1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 161 162 struct bpf_call_arg_meta { 163 struct bpf_map *map_ptr; 164 bool raw_mode; 165 bool pkt_access; 166 int regno; 167 int access_size; 168 s64 msize_smax_value; 169 u64 msize_umax_value; 170 }; 171 172 static DEFINE_MUTEX(bpf_verifier_lock); 173 174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 175 va_list args) 176 { 177 unsigned int n; 178 179 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 180 181 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 182 "verifier log line truncated - local buffer too short\n"); 183 184 n = min(log->len_total - log->len_used - 1, n); 185 log->kbuf[n] = '\0'; 186 187 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 188 log->len_used += n; 189 else 190 log->ubuf = NULL; 191 } 192 193 /* log_level controls verbosity level of eBPF verifier. 194 * bpf_verifier_log_write() is used to dump the verification trace to the log, 195 * so the user can figure out what's wrong with the program 196 */ 197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 198 const char *fmt, ...) 199 { 200 va_list args; 201 202 if (!bpf_verifier_log_needed(&env->log)) 203 return; 204 205 va_start(args, fmt); 206 bpf_verifier_vlog(&env->log, fmt, args); 207 va_end(args); 208 } 209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 210 211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 212 { 213 struct bpf_verifier_env *env = private_data; 214 va_list args; 215 216 if (!bpf_verifier_log_needed(&env->log)) 217 return; 218 219 va_start(args, fmt); 220 bpf_verifier_vlog(&env->log, fmt, args); 221 va_end(args); 222 } 223 224 static bool type_is_pkt_pointer(enum bpf_reg_type type) 225 { 226 return type == PTR_TO_PACKET || 227 type == PTR_TO_PACKET_META; 228 } 229 230 /* string representation of 'enum bpf_reg_type' */ 231 static const char * const reg_type_str[] = { 232 [NOT_INIT] = "?", 233 [SCALAR_VALUE] = "inv", 234 [PTR_TO_CTX] = "ctx", 235 [CONST_PTR_TO_MAP] = "map_ptr", 236 [PTR_TO_MAP_VALUE] = "map_value", 237 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 238 [PTR_TO_STACK] = "fp", 239 [PTR_TO_PACKET] = "pkt", 240 [PTR_TO_PACKET_META] = "pkt_meta", 241 [PTR_TO_PACKET_END] = "pkt_end", 242 }; 243 244 static void print_liveness(struct bpf_verifier_env *env, 245 enum bpf_reg_liveness live) 246 { 247 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 248 verbose(env, "_"); 249 if (live & REG_LIVE_READ) 250 verbose(env, "r"); 251 if (live & REG_LIVE_WRITTEN) 252 verbose(env, "w"); 253 } 254 255 static struct bpf_func_state *func(struct bpf_verifier_env *env, 256 const struct bpf_reg_state *reg) 257 { 258 struct bpf_verifier_state *cur = env->cur_state; 259 260 return cur->frame[reg->frameno]; 261 } 262 263 static void print_verifier_state(struct bpf_verifier_env *env, 264 const struct bpf_func_state *state) 265 { 266 const struct bpf_reg_state *reg; 267 enum bpf_reg_type t; 268 int i; 269 270 if (state->frameno) 271 verbose(env, " frame%d:", state->frameno); 272 for (i = 0; i < MAX_BPF_REG; i++) { 273 reg = &state->regs[i]; 274 t = reg->type; 275 if (t == NOT_INIT) 276 continue; 277 verbose(env, " R%d", i); 278 print_liveness(env, reg->live); 279 verbose(env, "=%s", reg_type_str[t]); 280 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 281 tnum_is_const(reg->var_off)) { 282 /* reg->off should be 0 for SCALAR_VALUE */ 283 verbose(env, "%lld", reg->var_off.value + reg->off); 284 if (t == PTR_TO_STACK) 285 verbose(env, ",call_%d", func(env, reg)->callsite); 286 } else { 287 verbose(env, "(id=%d", reg->id); 288 if (t != SCALAR_VALUE) 289 verbose(env, ",off=%d", reg->off); 290 if (type_is_pkt_pointer(t)) 291 verbose(env, ",r=%d", reg->range); 292 else if (t == CONST_PTR_TO_MAP || 293 t == PTR_TO_MAP_VALUE || 294 t == PTR_TO_MAP_VALUE_OR_NULL) 295 verbose(env, ",ks=%d,vs=%d", 296 reg->map_ptr->key_size, 297 reg->map_ptr->value_size); 298 if (tnum_is_const(reg->var_off)) { 299 /* Typically an immediate SCALAR_VALUE, but 300 * could be a pointer whose offset is too big 301 * for reg->off 302 */ 303 verbose(env, ",imm=%llx", reg->var_off.value); 304 } else { 305 if (reg->smin_value != reg->umin_value && 306 reg->smin_value != S64_MIN) 307 verbose(env, ",smin_value=%lld", 308 (long long)reg->smin_value); 309 if (reg->smax_value != reg->umax_value && 310 reg->smax_value != S64_MAX) 311 verbose(env, ",smax_value=%lld", 312 (long long)reg->smax_value); 313 if (reg->umin_value != 0) 314 verbose(env, ",umin_value=%llu", 315 (unsigned long long)reg->umin_value); 316 if (reg->umax_value != U64_MAX) 317 verbose(env, ",umax_value=%llu", 318 (unsigned long long)reg->umax_value); 319 if (!tnum_is_unknown(reg->var_off)) { 320 char tn_buf[48]; 321 322 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 323 verbose(env, ",var_off=%s", tn_buf); 324 } 325 } 326 verbose(env, ")"); 327 } 328 } 329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 330 if (state->stack[i].slot_type[0] == STACK_SPILL) { 331 verbose(env, " fp%d", 332 (-i - 1) * BPF_REG_SIZE); 333 print_liveness(env, state->stack[i].spilled_ptr.live); 334 verbose(env, "=%s", 335 reg_type_str[state->stack[i].spilled_ptr.type]); 336 } 337 if (state->stack[i].slot_type[0] == STACK_ZERO) 338 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 339 } 340 verbose(env, "\n"); 341 } 342 343 static int copy_stack_state(struct bpf_func_state *dst, 344 const struct bpf_func_state *src) 345 { 346 if (!src->stack) 347 return 0; 348 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 349 /* internal bug, make state invalid to reject the program */ 350 memset(dst, 0, sizeof(*dst)); 351 return -EFAULT; 352 } 353 memcpy(dst->stack, src->stack, 354 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 355 return 0; 356 } 357 358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 359 * make it consume minimal amount of memory. check_stack_write() access from 360 * the program calls into realloc_func_state() to grow the stack size. 361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 362 * which this function copies over. It points to previous bpf_verifier_state 363 * which is never reallocated 364 */ 365 static int realloc_func_state(struct bpf_func_state *state, int size, 366 bool copy_old) 367 { 368 u32 old_size = state->allocated_stack; 369 struct bpf_stack_state *new_stack; 370 int slot = size / BPF_REG_SIZE; 371 372 if (size <= old_size || !size) { 373 if (copy_old) 374 return 0; 375 state->allocated_stack = slot * BPF_REG_SIZE; 376 if (!size && old_size) { 377 kfree(state->stack); 378 state->stack = NULL; 379 } 380 return 0; 381 } 382 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 383 GFP_KERNEL); 384 if (!new_stack) 385 return -ENOMEM; 386 if (copy_old) { 387 if (state->stack) 388 memcpy(new_stack, state->stack, 389 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 390 memset(new_stack + old_size / BPF_REG_SIZE, 0, 391 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 392 } 393 state->allocated_stack = slot * BPF_REG_SIZE; 394 kfree(state->stack); 395 state->stack = new_stack; 396 return 0; 397 } 398 399 static void free_func_state(struct bpf_func_state *state) 400 { 401 if (!state) 402 return; 403 kfree(state->stack); 404 kfree(state); 405 } 406 407 static void free_verifier_state(struct bpf_verifier_state *state, 408 bool free_self) 409 { 410 int i; 411 412 for (i = 0; i <= state->curframe; i++) { 413 free_func_state(state->frame[i]); 414 state->frame[i] = NULL; 415 } 416 if (free_self) 417 kfree(state); 418 } 419 420 /* copy verifier state from src to dst growing dst stack space 421 * when necessary to accommodate larger src stack 422 */ 423 static int copy_func_state(struct bpf_func_state *dst, 424 const struct bpf_func_state *src) 425 { 426 int err; 427 428 err = realloc_func_state(dst, src->allocated_stack, false); 429 if (err) 430 return err; 431 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 432 return copy_stack_state(dst, src); 433 } 434 435 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 436 const struct bpf_verifier_state *src) 437 { 438 struct bpf_func_state *dst; 439 int i, err; 440 441 /* if dst has more stack frames then src frame, free them */ 442 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 443 free_func_state(dst_state->frame[i]); 444 dst_state->frame[i] = NULL; 445 } 446 dst_state->curframe = src->curframe; 447 dst_state->parent = src->parent; 448 for (i = 0; i <= src->curframe; i++) { 449 dst = dst_state->frame[i]; 450 if (!dst) { 451 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 452 if (!dst) 453 return -ENOMEM; 454 dst_state->frame[i] = dst; 455 } 456 err = copy_func_state(dst, src->frame[i]); 457 if (err) 458 return err; 459 } 460 return 0; 461 } 462 463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 464 int *insn_idx) 465 { 466 struct bpf_verifier_state *cur = env->cur_state; 467 struct bpf_verifier_stack_elem *elem, *head = env->head; 468 int err; 469 470 if (env->head == NULL) 471 return -ENOENT; 472 473 if (cur) { 474 err = copy_verifier_state(cur, &head->st); 475 if (err) 476 return err; 477 } 478 if (insn_idx) 479 *insn_idx = head->insn_idx; 480 if (prev_insn_idx) 481 *prev_insn_idx = head->prev_insn_idx; 482 elem = head->next; 483 free_verifier_state(&head->st, false); 484 kfree(head); 485 env->head = elem; 486 env->stack_size--; 487 return 0; 488 } 489 490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 491 int insn_idx, int prev_insn_idx) 492 { 493 struct bpf_verifier_state *cur = env->cur_state; 494 struct bpf_verifier_stack_elem *elem; 495 int err; 496 497 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 498 if (!elem) 499 goto err; 500 501 elem->insn_idx = insn_idx; 502 elem->prev_insn_idx = prev_insn_idx; 503 elem->next = env->head; 504 env->head = elem; 505 env->stack_size++; 506 err = copy_verifier_state(&elem->st, cur); 507 if (err) 508 goto err; 509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 510 verbose(env, "BPF program is too complex\n"); 511 goto err; 512 } 513 return &elem->st; 514 err: 515 free_verifier_state(env->cur_state, true); 516 env->cur_state = NULL; 517 /* pop all elements and return */ 518 while (!pop_stack(env, NULL, NULL)); 519 return NULL; 520 } 521 522 #define CALLER_SAVED_REGS 6 523 static const int caller_saved[CALLER_SAVED_REGS] = { 524 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 525 }; 526 527 static void __mark_reg_not_init(struct bpf_reg_state *reg); 528 529 /* Mark the unknown part of a register (variable offset or scalar value) as 530 * known to have the value @imm. 531 */ 532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 533 { 534 reg->id = 0; 535 reg->var_off = tnum_const(imm); 536 reg->smin_value = (s64)imm; 537 reg->smax_value = (s64)imm; 538 reg->umin_value = imm; 539 reg->umax_value = imm; 540 } 541 542 /* Mark the 'variable offset' part of a register as zero. This should be 543 * used only on registers holding a pointer type. 544 */ 545 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 546 { 547 __mark_reg_known(reg, 0); 548 } 549 550 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 551 { 552 __mark_reg_known(reg, 0); 553 reg->off = 0; 554 reg->type = SCALAR_VALUE; 555 } 556 557 static void mark_reg_known_zero(struct bpf_verifier_env *env, 558 struct bpf_reg_state *regs, u32 regno) 559 { 560 if (WARN_ON(regno >= MAX_BPF_REG)) { 561 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 562 /* Something bad happened, let's kill all regs */ 563 for (regno = 0; regno < MAX_BPF_REG; regno++) 564 __mark_reg_not_init(regs + regno); 565 return; 566 } 567 __mark_reg_known_zero(regs + regno); 568 } 569 570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 571 { 572 return type_is_pkt_pointer(reg->type); 573 } 574 575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 576 { 577 return reg_is_pkt_pointer(reg) || 578 reg->type == PTR_TO_PACKET_END; 579 } 580 581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 583 enum bpf_reg_type which) 584 { 585 /* The register can already have a range from prior markings. 586 * This is fine as long as it hasn't been advanced from its 587 * origin. 588 */ 589 return reg->type == which && 590 reg->id == 0 && 591 reg->off == 0 && 592 tnum_equals_const(reg->var_off, 0); 593 } 594 595 /* Attempts to improve min/max values based on var_off information */ 596 static void __update_reg_bounds(struct bpf_reg_state *reg) 597 { 598 /* min signed is max(sign bit) | min(other bits) */ 599 reg->smin_value = max_t(s64, reg->smin_value, 600 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 601 /* max signed is min(sign bit) | max(other bits) */ 602 reg->smax_value = min_t(s64, reg->smax_value, 603 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 604 reg->umin_value = max(reg->umin_value, reg->var_off.value); 605 reg->umax_value = min(reg->umax_value, 606 reg->var_off.value | reg->var_off.mask); 607 } 608 609 /* Uses signed min/max values to inform unsigned, and vice-versa */ 610 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 611 { 612 /* Learn sign from signed bounds. 613 * If we cannot cross the sign boundary, then signed and unsigned bounds 614 * are the same, so combine. This works even in the negative case, e.g. 615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 616 */ 617 if (reg->smin_value >= 0 || reg->smax_value < 0) { 618 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 619 reg->umin_value); 620 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 621 reg->umax_value); 622 return; 623 } 624 /* Learn sign from unsigned bounds. Signed bounds cross the sign 625 * boundary, so we must be careful. 626 */ 627 if ((s64)reg->umax_value >= 0) { 628 /* Positive. We can't learn anything from the smin, but smax 629 * is positive, hence safe. 630 */ 631 reg->smin_value = reg->umin_value; 632 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 633 reg->umax_value); 634 } else if ((s64)reg->umin_value < 0) { 635 /* Negative. We can't learn anything from the smax, but smin 636 * is negative, hence safe. 637 */ 638 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 639 reg->umin_value); 640 reg->smax_value = reg->umax_value; 641 } 642 } 643 644 /* Attempts to improve var_off based on unsigned min/max information */ 645 static void __reg_bound_offset(struct bpf_reg_state *reg) 646 { 647 reg->var_off = tnum_intersect(reg->var_off, 648 tnum_range(reg->umin_value, 649 reg->umax_value)); 650 } 651 652 /* Reset the min/max bounds of a register */ 653 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 654 { 655 reg->smin_value = S64_MIN; 656 reg->smax_value = S64_MAX; 657 reg->umin_value = 0; 658 reg->umax_value = U64_MAX; 659 } 660 661 /* Mark a register as having a completely unknown (scalar) value. */ 662 static void __mark_reg_unknown(struct bpf_reg_state *reg) 663 { 664 reg->type = SCALAR_VALUE; 665 reg->id = 0; 666 reg->off = 0; 667 reg->var_off = tnum_unknown; 668 reg->frameno = 0; 669 __mark_reg_unbounded(reg); 670 } 671 672 static void mark_reg_unknown(struct bpf_verifier_env *env, 673 struct bpf_reg_state *regs, u32 regno) 674 { 675 if (WARN_ON(regno >= MAX_BPF_REG)) { 676 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 677 /* Something bad happened, let's kill all regs except FP */ 678 for (regno = 0; regno < BPF_REG_FP; regno++) 679 __mark_reg_not_init(regs + regno); 680 return; 681 } 682 __mark_reg_unknown(regs + regno); 683 } 684 685 static void __mark_reg_not_init(struct bpf_reg_state *reg) 686 { 687 __mark_reg_unknown(reg); 688 reg->type = NOT_INIT; 689 } 690 691 static void mark_reg_not_init(struct bpf_verifier_env *env, 692 struct bpf_reg_state *regs, u32 regno) 693 { 694 if (WARN_ON(regno >= MAX_BPF_REG)) { 695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 696 /* Something bad happened, let's kill all regs except FP */ 697 for (regno = 0; regno < BPF_REG_FP; regno++) 698 __mark_reg_not_init(regs + regno); 699 return; 700 } 701 __mark_reg_not_init(regs + regno); 702 } 703 704 static void init_reg_state(struct bpf_verifier_env *env, 705 struct bpf_func_state *state) 706 { 707 struct bpf_reg_state *regs = state->regs; 708 int i; 709 710 for (i = 0; i < MAX_BPF_REG; i++) { 711 mark_reg_not_init(env, regs, i); 712 regs[i].live = REG_LIVE_NONE; 713 } 714 715 /* frame pointer */ 716 regs[BPF_REG_FP].type = PTR_TO_STACK; 717 mark_reg_known_zero(env, regs, BPF_REG_FP); 718 regs[BPF_REG_FP].frameno = state->frameno; 719 720 /* 1st arg to a function */ 721 regs[BPF_REG_1].type = PTR_TO_CTX; 722 mark_reg_known_zero(env, regs, BPF_REG_1); 723 } 724 725 #define BPF_MAIN_FUNC (-1) 726 static void init_func_state(struct bpf_verifier_env *env, 727 struct bpf_func_state *state, 728 int callsite, int frameno, int subprogno) 729 { 730 state->callsite = callsite; 731 state->frameno = frameno; 732 state->subprogno = subprogno; 733 init_reg_state(env, state); 734 } 735 736 enum reg_arg_type { 737 SRC_OP, /* register is used as source operand */ 738 DST_OP, /* register is used as destination operand */ 739 DST_OP_NO_MARK /* same as above, check only, don't mark */ 740 }; 741 742 static int cmp_subprogs(const void *a, const void *b) 743 { 744 return ((struct bpf_subprog_info *)a)->start - 745 ((struct bpf_subprog_info *)b)->start; 746 } 747 748 static int find_subprog(struct bpf_verifier_env *env, int off) 749 { 750 struct bpf_subprog_info *p; 751 752 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 753 sizeof(env->subprog_info[0]), cmp_subprogs); 754 if (!p) 755 return -ENOENT; 756 return p - env->subprog_info; 757 758 } 759 760 static int add_subprog(struct bpf_verifier_env *env, int off) 761 { 762 int insn_cnt = env->prog->len; 763 int ret; 764 765 if (off >= insn_cnt || off < 0) { 766 verbose(env, "call to invalid destination\n"); 767 return -EINVAL; 768 } 769 ret = find_subprog(env, off); 770 if (ret >= 0) 771 return 0; 772 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 773 verbose(env, "too many subprograms\n"); 774 return -E2BIG; 775 } 776 env->subprog_info[env->subprog_cnt++].start = off; 777 sort(env->subprog_info, env->subprog_cnt, 778 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 779 return 0; 780 } 781 782 static int check_subprogs(struct bpf_verifier_env *env) 783 { 784 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 785 struct bpf_subprog_info *subprog = env->subprog_info; 786 struct bpf_insn *insn = env->prog->insnsi; 787 int insn_cnt = env->prog->len; 788 789 /* Add entry function. */ 790 ret = add_subprog(env, 0); 791 if (ret < 0) 792 return ret; 793 794 /* determine subprog starts. The end is one before the next starts */ 795 for (i = 0; i < insn_cnt; i++) { 796 if (insn[i].code != (BPF_JMP | BPF_CALL)) 797 continue; 798 if (insn[i].src_reg != BPF_PSEUDO_CALL) 799 continue; 800 if (!env->allow_ptr_leaks) { 801 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 802 return -EPERM; 803 } 804 if (bpf_prog_is_dev_bound(env->prog->aux)) { 805 verbose(env, "function calls in offloaded programs are not supported yet\n"); 806 return -EINVAL; 807 } 808 ret = add_subprog(env, i + insn[i].imm + 1); 809 if (ret < 0) 810 return ret; 811 } 812 813 /* Add a fake 'exit' subprog which could simplify subprog iteration 814 * logic. 'subprog_cnt' should not be increased. 815 */ 816 subprog[env->subprog_cnt].start = insn_cnt; 817 818 if (env->log.level > 1) 819 for (i = 0; i < env->subprog_cnt; i++) 820 verbose(env, "func#%d @%d\n", i, subprog[i].start); 821 822 /* now check that all jumps are within the same subprog */ 823 subprog_start = subprog[cur_subprog].start; 824 subprog_end = subprog[cur_subprog + 1].start; 825 for (i = 0; i < insn_cnt; i++) { 826 u8 code = insn[i].code; 827 828 if (BPF_CLASS(code) != BPF_JMP) 829 goto next; 830 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 831 goto next; 832 off = i + insn[i].off + 1; 833 if (off < subprog_start || off >= subprog_end) { 834 verbose(env, "jump out of range from insn %d to %d\n", i, off); 835 return -EINVAL; 836 } 837 next: 838 if (i == subprog_end - 1) { 839 /* to avoid fall-through from one subprog into another 840 * the last insn of the subprog should be either exit 841 * or unconditional jump back 842 */ 843 if (code != (BPF_JMP | BPF_EXIT) && 844 code != (BPF_JMP | BPF_JA)) { 845 verbose(env, "last insn is not an exit or jmp\n"); 846 return -EINVAL; 847 } 848 subprog_start = subprog_end; 849 cur_subprog++; 850 if (cur_subprog < env->subprog_cnt) 851 subprog_end = subprog[cur_subprog + 1].start; 852 } 853 } 854 return 0; 855 } 856 857 static 858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 859 const struct bpf_verifier_state *state, 860 struct bpf_verifier_state *parent, 861 u32 regno) 862 { 863 struct bpf_verifier_state *tmp = NULL; 864 865 /* 'parent' could be a state of caller and 866 * 'state' could be a state of callee. In such case 867 * parent->curframe < state->curframe 868 * and it's ok for r1 - r5 registers 869 * 870 * 'parent' could be a callee's state after it bpf_exit-ed. 871 * In such case parent->curframe > state->curframe 872 * and it's ok for r0 only 873 */ 874 if (parent->curframe == state->curframe || 875 (parent->curframe < state->curframe && 876 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 877 (parent->curframe > state->curframe && 878 regno == BPF_REG_0)) 879 return parent; 880 881 if (parent->curframe > state->curframe && 882 regno >= BPF_REG_6) { 883 /* for callee saved regs we have to skip the whole chain 884 * of states that belong to callee and mark as LIVE_READ 885 * the registers before the call 886 */ 887 tmp = parent; 888 while (tmp && tmp->curframe != state->curframe) { 889 tmp = tmp->parent; 890 } 891 if (!tmp) 892 goto bug; 893 parent = tmp; 894 } else { 895 goto bug; 896 } 897 return parent; 898 bug: 899 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 900 verbose(env, "regno %d parent frame %d current frame %d\n", 901 regno, parent->curframe, state->curframe); 902 return NULL; 903 } 904 905 static int mark_reg_read(struct bpf_verifier_env *env, 906 const struct bpf_verifier_state *state, 907 struct bpf_verifier_state *parent, 908 u32 regno) 909 { 910 bool writes = parent == state->parent; /* Observe write marks */ 911 912 if (regno == BPF_REG_FP) 913 /* We don't need to worry about FP liveness because it's read-only */ 914 return 0; 915 916 while (parent) { 917 /* if read wasn't screened by an earlier write ... */ 918 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 919 break; 920 parent = skip_callee(env, state, parent, regno); 921 if (!parent) 922 return -EFAULT; 923 /* ... then we depend on parent's value */ 924 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 925 state = parent; 926 parent = state->parent; 927 writes = true; 928 } 929 return 0; 930 } 931 932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 933 enum reg_arg_type t) 934 { 935 struct bpf_verifier_state *vstate = env->cur_state; 936 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 937 struct bpf_reg_state *regs = state->regs; 938 939 if (regno >= MAX_BPF_REG) { 940 verbose(env, "R%d is invalid\n", regno); 941 return -EINVAL; 942 } 943 944 if (t == SRC_OP) { 945 /* check whether register used as source operand can be read */ 946 if (regs[regno].type == NOT_INIT) { 947 verbose(env, "R%d !read_ok\n", regno); 948 return -EACCES; 949 } 950 return mark_reg_read(env, vstate, vstate->parent, regno); 951 } else { 952 /* check whether register used as dest operand can be written to */ 953 if (regno == BPF_REG_FP) { 954 verbose(env, "frame pointer is read only\n"); 955 return -EACCES; 956 } 957 regs[regno].live |= REG_LIVE_WRITTEN; 958 if (t == DST_OP) 959 mark_reg_unknown(env, regs, regno); 960 } 961 return 0; 962 } 963 964 static bool is_spillable_regtype(enum bpf_reg_type type) 965 { 966 switch (type) { 967 case PTR_TO_MAP_VALUE: 968 case PTR_TO_MAP_VALUE_OR_NULL: 969 case PTR_TO_STACK: 970 case PTR_TO_CTX: 971 case PTR_TO_PACKET: 972 case PTR_TO_PACKET_META: 973 case PTR_TO_PACKET_END: 974 case CONST_PTR_TO_MAP: 975 return true; 976 default: 977 return false; 978 } 979 } 980 981 /* Does this register contain a constant zero? */ 982 static bool register_is_null(struct bpf_reg_state *reg) 983 { 984 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 985 } 986 987 /* check_stack_read/write functions track spill/fill of registers, 988 * stack boundary and alignment are checked in check_mem_access() 989 */ 990 static int check_stack_write(struct bpf_verifier_env *env, 991 struct bpf_func_state *state, /* func where register points to */ 992 int off, int size, int value_regno) 993 { 994 struct bpf_func_state *cur; /* state of the current function */ 995 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 996 enum bpf_reg_type type; 997 998 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 999 true); 1000 if (err) 1001 return err; 1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1003 * so it's aligned access and [off, off + size) are within stack limits 1004 */ 1005 if (!env->allow_ptr_leaks && 1006 state->stack[spi].slot_type[0] == STACK_SPILL && 1007 size != BPF_REG_SIZE) { 1008 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1009 return -EACCES; 1010 } 1011 1012 cur = env->cur_state->frame[env->cur_state->curframe]; 1013 if (value_regno >= 0 && 1014 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1015 1016 /* register containing pointer is being spilled into stack */ 1017 if (size != BPF_REG_SIZE) { 1018 verbose(env, "invalid size of register spill\n"); 1019 return -EACCES; 1020 } 1021 1022 if (state != cur && type == PTR_TO_STACK) { 1023 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1024 return -EINVAL; 1025 } 1026 1027 /* save register state */ 1028 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1030 1031 for (i = 0; i < BPF_REG_SIZE; i++) 1032 state->stack[spi].slot_type[i] = STACK_SPILL; 1033 } else { 1034 u8 type = STACK_MISC; 1035 1036 /* regular write of data into stack */ 1037 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1038 1039 /* only mark the slot as written if all 8 bytes were written 1040 * otherwise read propagation may incorrectly stop too soon 1041 * when stack slots are partially written. 1042 * This heuristic means that read propagation will be 1043 * conservative, since it will add reg_live_read marks 1044 * to stack slots all the way to first state when programs 1045 * writes+reads less than 8 bytes 1046 */ 1047 if (size == BPF_REG_SIZE) 1048 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1049 1050 /* when we zero initialize stack slots mark them as such */ 1051 if (value_regno >= 0 && 1052 register_is_null(&cur->regs[value_regno])) 1053 type = STACK_ZERO; 1054 1055 for (i = 0; i < size; i++) 1056 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1057 type; 1058 } 1059 return 0; 1060 } 1061 1062 /* registers of every function are unique and mark_reg_read() propagates 1063 * the liveness in the following cases: 1064 * - from callee into caller for R1 - R5 that were used as arguments 1065 * - from caller into callee for R0 that used as result of the call 1066 * - from caller to the same caller skipping states of the callee for R6 - R9, 1067 * since R6 - R9 are callee saved by implicit function prologue and 1068 * caller's R6 != callee's R6, so when we propagate liveness up to 1069 * parent states we need to skip callee states for R6 - R9. 1070 * 1071 * stack slot marking is different, since stacks of caller and callee are 1072 * accessible in both (since caller can pass a pointer to caller's stack to 1073 * callee which can pass it to another function), hence mark_stack_slot_read() 1074 * has to propagate the stack liveness to all parent states at given frame number. 1075 * Consider code: 1076 * f1() { 1077 * ptr = fp - 8; 1078 * *ptr = ctx; 1079 * call f2 { 1080 * .. = *ptr; 1081 * } 1082 * .. = *ptr; 1083 * } 1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1085 * to mark liveness at the f1's frame and not f2's frame. 1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1087 * to propagate liveness to f2 states at f1's frame level and further into 1088 * f1 states at f1's frame level until write into that stack slot 1089 */ 1090 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1091 const struct bpf_verifier_state *state, 1092 struct bpf_verifier_state *parent, 1093 int slot, int frameno) 1094 { 1095 bool writes = parent == state->parent; /* Observe write marks */ 1096 1097 while (parent) { 1098 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1099 /* since LIVE_WRITTEN mark is only done for full 8-byte 1100 * write the read marks are conservative and parent 1101 * state may not even have the stack allocated. In such case 1102 * end the propagation, since the loop reached beginning 1103 * of the function 1104 */ 1105 break; 1106 /* if read wasn't screened by an earlier write ... */ 1107 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1108 break; 1109 /* ... then we depend on parent's value */ 1110 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1111 state = parent; 1112 parent = state->parent; 1113 writes = true; 1114 } 1115 } 1116 1117 static int check_stack_read(struct bpf_verifier_env *env, 1118 struct bpf_func_state *reg_state /* func where register points to */, 1119 int off, int size, int value_regno) 1120 { 1121 struct bpf_verifier_state *vstate = env->cur_state; 1122 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1123 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1124 u8 *stype; 1125 1126 if (reg_state->allocated_stack <= slot) { 1127 verbose(env, "invalid read from stack off %d+0 size %d\n", 1128 off, size); 1129 return -EACCES; 1130 } 1131 stype = reg_state->stack[spi].slot_type; 1132 1133 if (stype[0] == STACK_SPILL) { 1134 if (size != BPF_REG_SIZE) { 1135 verbose(env, "invalid size of register spill\n"); 1136 return -EACCES; 1137 } 1138 for (i = 1; i < BPF_REG_SIZE; i++) { 1139 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1140 verbose(env, "corrupted spill memory\n"); 1141 return -EACCES; 1142 } 1143 } 1144 1145 if (value_regno >= 0) { 1146 /* restore register state from stack */ 1147 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1148 /* mark reg as written since spilled pointer state likely 1149 * has its liveness marks cleared by is_state_visited() 1150 * which resets stack/reg liveness for state transitions 1151 */ 1152 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1153 } 1154 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1155 reg_state->frameno); 1156 return 0; 1157 } else { 1158 int zeros = 0; 1159 1160 for (i = 0; i < size; i++) { 1161 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1162 continue; 1163 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1164 zeros++; 1165 continue; 1166 } 1167 verbose(env, "invalid read from stack off %d+%d size %d\n", 1168 off, i, size); 1169 return -EACCES; 1170 } 1171 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1172 reg_state->frameno); 1173 if (value_regno >= 0) { 1174 if (zeros == size) { 1175 /* any size read into register is zero extended, 1176 * so the whole register == const_zero 1177 */ 1178 __mark_reg_const_zero(&state->regs[value_regno]); 1179 } else { 1180 /* have read misc data from the stack */ 1181 mark_reg_unknown(env, state->regs, value_regno); 1182 } 1183 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1184 } 1185 return 0; 1186 } 1187 } 1188 1189 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1191 int size, bool zero_size_allowed) 1192 { 1193 struct bpf_reg_state *regs = cur_regs(env); 1194 struct bpf_map *map = regs[regno].map_ptr; 1195 1196 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1197 off + size > map->value_size) { 1198 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1199 map->value_size, off, size); 1200 return -EACCES; 1201 } 1202 return 0; 1203 } 1204 1205 /* check read/write into a map element with possible variable offset */ 1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1207 int off, int size, bool zero_size_allowed) 1208 { 1209 struct bpf_verifier_state *vstate = env->cur_state; 1210 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1211 struct bpf_reg_state *reg = &state->regs[regno]; 1212 int err; 1213 1214 /* We may have adjusted the register to this map value, so we 1215 * need to try adding each of min_value and max_value to off 1216 * to make sure our theoretical access will be safe. 1217 */ 1218 if (env->log.level) 1219 print_verifier_state(env, state); 1220 /* The minimum value is only important with signed 1221 * comparisons where we can't assume the floor of a 1222 * value is 0. If we are using signed variables for our 1223 * index'es we need to make sure that whatever we use 1224 * will have a set floor within our range. 1225 */ 1226 if (reg->smin_value < 0) { 1227 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1228 regno); 1229 return -EACCES; 1230 } 1231 err = __check_map_access(env, regno, reg->smin_value + off, size, 1232 zero_size_allowed); 1233 if (err) { 1234 verbose(env, "R%d min value is outside of the array range\n", 1235 regno); 1236 return err; 1237 } 1238 1239 /* If we haven't set a max value then we need to bail since we can't be 1240 * sure we won't do bad things. 1241 * If reg->umax_value + off could overflow, treat that as unbounded too. 1242 */ 1243 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1244 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1245 regno); 1246 return -EACCES; 1247 } 1248 err = __check_map_access(env, regno, reg->umax_value + off, size, 1249 zero_size_allowed); 1250 if (err) 1251 verbose(env, "R%d max value is outside of the array range\n", 1252 regno); 1253 return err; 1254 } 1255 1256 #define MAX_PACKET_OFF 0xffff 1257 1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1259 const struct bpf_call_arg_meta *meta, 1260 enum bpf_access_type t) 1261 { 1262 switch (env->prog->type) { 1263 case BPF_PROG_TYPE_LWT_IN: 1264 case BPF_PROG_TYPE_LWT_OUT: 1265 /* dst_input() and dst_output() can't write for now */ 1266 if (t == BPF_WRITE) 1267 return false; 1268 /* fallthrough */ 1269 case BPF_PROG_TYPE_SCHED_CLS: 1270 case BPF_PROG_TYPE_SCHED_ACT: 1271 case BPF_PROG_TYPE_XDP: 1272 case BPF_PROG_TYPE_LWT_XMIT: 1273 case BPF_PROG_TYPE_SK_SKB: 1274 case BPF_PROG_TYPE_SK_MSG: 1275 if (meta) 1276 return meta->pkt_access; 1277 1278 env->seen_direct_write = true; 1279 return true; 1280 default: 1281 return false; 1282 } 1283 } 1284 1285 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1286 int off, int size, bool zero_size_allowed) 1287 { 1288 struct bpf_reg_state *regs = cur_regs(env); 1289 struct bpf_reg_state *reg = ®s[regno]; 1290 1291 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1292 (u64)off + size > reg->range) { 1293 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1294 off, size, regno, reg->id, reg->off, reg->range); 1295 return -EACCES; 1296 } 1297 return 0; 1298 } 1299 1300 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1301 int size, bool zero_size_allowed) 1302 { 1303 struct bpf_reg_state *regs = cur_regs(env); 1304 struct bpf_reg_state *reg = ®s[regno]; 1305 int err; 1306 1307 /* We may have added a variable offset to the packet pointer; but any 1308 * reg->range we have comes after that. We are only checking the fixed 1309 * offset. 1310 */ 1311 1312 /* We don't allow negative numbers, because we aren't tracking enough 1313 * detail to prove they're safe. 1314 */ 1315 if (reg->smin_value < 0) { 1316 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1317 regno); 1318 return -EACCES; 1319 } 1320 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1321 if (err) { 1322 verbose(env, "R%d offset is outside of the packet\n", regno); 1323 return err; 1324 } 1325 return err; 1326 } 1327 1328 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1329 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1330 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1331 { 1332 struct bpf_insn_access_aux info = { 1333 .reg_type = *reg_type, 1334 }; 1335 1336 if (env->ops->is_valid_access && 1337 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1338 /* A non zero info.ctx_field_size indicates that this field is a 1339 * candidate for later verifier transformation to load the whole 1340 * field and then apply a mask when accessed with a narrower 1341 * access than actual ctx access size. A zero info.ctx_field_size 1342 * will only allow for whole field access and rejects any other 1343 * type of narrower access. 1344 */ 1345 *reg_type = info.reg_type; 1346 1347 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1348 /* remember the offset of last byte accessed in ctx */ 1349 if (env->prog->aux->max_ctx_offset < off + size) 1350 env->prog->aux->max_ctx_offset = off + size; 1351 return 0; 1352 } 1353 1354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1355 return -EACCES; 1356 } 1357 1358 static bool __is_pointer_value(bool allow_ptr_leaks, 1359 const struct bpf_reg_state *reg) 1360 { 1361 if (allow_ptr_leaks) 1362 return false; 1363 1364 return reg->type != SCALAR_VALUE; 1365 } 1366 1367 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1368 { 1369 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1370 } 1371 1372 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1373 { 1374 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1375 1376 return reg->type == PTR_TO_CTX; 1377 } 1378 1379 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1380 { 1381 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1382 1383 return type_is_pkt_pointer(reg->type); 1384 } 1385 1386 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1387 const struct bpf_reg_state *reg, 1388 int off, int size, bool strict) 1389 { 1390 struct tnum reg_off; 1391 int ip_align; 1392 1393 /* Byte size accesses are always allowed. */ 1394 if (!strict || size == 1) 1395 return 0; 1396 1397 /* For platforms that do not have a Kconfig enabling 1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1399 * NET_IP_ALIGN is universally set to '2'. And on platforms 1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1401 * to this code only in strict mode where we want to emulate 1402 * the NET_IP_ALIGN==2 checking. Therefore use an 1403 * unconditional IP align value of '2'. 1404 */ 1405 ip_align = 2; 1406 1407 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1408 if (!tnum_is_aligned(reg_off, size)) { 1409 char tn_buf[48]; 1410 1411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1412 verbose(env, 1413 "misaligned packet access off %d+%s+%d+%d size %d\n", 1414 ip_align, tn_buf, reg->off, off, size); 1415 return -EACCES; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1422 const struct bpf_reg_state *reg, 1423 const char *pointer_desc, 1424 int off, int size, bool strict) 1425 { 1426 struct tnum reg_off; 1427 1428 /* Byte size accesses are always allowed. */ 1429 if (!strict || size == 1) 1430 return 0; 1431 1432 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1433 if (!tnum_is_aligned(reg_off, size)) { 1434 char tn_buf[48]; 1435 1436 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1437 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1438 pointer_desc, tn_buf, reg->off, off, size); 1439 return -EACCES; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int check_ptr_alignment(struct bpf_verifier_env *env, 1446 const struct bpf_reg_state *reg, int off, 1447 int size, bool strict_alignment_once) 1448 { 1449 bool strict = env->strict_alignment || strict_alignment_once; 1450 const char *pointer_desc = ""; 1451 1452 switch (reg->type) { 1453 case PTR_TO_PACKET: 1454 case PTR_TO_PACKET_META: 1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1456 * right in front, treat it the very same way. 1457 */ 1458 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1459 case PTR_TO_MAP_VALUE: 1460 pointer_desc = "value "; 1461 break; 1462 case PTR_TO_CTX: 1463 pointer_desc = "context "; 1464 break; 1465 case PTR_TO_STACK: 1466 pointer_desc = "stack "; 1467 /* The stack spill tracking logic in check_stack_write() 1468 * and check_stack_read() relies on stack accesses being 1469 * aligned. 1470 */ 1471 strict = true; 1472 break; 1473 default: 1474 break; 1475 } 1476 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1477 strict); 1478 } 1479 1480 static int update_stack_depth(struct bpf_verifier_env *env, 1481 const struct bpf_func_state *func, 1482 int off) 1483 { 1484 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1485 1486 if (stack >= -off) 1487 return 0; 1488 1489 /* update known max for given subprogram */ 1490 env->subprog_info[func->subprogno].stack_depth = -off; 1491 return 0; 1492 } 1493 1494 /* starting from main bpf function walk all instructions of the function 1495 * and recursively walk all callees that given function can call. 1496 * Ignore jump and exit insns. 1497 * Since recursion is prevented by check_cfg() this algorithm 1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1499 */ 1500 static int check_max_stack_depth(struct bpf_verifier_env *env) 1501 { 1502 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1503 struct bpf_subprog_info *subprog = env->subprog_info; 1504 struct bpf_insn *insn = env->prog->insnsi; 1505 int ret_insn[MAX_CALL_FRAMES]; 1506 int ret_prog[MAX_CALL_FRAMES]; 1507 1508 process_func: 1509 /* round up to 32-bytes, since this is granularity 1510 * of interpreter stack size 1511 */ 1512 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1513 if (depth > MAX_BPF_STACK) { 1514 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1515 frame + 1, depth); 1516 return -EACCES; 1517 } 1518 continue_func: 1519 subprog_end = subprog[idx + 1].start; 1520 for (; i < subprog_end; i++) { 1521 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1522 continue; 1523 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1524 continue; 1525 /* remember insn and function to return to */ 1526 ret_insn[frame] = i + 1; 1527 ret_prog[frame] = idx; 1528 1529 /* find the callee */ 1530 i = i + insn[i].imm + 1; 1531 idx = find_subprog(env, i); 1532 if (idx < 0) { 1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1534 i); 1535 return -EFAULT; 1536 } 1537 frame++; 1538 if (frame >= MAX_CALL_FRAMES) { 1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1540 return -EFAULT; 1541 } 1542 goto process_func; 1543 } 1544 /* end of for() loop means the last insn of the 'subprog' 1545 * was reached. Doesn't matter whether it was JA or EXIT 1546 */ 1547 if (frame == 0) 1548 return 0; 1549 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1550 frame--; 1551 i = ret_insn[frame]; 1552 idx = ret_prog[frame]; 1553 goto continue_func; 1554 } 1555 1556 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1557 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1558 const struct bpf_insn *insn, int idx) 1559 { 1560 int start = idx + insn->imm + 1, subprog; 1561 1562 subprog = find_subprog(env, start); 1563 if (subprog < 0) { 1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1565 start); 1566 return -EFAULT; 1567 } 1568 return env->subprog_info[subprog].stack_depth; 1569 } 1570 #endif 1571 1572 /* truncate register to smaller size (in bytes) 1573 * must be called with size < BPF_REG_SIZE 1574 */ 1575 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1576 { 1577 u64 mask; 1578 1579 /* clear high bits in bit representation */ 1580 reg->var_off = tnum_cast(reg->var_off, size); 1581 1582 /* fix arithmetic bounds */ 1583 mask = ((u64)1 << (size * 8)) - 1; 1584 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1585 reg->umin_value &= mask; 1586 reg->umax_value &= mask; 1587 } else { 1588 reg->umin_value = 0; 1589 reg->umax_value = mask; 1590 } 1591 reg->smin_value = reg->umin_value; 1592 reg->smax_value = reg->umax_value; 1593 } 1594 1595 /* check whether memory at (regno + off) is accessible for t = (read | write) 1596 * if t==write, value_regno is a register which value is stored into memory 1597 * if t==read, value_regno is a register which will receive the value from memory 1598 * if t==write && value_regno==-1, some unknown value is stored into memory 1599 * if t==read && value_regno==-1, don't care what we read from memory 1600 */ 1601 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1602 int off, int bpf_size, enum bpf_access_type t, 1603 int value_regno, bool strict_alignment_once) 1604 { 1605 struct bpf_reg_state *regs = cur_regs(env); 1606 struct bpf_reg_state *reg = regs + regno; 1607 struct bpf_func_state *state; 1608 int size, err = 0; 1609 1610 size = bpf_size_to_bytes(bpf_size); 1611 if (size < 0) 1612 return size; 1613 1614 /* alignment checks will add in reg->off themselves */ 1615 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1616 if (err) 1617 return err; 1618 1619 /* for access checks, reg->off is just part of off */ 1620 off += reg->off; 1621 1622 if (reg->type == PTR_TO_MAP_VALUE) { 1623 if (t == BPF_WRITE && value_regno >= 0 && 1624 is_pointer_value(env, value_regno)) { 1625 verbose(env, "R%d leaks addr into map\n", value_regno); 1626 return -EACCES; 1627 } 1628 1629 err = check_map_access(env, regno, off, size, false); 1630 if (!err && t == BPF_READ && value_regno >= 0) 1631 mark_reg_unknown(env, regs, value_regno); 1632 1633 } else if (reg->type == PTR_TO_CTX) { 1634 enum bpf_reg_type reg_type = SCALAR_VALUE; 1635 1636 if (t == BPF_WRITE && value_regno >= 0 && 1637 is_pointer_value(env, value_regno)) { 1638 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1639 return -EACCES; 1640 } 1641 /* ctx accesses must be at a fixed offset, so that we can 1642 * determine what type of data were returned. 1643 */ 1644 if (reg->off) { 1645 verbose(env, 1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1647 regno, reg->off, off - reg->off); 1648 return -EACCES; 1649 } 1650 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1651 char tn_buf[48]; 1652 1653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1654 verbose(env, 1655 "variable ctx access var_off=%s off=%d size=%d", 1656 tn_buf, off, size); 1657 return -EACCES; 1658 } 1659 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1660 if (!err && t == BPF_READ && value_regno >= 0) { 1661 /* ctx access returns either a scalar, or a 1662 * PTR_TO_PACKET[_META,_END]. In the latter 1663 * case, we know the offset is zero. 1664 */ 1665 if (reg_type == SCALAR_VALUE) 1666 mark_reg_unknown(env, regs, value_regno); 1667 else 1668 mark_reg_known_zero(env, regs, 1669 value_regno); 1670 regs[value_regno].id = 0; 1671 regs[value_regno].off = 0; 1672 regs[value_regno].range = 0; 1673 regs[value_regno].type = reg_type; 1674 } 1675 1676 } else if (reg->type == PTR_TO_STACK) { 1677 /* stack accesses must be at a fixed offset, so that we can 1678 * determine what type of data were returned. 1679 * See check_stack_read(). 1680 */ 1681 if (!tnum_is_const(reg->var_off)) { 1682 char tn_buf[48]; 1683 1684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1685 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1686 tn_buf, off, size); 1687 return -EACCES; 1688 } 1689 off += reg->var_off.value; 1690 if (off >= 0 || off < -MAX_BPF_STACK) { 1691 verbose(env, "invalid stack off=%d size=%d\n", off, 1692 size); 1693 return -EACCES; 1694 } 1695 1696 state = func(env, reg); 1697 err = update_stack_depth(env, state, off); 1698 if (err) 1699 return err; 1700 1701 if (t == BPF_WRITE) 1702 err = check_stack_write(env, state, off, size, 1703 value_regno); 1704 else 1705 err = check_stack_read(env, state, off, size, 1706 value_regno); 1707 } else if (reg_is_pkt_pointer(reg)) { 1708 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1709 verbose(env, "cannot write into packet\n"); 1710 return -EACCES; 1711 } 1712 if (t == BPF_WRITE && value_regno >= 0 && 1713 is_pointer_value(env, value_regno)) { 1714 verbose(env, "R%d leaks addr into packet\n", 1715 value_regno); 1716 return -EACCES; 1717 } 1718 err = check_packet_access(env, regno, off, size, false); 1719 if (!err && t == BPF_READ && value_regno >= 0) 1720 mark_reg_unknown(env, regs, value_regno); 1721 } else { 1722 verbose(env, "R%d invalid mem access '%s'\n", regno, 1723 reg_type_str[reg->type]); 1724 return -EACCES; 1725 } 1726 1727 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1728 regs[value_regno].type == SCALAR_VALUE) { 1729 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1730 coerce_reg_to_size(®s[value_regno], size); 1731 } 1732 return err; 1733 } 1734 1735 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1736 { 1737 int err; 1738 1739 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1740 insn->imm != 0) { 1741 verbose(env, "BPF_XADD uses reserved fields\n"); 1742 return -EINVAL; 1743 } 1744 1745 /* check src1 operand */ 1746 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1747 if (err) 1748 return err; 1749 1750 /* check src2 operand */ 1751 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1752 if (err) 1753 return err; 1754 1755 if (is_pointer_value(env, insn->src_reg)) { 1756 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1757 return -EACCES; 1758 } 1759 1760 if (is_ctx_reg(env, insn->dst_reg) || 1761 is_pkt_reg(env, insn->dst_reg)) { 1762 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1763 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1764 "context" : "packet"); 1765 return -EACCES; 1766 } 1767 1768 /* check whether atomic_add can read the memory */ 1769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1770 BPF_SIZE(insn->code), BPF_READ, -1, true); 1771 if (err) 1772 return err; 1773 1774 /* check whether atomic_add can write into the same memory */ 1775 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1776 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1777 } 1778 1779 /* when register 'regno' is passed into function that will read 'access_size' 1780 * bytes from that pointer, make sure that it's within stack boundary 1781 * and all elements of stack are initialized. 1782 * Unlike most pointer bounds-checking functions, this one doesn't take an 1783 * 'off' argument, so it has to add in reg->off itself. 1784 */ 1785 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1786 int access_size, bool zero_size_allowed, 1787 struct bpf_call_arg_meta *meta) 1788 { 1789 struct bpf_reg_state *reg = cur_regs(env) + regno; 1790 struct bpf_func_state *state = func(env, reg); 1791 int off, i, slot, spi; 1792 1793 if (reg->type != PTR_TO_STACK) { 1794 /* Allow zero-byte read from NULL, regardless of pointer type */ 1795 if (zero_size_allowed && access_size == 0 && 1796 register_is_null(reg)) 1797 return 0; 1798 1799 verbose(env, "R%d type=%s expected=%s\n", regno, 1800 reg_type_str[reg->type], 1801 reg_type_str[PTR_TO_STACK]); 1802 return -EACCES; 1803 } 1804 1805 /* Only allow fixed-offset stack reads */ 1806 if (!tnum_is_const(reg->var_off)) { 1807 char tn_buf[48]; 1808 1809 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1810 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1811 regno, tn_buf); 1812 return -EACCES; 1813 } 1814 off = reg->off + reg->var_off.value; 1815 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1816 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1817 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1818 regno, off, access_size); 1819 return -EACCES; 1820 } 1821 1822 if (meta && meta->raw_mode) { 1823 meta->access_size = access_size; 1824 meta->regno = regno; 1825 return 0; 1826 } 1827 1828 for (i = 0; i < access_size; i++) { 1829 u8 *stype; 1830 1831 slot = -(off + i) - 1; 1832 spi = slot / BPF_REG_SIZE; 1833 if (state->allocated_stack <= slot) 1834 goto err; 1835 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1836 if (*stype == STACK_MISC) 1837 goto mark; 1838 if (*stype == STACK_ZERO) { 1839 /* helper can write anything into the stack */ 1840 *stype = STACK_MISC; 1841 goto mark; 1842 } 1843 err: 1844 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1845 off, i, access_size); 1846 return -EACCES; 1847 mark: 1848 /* reading any byte out of 8-byte 'spill_slot' will cause 1849 * the whole slot to be marked as 'read' 1850 */ 1851 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1852 spi, state->frameno); 1853 } 1854 return update_stack_depth(env, state, off); 1855 } 1856 1857 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1858 int access_size, bool zero_size_allowed, 1859 struct bpf_call_arg_meta *meta) 1860 { 1861 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1862 1863 switch (reg->type) { 1864 case PTR_TO_PACKET: 1865 case PTR_TO_PACKET_META: 1866 return check_packet_access(env, regno, reg->off, access_size, 1867 zero_size_allowed); 1868 case PTR_TO_MAP_VALUE: 1869 return check_map_access(env, regno, reg->off, access_size, 1870 zero_size_allowed); 1871 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1872 return check_stack_boundary(env, regno, access_size, 1873 zero_size_allowed, meta); 1874 } 1875 } 1876 1877 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1878 { 1879 return type == ARG_PTR_TO_MEM || 1880 type == ARG_PTR_TO_MEM_OR_NULL || 1881 type == ARG_PTR_TO_UNINIT_MEM; 1882 } 1883 1884 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1885 { 1886 return type == ARG_CONST_SIZE || 1887 type == ARG_CONST_SIZE_OR_ZERO; 1888 } 1889 1890 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1891 enum bpf_arg_type arg_type, 1892 struct bpf_call_arg_meta *meta) 1893 { 1894 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1895 enum bpf_reg_type expected_type, type = reg->type; 1896 int err = 0; 1897 1898 if (arg_type == ARG_DONTCARE) 1899 return 0; 1900 1901 err = check_reg_arg(env, regno, SRC_OP); 1902 if (err) 1903 return err; 1904 1905 if (arg_type == ARG_ANYTHING) { 1906 if (is_pointer_value(env, regno)) { 1907 verbose(env, "R%d leaks addr into helper function\n", 1908 regno); 1909 return -EACCES; 1910 } 1911 return 0; 1912 } 1913 1914 if (type_is_pkt_pointer(type) && 1915 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1916 verbose(env, "helper access to the packet is not allowed\n"); 1917 return -EACCES; 1918 } 1919 1920 if (arg_type == ARG_PTR_TO_MAP_KEY || 1921 arg_type == ARG_PTR_TO_MAP_VALUE) { 1922 expected_type = PTR_TO_STACK; 1923 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1924 type != expected_type) 1925 goto err_type; 1926 } else if (arg_type == ARG_CONST_SIZE || 1927 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1928 expected_type = SCALAR_VALUE; 1929 if (type != expected_type) 1930 goto err_type; 1931 } else if (arg_type == ARG_CONST_MAP_PTR) { 1932 expected_type = CONST_PTR_TO_MAP; 1933 if (type != expected_type) 1934 goto err_type; 1935 } else if (arg_type == ARG_PTR_TO_CTX) { 1936 expected_type = PTR_TO_CTX; 1937 if (type != expected_type) 1938 goto err_type; 1939 } else if (arg_type_is_mem_ptr(arg_type)) { 1940 expected_type = PTR_TO_STACK; 1941 /* One exception here. In case function allows for NULL to be 1942 * passed in as argument, it's a SCALAR_VALUE type. Final test 1943 * happens during stack boundary checking. 1944 */ 1945 if (register_is_null(reg) && 1946 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1947 /* final test in check_stack_boundary() */; 1948 else if (!type_is_pkt_pointer(type) && 1949 type != PTR_TO_MAP_VALUE && 1950 type != expected_type) 1951 goto err_type; 1952 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1953 } else { 1954 verbose(env, "unsupported arg_type %d\n", arg_type); 1955 return -EFAULT; 1956 } 1957 1958 if (arg_type == ARG_CONST_MAP_PTR) { 1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1960 meta->map_ptr = reg->map_ptr; 1961 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1962 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1963 * check that [key, key + map->key_size) are within 1964 * stack limits and initialized 1965 */ 1966 if (!meta->map_ptr) { 1967 /* in function declaration map_ptr must come before 1968 * map_key, so that it's verified and known before 1969 * we have to check map_key here. Otherwise it means 1970 * that kernel subsystem misconfigured verifier 1971 */ 1972 verbose(env, "invalid map_ptr to access map->key\n"); 1973 return -EACCES; 1974 } 1975 err = check_helper_mem_access(env, regno, 1976 meta->map_ptr->key_size, false, 1977 NULL); 1978 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1979 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1980 * check [value, value + map->value_size) validity 1981 */ 1982 if (!meta->map_ptr) { 1983 /* kernel subsystem misconfigured verifier */ 1984 verbose(env, "invalid map_ptr to access map->value\n"); 1985 return -EACCES; 1986 } 1987 err = check_helper_mem_access(env, regno, 1988 meta->map_ptr->value_size, false, 1989 NULL); 1990 } else if (arg_type_is_mem_size(arg_type)) { 1991 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1992 1993 /* remember the mem_size which may be used later 1994 * to refine return values. 1995 */ 1996 meta->msize_smax_value = reg->smax_value; 1997 meta->msize_umax_value = reg->umax_value; 1998 1999 /* The register is SCALAR_VALUE; the access check 2000 * happens using its boundaries. 2001 */ 2002 if (!tnum_is_const(reg->var_off)) 2003 /* For unprivileged variable accesses, disable raw 2004 * mode so that the program is required to 2005 * initialize all the memory that the helper could 2006 * just partially fill up. 2007 */ 2008 meta = NULL; 2009 2010 if (reg->smin_value < 0) { 2011 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2012 regno); 2013 return -EACCES; 2014 } 2015 2016 if (reg->umin_value == 0) { 2017 err = check_helper_mem_access(env, regno - 1, 0, 2018 zero_size_allowed, 2019 meta); 2020 if (err) 2021 return err; 2022 } 2023 2024 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2025 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2026 regno); 2027 return -EACCES; 2028 } 2029 err = check_helper_mem_access(env, regno - 1, 2030 reg->umax_value, 2031 zero_size_allowed, meta); 2032 } 2033 2034 return err; 2035 err_type: 2036 verbose(env, "R%d type=%s expected=%s\n", regno, 2037 reg_type_str[type], reg_type_str[expected_type]); 2038 return -EACCES; 2039 } 2040 2041 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2042 struct bpf_map *map, int func_id) 2043 { 2044 if (!map) 2045 return 0; 2046 2047 /* We need a two way check, first is from map perspective ... */ 2048 switch (map->map_type) { 2049 case BPF_MAP_TYPE_PROG_ARRAY: 2050 if (func_id != BPF_FUNC_tail_call) 2051 goto error; 2052 break; 2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2054 if (func_id != BPF_FUNC_perf_event_read && 2055 func_id != BPF_FUNC_perf_event_output && 2056 func_id != BPF_FUNC_perf_event_read_value) 2057 goto error; 2058 break; 2059 case BPF_MAP_TYPE_STACK_TRACE: 2060 if (func_id != BPF_FUNC_get_stackid) 2061 goto error; 2062 break; 2063 case BPF_MAP_TYPE_CGROUP_ARRAY: 2064 if (func_id != BPF_FUNC_skb_under_cgroup && 2065 func_id != BPF_FUNC_current_task_under_cgroup) 2066 goto error; 2067 break; 2068 /* devmap returns a pointer to a live net_device ifindex that we cannot 2069 * allow to be modified from bpf side. So do not allow lookup elements 2070 * for now. 2071 */ 2072 case BPF_MAP_TYPE_DEVMAP: 2073 if (func_id != BPF_FUNC_redirect_map) 2074 goto error; 2075 break; 2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2077 * appear. 2078 */ 2079 case BPF_MAP_TYPE_CPUMAP: 2080 case BPF_MAP_TYPE_XSKMAP: 2081 if (func_id != BPF_FUNC_redirect_map) 2082 goto error; 2083 break; 2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2085 case BPF_MAP_TYPE_HASH_OF_MAPS: 2086 if (func_id != BPF_FUNC_map_lookup_elem) 2087 goto error; 2088 break; 2089 case BPF_MAP_TYPE_SOCKMAP: 2090 if (func_id != BPF_FUNC_sk_redirect_map && 2091 func_id != BPF_FUNC_sock_map_update && 2092 func_id != BPF_FUNC_map_delete_elem && 2093 func_id != BPF_FUNC_msg_redirect_map) 2094 goto error; 2095 break; 2096 default: 2097 break; 2098 } 2099 2100 /* ... and second from the function itself. */ 2101 switch (func_id) { 2102 case BPF_FUNC_tail_call: 2103 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2104 goto error; 2105 if (env->subprog_cnt > 1) { 2106 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2107 return -EINVAL; 2108 } 2109 break; 2110 case BPF_FUNC_perf_event_read: 2111 case BPF_FUNC_perf_event_output: 2112 case BPF_FUNC_perf_event_read_value: 2113 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2114 goto error; 2115 break; 2116 case BPF_FUNC_get_stackid: 2117 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2118 goto error; 2119 break; 2120 case BPF_FUNC_current_task_under_cgroup: 2121 case BPF_FUNC_skb_under_cgroup: 2122 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2123 goto error; 2124 break; 2125 case BPF_FUNC_redirect_map: 2126 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2127 map->map_type != BPF_MAP_TYPE_CPUMAP && 2128 map->map_type != BPF_MAP_TYPE_XSKMAP) 2129 goto error; 2130 break; 2131 case BPF_FUNC_sk_redirect_map: 2132 case BPF_FUNC_msg_redirect_map: 2133 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2134 goto error; 2135 break; 2136 case BPF_FUNC_sock_map_update: 2137 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2138 goto error; 2139 break; 2140 default: 2141 break; 2142 } 2143 2144 return 0; 2145 error: 2146 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2147 map->map_type, func_id_name(func_id), func_id); 2148 return -EINVAL; 2149 } 2150 2151 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2152 { 2153 int count = 0; 2154 2155 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2156 count++; 2157 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2158 count++; 2159 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2160 count++; 2161 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2162 count++; 2163 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2164 count++; 2165 2166 /* We only support one arg being in raw mode at the moment, 2167 * which is sufficient for the helper functions we have 2168 * right now. 2169 */ 2170 return count <= 1; 2171 } 2172 2173 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2174 enum bpf_arg_type arg_next) 2175 { 2176 return (arg_type_is_mem_ptr(arg_curr) && 2177 !arg_type_is_mem_size(arg_next)) || 2178 (!arg_type_is_mem_ptr(arg_curr) && 2179 arg_type_is_mem_size(arg_next)); 2180 } 2181 2182 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2183 { 2184 /* bpf_xxx(..., buf, len) call will access 'len' 2185 * bytes from memory 'buf'. Both arg types need 2186 * to be paired, so make sure there's no buggy 2187 * helper function specification. 2188 */ 2189 if (arg_type_is_mem_size(fn->arg1_type) || 2190 arg_type_is_mem_ptr(fn->arg5_type) || 2191 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2192 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2193 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2194 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2195 return false; 2196 2197 return true; 2198 } 2199 2200 static int check_func_proto(const struct bpf_func_proto *fn) 2201 { 2202 return check_raw_mode_ok(fn) && 2203 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2204 } 2205 2206 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2207 * are now invalid, so turn them into unknown SCALAR_VALUE. 2208 */ 2209 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2210 struct bpf_func_state *state) 2211 { 2212 struct bpf_reg_state *regs = state->regs, *reg; 2213 int i; 2214 2215 for (i = 0; i < MAX_BPF_REG; i++) 2216 if (reg_is_pkt_pointer_any(®s[i])) 2217 mark_reg_unknown(env, regs, i); 2218 2219 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2220 if (state->stack[i].slot_type[0] != STACK_SPILL) 2221 continue; 2222 reg = &state->stack[i].spilled_ptr; 2223 if (reg_is_pkt_pointer_any(reg)) 2224 __mark_reg_unknown(reg); 2225 } 2226 } 2227 2228 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2229 { 2230 struct bpf_verifier_state *vstate = env->cur_state; 2231 int i; 2232 2233 for (i = 0; i <= vstate->curframe; i++) 2234 __clear_all_pkt_pointers(env, vstate->frame[i]); 2235 } 2236 2237 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2238 int *insn_idx) 2239 { 2240 struct bpf_verifier_state *state = env->cur_state; 2241 struct bpf_func_state *caller, *callee; 2242 int i, subprog, target_insn; 2243 2244 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2245 verbose(env, "the call stack of %d frames is too deep\n", 2246 state->curframe + 2); 2247 return -E2BIG; 2248 } 2249 2250 target_insn = *insn_idx + insn->imm; 2251 subprog = find_subprog(env, target_insn + 1); 2252 if (subprog < 0) { 2253 verbose(env, "verifier bug. No program starts at insn %d\n", 2254 target_insn + 1); 2255 return -EFAULT; 2256 } 2257 2258 caller = state->frame[state->curframe]; 2259 if (state->frame[state->curframe + 1]) { 2260 verbose(env, "verifier bug. Frame %d already allocated\n", 2261 state->curframe + 1); 2262 return -EFAULT; 2263 } 2264 2265 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2266 if (!callee) 2267 return -ENOMEM; 2268 state->frame[state->curframe + 1] = callee; 2269 2270 /* callee cannot access r0, r6 - r9 for reading and has to write 2271 * into its own stack before reading from it. 2272 * callee can read/write into caller's stack 2273 */ 2274 init_func_state(env, callee, 2275 /* remember the callsite, it will be used by bpf_exit */ 2276 *insn_idx /* callsite */, 2277 state->curframe + 1 /* frameno within this callchain */, 2278 subprog /* subprog number within this prog */); 2279 2280 /* copy r1 - r5 args that callee can access */ 2281 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2282 callee->regs[i] = caller->regs[i]; 2283 2284 /* after the call regsiters r0 - r5 were scratched */ 2285 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2286 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2287 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2288 } 2289 2290 /* only increment it after check_reg_arg() finished */ 2291 state->curframe++; 2292 2293 /* and go analyze first insn of the callee */ 2294 *insn_idx = target_insn; 2295 2296 if (env->log.level) { 2297 verbose(env, "caller:\n"); 2298 print_verifier_state(env, caller); 2299 verbose(env, "callee:\n"); 2300 print_verifier_state(env, callee); 2301 } 2302 return 0; 2303 } 2304 2305 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2306 { 2307 struct bpf_verifier_state *state = env->cur_state; 2308 struct bpf_func_state *caller, *callee; 2309 struct bpf_reg_state *r0; 2310 2311 callee = state->frame[state->curframe]; 2312 r0 = &callee->regs[BPF_REG_0]; 2313 if (r0->type == PTR_TO_STACK) { 2314 /* technically it's ok to return caller's stack pointer 2315 * (or caller's caller's pointer) back to the caller, 2316 * since these pointers are valid. Only current stack 2317 * pointer will be invalid as soon as function exits, 2318 * but let's be conservative 2319 */ 2320 verbose(env, "cannot return stack pointer to the caller\n"); 2321 return -EINVAL; 2322 } 2323 2324 state->curframe--; 2325 caller = state->frame[state->curframe]; 2326 /* return to the caller whatever r0 had in the callee */ 2327 caller->regs[BPF_REG_0] = *r0; 2328 2329 *insn_idx = callee->callsite + 1; 2330 if (env->log.level) { 2331 verbose(env, "returning from callee:\n"); 2332 print_verifier_state(env, callee); 2333 verbose(env, "to caller at %d:\n", *insn_idx); 2334 print_verifier_state(env, caller); 2335 } 2336 /* clear everything in the callee */ 2337 free_func_state(callee); 2338 state->frame[state->curframe + 1] = NULL; 2339 return 0; 2340 } 2341 2342 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2343 int func_id, 2344 struct bpf_call_arg_meta *meta) 2345 { 2346 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2347 2348 if (ret_type != RET_INTEGER || 2349 (func_id != BPF_FUNC_get_stack && 2350 func_id != BPF_FUNC_probe_read_str)) 2351 return; 2352 2353 ret_reg->smax_value = meta->msize_smax_value; 2354 ret_reg->umax_value = meta->msize_umax_value; 2355 __reg_deduce_bounds(ret_reg); 2356 __reg_bound_offset(ret_reg); 2357 } 2358 2359 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2360 { 2361 const struct bpf_func_proto *fn = NULL; 2362 struct bpf_reg_state *regs; 2363 struct bpf_call_arg_meta meta; 2364 bool changes_data; 2365 int i, err; 2366 2367 /* find function prototype */ 2368 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2369 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2370 func_id); 2371 return -EINVAL; 2372 } 2373 2374 if (env->ops->get_func_proto) 2375 fn = env->ops->get_func_proto(func_id, env->prog); 2376 if (!fn) { 2377 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2378 func_id); 2379 return -EINVAL; 2380 } 2381 2382 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2383 if (!env->prog->gpl_compatible && fn->gpl_only) { 2384 verbose(env, "cannot call GPL only function from proprietary program\n"); 2385 return -EINVAL; 2386 } 2387 2388 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2389 changes_data = bpf_helper_changes_pkt_data(fn->func); 2390 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2391 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2392 func_id_name(func_id), func_id); 2393 return -EINVAL; 2394 } 2395 2396 memset(&meta, 0, sizeof(meta)); 2397 meta.pkt_access = fn->pkt_access; 2398 2399 err = check_func_proto(fn); 2400 if (err) { 2401 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2402 func_id_name(func_id), func_id); 2403 return err; 2404 } 2405 2406 /* check args */ 2407 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2408 if (err) 2409 return err; 2410 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2411 if (err) 2412 return err; 2413 if (func_id == BPF_FUNC_tail_call) { 2414 if (meta.map_ptr == NULL) { 2415 verbose(env, "verifier bug\n"); 2416 return -EINVAL; 2417 } 2418 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; 2419 } 2420 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2421 if (err) 2422 return err; 2423 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2424 if (err) 2425 return err; 2426 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2427 if (err) 2428 return err; 2429 2430 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2431 * is inferred from register state. 2432 */ 2433 for (i = 0; i < meta.access_size; i++) { 2434 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2435 BPF_WRITE, -1, false); 2436 if (err) 2437 return err; 2438 } 2439 2440 regs = cur_regs(env); 2441 /* reset caller saved regs */ 2442 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2443 mark_reg_not_init(env, regs, caller_saved[i]); 2444 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2445 } 2446 2447 /* update return register (already marked as written above) */ 2448 if (fn->ret_type == RET_INTEGER) { 2449 /* sets type to SCALAR_VALUE */ 2450 mark_reg_unknown(env, regs, BPF_REG_0); 2451 } else if (fn->ret_type == RET_VOID) { 2452 regs[BPF_REG_0].type = NOT_INIT; 2453 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2454 struct bpf_insn_aux_data *insn_aux; 2455 2456 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2457 /* There is no offset yet applied, variable or fixed */ 2458 mark_reg_known_zero(env, regs, BPF_REG_0); 2459 regs[BPF_REG_0].off = 0; 2460 /* remember map_ptr, so that check_map_access() 2461 * can check 'value_size' boundary of memory access 2462 * to map element returned from bpf_map_lookup_elem() 2463 */ 2464 if (meta.map_ptr == NULL) { 2465 verbose(env, 2466 "kernel subsystem misconfigured verifier\n"); 2467 return -EINVAL; 2468 } 2469 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2470 regs[BPF_REG_0].id = ++env->id_gen; 2471 insn_aux = &env->insn_aux_data[insn_idx]; 2472 if (!insn_aux->map_ptr) 2473 insn_aux->map_ptr = meta.map_ptr; 2474 else if (insn_aux->map_ptr != meta.map_ptr) 2475 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 2476 } else { 2477 verbose(env, "unknown return type %d of func %s#%d\n", 2478 fn->ret_type, func_id_name(func_id), func_id); 2479 return -EINVAL; 2480 } 2481 2482 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2483 2484 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2485 if (err) 2486 return err; 2487 2488 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2489 const char *err_str; 2490 2491 #ifdef CONFIG_PERF_EVENTS 2492 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2493 err_str = "cannot get callchain buffer for func %s#%d\n"; 2494 #else 2495 err = -ENOTSUPP; 2496 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2497 #endif 2498 if (err) { 2499 verbose(env, err_str, func_id_name(func_id), func_id); 2500 return err; 2501 } 2502 2503 env->prog->has_callchain_buf = true; 2504 } 2505 2506 if (changes_data) 2507 clear_all_pkt_pointers(env); 2508 return 0; 2509 } 2510 2511 static bool signed_add_overflows(s64 a, s64 b) 2512 { 2513 /* Do the add in u64, where overflow is well-defined */ 2514 s64 res = (s64)((u64)a + (u64)b); 2515 2516 if (b < 0) 2517 return res > a; 2518 return res < a; 2519 } 2520 2521 static bool signed_sub_overflows(s64 a, s64 b) 2522 { 2523 /* Do the sub in u64, where overflow is well-defined */ 2524 s64 res = (s64)((u64)a - (u64)b); 2525 2526 if (b < 0) 2527 return res < a; 2528 return res > a; 2529 } 2530 2531 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2532 const struct bpf_reg_state *reg, 2533 enum bpf_reg_type type) 2534 { 2535 bool known = tnum_is_const(reg->var_off); 2536 s64 val = reg->var_off.value; 2537 s64 smin = reg->smin_value; 2538 2539 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2540 verbose(env, "math between %s pointer and %lld is not allowed\n", 2541 reg_type_str[type], val); 2542 return false; 2543 } 2544 2545 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2546 verbose(env, "%s pointer offset %d is not allowed\n", 2547 reg_type_str[type], reg->off); 2548 return false; 2549 } 2550 2551 if (smin == S64_MIN) { 2552 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2553 reg_type_str[type]); 2554 return false; 2555 } 2556 2557 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2558 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2559 smin, reg_type_str[type]); 2560 return false; 2561 } 2562 2563 return true; 2564 } 2565 2566 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2567 * Caller should also handle BPF_MOV case separately. 2568 * If we return -EACCES, caller may want to try again treating pointer as a 2569 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2570 */ 2571 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2572 struct bpf_insn *insn, 2573 const struct bpf_reg_state *ptr_reg, 2574 const struct bpf_reg_state *off_reg) 2575 { 2576 struct bpf_verifier_state *vstate = env->cur_state; 2577 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2578 struct bpf_reg_state *regs = state->regs, *dst_reg; 2579 bool known = tnum_is_const(off_reg->var_off); 2580 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2581 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2582 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2583 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2584 u8 opcode = BPF_OP(insn->code); 2585 u32 dst = insn->dst_reg; 2586 2587 dst_reg = ®s[dst]; 2588 2589 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2590 smin_val > smax_val || umin_val > umax_val) { 2591 /* Taint dst register if offset had invalid bounds derived from 2592 * e.g. dead branches. 2593 */ 2594 __mark_reg_unknown(dst_reg); 2595 return 0; 2596 } 2597 2598 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2599 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2600 verbose(env, 2601 "R%d 32-bit pointer arithmetic prohibited\n", 2602 dst); 2603 return -EACCES; 2604 } 2605 2606 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2607 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2608 dst); 2609 return -EACCES; 2610 } 2611 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2612 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2613 dst); 2614 return -EACCES; 2615 } 2616 if (ptr_reg->type == PTR_TO_PACKET_END) { 2617 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2618 dst); 2619 return -EACCES; 2620 } 2621 2622 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2623 * The id may be overwritten later if we create a new variable offset. 2624 */ 2625 dst_reg->type = ptr_reg->type; 2626 dst_reg->id = ptr_reg->id; 2627 2628 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2629 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2630 return -EINVAL; 2631 2632 switch (opcode) { 2633 case BPF_ADD: 2634 /* We can take a fixed offset as long as it doesn't overflow 2635 * the s32 'off' field 2636 */ 2637 if (known && (ptr_reg->off + smin_val == 2638 (s64)(s32)(ptr_reg->off + smin_val))) { 2639 /* pointer += K. Accumulate it into fixed offset */ 2640 dst_reg->smin_value = smin_ptr; 2641 dst_reg->smax_value = smax_ptr; 2642 dst_reg->umin_value = umin_ptr; 2643 dst_reg->umax_value = umax_ptr; 2644 dst_reg->var_off = ptr_reg->var_off; 2645 dst_reg->off = ptr_reg->off + smin_val; 2646 dst_reg->range = ptr_reg->range; 2647 break; 2648 } 2649 /* A new variable offset is created. Note that off_reg->off 2650 * == 0, since it's a scalar. 2651 * dst_reg gets the pointer type and since some positive 2652 * integer value was added to the pointer, give it a new 'id' 2653 * if it's a PTR_TO_PACKET. 2654 * this creates a new 'base' pointer, off_reg (variable) gets 2655 * added into the variable offset, and we copy the fixed offset 2656 * from ptr_reg. 2657 */ 2658 if (signed_add_overflows(smin_ptr, smin_val) || 2659 signed_add_overflows(smax_ptr, smax_val)) { 2660 dst_reg->smin_value = S64_MIN; 2661 dst_reg->smax_value = S64_MAX; 2662 } else { 2663 dst_reg->smin_value = smin_ptr + smin_val; 2664 dst_reg->smax_value = smax_ptr + smax_val; 2665 } 2666 if (umin_ptr + umin_val < umin_ptr || 2667 umax_ptr + umax_val < umax_ptr) { 2668 dst_reg->umin_value = 0; 2669 dst_reg->umax_value = U64_MAX; 2670 } else { 2671 dst_reg->umin_value = umin_ptr + umin_val; 2672 dst_reg->umax_value = umax_ptr + umax_val; 2673 } 2674 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2675 dst_reg->off = ptr_reg->off; 2676 if (reg_is_pkt_pointer(ptr_reg)) { 2677 dst_reg->id = ++env->id_gen; 2678 /* something was added to pkt_ptr, set range to zero */ 2679 dst_reg->range = 0; 2680 } 2681 break; 2682 case BPF_SUB: 2683 if (dst_reg == off_reg) { 2684 /* scalar -= pointer. Creates an unknown scalar */ 2685 verbose(env, "R%d tried to subtract pointer from scalar\n", 2686 dst); 2687 return -EACCES; 2688 } 2689 /* We don't allow subtraction from FP, because (according to 2690 * test_verifier.c test "invalid fp arithmetic", JITs might not 2691 * be able to deal with it. 2692 */ 2693 if (ptr_reg->type == PTR_TO_STACK) { 2694 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2695 dst); 2696 return -EACCES; 2697 } 2698 if (known && (ptr_reg->off - smin_val == 2699 (s64)(s32)(ptr_reg->off - smin_val))) { 2700 /* pointer -= K. Subtract it from fixed offset */ 2701 dst_reg->smin_value = smin_ptr; 2702 dst_reg->smax_value = smax_ptr; 2703 dst_reg->umin_value = umin_ptr; 2704 dst_reg->umax_value = umax_ptr; 2705 dst_reg->var_off = ptr_reg->var_off; 2706 dst_reg->id = ptr_reg->id; 2707 dst_reg->off = ptr_reg->off - smin_val; 2708 dst_reg->range = ptr_reg->range; 2709 break; 2710 } 2711 /* A new variable offset is created. If the subtrahend is known 2712 * nonnegative, then any reg->range we had before is still good. 2713 */ 2714 if (signed_sub_overflows(smin_ptr, smax_val) || 2715 signed_sub_overflows(smax_ptr, smin_val)) { 2716 /* Overflow possible, we know nothing */ 2717 dst_reg->smin_value = S64_MIN; 2718 dst_reg->smax_value = S64_MAX; 2719 } else { 2720 dst_reg->smin_value = smin_ptr - smax_val; 2721 dst_reg->smax_value = smax_ptr - smin_val; 2722 } 2723 if (umin_ptr < umax_val) { 2724 /* Overflow possible, we know nothing */ 2725 dst_reg->umin_value = 0; 2726 dst_reg->umax_value = U64_MAX; 2727 } else { 2728 /* Cannot overflow (as long as bounds are consistent) */ 2729 dst_reg->umin_value = umin_ptr - umax_val; 2730 dst_reg->umax_value = umax_ptr - umin_val; 2731 } 2732 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2733 dst_reg->off = ptr_reg->off; 2734 if (reg_is_pkt_pointer(ptr_reg)) { 2735 dst_reg->id = ++env->id_gen; 2736 /* something was added to pkt_ptr, set range to zero */ 2737 if (smin_val < 0) 2738 dst_reg->range = 0; 2739 } 2740 break; 2741 case BPF_AND: 2742 case BPF_OR: 2743 case BPF_XOR: 2744 /* bitwise ops on pointers are troublesome, prohibit. */ 2745 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2746 dst, bpf_alu_string[opcode >> 4]); 2747 return -EACCES; 2748 default: 2749 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2750 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2751 dst, bpf_alu_string[opcode >> 4]); 2752 return -EACCES; 2753 } 2754 2755 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2756 return -EINVAL; 2757 2758 __update_reg_bounds(dst_reg); 2759 __reg_deduce_bounds(dst_reg); 2760 __reg_bound_offset(dst_reg); 2761 return 0; 2762 } 2763 2764 /* WARNING: This function does calculations on 64-bit values, but the actual 2765 * execution may occur on 32-bit values. Therefore, things like bitshifts 2766 * need extra checks in the 32-bit case. 2767 */ 2768 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2769 struct bpf_insn *insn, 2770 struct bpf_reg_state *dst_reg, 2771 struct bpf_reg_state src_reg) 2772 { 2773 struct bpf_reg_state *regs = cur_regs(env); 2774 u8 opcode = BPF_OP(insn->code); 2775 bool src_known, dst_known; 2776 s64 smin_val, smax_val; 2777 u64 umin_val, umax_val; 2778 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2779 2780 smin_val = src_reg.smin_value; 2781 smax_val = src_reg.smax_value; 2782 umin_val = src_reg.umin_value; 2783 umax_val = src_reg.umax_value; 2784 src_known = tnum_is_const(src_reg.var_off); 2785 dst_known = tnum_is_const(dst_reg->var_off); 2786 2787 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2788 smin_val > smax_val || umin_val > umax_val) { 2789 /* Taint dst register if offset had invalid bounds derived from 2790 * e.g. dead branches. 2791 */ 2792 __mark_reg_unknown(dst_reg); 2793 return 0; 2794 } 2795 2796 if (!src_known && 2797 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2798 __mark_reg_unknown(dst_reg); 2799 return 0; 2800 } 2801 2802 switch (opcode) { 2803 case BPF_ADD: 2804 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2805 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2806 dst_reg->smin_value = S64_MIN; 2807 dst_reg->smax_value = S64_MAX; 2808 } else { 2809 dst_reg->smin_value += smin_val; 2810 dst_reg->smax_value += smax_val; 2811 } 2812 if (dst_reg->umin_value + umin_val < umin_val || 2813 dst_reg->umax_value + umax_val < umax_val) { 2814 dst_reg->umin_value = 0; 2815 dst_reg->umax_value = U64_MAX; 2816 } else { 2817 dst_reg->umin_value += umin_val; 2818 dst_reg->umax_value += umax_val; 2819 } 2820 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2821 break; 2822 case BPF_SUB: 2823 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2824 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2825 /* Overflow possible, we know nothing */ 2826 dst_reg->smin_value = S64_MIN; 2827 dst_reg->smax_value = S64_MAX; 2828 } else { 2829 dst_reg->smin_value -= smax_val; 2830 dst_reg->smax_value -= smin_val; 2831 } 2832 if (dst_reg->umin_value < umax_val) { 2833 /* Overflow possible, we know nothing */ 2834 dst_reg->umin_value = 0; 2835 dst_reg->umax_value = U64_MAX; 2836 } else { 2837 /* Cannot overflow (as long as bounds are consistent) */ 2838 dst_reg->umin_value -= umax_val; 2839 dst_reg->umax_value -= umin_val; 2840 } 2841 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2842 break; 2843 case BPF_MUL: 2844 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2845 if (smin_val < 0 || dst_reg->smin_value < 0) { 2846 /* Ain't nobody got time to multiply that sign */ 2847 __mark_reg_unbounded(dst_reg); 2848 __update_reg_bounds(dst_reg); 2849 break; 2850 } 2851 /* Both values are positive, so we can work with unsigned and 2852 * copy the result to signed (unless it exceeds S64_MAX). 2853 */ 2854 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2855 /* Potential overflow, we know nothing */ 2856 __mark_reg_unbounded(dst_reg); 2857 /* (except what we can learn from the var_off) */ 2858 __update_reg_bounds(dst_reg); 2859 break; 2860 } 2861 dst_reg->umin_value *= umin_val; 2862 dst_reg->umax_value *= umax_val; 2863 if (dst_reg->umax_value > S64_MAX) { 2864 /* Overflow possible, we know nothing */ 2865 dst_reg->smin_value = S64_MIN; 2866 dst_reg->smax_value = S64_MAX; 2867 } else { 2868 dst_reg->smin_value = dst_reg->umin_value; 2869 dst_reg->smax_value = dst_reg->umax_value; 2870 } 2871 break; 2872 case BPF_AND: 2873 if (src_known && dst_known) { 2874 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2875 src_reg.var_off.value); 2876 break; 2877 } 2878 /* We get our minimum from the var_off, since that's inherently 2879 * bitwise. Our maximum is the minimum of the operands' maxima. 2880 */ 2881 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2882 dst_reg->umin_value = dst_reg->var_off.value; 2883 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2884 if (dst_reg->smin_value < 0 || smin_val < 0) { 2885 /* Lose signed bounds when ANDing negative numbers, 2886 * ain't nobody got time for that. 2887 */ 2888 dst_reg->smin_value = S64_MIN; 2889 dst_reg->smax_value = S64_MAX; 2890 } else { 2891 /* ANDing two positives gives a positive, so safe to 2892 * cast result into s64. 2893 */ 2894 dst_reg->smin_value = dst_reg->umin_value; 2895 dst_reg->smax_value = dst_reg->umax_value; 2896 } 2897 /* We may learn something more from the var_off */ 2898 __update_reg_bounds(dst_reg); 2899 break; 2900 case BPF_OR: 2901 if (src_known && dst_known) { 2902 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2903 src_reg.var_off.value); 2904 break; 2905 } 2906 /* We get our maximum from the var_off, and our minimum is the 2907 * maximum of the operands' minima 2908 */ 2909 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2910 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2911 dst_reg->umax_value = dst_reg->var_off.value | 2912 dst_reg->var_off.mask; 2913 if (dst_reg->smin_value < 0 || smin_val < 0) { 2914 /* Lose signed bounds when ORing negative numbers, 2915 * ain't nobody got time for that. 2916 */ 2917 dst_reg->smin_value = S64_MIN; 2918 dst_reg->smax_value = S64_MAX; 2919 } else { 2920 /* ORing two positives gives a positive, so safe to 2921 * cast result into s64. 2922 */ 2923 dst_reg->smin_value = dst_reg->umin_value; 2924 dst_reg->smax_value = dst_reg->umax_value; 2925 } 2926 /* We may learn something more from the var_off */ 2927 __update_reg_bounds(dst_reg); 2928 break; 2929 case BPF_LSH: 2930 if (umax_val >= insn_bitness) { 2931 /* Shifts greater than 31 or 63 are undefined. 2932 * This includes shifts by a negative number. 2933 */ 2934 mark_reg_unknown(env, regs, insn->dst_reg); 2935 break; 2936 } 2937 /* We lose all sign bit information (except what we can pick 2938 * up from var_off) 2939 */ 2940 dst_reg->smin_value = S64_MIN; 2941 dst_reg->smax_value = S64_MAX; 2942 /* If we might shift our top bit out, then we know nothing */ 2943 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2944 dst_reg->umin_value = 0; 2945 dst_reg->umax_value = U64_MAX; 2946 } else { 2947 dst_reg->umin_value <<= umin_val; 2948 dst_reg->umax_value <<= umax_val; 2949 } 2950 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2951 /* We may learn something more from the var_off */ 2952 __update_reg_bounds(dst_reg); 2953 break; 2954 case BPF_RSH: 2955 if (umax_val >= insn_bitness) { 2956 /* Shifts greater than 31 or 63 are undefined. 2957 * This includes shifts by a negative number. 2958 */ 2959 mark_reg_unknown(env, regs, insn->dst_reg); 2960 break; 2961 } 2962 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2963 * be negative, then either: 2964 * 1) src_reg might be zero, so the sign bit of the result is 2965 * unknown, so we lose our signed bounds 2966 * 2) it's known negative, thus the unsigned bounds capture the 2967 * signed bounds 2968 * 3) the signed bounds cross zero, so they tell us nothing 2969 * about the result 2970 * If the value in dst_reg is known nonnegative, then again the 2971 * unsigned bounts capture the signed bounds. 2972 * Thus, in all cases it suffices to blow away our signed bounds 2973 * and rely on inferring new ones from the unsigned bounds and 2974 * var_off of the result. 2975 */ 2976 dst_reg->smin_value = S64_MIN; 2977 dst_reg->smax_value = S64_MAX; 2978 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 2979 dst_reg->umin_value >>= umax_val; 2980 dst_reg->umax_value >>= umin_val; 2981 /* We may learn something more from the var_off */ 2982 __update_reg_bounds(dst_reg); 2983 break; 2984 case BPF_ARSH: 2985 if (umax_val >= insn_bitness) { 2986 /* Shifts greater than 31 or 63 are undefined. 2987 * This includes shifts by a negative number. 2988 */ 2989 mark_reg_unknown(env, regs, insn->dst_reg); 2990 break; 2991 } 2992 2993 /* Upon reaching here, src_known is true and 2994 * umax_val is equal to umin_val. 2995 */ 2996 dst_reg->smin_value >>= umin_val; 2997 dst_reg->smax_value >>= umin_val; 2998 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 2999 3000 /* blow away the dst_reg umin_value/umax_value and rely on 3001 * dst_reg var_off to refine the result. 3002 */ 3003 dst_reg->umin_value = 0; 3004 dst_reg->umax_value = U64_MAX; 3005 __update_reg_bounds(dst_reg); 3006 break; 3007 default: 3008 mark_reg_unknown(env, regs, insn->dst_reg); 3009 break; 3010 } 3011 3012 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3013 /* 32-bit ALU ops are (32,32)->32 */ 3014 coerce_reg_to_size(dst_reg, 4); 3015 coerce_reg_to_size(&src_reg, 4); 3016 } 3017 3018 __reg_deduce_bounds(dst_reg); 3019 __reg_bound_offset(dst_reg); 3020 return 0; 3021 } 3022 3023 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3024 * and var_off. 3025 */ 3026 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3027 struct bpf_insn *insn) 3028 { 3029 struct bpf_verifier_state *vstate = env->cur_state; 3030 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3031 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3032 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3033 u8 opcode = BPF_OP(insn->code); 3034 3035 dst_reg = ®s[insn->dst_reg]; 3036 src_reg = NULL; 3037 if (dst_reg->type != SCALAR_VALUE) 3038 ptr_reg = dst_reg; 3039 if (BPF_SRC(insn->code) == BPF_X) { 3040 src_reg = ®s[insn->src_reg]; 3041 if (src_reg->type != SCALAR_VALUE) { 3042 if (dst_reg->type != SCALAR_VALUE) { 3043 /* Combining two pointers by any ALU op yields 3044 * an arbitrary scalar. Disallow all math except 3045 * pointer subtraction 3046 */ 3047 if (opcode == BPF_SUB){ 3048 mark_reg_unknown(env, regs, insn->dst_reg); 3049 return 0; 3050 } 3051 verbose(env, "R%d pointer %s pointer prohibited\n", 3052 insn->dst_reg, 3053 bpf_alu_string[opcode >> 4]); 3054 return -EACCES; 3055 } else { 3056 /* scalar += pointer 3057 * This is legal, but we have to reverse our 3058 * src/dest handling in computing the range 3059 */ 3060 return adjust_ptr_min_max_vals(env, insn, 3061 src_reg, dst_reg); 3062 } 3063 } else if (ptr_reg) { 3064 /* pointer += scalar */ 3065 return adjust_ptr_min_max_vals(env, insn, 3066 dst_reg, src_reg); 3067 } 3068 } else { 3069 /* Pretend the src is a reg with a known value, since we only 3070 * need to be able to read from this state. 3071 */ 3072 off_reg.type = SCALAR_VALUE; 3073 __mark_reg_known(&off_reg, insn->imm); 3074 src_reg = &off_reg; 3075 if (ptr_reg) /* pointer += K */ 3076 return adjust_ptr_min_max_vals(env, insn, 3077 ptr_reg, src_reg); 3078 } 3079 3080 /* Got here implies adding two SCALAR_VALUEs */ 3081 if (WARN_ON_ONCE(ptr_reg)) { 3082 print_verifier_state(env, state); 3083 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3084 return -EINVAL; 3085 } 3086 if (WARN_ON(!src_reg)) { 3087 print_verifier_state(env, state); 3088 verbose(env, "verifier internal error: no src_reg\n"); 3089 return -EINVAL; 3090 } 3091 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3092 } 3093 3094 /* check validity of 32-bit and 64-bit arithmetic operations */ 3095 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3096 { 3097 struct bpf_reg_state *regs = cur_regs(env); 3098 u8 opcode = BPF_OP(insn->code); 3099 int err; 3100 3101 if (opcode == BPF_END || opcode == BPF_NEG) { 3102 if (opcode == BPF_NEG) { 3103 if (BPF_SRC(insn->code) != 0 || 3104 insn->src_reg != BPF_REG_0 || 3105 insn->off != 0 || insn->imm != 0) { 3106 verbose(env, "BPF_NEG uses reserved fields\n"); 3107 return -EINVAL; 3108 } 3109 } else { 3110 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3111 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3112 BPF_CLASS(insn->code) == BPF_ALU64) { 3113 verbose(env, "BPF_END uses reserved fields\n"); 3114 return -EINVAL; 3115 } 3116 } 3117 3118 /* check src operand */ 3119 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3120 if (err) 3121 return err; 3122 3123 if (is_pointer_value(env, insn->dst_reg)) { 3124 verbose(env, "R%d pointer arithmetic prohibited\n", 3125 insn->dst_reg); 3126 return -EACCES; 3127 } 3128 3129 /* check dest operand */ 3130 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3131 if (err) 3132 return err; 3133 3134 } else if (opcode == BPF_MOV) { 3135 3136 if (BPF_SRC(insn->code) == BPF_X) { 3137 if (insn->imm != 0 || insn->off != 0) { 3138 verbose(env, "BPF_MOV uses reserved fields\n"); 3139 return -EINVAL; 3140 } 3141 3142 /* check src operand */ 3143 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3144 if (err) 3145 return err; 3146 } else { 3147 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3148 verbose(env, "BPF_MOV uses reserved fields\n"); 3149 return -EINVAL; 3150 } 3151 } 3152 3153 /* check dest operand */ 3154 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3155 if (err) 3156 return err; 3157 3158 if (BPF_SRC(insn->code) == BPF_X) { 3159 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3160 /* case: R1 = R2 3161 * copy register state to dest reg 3162 */ 3163 regs[insn->dst_reg] = regs[insn->src_reg]; 3164 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3165 } else { 3166 /* R1 = (u32) R2 */ 3167 if (is_pointer_value(env, insn->src_reg)) { 3168 verbose(env, 3169 "R%d partial copy of pointer\n", 3170 insn->src_reg); 3171 return -EACCES; 3172 } 3173 mark_reg_unknown(env, regs, insn->dst_reg); 3174 coerce_reg_to_size(®s[insn->dst_reg], 4); 3175 } 3176 } else { 3177 /* case: R = imm 3178 * remember the value we stored into this reg 3179 */ 3180 regs[insn->dst_reg].type = SCALAR_VALUE; 3181 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3182 __mark_reg_known(regs + insn->dst_reg, 3183 insn->imm); 3184 } else { 3185 __mark_reg_known(regs + insn->dst_reg, 3186 (u32)insn->imm); 3187 } 3188 } 3189 3190 } else if (opcode > BPF_END) { 3191 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3192 return -EINVAL; 3193 3194 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3195 3196 if (BPF_SRC(insn->code) == BPF_X) { 3197 if (insn->imm != 0 || insn->off != 0) { 3198 verbose(env, "BPF_ALU uses reserved fields\n"); 3199 return -EINVAL; 3200 } 3201 /* check src1 operand */ 3202 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3203 if (err) 3204 return err; 3205 } else { 3206 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3207 verbose(env, "BPF_ALU uses reserved fields\n"); 3208 return -EINVAL; 3209 } 3210 } 3211 3212 /* check src2 operand */ 3213 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3214 if (err) 3215 return err; 3216 3217 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3218 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3219 verbose(env, "div by zero\n"); 3220 return -EINVAL; 3221 } 3222 3223 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3224 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3225 return -EINVAL; 3226 } 3227 3228 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3229 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3230 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3231 3232 if (insn->imm < 0 || insn->imm >= size) { 3233 verbose(env, "invalid shift %d\n", insn->imm); 3234 return -EINVAL; 3235 } 3236 } 3237 3238 /* check dest operand */ 3239 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3240 if (err) 3241 return err; 3242 3243 return adjust_reg_min_max_vals(env, insn); 3244 } 3245 3246 return 0; 3247 } 3248 3249 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3250 struct bpf_reg_state *dst_reg, 3251 enum bpf_reg_type type, 3252 bool range_right_open) 3253 { 3254 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3255 struct bpf_reg_state *regs = state->regs, *reg; 3256 u16 new_range; 3257 int i, j; 3258 3259 if (dst_reg->off < 0 || 3260 (dst_reg->off == 0 && range_right_open)) 3261 /* This doesn't give us any range */ 3262 return; 3263 3264 if (dst_reg->umax_value > MAX_PACKET_OFF || 3265 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3266 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3267 * than pkt_end, but that's because it's also less than pkt. 3268 */ 3269 return; 3270 3271 new_range = dst_reg->off; 3272 if (range_right_open) 3273 new_range--; 3274 3275 /* Examples for register markings: 3276 * 3277 * pkt_data in dst register: 3278 * 3279 * r2 = r3; 3280 * r2 += 8; 3281 * if (r2 > pkt_end) goto <handle exception> 3282 * <access okay> 3283 * 3284 * r2 = r3; 3285 * r2 += 8; 3286 * if (r2 < pkt_end) goto <access okay> 3287 * <handle exception> 3288 * 3289 * Where: 3290 * r2 == dst_reg, pkt_end == src_reg 3291 * r2=pkt(id=n,off=8,r=0) 3292 * r3=pkt(id=n,off=0,r=0) 3293 * 3294 * pkt_data in src register: 3295 * 3296 * r2 = r3; 3297 * r2 += 8; 3298 * if (pkt_end >= r2) goto <access okay> 3299 * <handle exception> 3300 * 3301 * r2 = r3; 3302 * r2 += 8; 3303 * if (pkt_end <= r2) goto <handle exception> 3304 * <access okay> 3305 * 3306 * Where: 3307 * pkt_end == dst_reg, r2 == src_reg 3308 * r2=pkt(id=n,off=8,r=0) 3309 * r3=pkt(id=n,off=0,r=0) 3310 * 3311 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3312 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3313 * and [r3, r3 + 8-1) respectively is safe to access depending on 3314 * the check. 3315 */ 3316 3317 /* If our ids match, then we must have the same max_value. And we 3318 * don't care about the other reg's fixed offset, since if it's too big 3319 * the range won't allow anything. 3320 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3321 */ 3322 for (i = 0; i < MAX_BPF_REG; i++) 3323 if (regs[i].type == type && regs[i].id == dst_reg->id) 3324 /* keep the maximum range already checked */ 3325 regs[i].range = max(regs[i].range, new_range); 3326 3327 for (j = 0; j <= vstate->curframe; j++) { 3328 state = vstate->frame[j]; 3329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3330 if (state->stack[i].slot_type[0] != STACK_SPILL) 3331 continue; 3332 reg = &state->stack[i].spilled_ptr; 3333 if (reg->type == type && reg->id == dst_reg->id) 3334 reg->range = max(reg->range, new_range); 3335 } 3336 } 3337 } 3338 3339 /* Adjusts the register min/max values in the case that the dst_reg is the 3340 * variable register that we are working on, and src_reg is a constant or we're 3341 * simply doing a BPF_K check. 3342 * In JEQ/JNE cases we also adjust the var_off values. 3343 */ 3344 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3345 struct bpf_reg_state *false_reg, u64 val, 3346 u8 opcode) 3347 { 3348 /* If the dst_reg is a pointer, we can't learn anything about its 3349 * variable offset from the compare (unless src_reg were a pointer into 3350 * the same object, but we don't bother with that. 3351 * Since false_reg and true_reg have the same type by construction, we 3352 * only need to check one of them for pointerness. 3353 */ 3354 if (__is_pointer_value(false, false_reg)) 3355 return; 3356 3357 switch (opcode) { 3358 case BPF_JEQ: 3359 /* If this is false then we know nothing Jon Snow, but if it is 3360 * true then we know for sure. 3361 */ 3362 __mark_reg_known(true_reg, val); 3363 break; 3364 case BPF_JNE: 3365 /* If this is true we know nothing Jon Snow, but if it is false 3366 * we know the value for sure; 3367 */ 3368 __mark_reg_known(false_reg, val); 3369 break; 3370 case BPF_JGT: 3371 false_reg->umax_value = min(false_reg->umax_value, val); 3372 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3373 break; 3374 case BPF_JSGT: 3375 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3376 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3377 break; 3378 case BPF_JLT: 3379 false_reg->umin_value = max(false_reg->umin_value, val); 3380 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3381 break; 3382 case BPF_JSLT: 3383 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3384 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3385 break; 3386 case BPF_JGE: 3387 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3388 true_reg->umin_value = max(true_reg->umin_value, val); 3389 break; 3390 case BPF_JSGE: 3391 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3392 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3393 break; 3394 case BPF_JLE: 3395 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3396 true_reg->umax_value = min(true_reg->umax_value, val); 3397 break; 3398 case BPF_JSLE: 3399 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3400 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3401 break; 3402 default: 3403 break; 3404 } 3405 3406 __reg_deduce_bounds(false_reg); 3407 __reg_deduce_bounds(true_reg); 3408 /* We might have learned some bits from the bounds. */ 3409 __reg_bound_offset(false_reg); 3410 __reg_bound_offset(true_reg); 3411 /* Intersecting with the old var_off might have improved our bounds 3412 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3413 * then new var_off is (0; 0x7f...fc) which improves our umax. 3414 */ 3415 __update_reg_bounds(false_reg); 3416 __update_reg_bounds(true_reg); 3417 } 3418 3419 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3420 * the variable reg. 3421 */ 3422 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3423 struct bpf_reg_state *false_reg, u64 val, 3424 u8 opcode) 3425 { 3426 if (__is_pointer_value(false, false_reg)) 3427 return; 3428 3429 switch (opcode) { 3430 case BPF_JEQ: 3431 /* If this is false then we know nothing Jon Snow, but if it is 3432 * true then we know for sure. 3433 */ 3434 __mark_reg_known(true_reg, val); 3435 break; 3436 case BPF_JNE: 3437 /* If this is true we know nothing Jon Snow, but if it is false 3438 * we know the value for sure; 3439 */ 3440 __mark_reg_known(false_reg, val); 3441 break; 3442 case BPF_JGT: 3443 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3444 false_reg->umin_value = max(false_reg->umin_value, val); 3445 break; 3446 case BPF_JSGT: 3447 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3448 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3449 break; 3450 case BPF_JLT: 3451 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3452 false_reg->umax_value = min(false_reg->umax_value, val); 3453 break; 3454 case BPF_JSLT: 3455 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3456 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3457 break; 3458 case BPF_JGE: 3459 true_reg->umax_value = min(true_reg->umax_value, val); 3460 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3461 break; 3462 case BPF_JSGE: 3463 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3464 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3465 break; 3466 case BPF_JLE: 3467 true_reg->umin_value = max(true_reg->umin_value, val); 3468 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3469 break; 3470 case BPF_JSLE: 3471 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3472 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3473 break; 3474 default: 3475 break; 3476 } 3477 3478 __reg_deduce_bounds(false_reg); 3479 __reg_deduce_bounds(true_reg); 3480 /* We might have learned some bits from the bounds. */ 3481 __reg_bound_offset(false_reg); 3482 __reg_bound_offset(true_reg); 3483 /* Intersecting with the old var_off might have improved our bounds 3484 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3485 * then new var_off is (0; 0x7f...fc) which improves our umax. 3486 */ 3487 __update_reg_bounds(false_reg); 3488 __update_reg_bounds(true_reg); 3489 } 3490 3491 /* Regs are known to be equal, so intersect their min/max/var_off */ 3492 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3493 struct bpf_reg_state *dst_reg) 3494 { 3495 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3496 dst_reg->umin_value); 3497 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3498 dst_reg->umax_value); 3499 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3500 dst_reg->smin_value); 3501 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3502 dst_reg->smax_value); 3503 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3504 dst_reg->var_off); 3505 /* We might have learned new bounds from the var_off. */ 3506 __update_reg_bounds(src_reg); 3507 __update_reg_bounds(dst_reg); 3508 /* We might have learned something about the sign bit. */ 3509 __reg_deduce_bounds(src_reg); 3510 __reg_deduce_bounds(dst_reg); 3511 /* We might have learned some bits from the bounds. */ 3512 __reg_bound_offset(src_reg); 3513 __reg_bound_offset(dst_reg); 3514 /* Intersecting with the old var_off might have improved our bounds 3515 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3516 * then new var_off is (0; 0x7f...fc) which improves our umax. 3517 */ 3518 __update_reg_bounds(src_reg); 3519 __update_reg_bounds(dst_reg); 3520 } 3521 3522 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3523 struct bpf_reg_state *true_dst, 3524 struct bpf_reg_state *false_src, 3525 struct bpf_reg_state *false_dst, 3526 u8 opcode) 3527 { 3528 switch (opcode) { 3529 case BPF_JEQ: 3530 __reg_combine_min_max(true_src, true_dst); 3531 break; 3532 case BPF_JNE: 3533 __reg_combine_min_max(false_src, false_dst); 3534 break; 3535 } 3536 } 3537 3538 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3539 bool is_null) 3540 { 3541 struct bpf_reg_state *reg = ®s[regno]; 3542 3543 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3544 /* Old offset (both fixed and variable parts) should 3545 * have been known-zero, because we don't allow pointer 3546 * arithmetic on pointers that might be NULL. 3547 */ 3548 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3549 !tnum_equals_const(reg->var_off, 0) || 3550 reg->off)) { 3551 __mark_reg_known_zero(reg); 3552 reg->off = 0; 3553 } 3554 if (is_null) { 3555 reg->type = SCALAR_VALUE; 3556 } else if (reg->map_ptr->inner_map_meta) { 3557 reg->type = CONST_PTR_TO_MAP; 3558 reg->map_ptr = reg->map_ptr->inner_map_meta; 3559 } else { 3560 reg->type = PTR_TO_MAP_VALUE; 3561 } 3562 /* We don't need id from this point onwards anymore, thus we 3563 * should better reset it, so that state pruning has chances 3564 * to take effect. 3565 */ 3566 reg->id = 0; 3567 } 3568 } 3569 3570 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3571 * be folded together at some point. 3572 */ 3573 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3574 bool is_null) 3575 { 3576 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3577 struct bpf_reg_state *regs = state->regs; 3578 u32 id = regs[regno].id; 3579 int i, j; 3580 3581 for (i = 0; i < MAX_BPF_REG; i++) 3582 mark_map_reg(regs, i, id, is_null); 3583 3584 for (j = 0; j <= vstate->curframe; j++) { 3585 state = vstate->frame[j]; 3586 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3587 if (state->stack[i].slot_type[0] != STACK_SPILL) 3588 continue; 3589 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3590 } 3591 } 3592 } 3593 3594 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3595 struct bpf_reg_state *dst_reg, 3596 struct bpf_reg_state *src_reg, 3597 struct bpf_verifier_state *this_branch, 3598 struct bpf_verifier_state *other_branch) 3599 { 3600 if (BPF_SRC(insn->code) != BPF_X) 3601 return false; 3602 3603 switch (BPF_OP(insn->code)) { 3604 case BPF_JGT: 3605 if ((dst_reg->type == PTR_TO_PACKET && 3606 src_reg->type == PTR_TO_PACKET_END) || 3607 (dst_reg->type == PTR_TO_PACKET_META && 3608 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3609 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3610 find_good_pkt_pointers(this_branch, dst_reg, 3611 dst_reg->type, false); 3612 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3613 src_reg->type == PTR_TO_PACKET) || 3614 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3615 src_reg->type == PTR_TO_PACKET_META)) { 3616 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3617 find_good_pkt_pointers(other_branch, src_reg, 3618 src_reg->type, true); 3619 } else { 3620 return false; 3621 } 3622 break; 3623 case BPF_JLT: 3624 if ((dst_reg->type == PTR_TO_PACKET && 3625 src_reg->type == PTR_TO_PACKET_END) || 3626 (dst_reg->type == PTR_TO_PACKET_META && 3627 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3628 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3629 find_good_pkt_pointers(other_branch, dst_reg, 3630 dst_reg->type, true); 3631 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3632 src_reg->type == PTR_TO_PACKET) || 3633 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3634 src_reg->type == PTR_TO_PACKET_META)) { 3635 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3636 find_good_pkt_pointers(this_branch, src_reg, 3637 src_reg->type, false); 3638 } else { 3639 return false; 3640 } 3641 break; 3642 case BPF_JGE: 3643 if ((dst_reg->type == PTR_TO_PACKET && 3644 src_reg->type == PTR_TO_PACKET_END) || 3645 (dst_reg->type == PTR_TO_PACKET_META && 3646 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3647 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3648 find_good_pkt_pointers(this_branch, dst_reg, 3649 dst_reg->type, true); 3650 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3651 src_reg->type == PTR_TO_PACKET) || 3652 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3653 src_reg->type == PTR_TO_PACKET_META)) { 3654 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3655 find_good_pkt_pointers(other_branch, src_reg, 3656 src_reg->type, false); 3657 } else { 3658 return false; 3659 } 3660 break; 3661 case BPF_JLE: 3662 if ((dst_reg->type == PTR_TO_PACKET && 3663 src_reg->type == PTR_TO_PACKET_END) || 3664 (dst_reg->type == PTR_TO_PACKET_META && 3665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3666 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3667 find_good_pkt_pointers(other_branch, dst_reg, 3668 dst_reg->type, false); 3669 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3670 src_reg->type == PTR_TO_PACKET) || 3671 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3672 src_reg->type == PTR_TO_PACKET_META)) { 3673 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3674 find_good_pkt_pointers(this_branch, src_reg, 3675 src_reg->type, true); 3676 } else { 3677 return false; 3678 } 3679 break; 3680 default: 3681 return false; 3682 } 3683 3684 return true; 3685 } 3686 3687 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3688 struct bpf_insn *insn, int *insn_idx) 3689 { 3690 struct bpf_verifier_state *this_branch = env->cur_state; 3691 struct bpf_verifier_state *other_branch; 3692 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3693 struct bpf_reg_state *dst_reg, *other_branch_regs; 3694 u8 opcode = BPF_OP(insn->code); 3695 int err; 3696 3697 if (opcode > BPF_JSLE) { 3698 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3699 return -EINVAL; 3700 } 3701 3702 if (BPF_SRC(insn->code) == BPF_X) { 3703 if (insn->imm != 0) { 3704 verbose(env, "BPF_JMP uses reserved fields\n"); 3705 return -EINVAL; 3706 } 3707 3708 /* check src1 operand */ 3709 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3710 if (err) 3711 return err; 3712 3713 if (is_pointer_value(env, insn->src_reg)) { 3714 verbose(env, "R%d pointer comparison prohibited\n", 3715 insn->src_reg); 3716 return -EACCES; 3717 } 3718 } else { 3719 if (insn->src_reg != BPF_REG_0) { 3720 verbose(env, "BPF_JMP uses reserved fields\n"); 3721 return -EINVAL; 3722 } 3723 } 3724 3725 /* check src2 operand */ 3726 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3727 if (err) 3728 return err; 3729 3730 dst_reg = ®s[insn->dst_reg]; 3731 3732 /* detect if R == 0 where R was initialized to zero earlier */ 3733 if (BPF_SRC(insn->code) == BPF_K && 3734 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3735 dst_reg->type == SCALAR_VALUE && 3736 tnum_is_const(dst_reg->var_off)) { 3737 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3738 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3739 /* if (imm == imm) goto pc+off; 3740 * only follow the goto, ignore fall-through 3741 */ 3742 *insn_idx += insn->off; 3743 return 0; 3744 } else { 3745 /* if (imm != imm) goto pc+off; 3746 * only follow fall-through branch, since 3747 * that's where the program will go 3748 */ 3749 return 0; 3750 } 3751 } 3752 3753 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3754 if (!other_branch) 3755 return -EFAULT; 3756 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3757 3758 /* detect if we are comparing against a constant value so we can adjust 3759 * our min/max values for our dst register. 3760 * this is only legit if both are scalars (or pointers to the same 3761 * object, I suppose, but we don't support that right now), because 3762 * otherwise the different base pointers mean the offsets aren't 3763 * comparable. 3764 */ 3765 if (BPF_SRC(insn->code) == BPF_X) { 3766 if (dst_reg->type == SCALAR_VALUE && 3767 regs[insn->src_reg].type == SCALAR_VALUE) { 3768 if (tnum_is_const(regs[insn->src_reg].var_off)) 3769 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3770 dst_reg, regs[insn->src_reg].var_off.value, 3771 opcode); 3772 else if (tnum_is_const(dst_reg->var_off)) 3773 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3774 ®s[insn->src_reg], 3775 dst_reg->var_off.value, opcode); 3776 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3777 /* Comparing for equality, we can combine knowledge */ 3778 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3779 &other_branch_regs[insn->dst_reg], 3780 ®s[insn->src_reg], 3781 ®s[insn->dst_reg], opcode); 3782 } 3783 } else if (dst_reg->type == SCALAR_VALUE) { 3784 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3785 dst_reg, insn->imm, opcode); 3786 } 3787 3788 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3789 if (BPF_SRC(insn->code) == BPF_K && 3790 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3791 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3792 /* Mark all identical map registers in each branch as either 3793 * safe or unknown depending R == 0 or R != 0 conditional. 3794 */ 3795 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3796 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3797 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3798 this_branch, other_branch) && 3799 is_pointer_value(env, insn->dst_reg)) { 3800 verbose(env, "R%d pointer comparison prohibited\n", 3801 insn->dst_reg); 3802 return -EACCES; 3803 } 3804 if (env->log.level) 3805 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3806 return 0; 3807 } 3808 3809 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3810 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3811 { 3812 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3813 3814 return (struct bpf_map *) (unsigned long) imm64; 3815 } 3816 3817 /* verify BPF_LD_IMM64 instruction */ 3818 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3819 { 3820 struct bpf_reg_state *regs = cur_regs(env); 3821 int err; 3822 3823 if (BPF_SIZE(insn->code) != BPF_DW) { 3824 verbose(env, "invalid BPF_LD_IMM insn\n"); 3825 return -EINVAL; 3826 } 3827 if (insn->off != 0) { 3828 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3829 return -EINVAL; 3830 } 3831 3832 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3833 if (err) 3834 return err; 3835 3836 if (insn->src_reg == 0) { 3837 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3838 3839 regs[insn->dst_reg].type = SCALAR_VALUE; 3840 __mark_reg_known(®s[insn->dst_reg], imm); 3841 return 0; 3842 } 3843 3844 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3845 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3846 3847 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3848 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3849 return 0; 3850 } 3851 3852 static bool may_access_skb(enum bpf_prog_type type) 3853 { 3854 switch (type) { 3855 case BPF_PROG_TYPE_SOCKET_FILTER: 3856 case BPF_PROG_TYPE_SCHED_CLS: 3857 case BPF_PROG_TYPE_SCHED_ACT: 3858 return true; 3859 default: 3860 return false; 3861 } 3862 } 3863 3864 /* verify safety of LD_ABS|LD_IND instructions: 3865 * - they can only appear in the programs where ctx == skb 3866 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3867 * preserve R6-R9, and store return value into R0 3868 * 3869 * Implicit input: 3870 * ctx == skb == R6 == CTX 3871 * 3872 * Explicit input: 3873 * SRC == any register 3874 * IMM == 32-bit immediate 3875 * 3876 * Output: 3877 * R0 - 8/16/32-bit skb data converted to cpu endianness 3878 */ 3879 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3880 { 3881 struct bpf_reg_state *regs = cur_regs(env); 3882 u8 mode = BPF_MODE(insn->code); 3883 int i, err; 3884 3885 if (!may_access_skb(env->prog->type)) { 3886 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3887 return -EINVAL; 3888 } 3889 3890 if (!env->ops->gen_ld_abs) { 3891 verbose(env, "bpf verifier is misconfigured\n"); 3892 return -EINVAL; 3893 } 3894 3895 if (env->subprog_cnt > 1) { 3896 /* when program has LD_ABS insn JITs and interpreter assume 3897 * that r1 == ctx == skb which is not the case for callees 3898 * that can have arbitrary arguments. It's problematic 3899 * for main prog as well since JITs would need to analyze 3900 * all functions in order to make proper register save/restore 3901 * decisions in the main prog. Hence disallow LD_ABS with calls 3902 */ 3903 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3904 return -EINVAL; 3905 } 3906 3907 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3908 BPF_SIZE(insn->code) == BPF_DW || 3909 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3910 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3911 return -EINVAL; 3912 } 3913 3914 /* check whether implicit source operand (register R6) is readable */ 3915 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3916 if (err) 3917 return err; 3918 3919 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3920 verbose(env, 3921 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3922 return -EINVAL; 3923 } 3924 3925 if (mode == BPF_IND) { 3926 /* check explicit source operand */ 3927 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3928 if (err) 3929 return err; 3930 } 3931 3932 /* reset caller saved regs to unreadable */ 3933 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3934 mark_reg_not_init(env, regs, caller_saved[i]); 3935 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3936 } 3937 3938 /* mark destination R0 register as readable, since it contains 3939 * the value fetched from the packet. 3940 * Already marked as written above. 3941 */ 3942 mark_reg_unknown(env, regs, BPF_REG_0); 3943 return 0; 3944 } 3945 3946 static int check_return_code(struct bpf_verifier_env *env) 3947 { 3948 struct bpf_reg_state *reg; 3949 struct tnum range = tnum_range(0, 1); 3950 3951 switch (env->prog->type) { 3952 case BPF_PROG_TYPE_CGROUP_SKB: 3953 case BPF_PROG_TYPE_CGROUP_SOCK: 3954 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 3955 case BPF_PROG_TYPE_SOCK_OPS: 3956 case BPF_PROG_TYPE_CGROUP_DEVICE: 3957 break; 3958 default: 3959 return 0; 3960 } 3961 3962 reg = cur_regs(env) + BPF_REG_0; 3963 if (reg->type != SCALAR_VALUE) { 3964 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3965 reg_type_str[reg->type]); 3966 return -EINVAL; 3967 } 3968 3969 if (!tnum_in(range, reg->var_off)) { 3970 verbose(env, "At program exit the register R0 "); 3971 if (!tnum_is_unknown(reg->var_off)) { 3972 char tn_buf[48]; 3973 3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3975 verbose(env, "has value %s", tn_buf); 3976 } else { 3977 verbose(env, "has unknown scalar value"); 3978 } 3979 verbose(env, " should have been 0 or 1\n"); 3980 return -EINVAL; 3981 } 3982 return 0; 3983 } 3984 3985 /* non-recursive DFS pseudo code 3986 * 1 procedure DFS-iterative(G,v): 3987 * 2 label v as discovered 3988 * 3 let S be a stack 3989 * 4 S.push(v) 3990 * 5 while S is not empty 3991 * 6 t <- S.pop() 3992 * 7 if t is what we're looking for: 3993 * 8 return t 3994 * 9 for all edges e in G.adjacentEdges(t) do 3995 * 10 if edge e is already labelled 3996 * 11 continue with the next edge 3997 * 12 w <- G.adjacentVertex(t,e) 3998 * 13 if vertex w is not discovered and not explored 3999 * 14 label e as tree-edge 4000 * 15 label w as discovered 4001 * 16 S.push(w) 4002 * 17 continue at 5 4003 * 18 else if vertex w is discovered 4004 * 19 label e as back-edge 4005 * 20 else 4006 * 21 // vertex w is explored 4007 * 22 label e as forward- or cross-edge 4008 * 23 label t as explored 4009 * 24 S.pop() 4010 * 4011 * convention: 4012 * 0x10 - discovered 4013 * 0x11 - discovered and fall-through edge labelled 4014 * 0x12 - discovered and fall-through and branch edges labelled 4015 * 0x20 - explored 4016 */ 4017 4018 enum { 4019 DISCOVERED = 0x10, 4020 EXPLORED = 0x20, 4021 FALLTHROUGH = 1, 4022 BRANCH = 2, 4023 }; 4024 4025 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4026 4027 static int *insn_stack; /* stack of insns to process */ 4028 static int cur_stack; /* current stack index */ 4029 static int *insn_state; 4030 4031 /* t, w, e - match pseudo-code above: 4032 * t - index of current instruction 4033 * w - next instruction 4034 * e - edge 4035 */ 4036 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4037 { 4038 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4039 return 0; 4040 4041 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4042 return 0; 4043 4044 if (w < 0 || w >= env->prog->len) { 4045 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4046 return -EINVAL; 4047 } 4048 4049 if (e == BRANCH) 4050 /* mark branch target for state pruning */ 4051 env->explored_states[w] = STATE_LIST_MARK; 4052 4053 if (insn_state[w] == 0) { 4054 /* tree-edge */ 4055 insn_state[t] = DISCOVERED | e; 4056 insn_state[w] = DISCOVERED; 4057 if (cur_stack >= env->prog->len) 4058 return -E2BIG; 4059 insn_stack[cur_stack++] = w; 4060 return 1; 4061 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4062 verbose(env, "back-edge from insn %d to %d\n", t, w); 4063 return -EINVAL; 4064 } else if (insn_state[w] == EXPLORED) { 4065 /* forward- or cross-edge */ 4066 insn_state[t] = DISCOVERED | e; 4067 } else { 4068 verbose(env, "insn state internal bug\n"); 4069 return -EFAULT; 4070 } 4071 return 0; 4072 } 4073 4074 /* non-recursive depth-first-search to detect loops in BPF program 4075 * loop == back-edge in directed graph 4076 */ 4077 static int check_cfg(struct bpf_verifier_env *env) 4078 { 4079 struct bpf_insn *insns = env->prog->insnsi; 4080 int insn_cnt = env->prog->len; 4081 int ret = 0; 4082 int i, t; 4083 4084 ret = check_subprogs(env); 4085 if (ret < 0) 4086 return ret; 4087 4088 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4089 if (!insn_state) 4090 return -ENOMEM; 4091 4092 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4093 if (!insn_stack) { 4094 kfree(insn_state); 4095 return -ENOMEM; 4096 } 4097 4098 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4099 insn_stack[0] = 0; /* 0 is the first instruction */ 4100 cur_stack = 1; 4101 4102 peek_stack: 4103 if (cur_stack == 0) 4104 goto check_state; 4105 t = insn_stack[cur_stack - 1]; 4106 4107 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4108 u8 opcode = BPF_OP(insns[t].code); 4109 4110 if (opcode == BPF_EXIT) { 4111 goto mark_explored; 4112 } else if (opcode == BPF_CALL) { 4113 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4114 if (ret == 1) 4115 goto peek_stack; 4116 else if (ret < 0) 4117 goto err_free; 4118 if (t + 1 < insn_cnt) 4119 env->explored_states[t + 1] = STATE_LIST_MARK; 4120 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4121 env->explored_states[t] = STATE_LIST_MARK; 4122 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4123 if (ret == 1) 4124 goto peek_stack; 4125 else if (ret < 0) 4126 goto err_free; 4127 } 4128 } else if (opcode == BPF_JA) { 4129 if (BPF_SRC(insns[t].code) != BPF_K) { 4130 ret = -EINVAL; 4131 goto err_free; 4132 } 4133 /* unconditional jump with single edge */ 4134 ret = push_insn(t, t + insns[t].off + 1, 4135 FALLTHROUGH, env); 4136 if (ret == 1) 4137 goto peek_stack; 4138 else if (ret < 0) 4139 goto err_free; 4140 /* tell verifier to check for equivalent states 4141 * after every call and jump 4142 */ 4143 if (t + 1 < insn_cnt) 4144 env->explored_states[t + 1] = STATE_LIST_MARK; 4145 } else { 4146 /* conditional jump with two edges */ 4147 env->explored_states[t] = STATE_LIST_MARK; 4148 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4149 if (ret == 1) 4150 goto peek_stack; 4151 else if (ret < 0) 4152 goto err_free; 4153 4154 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4155 if (ret == 1) 4156 goto peek_stack; 4157 else if (ret < 0) 4158 goto err_free; 4159 } 4160 } else { 4161 /* all other non-branch instructions with single 4162 * fall-through edge 4163 */ 4164 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4165 if (ret == 1) 4166 goto peek_stack; 4167 else if (ret < 0) 4168 goto err_free; 4169 } 4170 4171 mark_explored: 4172 insn_state[t] = EXPLORED; 4173 if (cur_stack-- <= 0) { 4174 verbose(env, "pop stack internal bug\n"); 4175 ret = -EFAULT; 4176 goto err_free; 4177 } 4178 goto peek_stack; 4179 4180 check_state: 4181 for (i = 0; i < insn_cnt; i++) { 4182 if (insn_state[i] != EXPLORED) { 4183 verbose(env, "unreachable insn %d\n", i); 4184 ret = -EINVAL; 4185 goto err_free; 4186 } 4187 } 4188 ret = 0; /* cfg looks good */ 4189 4190 err_free: 4191 kfree(insn_state); 4192 kfree(insn_stack); 4193 return ret; 4194 } 4195 4196 /* check %cur's range satisfies %old's */ 4197 static bool range_within(struct bpf_reg_state *old, 4198 struct bpf_reg_state *cur) 4199 { 4200 return old->umin_value <= cur->umin_value && 4201 old->umax_value >= cur->umax_value && 4202 old->smin_value <= cur->smin_value && 4203 old->smax_value >= cur->smax_value; 4204 } 4205 4206 /* Maximum number of register states that can exist at once */ 4207 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4208 struct idpair { 4209 u32 old; 4210 u32 cur; 4211 }; 4212 4213 /* If in the old state two registers had the same id, then they need to have 4214 * the same id in the new state as well. But that id could be different from 4215 * the old state, so we need to track the mapping from old to new ids. 4216 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4217 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4218 * regs with a different old id could still have new id 9, we don't care about 4219 * that. 4220 * So we look through our idmap to see if this old id has been seen before. If 4221 * so, we require the new id to match; otherwise, we add the id pair to the map. 4222 */ 4223 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4224 { 4225 unsigned int i; 4226 4227 for (i = 0; i < ID_MAP_SIZE; i++) { 4228 if (!idmap[i].old) { 4229 /* Reached an empty slot; haven't seen this id before */ 4230 idmap[i].old = old_id; 4231 idmap[i].cur = cur_id; 4232 return true; 4233 } 4234 if (idmap[i].old == old_id) 4235 return idmap[i].cur == cur_id; 4236 } 4237 /* We ran out of idmap slots, which should be impossible */ 4238 WARN_ON_ONCE(1); 4239 return false; 4240 } 4241 4242 /* Returns true if (rold safe implies rcur safe) */ 4243 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4244 struct idpair *idmap) 4245 { 4246 bool equal; 4247 4248 if (!(rold->live & REG_LIVE_READ)) 4249 /* explored state didn't use this */ 4250 return true; 4251 4252 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4253 4254 if (rold->type == PTR_TO_STACK) 4255 /* two stack pointers are equal only if they're pointing to 4256 * the same stack frame, since fp-8 in foo != fp-8 in bar 4257 */ 4258 return equal && rold->frameno == rcur->frameno; 4259 4260 if (equal) 4261 return true; 4262 4263 if (rold->type == NOT_INIT) 4264 /* explored state can't have used this */ 4265 return true; 4266 if (rcur->type == NOT_INIT) 4267 return false; 4268 switch (rold->type) { 4269 case SCALAR_VALUE: 4270 if (rcur->type == SCALAR_VALUE) { 4271 /* new val must satisfy old val knowledge */ 4272 return range_within(rold, rcur) && 4273 tnum_in(rold->var_off, rcur->var_off); 4274 } else { 4275 /* We're trying to use a pointer in place of a scalar. 4276 * Even if the scalar was unbounded, this could lead to 4277 * pointer leaks because scalars are allowed to leak 4278 * while pointers are not. We could make this safe in 4279 * special cases if root is calling us, but it's 4280 * probably not worth the hassle. 4281 */ 4282 return false; 4283 } 4284 case PTR_TO_MAP_VALUE: 4285 /* If the new min/max/var_off satisfy the old ones and 4286 * everything else matches, we are OK. 4287 * We don't care about the 'id' value, because nothing 4288 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4289 */ 4290 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4291 range_within(rold, rcur) && 4292 tnum_in(rold->var_off, rcur->var_off); 4293 case PTR_TO_MAP_VALUE_OR_NULL: 4294 /* a PTR_TO_MAP_VALUE could be safe to use as a 4295 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4296 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4297 * checked, doing so could have affected others with the same 4298 * id, and we can't check for that because we lost the id when 4299 * we converted to a PTR_TO_MAP_VALUE. 4300 */ 4301 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4302 return false; 4303 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4304 return false; 4305 /* Check our ids match any regs they're supposed to */ 4306 return check_ids(rold->id, rcur->id, idmap); 4307 case PTR_TO_PACKET_META: 4308 case PTR_TO_PACKET: 4309 if (rcur->type != rold->type) 4310 return false; 4311 /* We must have at least as much range as the old ptr 4312 * did, so that any accesses which were safe before are 4313 * still safe. This is true even if old range < old off, 4314 * since someone could have accessed through (ptr - k), or 4315 * even done ptr -= k in a register, to get a safe access. 4316 */ 4317 if (rold->range > rcur->range) 4318 return false; 4319 /* If the offsets don't match, we can't trust our alignment; 4320 * nor can we be sure that we won't fall out of range. 4321 */ 4322 if (rold->off != rcur->off) 4323 return false; 4324 /* id relations must be preserved */ 4325 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4326 return false; 4327 /* new val must satisfy old val knowledge */ 4328 return range_within(rold, rcur) && 4329 tnum_in(rold->var_off, rcur->var_off); 4330 case PTR_TO_CTX: 4331 case CONST_PTR_TO_MAP: 4332 case PTR_TO_PACKET_END: 4333 /* Only valid matches are exact, which memcmp() above 4334 * would have accepted 4335 */ 4336 default: 4337 /* Don't know what's going on, just say it's not safe */ 4338 return false; 4339 } 4340 4341 /* Shouldn't get here; if we do, say it's not safe */ 4342 WARN_ON_ONCE(1); 4343 return false; 4344 } 4345 4346 static bool stacksafe(struct bpf_func_state *old, 4347 struct bpf_func_state *cur, 4348 struct idpair *idmap) 4349 { 4350 int i, spi; 4351 4352 /* if explored stack has more populated slots than current stack 4353 * such stacks are not equivalent 4354 */ 4355 if (old->allocated_stack > cur->allocated_stack) 4356 return false; 4357 4358 /* walk slots of the explored stack and ignore any additional 4359 * slots in the current stack, since explored(safe) state 4360 * didn't use them 4361 */ 4362 for (i = 0; i < old->allocated_stack; i++) { 4363 spi = i / BPF_REG_SIZE; 4364 4365 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4366 /* explored state didn't use this */ 4367 continue; 4368 4369 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4370 continue; 4371 /* if old state was safe with misc data in the stack 4372 * it will be safe with zero-initialized stack. 4373 * The opposite is not true 4374 */ 4375 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4376 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4377 continue; 4378 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4379 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4380 /* Ex: old explored (safe) state has STACK_SPILL in 4381 * this stack slot, but current has has STACK_MISC -> 4382 * this verifier states are not equivalent, 4383 * return false to continue verification of this path 4384 */ 4385 return false; 4386 if (i % BPF_REG_SIZE) 4387 continue; 4388 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4389 continue; 4390 if (!regsafe(&old->stack[spi].spilled_ptr, 4391 &cur->stack[spi].spilled_ptr, 4392 idmap)) 4393 /* when explored and current stack slot are both storing 4394 * spilled registers, check that stored pointers types 4395 * are the same as well. 4396 * Ex: explored safe path could have stored 4397 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4398 * but current path has stored: 4399 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4400 * such verifier states are not equivalent. 4401 * return false to continue verification of this path 4402 */ 4403 return false; 4404 } 4405 return true; 4406 } 4407 4408 /* compare two verifier states 4409 * 4410 * all states stored in state_list are known to be valid, since 4411 * verifier reached 'bpf_exit' instruction through them 4412 * 4413 * this function is called when verifier exploring different branches of 4414 * execution popped from the state stack. If it sees an old state that has 4415 * more strict register state and more strict stack state then this execution 4416 * branch doesn't need to be explored further, since verifier already 4417 * concluded that more strict state leads to valid finish. 4418 * 4419 * Therefore two states are equivalent if register state is more conservative 4420 * and explored stack state is more conservative than the current one. 4421 * Example: 4422 * explored current 4423 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4424 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4425 * 4426 * In other words if current stack state (one being explored) has more 4427 * valid slots than old one that already passed validation, it means 4428 * the verifier can stop exploring and conclude that current state is valid too 4429 * 4430 * Similarly with registers. If explored state has register type as invalid 4431 * whereas register type in current state is meaningful, it means that 4432 * the current state will reach 'bpf_exit' instruction safely 4433 */ 4434 static bool func_states_equal(struct bpf_func_state *old, 4435 struct bpf_func_state *cur) 4436 { 4437 struct idpair *idmap; 4438 bool ret = false; 4439 int i; 4440 4441 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4442 /* If we failed to allocate the idmap, just say it's not safe */ 4443 if (!idmap) 4444 return false; 4445 4446 for (i = 0; i < MAX_BPF_REG; i++) { 4447 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4448 goto out_free; 4449 } 4450 4451 if (!stacksafe(old, cur, idmap)) 4452 goto out_free; 4453 ret = true; 4454 out_free: 4455 kfree(idmap); 4456 return ret; 4457 } 4458 4459 static bool states_equal(struct bpf_verifier_env *env, 4460 struct bpf_verifier_state *old, 4461 struct bpf_verifier_state *cur) 4462 { 4463 int i; 4464 4465 if (old->curframe != cur->curframe) 4466 return false; 4467 4468 /* for states to be equal callsites have to be the same 4469 * and all frame states need to be equivalent 4470 */ 4471 for (i = 0; i <= old->curframe; i++) { 4472 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4473 return false; 4474 if (!func_states_equal(old->frame[i], cur->frame[i])) 4475 return false; 4476 } 4477 return true; 4478 } 4479 4480 /* A write screens off any subsequent reads; but write marks come from the 4481 * straight-line code between a state and its parent. When we arrive at an 4482 * equivalent state (jump target or such) we didn't arrive by the straight-line 4483 * code, so read marks in the state must propagate to the parent regardless 4484 * of the state's write marks. That's what 'parent == state->parent' comparison 4485 * in mark_reg_read() and mark_stack_slot_read() is for. 4486 */ 4487 static int propagate_liveness(struct bpf_verifier_env *env, 4488 const struct bpf_verifier_state *vstate, 4489 struct bpf_verifier_state *vparent) 4490 { 4491 int i, frame, err = 0; 4492 struct bpf_func_state *state, *parent; 4493 4494 if (vparent->curframe != vstate->curframe) { 4495 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4496 vparent->curframe, vstate->curframe); 4497 return -EFAULT; 4498 } 4499 /* Propagate read liveness of registers... */ 4500 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4501 /* We don't need to worry about FP liveness because it's read-only */ 4502 for (i = 0; i < BPF_REG_FP; i++) { 4503 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4504 continue; 4505 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4506 err = mark_reg_read(env, vstate, vparent, i); 4507 if (err) 4508 return err; 4509 } 4510 } 4511 4512 /* ... and stack slots */ 4513 for (frame = 0; frame <= vstate->curframe; frame++) { 4514 state = vstate->frame[frame]; 4515 parent = vparent->frame[frame]; 4516 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4517 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4518 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4519 continue; 4520 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4521 mark_stack_slot_read(env, vstate, vparent, i, frame); 4522 } 4523 } 4524 return err; 4525 } 4526 4527 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4528 { 4529 struct bpf_verifier_state_list *new_sl; 4530 struct bpf_verifier_state_list *sl; 4531 struct bpf_verifier_state *cur = env->cur_state; 4532 int i, j, err; 4533 4534 sl = env->explored_states[insn_idx]; 4535 if (!sl) 4536 /* this 'insn_idx' instruction wasn't marked, so we will not 4537 * be doing state search here 4538 */ 4539 return 0; 4540 4541 while (sl != STATE_LIST_MARK) { 4542 if (states_equal(env, &sl->state, cur)) { 4543 /* reached equivalent register/stack state, 4544 * prune the search. 4545 * Registers read by the continuation are read by us. 4546 * If we have any write marks in env->cur_state, they 4547 * will prevent corresponding reads in the continuation 4548 * from reaching our parent (an explored_state). Our 4549 * own state will get the read marks recorded, but 4550 * they'll be immediately forgotten as we're pruning 4551 * this state and will pop a new one. 4552 */ 4553 err = propagate_liveness(env, &sl->state, cur); 4554 if (err) 4555 return err; 4556 return 1; 4557 } 4558 sl = sl->next; 4559 } 4560 4561 /* there were no equivalent states, remember current one. 4562 * technically the current state is not proven to be safe yet, 4563 * but it will either reach outer most bpf_exit (which means it's safe) 4564 * or it will be rejected. Since there are no loops, we won't be 4565 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4566 * again on the way to bpf_exit 4567 */ 4568 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4569 if (!new_sl) 4570 return -ENOMEM; 4571 4572 /* add new state to the head of linked list */ 4573 err = copy_verifier_state(&new_sl->state, cur); 4574 if (err) { 4575 free_verifier_state(&new_sl->state, false); 4576 kfree(new_sl); 4577 return err; 4578 } 4579 new_sl->next = env->explored_states[insn_idx]; 4580 env->explored_states[insn_idx] = new_sl; 4581 /* connect new state to parentage chain */ 4582 cur->parent = &new_sl->state; 4583 /* clear write marks in current state: the writes we did are not writes 4584 * our child did, so they don't screen off its reads from us. 4585 * (There are no read marks in current state, because reads always mark 4586 * their parent and current state never has children yet. Only 4587 * explored_states can get read marks.) 4588 */ 4589 for (i = 0; i < BPF_REG_FP; i++) 4590 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4591 4592 /* all stack frames are accessible from callee, clear them all */ 4593 for (j = 0; j <= cur->curframe; j++) { 4594 struct bpf_func_state *frame = cur->frame[j]; 4595 4596 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4597 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4598 } 4599 return 0; 4600 } 4601 4602 static int do_check(struct bpf_verifier_env *env) 4603 { 4604 struct bpf_verifier_state *state; 4605 struct bpf_insn *insns = env->prog->insnsi; 4606 struct bpf_reg_state *regs; 4607 int insn_cnt = env->prog->len, i; 4608 int insn_idx, prev_insn_idx = 0; 4609 int insn_processed = 0; 4610 bool do_print_state = false; 4611 4612 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4613 if (!state) 4614 return -ENOMEM; 4615 state->curframe = 0; 4616 state->parent = NULL; 4617 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4618 if (!state->frame[0]) { 4619 kfree(state); 4620 return -ENOMEM; 4621 } 4622 env->cur_state = state; 4623 init_func_state(env, state->frame[0], 4624 BPF_MAIN_FUNC /* callsite */, 4625 0 /* frameno */, 4626 0 /* subprogno, zero == main subprog */); 4627 insn_idx = 0; 4628 for (;;) { 4629 struct bpf_insn *insn; 4630 u8 class; 4631 int err; 4632 4633 if (insn_idx >= insn_cnt) { 4634 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4635 insn_idx, insn_cnt); 4636 return -EFAULT; 4637 } 4638 4639 insn = &insns[insn_idx]; 4640 class = BPF_CLASS(insn->code); 4641 4642 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4643 verbose(env, 4644 "BPF program is too large. Processed %d insn\n", 4645 insn_processed); 4646 return -E2BIG; 4647 } 4648 4649 err = is_state_visited(env, insn_idx); 4650 if (err < 0) 4651 return err; 4652 if (err == 1) { 4653 /* found equivalent state, can prune the search */ 4654 if (env->log.level) { 4655 if (do_print_state) 4656 verbose(env, "\nfrom %d to %d: safe\n", 4657 prev_insn_idx, insn_idx); 4658 else 4659 verbose(env, "%d: safe\n", insn_idx); 4660 } 4661 goto process_bpf_exit; 4662 } 4663 4664 if (need_resched()) 4665 cond_resched(); 4666 4667 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4668 if (env->log.level > 1) 4669 verbose(env, "%d:", insn_idx); 4670 else 4671 verbose(env, "\nfrom %d to %d:", 4672 prev_insn_idx, insn_idx); 4673 print_verifier_state(env, state->frame[state->curframe]); 4674 do_print_state = false; 4675 } 4676 4677 if (env->log.level) { 4678 const struct bpf_insn_cbs cbs = { 4679 .cb_print = verbose, 4680 .private_data = env, 4681 }; 4682 4683 verbose(env, "%d: ", insn_idx); 4684 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4685 } 4686 4687 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4688 err = bpf_prog_offload_verify_insn(env, insn_idx, 4689 prev_insn_idx); 4690 if (err) 4691 return err; 4692 } 4693 4694 regs = cur_regs(env); 4695 env->insn_aux_data[insn_idx].seen = true; 4696 if (class == BPF_ALU || class == BPF_ALU64) { 4697 err = check_alu_op(env, insn); 4698 if (err) 4699 return err; 4700 4701 } else if (class == BPF_LDX) { 4702 enum bpf_reg_type *prev_src_type, src_reg_type; 4703 4704 /* check for reserved fields is already done */ 4705 4706 /* check src operand */ 4707 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4708 if (err) 4709 return err; 4710 4711 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4712 if (err) 4713 return err; 4714 4715 src_reg_type = regs[insn->src_reg].type; 4716 4717 /* check that memory (src_reg + off) is readable, 4718 * the state of dst_reg will be updated by this func 4719 */ 4720 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4721 BPF_SIZE(insn->code), BPF_READ, 4722 insn->dst_reg, false); 4723 if (err) 4724 return err; 4725 4726 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4727 4728 if (*prev_src_type == NOT_INIT) { 4729 /* saw a valid insn 4730 * dst_reg = *(u32 *)(src_reg + off) 4731 * save type to validate intersecting paths 4732 */ 4733 *prev_src_type = src_reg_type; 4734 4735 } else if (src_reg_type != *prev_src_type && 4736 (src_reg_type == PTR_TO_CTX || 4737 *prev_src_type == PTR_TO_CTX)) { 4738 /* ABuser program is trying to use the same insn 4739 * dst_reg = *(u32*) (src_reg + off) 4740 * with different pointer types: 4741 * src_reg == ctx in one branch and 4742 * src_reg == stack|map in some other branch. 4743 * Reject it. 4744 */ 4745 verbose(env, "same insn cannot be used with different pointers\n"); 4746 return -EINVAL; 4747 } 4748 4749 } else if (class == BPF_STX) { 4750 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4751 4752 if (BPF_MODE(insn->code) == BPF_XADD) { 4753 err = check_xadd(env, insn_idx, insn); 4754 if (err) 4755 return err; 4756 insn_idx++; 4757 continue; 4758 } 4759 4760 /* check src1 operand */ 4761 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4762 if (err) 4763 return err; 4764 /* check src2 operand */ 4765 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4766 if (err) 4767 return err; 4768 4769 dst_reg_type = regs[insn->dst_reg].type; 4770 4771 /* check that memory (dst_reg + off) is writeable */ 4772 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4773 BPF_SIZE(insn->code), BPF_WRITE, 4774 insn->src_reg, false); 4775 if (err) 4776 return err; 4777 4778 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4779 4780 if (*prev_dst_type == NOT_INIT) { 4781 *prev_dst_type = dst_reg_type; 4782 } else if (dst_reg_type != *prev_dst_type && 4783 (dst_reg_type == PTR_TO_CTX || 4784 *prev_dst_type == PTR_TO_CTX)) { 4785 verbose(env, "same insn cannot be used with different pointers\n"); 4786 return -EINVAL; 4787 } 4788 4789 } else if (class == BPF_ST) { 4790 if (BPF_MODE(insn->code) != BPF_MEM || 4791 insn->src_reg != BPF_REG_0) { 4792 verbose(env, "BPF_ST uses reserved fields\n"); 4793 return -EINVAL; 4794 } 4795 /* check src operand */ 4796 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4797 if (err) 4798 return err; 4799 4800 if (is_ctx_reg(env, insn->dst_reg)) { 4801 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4802 insn->dst_reg); 4803 return -EACCES; 4804 } 4805 4806 /* check that memory (dst_reg + off) is writeable */ 4807 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4808 BPF_SIZE(insn->code), BPF_WRITE, 4809 -1, false); 4810 if (err) 4811 return err; 4812 4813 } else if (class == BPF_JMP) { 4814 u8 opcode = BPF_OP(insn->code); 4815 4816 if (opcode == BPF_CALL) { 4817 if (BPF_SRC(insn->code) != BPF_K || 4818 insn->off != 0 || 4819 (insn->src_reg != BPF_REG_0 && 4820 insn->src_reg != BPF_PSEUDO_CALL) || 4821 insn->dst_reg != BPF_REG_0) { 4822 verbose(env, "BPF_CALL uses reserved fields\n"); 4823 return -EINVAL; 4824 } 4825 4826 if (insn->src_reg == BPF_PSEUDO_CALL) 4827 err = check_func_call(env, insn, &insn_idx); 4828 else 4829 err = check_helper_call(env, insn->imm, insn_idx); 4830 if (err) 4831 return err; 4832 4833 } else if (opcode == BPF_JA) { 4834 if (BPF_SRC(insn->code) != BPF_K || 4835 insn->imm != 0 || 4836 insn->src_reg != BPF_REG_0 || 4837 insn->dst_reg != BPF_REG_0) { 4838 verbose(env, "BPF_JA uses reserved fields\n"); 4839 return -EINVAL; 4840 } 4841 4842 insn_idx += insn->off + 1; 4843 continue; 4844 4845 } else if (opcode == BPF_EXIT) { 4846 if (BPF_SRC(insn->code) != BPF_K || 4847 insn->imm != 0 || 4848 insn->src_reg != BPF_REG_0 || 4849 insn->dst_reg != BPF_REG_0) { 4850 verbose(env, "BPF_EXIT uses reserved fields\n"); 4851 return -EINVAL; 4852 } 4853 4854 if (state->curframe) { 4855 /* exit from nested function */ 4856 prev_insn_idx = insn_idx; 4857 err = prepare_func_exit(env, &insn_idx); 4858 if (err) 4859 return err; 4860 do_print_state = true; 4861 continue; 4862 } 4863 4864 /* eBPF calling convetion is such that R0 is used 4865 * to return the value from eBPF program. 4866 * Make sure that it's readable at this time 4867 * of bpf_exit, which means that program wrote 4868 * something into it earlier 4869 */ 4870 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4871 if (err) 4872 return err; 4873 4874 if (is_pointer_value(env, BPF_REG_0)) { 4875 verbose(env, "R0 leaks addr as return value\n"); 4876 return -EACCES; 4877 } 4878 4879 err = check_return_code(env); 4880 if (err) 4881 return err; 4882 process_bpf_exit: 4883 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4884 if (err < 0) { 4885 if (err != -ENOENT) 4886 return err; 4887 break; 4888 } else { 4889 do_print_state = true; 4890 continue; 4891 } 4892 } else { 4893 err = check_cond_jmp_op(env, insn, &insn_idx); 4894 if (err) 4895 return err; 4896 } 4897 } else if (class == BPF_LD) { 4898 u8 mode = BPF_MODE(insn->code); 4899 4900 if (mode == BPF_ABS || mode == BPF_IND) { 4901 err = check_ld_abs(env, insn); 4902 if (err) 4903 return err; 4904 4905 } else if (mode == BPF_IMM) { 4906 err = check_ld_imm(env, insn); 4907 if (err) 4908 return err; 4909 4910 insn_idx++; 4911 env->insn_aux_data[insn_idx].seen = true; 4912 } else { 4913 verbose(env, "invalid BPF_LD mode\n"); 4914 return -EINVAL; 4915 } 4916 } else { 4917 verbose(env, "unknown insn class %d\n", class); 4918 return -EINVAL; 4919 } 4920 4921 insn_idx++; 4922 } 4923 4924 verbose(env, "processed %d insns (limit %d), stack depth ", 4925 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4926 for (i = 0; i < env->subprog_cnt; i++) { 4927 u32 depth = env->subprog_info[i].stack_depth; 4928 4929 verbose(env, "%d", depth); 4930 if (i + 1 < env->subprog_cnt) 4931 verbose(env, "+"); 4932 } 4933 verbose(env, "\n"); 4934 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 4935 return 0; 4936 } 4937 4938 static int check_map_prealloc(struct bpf_map *map) 4939 { 4940 return (map->map_type != BPF_MAP_TYPE_HASH && 4941 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4942 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4943 !(map->map_flags & BPF_F_NO_PREALLOC); 4944 } 4945 4946 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4947 struct bpf_map *map, 4948 struct bpf_prog *prog) 4949 4950 { 4951 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4952 * preallocated hash maps, since doing memory allocation 4953 * in overflow_handler can crash depending on where nmi got 4954 * triggered. 4955 */ 4956 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4957 if (!check_map_prealloc(map)) { 4958 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4959 return -EINVAL; 4960 } 4961 if (map->inner_map_meta && 4962 !check_map_prealloc(map->inner_map_meta)) { 4963 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4964 return -EINVAL; 4965 } 4966 } 4967 4968 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 4969 !bpf_offload_dev_match(prog, map)) { 4970 verbose(env, "offload device mismatch between prog and map\n"); 4971 return -EINVAL; 4972 } 4973 4974 return 0; 4975 } 4976 4977 /* look for pseudo eBPF instructions that access map FDs and 4978 * replace them with actual map pointers 4979 */ 4980 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4981 { 4982 struct bpf_insn *insn = env->prog->insnsi; 4983 int insn_cnt = env->prog->len; 4984 int i, j, err; 4985 4986 err = bpf_prog_calc_tag(env->prog); 4987 if (err) 4988 return err; 4989 4990 for (i = 0; i < insn_cnt; i++, insn++) { 4991 if (BPF_CLASS(insn->code) == BPF_LDX && 4992 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4993 verbose(env, "BPF_LDX uses reserved fields\n"); 4994 return -EINVAL; 4995 } 4996 4997 if (BPF_CLASS(insn->code) == BPF_STX && 4998 ((BPF_MODE(insn->code) != BPF_MEM && 4999 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5000 verbose(env, "BPF_STX uses reserved fields\n"); 5001 return -EINVAL; 5002 } 5003 5004 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5005 struct bpf_map *map; 5006 struct fd f; 5007 5008 if (i == insn_cnt - 1 || insn[1].code != 0 || 5009 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5010 insn[1].off != 0) { 5011 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5012 return -EINVAL; 5013 } 5014 5015 if (insn->src_reg == 0) 5016 /* valid generic load 64-bit imm */ 5017 goto next_insn; 5018 5019 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5020 verbose(env, 5021 "unrecognized bpf_ld_imm64 insn\n"); 5022 return -EINVAL; 5023 } 5024 5025 f = fdget(insn->imm); 5026 map = __bpf_map_get(f); 5027 if (IS_ERR(map)) { 5028 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5029 insn->imm); 5030 return PTR_ERR(map); 5031 } 5032 5033 err = check_map_prog_compatibility(env, map, env->prog); 5034 if (err) { 5035 fdput(f); 5036 return err; 5037 } 5038 5039 /* store map pointer inside BPF_LD_IMM64 instruction */ 5040 insn[0].imm = (u32) (unsigned long) map; 5041 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5042 5043 /* check whether we recorded this map already */ 5044 for (j = 0; j < env->used_map_cnt; j++) 5045 if (env->used_maps[j] == map) { 5046 fdput(f); 5047 goto next_insn; 5048 } 5049 5050 if (env->used_map_cnt >= MAX_USED_MAPS) { 5051 fdput(f); 5052 return -E2BIG; 5053 } 5054 5055 /* hold the map. If the program is rejected by verifier, 5056 * the map will be released by release_maps() or it 5057 * will be used by the valid program until it's unloaded 5058 * and all maps are released in free_bpf_prog_info() 5059 */ 5060 map = bpf_map_inc(map, false); 5061 if (IS_ERR(map)) { 5062 fdput(f); 5063 return PTR_ERR(map); 5064 } 5065 env->used_maps[env->used_map_cnt++] = map; 5066 5067 fdput(f); 5068 next_insn: 5069 insn++; 5070 i++; 5071 continue; 5072 } 5073 5074 /* Basic sanity check before we invest more work here. */ 5075 if (!bpf_opcode_in_insntable(insn->code)) { 5076 verbose(env, "unknown opcode %02x\n", insn->code); 5077 return -EINVAL; 5078 } 5079 } 5080 5081 /* now all pseudo BPF_LD_IMM64 instructions load valid 5082 * 'struct bpf_map *' into a register instead of user map_fd. 5083 * These pointers will be used later by verifier to validate map access. 5084 */ 5085 return 0; 5086 } 5087 5088 /* drop refcnt of maps used by the rejected program */ 5089 static void release_maps(struct bpf_verifier_env *env) 5090 { 5091 int i; 5092 5093 for (i = 0; i < env->used_map_cnt; i++) 5094 bpf_map_put(env->used_maps[i]); 5095 } 5096 5097 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5098 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5099 { 5100 struct bpf_insn *insn = env->prog->insnsi; 5101 int insn_cnt = env->prog->len; 5102 int i; 5103 5104 for (i = 0; i < insn_cnt; i++, insn++) 5105 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5106 insn->src_reg = 0; 5107 } 5108 5109 /* single env->prog->insni[off] instruction was replaced with the range 5110 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5111 * [0, off) and [off, end) to new locations, so the patched range stays zero 5112 */ 5113 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5114 u32 off, u32 cnt) 5115 { 5116 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5117 int i; 5118 5119 if (cnt == 1) 5120 return 0; 5121 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 5122 if (!new_data) 5123 return -ENOMEM; 5124 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5125 memcpy(new_data + off + cnt - 1, old_data + off, 5126 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5127 for (i = off; i < off + cnt - 1; i++) 5128 new_data[i].seen = true; 5129 env->insn_aux_data = new_data; 5130 vfree(old_data); 5131 return 0; 5132 } 5133 5134 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5135 { 5136 int i; 5137 5138 if (len == 1) 5139 return; 5140 /* NOTE: fake 'exit' subprog should be updated as well. */ 5141 for (i = 0; i <= env->subprog_cnt; i++) { 5142 if (env->subprog_info[i].start < off) 5143 continue; 5144 env->subprog_info[i].start += len - 1; 5145 } 5146 } 5147 5148 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5149 const struct bpf_insn *patch, u32 len) 5150 { 5151 struct bpf_prog *new_prog; 5152 5153 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5154 if (!new_prog) 5155 return NULL; 5156 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5157 return NULL; 5158 adjust_subprog_starts(env, off, len); 5159 return new_prog; 5160 } 5161 5162 /* The verifier does more data flow analysis than llvm and will not 5163 * explore branches that are dead at run time. Malicious programs can 5164 * have dead code too. Therefore replace all dead at-run-time code 5165 * with 'ja -1'. 5166 * 5167 * Just nops are not optimal, e.g. if they would sit at the end of the 5168 * program and through another bug we would manage to jump there, then 5169 * we'd execute beyond program memory otherwise. Returning exception 5170 * code also wouldn't work since we can have subprogs where the dead 5171 * code could be located. 5172 */ 5173 static void sanitize_dead_code(struct bpf_verifier_env *env) 5174 { 5175 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5176 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5177 struct bpf_insn *insn = env->prog->insnsi; 5178 const int insn_cnt = env->prog->len; 5179 int i; 5180 5181 for (i = 0; i < insn_cnt; i++) { 5182 if (aux_data[i].seen) 5183 continue; 5184 memcpy(insn + i, &trap, sizeof(trap)); 5185 } 5186 } 5187 5188 /* convert load instructions that access fields of 'struct __sk_buff' 5189 * into sequence of instructions that access fields of 'struct sk_buff' 5190 */ 5191 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5192 { 5193 const struct bpf_verifier_ops *ops = env->ops; 5194 int i, cnt, size, ctx_field_size, delta = 0; 5195 const int insn_cnt = env->prog->len; 5196 struct bpf_insn insn_buf[16], *insn; 5197 struct bpf_prog *new_prog; 5198 enum bpf_access_type type; 5199 bool is_narrower_load; 5200 u32 target_size; 5201 5202 if (ops->gen_prologue) { 5203 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5204 env->prog); 5205 if (cnt >= ARRAY_SIZE(insn_buf)) { 5206 verbose(env, "bpf verifier is misconfigured\n"); 5207 return -EINVAL; 5208 } else if (cnt) { 5209 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5210 if (!new_prog) 5211 return -ENOMEM; 5212 5213 env->prog = new_prog; 5214 delta += cnt - 1; 5215 } 5216 } 5217 5218 if (!ops->convert_ctx_access) 5219 return 0; 5220 5221 insn = env->prog->insnsi + delta; 5222 5223 for (i = 0; i < insn_cnt; i++, insn++) { 5224 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5225 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5226 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5227 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5228 type = BPF_READ; 5229 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5230 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5231 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5232 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5233 type = BPF_WRITE; 5234 else 5235 continue; 5236 5237 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5238 continue; 5239 5240 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5241 size = BPF_LDST_BYTES(insn); 5242 5243 /* If the read access is a narrower load of the field, 5244 * convert to a 4/8-byte load, to minimum program type specific 5245 * convert_ctx_access changes. If conversion is successful, 5246 * we will apply proper mask to the result. 5247 */ 5248 is_narrower_load = size < ctx_field_size; 5249 if (is_narrower_load) { 5250 u32 off = insn->off; 5251 u8 size_code; 5252 5253 if (type == BPF_WRITE) { 5254 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5255 return -EINVAL; 5256 } 5257 5258 size_code = BPF_H; 5259 if (ctx_field_size == 4) 5260 size_code = BPF_W; 5261 else if (ctx_field_size == 8) 5262 size_code = BPF_DW; 5263 5264 insn->off = off & ~(ctx_field_size - 1); 5265 insn->code = BPF_LDX | BPF_MEM | size_code; 5266 } 5267 5268 target_size = 0; 5269 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5270 &target_size); 5271 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5272 (ctx_field_size && !target_size)) { 5273 verbose(env, "bpf verifier is misconfigured\n"); 5274 return -EINVAL; 5275 } 5276 5277 if (is_narrower_load && size < target_size) { 5278 if (ctx_field_size <= 4) 5279 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5280 (1 << size * 8) - 1); 5281 else 5282 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5283 (1 << size * 8) - 1); 5284 } 5285 5286 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5287 if (!new_prog) 5288 return -ENOMEM; 5289 5290 delta += cnt - 1; 5291 5292 /* keep walking new program and skip insns we just inserted */ 5293 env->prog = new_prog; 5294 insn = new_prog->insnsi + i + delta; 5295 } 5296 5297 return 0; 5298 } 5299 5300 static int jit_subprogs(struct bpf_verifier_env *env) 5301 { 5302 struct bpf_prog *prog = env->prog, **func, *tmp; 5303 int i, j, subprog_start, subprog_end = 0, len, subprog; 5304 struct bpf_insn *insn; 5305 void *old_bpf_func; 5306 int err = -ENOMEM; 5307 5308 if (env->subprog_cnt <= 1) 5309 return 0; 5310 5311 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5312 if (insn->code != (BPF_JMP | BPF_CALL) || 5313 insn->src_reg != BPF_PSEUDO_CALL) 5314 continue; 5315 subprog = find_subprog(env, i + insn->imm + 1); 5316 if (subprog < 0) { 5317 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5318 i + insn->imm + 1); 5319 return -EFAULT; 5320 } 5321 /* temporarily remember subprog id inside insn instead of 5322 * aux_data, since next loop will split up all insns into funcs 5323 */ 5324 insn->off = subprog; 5325 /* remember original imm in case JIT fails and fallback 5326 * to interpreter will be needed 5327 */ 5328 env->insn_aux_data[i].call_imm = insn->imm; 5329 /* point imm to __bpf_call_base+1 from JITs point of view */ 5330 insn->imm = 1; 5331 } 5332 5333 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL); 5334 if (!func) 5335 return -ENOMEM; 5336 5337 for (i = 0; i < env->subprog_cnt; i++) { 5338 subprog_start = subprog_end; 5339 subprog_end = env->subprog_info[i + 1].start; 5340 5341 len = subprog_end - subprog_start; 5342 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5343 if (!func[i]) 5344 goto out_free; 5345 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5346 len * sizeof(struct bpf_insn)); 5347 func[i]->type = prog->type; 5348 func[i]->len = len; 5349 if (bpf_prog_calc_tag(func[i])) 5350 goto out_free; 5351 func[i]->is_func = 1; 5352 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5353 * Long term would need debug info to populate names 5354 */ 5355 func[i]->aux->name[0] = 'F'; 5356 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5357 func[i]->jit_requested = 1; 5358 func[i] = bpf_int_jit_compile(func[i]); 5359 if (!func[i]->jited) { 5360 err = -ENOTSUPP; 5361 goto out_free; 5362 } 5363 cond_resched(); 5364 } 5365 /* at this point all bpf functions were successfully JITed 5366 * now populate all bpf_calls with correct addresses and 5367 * run last pass of JIT 5368 */ 5369 for (i = 0; i < env->subprog_cnt; i++) { 5370 insn = func[i]->insnsi; 5371 for (j = 0; j < func[i]->len; j++, insn++) { 5372 if (insn->code != (BPF_JMP | BPF_CALL) || 5373 insn->src_reg != BPF_PSEUDO_CALL) 5374 continue; 5375 subprog = insn->off; 5376 insn->off = 0; 5377 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5378 func[subprog]->bpf_func - 5379 __bpf_call_base; 5380 } 5381 } 5382 for (i = 0; i < env->subprog_cnt; i++) { 5383 old_bpf_func = func[i]->bpf_func; 5384 tmp = bpf_int_jit_compile(func[i]); 5385 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5386 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5387 err = -EFAULT; 5388 goto out_free; 5389 } 5390 cond_resched(); 5391 } 5392 5393 /* finally lock prog and jit images for all functions and 5394 * populate kallsysm 5395 */ 5396 for (i = 0; i < env->subprog_cnt; i++) { 5397 bpf_prog_lock_ro(func[i]); 5398 bpf_prog_kallsyms_add(func[i]); 5399 } 5400 5401 /* Last step: make now unused interpreter insns from main 5402 * prog consistent for later dump requests, so they can 5403 * later look the same as if they were interpreted only. 5404 */ 5405 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5406 unsigned long addr; 5407 5408 if (insn->code != (BPF_JMP | BPF_CALL) || 5409 insn->src_reg != BPF_PSEUDO_CALL) 5410 continue; 5411 insn->off = env->insn_aux_data[i].call_imm; 5412 subprog = find_subprog(env, i + insn->off + 1); 5413 addr = (unsigned long)func[subprog]->bpf_func; 5414 addr &= PAGE_MASK; 5415 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5416 addr - __bpf_call_base; 5417 } 5418 5419 prog->jited = 1; 5420 prog->bpf_func = func[0]->bpf_func; 5421 prog->aux->func = func; 5422 prog->aux->func_cnt = env->subprog_cnt; 5423 return 0; 5424 out_free: 5425 for (i = 0; i < env->subprog_cnt; i++) 5426 if (func[i]) 5427 bpf_jit_free(func[i]); 5428 kfree(func); 5429 /* cleanup main prog to be interpreted */ 5430 prog->jit_requested = 0; 5431 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5432 if (insn->code != (BPF_JMP | BPF_CALL) || 5433 insn->src_reg != BPF_PSEUDO_CALL) 5434 continue; 5435 insn->off = 0; 5436 insn->imm = env->insn_aux_data[i].call_imm; 5437 } 5438 return err; 5439 } 5440 5441 static int fixup_call_args(struct bpf_verifier_env *env) 5442 { 5443 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5444 struct bpf_prog *prog = env->prog; 5445 struct bpf_insn *insn = prog->insnsi; 5446 int i, depth; 5447 #endif 5448 int err; 5449 5450 err = 0; 5451 if (env->prog->jit_requested) { 5452 err = jit_subprogs(env); 5453 if (err == 0) 5454 return 0; 5455 } 5456 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5457 for (i = 0; i < prog->len; i++, insn++) { 5458 if (insn->code != (BPF_JMP | BPF_CALL) || 5459 insn->src_reg != BPF_PSEUDO_CALL) 5460 continue; 5461 depth = get_callee_stack_depth(env, insn, i); 5462 if (depth < 0) 5463 return depth; 5464 bpf_patch_call_args(insn, depth); 5465 } 5466 err = 0; 5467 #endif 5468 return err; 5469 } 5470 5471 /* fixup insn->imm field of bpf_call instructions 5472 * and inline eligible helpers as explicit sequence of BPF instructions 5473 * 5474 * this function is called after eBPF program passed verification 5475 */ 5476 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5477 { 5478 struct bpf_prog *prog = env->prog; 5479 struct bpf_insn *insn = prog->insnsi; 5480 const struct bpf_func_proto *fn; 5481 const int insn_cnt = prog->len; 5482 struct bpf_insn insn_buf[16]; 5483 struct bpf_prog *new_prog; 5484 struct bpf_map *map_ptr; 5485 int i, cnt, delta = 0; 5486 5487 for (i = 0; i < insn_cnt; i++, insn++) { 5488 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5489 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5490 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5491 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5492 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5493 struct bpf_insn mask_and_div[] = { 5494 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5495 /* Rx div 0 -> 0 */ 5496 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5497 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5498 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5499 *insn, 5500 }; 5501 struct bpf_insn mask_and_mod[] = { 5502 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5503 /* Rx mod 0 -> Rx */ 5504 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5505 *insn, 5506 }; 5507 struct bpf_insn *patchlet; 5508 5509 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5510 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5511 patchlet = mask_and_div + (is64 ? 1 : 0); 5512 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5513 } else { 5514 patchlet = mask_and_mod + (is64 ? 1 : 0); 5515 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5516 } 5517 5518 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5519 if (!new_prog) 5520 return -ENOMEM; 5521 5522 delta += cnt - 1; 5523 env->prog = prog = new_prog; 5524 insn = new_prog->insnsi + i + delta; 5525 continue; 5526 } 5527 5528 if (BPF_CLASS(insn->code) == BPF_LD && 5529 (BPF_MODE(insn->code) == BPF_ABS || 5530 BPF_MODE(insn->code) == BPF_IND)) { 5531 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5532 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5533 verbose(env, "bpf verifier is misconfigured\n"); 5534 return -EINVAL; 5535 } 5536 5537 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5538 if (!new_prog) 5539 return -ENOMEM; 5540 5541 delta += cnt - 1; 5542 env->prog = prog = new_prog; 5543 insn = new_prog->insnsi + i + delta; 5544 continue; 5545 } 5546 5547 if (insn->code != (BPF_JMP | BPF_CALL)) 5548 continue; 5549 if (insn->src_reg == BPF_PSEUDO_CALL) 5550 continue; 5551 5552 if (insn->imm == BPF_FUNC_get_route_realm) 5553 prog->dst_needed = 1; 5554 if (insn->imm == BPF_FUNC_get_prandom_u32) 5555 bpf_user_rnd_init_once(); 5556 if (insn->imm == BPF_FUNC_override_return) 5557 prog->kprobe_override = 1; 5558 if (insn->imm == BPF_FUNC_tail_call) { 5559 /* If we tail call into other programs, we 5560 * cannot make any assumptions since they can 5561 * be replaced dynamically during runtime in 5562 * the program array. 5563 */ 5564 prog->cb_access = 1; 5565 env->prog->aux->stack_depth = MAX_BPF_STACK; 5566 5567 /* mark bpf_tail_call as different opcode to avoid 5568 * conditional branch in the interpeter for every normal 5569 * call and to prevent accidental JITing by JIT compiler 5570 * that doesn't support bpf_tail_call yet 5571 */ 5572 insn->imm = 0; 5573 insn->code = BPF_JMP | BPF_TAIL_CALL; 5574 5575 /* instead of changing every JIT dealing with tail_call 5576 * emit two extra insns: 5577 * if (index >= max_entries) goto out; 5578 * index &= array->index_mask; 5579 * to avoid out-of-bounds cpu speculation 5580 */ 5581 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5582 if (map_ptr == BPF_MAP_PTR_POISON) { 5583 verbose(env, "tail_call abusing map_ptr\n"); 5584 return -EINVAL; 5585 } 5586 if (!map_ptr->unpriv_array) 5587 continue; 5588 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5589 map_ptr->max_entries, 2); 5590 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5591 container_of(map_ptr, 5592 struct bpf_array, 5593 map)->index_mask); 5594 insn_buf[2] = *insn; 5595 cnt = 3; 5596 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5597 if (!new_prog) 5598 return -ENOMEM; 5599 5600 delta += cnt - 1; 5601 env->prog = prog = new_prog; 5602 insn = new_prog->insnsi + i + delta; 5603 continue; 5604 } 5605 5606 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5607 * handlers are currently limited to 64 bit only. 5608 */ 5609 if (prog->jit_requested && BITS_PER_LONG == 64 && 5610 insn->imm == BPF_FUNC_map_lookup_elem) { 5611 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5612 if (map_ptr == BPF_MAP_PTR_POISON || 5613 !map_ptr->ops->map_gen_lookup) 5614 goto patch_call_imm; 5615 5616 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 5617 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5618 verbose(env, "bpf verifier is misconfigured\n"); 5619 return -EINVAL; 5620 } 5621 5622 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 5623 cnt); 5624 if (!new_prog) 5625 return -ENOMEM; 5626 5627 delta += cnt - 1; 5628 5629 /* keep walking new program and skip insns we just inserted */ 5630 env->prog = prog = new_prog; 5631 insn = new_prog->insnsi + i + delta; 5632 continue; 5633 } 5634 5635 if (insn->imm == BPF_FUNC_redirect_map) { 5636 /* Note, we cannot use prog directly as imm as subsequent 5637 * rewrites would still change the prog pointer. The only 5638 * stable address we can use is aux, which also works with 5639 * prog clones during blinding. 5640 */ 5641 u64 addr = (unsigned long)prog->aux; 5642 struct bpf_insn r4_ld[] = { 5643 BPF_LD_IMM64(BPF_REG_4, addr), 5644 *insn, 5645 }; 5646 cnt = ARRAY_SIZE(r4_ld); 5647 5648 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5649 if (!new_prog) 5650 return -ENOMEM; 5651 5652 delta += cnt - 1; 5653 env->prog = prog = new_prog; 5654 insn = new_prog->insnsi + i + delta; 5655 } 5656 patch_call_imm: 5657 fn = env->ops->get_func_proto(insn->imm, env->prog); 5658 /* all functions that have prototype and verifier allowed 5659 * programs to call them, must be real in-kernel functions 5660 */ 5661 if (!fn->func) { 5662 verbose(env, 5663 "kernel subsystem misconfigured func %s#%d\n", 5664 func_id_name(insn->imm), insn->imm); 5665 return -EFAULT; 5666 } 5667 insn->imm = fn->func - __bpf_call_base; 5668 } 5669 5670 return 0; 5671 } 5672 5673 static void free_states(struct bpf_verifier_env *env) 5674 { 5675 struct bpf_verifier_state_list *sl, *sln; 5676 int i; 5677 5678 if (!env->explored_states) 5679 return; 5680 5681 for (i = 0; i < env->prog->len; i++) { 5682 sl = env->explored_states[i]; 5683 5684 if (sl) 5685 while (sl != STATE_LIST_MARK) { 5686 sln = sl->next; 5687 free_verifier_state(&sl->state, false); 5688 kfree(sl); 5689 sl = sln; 5690 } 5691 } 5692 5693 kfree(env->explored_states); 5694 } 5695 5696 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5697 { 5698 struct bpf_verifier_env *env; 5699 struct bpf_verifier_log *log; 5700 int ret = -EINVAL; 5701 5702 /* no program is valid */ 5703 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5704 return -EINVAL; 5705 5706 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5707 * allocate/free it every time bpf_check() is called 5708 */ 5709 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5710 if (!env) 5711 return -ENOMEM; 5712 log = &env->log; 5713 5714 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 5715 (*prog)->len); 5716 ret = -ENOMEM; 5717 if (!env->insn_aux_data) 5718 goto err_free_env; 5719 env->prog = *prog; 5720 env->ops = bpf_verifier_ops[env->prog->type]; 5721 5722 /* grab the mutex to protect few globals used by verifier */ 5723 mutex_lock(&bpf_verifier_lock); 5724 5725 if (attr->log_level || attr->log_buf || attr->log_size) { 5726 /* user requested verbose verifier output 5727 * and supplied buffer to store the verification trace 5728 */ 5729 log->level = attr->log_level; 5730 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5731 log->len_total = attr->log_size; 5732 5733 ret = -EINVAL; 5734 /* log attributes have to be sane */ 5735 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5736 !log->level || !log->ubuf) 5737 goto err_unlock; 5738 } 5739 5740 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5741 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5742 env->strict_alignment = true; 5743 5744 ret = replace_map_fd_with_map_ptr(env); 5745 if (ret < 0) 5746 goto skip_full_check; 5747 5748 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5749 ret = bpf_prog_offload_verifier_prep(env); 5750 if (ret) 5751 goto skip_full_check; 5752 } 5753 5754 env->explored_states = kcalloc(env->prog->len, 5755 sizeof(struct bpf_verifier_state_list *), 5756 GFP_USER); 5757 ret = -ENOMEM; 5758 if (!env->explored_states) 5759 goto skip_full_check; 5760 5761 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5762 5763 ret = check_cfg(env); 5764 if (ret < 0) 5765 goto skip_full_check; 5766 5767 ret = do_check(env); 5768 if (env->cur_state) { 5769 free_verifier_state(env->cur_state, true); 5770 env->cur_state = NULL; 5771 } 5772 5773 skip_full_check: 5774 while (!pop_stack(env, NULL, NULL)); 5775 free_states(env); 5776 5777 if (ret == 0) 5778 sanitize_dead_code(env); 5779 5780 if (ret == 0) 5781 ret = check_max_stack_depth(env); 5782 5783 if (ret == 0) 5784 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5785 ret = convert_ctx_accesses(env); 5786 5787 if (ret == 0) 5788 ret = fixup_bpf_calls(env); 5789 5790 if (ret == 0) 5791 ret = fixup_call_args(env); 5792 5793 if (log->level && bpf_verifier_log_full(log)) 5794 ret = -ENOSPC; 5795 if (log->level && !log->ubuf) { 5796 ret = -EFAULT; 5797 goto err_release_maps; 5798 } 5799 5800 if (ret == 0 && env->used_map_cnt) { 5801 /* if program passed verifier, update used_maps in bpf_prog_info */ 5802 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5803 sizeof(env->used_maps[0]), 5804 GFP_KERNEL); 5805 5806 if (!env->prog->aux->used_maps) { 5807 ret = -ENOMEM; 5808 goto err_release_maps; 5809 } 5810 5811 memcpy(env->prog->aux->used_maps, env->used_maps, 5812 sizeof(env->used_maps[0]) * env->used_map_cnt); 5813 env->prog->aux->used_map_cnt = env->used_map_cnt; 5814 5815 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5816 * bpf_ld_imm64 instructions 5817 */ 5818 convert_pseudo_ld_imm64(env); 5819 } 5820 5821 err_release_maps: 5822 if (!env->prog->aux->used_maps) 5823 /* if we didn't copy map pointers into bpf_prog_info, release 5824 * them now. Otherwise free_bpf_prog_info() will release them. 5825 */ 5826 release_maps(env); 5827 *prog = env->prog; 5828 err_unlock: 5829 mutex_unlock(&bpf_verifier_lock); 5830 vfree(env->insn_aux_data); 5831 err_free_env: 5832 kfree(env); 5833 return ret; 5834 } 5835