xref: /linux/kernel/bpf/verifier.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 
160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 
162 struct bpf_call_arg_meta {
163 	struct bpf_map *map_ptr;
164 	bool raw_mode;
165 	bool pkt_access;
166 	int regno;
167 	int access_size;
168 	s64 msize_smax_value;
169 	u64 msize_umax_value;
170 };
171 
172 static DEFINE_MUTEX(bpf_verifier_lock);
173 
174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 		       va_list args)
176 {
177 	unsigned int n;
178 
179 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
180 
181 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 		  "verifier log line truncated - local buffer too short\n");
183 
184 	n = min(log->len_total - log->len_used - 1, n);
185 	log->kbuf[n] = '\0';
186 
187 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 		log->len_used += n;
189 	else
190 		log->ubuf = NULL;
191 }
192 
193 /* log_level controls verbosity level of eBPF verifier.
194  * bpf_verifier_log_write() is used to dump the verification trace to the log,
195  * so the user can figure out what's wrong with the program
196  */
197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 					   const char *fmt, ...)
199 {
200 	va_list args;
201 
202 	if (!bpf_verifier_log_needed(&env->log))
203 		return;
204 
205 	va_start(args, fmt);
206 	bpf_verifier_vlog(&env->log, fmt, args);
207 	va_end(args);
208 }
209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
210 
211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
212 {
213 	struct bpf_verifier_env *env = private_data;
214 	va_list args;
215 
216 	if (!bpf_verifier_log_needed(&env->log))
217 		return;
218 
219 	va_start(args, fmt);
220 	bpf_verifier_vlog(&env->log, fmt, args);
221 	va_end(args);
222 }
223 
224 static bool type_is_pkt_pointer(enum bpf_reg_type type)
225 {
226 	return type == PTR_TO_PACKET ||
227 	       type == PTR_TO_PACKET_META;
228 }
229 
230 /* string representation of 'enum bpf_reg_type' */
231 static const char * const reg_type_str[] = {
232 	[NOT_INIT]		= "?",
233 	[SCALAR_VALUE]		= "inv",
234 	[PTR_TO_CTX]		= "ctx",
235 	[CONST_PTR_TO_MAP]	= "map_ptr",
236 	[PTR_TO_MAP_VALUE]	= "map_value",
237 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
238 	[PTR_TO_STACK]		= "fp",
239 	[PTR_TO_PACKET]		= "pkt",
240 	[PTR_TO_PACKET_META]	= "pkt_meta",
241 	[PTR_TO_PACKET_END]	= "pkt_end",
242 };
243 
244 static void print_liveness(struct bpf_verifier_env *env,
245 			   enum bpf_reg_liveness live)
246 {
247 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 	    verbose(env, "_");
249 	if (live & REG_LIVE_READ)
250 		verbose(env, "r");
251 	if (live & REG_LIVE_WRITTEN)
252 		verbose(env, "w");
253 }
254 
255 static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 				   const struct bpf_reg_state *reg)
257 {
258 	struct bpf_verifier_state *cur = env->cur_state;
259 
260 	return cur->frame[reg->frameno];
261 }
262 
263 static void print_verifier_state(struct bpf_verifier_env *env,
264 				 const struct bpf_func_state *state)
265 {
266 	const struct bpf_reg_state *reg;
267 	enum bpf_reg_type t;
268 	int i;
269 
270 	if (state->frameno)
271 		verbose(env, " frame%d:", state->frameno);
272 	for (i = 0; i < MAX_BPF_REG; i++) {
273 		reg = &state->regs[i];
274 		t = reg->type;
275 		if (t == NOT_INIT)
276 			continue;
277 		verbose(env, " R%d", i);
278 		print_liveness(env, reg->live);
279 		verbose(env, "=%s", reg_type_str[t]);
280 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 		    tnum_is_const(reg->var_off)) {
282 			/* reg->off should be 0 for SCALAR_VALUE */
283 			verbose(env, "%lld", reg->var_off.value + reg->off);
284 			if (t == PTR_TO_STACK)
285 				verbose(env, ",call_%d", func(env, reg)->callsite);
286 		} else {
287 			verbose(env, "(id=%d", reg->id);
288 			if (t != SCALAR_VALUE)
289 				verbose(env, ",off=%d", reg->off);
290 			if (type_is_pkt_pointer(t))
291 				verbose(env, ",r=%d", reg->range);
292 			else if (t == CONST_PTR_TO_MAP ||
293 				 t == PTR_TO_MAP_VALUE ||
294 				 t == PTR_TO_MAP_VALUE_OR_NULL)
295 				verbose(env, ",ks=%d,vs=%d",
296 					reg->map_ptr->key_size,
297 					reg->map_ptr->value_size);
298 			if (tnum_is_const(reg->var_off)) {
299 				/* Typically an immediate SCALAR_VALUE, but
300 				 * could be a pointer whose offset is too big
301 				 * for reg->off
302 				 */
303 				verbose(env, ",imm=%llx", reg->var_off.value);
304 			} else {
305 				if (reg->smin_value != reg->umin_value &&
306 				    reg->smin_value != S64_MIN)
307 					verbose(env, ",smin_value=%lld",
308 						(long long)reg->smin_value);
309 				if (reg->smax_value != reg->umax_value &&
310 				    reg->smax_value != S64_MAX)
311 					verbose(env, ",smax_value=%lld",
312 						(long long)reg->smax_value);
313 				if (reg->umin_value != 0)
314 					verbose(env, ",umin_value=%llu",
315 						(unsigned long long)reg->umin_value);
316 				if (reg->umax_value != U64_MAX)
317 					verbose(env, ",umax_value=%llu",
318 						(unsigned long long)reg->umax_value);
319 				if (!tnum_is_unknown(reg->var_off)) {
320 					char tn_buf[48];
321 
322 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323 					verbose(env, ",var_off=%s", tn_buf);
324 				}
325 			}
326 			verbose(env, ")");
327 		}
328 	}
329 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 			verbose(env, " fp%d",
332 				(-i - 1) * BPF_REG_SIZE);
333 			print_liveness(env, state->stack[i].spilled_ptr.live);
334 			verbose(env, "=%s",
335 				reg_type_str[state->stack[i].spilled_ptr.type]);
336 		}
337 		if (state->stack[i].slot_type[0] == STACK_ZERO)
338 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339 	}
340 	verbose(env, "\n");
341 }
342 
343 static int copy_stack_state(struct bpf_func_state *dst,
344 			    const struct bpf_func_state *src)
345 {
346 	if (!src->stack)
347 		return 0;
348 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 		/* internal bug, make state invalid to reject the program */
350 		memset(dst, 0, sizeof(*dst));
351 		return -EFAULT;
352 	}
353 	memcpy(dst->stack, src->stack,
354 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 	return 0;
356 }
357 
358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359  * make it consume minimal amount of memory. check_stack_write() access from
360  * the program calls into realloc_func_state() to grow the stack size.
361  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362  * which this function copies over. It points to previous bpf_verifier_state
363  * which is never reallocated
364  */
365 static int realloc_func_state(struct bpf_func_state *state, int size,
366 			      bool copy_old)
367 {
368 	u32 old_size = state->allocated_stack;
369 	struct bpf_stack_state *new_stack;
370 	int slot = size / BPF_REG_SIZE;
371 
372 	if (size <= old_size || !size) {
373 		if (copy_old)
374 			return 0;
375 		state->allocated_stack = slot * BPF_REG_SIZE;
376 		if (!size && old_size) {
377 			kfree(state->stack);
378 			state->stack = NULL;
379 		}
380 		return 0;
381 	}
382 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 				  GFP_KERNEL);
384 	if (!new_stack)
385 		return -ENOMEM;
386 	if (copy_old) {
387 		if (state->stack)
388 			memcpy(new_stack, state->stack,
389 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
392 	}
393 	state->allocated_stack = slot * BPF_REG_SIZE;
394 	kfree(state->stack);
395 	state->stack = new_stack;
396 	return 0;
397 }
398 
399 static void free_func_state(struct bpf_func_state *state)
400 {
401 	if (!state)
402 		return;
403 	kfree(state->stack);
404 	kfree(state);
405 }
406 
407 static void free_verifier_state(struct bpf_verifier_state *state,
408 				bool free_self)
409 {
410 	int i;
411 
412 	for (i = 0; i <= state->curframe; i++) {
413 		free_func_state(state->frame[i]);
414 		state->frame[i] = NULL;
415 	}
416 	if (free_self)
417 		kfree(state);
418 }
419 
420 /* copy verifier state from src to dst growing dst stack space
421  * when necessary to accommodate larger src stack
422  */
423 static int copy_func_state(struct bpf_func_state *dst,
424 			   const struct bpf_func_state *src)
425 {
426 	int err;
427 
428 	err = realloc_func_state(dst, src->allocated_stack, false);
429 	if (err)
430 		return err;
431 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 	return copy_stack_state(dst, src);
433 }
434 
435 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 			       const struct bpf_verifier_state *src)
437 {
438 	struct bpf_func_state *dst;
439 	int i, err;
440 
441 	/* if dst has more stack frames then src frame, free them */
442 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 		free_func_state(dst_state->frame[i]);
444 		dst_state->frame[i] = NULL;
445 	}
446 	dst_state->curframe = src->curframe;
447 	dst_state->parent = src->parent;
448 	for (i = 0; i <= src->curframe; i++) {
449 		dst = dst_state->frame[i];
450 		if (!dst) {
451 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 			if (!dst)
453 				return -ENOMEM;
454 			dst_state->frame[i] = dst;
455 		}
456 		err = copy_func_state(dst, src->frame[i]);
457 		if (err)
458 			return err;
459 	}
460 	return 0;
461 }
462 
463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 		     int *insn_idx)
465 {
466 	struct bpf_verifier_state *cur = env->cur_state;
467 	struct bpf_verifier_stack_elem *elem, *head = env->head;
468 	int err;
469 
470 	if (env->head == NULL)
471 		return -ENOENT;
472 
473 	if (cur) {
474 		err = copy_verifier_state(cur, &head->st);
475 		if (err)
476 			return err;
477 	}
478 	if (insn_idx)
479 		*insn_idx = head->insn_idx;
480 	if (prev_insn_idx)
481 		*prev_insn_idx = head->prev_insn_idx;
482 	elem = head->next;
483 	free_verifier_state(&head->st, false);
484 	kfree(head);
485 	env->head = elem;
486 	env->stack_size--;
487 	return 0;
488 }
489 
490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 					     int insn_idx, int prev_insn_idx)
492 {
493 	struct bpf_verifier_state *cur = env->cur_state;
494 	struct bpf_verifier_stack_elem *elem;
495 	int err;
496 
497 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 	if (!elem)
499 		goto err;
500 
501 	elem->insn_idx = insn_idx;
502 	elem->prev_insn_idx = prev_insn_idx;
503 	elem->next = env->head;
504 	env->head = elem;
505 	env->stack_size++;
506 	err = copy_verifier_state(&elem->st, cur);
507 	if (err)
508 		goto err;
509 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510 		verbose(env, "BPF program is too complex\n");
511 		goto err;
512 	}
513 	return &elem->st;
514 err:
515 	free_verifier_state(env->cur_state, true);
516 	env->cur_state = NULL;
517 	/* pop all elements and return */
518 	while (!pop_stack(env, NULL, NULL));
519 	return NULL;
520 }
521 
522 #define CALLER_SAVED_REGS 6
523 static const int caller_saved[CALLER_SAVED_REGS] = {
524 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
525 };
526 
527 static void __mark_reg_not_init(struct bpf_reg_state *reg);
528 
529 /* Mark the unknown part of a register (variable offset or scalar value) as
530  * known to have the value @imm.
531  */
532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
533 {
534 	reg->id = 0;
535 	reg->var_off = tnum_const(imm);
536 	reg->smin_value = (s64)imm;
537 	reg->smax_value = (s64)imm;
538 	reg->umin_value = imm;
539 	reg->umax_value = imm;
540 }
541 
542 /* Mark the 'variable offset' part of a register as zero.  This should be
543  * used only on registers holding a pointer type.
544  */
545 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546 {
547 	__mark_reg_known(reg, 0);
548 }
549 
550 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
551 {
552 	__mark_reg_known(reg, 0);
553 	reg->off = 0;
554 	reg->type = SCALAR_VALUE;
555 }
556 
557 static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 				struct bpf_reg_state *regs, u32 regno)
559 {
560 	if (WARN_ON(regno >= MAX_BPF_REG)) {
561 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 		/* Something bad happened, let's kill all regs */
563 		for (regno = 0; regno < MAX_BPF_REG; regno++)
564 			__mark_reg_not_init(regs + regno);
565 		return;
566 	}
567 	__mark_reg_known_zero(regs + regno);
568 }
569 
570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
571 {
572 	return type_is_pkt_pointer(reg->type);
573 }
574 
575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
576 {
577 	return reg_is_pkt_pointer(reg) ||
578 	       reg->type == PTR_TO_PACKET_END;
579 }
580 
581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 				    enum bpf_reg_type which)
584 {
585 	/* The register can already have a range from prior markings.
586 	 * This is fine as long as it hasn't been advanced from its
587 	 * origin.
588 	 */
589 	return reg->type == which &&
590 	       reg->id == 0 &&
591 	       reg->off == 0 &&
592 	       tnum_equals_const(reg->var_off, 0);
593 }
594 
595 /* Attempts to improve min/max values based on var_off information */
596 static void __update_reg_bounds(struct bpf_reg_state *reg)
597 {
598 	/* min signed is max(sign bit) | min(other bits) */
599 	reg->smin_value = max_t(s64, reg->smin_value,
600 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 	/* max signed is min(sign bit) | max(other bits) */
602 	reg->smax_value = min_t(s64, reg->smax_value,
603 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 	reg->umax_value = min(reg->umax_value,
606 			      reg->var_off.value | reg->var_off.mask);
607 }
608 
609 /* Uses signed min/max values to inform unsigned, and vice-versa */
610 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
611 {
612 	/* Learn sign from signed bounds.
613 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 	 * are the same, so combine.  This works even in the negative case, e.g.
615 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
616 	 */
617 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 							  reg->umin_value);
620 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 							  reg->umax_value);
622 		return;
623 	}
624 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
625 	 * boundary, so we must be careful.
626 	 */
627 	if ((s64)reg->umax_value >= 0) {
628 		/* Positive.  We can't learn anything from the smin, but smax
629 		 * is positive, hence safe.
630 		 */
631 		reg->smin_value = reg->umin_value;
632 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 							  reg->umax_value);
634 	} else if ((s64)reg->umin_value < 0) {
635 		/* Negative.  We can't learn anything from the smax, but smin
636 		 * is negative, hence safe.
637 		 */
638 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 							  reg->umin_value);
640 		reg->smax_value = reg->umax_value;
641 	}
642 }
643 
644 /* Attempts to improve var_off based on unsigned min/max information */
645 static void __reg_bound_offset(struct bpf_reg_state *reg)
646 {
647 	reg->var_off = tnum_intersect(reg->var_off,
648 				      tnum_range(reg->umin_value,
649 						 reg->umax_value));
650 }
651 
652 /* Reset the min/max bounds of a register */
653 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
654 {
655 	reg->smin_value = S64_MIN;
656 	reg->smax_value = S64_MAX;
657 	reg->umin_value = 0;
658 	reg->umax_value = U64_MAX;
659 }
660 
661 /* Mark a register as having a completely unknown (scalar) value. */
662 static void __mark_reg_unknown(struct bpf_reg_state *reg)
663 {
664 	reg->type = SCALAR_VALUE;
665 	reg->id = 0;
666 	reg->off = 0;
667 	reg->var_off = tnum_unknown;
668 	reg->frameno = 0;
669 	__mark_reg_unbounded(reg);
670 }
671 
672 static void mark_reg_unknown(struct bpf_verifier_env *env,
673 			     struct bpf_reg_state *regs, u32 regno)
674 {
675 	if (WARN_ON(regno >= MAX_BPF_REG)) {
676 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 		/* Something bad happened, let's kill all regs except FP */
678 		for (regno = 0; regno < BPF_REG_FP; regno++)
679 			__mark_reg_not_init(regs + regno);
680 		return;
681 	}
682 	__mark_reg_unknown(regs + regno);
683 }
684 
685 static void __mark_reg_not_init(struct bpf_reg_state *reg)
686 {
687 	__mark_reg_unknown(reg);
688 	reg->type = NOT_INIT;
689 }
690 
691 static void mark_reg_not_init(struct bpf_verifier_env *env,
692 			      struct bpf_reg_state *regs, u32 regno)
693 {
694 	if (WARN_ON(regno >= MAX_BPF_REG)) {
695 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 		/* Something bad happened, let's kill all regs except FP */
697 		for (regno = 0; regno < BPF_REG_FP; regno++)
698 			__mark_reg_not_init(regs + regno);
699 		return;
700 	}
701 	__mark_reg_not_init(regs + regno);
702 }
703 
704 static void init_reg_state(struct bpf_verifier_env *env,
705 			   struct bpf_func_state *state)
706 {
707 	struct bpf_reg_state *regs = state->regs;
708 	int i;
709 
710 	for (i = 0; i < MAX_BPF_REG; i++) {
711 		mark_reg_not_init(env, regs, i);
712 		regs[i].live = REG_LIVE_NONE;
713 	}
714 
715 	/* frame pointer */
716 	regs[BPF_REG_FP].type = PTR_TO_STACK;
717 	mark_reg_known_zero(env, regs, BPF_REG_FP);
718 	regs[BPF_REG_FP].frameno = state->frameno;
719 
720 	/* 1st arg to a function */
721 	regs[BPF_REG_1].type = PTR_TO_CTX;
722 	mark_reg_known_zero(env, regs, BPF_REG_1);
723 }
724 
725 #define BPF_MAIN_FUNC (-1)
726 static void init_func_state(struct bpf_verifier_env *env,
727 			    struct bpf_func_state *state,
728 			    int callsite, int frameno, int subprogno)
729 {
730 	state->callsite = callsite;
731 	state->frameno = frameno;
732 	state->subprogno = subprogno;
733 	init_reg_state(env, state);
734 }
735 
736 enum reg_arg_type {
737 	SRC_OP,		/* register is used as source operand */
738 	DST_OP,		/* register is used as destination operand */
739 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
740 };
741 
742 static int cmp_subprogs(const void *a, const void *b)
743 {
744 	return ((struct bpf_subprog_info *)a)->start -
745 	       ((struct bpf_subprog_info *)b)->start;
746 }
747 
748 static int find_subprog(struct bpf_verifier_env *env, int off)
749 {
750 	struct bpf_subprog_info *p;
751 
752 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 		    sizeof(env->subprog_info[0]), cmp_subprogs);
754 	if (!p)
755 		return -ENOENT;
756 	return p - env->subprog_info;
757 
758 }
759 
760 static int add_subprog(struct bpf_verifier_env *env, int off)
761 {
762 	int insn_cnt = env->prog->len;
763 	int ret;
764 
765 	if (off >= insn_cnt || off < 0) {
766 		verbose(env, "call to invalid destination\n");
767 		return -EINVAL;
768 	}
769 	ret = find_subprog(env, off);
770 	if (ret >= 0)
771 		return 0;
772 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 		verbose(env, "too many subprograms\n");
774 		return -E2BIG;
775 	}
776 	env->subprog_info[env->subprog_cnt++].start = off;
777 	sort(env->subprog_info, env->subprog_cnt,
778 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 	return 0;
780 }
781 
782 static int check_subprogs(struct bpf_verifier_env *env)
783 {
784 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785 	struct bpf_subprog_info *subprog = env->subprog_info;
786 	struct bpf_insn *insn = env->prog->insnsi;
787 	int insn_cnt = env->prog->len;
788 
789 	/* Add entry function. */
790 	ret = add_subprog(env, 0);
791 	if (ret < 0)
792 		return ret;
793 
794 	/* determine subprog starts. The end is one before the next starts */
795 	for (i = 0; i < insn_cnt; i++) {
796 		if (insn[i].code != (BPF_JMP | BPF_CALL))
797 			continue;
798 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 			continue;
800 		if (!env->allow_ptr_leaks) {
801 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 			return -EPERM;
803 		}
804 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
805 			verbose(env, "function calls in offloaded programs are not supported yet\n");
806 			return -EINVAL;
807 		}
808 		ret = add_subprog(env, i + insn[i].imm + 1);
809 		if (ret < 0)
810 			return ret;
811 	}
812 
813 	/* Add a fake 'exit' subprog which could simplify subprog iteration
814 	 * logic. 'subprog_cnt' should not be increased.
815 	 */
816 	subprog[env->subprog_cnt].start = insn_cnt;
817 
818 	if (env->log.level > 1)
819 		for (i = 0; i < env->subprog_cnt; i++)
820 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
821 
822 	/* now check that all jumps are within the same subprog */
823 	subprog_start = subprog[cur_subprog].start;
824 	subprog_end = subprog[cur_subprog + 1].start;
825 	for (i = 0; i < insn_cnt; i++) {
826 		u8 code = insn[i].code;
827 
828 		if (BPF_CLASS(code) != BPF_JMP)
829 			goto next;
830 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 			goto next;
832 		off = i + insn[i].off + 1;
833 		if (off < subprog_start || off >= subprog_end) {
834 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 			return -EINVAL;
836 		}
837 next:
838 		if (i == subprog_end - 1) {
839 			/* to avoid fall-through from one subprog into another
840 			 * the last insn of the subprog should be either exit
841 			 * or unconditional jump back
842 			 */
843 			if (code != (BPF_JMP | BPF_EXIT) &&
844 			    code != (BPF_JMP | BPF_JA)) {
845 				verbose(env, "last insn is not an exit or jmp\n");
846 				return -EINVAL;
847 			}
848 			subprog_start = subprog_end;
849 			cur_subprog++;
850 			if (cur_subprog < env->subprog_cnt)
851 				subprog_end = subprog[cur_subprog + 1].start;
852 		}
853 	}
854 	return 0;
855 }
856 
857 static
858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 				       const struct bpf_verifier_state *state,
860 				       struct bpf_verifier_state *parent,
861 				       u32 regno)
862 {
863 	struct bpf_verifier_state *tmp = NULL;
864 
865 	/* 'parent' could be a state of caller and
866 	 * 'state' could be a state of callee. In such case
867 	 * parent->curframe < state->curframe
868 	 * and it's ok for r1 - r5 registers
869 	 *
870 	 * 'parent' could be a callee's state after it bpf_exit-ed.
871 	 * In such case parent->curframe > state->curframe
872 	 * and it's ok for r0 only
873 	 */
874 	if (parent->curframe == state->curframe ||
875 	    (parent->curframe < state->curframe &&
876 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 	    (parent->curframe > state->curframe &&
878 	       regno == BPF_REG_0))
879 		return parent;
880 
881 	if (parent->curframe > state->curframe &&
882 	    regno >= BPF_REG_6) {
883 		/* for callee saved regs we have to skip the whole chain
884 		 * of states that belong to callee and mark as LIVE_READ
885 		 * the registers before the call
886 		 */
887 		tmp = parent;
888 		while (tmp && tmp->curframe != state->curframe) {
889 			tmp = tmp->parent;
890 		}
891 		if (!tmp)
892 			goto bug;
893 		parent = tmp;
894 	} else {
895 		goto bug;
896 	}
897 	return parent;
898 bug:
899 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 	verbose(env, "regno %d parent frame %d current frame %d\n",
901 		regno, parent->curframe, state->curframe);
902 	return NULL;
903 }
904 
905 static int mark_reg_read(struct bpf_verifier_env *env,
906 			 const struct bpf_verifier_state *state,
907 			 struct bpf_verifier_state *parent,
908 			 u32 regno)
909 {
910 	bool writes = parent == state->parent; /* Observe write marks */
911 
912 	if (regno == BPF_REG_FP)
913 		/* We don't need to worry about FP liveness because it's read-only */
914 		return 0;
915 
916 	while (parent) {
917 		/* if read wasn't screened by an earlier write ... */
918 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919 			break;
920 		parent = skip_callee(env, state, parent, regno);
921 		if (!parent)
922 			return -EFAULT;
923 		/* ... then we depend on parent's value */
924 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 		state = parent;
926 		parent = state->parent;
927 		writes = true;
928 	}
929 	return 0;
930 }
931 
932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 			 enum reg_arg_type t)
934 {
935 	struct bpf_verifier_state *vstate = env->cur_state;
936 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 	struct bpf_reg_state *regs = state->regs;
938 
939 	if (regno >= MAX_BPF_REG) {
940 		verbose(env, "R%d is invalid\n", regno);
941 		return -EINVAL;
942 	}
943 
944 	if (t == SRC_OP) {
945 		/* check whether register used as source operand can be read */
946 		if (regs[regno].type == NOT_INIT) {
947 			verbose(env, "R%d !read_ok\n", regno);
948 			return -EACCES;
949 		}
950 		return mark_reg_read(env, vstate, vstate->parent, regno);
951 	} else {
952 		/* check whether register used as dest operand can be written to */
953 		if (regno == BPF_REG_FP) {
954 			verbose(env, "frame pointer is read only\n");
955 			return -EACCES;
956 		}
957 		regs[regno].live |= REG_LIVE_WRITTEN;
958 		if (t == DST_OP)
959 			mark_reg_unknown(env, regs, regno);
960 	}
961 	return 0;
962 }
963 
964 static bool is_spillable_regtype(enum bpf_reg_type type)
965 {
966 	switch (type) {
967 	case PTR_TO_MAP_VALUE:
968 	case PTR_TO_MAP_VALUE_OR_NULL:
969 	case PTR_TO_STACK:
970 	case PTR_TO_CTX:
971 	case PTR_TO_PACKET:
972 	case PTR_TO_PACKET_META:
973 	case PTR_TO_PACKET_END:
974 	case CONST_PTR_TO_MAP:
975 		return true;
976 	default:
977 		return false;
978 	}
979 }
980 
981 /* Does this register contain a constant zero? */
982 static bool register_is_null(struct bpf_reg_state *reg)
983 {
984 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
985 }
986 
987 /* check_stack_read/write functions track spill/fill of registers,
988  * stack boundary and alignment are checked in check_mem_access()
989  */
990 static int check_stack_write(struct bpf_verifier_env *env,
991 			     struct bpf_func_state *state, /* func where register points to */
992 			     int off, int size, int value_regno)
993 {
994 	struct bpf_func_state *cur; /* state of the current function */
995 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996 	enum bpf_reg_type type;
997 
998 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 				 true);
1000 	if (err)
1001 		return err;
1002 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 	 * so it's aligned access and [off, off + size) are within stack limits
1004 	 */
1005 	if (!env->allow_ptr_leaks &&
1006 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 	    size != BPF_REG_SIZE) {
1008 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 		return -EACCES;
1010 	}
1011 
1012 	cur = env->cur_state->frame[env->cur_state->curframe];
1013 	if (value_regno >= 0 &&
1014 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1015 
1016 		/* register containing pointer is being spilled into stack */
1017 		if (size != BPF_REG_SIZE) {
1018 			verbose(env, "invalid size of register spill\n");
1019 			return -EACCES;
1020 		}
1021 
1022 		if (state != cur && type == PTR_TO_STACK) {
1023 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 			return -EINVAL;
1025 		}
1026 
1027 		/* save register state */
1028 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030 
1031 		for (i = 0; i < BPF_REG_SIZE; i++)
1032 			state->stack[spi].slot_type[i] = STACK_SPILL;
1033 	} else {
1034 		u8 type = STACK_MISC;
1035 
1036 		/* regular write of data into stack */
1037 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1038 
1039 		/* only mark the slot as written if all 8 bytes were written
1040 		 * otherwise read propagation may incorrectly stop too soon
1041 		 * when stack slots are partially written.
1042 		 * This heuristic means that read propagation will be
1043 		 * conservative, since it will add reg_live_read marks
1044 		 * to stack slots all the way to first state when programs
1045 		 * writes+reads less than 8 bytes
1046 		 */
1047 		if (size == BPF_REG_SIZE)
1048 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1049 
1050 		/* when we zero initialize stack slots mark them as such */
1051 		if (value_regno >= 0 &&
1052 		    register_is_null(&cur->regs[value_regno]))
1053 			type = STACK_ZERO;
1054 
1055 		for (i = 0; i < size; i++)
1056 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057 				type;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /* registers of every function are unique and mark_reg_read() propagates
1063  * the liveness in the following cases:
1064  * - from callee into caller for R1 - R5 that were used as arguments
1065  * - from caller into callee for R0 that used as result of the call
1066  * - from caller to the same caller skipping states of the callee for R6 - R9,
1067  *   since R6 - R9 are callee saved by implicit function prologue and
1068  *   caller's R6 != callee's R6, so when we propagate liveness up to
1069  *   parent states we need to skip callee states for R6 - R9.
1070  *
1071  * stack slot marking is different, since stacks of caller and callee are
1072  * accessible in both (since caller can pass a pointer to caller's stack to
1073  * callee which can pass it to another function), hence mark_stack_slot_read()
1074  * has to propagate the stack liveness to all parent states at given frame number.
1075  * Consider code:
1076  * f1() {
1077  *   ptr = fp - 8;
1078  *   *ptr = ctx;
1079  *   call f2 {
1080  *      .. = *ptr;
1081  *   }
1082  *   .. = *ptr;
1083  * }
1084  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085  * to mark liveness at the f1's frame and not f2's frame.
1086  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087  * to propagate liveness to f2 states at f1's frame level and further into
1088  * f1 states at f1's frame level until write into that stack slot
1089  */
1090 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 				 const struct bpf_verifier_state *state,
1092 				 struct bpf_verifier_state *parent,
1093 				 int slot, int frameno)
1094 {
1095 	bool writes = parent == state->parent; /* Observe write marks */
1096 
1097 	while (parent) {
1098 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1100 			 * write the read marks are conservative and parent
1101 			 * state may not even have the stack allocated. In such case
1102 			 * end the propagation, since the loop reached beginning
1103 			 * of the function
1104 			 */
1105 			break;
1106 		/* if read wasn't screened by an earlier write ... */
1107 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 			break;
1109 		/* ... then we depend on parent's value */
1110 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 		state = parent;
1112 		parent = state->parent;
1113 		writes = true;
1114 	}
1115 }
1116 
1117 static int check_stack_read(struct bpf_verifier_env *env,
1118 			    struct bpf_func_state *reg_state /* func where register points to */,
1119 			    int off, int size, int value_regno)
1120 {
1121 	struct bpf_verifier_state *vstate = env->cur_state;
1122 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 	u8 *stype;
1125 
1126 	if (reg_state->allocated_stack <= slot) {
1127 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 			off, size);
1129 		return -EACCES;
1130 	}
1131 	stype = reg_state->stack[spi].slot_type;
1132 
1133 	if (stype[0] == STACK_SPILL) {
1134 		if (size != BPF_REG_SIZE) {
1135 			verbose(env, "invalid size of register spill\n");
1136 			return -EACCES;
1137 		}
1138 		for (i = 1; i < BPF_REG_SIZE; i++) {
1139 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140 				verbose(env, "corrupted spill memory\n");
1141 				return -EACCES;
1142 			}
1143 		}
1144 
1145 		if (value_regno >= 0) {
1146 			/* restore register state from stack */
1147 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 			/* mark reg as written since spilled pointer state likely
1149 			 * has its liveness marks cleared by is_state_visited()
1150 			 * which resets stack/reg liveness for state transitions
1151 			 */
1152 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1153 		}
1154 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 				     reg_state->frameno);
1156 		return 0;
1157 	} else {
1158 		int zeros = 0;
1159 
1160 		for (i = 0; i < size; i++) {
1161 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 				continue;
1163 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 				zeros++;
1165 				continue;
1166 			}
1167 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 				off, i, size);
1169 			return -EACCES;
1170 		}
1171 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 				     reg_state->frameno);
1173 		if (value_regno >= 0) {
1174 			if (zeros == size) {
1175 				/* any size read into register is zero extended,
1176 				 * so the whole register == const_zero
1177 				 */
1178 				__mark_reg_const_zero(&state->regs[value_regno]);
1179 			} else {
1180 				/* have read misc data from the stack */
1181 				mark_reg_unknown(env, state->regs, value_regno);
1182 			}
1183 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1184 		}
1185 		return 0;
1186 	}
1187 }
1188 
1189 /* check read/write into map element returned by bpf_map_lookup_elem() */
1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191 			      int size, bool zero_size_allowed)
1192 {
1193 	struct bpf_reg_state *regs = cur_regs(env);
1194 	struct bpf_map *map = regs[regno].map_ptr;
1195 
1196 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 	    off + size > map->value_size) {
1198 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 			map->value_size, off, size);
1200 		return -EACCES;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /* check read/write into a map element with possible variable offset */
1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207 			    int off, int size, bool zero_size_allowed)
1208 {
1209 	struct bpf_verifier_state *vstate = env->cur_state;
1210 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 	struct bpf_reg_state *reg = &state->regs[regno];
1212 	int err;
1213 
1214 	/* We may have adjusted the register to this map value, so we
1215 	 * need to try adding each of min_value and max_value to off
1216 	 * to make sure our theoretical access will be safe.
1217 	 */
1218 	if (env->log.level)
1219 		print_verifier_state(env, state);
1220 	/* The minimum value is only important with signed
1221 	 * comparisons where we can't assume the floor of a
1222 	 * value is 0.  If we are using signed variables for our
1223 	 * index'es we need to make sure that whatever we use
1224 	 * will have a set floor within our range.
1225 	 */
1226 	if (reg->smin_value < 0) {
1227 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 			regno);
1229 		return -EACCES;
1230 	}
1231 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 				 zero_size_allowed);
1233 	if (err) {
1234 		verbose(env, "R%d min value is outside of the array range\n",
1235 			regno);
1236 		return err;
1237 	}
1238 
1239 	/* If we haven't set a max value then we need to bail since we can't be
1240 	 * sure we won't do bad things.
1241 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1242 	 */
1243 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 			regno);
1246 		return -EACCES;
1247 	}
1248 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 				 zero_size_allowed);
1250 	if (err)
1251 		verbose(env, "R%d max value is outside of the array range\n",
1252 			regno);
1253 	return err;
1254 }
1255 
1256 #define MAX_PACKET_OFF 0xffff
1257 
1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 				       const struct bpf_call_arg_meta *meta,
1260 				       enum bpf_access_type t)
1261 {
1262 	switch (env->prog->type) {
1263 	case BPF_PROG_TYPE_LWT_IN:
1264 	case BPF_PROG_TYPE_LWT_OUT:
1265 		/* dst_input() and dst_output() can't write for now */
1266 		if (t == BPF_WRITE)
1267 			return false;
1268 		/* fallthrough */
1269 	case BPF_PROG_TYPE_SCHED_CLS:
1270 	case BPF_PROG_TYPE_SCHED_ACT:
1271 	case BPF_PROG_TYPE_XDP:
1272 	case BPF_PROG_TYPE_LWT_XMIT:
1273 	case BPF_PROG_TYPE_SK_SKB:
1274 	case BPF_PROG_TYPE_SK_MSG:
1275 		if (meta)
1276 			return meta->pkt_access;
1277 
1278 		env->seen_direct_write = true;
1279 		return true;
1280 	default:
1281 		return false;
1282 	}
1283 }
1284 
1285 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1286 				 int off, int size, bool zero_size_allowed)
1287 {
1288 	struct bpf_reg_state *regs = cur_regs(env);
1289 	struct bpf_reg_state *reg = &regs[regno];
1290 
1291 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1292 	    (u64)off + size > reg->range) {
1293 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294 			off, size, regno, reg->id, reg->off, reg->range);
1295 		return -EACCES;
1296 	}
1297 	return 0;
1298 }
1299 
1300 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1301 			       int size, bool zero_size_allowed)
1302 {
1303 	struct bpf_reg_state *regs = cur_regs(env);
1304 	struct bpf_reg_state *reg = &regs[regno];
1305 	int err;
1306 
1307 	/* We may have added a variable offset to the packet pointer; but any
1308 	 * reg->range we have comes after that.  We are only checking the fixed
1309 	 * offset.
1310 	 */
1311 
1312 	/* We don't allow negative numbers, because we aren't tracking enough
1313 	 * detail to prove they're safe.
1314 	 */
1315 	if (reg->smin_value < 0) {
1316 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1317 			regno);
1318 		return -EACCES;
1319 	}
1320 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1321 	if (err) {
1322 		verbose(env, "R%d offset is outside of the packet\n", regno);
1323 		return err;
1324 	}
1325 	return err;
1326 }
1327 
1328 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1329 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1330 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1331 {
1332 	struct bpf_insn_access_aux info = {
1333 		.reg_type = *reg_type,
1334 	};
1335 
1336 	if (env->ops->is_valid_access &&
1337 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1338 		/* A non zero info.ctx_field_size indicates that this field is a
1339 		 * candidate for later verifier transformation to load the whole
1340 		 * field and then apply a mask when accessed with a narrower
1341 		 * access than actual ctx access size. A zero info.ctx_field_size
1342 		 * will only allow for whole field access and rejects any other
1343 		 * type of narrower access.
1344 		 */
1345 		*reg_type = info.reg_type;
1346 
1347 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1348 		/* remember the offset of last byte accessed in ctx */
1349 		if (env->prog->aux->max_ctx_offset < off + size)
1350 			env->prog->aux->max_ctx_offset = off + size;
1351 		return 0;
1352 	}
1353 
1354 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1355 	return -EACCES;
1356 }
1357 
1358 static bool __is_pointer_value(bool allow_ptr_leaks,
1359 			       const struct bpf_reg_state *reg)
1360 {
1361 	if (allow_ptr_leaks)
1362 		return false;
1363 
1364 	return reg->type != SCALAR_VALUE;
1365 }
1366 
1367 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1368 {
1369 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1370 }
1371 
1372 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1373 {
1374 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1375 
1376 	return reg->type == PTR_TO_CTX;
1377 }
1378 
1379 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1380 {
1381 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1382 
1383 	return type_is_pkt_pointer(reg->type);
1384 }
1385 
1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1387 				   const struct bpf_reg_state *reg,
1388 				   int off, int size, bool strict)
1389 {
1390 	struct tnum reg_off;
1391 	int ip_align;
1392 
1393 	/* Byte size accesses are always allowed. */
1394 	if (!strict || size == 1)
1395 		return 0;
1396 
1397 	/* For platforms that do not have a Kconfig enabling
1398 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1400 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 	 * to this code only in strict mode where we want to emulate
1402 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1403 	 * unconditional IP align value of '2'.
1404 	 */
1405 	ip_align = 2;
1406 
1407 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1408 	if (!tnum_is_aligned(reg_off, size)) {
1409 		char tn_buf[48];
1410 
1411 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1412 		verbose(env,
1413 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1414 			ip_align, tn_buf, reg->off, off, size);
1415 		return -EACCES;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1422 				       const struct bpf_reg_state *reg,
1423 				       const char *pointer_desc,
1424 				       int off, int size, bool strict)
1425 {
1426 	struct tnum reg_off;
1427 
1428 	/* Byte size accesses are always allowed. */
1429 	if (!strict || size == 1)
1430 		return 0;
1431 
1432 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1433 	if (!tnum_is_aligned(reg_off, size)) {
1434 		char tn_buf[48];
1435 
1436 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1437 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1438 			pointer_desc, tn_buf, reg->off, off, size);
1439 		return -EACCES;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static int check_ptr_alignment(struct bpf_verifier_env *env,
1446 			       const struct bpf_reg_state *reg, int off,
1447 			       int size, bool strict_alignment_once)
1448 {
1449 	bool strict = env->strict_alignment || strict_alignment_once;
1450 	const char *pointer_desc = "";
1451 
1452 	switch (reg->type) {
1453 	case PTR_TO_PACKET:
1454 	case PTR_TO_PACKET_META:
1455 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 		 * right in front, treat it the very same way.
1457 		 */
1458 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1459 	case PTR_TO_MAP_VALUE:
1460 		pointer_desc = "value ";
1461 		break;
1462 	case PTR_TO_CTX:
1463 		pointer_desc = "context ";
1464 		break;
1465 	case PTR_TO_STACK:
1466 		pointer_desc = "stack ";
1467 		/* The stack spill tracking logic in check_stack_write()
1468 		 * and check_stack_read() relies on stack accesses being
1469 		 * aligned.
1470 		 */
1471 		strict = true;
1472 		break;
1473 	default:
1474 		break;
1475 	}
1476 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1477 					   strict);
1478 }
1479 
1480 static int update_stack_depth(struct bpf_verifier_env *env,
1481 			      const struct bpf_func_state *func,
1482 			      int off)
1483 {
1484 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1485 
1486 	if (stack >= -off)
1487 		return 0;
1488 
1489 	/* update known max for given subprogram */
1490 	env->subprog_info[func->subprogno].stack_depth = -off;
1491 	return 0;
1492 }
1493 
1494 /* starting from main bpf function walk all instructions of the function
1495  * and recursively walk all callees that given function can call.
1496  * Ignore jump and exit insns.
1497  * Since recursion is prevented by check_cfg() this algorithm
1498  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1499  */
1500 static int check_max_stack_depth(struct bpf_verifier_env *env)
1501 {
1502 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1503 	struct bpf_subprog_info *subprog = env->subprog_info;
1504 	struct bpf_insn *insn = env->prog->insnsi;
1505 	int ret_insn[MAX_CALL_FRAMES];
1506 	int ret_prog[MAX_CALL_FRAMES];
1507 
1508 process_func:
1509 	/* round up to 32-bytes, since this is granularity
1510 	 * of interpreter stack size
1511 	 */
1512 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1513 	if (depth > MAX_BPF_STACK) {
1514 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1515 			frame + 1, depth);
1516 		return -EACCES;
1517 	}
1518 continue_func:
1519 	subprog_end = subprog[idx + 1].start;
1520 	for (; i < subprog_end; i++) {
1521 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1522 			continue;
1523 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1524 			continue;
1525 		/* remember insn and function to return to */
1526 		ret_insn[frame] = i + 1;
1527 		ret_prog[frame] = idx;
1528 
1529 		/* find the callee */
1530 		i = i + insn[i].imm + 1;
1531 		idx = find_subprog(env, i);
1532 		if (idx < 0) {
1533 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1534 				  i);
1535 			return -EFAULT;
1536 		}
1537 		frame++;
1538 		if (frame >= MAX_CALL_FRAMES) {
1539 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1540 			return -EFAULT;
1541 		}
1542 		goto process_func;
1543 	}
1544 	/* end of for() loop means the last insn of the 'subprog'
1545 	 * was reached. Doesn't matter whether it was JA or EXIT
1546 	 */
1547 	if (frame == 0)
1548 		return 0;
1549 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1550 	frame--;
1551 	i = ret_insn[frame];
1552 	idx = ret_prog[frame];
1553 	goto continue_func;
1554 }
1555 
1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1558 				  const struct bpf_insn *insn, int idx)
1559 {
1560 	int start = idx + insn->imm + 1, subprog;
1561 
1562 	subprog = find_subprog(env, start);
1563 	if (subprog < 0) {
1564 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1565 			  start);
1566 		return -EFAULT;
1567 	}
1568 	return env->subprog_info[subprog].stack_depth;
1569 }
1570 #endif
1571 
1572 /* truncate register to smaller size (in bytes)
1573  * must be called with size < BPF_REG_SIZE
1574  */
1575 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1576 {
1577 	u64 mask;
1578 
1579 	/* clear high bits in bit representation */
1580 	reg->var_off = tnum_cast(reg->var_off, size);
1581 
1582 	/* fix arithmetic bounds */
1583 	mask = ((u64)1 << (size * 8)) - 1;
1584 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1585 		reg->umin_value &= mask;
1586 		reg->umax_value &= mask;
1587 	} else {
1588 		reg->umin_value = 0;
1589 		reg->umax_value = mask;
1590 	}
1591 	reg->smin_value = reg->umin_value;
1592 	reg->smax_value = reg->umax_value;
1593 }
1594 
1595 /* check whether memory at (regno + off) is accessible for t = (read | write)
1596  * if t==write, value_regno is a register which value is stored into memory
1597  * if t==read, value_regno is a register which will receive the value from memory
1598  * if t==write && value_regno==-1, some unknown value is stored into memory
1599  * if t==read && value_regno==-1, don't care what we read from memory
1600  */
1601 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1602 			    int off, int bpf_size, enum bpf_access_type t,
1603 			    int value_regno, bool strict_alignment_once)
1604 {
1605 	struct bpf_reg_state *regs = cur_regs(env);
1606 	struct bpf_reg_state *reg = regs + regno;
1607 	struct bpf_func_state *state;
1608 	int size, err = 0;
1609 
1610 	size = bpf_size_to_bytes(bpf_size);
1611 	if (size < 0)
1612 		return size;
1613 
1614 	/* alignment checks will add in reg->off themselves */
1615 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1616 	if (err)
1617 		return err;
1618 
1619 	/* for access checks, reg->off is just part of off */
1620 	off += reg->off;
1621 
1622 	if (reg->type == PTR_TO_MAP_VALUE) {
1623 		if (t == BPF_WRITE && value_regno >= 0 &&
1624 		    is_pointer_value(env, value_regno)) {
1625 			verbose(env, "R%d leaks addr into map\n", value_regno);
1626 			return -EACCES;
1627 		}
1628 
1629 		err = check_map_access(env, regno, off, size, false);
1630 		if (!err && t == BPF_READ && value_regno >= 0)
1631 			mark_reg_unknown(env, regs, value_regno);
1632 
1633 	} else if (reg->type == PTR_TO_CTX) {
1634 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1635 
1636 		if (t == BPF_WRITE && value_regno >= 0 &&
1637 		    is_pointer_value(env, value_regno)) {
1638 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1639 			return -EACCES;
1640 		}
1641 		/* ctx accesses must be at a fixed offset, so that we can
1642 		 * determine what type of data were returned.
1643 		 */
1644 		if (reg->off) {
1645 			verbose(env,
1646 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 				regno, reg->off, off - reg->off);
1648 			return -EACCES;
1649 		}
1650 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1651 			char tn_buf[48];
1652 
1653 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1654 			verbose(env,
1655 				"variable ctx access var_off=%s off=%d size=%d",
1656 				tn_buf, off, size);
1657 			return -EACCES;
1658 		}
1659 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1660 		if (!err && t == BPF_READ && value_regno >= 0) {
1661 			/* ctx access returns either a scalar, or a
1662 			 * PTR_TO_PACKET[_META,_END]. In the latter
1663 			 * case, we know the offset is zero.
1664 			 */
1665 			if (reg_type == SCALAR_VALUE)
1666 				mark_reg_unknown(env, regs, value_regno);
1667 			else
1668 				mark_reg_known_zero(env, regs,
1669 						    value_regno);
1670 			regs[value_regno].id = 0;
1671 			regs[value_regno].off = 0;
1672 			regs[value_regno].range = 0;
1673 			regs[value_regno].type = reg_type;
1674 		}
1675 
1676 	} else if (reg->type == PTR_TO_STACK) {
1677 		/* stack accesses must be at a fixed offset, so that we can
1678 		 * determine what type of data were returned.
1679 		 * See check_stack_read().
1680 		 */
1681 		if (!tnum_is_const(reg->var_off)) {
1682 			char tn_buf[48];
1683 
1684 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1686 				tn_buf, off, size);
1687 			return -EACCES;
1688 		}
1689 		off += reg->var_off.value;
1690 		if (off >= 0 || off < -MAX_BPF_STACK) {
1691 			verbose(env, "invalid stack off=%d size=%d\n", off,
1692 				size);
1693 			return -EACCES;
1694 		}
1695 
1696 		state = func(env, reg);
1697 		err = update_stack_depth(env, state, off);
1698 		if (err)
1699 			return err;
1700 
1701 		if (t == BPF_WRITE)
1702 			err = check_stack_write(env, state, off, size,
1703 						value_regno);
1704 		else
1705 			err = check_stack_read(env, state, off, size,
1706 					       value_regno);
1707 	} else if (reg_is_pkt_pointer(reg)) {
1708 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1709 			verbose(env, "cannot write into packet\n");
1710 			return -EACCES;
1711 		}
1712 		if (t == BPF_WRITE && value_regno >= 0 &&
1713 		    is_pointer_value(env, value_regno)) {
1714 			verbose(env, "R%d leaks addr into packet\n",
1715 				value_regno);
1716 			return -EACCES;
1717 		}
1718 		err = check_packet_access(env, regno, off, size, false);
1719 		if (!err && t == BPF_READ && value_regno >= 0)
1720 			mark_reg_unknown(env, regs, value_regno);
1721 	} else {
1722 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1723 			reg_type_str[reg->type]);
1724 		return -EACCES;
1725 	}
1726 
1727 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1728 	    regs[value_regno].type == SCALAR_VALUE) {
1729 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1730 		coerce_reg_to_size(&regs[value_regno], size);
1731 	}
1732 	return err;
1733 }
1734 
1735 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1736 {
1737 	int err;
1738 
1739 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1740 	    insn->imm != 0) {
1741 		verbose(env, "BPF_XADD uses reserved fields\n");
1742 		return -EINVAL;
1743 	}
1744 
1745 	/* check src1 operand */
1746 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1747 	if (err)
1748 		return err;
1749 
1750 	/* check src2 operand */
1751 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1752 	if (err)
1753 		return err;
1754 
1755 	if (is_pointer_value(env, insn->src_reg)) {
1756 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1757 		return -EACCES;
1758 	}
1759 
1760 	if (is_ctx_reg(env, insn->dst_reg) ||
1761 	    is_pkt_reg(env, insn->dst_reg)) {
1762 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1763 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1764 			"context" : "packet");
1765 		return -EACCES;
1766 	}
1767 
1768 	/* check whether atomic_add can read the memory */
1769 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1771 	if (err)
1772 		return err;
1773 
1774 	/* check whether atomic_add can write into the same memory */
1775 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1776 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1777 }
1778 
1779 /* when register 'regno' is passed into function that will read 'access_size'
1780  * bytes from that pointer, make sure that it's within stack boundary
1781  * and all elements of stack are initialized.
1782  * Unlike most pointer bounds-checking functions, this one doesn't take an
1783  * 'off' argument, so it has to add in reg->off itself.
1784  */
1785 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1786 				int access_size, bool zero_size_allowed,
1787 				struct bpf_call_arg_meta *meta)
1788 {
1789 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1790 	struct bpf_func_state *state = func(env, reg);
1791 	int off, i, slot, spi;
1792 
1793 	if (reg->type != PTR_TO_STACK) {
1794 		/* Allow zero-byte read from NULL, regardless of pointer type */
1795 		if (zero_size_allowed && access_size == 0 &&
1796 		    register_is_null(reg))
1797 			return 0;
1798 
1799 		verbose(env, "R%d type=%s expected=%s\n", regno,
1800 			reg_type_str[reg->type],
1801 			reg_type_str[PTR_TO_STACK]);
1802 		return -EACCES;
1803 	}
1804 
1805 	/* Only allow fixed-offset stack reads */
1806 	if (!tnum_is_const(reg->var_off)) {
1807 		char tn_buf[48];
1808 
1809 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1810 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1811 			regno, tn_buf);
1812 		return -EACCES;
1813 	}
1814 	off = reg->off + reg->var_off.value;
1815 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1816 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1817 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1818 			regno, off, access_size);
1819 		return -EACCES;
1820 	}
1821 
1822 	if (meta && meta->raw_mode) {
1823 		meta->access_size = access_size;
1824 		meta->regno = regno;
1825 		return 0;
1826 	}
1827 
1828 	for (i = 0; i < access_size; i++) {
1829 		u8 *stype;
1830 
1831 		slot = -(off + i) - 1;
1832 		spi = slot / BPF_REG_SIZE;
1833 		if (state->allocated_stack <= slot)
1834 			goto err;
1835 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1836 		if (*stype == STACK_MISC)
1837 			goto mark;
1838 		if (*stype == STACK_ZERO) {
1839 			/* helper can write anything into the stack */
1840 			*stype = STACK_MISC;
1841 			goto mark;
1842 		}
1843 err:
1844 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1845 			off, i, access_size);
1846 		return -EACCES;
1847 mark:
1848 		/* reading any byte out of 8-byte 'spill_slot' will cause
1849 		 * the whole slot to be marked as 'read'
1850 		 */
1851 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1852 				     spi, state->frameno);
1853 	}
1854 	return update_stack_depth(env, state, off);
1855 }
1856 
1857 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1858 				   int access_size, bool zero_size_allowed,
1859 				   struct bpf_call_arg_meta *meta)
1860 {
1861 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1862 
1863 	switch (reg->type) {
1864 	case PTR_TO_PACKET:
1865 	case PTR_TO_PACKET_META:
1866 		return check_packet_access(env, regno, reg->off, access_size,
1867 					   zero_size_allowed);
1868 	case PTR_TO_MAP_VALUE:
1869 		return check_map_access(env, regno, reg->off, access_size,
1870 					zero_size_allowed);
1871 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 		return check_stack_boundary(env, regno, access_size,
1873 					    zero_size_allowed, meta);
1874 	}
1875 }
1876 
1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1878 {
1879 	return type == ARG_PTR_TO_MEM ||
1880 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1881 	       type == ARG_PTR_TO_UNINIT_MEM;
1882 }
1883 
1884 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1885 {
1886 	return type == ARG_CONST_SIZE ||
1887 	       type == ARG_CONST_SIZE_OR_ZERO;
1888 }
1889 
1890 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1891 			  enum bpf_arg_type arg_type,
1892 			  struct bpf_call_arg_meta *meta)
1893 {
1894 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1895 	enum bpf_reg_type expected_type, type = reg->type;
1896 	int err = 0;
1897 
1898 	if (arg_type == ARG_DONTCARE)
1899 		return 0;
1900 
1901 	err = check_reg_arg(env, regno, SRC_OP);
1902 	if (err)
1903 		return err;
1904 
1905 	if (arg_type == ARG_ANYTHING) {
1906 		if (is_pointer_value(env, regno)) {
1907 			verbose(env, "R%d leaks addr into helper function\n",
1908 				regno);
1909 			return -EACCES;
1910 		}
1911 		return 0;
1912 	}
1913 
1914 	if (type_is_pkt_pointer(type) &&
1915 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1916 		verbose(env, "helper access to the packet is not allowed\n");
1917 		return -EACCES;
1918 	}
1919 
1920 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1921 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1922 		expected_type = PTR_TO_STACK;
1923 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1924 		    type != expected_type)
1925 			goto err_type;
1926 	} else if (arg_type == ARG_CONST_SIZE ||
1927 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1928 		expected_type = SCALAR_VALUE;
1929 		if (type != expected_type)
1930 			goto err_type;
1931 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1932 		expected_type = CONST_PTR_TO_MAP;
1933 		if (type != expected_type)
1934 			goto err_type;
1935 	} else if (arg_type == ARG_PTR_TO_CTX) {
1936 		expected_type = PTR_TO_CTX;
1937 		if (type != expected_type)
1938 			goto err_type;
1939 	} else if (arg_type_is_mem_ptr(arg_type)) {
1940 		expected_type = PTR_TO_STACK;
1941 		/* One exception here. In case function allows for NULL to be
1942 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 		 * happens during stack boundary checking.
1944 		 */
1945 		if (register_is_null(reg) &&
1946 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1947 			/* final test in check_stack_boundary() */;
1948 		else if (!type_is_pkt_pointer(type) &&
1949 			 type != PTR_TO_MAP_VALUE &&
1950 			 type != expected_type)
1951 			goto err_type;
1952 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1953 	} else {
1954 		verbose(env, "unsupported arg_type %d\n", arg_type);
1955 		return -EFAULT;
1956 	}
1957 
1958 	if (arg_type == ARG_CONST_MAP_PTR) {
1959 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960 		meta->map_ptr = reg->map_ptr;
1961 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1962 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 		 * check that [key, key + map->key_size) are within
1964 		 * stack limits and initialized
1965 		 */
1966 		if (!meta->map_ptr) {
1967 			/* in function declaration map_ptr must come before
1968 			 * map_key, so that it's verified and known before
1969 			 * we have to check map_key here. Otherwise it means
1970 			 * that kernel subsystem misconfigured verifier
1971 			 */
1972 			verbose(env, "invalid map_ptr to access map->key\n");
1973 			return -EACCES;
1974 		}
1975 		err = check_helper_mem_access(env, regno,
1976 					      meta->map_ptr->key_size, false,
1977 					      NULL);
1978 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1979 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 		 * check [value, value + map->value_size) validity
1981 		 */
1982 		if (!meta->map_ptr) {
1983 			/* kernel subsystem misconfigured verifier */
1984 			verbose(env, "invalid map_ptr to access map->value\n");
1985 			return -EACCES;
1986 		}
1987 		err = check_helper_mem_access(env, regno,
1988 					      meta->map_ptr->value_size, false,
1989 					      NULL);
1990 	} else if (arg_type_is_mem_size(arg_type)) {
1991 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1992 
1993 		/* remember the mem_size which may be used later
1994 		 * to refine return values.
1995 		 */
1996 		meta->msize_smax_value = reg->smax_value;
1997 		meta->msize_umax_value = reg->umax_value;
1998 
1999 		/* The register is SCALAR_VALUE; the access check
2000 		 * happens using its boundaries.
2001 		 */
2002 		if (!tnum_is_const(reg->var_off))
2003 			/* For unprivileged variable accesses, disable raw
2004 			 * mode so that the program is required to
2005 			 * initialize all the memory that the helper could
2006 			 * just partially fill up.
2007 			 */
2008 			meta = NULL;
2009 
2010 		if (reg->smin_value < 0) {
2011 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2012 				regno);
2013 			return -EACCES;
2014 		}
2015 
2016 		if (reg->umin_value == 0) {
2017 			err = check_helper_mem_access(env, regno - 1, 0,
2018 						      zero_size_allowed,
2019 						      meta);
2020 			if (err)
2021 				return err;
2022 		}
2023 
2024 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2025 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2026 				regno);
2027 			return -EACCES;
2028 		}
2029 		err = check_helper_mem_access(env, regno - 1,
2030 					      reg->umax_value,
2031 					      zero_size_allowed, meta);
2032 	}
2033 
2034 	return err;
2035 err_type:
2036 	verbose(env, "R%d type=%s expected=%s\n", regno,
2037 		reg_type_str[type], reg_type_str[expected_type]);
2038 	return -EACCES;
2039 }
2040 
2041 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2042 					struct bpf_map *map, int func_id)
2043 {
2044 	if (!map)
2045 		return 0;
2046 
2047 	/* We need a two way check, first is from map perspective ... */
2048 	switch (map->map_type) {
2049 	case BPF_MAP_TYPE_PROG_ARRAY:
2050 		if (func_id != BPF_FUNC_tail_call)
2051 			goto error;
2052 		break;
2053 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2054 		if (func_id != BPF_FUNC_perf_event_read &&
2055 		    func_id != BPF_FUNC_perf_event_output &&
2056 		    func_id != BPF_FUNC_perf_event_read_value)
2057 			goto error;
2058 		break;
2059 	case BPF_MAP_TYPE_STACK_TRACE:
2060 		if (func_id != BPF_FUNC_get_stackid)
2061 			goto error;
2062 		break;
2063 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2064 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2065 		    func_id != BPF_FUNC_current_task_under_cgroup)
2066 			goto error;
2067 		break;
2068 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2069 	 * allow to be modified from bpf side. So do not allow lookup elements
2070 	 * for now.
2071 	 */
2072 	case BPF_MAP_TYPE_DEVMAP:
2073 		if (func_id != BPF_FUNC_redirect_map)
2074 			goto error;
2075 		break;
2076 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2077 	 * appear.
2078 	 */
2079 	case BPF_MAP_TYPE_CPUMAP:
2080 	case BPF_MAP_TYPE_XSKMAP:
2081 		if (func_id != BPF_FUNC_redirect_map)
2082 			goto error;
2083 		break;
2084 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2085 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2086 		if (func_id != BPF_FUNC_map_lookup_elem)
2087 			goto error;
2088 		break;
2089 	case BPF_MAP_TYPE_SOCKMAP:
2090 		if (func_id != BPF_FUNC_sk_redirect_map &&
2091 		    func_id != BPF_FUNC_sock_map_update &&
2092 		    func_id != BPF_FUNC_map_delete_elem &&
2093 		    func_id != BPF_FUNC_msg_redirect_map)
2094 			goto error;
2095 		break;
2096 	default:
2097 		break;
2098 	}
2099 
2100 	/* ... and second from the function itself. */
2101 	switch (func_id) {
2102 	case BPF_FUNC_tail_call:
2103 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2104 			goto error;
2105 		if (env->subprog_cnt > 1) {
2106 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2107 			return -EINVAL;
2108 		}
2109 		break;
2110 	case BPF_FUNC_perf_event_read:
2111 	case BPF_FUNC_perf_event_output:
2112 	case BPF_FUNC_perf_event_read_value:
2113 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2114 			goto error;
2115 		break;
2116 	case BPF_FUNC_get_stackid:
2117 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2118 			goto error;
2119 		break;
2120 	case BPF_FUNC_current_task_under_cgroup:
2121 	case BPF_FUNC_skb_under_cgroup:
2122 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2123 			goto error;
2124 		break;
2125 	case BPF_FUNC_redirect_map:
2126 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2127 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2128 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2129 			goto error;
2130 		break;
2131 	case BPF_FUNC_sk_redirect_map:
2132 	case BPF_FUNC_msg_redirect_map:
2133 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2134 			goto error;
2135 		break;
2136 	case BPF_FUNC_sock_map_update:
2137 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2138 			goto error;
2139 		break;
2140 	default:
2141 		break;
2142 	}
2143 
2144 	return 0;
2145 error:
2146 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2147 		map->map_type, func_id_name(func_id), func_id);
2148 	return -EINVAL;
2149 }
2150 
2151 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2152 {
2153 	int count = 0;
2154 
2155 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2156 		count++;
2157 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2158 		count++;
2159 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2160 		count++;
2161 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2162 		count++;
2163 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2164 		count++;
2165 
2166 	/* We only support one arg being in raw mode at the moment,
2167 	 * which is sufficient for the helper functions we have
2168 	 * right now.
2169 	 */
2170 	return count <= 1;
2171 }
2172 
2173 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2174 				    enum bpf_arg_type arg_next)
2175 {
2176 	return (arg_type_is_mem_ptr(arg_curr) &&
2177 	        !arg_type_is_mem_size(arg_next)) ||
2178 	       (!arg_type_is_mem_ptr(arg_curr) &&
2179 		arg_type_is_mem_size(arg_next));
2180 }
2181 
2182 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2183 {
2184 	/* bpf_xxx(..., buf, len) call will access 'len'
2185 	 * bytes from memory 'buf'. Both arg types need
2186 	 * to be paired, so make sure there's no buggy
2187 	 * helper function specification.
2188 	 */
2189 	if (arg_type_is_mem_size(fn->arg1_type) ||
2190 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2191 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2192 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2193 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2194 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2195 		return false;
2196 
2197 	return true;
2198 }
2199 
2200 static int check_func_proto(const struct bpf_func_proto *fn)
2201 {
2202 	return check_raw_mode_ok(fn) &&
2203 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2204 }
2205 
2206 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2207  * are now invalid, so turn them into unknown SCALAR_VALUE.
2208  */
2209 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2210 				     struct bpf_func_state *state)
2211 {
2212 	struct bpf_reg_state *regs = state->regs, *reg;
2213 	int i;
2214 
2215 	for (i = 0; i < MAX_BPF_REG; i++)
2216 		if (reg_is_pkt_pointer_any(&regs[i]))
2217 			mark_reg_unknown(env, regs, i);
2218 
2219 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2220 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2221 			continue;
2222 		reg = &state->stack[i].spilled_ptr;
2223 		if (reg_is_pkt_pointer_any(reg))
2224 			__mark_reg_unknown(reg);
2225 	}
2226 }
2227 
2228 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2229 {
2230 	struct bpf_verifier_state *vstate = env->cur_state;
2231 	int i;
2232 
2233 	for (i = 0; i <= vstate->curframe; i++)
2234 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2235 }
2236 
2237 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2238 			   int *insn_idx)
2239 {
2240 	struct bpf_verifier_state *state = env->cur_state;
2241 	struct bpf_func_state *caller, *callee;
2242 	int i, subprog, target_insn;
2243 
2244 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2245 		verbose(env, "the call stack of %d frames is too deep\n",
2246 			state->curframe + 2);
2247 		return -E2BIG;
2248 	}
2249 
2250 	target_insn = *insn_idx + insn->imm;
2251 	subprog = find_subprog(env, target_insn + 1);
2252 	if (subprog < 0) {
2253 		verbose(env, "verifier bug. No program starts at insn %d\n",
2254 			target_insn + 1);
2255 		return -EFAULT;
2256 	}
2257 
2258 	caller = state->frame[state->curframe];
2259 	if (state->frame[state->curframe + 1]) {
2260 		verbose(env, "verifier bug. Frame %d already allocated\n",
2261 			state->curframe + 1);
2262 		return -EFAULT;
2263 	}
2264 
2265 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2266 	if (!callee)
2267 		return -ENOMEM;
2268 	state->frame[state->curframe + 1] = callee;
2269 
2270 	/* callee cannot access r0, r6 - r9 for reading and has to write
2271 	 * into its own stack before reading from it.
2272 	 * callee can read/write into caller's stack
2273 	 */
2274 	init_func_state(env, callee,
2275 			/* remember the callsite, it will be used by bpf_exit */
2276 			*insn_idx /* callsite */,
2277 			state->curframe + 1 /* frameno within this callchain */,
2278 			subprog /* subprog number within this prog */);
2279 
2280 	/* copy r1 - r5 args that callee can access */
2281 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2282 		callee->regs[i] = caller->regs[i];
2283 
2284 	/* after the call regsiters r0 - r5 were scratched */
2285 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2286 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2287 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2288 	}
2289 
2290 	/* only increment it after check_reg_arg() finished */
2291 	state->curframe++;
2292 
2293 	/* and go analyze first insn of the callee */
2294 	*insn_idx = target_insn;
2295 
2296 	if (env->log.level) {
2297 		verbose(env, "caller:\n");
2298 		print_verifier_state(env, caller);
2299 		verbose(env, "callee:\n");
2300 		print_verifier_state(env, callee);
2301 	}
2302 	return 0;
2303 }
2304 
2305 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2306 {
2307 	struct bpf_verifier_state *state = env->cur_state;
2308 	struct bpf_func_state *caller, *callee;
2309 	struct bpf_reg_state *r0;
2310 
2311 	callee = state->frame[state->curframe];
2312 	r0 = &callee->regs[BPF_REG_0];
2313 	if (r0->type == PTR_TO_STACK) {
2314 		/* technically it's ok to return caller's stack pointer
2315 		 * (or caller's caller's pointer) back to the caller,
2316 		 * since these pointers are valid. Only current stack
2317 		 * pointer will be invalid as soon as function exits,
2318 		 * but let's be conservative
2319 		 */
2320 		verbose(env, "cannot return stack pointer to the caller\n");
2321 		return -EINVAL;
2322 	}
2323 
2324 	state->curframe--;
2325 	caller = state->frame[state->curframe];
2326 	/* return to the caller whatever r0 had in the callee */
2327 	caller->regs[BPF_REG_0] = *r0;
2328 
2329 	*insn_idx = callee->callsite + 1;
2330 	if (env->log.level) {
2331 		verbose(env, "returning from callee:\n");
2332 		print_verifier_state(env, callee);
2333 		verbose(env, "to caller at %d:\n", *insn_idx);
2334 		print_verifier_state(env, caller);
2335 	}
2336 	/* clear everything in the callee */
2337 	free_func_state(callee);
2338 	state->frame[state->curframe + 1] = NULL;
2339 	return 0;
2340 }
2341 
2342 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2343 				   int func_id,
2344 				   struct bpf_call_arg_meta *meta)
2345 {
2346 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2347 
2348 	if (ret_type != RET_INTEGER ||
2349 	    (func_id != BPF_FUNC_get_stack &&
2350 	     func_id != BPF_FUNC_probe_read_str))
2351 		return;
2352 
2353 	ret_reg->smax_value = meta->msize_smax_value;
2354 	ret_reg->umax_value = meta->msize_umax_value;
2355 	__reg_deduce_bounds(ret_reg);
2356 	__reg_bound_offset(ret_reg);
2357 }
2358 
2359 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2360 {
2361 	const struct bpf_func_proto *fn = NULL;
2362 	struct bpf_reg_state *regs;
2363 	struct bpf_call_arg_meta meta;
2364 	bool changes_data;
2365 	int i, err;
2366 
2367 	/* find function prototype */
2368 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2369 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2370 			func_id);
2371 		return -EINVAL;
2372 	}
2373 
2374 	if (env->ops->get_func_proto)
2375 		fn = env->ops->get_func_proto(func_id, env->prog);
2376 	if (!fn) {
2377 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2378 			func_id);
2379 		return -EINVAL;
2380 	}
2381 
2382 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2383 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2384 		verbose(env, "cannot call GPL only function from proprietary program\n");
2385 		return -EINVAL;
2386 	}
2387 
2388 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2389 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2390 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2391 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2392 			func_id_name(func_id), func_id);
2393 		return -EINVAL;
2394 	}
2395 
2396 	memset(&meta, 0, sizeof(meta));
2397 	meta.pkt_access = fn->pkt_access;
2398 
2399 	err = check_func_proto(fn);
2400 	if (err) {
2401 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2402 			func_id_name(func_id), func_id);
2403 		return err;
2404 	}
2405 
2406 	/* check args */
2407 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2408 	if (err)
2409 		return err;
2410 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2411 	if (err)
2412 		return err;
2413 	if (func_id == BPF_FUNC_tail_call) {
2414 		if (meta.map_ptr == NULL) {
2415 			verbose(env, "verifier bug\n");
2416 			return -EINVAL;
2417 		}
2418 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2419 	}
2420 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2421 	if (err)
2422 		return err;
2423 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2424 	if (err)
2425 		return err;
2426 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2427 	if (err)
2428 		return err;
2429 
2430 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2431 	 * is inferred from register state.
2432 	 */
2433 	for (i = 0; i < meta.access_size; i++) {
2434 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2435 				       BPF_WRITE, -1, false);
2436 		if (err)
2437 			return err;
2438 	}
2439 
2440 	regs = cur_regs(env);
2441 	/* reset caller saved regs */
2442 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2443 		mark_reg_not_init(env, regs, caller_saved[i]);
2444 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2445 	}
2446 
2447 	/* update return register (already marked as written above) */
2448 	if (fn->ret_type == RET_INTEGER) {
2449 		/* sets type to SCALAR_VALUE */
2450 		mark_reg_unknown(env, regs, BPF_REG_0);
2451 	} else if (fn->ret_type == RET_VOID) {
2452 		regs[BPF_REG_0].type = NOT_INIT;
2453 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2454 		struct bpf_insn_aux_data *insn_aux;
2455 
2456 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2457 		/* There is no offset yet applied, variable or fixed */
2458 		mark_reg_known_zero(env, regs, BPF_REG_0);
2459 		regs[BPF_REG_0].off = 0;
2460 		/* remember map_ptr, so that check_map_access()
2461 		 * can check 'value_size' boundary of memory access
2462 		 * to map element returned from bpf_map_lookup_elem()
2463 		 */
2464 		if (meta.map_ptr == NULL) {
2465 			verbose(env,
2466 				"kernel subsystem misconfigured verifier\n");
2467 			return -EINVAL;
2468 		}
2469 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2470 		regs[BPF_REG_0].id = ++env->id_gen;
2471 		insn_aux = &env->insn_aux_data[insn_idx];
2472 		if (!insn_aux->map_ptr)
2473 			insn_aux->map_ptr = meta.map_ptr;
2474 		else if (insn_aux->map_ptr != meta.map_ptr)
2475 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2476 	} else {
2477 		verbose(env, "unknown return type %d of func %s#%d\n",
2478 			fn->ret_type, func_id_name(func_id), func_id);
2479 		return -EINVAL;
2480 	}
2481 
2482 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2483 
2484 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2485 	if (err)
2486 		return err;
2487 
2488 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2489 		const char *err_str;
2490 
2491 #ifdef CONFIG_PERF_EVENTS
2492 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2493 		err_str = "cannot get callchain buffer for func %s#%d\n";
2494 #else
2495 		err = -ENOTSUPP;
2496 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2497 #endif
2498 		if (err) {
2499 			verbose(env, err_str, func_id_name(func_id), func_id);
2500 			return err;
2501 		}
2502 
2503 		env->prog->has_callchain_buf = true;
2504 	}
2505 
2506 	if (changes_data)
2507 		clear_all_pkt_pointers(env);
2508 	return 0;
2509 }
2510 
2511 static bool signed_add_overflows(s64 a, s64 b)
2512 {
2513 	/* Do the add in u64, where overflow is well-defined */
2514 	s64 res = (s64)((u64)a + (u64)b);
2515 
2516 	if (b < 0)
2517 		return res > a;
2518 	return res < a;
2519 }
2520 
2521 static bool signed_sub_overflows(s64 a, s64 b)
2522 {
2523 	/* Do the sub in u64, where overflow is well-defined */
2524 	s64 res = (s64)((u64)a - (u64)b);
2525 
2526 	if (b < 0)
2527 		return res < a;
2528 	return res > a;
2529 }
2530 
2531 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2532 				  const struct bpf_reg_state *reg,
2533 				  enum bpf_reg_type type)
2534 {
2535 	bool known = tnum_is_const(reg->var_off);
2536 	s64 val = reg->var_off.value;
2537 	s64 smin = reg->smin_value;
2538 
2539 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2540 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2541 			reg_type_str[type], val);
2542 		return false;
2543 	}
2544 
2545 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2546 		verbose(env, "%s pointer offset %d is not allowed\n",
2547 			reg_type_str[type], reg->off);
2548 		return false;
2549 	}
2550 
2551 	if (smin == S64_MIN) {
2552 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2553 			reg_type_str[type]);
2554 		return false;
2555 	}
2556 
2557 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2558 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2559 			smin, reg_type_str[type]);
2560 		return false;
2561 	}
2562 
2563 	return true;
2564 }
2565 
2566 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2567  * Caller should also handle BPF_MOV case separately.
2568  * If we return -EACCES, caller may want to try again treating pointer as a
2569  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2570  */
2571 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2572 				   struct bpf_insn *insn,
2573 				   const struct bpf_reg_state *ptr_reg,
2574 				   const struct bpf_reg_state *off_reg)
2575 {
2576 	struct bpf_verifier_state *vstate = env->cur_state;
2577 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2578 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2579 	bool known = tnum_is_const(off_reg->var_off);
2580 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2581 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2582 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2583 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2584 	u8 opcode = BPF_OP(insn->code);
2585 	u32 dst = insn->dst_reg;
2586 
2587 	dst_reg = &regs[dst];
2588 
2589 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2590 	    smin_val > smax_val || umin_val > umax_val) {
2591 		/* Taint dst register if offset had invalid bounds derived from
2592 		 * e.g. dead branches.
2593 		 */
2594 		__mark_reg_unknown(dst_reg);
2595 		return 0;
2596 	}
2597 
2598 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2599 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2600 		verbose(env,
2601 			"R%d 32-bit pointer arithmetic prohibited\n",
2602 			dst);
2603 		return -EACCES;
2604 	}
2605 
2606 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2607 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2608 			dst);
2609 		return -EACCES;
2610 	}
2611 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2612 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2613 			dst);
2614 		return -EACCES;
2615 	}
2616 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2617 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2618 			dst);
2619 		return -EACCES;
2620 	}
2621 
2622 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2623 	 * The id may be overwritten later if we create a new variable offset.
2624 	 */
2625 	dst_reg->type = ptr_reg->type;
2626 	dst_reg->id = ptr_reg->id;
2627 
2628 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2629 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2630 		return -EINVAL;
2631 
2632 	switch (opcode) {
2633 	case BPF_ADD:
2634 		/* We can take a fixed offset as long as it doesn't overflow
2635 		 * the s32 'off' field
2636 		 */
2637 		if (known && (ptr_reg->off + smin_val ==
2638 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2639 			/* pointer += K.  Accumulate it into fixed offset */
2640 			dst_reg->smin_value = smin_ptr;
2641 			dst_reg->smax_value = smax_ptr;
2642 			dst_reg->umin_value = umin_ptr;
2643 			dst_reg->umax_value = umax_ptr;
2644 			dst_reg->var_off = ptr_reg->var_off;
2645 			dst_reg->off = ptr_reg->off + smin_val;
2646 			dst_reg->range = ptr_reg->range;
2647 			break;
2648 		}
2649 		/* A new variable offset is created.  Note that off_reg->off
2650 		 * == 0, since it's a scalar.
2651 		 * dst_reg gets the pointer type and since some positive
2652 		 * integer value was added to the pointer, give it a new 'id'
2653 		 * if it's a PTR_TO_PACKET.
2654 		 * this creates a new 'base' pointer, off_reg (variable) gets
2655 		 * added into the variable offset, and we copy the fixed offset
2656 		 * from ptr_reg.
2657 		 */
2658 		if (signed_add_overflows(smin_ptr, smin_val) ||
2659 		    signed_add_overflows(smax_ptr, smax_val)) {
2660 			dst_reg->smin_value = S64_MIN;
2661 			dst_reg->smax_value = S64_MAX;
2662 		} else {
2663 			dst_reg->smin_value = smin_ptr + smin_val;
2664 			dst_reg->smax_value = smax_ptr + smax_val;
2665 		}
2666 		if (umin_ptr + umin_val < umin_ptr ||
2667 		    umax_ptr + umax_val < umax_ptr) {
2668 			dst_reg->umin_value = 0;
2669 			dst_reg->umax_value = U64_MAX;
2670 		} else {
2671 			dst_reg->umin_value = umin_ptr + umin_val;
2672 			dst_reg->umax_value = umax_ptr + umax_val;
2673 		}
2674 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2675 		dst_reg->off = ptr_reg->off;
2676 		if (reg_is_pkt_pointer(ptr_reg)) {
2677 			dst_reg->id = ++env->id_gen;
2678 			/* something was added to pkt_ptr, set range to zero */
2679 			dst_reg->range = 0;
2680 		}
2681 		break;
2682 	case BPF_SUB:
2683 		if (dst_reg == off_reg) {
2684 			/* scalar -= pointer.  Creates an unknown scalar */
2685 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2686 				dst);
2687 			return -EACCES;
2688 		}
2689 		/* We don't allow subtraction from FP, because (according to
2690 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2691 		 * be able to deal with it.
2692 		 */
2693 		if (ptr_reg->type == PTR_TO_STACK) {
2694 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2695 				dst);
2696 			return -EACCES;
2697 		}
2698 		if (known && (ptr_reg->off - smin_val ==
2699 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2700 			/* pointer -= K.  Subtract it from fixed offset */
2701 			dst_reg->smin_value = smin_ptr;
2702 			dst_reg->smax_value = smax_ptr;
2703 			dst_reg->umin_value = umin_ptr;
2704 			dst_reg->umax_value = umax_ptr;
2705 			dst_reg->var_off = ptr_reg->var_off;
2706 			dst_reg->id = ptr_reg->id;
2707 			dst_reg->off = ptr_reg->off - smin_val;
2708 			dst_reg->range = ptr_reg->range;
2709 			break;
2710 		}
2711 		/* A new variable offset is created.  If the subtrahend is known
2712 		 * nonnegative, then any reg->range we had before is still good.
2713 		 */
2714 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2715 		    signed_sub_overflows(smax_ptr, smin_val)) {
2716 			/* Overflow possible, we know nothing */
2717 			dst_reg->smin_value = S64_MIN;
2718 			dst_reg->smax_value = S64_MAX;
2719 		} else {
2720 			dst_reg->smin_value = smin_ptr - smax_val;
2721 			dst_reg->smax_value = smax_ptr - smin_val;
2722 		}
2723 		if (umin_ptr < umax_val) {
2724 			/* Overflow possible, we know nothing */
2725 			dst_reg->umin_value = 0;
2726 			dst_reg->umax_value = U64_MAX;
2727 		} else {
2728 			/* Cannot overflow (as long as bounds are consistent) */
2729 			dst_reg->umin_value = umin_ptr - umax_val;
2730 			dst_reg->umax_value = umax_ptr - umin_val;
2731 		}
2732 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2733 		dst_reg->off = ptr_reg->off;
2734 		if (reg_is_pkt_pointer(ptr_reg)) {
2735 			dst_reg->id = ++env->id_gen;
2736 			/* something was added to pkt_ptr, set range to zero */
2737 			if (smin_val < 0)
2738 				dst_reg->range = 0;
2739 		}
2740 		break;
2741 	case BPF_AND:
2742 	case BPF_OR:
2743 	case BPF_XOR:
2744 		/* bitwise ops on pointers are troublesome, prohibit. */
2745 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2746 			dst, bpf_alu_string[opcode >> 4]);
2747 		return -EACCES;
2748 	default:
2749 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2750 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2751 			dst, bpf_alu_string[opcode >> 4]);
2752 		return -EACCES;
2753 	}
2754 
2755 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2756 		return -EINVAL;
2757 
2758 	__update_reg_bounds(dst_reg);
2759 	__reg_deduce_bounds(dst_reg);
2760 	__reg_bound_offset(dst_reg);
2761 	return 0;
2762 }
2763 
2764 /* WARNING: This function does calculations on 64-bit values, but the actual
2765  * execution may occur on 32-bit values. Therefore, things like bitshifts
2766  * need extra checks in the 32-bit case.
2767  */
2768 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2769 				      struct bpf_insn *insn,
2770 				      struct bpf_reg_state *dst_reg,
2771 				      struct bpf_reg_state src_reg)
2772 {
2773 	struct bpf_reg_state *regs = cur_regs(env);
2774 	u8 opcode = BPF_OP(insn->code);
2775 	bool src_known, dst_known;
2776 	s64 smin_val, smax_val;
2777 	u64 umin_val, umax_val;
2778 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2779 
2780 	smin_val = src_reg.smin_value;
2781 	smax_val = src_reg.smax_value;
2782 	umin_val = src_reg.umin_value;
2783 	umax_val = src_reg.umax_value;
2784 	src_known = tnum_is_const(src_reg.var_off);
2785 	dst_known = tnum_is_const(dst_reg->var_off);
2786 
2787 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2788 	    smin_val > smax_val || umin_val > umax_val) {
2789 		/* Taint dst register if offset had invalid bounds derived from
2790 		 * e.g. dead branches.
2791 		 */
2792 		__mark_reg_unknown(dst_reg);
2793 		return 0;
2794 	}
2795 
2796 	if (!src_known &&
2797 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2798 		__mark_reg_unknown(dst_reg);
2799 		return 0;
2800 	}
2801 
2802 	switch (opcode) {
2803 	case BPF_ADD:
2804 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2805 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2806 			dst_reg->smin_value = S64_MIN;
2807 			dst_reg->smax_value = S64_MAX;
2808 		} else {
2809 			dst_reg->smin_value += smin_val;
2810 			dst_reg->smax_value += smax_val;
2811 		}
2812 		if (dst_reg->umin_value + umin_val < umin_val ||
2813 		    dst_reg->umax_value + umax_val < umax_val) {
2814 			dst_reg->umin_value = 0;
2815 			dst_reg->umax_value = U64_MAX;
2816 		} else {
2817 			dst_reg->umin_value += umin_val;
2818 			dst_reg->umax_value += umax_val;
2819 		}
2820 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2821 		break;
2822 	case BPF_SUB:
2823 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2824 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2825 			/* Overflow possible, we know nothing */
2826 			dst_reg->smin_value = S64_MIN;
2827 			dst_reg->smax_value = S64_MAX;
2828 		} else {
2829 			dst_reg->smin_value -= smax_val;
2830 			dst_reg->smax_value -= smin_val;
2831 		}
2832 		if (dst_reg->umin_value < umax_val) {
2833 			/* Overflow possible, we know nothing */
2834 			dst_reg->umin_value = 0;
2835 			dst_reg->umax_value = U64_MAX;
2836 		} else {
2837 			/* Cannot overflow (as long as bounds are consistent) */
2838 			dst_reg->umin_value -= umax_val;
2839 			dst_reg->umax_value -= umin_val;
2840 		}
2841 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2842 		break;
2843 	case BPF_MUL:
2844 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2845 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2846 			/* Ain't nobody got time to multiply that sign */
2847 			__mark_reg_unbounded(dst_reg);
2848 			__update_reg_bounds(dst_reg);
2849 			break;
2850 		}
2851 		/* Both values are positive, so we can work with unsigned and
2852 		 * copy the result to signed (unless it exceeds S64_MAX).
2853 		 */
2854 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2855 			/* Potential overflow, we know nothing */
2856 			__mark_reg_unbounded(dst_reg);
2857 			/* (except what we can learn from the var_off) */
2858 			__update_reg_bounds(dst_reg);
2859 			break;
2860 		}
2861 		dst_reg->umin_value *= umin_val;
2862 		dst_reg->umax_value *= umax_val;
2863 		if (dst_reg->umax_value > S64_MAX) {
2864 			/* Overflow possible, we know nothing */
2865 			dst_reg->smin_value = S64_MIN;
2866 			dst_reg->smax_value = S64_MAX;
2867 		} else {
2868 			dst_reg->smin_value = dst_reg->umin_value;
2869 			dst_reg->smax_value = dst_reg->umax_value;
2870 		}
2871 		break;
2872 	case BPF_AND:
2873 		if (src_known && dst_known) {
2874 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2875 						  src_reg.var_off.value);
2876 			break;
2877 		}
2878 		/* We get our minimum from the var_off, since that's inherently
2879 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2880 		 */
2881 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2882 		dst_reg->umin_value = dst_reg->var_off.value;
2883 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2884 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2885 			/* Lose signed bounds when ANDing negative numbers,
2886 			 * ain't nobody got time for that.
2887 			 */
2888 			dst_reg->smin_value = S64_MIN;
2889 			dst_reg->smax_value = S64_MAX;
2890 		} else {
2891 			/* ANDing two positives gives a positive, so safe to
2892 			 * cast result into s64.
2893 			 */
2894 			dst_reg->smin_value = dst_reg->umin_value;
2895 			dst_reg->smax_value = dst_reg->umax_value;
2896 		}
2897 		/* We may learn something more from the var_off */
2898 		__update_reg_bounds(dst_reg);
2899 		break;
2900 	case BPF_OR:
2901 		if (src_known && dst_known) {
2902 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2903 						  src_reg.var_off.value);
2904 			break;
2905 		}
2906 		/* We get our maximum from the var_off, and our minimum is the
2907 		 * maximum of the operands' minima
2908 		 */
2909 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2910 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2911 		dst_reg->umax_value = dst_reg->var_off.value |
2912 				      dst_reg->var_off.mask;
2913 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2914 			/* Lose signed bounds when ORing negative numbers,
2915 			 * ain't nobody got time for that.
2916 			 */
2917 			dst_reg->smin_value = S64_MIN;
2918 			dst_reg->smax_value = S64_MAX;
2919 		} else {
2920 			/* ORing two positives gives a positive, so safe to
2921 			 * cast result into s64.
2922 			 */
2923 			dst_reg->smin_value = dst_reg->umin_value;
2924 			dst_reg->smax_value = dst_reg->umax_value;
2925 		}
2926 		/* We may learn something more from the var_off */
2927 		__update_reg_bounds(dst_reg);
2928 		break;
2929 	case BPF_LSH:
2930 		if (umax_val >= insn_bitness) {
2931 			/* Shifts greater than 31 or 63 are undefined.
2932 			 * This includes shifts by a negative number.
2933 			 */
2934 			mark_reg_unknown(env, regs, insn->dst_reg);
2935 			break;
2936 		}
2937 		/* We lose all sign bit information (except what we can pick
2938 		 * up from var_off)
2939 		 */
2940 		dst_reg->smin_value = S64_MIN;
2941 		dst_reg->smax_value = S64_MAX;
2942 		/* If we might shift our top bit out, then we know nothing */
2943 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2944 			dst_reg->umin_value = 0;
2945 			dst_reg->umax_value = U64_MAX;
2946 		} else {
2947 			dst_reg->umin_value <<= umin_val;
2948 			dst_reg->umax_value <<= umax_val;
2949 		}
2950 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2951 		/* We may learn something more from the var_off */
2952 		__update_reg_bounds(dst_reg);
2953 		break;
2954 	case BPF_RSH:
2955 		if (umax_val >= insn_bitness) {
2956 			/* Shifts greater than 31 or 63 are undefined.
2957 			 * This includes shifts by a negative number.
2958 			 */
2959 			mark_reg_unknown(env, regs, insn->dst_reg);
2960 			break;
2961 		}
2962 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2963 		 * be negative, then either:
2964 		 * 1) src_reg might be zero, so the sign bit of the result is
2965 		 *    unknown, so we lose our signed bounds
2966 		 * 2) it's known negative, thus the unsigned bounds capture the
2967 		 *    signed bounds
2968 		 * 3) the signed bounds cross zero, so they tell us nothing
2969 		 *    about the result
2970 		 * If the value in dst_reg is known nonnegative, then again the
2971 		 * unsigned bounts capture the signed bounds.
2972 		 * Thus, in all cases it suffices to blow away our signed bounds
2973 		 * and rely on inferring new ones from the unsigned bounds and
2974 		 * var_off of the result.
2975 		 */
2976 		dst_reg->smin_value = S64_MIN;
2977 		dst_reg->smax_value = S64_MAX;
2978 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2979 		dst_reg->umin_value >>= umax_val;
2980 		dst_reg->umax_value >>= umin_val;
2981 		/* We may learn something more from the var_off */
2982 		__update_reg_bounds(dst_reg);
2983 		break;
2984 	case BPF_ARSH:
2985 		if (umax_val >= insn_bitness) {
2986 			/* Shifts greater than 31 or 63 are undefined.
2987 			 * This includes shifts by a negative number.
2988 			 */
2989 			mark_reg_unknown(env, regs, insn->dst_reg);
2990 			break;
2991 		}
2992 
2993 		/* Upon reaching here, src_known is true and
2994 		 * umax_val is equal to umin_val.
2995 		 */
2996 		dst_reg->smin_value >>= umin_val;
2997 		dst_reg->smax_value >>= umin_val;
2998 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
2999 
3000 		/* blow away the dst_reg umin_value/umax_value and rely on
3001 		 * dst_reg var_off to refine the result.
3002 		 */
3003 		dst_reg->umin_value = 0;
3004 		dst_reg->umax_value = U64_MAX;
3005 		__update_reg_bounds(dst_reg);
3006 		break;
3007 	default:
3008 		mark_reg_unknown(env, regs, insn->dst_reg);
3009 		break;
3010 	}
3011 
3012 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3013 		/* 32-bit ALU ops are (32,32)->32 */
3014 		coerce_reg_to_size(dst_reg, 4);
3015 		coerce_reg_to_size(&src_reg, 4);
3016 	}
3017 
3018 	__reg_deduce_bounds(dst_reg);
3019 	__reg_bound_offset(dst_reg);
3020 	return 0;
3021 }
3022 
3023 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3024  * and var_off.
3025  */
3026 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3027 				   struct bpf_insn *insn)
3028 {
3029 	struct bpf_verifier_state *vstate = env->cur_state;
3030 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3031 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3032 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3033 	u8 opcode = BPF_OP(insn->code);
3034 
3035 	dst_reg = &regs[insn->dst_reg];
3036 	src_reg = NULL;
3037 	if (dst_reg->type != SCALAR_VALUE)
3038 		ptr_reg = dst_reg;
3039 	if (BPF_SRC(insn->code) == BPF_X) {
3040 		src_reg = &regs[insn->src_reg];
3041 		if (src_reg->type != SCALAR_VALUE) {
3042 			if (dst_reg->type != SCALAR_VALUE) {
3043 				/* Combining two pointers by any ALU op yields
3044 				 * an arbitrary scalar. Disallow all math except
3045 				 * pointer subtraction
3046 				 */
3047 				if (opcode == BPF_SUB){
3048 					mark_reg_unknown(env, regs, insn->dst_reg);
3049 					return 0;
3050 				}
3051 				verbose(env, "R%d pointer %s pointer prohibited\n",
3052 					insn->dst_reg,
3053 					bpf_alu_string[opcode >> 4]);
3054 				return -EACCES;
3055 			} else {
3056 				/* scalar += pointer
3057 				 * This is legal, but we have to reverse our
3058 				 * src/dest handling in computing the range
3059 				 */
3060 				return adjust_ptr_min_max_vals(env, insn,
3061 							       src_reg, dst_reg);
3062 			}
3063 		} else if (ptr_reg) {
3064 			/* pointer += scalar */
3065 			return adjust_ptr_min_max_vals(env, insn,
3066 						       dst_reg, src_reg);
3067 		}
3068 	} else {
3069 		/* Pretend the src is a reg with a known value, since we only
3070 		 * need to be able to read from this state.
3071 		 */
3072 		off_reg.type = SCALAR_VALUE;
3073 		__mark_reg_known(&off_reg, insn->imm);
3074 		src_reg = &off_reg;
3075 		if (ptr_reg) /* pointer += K */
3076 			return adjust_ptr_min_max_vals(env, insn,
3077 						       ptr_reg, src_reg);
3078 	}
3079 
3080 	/* Got here implies adding two SCALAR_VALUEs */
3081 	if (WARN_ON_ONCE(ptr_reg)) {
3082 		print_verifier_state(env, state);
3083 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3084 		return -EINVAL;
3085 	}
3086 	if (WARN_ON(!src_reg)) {
3087 		print_verifier_state(env, state);
3088 		verbose(env, "verifier internal error: no src_reg\n");
3089 		return -EINVAL;
3090 	}
3091 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3092 }
3093 
3094 /* check validity of 32-bit and 64-bit arithmetic operations */
3095 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3096 {
3097 	struct bpf_reg_state *regs = cur_regs(env);
3098 	u8 opcode = BPF_OP(insn->code);
3099 	int err;
3100 
3101 	if (opcode == BPF_END || opcode == BPF_NEG) {
3102 		if (opcode == BPF_NEG) {
3103 			if (BPF_SRC(insn->code) != 0 ||
3104 			    insn->src_reg != BPF_REG_0 ||
3105 			    insn->off != 0 || insn->imm != 0) {
3106 				verbose(env, "BPF_NEG uses reserved fields\n");
3107 				return -EINVAL;
3108 			}
3109 		} else {
3110 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3111 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3112 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3113 				verbose(env, "BPF_END uses reserved fields\n");
3114 				return -EINVAL;
3115 			}
3116 		}
3117 
3118 		/* check src operand */
3119 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3120 		if (err)
3121 			return err;
3122 
3123 		if (is_pointer_value(env, insn->dst_reg)) {
3124 			verbose(env, "R%d pointer arithmetic prohibited\n",
3125 				insn->dst_reg);
3126 			return -EACCES;
3127 		}
3128 
3129 		/* check dest operand */
3130 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3131 		if (err)
3132 			return err;
3133 
3134 	} else if (opcode == BPF_MOV) {
3135 
3136 		if (BPF_SRC(insn->code) == BPF_X) {
3137 			if (insn->imm != 0 || insn->off != 0) {
3138 				verbose(env, "BPF_MOV uses reserved fields\n");
3139 				return -EINVAL;
3140 			}
3141 
3142 			/* check src operand */
3143 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3144 			if (err)
3145 				return err;
3146 		} else {
3147 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3148 				verbose(env, "BPF_MOV uses reserved fields\n");
3149 				return -EINVAL;
3150 			}
3151 		}
3152 
3153 		/* check dest operand */
3154 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3155 		if (err)
3156 			return err;
3157 
3158 		if (BPF_SRC(insn->code) == BPF_X) {
3159 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3160 				/* case: R1 = R2
3161 				 * copy register state to dest reg
3162 				 */
3163 				regs[insn->dst_reg] = regs[insn->src_reg];
3164 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3165 			} else {
3166 				/* R1 = (u32) R2 */
3167 				if (is_pointer_value(env, insn->src_reg)) {
3168 					verbose(env,
3169 						"R%d partial copy of pointer\n",
3170 						insn->src_reg);
3171 					return -EACCES;
3172 				}
3173 				mark_reg_unknown(env, regs, insn->dst_reg);
3174 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3175 			}
3176 		} else {
3177 			/* case: R = imm
3178 			 * remember the value we stored into this reg
3179 			 */
3180 			regs[insn->dst_reg].type = SCALAR_VALUE;
3181 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3182 				__mark_reg_known(regs + insn->dst_reg,
3183 						 insn->imm);
3184 			} else {
3185 				__mark_reg_known(regs + insn->dst_reg,
3186 						 (u32)insn->imm);
3187 			}
3188 		}
3189 
3190 	} else if (opcode > BPF_END) {
3191 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3192 		return -EINVAL;
3193 
3194 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3195 
3196 		if (BPF_SRC(insn->code) == BPF_X) {
3197 			if (insn->imm != 0 || insn->off != 0) {
3198 				verbose(env, "BPF_ALU uses reserved fields\n");
3199 				return -EINVAL;
3200 			}
3201 			/* check src1 operand */
3202 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3203 			if (err)
3204 				return err;
3205 		} else {
3206 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3207 				verbose(env, "BPF_ALU uses reserved fields\n");
3208 				return -EINVAL;
3209 			}
3210 		}
3211 
3212 		/* check src2 operand */
3213 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3214 		if (err)
3215 			return err;
3216 
3217 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3218 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3219 			verbose(env, "div by zero\n");
3220 			return -EINVAL;
3221 		}
3222 
3223 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3224 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3225 			return -EINVAL;
3226 		}
3227 
3228 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3229 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3230 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3231 
3232 			if (insn->imm < 0 || insn->imm >= size) {
3233 				verbose(env, "invalid shift %d\n", insn->imm);
3234 				return -EINVAL;
3235 			}
3236 		}
3237 
3238 		/* check dest operand */
3239 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3240 		if (err)
3241 			return err;
3242 
3243 		return adjust_reg_min_max_vals(env, insn);
3244 	}
3245 
3246 	return 0;
3247 }
3248 
3249 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3250 				   struct bpf_reg_state *dst_reg,
3251 				   enum bpf_reg_type type,
3252 				   bool range_right_open)
3253 {
3254 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3255 	struct bpf_reg_state *regs = state->regs, *reg;
3256 	u16 new_range;
3257 	int i, j;
3258 
3259 	if (dst_reg->off < 0 ||
3260 	    (dst_reg->off == 0 && range_right_open))
3261 		/* This doesn't give us any range */
3262 		return;
3263 
3264 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3265 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3266 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3267 		 * than pkt_end, but that's because it's also less than pkt.
3268 		 */
3269 		return;
3270 
3271 	new_range = dst_reg->off;
3272 	if (range_right_open)
3273 		new_range--;
3274 
3275 	/* Examples for register markings:
3276 	 *
3277 	 * pkt_data in dst register:
3278 	 *
3279 	 *   r2 = r3;
3280 	 *   r2 += 8;
3281 	 *   if (r2 > pkt_end) goto <handle exception>
3282 	 *   <access okay>
3283 	 *
3284 	 *   r2 = r3;
3285 	 *   r2 += 8;
3286 	 *   if (r2 < pkt_end) goto <access okay>
3287 	 *   <handle exception>
3288 	 *
3289 	 *   Where:
3290 	 *     r2 == dst_reg, pkt_end == src_reg
3291 	 *     r2=pkt(id=n,off=8,r=0)
3292 	 *     r3=pkt(id=n,off=0,r=0)
3293 	 *
3294 	 * pkt_data in src register:
3295 	 *
3296 	 *   r2 = r3;
3297 	 *   r2 += 8;
3298 	 *   if (pkt_end >= r2) goto <access okay>
3299 	 *   <handle exception>
3300 	 *
3301 	 *   r2 = r3;
3302 	 *   r2 += 8;
3303 	 *   if (pkt_end <= r2) goto <handle exception>
3304 	 *   <access okay>
3305 	 *
3306 	 *   Where:
3307 	 *     pkt_end == dst_reg, r2 == src_reg
3308 	 *     r2=pkt(id=n,off=8,r=0)
3309 	 *     r3=pkt(id=n,off=0,r=0)
3310 	 *
3311 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3312 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3313 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3314 	 * the check.
3315 	 */
3316 
3317 	/* If our ids match, then we must have the same max_value.  And we
3318 	 * don't care about the other reg's fixed offset, since if it's too big
3319 	 * the range won't allow anything.
3320 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3321 	 */
3322 	for (i = 0; i < MAX_BPF_REG; i++)
3323 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3324 			/* keep the maximum range already checked */
3325 			regs[i].range = max(regs[i].range, new_range);
3326 
3327 	for (j = 0; j <= vstate->curframe; j++) {
3328 		state = vstate->frame[j];
3329 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3330 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3331 				continue;
3332 			reg = &state->stack[i].spilled_ptr;
3333 			if (reg->type == type && reg->id == dst_reg->id)
3334 				reg->range = max(reg->range, new_range);
3335 		}
3336 	}
3337 }
3338 
3339 /* Adjusts the register min/max values in the case that the dst_reg is the
3340  * variable register that we are working on, and src_reg is a constant or we're
3341  * simply doing a BPF_K check.
3342  * In JEQ/JNE cases we also adjust the var_off values.
3343  */
3344 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3345 			    struct bpf_reg_state *false_reg, u64 val,
3346 			    u8 opcode)
3347 {
3348 	/* If the dst_reg is a pointer, we can't learn anything about its
3349 	 * variable offset from the compare (unless src_reg were a pointer into
3350 	 * the same object, but we don't bother with that.
3351 	 * Since false_reg and true_reg have the same type by construction, we
3352 	 * only need to check one of them for pointerness.
3353 	 */
3354 	if (__is_pointer_value(false, false_reg))
3355 		return;
3356 
3357 	switch (opcode) {
3358 	case BPF_JEQ:
3359 		/* If this is false then we know nothing Jon Snow, but if it is
3360 		 * true then we know for sure.
3361 		 */
3362 		__mark_reg_known(true_reg, val);
3363 		break;
3364 	case BPF_JNE:
3365 		/* If this is true we know nothing Jon Snow, but if it is false
3366 		 * we know the value for sure;
3367 		 */
3368 		__mark_reg_known(false_reg, val);
3369 		break;
3370 	case BPF_JGT:
3371 		false_reg->umax_value = min(false_reg->umax_value, val);
3372 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3373 		break;
3374 	case BPF_JSGT:
3375 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3376 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3377 		break;
3378 	case BPF_JLT:
3379 		false_reg->umin_value = max(false_reg->umin_value, val);
3380 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3381 		break;
3382 	case BPF_JSLT:
3383 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3384 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3385 		break;
3386 	case BPF_JGE:
3387 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3388 		true_reg->umin_value = max(true_reg->umin_value, val);
3389 		break;
3390 	case BPF_JSGE:
3391 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3392 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3393 		break;
3394 	case BPF_JLE:
3395 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3396 		true_reg->umax_value = min(true_reg->umax_value, val);
3397 		break;
3398 	case BPF_JSLE:
3399 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3400 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3401 		break;
3402 	default:
3403 		break;
3404 	}
3405 
3406 	__reg_deduce_bounds(false_reg);
3407 	__reg_deduce_bounds(true_reg);
3408 	/* We might have learned some bits from the bounds. */
3409 	__reg_bound_offset(false_reg);
3410 	__reg_bound_offset(true_reg);
3411 	/* Intersecting with the old var_off might have improved our bounds
3412 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3413 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3414 	 */
3415 	__update_reg_bounds(false_reg);
3416 	__update_reg_bounds(true_reg);
3417 }
3418 
3419 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3420  * the variable reg.
3421  */
3422 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3423 				struct bpf_reg_state *false_reg, u64 val,
3424 				u8 opcode)
3425 {
3426 	if (__is_pointer_value(false, false_reg))
3427 		return;
3428 
3429 	switch (opcode) {
3430 	case BPF_JEQ:
3431 		/* If this is false then we know nothing Jon Snow, but if it is
3432 		 * true then we know for sure.
3433 		 */
3434 		__mark_reg_known(true_reg, val);
3435 		break;
3436 	case BPF_JNE:
3437 		/* If this is true we know nothing Jon Snow, but if it is false
3438 		 * we know the value for sure;
3439 		 */
3440 		__mark_reg_known(false_reg, val);
3441 		break;
3442 	case BPF_JGT:
3443 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3444 		false_reg->umin_value = max(false_reg->umin_value, val);
3445 		break;
3446 	case BPF_JSGT:
3447 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3448 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3449 		break;
3450 	case BPF_JLT:
3451 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3452 		false_reg->umax_value = min(false_reg->umax_value, val);
3453 		break;
3454 	case BPF_JSLT:
3455 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3456 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3457 		break;
3458 	case BPF_JGE:
3459 		true_reg->umax_value = min(true_reg->umax_value, val);
3460 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3461 		break;
3462 	case BPF_JSGE:
3463 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3464 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3465 		break;
3466 	case BPF_JLE:
3467 		true_reg->umin_value = max(true_reg->umin_value, val);
3468 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3469 		break;
3470 	case BPF_JSLE:
3471 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3472 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3473 		break;
3474 	default:
3475 		break;
3476 	}
3477 
3478 	__reg_deduce_bounds(false_reg);
3479 	__reg_deduce_bounds(true_reg);
3480 	/* We might have learned some bits from the bounds. */
3481 	__reg_bound_offset(false_reg);
3482 	__reg_bound_offset(true_reg);
3483 	/* Intersecting with the old var_off might have improved our bounds
3484 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3485 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3486 	 */
3487 	__update_reg_bounds(false_reg);
3488 	__update_reg_bounds(true_reg);
3489 }
3490 
3491 /* Regs are known to be equal, so intersect their min/max/var_off */
3492 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3493 				  struct bpf_reg_state *dst_reg)
3494 {
3495 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3496 							dst_reg->umin_value);
3497 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3498 							dst_reg->umax_value);
3499 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3500 							dst_reg->smin_value);
3501 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3502 							dst_reg->smax_value);
3503 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3504 							     dst_reg->var_off);
3505 	/* We might have learned new bounds from the var_off. */
3506 	__update_reg_bounds(src_reg);
3507 	__update_reg_bounds(dst_reg);
3508 	/* We might have learned something about the sign bit. */
3509 	__reg_deduce_bounds(src_reg);
3510 	__reg_deduce_bounds(dst_reg);
3511 	/* We might have learned some bits from the bounds. */
3512 	__reg_bound_offset(src_reg);
3513 	__reg_bound_offset(dst_reg);
3514 	/* Intersecting with the old var_off might have improved our bounds
3515 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3516 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3517 	 */
3518 	__update_reg_bounds(src_reg);
3519 	__update_reg_bounds(dst_reg);
3520 }
3521 
3522 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3523 				struct bpf_reg_state *true_dst,
3524 				struct bpf_reg_state *false_src,
3525 				struct bpf_reg_state *false_dst,
3526 				u8 opcode)
3527 {
3528 	switch (opcode) {
3529 	case BPF_JEQ:
3530 		__reg_combine_min_max(true_src, true_dst);
3531 		break;
3532 	case BPF_JNE:
3533 		__reg_combine_min_max(false_src, false_dst);
3534 		break;
3535 	}
3536 }
3537 
3538 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3539 			 bool is_null)
3540 {
3541 	struct bpf_reg_state *reg = &regs[regno];
3542 
3543 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3544 		/* Old offset (both fixed and variable parts) should
3545 		 * have been known-zero, because we don't allow pointer
3546 		 * arithmetic on pointers that might be NULL.
3547 		 */
3548 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3549 				 !tnum_equals_const(reg->var_off, 0) ||
3550 				 reg->off)) {
3551 			__mark_reg_known_zero(reg);
3552 			reg->off = 0;
3553 		}
3554 		if (is_null) {
3555 			reg->type = SCALAR_VALUE;
3556 		} else if (reg->map_ptr->inner_map_meta) {
3557 			reg->type = CONST_PTR_TO_MAP;
3558 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3559 		} else {
3560 			reg->type = PTR_TO_MAP_VALUE;
3561 		}
3562 		/* We don't need id from this point onwards anymore, thus we
3563 		 * should better reset it, so that state pruning has chances
3564 		 * to take effect.
3565 		 */
3566 		reg->id = 0;
3567 	}
3568 }
3569 
3570 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3571  * be folded together at some point.
3572  */
3573 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3574 			  bool is_null)
3575 {
3576 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3577 	struct bpf_reg_state *regs = state->regs;
3578 	u32 id = regs[regno].id;
3579 	int i, j;
3580 
3581 	for (i = 0; i < MAX_BPF_REG; i++)
3582 		mark_map_reg(regs, i, id, is_null);
3583 
3584 	for (j = 0; j <= vstate->curframe; j++) {
3585 		state = vstate->frame[j];
3586 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3587 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3588 				continue;
3589 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3590 		}
3591 	}
3592 }
3593 
3594 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3595 				   struct bpf_reg_state *dst_reg,
3596 				   struct bpf_reg_state *src_reg,
3597 				   struct bpf_verifier_state *this_branch,
3598 				   struct bpf_verifier_state *other_branch)
3599 {
3600 	if (BPF_SRC(insn->code) != BPF_X)
3601 		return false;
3602 
3603 	switch (BPF_OP(insn->code)) {
3604 	case BPF_JGT:
3605 		if ((dst_reg->type == PTR_TO_PACKET &&
3606 		     src_reg->type == PTR_TO_PACKET_END) ||
3607 		    (dst_reg->type == PTR_TO_PACKET_META &&
3608 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3609 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3610 			find_good_pkt_pointers(this_branch, dst_reg,
3611 					       dst_reg->type, false);
3612 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3613 			    src_reg->type == PTR_TO_PACKET) ||
3614 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3615 			    src_reg->type == PTR_TO_PACKET_META)) {
3616 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3617 			find_good_pkt_pointers(other_branch, src_reg,
3618 					       src_reg->type, true);
3619 		} else {
3620 			return false;
3621 		}
3622 		break;
3623 	case BPF_JLT:
3624 		if ((dst_reg->type == PTR_TO_PACKET &&
3625 		     src_reg->type == PTR_TO_PACKET_END) ||
3626 		    (dst_reg->type == PTR_TO_PACKET_META &&
3627 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3628 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3629 			find_good_pkt_pointers(other_branch, dst_reg,
3630 					       dst_reg->type, true);
3631 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3632 			    src_reg->type == PTR_TO_PACKET) ||
3633 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3634 			    src_reg->type == PTR_TO_PACKET_META)) {
3635 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3636 			find_good_pkt_pointers(this_branch, src_reg,
3637 					       src_reg->type, false);
3638 		} else {
3639 			return false;
3640 		}
3641 		break;
3642 	case BPF_JGE:
3643 		if ((dst_reg->type == PTR_TO_PACKET &&
3644 		     src_reg->type == PTR_TO_PACKET_END) ||
3645 		    (dst_reg->type == PTR_TO_PACKET_META &&
3646 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3647 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3648 			find_good_pkt_pointers(this_branch, dst_reg,
3649 					       dst_reg->type, true);
3650 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3651 			    src_reg->type == PTR_TO_PACKET) ||
3652 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3653 			    src_reg->type == PTR_TO_PACKET_META)) {
3654 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3655 			find_good_pkt_pointers(other_branch, src_reg,
3656 					       src_reg->type, false);
3657 		} else {
3658 			return false;
3659 		}
3660 		break;
3661 	case BPF_JLE:
3662 		if ((dst_reg->type == PTR_TO_PACKET &&
3663 		     src_reg->type == PTR_TO_PACKET_END) ||
3664 		    (dst_reg->type == PTR_TO_PACKET_META &&
3665 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3666 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3667 			find_good_pkt_pointers(other_branch, dst_reg,
3668 					       dst_reg->type, false);
3669 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3670 			    src_reg->type == PTR_TO_PACKET) ||
3671 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3672 			    src_reg->type == PTR_TO_PACKET_META)) {
3673 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3674 			find_good_pkt_pointers(this_branch, src_reg,
3675 					       src_reg->type, true);
3676 		} else {
3677 			return false;
3678 		}
3679 		break;
3680 	default:
3681 		return false;
3682 	}
3683 
3684 	return true;
3685 }
3686 
3687 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3688 			     struct bpf_insn *insn, int *insn_idx)
3689 {
3690 	struct bpf_verifier_state *this_branch = env->cur_state;
3691 	struct bpf_verifier_state *other_branch;
3692 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3693 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3694 	u8 opcode = BPF_OP(insn->code);
3695 	int err;
3696 
3697 	if (opcode > BPF_JSLE) {
3698 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3699 		return -EINVAL;
3700 	}
3701 
3702 	if (BPF_SRC(insn->code) == BPF_X) {
3703 		if (insn->imm != 0) {
3704 			verbose(env, "BPF_JMP uses reserved fields\n");
3705 			return -EINVAL;
3706 		}
3707 
3708 		/* check src1 operand */
3709 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3710 		if (err)
3711 			return err;
3712 
3713 		if (is_pointer_value(env, insn->src_reg)) {
3714 			verbose(env, "R%d pointer comparison prohibited\n",
3715 				insn->src_reg);
3716 			return -EACCES;
3717 		}
3718 	} else {
3719 		if (insn->src_reg != BPF_REG_0) {
3720 			verbose(env, "BPF_JMP uses reserved fields\n");
3721 			return -EINVAL;
3722 		}
3723 	}
3724 
3725 	/* check src2 operand */
3726 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3727 	if (err)
3728 		return err;
3729 
3730 	dst_reg = &regs[insn->dst_reg];
3731 
3732 	/* detect if R == 0 where R was initialized to zero earlier */
3733 	if (BPF_SRC(insn->code) == BPF_K &&
3734 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3735 	    dst_reg->type == SCALAR_VALUE &&
3736 	    tnum_is_const(dst_reg->var_off)) {
3737 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3738 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3739 			/* if (imm == imm) goto pc+off;
3740 			 * only follow the goto, ignore fall-through
3741 			 */
3742 			*insn_idx += insn->off;
3743 			return 0;
3744 		} else {
3745 			/* if (imm != imm) goto pc+off;
3746 			 * only follow fall-through branch, since
3747 			 * that's where the program will go
3748 			 */
3749 			return 0;
3750 		}
3751 	}
3752 
3753 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3754 	if (!other_branch)
3755 		return -EFAULT;
3756 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3757 
3758 	/* detect if we are comparing against a constant value so we can adjust
3759 	 * our min/max values for our dst register.
3760 	 * this is only legit if both are scalars (or pointers to the same
3761 	 * object, I suppose, but we don't support that right now), because
3762 	 * otherwise the different base pointers mean the offsets aren't
3763 	 * comparable.
3764 	 */
3765 	if (BPF_SRC(insn->code) == BPF_X) {
3766 		if (dst_reg->type == SCALAR_VALUE &&
3767 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3768 			if (tnum_is_const(regs[insn->src_reg].var_off))
3769 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3770 						dst_reg, regs[insn->src_reg].var_off.value,
3771 						opcode);
3772 			else if (tnum_is_const(dst_reg->var_off))
3773 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3774 						    &regs[insn->src_reg],
3775 						    dst_reg->var_off.value, opcode);
3776 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3777 				/* Comparing for equality, we can combine knowledge */
3778 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3779 						    &other_branch_regs[insn->dst_reg],
3780 						    &regs[insn->src_reg],
3781 						    &regs[insn->dst_reg], opcode);
3782 		}
3783 	} else if (dst_reg->type == SCALAR_VALUE) {
3784 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3785 					dst_reg, insn->imm, opcode);
3786 	}
3787 
3788 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3789 	if (BPF_SRC(insn->code) == BPF_K &&
3790 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3791 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3792 		/* Mark all identical map registers in each branch as either
3793 		 * safe or unknown depending R == 0 or R != 0 conditional.
3794 		 */
3795 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3796 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3797 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3798 					   this_branch, other_branch) &&
3799 		   is_pointer_value(env, insn->dst_reg)) {
3800 		verbose(env, "R%d pointer comparison prohibited\n",
3801 			insn->dst_reg);
3802 		return -EACCES;
3803 	}
3804 	if (env->log.level)
3805 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3806 	return 0;
3807 }
3808 
3809 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3810 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3811 {
3812 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3813 
3814 	return (struct bpf_map *) (unsigned long) imm64;
3815 }
3816 
3817 /* verify BPF_LD_IMM64 instruction */
3818 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3819 {
3820 	struct bpf_reg_state *regs = cur_regs(env);
3821 	int err;
3822 
3823 	if (BPF_SIZE(insn->code) != BPF_DW) {
3824 		verbose(env, "invalid BPF_LD_IMM insn\n");
3825 		return -EINVAL;
3826 	}
3827 	if (insn->off != 0) {
3828 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3829 		return -EINVAL;
3830 	}
3831 
3832 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3833 	if (err)
3834 		return err;
3835 
3836 	if (insn->src_reg == 0) {
3837 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3838 
3839 		regs[insn->dst_reg].type = SCALAR_VALUE;
3840 		__mark_reg_known(&regs[insn->dst_reg], imm);
3841 		return 0;
3842 	}
3843 
3844 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3845 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3846 
3847 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3848 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3849 	return 0;
3850 }
3851 
3852 static bool may_access_skb(enum bpf_prog_type type)
3853 {
3854 	switch (type) {
3855 	case BPF_PROG_TYPE_SOCKET_FILTER:
3856 	case BPF_PROG_TYPE_SCHED_CLS:
3857 	case BPF_PROG_TYPE_SCHED_ACT:
3858 		return true;
3859 	default:
3860 		return false;
3861 	}
3862 }
3863 
3864 /* verify safety of LD_ABS|LD_IND instructions:
3865  * - they can only appear in the programs where ctx == skb
3866  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3867  *   preserve R6-R9, and store return value into R0
3868  *
3869  * Implicit input:
3870  *   ctx == skb == R6 == CTX
3871  *
3872  * Explicit input:
3873  *   SRC == any register
3874  *   IMM == 32-bit immediate
3875  *
3876  * Output:
3877  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3878  */
3879 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3880 {
3881 	struct bpf_reg_state *regs = cur_regs(env);
3882 	u8 mode = BPF_MODE(insn->code);
3883 	int i, err;
3884 
3885 	if (!may_access_skb(env->prog->type)) {
3886 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3887 		return -EINVAL;
3888 	}
3889 
3890 	if (!env->ops->gen_ld_abs) {
3891 		verbose(env, "bpf verifier is misconfigured\n");
3892 		return -EINVAL;
3893 	}
3894 
3895 	if (env->subprog_cnt > 1) {
3896 		/* when program has LD_ABS insn JITs and interpreter assume
3897 		 * that r1 == ctx == skb which is not the case for callees
3898 		 * that can have arbitrary arguments. It's problematic
3899 		 * for main prog as well since JITs would need to analyze
3900 		 * all functions in order to make proper register save/restore
3901 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3902 		 */
3903 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3904 		return -EINVAL;
3905 	}
3906 
3907 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3908 	    BPF_SIZE(insn->code) == BPF_DW ||
3909 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3910 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3911 		return -EINVAL;
3912 	}
3913 
3914 	/* check whether implicit source operand (register R6) is readable */
3915 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3916 	if (err)
3917 		return err;
3918 
3919 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3920 		verbose(env,
3921 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3922 		return -EINVAL;
3923 	}
3924 
3925 	if (mode == BPF_IND) {
3926 		/* check explicit source operand */
3927 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3928 		if (err)
3929 			return err;
3930 	}
3931 
3932 	/* reset caller saved regs to unreadable */
3933 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3934 		mark_reg_not_init(env, regs, caller_saved[i]);
3935 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3936 	}
3937 
3938 	/* mark destination R0 register as readable, since it contains
3939 	 * the value fetched from the packet.
3940 	 * Already marked as written above.
3941 	 */
3942 	mark_reg_unknown(env, regs, BPF_REG_0);
3943 	return 0;
3944 }
3945 
3946 static int check_return_code(struct bpf_verifier_env *env)
3947 {
3948 	struct bpf_reg_state *reg;
3949 	struct tnum range = tnum_range(0, 1);
3950 
3951 	switch (env->prog->type) {
3952 	case BPF_PROG_TYPE_CGROUP_SKB:
3953 	case BPF_PROG_TYPE_CGROUP_SOCK:
3954 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3955 	case BPF_PROG_TYPE_SOCK_OPS:
3956 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3957 		break;
3958 	default:
3959 		return 0;
3960 	}
3961 
3962 	reg = cur_regs(env) + BPF_REG_0;
3963 	if (reg->type != SCALAR_VALUE) {
3964 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3965 			reg_type_str[reg->type]);
3966 		return -EINVAL;
3967 	}
3968 
3969 	if (!tnum_in(range, reg->var_off)) {
3970 		verbose(env, "At program exit the register R0 ");
3971 		if (!tnum_is_unknown(reg->var_off)) {
3972 			char tn_buf[48];
3973 
3974 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 			verbose(env, "has value %s", tn_buf);
3976 		} else {
3977 			verbose(env, "has unknown scalar value");
3978 		}
3979 		verbose(env, " should have been 0 or 1\n");
3980 		return -EINVAL;
3981 	}
3982 	return 0;
3983 }
3984 
3985 /* non-recursive DFS pseudo code
3986  * 1  procedure DFS-iterative(G,v):
3987  * 2      label v as discovered
3988  * 3      let S be a stack
3989  * 4      S.push(v)
3990  * 5      while S is not empty
3991  * 6            t <- S.pop()
3992  * 7            if t is what we're looking for:
3993  * 8                return t
3994  * 9            for all edges e in G.adjacentEdges(t) do
3995  * 10               if edge e is already labelled
3996  * 11                   continue with the next edge
3997  * 12               w <- G.adjacentVertex(t,e)
3998  * 13               if vertex w is not discovered and not explored
3999  * 14                   label e as tree-edge
4000  * 15                   label w as discovered
4001  * 16                   S.push(w)
4002  * 17                   continue at 5
4003  * 18               else if vertex w is discovered
4004  * 19                   label e as back-edge
4005  * 20               else
4006  * 21                   // vertex w is explored
4007  * 22                   label e as forward- or cross-edge
4008  * 23           label t as explored
4009  * 24           S.pop()
4010  *
4011  * convention:
4012  * 0x10 - discovered
4013  * 0x11 - discovered and fall-through edge labelled
4014  * 0x12 - discovered and fall-through and branch edges labelled
4015  * 0x20 - explored
4016  */
4017 
4018 enum {
4019 	DISCOVERED = 0x10,
4020 	EXPLORED = 0x20,
4021 	FALLTHROUGH = 1,
4022 	BRANCH = 2,
4023 };
4024 
4025 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4026 
4027 static int *insn_stack;	/* stack of insns to process */
4028 static int cur_stack;	/* current stack index */
4029 static int *insn_state;
4030 
4031 /* t, w, e - match pseudo-code above:
4032  * t - index of current instruction
4033  * w - next instruction
4034  * e - edge
4035  */
4036 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4037 {
4038 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4039 		return 0;
4040 
4041 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4042 		return 0;
4043 
4044 	if (w < 0 || w >= env->prog->len) {
4045 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4046 		return -EINVAL;
4047 	}
4048 
4049 	if (e == BRANCH)
4050 		/* mark branch target for state pruning */
4051 		env->explored_states[w] = STATE_LIST_MARK;
4052 
4053 	if (insn_state[w] == 0) {
4054 		/* tree-edge */
4055 		insn_state[t] = DISCOVERED | e;
4056 		insn_state[w] = DISCOVERED;
4057 		if (cur_stack >= env->prog->len)
4058 			return -E2BIG;
4059 		insn_stack[cur_stack++] = w;
4060 		return 1;
4061 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4062 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4063 		return -EINVAL;
4064 	} else if (insn_state[w] == EXPLORED) {
4065 		/* forward- or cross-edge */
4066 		insn_state[t] = DISCOVERED | e;
4067 	} else {
4068 		verbose(env, "insn state internal bug\n");
4069 		return -EFAULT;
4070 	}
4071 	return 0;
4072 }
4073 
4074 /* non-recursive depth-first-search to detect loops in BPF program
4075  * loop == back-edge in directed graph
4076  */
4077 static int check_cfg(struct bpf_verifier_env *env)
4078 {
4079 	struct bpf_insn *insns = env->prog->insnsi;
4080 	int insn_cnt = env->prog->len;
4081 	int ret = 0;
4082 	int i, t;
4083 
4084 	ret = check_subprogs(env);
4085 	if (ret < 0)
4086 		return ret;
4087 
4088 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4089 	if (!insn_state)
4090 		return -ENOMEM;
4091 
4092 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4093 	if (!insn_stack) {
4094 		kfree(insn_state);
4095 		return -ENOMEM;
4096 	}
4097 
4098 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4099 	insn_stack[0] = 0; /* 0 is the first instruction */
4100 	cur_stack = 1;
4101 
4102 peek_stack:
4103 	if (cur_stack == 0)
4104 		goto check_state;
4105 	t = insn_stack[cur_stack - 1];
4106 
4107 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4108 		u8 opcode = BPF_OP(insns[t].code);
4109 
4110 		if (opcode == BPF_EXIT) {
4111 			goto mark_explored;
4112 		} else if (opcode == BPF_CALL) {
4113 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4114 			if (ret == 1)
4115 				goto peek_stack;
4116 			else if (ret < 0)
4117 				goto err_free;
4118 			if (t + 1 < insn_cnt)
4119 				env->explored_states[t + 1] = STATE_LIST_MARK;
4120 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4121 				env->explored_states[t] = STATE_LIST_MARK;
4122 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4123 				if (ret == 1)
4124 					goto peek_stack;
4125 				else if (ret < 0)
4126 					goto err_free;
4127 			}
4128 		} else if (opcode == BPF_JA) {
4129 			if (BPF_SRC(insns[t].code) != BPF_K) {
4130 				ret = -EINVAL;
4131 				goto err_free;
4132 			}
4133 			/* unconditional jump with single edge */
4134 			ret = push_insn(t, t + insns[t].off + 1,
4135 					FALLTHROUGH, env);
4136 			if (ret == 1)
4137 				goto peek_stack;
4138 			else if (ret < 0)
4139 				goto err_free;
4140 			/* tell verifier to check for equivalent states
4141 			 * after every call and jump
4142 			 */
4143 			if (t + 1 < insn_cnt)
4144 				env->explored_states[t + 1] = STATE_LIST_MARK;
4145 		} else {
4146 			/* conditional jump with two edges */
4147 			env->explored_states[t] = STATE_LIST_MARK;
4148 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4149 			if (ret == 1)
4150 				goto peek_stack;
4151 			else if (ret < 0)
4152 				goto err_free;
4153 
4154 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4155 			if (ret == 1)
4156 				goto peek_stack;
4157 			else if (ret < 0)
4158 				goto err_free;
4159 		}
4160 	} else {
4161 		/* all other non-branch instructions with single
4162 		 * fall-through edge
4163 		 */
4164 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4165 		if (ret == 1)
4166 			goto peek_stack;
4167 		else if (ret < 0)
4168 			goto err_free;
4169 	}
4170 
4171 mark_explored:
4172 	insn_state[t] = EXPLORED;
4173 	if (cur_stack-- <= 0) {
4174 		verbose(env, "pop stack internal bug\n");
4175 		ret = -EFAULT;
4176 		goto err_free;
4177 	}
4178 	goto peek_stack;
4179 
4180 check_state:
4181 	for (i = 0; i < insn_cnt; i++) {
4182 		if (insn_state[i] != EXPLORED) {
4183 			verbose(env, "unreachable insn %d\n", i);
4184 			ret = -EINVAL;
4185 			goto err_free;
4186 		}
4187 	}
4188 	ret = 0; /* cfg looks good */
4189 
4190 err_free:
4191 	kfree(insn_state);
4192 	kfree(insn_stack);
4193 	return ret;
4194 }
4195 
4196 /* check %cur's range satisfies %old's */
4197 static bool range_within(struct bpf_reg_state *old,
4198 			 struct bpf_reg_state *cur)
4199 {
4200 	return old->umin_value <= cur->umin_value &&
4201 	       old->umax_value >= cur->umax_value &&
4202 	       old->smin_value <= cur->smin_value &&
4203 	       old->smax_value >= cur->smax_value;
4204 }
4205 
4206 /* Maximum number of register states that can exist at once */
4207 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4208 struct idpair {
4209 	u32 old;
4210 	u32 cur;
4211 };
4212 
4213 /* If in the old state two registers had the same id, then they need to have
4214  * the same id in the new state as well.  But that id could be different from
4215  * the old state, so we need to track the mapping from old to new ids.
4216  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4217  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4218  * regs with a different old id could still have new id 9, we don't care about
4219  * that.
4220  * So we look through our idmap to see if this old id has been seen before.  If
4221  * so, we require the new id to match; otherwise, we add the id pair to the map.
4222  */
4223 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4224 {
4225 	unsigned int i;
4226 
4227 	for (i = 0; i < ID_MAP_SIZE; i++) {
4228 		if (!idmap[i].old) {
4229 			/* Reached an empty slot; haven't seen this id before */
4230 			idmap[i].old = old_id;
4231 			idmap[i].cur = cur_id;
4232 			return true;
4233 		}
4234 		if (idmap[i].old == old_id)
4235 			return idmap[i].cur == cur_id;
4236 	}
4237 	/* We ran out of idmap slots, which should be impossible */
4238 	WARN_ON_ONCE(1);
4239 	return false;
4240 }
4241 
4242 /* Returns true if (rold safe implies rcur safe) */
4243 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4244 		    struct idpair *idmap)
4245 {
4246 	bool equal;
4247 
4248 	if (!(rold->live & REG_LIVE_READ))
4249 		/* explored state didn't use this */
4250 		return true;
4251 
4252 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4253 
4254 	if (rold->type == PTR_TO_STACK)
4255 		/* two stack pointers are equal only if they're pointing to
4256 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4257 		 */
4258 		return equal && rold->frameno == rcur->frameno;
4259 
4260 	if (equal)
4261 		return true;
4262 
4263 	if (rold->type == NOT_INIT)
4264 		/* explored state can't have used this */
4265 		return true;
4266 	if (rcur->type == NOT_INIT)
4267 		return false;
4268 	switch (rold->type) {
4269 	case SCALAR_VALUE:
4270 		if (rcur->type == SCALAR_VALUE) {
4271 			/* new val must satisfy old val knowledge */
4272 			return range_within(rold, rcur) &&
4273 			       tnum_in(rold->var_off, rcur->var_off);
4274 		} else {
4275 			/* We're trying to use a pointer in place of a scalar.
4276 			 * Even if the scalar was unbounded, this could lead to
4277 			 * pointer leaks because scalars are allowed to leak
4278 			 * while pointers are not. We could make this safe in
4279 			 * special cases if root is calling us, but it's
4280 			 * probably not worth the hassle.
4281 			 */
4282 			return false;
4283 		}
4284 	case PTR_TO_MAP_VALUE:
4285 		/* If the new min/max/var_off satisfy the old ones and
4286 		 * everything else matches, we are OK.
4287 		 * We don't care about the 'id' value, because nothing
4288 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4289 		 */
4290 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4291 		       range_within(rold, rcur) &&
4292 		       tnum_in(rold->var_off, rcur->var_off);
4293 	case PTR_TO_MAP_VALUE_OR_NULL:
4294 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4295 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4296 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4297 		 * checked, doing so could have affected others with the same
4298 		 * id, and we can't check for that because we lost the id when
4299 		 * we converted to a PTR_TO_MAP_VALUE.
4300 		 */
4301 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4302 			return false;
4303 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4304 			return false;
4305 		/* Check our ids match any regs they're supposed to */
4306 		return check_ids(rold->id, rcur->id, idmap);
4307 	case PTR_TO_PACKET_META:
4308 	case PTR_TO_PACKET:
4309 		if (rcur->type != rold->type)
4310 			return false;
4311 		/* We must have at least as much range as the old ptr
4312 		 * did, so that any accesses which were safe before are
4313 		 * still safe.  This is true even if old range < old off,
4314 		 * since someone could have accessed through (ptr - k), or
4315 		 * even done ptr -= k in a register, to get a safe access.
4316 		 */
4317 		if (rold->range > rcur->range)
4318 			return false;
4319 		/* If the offsets don't match, we can't trust our alignment;
4320 		 * nor can we be sure that we won't fall out of range.
4321 		 */
4322 		if (rold->off != rcur->off)
4323 			return false;
4324 		/* id relations must be preserved */
4325 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4326 			return false;
4327 		/* new val must satisfy old val knowledge */
4328 		return range_within(rold, rcur) &&
4329 		       tnum_in(rold->var_off, rcur->var_off);
4330 	case PTR_TO_CTX:
4331 	case CONST_PTR_TO_MAP:
4332 	case PTR_TO_PACKET_END:
4333 		/* Only valid matches are exact, which memcmp() above
4334 		 * would have accepted
4335 		 */
4336 	default:
4337 		/* Don't know what's going on, just say it's not safe */
4338 		return false;
4339 	}
4340 
4341 	/* Shouldn't get here; if we do, say it's not safe */
4342 	WARN_ON_ONCE(1);
4343 	return false;
4344 }
4345 
4346 static bool stacksafe(struct bpf_func_state *old,
4347 		      struct bpf_func_state *cur,
4348 		      struct idpair *idmap)
4349 {
4350 	int i, spi;
4351 
4352 	/* if explored stack has more populated slots than current stack
4353 	 * such stacks are not equivalent
4354 	 */
4355 	if (old->allocated_stack > cur->allocated_stack)
4356 		return false;
4357 
4358 	/* walk slots of the explored stack and ignore any additional
4359 	 * slots in the current stack, since explored(safe) state
4360 	 * didn't use them
4361 	 */
4362 	for (i = 0; i < old->allocated_stack; i++) {
4363 		spi = i / BPF_REG_SIZE;
4364 
4365 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4366 			/* explored state didn't use this */
4367 			continue;
4368 
4369 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4370 			continue;
4371 		/* if old state was safe with misc data in the stack
4372 		 * it will be safe with zero-initialized stack.
4373 		 * The opposite is not true
4374 		 */
4375 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4376 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4377 			continue;
4378 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4379 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4380 			/* Ex: old explored (safe) state has STACK_SPILL in
4381 			 * this stack slot, but current has has STACK_MISC ->
4382 			 * this verifier states are not equivalent,
4383 			 * return false to continue verification of this path
4384 			 */
4385 			return false;
4386 		if (i % BPF_REG_SIZE)
4387 			continue;
4388 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4389 			continue;
4390 		if (!regsafe(&old->stack[spi].spilled_ptr,
4391 			     &cur->stack[spi].spilled_ptr,
4392 			     idmap))
4393 			/* when explored and current stack slot are both storing
4394 			 * spilled registers, check that stored pointers types
4395 			 * are the same as well.
4396 			 * Ex: explored safe path could have stored
4397 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4398 			 * but current path has stored:
4399 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4400 			 * such verifier states are not equivalent.
4401 			 * return false to continue verification of this path
4402 			 */
4403 			return false;
4404 	}
4405 	return true;
4406 }
4407 
4408 /* compare two verifier states
4409  *
4410  * all states stored in state_list are known to be valid, since
4411  * verifier reached 'bpf_exit' instruction through them
4412  *
4413  * this function is called when verifier exploring different branches of
4414  * execution popped from the state stack. If it sees an old state that has
4415  * more strict register state and more strict stack state then this execution
4416  * branch doesn't need to be explored further, since verifier already
4417  * concluded that more strict state leads to valid finish.
4418  *
4419  * Therefore two states are equivalent if register state is more conservative
4420  * and explored stack state is more conservative than the current one.
4421  * Example:
4422  *       explored                   current
4423  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4424  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4425  *
4426  * In other words if current stack state (one being explored) has more
4427  * valid slots than old one that already passed validation, it means
4428  * the verifier can stop exploring and conclude that current state is valid too
4429  *
4430  * Similarly with registers. If explored state has register type as invalid
4431  * whereas register type in current state is meaningful, it means that
4432  * the current state will reach 'bpf_exit' instruction safely
4433  */
4434 static bool func_states_equal(struct bpf_func_state *old,
4435 			      struct bpf_func_state *cur)
4436 {
4437 	struct idpair *idmap;
4438 	bool ret = false;
4439 	int i;
4440 
4441 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4442 	/* If we failed to allocate the idmap, just say it's not safe */
4443 	if (!idmap)
4444 		return false;
4445 
4446 	for (i = 0; i < MAX_BPF_REG; i++) {
4447 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4448 			goto out_free;
4449 	}
4450 
4451 	if (!stacksafe(old, cur, idmap))
4452 		goto out_free;
4453 	ret = true;
4454 out_free:
4455 	kfree(idmap);
4456 	return ret;
4457 }
4458 
4459 static bool states_equal(struct bpf_verifier_env *env,
4460 			 struct bpf_verifier_state *old,
4461 			 struct bpf_verifier_state *cur)
4462 {
4463 	int i;
4464 
4465 	if (old->curframe != cur->curframe)
4466 		return false;
4467 
4468 	/* for states to be equal callsites have to be the same
4469 	 * and all frame states need to be equivalent
4470 	 */
4471 	for (i = 0; i <= old->curframe; i++) {
4472 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4473 			return false;
4474 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4475 			return false;
4476 	}
4477 	return true;
4478 }
4479 
4480 /* A write screens off any subsequent reads; but write marks come from the
4481  * straight-line code between a state and its parent.  When we arrive at an
4482  * equivalent state (jump target or such) we didn't arrive by the straight-line
4483  * code, so read marks in the state must propagate to the parent regardless
4484  * of the state's write marks. That's what 'parent == state->parent' comparison
4485  * in mark_reg_read() and mark_stack_slot_read() is for.
4486  */
4487 static int propagate_liveness(struct bpf_verifier_env *env,
4488 			      const struct bpf_verifier_state *vstate,
4489 			      struct bpf_verifier_state *vparent)
4490 {
4491 	int i, frame, err = 0;
4492 	struct bpf_func_state *state, *parent;
4493 
4494 	if (vparent->curframe != vstate->curframe) {
4495 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4496 		     vparent->curframe, vstate->curframe);
4497 		return -EFAULT;
4498 	}
4499 	/* Propagate read liveness of registers... */
4500 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4501 	/* We don't need to worry about FP liveness because it's read-only */
4502 	for (i = 0; i < BPF_REG_FP; i++) {
4503 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4504 			continue;
4505 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4506 			err = mark_reg_read(env, vstate, vparent, i);
4507 			if (err)
4508 				return err;
4509 		}
4510 	}
4511 
4512 	/* ... and stack slots */
4513 	for (frame = 0; frame <= vstate->curframe; frame++) {
4514 		state = vstate->frame[frame];
4515 		parent = vparent->frame[frame];
4516 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4517 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4518 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4519 				continue;
4520 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4521 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4522 		}
4523 	}
4524 	return err;
4525 }
4526 
4527 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4528 {
4529 	struct bpf_verifier_state_list *new_sl;
4530 	struct bpf_verifier_state_list *sl;
4531 	struct bpf_verifier_state *cur = env->cur_state;
4532 	int i, j, err;
4533 
4534 	sl = env->explored_states[insn_idx];
4535 	if (!sl)
4536 		/* this 'insn_idx' instruction wasn't marked, so we will not
4537 		 * be doing state search here
4538 		 */
4539 		return 0;
4540 
4541 	while (sl != STATE_LIST_MARK) {
4542 		if (states_equal(env, &sl->state, cur)) {
4543 			/* reached equivalent register/stack state,
4544 			 * prune the search.
4545 			 * Registers read by the continuation are read by us.
4546 			 * If we have any write marks in env->cur_state, they
4547 			 * will prevent corresponding reads in the continuation
4548 			 * from reaching our parent (an explored_state).  Our
4549 			 * own state will get the read marks recorded, but
4550 			 * they'll be immediately forgotten as we're pruning
4551 			 * this state and will pop a new one.
4552 			 */
4553 			err = propagate_liveness(env, &sl->state, cur);
4554 			if (err)
4555 				return err;
4556 			return 1;
4557 		}
4558 		sl = sl->next;
4559 	}
4560 
4561 	/* there were no equivalent states, remember current one.
4562 	 * technically the current state is not proven to be safe yet,
4563 	 * but it will either reach outer most bpf_exit (which means it's safe)
4564 	 * or it will be rejected. Since there are no loops, we won't be
4565 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4566 	 * again on the way to bpf_exit
4567 	 */
4568 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4569 	if (!new_sl)
4570 		return -ENOMEM;
4571 
4572 	/* add new state to the head of linked list */
4573 	err = copy_verifier_state(&new_sl->state, cur);
4574 	if (err) {
4575 		free_verifier_state(&new_sl->state, false);
4576 		kfree(new_sl);
4577 		return err;
4578 	}
4579 	new_sl->next = env->explored_states[insn_idx];
4580 	env->explored_states[insn_idx] = new_sl;
4581 	/* connect new state to parentage chain */
4582 	cur->parent = &new_sl->state;
4583 	/* clear write marks in current state: the writes we did are not writes
4584 	 * our child did, so they don't screen off its reads from us.
4585 	 * (There are no read marks in current state, because reads always mark
4586 	 * their parent and current state never has children yet.  Only
4587 	 * explored_states can get read marks.)
4588 	 */
4589 	for (i = 0; i < BPF_REG_FP; i++)
4590 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4591 
4592 	/* all stack frames are accessible from callee, clear them all */
4593 	for (j = 0; j <= cur->curframe; j++) {
4594 		struct bpf_func_state *frame = cur->frame[j];
4595 
4596 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4597 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4598 	}
4599 	return 0;
4600 }
4601 
4602 static int do_check(struct bpf_verifier_env *env)
4603 {
4604 	struct bpf_verifier_state *state;
4605 	struct bpf_insn *insns = env->prog->insnsi;
4606 	struct bpf_reg_state *regs;
4607 	int insn_cnt = env->prog->len, i;
4608 	int insn_idx, prev_insn_idx = 0;
4609 	int insn_processed = 0;
4610 	bool do_print_state = false;
4611 
4612 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4613 	if (!state)
4614 		return -ENOMEM;
4615 	state->curframe = 0;
4616 	state->parent = NULL;
4617 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4618 	if (!state->frame[0]) {
4619 		kfree(state);
4620 		return -ENOMEM;
4621 	}
4622 	env->cur_state = state;
4623 	init_func_state(env, state->frame[0],
4624 			BPF_MAIN_FUNC /* callsite */,
4625 			0 /* frameno */,
4626 			0 /* subprogno, zero == main subprog */);
4627 	insn_idx = 0;
4628 	for (;;) {
4629 		struct bpf_insn *insn;
4630 		u8 class;
4631 		int err;
4632 
4633 		if (insn_idx >= insn_cnt) {
4634 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4635 				insn_idx, insn_cnt);
4636 			return -EFAULT;
4637 		}
4638 
4639 		insn = &insns[insn_idx];
4640 		class = BPF_CLASS(insn->code);
4641 
4642 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4643 			verbose(env,
4644 				"BPF program is too large. Processed %d insn\n",
4645 				insn_processed);
4646 			return -E2BIG;
4647 		}
4648 
4649 		err = is_state_visited(env, insn_idx);
4650 		if (err < 0)
4651 			return err;
4652 		if (err == 1) {
4653 			/* found equivalent state, can prune the search */
4654 			if (env->log.level) {
4655 				if (do_print_state)
4656 					verbose(env, "\nfrom %d to %d: safe\n",
4657 						prev_insn_idx, insn_idx);
4658 				else
4659 					verbose(env, "%d: safe\n", insn_idx);
4660 			}
4661 			goto process_bpf_exit;
4662 		}
4663 
4664 		if (need_resched())
4665 			cond_resched();
4666 
4667 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4668 			if (env->log.level > 1)
4669 				verbose(env, "%d:", insn_idx);
4670 			else
4671 				verbose(env, "\nfrom %d to %d:",
4672 					prev_insn_idx, insn_idx);
4673 			print_verifier_state(env, state->frame[state->curframe]);
4674 			do_print_state = false;
4675 		}
4676 
4677 		if (env->log.level) {
4678 			const struct bpf_insn_cbs cbs = {
4679 				.cb_print	= verbose,
4680 				.private_data	= env,
4681 			};
4682 
4683 			verbose(env, "%d: ", insn_idx);
4684 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4685 		}
4686 
4687 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4688 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4689 							   prev_insn_idx);
4690 			if (err)
4691 				return err;
4692 		}
4693 
4694 		regs = cur_regs(env);
4695 		env->insn_aux_data[insn_idx].seen = true;
4696 		if (class == BPF_ALU || class == BPF_ALU64) {
4697 			err = check_alu_op(env, insn);
4698 			if (err)
4699 				return err;
4700 
4701 		} else if (class == BPF_LDX) {
4702 			enum bpf_reg_type *prev_src_type, src_reg_type;
4703 
4704 			/* check for reserved fields is already done */
4705 
4706 			/* check src operand */
4707 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4708 			if (err)
4709 				return err;
4710 
4711 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4712 			if (err)
4713 				return err;
4714 
4715 			src_reg_type = regs[insn->src_reg].type;
4716 
4717 			/* check that memory (src_reg + off) is readable,
4718 			 * the state of dst_reg will be updated by this func
4719 			 */
4720 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4721 					       BPF_SIZE(insn->code), BPF_READ,
4722 					       insn->dst_reg, false);
4723 			if (err)
4724 				return err;
4725 
4726 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4727 
4728 			if (*prev_src_type == NOT_INIT) {
4729 				/* saw a valid insn
4730 				 * dst_reg = *(u32 *)(src_reg + off)
4731 				 * save type to validate intersecting paths
4732 				 */
4733 				*prev_src_type = src_reg_type;
4734 
4735 			} else if (src_reg_type != *prev_src_type &&
4736 				   (src_reg_type == PTR_TO_CTX ||
4737 				    *prev_src_type == PTR_TO_CTX)) {
4738 				/* ABuser program is trying to use the same insn
4739 				 * dst_reg = *(u32*) (src_reg + off)
4740 				 * with different pointer types:
4741 				 * src_reg == ctx in one branch and
4742 				 * src_reg == stack|map in some other branch.
4743 				 * Reject it.
4744 				 */
4745 				verbose(env, "same insn cannot be used with different pointers\n");
4746 				return -EINVAL;
4747 			}
4748 
4749 		} else if (class == BPF_STX) {
4750 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4751 
4752 			if (BPF_MODE(insn->code) == BPF_XADD) {
4753 				err = check_xadd(env, insn_idx, insn);
4754 				if (err)
4755 					return err;
4756 				insn_idx++;
4757 				continue;
4758 			}
4759 
4760 			/* check src1 operand */
4761 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4762 			if (err)
4763 				return err;
4764 			/* check src2 operand */
4765 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4766 			if (err)
4767 				return err;
4768 
4769 			dst_reg_type = regs[insn->dst_reg].type;
4770 
4771 			/* check that memory (dst_reg + off) is writeable */
4772 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4773 					       BPF_SIZE(insn->code), BPF_WRITE,
4774 					       insn->src_reg, false);
4775 			if (err)
4776 				return err;
4777 
4778 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4779 
4780 			if (*prev_dst_type == NOT_INIT) {
4781 				*prev_dst_type = dst_reg_type;
4782 			} else if (dst_reg_type != *prev_dst_type &&
4783 				   (dst_reg_type == PTR_TO_CTX ||
4784 				    *prev_dst_type == PTR_TO_CTX)) {
4785 				verbose(env, "same insn cannot be used with different pointers\n");
4786 				return -EINVAL;
4787 			}
4788 
4789 		} else if (class == BPF_ST) {
4790 			if (BPF_MODE(insn->code) != BPF_MEM ||
4791 			    insn->src_reg != BPF_REG_0) {
4792 				verbose(env, "BPF_ST uses reserved fields\n");
4793 				return -EINVAL;
4794 			}
4795 			/* check src operand */
4796 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4797 			if (err)
4798 				return err;
4799 
4800 			if (is_ctx_reg(env, insn->dst_reg)) {
4801 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4802 					insn->dst_reg);
4803 				return -EACCES;
4804 			}
4805 
4806 			/* check that memory (dst_reg + off) is writeable */
4807 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4808 					       BPF_SIZE(insn->code), BPF_WRITE,
4809 					       -1, false);
4810 			if (err)
4811 				return err;
4812 
4813 		} else if (class == BPF_JMP) {
4814 			u8 opcode = BPF_OP(insn->code);
4815 
4816 			if (opcode == BPF_CALL) {
4817 				if (BPF_SRC(insn->code) != BPF_K ||
4818 				    insn->off != 0 ||
4819 				    (insn->src_reg != BPF_REG_0 &&
4820 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4821 				    insn->dst_reg != BPF_REG_0) {
4822 					verbose(env, "BPF_CALL uses reserved fields\n");
4823 					return -EINVAL;
4824 				}
4825 
4826 				if (insn->src_reg == BPF_PSEUDO_CALL)
4827 					err = check_func_call(env, insn, &insn_idx);
4828 				else
4829 					err = check_helper_call(env, insn->imm, insn_idx);
4830 				if (err)
4831 					return err;
4832 
4833 			} else if (opcode == BPF_JA) {
4834 				if (BPF_SRC(insn->code) != BPF_K ||
4835 				    insn->imm != 0 ||
4836 				    insn->src_reg != BPF_REG_0 ||
4837 				    insn->dst_reg != BPF_REG_0) {
4838 					verbose(env, "BPF_JA uses reserved fields\n");
4839 					return -EINVAL;
4840 				}
4841 
4842 				insn_idx += insn->off + 1;
4843 				continue;
4844 
4845 			} else if (opcode == BPF_EXIT) {
4846 				if (BPF_SRC(insn->code) != BPF_K ||
4847 				    insn->imm != 0 ||
4848 				    insn->src_reg != BPF_REG_0 ||
4849 				    insn->dst_reg != BPF_REG_0) {
4850 					verbose(env, "BPF_EXIT uses reserved fields\n");
4851 					return -EINVAL;
4852 				}
4853 
4854 				if (state->curframe) {
4855 					/* exit from nested function */
4856 					prev_insn_idx = insn_idx;
4857 					err = prepare_func_exit(env, &insn_idx);
4858 					if (err)
4859 						return err;
4860 					do_print_state = true;
4861 					continue;
4862 				}
4863 
4864 				/* eBPF calling convetion is such that R0 is used
4865 				 * to return the value from eBPF program.
4866 				 * Make sure that it's readable at this time
4867 				 * of bpf_exit, which means that program wrote
4868 				 * something into it earlier
4869 				 */
4870 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4871 				if (err)
4872 					return err;
4873 
4874 				if (is_pointer_value(env, BPF_REG_0)) {
4875 					verbose(env, "R0 leaks addr as return value\n");
4876 					return -EACCES;
4877 				}
4878 
4879 				err = check_return_code(env);
4880 				if (err)
4881 					return err;
4882 process_bpf_exit:
4883 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4884 				if (err < 0) {
4885 					if (err != -ENOENT)
4886 						return err;
4887 					break;
4888 				} else {
4889 					do_print_state = true;
4890 					continue;
4891 				}
4892 			} else {
4893 				err = check_cond_jmp_op(env, insn, &insn_idx);
4894 				if (err)
4895 					return err;
4896 			}
4897 		} else if (class == BPF_LD) {
4898 			u8 mode = BPF_MODE(insn->code);
4899 
4900 			if (mode == BPF_ABS || mode == BPF_IND) {
4901 				err = check_ld_abs(env, insn);
4902 				if (err)
4903 					return err;
4904 
4905 			} else if (mode == BPF_IMM) {
4906 				err = check_ld_imm(env, insn);
4907 				if (err)
4908 					return err;
4909 
4910 				insn_idx++;
4911 				env->insn_aux_data[insn_idx].seen = true;
4912 			} else {
4913 				verbose(env, "invalid BPF_LD mode\n");
4914 				return -EINVAL;
4915 			}
4916 		} else {
4917 			verbose(env, "unknown insn class %d\n", class);
4918 			return -EINVAL;
4919 		}
4920 
4921 		insn_idx++;
4922 	}
4923 
4924 	verbose(env, "processed %d insns (limit %d), stack depth ",
4925 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4926 	for (i = 0; i < env->subprog_cnt; i++) {
4927 		u32 depth = env->subprog_info[i].stack_depth;
4928 
4929 		verbose(env, "%d", depth);
4930 		if (i + 1 < env->subprog_cnt)
4931 			verbose(env, "+");
4932 	}
4933 	verbose(env, "\n");
4934 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4935 	return 0;
4936 }
4937 
4938 static int check_map_prealloc(struct bpf_map *map)
4939 {
4940 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4941 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4942 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4943 		!(map->map_flags & BPF_F_NO_PREALLOC);
4944 }
4945 
4946 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4947 					struct bpf_map *map,
4948 					struct bpf_prog *prog)
4949 
4950 {
4951 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4952 	 * preallocated hash maps, since doing memory allocation
4953 	 * in overflow_handler can crash depending on where nmi got
4954 	 * triggered.
4955 	 */
4956 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4957 		if (!check_map_prealloc(map)) {
4958 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4959 			return -EINVAL;
4960 		}
4961 		if (map->inner_map_meta &&
4962 		    !check_map_prealloc(map->inner_map_meta)) {
4963 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4964 			return -EINVAL;
4965 		}
4966 	}
4967 
4968 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4969 	    !bpf_offload_dev_match(prog, map)) {
4970 		verbose(env, "offload device mismatch between prog and map\n");
4971 		return -EINVAL;
4972 	}
4973 
4974 	return 0;
4975 }
4976 
4977 /* look for pseudo eBPF instructions that access map FDs and
4978  * replace them with actual map pointers
4979  */
4980 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4981 {
4982 	struct bpf_insn *insn = env->prog->insnsi;
4983 	int insn_cnt = env->prog->len;
4984 	int i, j, err;
4985 
4986 	err = bpf_prog_calc_tag(env->prog);
4987 	if (err)
4988 		return err;
4989 
4990 	for (i = 0; i < insn_cnt; i++, insn++) {
4991 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4992 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4993 			verbose(env, "BPF_LDX uses reserved fields\n");
4994 			return -EINVAL;
4995 		}
4996 
4997 		if (BPF_CLASS(insn->code) == BPF_STX &&
4998 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4999 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5000 			verbose(env, "BPF_STX uses reserved fields\n");
5001 			return -EINVAL;
5002 		}
5003 
5004 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5005 			struct bpf_map *map;
5006 			struct fd f;
5007 
5008 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5009 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5010 			    insn[1].off != 0) {
5011 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5012 				return -EINVAL;
5013 			}
5014 
5015 			if (insn->src_reg == 0)
5016 				/* valid generic load 64-bit imm */
5017 				goto next_insn;
5018 
5019 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5020 				verbose(env,
5021 					"unrecognized bpf_ld_imm64 insn\n");
5022 				return -EINVAL;
5023 			}
5024 
5025 			f = fdget(insn->imm);
5026 			map = __bpf_map_get(f);
5027 			if (IS_ERR(map)) {
5028 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5029 					insn->imm);
5030 				return PTR_ERR(map);
5031 			}
5032 
5033 			err = check_map_prog_compatibility(env, map, env->prog);
5034 			if (err) {
5035 				fdput(f);
5036 				return err;
5037 			}
5038 
5039 			/* store map pointer inside BPF_LD_IMM64 instruction */
5040 			insn[0].imm = (u32) (unsigned long) map;
5041 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5042 
5043 			/* check whether we recorded this map already */
5044 			for (j = 0; j < env->used_map_cnt; j++)
5045 				if (env->used_maps[j] == map) {
5046 					fdput(f);
5047 					goto next_insn;
5048 				}
5049 
5050 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5051 				fdput(f);
5052 				return -E2BIG;
5053 			}
5054 
5055 			/* hold the map. If the program is rejected by verifier,
5056 			 * the map will be released by release_maps() or it
5057 			 * will be used by the valid program until it's unloaded
5058 			 * and all maps are released in free_bpf_prog_info()
5059 			 */
5060 			map = bpf_map_inc(map, false);
5061 			if (IS_ERR(map)) {
5062 				fdput(f);
5063 				return PTR_ERR(map);
5064 			}
5065 			env->used_maps[env->used_map_cnt++] = map;
5066 
5067 			fdput(f);
5068 next_insn:
5069 			insn++;
5070 			i++;
5071 			continue;
5072 		}
5073 
5074 		/* Basic sanity check before we invest more work here. */
5075 		if (!bpf_opcode_in_insntable(insn->code)) {
5076 			verbose(env, "unknown opcode %02x\n", insn->code);
5077 			return -EINVAL;
5078 		}
5079 	}
5080 
5081 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5082 	 * 'struct bpf_map *' into a register instead of user map_fd.
5083 	 * These pointers will be used later by verifier to validate map access.
5084 	 */
5085 	return 0;
5086 }
5087 
5088 /* drop refcnt of maps used by the rejected program */
5089 static void release_maps(struct bpf_verifier_env *env)
5090 {
5091 	int i;
5092 
5093 	for (i = 0; i < env->used_map_cnt; i++)
5094 		bpf_map_put(env->used_maps[i]);
5095 }
5096 
5097 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5098 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5099 {
5100 	struct bpf_insn *insn = env->prog->insnsi;
5101 	int insn_cnt = env->prog->len;
5102 	int i;
5103 
5104 	for (i = 0; i < insn_cnt; i++, insn++)
5105 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5106 			insn->src_reg = 0;
5107 }
5108 
5109 /* single env->prog->insni[off] instruction was replaced with the range
5110  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5111  * [0, off) and [off, end) to new locations, so the patched range stays zero
5112  */
5113 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5114 				u32 off, u32 cnt)
5115 {
5116 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5117 	int i;
5118 
5119 	if (cnt == 1)
5120 		return 0;
5121 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5122 	if (!new_data)
5123 		return -ENOMEM;
5124 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5125 	memcpy(new_data + off + cnt - 1, old_data + off,
5126 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5127 	for (i = off; i < off + cnt - 1; i++)
5128 		new_data[i].seen = true;
5129 	env->insn_aux_data = new_data;
5130 	vfree(old_data);
5131 	return 0;
5132 }
5133 
5134 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5135 {
5136 	int i;
5137 
5138 	if (len == 1)
5139 		return;
5140 	/* NOTE: fake 'exit' subprog should be updated as well. */
5141 	for (i = 0; i <= env->subprog_cnt; i++) {
5142 		if (env->subprog_info[i].start < off)
5143 			continue;
5144 		env->subprog_info[i].start += len - 1;
5145 	}
5146 }
5147 
5148 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5149 					    const struct bpf_insn *patch, u32 len)
5150 {
5151 	struct bpf_prog *new_prog;
5152 
5153 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5154 	if (!new_prog)
5155 		return NULL;
5156 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5157 		return NULL;
5158 	adjust_subprog_starts(env, off, len);
5159 	return new_prog;
5160 }
5161 
5162 /* The verifier does more data flow analysis than llvm and will not
5163  * explore branches that are dead at run time. Malicious programs can
5164  * have dead code too. Therefore replace all dead at-run-time code
5165  * with 'ja -1'.
5166  *
5167  * Just nops are not optimal, e.g. if they would sit at the end of the
5168  * program and through another bug we would manage to jump there, then
5169  * we'd execute beyond program memory otherwise. Returning exception
5170  * code also wouldn't work since we can have subprogs where the dead
5171  * code could be located.
5172  */
5173 static void sanitize_dead_code(struct bpf_verifier_env *env)
5174 {
5175 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5176 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5177 	struct bpf_insn *insn = env->prog->insnsi;
5178 	const int insn_cnt = env->prog->len;
5179 	int i;
5180 
5181 	for (i = 0; i < insn_cnt; i++) {
5182 		if (aux_data[i].seen)
5183 			continue;
5184 		memcpy(insn + i, &trap, sizeof(trap));
5185 	}
5186 }
5187 
5188 /* convert load instructions that access fields of 'struct __sk_buff'
5189  * into sequence of instructions that access fields of 'struct sk_buff'
5190  */
5191 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5192 {
5193 	const struct bpf_verifier_ops *ops = env->ops;
5194 	int i, cnt, size, ctx_field_size, delta = 0;
5195 	const int insn_cnt = env->prog->len;
5196 	struct bpf_insn insn_buf[16], *insn;
5197 	struct bpf_prog *new_prog;
5198 	enum bpf_access_type type;
5199 	bool is_narrower_load;
5200 	u32 target_size;
5201 
5202 	if (ops->gen_prologue) {
5203 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5204 					env->prog);
5205 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5206 			verbose(env, "bpf verifier is misconfigured\n");
5207 			return -EINVAL;
5208 		} else if (cnt) {
5209 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5210 			if (!new_prog)
5211 				return -ENOMEM;
5212 
5213 			env->prog = new_prog;
5214 			delta += cnt - 1;
5215 		}
5216 	}
5217 
5218 	if (!ops->convert_ctx_access)
5219 		return 0;
5220 
5221 	insn = env->prog->insnsi + delta;
5222 
5223 	for (i = 0; i < insn_cnt; i++, insn++) {
5224 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5225 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5226 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5227 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5228 			type = BPF_READ;
5229 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5230 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5231 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5232 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5233 			type = BPF_WRITE;
5234 		else
5235 			continue;
5236 
5237 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5238 			continue;
5239 
5240 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5241 		size = BPF_LDST_BYTES(insn);
5242 
5243 		/* If the read access is a narrower load of the field,
5244 		 * convert to a 4/8-byte load, to minimum program type specific
5245 		 * convert_ctx_access changes. If conversion is successful,
5246 		 * we will apply proper mask to the result.
5247 		 */
5248 		is_narrower_load = size < ctx_field_size;
5249 		if (is_narrower_load) {
5250 			u32 off = insn->off;
5251 			u8 size_code;
5252 
5253 			if (type == BPF_WRITE) {
5254 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5255 				return -EINVAL;
5256 			}
5257 
5258 			size_code = BPF_H;
5259 			if (ctx_field_size == 4)
5260 				size_code = BPF_W;
5261 			else if (ctx_field_size == 8)
5262 				size_code = BPF_DW;
5263 
5264 			insn->off = off & ~(ctx_field_size - 1);
5265 			insn->code = BPF_LDX | BPF_MEM | size_code;
5266 		}
5267 
5268 		target_size = 0;
5269 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5270 					      &target_size);
5271 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5272 		    (ctx_field_size && !target_size)) {
5273 			verbose(env, "bpf verifier is misconfigured\n");
5274 			return -EINVAL;
5275 		}
5276 
5277 		if (is_narrower_load && size < target_size) {
5278 			if (ctx_field_size <= 4)
5279 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5280 								(1 << size * 8) - 1);
5281 			else
5282 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5283 								(1 << size * 8) - 1);
5284 		}
5285 
5286 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5287 		if (!new_prog)
5288 			return -ENOMEM;
5289 
5290 		delta += cnt - 1;
5291 
5292 		/* keep walking new program and skip insns we just inserted */
5293 		env->prog = new_prog;
5294 		insn      = new_prog->insnsi + i + delta;
5295 	}
5296 
5297 	return 0;
5298 }
5299 
5300 static int jit_subprogs(struct bpf_verifier_env *env)
5301 {
5302 	struct bpf_prog *prog = env->prog, **func, *tmp;
5303 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5304 	struct bpf_insn *insn;
5305 	void *old_bpf_func;
5306 	int err = -ENOMEM;
5307 
5308 	if (env->subprog_cnt <= 1)
5309 		return 0;
5310 
5311 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5312 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5313 		    insn->src_reg != BPF_PSEUDO_CALL)
5314 			continue;
5315 		subprog = find_subprog(env, i + insn->imm + 1);
5316 		if (subprog < 0) {
5317 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5318 				  i + insn->imm + 1);
5319 			return -EFAULT;
5320 		}
5321 		/* temporarily remember subprog id inside insn instead of
5322 		 * aux_data, since next loop will split up all insns into funcs
5323 		 */
5324 		insn->off = subprog;
5325 		/* remember original imm in case JIT fails and fallback
5326 		 * to interpreter will be needed
5327 		 */
5328 		env->insn_aux_data[i].call_imm = insn->imm;
5329 		/* point imm to __bpf_call_base+1 from JITs point of view */
5330 		insn->imm = 1;
5331 	}
5332 
5333 	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5334 	if (!func)
5335 		return -ENOMEM;
5336 
5337 	for (i = 0; i < env->subprog_cnt; i++) {
5338 		subprog_start = subprog_end;
5339 		subprog_end = env->subprog_info[i + 1].start;
5340 
5341 		len = subprog_end - subprog_start;
5342 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5343 		if (!func[i])
5344 			goto out_free;
5345 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5346 		       len * sizeof(struct bpf_insn));
5347 		func[i]->type = prog->type;
5348 		func[i]->len = len;
5349 		if (bpf_prog_calc_tag(func[i]))
5350 			goto out_free;
5351 		func[i]->is_func = 1;
5352 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5353 		 * Long term would need debug info to populate names
5354 		 */
5355 		func[i]->aux->name[0] = 'F';
5356 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5357 		func[i]->jit_requested = 1;
5358 		func[i] = bpf_int_jit_compile(func[i]);
5359 		if (!func[i]->jited) {
5360 			err = -ENOTSUPP;
5361 			goto out_free;
5362 		}
5363 		cond_resched();
5364 	}
5365 	/* at this point all bpf functions were successfully JITed
5366 	 * now populate all bpf_calls with correct addresses and
5367 	 * run last pass of JIT
5368 	 */
5369 	for (i = 0; i < env->subprog_cnt; i++) {
5370 		insn = func[i]->insnsi;
5371 		for (j = 0; j < func[i]->len; j++, insn++) {
5372 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5373 			    insn->src_reg != BPF_PSEUDO_CALL)
5374 				continue;
5375 			subprog = insn->off;
5376 			insn->off = 0;
5377 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5378 				func[subprog]->bpf_func -
5379 				__bpf_call_base;
5380 		}
5381 	}
5382 	for (i = 0; i < env->subprog_cnt; i++) {
5383 		old_bpf_func = func[i]->bpf_func;
5384 		tmp = bpf_int_jit_compile(func[i]);
5385 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5386 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5387 			err = -EFAULT;
5388 			goto out_free;
5389 		}
5390 		cond_resched();
5391 	}
5392 
5393 	/* finally lock prog and jit images for all functions and
5394 	 * populate kallsysm
5395 	 */
5396 	for (i = 0; i < env->subprog_cnt; i++) {
5397 		bpf_prog_lock_ro(func[i]);
5398 		bpf_prog_kallsyms_add(func[i]);
5399 	}
5400 
5401 	/* Last step: make now unused interpreter insns from main
5402 	 * prog consistent for later dump requests, so they can
5403 	 * later look the same as if they were interpreted only.
5404 	 */
5405 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5406 		unsigned long addr;
5407 
5408 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5409 		    insn->src_reg != BPF_PSEUDO_CALL)
5410 			continue;
5411 		insn->off = env->insn_aux_data[i].call_imm;
5412 		subprog = find_subprog(env, i + insn->off + 1);
5413 		addr  = (unsigned long)func[subprog]->bpf_func;
5414 		addr &= PAGE_MASK;
5415 		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5416 			    addr - __bpf_call_base;
5417 	}
5418 
5419 	prog->jited = 1;
5420 	prog->bpf_func = func[0]->bpf_func;
5421 	prog->aux->func = func;
5422 	prog->aux->func_cnt = env->subprog_cnt;
5423 	return 0;
5424 out_free:
5425 	for (i = 0; i < env->subprog_cnt; i++)
5426 		if (func[i])
5427 			bpf_jit_free(func[i]);
5428 	kfree(func);
5429 	/* cleanup main prog to be interpreted */
5430 	prog->jit_requested = 0;
5431 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5432 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5433 		    insn->src_reg != BPF_PSEUDO_CALL)
5434 			continue;
5435 		insn->off = 0;
5436 		insn->imm = env->insn_aux_data[i].call_imm;
5437 	}
5438 	return err;
5439 }
5440 
5441 static int fixup_call_args(struct bpf_verifier_env *env)
5442 {
5443 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5444 	struct bpf_prog *prog = env->prog;
5445 	struct bpf_insn *insn = prog->insnsi;
5446 	int i, depth;
5447 #endif
5448 	int err;
5449 
5450 	err = 0;
5451 	if (env->prog->jit_requested) {
5452 		err = jit_subprogs(env);
5453 		if (err == 0)
5454 			return 0;
5455 	}
5456 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5457 	for (i = 0; i < prog->len; i++, insn++) {
5458 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5459 		    insn->src_reg != BPF_PSEUDO_CALL)
5460 			continue;
5461 		depth = get_callee_stack_depth(env, insn, i);
5462 		if (depth < 0)
5463 			return depth;
5464 		bpf_patch_call_args(insn, depth);
5465 	}
5466 	err = 0;
5467 #endif
5468 	return err;
5469 }
5470 
5471 /* fixup insn->imm field of bpf_call instructions
5472  * and inline eligible helpers as explicit sequence of BPF instructions
5473  *
5474  * this function is called after eBPF program passed verification
5475  */
5476 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5477 {
5478 	struct bpf_prog *prog = env->prog;
5479 	struct bpf_insn *insn = prog->insnsi;
5480 	const struct bpf_func_proto *fn;
5481 	const int insn_cnt = prog->len;
5482 	struct bpf_insn insn_buf[16];
5483 	struct bpf_prog *new_prog;
5484 	struct bpf_map *map_ptr;
5485 	int i, cnt, delta = 0;
5486 
5487 	for (i = 0; i < insn_cnt; i++, insn++) {
5488 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5489 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5490 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5491 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5492 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5493 			struct bpf_insn mask_and_div[] = {
5494 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5495 				/* Rx div 0 -> 0 */
5496 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5497 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5498 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5499 				*insn,
5500 			};
5501 			struct bpf_insn mask_and_mod[] = {
5502 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5503 				/* Rx mod 0 -> Rx */
5504 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5505 				*insn,
5506 			};
5507 			struct bpf_insn *patchlet;
5508 
5509 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5510 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5511 				patchlet = mask_and_div + (is64 ? 1 : 0);
5512 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5513 			} else {
5514 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5515 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5516 			}
5517 
5518 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5519 			if (!new_prog)
5520 				return -ENOMEM;
5521 
5522 			delta    += cnt - 1;
5523 			env->prog = prog = new_prog;
5524 			insn      = new_prog->insnsi + i + delta;
5525 			continue;
5526 		}
5527 
5528 		if (BPF_CLASS(insn->code) == BPF_LD &&
5529 		    (BPF_MODE(insn->code) == BPF_ABS ||
5530 		     BPF_MODE(insn->code) == BPF_IND)) {
5531 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
5532 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5533 				verbose(env, "bpf verifier is misconfigured\n");
5534 				return -EINVAL;
5535 			}
5536 
5537 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5538 			if (!new_prog)
5539 				return -ENOMEM;
5540 
5541 			delta    += cnt - 1;
5542 			env->prog = prog = new_prog;
5543 			insn      = new_prog->insnsi + i + delta;
5544 			continue;
5545 		}
5546 
5547 		if (insn->code != (BPF_JMP | BPF_CALL))
5548 			continue;
5549 		if (insn->src_reg == BPF_PSEUDO_CALL)
5550 			continue;
5551 
5552 		if (insn->imm == BPF_FUNC_get_route_realm)
5553 			prog->dst_needed = 1;
5554 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5555 			bpf_user_rnd_init_once();
5556 		if (insn->imm == BPF_FUNC_override_return)
5557 			prog->kprobe_override = 1;
5558 		if (insn->imm == BPF_FUNC_tail_call) {
5559 			/* If we tail call into other programs, we
5560 			 * cannot make any assumptions since they can
5561 			 * be replaced dynamically during runtime in
5562 			 * the program array.
5563 			 */
5564 			prog->cb_access = 1;
5565 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5566 
5567 			/* mark bpf_tail_call as different opcode to avoid
5568 			 * conditional branch in the interpeter for every normal
5569 			 * call and to prevent accidental JITing by JIT compiler
5570 			 * that doesn't support bpf_tail_call yet
5571 			 */
5572 			insn->imm = 0;
5573 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5574 
5575 			/* instead of changing every JIT dealing with tail_call
5576 			 * emit two extra insns:
5577 			 * if (index >= max_entries) goto out;
5578 			 * index &= array->index_mask;
5579 			 * to avoid out-of-bounds cpu speculation
5580 			 */
5581 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5582 			if (map_ptr == BPF_MAP_PTR_POISON) {
5583 				verbose(env, "tail_call abusing map_ptr\n");
5584 				return -EINVAL;
5585 			}
5586 			if (!map_ptr->unpriv_array)
5587 				continue;
5588 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5589 						  map_ptr->max_entries, 2);
5590 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5591 						    container_of(map_ptr,
5592 								 struct bpf_array,
5593 								 map)->index_mask);
5594 			insn_buf[2] = *insn;
5595 			cnt = 3;
5596 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5597 			if (!new_prog)
5598 				return -ENOMEM;
5599 
5600 			delta    += cnt - 1;
5601 			env->prog = prog = new_prog;
5602 			insn      = new_prog->insnsi + i + delta;
5603 			continue;
5604 		}
5605 
5606 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5607 		 * handlers are currently limited to 64 bit only.
5608 		 */
5609 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5610 		    insn->imm == BPF_FUNC_map_lookup_elem) {
5611 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5612 			if (map_ptr == BPF_MAP_PTR_POISON ||
5613 			    !map_ptr->ops->map_gen_lookup)
5614 				goto patch_call_imm;
5615 
5616 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5617 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5618 				verbose(env, "bpf verifier is misconfigured\n");
5619 				return -EINVAL;
5620 			}
5621 
5622 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5623 						       cnt);
5624 			if (!new_prog)
5625 				return -ENOMEM;
5626 
5627 			delta += cnt - 1;
5628 
5629 			/* keep walking new program and skip insns we just inserted */
5630 			env->prog = prog = new_prog;
5631 			insn      = new_prog->insnsi + i + delta;
5632 			continue;
5633 		}
5634 
5635 		if (insn->imm == BPF_FUNC_redirect_map) {
5636 			/* Note, we cannot use prog directly as imm as subsequent
5637 			 * rewrites would still change the prog pointer. The only
5638 			 * stable address we can use is aux, which also works with
5639 			 * prog clones during blinding.
5640 			 */
5641 			u64 addr = (unsigned long)prog->aux;
5642 			struct bpf_insn r4_ld[] = {
5643 				BPF_LD_IMM64(BPF_REG_4, addr),
5644 				*insn,
5645 			};
5646 			cnt = ARRAY_SIZE(r4_ld);
5647 
5648 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5649 			if (!new_prog)
5650 				return -ENOMEM;
5651 
5652 			delta    += cnt - 1;
5653 			env->prog = prog = new_prog;
5654 			insn      = new_prog->insnsi + i + delta;
5655 		}
5656 patch_call_imm:
5657 		fn = env->ops->get_func_proto(insn->imm, env->prog);
5658 		/* all functions that have prototype and verifier allowed
5659 		 * programs to call them, must be real in-kernel functions
5660 		 */
5661 		if (!fn->func) {
5662 			verbose(env,
5663 				"kernel subsystem misconfigured func %s#%d\n",
5664 				func_id_name(insn->imm), insn->imm);
5665 			return -EFAULT;
5666 		}
5667 		insn->imm = fn->func - __bpf_call_base;
5668 	}
5669 
5670 	return 0;
5671 }
5672 
5673 static void free_states(struct bpf_verifier_env *env)
5674 {
5675 	struct bpf_verifier_state_list *sl, *sln;
5676 	int i;
5677 
5678 	if (!env->explored_states)
5679 		return;
5680 
5681 	for (i = 0; i < env->prog->len; i++) {
5682 		sl = env->explored_states[i];
5683 
5684 		if (sl)
5685 			while (sl != STATE_LIST_MARK) {
5686 				sln = sl->next;
5687 				free_verifier_state(&sl->state, false);
5688 				kfree(sl);
5689 				sl = sln;
5690 			}
5691 	}
5692 
5693 	kfree(env->explored_states);
5694 }
5695 
5696 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5697 {
5698 	struct bpf_verifier_env *env;
5699 	struct bpf_verifier_log *log;
5700 	int ret = -EINVAL;
5701 
5702 	/* no program is valid */
5703 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5704 		return -EINVAL;
5705 
5706 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5707 	 * allocate/free it every time bpf_check() is called
5708 	 */
5709 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5710 	if (!env)
5711 		return -ENOMEM;
5712 	log = &env->log;
5713 
5714 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5715 				     (*prog)->len);
5716 	ret = -ENOMEM;
5717 	if (!env->insn_aux_data)
5718 		goto err_free_env;
5719 	env->prog = *prog;
5720 	env->ops = bpf_verifier_ops[env->prog->type];
5721 
5722 	/* grab the mutex to protect few globals used by verifier */
5723 	mutex_lock(&bpf_verifier_lock);
5724 
5725 	if (attr->log_level || attr->log_buf || attr->log_size) {
5726 		/* user requested verbose verifier output
5727 		 * and supplied buffer to store the verification trace
5728 		 */
5729 		log->level = attr->log_level;
5730 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5731 		log->len_total = attr->log_size;
5732 
5733 		ret = -EINVAL;
5734 		/* log attributes have to be sane */
5735 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5736 		    !log->level || !log->ubuf)
5737 			goto err_unlock;
5738 	}
5739 
5740 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5741 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5742 		env->strict_alignment = true;
5743 
5744 	ret = replace_map_fd_with_map_ptr(env);
5745 	if (ret < 0)
5746 		goto skip_full_check;
5747 
5748 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5749 		ret = bpf_prog_offload_verifier_prep(env);
5750 		if (ret)
5751 			goto skip_full_check;
5752 	}
5753 
5754 	env->explored_states = kcalloc(env->prog->len,
5755 				       sizeof(struct bpf_verifier_state_list *),
5756 				       GFP_USER);
5757 	ret = -ENOMEM;
5758 	if (!env->explored_states)
5759 		goto skip_full_check;
5760 
5761 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5762 
5763 	ret = check_cfg(env);
5764 	if (ret < 0)
5765 		goto skip_full_check;
5766 
5767 	ret = do_check(env);
5768 	if (env->cur_state) {
5769 		free_verifier_state(env->cur_state, true);
5770 		env->cur_state = NULL;
5771 	}
5772 
5773 skip_full_check:
5774 	while (!pop_stack(env, NULL, NULL));
5775 	free_states(env);
5776 
5777 	if (ret == 0)
5778 		sanitize_dead_code(env);
5779 
5780 	if (ret == 0)
5781 		ret = check_max_stack_depth(env);
5782 
5783 	if (ret == 0)
5784 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5785 		ret = convert_ctx_accesses(env);
5786 
5787 	if (ret == 0)
5788 		ret = fixup_bpf_calls(env);
5789 
5790 	if (ret == 0)
5791 		ret = fixup_call_args(env);
5792 
5793 	if (log->level && bpf_verifier_log_full(log))
5794 		ret = -ENOSPC;
5795 	if (log->level && !log->ubuf) {
5796 		ret = -EFAULT;
5797 		goto err_release_maps;
5798 	}
5799 
5800 	if (ret == 0 && env->used_map_cnt) {
5801 		/* if program passed verifier, update used_maps in bpf_prog_info */
5802 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5803 							  sizeof(env->used_maps[0]),
5804 							  GFP_KERNEL);
5805 
5806 		if (!env->prog->aux->used_maps) {
5807 			ret = -ENOMEM;
5808 			goto err_release_maps;
5809 		}
5810 
5811 		memcpy(env->prog->aux->used_maps, env->used_maps,
5812 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5813 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5814 
5815 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5816 		 * bpf_ld_imm64 instructions
5817 		 */
5818 		convert_pseudo_ld_imm64(env);
5819 	}
5820 
5821 err_release_maps:
5822 	if (!env->prog->aux->used_maps)
5823 		/* if we didn't copy map pointers into bpf_prog_info, release
5824 		 * them now. Otherwise free_bpf_prog_info() will release them.
5825 		 */
5826 		release_maps(env);
5827 	*prog = env->prog;
5828 err_unlock:
5829 	mutex_unlock(&bpf_verifier_lock);
5830 	vfree(env->insn_aux_data);
5831 err_free_env:
5832 	kfree(env);
5833 	return ret;
5834 }
5835