) { 13682 __mark_reg32_known(false_reg, val32); 13683 false_32off = tnum_subreg(false_reg->var_off); 13684 } else { 13685 ___mark_reg_known(false_reg, val); 13686 false_64off = false_reg->var_off; 13687 } 13688 break; 13689 case BPF_JSET: 13690 if (is_jmp32) { 13691 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13692 if (is_power_of_2(val32)) 13693 true_32off = tnum_or(true_32off, 13694 tnum_const(val32)); 13695 } else { 13696 false_64off = tnum_and(false_64off, tnum_const(~val)); 13697 if (is_power_of_2(val)) 13698 true_64off = tnum_or(true_64off, 13699 tnum_const(val)); 13700 } 13701 break; 13702 case BPF_JGE: 13703 case BPF_JGT: 13704 { 13705 if (is_jmp32) { 13706 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13707 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13708 13709 false_reg->u32_max_value = min(false_reg->u32_max_value, 13710 false_umax); 13711 true_reg->u32_min_value = max(true_reg->u32_min_value, 13712 true_umin); 13713 } else { 13714 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13715 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13716 13717 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13718 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13719 } 13720 break; 13721 } 13722 case BPF_JSGE: 13723 case BPF_JSGT: 13724 { 13725 if (is_jmp32) { 13726 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13727 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13728 13729 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13730 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13731 } else { 13732 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13733 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13734 13735 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13736 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13737 } 13738 break; 13739 } 13740 case BPF_JLE: 13741 case BPF_JLT: 13742 { 13743 if (is_jmp32) { 13744 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13745 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13746 13747 false_reg->u32_min_value = max(false_reg->u32_min_value, 13748 false_umin); 13749 true_reg->u32_max_value = min(true_reg->u32_max_value, 13750 true_umax); 13751 } else { 13752 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13753 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13754 13755 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13756 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13757 } 13758 break; 13759 } 13760 case BPF_JSLE: 13761 case BPF_JSLT: 13762 { 13763 if (is_jmp32) { 13764 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13765 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13766 13767 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13768 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13769 } else { 13770 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13771 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13772 13773 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13774 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13775 } 13776 break; 13777 } 13778 default: 13779 return; 13780 } 13781 13782 if (is_jmp32) { 13783 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13784 tnum_subreg(false_32off)); 13785 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13786 tnum_subreg(true_32off)); 13787 __reg_combine_32_into_64(false_reg); 13788 __reg_combine_32_into_64(true_reg); 13789 } else { 13790 false_reg->var_off = false_64off; 13791 true_reg->var_off = true_64off; 13792 __reg_combine_64_into_32(false_reg); 13793 __reg_combine_64_into_32(true_reg); 13794 } 13795 } 13796 13797 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13798 * the variable reg. 13799 */ 13800 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13801 struct bpf_reg_state *false_reg, 13802 u64 val, u32 val32, 13803 u8 opcode, bool is_jmp32) 13804 { 13805 opcode = flip_opcode(opcode); 13806 /* This uses zero as "not present in table"; luckily the zero opcode, 13807 * BPF_JA, can't get here. 13808 */ 13809 if (opcode) 13810 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13811 } 13812 13813 /* Regs are known to be equal, so intersect their min/max/var_off */ 13814 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13815 struct bpf_reg_state *dst_reg) 13816 { 13817 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13818 dst_reg->umin_value); 13819 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13820 dst_reg->umax_value); 13821 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13822 dst_reg->smin_value); 13823 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13824 dst_reg->smax_value); 13825 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13826 dst_reg->var_off); 13827 reg_bounds_sync(src_reg); 13828 reg_bounds_sync(dst_reg); 13829 } 13830 13831 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13832 struct bpf_reg_state *true_dst, 13833 struct bpf_reg_state *false_src, 13834 struct bpf_reg_state *false_dst, 13835 u8 opcode) 13836 { 13837 switch (opcode) { 13838 case BPF_JEQ: 13839 __reg_combine_min_max(true_src, true_dst); 13840 break; 13841 case BPF_JNE: 13842 __reg_combine_min_max(false_src, false_dst); 13843 break; 13844 } 13845 } 13846 13847 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13848 struct bpf_reg_state *reg, u32 id, 13849 bool is_null) 13850 { 13851 if (type_may_be_null(reg->type) && reg->id == id && 13852 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13853 /* Old offset (both fixed and variable parts) should have been 13854 * known-zero, because we don't allow pointer arithmetic on 13855 * pointers that might be NULL. If we see this happening, don't 13856 * convert the register. 13857 * 13858 * But in some cases, some helpers that return local kptrs 13859 * advance offset for the returned pointer. In those cases, it 13860 * is fine to expect to see reg->off. 13861 */ 13862 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13863 return; 13864 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13865 WARN_ON_ONCE(reg->off)) 13866 return; 13867 13868 if (is_null) { 13869 reg->type = SCALAR_VALUE; 13870 /* We don't need id and ref_obj_id from this point 13871 * onwards anymore, thus we should better reset it, 13872 * so that state pruning has chances to take effect. 13873 */ 13874 reg->id = 0; 13875 reg->ref_obj_id = 0; 13876 13877 return; 13878 } 13879 13880 mark_ptr_not_null_reg(reg); 13881 13882 if (!reg_may_point_to_spin_lock(reg)) { 13883 /* For not-NULL ptr, reg->ref_obj_id will be reset 13884 * in release_reference(). 13885 * 13886 * reg->id is still used by spin_lock ptr. Other 13887 * than spin_lock ptr type, reg->id can be reset. 13888 */ 13889 reg->id = 0; 13890 } 13891 } 13892 } 13893 13894 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13895 * be folded together at some point. 13896 */ 13897 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13898 bool is_null) 13899 { 13900 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13901 struct bpf_reg_state *regs = state->regs, *reg; 13902 u32 ref_obj_id = regs[regno].ref_obj_id; 13903 u32 id = regs[regno].id; 13904 13905 if (ref_obj_id && ref_obj_id == id && is_null) 13906 /* regs[regno] is in the " == NULL" branch. 13907 * No one could have freed the reference state before 13908 * doing the NULL check. 13909 */ 13910 WARN_ON_ONCE(release_reference_state(state, id)); 13911 13912 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13913 mark_ptr_or_null_reg(state, reg, id, is_null); 13914 })); 13915 } 13916 13917 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13918 struct bpf_reg_state *dst_reg, 13919 struct bpf_reg_state *src_reg, 13920 struct bpf_verifier_state *this_branch, 13921 struct bpf_verifier_state *other_branch) 13922 { 13923 if (BPF_SRC(insn->code) != BPF_X) 13924 return false; 13925 13926 /* Pointers are always 64-bit. */ 13927 if (BPF_CLASS(insn->code) == BPF_JMP32) 13928 return false; 13929 13930 switch (BPF_OP(insn->code)) { 13931 case BPF_JGT: 13932 if ((dst_reg->type == PTR_TO_PACKET && 13933 src_reg->type == PTR_TO_PACKET_END) || 13934 (dst_reg->type == PTR_TO_PACKET_META && 13935 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13936 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13937 find_good_pkt_pointers(this_branch, dst_reg, 13938 dst_reg->type, false); 13939 mark_pkt_end(other_branch, insn->dst_reg, true); 13940 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13941 src_reg->type == PTR_TO_PACKET) || 13942 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13943 src_reg->type == PTR_TO_PACKET_META)) { 13944 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13945 find_good_pkt_pointers(other_branch, src_reg, 13946 src_reg->type, true); 13947 mark_pkt_end(this_branch, insn->src_reg, false); 13948 } else { 13949 return false; 13950 } 13951 break; 13952 case BPF_JLT: 13953 if ((dst_reg->type == PTR_TO_PACKET && 13954 src_reg->type == PTR_TO_PACKET_END) || 13955 (dst_reg->type == PTR_TO_PACKET_META && 13956 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13957 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13958 find_good_pkt_pointers(other_branch, dst_reg, 13959 dst_reg->type, true); 13960 mark_pkt_end(this_branch, insn->dst_reg, false); 13961 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13962 src_reg->type == PTR_TO_PACKET) || 13963 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13964 src_reg->type == PTR_TO_PACKET_META)) { 13965 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13966 find_good_pkt_pointers(this_branch, src_reg, 13967 src_reg->type, false); 13968 mark_pkt_end(other_branch, insn->src_reg, true); 13969 } else { 13970 return false; 13971 } 13972 break; 13973 case BPF_JGE: 13974 if ((dst_reg->type == PTR_TO_PACKET && 13975 src_reg->type == PTR_TO_PACKET_END) || 13976 (dst_reg->type == PTR_TO_PACKET_META && 13977 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13978 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13979 find_good_pkt_pointers(this_branch, dst_reg, 13980 dst_reg->type, true); 13981 mark_pkt_end(other_branch, insn->dst_reg, false); 13982 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13983 src_reg->type == PTR_TO_PACKET) || 13984 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13985 src_reg->type == PTR_TO_PACKET_META)) { 13986 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13987 find_good_pkt_pointers(other_branch, src_reg, 13988 src_reg->type, false); 13989 mark_pkt_end(this_branch, insn->src_reg, true); 13990 } else { 13991 return false; 13992 } 13993 break; 13994 case BPF_JLE: 13995 if ((dst_reg->type == PTR_TO_PACKET && 13996 src_reg->type == PTR_TO_PACKET_END) || 13997 (dst_reg->type == PTR_TO_PACKET_META && 13998 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13999 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14000 find_good_pkt_pointers(other_branch, dst_reg, 14001 dst_reg->type, false); 14002 mark_pkt_end(this_branch, insn->dst_reg, true); 14003 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14004 src_reg->type == PTR_TO_PACKET) || 14005 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14006 src_reg->type == PTR_TO_PACKET_META)) { 14007 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14008 find_good_pkt_pointers(this_branch, src_reg, 14009 src_reg->type, true); 14010 mark_pkt_end(other_branch, insn->src_reg, false); 14011 } else { 14012 return false; 14013 } 14014 break; 14015 default: 14016 return false; 14017 } 14018 14019 return true; 14020 } 14021 14022 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14023 struct bpf_reg_state *known_reg) 14024 { 14025 struct bpf_func_state *state; 14026 struct bpf_reg_state *reg; 14027 14028 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14029 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14030 copy_register_state(reg, known_reg); 14031 })); 14032 } 14033 14034 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14035 struct bpf_insn *insn, int *insn_idx) 14036 { 14037 struct bpf_verifier_state *this_branch = env->cur_state; 14038 struct bpf_verifier_state *other_branch; 14039 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14040 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14041 struct bpf_reg_state *eq_branch_regs; 14042 u8 opcode = BPF_OP(insn->code); 14043 bool is_jmp32; 14044 int pred = -1; 14045 int err; 14046 14047 /* Only conditional jumps are expected to reach here. */ 14048 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14049 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14050 return -EINVAL; 14051 } 14052 14053 /* check src2 operand */ 14054 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14055 if (err) 14056 return err; 14057 14058 dst_reg = ®s[insn->dst_reg]; 14059 if (BPF_SRC(insn->code) == BPF_X) { 14060 if (insn->imm != 0) { 14061 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14062 return -EINVAL; 14063 } 14064 14065 /* check src1 operand */ 14066 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14067 if (err) 14068 return err; 14069 14070 src_reg = ®s[insn->src_reg]; 14071 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14072 is_pointer_value(env, insn->src_reg)) { 14073 verbose(env, "R%d pointer comparison prohibited\n", 14074 insn->src_reg); 14075 return -EACCES; 14076 } 14077 } else { 14078 if (insn->src_reg != BPF_REG_0) { 14079 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14080 return -EINVAL; 14081 } 14082 } 14083 14084 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14085 14086 if (BPF_SRC(insn->code) == BPF_K) { 14087 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14088 } else if (src_reg->type == SCALAR_VALUE && 14089 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14090 pred = is_branch_taken(dst_reg, 14091 tnum_subreg(src_reg->var_off).value, 14092 opcode, 14093 is_jmp32); 14094 } else if (src_reg->type == SCALAR_VALUE && 14095 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14096 pred = is_branch_taken(dst_reg, 14097 src_reg->var_off.value, 14098 opcode, 14099 is_jmp32); 14100 } else if (dst_reg->type == SCALAR_VALUE && 14101 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14102 pred = is_branch_taken(src_reg, 14103 tnum_subreg(dst_reg->var_off).value, 14104 flip_opcode(opcode), 14105 is_jmp32); 14106 } else if (dst_reg->type == SCALAR_VALUE && 14107 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14108 pred = is_branch_taken(src_reg, 14109 dst_reg->var_off.value, 14110 flip_opcode(opcode), 14111 is_jmp32); 14112 } else if (reg_is_pkt_pointer_any(dst_reg) && 14113 reg_is_pkt_pointer_any(src_reg) && 14114 !is_jmp32) { 14115 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14116 } 14117 14118 if (pred >= 0) { 14119 /* If we get here with a dst_reg pointer type it is because 14120 * above is_branch_taken() special cased the 0 comparison. 14121 */ 14122 if (!__is_pointer_value(false, dst_reg)) 14123 err = mark_chain_precision(env, insn->dst_reg); 14124 if (BPF_SRC(insn->code) == BPF_X && !err && 14125 !__is_pointer_value(false, src_reg)) 14126 err = mark_chain_precision(env, insn->src_reg); 14127 if (err) 14128 return err; 14129 } 14130 14131 if (pred == 1) { 14132 /* Only follow the goto, ignore fall-through. If needed, push 14133 * the fall-through branch for simulation under speculative 14134 * execution. 14135 */ 14136 if (!env->bypass_spec_v1 && 14137 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14138 *insn_idx)) 14139 return -EFAULT; 14140 *insn_idx += insn->off; 14141 return 0; 14142 } else if (pred == 0) { 14143 /* Only follow the fall-through branch, since that's where the 14144 * program will go. If needed, push the goto branch for 14145 * simulation under speculative execution. 14146 */ 14147 if (!env->bypass_spec_v1 && 14148 !sanitize_speculative_path(env, insn, 14149 *insn_idx + insn->off + 1, 14150 *insn_idx)) 14151 return -EFAULT; 14152 return 0; 14153 } 14154 14155 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14156 false); 14157 if (!other_branch) 14158 return -EFAULT; 14159 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14160 14161 /* detect if we are comparing against a constant value so we can adjust 14162 * our min/max values for our dst register. 14163 * this is only legit if both are scalars (or pointers to the same 14164 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14165 * because otherwise the different base pointers mean the offsets aren't 14166 * comparable. 14167 */ 14168 if (BPF_SRC(insn->code) == BPF_X) { 14169 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14170 14171 if (dst_reg->type == SCALAR_VALUE && 14172 src_reg->type == SCALAR_VALUE) { 14173 if (tnum_is_const(src_reg->var_off) || 14174 (is_jmp32 && 14175 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14176 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14177 dst_reg, 14178 src_reg->var_off.value, 14179 tnum_subreg(src_reg->var_off).value, 14180 opcode, is_jmp32); 14181 else if (tnum_is_const(dst_reg->var_off) || 14182 (is_jmp32 && 14183 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14184 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14185 src_reg, 14186 dst_reg->var_off.value, 14187 tnum_subreg(dst_reg->var_off).value, 14188 opcode, is_jmp32); 14189 else if (!is_jmp32 && 14190 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14191 /* Comparing for equality, we can combine knowledge */ 14192 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14193 &other_branch_regs[insn->dst_reg], 14194 src_reg, dst_reg, opcode); 14195 if (src_reg->id && 14196 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14197 find_equal_scalars(this_branch, src_reg); 14198 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14199 } 14200 14201 } 14202 } else if (dst_reg->type == SCALAR_VALUE) { 14203 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14204 dst_reg, insn->imm, (u32)insn->imm, 14205 opcode, is_jmp32); 14206 } 14207 14208 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14209 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14210 find_equal_scalars(this_branch, dst_reg); 14211 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14212 } 14213 14214 /* if one pointer register is compared to another pointer 14215 * register check if PTR_MAYBE_NULL could be lifted. 14216 * E.g. register A - maybe null 14217 * register B - not null 14218 * for JNE A, B, ... - A is not null in the false branch; 14219 * for JEQ A, B, ... - A is not null in the true branch. 14220 * 14221 * Since PTR_TO_BTF_ID points to a kernel struct that does 14222 * not need to be null checked by the BPF program, i.e., 14223 * could be null even without PTR_MAYBE_NULL marking, so 14224 * only propagate nullness when neither reg is that type. 14225 */ 14226 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14227 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14228 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14229 base_type(src_reg->type) != PTR_TO_BTF_ID && 14230 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14231 eq_branch_regs = NULL; 14232 switch (opcode) { 14233 case BPF_JEQ: 14234 eq_branch_regs = other_branch_regs; 14235 break; 14236 case BPF_JNE: 14237 eq_branch_regs = regs; 14238 break; 14239 default: 14240 /* do nothing */ 14241 break; 14242 } 14243 if (eq_branch_regs) { 14244 if (type_may_be_null(src_reg->type)) 14245 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14246 else 14247 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14248 } 14249 } 14250 14251 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14252 * NOTE: these optimizations below are related with pointer comparison 14253 * which will never be JMP32. 14254 */ 14255 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14256 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14257 type_may_be_null(dst_reg->type)) { 14258 /* Mark all identical registers in each branch as either 14259 * safe or unknown depending R == 0 or R != 0 conditional. 14260 */ 14261 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14262 opcode == BPF_JNE); 14263 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14264 opcode == BPF_JEQ); 14265 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14266 this_branch, other_branch) && 14267 is_pointer_value(env, insn->dst_reg)) { 14268 verbose(env, "R%d pointer comparison prohibited\n", 14269 insn->dst_reg); 14270 return -EACCES; 14271 } 14272 if (env->log.level & BPF_LOG_LEVEL) 14273 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14274 return 0; 14275 } 14276 14277 /* verify BPF_LD_IMM64 instruction */ 14278 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14279 { 14280 struct bpf_insn_aux_data *aux = cur_aux(env); 14281 struct bpf_reg_state *regs = cur_regs(env); 14282 struct bpf_reg_state *dst_reg; 14283 struct bpf_map *map; 14284 int err; 14285 14286 if (BPF_SIZE(insn->code) != BPF_DW) { 14287 verbose(env, "invalid BPF_LD_IMM insn\n"); 14288 return -EINVAL; 14289 } 14290 if (insn->off != 0) { 14291 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14292 return -EINVAL; 14293 } 14294 14295 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14296 if (err) 14297 return err; 14298 14299 dst_reg = ®s[insn->dst_reg]; 14300 if (insn->src_reg == 0) { 14301 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14302 14303 dst_reg->type = SCALAR_VALUE; 14304 __mark_reg_known(®s[insn->dst_reg], imm); 14305 return 0; 14306 } 14307 14308 /* All special src_reg cases are listed below. From this point onwards 14309 * we either succeed and assign a corresponding dst_reg->type after 14310 * zeroing the offset, or fail and reject the program. 14311 */ 14312 mark_reg_known_zero(env, regs, insn->dst_reg); 14313 14314 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14315 dst_reg->type = aux->btf_var.reg_type; 14316 switch (base_type(dst_reg->type)) { 14317 case PTR_TO_MEM: 14318 dst_reg->mem_size = aux->btf_var.mem_size; 14319 break; 14320 case PTR_TO_BTF_ID: 14321 dst_reg->btf = aux->btf_var.btf; 14322 dst_reg->btf_id = aux->btf_var.btf_id; 14323 break; 14324 default: 14325 verbose(env, "bpf verifier is misconfigured\n"); 14326 return -EFAULT; 14327 } 14328 return 0; 14329 } 14330 14331 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14332 struct bpf_prog_aux *aux = env->prog->aux; 14333 u32 subprogno = find_subprog(env, 14334 env->insn_idx + insn->imm + 1); 14335 14336 if (!aux->func_info) { 14337 verbose(env, "missing btf func_info\n"); 14338 return -EINVAL; 14339 } 14340 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14341 verbose(env, "callback function not static\n"); 14342 return -EINVAL; 14343 } 14344 14345 dst_reg->type = PTR_TO_FUNC; 14346 dst_reg->subprogno = subprogno; 14347 return 0; 14348 } 14349 14350 map = env->used_maps[aux->map_index]; 14351 dst_reg->map_ptr = map; 14352 14353 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14354 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14355 dst_reg->type = PTR_TO_MAP_VALUE; 14356 dst_reg->off = aux->map_off; 14357 WARN_ON_ONCE(map->max_entries != 1); 14358 /* We want reg->id to be same (0) as map_value is not distinct */ 14359 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14360 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14361 dst_reg->type = CONST_PTR_TO_MAP; 14362 } else { 14363 verbose(env, "bpf verifier is misconfigured\n"); 14364 return -EINVAL; 14365 } 14366 14367 return 0; 14368 } 14369 14370 static bool may_access_skb(enum bpf_prog_type type) 14371 { 14372 switch (type) { 14373 case BPF_PROG_TYPE_SOCKET_FILTER: 14374 case BPF_PROG_TYPE_SCHED_CLS: 14375 case BPF_PROG_TYPE_SCHED_ACT: 14376 return true; 14377 default: 14378 return false; 14379 } 14380 } 14381 14382 /* verify safety of LD_ABS|LD_IND instructions: 14383 * - they can only appear in the programs where ctx == skb 14384 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14385 * preserve R6-R9, and store return value into R0 14386 * 14387 * Implicit input: 14388 * ctx == skb == R6 == CTX 14389 * 14390 * Explicit input: 14391 * SRC == any register 14392 * IMM == 32-bit immediate 14393 * 14394 * Output: 14395 * R0 - 8/16/32-bit skb data converted to cpu endianness 14396 */ 14397 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14398 { 14399 struct bpf_reg_state *regs = cur_regs(env); 14400 static const int ctx_reg = BPF_REG_6; 14401 u8 mode = BPF_MODE(insn->code); 14402 int i, err; 14403 14404 if (!may_access_skb(resolve_prog_type(env->prog))) { 14405 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14406 return -EINVAL; 14407 } 14408 14409 if (!env->ops->gen_ld_abs) { 14410 verbose(env, "bpf verifier is misconfigured\n"); 14411 return -EINVAL; 14412 } 14413 14414 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14415 BPF_SIZE(insn->code) == BPF_DW || 14416 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14417 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14418 return -EINVAL; 14419 } 14420 14421 /* check whether implicit source operand (register R6) is readable */ 14422 err = check_reg_arg(env, ctx_reg, SRC_OP); 14423 if (err) 14424 return err; 14425 14426 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14427 * gen_ld_abs() may terminate the program at runtime, leading to 14428 * reference leak. 14429 */ 14430 err = check_reference_leak(env); 14431 if (err) { 14432 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14433 return err; 14434 } 14435 14436 if (env->cur_state->active_lock.ptr) { 14437 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14438 return -EINVAL; 14439 } 14440 14441 if (env->cur_state->active_rcu_lock) { 14442 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14443 return -EINVAL; 14444 } 14445 14446 if (regs[ctx_reg].type != PTR_TO_CTX) { 14447 verbose(env, 14448 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14449 return -EINVAL; 14450 } 14451 14452 if (mode == BPF_IND) { 14453 /* check explicit source operand */ 14454 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14455 if (err) 14456 return err; 14457 } 14458 14459 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14460 if (err < 0) 14461 return err; 14462 14463 /* reset caller saved regs to unreadable */ 14464 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14465 mark_reg_not_init(env, regs, caller_saved[i]); 14466 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14467 } 14468 14469 /* mark destination R0 register as readable, since it contains 14470 * the value fetched from the packet. 14471 * Already marked as written above. 14472 */ 14473 mark_reg_unknown(env, regs, BPF_REG_0); 14474 /* ld_abs load up to 32-bit skb data. */ 14475 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14476 return 0; 14477 } 14478 14479 static int check_return_code(struct bpf_verifier_env *env) 14480 { 14481 struct tnum enforce_attach_type_range = tnum_unknown; 14482 const struct bpf_prog *prog = env->prog; 14483 struct bpf_reg_state *reg; 14484 struct tnum range = tnum_range(0, 1); 14485 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14486 int err; 14487 struct bpf_func_state *frame = env->cur_state->frame[0]; 14488 const bool is_subprog = frame->subprogno; 14489 14490 /* LSM and struct_ops func-ptr's return type could be "void" */ 14491 if (!is_subprog) { 14492 switch (prog_type) { 14493 case BPF_PROG_TYPE_LSM: 14494 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14495 /* See below, can be 0 or 0-1 depending on hook. */ 14496 break; 14497 fallthrough; 14498 case BPF_PROG_TYPE_STRUCT_OPS: 14499 if (!prog->aux->attach_func_proto->type) 14500 return 0; 14501 break; 14502 default: 14503 break; 14504 } 14505 } 14506 14507 /* eBPF calling convention is such that R0 is used 14508 * to return the value from eBPF program. 14509 * Make sure that it's readable at this time 14510 * of bpf_exit, which means that program wrote 14511 * something into it earlier 14512 */ 14513 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14514 if (err) 14515 return err; 14516 14517 if (is_pointer_value(env, BPF_REG_0)) { 14518 verbose(env, "R0 leaks addr as return value\n"); 14519 return -EACCES; 14520 } 14521 14522 reg = cur_regs(env) + BPF_REG_0; 14523 14524 if (frame->in_async_callback_fn) { 14525 /* enforce return zero from async callbacks like timer */ 14526 if (reg->type != SCALAR_VALUE) { 14527 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14528 reg_type_str(env, reg->type)); 14529 return -EINVAL; 14530 } 14531 14532 if (!tnum_in(tnum_const(0), reg->var_off)) { 14533 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14534 return -EINVAL; 14535 } 14536 return 0; 14537 } 14538 14539 if (is_subprog) { 14540 if (reg->type != SCALAR_VALUE) { 14541 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14542 reg_type_str(env, reg->type)); 14543 return -EINVAL; 14544 } 14545 return 0; 14546 } 14547 14548 switch (prog_type) { 14549 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14550 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14551 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14552 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14553 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14554 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14555 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14556 range = tnum_range(1, 1); 14557 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14558 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14559 range = tnum_range(0, 3); 14560 break; 14561 case BPF_PROG_TYPE_CGROUP_SKB: 14562 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14563 range = tnum_range(0, 3); 14564 enforce_attach_type_range = tnum_range(2, 3); 14565 } 14566 break; 14567 case BPF_PROG_TYPE_CGROUP_SOCK: 14568 case BPF_PROG_TYPE_SOCK_OPS: 14569 case BPF_PROG_TYPE_CGROUP_DEVICE: 14570 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14571 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14572 break; 14573 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14574 if (!env->prog->aux->attach_btf_id) 14575 return 0; 14576 range = tnum_const(0); 14577 break; 14578 case BPF_PROG_TYPE_TRACING: 14579 switch (env->prog->expected_attach_type) { 14580 case BPF_TRACE_FENTRY: 14581 case BPF_TRACE_FEXIT: 14582 range = tnum_const(0); 14583 break; 14584 case BPF_TRACE_RAW_TP: 14585 case BPF_MODIFY_RETURN: 14586 return 0; 14587 case BPF_TRACE_ITER: 14588 break; 14589 default: 14590 return -ENOTSUPP; 14591 } 14592 break; 14593 case BPF_PROG_TYPE_SK_LOOKUP: 14594 range = tnum_range(SK_DROP, SK_PASS); 14595 break; 14596 14597 case BPF_PROG_TYPE_LSM: 14598 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14599 /* Regular BPF_PROG_TYPE_LSM programs can return 14600 * any value. 14601 */ 14602 return 0; 14603 } 14604 if (!env->prog->aux->attach_func_proto->type) { 14605 /* Make sure programs that attach to void 14606 * hooks don't try to modify return value. 14607 */ 14608 range = tnum_range(1, 1); 14609 } 14610 break; 14611 14612 case BPF_PROG_TYPE_NETFILTER: 14613 range = tnum_range(NF_DROP, NF_ACCEPT); 14614 break; 14615 case BPF_PROG_TYPE_EXT: 14616 /* freplace program can return anything as its return value 14617 * depends on the to-be-replaced kernel func or bpf program. 14618 */ 14619 default: 14620 return 0; 14621 } 14622 14623 if (reg->type != SCALAR_VALUE) { 14624 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14625 reg_type_str(env, reg->type)); 14626 return -EINVAL; 14627 } 14628 14629 if (!tnum_in(range, reg->var_off)) { 14630 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14631 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14632 prog_type == BPF_PROG_TYPE_LSM && 14633 !prog->aux->attach_func_proto->type) 14634 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14635 return -EINVAL; 14636 } 14637 14638 if (!tnum_is_unknown(enforce_attach_type_range) && 14639 tnum_in(enforce_attach_type_range, reg->var_off)) 14640 env->prog->enforce_expected_attach_type = 1; 14641 return 0; 14642 } 14643 14644 /* non-recursive DFS pseudo code 14645 * 1 procedure DFS-iterative(G,v): 14646 * 2 label v as discovered 14647 * 3 let S be a stack 14648 * 4 S.push(v) 14649 * 5 while S is not empty 14650 * 6 t <- S.peek() 14651 * 7 if t is what we're looking for: 14652 * 8 return t 14653 * 9 for all edges e in G.adjacentEdges(t) do 14654 * 10 if edge e is already labelled 14655 * 11 continue with the next edge 14656 * 12 w <- G.adjacentVertex(t,e) 14657 * 13 if vertex w is not discovered and not explored 14658 * 14 label e as tree-edge 14659 * 15 label w as discovered 14660 * 16 S.push(w) 14661 * 17 continue at 5 14662 * 18 else if vertex w is discovered 14663 * 19 label e as back-edge 14664 * 20 else 14665 * 21 // vertex w is explored 14666 * 22 label e as forward- or cross-edge 14667 * 23 label t as explored 14668 * 24 S.pop() 14669 * 14670 * convention: 14671 * 0x10 - discovered 14672 * 0x11 - discovered and fall-through edge labelled 14673 * 0x12 - discovered and fall-through and branch edges labelled 14674 * 0x20 - explored 14675 */ 14676 14677 enum { 14678 DISCOVERED = 0x10, 14679 EXPLORED = 0x20, 14680 FALLTHROUGH = 1, 14681 BRANCH = 2, 14682 }; 14683 14684 static u32 state_htab_size(struct bpf_verifier_env *env) 14685 { 14686 return env->prog->len; 14687 } 14688 14689 static struct bpf_verifier_state_list **explored_state( 14690 struct bpf_verifier_env *env, 14691 int idx) 14692 { 14693 struct bpf_verifier_state *cur = env->cur_state; 14694 struct bpf_func_state *state = cur->frame[cur->curframe]; 14695 14696 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14697 } 14698 14699 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14700 { 14701 env->insn_aux_data[idx].prune_point = true; 14702 } 14703 14704 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14705 { 14706 return env->insn_aux_data[insn_idx].prune_point; 14707 } 14708 14709 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14710 { 14711 env->insn_aux_data[idx].force_checkpoint = true; 14712 } 14713 14714 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14715 { 14716 return env->insn_aux_data[insn_idx].force_checkpoint; 14717 } 14718 14719 14720 enum { 14721 DONE_EXPLORING = 0, 14722 KEEP_EXPLORING = 1, 14723 }; 14724 14725 /* t, w, e - match pseudo-code above: 14726 * t - index of current instruction 14727 * w - next instruction 14728 * e - edge 14729 */ 14730 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14731 bool loop_ok) 14732 { 14733 int *insn_stack = env->cfg.insn_stack; 14734 int *insn_state = env->cfg.insn_state; 14735 14736 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14737 return DONE_EXPLORING; 14738 14739 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14740 return DONE_EXPLORING; 14741 14742 if (w < 0 || w >= env->prog->len) { 14743 verbose_linfo(env, t, "%d: ", t); 14744 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14745 return -EINVAL; 14746 } 14747 14748 if (e == BRANCH) { 14749 /* mark branch target for state pruning */ 14750 mark_prune_point(env, w); 14751 mark_jmp_point(env, w); 14752 } 14753 14754 if (insn_state[w] == 0) { 14755 /* tree-edge */ 14756 insn_state[t] = DISCOVERED | e; 14757 insn_state[w] = DISCOVERED; 14758 if (env->cfg.cur_stack >= env->prog->len) 14759 return -E2BIG; 14760 insn_stack[env->cfg.cur_stack++] = w; 14761 return KEEP_EXPLORING; 14762 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14763 if (loop_ok && env->bpf_capable) 14764 return DONE_EXPLORING; 14765 verbose_linfo(env, t, "%d: ", t); 14766 verbose_linfo(env, w, "%d: ", w); 14767 verbose(env, "back-edge from insn %d to %d\n", t, w); 14768 return -EINVAL; 14769 } else if (insn_state[w] == EXPLORED) { 14770 /* forward- or cross-edge */ 14771 insn_state[t] = DISCOVERED | e; 14772 } else { 14773 verbose(env, "insn state internal bug\n"); 14774 return -EFAULT; 14775 } 14776 return DONE_EXPLORING; 14777 } 14778 14779 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14780 struct bpf_verifier_env *env, 14781 bool visit_callee) 14782 { 14783 int ret; 14784 14785 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14786 if (ret) 14787 return ret; 14788 14789 mark_prune_point(env, t + 1); 14790 /* when we exit from subprog, we need to record non-linear history */ 14791 mark_jmp_point(env, t + 1); 14792 14793 if (visit_callee) { 14794 mark_prune_point(env, t); 14795 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14796 /* It's ok to allow recursion from CFG point of 14797 * view. __check_func_call() will do the actual 14798 * check. 14799 */ 14800 bpf_pseudo_func(insns + t)); 14801 } 14802 return ret; 14803 } 14804 14805 /* Visits the instruction at index t and returns one of the following: 14806 * < 0 - an error occurred 14807 * DONE_EXPLORING - the instruction was fully explored 14808 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14809 */ 14810 static int visit_insn(int t, struct bpf_verifier_env *env) 14811 { 14812 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14813 int ret, off; 14814 14815 if (bpf_pseudo_func(insn)) 14816 return visit_func_call_insn(t, insns, env, true); 14817 14818 /* All non-branch instructions have a single fall-through edge. */ 14819 if (BPF_CLASS(insn->code) != BPF_JMP && 14820 BPF_CLASS(insn->code) != BPF_JMP32) 14821 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14822 14823 switch (BPF_OP(insn->code)) { 14824 case BPF_EXIT: 14825 return DONE_EXPLORING; 14826 14827 case BPF_CALL: 14828 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14829 /* Mark this call insn as a prune point to trigger 14830 * is_state_visited() check before call itself is 14831 * processed by __check_func_call(). Otherwise new 14832 * async state will be pushed for further exploration. 14833 */ 14834 mark_prune_point(env, t); 14835 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14836 struct bpf_kfunc_call_arg_meta meta; 14837 14838 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14839 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14840 mark_prune_point(env, t); 14841 /* Checking and saving state checkpoints at iter_next() call 14842 * is crucial for fast convergence of open-coded iterator loop 14843 * logic, so we need to force it. If we don't do that, 14844 * is_state_visited() might skip saving a checkpoint, causing 14845 * unnecessarily long sequence of not checkpointed 14846 * instructions and jumps, leading to exhaustion of jump 14847 * history buffer, and potentially other undesired outcomes. 14848 * It is expected that with correct open-coded iterators 14849 * convergence will happen quickly, so we don't run a risk of 14850 * exhausting memory. 14851 */ 14852 mark_force_checkpoint(env, t); 14853 } 14854 } 14855 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14856 14857 case BPF_JA: 14858 if (BPF_SRC(insn->code) != BPF_K) 14859 return -EINVAL; 14860 14861 if (BPF_CLASS(insn->code) == BPF_JMP) 14862 off = insn->off; 14863 else 14864 off = insn->imm; 14865 14866 /* unconditional jump with single edge */ 14867 ret = push_insn(t, t + off + 1, FALLTHROUGH, env, 14868 true); 14869 if (ret) 14870 return ret; 14871 14872 mark_prune_point(env, t + off + 1); 14873 mark_jmp_point(env, t + off + 1); 14874 14875 return ret; 14876 14877 default: 14878 /* conditional jump with two edges */ 14879 mark_prune_point(env, t); 14880 14881 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14882 if (ret) 14883 return ret; 14884 14885 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14886 } 14887 } 14888 14889 /* non-recursive depth-first-search to detect loops in BPF program 14890 * loop == back-edge in directed graph 14891 */ 14892 static int check_cfg(struct bpf_verifier_env *env) 14893 { 14894 int insn_cnt = env->prog->len; 14895 int *insn_stack, *insn_state; 14896 int ret = 0; 14897 int i; 14898 14899 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14900 if (!insn_state) 14901 return -ENOMEM; 14902 14903 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14904 if (!insn_stack) { 14905 kvfree(insn_state); 14906 return -ENOMEM; 14907 } 14908 14909 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14910 insn_stack[0] = 0; /* 0 is the first instruction */ 14911 env->cfg.cur_stack = 1; 14912 14913 while (env->cfg.cur_stack > 0) { 14914 int t = insn_stack[env->cfg.cur_stack - 1]; 14915 14916 ret = visit_insn(t, env); 14917 switch (ret) { 14918 case DONE_EXPLORING: 14919 insn_state[t] = EXPLORED; 14920 env->cfg.cur_stack--; 14921 break; 14922 case KEEP_EXPLORING: 14923 break; 14924 default: 14925 if (ret > 0) { 14926 verbose(env, "visit_insn internal bug\n"); 14927 ret = -EFAULT; 14928 } 14929 goto err_free; 14930 } 14931 } 14932 14933 if (env->cfg.cur_stack < 0) { 14934 verbose(env, "pop stack internal bug\n"); 14935 ret = -EFAULT; 14936 goto err_free; 14937 } 14938 14939 for (i = 0; i < insn_cnt; i++) { 14940 if (insn_state[i] != EXPLORED) { 14941 verbose(env, "unreachable insn %d\n", i); 14942 ret = -EINVAL; 14943 goto err_free; 14944 } 14945 } 14946 ret = 0; /* cfg looks good */ 14947 14948 err_free: 14949 kvfree(insn_state); 14950 kvfree(insn_stack); 14951 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14952 return ret; 14953 } 14954 14955 static int check_abnormal_return(struct bpf_verifier_env *env) 14956 { 14957 int i; 14958 14959 for (i = 1; i < env->subprog_cnt; i++) { 14960 if (env->subprog_info[i].has_ld_abs) { 14961 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14962 return -EINVAL; 14963 } 14964 if (env->subprog_info[i].has_tail_call) { 14965 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14966 return -EINVAL; 14967 } 14968 } 14969 return 0; 14970 } 14971 14972 /* The minimum supported BTF func info size */ 14973 #define MIN_BPF_FUNCINFO_SIZE 8 14974 #define MAX_FUNCINFO_REC_SIZE 252 14975 14976 static int check_btf_func(struct bpf_verifier_env *env, 14977 const union bpf_attr *attr, 14978 bpfptr_t uattr) 14979 { 14980 const struct btf_type *type, *func_proto, *ret_type; 14981 u32 i, nfuncs, urec_size, min_size; 14982 u32 krec_size = sizeof(struct bpf_func_info); 14983 struct bpf_func_info *krecord; 14984 struct bpf_func_info_aux *info_aux = NULL; 14985 struct bpf_prog *prog; 14986 const struct btf *btf; 14987 bpfptr_t urecord; 14988 u32 prev_offset = 0; 14989 bool scalar_return; 14990 int ret = -ENOMEM; 14991 14992 nfuncs = attr->func_info_cnt; 14993 if (!nfuncs) { 14994 if (check_abnormal_return(env)) 14995 return -EINVAL; 14996 return 0; 14997 } 14998 14999 if (nfuncs != env->subprog_cnt) { 15000 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15001 return -EINVAL; 15002 } 15003 15004 urec_size = attr->func_info_rec_size; 15005 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15006 urec_size > MAX_FUNCINFO_REC_SIZE || 15007 urec_size % sizeof(u32)) { 15008 verbose(env, "invalid func info rec size %u\n", urec_size); 15009 return -EINVAL; 15010 } 15011 15012 prog = env->prog; 15013 btf = prog->aux->btf; 15014 15015 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15016 min_size = min_t(u32, krec_size, urec_size); 15017 15018 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15019 if (!krecord) 15020 return -ENOMEM; 15021 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15022 if (!info_aux) 15023 goto err_free; 15024 15025 for (i = 0; i < nfuncs; i++) { 15026 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15027 if (ret) { 15028 if (ret == -E2BIG) { 15029 verbose(env, "nonzero tailing record in func info"); 15030 /* set the size kernel expects so loader can zero 15031 * out the rest of the record. 15032 */ 15033 if (copy_to_bpfptr_offset(uattr, 15034 offsetof(union bpf_attr, func_info_rec_size), 15035 &min_size, sizeof(min_size))) 15036 ret = -EFAULT; 15037 } 15038 goto err_free; 15039 } 15040 15041 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15042 ret = -EFAULT; 15043 goto err_free; 15044 } 15045 15046 /* check insn_off */ 15047 ret = -EINVAL; 15048 if (i == 0) { 15049 if (krecord[i].insn_off) { 15050 verbose(env, 15051 "nonzero insn_off %u for the first func info record", 15052 krecord[i].insn_off); 15053 goto err_free; 15054 } 15055 } else if (krecord[i].insn_off <= prev_offset) { 15056 verbose(env, 15057 "same or smaller insn offset (%u) than previous func info record (%u)", 15058 krecord[i].insn_off, prev_offset); 15059 goto err_free; 15060 } 15061 15062 if (env->subprog_info[i].start != krecord[i].insn_off) { 15063 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15064 goto err_free; 15065 } 15066 15067 /* check type_id */ 15068 type = btf_type_by_id(btf, krecord[i].type_id); 15069 if (!type || !btf_type_is_func(type)) { 15070 verbose(env, "invalid type id %d in func info", 15071 krecord[i].type_id); 15072 goto err_free; 15073 } 15074 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15075 15076 func_proto = btf_type_by_id(btf, type->type); 15077 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15078 /* btf_func_check() already verified it during BTF load */ 15079 goto err_free; 15080 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15081 scalar_return = 15082 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15083 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15084 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15085 goto err_free; 15086 } 15087 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15088 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15089 goto err_free; 15090 } 15091 15092 prev_offset = krecord[i].insn_off; 15093 bpfptr_add(&urecord, urec_size); 15094 } 15095 15096 prog->aux->func_info = krecord; 15097 prog->aux->func_info_cnt = nfuncs; 15098 prog->aux->func_info_aux = info_aux; 15099 return 0; 15100 15101 err_free: 15102 kvfree(krecord); 15103 kfree(info_aux); 15104 return ret; 15105 } 15106 15107 static void adjust_btf_func(struct bpf_verifier_env *env) 15108 { 15109 struct bpf_prog_aux *aux = env->prog->aux; 15110 int i; 15111 15112 if (!aux->func_info) 15113 return; 15114 15115 for (i = 0; i < env->subprog_cnt; i++) 15116 aux->func_info[i].insn_off = env->subprog_info[i].start; 15117 } 15118 15119 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15120 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15121 15122 static int check_btf_line(struct bpf_verifier_env *env, 15123 const union bpf_attr *attr, 15124 bpfptr_t uattr) 15125 { 15126 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15127 struct bpf_subprog_info *sub; 15128 struct bpf_line_info *linfo; 15129 struct bpf_prog *prog; 15130 const struct btf *btf; 15131 bpfptr_t ulinfo; 15132 int err; 15133 15134 nr_linfo = attr->line_info_cnt; 15135 if (!nr_linfo) 15136 return 0; 15137 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15138 return -EINVAL; 15139 15140 rec_size = attr->line_info_rec_size; 15141 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15142 rec_size > MAX_LINEINFO_REC_SIZE || 15143 rec_size & (sizeof(u32) - 1)) 15144 return -EINVAL; 15145 15146 /* Need to zero it in case the userspace may 15147 * pass in a smaller bpf_line_info object. 15148 */ 15149 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15150 GFP_KERNEL | __GFP_NOWARN); 15151 if (!linfo) 15152 return -ENOMEM; 15153 15154 prog = env->prog; 15155 btf = prog->aux->btf; 15156 15157 s = 0; 15158 sub = env->subprog_info; 15159 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15160 expected_size = sizeof(struct bpf_line_info); 15161 ncopy = min_t(u32, expected_size, rec_size); 15162 for (i = 0; i < nr_linfo; i++) { 15163 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15164 if (err) { 15165 if (err == -E2BIG) { 15166 verbose(env, "nonzero tailing record in line_info"); 15167 if (copy_to_bpfptr_offset(uattr, 15168 offsetof(union bpf_attr, line_info_rec_size), 15169 &expected_size, sizeof(expected_size))) 15170 err = -EFAULT; 15171 } 15172 goto err_free; 15173 } 15174 15175 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15176 err = -EFAULT; 15177 goto err_free; 15178 } 15179 15180 /* 15181 * Check insn_off to ensure 15182 * 1) strictly increasing AND 15183 * 2) bounded by prog->len 15184 * 15185 * The linfo[0].insn_off == 0 check logically falls into 15186 * the later "missing bpf_line_info for func..." case 15187 * because the first linfo[0].insn_off must be the 15188 * first sub also and the first sub must have 15189 * subprog_info[0].start == 0. 15190 */ 15191 if ((i && linfo[i].insn_off <= prev_offset) || 15192 linfo[i].insn_off >= prog->len) { 15193 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15194 i, linfo[i].insn_off, prev_offset, 15195 prog->len); 15196 err = -EINVAL; 15197 goto err_free; 15198 } 15199 15200 if (!prog->insnsi[linfo[i].insn_off].code) { 15201 verbose(env, 15202 "Invalid insn code at line_info[%u].insn_off\n", 15203 i); 15204 err = -EINVAL; 15205 goto err_free; 15206 } 15207 15208 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15209 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15210 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15211 err = -EINVAL; 15212 goto err_free; 15213 } 15214 15215 if (s != env->subprog_cnt) { 15216 if (linfo[i].insn_off == sub[s].start) { 15217 sub[s].linfo_idx = i; 15218 s++; 15219 } else if (sub[s].start < linfo[i].insn_off) { 15220 verbose(env, "missing bpf_line_info for func#%u\n", s); 15221 err = -EINVAL; 15222 goto err_free; 15223 } 15224 } 15225 15226 prev_offset = linfo[i].insn_off; 15227 bpfptr_add(&ulinfo, rec_size); 15228 } 15229 15230 if (s != env->subprog_cnt) { 15231 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15232 env->subprog_cnt - s, s); 15233 err = -EINVAL; 15234 goto err_free; 15235 } 15236 15237 prog->aux->linfo = linfo; 15238 prog->aux->nr_linfo = nr_linfo; 15239 15240 return 0; 15241 15242 err_free: 15243 kvfree(linfo); 15244 return err; 15245 } 15246 15247 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15248 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15249 15250 static int check_core_relo(struct bpf_verifier_env *env, 15251 const union bpf_attr *attr, 15252 bpfptr_t uattr) 15253 { 15254 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15255 struct bpf_core_relo core_relo = {}; 15256 struct bpf_prog *prog = env->prog; 15257 const struct btf *btf = prog->aux->btf; 15258 struct bpf_core_ctx ctx = { 15259 .log = &env->log, 15260 .btf = btf, 15261 }; 15262 bpfptr_t u_core_relo; 15263 int err; 15264 15265 nr_core_relo = attr->core_relo_cnt; 15266 if (!nr_core_relo) 15267 return 0; 15268 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15269 return -EINVAL; 15270 15271 rec_size = attr->core_relo_rec_size; 15272 if (rec_size < MIN_CORE_RELO_SIZE || 15273 rec_size > MAX_CORE_RELO_SIZE || 15274 rec_size % sizeof(u32)) 15275 return -EINVAL; 15276 15277 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15278 expected_size = sizeof(struct bpf_core_relo); 15279 ncopy = min_t(u32, expected_size, rec_size); 15280 15281 /* Unlike func_info and line_info, copy and apply each CO-RE 15282 * relocation record one at a time. 15283 */ 15284 for (i = 0; i < nr_core_relo; i++) { 15285 /* future proofing when sizeof(bpf_core_relo) changes */ 15286 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15287 if (err) { 15288 if (err == -E2BIG) { 15289 verbose(env, "nonzero tailing record in core_relo"); 15290 if (copy_to_bpfptr_offset(uattr, 15291 offsetof(union bpf_attr, core_relo_rec_size), 15292 &expected_size, sizeof(expected_size))) 15293 err = -EFAULT; 15294 } 15295 break; 15296 } 15297 15298 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15299 err = -EFAULT; 15300 break; 15301 } 15302 15303 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15304 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15305 i, core_relo.insn_off, prog->len); 15306 err = -EINVAL; 15307 break; 15308 } 15309 15310 err = bpf_core_apply(&ctx, &core_relo, i, 15311 &prog->insnsi[core_relo.insn_off / 8]); 15312 if (err) 15313 break; 15314 bpfptr_add(&u_core_relo, rec_size); 15315 } 15316 return err; 15317 } 15318 15319 static int check_btf_info(struct bpf_verifier_env *env, 15320 const union bpf_attr *attr, 15321 bpfptr_t uattr) 15322 { 15323 struct btf *btf; 15324 int err; 15325 15326 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15327 if (check_abnormal_return(env)) 15328 return -EINVAL; 15329 return 0; 15330 } 15331 15332 btf = btf_get_by_fd(attr->prog_btf_fd); 15333 if (IS_ERR(btf)) 15334 return PTR_ERR(btf); 15335 if (btf_is_kernel(btf)) { 15336 btf_put(btf); 15337 return -EACCES; 15338 } 15339 env->prog->aux->btf = btf; 15340 15341 err = check_btf_func(env, attr, uattr); 15342 if (err) 15343 return err; 15344 15345 err = check_btf_line(env, attr, uattr); 15346 if (err) 15347 return err; 15348 15349 err = check_core_relo(env, attr, uattr); 15350 if (err) 15351 return err; 15352 15353 return 0; 15354 } 15355 15356 /* check %cur's range satisfies %old's */ 15357 static bool range_within(struct bpf_reg_state *old, 15358 struct bpf_reg_state *cur) 15359 { 15360 return old->umin_value <= cur->umin_value && 15361 old->umax_value >= cur->umax_value && 15362 old->smin_value <= cur->smin_value && 15363 old->smax_value >= cur->smax_value && 15364 old->u32_min_value <= cur->u32_min_value && 15365 old->u32_max_value >= cur->u32_max_value && 15366 old->s32_min_value <= cur->s32_min_value && 15367 old->s32_max_value >= cur->s32_max_value; 15368 } 15369 15370 /* If in the old state two registers had the same id, then they need to have 15371 * the same id in the new state as well. But that id could be different from 15372 * the old state, so we need to track the mapping from old to new ids. 15373 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15374 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15375 * regs with a different old id could still have new id 9, we don't care about 15376 * that. 15377 * So we look through our idmap to see if this old id has been seen before. If 15378 * so, we require the new id to match; otherwise, we add the id pair to the map. 15379 */ 15380 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15381 { 15382 struct bpf_id_pair *map = idmap->map; 15383 unsigned int i; 15384 15385 /* either both IDs should be set or both should be zero */ 15386 if (!!old_id != !!cur_id) 15387 return false; 15388 15389 if (old_id == 0) /* cur_id == 0 as well */ 15390 return true; 15391 15392 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15393 if (!map[i].old) { 15394 /* Reached an empty slot; haven't seen this id before */ 15395 map[i].old = old_id; 15396 map[i].cur = cur_id; 15397 return true; 15398 } 15399 if (map[i].old == old_id) 15400 return map[i].cur == cur_id; 15401 if (map[i].cur == cur_id) 15402 return false; 15403 } 15404 /* We ran out of idmap slots, which should be impossible */ 15405 WARN_ON_ONCE(1); 15406 return false; 15407 } 15408 15409 /* Similar to check_ids(), but allocate a unique temporary ID 15410 * for 'old_id' or 'cur_id' of zero. 15411 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15412 */ 15413 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15414 { 15415 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15416 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15417 15418 return check_ids(old_id, cur_id, idmap); 15419 } 15420 15421 static void clean_func_state(struct bpf_verifier_env *env, 15422 struct bpf_func_state *st) 15423 { 15424 enum bpf_reg_liveness live; 15425 int i, j; 15426 15427 for (i = 0; i < BPF_REG_FP; i++) { 15428 live = st->regs[i].live; 15429 /* liveness must not touch this register anymore */ 15430 st->regs[i].live |= REG_LIVE_DONE; 15431 if (!(live & REG_LIVE_READ)) 15432 /* since the register is unused, clear its state 15433 * to make further comparison simpler 15434 */ 15435 __mark_reg_not_init(env, &st->regs[i]); 15436 } 15437 15438 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15439 live = st->stack[i].spilled_ptr.live; 15440 /* liveness must not touch this stack slot anymore */ 15441 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15442 if (!(live & REG_LIVE_READ)) { 15443 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15444 for (j = 0; j < BPF_REG_SIZE; j++) 15445 st->stack[i].slot_type[j] = STACK_INVALID; 15446 } 15447 } 15448 } 15449 15450 static void clean_verifier_state(struct bpf_verifier_env *env, 15451 struct bpf_verifier_state *st) 15452 { 15453 int i; 15454 15455 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15456 /* all regs in this state in all frames were already marked */ 15457 return; 15458 15459 for (i = 0; i <= st->curframe; i++) 15460 clean_func_state(env, st->frame[i]); 15461 } 15462 15463 /* the parentage chains form a tree. 15464 * the verifier states are added to state lists at given insn and 15465 * pushed into state stack for future exploration. 15466 * when the verifier reaches bpf_exit insn some of the verifer states 15467 * stored in the state lists have their final liveness state already, 15468 * but a lot of states will get revised from liveness point of view when 15469 * the verifier explores other branches. 15470 * Example: 15471 * 1: r0 = 1 15472 * 2: if r1 == 100 goto pc+1 15473 * 3: r0 = 2 15474 * 4: exit 15475 * when the verifier reaches exit insn the register r0 in the state list of 15476 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15477 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15478 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15479 * 15480 * Since the verifier pushes the branch states as it sees them while exploring 15481 * the program the condition of walking the branch instruction for the second 15482 * time means that all states below this branch were already explored and 15483 * their final liveness marks are already propagated. 15484 * Hence when the verifier completes the search of state list in is_state_visited() 15485 * we can call this clean_live_states() function to mark all liveness states 15486 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15487 * will not be used. 15488 * This function also clears the registers and stack for states that !READ 15489 * to simplify state merging. 15490 * 15491 * Important note here that walking the same branch instruction in the callee 15492 * doesn't meant that the states are DONE. The verifier has to compare 15493 * the callsites 15494 */ 15495 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15496 struct bpf_verifier_state *cur) 15497 { 15498 struct bpf_verifier_state_list *sl; 15499 int i; 15500 15501 sl = *explored_state(env, insn); 15502 while (sl) { 15503 if (sl->state.branches) 15504 goto next; 15505 if (sl->state.insn_idx != insn || 15506 sl->state.curframe != cur->curframe) 15507 goto next; 15508 for (i = 0; i <= cur->curframe; i++) 15509 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15510 goto next; 15511 clean_verifier_state(env, &sl->state); 15512 next: 15513 sl = sl->next; 15514 } 15515 } 15516 15517 static bool regs_exact(const struct bpf_reg_state *rold, 15518 const struct bpf_reg_state *rcur, 15519 struct bpf_idmap *idmap) 15520 { 15521 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15522 check_ids(rold->id, rcur->id, idmap) && 15523 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15524 } 15525 15526 /* Returns true if (rold safe implies rcur safe) */ 15527 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15528 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15529 { 15530 if (!(rold->live & REG_LIVE_READ)) 15531 /* explored state didn't use this */ 15532 return true; 15533 if (rold->type == NOT_INIT) 15534 /* explored state can't have used this */ 15535 return true; 15536 if (rcur->type == NOT_INIT) 15537 return false; 15538 15539 /* Enforce that register types have to match exactly, including their 15540 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15541 * rule. 15542 * 15543 * One can make a point that using a pointer register as unbounded 15544 * SCALAR would be technically acceptable, but this could lead to 15545 * pointer leaks because scalars are allowed to leak while pointers 15546 * are not. We could make this safe in special cases if root is 15547 * calling us, but it's probably not worth the hassle. 15548 * 15549 * Also, register types that are *not* MAYBE_NULL could technically be 15550 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15551 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15552 * to the same map). 15553 * However, if the old MAYBE_NULL register then got NULL checked, 15554 * doing so could have affected others with the same id, and we can't 15555 * check for that because we lost the id when we converted to 15556 * a non-MAYBE_NULL variant. 15557 * So, as a general rule we don't allow mixing MAYBE_NULL and 15558 * non-MAYBE_NULL registers as well. 15559 */ 15560 if (rold->type != rcur->type) 15561 return false; 15562 15563 switch (base_type(rold->type)) { 15564 case SCALAR_VALUE: 15565 if (env->explore_alu_limits) { 15566 /* explore_alu_limits disables tnum_in() and range_within() 15567 * logic and requires everything to be strict 15568 */ 15569 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15570 check_scalar_ids(rold->id, rcur->id, idmap); 15571 } 15572 if (!rold->precise) 15573 return true; 15574 /* Why check_ids() for scalar registers? 15575 * 15576 * Consider the following BPF code: 15577 * 1: r6 = ... unbound scalar, ID=a ... 15578 * 2: r7 = ... unbound scalar, ID=b ... 15579 * 3: if (r6 > r7) goto +1 15580 * 4: r6 = r7 15581 * 5: if (r6 > X) goto ... 15582 * 6: ... memory operation using r7 ... 15583 * 15584 * First verification path is [1-6]: 15585 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15586 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15587 * r7 <= X, because r6 and r7 share same id. 15588 * Next verification path is [1-4, 6]. 15589 * 15590 * Instruction (6) would be reached in two states: 15591 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15592 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15593 * 15594 * Use check_ids() to distinguish these states. 15595 * --- 15596 * Also verify that new value satisfies old value range knowledge. 15597 */ 15598 return range_within(rold, rcur) && 15599 tnum_in(rold->var_off, rcur->var_off) && 15600 check_scalar_ids(rold->id, rcur->id, idmap); 15601 case PTR_TO_MAP_KEY: 15602 case PTR_TO_MAP_VALUE: 15603 case PTR_TO_MEM: 15604 case PTR_TO_BUF: 15605 case PTR_TO_TP_BUFFER: 15606 /* If the new min/max/var_off satisfy the old ones and 15607 * everything else matches, we are OK. 15608 */ 15609 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15610 range_within(rold, rcur) && 15611 tnum_in(rold->var_off, rcur->var_off) && 15612 check_ids(rold->id, rcur->id, idmap) && 15613 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15614 case PTR_TO_PACKET_META: 15615 case PTR_TO_PACKET: 15616 /* We must have at least as much range as the old ptr 15617 * did, so that any accesses which were safe before are 15618 * still safe. This is true even if old range < old off, 15619 * since someone could have accessed through (ptr - k), or 15620 * even done ptr -= k in a register, to get a safe access. 15621 */ 15622 if (rold->range > rcur->range) 15623 return false; 15624 /* If the offsets don't match, we can't trust our alignment; 15625 * nor can we be sure that we won't fall out of range. 15626 */ 15627 if (rold->off != rcur->off) 15628 return false; 15629 /* id relations must be preserved */ 15630 if (!check_ids(rold->id, rcur->id, idmap)) 15631 return false; 15632 /* new val must satisfy old val knowledge */ 15633 return range_within(rold, rcur) && 15634 tnum_in(rold->var_off, rcur->var_off); 15635 case PTR_TO_STACK: 15636 /* two stack pointers are equal only if they're pointing to 15637 * the same stack frame, since fp-8 in foo != fp-8 in bar 15638 */ 15639 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15640 default: 15641 return regs_exact(rold, rcur, idmap); 15642 } 15643 } 15644 15645 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15646 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15647 { 15648 int i, spi; 15649 15650 /* walk slots of the explored stack and ignore any additional 15651 * slots in the current stack, since explored(safe) state 15652 * didn't use them 15653 */ 15654 for (i = 0; i < old->allocated_stack; i++) { 15655 struct bpf_reg_state *old_reg, *cur_reg; 15656 15657 spi = i / BPF_REG_SIZE; 15658 15659 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15660 i += BPF_REG_SIZE - 1; 15661 /* explored state didn't use this */ 15662 continue; 15663 } 15664 15665 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15666 continue; 15667 15668 if (env->allow_uninit_stack && 15669 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15670 continue; 15671 15672 /* explored stack has more populated slots than current stack 15673 * and these slots were used 15674 */ 15675 if (i >= cur->allocated_stack) 15676 return false; 15677 15678 /* if old state was safe with misc data in the stack 15679 * it will be safe with zero-initialized stack. 15680 * The opposite is not true 15681 */ 15682 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15683 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15684 continue; 15685 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15686 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15687 /* Ex: old explored (safe) state has STACK_SPILL in 15688 * this stack slot, but current has STACK_MISC -> 15689 * this verifier states are not equivalent, 15690 * return false to continue verification of this path 15691 */ 15692 return false; 15693 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15694 continue; 15695 /* Both old and cur are having same slot_type */ 15696 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15697 case STACK_SPILL: 15698 /* when explored and current stack slot are both storing 15699 * spilled registers, check that stored pointers types 15700 * are the same as well. 15701 * Ex: explored safe path could have stored 15702 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15703 * but current path has stored: 15704 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15705 * such verifier states are not equivalent. 15706 * return false to continue verification of this path 15707 */ 15708 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15709 &cur->stack[spi].spilled_ptr, idmap)) 15710 return false; 15711 break; 15712 case STACK_DYNPTR: 15713 old_reg = &old->stack[spi].spilled_ptr; 15714 cur_reg = &cur->stack[spi].spilled_ptr; 15715 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15716 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15717 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15718 return false; 15719 break; 15720 case STACK_ITER: 15721 old_reg = &old->stack[spi].spilled_ptr; 15722 cur_reg = &cur->stack[spi].spilled_ptr; 15723 /* iter.depth is not compared between states as it 15724 * doesn't matter for correctness and would otherwise 15725 * prevent convergence; we maintain it only to prevent 15726 * infinite loop check triggering, see 15727 * iter_active_depths_differ() 15728 */ 15729 if (old_reg->iter.btf != cur_reg->iter.btf || 15730 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15731 old_reg->iter.state != cur_reg->iter.state || 15732 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15733 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15734 return false; 15735 break; 15736 case STACK_MISC: 15737 case STACK_ZERO: 15738 case STACK_INVALID: 15739 continue; 15740 /* Ensure that new unhandled slot types return false by default */ 15741 default: 15742 return false; 15743 } 15744 } 15745 return true; 15746 } 15747 15748 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15749 struct bpf_idmap *idmap) 15750 { 15751 int i; 15752 15753 if (old->acquired_refs != cur->acquired_refs) 15754 return false; 15755 15756 for (i = 0; i < old->acquired_refs; i++) { 15757 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15758 return false; 15759 } 15760 15761 return true; 15762 } 15763 15764 /* compare two verifier states 15765 * 15766 * all states stored in state_list are known to be valid, since 15767 * verifier reached 'bpf_exit' instruction through them 15768 * 15769 * this function is called when verifier exploring different branches of 15770 * execution popped from the state stack. If it sees an old state that has 15771 * more strict register state and more strict stack state then this execution 15772 * branch doesn't need to be explored further, since verifier already 15773 * concluded that more strict state leads to valid finish. 15774 * 15775 * Therefore two states are equivalent if register state is more conservative 15776 * and explored stack state is more conservative than the current one. 15777 * Example: 15778 * explored current 15779 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15780 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15781 * 15782 * In other words if current stack state (one being explored) has more 15783 * valid slots than old one that already passed validation, it means 15784 * the verifier can stop exploring and conclude that current state is valid too 15785 * 15786 * Similarly with registers. If explored state has register type as invalid 15787 * whereas register type in current state is meaningful, it means that 15788 * the current state will reach 'bpf_exit' instruction safely 15789 */ 15790 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15791 struct bpf_func_state *cur) 15792 { 15793 int i; 15794 15795 for (i = 0; i < MAX_BPF_REG; i++) 15796 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15797 &env->idmap_scratch)) 15798 return false; 15799 15800 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15801 return false; 15802 15803 if (!refsafe(old, cur, &env->idmap_scratch)) 15804 return false; 15805 15806 return true; 15807 } 15808 15809 static bool states_equal(struct bpf_verifier_env *env, 15810 struct bpf_verifier_state *old, 15811 struct bpf_verifier_state *cur) 15812 { 15813 int i; 15814 15815 if (old->curframe != cur->curframe) 15816 return false; 15817 15818 env->idmap_scratch.tmp_id_gen = env->id_gen; 15819 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15820 15821 /* Verification state from speculative execution simulation 15822 * must never prune a non-speculative execution one. 15823 */ 15824 if (old->speculative && !cur->speculative) 15825 return false; 15826 15827 if (old->active_lock.ptr != cur->active_lock.ptr) 15828 return false; 15829 15830 /* Old and cur active_lock's have to be either both present 15831 * or both absent. 15832 */ 15833 if (!!old->active_lock.id != !!cur->active_lock.id) 15834 return false; 15835 15836 if (old->active_lock.id && 15837 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15838 return false; 15839 15840 if (old->active_rcu_lock != cur->active_rcu_lock) 15841 return false; 15842 15843 /* for states to be equal callsites have to be the same 15844 * and all frame states need to be equivalent 15845 */ 15846 for (i = 0; i <= old->curframe; i++) { 15847 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15848 return false; 15849 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15850 return false; 15851 } 15852 return true; 15853 } 15854 15855 /* Return 0 if no propagation happened. Return negative error code if error 15856 * happened. Otherwise, return the propagated bit. 15857 */ 15858 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15859 struct bpf_reg_state *reg, 15860 struct bpf_reg_state *parent_reg) 15861 { 15862 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15863 u8 flag = reg->live & REG_LIVE_READ; 15864 int err; 15865 15866 /* When comes here, read flags of PARENT_REG or REG could be any of 15867 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15868 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15869 */ 15870 if (parent_flag == REG_LIVE_READ64 || 15871 /* Or if there is no read flag from REG. */ 15872 !flag || 15873 /* Or if the read flag from REG is the same as PARENT_REG. */ 15874 parent_flag == flag) 15875 return 0; 15876 15877 err = mark_reg_read(env, reg, parent_reg, flag); 15878 if (err) 15879 return err; 15880 15881 return flag; 15882 } 15883 15884 /* A write screens off any subsequent reads; but write marks come from the 15885 * straight-line code between a state and its parent. When we arrive at an 15886 * equivalent state (jump target or such) we didn't arrive by the straight-line 15887 * code, so read marks in the state must propagate to the parent regardless 15888 * of the state's write marks. That's what 'parent == state->parent' comparison 15889 * in mark_reg_read() is for. 15890 */ 15891 static int propagate_liveness(struct bpf_verifier_env *env, 15892 const struct bpf_verifier_state *vstate, 15893 struct bpf_verifier_state *vparent) 15894 { 15895 struct bpf_reg_state *state_reg, *parent_reg; 15896 struct bpf_func_state *state, *parent; 15897 int i, frame, err = 0; 15898 15899 if (vparent->curframe != vstate->curframe) { 15900 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15901 vparent->curframe, vstate->curframe); 15902 return -EFAULT; 15903 } 15904 /* Propagate read liveness of registers... */ 15905 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15906 for (frame = 0; frame <= vstate->curframe; frame++) { 15907 parent = vparent->frame[frame]; 15908 state = vstate->frame[frame]; 15909 parent_reg = parent->regs; 15910 state_reg = state->regs; 15911 /* We don't need to worry about FP liveness, it's read-only */ 15912 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15913 err = propagate_liveness_reg(env, &state_reg[i], 15914 &parent_reg[i]); 15915 if (err < 0) 15916 return err; 15917 if (err == REG_LIVE_READ64) 15918 mark_insn_zext(env, &parent_reg[i]); 15919 } 15920 15921 /* Propagate stack slots. */ 15922 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15923 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15924 parent_reg = &parent->stack[i].spilled_ptr; 15925 state_reg = &state->stack[i].spilled_ptr; 15926 err = propagate_liveness_reg(env, state_reg, 15927 parent_reg); 15928 if (err < 0) 15929 return err; 15930 } 15931 } 15932 return 0; 15933 } 15934 15935 /* find precise scalars in the previous equivalent state and 15936 * propagate them into the current state 15937 */ 15938 static int propagate_precision(struct bpf_verifier_env *env, 15939 const struct bpf_verifier_state *old) 15940 { 15941 struct bpf_reg_state *state_reg; 15942 struct bpf_func_state *state; 15943 int i, err = 0, fr; 15944 bool first; 15945 15946 for (fr = old->curframe; fr >= 0; fr--) { 15947 state = old->frame[fr]; 15948 state_reg = state->regs; 15949 first = true; 15950 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15951 if (state_reg->type != SCALAR_VALUE || 15952 !state_reg->precise || 15953 !(state_reg->live & REG_LIVE_READ)) 15954 continue; 15955 if (env->log.level & BPF_LOG_LEVEL2) { 15956 if (first) 15957 verbose(env, "frame %d: propagating r%d", fr, i); 15958 else 15959 verbose(env, ",r%d", i); 15960 } 15961 bt_set_frame_reg(&env->bt, fr, i); 15962 first = false; 15963 } 15964 15965 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15966 if (!is_spilled_reg(&state->stack[i])) 15967 continue; 15968 state_reg = &state->stack[i].spilled_ptr; 15969 if (state_reg->type != SCALAR_VALUE || 15970 !state_reg->precise || 15971 !(state_reg->live & REG_LIVE_READ)) 15972 continue; 15973 if (env->log.level & BPF_LOG_LEVEL2) { 15974 if (first) 15975 verbose(env, "frame %d: propagating fp%d", 15976 fr, (-i - 1) * BPF_REG_SIZE); 15977 else 15978 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15979 } 15980 bt_set_frame_slot(&env->bt, fr, i); 15981 first = false; 15982 } 15983 if (!first) 15984 verbose(env, "\n"); 15985 } 15986 15987 err = mark_chain_precision_batch(env); 15988 if (err < 0) 15989 return err; 15990 15991 return 0; 15992 } 15993 15994 static bool states_maybe_looping(struct bpf_verifier_state *old, 15995 struct bpf_verifier_state *cur) 15996 { 15997 struct bpf_func_state *fold, *fcur; 15998 int i, fr = cur->curframe; 15999 16000 if (old->curframe != fr) 16001 return false; 16002 16003 fold = old->frame[fr]; 16004 fcur = cur->frame[fr]; 16005 for (i = 0; i < MAX_BPF_REG; i++) 16006 if (memcmp(&fold->regs[i], &fcur->regs[i], 16007 offsetof(struct bpf_reg_state, parent))) 16008 return false; 16009 return true; 16010 } 16011 16012 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16013 { 16014 return env->insn_aux_data[insn_idx].is_iter_next; 16015 } 16016 16017 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16018 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16019 * states to match, which otherwise would look like an infinite loop. So while 16020 * iter_next() calls are taken care of, we still need to be careful and 16021 * prevent erroneous and too eager declaration of "ininite loop", when 16022 * iterators are involved. 16023 * 16024 * Here's a situation in pseudo-BPF assembly form: 16025 * 16026 * 0: again: ; set up iter_next() call args 16027 * 1: r1 = &it ; <CHECKPOINT HERE> 16028 * 2: call bpf_iter_num_next ; this is iter_next() call 16029 * 3: if r0 == 0 goto done 16030 * 4: ... something useful here ... 16031 * 5: goto again ; another iteration 16032 * 6: done: 16033 * 7: r1 = &it 16034 * 8: call bpf_iter_num_destroy ; clean up iter state 16035 * 9: exit 16036 * 16037 * This is a typical loop. Let's assume that we have a prune point at 1:, 16038 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16039 * again`, assuming other heuristics don't get in a way). 16040 * 16041 * When we first time come to 1:, let's say we have some state X. We proceed 16042 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16043 * Now we come back to validate that forked ACTIVE state. We proceed through 16044 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16045 * are converging. But the problem is that we don't know that yet, as this 16046 * convergence has to happen at iter_next() call site only. So if nothing is 16047 * done, at 1: verifier will use bounded loop logic and declare infinite 16048 * looping (and would be *technically* correct, if not for iterator's 16049 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16050 * don't want that. So what we do in process_iter_next_call() when we go on 16051 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16052 * a different iteration. So when we suspect an infinite loop, we additionally 16053 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16054 * pretend we are not looping and wait for next iter_next() call. 16055 * 16056 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16057 * loop, because that would actually mean infinite loop, as DRAINED state is 16058 * "sticky", and so we'll keep returning into the same instruction with the 16059 * same state (at least in one of possible code paths). 16060 * 16061 * This approach allows to keep infinite loop heuristic even in the face of 16062 * active iterator. E.g., C snippet below is and will be detected as 16063 * inifintely looping: 16064 * 16065 * struct bpf_iter_num it; 16066 * int *p, x; 16067 * 16068 * bpf_iter_num_new(&it, 0, 10); 16069 * while ((p = bpf_iter_num_next(&t))) { 16070 * x = p; 16071 * while (x--) {} // <<-- infinite loop here 16072 * } 16073 * 16074 */ 16075 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16076 { 16077 struct bpf_reg_state *slot, *cur_slot; 16078 struct bpf_func_state *state; 16079 int i, fr; 16080 16081 for (fr = old->curframe; fr >= 0; fr--) { 16082 state = old->frame[fr]; 16083 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16084 if (state->stack[i].slot_type[0] != STACK_ITER) 16085 continue; 16086 16087 slot = &state->stack[i].spilled_ptr; 16088 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16089 continue; 16090 16091 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16092 if (cur_slot->iter.depth != slot->iter.depth) 16093 return true; 16094 } 16095 } 16096 return false; 16097 } 16098 16099 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16100 { 16101 struct bpf_verifier_state_list *new_sl; 16102 struct bpf_verifier_state_list *sl, **pprev; 16103 struct bpf_verifier_state *cur = env->cur_state, *new; 16104 int i, j, err, states_cnt = 0; 16105 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16106 bool add_new_state = force_new_state; 16107 16108 /* bpf progs typically have pruning point every 4 instructions 16109 * http://vger.kernel.org/bpfconf2019.html#session-1 16110 * Do not add new state for future pruning if the verifier hasn't seen 16111 * at least 2 jumps and at least 8 instructions. 16112 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16113 * In tests that amounts to up to 50% reduction into total verifier 16114 * memory consumption and 20% verifier time speedup. 16115 */ 16116 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16117 env->insn_processed - env->prev_insn_processed >= 8) 16118 add_new_state = true; 16119 16120 pprev = explored_state(env, insn_idx); 16121 sl = *pprev; 16122 16123 clean_live_states(env, insn_idx, cur); 16124 16125 while (sl) { 16126 states_cnt++; 16127 if (sl->state.insn_idx != insn_idx) 16128 goto next; 16129 16130 if (sl->state.branches) { 16131 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16132 16133 if (frame->in_async_callback_fn && 16134 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16135 /* Different async_entry_cnt means that the verifier is 16136 * processing another entry into async callback. 16137 * Seeing the same state is not an indication of infinite 16138 * loop or infinite recursion. 16139 * But finding the same state doesn't mean that it's safe 16140 * to stop processing the current state. The previous state 16141 * hasn't yet reached bpf_exit, since state.branches > 0. 16142 * Checking in_async_callback_fn alone is not enough either. 16143 * Since the verifier still needs to catch infinite loops 16144 * inside async callbacks. 16145 */ 16146 goto skip_inf_loop_check; 16147 } 16148 /* BPF open-coded iterators loop detection is special. 16149 * states_maybe_looping() logic is too simplistic in detecting 16150 * states that *might* be equivalent, because it doesn't know 16151 * about ID remapping, so don't even perform it. 16152 * See process_iter_next_call() and iter_active_depths_differ() 16153 * for overview of the logic. When current and one of parent 16154 * states are detected as equivalent, it's a good thing: we prove 16155 * convergence and can stop simulating further iterations. 16156 * It's safe to assume that iterator loop will finish, taking into 16157 * account iter_next() contract of eventually returning 16158 * sticky NULL result. 16159 */ 16160 if (is_iter_next_insn(env, insn_idx)) { 16161 if (states_equal(env, &sl->state, cur)) { 16162 struct bpf_func_state *cur_frame; 16163 struct bpf_reg_state *iter_state, *iter_reg; 16164 int spi; 16165 16166 cur_frame = cur->frame[cur->curframe]; 16167 /* btf_check_iter_kfuncs() enforces that 16168 * iter state pointer is always the first arg 16169 */ 16170 iter_reg = &cur_frame->regs[BPF_REG_1]; 16171 /* current state is valid due to states_equal(), 16172 * so we can assume valid iter and reg state, 16173 * no need for extra (re-)validations 16174 */ 16175 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16176 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16177 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16178 goto hit; 16179 } 16180 goto skip_inf_loop_check; 16181 } 16182 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16183 if (states_maybe_looping(&sl->state, cur) && 16184 states_equal(env, &sl->state, cur) && 16185 !iter_active_depths_differ(&sl->state, cur)) { 16186 verbose_linfo(env, insn_idx, "; "); 16187 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16188 return -EINVAL; 16189 } 16190 /* if the verifier is processing a loop, avoid adding new state 16191 * too often, since different loop iterations have distinct 16192 * states and may not help future pruning. 16193 * This threshold shouldn't be too low to make sure that 16194 * a loop with large bound will be rejected quickly. 16195 * The most abusive loop will be: 16196 * r1 += 1 16197 * if r1 < 1000000 goto pc-2 16198 * 1M insn_procssed limit / 100 == 10k peak states. 16199 * This threshold shouldn't be too high either, since states 16200 * at the end of the loop are likely to be useful in pruning. 16201 */ 16202 skip_inf_loop_check: 16203 if (!force_new_state && 16204 env->jmps_processed - env->prev_jmps_processed < 20 && 16205 env->insn_processed - env->prev_insn_processed < 100) 16206 add_new_state = false; 16207 goto miss; 16208 } 16209 if (states_equal(env, &sl->state, cur)) { 16210 hit: 16211 sl->hit_cnt++; 16212 /* reached equivalent register/stack state, 16213 * prune the search. 16214 * Registers read by the continuation are read by us. 16215 * If we have any write marks in env->cur_state, they 16216 * will prevent corresponding reads in the continuation 16217 * from reaching our parent (an explored_state). Our 16218 * own state will get the read marks recorded, but 16219 * they'll be immediately forgotten as we're pruning 16220 * this state and will pop a new one. 16221 */ 16222 err = propagate_liveness(env, &sl->state, cur); 16223 16224 /* if previous state reached the exit with precision and 16225 * current state is equivalent to it (except precsion marks) 16226 * the precision needs to be propagated back in 16227 * the current state. 16228 */ 16229 err = err ? : push_jmp_history(env, cur); 16230 err = err ? : propagate_precision(env, &sl->state); 16231 if (err) 16232 return err; 16233 return 1; 16234 } 16235 miss: 16236 /* when new state is not going to be added do not increase miss count. 16237 * Otherwise several loop iterations will remove the state 16238 * recorded earlier. The goal of these heuristics is to have 16239 * states from some iterations of the loop (some in the beginning 16240 * and some at the end) to help pruning. 16241 */ 16242 if (add_new_state) 16243 sl->miss_cnt++; 16244 /* heuristic to determine whether this state is beneficial 16245 * to keep checking from state equivalence point of view. 16246 * Higher numbers increase max_states_per_insn and verification time, 16247 * but do not meaningfully decrease insn_processed. 16248 */ 16249 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16250 /* the state is unlikely to be useful. Remove it to 16251 * speed up verification 16252 */ 16253 *pprev = sl->next; 16254 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16255 u32 br = sl->state.branches; 16256 16257 WARN_ONCE(br, 16258 "BUG live_done but branches_to_explore %d\n", 16259 br); 16260 free_verifier_state(&sl->state, false); 16261 kfree(sl); 16262 env->peak_states--; 16263 } else { 16264 /* cannot free this state, since parentage chain may 16265 * walk it later. Add it for free_list instead to 16266 * be freed at the end of verification 16267 */ 16268 sl->next = env->free_list; 16269 env->free_list = sl; 16270 } 16271 sl = *pprev; 16272 continue; 16273 } 16274 next: 16275 pprev = &sl->next; 16276 sl = *pprev; 16277 } 16278 16279 if (env->max_states_per_insn < states_cnt) 16280 env->max_states_per_insn = states_cnt; 16281 16282 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16283 return 0; 16284 16285 if (!add_new_state) 16286 return 0; 16287 16288 /* There were no equivalent states, remember the current one. 16289 * Technically the current state is not proven to be safe yet, 16290 * but it will either reach outer most bpf_exit (which means it's safe) 16291 * or it will be rejected. When there are no loops the verifier won't be 16292 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16293 * again on the way to bpf_exit. 16294 * When looping the sl->state.branches will be > 0 and this state 16295 * will not be considered for equivalence until branches == 0. 16296 */ 16297 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16298 if (!new_sl) 16299 return -ENOMEM; 16300 env->total_states++; 16301 env->peak_states++; 16302 env->prev_jmps_processed = env->jmps_processed; 16303 env->prev_insn_processed = env->insn_processed; 16304 16305 /* forget precise markings we inherited, see __mark_chain_precision */ 16306 if (env->bpf_capable) 16307 mark_all_scalars_imprecise(env, cur); 16308 16309 /* add new state to the head of linked list */ 16310 new = &new_sl->state; 16311 err = copy_verifier_state(new, cur); 16312 if (err) { 16313 free_verifier_state(new, false); 16314 kfree(new_sl); 16315 return err; 16316 } 16317 new->insn_idx = insn_idx; 16318 WARN_ONCE(new->branches != 1, 16319 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16320 16321 cur->parent = new; 16322 cur->first_insn_idx = insn_idx; 16323 clear_jmp_history(cur); 16324 new_sl->next = *explored_state(env, insn_idx); 16325 *explored_state(env, insn_idx) = new_sl; 16326 /* connect new state to parentage chain. Current frame needs all 16327 * registers connected. Only r6 - r9 of the callers are alive (pushed 16328 * to the stack implicitly by JITs) so in callers' frames connect just 16329 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16330 * the state of the call instruction (with WRITTEN set), and r0 comes 16331 * from callee with its full parentage chain, anyway. 16332 */ 16333 /* clear write marks in current state: the writes we did are not writes 16334 * our child did, so they don't screen off its reads from us. 16335 * (There are no read marks in current state, because reads always mark 16336 * their parent and current state never has children yet. Only 16337 * explored_states can get read marks.) 16338 */ 16339 for (j = 0; j <= cur->curframe; j++) { 16340 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16341 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16342 for (i = 0; i < BPF_REG_FP; i++) 16343 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16344 } 16345 16346 /* all stack frames are accessible from callee, clear them all */ 16347 for (j = 0; j <= cur->curframe; j++) { 16348 struct bpf_func_state *frame = cur->frame[j]; 16349 struct bpf_func_state *newframe = new->frame[j]; 16350 16351 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16352 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16353 frame->stack[i].spilled_ptr.parent = 16354 &newframe->stack[i].spilled_ptr; 16355 } 16356 } 16357 return 0; 16358 } 16359 16360 /* Return true if it's OK to have the same insn return a different type. */ 16361 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16362 { 16363 switch (base_type(type)) { 16364 case PTR_TO_CTX: 16365 case PTR_TO_SOCKET: 16366 case PTR_TO_SOCK_COMMON: 16367 case PTR_TO_TCP_SOCK: 16368 case PTR_TO_XDP_SOCK: 16369 case PTR_TO_BTF_ID: 16370 return false; 16371 default: 16372 return true; 16373 } 16374 } 16375 16376 /* If an instruction was previously used with particular pointer types, then we 16377 * need to be careful to avoid cases such as the below, where it may be ok 16378 * for one branch accessing the pointer, but not ok for the other branch: 16379 * 16380 * R1 = sock_ptr 16381 * goto X; 16382 * ... 16383 * R1 = some_other_valid_ptr; 16384 * goto X; 16385 * ... 16386 * R2 = *(u32 *)(R1 + 0); 16387 */ 16388 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16389 { 16390 return src != prev && (!reg_type_mismatch_ok(src) || 16391 !reg_type_mismatch_ok(prev)); 16392 } 16393 16394 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16395 bool allow_trust_missmatch) 16396 { 16397 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16398 16399 if (*prev_type == NOT_INIT) { 16400 /* Saw a valid insn 16401 * dst_reg = *(u32 *)(src_reg + off) 16402 * save type to validate intersecting paths 16403 */ 16404 *prev_type = type; 16405 } else if (reg_type_mismatch(type, *prev_type)) { 16406 /* Abuser program is trying to use the same insn 16407 * dst_reg = *(u32*) (src_reg + off) 16408 * with different pointer types: 16409 * src_reg == ctx in one branch and 16410 * src_reg == stack|map in some other branch. 16411 * Reject it. 16412 */ 16413 if (allow_trust_missmatch && 16414 base_type(type) == PTR_TO_BTF_ID && 16415 base_type(*prev_type) == PTR_TO_BTF_ID) { 16416 /* 16417 * Have to support a use case when one path through 16418 * the program yields TRUSTED pointer while another 16419 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16420 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16421 */ 16422 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16423 } else { 16424 verbose(env, "same insn cannot be used with different pointers\n"); 16425 return -EINVAL; 16426 } 16427 } 16428 16429 return 0; 16430 } 16431 16432 static int do_check(struct bpf_verifier_env *env) 16433 { 16434 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16435 struct bpf_verifier_state *state = env->cur_state; 16436 struct bpf_insn *insns = env->prog->insnsi; 16437 struct bpf_reg_state *regs; 16438 int insn_cnt = env->prog->len; 16439 bool do_print_state = false; 16440 int prev_insn_idx = -1; 16441 16442 for (;;) { 16443 struct bpf_insn *insn; 16444 u8 class; 16445 int err; 16446 16447 env->prev_insn_idx = prev_insn_idx; 16448 if (env->insn_idx >= insn_cnt) { 16449 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16450 env->insn_idx, insn_cnt); 16451 return -EFAULT; 16452 } 16453 16454 insn = &insns[env->insn_idx]; 16455 class = BPF_CLASS(insn->code); 16456 16457 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16458 verbose(env, 16459 "BPF program is too large. Processed %d insn\n", 16460 env->insn_processed); 16461 return -E2BIG; 16462 } 16463 16464 state->last_insn_idx = env->prev_insn_idx; 16465 16466 if (is_prune_point(env, env->insn_idx)) { 16467 err = is_state_visited(env, env->insn_idx); 16468 if (err < 0) 16469 return err; 16470 if (err == 1) { 16471 /* found equivalent state, can prune the search */ 16472 if (env->log.level & BPF_LOG_LEVEL) { 16473 if (do_print_state) 16474 verbose(env, "\nfrom %d to %d%s: safe\n", 16475 env->prev_insn_idx, env->insn_idx, 16476 env->cur_state->speculative ? 16477 " (speculative execution)" : ""); 16478 else 16479 verbose(env, "%d: safe\n", env->insn_idx); 16480 } 16481 goto process_bpf_exit; 16482 } 16483 } 16484 16485 if (is_jmp_point(env, env->insn_idx)) { 16486 err = push_jmp_history(env, state); 16487 if (err) 16488 return err; 16489 } 16490 16491 if (signal_pending(current)) 16492 return -EAGAIN; 16493 16494 if (need_resched()) 16495 cond_resched(); 16496 16497 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16498 verbose(env, "\nfrom %d to %d%s:", 16499 env->prev_insn_idx, env->insn_idx, 16500 env->cur_state->speculative ? 16501 " (speculative execution)" : ""); 16502 print_verifier_state(env, state->frame[state->curframe], true); 16503 do_print_state = false; 16504 } 16505 16506 if (env->log.level & BPF_LOG_LEVEL) { 16507 const struct bpf_insn_cbs cbs = { 16508 .cb_call = disasm_kfunc_name, 16509 .cb_print = verbose, 16510 .private_data = env, 16511 }; 16512 16513 if (verifier_state_scratched(env)) 16514 print_insn_state(env, state->frame[state->curframe]); 16515 16516 verbose_linfo(env, env->insn_idx, "; "); 16517 env->prev_log_pos = env->log.end_pos; 16518 verbose(env, "%d: ", env->insn_idx); 16519 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16520 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16521 env->prev_log_pos = env->log.end_pos; 16522 } 16523 16524 if (bpf_prog_is_offloaded(env->prog->aux)) { 16525 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16526 env->prev_insn_idx); 16527 if (err) 16528 return err; 16529 } 16530 16531 regs = cur_regs(env); 16532 sanitize_mark_insn_seen(env); 16533 prev_insn_idx = env->insn_idx; 16534 16535 if (class == BPF_ALU || class == BPF_ALU64) { 16536 err = check_alu_op(env, insn); 16537 if (err) 16538 return err; 16539 16540 } else if (class == BPF_LDX) { 16541 enum bpf_reg_type src_reg_type; 16542 16543 /* check for reserved fields is already done */ 16544 16545 /* check src operand */ 16546 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16547 if (err) 16548 return err; 16549 16550 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16551 if (err) 16552 return err; 16553 16554 src_reg_type = regs[insn->src_reg].type; 16555 16556 /* check that memory (src_reg + off) is readable, 16557 * the state of dst_reg will be updated by this func 16558 */ 16559 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16560 insn->off, BPF_SIZE(insn->code), 16561 BPF_READ, insn->dst_reg, false, 16562 BPF_MODE(insn->code) == BPF_MEMSX); 16563 if (err) 16564 return err; 16565 16566 err = save_aux_ptr_type(env, src_reg_type, true); 16567 if (err) 16568 return err; 16569 } else if (class == BPF_STX) { 16570 enum bpf_reg_type dst_reg_type; 16571 16572 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16573 err = check_atomic(env, env->insn_idx, insn); 16574 if (err) 16575 return err; 16576 env->insn_idx++; 16577 continue; 16578 } 16579 16580 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16581 verbose(env, "BPF_STX uses reserved fields\n"); 16582 return -EINVAL; 16583 } 16584 16585 /* check src1 operand */ 16586 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16587 if (err) 16588 return err; 16589 /* check src2 operand */ 16590 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16591 if (err) 16592 return err; 16593 16594 dst_reg_type = regs[insn->dst_reg].type; 16595 16596 /* check that memory (dst_reg + off) is writeable */ 16597 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16598 insn->off, BPF_SIZE(insn->code), 16599 BPF_WRITE, insn->src_reg, false, false); 16600 if (err) 16601 return err; 16602 16603 err = save_aux_ptr_type(env, dst_reg_type, false); 16604 if (err) 16605 return err; 16606 } else if (class == BPF_ST) { 16607 enum bpf_reg_type dst_reg_type; 16608 16609 if (BPF_MODE(insn->code) != BPF_MEM || 16610 insn->src_reg != BPF_REG_0) { 16611 verbose(env, "BPF_ST uses reserved fields\n"); 16612 return -EINVAL; 16613 } 16614 /* check src operand */ 16615 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16616 if (err) 16617 return err; 16618 16619 dst_reg_type = regs[insn->dst_reg].type; 16620 16621 /* check that memory (dst_reg + off) is writeable */ 16622 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16623 insn->off, BPF_SIZE(insn->code), 16624 BPF_WRITE, -1, false, false); 16625 if (err) 16626 return err; 16627 16628 err = save_aux_ptr_type(env, dst_reg_type, false); 16629 if (err) 16630 return err; 16631 } else if (class == BPF_JMP || class == BPF_JMP32) { 16632 u8 opcode = BPF_OP(insn->code); 16633 16634 env->jmps_processed++; 16635 if (opcode == BPF_CALL) { 16636 if (BPF_SRC(insn->code) != BPF_K || 16637 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16638 && insn->off != 0) || 16639 (insn->src_reg != BPF_REG_0 && 16640 insn->src_reg != BPF_PSEUDO_CALL && 16641 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16642 insn->dst_reg != BPF_REG_0 || 16643 class == BPF_JMP32) { 16644 verbose(env, "BPF_CALL uses reserved fields\n"); 16645 return -EINVAL; 16646 } 16647 16648 if (env->cur_state->active_lock.ptr) { 16649 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16650 (insn->src_reg == BPF_PSEUDO_CALL) || 16651 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16652 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16653 verbose(env, "function calls are not allowed while holding a lock\n"); 16654 return -EINVAL; 16655 } 16656 } 16657 if (insn->src_reg == BPF_PSEUDO_CALL) 16658 err = check_func_call(env, insn, &env->insn_idx); 16659 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16660 err = check_kfunc_call(env, insn, &env->insn_idx); 16661 else 16662 err = check_helper_call(env, insn, &env->insn_idx); 16663 if (err) 16664 return err; 16665 16666 mark_reg_scratched(env, BPF_REG_0); 16667 } else if (opcode == BPF_JA) { 16668 if (BPF_SRC(insn->code) != BPF_K || 16669 insn->src_reg != BPF_REG_0 || 16670 insn->dst_reg != BPF_REG_0 || 16671 (class == BPF_JMP && insn->imm != 0) || 16672 (class == BPF_JMP32 && insn->off != 0)) { 16673 verbose(env, "BPF_JA uses reserved fields\n"); 16674 return -EINVAL; 16675 } 16676 16677 if (class == BPF_JMP) 16678 env->insn_idx += insn->off + 1; 16679 else 16680 env->insn_idx += insn->imm + 1; 16681 continue; 16682 16683 } else if (opcode == BPF_EXIT) { 16684 if (BPF_SRC(insn->code) != BPF_K || 16685 insn->imm != 0 || 16686 insn->src_reg != BPF_REG_0 || 16687 insn->dst_reg != BPF_REG_0 || 16688 class == BPF_JMP32) { 16689 verbose(env, "BPF_EXIT uses reserved fields\n"); 16690 return -EINVAL; 16691 } 16692 16693 if (env->cur_state->active_lock.ptr && 16694 !in_rbtree_lock_required_cb(env)) { 16695 verbose(env, "bpf_spin_unlock is missing\n"); 16696 return -EINVAL; 16697 } 16698 16699 if (env->cur_state->active_rcu_lock && 16700 !in_rbtree_lock_required_cb(env)) { 16701 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16702 return -EINVAL; 16703 } 16704 16705 /* We must do check_reference_leak here before 16706 * prepare_func_exit to handle the case when 16707 * state->curframe > 0, it may be a callback 16708 * function, for which reference_state must 16709 * match caller reference state when it exits. 16710 */ 16711 err = check_reference_leak(env); 16712 if (err) 16713 return err; 16714 16715 if (state->curframe) { 16716 /* exit from nested function */ 16717 err = prepare_func_exit(env, &env->insn_idx); 16718 if (err) 16719 return err; 16720 do_print_state = true; 16721 continue; 16722 } 16723 16724 err = check_return_code(env); 16725 if (err) 16726 return err; 16727 process_bpf_exit: 16728 mark_verifier_state_scratched(env); 16729 update_branch_counts(env, env->cur_state); 16730 err = pop_stack(env, &prev_insn_idx, 16731 &env->insn_idx, pop_log); 16732 if (err < 0) { 16733 if (err != -ENOENT) 16734 return err; 16735 break; 16736 } else { 16737 do_print_state = true; 16738 continue; 16739 } 16740 } else { 16741 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16742 if (err) 16743 return err; 16744 } 16745 } else if (class == BPF_LD) { 16746 u8 mode = BPF_MODE(insn->code); 16747 16748 if (mode == BPF_ABS || mode == BPF_IND) { 16749 err = check_ld_abs(env, insn); 16750 if (err) 16751 return err; 16752 16753 } else if (mode == BPF_IMM) { 16754 err = check_ld_imm(env, insn); 16755 if (err) 16756 return err; 16757 16758 env->insn_idx++; 16759 sanitize_mark_insn_seen(env); 16760 } else { 16761 verbose(env, "invalid BPF_LD mode\n"); 16762 return -EINVAL; 16763 } 16764 } else { 16765 verbose(env, "unknown insn class %d\n", class); 16766 return -EINVAL; 16767 } 16768 16769 env->insn_idx++; 16770 } 16771 16772 return 0; 16773 } 16774 16775 static int find_btf_percpu_datasec(struct btf *btf) 16776 { 16777 const struct btf_type *t; 16778 const char *tname; 16779 int i, n; 16780 16781 /* 16782 * Both vmlinux and module each have their own ".data..percpu" 16783 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16784 * types to look at only module's own BTF types. 16785 */ 16786 n = btf_nr_types(btf); 16787 if (btf_is_module(btf)) 16788 i = btf_nr_types(btf_vmlinux); 16789 else 16790 i = 1; 16791 16792 for(; i < n; i++) { 16793 t = btf_type_by_id(btf, i); 16794 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16795 continue; 16796 16797 tname = btf_name_by_offset(btf, t->name_off); 16798 if (!strcmp(tname, ".data..percpu")) 16799 return i; 16800 } 16801 16802 return -ENOENT; 16803 } 16804 16805 /* replace pseudo btf_id with kernel symbol address */ 16806 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16807 struct bpf_insn *insn, 16808 struct bpf_insn_aux_data *aux) 16809 { 16810 const struct btf_var_secinfo *vsi; 16811 const struct btf_type *datasec; 16812 struct btf_mod_pair *btf_mod; 16813 const struct btf_type *t; 16814 const char *sym_name; 16815 bool percpu = false; 16816 u32 type, id = insn->imm; 16817 struct btf *btf; 16818 s32 datasec_id; 16819 u64 addr; 16820 int i, btf_fd, err; 16821 16822 btf_fd = insn[1].imm; 16823 if (btf_fd) { 16824 btf = btf_get_by_fd(btf_fd); 16825 if (IS_ERR(btf)) { 16826 verbose(env, "invalid module BTF object FD specified.\n"); 16827 return -EINVAL; 16828 } 16829 } else { 16830 if (!btf_vmlinux) { 16831 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16832 return -EINVAL; 16833 } 16834 btf = btf_vmlinux; 16835 btf_get(btf); 16836 } 16837 16838 t = btf_type_by_id(btf, id); 16839 if (!t) { 16840 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16841 err = -ENOENT; 16842 goto err_put; 16843 } 16844 16845 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16846 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16847 err = -EINVAL; 16848 goto err_put; 16849 } 16850 16851 sym_name = btf_name_by_offset(btf, t->name_off); 16852 addr = kallsyms_lookup_name(sym_name); 16853 if (!addr) { 16854 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16855 sym_name); 16856 err = -ENOENT; 16857 goto err_put; 16858 } 16859 insn[0].imm = (u32)addr; 16860 insn[1].imm = addr >> 32; 16861 16862 if (btf_type_is_func(t)) { 16863 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16864 aux->btf_var.mem_size = 0; 16865 goto check_btf; 16866 } 16867 16868 datasec_id = find_btf_percpu_datasec(btf); 16869 if (datasec_id > 0) { 16870 datasec = btf_type_by_id(btf, datasec_id); 16871 for_each_vsi(i, datasec, vsi) { 16872 if (vsi->type == id) { 16873 percpu = true; 16874 break; 16875 } 16876 } 16877 } 16878 16879 type = t->type; 16880 t = btf_type_skip_modifiers(btf, type, NULL); 16881 if (percpu) { 16882 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16883 aux->btf_var.btf = btf; 16884 aux->btf_var.btf_id = type; 16885 } else if (!btf_type_is_struct(t)) { 16886 const struct btf_type *ret; 16887 const char *tname; 16888 u32 tsize; 16889 16890 /* resolve the type size of ksym. */ 16891 ret = btf_resolve_size(btf, t, &tsize); 16892 if (IS_ERR(ret)) { 16893 tname = btf_name_by_offset(btf, t->name_off); 16894 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16895 tname, PTR_ERR(ret)); 16896 err = -EINVAL; 16897 goto err_put; 16898 } 16899 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16900 aux->btf_var.mem_size = tsize; 16901 } else { 16902 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16903 aux->btf_var.btf = btf; 16904 aux->btf_var.btf_id = type; 16905 } 16906 check_btf: 16907 /* check whether we recorded this BTF (and maybe module) already */ 16908 for (i = 0; i < env->used_btf_cnt; i++) { 16909 if (env->used_btfs[i].btf == btf) { 16910 btf_put(btf); 16911 return 0; 16912 } 16913 } 16914 16915 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16916 err = -E2BIG; 16917 goto err_put; 16918 } 16919 16920 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16921 btf_mod->btf = btf; 16922 btf_mod->module = NULL; 16923 16924 /* if we reference variables from kernel module, bump its refcount */ 16925 if (btf_is_module(btf)) { 16926 btf_mod->module = btf_try_get_module(btf); 16927 if (!btf_mod->module) { 16928 err = -ENXIO; 16929 goto err_put; 16930 } 16931 } 16932 16933 env->used_btf_cnt++; 16934 16935 return 0; 16936 err_put: 16937 btf_put(btf); 16938 return err; 16939 } 16940 16941 static bool is_tracing_prog_type(enum bpf_prog_type type) 16942 { 16943 switch (type) { 16944 case BPF_PROG_TYPE_KPROBE: 16945 case BPF_PROG_TYPE_TRACEPOINT: 16946 case BPF_PROG_TYPE_PERF_EVENT: 16947 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16948 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16949 return true; 16950 default: 16951 return false; 16952 } 16953 } 16954 16955 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16956 struct bpf_map *map, 16957 struct bpf_prog *prog) 16958 16959 { 16960 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16961 16962 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16963 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16964 if (is_tracing_prog_type(prog_type)) { 16965 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16966 return -EINVAL; 16967 } 16968 } 16969 16970 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16971 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16972 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16973 return -EINVAL; 16974 } 16975 16976 if (is_tracing_prog_type(prog_type)) { 16977 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16978 return -EINVAL; 16979 } 16980 } 16981 16982 if (btf_record_has_field(map->record, BPF_TIMER)) { 16983 if (is_tracing_prog_type(prog_type)) { 16984 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16985 return -EINVAL; 16986 } 16987 } 16988 16989 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16990 !bpf_offload_prog_map_match(prog, map)) { 16991 verbose(env, "offload device mismatch between prog and map\n"); 16992 return -EINVAL; 16993 } 16994 16995 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16996 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16997 return -EINVAL; 16998 } 16999 17000 if (prog->aux->sleepable) 17001 switch (map->map_type) { 17002 case BPF_MAP_TYPE_HASH: 17003 case BPF_MAP_TYPE_LRU_HASH: 17004 case BPF_MAP_TYPE_ARRAY: 17005 case BPF_MAP_TYPE_PERCPU_HASH: 17006 case BPF_MAP_TYPE_PERCPU_ARRAY: 17007 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17008 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17009 case BPF_MAP_TYPE_HASH_OF_MAPS: 17010 case BPF_MAP_TYPE_RINGBUF: 17011 case BPF_MAP_TYPE_USER_RINGBUF: 17012 case BPF_MAP_TYPE_INODE_STORAGE: 17013 case BPF_MAP_TYPE_SK_STORAGE: 17014 case BPF_MAP_TYPE_TASK_STORAGE: 17015 case BPF_MAP_TYPE_CGRP_STORAGE: 17016 break; 17017 default: 17018 verbose(env, 17019 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17020 return -EINVAL; 17021 } 17022 17023 return 0; 17024 } 17025 17026 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17027 { 17028 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17029 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17030 } 17031 17032 /* find and rewrite pseudo imm in ld_imm64 instructions: 17033 * 17034 * 1. if it accesses map FD, replace it with actual map pointer. 17035 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17036 * 17037 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17038 */ 17039 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17040 { 17041 struct bpf_insn *insn = env->prog->insnsi; 17042 int insn_cnt = env->prog->len; 17043 int i, j, err; 17044 17045 err = bpf_prog_calc_tag(env->prog); 17046 if (err) 17047 return err; 17048 17049 for (i = 0; i < insn_cnt; i++, insn++) { 17050 if (BPF_CLASS(insn->code) == BPF_LDX && 17051 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17052 insn->imm != 0)) { 17053 verbose(env, "BPF_LDX uses reserved fields\n"); 17054 return -EINVAL; 17055 } 17056 17057 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17058 struct bpf_insn_aux_data *aux; 17059 struct bpf_map *map; 17060 struct fd f; 17061 u64 addr; 17062 u32 fd; 17063 17064 if (i == insn_cnt - 1 || insn[1].code != 0 || 17065 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17066 insn[1].off != 0) { 17067 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17068 return -EINVAL; 17069 } 17070 17071 if (insn[0].src_reg == 0) 17072 /* valid generic load 64-bit imm */ 17073 goto next_insn; 17074 17075 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17076 aux = &env->insn_aux_data[i]; 17077 err = check_pseudo_btf_id(env, insn, aux); 17078 if (err) 17079 return err; 17080 goto next_insn; 17081 } 17082 17083 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17084 aux = &env->insn_aux_data[i]; 17085 aux->ptr_type = PTR_TO_FUNC; 17086 goto next_insn; 17087 } 17088 17089 /* In final convert_pseudo_ld_imm64() step, this is 17090 * converted into regular 64-bit imm load insn. 17091 */ 17092 switch (insn[0].src_reg) { 17093 case BPF_PSEUDO_MAP_VALUE: 17094 case BPF_PSEUDO_MAP_IDX_VALUE: 17095 break; 17096 case BPF_PSEUDO_MAP_FD: 17097 case BPF_PSEUDO_MAP_IDX: 17098 if (insn[1].imm == 0) 17099 break; 17100 fallthrough; 17101 default: 17102 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17103 return -EINVAL; 17104 } 17105 17106 switch (insn[0].src_reg) { 17107 case BPF_PSEUDO_MAP_IDX_VALUE: 17108 case BPF_PSEUDO_MAP_IDX: 17109 if (bpfptr_is_null(env->fd_array)) { 17110 verbose(env, "fd_idx without fd_array is invalid\n"); 17111 return -EPROTO; 17112 } 17113 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17114 insn[0].imm * sizeof(fd), 17115 sizeof(fd))) 17116 return -EFAULT; 17117 break; 17118 default: 17119 fd = insn[0].imm; 17120 break; 17121 } 17122 17123 f = fdget(fd); 17124 map = __bpf_map_get(f); 17125 if (IS_ERR(map)) { 17126 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17127 insn[0].imm); 17128 return PTR_ERR(map); 17129 } 17130 17131 err = check_map_prog_compatibility(env, map, env->prog); 17132 if (err) { 17133 fdput(f); 17134 return err; 17135 } 17136 17137 aux = &env->insn_aux_data[i]; 17138 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17139 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17140 addr = (unsigned long)map; 17141 } else { 17142 u32 off = insn[1].imm; 17143 17144 if (off >= BPF_MAX_VAR_OFF) { 17145 verbose(env, "direct value offset of %u is not allowed\n", off); 17146 fdput(f); 17147 return -EINVAL; 17148 } 17149 17150 if (!map->ops->map_direct_value_addr) { 17151 verbose(env, "no direct value access support for this map type\n"); 17152 fdput(f); 17153 return -EINVAL; 17154 } 17155 17156 err = map->ops->map_direct_value_addr(map, &addr, off); 17157 if (err) { 17158 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17159 map->value_size, off); 17160 fdput(f); 17161 return err; 17162 } 17163 17164 aux->map_off = off; 17165 addr += off; 17166 } 17167 17168 insn[0].imm = (u32)addr; 17169 insn[1].imm = addr >> 32; 17170 17171 /* check whether we recorded this map already */ 17172 for (j = 0; j < env->used_map_cnt; j++) { 17173 if (env->used_maps[j] == map) { 17174 aux->map_index = j; 17175 fdput(f); 17176 goto next_insn; 17177 } 17178 } 17179 17180 if (env->used_map_cnt >= MAX_USED_MAPS) { 17181 fdput(f); 17182 return -E2BIG; 17183 } 17184 17185 /* hold the map. If the program is rejected by verifier, 17186 * the map will be released by release_maps() or it 17187 * will be used by the valid program until it's unloaded 17188 * and all maps are released in free_used_maps() 17189 */ 17190 bpf_map_inc(map); 17191 17192 aux->map_index = env->used_map_cnt; 17193 env->used_maps[env->used_map_cnt++] = map; 17194 17195 if (bpf_map_is_cgroup_storage(map) && 17196 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17197 verbose(env, "only one cgroup storage of each type is allowed\n"); 17198 fdput(f); 17199 return -EBUSY; 17200 } 17201 17202 fdput(f); 17203 next_insn: 17204 insn++; 17205 i++; 17206 continue; 17207 } 17208 17209 /* Basic sanity check before we invest more work here. */ 17210 if (!bpf_opcode_in_insntable(insn->code)) { 17211 verbose(env, "unknown opcode %02x\n", insn->code); 17212 return -EINVAL; 17213 } 17214 } 17215 17216 /* now all pseudo BPF_LD_IMM64 instructions load valid 17217 * 'struct bpf_map *' into a register instead of user map_fd. 17218 * These pointers will be used later by verifier to validate map access. 17219 */ 17220 return 0; 17221 } 17222 17223 /* drop refcnt of maps used by the rejected program */ 17224 static void release_maps(struct bpf_verifier_env *env) 17225 { 17226 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17227 env->used_map_cnt); 17228 } 17229 17230 /* drop refcnt of maps used by the rejected program */ 17231 static void release_btfs(struct bpf_verifier_env *env) 17232 { 17233 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17234 env->used_btf_cnt); 17235 } 17236 17237 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17238 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17239 { 17240 struct bpf_insn *insn = env->prog->insnsi; 17241 int insn_cnt = env->prog->len; 17242 int i; 17243 17244 for (i = 0; i < insn_cnt; i++, insn++) { 17245 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17246 continue; 17247 if (insn->src_reg == BPF_PSEUDO_FUNC) 17248 continue; 17249 insn->src_reg = 0; 17250 } 17251 } 17252 17253 /* single env->prog->insni[off] instruction was replaced with the range 17254 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17255 * [0, off) and [off, end) to new locations, so the patched range stays zero 17256 */ 17257 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17258 struct bpf_insn_aux_data *new_data, 17259 struct bpf_prog *new_prog, u32 off, u32 cnt) 17260 { 17261 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17262 struct bpf_insn *insn = new_prog->insnsi; 17263 u32 old_seen = old_data[off].seen; 17264 u32 prog_len; 17265 int i; 17266 17267 /* aux info at OFF always needs adjustment, no matter fast path 17268 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17269 * original insn at old prog. 17270 */ 17271 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17272 17273 if (cnt == 1) 17274 return; 17275 prog_len = new_prog->len; 17276 17277 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17278 memcpy(new_data + off + cnt - 1, old_data + off, 17279 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17280 for (i = off; i < off + cnt - 1; i++) { 17281 /* Expand insni[off]'s seen count to the patched range. */ 17282 new_data[i].seen = old_seen; 17283 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17284 } 17285 env->insn_aux_data = new_data; 17286 vfree(old_data); 17287 } 17288 17289 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17290 { 17291 int i; 17292 17293 if (len == 1) 17294 return; 17295 /* NOTE: fake 'exit' subprog should be updated as well. */ 17296 for (i = 0; i <= env->subprog_cnt; i++) { 17297 if (env->subprog_info[i].start <= off) 17298 continue; 17299 env->subprog_info[i].start += len - 1; 17300 } 17301 } 17302 17303 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17304 { 17305 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17306 int i, sz = prog->aux->size_poke_tab; 17307 struct bpf_jit_poke_descriptor *desc; 17308 17309 for (i = 0; i < sz; i++) { 17310 desc = &tab[i]; 17311 if (desc->insn_idx <= off) 17312 continue; 17313 desc->insn_idx += len - 1; 17314 } 17315 } 17316 17317 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17318 const struct bpf_insn *patch, u32 len) 17319 { 17320 struct bpf_prog *new_prog; 17321 struct bpf_insn_aux_data *new_data = NULL; 17322 17323 if (len > 1) { 17324 new_data = vzalloc(array_size(env->prog->len + len - 1, 17325 sizeof(struct bpf_insn_aux_data))); 17326 if (!new_data) 17327 return NULL; 17328 } 17329 17330 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17331 if (IS_ERR(new_prog)) { 17332 if (PTR_ERR(new_prog) == -ERANGE) 17333 verbose(env, 17334 "insn %d cannot be patched due to 16-bit range\n", 17335 env->insn_aux_data[off].orig_idx); 17336 vfree(new_data); 17337 return NULL; 17338 } 17339 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17340 adjust_subprog_starts(env, off, len); 17341 adjust_poke_descs(new_prog, off, len); 17342 return new_prog; 17343 } 17344 17345 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17346 u32 off, u32 cnt) 17347 { 17348 int i, j; 17349 17350 /* find first prog starting at or after off (first to remove) */ 17351 for (i = 0; i < env->subprog_cnt; i++) 17352 if (env->subprog_info[i].start >= off) 17353 break; 17354 /* find first prog starting at or after off + cnt (first to stay) */ 17355 for (j = i; j < env->subprog_cnt; j++) 17356 if (env->subprog_info[j].start >= off + cnt) 17357 break; 17358 /* if j doesn't start exactly at off + cnt, we are just removing 17359 * the front of previous prog 17360 */ 17361 if (env->subprog_info[j].start != off + cnt) 17362 j--; 17363 17364 if (j > i) { 17365 struct bpf_prog_aux *aux = env->prog->aux; 17366 int move; 17367 17368 /* move fake 'exit' subprog as well */ 17369 move = env->subprog_cnt + 1 - j; 17370 17371 memmove(env->subprog_info + i, 17372 env->subprog_info + j, 17373 sizeof(*env->subprog_info) * move); 17374 env->subprog_cnt -= j - i; 17375 17376 /* remove func_info */ 17377 if (aux->func_info) { 17378 move = aux->func_info_cnt - j; 17379 17380 memmove(aux->func_info + i, 17381 aux->func_info + j, 17382 sizeof(*aux->func_info) * move); 17383 aux->func_info_cnt -= j - i; 17384 /* func_info->insn_off is set after all code rewrites, 17385 * in adjust_btf_func() - no need to adjust 17386 */ 17387 } 17388 } else { 17389 /* convert i from "first prog to remove" to "first to adjust" */ 17390 if (env->subprog_info[i].start == off) 17391 i++; 17392 } 17393 17394 /* update fake 'exit' subprog as well */ 17395 for (; i <= env->subprog_cnt; i++) 17396 env->subprog_info[i].start -= cnt; 17397 17398 return 0; 17399 } 17400 17401 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17402 u32 cnt) 17403 { 17404 struct bpf_prog *prog = env->prog; 17405 u32 i, l_off, l_cnt, nr_linfo; 17406 struct bpf_line_info *linfo; 17407 17408 nr_linfo = prog->aux->nr_linfo; 17409 if (!nr_linfo) 17410 return 0; 17411 17412 linfo = prog->aux->linfo; 17413 17414 /* find first line info to remove, count lines to be removed */ 17415 for (i = 0; i < nr_linfo; i++) 17416 if (linfo[i].insn_off >= off) 17417 break; 17418 17419 l_off = i; 17420 l_cnt = 0; 17421 for (; i < nr_linfo; i++) 17422 if (linfo[i].insn_off < off + cnt) 17423 l_cnt++; 17424 else 17425 break; 17426 17427 /* First live insn doesn't match first live linfo, it needs to "inherit" 17428 * last removed linfo. prog is already modified, so prog->len == off 17429 * means no live instructions after (tail of the program was removed). 17430 */ 17431 if (prog->len != off && l_cnt && 17432 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17433 l_cnt--; 17434 linfo[--i].insn_off = off + cnt; 17435 } 17436 17437 /* remove the line info which refer to the removed instructions */ 17438 if (l_cnt) { 17439 memmove(linfo + l_off, linfo + i, 17440 sizeof(*linfo) * (nr_linfo - i)); 17441 17442 prog->aux->nr_linfo -= l_cnt; 17443 nr_linfo = prog->aux->nr_linfo; 17444 } 17445 17446 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17447 for (i = l_off; i < nr_linfo; i++) 17448 linfo[i].insn_off -= cnt; 17449 17450 /* fix up all subprogs (incl. 'exit') which start >= off */ 17451 for (i = 0; i <= env->subprog_cnt; i++) 17452 if (env->subprog_info[i].linfo_idx > l_off) { 17453 /* program may have started in the removed region but 17454 * may not be fully removed 17455 */ 17456 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17457 env->subprog_info[i].linfo_idx -= l_cnt; 17458 else 17459 env->subprog_info[i].linfo_idx = l_off; 17460 } 17461 17462 return 0; 17463 } 17464 17465 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17466 { 17467 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17468 unsigned int orig_prog_len = env->prog->len; 17469 int err; 17470 17471 if (bpf_prog_is_offloaded(env->prog->aux)) 17472 bpf_prog_offload_remove_insns(env, off, cnt); 17473 17474 err = bpf_remove_insns(env->prog, off, cnt); 17475 if (err) 17476 return err; 17477 17478 err = adjust_subprog_starts_after_remove(env, off, cnt); 17479 if (err) 17480 return err; 17481 17482 err = bpf_adj_linfo_after_remove(env, off, cnt); 17483 if (err) 17484 return err; 17485 17486 memmove(aux_data + off, aux_data + off + cnt, 17487 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17488 17489 return 0; 17490 } 17491 17492 /* The verifier does more data flow analysis than llvm and will not 17493 * explore branches that are dead at run time. Malicious programs can 17494 * have dead code too. Therefore replace all dead at-run-time code 17495 * with 'ja -1'. 17496 * 17497 * Just nops are not optimal, e.g. if they would sit at the end of the 17498 * program and through another bug we would manage to jump there, then 17499 * we'd execute beyond program memory otherwise. Returning exception 17500 * code also wouldn't work since we can have subprogs where the dead 17501 * code could be located. 17502 */ 17503 static void sanitize_dead_code(struct bpf_verifier_env *env) 17504 { 17505 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17506 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17507 struct bpf_insn *insn = env->prog->insnsi; 17508 const int insn_cnt = env->prog->len; 17509 int i; 17510 17511 for (i = 0; i < insn_cnt; i++) { 17512 if (aux_data[i].seen) 17513 continue; 17514 memcpy(insn + i, &trap, sizeof(trap)); 17515 aux_data[i].zext_dst = false; 17516 } 17517 } 17518 17519 static bool insn_is_cond_jump(u8 code) 17520 { 17521 u8 op; 17522 17523 op = BPF_OP(code); 17524 if (BPF_CLASS(code) == BPF_JMP32) 17525 return op != BPF_JA; 17526 17527 if (BPF_CLASS(code) != BPF_JMP) 17528 return false; 17529 17530 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17531 } 17532 17533 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17534 { 17535 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17536 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17537 struct bpf_insn *insn = env->prog->insnsi; 17538 const int insn_cnt = env->prog->len; 17539 int i; 17540 17541 for (i = 0; i < insn_cnt; i++, insn++) { 17542 if (!insn_is_cond_jump(insn->code)) 17543 continue; 17544 17545 if (!aux_data[i + 1].seen) 17546 ja.off = insn->off; 17547 else if (!aux_data[i + 1 + insn->off].seen) 17548 ja.off = 0; 17549 else 17550 continue; 17551 17552 if (bpf_prog_is_offloaded(env->prog->aux)) 17553 bpf_prog_offload_replace_insn(env, i, &ja); 17554 17555 memcpy(insn, &ja, sizeof(ja)); 17556 } 17557 } 17558 17559 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17560 { 17561 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17562 int insn_cnt = env->prog->len; 17563 int i, err; 17564 17565 for (i = 0; i < insn_cnt; i++) { 17566 int j; 17567 17568 j = 0; 17569 while (i + j < insn_cnt && !aux_data[i + j].seen) 17570 j++; 17571 if (!j) 17572 continue; 17573 17574 err = verifier_remove_insns(env, i, j); 17575 if (err) 17576 return err; 17577 insn_cnt = env->prog->len; 17578 } 17579 17580 return 0; 17581 } 17582 17583 static int opt_remove_nops(struct bpf_verifier_env *env) 17584 { 17585 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17586 struct bpf_insn *insn = env->prog->insnsi; 17587 int insn_cnt = env->prog->len; 17588 int i, err; 17589 17590 for (i = 0; i < insn_cnt; i++) { 17591 if (memcmp(&insn[i], &ja, sizeof(ja))) 17592 continue; 17593 17594 err = verifier_remove_insns(env, i, 1); 17595 if (err) 17596 return err; 17597 insn_cnt--; 17598 i--; 17599 } 17600 17601 return 0; 17602 } 17603 17604 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17605 const union bpf_attr *attr) 17606 { 17607 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17608 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17609 int i, patch_len, delta = 0, len = env->prog->len; 17610 struct bpf_insn *insns = env->prog->insnsi; 17611 struct bpf_prog *new_prog; 17612 bool rnd_hi32; 17613 17614 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17615 zext_patch[1] = BPF_ZEXT_REG(0); 17616 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17617 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17618 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17619 for (i = 0; i < len; i++) { 17620 int adj_idx = i + delta; 17621 struct bpf_insn insn; 17622 int load_reg; 17623 17624 insn = insns[adj_idx]; 17625 load_reg = insn_def_regno(&insn); 17626 if (!aux[adj_idx].zext_dst) { 17627 u8 code, class; 17628 u32 imm_rnd; 17629 17630 if (!rnd_hi32) 17631 continue; 17632 17633 code = insn.code; 17634 class = BPF_CLASS(code); 17635 if (load_reg == -1) 17636 continue; 17637 17638 /* NOTE: arg "reg" (the fourth one) is only used for 17639 * BPF_STX + SRC_OP, so it is safe to pass NULL 17640 * here. 17641 */ 17642 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17643 if (class == BPF_LD && 17644 BPF_MODE(code) == BPF_IMM) 17645 i++; 17646 continue; 17647 } 17648 17649 /* ctx load could be transformed into wider load. */ 17650 if (class == BPF_LDX && 17651 aux[adj_idx].ptr_type == PTR_TO_CTX) 17652 continue; 17653 17654 imm_rnd = get_random_u32(); 17655 rnd_hi32_patch[0] = insn; 17656 rnd_hi32_patch[1].imm = imm_rnd; 17657 rnd_hi32_patch[3].dst_reg = load_reg; 17658 patch = rnd_hi32_patch; 17659 patch_len = 4; 17660 goto apply_patch_buffer; 17661 } 17662 17663 /* Add in an zero-extend instruction if a) the JIT has requested 17664 * it or b) it's a CMPXCHG. 17665 * 17666 * The latter is because: BPF_CMPXCHG always loads a value into 17667 * R0, therefore always zero-extends. However some archs' 17668 * equivalent instruction only does this load when the 17669 * comparison is successful. This detail of CMPXCHG is 17670 * orthogonal to the general zero-extension behaviour of the 17671 * CPU, so it's treated independently of bpf_jit_needs_zext. 17672 */ 17673 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17674 continue; 17675 17676 /* Zero-extension is done by the caller. */ 17677 if (bpf_pseudo_kfunc_call(&insn)) 17678 continue; 17679 17680 if (WARN_ON(load_reg == -1)) { 17681 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17682 return -EFAULT; 17683 } 17684 17685 zext_patch[0] = insn; 17686 zext_patch[1].dst_reg = load_reg; 17687 zext_patch[1].src_reg = load_reg; 17688 patch = zext_patch; 17689 patch_len = 2; 17690 apply_patch_buffer: 17691 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17692 if (!new_prog) 17693 return -ENOMEM; 17694 env->prog = new_prog; 17695 insns = new_prog->insnsi; 17696 aux = env->insn_aux_data; 17697 delta += patch_len - 1; 17698 } 17699 17700 return 0; 17701 } 17702 17703 /* convert load instructions that access fields of a context type into a 17704 * sequence of instructions that access fields of the underlying structure: 17705 * struct __sk_buff -> struct sk_buff 17706 * struct bpf_sock_ops -> struct sock 17707 */ 17708 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17709 { 17710 const struct bpf_verifier_ops *ops = env->ops; 17711 int i, cnt, size, ctx_field_size, delta = 0; 17712 const int insn_cnt = env->prog->len; 17713 struct bpf_insn insn_buf[16], *insn; 17714 u32 target_size, size_default, off; 17715 struct bpf_prog *new_prog; 17716 enum bpf_access_type type; 17717 bool is_narrower_load; 17718 17719 if (ops->gen_prologue || env->seen_direct_write) { 17720 if (!ops->gen_prologue) { 17721 verbose(env, "bpf verifier is misconfigured\n"); 17722 return -EINVAL; 17723 } 17724 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17725 env->prog); 17726 if (cnt >= ARRAY_SIZE(insn_buf)) { 17727 verbose(env, "bpf verifier is misconfigured\n"); 17728 return -EINVAL; 17729 } else if (cnt) { 17730 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17731 if (!new_prog) 17732 return -ENOMEM; 17733 17734 env->prog = new_prog; 17735 delta += cnt - 1; 17736 } 17737 } 17738 17739 if (bpf_prog_is_offloaded(env->prog->aux)) 17740 return 0; 17741 17742 insn = env->prog->insnsi + delta; 17743 17744 for (i = 0; i < insn_cnt; i++, insn++) { 17745 bpf_convert_ctx_access_t convert_ctx_access; 17746 u8 mode; 17747 17748 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17749 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17750 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17751 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17752 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17753 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17754 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17755 type = BPF_READ; 17756 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17757 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17758 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17759 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17760 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17761 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17762 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17763 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17764 type = BPF_WRITE; 17765 } else { 17766 continue; 17767 } 17768 17769 if (type == BPF_WRITE && 17770 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17771 struct bpf_insn patch[] = { 17772 *insn, 17773 BPF_ST_NOSPEC(), 17774 }; 17775 17776 cnt = ARRAY_SIZE(patch); 17777 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17778 if (!new_prog) 17779 return -ENOMEM; 17780 17781 delta += cnt - 1; 17782 env->prog = new_prog; 17783 insn = new_prog->insnsi + i + delta; 17784 continue; 17785 } 17786 17787 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17788 case PTR_TO_CTX: 17789 if (!ops->convert_ctx_access) 17790 continue; 17791 convert_ctx_access = ops->convert_ctx_access; 17792 break; 17793 case PTR_TO_SOCKET: 17794 case PTR_TO_SOCK_COMMON: 17795 convert_ctx_access = bpf_sock_convert_ctx_access; 17796 break; 17797 case PTR_TO_TCP_SOCK: 17798 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17799 break; 17800 case PTR_TO_XDP_SOCK: 17801 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17802 break; 17803 case PTR_TO_BTF_ID: 17804 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17805 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17806 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17807 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17808 * any faults for loads into such types. BPF_WRITE is disallowed 17809 * for this case. 17810 */ 17811 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17812 if (type == BPF_READ) { 17813 if (BPF_MODE(insn->code) == BPF_MEM) 17814 insn->code = BPF_LDX | BPF_PROBE_MEM | 17815 BPF_SIZE((insn)->code); 17816 else 17817 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17818 BPF_SIZE((insn)->code); 17819 env->prog->aux->num_exentries++; 17820 } 17821 continue; 17822 default: 17823 continue; 17824 } 17825 17826 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17827 size = BPF_LDST_BYTES(insn); 17828 mode = BPF_MODE(insn->code); 17829 17830 /* If the read access is a narrower load of the field, 17831 * convert to a 4/8-byte load, to minimum program type specific 17832 * convert_ctx_access changes. If conversion is successful, 17833 * we will apply proper mask to the result. 17834 */ 17835 is_narrower_load = size < ctx_field_size; 17836 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17837 off = insn->off; 17838 if (is_narrower_load) { 17839 u8 size_code; 17840 17841 if (type == BPF_WRITE) { 17842 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17843 return -EINVAL; 17844 } 17845 17846 size_code = BPF_H; 17847 if (ctx_field_size == 4) 17848 size_code = BPF_W; 17849 else if (ctx_field_size == 8) 17850 size_code = BPF_DW; 17851 17852 insn->off = off & ~(size_default - 1); 17853 insn->code = BPF_LDX | BPF_MEM | size_code; 17854 } 17855 17856 target_size = 0; 17857 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17858 &target_size); 17859 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17860 (ctx_field_size && !target_size)) { 17861 verbose(env, "bpf verifier is misconfigured\n"); 17862 return -EINVAL; 17863 } 17864 17865 if (is_narrower_load && size < target_size) { 17866 u8 shift = bpf_ctx_narrow_access_offset( 17867 off, size, size_default) * 8; 17868 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17869 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17870 return -EINVAL; 17871 } 17872 if (ctx_field_size <= 4) { 17873 if (shift) 17874 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17875 insn->dst_reg, 17876 shift); 17877 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17878 (1 << size * 8) - 1); 17879 } else { 17880 if (shift) 17881 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17882 insn->dst_reg, 17883 shift); 17884 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17885 (1ULL << size * 8) - 1); 17886 } 17887 } 17888 if (mode == BPF_MEMSX) 17889 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17890 insn->dst_reg, insn->dst_reg, 17891 size * 8, 0); 17892 17893 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17894 if (!new_prog) 17895 return -ENOMEM; 17896 17897 delta += cnt - 1; 17898 17899 /* keep walking new program and skip insns we just inserted */ 17900 env->prog = new_prog; 17901 insn = new_prog->insnsi + i + delta; 17902 } 17903 17904 return 0; 17905 } 17906 17907 static int jit_subprogs(struct bpf_verifier_env *env) 17908 { 17909 struct bpf_prog *prog = env->prog, **func, *tmp; 17910 int i, j, subprog_start, subprog_end = 0, len, subprog; 17911 struct bpf_map *map_ptr; 17912 struct bpf_insn *insn; 17913 void *old_bpf_func; 17914 int err, num_exentries; 17915 17916 if (env->subprog_cnt <= 1) 17917 return 0; 17918 17919 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17920 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17921 continue; 17922 17923 /* Upon error here we cannot fall back to interpreter but 17924 * need a hard reject of the program. Thus -EFAULT is 17925 * propagated in any case. 17926 */ 17927 subprog = find_subprog(env, i + insn->imm + 1); 17928 if (subprog < 0) { 17929 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17930 i + insn->imm + 1); 17931 return -EFAULT; 17932 } 17933 /* temporarily remember subprog id inside insn instead of 17934 * aux_data, since next loop will split up all insns into funcs 17935 */ 17936 insn->off = subprog; 17937 /* remember original imm in case JIT fails and fallback 17938 * to interpreter will be needed 17939 */ 17940 env->insn_aux_data[i].call_imm = insn->imm; 17941 /* point imm to __bpf_call_base+1 from JITs point of view */ 17942 insn->imm = 1; 17943 if (bpf_pseudo_func(insn)) 17944 /* jit (e.g. x86_64) may emit fewer instructions 17945 * if it learns a u32 imm is the same as a u64 imm. 17946 * Force a non zero here. 17947 */ 17948 insn[1].imm = 1; 17949 } 17950 17951 err = bpf_prog_alloc_jited_linfo(prog); 17952 if (err) 17953 goto out_undo_insn; 17954 17955 err = -ENOMEM; 17956 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17957 if (!func) 17958 goto out_undo_insn; 17959 17960 for (i = 0; i < env->subprog_cnt; i++) { 17961 subprog_start = subprog_end; 17962 subprog_end = env->subprog_info[i + 1].start; 17963 17964 len = subprog_end - subprog_start; 17965 /* bpf_prog_run() doesn't call subprogs directly, 17966 * hence main prog stats include the runtime of subprogs. 17967 * subprogs don't have IDs and not reachable via prog_get_next_id 17968 * func[i]->stats will never be accessed and stays NULL 17969 */ 17970 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17971 if (!func[i]) 17972 goto out_free; 17973 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17974 len * sizeof(struct bpf_insn)); 17975 func[i]->type = prog->type; 17976 func[i]->len = len; 17977 if (bpf_prog_calc_tag(func[i])) 17978 goto out_free; 17979 func[i]->is_func = 1; 17980 func[i]->aux->func_idx = i; 17981 /* Below members will be freed only at prog->aux */ 17982 func[i]->aux->btf = prog->aux->btf; 17983 func[i]->aux->func_info = prog->aux->func_info; 17984 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17985 func[i]->aux->poke_tab = prog->aux->poke_tab; 17986 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17987 17988 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17989 struct bpf_jit_poke_descriptor *poke; 17990 17991 poke = &prog->aux->poke_tab[j]; 17992 if (poke->insn_idx < subprog_end && 17993 poke->insn_idx >= subprog_start) 17994 poke->aux = func[i]->aux; 17995 } 17996 17997 func[i]->aux->name[0] = 'F'; 17998 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17999 func[i]->jit_requested = 1; 18000 func[i]->blinding_requested = prog->blinding_requested; 18001 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18002 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18003 func[i]->aux->linfo = prog->aux->linfo; 18004 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18005 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18006 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18007 num_exentries = 0; 18008 insn = func[i]->insnsi; 18009 for (j = 0; j < func[i]->len; j++, insn++) { 18010 if (BPF_CLASS(insn->code) == BPF_LDX && 18011 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18012 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18013 num_exentries++; 18014 } 18015 func[i]->aux->num_exentries = num_exentries; 18016 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18017 func[i] = bpf_int_jit_compile(func[i]); 18018 if (!func[i]->jited) { 18019 err = -ENOTSUPP; 18020 goto out_free; 18021 } 18022 cond_resched(); 18023 } 18024 18025 /* at this point all bpf functions were successfully JITed 18026 * now populate all bpf_calls with correct addresses and 18027 * run last pass of JIT 18028 */ 18029 for (i = 0; i < env->subprog_cnt; i++) { 18030 insn = func[i]->insnsi; 18031 for (j = 0; j < func[i]->len; j++, insn++) { 18032 if (bpf_pseudo_func(insn)) { 18033 subprog = insn->off; 18034 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18035 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18036 continue; 18037 } 18038 if (!bpf_pseudo_call(insn)) 18039 continue; 18040 subprog = insn->off; 18041 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18042 } 18043 18044 /* we use the aux data to keep a list of the start addresses 18045 * of the JITed images for each function in the program 18046 * 18047 * for some architectures, such as powerpc64, the imm field 18048 * might not be large enough to hold the offset of the start 18049 * address of the callee's JITed image from __bpf_call_base 18050 * 18051 * in such cases, we can lookup the start address of a callee 18052 * by using its subprog id, available from the off field of 18053 * the call instruction, as an index for this list 18054 */ 18055 func[i]->aux->func = func; 18056 func[i]->aux->func_cnt = env->subprog_cnt; 18057 } 18058 for (i = 0; i < env->subprog_cnt; i++) { 18059 old_bpf_func = func[i]->bpf_func; 18060 tmp = bpf_int_jit_compile(func[i]); 18061 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18062 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18063 err = -ENOTSUPP; 18064 goto out_free; 18065 } 18066 cond_resched(); 18067 } 18068 18069 /* finally lock prog and jit images for all functions and 18070 * populate kallsysm. Begin at the first subprogram, since 18071 * bpf_prog_load will add the kallsyms for the main program. 18072 */ 18073 for (i = 1; i < env->subprog_cnt; i++) { 18074 bpf_prog_lock_ro(func[i]); 18075 bpf_prog_kallsyms_add(func[i]); 18076 } 18077 18078 /* Last step: make now unused interpreter insns from main 18079 * prog consistent for later dump requests, so they can 18080 * later look the same as if they were interpreted only. 18081 */ 18082 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18083 if (bpf_pseudo_func(insn)) { 18084 insn[0].imm = env->insn_aux_data[i].call_imm; 18085 insn[1].imm = insn->off; 18086 insn->off = 0; 18087 continue; 18088 } 18089 if (!bpf_pseudo_call(insn)) 18090 continue; 18091 insn->off = env->insn_aux_data[i].call_imm; 18092 subprog = find_subprog(env, i + insn->off + 1); 18093 insn->imm = subprog; 18094 } 18095 18096 prog->jited = 1; 18097 prog->bpf_func = func[0]->bpf_func; 18098 prog->jited_len = func[0]->jited_len; 18099 prog->aux->extable = func[0]->aux->extable; 18100 prog->aux->num_exentries = func[0]->aux->num_exentries; 18101 prog->aux->func = func; 18102 prog->aux->func_cnt = env->subprog_cnt; 18103 bpf_prog_jit_attempt_done(prog); 18104 return 0; 18105 out_free: 18106 /* We failed JIT'ing, so at this point we need to unregister poke 18107 * descriptors from subprogs, so that kernel is not attempting to 18108 * patch it anymore as we're freeing the subprog JIT memory. 18109 */ 18110 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18111 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18112 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18113 } 18114 /* At this point we're guaranteed that poke descriptors are not 18115 * live anymore. We can just unlink its descriptor table as it's 18116 * released with the main prog. 18117 */ 18118 for (i = 0; i < env->subprog_cnt; i++) { 18119 if (!func[i]) 18120 continue; 18121 func[i]->aux->poke_tab = NULL; 18122 bpf_jit_free(func[i]); 18123 } 18124 kfree(func); 18125 out_undo_insn: 18126 /* cleanup main prog to be interpreted */ 18127 prog->jit_requested = 0; 18128 prog->blinding_requested = 0; 18129 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18130 if (!bpf_pseudo_call(insn)) 18131 continue; 18132 insn->off = 0; 18133 insn->imm = env->insn_aux_data[i].call_imm; 18134 } 18135 bpf_prog_jit_attempt_done(prog); 18136 return err; 18137 } 18138 18139 static int fixup_call_args(struct bpf_verifier_env *env) 18140 { 18141 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18142 struct bpf_prog *prog = env->prog; 18143 struct bpf_insn *insn = prog->insnsi; 18144 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18145 int i, depth; 18146 #endif 18147 int err = 0; 18148 18149 if (env->prog->jit_requested && 18150 !bpf_prog_is_offloaded(env->prog->aux)) { 18151 err = jit_subprogs(env); 18152 if (err == 0) 18153 return 0; 18154 if (err == -EFAULT) 18155 return err; 18156 } 18157 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18158 if (has_kfunc_call) { 18159 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18160 return -EINVAL; 18161 } 18162 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18163 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18164 * have to be rejected, since interpreter doesn't support them yet. 18165 */ 18166 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18167 return -EINVAL; 18168 } 18169 for (i = 0; i < prog->len; i++, insn++) { 18170 if (bpf_pseudo_func(insn)) { 18171 /* When JIT fails the progs with callback calls 18172 * have to be rejected, since interpreter doesn't support them yet. 18173 */ 18174 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18175 return -EINVAL; 18176 } 18177 18178 if (!bpf_pseudo_call(insn)) 18179 continue; 18180 depth = get_callee_stack_depth(env, insn, i); 18181 if (depth < 0) 18182 return depth; 18183 bpf_patch_call_args(insn, depth); 18184 } 18185 err = 0; 18186 #endif 18187 return err; 18188 } 18189 18190 /* replace a generic kfunc with a specialized version if necessary */ 18191 static void specialize_kfunc(struct bpf_verifier_env *env, 18192 u32 func_id, u16 offset, unsigned long *addr) 18193 { 18194 struct bpf_prog *prog = env->prog; 18195 bool seen_direct_write; 18196 void *xdp_kfunc; 18197 bool is_rdonly; 18198 18199 if (bpf_dev_bound_kfunc_id(func_id)) { 18200 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18201 if (xdp_kfunc) { 18202 *addr = (unsigned long)xdp_kfunc; 18203 return; 18204 } 18205 /* fallback to default kfunc when not supported by netdev */ 18206 } 18207 18208 if (offset) 18209 return; 18210 18211 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18212 seen_direct_write = env->seen_direct_write; 18213 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18214 18215 if (is_rdonly) 18216 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18217 18218 /* restore env->seen_direct_write to its original value, since 18219 * may_access_direct_pkt_data mutates it 18220 */ 18221 env->seen_direct_write = seen_direct_write; 18222 } 18223 } 18224 18225 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18226 u16 struct_meta_reg, 18227 u16 node_offset_reg, 18228 struct bpf_insn *insn, 18229 struct bpf_insn *insn_buf, 18230 int *cnt) 18231 { 18232 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18233 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18234 18235 insn_buf[0] = addr[0]; 18236 insn_buf[1] = addr[1]; 18237 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18238 insn_buf[3] = *insn; 18239 *cnt = 4; 18240 } 18241 18242 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18243 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18244 { 18245 const struct bpf_kfunc_desc *desc; 18246 18247 if (!insn->imm) { 18248 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18249 return -EINVAL; 18250 } 18251 18252 *cnt = 0; 18253 18254 /* insn->imm has the btf func_id. Replace it with an offset relative to 18255 * __bpf_call_base, unless the JIT needs to call functions that are 18256 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18257 */ 18258 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18259 if (!desc) { 18260 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18261 insn->imm); 18262 return -EFAULT; 18263 } 18264 18265 if (!bpf_jit_supports_far_kfunc_call()) 18266 insn->imm = BPF_CALL_IMM(desc->addr); 18267 if (insn->off) 18268 return 0; 18269 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18270 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18271 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18272 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18273 18274 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18275 insn_buf[1] = addr[0]; 18276 insn_buf[2] = addr[1]; 18277 insn_buf[3] = *insn; 18278 *cnt = 4; 18279 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18280 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18281 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18282 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18283 18284 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18285 !kptr_struct_meta) { 18286 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18287 insn_idx); 18288 return -EFAULT; 18289 } 18290 18291 insn_buf[0] = addr[0]; 18292 insn_buf[1] = addr[1]; 18293 insn_buf[2] = *insn; 18294 *cnt = 3; 18295 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18296 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18297 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18298 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18299 int struct_meta_reg = BPF_REG_3; 18300 int node_offset_reg = BPF_REG_4; 18301 18302 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18303 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18304 struct_meta_reg = BPF_REG_4; 18305 node_offset_reg = BPF_REG_5; 18306 } 18307 18308 if (!kptr_struct_meta) { 18309 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18310 insn_idx); 18311 return -EFAULT; 18312 } 18313 18314 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18315 node_offset_reg, insn, insn_buf, cnt); 18316 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18317 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18318 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18319 *cnt = 1; 18320 } 18321 return 0; 18322 } 18323 18324 /* Do various post-verification rewrites in a single program pass. 18325 * These rewrites simplify JIT and interpreter implementations. 18326 */ 18327 static int do_misc_fixups(struct bpf_verifier_env *env) 18328 { 18329 struct bpf_prog *prog = env->prog; 18330 enum bpf_attach_type eatype = prog->expected_attach_type; 18331 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18332 struct bpf_insn *insn = prog->insnsi; 18333 const struct bpf_func_proto *fn; 18334 const int insn_cnt = prog->len; 18335 const struct bpf_map_ops *ops; 18336 struct bpf_insn_aux_data *aux; 18337 struct bpf_insn insn_buf[16]; 18338 struct bpf_prog *new_prog; 18339 struct bpf_map *map_ptr; 18340 int i, ret, cnt, delta = 0; 18341 18342 for (i = 0; i < insn_cnt; i++, insn++) { 18343 /* Make divide-by-zero exceptions impossible. */ 18344 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18345 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18346 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18347 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18348 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18349 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18350 struct bpf_insn *patchlet; 18351 struct bpf_insn chk_and_div[] = { 18352 /* [R,W]x div 0 -> 0 */ 18353 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18354 BPF_JNE | BPF_K, insn->src_reg, 18355 0, 2, 0), 18356 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18357 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18358 *insn, 18359 }; 18360 struct bpf_insn chk_and_mod[] = { 18361 /* [R,W]x mod 0 -> [R,W]x */ 18362 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18363 BPF_JEQ | BPF_K, insn->src_reg, 18364 0, 1 + (is64 ? 0 : 1), 0), 18365 *insn, 18366 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18367 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18368 }; 18369 18370 patchlet = isdiv ? chk_and_div : chk_and_mod; 18371 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18372 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18373 18374 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18375 if (!new_prog) 18376 return -ENOMEM; 18377 18378 delta += cnt - 1; 18379 env->prog = prog = new_prog; 18380 insn = new_prog->insnsi + i + delta; 18381 continue; 18382 } 18383 18384 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18385 if (BPF_CLASS(insn->code) == BPF_LD && 18386 (BPF_MODE(insn->code) == BPF_ABS || 18387 BPF_MODE(insn->code) == BPF_IND)) { 18388 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18389 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18390 verbose(env, "bpf verifier is misconfigured\n"); 18391 return -EINVAL; 18392 } 18393 18394 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18395 if (!new_prog) 18396 return -ENOMEM; 18397 18398 delta += cnt - 1; 18399 env->prog = prog = new_prog; 18400 insn = new_prog->insnsi + i + delta; 18401 continue; 18402 } 18403 18404 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18405 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18406 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18407 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18408 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18409 struct bpf_insn *patch = &insn_buf[0]; 18410 bool issrc, isneg, isimm; 18411 u32 off_reg; 18412 18413 aux = &env->insn_aux_data[i + delta]; 18414 if (!aux->alu_state || 18415 aux->alu_state == BPF_ALU_NON_POINTER) 18416 continue; 18417 18418 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18419 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18420 BPF_ALU_SANITIZE_SRC; 18421 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18422 18423 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18424 if (isimm) { 18425 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18426 } else { 18427 if (isneg) 18428 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18429 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18430 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18431 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18432 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18433 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18434 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18435 } 18436 if (!issrc) 18437 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18438 insn->src_reg = BPF_REG_AX; 18439 if (isneg) 18440 insn->code = insn->code == code_add ? 18441 code_sub : code_add; 18442 *patch++ = *insn; 18443 if (issrc && isneg && !isimm) 18444 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18445 cnt = patch - insn_buf; 18446 18447 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18448 if (!new_prog) 18449 return -ENOMEM; 18450 18451 delta += cnt - 1; 18452 env->prog = prog = new_prog; 18453 insn = new_prog->insnsi + i + delta; 18454 continue; 18455 } 18456 18457 if (insn->code != (BPF_JMP | BPF_CALL)) 18458 continue; 18459 if (insn->src_reg == BPF_PSEUDO_CALL) 18460 continue; 18461 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18462 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18463 if (ret) 18464 return ret; 18465 if (cnt == 0) 18466 continue; 18467 18468 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18469 if (!new_prog) 18470 return -ENOMEM; 18471 18472 delta += cnt - 1; 18473 env->prog = prog = new_prog; 18474 insn = new_prog->insnsi + i + delta; 18475 continue; 18476 } 18477 18478 if (insn->imm == BPF_FUNC_get_route_realm) 18479 prog->dst_needed = 1; 18480 if (insn->imm == BPF_FUNC_get_prandom_u32) 18481 bpf_user_rnd_init_once(); 18482 if (insn->imm == BPF_FUNC_override_return) 18483 prog->kprobe_override = 1; 18484 if (insn->imm == BPF_FUNC_tail_call) { 18485 /* If we tail call into other programs, we 18486 * cannot make any assumptions since they can 18487 * be replaced dynamically during runtime in 18488 * the program array. 18489 */ 18490 prog->cb_access = 1; 18491 if (!allow_tail_call_in_subprogs(env)) 18492 prog->aux->stack_depth = MAX_BPF_STACK; 18493 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18494 18495 /* mark bpf_tail_call as different opcode to avoid 18496 * conditional branch in the interpreter for every normal 18497 * call and to prevent accidental JITing by JIT compiler 18498 * that doesn't support bpf_tail_call yet 18499 */ 18500 insn->imm = 0; 18501 insn->code = BPF_JMP | BPF_TAIL_CALL; 18502 18503 aux = &env->insn_aux_data[i + delta]; 18504 if (env->bpf_capable && !prog->blinding_requested && 18505 prog->jit_requested && 18506 !bpf_map_key_poisoned(aux) && 18507 !bpf_map_ptr_poisoned(aux) && 18508 !bpf_map_ptr_unpriv(aux)) { 18509 struct bpf_jit_poke_descriptor desc = { 18510 .reason = BPF_POKE_REASON_TAIL_CALL, 18511 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18512 .tail_call.key = bpf_map_key_immediate(aux), 18513 .insn_idx = i + delta, 18514 }; 18515 18516 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18517 if (ret < 0) { 18518 verbose(env, "adding tail call poke descriptor failed\n"); 18519 return ret; 18520 } 18521 18522 insn->imm = ret + 1; 18523 continue; 18524 } 18525 18526 if (!bpf_map_ptr_unpriv(aux)) 18527 continue; 18528 18529 /* instead of changing every JIT dealing with tail_call 18530 * emit two extra insns: 18531 * if (index >= max_entries) goto out; 18532 * index &= array->index_mask; 18533 * to avoid out-of-bounds cpu speculation 18534 */ 18535 if (bpf_map_ptr_poisoned(aux)) { 18536 verbose(env, "tail_call abusing map_ptr\n"); 18537 return -EINVAL; 18538 } 18539 18540 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18541 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18542 map_ptr->max_entries, 2); 18543 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18544 container_of(map_ptr, 18545 struct bpf_array, 18546 map)->index_mask); 18547 insn_buf[2] = *insn; 18548 cnt = 3; 18549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18550 if (!new_prog) 18551 return -ENOMEM; 18552 18553 delta += cnt - 1; 18554 env->prog = prog = new_prog; 18555 insn = new_prog->insnsi + i + delta; 18556 continue; 18557 } 18558 18559 if (insn->imm == BPF_FUNC_timer_set_callback) { 18560 /* The verifier will process callback_fn as many times as necessary 18561 * with different maps and the register states prepared by 18562 * set_timer_callback_state will be accurate. 18563 * 18564 * The following use case is valid: 18565 * map1 is shared by prog1, prog2, prog3. 18566 * prog1 calls bpf_timer_init for some map1 elements 18567 * prog2 calls bpf_timer_set_callback for some map1 elements. 18568 * Those that were not bpf_timer_init-ed will return -EINVAL. 18569 * prog3 calls bpf_timer_start for some map1 elements. 18570 * Those that were not both bpf_timer_init-ed and 18571 * bpf_timer_set_callback-ed will return -EINVAL. 18572 */ 18573 struct bpf_insn ld_addrs[2] = { 18574 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18575 }; 18576 18577 insn_buf[0] = ld_addrs[0]; 18578 insn_buf[1] = ld_addrs[1]; 18579 insn_buf[2] = *insn; 18580 cnt = 3; 18581 18582 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18583 if (!new_prog) 18584 return -ENOMEM; 18585 18586 delta += cnt - 1; 18587 env->prog = prog = new_prog; 18588 insn = new_prog->insnsi + i + delta; 18589 goto patch_call_imm; 18590 } 18591 18592 if (is_storage_get_function(insn->imm)) { 18593 if (!env->prog->aux->sleepable || 18594 env->insn_aux_data[i + delta].storage_get_func_atomic) 18595 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18596 else 18597 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18598 insn_buf[1] = *insn; 18599 cnt = 2; 18600 18601 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18602 if (!new_prog) 18603 return -ENOMEM; 18604 18605 delta += cnt - 1; 18606 env->prog = prog = new_prog; 18607 insn = new_prog->insnsi + i + delta; 18608 goto patch_call_imm; 18609 } 18610 18611 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18612 * and other inlining handlers are currently limited to 64 bit 18613 * only. 18614 */ 18615 if (prog->jit_requested && BITS_PER_LONG == 64 && 18616 (insn->imm == BPF_FUNC_map_lookup_elem || 18617 insn->imm == BPF_FUNC_map_update_elem || 18618 insn->imm == BPF_FUNC_map_delete_elem || 18619 insn->imm == BPF_FUNC_map_push_elem || 18620 insn->imm == BPF_FUNC_map_pop_elem || 18621 insn->imm == BPF_FUNC_map_peek_elem || 18622 insn->imm == BPF_FUNC_redirect_map || 18623 insn->imm == BPF_FUNC_for_each_map_elem || 18624 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18625 aux = &env->insn_aux_data[i + delta]; 18626 if (bpf_map_ptr_poisoned(aux)) 18627 goto patch_call_imm; 18628 18629 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18630 ops = map_ptr->ops; 18631 if (insn->imm == BPF_FUNC_map_lookup_elem && 18632 ops->map_gen_lookup) { 18633 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18634 if (cnt == -EOPNOTSUPP) 18635 goto patch_map_ops_generic; 18636 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18637 verbose(env, "bpf verifier is misconfigured\n"); 18638 return -EINVAL; 18639 } 18640 18641 new_prog = bpf_patch_insn_data(env, i + delta, 18642 insn_buf, cnt); 18643 if (!new_prog) 18644 return -ENOMEM; 18645 18646 delta += cnt - 1; 18647 env->prog = prog = new_prog; 18648 insn = new_prog->insnsi + i + delta; 18649 continue; 18650 } 18651 18652 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18653 (void *(*)(struct bpf_map *map, void *key))NULL)); 18654 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18655 (long (*)(struct bpf_map *map, void *key))NULL)); 18656 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18657 (long (*)(struct bpf_map *map, void *key, void *value, 18658 u64 flags))NULL)); 18659 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18660 (long (*)(struct bpf_map *map, void *value, 18661 u64 flags))NULL)); 18662 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18663 (long (*)(struct bpf_map *map, void *value))NULL)); 18664 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18665 (long (*)(struct bpf_map *map, void *value))NULL)); 18666 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18667 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18668 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18669 (long (*)(struct bpf_map *map, 18670 bpf_callback_t callback_fn, 18671 void *callback_ctx, 18672 u64 flags))NULL)); 18673 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18674 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18675 18676 patch_map_ops_generic: 18677 switch (insn->imm) { 18678 case BPF_FUNC_map_lookup_elem: 18679 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18680 continue; 18681 case BPF_FUNC_map_update_elem: 18682 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18683 continue; 18684 case BPF_FUNC_map_delete_elem: 18685 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18686 continue; 18687 case BPF_FUNC_map_push_elem: 18688 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18689 continue; 18690 case BPF_FUNC_map_pop_elem: 18691 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18692 continue; 18693 case BPF_FUNC_map_peek_elem: 18694 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18695 continue; 18696 case BPF_FUNC_redirect_map: 18697 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18698 continue; 18699 case BPF_FUNC_for_each_map_elem: 18700 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18701 continue; 18702 case BPF_FUNC_map_lookup_percpu_elem: 18703 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18704 continue; 18705 } 18706 18707 goto patch_call_imm; 18708 } 18709 18710 /* Implement bpf_jiffies64 inline. */ 18711 if (prog->jit_requested && BITS_PER_LONG == 64 && 18712 insn->imm == BPF_FUNC_jiffies64) { 18713 struct bpf_insn ld_jiffies_addr[2] = { 18714 BPF_LD_IMM64(BPF_REG_0, 18715 (unsigned long)&jiffies), 18716 }; 18717 18718 insn_buf[0] = ld_jiffies_addr[0]; 18719 insn_buf[1] = ld_jiffies_addr[1]; 18720 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18721 BPF_REG_0, 0); 18722 cnt = 3; 18723 18724 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18725 cnt); 18726 if (!new_prog) 18727 return -ENOMEM; 18728 18729 delta += cnt - 1; 18730 env->prog = prog = new_prog; 18731 insn = new_prog->insnsi + i + delta; 18732 continue; 18733 } 18734 18735 /* Implement bpf_get_func_arg inline. */ 18736 if (prog_type == BPF_PROG_TYPE_TRACING && 18737 insn->imm == BPF_FUNC_get_func_arg) { 18738 /* Load nr_args from ctx - 8 */ 18739 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18740 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18741 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18742 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18743 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18744 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18745 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18746 insn_buf[7] = BPF_JMP_A(1); 18747 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18748 cnt = 9; 18749 18750 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18751 if (!new_prog) 18752 return -ENOMEM; 18753 18754 delta += cnt - 1; 18755 env->prog = prog = new_prog; 18756 insn = new_prog->insnsi + i + delta; 18757 continue; 18758 } 18759 18760 /* Implement bpf_get_func_ret inline. */ 18761 if (prog_type == BPF_PROG_TYPE_TRACING && 18762 insn->imm == BPF_FUNC_get_func_ret) { 18763 if (eatype == BPF_TRACE_FEXIT || 18764 eatype == BPF_MODIFY_RETURN) { 18765 /* Load nr_args from ctx - 8 */ 18766 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18767 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18768 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18769 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18770 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18771 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18772 cnt = 6; 18773 } else { 18774 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18775 cnt = 1; 18776 } 18777 18778 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18779 if (!new_prog) 18780 return -ENOMEM; 18781 18782 delta += cnt - 1; 18783 env->prog = prog = new_prog; 18784 insn = new_prog->insnsi + i + delta; 18785 continue; 18786 } 18787 18788 /* Implement get_func_arg_cnt inline. */ 18789 if (prog_type == BPF_PROG_TYPE_TRACING && 18790 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18791 /* Load nr_args from ctx - 8 */ 18792 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18793 18794 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18795 if (!new_prog) 18796 return -ENOMEM; 18797 18798 env->prog = prog = new_prog; 18799 insn = new_prog->insnsi + i + delta; 18800 continue; 18801 } 18802 18803 /* Implement bpf_get_func_ip inline. */ 18804 if (prog_type == BPF_PROG_TYPE_TRACING && 18805 insn->imm == BPF_FUNC_get_func_ip) { 18806 /* Load IP address from ctx - 16 */ 18807 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18808 18809 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18810 if (!new_prog) 18811 return -ENOMEM; 18812 18813 env->prog = prog = new_prog; 18814 insn = new_prog->insnsi + i + delta; 18815 continue; 18816 } 18817 18818 patch_call_imm: 18819 fn = env->ops->get_func_proto(insn->imm, env->prog); 18820 /* all functions that have prototype and verifier allowed 18821 * programs to call them, must be real in-kernel functions 18822 */ 18823 if (!fn->func) { 18824 verbose(env, 18825 "kernel subsystem misconfigured func %s#%d\n", 18826 func_id_name(insn->imm), insn->imm); 18827 return -EFAULT; 18828 } 18829 insn->imm = fn->func - __bpf_call_base; 18830 } 18831 18832 /* Since poke tab is now finalized, publish aux to tracker. */ 18833 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18834 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18835 if (!map_ptr->ops->map_poke_track || 18836 !map_ptr->ops->map_poke_untrack || 18837 !map_ptr->ops->map_poke_run) { 18838 verbose(env, "bpf verifier is misconfigured\n"); 18839 return -EINVAL; 18840 } 18841 18842 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18843 if (ret < 0) { 18844 verbose(env, "tracking tail call prog failed\n"); 18845 return ret; 18846 } 18847 } 18848 18849 sort_kfunc_descs_by_imm_off(env->prog); 18850 18851 return 0; 18852 } 18853 18854 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18855 int position, 18856 s32 stack_base, 18857 u32 callback_subprogno, 18858 u32 *cnt) 18859 { 18860 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18861 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18862 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18863 int reg_loop_max = BPF_REG_6; 18864 int reg_loop_cnt = BPF_REG_7; 18865 int reg_loop_ctx = BPF_REG_8; 18866 18867 struct bpf_prog *new_prog; 18868 u32 callback_start; 18869 u32 call_insn_offset; 18870 s32 callback_offset; 18871 18872 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18873 * be careful to modify this code in sync. 18874 */ 18875 struct bpf_insn insn_buf[] = { 18876 /* Return error and jump to the end of the patch if 18877 * expected number of iterations is too big. 18878 */ 18879 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18880 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18881 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18882 /* spill R6, R7, R8 to use these as loop vars */ 18883 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18884 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18885 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18886 /* initialize loop vars */ 18887 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18888 BPF_MOV32_IMM(reg_loop_cnt, 0), 18889 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18890 /* loop header, 18891 * if reg_loop_cnt >= reg_loop_max skip the loop body 18892 */ 18893 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18894 /* callback call, 18895 * correct callback offset would be set after patching 18896 */ 18897 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18898 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18899 BPF_CALL_REL(0), 18900 /* increment loop counter */ 18901 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18902 /* jump to loop header if callback returned 0 */ 18903 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18904 /* return value of bpf_loop, 18905 * set R0 to the number of iterations 18906 */ 18907 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18908 /* restore original values of R6, R7, R8 */ 18909 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18910 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18911 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18912 }; 18913 18914 *cnt = ARRAY_SIZE(insn_buf); 18915 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18916 if (!new_prog) 18917 return new_prog; 18918 18919 /* callback start is known only after patching */ 18920 callback_start = env->subprog_info[callback_subprogno].start; 18921 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18922 call_insn_offset = position + 12; 18923 callback_offset = callback_start - call_insn_offset - 1; 18924 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18925 18926 return new_prog; 18927 } 18928 18929 static bool is_bpf_loop_call(struct bpf_insn *insn) 18930 { 18931 return insn->code == (BPF_JMP | BPF_CALL) && 18932 insn->src_reg == 0 && 18933 insn->imm == BPF_FUNC_loop; 18934 } 18935 18936 /* For all sub-programs in the program (including main) check 18937 * insn_aux_data to see if there are bpf_loop calls that require 18938 * inlining. If such calls are found the calls are replaced with a 18939 * sequence of instructions produced by `inline_bpf_loop` function and 18940 * subprog stack_depth is increased by the size of 3 registers. 18941 * This stack space is used to spill values of the R6, R7, R8. These 18942 * registers are used to store the loop bound, counter and context 18943 * variables. 18944 */ 18945 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18946 { 18947 struct bpf_subprog_info *subprogs = env->subprog_info; 18948 int i, cur_subprog = 0, cnt, delta = 0; 18949 struct bpf_insn *insn = env->prog->insnsi; 18950 int insn_cnt = env->prog->len; 18951 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18952 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18953 u16 stack_depth_extra = 0; 18954 18955 for (i = 0; i < insn_cnt; i++, insn++) { 18956 struct bpf_loop_inline_state *inline_state = 18957 &env->insn_aux_data[i + delta].loop_inline_state; 18958 18959 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18960 struct bpf_prog *new_prog; 18961 18962 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18963 new_prog = inline_bpf_loop(env, 18964 i + delta, 18965 -(stack_depth + stack_depth_extra), 18966 inline_state->callback_subprogno, 18967 &cnt); 18968 if (!new_prog) 18969 return -ENOMEM; 18970 18971 delta += cnt - 1; 18972 env->prog = new_prog; 18973 insn = new_prog->insnsi + i + delta; 18974 } 18975 18976 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18977 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18978 cur_subprog++; 18979 stack_depth = subprogs[cur_subprog].stack_depth; 18980 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18981 stack_depth_extra = 0; 18982 } 18983 } 18984 18985 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18986 18987 return 0; 18988 } 18989 18990 static void free_states(struct bpf_verifier_env *env) 18991 { 18992 struct bpf_verifier_state_list *sl, *sln; 18993 int i; 18994 18995 sl = env->free_list; 18996 while (sl) { 18997 sln = sl->next; 18998 free_verifier_state(&sl->state, false); 18999 kfree(sl); 19000 sl = sln; 19001 } 19002 env->free_list = NULL; 19003 19004 if (!env->explored_states) 19005 return; 19006 19007 for (i = 0; i < state_htab_size(env); i++) { 19008 sl = env->explored_states[i]; 19009 19010 while (sl) { 19011 sln = sl->next; 19012 free_verifier_state(&sl->state, false); 19013 kfree(sl); 19014 sl = sln; 19015 } 19016 env->explored_states[i] = NULL; 19017 } 19018 } 19019 19020 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19021 { 19022 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19023 struct bpf_verifier_state *state; 19024 struct bpf_reg_state *regs; 19025 int ret, i; 19026 19027 env->prev_linfo = NULL; 19028 env->pass_cnt++; 19029 19030 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19031 if (!state) 19032 return -ENOMEM; 19033 state->curframe = 0; 19034 state->speculative = false; 19035 state->branches = 1; 19036 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19037 if (!state->frame[0]) { 19038 kfree(state); 19039 return -ENOMEM; 19040 } 19041 env->cur_state = state; 19042 init_func_state(env, state->frame[0], 19043 BPF_MAIN_FUNC /* callsite */, 19044 0 /* frameno */, 19045 subprog); 19046 state->first_insn_idx = env->subprog_info[subprog].start; 19047 state->last_insn_idx = -1; 19048 19049 regs = state->frame[state->curframe]->regs; 19050 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19051 ret = btf_prepare_func_args(env, subprog, regs); 19052 if (ret) 19053 goto out; 19054 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19055 if (regs[i].type == PTR_TO_CTX) 19056 mark_reg_known_zero(env, regs, i); 19057 else if (regs[i].type == SCALAR_VALUE) 19058 mark_reg_unknown(env, regs, i); 19059 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19060 const u32 mem_size = regs[i].mem_size; 19061 19062 mark_reg_known_zero(env, regs, i); 19063 regs[i].mem_size = mem_size; 19064 regs[i].id = ++env->id_gen; 19065 } 19066 } 19067 } else { 19068 /* 1st arg to a function */ 19069 regs[BPF_REG_1].type = PTR_TO_CTX; 19070 mark_reg_known_zero(env, regs, BPF_REG_1); 19071 ret = btf_check_subprog_arg_match(env, subprog, regs); 19072 if (ret == -EFAULT) 19073 /* unlikely verifier bug. abort. 19074 * ret == 0 and ret < 0 are sadly acceptable for 19075 * main() function due to backward compatibility. 19076 * Like socket filter program may be written as: 19077 * int bpf_prog(struct pt_regs *ctx) 19078 * and never dereference that ctx in the program. 19079 * 'struct pt_regs' is a type mismatch for socket 19080 * filter that should be using 'struct __sk_buff'. 19081 */ 19082 goto out; 19083 } 19084 19085 ret = do_check(env); 19086 out: 19087 /* check for NULL is necessary, since cur_state can be freed inside 19088 * do_check() under memory pressure. 19089 */ 19090 if (env->cur_state) { 19091 free_verifier_state(env->cur_state, true); 19092 env->cur_state = NULL; 19093 } 19094 while (!pop_stack(env, NULL, NULL, false)); 19095 if (!ret && pop_log) 19096 bpf_vlog_reset(&env->log, 0); 19097 free_states(env); 19098 return ret; 19099 } 19100 19101 /* Verify all global functions in a BPF program one by one based on their BTF. 19102 * All global functions must pass verification. Otherwise the whole program is rejected. 19103 * Consider: 19104 * int bar(int); 19105 * int foo(int f) 19106 * { 19107 * return bar(f); 19108 * } 19109 * int bar(int b) 19110 * { 19111 * ... 19112 * } 19113 * foo() will be verified first for R1=any_scalar_value. During verification it 19114 * will be assumed that bar() already verified successfully and call to bar() 19115 * from foo() will be checked for type match only. Later bar() will be verified 19116 * independently to check that it's safe for R1=any_scalar_value. 19117 */ 19118 static int do_check_subprogs(struct bpf_verifier_env *env) 19119 { 19120 struct bpf_prog_aux *aux = env->prog->aux; 19121 int i, ret; 19122 19123 if (!aux->func_info) 19124 return 0; 19125 19126 for (i = 1; i < env->subprog_cnt; i++) { 19127 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19128 continue; 19129 env->insn_idx = env->subprog_info[i].start; 19130 WARN_ON_ONCE(env->insn_idx == 0); 19131 ret = do_check_common(env, i); 19132 if (ret) { 19133 return ret; 19134 } else if (env->log.level & BPF_LOG_LEVEL) { 19135 verbose(env, 19136 "Func#%d is safe for any args that match its prototype\n", 19137 i); 19138 } 19139 } 19140 return 0; 19141 } 19142 19143 static int do_check_main(struct bpf_verifier_env *env) 19144 { 19145 int ret; 19146 19147 env->insn_idx = 0; 19148 ret = do_check_common(env, 0); 19149 if (!ret) 19150 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19151 return ret; 19152 } 19153 19154 19155 static void print_verification_stats(struct bpf_verifier_env *env) 19156 { 19157 int i; 19158 19159 if (env->log.level & BPF_LOG_STATS) { 19160 verbose(env, "verification time %lld usec\n", 19161 div_u64(env->verification_time, 1000)); 19162 verbose(env, "stack depth "); 19163 for (i = 0; i < env->subprog_cnt; i++) { 19164 u32 depth = env->subprog_info[i].stack_depth; 19165 19166 verbose(env, "%d", depth); 19167 if (i + 1 < env->subprog_cnt) 19168 verbose(env, "+"); 19169 } 19170 verbose(env, "\n"); 19171 } 19172 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19173 "total_states %d peak_states %d mark_read %d\n", 19174 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19175 env->max_states_per_insn, env->total_states, 19176 env->peak_states, env->longest_mark_read_walk); 19177 } 19178 19179 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19180 { 19181 const struct btf_type *t, *func_proto; 19182 const struct bpf_struct_ops *st_ops; 19183 const struct btf_member *member; 19184 struct bpf_prog *prog = env->prog; 19185 u32 btf_id, member_idx; 19186 const char *mname; 19187 19188 if (!prog->gpl_compatible) { 19189 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19190 return -EINVAL; 19191 } 19192 19193 btf_id = prog->aux->attach_btf_id; 19194 st_ops = bpf_struct_ops_find(btf_id); 19195 if (!st_ops) { 19196 verbose(env, "attach_btf_id %u is not a supported struct\n", 19197 btf_id); 19198 return -ENOTSUPP; 19199 } 19200 19201 t = st_ops->type; 19202 member_idx = prog->expected_attach_type; 19203 if (member_idx >= btf_type_vlen(t)) { 19204 verbose(env, "attach to invalid member idx %u of struct %s\n", 19205 member_idx, st_ops->name); 19206 return -EINVAL; 19207 } 19208 19209 member = &btf_type_member(t)[member_idx]; 19210 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19211 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19212 NULL); 19213 if (!func_proto) { 19214 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19215 mname, member_idx, st_ops->name); 19216 return -EINVAL; 19217 } 19218 19219 if (st_ops->check_member) { 19220 int err = st_ops->check_member(t, member, prog); 19221 19222 if (err) { 19223 verbose(env, "attach to unsupported member %s of struct %s\n", 19224 mname, st_ops->name); 19225 return err; 19226 } 19227 } 19228 19229 prog->aux->attach_func_proto = func_proto; 19230 prog->aux->attach_func_name = mname; 19231 env->ops = st_ops->verifier_ops; 19232 19233 return 0; 19234 } 19235 #define SECURITY_PREFIX "security_" 19236 19237 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19238 { 19239 if (within_error_injection_list(addr) || 19240 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19241 return 0; 19242 19243 return -EINVAL; 19244 } 19245 19246 /* list of non-sleepable functions that are otherwise on 19247 * ALLOW_ERROR_INJECTION list 19248 */ 19249 BTF_SET_START(btf_non_sleepable_error_inject) 19250 /* Three functions below can be called from sleepable and non-sleepable context. 19251 * Assume non-sleepable from bpf safety point of view. 19252 */ 19253 BTF_ID(func, __filemap_add_folio) 19254 BTF_ID(func, should_fail_alloc_page) 19255 BTF_ID(func, should_failslab) 19256 BTF_SET_END(btf_non_sleepable_error_inject) 19257 19258 static int check_non_sleepable_error_inject(u32 btf_id) 19259 { 19260 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19261 } 19262 19263 int bpf_check_attach_target(struct bpf_verifier_log *log, 19264 const struct bpf_prog *prog, 19265 const struct bpf_prog *tgt_prog, 19266 u32 btf_id, 19267 struct bpf_attach_target_info *tgt_info) 19268 { 19269 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19270 const char prefix[] = "btf_trace_"; 19271 int ret = 0, subprog = -1, i; 19272 const struct btf_type *t; 19273 bool conservative = true; 19274 const char *tname; 19275 struct btf *btf; 19276 long addr = 0; 19277 struct module *mod = NULL; 19278 19279 if (!btf_id) { 19280 bpf_log(log, "Tracing programs must provide btf_id\n"); 19281 return -EINVAL; 19282 } 19283 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19284 if (!btf) { 19285 bpf_log(log, 19286 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19287 return -EINVAL; 19288 } 19289 t = btf_type_by_id(btf, btf_id); 19290 if (!t) { 19291 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19292 return -EINVAL; 19293 } 19294 tname = btf_name_by_offset(btf, t->name_off); 19295 if (!tname) { 19296 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19297 return -EINVAL; 19298 } 19299 if (tgt_prog) { 19300 struct bpf_prog_aux *aux = tgt_prog->aux; 19301 19302 if (bpf_prog_is_dev_bound(prog->aux) && 19303 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19304 bpf_log(log, "Target program bound device mismatch"); 19305 return -EINVAL; 19306 } 19307 19308 for (i = 0; i < aux->func_info_cnt; i++) 19309 if (aux->func_info[i].type_id == btf_id) { 19310 subprog = i; 19311 break; 19312 } 19313 if (subprog == -1) { 19314 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19315 return -EINVAL; 19316 } 19317 conservative = aux->func_info_aux[subprog].unreliable; 19318 if (prog_extension) { 19319 if (conservative) { 19320 bpf_log(log, 19321 "Cannot replace static functions\n"); 19322 return -EINVAL; 19323 } 19324 if (!prog->jit_requested) { 19325 bpf_log(log, 19326 "Extension programs should be JITed\n"); 19327 return -EINVAL; 19328 } 19329 } 19330 if (!tgt_prog->jited) { 19331 bpf_log(log, "Can attach to only JITed progs\n"); 19332 return -EINVAL; 19333 } 19334 if (tgt_prog->type == prog->type) { 19335 /* Cannot fentry/fexit another fentry/fexit program. 19336 * Cannot attach program extension to another extension. 19337 * It's ok to attach fentry/fexit to extension program. 19338 */ 19339 bpf_log(log, "Cannot recursively attach\n"); 19340 return -EINVAL; 19341 } 19342 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19343 prog_extension && 19344 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19345 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19346 /* Program extensions can extend all program types 19347 * except fentry/fexit. The reason is the following. 19348 * The fentry/fexit programs are used for performance 19349 * analysis, stats and can be attached to any program 19350 * type except themselves. When extension program is 19351 * replacing XDP function it is necessary to allow 19352 * performance analysis of all functions. Both original 19353 * XDP program and its program extension. Hence 19354 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19355 * allowed. If extending of fentry/fexit was allowed it 19356 * would be possible to create long call chain 19357 * fentry->extension->fentry->extension beyond 19358 * reasonable stack size. Hence extending fentry is not 19359 * allowed. 19360 */ 19361 bpf_log(log, "Cannot extend fentry/fexit\n"); 19362 return -EINVAL; 19363 } 19364 } else { 19365 if (prog_extension) { 19366 bpf_log(log, "Cannot replace kernel functions\n"); 19367 return -EINVAL; 19368 } 19369 } 19370 19371 switch (prog->expected_attach_type) { 19372 case BPF_TRACE_RAW_TP: 19373 if (tgt_prog) { 19374 bpf_log(log, 19375 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19376 return -EINVAL; 19377 } 19378 if (!btf_type_is_typedef(t)) { 19379 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19380 btf_id); 19381 return -EINVAL; 19382 } 19383 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19384 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19385 btf_id, tname); 19386 return -EINVAL; 19387 } 19388 tname += sizeof(prefix) - 1; 19389 t = btf_type_by_id(btf, t->type); 19390 if (!btf_type_is_ptr(t)) 19391 /* should never happen in valid vmlinux build */ 19392 return -EINVAL; 19393 t = btf_type_by_id(btf, t->type); 19394 if (!btf_type_is_func_proto(t)) 19395 /* should never happen in valid vmlinux build */ 19396 return -EINVAL; 19397 19398 break; 19399 case BPF_TRACE_ITER: 19400 if (!btf_type_is_func(t)) { 19401 bpf_log(log, "attach_btf_id %u is not a function\n", 19402 btf_id); 19403 return -EINVAL; 19404 } 19405 t = btf_type_by_id(btf, t->type); 19406 if (!btf_type_is_func_proto(t)) 19407 return -EINVAL; 19408 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19409 if (ret) 19410 return ret; 19411 break; 19412 default: 19413 if (!prog_extension) 19414 return -EINVAL; 19415 fallthrough; 19416 case BPF_MODIFY_RETURN: 19417 case BPF_LSM_MAC: 19418 case BPF_LSM_CGROUP: 19419 case BPF_TRACE_FENTRY: 19420 case BPF_TRACE_FEXIT: 19421 if (!btf_type_is_func(t)) { 19422 bpf_log(log, "attach_btf_id %u is not a function\n", 19423 btf_id); 19424 return -EINVAL; 19425 } 19426 if (prog_extension && 19427 btf_check_type_match(log, prog, btf, t)) 19428 return -EINVAL; 19429 t = btf_type_by_id(btf, t->type); 19430 if (!btf_type_is_func_proto(t)) 19431 return -EINVAL; 19432 19433 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19434 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19435 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19436 return -EINVAL; 19437 19438 if (tgt_prog && conservative) 19439 t = NULL; 19440 19441 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19442 if (ret < 0) 19443 return ret; 19444 19445 if (tgt_prog) { 19446 if (subprog == 0) 19447 addr = (long) tgt_prog->bpf_func; 19448 else 19449 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19450 } else { 19451 if (btf_is_module(btf)) { 19452 mod = btf_try_get_module(btf); 19453 if (mod) 19454 addr = find_kallsyms_symbol_value(mod, tname); 19455 else 19456 addr = 0; 19457 } else { 19458 addr = kallsyms_lookup_name(tname); 19459 } 19460 if (!addr) { 19461 module_put(mod); 19462 bpf_log(log, 19463 "The address of function %s cannot be found\n", 19464 tname); 19465 return -ENOENT; 19466 } 19467 } 19468 19469 if (prog->aux->sleepable) { 19470 ret = -EINVAL; 19471 switch (prog->type) { 19472 case BPF_PROG_TYPE_TRACING: 19473 19474 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19475 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19476 */ 19477 if (!check_non_sleepable_error_inject(btf_id) && 19478 within_error_injection_list(addr)) 19479 ret = 0; 19480 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19481 * in the fmodret id set with the KF_SLEEPABLE flag. 19482 */ 19483 else { 19484 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19485 prog); 19486 19487 if (flags && (*flags & KF_SLEEPABLE)) 19488 ret = 0; 19489 } 19490 break; 19491 case BPF_PROG_TYPE_LSM: 19492 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19493 * Only some of them are sleepable. 19494 */ 19495 if (bpf_lsm_is_sleepable_hook(btf_id)) 19496 ret = 0; 19497 break; 19498 default: 19499 break; 19500 } 19501 if (ret) { 19502 module_put(mod); 19503 bpf_log(log, "%s is not sleepable\n", tname); 19504 return ret; 19505 } 19506 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19507 if (tgt_prog) { 19508 module_put(mod); 19509 bpf_log(log, "can't modify return codes of BPF programs\n"); 19510 return -EINVAL; 19511 } 19512 ret = -EINVAL; 19513 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19514 !check_attach_modify_return(addr, tname)) 19515 ret = 0; 19516 if (ret) { 19517 module_put(mod); 19518 bpf_log(log, "%s() is not modifiable\n", tname); 19519 return ret; 19520 } 19521 } 19522 19523 break; 19524 } 19525 tgt_info->tgt_addr = addr; 19526 tgt_info->tgt_name = tname; 19527 tgt_info->tgt_type = t; 19528 tgt_info->tgt_mod = mod; 19529 return 0; 19530 } 19531 19532 BTF_SET_START(btf_id_deny) 19533 BTF_ID_UNUSED 19534 #ifdef CONFIG_SMP 19535 BTF_ID(func, migrate_disable) 19536 BTF_ID(func, migrate_enable) 19537 #endif 19538 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19539 BTF_ID(func, rcu_read_unlock_strict) 19540 #endif 19541 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19542 BTF_ID(func, preempt_count_add) 19543 BTF_ID(func, preempt_count_sub) 19544 #endif 19545 #ifdef CONFIG_PREEMPT_RCU 19546 BTF_ID(func, __rcu_read_lock) 19547 BTF_ID(func, __rcu_read_unlock) 19548 #endif 19549 BTF_SET_END(btf_id_deny) 19550 19551 static bool can_be_sleepable(struct bpf_prog *prog) 19552 { 19553 if (prog->type == BPF_PROG_TYPE_TRACING) { 19554 switch (prog->expected_attach_type) { 19555 case BPF_TRACE_FENTRY: 19556 case BPF_TRACE_FEXIT: 19557 case BPF_MODIFY_RETURN: 19558 case BPF_TRACE_ITER: 19559 return true; 19560 default: 19561 return false; 19562 } 19563 } 19564 return prog->type == BPF_PROG_TYPE_LSM || 19565 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19566 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19567 } 19568 19569 static int check_attach_btf_id(struct bpf_verifier_env *env) 19570 { 19571 struct bpf_prog *prog = env->prog; 19572 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19573 struct bpf_attach_target_info tgt_info = {}; 19574 u32 btf_id = prog->aux->attach_btf_id; 19575 struct bpf_trampoline *tr; 19576 int ret; 19577 u64 key; 19578 19579 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19580 if (prog->aux->sleepable) 19581 /* attach_btf_id checked to be zero already */ 19582 return 0; 19583 verbose(env, "Syscall programs can only be sleepable\n"); 19584 return -EINVAL; 19585 } 19586 19587 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19588 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19589 return -EINVAL; 19590 } 19591 19592 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19593 return check_struct_ops_btf_id(env); 19594 19595 if (prog->type != BPF_PROG_TYPE_TRACING && 19596 prog->type != BPF_PROG_TYPE_LSM && 19597 prog->type != BPF_PROG_TYPE_EXT) 19598 return 0; 19599 19600 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19601 if (ret) 19602 return ret; 19603 19604 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19605 /* to make freplace equivalent to their targets, they need to 19606 * inherit env->ops and expected_attach_type for the rest of the 19607 * verification 19608 */ 19609 env->ops = bpf_verifier_ops[tgt_prog->type]; 19610 prog->expected_attach_type = tgt_prog->expected_attach_type; 19611 } 19612 19613 /* store info about the attachment target that will be used later */ 19614 prog->aux->attach_func_proto = tgt_info.tgt_type; 19615 prog->aux->attach_func_name = tgt_info.tgt_name; 19616 prog->aux->mod = tgt_info.tgt_mod; 19617 19618 if (tgt_prog) { 19619 prog->aux->saved_dst_prog_type = tgt_prog->type; 19620 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19621 } 19622 19623 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19624 prog->aux->attach_btf_trace = true; 19625 return 0; 19626 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19627 if (!bpf_iter_prog_supported(prog)) 19628 return -EINVAL; 19629 return 0; 19630 } 19631 19632 if (prog->type == BPF_PROG_TYPE_LSM) { 19633 ret = bpf_lsm_verify_prog(&env->log, prog); 19634 if (ret < 0) 19635 return ret; 19636 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19637 btf_id_set_contains(&btf_id_deny, btf_id)) { 19638 return -EINVAL; 19639 } 19640 19641 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19642 tr = bpf_trampoline_get(key, &tgt_info); 19643 if (!tr) 19644 return -ENOMEM; 19645 19646 prog->aux->dst_trampoline = tr; 19647 return 0; 19648 } 19649 19650 struct btf *bpf_get_btf_vmlinux(void) 19651 { 19652 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19653 mutex_lock(&bpf_verifier_lock); 19654 if (!btf_vmlinux) 19655 btf_vmlinux = btf_parse_vmlinux(); 19656 mutex_unlock(&bpf_verifier_lock); 19657 } 19658 return btf_vmlinux; 19659 } 19660 19661 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19662 { 19663 u64 start_time = ktime_get_ns(); 19664 struct bpf_verifier_env *env; 19665 int i, len, ret = -EINVAL, err; 19666 u32 log_true_size; 19667 bool is_priv; 19668 19669 /* no program is valid */ 19670 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19671 return -EINVAL; 19672 19673 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19674 * allocate/free it every time bpf_check() is called 19675 */ 19676 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19677 if (!env) 19678 return -ENOMEM; 19679 19680 env->bt.env = env; 19681 19682 len = (*prog)->len; 19683 env->insn_aux_data = 19684 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19685 ret = -ENOMEM; 19686 if (!env->insn_aux_data) 19687 goto err_free_env; 19688 for (i = 0; i < len; i++) 19689 env->insn_aux_data[i].orig_idx = i; 19690 env->prog = *prog; 19691 env->ops = bpf_verifier_ops[env->prog->type]; 19692 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19693 is_priv = bpf_capable(); 19694 19695 bpf_get_btf_vmlinux(); 19696 19697 /* grab the mutex to protect few globals used by verifier */ 19698 if (!is_priv) 19699 mutex_lock(&bpf_verifier_lock); 19700 19701 /* user could have requested verbose verifier output 19702 * and supplied buffer to store the verification trace 19703 */ 19704 ret = bpf_vlog_init(&env->log, attr->log_level, 19705 (char __user *) (unsigned long) attr->log_buf, 19706 attr->log_size); 19707 if (ret) 19708 goto err_unlock; 19709 19710 mark_verifier_state_clean(env); 19711 19712 if (IS_ERR(btf_vmlinux)) { 19713 /* Either gcc or pahole or kernel are broken. */ 19714 verbose(env, "in-kernel BTF is malformed\n"); 19715 ret = PTR_ERR(btf_vmlinux); 19716 goto skip_full_check; 19717 } 19718 19719 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19720 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19721 env->strict_alignment = true; 19722 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19723 env->strict_alignment = false; 19724 19725 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19726 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19727 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19728 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19729 env->bpf_capable = bpf_capable(); 19730 19731 if (is_priv) 19732 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19733 19734 env->explored_states = kvcalloc(state_htab_size(env), 19735 sizeof(struct bpf_verifier_state_list *), 19736 GFP_USER); 19737 ret = -ENOMEM; 19738 if (!env->explored_states) 19739 goto skip_full_check; 19740 19741 ret = add_subprog_and_kfunc(env); 19742 if (ret < 0) 19743 goto skip_full_check; 19744 19745 ret = check_subprogs(env); 19746 if (ret < 0) 19747 goto skip_full_check; 19748 19749 ret = check_btf_info(env, attr, uattr); 19750 if (ret < 0) 19751 goto skip_full_check; 19752 19753 ret = check_attach_btf_id(env); 19754 if (ret) 19755 goto skip_full_check; 19756 19757 ret = resolve_pseudo_ldimm64(env); 19758 if (ret < 0) 19759 goto skip_full_check; 19760 19761 if (bpf_prog_is_offloaded(env->prog->aux)) { 19762 ret = bpf_prog_offload_verifier_prep(env->prog); 19763 if (ret) 19764 goto skip_full_check; 19765 } 19766 19767 ret = check_cfg(env); 19768 if (ret < 0) 19769 goto skip_full_check; 19770 19771 ret = do_check_subprogs(env); 19772 ret = ret ?: do_check_main(env); 19773 19774 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19775 ret = bpf_prog_offload_finalize(env); 19776 19777 skip_full_check: 19778 kvfree(env->explored_states); 19779 19780 if (ret == 0) 19781 ret = check_max_stack_depth(env); 19782 19783 /* instruction rewrites happen after this point */ 19784 if (ret == 0) 19785 ret = optimize_bpf_loop(env); 19786 19787 if (is_priv) { 19788 if (ret == 0) 19789 opt_hard_wire_dead_code_branches(env); 19790 if (ret == 0) 19791 ret = opt_remove_dead_code(env); 19792 if (ret == 0) 19793 ret = opt_remove_nops(env); 19794 } else { 19795 if (ret == 0) 19796 sanitize_dead_code(env); 19797 } 19798 19799 if (ret == 0) 19800 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19801 ret = convert_ctx_accesses(env); 19802 19803 if (ret == 0) 19804 ret = do_misc_fixups(env); 19805 19806 /* do 32-bit optimization after insn patching has done so those patched 19807 * insns could be handled correctly. 19808 */ 19809 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19810 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19811 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19812 : false; 19813 } 19814 19815 if (ret == 0) 19816 ret = fixup_call_args(env); 19817 19818 env->verification_time = ktime_get_ns() - start_time; 19819 print_verification_stats(env); 19820 env->prog->aux->verified_insns = env->insn_processed; 19821 19822 /* preserve original error even if log finalization is successful */ 19823 err = bpf_vlog_finalize(&env->log, &log_true_size); 19824 if (err) 19825 ret = err; 19826 19827 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19828 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19829 &log_true_size, sizeof(log_true_size))) { 19830 ret = -EFAULT; 19831 goto err_release_maps; 19832 } 19833 19834 if (ret) 19835 goto err_release_maps; 19836 19837 if (env->used_map_cnt) { 19838 /* if program passed verifier, update used_maps in bpf_prog_info */ 19839 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19840 sizeof(env->used_maps[0]), 19841 GFP_KERNEL); 19842 19843 if (!env->prog->aux->used_maps) { 19844 ret = -ENOMEM; 19845 goto err_release_maps; 19846 } 19847 19848 memcpy(env->prog->aux->used_maps, env->used_maps, 19849 sizeof(env->used_maps[0]) * env->used_map_cnt); 19850 env->prog->aux->used_map_cnt = env->used_map_cnt; 19851 } 19852 if (env->used_btf_cnt) { 19853 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19854 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19855 sizeof(env->used_btfs[0]), 19856 GFP_KERNEL); 19857 if (!env->prog->aux->used_btfs) { 19858 ret = -ENOMEM; 19859 goto err_release_maps; 19860 } 19861 19862 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19863 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19864 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19865 } 19866 if (env->used_map_cnt || env->used_btf_cnt) { 19867 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19868 * bpf_ld_imm64 instructions 19869 */ 19870 convert_pseudo_ld_imm64(env); 19871 } 19872 19873 adjust_btf_func(env); 19874 19875 err_release_maps: 19876 if (!env->prog->aux->used_maps) 19877 /* if we didn't copy map pointers into bpf_prog_info, release 19878 * them now. Otherwise free_used_maps() will release them. 19879 */ 19880 release_maps(env); 19881 if (!env->prog->aux->used_btfs) 19882 release_btfs(env); 19883 19884 /* extension progs temporarily inherit the attach_type of their targets 19885 for verification purposes, so set it back to zero before returning 19886 */ 19887 if (env->prog->type == BPF_PROG_TYPE_EXT) 19888 env->prog->expected_attach_type = 0; 19889 19890 *prog = env->prog; 19891 err_unlock: 19892 if (!is_priv) 19893 mutex_unlock(&bpf_verifier_lock); 19894 vfree(env->insn_aux_data); 19895 err_free_env: 19896 kfree(env); 19897 return ret; 19898 } 19899