xref: /linux/kernel/bpf/verifier.c (revision f26b118031205135c23b43a311712fe8f34febf9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop/bpf_percpu_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
547 
548 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_for_each_map_elem ||
551 	       func_id == BPF_FUNC_timer_set_callback ||
552 	       func_id == BPF_FUNC_find_vma ||
553 	       func_id == BPF_FUNC_loop ||
554 	       func_id == BPF_FUNC_user_ringbuf_drain;
555 }
556 
557 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 {
559 	return func_id == BPF_FUNC_timer_set_callback;
560 }
561 
562 static bool is_storage_get_function(enum bpf_func_id func_id)
563 {
564 	return func_id == BPF_FUNC_sk_storage_get ||
565 	       func_id == BPF_FUNC_inode_storage_get ||
566 	       func_id == BPF_FUNC_task_storage_get ||
567 	       func_id == BPF_FUNC_cgrp_storage_get;
568 }
569 
570 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
571 					const struct bpf_map *map)
572 {
573 	int ref_obj_uses = 0;
574 
575 	if (is_ptr_cast_function(func_id))
576 		ref_obj_uses++;
577 	if (is_acquire_function(func_id, map))
578 		ref_obj_uses++;
579 	if (is_dynptr_ref_function(func_id))
580 		ref_obj_uses++;
581 
582 	return ref_obj_uses > 1;
583 }
584 
585 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 {
587 	return BPF_CLASS(insn->code) == BPF_STX &&
588 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
589 	       insn->imm == BPF_CMPXCHG;
590 }
591 
592 /* string representation of 'enum bpf_reg_type'
593  *
594  * Note that reg_type_str() can not appear more than once in a single verbose()
595  * statement.
596  */
597 static const char *reg_type_str(struct bpf_verifier_env *env,
598 				enum bpf_reg_type type)
599 {
600 	char postfix[16] = {0}, prefix[64] = {0};
601 	static const char * const str[] = {
602 		[NOT_INIT]		= "?",
603 		[SCALAR_VALUE]		= "scalar",
604 		[PTR_TO_CTX]		= "ctx",
605 		[CONST_PTR_TO_MAP]	= "map_ptr",
606 		[PTR_TO_MAP_VALUE]	= "map_value",
607 		[PTR_TO_STACK]		= "fp",
608 		[PTR_TO_PACKET]		= "pkt",
609 		[PTR_TO_PACKET_META]	= "pkt_meta",
610 		[PTR_TO_PACKET_END]	= "pkt_end",
611 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
612 		[PTR_TO_SOCKET]		= "sock",
613 		[PTR_TO_SOCK_COMMON]	= "sock_common",
614 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
615 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
616 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
617 		[PTR_TO_BTF_ID]		= "ptr_",
618 		[PTR_TO_MEM]		= "mem",
619 		[PTR_TO_BUF]		= "buf",
620 		[PTR_TO_FUNC]		= "func",
621 		[PTR_TO_MAP_KEY]	= "map_key",
622 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
623 	};
624 
625 	if (type & PTR_MAYBE_NULL) {
626 		if (base_type(type) == PTR_TO_BTF_ID)
627 			strncpy(postfix, "or_null_", 16);
628 		else
629 			strncpy(postfix, "_or_null", 16);
630 	}
631 
632 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
633 		 type & MEM_RDONLY ? "rdonly_" : "",
634 		 type & MEM_RINGBUF ? "ringbuf_" : "",
635 		 type & MEM_USER ? "user_" : "",
636 		 type & MEM_PERCPU ? "percpu_" : "",
637 		 type & MEM_RCU ? "rcu_" : "",
638 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
639 		 type & PTR_TRUSTED ? "trusted_" : ""
640 	);
641 
642 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
643 		 prefix, str[base_type(type)], postfix);
644 	return env->tmp_str_buf;
645 }
646 
647 static char slot_type_char[] = {
648 	[STACK_INVALID]	= '?',
649 	[STACK_SPILL]	= 'r',
650 	[STACK_MISC]	= 'm',
651 	[STACK_ZERO]	= '0',
652 	[STACK_DYNPTR]	= 'd',
653 	[STACK_ITER]	= 'i',
654 };
655 
656 static void print_liveness(struct bpf_verifier_env *env,
657 			   enum bpf_reg_liveness live)
658 {
659 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 	    verbose(env, "_");
661 	if (live & REG_LIVE_READ)
662 		verbose(env, "r");
663 	if (live & REG_LIVE_WRITTEN)
664 		verbose(env, "w");
665 	if (live & REG_LIVE_DONE)
666 		verbose(env, "D");
667 }
668 
669 static int __get_spi(s32 off)
670 {
671 	return (-off - 1) / BPF_REG_SIZE;
672 }
673 
674 static struct bpf_func_state *func(struct bpf_verifier_env *env,
675 				   const struct bpf_reg_state *reg)
676 {
677 	struct bpf_verifier_state *cur = env->cur_state;
678 
679 	return cur->frame[reg->frameno];
680 }
681 
682 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 {
684        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 
686        /* We need to check that slots between [spi - nr_slots + 1, spi] are
687 	* within [0, allocated_stack).
688 	*
689 	* Please note that the spi grows downwards. For example, a dynptr
690 	* takes the size of two stack slots; the first slot will be at
691 	* spi and the second slot will be at spi - 1.
692 	*/
693        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
694 }
695 
696 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
697 			          const char *obj_kind, int nr_slots)
698 {
699 	int off, spi;
700 
701 	if (!tnum_is_const(reg->var_off)) {
702 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
703 		return -EINVAL;
704 	}
705 
706 	off = reg->off + reg->var_off.value;
707 	if (off % BPF_REG_SIZE) {
708 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
709 		return -EINVAL;
710 	}
711 
712 	spi = __get_spi(off);
713 	if (spi + 1 < nr_slots) {
714 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
715 		return -EINVAL;
716 	}
717 
718 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
719 		return -ERANGE;
720 	return spi;
721 }
722 
723 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 {
725 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
726 }
727 
728 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 {
730 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
731 }
732 
733 static const char *btf_type_name(const struct btf *btf, u32 id)
734 {
735 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
736 }
737 
738 static const char *dynptr_type_str(enum bpf_dynptr_type type)
739 {
740 	switch (type) {
741 	case BPF_DYNPTR_TYPE_LOCAL:
742 		return "local";
743 	case BPF_DYNPTR_TYPE_RINGBUF:
744 		return "ringbuf";
745 	case BPF_DYNPTR_TYPE_SKB:
746 		return "skb";
747 	case BPF_DYNPTR_TYPE_XDP:
748 		return "xdp";
749 	case BPF_DYNPTR_TYPE_INVALID:
750 		return "<invalid>";
751 	default:
752 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
753 		return "<unknown>";
754 	}
755 }
756 
757 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 {
759 	if (!btf || btf_id == 0)
760 		return "<invalid>";
761 
762 	/* we already validated that type is valid and has conforming name */
763 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
764 }
765 
766 static const char *iter_state_str(enum bpf_iter_state state)
767 {
768 	switch (state) {
769 	case BPF_ITER_STATE_ACTIVE:
770 		return "active";
771 	case BPF_ITER_STATE_DRAINED:
772 		return "drained";
773 	case BPF_ITER_STATE_INVALID:
774 		return "<invalid>";
775 	default:
776 		WARN_ONCE(1, "unknown iter state %d\n", state);
777 		return "<unknown>";
778 	}
779 }
780 
781 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 {
783 	env->scratched_regs |= 1U << regno;
784 }
785 
786 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 {
788 	env->scratched_stack_slots |= 1ULL << spi;
789 }
790 
791 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 {
793 	return (env->scratched_regs >> regno) & 1;
794 }
795 
796 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 {
798 	return (env->scratched_stack_slots >> regno) & 1;
799 }
800 
801 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 {
803 	return env->scratched_regs || env->scratched_stack_slots;
804 }
805 
806 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 {
808 	env->scratched_regs = 0U;
809 	env->scratched_stack_slots = 0ULL;
810 }
811 
812 /* Used for printing the entire verifier state. */
813 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 {
815 	env->scratched_regs = ~0U;
816 	env->scratched_stack_slots = ~0ULL;
817 }
818 
819 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 {
821 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
822 	case DYNPTR_TYPE_LOCAL:
823 		return BPF_DYNPTR_TYPE_LOCAL;
824 	case DYNPTR_TYPE_RINGBUF:
825 		return BPF_DYNPTR_TYPE_RINGBUF;
826 	case DYNPTR_TYPE_SKB:
827 		return BPF_DYNPTR_TYPE_SKB;
828 	case DYNPTR_TYPE_XDP:
829 		return BPF_DYNPTR_TYPE_XDP;
830 	default:
831 		return BPF_DYNPTR_TYPE_INVALID;
832 	}
833 }
834 
835 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
836 {
837 	switch (type) {
838 	case BPF_DYNPTR_TYPE_LOCAL:
839 		return DYNPTR_TYPE_LOCAL;
840 	case BPF_DYNPTR_TYPE_RINGBUF:
841 		return DYNPTR_TYPE_RINGBUF;
842 	case BPF_DYNPTR_TYPE_SKB:
843 		return DYNPTR_TYPE_SKB;
844 	case BPF_DYNPTR_TYPE_XDP:
845 		return DYNPTR_TYPE_XDP;
846 	default:
847 		return 0;
848 	}
849 }
850 
851 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 {
853 	return type == BPF_DYNPTR_TYPE_RINGBUF;
854 }
855 
856 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
857 			      enum bpf_dynptr_type type,
858 			      bool first_slot, int dynptr_id);
859 
860 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
861 				struct bpf_reg_state *reg);
862 
863 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
864 				   struct bpf_reg_state *sreg1,
865 				   struct bpf_reg_state *sreg2,
866 				   enum bpf_dynptr_type type)
867 {
868 	int id = ++env->id_gen;
869 
870 	__mark_dynptr_reg(sreg1, type, true, id);
871 	__mark_dynptr_reg(sreg2, type, false, id);
872 }
873 
874 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
875 			       struct bpf_reg_state *reg,
876 			       enum bpf_dynptr_type type)
877 {
878 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
879 }
880 
881 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
882 				        struct bpf_func_state *state, int spi);
883 
884 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
885 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 {
887 	struct bpf_func_state *state = func(env, reg);
888 	enum bpf_dynptr_type type;
889 	int spi, i, err;
890 
891 	spi = dynptr_get_spi(env, reg);
892 	if (spi < 0)
893 		return spi;
894 
895 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
896 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
897 	 * to ensure that for the following example:
898 	 *	[d1][d1][d2][d2]
899 	 * spi    3   2   1   0
900 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
901 	 * case they do belong to same dynptr, second call won't see slot_type
902 	 * as STACK_DYNPTR and will simply skip destruction.
903 	 */
904 	err = destroy_if_dynptr_stack_slot(env, state, spi);
905 	if (err)
906 		return err;
907 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
908 	if (err)
909 		return err;
910 
911 	for (i = 0; i < BPF_REG_SIZE; i++) {
912 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
913 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
914 	}
915 
916 	type = arg_to_dynptr_type(arg_type);
917 	if (type == BPF_DYNPTR_TYPE_INVALID)
918 		return -EINVAL;
919 
920 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
921 			       &state->stack[spi - 1].spilled_ptr, type);
922 
923 	if (dynptr_type_refcounted(type)) {
924 		/* The id is used to track proper releasing */
925 		int id;
926 
927 		if (clone_ref_obj_id)
928 			id = clone_ref_obj_id;
929 		else
930 			id = acquire_reference_state(env, insn_idx);
931 
932 		if (id < 0)
933 			return id;
934 
935 		state->stack[spi].spilled_ptr.ref_obj_id = id;
936 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
937 	}
938 
939 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 
942 	return 0;
943 }
944 
945 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
946 {
947 	int i;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		state->stack[spi].slot_type[i] = STACK_INVALID;
951 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
952 	}
953 
954 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
955 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 
957 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 	 *
959 	 * While we don't allow reading STACK_INVALID, it is still possible to
960 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
961 	 * helpers or insns can do partial read of that part without failing,
962 	 * but check_stack_range_initialized, check_stack_read_var_off, and
963 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
964 	 * the slot conservatively. Hence we need to prevent those liveness
965 	 * marking walks.
966 	 *
967 	 * This was not a problem before because STACK_INVALID is only set by
968 	 * default (where the default reg state has its reg->parent as NULL), or
969 	 * in clean_live_states after REG_LIVE_DONE (at which point
970 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
971 	 * verifier state exploration (like we did above). Hence, for our case
972 	 * parentage chain will still be live (i.e. reg->parent may be
973 	 * non-NULL), while earlier reg->parent was NULL, so we need
974 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
975 	 * done later on reads or by mark_dynptr_read as well to unnecessary
976 	 * mark registers in verifier state.
977 	 */
978 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
980 }
981 
982 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 {
984 	struct bpf_func_state *state = func(env, reg);
985 	int spi, ref_obj_id, i;
986 
987 	spi = dynptr_get_spi(env, reg);
988 	if (spi < 0)
989 		return spi;
990 
991 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
992 		invalidate_dynptr(env, state, spi);
993 		return 0;
994 	}
995 
996 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 
998 	/* If the dynptr has a ref_obj_id, then we need to invalidate
999 	 * two things:
1000 	 *
1001 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1002 	 * 2) Any slices derived from this dynptr.
1003 	 */
1004 
1005 	/* Invalidate any slices associated with this dynptr */
1006 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 
1008 	/* Invalidate any dynptr clones */
1009 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1010 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1011 			continue;
1012 
1013 		/* it should always be the case that if the ref obj id
1014 		 * matches then the stack slot also belongs to a
1015 		 * dynptr
1016 		 */
1017 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1018 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1019 			return -EFAULT;
1020 		}
1021 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1022 			invalidate_dynptr(env, state, i);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1029 			       struct bpf_reg_state *reg);
1030 
1031 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 {
1033 	if (!env->allow_ptr_leaks)
1034 		__mark_reg_not_init(env, reg);
1035 	else
1036 		__mark_reg_unknown(env, reg);
1037 }
1038 
1039 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1040 				        struct bpf_func_state *state, int spi)
1041 {
1042 	struct bpf_func_state *fstate;
1043 	struct bpf_reg_state *dreg;
1044 	int i, dynptr_id;
1045 
1046 	/* We always ensure that STACK_DYNPTR is never set partially,
1047 	 * hence just checking for slot_type[0] is enough. This is
1048 	 * different for STACK_SPILL, where it may be only set for
1049 	 * 1 byte, so code has to use is_spilled_reg.
1050 	 */
1051 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1052 		return 0;
1053 
1054 	/* Reposition spi to first slot */
1055 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1056 		spi = spi + 1;
1057 
1058 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1059 		verbose(env, "cannot overwrite referenced dynptr\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	mark_stack_slot_scratched(env, spi);
1064 	mark_stack_slot_scratched(env, spi - 1);
1065 
1066 	/* Writing partially to one dynptr stack slot destroys both. */
1067 	for (i = 0; i < BPF_REG_SIZE; i++) {
1068 		state->stack[spi].slot_type[i] = STACK_INVALID;
1069 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1070 	}
1071 
1072 	dynptr_id = state->stack[spi].spilled_ptr.id;
1073 	/* Invalidate any slices associated with this dynptr */
1074 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1075 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1076 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 			continue;
1078 		if (dreg->dynptr_id == dynptr_id)
1079 			mark_reg_invalid(env, dreg);
1080 	}));
1081 
1082 	/* Do not release reference state, we are destroying dynptr on stack,
1083 	 * not using some helper to release it. Just reset register.
1084 	 */
1085 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1086 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 
1088 	/* Same reason as unmark_stack_slots_dynptr above */
1089 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1091 
1092 	return 0;
1093 }
1094 
1095 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1096 {
1097 	int spi;
1098 
1099 	if (reg->type == CONST_PTR_TO_DYNPTR)
1100 		return false;
1101 
1102 	spi = dynptr_get_spi(env, reg);
1103 
1104 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1105 	 * error because this just means the stack state hasn't been updated yet.
1106 	 * We will do check_mem_access to check and update stack bounds later.
1107 	 */
1108 	if (spi < 0 && spi != -ERANGE)
1109 		return false;
1110 
1111 	/* We don't need to check if the stack slots are marked by previous
1112 	 * dynptr initializations because we allow overwriting existing unreferenced
1113 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1114 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1115 	 * touching are completely destructed before we reinitialize them for a new
1116 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1117 	 * instead of delaying it until the end where the user will get "Unreleased
1118 	 * reference" error.
1119 	 */
1120 	return true;
1121 }
1122 
1123 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 {
1125 	struct bpf_func_state *state = func(env, reg);
1126 	int i, spi;
1127 
1128 	/* This already represents first slot of initialized bpf_dynptr.
1129 	 *
1130 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1131 	 * check_func_arg_reg_off's logic, so we don't need to check its
1132 	 * offset and alignment.
1133 	 */
1134 	if (reg->type == CONST_PTR_TO_DYNPTR)
1135 		return true;
1136 
1137 	spi = dynptr_get_spi(env, reg);
1138 	if (spi < 0)
1139 		return false;
1140 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1141 		return false;
1142 
1143 	for (i = 0; i < BPF_REG_SIZE; i++) {
1144 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1145 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1146 			return false;
1147 	}
1148 
1149 	return true;
1150 }
1151 
1152 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1153 				    enum bpf_arg_type arg_type)
1154 {
1155 	struct bpf_func_state *state = func(env, reg);
1156 	enum bpf_dynptr_type dynptr_type;
1157 	int spi;
1158 
1159 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1160 	if (arg_type == ARG_PTR_TO_DYNPTR)
1161 		return true;
1162 
1163 	dynptr_type = arg_to_dynptr_type(arg_type);
1164 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1165 		return reg->dynptr.type == dynptr_type;
1166 	} else {
1167 		spi = dynptr_get_spi(env, reg);
1168 		if (spi < 0)
1169 			return false;
1170 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1171 	}
1172 }
1173 
1174 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 
1176 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1177 				 struct bpf_reg_state *reg, int insn_idx,
1178 				 struct btf *btf, u32 btf_id, int nr_slots)
1179 {
1180 	struct bpf_func_state *state = func(env, reg);
1181 	int spi, i, j, id;
1182 
1183 	spi = iter_get_spi(env, reg, nr_slots);
1184 	if (spi < 0)
1185 		return spi;
1186 
1187 	id = acquire_reference_state(env, insn_idx);
1188 	if (id < 0)
1189 		return id;
1190 
1191 	for (i = 0; i < nr_slots; i++) {
1192 		struct bpf_stack_state *slot = &state->stack[spi - i];
1193 		struct bpf_reg_state *st = &slot->spilled_ptr;
1194 
1195 		__mark_reg_known_zero(st);
1196 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1197 		st->live |= REG_LIVE_WRITTEN;
1198 		st->ref_obj_id = i == 0 ? id : 0;
1199 		st->iter.btf = btf;
1200 		st->iter.btf_id = btf_id;
1201 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1202 		st->iter.depth = 0;
1203 
1204 		for (j = 0; j < BPF_REG_SIZE; j++)
1205 			slot->slot_type[j] = STACK_ITER;
1206 
1207 		mark_stack_slot_scratched(env, spi - i);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1214 				   struct bpf_reg_state *reg, int nr_slots)
1215 {
1216 	struct bpf_func_state *state = func(env, reg);
1217 	int spi, i, j;
1218 
1219 	spi = iter_get_spi(env, reg, nr_slots);
1220 	if (spi < 0)
1221 		return spi;
1222 
1223 	for (i = 0; i < nr_slots; i++) {
1224 		struct bpf_stack_state *slot = &state->stack[spi - i];
1225 		struct bpf_reg_state *st = &slot->spilled_ptr;
1226 
1227 		if (i == 0)
1228 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1229 
1230 		__mark_reg_not_init(env, st);
1231 
1232 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1233 		st->live |= REG_LIVE_WRITTEN;
1234 
1235 		for (j = 0; j < BPF_REG_SIZE; j++)
1236 			slot->slot_type[j] = STACK_INVALID;
1237 
1238 		mark_stack_slot_scratched(env, spi - i);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1245 				     struct bpf_reg_state *reg, int nr_slots)
1246 {
1247 	struct bpf_func_state *state = func(env, reg);
1248 	int spi, i, j;
1249 
1250 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1251 	 * will do check_mem_access to check and update stack bounds later, so
1252 	 * return true for that case.
1253 	 */
1254 	spi = iter_get_spi(env, reg, nr_slots);
1255 	if (spi == -ERANGE)
1256 		return true;
1257 	if (spi < 0)
1258 		return false;
1259 
1260 	for (i = 0; i < nr_slots; i++) {
1261 		struct bpf_stack_state *slot = &state->stack[spi - i];
1262 
1263 		for (j = 0; j < BPF_REG_SIZE; j++)
1264 			if (slot->slot_type[j] == STACK_ITER)
1265 				return false;
1266 	}
1267 
1268 	return true;
1269 }
1270 
1271 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1272 				   struct btf *btf, u32 btf_id, int nr_slots)
1273 {
1274 	struct bpf_func_state *state = func(env, reg);
1275 	int spi, i, j;
1276 
1277 	spi = iter_get_spi(env, reg, nr_slots);
1278 	if (spi < 0)
1279 		return false;
1280 
1281 	for (i = 0; i < nr_slots; i++) {
1282 		struct bpf_stack_state *slot = &state->stack[spi - i];
1283 		struct bpf_reg_state *st = &slot->spilled_ptr;
1284 
1285 		/* only main (first) slot has ref_obj_id set */
1286 		if (i == 0 && !st->ref_obj_id)
1287 			return false;
1288 		if (i != 0 && st->ref_obj_id)
1289 			return false;
1290 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1291 			return false;
1292 
1293 		for (j = 0; j < BPF_REG_SIZE; j++)
1294 			if (slot->slot_type[j] != STACK_ITER)
1295 				return false;
1296 	}
1297 
1298 	return true;
1299 }
1300 
1301 /* Check if given stack slot is "special":
1302  *   - spilled register state (STACK_SPILL);
1303  *   - dynptr state (STACK_DYNPTR);
1304  *   - iter state (STACK_ITER).
1305  */
1306 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1307 {
1308 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1309 
1310 	switch (type) {
1311 	case STACK_SPILL:
1312 	case STACK_DYNPTR:
1313 	case STACK_ITER:
1314 		return true;
1315 	case STACK_INVALID:
1316 	case STACK_MISC:
1317 	case STACK_ZERO:
1318 		return false;
1319 	default:
1320 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1321 		return true;
1322 	}
1323 }
1324 
1325 /* The reg state of a pointer or a bounded scalar was saved when
1326  * it was spilled to the stack.
1327  */
1328 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1329 {
1330 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1331 }
1332 
1333 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1334 {
1335 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1336 	       stack->spilled_ptr.type == SCALAR_VALUE;
1337 }
1338 
1339 static void scrub_spilled_slot(u8 *stype)
1340 {
1341 	if (*stype != STACK_INVALID)
1342 		*stype = STACK_MISC;
1343 }
1344 
1345 static void print_scalar_ranges(struct bpf_verifier_env *env,
1346 				const struct bpf_reg_state *reg,
1347 				const char **sep)
1348 {
1349 	struct {
1350 		const char *name;
1351 		u64 val;
1352 		bool omit;
1353 	} minmaxs[] = {
1354 		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1355 		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1356 		{"umin",   reg->umin_value,         reg->umin_value == 0},
1357 		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1358 		{"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1359 		{"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1360 		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1361 		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1362 	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1363 	bool neg1, neg2;
1364 
1365 	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1366 		if (m1->omit)
1367 			continue;
1368 
1369 		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1370 
1371 		verbose(env, "%s%s=", *sep, m1->name);
1372 		*sep = ",";
1373 
1374 		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1375 			if (m2->omit || m2->val != m1->val)
1376 				continue;
1377 			/* don't mix negatives with positives */
1378 			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1379 			if (neg2 != neg1)
1380 				continue;
1381 			m2->omit = true;
1382 			verbose(env, "%s=", m2->name);
1383 		}
1384 
1385 		verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1386 	}
1387 }
1388 
1389 static void print_verifier_state(struct bpf_verifier_env *env,
1390 				 const struct bpf_func_state *state,
1391 				 bool print_all)
1392 {
1393 	const struct bpf_reg_state *reg;
1394 	enum bpf_reg_type t;
1395 	int i;
1396 
1397 	if (state->frameno)
1398 		verbose(env, " frame%d:", state->frameno);
1399 	for (i = 0; i < MAX_BPF_REG; i++) {
1400 		reg = &state->regs[i];
1401 		t = reg->type;
1402 		if (t == NOT_INIT)
1403 			continue;
1404 		if (!print_all && !reg_scratched(env, i))
1405 			continue;
1406 		verbose(env, " R%d", i);
1407 		print_liveness(env, reg->live);
1408 		verbose(env, "=");
1409 		if (t == SCALAR_VALUE && reg->precise)
1410 			verbose(env, "P");
1411 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1412 		    tnum_is_const(reg->var_off)) {
1413 			/* reg->off should be 0 for SCALAR_VALUE */
1414 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1415 			verbose(env, "%lld", reg->var_off.value + reg->off);
1416 		} else {
1417 			const char *sep = "";
1418 
1419 			verbose(env, "%s", reg_type_str(env, t));
1420 			if (base_type(t) == PTR_TO_BTF_ID)
1421 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1422 			verbose(env, "(");
1423 /*
1424  * _a stands for append, was shortened to avoid multiline statements below.
1425  * This macro is used to output a comma separated list of attributes.
1426  */
1427 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1428 
1429 			if (reg->id)
1430 				verbose_a("id=%d", reg->id);
1431 			if (reg->ref_obj_id)
1432 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1433 			if (type_is_non_owning_ref(reg->type))
1434 				verbose_a("%s", "non_own_ref");
1435 			if (t != SCALAR_VALUE)
1436 				verbose_a("off=%d", reg->off);
1437 			if (type_is_pkt_pointer(t))
1438 				verbose_a("r=%d", reg->range);
1439 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1440 				 base_type(t) == PTR_TO_MAP_KEY ||
1441 				 base_type(t) == PTR_TO_MAP_VALUE)
1442 				verbose_a("ks=%d,vs=%d",
1443 					  reg->map_ptr->key_size,
1444 					  reg->map_ptr->value_size);
1445 			if (tnum_is_const(reg->var_off)) {
1446 				/* Typically an immediate SCALAR_VALUE, but
1447 				 * could be a pointer whose offset is too big
1448 				 * for reg->off
1449 				 */
1450 				verbose_a("imm=%llx", reg->var_off.value);
1451 			} else {
1452 				print_scalar_ranges(env, reg, &sep);
1453 				if (!tnum_is_unknown(reg->var_off)) {
1454 					char tn_buf[48];
1455 
1456 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1457 					verbose_a("var_off=%s", tn_buf);
1458 				}
1459 			}
1460 #undef verbose_a
1461 
1462 			verbose(env, ")");
1463 		}
1464 	}
1465 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1466 		char types_buf[BPF_REG_SIZE + 1];
1467 		bool valid = false;
1468 		int j;
1469 
1470 		for (j = 0; j < BPF_REG_SIZE; j++) {
1471 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1472 				valid = true;
1473 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1474 		}
1475 		types_buf[BPF_REG_SIZE] = 0;
1476 		if (!valid)
1477 			continue;
1478 		if (!print_all && !stack_slot_scratched(env, i))
1479 			continue;
1480 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1481 		case STACK_SPILL:
1482 			reg = &state->stack[i].spilled_ptr;
1483 			t = reg->type;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1488 			if (t == SCALAR_VALUE && reg->precise)
1489 				verbose(env, "P");
1490 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1491 				verbose(env, "%lld", reg->var_off.value + reg->off);
1492 			break;
1493 		case STACK_DYNPTR:
1494 			i += BPF_DYNPTR_NR_SLOTS - 1;
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1498 			print_liveness(env, reg->live);
1499 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1500 			if (reg->ref_obj_id)
1501 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1502 			break;
1503 		case STACK_ITER:
1504 			/* only main slot has ref_obj_id set; skip others */
1505 			reg = &state->stack[i].spilled_ptr;
1506 			if (!reg->ref_obj_id)
1507 				continue;
1508 
1509 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1510 			print_liveness(env, reg->live);
1511 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1512 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1513 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1514 				reg->iter.depth);
1515 			break;
1516 		case STACK_MISC:
1517 		case STACK_ZERO:
1518 		default:
1519 			reg = &state->stack[i].spilled_ptr;
1520 
1521 			for (j = 0; j < BPF_REG_SIZE; j++)
1522 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1523 			types_buf[BPF_REG_SIZE] = 0;
1524 
1525 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1526 			print_liveness(env, reg->live);
1527 			verbose(env, "=%s", types_buf);
1528 			break;
1529 		}
1530 	}
1531 	if (state->acquired_refs && state->refs[0].id) {
1532 		verbose(env, " refs=%d", state->refs[0].id);
1533 		for (i = 1; i < state->acquired_refs; i++)
1534 			if (state->refs[i].id)
1535 				verbose(env, ",%d", state->refs[i].id);
1536 	}
1537 	if (state->in_callback_fn)
1538 		verbose(env, " cb");
1539 	if (state->in_async_callback_fn)
1540 		verbose(env, " async_cb");
1541 	verbose(env, "\n");
1542 	if (!print_all)
1543 		mark_verifier_state_clean(env);
1544 }
1545 
1546 static inline u32 vlog_alignment(u32 pos)
1547 {
1548 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1549 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1550 }
1551 
1552 static void print_insn_state(struct bpf_verifier_env *env,
1553 			     const struct bpf_func_state *state)
1554 {
1555 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1556 		/* remove new line character */
1557 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1558 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1559 	} else {
1560 		verbose(env, "%d:", env->insn_idx);
1561 	}
1562 	print_verifier_state(env, state, false);
1563 }
1564 
1565 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1566  * small to hold src. This is different from krealloc since we don't want to preserve
1567  * the contents of dst.
1568  *
1569  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1570  * not be allocated.
1571  */
1572 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1573 {
1574 	size_t alloc_bytes;
1575 	void *orig = dst;
1576 	size_t bytes;
1577 
1578 	if (ZERO_OR_NULL_PTR(src))
1579 		goto out;
1580 
1581 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1582 		return NULL;
1583 
1584 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1585 	dst = krealloc(orig, alloc_bytes, flags);
1586 	if (!dst) {
1587 		kfree(orig);
1588 		return NULL;
1589 	}
1590 
1591 	memcpy(dst, src, bytes);
1592 out:
1593 	return dst ? dst : ZERO_SIZE_PTR;
1594 }
1595 
1596 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1597  * small to hold new_n items. new items are zeroed out if the array grows.
1598  *
1599  * Contrary to krealloc_array, does not free arr if new_n is zero.
1600  */
1601 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1602 {
1603 	size_t alloc_size;
1604 	void *new_arr;
1605 
1606 	if (!new_n || old_n == new_n)
1607 		goto out;
1608 
1609 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1610 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1611 	if (!new_arr) {
1612 		kfree(arr);
1613 		return NULL;
1614 	}
1615 	arr = new_arr;
1616 
1617 	if (new_n > old_n)
1618 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1619 
1620 out:
1621 	return arr ? arr : ZERO_SIZE_PTR;
1622 }
1623 
1624 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1625 {
1626 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1627 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1628 	if (!dst->refs)
1629 		return -ENOMEM;
1630 
1631 	dst->acquired_refs = src->acquired_refs;
1632 	return 0;
1633 }
1634 
1635 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1636 {
1637 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1638 
1639 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1640 				GFP_KERNEL);
1641 	if (!dst->stack)
1642 		return -ENOMEM;
1643 
1644 	dst->allocated_stack = src->allocated_stack;
1645 	return 0;
1646 }
1647 
1648 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1649 {
1650 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1651 				    sizeof(struct bpf_reference_state));
1652 	if (!state->refs)
1653 		return -ENOMEM;
1654 
1655 	state->acquired_refs = n;
1656 	return 0;
1657 }
1658 
1659 static int grow_stack_state(struct bpf_func_state *state, int size)
1660 {
1661 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1662 
1663 	if (old_n >= n)
1664 		return 0;
1665 
1666 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1667 	if (!state->stack)
1668 		return -ENOMEM;
1669 
1670 	state->allocated_stack = size;
1671 	return 0;
1672 }
1673 
1674 /* Acquire a pointer id from the env and update the state->refs to include
1675  * this new pointer reference.
1676  * On success, returns a valid pointer id to associate with the register
1677  * On failure, returns a negative errno.
1678  */
1679 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1680 {
1681 	struct bpf_func_state *state = cur_func(env);
1682 	int new_ofs = state->acquired_refs;
1683 	int id, err;
1684 
1685 	err = resize_reference_state(state, state->acquired_refs + 1);
1686 	if (err)
1687 		return err;
1688 	id = ++env->id_gen;
1689 	state->refs[new_ofs].id = id;
1690 	state->refs[new_ofs].insn_idx = insn_idx;
1691 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1692 
1693 	return id;
1694 }
1695 
1696 /* release function corresponding to acquire_reference_state(). Idempotent. */
1697 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1698 {
1699 	int i, last_idx;
1700 
1701 	last_idx = state->acquired_refs - 1;
1702 	for (i = 0; i < state->acquired_refs; i++) {
1703 		if (state->refs[i].id == ptr_id) {
1704 			/* Cannot release caller references in callbacks */
1705 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1706 				return -EINVAL;
1707 			if (last_idx && i != last_idx)
1708 				memcpy(&state->refs[i], &state->refs[last_idx],
1709 				       sizeof(*state->refs));
1710 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1711 			state->acquired_refs--;
1712 			return 0;
1713 		}
1714 	}
1715 	return -EINVAL;
1716 }
1717 
1718 static void free_func_state(struct bpf_func_state *state)
1719 {
1720 	if (!state)
1721 		return;
1722 	kfree(state->refs);
1723 	kfree(state->stack);
1724 	kfree(state);
1725 }
1726 
1727 static void clear_jmp_history(struct bpf_verifier_state *state)
1728 {
1729 	kfree(state->jmp_history);
1730 	state->jmp_history = NULL;
1731 	state->jmp_history_cnt = 0;
1732 }
1733 
1734 static void free_verifier_state(struct bpf_verifier_state *state,
1735 				bool free_self)
1736 {
1737 	int i;
1738 
1739 	for (i = 0; i <= state->curframe; i++) {
1740 		free_func_state(state->frame[i]);
1741 		state->frame[i] = NULL;
1742 	}
1743 	clear_jmp_history(state);
1744 	if (free_self)
1745 		kfree(state);
1746 }
1747 
1748 /* copy verifier state from src to dst growing dst stack space
1749  * when necessary to accommodate larger src stack
1750  */
1751 static int copy_func_state(struct bpf_func_state *dst,
1752 			   const struct bpf_func_state *src)
1753 {
1754 	int err;
1755 
1756 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1757 	err = copy_reference_state(dst, src);
1758 	if (err)
1759 		return err;
1760 	return copy_stack_state(dst, src);
1761 }
1762 
1763 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1764 			       const struct bpf_verifier_state *src)
1765 {
1766 	struct bpf_func_state *dst;
1767 	int i, err;
1768 
1769 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1770 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1771 					    GFP_USER);
1772 	if (!dst_state->jmp_history)
1773 		return -ENOMEM;
1774 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1775 
1776 	/* if dst has more stack frames then src frame, free them, this is also
1777 	 * necessary in case of exceptional exits using bpf_throw.
1778 	 */
1779 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1780 		free_func_state(dst_state->frame[i]);
1781 		dst_state->frame[i] = NULL;
1782 	}
1783 	dst_state->speculative = src->speculative;
1784 	dst_state->active_rcu_lock = src->active_rcu_lock;
1785 	dst_state->curframe = src->curframe;
1786 	dst_state->active_lock.ptr = src->active_lock.ptr;
1787 	dst_state->active_lock.id = src->active_lock.id;
1788 	dst_state->branches = src->branches;
1789 	dst_state->parent = src->parent;
1790 	dst_state->first_insn_idx = src->first_insn_idx;
1791 	dst_state->last_insn_idx = src->last_insn_idx;
1792 	for (i = 0; i <= src->curframe; i++) {
1793 		dst = dst_state->frame[i];
1794 		if (!dst) {
1795 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1796 			if (!dst)
1797 				return -ENOMEM;
1798 			dst_state->frame[i] = dst;
1799 		}
1800 		err = copy_func_state(dst, src->frame[i]);
1801 		if (err)
1802 			return err;
1803 	}
1804 	return 0;
1805 }
1806 
1807 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1808 {
1809 	while (st) {
1810 		u32 br = --st->branches;
1811 
1812 		/* WARN_ON(br > 1) technically makes sense here,
1813 		 * but see comment in push_stack(), hence:
1814 		 */
1815 		WARN_ONCE((int)br < 0,
1816 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1817 			  br);
1818 		if (br)
1819 			break;
1820 		st = st->parent;
1821 	}
1822 }
1823 
1824 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1825 		     int *insn_idx, bool pop_log)
1826 {
1827 	struct bpf_verifier_state *cur = env->cur_state;
1828 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1829 	int err;
1830 
1831 	if (env->head == NULL)
1832 		return -ENOENT;
1833 
1834 	if (cur) {
1835 		err = copy_verifier_state(cur, &head->st);
1836 		if (err)
1837 			return err;
1838 	}
1839 	if (pop_log)
1840 		bpf_vlog_reset(&env->log, head->log_pos);
1841 	if (insn_idx)
1842 		*insn_idx = head->insn_idx;
1843 	if (prev_insn_idx)
1844 		*prev_insn_idx = head->prev_insn_idx;
1845 	elem = head->next;
1846 	free_verifier_state(&head->st, false);
1847 	kfree(head);
1848 	env->head = elem;
1849 	env->stack_size--;
1850 	return 0;
1851 }
1852 
1853 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1854 					     int insn_idx, int prev_insn_idx,
1855 					     bool speculative)
1856 {
1857 	struct bpf_verifier_state *cur = env->cur_state;
1858 	struct bpf_verifier_stack_elem *elem;
1859 	int err;
1860 
1861 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1862 	if (!elem)
1863 		goto err;
1864 
1865 	elem->insn_idx = insn_idx;
1866 	elem->prev_insn_idx = prev_insn_idx;
1867 	elem->next = env->head;
1868 	elem->log_pos = env->log.end_pos;
1869 	env->head = elem;
1870 	env->stack_size++;
1871 	err = copy_verifier_state(&elem->st, cur);
1872 	if (err)
1873 		goto err;
1874 	elem->st.speculative |= speculative;
1875 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1876 		verbose(env, "The sequence of %d jumps is too complex.\n",
1877 			env->stack_size);
1878 		goto err;
1879 	}
1880 	if (elem->st.parent) {
1881 		++elem->st.parent->branches;
1882 		/* WARN_ON(branches > 2) technically makes sense here,
1883 		 * but
1884 		 * 1. speculative states will bump 'branches' for non-branch
1885 		 * instructions
1886 		 * 2. is_state_visited() heuristics may decide not to create
1887 		 * a new state for a sequence of branches and all such current
1888 		 * and cloned states will be pointing to a single parent state
1889 		 * which might have large 'branches' count.
1890 		 */
1891 	}
1892 	return &elem->st;
1893 err:
1894 	free_verifier_state(env->cur_state, true);
1895 	env->cur_state = NULL;
1896 	/* pop all elements and return */
1897 	while (!pop_stack(env, NULL, NULL, false));
1898 	return NULL;
1899 }
1900 
1901 #define CALLER_SAVED_REGS 6
1902 static const int caller_saved[CALLER_SAVED_REGS] = {
1903 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1904 };
1905 
1906 /* This helper doesn't clear reg->id */
1907 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1908 {
1909 	reg->var_off = tnum_const(imm);
1910 	reg->smin_value = (s64)imm;
1911 	reg->smax_value = (s64)imm;
1912 	reg->umin_value = imm;
1913 	reg->umax_value = imm;
1914 
1915 	reg->s32_min_value = (s32)imm;
1916 	reg->s32_max_value = (s32)imm;
1917 	reg->u32_min_value = (u32)imm;
1918 	reg->u32_max_value = (u32)imm;
1919 }
1920 
1921 /* Mark the unknown part of a register (variable offset or scalar value) as
1922  * known to have the value @imm.
1923  */
1924 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1925 {
1926 	/* Clear off and union(map_ptr, range) */
1927 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1928 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1929 	reg->id = 0;
1930 	reg->ref_obj_id = 0;
1931 	___mark_reg_known(reg, imm);
1932 }
1933 
1934 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1935 {
1936 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1937 	reg->s32_min_value = (s32)imm;
1938 	reg->s32_max_value = (s32)imm;
1939 	reg->u32_min_value = (u32)imm;
1940 	reg->u32_max_value = (u32)imm;
1941 }
1942 
1943 /* Mark the 'variable offset' part of a register as zero.  This should be
1944  * used only on registers holding a pointer type.
1945  */
1946 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1947 {
1948 	__mark_reg_known(reg, 0);
1949 }
1950 
1951 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1952 {
1953 	__mark_reg_known(reg, 0);
1954 	reg->type = SCALAR_VALUE;
1955 }
1956 
1957 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1958 				struct bpf_reg_state *regs, u32 regno)
1959 {
1960 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1961 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1962 		/* Something bad happened, let's kill all regs */
1963 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1964 			__mark_reg_not_init(env, regs + regno);
1965 		return;
1966 	}
1967 	__mark_reg_known_zero(regs + regno);
1968 }
1969 
1970 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1971 			      bool first_slot, int dynptr_id)
1972 {
1973 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1974 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1975 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1976 	 */
1977 	__mark_reg_known_zero(reg);
1978 	reg->type = CONST_PTR_TO_DYNPTR;
1979 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1980 	reg->id = dynptr_id;
1981 	reg->dynptr.type = type;
1982 	reg->dynptr.first_slot = first_slot;
1983 }
1984 
1985 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1986 {
1987 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1988 		const struct bpf_map *map = reg->map_ptr;
1989 
1990 		if (map->inner_map_meta) {
1991 			reg->type = CONST_PTR_TO_MAP;
1992 			reg->map_ptr = map->inner_map_meta;
1993 			/* transfer reg's id which is unique for every map_lookup_elem
1994 			 * as UID of the inner map.
1995 			 */
1996 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1997 				reg->map_uid = reg->id;
1998 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1999 			reg->type = PTR_TO_XDP_SOCK;
2000 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2001 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2002 			reg->type = PTR_TO_SOCKET;
2003 		} else {
2004 			reg->type = PTR_TO_MAP_VALUE;
2005 		}
2006 		return;
2007 	}
2008 
2009 	reg->type &= ~PTR_MAYBE_NULL;
2010 }
2011 
2012 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2013 				struct btf_field_graph_root *ds_head)
2014 {
2015 	__mark_reg_known_zero(&regs[regno]);
2016 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2017 	regs[regno].btf = ds_head->btf;
2018 	regs[regno].btf_id = ds_head->value_btf_id;
2019 	regs[regno].off = ds_head->node_offset;
2020 }
2021 
2022 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2023 {
2024 	return type_is_pkt_pointer(reg->type);
2025 }
2026 
2027 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2028 {
2029 	return reg_is_pkt_pointer(reg) ||
2030 	       reg->type == PTR_TO_PACKET_END;
2031 }
2032 
2033 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2034 {
2035 	return base_type(reg->type) == PTR_TO_MEM &&
2036 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2037 }
2038 
2039 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2040 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2041 				    enum bpf_reg_type which)
2042 {
2043 	/* The register can already have a range from prior markings.
2044 	 * This is fine as long as it hasn't been advanced from its
2045 	 * origin.
2046 	 */
2047 	return reg->type == which &&
2048 	       reg->id == 0 &&
2049 	       reg->off == 0 &&
2050 	       tnum_equals_const(reg->var_off, 0);
2051 }
2052 
2053 /* Reset the min/max bounds of a register */
2054 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2055 {
2056 	reg->smin_value = S64_MIN;
2057 	reg->smax_value = S64_MAX;
2058 	reg->umin_value = 0;
2059 	reg->umax_value = U64_MAX;
2060 
2061 	reg->s32_min_value = S32_MIN;
2062 	reg->s32_max_value = S32_MAX;
2063 	reg->u32_min_value = 0;
2064 	reg->u32_max_value = U32_MAX;
2065 }
2066 
2067 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2068 {
2069 	reg->smin_value = S64_MIN;
2070 	reg->smax_value = S64_MAX;
2071 	reg->umin_value = 0;
2072 	reg->umax_value = U64_MAX;
2073 }
2074 
2075 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2076 {
2077 	reg->s32_min_value = S32_MIN;
2078 	reg->s32_max_value = S32_MAX;
2079 	reg->u32_min_value = 0;
2080 	reg->u32_max_value = U32_MAX;
2081 }
2082 
2083 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2084 {
2085 	struct tnum var32_off = tnum_subreg(reg->var_off);
2086 
2087 	/* min signed is max(sign bit) | min(other bits) */
2088 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2089 			var32_off.value | (var32_off.mask & S32_MIN));
2090 	/* max signed is min(sign bit) | max(other bits) */
2091 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2092 			var32_off.value | (var32_off.mask & S32_MAX));
2093 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2094 	reg->u32_max_value = min(reg->u32_max_value,
2095 				 (u32)(var32_off.value | var32_off.mask));
2096 }
2097 
2098 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2099 {
2100 	/* min signed is max(sign bit) | min(other bits) */
2101 	reg->smin_value = max_t(s64, reg->smin_value,
2102 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2103 	/* max signed is min(sign bit) | max(other bits) */
2104 	reg->smax_value = min_t(s64, reg->smax_value,
2105 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2106 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2107 	reg->umax_value = min(reg->umax_value,
2108 			      reg->var_off.value | reg->var_off.mask);
2109 }
2110 
2111 static void __update_reg_bounds(struct bpf_reg_state *reg)
2112 {
2113 	__update_reg32_bounds(reg);
2114 	__update_reg64_bounds(reg);
2115 }
2116 
2117 /* Uses signed min/max values to inform unsigned, and vice-versa */
2118 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2119 {
2120 	/* Learn sign from signed bounds.
2121 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2122 	 * are the same, so combine.  This works even in the negative case, e.g.
2123 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2124 	 */
2125 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2126 		reg->s32_min_value = reg->u32_min_value =
2127 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2128 		reg->s32_max_value = reg->u32_max_value =
2129 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2130 		return;
2131 	}
2132 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2133 	 * boundary, so we must be careful.
2134 	 */
2135 	if ((s32)reg->u32_max_value >= 0) {
2136 		/* Positive.  We can't learn anything from the smin, but smax
2137 		 * is positive, hence safe.
2138 		 */
2139 		reg->s32_min_value = reg->u32_min_value;
2140 		reg->s32_max_value = reg->u32_max_value =
2141 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2142 	} else if ((s32)reg->u32_min_value < 0) {
2143 		/* Negative.  We can't learn anything from the smax, but smin
2144 		 * is negative, hence safe.
2145 		 */
2146 		reg->s32_min_value = reg->u32_min_value =
2147 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2148 		reg->s32_max_value = reg->u32_max_value;
2149 	}
2150 }
2151 
2152 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2153 {
2154 	/* Learn sign from signed bounds.
2155 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2156 	 * are the same, so combine.  This works even in the negative case, e.g.
2157 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2158 	 */
2159 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2160 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2161 							  reg->umin_value);
2162 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2163 							  reg->umax_value);
2164 		return;
2165 	}
2166 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2167 	 * boundary, so we must be careful.
2168 	 */
2169 	if ((s64)reg->umax_value >= 0) {
2170 		/* Positive.  We can't learn anything from the smin, but smax
2171 		 * is positive, hence safe.
2172 		 */
2173 		reg->smin_value = reg->umin_value;
2174 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2175 							  reg->umax_value);
2176 	} else if ((s64)reg->umin_value < 0) {
2177 		/* Negative.  We can't learn anything from the smax, but smin
2178 		 * is negative, hence safe.
2179 		 */
2180 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2181 							  reg->umin_value);
2182 		reg->smax_value = reg->umax_value;
2183 	}
2184 }
2185 
2186 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2187 {
2188 	__reg32_deduce_bounds(reg);
2189 	__reg64_deduce_bounds(reg);
2190 }
2191 
2192 /* Attempts to improve var_off based on unsigned min/max information */
2193 static void __reg_bound_offset(struct bpf_reg_state *reg)
2194 {
2195 	struct tnum var64_off = tnum_intersect(reg->var_off,
2196 					       tnum_range(reg->umin_value,
2197 							  reg->umax_value));
2198 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2199 					       tnum_range(reg->u32_min_value,
2200 							  reg->u32_max_value));
2201 
2202 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2203 }
2204 
2205 static void reg_bounds_sync(struct bpf_reg_state *reg)
2206 {
2207 	/* We might have learned new bounds from the var_off. */
2208 	__update_reg_bounds(reg);
2209 	/* We might have learned something about the sign bit. */
2210 	__reg_deduce_bounds(reg);
2211 	/* We might have learned some bits from the bounds. */
2212 	__reg_bound_offset(reg);
2213 	/* Intersecting with the old var_off might have improved our bounds
2214 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2215 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2216 	 */
2217 	__update_reg_bounds(reg);
2218 }
2219 
2220 static bool __reg32_bound_s64(s32 a)
2221 {
2222 	return a >= 0 && a <= S32_MAX;
2223 }
2224 
2225 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2226 {
2227 	reg->umin_value = reg->u32_min_value;
2228 	reg->umax_value = reg->u32_max_value;
2229 
2230 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2231 	 * be positive otherwise set to worse case bounds and refine later
2232 	 * from tnum.
2233 	 */
2234 	if (__reg32_bound_s64(reg->s32_min_value) &&
2235 	    __reg32_bound_s64(reg->s32_max_value)) {
2236 		reg->smin_value = reg->s32_min_value;
2237 		reg->smax_value = reg->s32_max_value;
2238 	} else {
2239 		reg->smin_value = 0;
2240 		reg->smax_value = U32_MAX;
2241 	}
2242 }
2243 
2244 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2245 {
2246 	/* special case when 64-bit register has upper 32-bit register
2247 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2248 	 * allowing us to use 32-bit bounds directly,
2249 	 */
2250 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2251 		__reg_assign_32_into_64(reg);
2252 	} else {
2253 		/* Otherwise the best we can do is push lower 32bit known and
2254 		 * unknown bits into register (var_off set from jmp logic)
2255 		 * then learn as much as possible from the 64-bit tnum
2256 		 * known and unknown bits. The previous smin/smax bounds are
2257 		 * invalid here because of jmp32 compare so mark them unknown
2258 		 * so they do not impact tnum bounds calculation.
2259 		 */
2260 		__mark_reg64_unbounded(reg);
2261 	}
2262 	reg_bounds_sync(reg);
2263 }
2264 
2265 static bool __reg64_bound_s32(s64 a)
2266 {
2267 	return a >= S32_MIN && a <= S32_MAX;
2268 }
2269 
2270 static bool __reg64_bound_u32(u64 a)
2271 {
2272 	return a >= U32_MIN && a <= U32_MAX;
2273 }
2274 
2275 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2276 {
2277 	__mark_reg32_unbounded(reg);
2278 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2279 		reg->s32_min_value = (s32)reg->smin_value;
2280 		reg->s32_max_value = (s32)reg->smax_value;
2281 	}
2282 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2283 		reg->u32_min_value = (u32)reg->umin_value;
2284 		reg->u32_max_value = (u32)reg->umax_value;
2285 	}
2286 	reg_bounds_sync(reg);
2287 }
2288 
2289 /* Mark a register as having a completely unknown (scalar) value. */
2290 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2291 			       struct bpf_reg_state *reg)
2292 {
2293 	/*
2294 	 * Clear type, off, and union(map_ptr, range) and
2295 	 * padding between 'type' and union
2296 	 */
2297 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2298 	reg->type = SCALAR_VALUE;
2299 	reg->id = 0;
2300 	reg->ref_obj_id = 0;
2301 	reg->var_off = tnum_unknown;
2302 	reg->frameno = 0;
2303 	reg->precise = !env->bpf_capable;
2304 	__mark_reg_unbounded(reg);
2305 }
2306 
2307 static void mark_reg_unknown(struct bpf_verifier_env *env,
2308 			     struct bpf_reg_state *regs, u32 regno)
2309 {
2310 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2311 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2312 		/* Something bad happened, let's kill all regs except FP */
2313 		for (regno = 0; regno < BPF_REG_FP; regno++)
2314 			__mark_reg_not_init(env, regs + regno);
2315 		return;
2316 	}
2317 	__mark_reg_unknown(env, regs + regno);
2318 }
2319 
2320 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2321 				struct bpf_reg_state *reg)
2322 {
2323 	__mark_reg_unknown(env, reg);
2324 	reg->type = NOT_INIT;
2325 }
2326 
2327 static void mark_reg_not_init(struct bpf_verifier_env *env,
2328 			      struct bpf_reg_state *regs, u32 regno)
2329 {
2330 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2331 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2332 		/* Something bad happened, let's kill all regs except FP */
2333 		for (regno = 0; regno < BPF_REG_FP; regno++)
2334 			__mark_reg_not_init(env, regs + regno);
2335 		return;
2336 	}
2337 	__mark_reg_not_init(env, regs + regno);
2338 }
2339 
2340 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2341 			    struct bpf_reg_state *regs, u32 regno,
2342 			    enum bpf_reg_type reg_type,
2343 			    struct btf *btf, u32 btf_id,
2344 			    enum bpf_type_flag flag)
2345 {
2346 	if (reg_type == SCALAR_VALUE) {
2347 		mark_reg_unknown(env, regs, regno);
2348 		return;
2349 	}
2350 	mark_reg_known_zero(env, regs, regno);
2351 	regs[regno].type = PTR_TO_BTF_ID | flag;
2352 	regs[regno].btf = btf;
2353 	regs[regno].btf_id = btf_id;
2354 }
2355 
2356 #define DEF_NOT_SUBREG	(0)
2357 static void init_reg_state(struct bpf_verifier_env *env,
2358 			   struct bpf_func_state *state)
2359 {
2360 	struct bpf_reg_state *regs = state->regs;
2361 	int i;
2362 
2363 	for (i = 0; i < MAX_BPF_REG; i++) {
2364 		mark_reg_not_init(env, regs, i);
2365 		regs[i].live = REG_LIVE_NONE;
2366 		regs[i].parent = NULL;
2367 		regs[i].subreg_def = DEF_NOT_SUBREG;
2368 	}
2369 
2370 	/* frame pointer */
2371 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2372 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2373 	regs[BPF_REG_FP].frameno = state->frameno;
2374 }
2375 
2376 #define BPF_MAIN_FUNC (-1)
2377 static void init_func_state(struct bpf_verifier_env *env,
2378 			    struct bpf_func_state *state,
2379 			    int callsite, int frameno, int subprogno)
2380 {
2381 	state->callsite = callsite;
2382 	state->frameno = frameno;
2383 	state->subprogno = subprogno;
2384 	state->callback_ret_range = tnum_range(0, 0);
2385 	init_reg_state(env, state);
2386 	mark_verifier_state_scratched(env);
2387 }
2388 
2389 /* Similar to push_stack(), but for async callbacks */
2390 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2391 						int insn_idx, int prev_insn_idx,
2392 						int subprog)
2393 {
2394 	struct bpf_verifier_stack_elem *elem;
2395 	struct bpf_func_state *frame;
2396 
2397 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2398 	if (!elem)
2399 		goto err;
2400 
2401 	elem->insn_idx = insn_idx;
2402 	elem->prev_insn_idx = prev_insn_idx;
2403 	elem->next = env->head;
2404 	elem->log_pos = env->log.end_pos;
2405 	env->head = elem;
2406 	env->stack_size++;
2407 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2408 		verbose(env,
2409 			"The sequence of %d jumps is too complex for async cb.\n",
2410 			env->stack_size);
2411 		goto err;
2412 	}
2413 	/* Unlike push_stack() do not copy_verifier_state().
2414 	 * The caller state doesn't matter.
2415 	 * This is async callback. It starts in a fresh stack.
2416 	 * Initialize it similar to do_check_common().
2417 	 */
2418 	elem->st.branches = 1;
2419 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2420 	if (!frame)
2421 		goto err;
2422 	init_func_state(env, frame,
2423 			BPF_MAIN_FUNC /* callsite */,
2424 			0 /* frameno within this callchain */,
2425 			subprog /* subprog number within this prog */);
2426 	elem->st.frame[0] = frame;
2427 	return &elem->st;
2428 err:
2429 	free_verifier_state(env->cur_state, true);
2430 	env->cur_state = NULL;
2431 	/* pop all elements and return */
2432 	while (!pop_stack(env, NULL, NULL, false));
2433 	return NULL;
2434 }
2435 
2436 
2437 enum reg_arg_type {
2438 	SRC_OP,		/* register is used as source operand */
2439 	DST_OP,		/* register is used as destination operand */
2440 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2441 };
2442 
2443 static int cmp_subprogs(const void *a, const void *b)
2444 {
2445 	return ((struct bpf_subprog_info *)a)->start -
2446 	       ((struct bpf_subprog_info *)b)->start;
2447 }
2448 
2449 static int find_subprog(struct bpf_verifier_env *env, int off)
2450 {
2451 	struct bpf_subprog_info *p;
2452 
2453 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2454 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2455 	if (!p)
2456 		return -ENOENT;
2457 	return p - env->subprog_info;
2458 
2459 }
2460 
2461 static int add_subprog(struct bpf_verifier_env *env, int off)
2462 {
2463 	int insn_cnt = env->prog->len;
2464 	int ret;
2465 
2466 	if (off >= insn_cnt || off < 0) {
2467 		verbose(env, "call to invalid destination\n");
2468 		return -EINVAL;
2469 	}
2470 	ret = find_subprog(env, off);
2471 	if (ret >= 0)
2472 		return ret;
2473 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2474 		verbose(env, "too many subprograms\n");
2475 		return -E2BIG;
2476 	}
2477 	/* determine subprog starts. The end is one before the next starts */
2478 	env->subprog_info[env->subprog_cnt++].start = off;
2479 	sort(env->subprog_info, env->subprog_cnt,
2480 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2481 	return env->subprog_cnt - 1;
2482 }
2483 
2484 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2485 {
2486 	struct bpf_prog_aux *aux = env->prog->aux;
2487 	struct btf *btf = aux->btf;
2488 	const struct btf_type *t;
2489 	u32 main_btf_id, id;
2490 	const char *name;
2491 	int ret, i;
2492 
2493 	/* Non-zero func_info_cnt implies valid btf */
2494 	if (!aux->func_info_cnt)
2495 		return 0;
2496 	main_btf_id = aux->func_info[0].type_id;
2497 
2498 	t = btf_type_by_id(btf, main_btf_id);
2499 	if (!t) {
2500 		verbose(env, "invalid btf id for main subprog in func_info\n");
2501 		return -EINVAL;
2502 	}
2503 
2504 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2505 	if (IS_ERR(name)) {
2506 		ret = PTR_ERR(name);
2507 		/* If there is no tag present, there is no exception callback */
2508 		if (ret == -ENOENT)
2509 			ret = 0;
2510 		else if (ret == -EEXIST)
2511 			verbose(env, "multiple exception callback tags for main subprog\n");
2512 		return ret;
2513 	}
2514 
2515 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2516 	if (ret < 0) {
2517 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2518 		return ret;
2519 	}
2520 	id = ret;
2521 	t = btf_type_by_id(btf, id);
2522 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2523 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2524 		return -EINVAL;
2525 	}
2526 	ret = 0;
2527 	for (i = 0; i < aux->func_info_cnt; i++) {
2528 		if (aux->func_info[i].type_id != id)
2529 			continue;
2530 		ret = aux->func_info[i].insn_off;
2531 		/* Further func_info and subprog checks will also happen
2532 		 * later, so assume this is the right insn_off for now.
2533 		 */
2534 		if (!ret) {
2535 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2536 			ret = -EINVAL;
2537 		}
2538 	}
2539 	if (!ret) {
2540 		verbose(env, "exception callback type id not found in func_info\n");
2541 		ret = -EINVAL;
2542 	}
2543 	return ret;
2544 }
2545 
2546 #define MAX_KFUNC_DESCS 256
2547 #define MAX_KFUNC_BTFS	256
2548 
2549 struct bpf_kfunc_desc {
2550 	struct btf_func_model func_model;
2551 	u32 func_id;
2552 	s32 imm;
2553 	u16 offset;
2554 	unsigned long addr;
2555 };
2556 
2557 struct bpf_kfunc_btf {
2558 	struct btf *btf;
2559 	struct module *module;
2560 	u16 offset;
2561 };
2562 
2563 struct bpf_kfunc_desc_tab {
2564 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2565 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2566 	 * available, therefore at the end of verification do_misc_fixups()
2567 	 * sorts this by imm and offset.
2568 	 */
2569 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2570 	u32 nr_descs;
2571 };
2572 
2573 struct bpf_kfunc_btf_tab {
2574 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2575 	u32 nr_descs;
2576 };
2577 
2578 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2579 {
2580 	const struct bpf_kfunc_desc *d0 = a;
2581 	const struct bpf_kfunc_desc *d1 = b;
2582 
2583 	/* func_id is not greater than BTF_MAX_TYPE */
2584 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2585 }
2586 
2587 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2588 {
2589 	const struct bpf_kfunc_btf *d0 = a;
2590 	const struct bpf_kfunc_btf *d1 = b;
2591 
2592 	return d0->offset - d1->offset;
2593 }
2594 
2595 static const struct bpf_kfunc_desc *
2596 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2597 {
2598 	struct bpf_kfunc_desc desc = {
2599 		.func_id = func_id,
2600 		.offset = offset,
2601 	};
2602 	struct bpf_kfunc_desc_tab *tab;
2603 
2604 	tab = prog->aux->kfunc_tab;
2605 	return bsearch(&desc, tab->descs, tab->nr_descs,
2606 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2607 }
2608 
2609 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2610 		       u16 btf_fd_idx, u8 **func_addr)
2611 {
2612 	const struct bpf_kfunc_desc *desc;
2613 
2614 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2615 	if (!desc)
2616 		return -EFAULT;
2617 
2618 	*func_addr = (u8 *)desc->addr;
2619 	return 0;
2620 }
2621 
2622 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2623 					 s16 offset)
2624 {
2625 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2626 	struct bpf_kfunc_btf_tab *tab;
2627 	struct bpf_kfunc_btf *b;
2628 	struct module *mod;
2629 	struct btf *btf;
2630 	int btf_fd;
2631 
2632 	tab = env->prog->aux->kfunc_btf_tab;
2633 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2634 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2635 	if (!b) {
2636 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2637 			verbose(env, "too many different module BTFs\n");
2638 			return ERR_PTR(-E2BIG);
2639 		}
2640 
2641 		if (bpfptr_is_null(env->fd_array)) {
2642 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2643 			return ERR_PTR(-EPROTO);
2644 		}
2645 
2646 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2647 					    offset * sizeof(btf_fd),
2648 					    sizeof(btf_fd)))
2649 			return ERR_PTR(-EFAULT);
2650 
2651 		btf = btf_get_by_fd(btf_fd);
2652 		if (IS_ERR(btf)) {
2653 			verbose(env, "invalid module BTF fd specified\n");
2654 			return btf;
2655 		}
2656 
2657 		if (!btf_is_module(btf)) {
2658 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2659 			btf_put(btf);
2660 			return ERR_PTR(-EINVAL);
2661 		}
2662 
2663 		mod = btf_try_get_module(btf);
2664 		if (!mod) {
2665 			btf_put(btf);
2666 			return ERR_PTR(-ENXIO);
2667 		}
2668 
2669 		b = &tab->descs[tab->nr_descs++];
2670 		b->btf = btf;
2671 		b->module = mod;
2672 		b->offset = offset;
2673 
2674 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2675 		     kfunc_btf_cmp_by_off, NULL);
2676 	}
2677 	return b->btf;
2678 }
2679 
2680 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2681 {
2682 	if (!tab)
2683 		return;
2684 
2685 	while (tab->nr_descs--) {
2686 		module_put(tab->descs[tab->nr_descs].module);
2687 		btf_put(tab->descs[tab->nr_descs].btf);
2688 	}
2689 	kfree(tab);
2690 }
2691 
2692 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2693 {
2694 	if (offset) {
2695 		if (offset < 0) {
2696 			/* In the future, this can be allowed to increase limit
2697 			 * of fd index into fd_array, interpreted as u16.
2698 			 */
2699 			verbose(env, "negative offset disallowed for kernel module function call\n");
2700 			return ERR_PTR(-EINVAL);
2701 		}
2702 
2703 		return __find_kfunc_desc_btf(env, offset);
2704 	}
2705 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2706 }
2707 
2708 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2709 {
2710 	const struct btf_type *func, *func_proto;
2711 	struct bpf_kfunc_btf_tab *btf_tab;
2712 	struct bpf_kfunc_desc_tab *tab;
2713 	struct bpf_prog_aux *prog_aux;
2714 	struct bpf_kfunc_desc *desc;
2715 	const char *func_name;
2716 	struct btf *desc_btf;
2717 	unsigned long call_imm;
2718 	unsigned long addr;
2719 	int err;
2720 
2721 	prog_aux = env->prog->aux;
2722 	tab = prog_aux->kfunc_tab;
2723 	btf_tab = prog_aux->kfunc_btf_tab;
2724 	if (!tab) {
2725 		if (!btf_vmlinux) {
2726 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2727 			return -ENOTSUPP;
2728 		}
2729 
2730 		if (!env->prog->jit_requested) {
2731 			verbose(env, "JIT is required for calling kernel function\n");
2732 			return -ENOTSUPP;
2733 		}
2734 
2735 		if (!bpf_jit_supports_kfunc_call()) {
2736 			verbose(env, "JIT does not support calling kernel function\n");
2737 			return -ENOTSUPP;
2738 		}
2739 
2740 		if (!env->prog->gpl_compatible) {
2741 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2742 			return -EINVAL;
2743 		}
2744 
2745 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2746 		if (!tab)
2747 			return -ENOMEM;
2748 		prog_aux->kfunc_tab = tab;
2749 	}
2750 
2751 	/* func_id == 0 is always invalid, but instead of returning an error, be
2752 	 * conservative and wait until the code elimination pass before returning
2753 	 * error, so that invalid calls that get pruned out can be in BPF programs
2754 	 * loaded from userspace.  It is also required that offset be untouched
2755 	 * for such calls.
2756 	 */
2757 	if (!func_id && !offset)
2758 		return 0;
2759 
2760 	if (!btf_tab && offset) {
2761 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2762 		if (!btf_tab)
2763 			return -ENOMEM;
2764 		prog_aux->kfunc_btf_tab = btf_tab;
2765 	}
2766 
2767 	desc_btf = find_kfunc_desc_btf(env, offset);
2768 	if (IS_ERR(desc_btf)) {
2769 		verbose(env, "failed to find BTF for kernel function\n");
2770 		return PTR_ERR(desc_btf);
2771 	}
2772 
2773 	if (find_kfunc_desc(env->prog, func_id, offset))
2774 		return 0;
2775 
2776 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2777 		verbose(env, "too many different kernel function calls\n");
2778 		return -E2BIG;
2779 	}
2780 
2781 	func = btf_type_by_id(desc_btf, func_id);
2782 	if (!func || !btf_type_is_func(func)) {
2783 		verbose(env, "kernel btf_id %u is not a function\n",
2784 			func_id);
2785 		return -EINVAL;
2786 	}
2787 	func_proto = btf_type_by_id(desc_btf, func->type);
2788 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2789 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2790 			func_id);
2791 		return -EINVAL;
2792 	}
2793 
2794 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2795 	addr = kallsyms_lookup_name(func_name);
2796 	if (!addr) {
2797 		verbose(env, "cannot find address for kernel function %s\n",
2798 			func_name);
2799 		return -EINVAL;
2800 	}
2801 	specialize_kfunc(env, func_id, offset, &addr);
2802 
2803 	if (bpf_jit_supports_far_kfunc_call()) {
2804 		call_imm = func_id;
2805 	} else {
2806 		call_imm = BPF_CALL_IMM(addr);
2807 		/* Check whether the relative offset overflows desc->imm */
2808 		if ((unsigned long)(s32)call_imm != call_imm) {
2809 			verbose(env, "address of kernel function %s is out of range\n",
2810 				func_name);
2811 			return -EINVAL;
2812 		}
2813 	}
2814 
2815 	if (bpf_dev_bound_kfunc_id(func_id)) {
2816 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2817 		if (err)
2818 			return err;
2819 	}
2820 
2821 	desc = &tab->descs[tab->nr_descs++];
2822 	desc->func_id = func_id;
2823 	desc->imm = call_imm;
2824 	desc->offset = offset;
2825 	desc->addr = addr;
2826 	err = btf_distill_func_proto(&env->log, desc_btf,
2827 				     func_proto, func_name,
2828 				     &desc->func_model);
2829 	if (!err)
2830 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2831 		     kfunc_desc_cmp_by_id_off, NULL);
2832 	return err;
2833 }
2834 
2835 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2836 {
2837 	const struct bpf_kfunc_desc *d0 = a;
2838 	const struct bpf_kfunc_desc *d1 = b;
2839 
2840 	if (d0->imm != d1->imm)
2841 		return d0->imm < d1->imm ? -1 : 1;
2842 	if (d0->offset != d1->offset)
2843 		return d0->offset < d1->offset ? -1 : 1;
2844 	return 0;
2845 }
2846 
2847 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2848 {
2849 	struct bpf_kfunc_desc_tab *tab;
2850 
2851 	tab = prog->aux->kfunc_tab;
2852 	if (!tab)
2853 		return;
2854 
2855 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2856 	     kfunc_desc_cmp_by_imm_off, NULL);
2857 }
2858 
2859 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2860 {
2861 	return !!prog->aux->kfunc_tab;
2862 }
2863 
2864 const struct btf_func_model *
2865 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2866 			 const struct bpf_insn *insn)
2867 {
2868 	const struct bpf_kfunc_desc desc = {
2869 		.imm = insn->imm,
2870 		.offset = insn->off,
2871 	};
2872 	const struct bpf_kfunc_desc *res;
2873 	struct bpf_kfunc_desc_tab *tab;
2874 
2875 	tab = prog->aux->kfunc_tab;
2876 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2877 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2878 
2879 	return res ? &res->func_model : NULL;
2880 }
2881 
2882 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2883 {
2884 	struct bpf_subprog_info *subprog = env->subprog_info;
2885 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2886 	struct bpf_insn *insn = env->prog->insnsi;
2887 
2888 	/* Add entry function. */
2889 	ret = add_subprog(env, 0);
2890 	if (ret)
2891 		return ret;
2892 
2893 	for (i = 0; i < insn_cnt; i++, insn++) {
2894 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2895 		    !bpf_pseudo_kfunc_call(insn))
2896 			continue;
2897 
2898 		if (!env->bpf_capable) {
2899 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2900 			return -EPERM;
2901 		}
2902 
2903 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2904 			ret = add_subprog(env, i + insn->imm + 1);
2905 		else
2906 			ret = add_kfunc_call(env, insn->imm, insn->off);
2907 
2908 		if (ret < 0)
2909 			return ret;
2910 	}
2911 
2912 	ret = bpf_find_exception_callback_insn_off(env);
2913 	if (ret < 0)
2914 		return ret;
2915 	ex_cb_insn = ret;
2916 
2917 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2918 	 * marked using BTF decl tag to serve as the exception callback.
2919 	 */
2920 	if (ex_cb_insn) {
2921 		ret = add_subprog(env, ex_cb_insn);
2922 		if (ret < 0)
2923 			return ret;
2924 		for (i = 1; i < env->subprog_cnt; i++) {
2925 			if (env->subprog_info[i].start != ex_cb_insn)
2926 				continue;
2927 			env->exception_callback_subprog = i;
2928 			break;
2929 		}
2930 	}
2931 
2932 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2933 	 * logic. 'subprog_cnt' should not be increased.
2934 	 */
2935 	subprog[env->subprog_cnt].start = insn_cnt;
2936 
2937 	if (env->log.level & BPF_LOG_LEVEL2)
2938 		for (i = 0; i < env->subprog_cnt; i++)
2939 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2940 
2941 	return 0;
2942 }
2943 
2944 static int check_subprogs(struct bpf_verifier_env *env)
2945 {
2946 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2947 	struct bpf_subprog_info *subprog = env->subprog_info;
2948 	struct bpf_insn *insn = env->prog->insnsi;
2949 	int insn_cnt = env->prog->len;
2950 
2951 	/* now check that all jumps are within the same subprog */
2952 	subprog_start = subprog[cur_subprog].start;
2953 	subprog_end = subprog[cur_subprog + 1].start;
2954 	for (i = 0; i < insn_cnt; i++) {
2955 		u8 code = insn[i].code;
2956 
2957 		if (code == (BPF_JMP | BPF_CALL) &&
2958 		    insn[i].src_reg == 0 &&
2959 		    insn[i].imm == BPF_FUNC_tail_call)
2960 			subprog[cur_subprog].has_tail_call = true;
2961 		if (BPF_CLASS(code) == BPF_LD &&
2962 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2963 			subprog[cur_subprog].has_ld_abs = true;
2964 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2965 			goto next;
2966 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2967 			goto next;
2968 		if (code == (BPF_JMP32 | BPF_JA))
2969 			off = i + insn[i].imm + 1;
2970 		else
2971 			off = i + insn[i].off + 1;
2972 		if (off < subprog_start || off >= subprog_end) {
2973 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2974 			return -EINVAL;
2975 		}
2976 next:
2977 		if (i == subprog_end - 1) {
2978 			/* to avoid fall-through from one subprog into another
2979 			 * the last insn of the subprog should be either exit
2980 			 * or unconditional jump back or bpf_throw call
2981 			 */
2982 			if (code != (BPF_JMP | BPF_EXIT) &&
2983 			    code != (BPF_JMP32 | BPF_JA) &&
2984 			    code != (BPF_JMP | BPF_JA)) {
2985 				verbose(env, "last insn is not an exit or jmp\n");
2986 				return -EINVAL;
2987 			}
2988 			subprog_start = subprog_end;
2989 			cur_subprog++;
2990 			if (cur_subprog < env->subprog_cnt)
2991 				subprog_end = subprog[cur_subprog + 1].start;
2992 		}
2993 	}
2994 	return 0;
2995 }
2996 
2997 /* Parentage chain of this register (or stack slot) should take care of all
2998  * issues like callee-saved registers, stack slot allocation time, etc.
2999  */
3000 static int mark_reg_read(struct bpf_verifier_env *env,
3001 			 const struct bpf_reg_state *state,
3002 			 struct bpf_reg_state *parent, u8 flag)
3003 {
3004 	bool writes = parent == state->parent; /* Observe write marks */
3005 	int cnt = 0;
3006 
3007 	while (parent) {
3008 		/* if read wasn't screened by an earlier write ... */
3009 		if (writes && state->live & REG_LIVE_WRITTEN)
3010 			break;
3011 		if (parent->live & REG_LIVE_DONE) {
3012 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3013 				reg_type_str(env, parent->type),
3014 				parent->var_off.value, parent->off);
3015 			return -EFAULT;
3016 		}
3017 		/* The first condition is more likely to be true than the
3018 		 * second, checked it first.
3019 		 */
3020 		if ((parent->live & REG_LIVE_READ) == flag ||
3021 		    parent->live & REG_LIVE_READ64)
3022 			/* The parentage chain never changes and
3023 			 * this parent was already marked as LIVE_READ.
3024 			 * There is no need to keep walking the chain again and
3025 			 * keep re-marking all parents as LIVE_READ.
3026 			 * This case happens when the same register is read
3027 			 * multiple times without writes into it in-between.
3028 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3029 			 * then no need to set the weak REG_LIVE_READ32.
3030 			 */
3031 			break;
3032 		/* ... then we depend on parent's value */
3033 		parent->live |= flag;
3034 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3035 		if (flag == REG_LIVE_READ64)
3036 			parent->live &= ~REG_LIVE_READ32;
3037 		state = parent;
3038 		parent = state->parent;
3039 		writes = true;
3040 		cnt++;
3041 	}
3042 
3043 	if (env->longest_mark_read_walk < cnt)
3044 		env->longest_mark_read_walk = cnt;
3045 	return 0;
3046 }
3047 
3048 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3049 {
3050 	struct bpf_func_state *state = func(env, reg);
3051 	int spi, ret;
3052 
3053 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3054 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3055 	 * check_kfunc_call.
3056 	 */
3057 	if (reg->type == CONST_PTR_TO_DYNPTR)
3058 		return 0;
3059 	spi = dynptr_get_spi(env, reg);
3060 	if (spi < 0)
3061 		return spi;
3062 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3063 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3064 	 * read.
3065 	 */
3066 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3067 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3068 	if (ret)
3069 		return ret;
3070 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3071 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3072 }
3073 
3074 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3075 			  int spi, int nr_slots)
3076 {
3077 	struct bpf_func_state *state = func(env, reg);
3078 	int err, i;
3079 
3080 	for (i = 0; i < nr_slots; i++) {
3081 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3082 
3083 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3084 		if (err)
3085 			return err;
3086 
3087 		mark_stack_slot_scratched(env, spi - i);
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 /* This function is supposed to be used by the following 32-bit optimization
3094  * code only. It returns TRUE if the source or destination register operates
3095  * on 64-bit, otherwise return FALSE.
3096  */
3097 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3098 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3099 {
3100 	u8 code, class, op;
3101 
3102 	code = insn->code;
3103 	class = BPF_CLASS(code);
3104 	op = BPF_OP(code);
3105 	if (class == BPF_JMP) {
3106 		/* BPF_EXIT for "main" will reach here. Return TRUE
3107 		 * conservatively.
3108 		 */
3109 		if (op == BPF_EXIT)
3110 			return true;
3111 		if (op == BPF_CALL) {
3112 			/* BPF to BPF call will reach here because of marking
3113 			 * caller saved clobber with DST_OP_NO_MARK for which we
3114 			 * don't care the register def because they are anyway
3115 			 * marked as NOT_INIT already.
3116 			 */
3117 			if (insn->src_reg == BPF_PSEUDO_CALL)
3118 				return false;
3119 			/* Helper call will reach here because of arg type
3120 			 * check, conservatively return TRUE.
3121 			 */
3122 			if (t == SRC_OP)
3123 				return true;
3124 
3125 			return false;
3126 		}
3127 	}
3128 
3129 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3130 		return false;
3131 
3132 	if (class == BPF_ALU64 || class == BPF_JMP ||
3133 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3134 		return true;
3135 
3136 	if (class == BPF_ALU || class == BPF_JMP32)
3137 		return false;
3138 
3139 	if (class == BPF_LDX) {
3140 		if (t != SRC_OP)
3141 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3142 		/* LDX source must be ptr. */
3143 		return true;
3144 	}
3145 
3146 	if (class == BPF_STX) {
3147 		/* BPF_STX (including atomic variants) has multiple source
3148 		 * operands, one of which is a ptr. Check whether the caller is
3149 		 * asking about it.
3150 		 */
3151 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3152 			return true;
3153 		return BPF_SIZE(code) == BPF_DW;
3154 	}
3155 
3156 	if (class == BPF_LD) {
3157 		u8 mode = BPF_MODE(code);
3158 
3159 		/* LD_IMM64 */
3160 		if (mode == BPF_IMM)
3161 			return true;
3162 
3163 		/* Both LD_IND and LD_ABS return 32-bit data. */
3164 		if (t != SRC_OP)
3165 			return  false;
3166 
3167 		/* Implicit ctx ptr. */
3168 		if (regno == BPF_REG_6)
3169 			return true;
3170 
3171 		/* Explicit source could be any width. */
3172 		return true;
3173 	}
3174 
3175 	if (class == BPF_ST)
3176 		/* The only source register for BPF_ST is a ptr. */
3177 		return true;
3178 
3179 	/* Conservatively return true at default. */
3180 	return true;
3181 }
3182 
3183 /* Return the regno defined by the insn, or -1. */
3184 static int insn_def_regno(const struct bpf_insn *insn)
3185 {
3186 	switch (BPF_CLASS(insn->code)) {
3187 	case BPF_JMP:
3188 	case BPF_JMP32:
3189 	case BPF_ST:
3190 		return -1;
3191 	case BPF_STX:
3192 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3193 		    (insn->imm & BPF_FETCH)) {
3194 			if (insn->imm == BPF_CMPXCHG)
3195 				return BPF_REG_0;
3196 			else
3197 				return insn->src_reg;
3198 		} else {
3199 			return -1;
3200 		}
3201 	default:
3202 		return insn->dst_reg;
3203 	}
3204 }
3205 
3206 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3207 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3208 {
3209 	int dst_reg = insn_def_regno(insn);
3210 
3211 	if (dst_reg == -1)
3212 		return false;
3213 
3214 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3215 }
3216 
3217 static void mark_insn_zext(struct bpf_verifier_env *env,
3218 			   struct bpf_reg_state *reg)
3219 {
3220 	s32 def_idx = reg->subreg_def;
3221 
3222 	if (def_idx == DEF_NOT_SUBREG)
3223 		return;
3224 
3225 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3226 	/* The dst will be zero extended, so won't be sub-register anymore. */
3227 	reg->subreg_def = DEF_NOT_SUBREG;
3228 }
3229 
3230 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3231 			 enum reg_arg_type t)
3232 {
3233 	struct bpf_verifier_state *vstate = env->cur_state;
3234 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3235 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3236 	struct bpf_reg_state *reg, *regs = state->regs;
3237 	bool rw64;
3238 
3239 	if (regno >= MAX_BPF_REG) {
3240 		verbose(env, "R%d is invalid\n", regno);
3241 		return -EINVAL;
3242 	}
3243 
3244 	mark_reg_scratched(env, regno);
3245 
3246 	reg = &regs[regno];
3247 	rw64 = is_reg64(env, insn, regno, reg, t);
3248 	if (t == SRC_OP) {
3249 		/* check whether register used as source operand can be read */
3250 		if (reg->type == NOT_INIT) {
3251 			verbose(env, "R%d !read_ok\n", regno);
3252 			return -EACCES;
3253 		}
3254 		/* We don't need to worry about FP liveness because it's read-only */
3255 		if (regno == BPF_REG_FP)
3256 			return 0;
3257 
3258 		if (rw64)
3259 			mark_insn_zext(env, reg);
3260 
3261 		return mark_reg_read(env, reg, reg->parent,
3262 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3263 	} else {
3264 		/* check whether register used as dest operand can be written to */
3265 		if (regno == BPF_REG_FP) {
3266 			verbose(env, "frame pointer is read only\n");
3267 			return -EACCES;
3268 		}
3269 		reg->live |= REG_LIVE_WRITTEN;
3270 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3271 		if (t == DST_OP)
3272 			mark_reg_unknown(env, regs, regno);
3273 	}
3274 	return 0;
3275 }
3276 
3277 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3278 {
3279 	env->insn_aux_data[idx].jmp_point = true;
3280 }
3281 
3282 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3283 {
3284 	return env->insn_aux_data[insn_idx].jmp_point;
3285 }
3286 
3287 /* for any branch, call, exit record the history of jmps in the given state */
3288 static int push_jmp_history(struct bpf_verifier_env *env,
3289 			    struct bpf_verifier_state *cur)
3290 {
3291 	u32 cnt = cur->jmp_history_cnt;
3292 	struct bpf_idx_pair *p;
3293 	size_t alloc_size;
3294 
3295 	if (!is_jmp_point(env, env->insn_idx))
3296 		return 0;
3297 
3298 	cnt++;
3299 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3300 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3301 	if (!p)
3302 		return -ENOMEM;
3303 	p[cnt - 1].idx = env->insn_idx;
3304 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3305 	cur->jmp_history = p;
3306 	cur->jmp_history_cnt = cnt;
3307 	return 0;
3308 }
3309 
3310 /* Backtrack one insn at a time. If idx is not at the top of recorded
3311  * history then previous instruction came from straight line execution.
3312  */
3313 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3314 			     u32 *history)
3315 {
3316 	u32 cnt = *history;
3317 
3318 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3319 		i = st->jmp_history[cnt - 1].prev_idx;
3320 		(*history)--;
3321 	} else {
3322 		i--;
3323 	}
3324 	return i;
3325 }
3326 
3327 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3328 {
3329 	const struct btf_type *func;
3330 	struct btf *desc_btf;
3331 
3332 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3333 		return NULL;
3334 
3335 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3336 	if (IS_ERR(desc_btf))
3337 		return "<error>";
3338 
3339 	func = btf_type_by_id(desc_btf, insn->imm);
3340 	return btf_name_by_offset(desc_btf, func->name_off);
3341 }
3342 
3343 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3344 {
3345 	bt->frame = frame;
3346 }
3347 
3348 static inline void bt_reset(struct backtrack_state *bt)
3349 {
3350 	struct bpf_verifier_env *env = bt->env;
3351 
3352 	memset(bt, 0, sizeof(*bt));
3353 	bt->env = env;
3354 }
3355 
3356 static inline u32 bt_empty(struct backtrack_state *bt)
3357 {
3358 	u64 mask = 0;
3359 	int i;
3360 
3361 	for (i = 0; i <= bt->frame; i++)
3362 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3363 
3364 	return mask == 0;
3365 }
3366 
3367 static inline int bt_subprog_enter(struct backtrack_state *bt)
3368 {
3369 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3370 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3371 		WARN_ONCE(1, "verifier backtracking bug");
3372 		return -EFAULT;
3373 	}
3374 	bt->frame++;
3375 	return 0;
3376 }
3377 
3378 static inline int bt_subprog_exit(struct backtrack_state *bt)
3379 {
3380 	if (bt->frame == 0) {
3381 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3382 		WARN_ONCE(1, "verifier backtracking bug");
3383 		return -EFAULT;
3384 	}
3385 	bt->frame--;
3386 	return 0;
3387 }
3388 
3389 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3390 {
3391 	bt->reg_masks[frame] |= 1 << reg;
3392 }
3393 
3394 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3395 {
3396 	bt->reg_masks[frame] &= ~(1 << reg);
3397 }
3398 
3399 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3400 {
3401 	bt_set_frame_reg(bt, bt->frame, reg);
3402 }
3403 
3404 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3405 {
3406 	bt_clear_frame_reg(bt, bt->frame, reg);
3407 }
3408 
3409 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3410 {
3411 	bt->stack_masks[frame] |= 1ull << slot;
3412 }
3413 
3414 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3415 {
3416 	bt->stack_masks[frame] &= ~(1ull << slot);
3417 }
3418 
3419 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3420 {
3421 	bt_set_frame_slot(bt, bt->frame, slot);
3422 }
3423 
3424 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3425 {
3426 	bt_clear_frame_slot(bt, bt->frame, slot);
3427 }
3428 
3429 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3430 {
3431 	return bt->reg_masks[frame];
3432 }
3433 
3434 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3435 {
3436 	return bt->reg_masks[bt->frame];
3437 }
3438 
3439 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3440 {
3441 	return bt->stack_masks[frame];
3442 }
3443 
3444 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3445 {
3446 	return bt->stack_masks[bt->frame];
3447 }
3448 
3449 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3450 {
3451 	return bt->reg_masks[bt->frame] & (1 << reg);
3452 }
3453 
3454 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3455 {
3456 	return bt->stack_masks[bt->frame] & (1ull << slot);
3457 }
3458 
3459 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3460 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3461 {
3462 	DECLARE_BITMAP(mask, 64);
3463 	bool first = true;
3464 	int i, n;
3465 
3466 	buf[0] = '\0';
3467 
3468 	bitmap_from_u64(mask, reg_mask);
3469 	for_each_set_bit(i, mask, 32) {
3470 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3471 		first = false;
3472 		buf += n;
3473 		buf_sz -= n;
3474 		if (buf_sz < 0)
3475 			break;
3476 	}
3477 }
3478 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3479 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3480 {
3481 	DECLARE_BITMAP(mask, 64);
3482 	bool first = true;
3483 	int i, n;
3484 
3485 	buf[0] = '\0';
3486 
3487 	bitmap_from_u64(mask, stack_mask);
3488 	for_each_set_bit(i, mask, 64) {
3489 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3490 		first = false;
3491 		buf += n;
3492 		buf_sz -= n;
3493 		if (buf_sz < 0)
3494 			break;
3495 	}
3496 }
3497 
3498 /* For given verifier state backtrack_insn() is called from the last insn to
3499  * the first insn. Its purpose is to compute a bitmask of registers and
3500  * stack slots that needs precision in the parent verifier state.
3501  *
3502  * @idx is an index of the instruction we are currently processing;
3503  * @subseq_idx is an index of the subsequent instruction that:
3504  *   - *would be* executed next, if jump history is viewed in forward order;
3505  *   - *was* processed previously during backtracking.
3506  */
3507 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3508 			  struct backtrack_state *bt)
3509 {
3510 	const struct bpf_insn_cbs cbs = {
3511 		.cb_call	= disasm_kfunc_name,
3512 		.cb_print	= verbose,
3513 		.private_data	= env,
3514 	};
3515 	struct bpf_insn *insn = env->prog->insnsi + idx;
3516 	u8 class = BPF_CLASS(insn->code);
3517 	u8 opcode = BPF_OP(insn->code);
3518 	u8 mode = BPF_MODE(insn->code);
3519 	u32 dreg = insn->dst_reg;
3520 	u32 sreg = insn->src_reg;
3521 	u32 spi, i;
3522 
3523 	if (insn->code == 0)
3524 		return 0;
3525 	if (env->log.level & BPF_LOG_LEVEL2) {
3526 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3527 		verbose(env, "mark_precise: frame%d: regs=%s ",
3528 			bt->frame, env->tmp_str_buf);
3529 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3530 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3531 		verbose(env, "%d: ", idx);
3532 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3533 	}
3534 
3535 	if (class == BPF_ALU || class == BPF_ALU64) {
3536 		if (!bt_is_reg_set(bt, dreg))
3537 			return 0;
3538 		if (opcode == BPF_MOV) {
3539 			if (BPF_SRC(insn->code) == BPF_X) {
3540 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3541 				 * dreg needs precision after this insn
3542 				 * sreg needs precision before this insn
3543 				 */
3544 				bt_clear_reg(bt, dreg);
3545 				bt_set_reg(bt, sreg);
3546 			} else {
3547 				/* dreg = K
3548 				 * dreg needs precision after this insn.
3549 				 * Corresponding register is already marked
3550 				 * as precise=true in this verifier state.
3551 				 * No further markings in parent are necessary
3552 				 */
3553 				bt_clear_reg(bt, dreg);
3554 			}
3555 		} else {
3556 			if (BPF_SRC(insn->code) == BPF_X) {
3557 				/* dreg += sreg
3558 				 * both dreg and sreg need precision
3559 				 * before this insn
3560 				 */
3561 				bt_set_reg(bt, sreg);
3562 			} /* else dreg += K
3563 			   * dreg still needs precision before this insn
3564 			   */
3565 		}
3566 	} else if (class == BPF_LDX) {
3567 		if (!bt_is_reg_set(bt, dreg))
3568 			return 0;
3569 		bt_clear_reg(bt, dreg);
3570 
3571 		/* scalars can only be spilled into stack w/o losing precision.
3572 		 * Load from any other memory can be zero extended.
3573 		 * The desire to keep that precision is already indicated
3574 		 * by 'precise' mark in corresponding register of this state.
3575 		 * No further tracking necessary.
3576 		 */
3577 		if (insn->src_reg != BPF_REG_FP)
3578 			return 0;
3579 
3580 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3581 		 * that [fp - off] slot contains scalar that needs to be
3582 		 * tracked with precision
3583 		 */
3584 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3585 		if (spi >= 64) {
3586 			verbose(env, "BUG spi %d\n", spi);
3587 			WARN_ONCE(1, "verifier backtracking bug");
3588 			return -EFAULT;
3589 		}
3590 		bt_set_slot(bt, spi);
3591 	} else if (class == BPF_STX || class == BPF_ST) {
3592 		if (bt_is_reg_set(bt, dreg))
3593 			/* stx & st shouldn't be using _scalar_ dst_reg
3594 			 * to access memory. It means backtracking
3595 			 * encountered a case of pointer subtraction.
3596 			 */
3597 			return -ENOTSUPP;
3598 		/* scalars can only be spilled into stack */
3599 		if (insn->dst_reg != BPF_REG_FP)
3600 			return 0;
3601 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3602 		if (spi >= 64) {
3603 			verbose(env, "BUG spi %d\n", spi);
3604 			WARN_ONCE(1, "verifier backtracking bug");
3605 			return -EFAULT;
3606 		}
3607 		if (!bt_is_slot_set(bt, spi))
3608 			return 0;
3609 		bt_clear_slot(bt, spi);
3610 		if (class == BPF_STX)
3611 			bt_set_reg(bt, sreg);
3612 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3613 		if (bpf_pseudo_call(insn)) {
3614 			int subprog_insn_idx, subprog;
3615 
3616 			subprog_insn_idx = idx + insn->imm + 1;
3617 			subprog = find_subprog(env, subprog_insn_idx);
3618 			if (subprog < 0)
3619 				return -EFAULT;
3620 
3621 			if (subprog_is_global(env, subprog)) {
3622 				/* check that jump history doesn't have any
3623 				 * extra instructions from subprog; the next
3624 				 * instruction after call to global subprog
3625 				 * should be literally next instruction in
3626 				 * caller program
3627 				 */
3628 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3629 				/* r1-r5 are invalidated after subprog call,
3630 				 * so for global func call it shouldn't be set
3631 				 * anymore
3632 				 */
3633 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3634 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3635 					WARN_ONCE(1, "verifier backtracking bug");
3636 					return -EFAULT;
3637 				}
3638 				/* global subprog always sets R0 */
3639 				bt_clear_reg(bt, BPF_REG_0);
3640 				return 0;
3641 			} else {
3642 				/* static subprog call instruction, which
3643 				 * means that we are exiting current subprog,
3644 				 * so only r1-r5 could be still requested as
3645 				 * precise, r0 and r6-r10 or any stack slot in
3646 				 * the current frame should be zero by now
3647 				 */
3648 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3649 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3650 					WARN_ONCE(1, "verifier backtracking bug");
3651 					return -EFAULT;
3652 				}
3653 				/* we don't track register spills perfectly,
3654 				 * so fallback to force-precise instead of failing */
3655 				if (bt_stack_mask(bt) != 0)
3656 					return -ENOTSUPP;
3657 				/* propagate r1-r5 to the caller */
3658 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3659 					if (bt_is_reg_set(bt, i)) {
3660 						bt_clear_reg(bt, i);
3661 						bt_set_frame_reg(bt, bt->frame - 1, i);
3662 					}
3663 				}
3664 				if (bt_subprog_exit(bt))
3665 					return -EFAULT;
3666 				return 0;
3667 			}
3668 		} else if ((bpf_helper_call(insn) &&
3669 			    is_callback_calling_function(insn->imm) &&
3670 			    !is_async_callback_calling_function(insn->imm)) ||
3671 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3672 			/* callback-calling helper or kfunc call, which means
3673 			 * we are exiting from subprog, but unlike the subprog
3674 			 * call handling above, we shouldn't propagate
3675 			 * precision of r1-r5 (if any requested), as they are
3676 			 * not actually arguments passed directly to callback
3677 			 * subprogs
3678 			 */
3679 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3680 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3681 				WARN_ONCE(1, "verifier backtracking bug");
3682 				return -EFAULT;
3683 			}
3684 			if (bt_stack_mask(bt) != 0)
3685 				return -ENOTSUPP;
3686 			/* clear r1-r5 in callback subprog's mask */
3687 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3688 				bt_clear_reg(bt, i);
3689 			if (bt_subprog_exit(bt))
3690 				return -EFAULT;
3691 			return 0;
3692 		} else if (opcode == BPF_CALL) {
3693 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3694 			 * catch this error later. Make backtracking conservative
3695 			 * with ENOTSUPP.
3696 			 */
3697 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3698 				return -ENOTSUPP;
3699 			/* regular helper call sets R0 */
3700 			bt_clear_reg(bt, BPF_REG_0);
3701 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3702 				/* if backtracing was looking for registers R1-R5
3703 				 * they should have been found already.
3704 				 */
3705 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3706 				WARN_ONCE(1, "verifier backtracking bug");
3707 				return -EFAULT;
3708 			}
3709 		} else if (opcode == BPF_EXIT) {
3710 			bool r0_precise;
3711 
3712 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3713 				/* if backtracing was looking for registers R1-R5
3714 				 * they should have been found already.
3715 				 */
3716 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3717 				WARN_ONCE(1, "verifier backtracking bug");
3718 				return -EFAULT;
3719 			}
3720 
3721 			/* BPF_EXIT in subprog or callback always returns
3722 			 * right after the call instruction, so by checking
3723 			 * whether the instruction at subseq_idx-1 is subprog
3724 			 * call or not we can distinguish actual exit from
3725 			 * *subprog* from exit from *callback*. In the former
3726 			 * case, we need to propagate r0 precision, if
3727 			 * necessary. In the former we never do that.
3728 			 */
3729 			r0_precise = subseq_idx - 1 >= 0 &&
3730 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3731 				     bt_is_reg_set(bt, BPF_REG_0);
3732 
3733 			bt_clear_reg(bt, BPF_REG_0);
3734 			if (bt_subprog_enter(bt))
3735 				return -EFAULT;
3736 
3737 			if (r0_precise)
3738 				bt_set_reg(bt, BPF_REG_0);
3739 			/* r6-r9 and stack slots will stay set in caller frame
3740 			 * bitmasks until we return back from callee(s)
3741 			 */
3742 			return 0;
3743 		} else if (BPF_SRC(insn->code) == BPF_X) {
3744 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3745 				return 0;
3746 			/* dreg <cond> sreg
3747 			 * Both dreg and sreg need precision before
3748 			 * this insn. If only sreg was marked precise
3749 			 * before it would be equally necessary to
3750 			 * propagate it to dreg.
3751 			 */
3752 			bt_set_reg(bt, dreg);
3753 			bt_set_reg(bt, sreg);
3754 			 /* else dreg <cond> K
3755 			  * Only dreg still needs precision before
3756 			  * this insn, so for the K-based conditional
3757 			  * there is nothing new to be marked.
3758 			  */
3759 		}
3760 	} else if (class == BPF_LD) {
3761 		if (!bt_is_reg_set(bt, dreg))
3762 			return 0;
3763 		bt_clear_reg(bt, dreg);
3764 		/* It's ld_imm64 or ld_abs or ld_ind.
3765 		 * For ld_imm64 no further tracking of precision
3766 		 * into parent is necessary
3767 		 */
3768 		if (mode == BPF_IND || mode == BPF_ABS)
3769 			/* to be analyzed */
3770 			return -ENOTSUPP;
3771 	}
3772 	return 0;
3773 }
3774 
3775 /* the scalar precision tracking algorithm:
3776  * . at the start all registers have precise=false.
3777  * . scalar ranges are tracked as normal through alu and jmp insns.
3778  * . once precise value of the scalar register is used in:
3779  *   .  ptr + scalar alu
3780  *   . if (scalar cond K|scalar)
3781  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3782  *   backtrack through the verifier states and mark all registers and
3783  *   stack slots with spilled constants that these scalar regisers
3784  *   should be precise.
3785  * . during state pruning two registers (or spilled stack slots)
3786  *   are equivalent if both are not precise.
3787  *
3788  * Note the verifier cannot simply walk register parentage chain,
3789  * since many different registers and stack slots could have been
3790  * used to compute single precise scalar.
3791  *
3792  * The approach of starting with precise=true for all registers and then
3793  * backtrack to mark a register as not precise when the verifier detects
3794  * that program doesn't care about specific value (e.g., when helper
3795  * takes register as ARG_ANYTHING parameter) is not safe.
3796  *
3797  * It's ok to walk single parentage chain of the verifier states.
3798  * It's possible that this backtracking will go all the way till 1st insn.
3799  * All other branches will be explored for needing precision later.
3800  *
3801  * The backtracking needs to deal with cases like:
3802  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3803  * r9 -= r8
3804  * r5 = r9
3805  * if r5 > 0x79f goto pc+7
3806  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3807  * r5 += 1
3808  * ...
3809  * call bpf_perf_event_output#25
3810  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3811  *
3812  * and this case:
3813  * r6 = 1
3814  * call foo // uses callee's r6 inside to compute r0
3815  * r0 += r6
3816  * if r0 == 0 goto
3817  *
3818  * to track above reg_mask/stack_mask needs to be independent for each frame.
3819  *
3820  * Also if parent's curframe > frame where backtracking started,
3821  * the verifier need to mark registers in both frames, otherwise callees
3822  * may incorrectly prune callers. This is similar to
3823  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3824  *
3825  * For now backtracking falls back into conservative marking.
3826  */
3827 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3828 				     struct bpf_verifier_state *st)
3829 {
3830 	struct bpf_func_state *func;
3831 	struct bpf_reg_state *reg;
3832 	int i, j;
3833 
3834 	if (env->log.level & BPF_LOG_LEVEL2) {
3835 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3836 			st->curframe);
3837 	}
3838 
3839 	/* big hammer: mark all scalars precise in this path.
3840 	 * pop_stack may still get !precise scalars.
3841 	 * We also skip current state and go straight to first parent state,
3842 	 * because precision markings in current non-checkpointed state are
3843 	 * not needed. See why in the comment in __mark_chain_precision below.
3844 	 */
3845 	for (st = st->parent; st; st = st->parent) {
3846 		for (i = 0; i <= st->curframe; i++) {
3847 			func = st->frame[i];
3848 			for (j = 0; j < BPF_REG_FP; j++) {
3849 				reg = &func->regs[j];
3850 				if (reg->type != SCALAR_VALUE || reg->precise)
3851 					continue;
3852 				reg->precise = true;
3853 				if (env->log.level & BPF_LOG_LEVEL2) {
3854 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3855 						i, j);
3856 				}
3857 			}
3858 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3859 				if (!is_spilled_reg(&func->stack[j]))
3860 					continue;
3861 				reg = &func->stack[j].spilled_ptr;
3862 				if (reg->type != SCALAR_VALUE || reg->precise)
3863 					continue;
3864 				reg->precise = true;
3865 				if (env->log.level & BPF_LOG_LEVEL2) {
3866 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3867 						i, -(j + 1) * 8);
3868 				}
3869 			}
3870 		}
3871 	}
3872 }
3873 
3874 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3875 {
3876 	struct bpf_func_state *func;
3877 	struct bpf_reg_state *reg;
3878 	int i, j;
3879 
3880 	for (i = 0; i <= st->curframe; i++) {
3881 		func = st->frame[i];
3882 		for (j = 0; j < BPF_REG_FP; j++) {
3883 			reg = &func->regs[j];
3884 			if (reg->type != SCALAR_VALUE)
3885 				continue;
3886 			reg->precise = false;
3887 		}
3888 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3889 			if (!is_spilled_reg(&func->stack[j]))
3890 				continue;
3891 			reg = &func->stack[j].spilled_ptr;
3892 			if (reg->type != SCALAR_VALUE)
3893 				continue;
3894 			reg->precise = false;
3895 		}
3896 	}
3897 }
3898 
3899 static bool idset_contains(struct bpf_idset *s, u32 id)
3900 {
3901 	u32 i;
3902 
3903 	for (i = 0; i < s->count; ++i)
3904 		if (s->ids[i] == id)
3905 			return true;
3906 
3907 	return false;
3908 }
3909 
3910 static int idset_push(struct bpf_idset *s, u32 id)
3911 {
3912 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3913 		return -EFAULT;
3914 	s->ids[s->count++] = id;
3915 	return 0;
3916 }
3917 
3918 static void idset_reset(struct bpf_idset *s)
3919 {
3920 	s->count = 0;
3921 }
3922 
3923 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3924  * Mark all registers with these IDs as precise.
3925  */
3926 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3927 {
3928 	struct bpf_idset *precise_ids = &env->idset_scratch;
3929 	struct backtrack_state *bt = &env->bt;
3930 	struct bpf_func_state *func;
3931 	struct bpf_reg_state *reg;
3932 	DECLARE_BITMAP(mask, 64);
3933 	int i, fr;
3934 
3935 	idset_reset(precise_ids);
3936 
3937 	for (fr = bt->frame; fr >= 0; fr--) {
3938 		func = st->frame[fr];
3939 
3940 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3941 		for_each_set_bit(i, mask, 32) {
3942 			reg = &func->regs[i];
3943 			if (!reg->id || reg->type != SCALAR_VALUE)
3944 				continue;
3945 			if (idset_push(precise_ids, reg->id))
3946 				return -EFAULT;
3947 		}
3948 
3949 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3950 		for_each_set_bit(i, mask, 64) {
3951 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3952 				break;
3953 			if (!is_spilled_scalar_reg(&func->stack[i]))
3954 				continue;
3955 			reg = &func->stack[i].spilled_ptr;
3956 			if (!reg->id)
3957 				continue;
3958 			if (idset_push(precise_ids, reg->id))
3959 				return -EFAULT;
3960 		}
3961 	}
3962 
3963 	for (fr = 0; fr <= st->curframe; ++fr) {
3964 		func = st->frame[fr];
3965 
3966 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3967 			reg = &func->regs[i];
3968 			if (!reg->id)
3969 				continue;
3970 			if (!idset_contains(precise_ids, reg->id))
3971 				continue;
3972 			bt_set_frame_reg(bt, fr, i);
3973 		}
3974 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3975 			if (!is_spilled_scalar_reg(&func->stack[i]))
3976 				continue;
3977 			reg = &func->stack[i].spilled_ptr;
3978 			if (!reg->id)
3979 				continue;
3980 			if (!idset_contains(precise_ids, reg->id))
3981 				continue;
3982 			bt_set_frame_slot(bt, fr, i);
3983 		}
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 /*
3990  * __mark_chain_precision() backtracks BPF program instruction sequence and
3991  * chain of verifier states making sure that register *regno* (if regno >= 0)
3992  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3993  * SCALARS, as well as any other registers and slots that contribute to
3994  * a tracked state of given registers/stack slots, depending on specific BPF
3995  * assembly instructions (see backtrack_insns() for exact instruction handling
3996  * logic). This backtracking relies on recorded jmp_history and is able to
3997  * traverse entire chain of parent states. This process ends only when all the
3998  * necessary registers/slots and their transitive dependencies are marked as
3999  * precise.
4000  *
4001  * One important and subtle aspect is that precise marks *do not matter* in
4002  * the currently verified state (current state). It is important to understand
4003  * why this is the case.
4004  *
4005  * First, note that current state is the state that is not yet "checkpointed",
4006  * i.e., it is not yet put into env->explored_states, and it has no children
4007  * states as well. It's ephemeral, and can end up either a) being discarded if
4008  * compatible explored state is found at some point or BPF_EXIT instruction is
4009  * reached or b) checkpointed and put into env->explored_states, branching out
4010  * into one or more children states.
4011  *
4012  * In the former case, precise markings in current state are completely
4013  * ignored by state comparison code (see regsafe() for details). Only
4014  * checkpointed ("old") state precise markings are important, and if old
4015  * state's register/slot is precise, regsafe() assumes current state's
4016  * register/slot as precise and checks value ranges exactly and precisely. If
4017  * states turn out to be compatible, current state's necessary precise
4018  * markings and any required parent states' precise markings are enforced
4019  * after the fact with propagate_precision() logic, after the fact. But it's
4020  * important to realize that in this case, even after marking current state
4021  * registers/slots as precise, we immediately discard current state. So what
4022  * actually matters is any of the precise markings propagated into current
4023  * state's parent states, which are always checkpointed (due to b) case above).
4024  * As such, for scenario a) it doesn't matter if current state has precise
4025  * markings set or not.
4026  *
4027  * Now, for the scenario b), checkpointing and forking into child(ren)
4028  * state(s). Note that before current state gets to checkpointing step, any
4029  * processed instruction always assumes precise SCALAR register/slot
4030  * knowledge: if precise value or range is useful to prune jump branch, BPF
4031  * verifier takes this opportunity enthusiastically. Similarly, when
4032  * register's value is used to calculate offset or memory address, exact
4033  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4034  * what we mentioned above about state comparison ignoring precise markings
4035  * during state comparison, BPF verifier ignores and also assumes precise
4036  * markings *at will* during instruction verification process. But as verifier
4037  * assumes precision, it also propagates any precision dependencies across
4038  * parent states, which are not yet finalized, so can be further restricted
4039  * based on new knowledge gained from restrictions enforced by their children
4040  * states. This is so that once those parent states are finalized, i.e., when
4041  * they have no more active children state, state comparison logic in
4042  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4043  * required for correctness.
4044  *
4045  * To build a bit more intuition, note also that once a state is checkpointed,
4046  * the path we took to get to that state is not important. This is crucial
4047  * property for state pruning. When state is checkpointed and finalized at
4048  * some instruction index, it can be correctly and safely used to "short
4049  * circuit" any *compatible* state that reaches exactly the same instruction
4050  * index. I.e., if we jumped to that instruction from a completely different
4051  * code path than original finalized state was derived from, it doesn't
4052  * matter, current state can be discarded because from that instruction
4053  * forward having a compatible state will ensure we will safely reach the
4054  * exit. States describe preconditions for further exploration, but completely
4055  * forget the history of how we got here.
4056  *
4057  * This also means that even if we needed precise SCALAR range to get to
4058  * finalized state, but from that point forward *that same* SCALAR register is
4059  * never used in a precise context (i.e., it's precise value is not needed for
4060  * correctness), it's correct and safe to mark such register as "imprecise"
4061  * (i.e., precise marking set to false). This is what we rely on when we do
4062  * not set precise marking in current state. If no child state requires
4063  * precision for any given SCALAR register, it's safe to dictate that it can
4064  * be imprecise. If any child state does require this register to be precise,
4065  * we'll mark it precise later retroactively during precise markings
4066  * propagation from child state to parent states.
4067  *
4068  * Skipping precise marking setting in current state is a mild version of
4069  * relying on the above observation. But we can utilize this property even
4070  * more aggressively by proactively forgetting any precise marking in the
4071  * current state (which we inherited from the parent state), right before we
4072  * checkpoint it and branch off into new child state. This is done by
4073  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4074  * finalized states which help in short circuiting more future states.
4075  */
4076 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4077 {
4078 	struct backtrack_state *bt = &env->bt;
4079 	struct bpf_verifier_state *st = env->cur_state;
4080 	int first_idx = st->first_insn_idx;
4081 	int last_idx = env->insn_idx;
4082 	int subseq_idx = -1;
4083 	struct bpf_func_state *func;
4084 	struct bpf_reg_state *reg;
4085 	bool skip_first = true;
4086 	int i, fr, err;
4087 
4088 	if (!env->bpf_capable)
4089 		return 0;
4090 
4091 	/* set frame number from which we are starting to backtrack */
4092 	bt_init(bt, env->cur_state->curframe);
4093 
4094 	/* Do sanity checks against current state of register and/or stack
4095 	 * slot, but don't set precise flag in current state, as precision
4096 	 * tracking in the current state is unnecessary.
4097 	 */
4098 	func = st->frame[bt->frame];
4099 	if (regno >= 0) {
4100 		reg = &func->regs[regno];
4101 		if (reg->type != SCALAR_VALUE) {
4102 			WARN_ONCE(1, "backtracing misuse");
4103 			return -EFAULT;
4104 		}
4105 		bt_set_reg(bt, regno);
4106 	}
4107 
4108 	if (bt_empty(bt))
4109 		return 0;
4110 
4111 	for (;;) {
4112 		DECLARE_BITMAP(mask, 64);
4113 		u32 history = st->jmp_history_cnt;
4114 
4115 		if (env->log.level & BPF_LOG_LEVEL2) {
4116 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4117 				bt->frame, last_idx, first_idx, subseq_idx);
4118 		}
4119 
4120 		/* If some register with scalar ID is marked as precise,
4121 		 * make sure that all registers sharing this ID are also precise.
4122 		 * This is needed to estimate effect of find_equal_scalars().
4123 		 * Do this at the last instruction of each state,
4124 		 * bpf_reg_state::id fields are valid for these instructions.
4125 		 *
4126 		 * Allows to track precision in situation like below:
4127 		 *
4128 		 *     r2 = unknown value
4129 		 *     ...
4130 		 *   --- state #0 ---
4131 		 *     ...
4132 		 *     r1 = r2                 // r1 and r2 now share the same ID
4133 		 *     ...
4134 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4135 		 *     ...
4136 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4137 		 *     ...
4138 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4139 		 *     r3 = r10
4140 		 *     r3 += r1                // need to mark both r1 and r2
4141 		 */
4142 		if (mark_precise_scalar_ids(env, st))
4143 			return -EFAULT;
4144 
4145 		if (last_idx < 0) {
4146 			/* we are at the entry into subprog, which
4147 			 * is expected for global funcs, but only if
4148 			 * requested precise registers are R1-R5
4149 			 * (which are global func's input arguments)
4150 			 */
4151 			if (st->curframe == 0 &&
4152 			    st->frame[0]->subprogno > 0 &&
4153 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4154 			    bt_stack_mask(bt) == 0 &&
4155 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4156 				bitmap_from_u64(mask, bt_reg_mask(bt));
4157 				for_each_set_bit(i, mask, 32) {
4158 					reg = &st->frame[0]->regs[i];
4159 					bt_clear_reg(bt, i);
4160 					if (reg->type == SCALAR_VALUE)
4161 						reg->precise = true;
4162 				}
4163 				return 0;
4164 			}
4165 
4166 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4167 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4168 			WARN_ONCE(1, "verifier backtracking bug");
4169 			return -EFAULT;
4170 		}
4171 
4172 		for (i = last_idx;;) {
4173 			if (skip_first) {
4174 				err = 0;
4175 				skip_first = false;
4176 			} else {
4177 				err = backtrack_insn(env, i, subseq_idx, bt);
4178 			}
4179 			if (err == -ENOTSUPP) {
4180 				mark_all_scalars_precise(env, env->cur_state);
4181 				bt_reset(bt);
4182 				return 0;
4183 			} else if (err) {
4184 				return err;
4185 			}
4186 			if (bt_empty(bt))
4187 				/* Found assignment(s) into tracked register in this state.
4188 				 * Since this state is already marked, just return.
4189 				 * Nothing to be tracked further in the parent state.
4190 				 */
4191 				return 0;
4192 			if (i == first_idx)
4193 				break;
4194 			subseq_idx = i;
4195 			i = get_prev_insn_idx(st, i, &history);
4196 			if (i >= env->prog->len) {
4197 				/* This can happen if backtracking reached insn 0
4198 				 * and there are still reg_mask or stack_mask
4199 				 * to backtrack.
4200 				 * It means the backtracking missed the spot where
4201 				 * particular register was initialized with a constant.
4202 				 */
4203 				verbose(env, "BUG backtracking idx %d\n", i);
4204 				WARN_ONCE(1, "verifier backtracking bug");
4205 				return -EFAULT;
4206 			}
4207 		}
4208 		st = st->parent;
4209 		if (!st)
4210 			break;
4211 
4212 		for (fr = bt->frame; fr >= 0; fr--) {
4213 			func = st->frame[fr];
4214 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4215 			for_each_set_bit(i, mask, 32) {
4216 				reg = &func->regs[i];
4217 				if (reg->type != SCALAR_VALUE) {
4218 					bt_clear_frame_reg(bt, fr, i);
4219 					continue;
4220 				}
4221 				if (reg->precise)
4222 					bt_clear_frame_reg(bt, fr, i);
4223 				else
4224 					reg->precise = true;
4225 			}
4226 
4227 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4228 			for_each_set_bit(i, mask, 64) {
4229 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4230 					/* the sequence of instructions:
4231 					 * 2: (bf) r3 = r10
4232 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4233 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4234 					 * doesn't contain jmps. It's backtracked
4235 					 * as a single block.
4236 					 * During backtracking insn 3 is not recognized as
4237 					 * stack access, so at the end of backtracking
4238 					 * stack slot fp-8 is still marked in stack_mask.
4239 					 * However the parent state may not have accessed
4240 					 * fp-8 and it's "unallocated" stack space.
4241 					 * In such case fallback to conservative.
4242 					 */
4243 					mark_all_scalars_precise(env, env->cur_state);
4244 					bt_reset(bt);
4245 					return 0;
4246 				}
4247 
4248 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4249 					bt_clear_frame_slot(bt, fr, i);
4250 					continue;
4251 				}
4252 				reg = &func->stack[i].spilled_ptr;
4253 				if (reg->precise)
4254 					bt_clear_frame_slot(bt, fr, i);
4255 				else
4256 					reg->precise = true;
4257 			}
4258 			if (env->log.level & BPF_LOG_LEVEL2) {
4259 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4260 					     bt_frame_reg_mask(bt, fr));
4261 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4262 					fr, env->tmp_str_buf);
4263 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4264 					       bt_frame_stack_mask(bt, fr));
4265 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4266 				print_verifier_state(env, func, true);
4267 			}
4268 		}
4269 
4270 		if (bt_empty(bt))
4271 			return 0;
4272 
4273 		subseq_idx = first_idx;
4274 		last_idx = st->last_insn_idx;
4275 		first_idx = st->first_insn_idx;
4276 	}
4277 
4278 	/* if we still have requested precise regs or slots, we missed
4279 	 * something (e.g., stack access through non-r10 register), so
4280 	 * fallback to marking all precise
4281 	 */
4282 	if (!bt_empty(bt)) {
4283 		mark_all_scalars_precise(env, env->cur_state);
4284 		bt_reset(bt);
4285 	}
4286 
4287 	return 0;
4288 }
4289 
4290 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4291 {
4292 	return __mark_chain_precision(env, regno);
4293 }
4294 
4295 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4296  * desired reg and stack masks across all relevant frames
4297  */
4298 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4299 {
4300 	return __mark_chain_precision(env, -1);
4301 }
4302 
4303 static bool is_spillable_regtype(enum bpf_reg_type type)
4304 {
4305 	switch (base_type(type)) {
4306 	case PTR_TO_MAP_VALUE:
4307 	case PTR_TO_STACK:
4308 	case PTR_TO_CTX:
4309 	case PTR_TO_PACKET:
4310 	case PTR_TO_PACKET_META:
4311 	case PTR_TO_PACKET_END:
4312 	case PTR_TO_FLOW_KEYS:
4313 	case CONST_PTR_TO_MAP:
4314 	case PTR_TO_SOCKET:
4315 	case PTR_TO_SOCK_COMMON:
4316 	case PTR_TO_TCP_SOCK:
4317 	case PTR_TO_XDP_SOCK:
4318 	case PTR_TO_BTF_ID:
4319 	case PTR_TO_BUF:
4320 	case PTR_TO_MEM:
4321 	case PTR_TO_FUNC:
4322 	case PTR_TO_MAP_KEY:
4323 		return true;
4324 	default:
4325 		return false;
4326 	}
4327 }
4328 
4329 /* Does this register contain a constant zero? */
4330 static bool register_is_null(struct bpf_reg_state *reg)
4331 {
4332 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4333 }
4334 
4335 static bool register_is_const(struct bpf_reg_state *reg)
4336 {
4337 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4338 }
4339 
4340 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4341 {
4342 	return tnum_is_unknown(reg->var_off) &&
4343 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4344 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4345 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4346 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4347 }
4348 
4349 static bool register_is_bounded(struct bpf_reg_state *reg)
4350 {
4351 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4352 }
4353 
4354 static bool __is_pointer_value(bool allow_ptr_leaks,
4355 			       const struct bpf_reg_state *reg)
4356 {
4357 	if (allow_ptr_leaks)
4358 		return false;
4359 
4360 	return reg->type != SCALAR_VALUE;
4361 }
4362 
4363 /* Copy src state preserving dst->parent and dst->live fields */
4364 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4365 {
4366 	struct bpf_reg_state *parent = dst->parent;
4367 	enum bpf_reg_liveness live = dst->live;
4368 
4369 	*dst = *src;
4370 	dst->parent = parent;
4371 	dst->live = live;
4372 }
4373 
4374 static void save_register_state(struct bpf_func_state *state,
4375 				int spi, struct bpf_reg_state *reg,
4376 				int size)
4377 {
4378 	int i;
4379 
4380 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4381 	if (size == BPF_REG_SIZE)
4382 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4383 
4384 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4385 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4386 
4387 	/* size < 8 bytes spill */
4388 	for (; i; i--)
4389 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4390 }
4391 
4392 static bool is_bpf_st_mem(struct bpf_insn *insn)
4393 {
4394 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4395 }
4396 
4397 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4398  * stack boundary and alignment are checked in check_mem_access()
4399  */
4400 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4401 				       /* stack frame we're writing to */
4402 				       struct bpf_func_state *state,
4403 				       int off, int size, int value_regno,
4404 				       int insn_idx)
4405 {
4406 	struct bpf_func_state *cur; /* state of the current function */
4407 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4408 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4409 	struct bpf_reg_state *reg = NULL;
4410 	u32 dst_reg = insn->dst_reg;
4411 
4412 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4413 	if (err)
4414 		return err;
4415 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4416 	 * so it's aligned access and [off, off + size) are within stack limits
4417 	 */
4418 	if (!env->allow_ptr_leaks &&
4419 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4420 	    size != BPF_REG_SIZE) {
4421 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4422 		return -EACCES;
4423 	}
4424 
4425 	cur = env->cur_state->frame[env->cur_state->curframe];
4426 	if (value_regno >= 0)
4427 		reg = &cur->regs[value_regno];
4428 	if (!env->bypass_spec_v4) {
4429 		bool sanitize = reg && is_spillable_regtype(reg->type);
4430 
4431 		for (i = 0; i < size; i++) {
4432 			u8 type = state->stack[spi].slot_type[i];
4433 
4434 			if (type != STACK_MISC && type != STACK_ZERO) {
4435 				sanitize = true;
4436 				break;
4437 			}
4438 		}
4439 
4440 		if (sanitize)
4441 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4442 	}
4443 
4444 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4445 	if (err)
4446 		return err;
4447 
4448 	mark_stack_slot_scratched(env, spi);
4449 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4450 	    !register_is_null(reg) && env->bpf_capable) {
4451 		if (dst_reg != BPF_REG_FP) {
4452 			/* The backtracking logic can only recognize explicit
4453 			 * stack slot address like [fp - 8]. Other spill of
4454 			 * scalar via different register has to be conservative.
4455 			 * Backtrack from here and mark all registers as precise
4456 			 * that contributed into 'reg' being a constant.
4457 			 */
4458 			err = mark_chain_precision(env, value_regno);
4459 			if (err)
4460 				return err;
4461 		}
4462 		save_register_state(state, spi, reg, size);
4463 		/* Break the relation on a narrowing spill. */
4464 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4465 			state->stack[spi].spilled_ptr.id = 0;
4466 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4467 		   insn->imm != 0 && env->bpf_capable) {
4468 		struct bpf_reg_state fake_reg = {};
4469 
4470 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4471 		fake_reg.type = SCALAR_VALUE;
4472 		save_register_state(state, spi, &fake_reg, size);
4473 	} else if (reg && is_spillable_regtype(reg->type)) {
4474 		/* register containing pointer is being spilled into stack */
4475 		if (size != BPF_REG_SIZE) {
4476 			verbose_linfo(env, insn_idx, "; ");
4477 			verbose(env, "invalid size of register spill\n");
4478 			return -EACCES;
4479 		}
4480 		if (state != cur && reg->type == PTR_TO_STACK) {
4481 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4482 			return -EINVAL;
4483 		}
4484 		save_register_state(state, spi, reg, size);
4485 	} else {
4486 		u8 type = STACK_MISC;
4487 
4488 		/* regular write of data into stack destroys any spilled ptr */
4489 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4490 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4491 		if (is_stack_slot_special(&state->stack[spi]))
4492 			for (i = 0; i < BPF_REG_SIZE; i++)
4493 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4494 
4495 		/* only mark the slot as written if all 8 bytes were written
4496 		 * otherwise read propagation may incorrectly stop too soon
4497 		 * when stack slots are partially written.
4498 		 * This heuristic means that read propagation will be
4499 		 * conservative, since it will add reg_live_read marks
4500 		 * to stack slots all the way to first state when programs
4501 		 * writes+reads less than 8 bytes
4502 		 */
4503 		if (size == BPF_REG_SIZE)
4504 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4505 
4506 		/* when we zero initialize stack slots mark them as such */
4507 		if ((reg && register_is_null(reg)) ||
4508 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4509 			/* backtracking doesn't work for STACK_ZERO yet. */
4510 			err = mark_chain_precision(env, value_regno);
4511 			if (err)
4512 				return err;
4513 			type = STACK_ZERO;
4514 		}
4515 
4516 		/* Mark slots affected by this stack write. */
4517 		for (i = 0; i < size; i++)
4518 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4519 				type;
4520 	}
4521 	return 0;
4522 }
4523 
4524 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4525  * known to contain a variable offset.
4526  * This function checks whether the write is permitted and conservatively
4527  * tracks the effects of the write, considering that each stack slot in the
4528  * dynamic range is potentially written to.
4529  *
4530  * 'off' includes 'regno->off'.
4531  * 'value_regno' can be -1, meaning that an unknown value is being written to
4532  * the stack.
4533  *
4534  * Spilled pointers in range are not marked as written because we don't know
4535  * what's going to be actually written. This means that read propagation for
4536  * future reads cannot be terminated by this write.
4537  *
4538  * For privileged programs, uninitialized stack slots are considered
4539  * initialized by this write (even though we don't know exactly what offsets
4540  * are going to be written to). The idea is that we don't want the verifier to
4541  * reject future reads that access slots written to through variable offsets.
4542  */
4543 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4544 				     /* func where register points to */
4545 				     struct bpf_func_state *state,
4546 				     int ptr_regno, int off, int size,
4547 				     int value_regno, int insn_idx)
4548 {
4549 	struct bpf_func_state *cur; /* state of the current function */
4550 	int min_off, max_off;
4551 	int i, err;
4552 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4553 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4554 	bool writing_zero = false;
4555 	/* set if the fact that we're writing a zero is used to let any
4556 	 * stack slots remain STACK_ZERO
4557 	 */
4558 	bool zero_used = false;
4559 
4560 	cur = env->cur_state->frame[env->cur_state->curframe];
4561 	ptr_reg = &cur->regs[ptr_regno];
4562 	min_off = ptr_reg->smin_value + off;
4563 	max_off = ptr_reg->smax_value + off + size;
4564 	if (value_regno >= 0)
4565 		value_reg = &cur->regs[value_regno];
4566 	if ((value_reg && register_is_null(value_reg)) ||
4567 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4568 		writing_zero = true;
4569 
4570 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4571 	if (err)
4572 		return err;
4573 
4574 	for (i = min_off; i < max_off; i++) {
4575 		int spi;
4576 
4577 		spi = __get_spi(i);
4578 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4579 		if (err)
4580 			return err;
4581 	}
4582 
4583 	/* Variable offset writes destroy any spilled pointers in range. */
4584 	for (i = min_off; i < max_off; i++) {
4585 		u8 new_type, *stype;
4586 		int slot, spi;
4587 
4588 		slot = -i - 1;
4589 		spi = slot / BPF_REG_SIZE;
4590 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4591 		mark_stack_slot_scratched(env, spi);
4592 
4593 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4594 			/* Reject the write if range we may write to has not
4595 			 * been initialized beforehand. If we didn't reject
4596 			 * here, the ptr status would be erased below (even
4597 			 * though not all slots are actually overwritten),
4598 			 * possibly opening the door to leaks.
4599 			 *
4600 			 * We do however catch STACK_INVALID case below, and
4601 			 * only allow reading possibly uninitialized memory
4602 			 * later for CAP_PERFMON, as the write may not happen to
4603 			 * that slot.
4604 			 */
4605 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4606 				insn_idx, i);
4607 			return -EINVAL;
4608 		}
4609 
4610 		/* Erase all spilled pointers. */
4611 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4612 
4613 		/* Update the slot type. */
4614 		new_type = STACK_MISC;
4615 		if (writing_zero && *stype == STACK_ZERO) {
4616 			new_type = STACK_ZERO;
4617 			zero_used = true;
4618 		}
4619 		/* If the slot is STACK_INVALID, we check whether it's OK to
4620 		 * pretend that it will be initialized by this write. The slot
4621 		 * might not actually be written to, and so if we mark it as
4622 		 * initialized future reads might leak uninitialized memory.
4623 		 * For privileged programs, we will accept such reads to slots
4624 		 * that may or may not be written because, if we're reject
4625 		 * them, the error would be too confusing.
4626 		 */
4627 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4628 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4629 					insn_idx, i);
4630 			return -EINVAL;
4631 		}
4632 		*stype = new_type;
4633 	}
4634 	if (zero_used) {
4635 		/* backtracking doesn't work for STACK_ZERO yet. */
4636 		err = mark_chain_precision(env, value_regno);
4637 		if (err)
4638 			return err;
4639 	}
4640 	return 0;
4641 }
4642 
4643 /* When register 'dst_regno' is assigned some values from stack[min_off,
4644  * max_off), we set the register's type according to the types of the
4645  * respective stack slots. If all the stack values are known to be zeros, then
4646  * so is the destination reg. Otherwise, the register is considered to be
4647  * SCALAR. This function does not deal with register filling; the caller must
4648  * ensure that all spilled registers in the stack range have been marked as
4649  * read.
4650  */
4651 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4652 				/* func where src register points to */
4653 				struct bpf_func_state *ptr_state,
4654 				int min_off, int max_off, int dst_regno)
4655 {
4656 	struct bpf_verifier_state *vstate = env->cur_state;
4657 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4658 	int i, slot, spi;
4659 	u8 *stype;
4660 	int zeros = 0;
4661 
4662 	for (i = min_off; i < max_off; i++) {
4663 		slot = -i - 1;
4664 		spi = slot / BPF_REG_SIZE;
4665 		mark_stack_slot_scratched(env, spi);
4666 		stype = ptr_state->stack[spi].slot_type;
4667 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4668 			break;
4669 		zeros++;
4670 	}
4671 	if (zeros == max_off - min_off) {
4672 		/* any access_size read into register is zero extended,
4673 		 * so the whole register == const_zero
4674 		 */
4675 		__mark_reg_const_zero(&state->regs[dst_regno]);
4676 		/* backtracking doesn't support STACK_ZERO yet,
4677 		 * so mark it precise here, so that later
4678 		 * backtracking can stop here.
4679 		 * Backtracking may not need this if this register
4680 		 * doesn't participate in pointer adjustment.
4681 		 * Forward propagation of precise flag is not
4682 		 * necessary either. This mark is only to stop
4683 		 * backtracking. Any register that contributed
4684 		 * to const 0 was marked precise before spill.
4685 		 */
4686 		state->regs[dst_regno].precise = true;
4687 	} else {
4688 		/* have read misc data from the stack */
4689 		mark_reg_unknown(env, state->regs, dst_regno);
4690 	}
4691 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4692 }
4693 
4694 /* Read the stack at 'off' and put the results into the register indicated by
4695  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4696  * spilled reg.
4697  *
4698  * 'dst_regno' can be -1, meaning that the read value is not going to a
4699  * register.
4700  *
4701  * The access is assumed to be within the current stack bounds.
4702  */
4703 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4704 				      /* func where src register points to */
4705 				      struct bpf_func_state *reg_state,
4706 				      int off, int size, int dst_regno)
4707 {
4708 	struct bpf_verifier_state *vstate = env->cur_state;
4709 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4710 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4711 	struct bpf_reg_state *reg;
4712 	u8 *stype, type;
4713 
4714 	stype = reg_state->stack[spi].slot_type;
4715 	reg = &reg_state->stack[spi].spilled_ptr;
4716 
4717 	mark_stack_slot_scratched(env, spi);
4718 
4719 	if (is_spilled_reg(&reg_state->stack[spi])) {
4720 		u8 spill_size = 1;
4721 
4722 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4723 			spill_size++;
4724 
4725 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4726 			if (reg->type != SCALAR_VALUE) {
4727 				verbose_linfo(env, env->insn_idx, "; ");
4728 				verbose(env, "invalid size of register fill\n");
4729 				return -EACCES;
4730 			}
4731 
4732 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4733 			if (dst_regno < 0)
4734 				return 0;
4735 
4736 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4737 				/* The earlier check_reg_arg() has decided the
4738 				 * subreg_def for this insn.  Save it first.
4739 				 */
4740 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4741 
4742 				copy_register_state(&state->regs[dst_regno], reg);
4743 				state->regs[dst_regno].subreg_def = subreg_def;
4744 			} else {
4745 				for (i = 0; i < size; i++) {
4746 					type = stype[(slot - i) % BPF_REG_SIZE];
4747 					if (type == STACK_SPILL)
4748 						continue;
4749 					if (type == STACK_MISC)
4750 						continue;
4751 					if (type == STACK_INVALID && env->allow_uninit_stack)
4752 						continue;
4753 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4754 						off, i, size);
4755 					return -EACCES;
4756 				}
4757 				mark_reg_unknown(env, state->regs, dst_regno);
4758 			}
4759 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4760 			return 0;
4761 		}
4762 
4763 		if (dst_regno >= 0) {
4764 			/* restore register state from stack */
4765 			copy_register_state(&state->regs[dst_regno], reg);
4766 			/* mark reg as written since spilled pointer state likely
4767 			 * has its liveness marks cleared by is_state_visited()
4768 			 * which resets stack/reg liveness for state transitions
4769 			 */
4770 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4771 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4772 			/* If dst_regno==-1, the caller is asking us whether
4773 			 * it is acceptable to use this value as a SCALAR_VALUE
4774 			 * (e.g. for XADD).
4775 			 * We must not allow unprivileged callers to do that
4776 			 * with spilled pointers.
4777 			 */
4778 			verbose(env, "leaking pointer from stack off %d\n",
4779 				off);
4780 			return -EACCES;
4781 		}
4782 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4783 	} else {
4784 		for (i = 0; i < size; i++) {
4785 			type = stype[(slot - i) % BPF_REG_SIZE];
4786 			if (type == STACK_MISC)
4787 				continue;
4788 			if (type == STACK_ZERO)
4789 				continue;
4790 			if (type == STACK_INVALID && env->allow_uninit_stack)
4791 				continue;
4792 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4793 				off, i, size);
4794 			return -EACCES;
4795 		}
4796 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4797 		if (dst_regno >= 0)
4798 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4799 	}
4800 	return 0;
4801 }
4802 
4803 enum bpf_access_src {
4804 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4805 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4806 };
4807 
4808 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4809 					 int regno, int off, int access_size,
4810 					 bool zero_size_allowed,
4811 					 enum bpf_access_src type,
4812 					 struct bpf_call_arg_meta *meta);
4813 
4814 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4815 {
4816 	return cur_regs(env) + regno;
4817 }
4818 
4819 /* Read the stack at 'ptr_regno + off' and put the result into the register
4820  * 'dst_regno'.
4821  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4822  * but not its variable offset.
4823  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4824  *
4825  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4826  * filling registers (i.e. reads of spilled register cannot be detected when
4827  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4828  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4829  * offset; for a fixed offset check_stack_read_fixed_off should be used
4830  * instead.
4831  */
4832 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4833 				    int ptr_regno, int off, int size, int dst_regno)
4834 {
4835 	/* The state of the source register. */
4836 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4837 	struct bpf_func_state *ptr_state = func(env, reg);
4838 	int err;
4839 	int min_off, max_off;
4840 
4841 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4842 	 */
4843 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4844 					    false, ACCESS_DIRECT, NULL);
4845 	if (err)
4846 		return err;
4847 
4848 	min_off = reg->smin_value + off;
4849 	max_off = reg->smax_value + off;
4850 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4851 	return 0;
4852 }
4853 
4854 /* check_stack_read dispatches to check_stack_read_fixed_off or
4855  * check_stack_read_var_off.
4856  *
4857  * The caller must ensure that the offset falls within the allocated stack
4858  * bounds.
4859  *
4860  * 'dst_regno' is a register which will receive the value from the stack. It
4861  * can be -1, meaning that the read value is not going to a register.
4862  */
4863 static int check_stack_read(struct bpf_verifier_env *env,
4864 			    int ptr_regno, int off, int size,
4865 			    int dst_regno)
4866 {
4867 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4868 	struct bpf_func_state *state = func(env, reg);
4869 	int err;
4870 	/* Some accesses are only permitted with a static offset. */
4871 	bool var_off = !tnum_is_const(reg->var_off);
4872 
4873 	/* The offset is required to be static when reads don't go to a
4874 	 * register, in order to not leak pointers (see
4875 	 * check_stack_read_fixed_off).
4876 	 */
4877 	if (dst_regno < 0 && var_off) {
4878 		char tn_buf[48];
4879 
4880 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4881 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4882 			tn_buf, off, size);
4883 		return -EACCES;
4884 	}
4885 	/* Variable offset is prohibited for unprivileged mode for simplicity
4886 	 * since it requires corresponding support in Spectre masking for stack
4887 	 * ALU. See also retrieve_ptr_limit(). The check in
4888 	 * check_stack_access_for_ptr_arithmetic() called by
4889 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4890 	 * with variable offsets, therefore no check is required here. Further,
4891 	 * just checking it here would be insufficient as speculative stack
4892 	 * writes could still lead to unsafe speculative behaviour.
4893 	 */
4894 	if (!var_off) {
4895 		off += reg->var_off.value;
4896 		err = check_stack_read_fixed_off(env, state, off, size,
4897 						 dst_regno);
4898 	} else {
4899 		/* Variable offset stack reads need more conservative handling
4900 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4901 		 * branch.
4902 		 */
4903 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4904 					       dst_regno);
4905 	}
4906 	return err;
4907 }
4908 
4909 
4910 /* check_stack_write dispatches to check_stack_write_fixed_off or
4911  * check_stack_write_var_off.
4912  *
4913  * 'ptr_regno' is the register used as a pointer into the stack.
4914  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4915  * 'value_regno' is the register whose value we're writing to the stack. It can
4916  * be -1, meaning that we're not writing from a register.
4917  *
4918  * The caller must ensure that the offset falls within the maximum stack size.
4919  */
4920 static int check_stack_write(struct bpf_verifier_env *env,
4921 			     int ptr_regno, int off, int size,
4922 			     int value_regno, int insn_idx)
4923 {
4924 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4925 	struct bpf_func_state *state = func(env, reg);
4926 	int err;
4927 
4928 	if (tnum_is_const(reg->var_off)) {
4929 		off += reg->var_off.value;
4930 		err = check_stack_write_fixed_off(env, state, off, size,
4931 						  value_regno, insn_idx);
4932 	} else {
4933 		/* Variable offset stack reads need more conservative handling
4934 		 * than fixed offset ones.
4935 		 */
4936 		err = check_stack_write_var_off(env, state,
4937 						ptr_regno, off, size,
4938 						value_regno, insn_idx);
4939 	}
4940 	return err;
4941 }
4942 
4943 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4944 				 int off, int size, enum bpf_access_type type)
4945 {
4946 	struct bpf_reg_state *regs = cur_regs(env);
4947 	struct bpf_map *map = regs[regno].map_ptr;
4948 	u32 cap = bpf_map_flags_to_cap(map);
4949 
4950 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4951 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4952 			map->value_size, off, size);
4953 		return -EACCES;
4954 	}
4955 
4956 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4957 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4958 			map->value_size, off, size);
4959 		return -EACCES;
4960 	}
4961 
4962 	return 0;
4963 }
4964 
4965 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4966 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4967 			      int off, int size, u32 mem_size,
4968 			      bool zero_size_allowed)
4969 {
4970 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4971 	struct bpf_reg_state *reg;
4972 
4973 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4974 		return 0;
4975 
4976 	reg = &cur_regs(env)[regno];
4977 	switch (reg->type) {
4978 	case PTR_TO_MAP_KEY:
4979 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4980 			mem_size, off, size);
4981 		break;
4982 	case PTR_TO_MAP_VALUE:
4983 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4984 			mem_size, off, size);
4985 		break;
4986 	case PTR_TO_PACKET:
4987 	case PTR_TO_PACKET_META:
4988 	case PTR_TO_PACKET_END:
4989 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4990 			off, size, regno, reg->id, off, mem_size);
4991 		break;
4992 	case PTR_TO_MEM:
4993 	default:
4994 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4995 			mem_size, off, size);
4996 	}
4997 
4998 	return -EACCES;
4999 }
5000 
5001 /* check read/write into a memory region with possible variable offset */
5002 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5003 				   int off, int size, u32 mem_size,
5004 				   bool zero_size_allowed)
5005 {
5006 	struct bpf_verifier_state *vstate = env->cur_state;
5007 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5008 	struct bpf_reg_state *reg = &state->regs[regno];
5009 	int err;
5010 
5011 	/* We may have adjusted the register pointing to memory region, so we
5012 	 * need to try adding each of min_value and max_value to off
5013 	 * to make sure our theoretical access will be safe.
5014 	 *
5015 	 * The minimum value is only important with signed
5016 	 * comparisons where we can't assume the floor of a
5017 	 * value is 0.  If we are using signed variables for our
5018 	 * index'es we need to make sure that whatever we use
5019 	 * will have a set floor within our range.
5020 	 */
5021 	if (reg->smin_value < 0 &&
5022 	    (reg->smin_value == S64_MIN ||
5023 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5024 	      reg->smin_value + off < 0)) {
5025 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5026 			regno);
5027 		return -EACCES;
5028 	}
5029 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5030 				 mem_size, zero_size_allowed);
5031 	if (err) {
5032 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5033 			regno);
5034 		return err;
5035 	}
5036 
5037 	/* If we haven't set a max value then we need to bail since we can't be
5038 	 * sure we won't do bad things.
5039 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5040 	 */
5041 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5042 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5043 			regno);
5044 		return -EACCES;
5045 	}
5046 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5047 				 mem_size, zero_size_allowed);
5048 	if (err) {
5049 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5050 			regno);
5051 		return err;
5052 	}
5053 
5054 	return 0;
5055 }
5056 
5057 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5058 			       const struct bpf_reg_state *reg, int regno,
5059 			       bool fixed_off_ok)
5060 {
5061 	/* Access to this pointer-typed register or passing it to a helper
5062 	 * is only allowed in its original, unmodified form.
5063 	 */
5064 
5065 	if (reg->off < 0) {
5066 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5067 			reg_type_str(env, reg->type), regno, reg->off);
5068 		return -EACCES;
5069 	}
5070 
5071 	if (!fixed_off_ok && reg->off) {
5072 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5073 			reg_type_str(env, reg->type), regno, reg->off);
5074 		return -EACCES;
5075 	}
5076 
5077 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5078 		char tn_buf[48];
5079 
5080 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5081 		verbose(env, "variable %s access var_off=%s disallowed\n",
5082 			reg_type_str(env, reg->type), tn_buf);
5083 		return -EACCES;
5084 	}
5085 
5086 	return 0;
5087 }
5088 
5089 int check_ptr_off_reg(struct bpf_verifier_env *env,
5090 		      const struct bpf_reg_state *reg, int regno)
5091 {
5092 	return __check_ptr_off_reg(env, reg, regno, false);
5093 }
5094 
5095 static int map_kptr_match_type(struct bpf_verifier_env *env,
5096 			       struct btf_field *kptr_field,
5097 			       struct bpf_reg_state *reg, u32 regno)
5098 {
5099 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5100 	int perm_flags;
5101 	const char *reg_name = "";
5102 
5103 	if (btf_is_kernel(reg->btf)) {
5104 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5105 
5106 		/* Only unreferenced case accepts untrusted pointers */
5107 		if (kptr_field->type == BPF_KPTR_UNREF)
5108 			perm_flags |= PTR_UNTRUSTED;
5109 	} else {
5110 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5111 		if (kptr_field->type == BPF_KPTR_PERCPU)
5112 			perm_flags |= MEM_PERCPU;
5113 	}
5114 
5115 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5116 		goto bad_type;
5117 
5118 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5119 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5120 
5121 	/* For ref_ptr case, release function check should ensure we get one
5122 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5123 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5124 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5125 	 * reg->off and reg->ref_obj_id are not needed here.
5126 	 */
5127 	if (__check_ptr_off_reg(env, reg, regno, true))
5128 		return -EACCES;
5129 
5130 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5131 	 * we also need to take into account the reg->off.
5132 	 *
5133 	 * We want to support cases like:
5134 	 *
5135 	 * struct foo {
5136 	 *         struct bar br;
5137 	 *         struct baz bz;
5138 	 * };
5139 	 *
5140 	 * struct foo *v;
5141 	 * v = func();	      // PTR_TO_BTF_ID
5142 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5143 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5144 	 *                    // first member type of struct after comparison fails
5145 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5146 	 *                    // to match type
5147 	 *
5148 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5149 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5150 	 * the struct to match type against first member of struct, i.e. reject
5151 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5152 	 * strict mode to true for type match.
5153 	 */
5154 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5155 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5156 				  kptr_field->type != BPF_KPTR_UNREF))
5157 		goto bad_type;
5158 	return 0;
5159 bad_type:
5160 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5161 		reg_type_str(env, reg->type), reg_name);
5162 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5163 	if (kptr_field->type == BPF_KPTR_UNREF)
5164 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5165 			targ_name);
5166 	else
5167 		verbose(env, "\n");
5168 	return -EINVAL;
5169 }
5170 
5171 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5172  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5173  */
5174 static bool in_rcu_cs(struct bpf_verifier_env *env)
5175 {
5176 	return env->cur_state->active_rcu_lock ||
5177 	       env->cur_state->active_lock.ptr ||
5178 	       !env->prog->aux->sleepable;
5179 }
5180 
5181 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5182 BTF_SET_START(rcu_protected_types)
5183 BTF_ID(struct, prog_test_ref_kfunc)
5184 BTF_ID(struct, cgroup)
5185 BTF_ID(struct, bpf_cpumask)
5186 BTF_ID(struct, task_struct)
5187 BTF_SET_END(rcu_protected_types)
5188 
5189 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5190 {
5191 	if (!btf_is_kernel(btf))
5192 		return false;
5193 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5194 }
5195 
5196 static bool rcu_safe_kptr(const struct btf_field *field)
5197 {
5198 	const struct btf_field_kptr *kptr = &field->kptr;
5199 
5200 	return field->type == BPF_KPTR_PERCPU ||
5201 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5202 }
5203 
5204 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5205 {
5206 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5207 		if (kptr_field->type != BPF_KPTR_PERCPU)
5208 			return PTR_MAYBE_NULL | MEM_RCU;
5209 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5210 	}
5211 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5212 }
5213 
5214 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5215 				 int value_regno, int insn_idx,
5216 				 struct btf_field *kptr_field)
5217 {
5218 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5219 	int class = BPF_CLASS(insn->code);
5220 	struct bpf_reg_state *val_reg;
5221 
5222 	/* Things we already checked for in check_map_access and caller:
5223 	 *  - Reject cases where variable offset may touch kptr
5224 	 *  - size of access (must be BPF_DW)
5225 	 *  - tnum_is_const(reg->var_off)
5226 	 *  - kptr_field->offset == off + reg->var_off.value
5227 	 */
5228 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5229 	if (BPF_MODE(insn->code) != BPF_MEM) {
5230 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5231 		return -EACCES;
5232 	}
5233 
5234 	/* We only allow loading referenced kptr, since it will be marked as
5235 	 * untrusted, similar to unreferenced kptr.
5236 	 */
5237 	if (class != BPF_LDX &&
5238 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5239 		verbose(env, "store to referenced kptr disallowed\n");
5240 		return -EACCES;
5241 	}
5242 
5243 	if (class == BPF_LDX) {
5244 		val_reg = reg_state(env, value_regno);
5245 		/* We can simply mark the value_regno receiving the pointer
5246 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5247 		 */
5248 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5249 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5250 		/* For mark_ptr_or_null_reg */
5251 		val_reg->id = ++env->id_gen;
5252 	} else if (class == BPF_STX) {
5253 		val_reg = reg_state(env, value_regno);
5254 		if (!register_is_null(val_reg) &&
5255 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5256 			return -EACCES;
5257 	} else if (class == BPF_ST) {
5258 		if (insn->imm) {
5259 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5260 				kptr_field->offset);
5261 			return -EACCES;
5262 		}
5263 	} else {
5264 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5265 		return -EACCES;
5266 	}
5267 	return 0;
5268 }
5269 
5270 /* check read/write into a map element with possible variable offset */
5271 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5272 			    int off, int size, bool zero_size_allowed,
5273 			    enum bpf_access_src src)
5274 {
5275 	struct bpf_verifier_state *vstate = env->cur_state;
5276 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5277 	struct bpf_reg_state *reg = &state->regs[regno];
5278 	struct bpf_map *map = reg->map_ptr;
5279 	struct btf_record *rec;
5280 	int err, i;
5281 
5282 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5283 				      zero_size_allowed);
5284 	if (err)
5285 		return err;
5286 
5287 	if (IS_ERR_OR_NULL(map->record))
5288 		return 0;
5289 	rec = map->record;
5290 	for (i = 0; i < rec->cnt; i++) {
5291 		struct btf_field *field = &rec->fields[i];
5292 		u32 p = field->offset;
5293 
5294 		/* If any part of a field  can be touched by load/store, reject
5295 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5296 		 * it is sufficient to check x1 < y2 && y1 < x2.
5297 		 */
5298 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5299 		    p < reg->umax_value + off + size) {
5300 			switch (field->type) {
5301 			case BPF_KPTR_UNREF:
5302 			case BPF_KPTR_REF:
5303 			case BPF_KPTR_PERCPU:
5304 				if (src != ACCESS_DIRECT) {
5305 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5306 					return -EACCES;
5307 				}
5308 				if (!tnum_is_const(reg->var_off)) {
5309 					verbose(env, "kptr access cannot have variable offset\n");
5310 					return -EACCES;
5311 				}
5312 				if (p != off + reg->var_off.value) {
5313 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5314 						p, off + reg->var_off.value);
5315 					return -EACCES;
5316 				}
5317 				if (size != bpf_size_to_bytes(BPF_DW)) {
5318 					verbose(env, "kptr access size must be BPF_DW\n");
5319 					return -EACCES;
5320 				}
5321 				break;
5322 			default:
5323 				verbose(env, "%s cannot be accessed directly by load/store\n",
5324 					btf_field_type_name(field->type));
5325 				return -EACCES;
5326 			}
5327 		}
5328 	}
5329 	return 0;
5330 }
5331 
5332 #define MAX_PACKET_OFF 0xffff
5333 
5334 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5335 				       const struct bpf_call_arg_meta *meta,
5336 				       enum bpf_access_type t)
5337 {
5338 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5339 
5340 	switch (prog_type) {
5341 	/* Program types only with direct read access go here! */
5342 	case BPF_PROG_TYPE_LWT_IN:
5343 	case BPF_PROG_TYPE_LWT_OUT:
5344 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5345 	case BPF_PROG_TYPE_SK_REUSEPORT:
5346 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5347 	case BPF_PROG_TYPE_CGROUP_SKB:
5348 		if (t == BPF_WRITE)
5349 			return false;
5350 		fallthrough;
5351 
5352 	/* Program types with direct read + write access go here! */
5353 	case BPF_PROG_TYPE_SCHED_CLS:
5354 	case BPF_PROG_TYPE_SCHED_ACT:
5355 	case BPF_PROG_TYPE_XDP:
5356 	case BPF_PROG_TYPE_LWT_XMIT:
5357 	case BPF_PROG_TYPE_SK_SKB:
5358 	case BPF_PROG_TYPE_SK_MSG:
5359 		if (meta)
5360 			return meta->pkt_access;
5361 
5362 		env->seen_direct_write = true;
5363 		return true;
5364 
5365 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5366 		if (t == BPF_WRITE)
5367 			env->seen_direct_write = true;
5368 
5369 		return true;
5370 
5371 	default:
5372 		return false;
5373 	}
5374 }
5375 
5376 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5377 			       int size, bool zero_size_allowed)
5378 {
5379 	struct bpf_reg_state *regs = cur_regs(env);
5380 	struct bpf_reg_state *reg = &regs[regno];
5381 	int err;
5382 
5383 	/* We may have added a variable offset to the packet pointer; but any
5384 	 * reg->range we have comes after that.  We are only checking the fixed
5385 	 * offset.
5386 	 */
5387 
5388 	/* We don't allow negative numbers, because we aren't tracking enough
5389 	 * detail to prove they're safe.
5390 	 */
5391 	if (reg->smin_value < 0) {
5392 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5393 			regno);
5394 		return -EACCES;
5395 	}
5396 
5397 	err = reg->range < 0 ? -EINVAL :
5398 	      __check_mem_access(env, regno, off, size, reg->range,
5399 				 zero_size_allowed);
5400 	if (err) {
5401 		verbose(env, "R%d offset is outside of the packet\n", regno);
5402 		return err;
5403 	}
5404 
5405 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5406 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5407 	 * otherwise find_good_pkt_pointers would have refused to set range info
5408 	 * that __check_mem_access would have rejected this pkt access.
5409 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5410 	 */
5411 	env->prog->aux->max_pkt_offset =
5412 		max_t(u32, env->prog->aux->max_pkt_offset,
5413 		      off + reg->umax_value + size - 1);
5414 
5415 	return err;
5416 }
5417 
5418 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5419 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5420 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5421 			    struct btf **btf, u32 *btf_id)
5422 {
5423 	struct bpf_insn_access_aux info = {
5424 		.reg_type = *reg_type,
5425 		.log = &env->log,
5426 	};
5427 
5428 	if (env->ops->is_valid_access &&
5429 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5430 		/* A non zero info.ctx_field_size indicates that this field is a
5431 		 * candidate for later verifier transformation to load the whole
5432 		 * field and then apply a mask when accessed with a narrower
5433 		 * access than actual ctx access size. A zero info.ctx_field_size
5434 		 * will only allow for whole field access and rejects any other
5435 		 * type of narrower access.
5436 		 */
5437 		*reg_type = info.reg_type;
5438 
5439 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5440 			*btf = info.btf;
5441 			*btf_id = info.btf_id;
5442 		} else {
5443 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5444 		}
5445 		/* remember the offset of last byte accessed in ctx */
5446 		if (env->prog->aux->max_ctx_offset < off + size)
5447 			env->prog->aux->max_ctx_offset = off + size;
5448 		return 0;
5449 	}
5450 
5451 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5452 	return -EACCES;
5453 }
5454 
5455 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5456 				  int size)
5457 {
5458 	if (size < 0 || off < 0 ||
5459 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5460 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5461 			off, size);
5462 		return -EACCES;
5463 	}
5464 	return 0;
5465 }
5466 
5467 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5468 			     u32 regno, int off, int size,
5469 			     enum bpf_access_type t)
5470 {
5471 	struct bpf_reg_state *regs = cur_regs(env);
5472 	struct bpf_reg_state *reg = &regs[regno];
5473 	struct bpf_insn_access_aux info = {};
5474 	bool valid;
5475 
5476 	if (reg->smin_value < 0) {
5477 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5478 			regno);
5479 		return -EACCES;
5480 	}
5481 
5482 	switch (reg->type) {
5483 	case PTR_TO_SOCK_COMMON:
5484 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5485 		break;
5486 	case PTR_TO_SOCKET:
5487 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5488 		break;
5489 	case PTR_TO_TCP_SOCK:
5490 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5491 		break;
5492 	case PTR_TO_XDP_SOCK:
5493 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5494 		break;
5495 	default:
5496 		valid = false;
5497 	}
5498 
5499 
5500 	if (valid) {
5501 		env->insn_aux_data[insn_idx].ctx_field_size =
5502 			info.ctx_field_size;
5503 		return 0;
5504 	}
5505 
5506 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5507 		regno, reg_type_str(env, reg->type), off, size);
5508 
5509 	return -EACCES;
5510 }
5511 
5512 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5513 {
5514 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5515 }
5516 
5517 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5518 {
5519 	const struct bpf_reg_state *reg = reg_state(env, regno);
5520 
5521 	return reg->type == PTR_TO_CTX;
5522 }
5523 
5524 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5525 {
5526 	const struct bpf_reg_state *reg = reg_state(env, regno);
5527 
5528 	return type_is_sk_pointer(reg->type);
5529 }
5530 
5531 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5532 {
5533 	const struct bpf_reg_state *reg = reg_state(env, regno);
5534 
5535 	return type_is_pkt_pointer(reg->type);
5536 }
5537 
5538 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5539 {
5540 	const struct bpf_reg_state *reg = reg_state(env, regno);
5541 
5542 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5543 	return reg->type == PTR_TO_FLOW_KEYS;
5544 }
5545 
5546 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5547 #ifdef CONFIG_NET
5548 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5549 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5550 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5551 #endif
5552 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5553 };
5554 
5555 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5556 {
5557 	/* A referenced register is always trusted. */
5558 	if (reg->ref_obj_id)
5559 		return true;
5560 
5561 	/* Types listed in the reg2btf_ids are always trusted */
5562 	if (reg2btf_ids[base_type(reg->type)])
5563 		return true;
5564 
5565 	/* If a register is not referenced, it is trusted if it has the
5566 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5567 	 * other type modifiers may be safe, but we elect to take an opt-in
5568 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5569 	 * not.
5570 	 *
5571 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5572 	 * for whether a register is trusted.
5573 	 */
5574 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5575 	       !bpf_type_has_unsafe_modifiers(reg->type);
5576 }
5577 
5578 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5579 {
5580 	return reg->type & MEM_RCU;
5581 }
5582 
5583 static void clear_trusted_flags(enum bpf_type_flag *flag)
5584 {
5585 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5586 }
5587 
5588 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5589 				   const struct bpf_reg_state *reg,
5590 				   int off, int size, bool strict)
5591 {
5592 	struct tnum reg_off;
5593 	int ip_align;
5594 
5595 	/* Byte size accesses are always allowed. */
5596 	if (!strict || size == 1)
5597 		return 0;
5598 
5599 	/* For platforms that do not have a Kconfig enabling
5600 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5601 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5602 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5603 	 * to this code only in strict mode where we want to emulate
5604 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5605 	 * unconditional IP align value of '2'.
5606 	 */
5607 	ip_align = 2;
5608 
5609 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5610 	if (!tnum_is_aligned(reg_off, size)) {
5611 		char tn_buf[48];
5612 
5613 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5614 		verbose(env,
5615 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5616 			ip_align, tn_buf, reg->off, off, size);
5617 		return -EACCES;
5618 	}
5619 
5620 	return 0;
5621 }
5622 
5623 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5624 				       const struct bpf_reg_state *reg,
5625 				       const char *pointer_desc,
5626 				       int off, int size, bool strict)
5627 {
5628 	struct tnum reg_off;
5629 
5630 	/* Byte size accesses are always allowed. */
5631 	if (!strict || size == 1)
5632 		return 0;
5633 
5634 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5635 	if (!tnum_is_aligned(reg_off, size)) {
5636 		char tn_buf[48];
5637 
5638 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5639 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5640 			pointer_desc, tn_buf, reg->off, off, size);
5641 		return -EACCES;
5642 	}
5643 
5644 	return 0;
5645 }
5646 
5647 static int check_ptr_alignment(struct bpf_verifier_env *env,
5648 			       const struct bpf_reg_state *reg, int off,
5649 			       int size, bool strict_alignment_once)
5650 {
5651 	bool strict = env->strict_alignment || strict_alignment_once;
5652 	const char *pointer_desc = "";
5653 
5654 	switch (reg->type) {
5655 	case PTR_TO_PACKET:
5656 	case PTR_TO_PACKET_META:
5657 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5658 		 * right in front, treat it the very same way.
5659 		 */
5660 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5661 	case PTR_TO_FLOW_KEYS:
5662 		pointer_desc = "flow keys ";
5663 		break;
5664 	case PTR_TO_MAP_KEY:
5665 		pointer_desc = "key ";
5666 		break;
5667 	case PTR_TO_MAP_VALUE:
5668 		pointer_desc = "value ";
5669 		break;
5670 	case PTR_TO_CTX:
5671 		pointer_desc = "context ";
5672 		break;
5673 	case PTR_TO_STACK:
5674 		pointer_desc = "stack ";
5675 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5676 		 * and check_stack_read_fixed_off() relies on stack accesses being
5677 		 * aligned.
5678 		 */
5679 		strict = true;
5680 		break;
5681 	case PTR_TO_SOCKET:
5682 		pointer_desc = "sock ";
5683 		break;
5684 	case PTR_TO_SOCK_COMMON:
5685 		pointer_desc = "sock_common ";
5686 		break;
5687 	case PTR_TO_TCP_SOCK:
5688 		pointer_desc = "tcp_sock ";
5689 		break;
5690 	case PTR_TO_XDP_SOCK:
5691 		pointer_desc = "xdp_sock ";
5692 		break;
5693 	default:
5694 		break;
5695 	}
5696 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5697 					   strict);
5698 }
5699 
5700 static int update_stack_depth(struct bpf_verifier_env *env,
5701 			      const struct bpf_func_state *func,
5702 			      int off)
5703 {
5704 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5705 
5706 	if (stack >= -off)
5707 		return 0;
5708 
5709 	/* update known max for given subprogram */
5710 	env->subprog_info[func->subprogno].stack_depth = -off;
5711 	return 0;
5712 }
5713 
5714 /* starting from main bpf function walk all instructions of the function
5715  * and recursively walk all callees that given function can call.
5716  * Ignore jump and exit insns.
5717  * Since recursion is prevented by check_cfg() this algorithm
5718  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5719  */
5720 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5721 {
5722 	struct bpf_subprog_info *subprog = env->subprog_info;
5723 	struct bpf_insn *insn = env->prog->insnsi;
5724 	int depth = 0, frame = 0, i, subprog_end;
5725 	bool tail_call_reachable = false;
5726 	int ret_insn[MAX_CALL_FRAMES];
5727 	int ret_prog[MAX_CALL_FRAMES];
5728 	int j;
5729 
5730 	i = subprog[idx].start;
5731 process_func:
5732 	/* protect against potential stack overflow that might happen when
5733 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5734 	 * depth for such case down to 256 so that the worst case scenario
5735 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5736 	 * 8k).
5737 	 *
5738 	 * To get the idea what might happen, see an example:
5739 	 * func1 -> sub rsp, 128
5740 	 *  subfunc1 -> sub rsp, 256
5741 	 *  tailcall1 -> add rsp, 256
5742 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5743 	 *   subfunc2 -> sub rsp, 64
5744 	 *   subfunc22 -> sub rsp, 128
5745 	 *   tailcall2 -> add rsp, 128
5746 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5747 	 *
5748 	 * tailcall will unwind the current stack frame but it will not get rid
5749 	 * of caller's stack as shown on the example above.
5750 	 */
5751 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5752 		verbose(env,
5753 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5754 			depth);
5755 		return -EACCES;
5756 	}
5757 	/* round up to 32-bytes, since this is granularity
5758 	 * of interpreter stack size
5759 	 */
5760 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5761 	if (depth > MAX_BPF_STACK) {
5762 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5763 			frame + 1, depth);
5764 		return -EACCES;
5765 	}
5766 continue_func:
5767 	subprog_end = subprog[idx + 1].start;
5768 	for (; i < subprog_end; i++) {
5769 		int next_insn, sidx;
5770 
5771 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5772 			bool err = false;
5773 
5774 			if (!is_bpf_throw_kfunc(insn + i))
5775 				continue;
5776 			if (subprog[idx].is_cb)
5777 				err = true;
5778 			for (int c = 0; c < frame && !err; c++) {
5779 				if (subprog[ret_prog[c]].is_cb) {
5780 					err = true;
5781 					break;
5782 				}
5783 			}
5784 			if (!err)
5785 				continue;
5786 			verbose(env,
5787 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5788 				i, idx);
5789 			return -EINVAL;
5790 		}
5791 
5792 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5793 			continue;
5794 		/* remember insn and function to return to */
5795 		ret_insn[frame] = i + 1;
5796 		ret_prog[frame] = idx;
5797 
5798 		/* find the callee */
5799 		next_insn = i + insn[i].imm + 1;
5800 		sidx = find_subprog(env, next_insn);
5801 		if (sidx < 0) {
5802 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5803 				  next_insn);
5804 			return -EFAULT;
5805 		}
5806 		if (subprog[sidx].is_async_cb) {
5807 			if (subprog[sidx].has_tail_call) {
5808 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5809 				return -EFAULT;
5810 			}
5811 			/* async callbacks don't increase bpf prog stack size unless called directly */
5812 			if (!bpf_pseudo_call(insn + i))
5813 				continue;
5814 			if (subprog[sidx].is_exception_cb) {
5815 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5816 				return -EINVAL;
5817 			}
5818 		}
5819 		i = next_insn;
5820 		idx = sidx;
5821 
5822 		if (subprog[idx].has_tail_call)
5823 			tail_call_reachable = true;
5824 
5825 		frame++;
5826 		if (frame >= MAX_CALL_FRAMES) {
5827 			verbose(env, "the call stack of %d frames is too deep !\n",
5828 				frame);
5829 			return -E2BIG;
5830 		}
5831 		goto process_func;
5832 	}
5833 	/* if tail call got detected across bpf2bpf calls then mark each of the
5834 	 * currently present subprog frames as tail call reachable subprogs;
5835 	 * this info will be utilized by JIT so that we will be preserving the
5836 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5837 	 */
5838 	if (tail_call_reachable)
5839 		for (j = 0; j < frame; j++) {
5840 			if (subprog[ret_prog[j]].is_exception_cb) {
5841 				verbose(env, "cannot tail call within exception cb\n");
5842 				return -EINVAL;
5843 			}
5844 			subprog[ret_prog[j]].tail_call_reachable = true;
5845 		}
5846 	if (subprog[0].tail_call_reachable)
5847 		env->prog->aux->tail_call_reachable = true;
5848 
5849 	/* end of for() loop means the last insn of the 'subprog'
5850 	 * was reached. Doesn't matter whether it was JA or EXIT
5851 	 */
5852 	if (frame == 0)
5853 		return 0;
5854 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5855 	frame--;
5856 	i = ret_insn[frame];
5857 	idx = ret_prog[frame];
5858 	goto continue_func;
5859 }
5860 
5861 static int check_max_stack_depth(struct bpf_verifier_env *env)
5862 {
5863 	struct bpf_subprog_info *si = env->subprog_info;
5864 	int ret;
5865 
5866 	for (int i = 0; i < env->subprog_cnt; i++) {
5867 		if (!i || si[i].is_async_cb) {
5868 			ret = check_max_stack_depth_subprog(env, i);
5869 			if (ret < 0)
5870 				return ret;
5871 		}
5872 		continue;
5873 	}
5874 	return 0;
5875 }
5876 
5877 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5878 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5879 				  const struct bpf_insn *insn, int idx)
5880 {
5881 	int start = idx + insn->imm + 1, subprog;
5882 
5883 	subprog = find_subprog(env, start);
5884 	if (subprog < 0) {
5885 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5886 			  start);
5887 		return -EFAULT;
5888 	}
5889 	return env->subprog_info[subprog].stack_depth;
5890 }
5891 #endif
5892 
5893 static int __check_buffer_access(struct bpf_verifier_env *env,
5894 				 const char *buf_info,
5895 				 const struct bpf_reg_state *reg,
5896 				 int regno, int off, int size)
5897 {
5898 	if (off < 0) {
5899 		verbose(env,
5900 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5901 			regno, buf_info, off, size);
5902 		return -EACCES;
5903 	}
5904 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5905 		char tn_buf[48];
5906 
5907 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5908 		verbose(env,
5909 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5910 			regno, off, tn_buf);
5911 		return -EACCES;
5912 	}
5913 
5914 	return 0;
5915 }
5916 
5917 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5918 				  const struct bpf_reg_state *reg,
5919 				  int regno, int off, int size)
5920 {
5921 	int err;
5922 
5923 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5924 	if (err)
5925 		return err;
5926 
5927 	if (off + size > env->prog->aux->max_tp_access)
5928 		env->prog->aux->max_tp_access = off + size;
5929 
5930 	return 0;
5931 }
5932 
5933 static int check_buffer_access(struct bpf_verifier_env *env,
5934 			       const struct bpf_reg_state *reg,
5935 			       int regno, int off, int size,
5936 			       bool zero_size_allowed,
5937 			       u32 *max_access)
5938 {
5939 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5940 	int err;
5941 
5942 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5943 	if (err)
5944 		return err;
5945 
5946 	if (off + size > *max_access)
5947 		*max_access = off + size;
5948 
5949 	return 0;
5950 }
5951 
5952 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5953 static void zext_32_to_64(struct bpf_reg_state *reg)
5954 {
5955 	reg->var_off = tnum_subreg(reg->var_off);
5956 	__reg_assign_32_into_64(reg);
5957 }
5958 
5959 /* truncate register to smaller size (in bytes)
5960  * must be called with size < BPF_REG_SIZE
5961  */
5962 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5963 {
5964 	u64 mask;
5965 
5966 	/* clear high bits in bit representation */
5967 	reg->var_off = tnum_cast(reg->var_off, size);
5968 
5969 	/* fix arithmetic bounds */
5970 	mask = ((u64)1 << (size * 8)) - 1;
5971 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5972 		reg->umin_value &= mask;
5973 		reg->umax_value &= mask;
5974 	} else {
5975 		reg->umin_value = 0;
5976 		reg->umax_value = mask;
5977 	}
5978 	reg->smin_value = reg->umin_value;
5979 	reg->smax_value = reg->umax_value;
5980 
5981 	/* If size is smaller than 32bit register the 32bit register
5982 	 * values are also truncated so we push 64-bit bounds into
5983 	 * 32-bit bounds. Above were truncated < 32-bits already.
5984 	 */
5985 	if (size >= 4)
5986 		return;
5987 	__reg_combine_64_into_32(reg);
5988 }
5989 
5990 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5991 {
5992 	if (size == 1) {
5993 		reg->smin_value = reg->s32_min_value = S8_MIN;
5994 		reg->smax_value = reg->s32_max_value = S8_MAX;
5995 	} else if (size == 2) {
5996 		reg->smin_value = reg->s32_min_value = S16_MIN;
5997 		reg->smax_value = reg->s32_max_value = S16_MAX;
5998 	} else {
5999 		/* size == 4 */
6000 		reg->smin_value = reg->s32_min_value = S32_MIN;
6001 		reg->smax_value = reg->s32_max_value = S32_MAX;
6002 	}
6003 	reg->umin_value = reg->u32_min_value = 0;
6004 	reg->umax_value = U64_MAX;
6005 	reg->u32_max_value = U32_MAX;
6006 	reg->var_off = tnum_unknown;
6007 }
6008 
6009 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6010 {
6011 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6012 	u64 top_smax_value, top_smin_value;
6013 	u64 num_bits = size * 8;
6014 
6015 	if (tnum_is_const(reg->var_off)) {
6016 		u64_cval = reg->var_off.value;
6017 		if (size == 1)
6018 			reg->var_off = tnum_const((s8)u64_cval);
6019 		else if (size == 2)
6020 			reg->var_off = tnum_const((s16)u64_cval);
6021 		else
6022 			/* size == 4 */
6023 			reg->var_off = tnum_const((s32)u64_cval);
6024 
6025 		u64_cval = reg->var_off.value;
6026 		reg->smax_value = reg->smin_value = u64_cval;
6027 		reg->umax_value = reg->umin_value = u64_cval;
6028 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6029 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6030 		return;
6031 	}
6032 
6033 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6034 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6035 
6036 	if (top_smax_value != top_smin_value)
6037 		goto out;
6038 
6039 	/* find the s64_min and s64_min after sign extension */
6040 	if (size == 1) {
6041 		init_s64_max = (s8)reg->smax_value;
6042 		init_s64_min = (s8)reg->smin_value;
6043 	} else if (size == 2) {
6044 		init_s64_max = (s16)reg->smax_value;
6045 		init_s64_min = (s16)reg->smin_value;
6046 	} else {
6047 		init_s64_max = (s32)reg->smax_value;
6048 		init_s64_min = (s32)reg->smin_value;
6049 	}
6050 
6051 	s64_max = max(init_s64_max, init_s64_min);
6052 	s64_min = min(init_s64_max, init_s64_min);
6053 
6054 	/* both of s64_max/s64_min positive or negative */
6055 	if ((s64_max >= 0) == (s64_min >= 0)) {
6056 		reg->smin_value = reg->s32_min_value = s64_min;
6057 		reg->smax_value = reg->s32_max_value = s64_max;
6058 		reg->umin_value = reg->u32_min_value = s64_min;
6059 		reg->umax_value = reg->u32_max_value = s64_max;
6060 		reg->var_off = tnum_range(s64_min, s64_max);
6061 		return;
6062 	}
6063 
6064 out:
6065 	set_sext64_default_val(reg, size);
6066 }
6067 
6068 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6069 {
6070 	if (size == 1) {
6071 		reg->s32_min_value = S8_MIN;
6072 		reg->s32_max_value = S8_MAX;
6073 	} else {
6074 		/* size == 2 */
6075 		reg->s32_min_value = S16_MIN;
6076 		reg->s32_max_value = S16_MAX;
6077 	}
6078 	reg->u32_min_value = 0;
6079 	reg->u32_max_value = U32_MAX;
6080 }
6081 
6082 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6083 {
6084 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6085 	u32 top_smax_value, top_smin_value;
6086 	u32 num_bits = size * 8;
6087 
6088 	if (tnum_is_const(reg->var_off)) {
6089 		u32_val = reg->var_off.value;
6090 		if (size == 1)
6091 			reg->var_off = tnum_const((s8)u32_val);
6092 		else
6093 			reg->var_off = tnum_const((s16)u32_val);
6094 
6095 		u32_val = reg->var_off.value;
6096 		reg->s32_min_value = reg->s32_max_value = u32_val;
6097 		reg->u32_min_value = reg->u32_max_value = u32_val;
6098 		return;
6099 	}
6100 
6101 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6102 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6103 
6104 	if (top_smax_value != top_smin_value)
6105 		goto out;
6106 
6107 	/* find the s32_min and s32_min after sign extension */
6108 	if (size == 1) {
6109 		init_s32_max = (s8)reg->s32_max_value;
6110 		init_s32_min = (s8)reg->s32_min_value;
6111 	} else {
6112 		/* size == 2 */
6113 		init_s32_max = (s16)reg->s32_max_value;
6114 		init_s32_min = (s16)reg->s32_min_value;
6115 	}
6116 	s32_max = max(init_s32_max, init_s32_min);
6117 	s32_min = min(init_s32_max, init_s32_min);
6118 
6119 	if ((s32_min >= 0) == (s32_max >= 0)) {
6120 		reg->s32_min_value = s32_min;
6121 		reg->s32_max_value = s32_max;
6122 		reg->u32_min_value = (u32)s32_min;
6123 		reg->u32_max_value = (u32)s32_max;
6124 		return;
6125 	}
6126 
6127 out:
6128 	set_sext32_default_val(reg, size);
6129 }
6130 
6131 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6132 {
6133 	/* A map is considered read-only if the following condition are true:
6134 	 *
6135 	 * 1) BPF program side cannot change any of the map content. The
6136 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6137 	 *    and was set at map creation time.
6138 	 * 2) The map value(s) have been initialized from user space by a
6139 	 *    loader and then "frozen", such that no new map update/delete
6140 	 *    operations from syscall side are possible for the rest of
6141 	 *    the map's lifetime from that point onwards.
6142 	 * 3) Any parallel/pending map update/delete operations from syscall
6143 	 *    side have been completed. Only after that point, it's safe to
6144 	 *    assume that map value(s) are immutable.
6145 	 */
6146 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6147 	       READ_ONCE(map->frozen) &&
6148 	       !bpf_map_write_active(map);
6149 }
6150 
6151 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6152 			       bool is_ldsx)
6153 {
6154 	void *ptr;
6155 	u64 addr;
6156 	int err;
6157 
6158 	err = map->ops->map_direct_value_addr(map, &addr, off);
6159 	if (err)
6160 		return err;
6161 	ptr = (void *)(long)addr + off;
6162 
6163 	switch (size) {
6164 	case sizeof(u8):
6165 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6166 		break;
6167 	case sizeof(u16):
6168 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6169 		break;
6170 	case sizeof(u32):
6171 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6172 		break;
6173 	case sizeof(u64):
6174 		*val = *(u64 *)ptr;
6175 		break;
6176 	default:
6177 		return -EINVAL;
6178 	}
6179 	return 0;
6180 }
6181 
6182 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6183 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6184 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6185 
6186 /*
6187  * Allow list few fields as RCU trusted or full trusted.
6188  * This logic doesn't allow mix tagging and will be removed once GCC supports
6189  * btf_type_tag.
6190  */
6191 
6192 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6193 BTF_TYPE_SAFE_RCU(struct task_struct) {
6194 	const cpumask_t *cpus_ptr;
6195 	struct css_set __rcu *cgroups;
6196 	struct task_struct __rcu *real_parent;
6197 	struct task_struct *group_leader;
6198 };
6199 
6200 BTF_TYPE_SAFE_RCU(struct cgroup) {
6201 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6202 	struct kernfs_node *kn;
6203 };
6204 
6205 BTF_TYPE_SAFE_RCU(struct css_set) {
6206 	struct cgroup *dfl_cgrp;
6207 };
6208 
6209 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6210 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6211 	struct file __rcu *exe_file;
6212 };
6213 
6214 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6215  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6216  */
6217 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6218 	struct sock *sk;
6219 };
6220 
6221 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6222 	struct sock *sk;
6223 };
6224 
6225 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6226 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6227 	struct seq_file *seq;
6228 };
6229 
6230 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6231 	struct bpf_iter_meta *meta;
6232 	struct task_struct *task;
6233 };
6234 
6235 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6236 	struct file *file;
6237 };
6238 
6239 BTF_TYPE_SAFE_TRUSTED(struct file) {
6240 	struct inode *f_inode;
6241 };
6242 
6243 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6244 	/* no negative dentry-s in places where bpf can see it */
6245 	struct inode *d_inode;
6246 };
6247 
6248 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6249 	struct sock *sk;
6250 };
6251 
6252 static bool type_is_rcu(struct bpf_verifier_env *env,
6253 			struct bpf_reg_state *reg,
6254 			const char *field_name, u32 btf_id)
6255 {
6256 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6257 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6258 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6259 
6260 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6261 }
6262 
6263 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6264 				struct bpf_reg_state *reg,
6265 				const char *field_name, u32 btf_id)
6266 {
6267 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6268 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6269 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6270 
6271 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6272 }
6273 
6274 static bool type_is_trusted(struct bpf_verifier_env *env,
6275 			    struct bpf_reg_state *reg,
6276 			    const char *field_name, u32 btf_id)
6277 {
6278 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6279 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6280 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6281 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6282 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6283 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6284 
6285 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6286 }
6287 
6288 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6289 				   struct bpf_reg_state *regs,
6290 				   int regno, int off, int size,
6291 				   enum bpf_access_type atype,
6292 				   int value_regno)
6293 {
6294 	struct bpf_reg_state *reg = regs + regno;
6295 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6296 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6297 	const char *field_name = NULL;
6298 	enum bpf_type_flag flag = 0;
6299 	u32 btf_id = 0;
6300 	int ret;
6301 
6302 	if (!env->allow_ptr_leaks) {
6303 		verbose(env,
6304 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6305 			tname);
6306 		return -EPERM;
6307 	}
6308 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6309 		verbose(env,
6310 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6311 			tname);
6312 		return -EINVAL;
6313 	}
6314 	if (off < 0) {
6315 		verbose(env,
6316 			"R%d is ptr_%s invalid negative access: off=%d\n",
6317 			regno, tname, off);
6318 		return -EACCES;
6319 	}
6320 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6321 		char tn_buf[48];
6322 
6323 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6324 		verbose(env,
6325 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6326 			regno, tname, off, tn_buf);
6327 		return -EACCES;
6328 	}
6329 
6330 	if (reg->type & MEM_USER) {
6331 		verbose(env,
6332 			"R%d is ptr_%s access user memory: off=%d\n",
6333 			regno, tname, off);
6334 		return -EACCES;
6335 	}
6336 
6337 	if (reg->type & MEM_PERCPU) {
6338 		verbose(env,
6339 			"R%d is ptr_%s access percpu memory: off=%d\n",
6340 			regno, tname, off);
6341 		return -EACCES;
6342 	}
6343 
6344 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6345 		if (!btf_is_kernel(reg->btf)) {
6346 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6347 			return -EFAULT;
6348 		}
6349 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6350 	} else {
6351 		/* Writes are permitted with default btf_struct_access for
6352 		 * program allocated objects (which always have ref_obj_id > 0),
6353 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6354 		 */
6355 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6356 			verbose(env, "only read is supported\n");
6357 			return -EACCES;
6358 		}
6359 
6360 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6361 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6362 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6363 			return -EFAULT;
6364 		}
6365 
6366 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6367 	}
6368 
6369 	if (ret < 0)
6370 		return ret;
6371 
6372 	if (ret != PTR_TO_BTF_ID) {
6373 		/* just mark; */
6374 
6375 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6376 		/* If this is an untrusted pointer, all pointers formed by walking it
6377 		 * also inherit the untrusted flag.
6378 		 */
6379 		flag = PTR_UNTRUSTED;
6380 
6381 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6382 		/* By default any pointer obtained from walking a trusted pointer is no
6383 		 * longer trusted, unless the field being accessed has explicitly been
6384 		 * marked as inheriting its parent's state of trust (either full or RCU).
6385 		 * For example:
6386 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6387 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6388 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6389 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6390 		 *
6391 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6392 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6393 		 */
6394 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6395 			flag |= PTR_TRUSTED;
6396 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6397 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6398 				/* ignore __rcu tag and mark it MEM_RCU */
6399 				flag |= MEM_RCU;
6400 			} else if (flag & MEM_RCU ||
6401 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6402 				/* __rcu tagged pointers can be NULL */
6403 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6404 
6405 				/* We always trust them */
6406 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6407 				    flag & PTR_UNTRUSTED)
6408 					flag &= ~PTR_UNTRUSTED;
6409 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6410 				/* keep as-is */
6411 			} else {
6412 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6413 				clear_trusted_flags(&flag);
6414 			}
6415 		} else {
6416 			/*
6417 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6418 			 * aggressively mark as untrusted otherwise such
6419 			 * pointers will be plain PTR_TO_BTF_ID without flags
6420 			 * and will be allowed to be passed into helpers for
6421 			 * compat reasons.
6422 			 */
6423 			flag = PTR_UNTRUSTED;
6424 		}
6425 	} else {
6426 		/* Old compat. Deprecated */
6427 		clear_trusted_flags(&flag);
6428 	}
6429 
6430 	if (atype == BPF_READ && value_regno >= 0)
6431 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6432 
6433 	return 0;
6434 }
6435 
6436 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6437 				   struct bpf_reg_state *regs,
6438 				   int regno, int off, int size,
6439 				   enum bpf_access_type atype,
6440 				   int value_regno)
6441 {
6442 	struct bpf_reg_state *reg = regs + regno;
6443 	struct bpf_map *map = reg->map_ptr;
6444 	struct bpf_reg_state map_reg;
6445 	enum bpf_type_flag flag = 0;
6446 	const struct btf_type *t;
6447 	const char *tname;
6448 	u32 btf_id;
6449 	int ret;
6450 
6451 	if (!btf_vmlinux) {
6452 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6453 		return -ENOTSUPP;
6454 	}
6455 
6456 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6457 		verbose(env, "map_ptr access not supported for map type %d\n",
6458 			map->map_type);
6459 		return -ENOTSUPP;
6460 	}
6461 
6462 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6463 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6464 
6465 	if (!env->allow_ptr_leaks) {
6466 		verbose(env,
6467 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6468 			tname);
6469 		return -EPERM;
6470 	}
6471 
6472 	if (off < 0) {
6473 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6474 			regno, tname, off);
6475 		return -EACCES;
6476 	}
6477 
6478 	if (atype != BPF_READ) {
6479 		verbose(env, "only read from %s is supported\n", tname);
6480 		return -EACCES;
6481 	}
6482 
6483 	/* Simulate access to a PTR_TO_BTF_ID */
6484 	memset(&map_reg, 0, sizeof(map_reg));
6485 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6486 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6487 	if (ret < 0)
6488 		return ret;
6489 
6490 	if (value_regno >= 0)
6491 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6492 
6493 	return 0;
6494 }
6495 
6496 /* Check that the stack access at the given offset is within bounds. The
6497  * maximum valid offset is -1.
6498  *
6499  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6500  * -state->allocated_stack for reads.
6501  */
6502 static int check_stack_slot_within_bounds(int off,
6503 					  struct bpf_func_state *state,
6504 					  enum bpf_access_type t)
6505 {
6506 	int min_valid_off;
6507 
6508 	if (t == BPF_WRITE)
6509 		min_valid_off = -MAX_BPF_STACK;
6510 	else
6511 		min_valid_off = -state->allocated_stack;
6512 
6513 	if (off < min_valid_off || off > -1)
6514 		return -EACCES;
6515 	return 0;
6516 }
6517 
6518 /* Check that the stack access at 'regno + off' falls within the maximum stack
6519  * bounds.
6520  *
6521  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6522  */
6523 static int check_stack_access_within_bounds(
6524 		struct bpf_verifier_env *env,
6525 		int regno, int off, int access_size,
6526 		enum bpf_access_src src, enum bpf_access_type type)
6527 {
6528 	struct bpf_reg_state *regs = cur_regs(env);
6529 	struct bpf_reg_state *reg = regs + regno;
6530 	struct bpf_func_state *state = func(env, reg);
6531 	int min_off, max_off;
6532 	int err;
6533 	char *err_extra;
6534 
6535 	if (src == ACCESS_HELPER)
6536 		/* We don't know if helpers are reading or writing (or both). */
6537 		err_extra = " indirect access to";
6538 	else if (type == BPF_READ)
6539 		err_extra = " read from";
6540 	else
6541 		err_extra = " write to";
6542 
6543 	if (tnum_is_const(reg->var_off)) {
6544 		min_off = reg->var_off.value + off;
6545 		if (access_size > 0)
6546 			max_off = min_off + access_size - 1;
6547 		else
6548 			max_off = min_off;
6549 	} else {
6550 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6551 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6552 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6553 				err_extra, regno);
6554 			return -EACCES;
6555 		}
6556 		min_off = reg->smin_value + off;
6557 		if (access_size > 0)
6558 			max_off = reg->smax_value + off + access_size - 1;
6559 		else
6560 			max_off = min_off;
6561 	}
6562 
6563 	err = check_stack_slot_within_bounds(min_off, state, type);
6564 	if (!err)
6565 		err = check_stack_slot_within_bounds(max_off, state, type);
6566 
6567 	if (err) {
6568 		if (tnum_is_const(reg->var_off)) {
6569 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6570 				err_extra, regno, off, access_size);
6571 		} else {
6572 			char tn_buf[48];
6573 
6574 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6575 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6576 				err_extra, regno, tn_buf, access_size);
6577 		}
6578 	}
6579 	return err;
6580 }
6581 
6582 /* check whether memory at (regno + off) is accessible for t = (read | write)
6583  * if t==write, value_regno is a register which value is stored into memory
6584  * if t==read, value_regno is a register which will receive the value from memory
6585  * if t==write && value_regno==-1, some unknown value is stored into memory
6586  * if t==read && value_regno==-1, don't care what we read from memory
6587  */
6588 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6589 			    int off, int bpf_size, enum bpf_access_type t,
6590 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6591 {
6592 	struct bpf_reg_state *regs = cur_regs(env);
6593 	struct bpf_reg_state *reg = regs + regno;
6594 	struct bpf_func_state *state;
6595 	int size, err = 0;
6596 
6597 	size = bpf_size_to_bytes(bpf_size);
6598 	if (size < 0)
6599 		return size;
6600 
6601 	/* alignment checks will add in reg->off themselves */
6602 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6603 	if (err)
6604 		return err;
6605 
6606 	/* for access checks, reg->off is just part of off */
6607 	off += reg->off;
6608 
6609 	if (reg->type == PTR_TO_MAP_KEY) {
6610 		if (t == BPF_WRITE) {
6611 			verbose(env, "write to change key R%d not allowed\n", regno);
6612 			return -EACCES;
6613 		}
6614 
6615 		err = check_mem_region_access(env, regno, off, size,
6616 					      reg->map_ptr->key_size, false);
6617 		if (err)
6618 			return err;
6619 		if (value_regno >= 0)
6620 			mark_reg_unknown(env, regs, value_regno);
6621 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6622 		struct btf_field *kptr_field = NULL;
6623 
6624 		if (t == BPF_WRITE && value_regno >= 0 &&
6625 		    is_pointer_value(env, value_regno)) {
6626 			verbose(env, "R%d leaks addr into map\n", value_regno);
6627 			return -EACCES;
6628 		}
6629 		err = check_map_access_type(env, regno, off, size, t);
6630 		if (err)
6631 			return err;
6632 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6633 		if (err)
6634 			return err;
6635 		if (tnum_is_const(reg->var_off))
6636 			kptr_field = btf_record_find(reg->map_ptr->record,
6637 						     off + reg->var_off.value, BPF_KPTR);
6638 		if (kptr_field) {
6639 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6640 		} else if (t == BPF_READ && value_regno >= 0) {
6641 			struct bpf_map *map = reg->map_ptr;
6642 
6643 			/* if map is read-only, track its contents as scalars */
6644 			if (tnum_is_const(reg->var_off) &&
6645 			    bpf_map_is_rdonly(map) &&
6646 			    map->ops->map_direct_value_addr) {
6647 				int map_off = off + reg->var_off.value;
6648 				u64 val = 0;
6649 
6650 				err = bpf_map_direct_read(map, map_off, size,
6651 							  &val, is_ldsx);
6652 				if (err)
6653 					return err;
6654 
6655 				regs[value_regno].type = SCALAR_VALUE;
6656 				__mark_reg_known(&regs[value_regno], val);
6657 			} else {
6658 				mark_reg_unknown(env, regs, value_regno);
6659 			}
6660 		}
6661 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6662 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6663 
6664 		if (type_may_be_null(reg->type)) {
6665 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6666 				reg_type_str(env, reg->type));
6667 			return -EACCES;
6668 		}
6669 
6670 		if (t == BPF_WRITE && rdonly_mem) {
6671 			verbose(env, "R%d cannot write into %s\n",
6672 				regno, reg_type_str(env, reg->type));
6673 			return -EACCES;
6674 		}
6675 
6676 		if (t == BPF_WRITE && value_regno >= 0 &&
6677 		    is_pointer_value(env, value_regno)) {
6678 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6679 			return -EACCES;
6680 		}
6681 
6682 		err = check_mem_region_access(env, regno, off, size,
6683 					      reg->mem_size, false);
6684 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6685 			mark_reg_unknown(env, regs, value_regno);
6686 	} else if (reg->type == PTR_TO_CTX) {
6687 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6688 		struct btf *btf = NULL;
6689 		u32 btf_id = 0;
6690 
6691 		if (t == BPF_WRITE && value_regno >= 0 &&
6692 		    is_pointer_value(env, value_regno)) {
6693 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6694 			return -EACCES;
6695 		}
6696 
6697 		err = check_ptr_off_reg(env, reg, regno);
6698 		if (err < 0)
6699 			return err;
6700 
6701 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6702 				       &btf_id);
6703 		if (err)
6704 			verbose_linfo(env, insn_idx, "; ");
6705 		if (!err && t == BPF_READ && value_regno >= 0) {
6706 			/* ctx access returns either a scalar, or a
6707 			 * PTR_TO_PACKET[_META,_END]. In the latter
6708 			 * case, we know the offset is zero.
6709 			 */
6710 			if (reg_type == SCALAR_VALUE) {
6711 				mark_reg_unknown(env, regs, value_regno);
6712 			} else {
6713 				mark_reg_known_zero(env, regs,
6714 						    value_regno);
6715 				if (type_may_be_null(reg_type))
6716 					regs[value_regno].id = ++env->id_gen;
6717 				/* A load of ctx field could have different
6718 				 * actual load size with the one encoded in the
6719 				 * insn. When the dst is PTR, it is for sure not
6720 				 * a sub-register.
6721 				 */
6722 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6723 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6724 					regs[value_regno].btf = btf;
6725 					regs[value_regno].btf_id = btf_id;
6726 				}
6727 			}
6728 			regs[value_regno].type = reg_type;
6729 		}
6730 
6731 	} else if (reg->type == PTR_TO_STACK) {
6732 		/* Basic bounds checks. */
6733 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6734 		if (err)
6735 			return err;
6736 
6737 		state = func(env, reg);
6738 		err = update_stack_depth(env, state, off);
6739 		if (err)
6740 			return err;
6741 
6742 		if (t == BPF_READ)
6743 			err = check_stack_read(env, regno, off, size,
6744 					       value_regno);
6745 		else
6746 			err = check_stack_write(env, regno, off, size,
6747 						value_regno, insn_idx);
6748 	} else if (reg_is_pkt_pointer(reg)) {
6749 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6750 			verbose(env, "cannot write into packet\n");
6751 			return -EACCES;
6752 		}
6753 		if (t == BPF_WRITE && value_regno >= 0 &&
6754 		    is_pointer_value(env, value_regno)) {
6755 			verbose(env, "R%d leaks addr into packet\n",
6756 				value_regno);
6757 			return -EACCES;
6758 		}
6759 		err = check_packet_access(env, regno, off, size, false);
6760 		if (!err && t == BPF_READ && value_regno >= 0)
6761 			mark_reg_unknown(env, regs, value_regno);
6762 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6763 		if (t == BPF_WRITE && value_regno >= 0 &&
6764 		    is_pointer_value(env, value_regno)) {
6765 			verbose(env, "R%d leaks addr into flow keys\n",
6766 				value_regno);
6767 			return -EACCES;
6768 		}
6769 
6770 		err = check_flow_keys_access(env, off, size);
6771 		if (!err && t == BPF_READ && value_regno >= 0)
6772 			mark_reg_unknown(env, regs, value_regno);
6773 	} else if (type_is_sk_pointer(reg->type)) {
6774 		if (t == BPF_WRITE) {
6775 			verbose(env, "R%d cannot write into %s\n",
6776 				regno, reg_type_str(env, reg->type));
6777 			return -EACCES;
6778 		}
6779 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6780 		if (!err && value_regno >= 0)
6781 			mark_reg_unknown(env, regs, value_regno);
6782 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6783 		err = check_tp_buffer_access(env, reg, regno, off, size);
6784 		if (!err && t == BPF_READ && value_regno >= 0)
6785 			mark_reg_unknown(env, regs, value_regno);
6786 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6787 		   !type_may_be_null(reg->type)) {
6788 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6789 					      value_regno);
6790 	} else if (reg->type == CONST_PTR_TO_MAP) {
6791 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6792 					      value_regno);
6793 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6794 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6795 		u32 *max_access;
6796 
6797 		if (rdonly_mem) {
6798 			if (t == BPF_WRITE) {
6799 				verbose(env, "R%d cannot write into %s\n",
6800 					regno, reg_type_str(env, reg->type));
6801 				return -EACCES;
6802 			}
6803 			max_access = &env->prog->aux->max_rdonly_access;
6804 		} else {
6805 			max_access = &env->prog->aux->max_rdwr_access;
6806 		}
6807 
6808 		err = check_buffer_access(env, reg, regno, off, size, false,
6809 					  max_access);
6810 
6811 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6812 			mark_reg_unknown(env, regs, value_regno);
6813 	} else {
6814 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6815 			reg_type_str(env, reg->type));
6816 		return -EACCES;
6817 	}
6818 
6819 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6820 	    regs[value_regno].type == SCALAR_VALUE) {
6821 		if (!is_ldsx)
6822 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6823 			coerce_reg_to_size(&regs[value_regno], size);
6824 		else
6825 			coerce_reg_to_size_sx(&regs[value_regno], size);
6826 	}
6827 	return err;
6828 }
6829 
6830 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6831 {
6832 	int load_reg;
6833 	int err;
6834 
6835 	switch (insn->imm) {
6836 	case BPF_ADD:
6837 	case BPF_ADD | BPF_FETCH:
6838 	case BPF_AND:
6839 	case BPF_AND | BPF_FETCH:
6840 	case BPF_OR:
6841 	case BPF_OR | BPF_FETCH:
6842 	case BPF_XOR:
6843 	case BPF_XOR | BPF_FETCH:
6844 	case BPF_XCHG:
6845 	case BPF_CMPXCHG:
6846 		break;
6847 	default:
6848 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6849 		return -EINVAL;
6850 	}
6851 
6852 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6853 		verbose(env, "invalid atomic operand size\n");
6854 		return -EINVAL;
6855 	}
6856 
6857 	/* check src1 operand */
6858 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6859 	if (err)
6860 		return err;
6861 
6862 	/* check src2 operand */
6863 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6864 	if (err)
6865 		return err;
6866 
6867 	if (insn->imm == BPF_CMPXCHG) {
6868 		/* Check comparison of R0 with memory location */
6869 		const u32 aux_reg = BPF_REG_0;
6870 
6871 		err = check_reg_arg(env, aux_reg, SRC_OP);
6872 		if (err)
6873 			return err;
6874 
6875 		if (is_pointer_value(env, aux_reg)) {
6876 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6877 			return -EACCES;
6878 		}
6879 	}
6880 
6881 	if (is_pointer_value(env, insn->src_reg)) {
6882 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6883 		return -EACCES;
6884 	}
6885 
6886 	if (is_ctx_reg(env, insn->dst_reg) ||
6887 	    is_pkt_reg(env, insn->dst_reg) ||
6888 	    is_flow_key_reg(env, insn->dst_reg) ||
6889 	    is_sk_reg(env, insn->dst_reg)) {
6890 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6891 			insn->dst_reg,
6892 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6893 		return -EACCES;
6894 	}
6895 
6896 	if (insn->imm & BPF_FETCH) {
6897 		if (insn->imm == BPF_CMPXCHG)
6898 			load_reg = BPF_REG_0;
6899 		else
6900 			load_reg = insn->src_reg;
6901 
6902 		/* check and record load of old value */
6903 		err = check_reg_arg(env, load_reg, DST_OP);
6904 		if (err)
6905 			return err;
6906 	} else {
6907 		/* This instruction accesses a memory location but doesn't
6908 		 * actually load it into a register.
6909 		 */
6910 		load_reg = -1;
6911 	}
6912 
6913 	/* Check whether we can read the memory, with second call for fetch
6914 	 * case to simulate the register fill.
6915 	 */
6916 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6917 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6918 	if (!err && load_reg >= 0)
6919 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6920 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6921 				       true, false);
6922 	if (err)
6923 		return err;
6924 
6925 	/* Check whether we can write into the same memory. */
6926 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6927 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6928 	if (err)
6929 		return err;
6930 
6931 	return 0;
6932 }
6933 
6934 /* When register 'regno' is used to read the stack (either directly or through
6935  * a helper function) make sure that it's within stack boundary and, depending
6936  * on the access type, that all elements of the stack are initialized.
6937  *
6938  * 'off' includes 'regno->off', but not its dynamic part (if any).
6939  *
6940  * All registers that have been spilled on the stack in the slots within the
6941  * read offsets are marked as read.
6942  */
6943 static int check_stack_range_initialized(
6944 		struct bpf_verifier_env *env, int regno, int off,
6945 		int access_size, bool zero_size_allowed,
6946 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6947 {
6948 	struct bpf_reg_state *reg = reg_state(env, regno);
6949 	struct bpf_func_state *state = func(env, reg);
6950 	int err, min_off, max_off, i, j, slot, spi;
6951 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6952 	enum bpf_access_type bounds_check_type;
6953 	/* Some accesses can write anything into the stack, others are
6954 	 * read-only.
6955 	 */
6956 	bool clobber = false;
6957 
6958 	if (access_size == 0 && !zero_size_allowed) {
6959 		verbose(env, "invalid zero-sized read\n");
6960 		return -EACCES;
6961 	}
6962 
6963 	if (type == ACCESS_HELPER) {
6964 		/* The bounds checks for writes are more permissive than for
6965 		 * reads. However, if raw_mode is not set, we'll do extra
6966 		 * checks below.
6967 		 */
6968 		bounds_check_type = BPF_WRITE;
6969 		clobber = true;
6970 	} else {
6971 		bounds_check_type = BPF_READ;
6972 	}
6973 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6974 					       type, bounds_check_type);
6975 	if (err)
6976 		return err;
6977 
6978 
6979 	if (tnum_is_const(reg->var_off)) {
6980 		min_off = max_off = reg->var_off.value + off;
6981 	} else {
6982 		/* Variable offset is prohibited for unprivileged mode for
6983 		 * simplicity since it requires corresponding support in
6984 		 * Spectre masking for stack ALU.
6985 		 * See also retrieve_ptr_limit().
6986 		 */
6987 		if (!env->bypass_spec_v1) {
6988 			char tn_buf[48];
6989 
6990 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6991 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6992 				regno, err_extra, tn_buf);
6993 			return -EACCES;
6994 		}
6995 		/* Only initialized buffer on stack is allowed to be accessed
6996 		 * with variable offset. With uninitialized buffer it's hard to
6997 		 * guarantee that whole memory is marked as initialized on
6998 		 * helper return since specific bounds are unknown what may
6999 		 * cause uninitialized stack leaking.
7000 		 */
7001 		if (meta && meta->raw_mode)
7002 			meta = NULL;
7003 
7004 		min_off = reg->smin_value + off;
7005 		max_off = reg->smax_value + off;
7006 	}
7007 
7008 	if (meta && meta->raw_mode) {
7009 		/* Ensure we won't be overwriting dynptrs when simulating byte
7010 		 * by byte access in check_helper_call using meta.access_size.
7011 		 * This would be a problem if we have a helper in the future
7012 		 * which takes:
7013 		 *
7014 		 *	helper(uninit_mem, len, dynptr)
7015 		 *
7016 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7017 		 * may end up writing to dynptr itself when touching memory from
7018 		 * arg 1. This can be relaxed on a case by case basis for known
7019 		 * safe cases, but reject due to the possibilitiy of aliasing by
7020 		 * default.
7021 		 */
7022 		for (i = min_off; i < max_off + access_size; i++) {
7023 			int stack_off = -i - 1;
7024 
7025 			spi = __get_spi(i);
7026 			/* raw_mode may write past allocated_stack */
7027 			if (state->allocated_stack <= stack_off)
7028 				continue;
7029 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7030 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7031 				return -EACCES;
7032 			}
7033 		}
7034 		meta->access_size = access_size;
7035 		meta->regno = regno;
7036 		return 0;
7037 	}
7038 
7039 	for (i = min_off; i < max_off + access_size; i++) {
7040 		u8 *stype;
7041 
7042 		slot = -i - 1;
7043 		spi = slot / BPF_REG_SIZE;
7044 		if (state->allocated_stack <= slot)
7045 			goto err;
7046 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7047 		if (*stype == STACK_MISC)
7048 			goto mark;
7049 		if ((*stype == STACK_ZERO) ||
7050 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7051 			if (clobber) {
7052 				/* helper can write anything into the stack */
7053 				*stype = STACK_MISC;
7054 			}
7055 			goto mark;
7056 		}
7057 
7058 		if (is_spilled_reg(&state->stack[spi]) &&
7059 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7060 		     env->allow_ptr_leaks)) {
7061 			if (clobber) {
7062 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7063 				for (j = 0; j < BPF_REG_SIZE; j++)
7064 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7065 			}
7066 			goto mark;
7067 		}
7068 
7069 err:
7070 		if (tnum_is_const(reg->var_off)) {
7071 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7072 				err_extra, regno, min_off, i - min_off, access_size);
7073 		} else {
7074 			char tn_buf[48];
7075 
7076 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7077 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7078 				err_extra, regno, tn_buf, i - min_off, access_size);
7079 		}
7080 		return -EACCES;
7081 mark:
7082 		/* reading any byte out of 8-byte 'spill_slot' will cause
7083 		 * the whole slot to be marked as 'read'
7084 		 */
7085 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7086 			      state->stack[spi].spilled_ptr.parent,
7087 			      REG_LIVE_READ64);
7088 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7089 		 * be sure that whether stack slot is written to or not. Hence,
7090 		 * we must still conservatively propagate reads upwards even if
7091 		 * helper may write to the entire memory range.
7092 		 */
7093 	}
7094 	return update_stack_depth(env, state, min_off);
7095 }
7096 
7097 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7098 				   int access_size, bool zero_size_allowed,
7099 				   struct bpf_call_arg_meta *meta)
7100 {
7101 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7102 	u32 *max_access;
7103 
7104 	switch (base_type(reg->type)) {
7105 	case PTR_TO_PACKET:
7106 	case PTR_TO_PACKET_META:
7107 		return check_packet_access(env, regno, reg->off, access_size,
7108 					   zero_size_allowed);
7109 	case PTR_TO_MAP_KEY:
7110 		if (meta && meta->raw_mode) {
7111 			verbose(env, "R%d cannot write into %s\n", regno,
7112 				reg_type_str(env, reg->type));
7113 			return -EACCES;
7114 		}
7115 		return check_mem_region_access(env, regno, reg->off, access_size,
7116 					       reg->map_ptr->key_size, false);
7117 	case PTR_TO_MAP_VALUE:
7118 		if (check_map_access_type(env, regno, reg->off, access_size,
7119 					  meta && meta->raw_mode ? BPF_WRITE :
7120 					  BPF_READ))
7121 			return -EACCES;
7122 		return check_map_access(env, regno, reg->off, access_size,
7123 					zero_size_allowed, ACCESS_HELPER);
7124 	case PTR_TO_MEM:
7125 		if (type_is_rdonly_mem(reg->type)) {
7126 			if (meta && meta->raw_mode) {
7127 				verbose(env, "R%d cannot write into %s\n", regno,
7128 					reg_type_str(env, reg->type));
7129 				return -EACCES;
7130 			}
7131 		}
7132 		return check_mem_region_access(env, regno, reg->off,
7133 					       access_size, reg->mem_size,
7134 					       zero_size_allowed);
7135 	case PTR_TO_BUF:
7136 		if (type_is_rdonly_mem(reg->type)) {
7137 			if (meta && meta->raw_mode) {
7138 				verbose(env, "R%d cannot write into %s\n", regno,
7139 					reg_type_str(env, reg->type));
7140 				return -EACCES;
7141 			}
7142 
7143 			max_access = &env->prog->aux->max_rdonly_access;
7144 		} else {
7145 			max_access = &env->prog->aux->max_rdwr_access;
7146 		}
7147 		return check_buffer_access(env, reg, regno, reg->off,
7148 					   access_size, zero_size_allowed,
7149 					   max_access);
7150 	case PTR_TO_STACK:
7151 		return check_stack_range_initialized(
7152 				env,
7153 				regno, reg->off, access_size,
7154 				zero_size_allowed, ACCESS_HELPER, meta);
7155 	case PTR_TO_BTF_ID:
7156 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7157 					       access_size, BPF_READ, -1);
7158 	case PTR_TO_CTX:
7159 		/* in case the function doesn't know how to access the context,
7160 		 * (because we are in a program of type SYSCALL for example), we
7161 		 * can not statically check its size.
7162 		 * Dynamically check it now.
7163 		 */
7164 		if (!env->ops->convert_ctx_access) {
7165 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7166 			int offset = access_size - 1;
7167 
7168 			/* Allow zero-byte read from PTR_TO_CTX */
7169 			if (access_size == 0)
7170 				return zero_size_allowed ? 0 : -EACCES;
7171 
7172 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7173 						atype, -1, false, false);
7174 		}
7175 
7176 		fallthrough;
7177 	default: /* scalar_value or invalid ptr */
7178 		/* Allow zero-byte read from NULL, regardless of pointer type */
7179 		if (zero_size_allowed && access_size == 0 &&
7180 		    register_is_null(reg))
7181 			return 0;
7182 
7183 		verbose(env, "R%d type=%s ", regno,
7184 			reg_type_str(env, reg->type));
7185 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7186 		return -EACCES;
7187 	}
7188 }
7189 
7190 static int check_mem_size_reg(struct bpf_verifier_env *env,
7191 			      struct bpf_reg_state *reg, u32 regno,
7192 			      bool zero_size_allowed,
7193 			      struct bpf_call_arg_meta *meta)
7194 {
7195 	int err;
7196 
7197 	/* This is used to refine r0 return value bounds for helpers
7198 	 * that enforce this value as an upper bound on return values.
7199 	 * See do_refine_retval_range() for helpers that can refine
7200 	 * the return value. C type of helper is u32 so we pull register
7201 	 * bound from umax_value however, if negative verifier errors
7202 	 * out. Only upper bounds can be learned because retval is an
7203 	 * int type and negative retvals are allowed.
7204 	 */
7205 	meta->msize_max_value = reg->umax_value;
7206 
7207 	/* The register is SCALAR_VALUE; the access check
7208 	 * happens using its boundaries.
7209 	 */
7210 	if (!tnum_is_const(reg->var_off))
7211 		/* For unprivileged variable accesses, disable raw
7212 		 * mode so that the program is required to
7213 		 * initialize all the memory that the helper could
7214 		 * just partially fill up.
7215 		 */
7216 		meta = NULL;
7217 
7218 	if (reg->smin_value < 0) {
7219 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7220 			regno);
7221 		return -EACCES;
7222 	}
7223 
7224 	if (reg->umin_value == 0) {
7225 		err = check_helper_mem_access(env, regno - 1, 0,
7226 					      zero_size_allowed,
7227 					      meta);
7228 		if (err)
7229 			return err;
7230 	}
7231 
7232 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7233 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7234 			regno);
7235 		return -EACCES;
7236 	}
7237 	err = check_helper_mem_access(env, regno - 1,
7238 				      reg->umax_value,
7239 				      zero_size_allowed, meta);
7240 	if (!err)
7241 		err = mark_chain_precision(env, regno);
7242 	return err;
7243 }
7244 
7245 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7246 		   u32 regno, u32 mem_size)
7247 {
7248 	bool may_be_null = type_may_be_null(reg->type);
7249 	struct bpf_reg_state saved_reg;
7250 	struct bpf_call_arg_meta meta;
7251 	int err;
7252 
7253 	if (register_is_null(reg))
7254 		return 0;
7255 
7256 	memset(&meta, 0, sizeof(meta));
7257 	/* Assuming that the register contains a value check if the memory
7258 	 * access is safe. Temporarily save and restore the register's state as
7259 	 * the conversion shouldn't be visible to a caller.
7260 	 */
7261 	if (may_be_null) {
7262 		saved_reg = *reg;
7263 		mark_ptr_not_null_reg(reg);
7264 	}
7265 
7266 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7267 	/* Check access for BPF_WRITE */
7268 	meta.raw_mode = true;
7269 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7270 
7271 	if (may_be_null)
7272 		*reg = saved_reg;
7273 
7274 	return err;
7275 }
7276 
7277 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7278 				    u32 regno)
7279 {
7280 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7281 	bool may_be_null = type_may_be_null(mem_reg->type);
7282 	struct bpf_reg_state saved_reg;
7283 	struct bpf_call_arg_meta meta;
7284 	int err;
7285 
7286 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7287 
7288 	memset(&meta, 0, sizeof(meta));
7289 
7290 	if (may_be_null) {
7291 		saved_reg = *mem_reg;
7292 		mark_ptr_not_null_reg(mem_reg);
7293 	}
7294 
7295 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7296 	/* Check access for BPF_WRITE */
7297 	meta.raw_mode = true;
7298 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7299 
7300 	if (may_be_null)
7301 		*mem_reg = saved_reg;
7302 	return err;
7303 }
7304 
7305 /* Implementation details:
7306  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7307  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7308  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7309  * Two separate bpf_obj_new will also have different reg->id.
7310  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7311  * clears reg->id after value_or_null->value transition, since the verifier only
7312  * cares about the range of access to valid map value pointer and doesn't care
7313  * about actual address of the map element.
7314  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7315  * reg->id > 0 after value_or_null->value transition. By doing so
7316  * two bpf_map_lookups will be considered two different pointers that
7317  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7318  * returned from bpf_obj_new.
7319  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7320  * dead-locks.
7321  * Since only one bpf_spin_lock is allowed the checks are simpler than
7322  * reg_is_refcounted() logic. The verifier needs to remember only
7323  * one spin_lock instead of array of acquired_refs.
7324  * cur_state->active_lock remembers which map value element or allocated
7325  * object got locked and clears it after bpf_spin_unlock.
7326  */
7327 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7328 			     bool is_lock)
7329 {
7330 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7331 	struct bpf_verifier_state *cur = env->cur_state;
7332 	bool is_const = tnum_is_const(reg->var_off);
7333 	u64 val = reg->var_off.value;
7334 	struct bpf_map *map = NULL;
7335 	struct btf *btf = NULL;
7336 	struct btf_record *rec;
7337 
7338 	if (!is_const) {
7339 		verbose(env,
7340 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7341 			regno);
7342 		return -EINVAL;
7343 	}
7344 	if (reg->type == PTR_TO_MAP_VALUE) {
7345 		map = reg->map_ptr;
7346 		if (!map->btf) {
7347 			verbose(env,
7348 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7349 				map->name);
7350 			return -EINVAL;
7351 		}
7352 	} else {
7353 		btf = reg->btf;
7354 	}
7355 
7356 	rec = reg_btf_record(reg);
7357 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7358 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7359 			map ? map->name : "kptr");
7360 		return -EINVAL;
7361 	}
7362 	if (rec->spin_lock_off != val + reg->off) {
7363 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7364 			val + reg->off, rec->spin_lock_off);
7365 		return -EINVAL;
7366 	}
7367 	if (is_lock) {
7368 		if (cur->active_lock.ptr) {
7369 			verbose(env,
7370 				"Locking two bpf_spin_locks are not allowed\n");
7371 			return -EINVAL;
7372 		}
7373 		if (map)
7374 			cur->active_lock.ptr = map;
7375 		else
7376 			cur->active_lock.ptr = btf;
7377 		cur->active_lock.id = reg->id;
7378 	} else {
7379 		void *ptr;
7380 
7381 		if (map)
7382 			ptr = map;
7383 		else
7384 			ptr = btf;
7385 
7386 		if (!cur->active_lock.ptr) {
7387 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7388 			return -EINVAL;
7389 		}
7390 		if (cur->active_lock.ptr != ptr ||
7391 		    cur->active_lock.id != reg->id) {
7392 			verbose(env, "bpf_spin_unlock of different lock\n");
7393 			return -EINVAL;
7394 		}
7395 
7396 		invalidate_non_owning_refs(env);
7397 
7398 		cur->active_lock.ptr = NULL;
7399 		cur->active_lock.id = 0;
7400 	}
7401 	return 0;
7402 }
7403 
7404 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7405 			      struct bpf_call_arg_meta *meta)
7406 {
7407 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7408 	bool is_const = tnum_is_const(reg->var_off);
7409 	struct bpf_map *map = reg->map_ptr;
7410 	u64 val = reg->var_off.value;
7411 
7412 	if (!is_const) {
7413 		verbose(env,
7414 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7415 			regno);
7416 		return -EINVAL;
7417 	}
7418 	if (!map->btf) {
7419 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7420 			map->name);
7421 		return -EINVAL;
7422 	}
7423 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7424 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7425 		return -EINVAL;
7426 	}
7427 	if (map->record->timer_off != val + reg->off) {
7428 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7429 			val + reg->off, map->record->timer_off);
7430 		return -EINVAL;
7431 	}
7432 	if (meta->map_ptr) {
7433 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7434 		return -EFAULT;
7435 	}
7436 	meta->map_uid = reg->map_uid;
7437 	meta->map_ptr = map;
7438 	return 0;
7439 }
7440 
7441 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7442 			     struct bpf_call_arg_meta *meta)
7443 {
7444 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7445 	struct bpf_map *map_ptr = reg->map_ptr;
7446 	struct btf_field *kptr_field;
7447 	u32 kptr_off;
7448 
7449 	if (!tnum_is_const(reg->var_off)) {
7450 		verbose(env,
7451 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7452 			regno);
7453 		return -EINVAL;
7454 	}
7455 	if (!map_ptr->btf) {
7456 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7457 			map_ptr->name);
7458 		return -EINVAL;
7459 	}
7460 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7461 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7462 		return -EINVAL;
7463 	}
7464 
7465 	meta->map_ptr = map_ptr;
7466 	kptr_off = reg->off + reg->var_off.value;
7467 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7468 	if (!kptr_field) {
7469 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7470 		return -EACCES;
7471 	}
7472 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7473 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7474 		return -EACCES;
7475 	}
7476 	meta->kptr_field = kptr_field;
7477 	return 0;
7478 }
7479 
7480 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7481  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7482  *
7483  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7484  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7485  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7486  *
7487  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7488  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7489  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7490  * mutate the view of the dynptr and also possibly destroy it. In the latter
7491  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7492  * memory that dynptr points to.
7493  *
7494  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7495  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7496  * readonly dynptr view yet, hence only the first case is tracked and checked.
7497  *
7498  * This is consistent with how C applies the const modifier to a struct object,
7499  * where the pointer itself inside bpf_dynptr becomes const but not what it
7500  * points to.
7501  *
7502  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7503  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7504  */
7505 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7506 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7507 {
7508 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7509 	int err;
7510 
7511 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7512 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7513 	 */
7514 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7515 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7516 		return -EFAULT;
7517 	}
7518 
7519 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7520 	 *		 constructing a mutable bpf_dynptr object.
7521 	 *
7522 	 *		 Currently, this is only possible with PTR_TO_STACK
7523 	 *		 pointing to a region of at least 16 bytes which doesn't
7524 	 *		 contain an existing bpf_dynptr.
7525 	 *
7526 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7527 	 *		 mutated or destroyed. However, the memory it points to
7528 	 *		 may be mutated.
7529 	 *
7530 	 *  None       - Points to a initialized dynptr that can be mutated and
7531 	 *		 destroyed, including mutation of the memory it points
7532 	 *		 to.
7533 	 */
7534 	if (arg_type & MEM_UNINIT) {
7535 		int i;
7536 
7537 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7538 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7539 			return -EINVAL;
7540 		}
7541 
7542 		/* we write BPF_DW bits (8 bytes) at a time */
7543 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7544 			err = check_mem_access(env, insn_idx, regno,
7545 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7546 			if (err)
7547 				return err;
7548 		}
7549 
7550 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7551 	} else /* MEM_RDONLY and None case from above */ {
7552 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7553 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7554 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7555 			return -EINVAL;
7556 		}
7557 
7558 		if (!is_dynptr_reg_valid_init(env, reg)) {
7559 			verbose(env,
7560 				"Expected an initialized dynptr as arg #%d\n",
7561 				regno);
7562 			return -EINVAL;
7563 		}
7564 
7565 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7566 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7567 			verbose(env,
7568 				"Expected a dynptr of type %s as arg #%d\n",
7569 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7570 			return -EINVAL;
7571 		}
7572 
7573 		err = mark_dynptr_read(env, reg);
7574 	}
7575 	return err;
7576 }
7577 
7578 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7579 {
7580 	struct bpf_func_state *state = func(env, reg);
7581 
7582 	return state->stack[spi].spilled_ptr.ref_obj_id;
7583 }
7584 
7585 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7586 {
7587 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7588 }
7589 
7590 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7591 {
7592 	return meta->kfunc_flags & KF_ITER_NEW;
7593 }
7594 
7595 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7596 {
7597 	return meta->kfunc_flags & KF_ITER_NEXT;
7598 }
7599 
7600 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7601 {
7602 	return meta->kfunc_flags & KF_ITER_DESTROY;
7603 }
7604 
7605 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7606 {
7607 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7608 	 * kfunc is iter state pointer
7609 	 */
7610 	return arg == 0 && is_iter_kfunc(meta);
7611 }
7612 
7613 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7614 			    struct bpf_kfunc_call_arg_meta *meta)
7615 {
7616 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7617 	const struct btf_type *t;
7618 	const struct btf_param *arg;
7619 	int spi, err, i, nr_slots;
7620 	u32 btf_id;
7621 
7622 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7623 	arg = &btf_params(meta->func_proto)[0];
7624 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7625 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7626 	nr_slots = t->size / BPF_REG_SIZE;
7627 
7628 	if (is_iter_new_kfunc(meta)) {
7629 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7630 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7631 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7632 				iter_type_str(meta->btf, btf_id), regno);
7633 			return -EINVAL;
7634 		}
7635 
7636 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7637 			err = check_mem_access(env, insn_idx, regno,
7638 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7639 			if (err)
7640 				return err;
7641 		}
7642 
7643 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7644 		if (err)
7645 			return err;
7646 	} else {
7647 		/* iter_next() or iter_destroy() expect initialized iter state*/
7648 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7649 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7650 				iter_type_str(meta->btf, btf_id), regno);
7651 			return -EINVAL;
7652 		}
7653 
7654 		spi = iter_get_spi(env, reg, nr_slots);
7655 		if (spi < 0)
7656 			return spi;
7657 
7658 		err = mark_iter_read(env, reg, spi, nr_slots);
7659 		if (err)
7660 			return err;
7661 
7662 		/* remember meta->iter info for process_iter_next_call() */
7663 		meta->iter.spi = spi;
7664 		meta->iter.frameno = reg->frameno;
7665 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7666 
7667 		if (is_iter_destroy_kfunc(meta)) {
7668 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7669 			if (err)
7670 				return err;
7671 		}
7672 	}
7673 
7674 	return 0;
7675 }
7676 
7677 /* process_iter_next_call() is called when verifier gets to iterator's next
7678  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7679  * to it as just "iter_next()" in comments below.
7680  *
7681  * BPF verifier relies on a crucial contract for any iter_next()
7682  * implementation: it should *eventually* return NULL, and once that happens
7683  * it should keep returning NULL. That is, once iterator exhausts elements to
7684  * iterate, it should never reset or spuriously return new elements.
7685  *
7686  * With the assumption of such contract, process_iter_next_call() simulates
7687  * a fork in the verifier state to validate loop logic correctness and safety
7688  * without having to simulate infinite amount of iterations.
7689  *
7690  * In current state, we first assume that iter_next() returned NULL and
7691  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7692  * conditions we should not form an infinite loop and should eventually reach
7693  * exit.
7694  *
7695  * Besides that, we also fork current state and enqueue it for later
7696  * verification. In a forked state we keep iterator state as ACTIVE
7697  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7698  * also bump iteration depth to prevent erroneous infinite loop detection
7699  * later on (see iter_active_depths_differ() comment for details). In this
7700  * state we assume that we'll eventually loop back to another iter_next()
7701  * calls (it could be in exactly same location or in some other instruction,
7702  * it doesn't matter, we don't make any unnecessary assumptions about this,
7703  * everything revolves around iterator state in a stack slot, not which
7704  * instruction is calling iter_next()). When that happens, we either will come
7705  * to iter_next() with equivalent state and can conclude that next iteration
7706  * will proceed in exactly the same way as we just verified, so it's safe to
7707  * assume that loop converges. If not, we'll go on another iteration
7708  * simulation with a different input state, until all possible starting states
7709  * are validated or we reach maximum number of instructions limit.
7710  *
7711  * This way, we will either exhaustively discover all possible input states
7712  * that iterator loop can start with and eventually will converge, or we'll
7713  * effectively regress into bounded loop simulation logic and either reach
7714  * maximum number of instructions if loop is not provably convergent, or there
7715  * is some statically known limit on number of iterations (e.g., if there is
7716  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7717  *
7718  * One very subtle but very important aspect is that we *always* simulate NULL
7719  * condition first (as the current state) before we simulate non-NULL case.
7720  * This has to do with intricacies of scalar precision tracking. By simulating
7721  * "exit condition" of iter_next() returning NULL first, we make sure all the
7722  * relevant precision marks *that will be set **after** we exit iterator loop*
7723  * are propagated backwards to common parent state of NULL and non-NULL
7724  * branches. Thanks to that, state equivalence checks done later in forked
7725  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7726  * precision marks are finalized and won't change. Because simulating another
7727  * ACTIVE iterator iteration won't change them (because given same input
7728  * states we'll end up with exactly same output states which we are currently
7729  * comparing; and verification after the loop already propagated back what
7730  * needs to be **additionally** tracked as precise). It's subtle, grok
7731  * precision tracking for more intuitive understanding.
7732  */
7733 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7734 				  struct bpf_kfunc_call_arg_meta *meta)
7735 {
7736 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7737 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7738 	struct bpf_reg_state *cur_iter, *queued_iter;
7739 	int iter_frameno = meta->iter.frameno;
7740 	int iter_spi = meta->iter.spi;
7741 
7742 	BTF_TYPE_EMIT(struct bpf_iter);
7743 
7744 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7745 
7746 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7747 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7748 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7749 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7750 		return -EFAULT;
7751 	}
7752 
7753 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7754 		/* branch out active iter state */
7755 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7756 		if (!queued_st)
7757 			return -ENOMEM;
7758 
7759 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7760 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7761 		queued_iter->iter.depth++;
7762 
7763 		queued_fr = queued_st->frame[queued_st->curframe];
7764 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7765 	}
7766 
7767 	/* switch to DRAINED state, but keep the depth unchanged */
7768 	/* mark current iter state as drained and assume returned NULL */
7769 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7770 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7771 
7772 	return 0;
7773 }
7774 
7775 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7776 {
7777 	return type == ARG_CONST_SIZE ||
7778 	       type == ARG_CONST_SIZE_OR_ZERO;
7779 }
7780 
7781 static bool arg_type_is_release(enum bpf_arg_type type)
7782 {
7783 	return type & OBJ_RELEASE;
7784 }
7785 
7786 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7787 {
7788 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7789 }
7790 
7791 static int int_ptr_type_to_size(enum bpf_arg_type type)
7792 {
7793 	if (type == ARG_PTR_TO_INT)
7794 		return sizeof(u32);
7795 	else if (type == ARG_PTR_TO_LONG)
7796 		return sizeof(u64);
7797 
7798 	return -EINVAL;
7799 }
7800 
7801 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7802 				 const struct bpf_call_arg_meta *meta,
7803 				 enum bpf_arg_type *arg_type)
7804 {
7805 	if (!meta->map_ptr) {
7806 		/* kernel subsystem misconfigured verifier */
7807 		verbose(env, "invalid map_ptr to access map->type\n");
7808 		return -EACCES;
7809 	}
7810 
7811 	switch (meta->map_ptr->map_type) {
7812 	case BPF_MAP_TYPE_SOCKMAP:
7813 	case BPF_MAP_TYPE_SOCKHASH:
7814 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7815 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7816 		} else {
7817 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7818 			return -EINVAL;
7819 		}
7820 		break;
7821 	case BPF_MAP_TYPE_BLOOM_FILTER:
7822 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7823 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7824 		break;
7825 	default:
7826 		break;
7827 	}
7828 	return 0;
7829 }
7830 
7831 struct bpf_reg_types {
7832 	const enum bpf_reg_type types[10];
7833 	u32 *btf_id;
7834 };
7835 
7836 static const struct bpf_reg_types sock_types = {
7837 	.types = {
7838 		PTR_TO_SOCK_COMMON,
7839 		PTR_TO_SOCKET,
7840 		PTR_TO_TCP_SOCK,
7841 		PTR_TO_XDP_SOCK,
7842 	},
7843 };
7844 
7845 #ifdef CONFIG_NET
7846 static const struct bpf_reg_types btf_id_sock_common_types = {
7847 	.types = {
7848 		PTR_TO_SOCK_COMMON,
7849 		PTR_TO_SOCKET,
7850 		PTR_TO_TCP_SOCK,
7851 		PTR_TO_XDP_SOCK,
7852 		PTR_TO_BTF_ID,
7853 		PTR_TO_BTF_ID | PTR_TRUSTED,
7854 	},
7855 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7856 };
7857 #endif
7858 
7859 static const struct bpf_reg_types mem_types = {
7860 	.types = {
7861 		PTR_TO_STACK,
7862 		PTR_TO_PACKET,
7863 		PTR_TO_PACKET_META,
7864 		PTR_TO_MAP_KEY,
7865 		PTR_TO_MAP_VALUE,
7866 		PTR_TO_MEM,
7867 		PTR_TO_MEM | MEM_RINGBUF,
7868 		PTR_TO_BUF,
7869 		PTR_TO_BTF_ID | PTR_TRUSTED,
7870 	},
7871 };
7872 
7873 static const struct bpf_reg_types int_ptr_types = {
7874 	.types = {
7875 		PTR_TO_STACK,
7876 		PTR_TO_PACKET,
7877 		PTR_TO_PACKET_META,
7878 		PTR_TO_MAP_KEY,
7879 		PTR_TO_MAP_VALUE,
7880 	},
7881 };
7882 
7883 static const struct bpf_reg_types spin_lock_types = {
7884 	.types = {
7885 		PTR_TO_MAP_VALUE,
7886 		PTR_TO_BTF_ID | MEM_ALLOC,
7887 	}
7888 };
7889 
7890 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7891 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7892 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7893 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7894 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7895 static const struct bpf_reg_types btf_ptr_types = {
7896 	.types = {
7897 		PTR_TO_BTF_ID,
7898 		PTR_TO_BTF_ID | PTR_TRUSTED,
7899 		PTR_TO_BTF_ID | MEM_RCU,
7900 	},
7901 };
7902 static const struct bpf_reg_types percpu_btf_ptr_types = {
7903 	.types = {
7904 		PTR_TO_BTF_ID | MEM_PERCPU,
7905 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
7906 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7907 	}
7908 };
7909 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7910 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7911 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7912 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7913 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7914 static const struct bpf_reg_types dynptr_types = {
7915 	.types = {
7916 		PTR_TO_STACK,
7917 		CONST_PTR_TO_DYNPTR,
7918 	}
7919 };
7920 
7921 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7922 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7923 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7924 	[ARG_CONST_SIZE]		= &scalar_types,
7925 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7926 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7927 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7928 	[ARG_PTR_TO_CTX]		= &context_types,
7929 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7930 #ifdef CONFIG_NET
7931 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7932 #endif
7933 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7934 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7935 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7936 	[ARG_PTR_TO_MEM]		= &mem_types,
7937 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7938 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7939 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7940 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7941 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7942 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7943 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7944 	[ARG_PTR_TO_TIMER]		= &timer_types,
7945 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7946 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7947 };
7948 
7949 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7950 			  enum bpf_arg_type arg_type,
7951 			  const u32 *arg_btf_id,
7952 			  struct bpf_call_arg_meta *meta)
7953 {
7954 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7955 	enum bpf_reg_type expected, type = reg->type;
7956 	const struct bpf_reg_types *compatible;
7957 	int i, j;
7958 
7959 	compatible = compatible_reg_types[base_type(arg_type)];
7960 	if (!compatible) {
7961 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7962 		return -EFAULT;
7963 	}
7964 
7965 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7966 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7967 	 *
7968 	 * Same for MAYBE_NULL:
7969 	 *
7970 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7971 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7972 	 *
7973 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7974 	 *
7975 	 * Therefore we fold these flags depending on the arg_type before comparison.
7976 	 */
7977 	if (arg_type & MEM_RDONLY)
7978 		type &= ~MEM_RDONLY;
7979 	if (arg_type & PTR_MAYBE_NULL)
7980 		type &= ~PTR_MAYBE_NULL;
7981 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7982 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7983 
7984 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
7985 		type &= ~MEM_ALLOC;
7986 		type &= ~MEM_PERCPU;
7987 	}
7988 
7989 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7990 		expected = compatible->types[i];
7991 		if (expected == NOT_INIT)
7992 			break;
7993 
7994 		if (type == expected)
7995 			goto found;
7996 	}
7997 
7998 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7999 	for (j = 0; j + 1 < i; j++)
8000 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8001 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8002 	return -EACCES;
8003 
8004 found:
8005 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8006 		return 0;
8007 
8008 	if (compatible == &mem_types) {
8009 		if (!(arg_type & MEM_RDONLY)) {
8010 			verbose(env,
8011 				"%s() may write into memory pointed by R%d type=%s\n",
8012 				func_id_name(meta->func_id),
8013 				regno, reg_type_str(env, reg->type));
8014 			return -EACCES;
8015 		}
8016 		return 0;
8017 	}
8018 
8019 	switch ((int)reg->type) {
8020 	case PTR_TO_BTF_ID:
8021 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8022 	case PTR_TO_BTF_ID | MEM_RCU:
8023 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8024 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8025 	{
8026 		/* For bpf_sk_release, it needs to match against first member
8027 		 * 'struct sock_common', hence make an exception for it. This
8028 		 * allows bpf_sk_release to work for multiple socket types.
8029 		 */
8030 		bool strict_type_match = arg_type_is_release(arg_type) &&
8031 					 meta->func_id != BPF_FUNC_sk_release;
8032 
8033 		if (type_may_be_null(reg->type) &&
8034 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8035 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8036 			return -EACCES;
8037 		}
8038 
8039 		if (!arg_btf_id) {
8040 			if (!compatible->btf_id) {
8041 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8042 				return -EFAULT;
8043 			}
8044 			arg_btf_id = compatible->btf_id;
8045 		}
8046 
8047 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8048 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8049 				return -EACCES;
8050 		} else {
8051 			if (arg_btf_id == BPF_PTR_POISON) {
8052 				verbose(env, "verifier internal error:");
8053 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8054 					regno);
8055 				return -EACCES;
8056 			}
8057 
8058 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8059 						  btf_vmlinux, *arg_btf_id,
8060 						  strict_type_match)) {
8061 				verbose(env, "R%d is of type %s but %s is expected\n",
8062 					regno, btf_type_name(reg->btf, reg->btf_id),
8063 					btf_type_name(btf_vmlinux, *arg_btf_id));
8064 				return -EACCES;
8065 			}
8066 		}
8067 		break;
8068 	}
8069 	case PTR_TO_BTF_ID | MEM_ALLOC:
8070 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8071 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8072 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8073 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8074 			return -EFAULT;
8075 		}
8076 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8077 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8078 				return -EACCES;
8079 		}
8080 		break;
8081 	case PTR_TO_BTF_ID | MEM_PERCPU:
8082 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8083 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8084 		/* Handled by helper specific checks */
8085 		break;
8086 	default:
8087 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8088 		return -EFAULT;
8089 	}
8090 	return 0;
8091 }
8092 
8093 static struct btf_field *
8094 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8095 {
8096 	struct btf_field *field;
8097 	struct btf_record *rec;
8098 
8099 	rec = reg_btf_record(reg);
8100 	if (!rec)
8101 		return NULL;
8102 
8103 	field = btf_record_find(rec, off, fields);
8104 	if (!field)
8105 		return NULL;
8106 
8107 	return field;
8108 }
8109 
8110 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8111 			   const struct bpf_reg_state *reg, int regno,
8112 			   enum bpf_arg_type arg_type)
8113 {
8114 	u32 type = reg->type;
8115 
8116 	/* When referenced register is passed to release function, its fixed
8117 	 * offset must be 0.
8118 	 *
8119 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8120 	 * meta->release_regno.
8121 	 */
8122 	if (arg_type_is_release(arg_type)) {
8123 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8124 		 * may not directly point to the object being released, but to
8125 		 * dynptr pointing to such object, which might be at some offset
8126 		 * on the stack. In that case, we simply to fallback to the
8127 		 * default handling.
8128 		 */
8129 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8130 			return 0;
8131 
8132 		/* Doing check_ptr_off_reg check for the offset will catch this
8133 		 * because fixed_off_ok is false, but checking here allows us
8134 		 * to give the user a better error message.
8135 		 */
8136 		if (reg->off) {
8137 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8138 				regno);
8139 			return -EINVAL;
8140 		}
8141 		return __check_ptr_off_reg(env, reg, regno, false);
8142 	}
8143 
8144 	switch (type) {
8145 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8146 	case PTR_TO_STACK:
8147 	case PTR_TO_PACKET:
8148 	case PTR_TO_PACKET_META:
8149 	case PTR_TO_MAP_KEY:
8150 	case PTR_TO_MAP_VALUE:
8151 	case PTR_TO_MEM:
8152 	case PTR_TO_MEM | MEM_RDONLY:
8153 	case PTR_TO_MEM | MEM_RINGBUF:
8154 	case PTR_TO_BUF:
8155 	case PTR_TO_BUF | MEM_RDONLY:
8156 	case SCALAR_VALUE:
8157 		return 0;
8158 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8159 	 * fixed offset.
8160 	 */
8161 	case PTR_TO_BTF_ID:
8162 	case PTR_TO_BTF_ID | MEM_ALLOC:
8163 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8164 	case PTR_TO_BTF_ID | MEM_RCU:
8165 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8166 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8167 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8168 		 * its fixed offset must be 0. In the other cases, fixed offset
8169 		 * can be non-zero. This was already checked above. So pass
8170 		 * fixed_off_ok as true to allow fixed offset for all other
8171 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8172 		 * still need to do checks instead of returning.
8173 		 */
8174 		return __check_ptr_off_reg(env, reg, regno, true);
8175 	default:
8176 		return __check_ptr_off_reg(env, reg, regno, false);
8177 	}
8178 }
8179 
8180 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8181 						const struct bpf_func_proto *fn,
8182 						struct bpf_reg_state *regs)
8183 {
8184 	struct bpf_reg_state *state = NULL;
8185 	int i;
8186 
8187 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8188 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8189 			if (state) {
8190 				verbose(env, "verifier internal error: multiple dynptr args\n");
8191 				return NULL;
8192 			}
8193 			state = &regs[BPF_REG_1 + i];
8194 		}
8195 
8196 	if (!state)
8197 		verbose(env, "verifier internal error: no dynptr arg found\n");
8198 
8199 	return state;
8200 }
8201 
8202 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8203 {
8204 	struct bpf_func_state *state = func(env, reg);
8205 	int spi;
8206 
8207 	if (reg->type == CONST_PTR_TO_DYNPTR)
8208 		return reg->id;
8209 	spi = dynptr_get_spi(env, reg);
8210 	if (spi < 0)
8211 		return spi;
8212 	return state->stack[spi].spilled_ptr.id;
8213 }
8214 
8215 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8216 {
8217 	struct bpf_func_state *state = func(env, reg);
8218 	int spi;
8219 
8220 	if (reg->type == CONST_PTR_TO_DYNPTR)
8221 		return reg->ref_obj_id;
8222 	spi = dynptr_get_spi(env, reg);
8223 	if (spi < 0)
8224 		return spi;
8225 	return state->stack[spi].spilled_ptr.ref_obj_id;
8226 }
8227 
8228 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8229 					    struct bpf_reg_state *reg)
8230 {
8231 	struct bpf_func_state *state = func(env, reg);
8232 	int spi;
8233 
8234 	if (reg->type == CONST_PTR_TO_DYNPTR)
8235 		return reg->dynptr.type;
8236 
8237 	spi = __get_spi(reg->off);
8238 	if (spi < 0) {
8239 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8240 		return BPF_DYNPTR_TYPE_INVALID;
8241 	}
8242 
8243 	return state->stack[spi].spilled_ptr.dynptr.type;
8244 }
8245 
8246 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8247 			  struct bpf_call_arg_meta *meta,
8248 			  const struct bpf_func_proto *fn,
8249 			  int insn_idx)
8250 {
8251 	u32 regno = BPF_REG_1 + arg;
8252 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8253 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8254 	enum bpf_reg_type type = reg->type;
8255 	u32 *arg_btf_id = NULL;
8256 	int err = 0;
8257 
8258 	if (arg_type == ARG_DONTCARE)
8259 		return 0;
8260 
8261 	err = check_reg_arg(env, regno, SRC_OP);
8262 	if (err)
8263 		return err;
8264 
8265 	if (arg_type == ARG_ANYTHING) {
8266 		if (is_pointer_value(env, regno)) {
8267 			verbose(env, "R%d leaks addr into helper function\n",
8268 				regno);
8269 			return -EACCES;
8270 		}
8271 		return 0;
8272 	}
8273 
8274 	if (type_is_pkt_pointer(type) &&
8275 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8276 		verbose(env, "helper access to the packet is not allowed\n");
8277 		return -EACCES;
8278 	}
8279 
8280 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8281 		err = resolve_map_arg_type(env, meta, &arg_type);
8282 		if (err)
8283 			return err;
8284 	}
8285 
8286 	if (register_is_null(reg) && type_may_be_null(arg_type))
8287 		/* A NULL register has a SCALAR_VALUE type, so skip
8288 		 * type checking.
8289 		 */
8290 		goto skip_type_check;
8291 
8292 	/* arg_btf_id and arg_size are in a union. */
8293 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8294 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8295 		arg_btf_id = fn->arg_btf_id[arg];
8296 
8297 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8298 	if (err)
8299 		return err;
8300 
8301 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8302 	if (err)
8303 		return err;
8304 
8305 skip_type_check:
8306 	if (arg_type_is_release(arg_type)) {
8307 		if (arg_type_is_dynptr(arg_type)) {
8308 			struct bpf_func_state *state = func(env, reg);
8309 			int spi;
8310 
8311 			/* Only dynptr created on stack can be released, thus
8312 			 * the get_spi and stack state checks for spilled_ptr
8313 			 * should only be done before process_dynptr_func for
8314 			 * PTR_TO_STACK.
8315 			 */
8316 			if (reg->type == PTR_TO_STACK) {
8317 				spi = dynptr_get_spi(env, reg);
8318 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8319 					verbose(env, "arg %d is an unacquired reference\n", regno);
8320 					return -EINVAL;
8321 				}
8322 			} else {
8323 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8324 				return -EINVAL;
8325 			}
8326 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8327 			verbose(env, "R%d must be referenced when passed to release function\n",
8328 				regno);
8329 			return -EINVAL;
8330 		}
8331 		if (meta->release_regno) {
8332 			verbose(env, "verifier internal error: more than one release argument\n");
8333 			return -EFAULT;
8334 		}
8335 		meta->release_regno = regno;
8336 	}
8337 
8338 	if (reg->ref_obj_id) {
8339 		if (meta->ref_obj_id) {
8340 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8341 				regno, reg->ref_obj_id,
8342 				meta->ref_obj_id);
8343 			return -EFAULT;
8344 		}
8345 		meta->ref_obj_id = reg->ref_obj_id;
8346 	}
8347 
8348 	switch (base_type(arg_type)) {
8349 	case ARG_CONST_MAP_PTR:
8350 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8351 		if (meta->map_ptr) {
8352 			/* Use map_uid (which is unique id of inner map) to reject:
8353 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8354 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8355 			 * if (inner_map1 && inner_map2) {
8356 			 *     timer = bpf_map_lookup_elem(inner_map1);
8357 			 *     if (timer)
8358 			 *         // mismatch would have been allowed
8359 			 *         bpf_timer_init(timer, inner_map2);
8360 			 * }
8361 			 *
8362 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8363 			 */
8364 			if (meta->map_ptr != reg->map_ptr ||
8365 			    meta->map_uid != reg->map_uid) {
8366 				verbose(env,
8367 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8368 					meta->map_uid, reg->map_uid);
8369 				return -EINVAL;
8370 			}
8371 		}
8372 		meta->map_ptr = reg->map_ptr;
8373 		meta->map_uid = reg->map_uid;
8374 		break;
8375 	case ARG_PTR_TO_MAP_KEY:
8376 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8377 		 * check that [key, key + map->key_size) are within
8378 		 * stack limits and initialized
8379 		 */
8380 		if (!meta->map_ptr) {
8381 			/* in function declaration map_ptr must come before
8382 			 * map_key, so that it's verified and known before
8383 			 * we have to check map_key here. Otherwise it means
8384 			 * that kernel subsystem misconfigured verifier
8385 			 */
8386 			verbose(env, "invalid map_ptr to access map->key\n");
8387 			return -EACCES;
8388 		}
8389 		err = check_helper_mem_access(env, regno,
8390 					      meta->map_ptr->key_size, false,
8391 					      NULL);
8392 		break;
8393 	case ARG_PTR_TO_MAP_VALUE:
8394 		if (type_may_be_null(arg_type) && register_is_null(reg))
8395 			return 0;
8396 
8397 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8398 		 * check [value, value + map->value_size) validity
8399 		 */
8400 		if (!meta->map_ptr) {
8401 			/* kernel subsystem misconfigured verifier */
8402 			verbose(env, "invalid map_ptr to access map->value\n");
8403 			return -EACCES;
8404 		}
8405 		meta->raw_mode = arg_type & MEM_UNINIT;
8406 		err = check_helper_mem_access(env, regno,
8407 					      meta->map_ptr->value_size, false,
8408 					      meta);
8409 		break;
8410 	case ARG_PTR_TO_PERCPU_BTF_ID:
8411 		if (!reg->btf_id) {
8412 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8413 			return -EACCES;
8414 		}
8415 		meta->ret_btf = reg->btf;
8416 		meta->ret_btf_id = reg->btf_id;
8417 		break;
8418 	case ARG_PTR_TO_SPIN_LOCK:
8419 		if (in_rbtree_lock_required_cb(env)) {
8420 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8421 			return -EACCES;
8422 		}
8423 		if (meta->func_id == BPF_FUNC_spin_lock) {
8424 			err = process_spin_lock(env, regno, true);
8425 			if (err)
8426 				return err;
8427 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8428 			err = process_spin_lock(env, regno, false);
8429 			if (err)
8430 				return err;
8431 		} else {
8432 			verbose(env, "verifier internal error\n");
8433 			return -EFAULT;
8434 		}
8435 		break;
8436 	case ARG_PTR_TO_TIMER:
8437 		err = process_timer_func(env, regno, meta);
8438 		if (err)
8439 			return err;
8440 		break;
8441 	case ARG_PTR_TO_FUNC:
8442 		meta->subprogno = reg->subprogno;
8443 		break;
8444 	case ARG_PTR_TO_MEM:
8445 		/* The access to this pointer is only checked when we hit the
8446 		 * next is_mem_size argument below.
8447 		 */
8448 		meta->raw_mode = arg_type & MEM_UNINIT;
8449 		if (arg_type & MEM_FIXED_SIZE) {
8450 			err = check_helper_mem_access(env, regno,
8451 						      fn->arg_size[arg], false,
8452 						      meta);
8453 		}
8454 		break;
8455 	case ARG_CONST_SIZE:
8456 		err = check_mem_size_reg(env, reg, regno, false, meta);
8457 		break;
8458 	case ARG_CONST_SIZE_OR_ZERO:
8459 		err = check_mem_size_reg(env, reg, regno, true, meta);
8460 		break;
8461 	case ARG_PTR_TO_DYNPTR:
8462 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8463 		if (err)
8464 			return err;
8465 		break;
8466 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8467 		if (!tnum_is_const(reg->var_off)) {
8468 			verbose(env, "R%d is not a known constant'\n",
8469 				regno);
8470 			return -EACCES;
8471 		}
8472 		meta->mem_size = reg->var_off.value;
8473 		err = mark_chain_precision(env, regno);
8474 		if (err)
8475 			return err;
8476 		break;
8477 	case ARG_PTR_TO_INT:
8478 	case ARG_PTR_TO_LONG:
8479 	{
8480 		int size = int_ptr_type_to_size(arg_type);
8481 
8482 		err = check_helper_mem_access(env, regno, size, false, meta);
8483 		if (err)
8484 			return err;
8485 		err = check_ptr_alignment(env, reg, 0, size, true);
8486 		break;
8487 	}
8488 	case ARG_PTR_TO_CONST_STR:
8489 	{
8490 		struct bpf_map *map = reg->map_ptr;
8491 		int map_off;
8492 		u64 map_addr;
8493 		char *str_ptr;
8494 
8495 		if (!bpf_map_is_rdonly(map)) {
8496 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8497 			return -EACCES;
8498 		}
8499 
8500 		if (!tnum_is_const(reg->var_off)) {
8501 			verbose(env, "R%d is not a constant address'\n", regno);
8502 			return -EACCES;
8503 		}
8504 
8505 		if (!map->ops->map_direct_value_addr) {
8506 			verbose(env, "no direct value access support for this map type\n");
8507 			return -EACCES;
8508 		}
8509 
8510 		err = check_map_access(env, regno, reg->off,
8511 				       map->value_size - reg->off, false,
8512 				       ACCESS_HELPER);
8513 		if (err)
8514 			return err;
8515 
8516 		map_off = reg->off + reg->var_off.value;
8517 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8518 		if (err) {
8519 			verbose(env, "direct value access on string failed\n");
8520 			return err;
8521 		}
8522 
8523 		str_ptr = (char *)(long)(map_addr);
8524 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8525 			verbose(env, "string is not zero-terminated\n");
8526 			return -EINVAL;
8527 		}
8528 		break;
8529 	}
8530 	case ARG_PTR_TO_KPTR:
8531 		err = process_kptr_func(env, regno, meta);
8532 		if (err)
8533 			return err;
8534 		break;
8535 	}
8536 
8537 	return err;
8538 }
8539 
8540 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8541 {
8542 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8543 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8544 
8545 	if (func_id != BPF_FUNC_map_update_elem)
8546 		return false;
8547 
8548 	/* It's not possible to get access to a locked struct sock in these
8549 	 * contexts, so updating is safe.
8550 	 */
8551 	switch (type) {
8552 	case BPF_PROG_TYPE_TRACING:
8553 		if (eatype == BPF_TRACE_ITER)
8554 			return true;
8555 		break;
8556 	case BPF_PROG_TYPE_SOCKET_FILTER:
8557 	case BPF_PROG_TYPE_SCHED_CLS:
8558 	case BPF_PROG_TYPE_SCHED_ACT:
8559 	case BPF_PROG_TYPE_XDP:
8560 	case BPF_PROG_TYPE_SK_REUSEPORT:
8561 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8562 	case BPF_PROG_TYPE_SK_LOOKUP:
8563 		return true;
8564 	default:
8565 		break;
8566 	}
8567 
8568 	verbose(env, "cannot update sockmap in this context\n");
8569 	return false;
8570 }
8571 
8572 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8573 {
8574 	return env->prog->jit_requested &&
8575 	       bpf_jit_supports_subprog_tailcalls();
8576 }
8577 
8578 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8579 					struct bpf_map *map, int func_id)
8580 {
8581 	if (!map)
8582 		return 0;
8583 
8584 	/* We need a two way check, first is from map perspective ... */
8585 	switch (map->map_type) {
8586 	case BPF_MAP_TYPE_PROG_ARRAY:
8587 		if (func_id != BPF_FUNC_tail_call)
8588 			goto error;
8589 		break;
8590 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8591 		if (func_id != BPF_FUNC_perf_event_read &&
8592 		    func_id != BPF_FUNC_perf_event_output &&
8593 		    func_id != BPF_FUNC_skb_output &&
8594 		    func_id != BPF_FUNC_perf_event_read_value &&
8595 		    func_id != BPF_FUNC_xdp_output)
8596 			goto error;
8597 		break;
8598 	case BPF_MAP_TYPE_RINGBUF:
8599 		if (func_id != BPF_FUNC_ringbuf_output &&
8600 		    func_id != BPF_FUNC_ringbuf_reserve &&
8601 		    func_id != BPF_FUNC_ringbuf_query &&
8602 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8603 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8604 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8605 			goto error;
8606 		break;
8607 	case BPF_MAP_TYPE_USER_RINGBUF:
8608 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8609 			goto error;
8610 		break;
8611 	case BPF_MAP_TYPE_STACK_TRACE:
8612 		if (func_id != BPF_FUNC_get_stackid)
8613 			goto error;
8614 		break;
8615 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8616 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8617 		    func_id != BPF_FUNC_current_task_under_cgroup)
8618 			goto error;
8619 		break;
8620 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8621 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8622 		if (func_id != BPF_FUNC_get_local_storage)
8623 			goto error;
8624 		break;
8625 	case BPF_MAP_TYPE_DEVMAP:
8626 	case BPF_MAP_TYPE_DEVMAP_HASH:
8627 		if (func_id != BPF_FUNC_redirect_map &&
8628 		    func_id != BPF_FUNC_map_lookup_elem)
8629 			goto error;
8630 		break;
8631 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8632 	 * appear.
8633 	 */
8634 	case BPF_MAP_TYPE_CPUMAP:
8635 		if (func_id != BPF_FUNC_redirect_map)
8636 			goto error;
8637 		break;
8638 	case BPF_MAP_TYPE_XSKMAP:
8639 		if (func_id != BPF_FUNC_redirect_map &&
8640 		    func_id != BPF_FUNC_map_lookup_elem)
8641 			goto error;
8642 		break;
8643 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8644 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8645 		if (func_id != BPF_FUNC_map_lookup_elem)
8646 			goto error;
8647 		break;
8648 	case BPF_MAP_TYPE_SOCKMAP:
8649 		if (func_id != BPF_FUNC_sk_redirect_map &&
8650 		    func_id != BPF_FUNC_sock_map_update &&
8651 		    func_id != BPF_FUNC_map_delete_elem &&
8652 		    func_id != BPF_FUNC_msg_redirect_map &&
8653 		    func_id != BPF_FUNC_sk_select_reuseport &&
8654 		    func_id != BPF_FUNC_map_lookup_elem &&
8655 		    !may_update_sockmap(env, func_id))
8656 			goto error;
8657 		break;
8658 	case BPF_MAP_TYPE_SOCKHASH:
8659 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8660 		    func_id != BPF_FUNC_sock_hash_update &&
8661 		    func_id != BPF_FUNC_map_delete_elem &&
8662 		    func_id != BPF_FUNC_msg_redirect_hash &&
8663 		    func_id != BPF_FUNC_sk_select_reuseport &&
8664 		    func_id != BPF_FUNC_map_lookup_elem &&
8665 		    !may_update_sockmap(env, func_id))
8666 			goto error;
8667 		break;
8668 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8669 		if (func_id != BPF_FUNC_sk_select_reuseport)
8670 			goto error;
8671 		break;
8672 	case BPF_MAP_TYPE_QUEUE:
8673 	case BPF_MAP_TYPE_STACK:
8674 		if (func_id != BPF_FUNC_map_peek_elem &&
8675 		    func_id != BPF_FUNC_map_pop_elem &&
8676 		    func_id != BPF_FUNC_map_push_elem)
8677 			goto error;
8678 		break;
8679 	case BPF_MAP_TYPE_SK_STORAGE:
8680 		if (func_id != BPF_FUNC_sk_storage_get &&
8681 		    func_id != BPF_FUNC_sk_storage_delete &&
8682 		    func_id != BPF_FUNC_kptr_xchg)
8683 			goto error;
8684 		break;
8685 	case BPF_MAP_TYPE_INODE_STORAGE:
8686 		if (func_id != BPF_FUNC_inode_storage_get &&
8687 		    func_id != BPF_FUNC_inode_storage_delete &&
8688 		    func_id != BPF_FUNC_kptr_xchg)
8689 			goto error;
8690 		break;
8691 	case BPF_MAP_TYPE_TASK_STORAGE:
8692 		if (func_id != BPF_FUNC_task_storage_get &&
8693 		    func_id != BPF_FUNC_task_storage_delete &&
8694 		    func_id != BPF_FUNC_kptr_xchg)
8695 			goto error;
8696 		break;
8697 	case BPF_MAP_TYPE_CGRP_STORAGE:
8698 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8699 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8700 		    func_id != BPF_FUNC_kptr_xchg)
8701 			goto error;
8702 		break;
8703 	case BPF_MAP_TYPE_BLOOM_FILTER:
8704 		if (func_id != BPF_FUNC_map_peek_elem &&
8705 		    func_id != BPF_FUNC_map_push_elem)
8706 			goto error;
8707 		break;
8708 	default:
8709 		break;
8710 	}
8711 
8712 	/* ... and second from the function itself. */
8713 	switch (func_id) {
8714 	case BPF_FUNC_tail_call:
8715 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8716 			goto error;
8717 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8718 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8719 			return -EINVAL;
8720 		}
8721 		break;
8722 	case BPF_FUNC_perf_event_read:
8723 	case BPF_FUNC_perf_event_output:
8724 	case BPF_FUNC_perf_event_read_value:
8725 	case BPF_FUNC_skb_output:
8726 	case BPF_FUNC_xdp_output:
8727 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8728 			goto error;
8729 		break;
8730 	case BPF_FUNC_ringbuf_output:
8731 	case BPF_FUNC_ringbuf_reserve:
8732 	case BPF_FUNC_ringbuf_query:
8733 	case BPF_FUNC_ringbuf_reserve_dynptr:
8734 	case BPF_FUNC_ringbuf_submit_dynptr:
8735 	case BPF_FUNC_ringbuf_discard_dynptr:
8736 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8737 			goto error;
8738 		break;
8739 	case BPF_FUNC_user_ringbuf_drain:
8740 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8741 			goto error;
8742 		break;
8743 	case BPF_FUNC_get_stackid:
8744 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8745 			goto error;
8746 		break;
8747 	case BPF_FUNC_current_task_under_cgroup:
8748 	case BPF_FUNC_skb_under_cgroup:
8749 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8750 			goto error;
8751 		break;
8752 	case BPF_FUNC_redirect_map:
8753 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8754 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8755 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8756 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8757 			goto error;
8758 		break;
8759 	case BPF_FUNC_sk_redirect_map:
8760 	case BPF_FUNC_msg_redirect_map:
8761 	case BPF_FUNC_sock_map_update:
8762 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8763 			goto error;
8764 		break;
8765 	case BPF_FUNC_sk_redirect_hash:
8766 	case BPF_FUNC_msg_redirect_hash:
8767 	case BPF_FUNC_sock_hash_update:
8768 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8769 			goto error;
8770 		break;
8771 	case BPF_FUNC_get_local_storage:
8772 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8773 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8774 			goto error;
8775 		break;
8776 	case BPF_FUNC_sk_select_reuseport:
8777 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8778 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8779 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8780 			goto error;
8781 		break;
8782 	case BPF_FUNC_map_pop_elem:
8783 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8784 		    map->map_type != BPF_MAP_TYPE_STACK)
8785 			goto error;
8786 		break;
8787 	case BPF_FUNC_map_peek_elem:
8788 	case BPF_FUNC_map_push_elem:
8789 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8790 		    map->map_type != BPF_MAP_TYPE_STACK &&
8791 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8792 			goto error;
8793 		break;
8794 	case BPF_FUNC_map_lookup_percpu_elem:
8795 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8796 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8797 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8798 			goto error;
8799 		break;
8800 	case BPF_FUNC_sk_storage_get:
8801 	case BPF_FUNC_sk_storage_delete:
8802 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8803 			goto error;
8804 		break;
8805 	case BPF_FUNC_inode_storage_get:
8806 	case BPF_FUNC_inode_storage_delete:
8807 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8808 			goto error;
8809 		break;
8810 	case BPF_FUNC_task_storage_get:
8811 	case BPF_FUNC_task_storage_delete:
8812 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8813 			goto error;
8814 		break;
8815 	case BPF_FUNC_cgrp_storage_get:
8816 	case BPF_FUNC_cgrp_storage_delete:
8817 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8818 			goto error;
8819 		break;
8820 	default:
8821 		break;
8822 	}
8823 
8824 	return 0;
8825 error:
8826 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8827 		map->map_type, func_id_name(func_id), func_id);
8828 	return -EINVAL;
8829 }
8830 
8831 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8832 {
8833 	int count = 0;
8834 
8835 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8836 		count++;
8837 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8838 		count++;
8839 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8840 		count++;
8841 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8842 		count++;
8843 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8844 		count++;
8845 
8846 	/* We only support one arg being in raw mode at the moment,
8847 	 * which is sufficient for the helper functions we have
8848 	 * right now.
8849 	 */
8850 	return count <= 1;
8851 }
8852 
8853 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8854 {
8855 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8856 	bool has_size = fn->arg_size[arg] != 0;
8857 	bool is_next_size = false;
8858 
8859 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8860 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8861 
8862 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8863 		return is_next_size;
8864 
8865 	return has_size == is_next_size || is_next_size == is_fixed;
8866 }
8867 
8868 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8869 {
8870 	/* bpf_xxx(..., buf, len) call will access 'len'
8871 	 * bytes from memory 'buf'. Both arg types need
8872 	 * to be paired, so make sure there's no buggy
8873 	 * helper function specification.
8874 	 */
8875 	if (arg_type_is_mem_size(fn->arg1_type) ||
8876 	    check_args_pair_invalid(fn, 0) ||
8877 	    check_args_pair_invalid(fn, 1) ||
8878 	    check_args_pair_invalid(fn, 2) ||
8879 	    check_args_pair_invalid(fn, 3) ||
8880 	    check_args_pair_invalid(fn, 4))
8881 		return false;
8882 
8883 	return true;
8884 }
8885 
8886 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8887 {
8888 	int i;
8889 
8890 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8891 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8892 			return !!fn->arg_btf_id[i];
8893 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8894 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8895 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8896 		    /* arg_btf_id and arg_size are in a union. */
8897 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8898 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8899 			return false;
8900 	}
8901 
8902 	return true;
8903 }
8904 
8905 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8906 {
8907 	return check_raw_mode_ok(fn) &&
8908 	       check_arg_pair_ok(fn) &&
8909 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8910 }
8911 
8912 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8913  * are now invalid, so turn them into unknown SCALAR_VALUE.
8914  *
8915  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8916  * since these slices point to packet data.
8917  */
8918 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8919 {
8920 	struct bpf_func_state *state;
8921 	struct bpf_reg_state *reg;
8922 
8923 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8924 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8925 			mark_reg_invalid(env, reg);
8926 	}));
8927 }
8928 
8929 enum {
8930 	AT_PKT_END = -1,
8931 	BEYOND_PKT_END = -2,
8932 };
8933 
8934 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8935 {
8936 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8937 	struct bpf_reg_state *reg = &state->regs[regn];
8938 
8939 	if (reg->type != PTR_TO_PACKET)
8940 		/* PTR_TO_PACKET_META is not supported yet */
8941 		return;
8942 
8943 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8944 	 * How far beyond pkt_end it goes is unknown.
8945 	 * if (!range_open) it's the case of pkt >= pkt_end
8946 	 * if (range_open) it's the case of pkt > pkt_end
8947 	 * hence this pointer is at least 1 byte bigger than pkt_end
8948 	 */
8949 	if (range_open)
8950 		reg->range = BEYOND_PKT_END;
8951 	else
8952 		reg->range = AT_PKT_END;
8953 }
8954 
8955 /* The pointer with the specified id has released its reference to kernel
8956  * resources. Identify all copies of the same pointer and clear the reference.
8957  */
8958 static int release_reference(struct bpf_verifier_env *env,
8959 			     int ref_obj_id)
8960 {
8961 	struct bpf_func_state *state;
8962 	struct bpf_reg_state *reg;
8963 	int err;
8964 
8965 	err = release_reference_state(cur_func(env), ref_obj_id);
8966 	if (err)
8967 		return err;
8968 
8969 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8970 		if (reg->ref_obj_id == ref_obj_id)
8971 			mark_reg_invalid(env, reg);
8972 	}));
8973 
8974 	return 0;
8975 }
8976 
8977 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8978 {
8979 	struct bpf_func_state *unused;
8980 	struct bpf_reg_state *reg;
8981 
8982 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8983 		if (type_is_non_owning_ref(reg->type))
8984 			mark_reg_invalid(env, reg);
8985 	}));
8986 }
8987 
8988 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8989 				    struct bpf_reg_state *regs)
8990 {
8991 	int i;
8992 
8993 	/* after the call registers r0 - r5 were scratched */
8994 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8995 		mark_reg_not_init(env, regs, caller_saved[i]);
8996 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8997 	}
8998 }
8999 
9000 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9001 				   struct bpf_func_state *caller,
9002 				   struct bpf_func_state *callee,
9003 				   int insn_idx);
9004 
9005 static int set_callee_state(struct bpf_verifier_env *env,
9006 			    struct bpf_func_state *caller,
9007 			    struct bpf_func_state *callee, int insn_idx);
9008 
9009 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9010 			     int *insn_idx, int subprog,
9011 			     set_callee_state_fn set_callee_state_cb)
9012 {
9013 	struct bpf_verifier_state *state = env->cur_state;
9014 	struct bpf_func_state *caller, *callee;
9015 	int err;
9016 
9017 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9018 		verbose(env, "the call stack of %d frames is too deep\n",
9019 			state->curframe + 2);
9020 		return -E2BIG;
9021 	}
9022 
9023 	caller = state->frame[state->curframe];
9024 	if (state->frame[state->curframe + 1]) {
9025 		verbose(env, "verifier bug. Frame %d already allocated\n",
9026 			state->curframe + 1);
9027 		return -EFAULT;
9028 	}
9029 
9030 	err = btf_check_subprog_call(env, subprog, caller->regs);
9031 	if (err == -EFAULT)
9032 		return err;
9033 	if (subprog_is_global(env, subprog)) {
9034 		if (err) {
9035 			verbose(env, "Caller passes invalid args into func#%d\n",
9036 				subprog);
9037 			return err;
9038 		} else {
9039 			if (env->log.level & BPF_LOG_LEVEL)
9040 				verbose(env,
9041 					"Func#%d is global and valid. Skipping.\n",
9042 					subprog);
9043 			clear_caller_saved_regs(env, caller->regs);
9044 
9045 			/* All global functions return a 64-bit SCALAR_VALUE */
9046 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
9047 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9048 
9049 			/* continue with next insn after call */
9050 			return 0;
9051 		}
9052 	}
9053 
9054 	/* set_callee_state is used for direct subprog calls, but we are
9055 	 * interested in validating only BPF helpers that can call subprogs as
9056 	 * callbacks
9057 	 */
9058 	if (set_callee_state_cb != set_callee_state) {
9059 		env->subprog_info[subprog].is_cb = true;
9060 		if (bpf_pseudo_kfunc_call(insn) &&
9061 		    !is_callback_calling_kfunc(insn->imm)) {
9062 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9063 				func_id_name(insn->imm), insn->imm);
9064 			return -EFAULT;
9065 		} else if (!bpf_pseudo_kfunc_call(insn) &&
9066 			   !is_callback_calling_function(insn->imm)) { /* helper */
9067 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9068 				func_id_name(insn->imm), insn->imm);
9069 			return -EFAULT;
9070 		}
9071 	}
9072 
9073 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9074 	    insn->src_reg == 0 &&
9075 	    insn->imm == BPF_FUNC_timer_set_callback) {
9076 		struct bpf_verifier_state *async_cb;
9077 
9078 		/* there is no real recursion here. timer callbacks are async */
9079 		env->subprog_info[subprog].is_async_cb = true;
9080 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9081 					 *insn_idx, subprog);
9082 		if (!async_cb)
9083 			return -EFAULT;
9084 		callee = async_cb->frame[0];
9085 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9086 
9087 		/* Convert bpf_timer_set_callback() args into timer callback args */
9088 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
9089 		if (err)
9090 			return err;
9091 
9092 		clear_caller_saved_regs(env, caller->regs);
9093 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9094 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9095 		/* continue with next insn after call */
9096 		return 0;
9097 	}
9098 
9099 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9100 	if (!callee)
9101 		return -ENOMEM;
9102 	state->frame[state->curframe + 1] = callee;
9103 
9104 	/* callee cannot access r0, r6 - r9 for reading and has to write
9105 	 * into its own stack before reading from it.
9106 	 * callee can read/write into caller's stack
9107 	 */
9108 	init_func_state(env, callee,
9109 			/* remember the callsite, it will be used by bpf_exit */
9110 			*insn_idx /* callsite */,
9111 			state->curframe + 1 /* frameno within this callchain */,
9112 			subprog /* subprog number within this prog */);
9113 
9114 	/* Transfer references to the callee */
9115 	err = copy_reference_state(callee, caller);
9116 	if (err)
9117 		goto err_out;
9118 
9119 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
9120 	if (err)
9121 		goto err_out;
9122 
9123 	clear_caller_saved_regs(env, caller->regs);
9124 
9125 	/* only increment it after check_reg_arg() finished */
9126 	state->curframe++;
9127 
9128 	/* and go analyze first insn of the callee */
9129 	*insn_idx = env->subprog_info[subprog].start - 1;
9130 
9131 	if (env->log.level & BPF_LOG_LEVEL) {
9132 		verbose(env, "caller:\n");
9133 		print_verifier_state(env, caller, true);
9134 		verbose(env, "callee:\n");
9135 		print_verifier_state(env, callee, true);
9136 	}
9137 	return 0;
9138 
9139 err_out:
9140 	free_func_state(callee);
9141 	state->frame[state->curframe + 1] = NULL;
9142 	return err;
9143 }
9144 
9145 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9146 				   struct bpf_func_state *caller,
9147 				   struct bpf_func_state *callee)
9148 {
9149 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9150 	 *      void *callback_ctx, u64 flags);
9151 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9152 	 *      void *callback_ctx);
9153 	 */
9154 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9155 
9156 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9157 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9158 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9159 
9160 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9161 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9162 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9163 
9164 	/* pointer to stack or null */
9165 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9166 
9167 	/* unused */
9168 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9169 	return 0;
9170 }
9171 
9172 static int set_callee_state(struct bpf_verifier_env *env,
9173 			    struct bpf_func_state *caller,
9174 			    struct bpf_func_state *callee, int insn_idx)
9175 {
9176 	int i;
9177 
9178 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9179 	 * pointers, which connects us up to the liveness chain
9180 	 */
9181 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9182 		callee->regs[i] = caller->regs[i];
9183 	return 0;
9184 }
9185 
9186 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9187 			   int *insn_idx)
9188 {
9189 	int subprog, target_insn;
9190 
9191 	target_insn = *insn_idx + insn->imm + 1;
9192 	subprog = find_subprog(env, target_insn);
9193 	if (subprog < 0) {
9194 		verbose(env, "verifier bug. No program starts at insn %d\n",
9195 			target_insn);
9196 		return -EFAULT;
9197 	}
9198 
9199 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9200 }
9201 
9202 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9203 				       struct bpf_func_state *caller,
9204 				       struct bpf_func_state *callee,
9205 				       int insn_idx)
9206 {
9207 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9208 	struct bpf_map *map;
9209 	int err;
9210 
9211 	if (bpf_map_ptr_poisoned(insn_aux)) {
9212 		verbose(env, "tail_call abusing map_ptr\n");
9213 		return -EINVAL;
9214 	}
9215 
9216 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9217 	if (!map->ops->map_set_for_each_callback_args ||
9218 	    !map->ops->map_for_each_callback) {
9219 		verbose(env, "callback function not allowed for map\n");
9220 		return -ENOTSUPP;
9221 	}
9222 
9223 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9224 	if (err)
9225 		return err;
9226 
9227 	callee->in_callback_fn = true;
9228 	callee->callback_ret_range = tnum_range(0, 1);
9229 	return 0;
9230 }
9231 
9232 static int set_loop_callback_state(struct bpf_verifier_env *env,
9233 				   struct bpf_func_state *caller,
9234 				   struct bpf_func_state *callee,
9235 				   int insn_idx)
9236 {
9237 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9238 	 *	    u64 flags);
9239 	 * callback_fn(u32 index, void *callback_ctx);
9240 	 */
9241 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9242 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9243 
9244 	/* unused */
9245 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9246 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9247 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9248 
9249 	callee->in_callback_fn = true;
9250 	callee->callback_ret_range = tnum_range(0, 1);
9251 	return 0;
9252 }
9253 
9254 static int set_timer_callback_state(struct bpf_verifier_env *env,
9255 				    struct bpf_func_state *caller,
9256 				    struct bpf_func_state *callee,
9257 				    int insn_idx)
9258 {
9259 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9260 
9261 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9262 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9263 	 */
9264 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9265 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9266 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9267 
9268 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9269 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9270 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9271 
9272 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9273 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9274 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9275 
9276 	/* unused */
9277 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9278 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9279 	callee->in_async_callback_fn = true;
9280 	callee->callback_ret_range = tnum_range(0, 1);
9281 	return 0;
9282 }
9283 
9284 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9285 				       struct bpf_func_state *caller,
9286 				       struct bpf_func_state *callee,
9287 				       int insn_idx)
9288 {
9289 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9290 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9291 	 * (callback_fn)(struct task_struct *task,
9292 	 *               struct vm_area_struct *vma, void *callback_ctx);
9293 	 */
9294 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9295 
9296 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9297 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9298 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9299 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9300 
9301 	/* pointer to stack or null */
9302 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9303 
9304 	/* unused */
9305 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9306 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9307 	callee->in_callback_fn = true;
9308 	callee->callback_ret_range = tnum_range(0, 1);
9309 	return 0;
9310 }
9311 
9312 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9313 					   struct bpf_func_state *caller,
9314 					   struct bpf_func_state *callee,
9315 					   int insn_idx)
9316 {
9317 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9318 	 *			  callback_ctx, u64 flags);
9319 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9320 	 */
9321 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9322 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9323 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9324 
9325 	/* unused */
9326 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9327 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9328 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9329 
9330 	callee->in_callback_fn = true;
9331 	callee->callback_ret_range = tnum_range(0, 1);
9332 	return 0;
9333 }
9334 
9335 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9336 					 struct bpf_func_state *caller,
9337 					 struct bpf_func_state *callee,
9338 					 int insn_idx)
9339 {
9340 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9341 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9342 	 *
9343 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9344 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9345 	 * by this point, so look at 'root'
9346 	 */
9347 	struct btf_field *field;
9348 
9349 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9350 				      BPF_RB_ROOT);
9351 	if (!field || !field->graph_root.value_btf_id)
9352 		return -EFAULT;
9353 
9354 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9355 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9356 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9357 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9358 
9359 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9360 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9361 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9362 	callee->in_callback_fn = true;
9363 	callee->callback_ret_range = tnum_range(0, 1);
9364 	return 0;
9365 }
9366 
9367 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9368 
9369 /* Are we currently verifying the callback for a rbtree helper that must
9370  * be called with lock held? If so, no need to complain about unreleased
9371  * lock
9372  */
9373 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9374 {
9375 	struct bpf_verifier_state *state = env->cur_state;
9376 	struct bpf_insn *insn = env->prog->insnsi;
9377 	struct bpf_func_state *callee;
9378 	int kfunc_btf_id;
9379 
9380 	if (!state->curframe)
9381 		return false;
9382 
9383 	callee = state->frame[state->curframe];
9384 
9385 	if (!callee->in_callback_fn)
9386 		return false;
9387 
9388 	kfunc_btf_id = insn[callee->callsite].imm;
9389 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9390 }
9391 
9392 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9393 {
9394 	struct bpf_verifier_state *state = env->cur_state;
9395 	struct bpf_func_state *caller, *callee;
9396 	struct bpf_reg_state *r0;
9397 	int err;
9398 
9399 	callee = state->frame[state->curframe];
9400 	r0 = &callee->regs[BPF_REG_0];
9401 	if (r0->type == PTR_TO_STACK) {
9402 		/* technically it's ok to return caller's stack pointer
9403 		 * (or caller's caller's pointer) back to the caller,
9404 		 * since these pointers are valid. Only current stack
9405 		 * pointer will be invalid as soon as function exits,
9406 		 * but let's be conservative
9407 		 */
9408 		verbose(env, "cannot return stack pointer to the caller\n");
9409 		return -EINVAL;
9410 	}
9411 
9412 	caller = state->frame[state->curframe - 1];
9413 	if (callee->in_callback_fn) {
9414 		/* enforce R0 return value range [0, 1]. */
9415 		struct tnum range = callee->callback_ret_range;
9416 
9417 		if (r0->type != SCALAR_VALUE) {
9418 			verbose(env, "R0 not a scalar value\n");
9419 			return -EACCES;
9420 		}
9421 		if (!tnum_in(range, r0->var_off)) {
9422 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9423 			return -EINVAL;
9424 		}
9425 	} else {
9426 		/* return to the caller whatever r0 had in the callee */
9427 		caller->regs[BPF_REG_0] = *r0;
9428 	}
9429 
9430 	/* callback_fn frame should have released its own additions to parent's
9431 	 * reference state at this point, or check_reference_leak would
9432 	 * complain, hence it must be the same as the caller. There is no need
9433 	 * to copy it back.
9434 	 */
9435 	if (!callee->in_callback_fn) {
9436 		/* Transfer references to the caller */
9437 		err = copy_reference_state(caller, callee);
9438 		if (err)
9439 			return err;
9440 	}
9441 
9442 	*insn_idx = callee->callsite + 1;
9443 	if (env->log.level & BPF_LOG_LEVEL) {
9444 		verbose(env, "returning from callee:\n");
9445 		print_verifier_state(env, callee, true);
9446 		verbose(env, "to caller at %d:\n", *insn_idx);
9447 		print_verifier_state(env, caller, true);
9448 	}
9449 	/* clear everything in the callee. In case of exceptional exits using
9450 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9451 	free_func_state(callee);
9452 	state->frame[state->curframe--] = NULL;
9453 	return 0;
9454 }
9455 
9456 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9457 				   int func_id,
9458 				   struct bpf_call_arg_meta *meta)
9459 {
9460 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9461 
9462 	if (ret_type != RET_INTEGER)
9463 		return;
9464 
9465 	switch (func_id) {
9466 	case BPF_FUNC_get_stack:
9467 	case BPF_FUNC_get_task_stack:
9468 	case BPF_FUNC_probe_read_str:
9469 	case BPF_FUNC_probe_read_kernel_str:
9470 	case BPF_FUNC_probe_read_user_str:
9471 		ret_reg->smax_value = meta->msize_max_value;
9472 		ret_reg->s32_max_value = meta->msize_max_value;
9473 		ret_reg->smin_value = -MAX_ERRNO;
9474 		ret_reg->s32_min_value = -MAX_ERRNO;
9475 		reg_bounds_sync(ret_reg);
9476 		break;
9477 	case BPF_FUNC_get_smp_processor_id:
9478 		ret_reg->umax_value = nr_cpu_ids - 1;
9479 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9480 		ret_reg->smax_value = nr_cpu_ids - 1;
9481 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9482 		ret_reg->umin_value = 0;
9483 		ret_reg->u32_min_value = 0;
9484 		ret_reg->smin_value = 0;
9485 		ret_reg->s32_min_value = 0;
9486 		reg_bounds_sync(ret_reg);
9487 		break;
9488 	}
9489 }
9490 
9491 static int
9492 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9493 		int func_id, int insn_idx)
9494 {
9495 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9496 	struct bpf_map *map = meta->map_ptr;
9497 
9498 	if (func_id != BPF_FUNC_tail_call &&
9499 	    func_id != BPF_FUNC_map_lookup_elem &&
9500 	    func_id != BPF_FUNC_map_update_elem &&
9501 	    func_id != BPF_FUNC_map_delete_elem &&
9502 	    func_id != BPF_FUNC_map_push_elem &&
9503 	    func_id != BPF_FUNC_map_pop_elem &&
9504 	    func_id != BPF_FUNC_map_peek_elem &&
9505 	    func_id != BPF_FUNC_for_each_map_elem &&
9506 	    func_id != BPF_FUNC_redirect_map &&
9507 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9508 		return 0;
9509 
9510 	if (map == NULL) {
9511 		verbose(env, "kernel subsystem misconfigured verifier\n");
9512 		return -EINVAL;
9513 	}
9514 
9515 	/* In case of read-only, some additional restrictions
9516 	 * need to be applied in order to prevent altering the
9517 	 * state of the map from program side.
9518 	 */
9519 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9520 	    (func_id == BPF_FUNC_map_delete_elem ||
9521 	     func_id == BPF_FUNC_map_update_elem ||
9522 	     func_id == BPF_FUNC_map_push_elem ||
9523 	     func_id == BPF_FUNC_map_pop_elem)) {
9524 		verbose(env, "write into map forbidden\n");
9525 		return -EACCES;
9526 	}
9527 
9528 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9529 		bpf_map_ptr_store(aux, meta->map_ptr,
9530 				  !meta->map_ptr->bypass_spec_v1);
9531 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9532 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9533 				  !meta->map_ptr->bypass_spec_v1);
9534 	return 0;
9535 }
9536 
9537 static int
9538 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9539 		int func_id, int insn_idx)
9540 {
9541 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9542 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9543 	struct bpf_map *map = meta->map_ptr;
9544 	u64 val, max;
9545 	int err;
9546 
9547 	if (func_id != BPF_FUNC_tail_call)
9548 		return 0;
9549 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9550 		verbose(env, "kernel subsystem misconfigured verifier\n");
9551 		return -EINVAL;
9552 	}
9553 
9554 	reg = &regs[BPF_REG_3];
9555 	val = reg->var_off.value;
9556 	max = map->max_entries;
9557 
9558 	if (!(register_is_const(reg) && val < max)) {
9559 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9560 		return 0;
9561 	}
9562 
9563 	err = mark_chain_precision(env, BPF_REG_3);
9564 	if (err)
9565 		return err;
9566 	if (bpf_map_key_unseen(aux))
9567 		bpf_map_key_store(aux, val);
9568 	else if (!bpf_map_key_poisoned(aux) &&
9569 		  bpf_map_key_immediate(aux) != val)
9570 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9571 	return 0;
9572 }
9573 
9574 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9575 {
9576 	struct bpf_func_state *state = cur_func(env);
9577 	bool refs_lingering = false;
9578 	int i;
9579 
9580 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9581 		return 0;
9582 
9583 	for (i = 0; i < state->acquired_refs; i++) {
9584 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9585 			continue;
9586 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9587 			state->refs[i].id, state->refs[i].insn_idx);
9588 		refs_lingering = true;
9589 	}
9590 	return refs_lingering ? -EINVAL : 0;
9591 }
9592 
9593 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9594 				   struct bpf_reg_state *regs)
9595 {
9596 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9597 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9598 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9599 	struct bpf_bprintf_data data = {};
9600 	int err, fmt_map_off, num_args;
9601 	u64 fmt_addr;
9602 	char *fmt;
9603 
9604 	/* data must be an array of u64 */
9605 	if (data_len_reg->var_off.value % 8)
9606 		return -EINVAL;
9607 	num_args = data_len_reg->var_off.value / 8;
9608 
9609 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9610 	 * and map_direct_value_addr is set.
9611 	 */
9612 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9613 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9614 						  fmt_map_off);
9615 	if (err) {
9616 		verbose(env, "verifier bug\n");
9617 		return -EFAULT;
9618 	}
9619 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9620 
9621 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9622 	 * can focus on validating the format specifiers.
9623 	 */
9624 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9625 	if (err < 0)
9626 		verbose(env, "Invalid format string\n");
9627 
9628 	return err;
9629 }
9630 
9631 static int check_get_func_ip(struct bpf_verifier_env *env)
9632 {
9633 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9634 	int func_id = BPF_FUNC_get_func_ip;
9635 
9636 	if (type == BPF_PROG_TYPE_TRACING) {
9637 		if (!bpf_prog_has_trampoline(env->prog)) {
9638 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9639 				func_id_name(func_id), func_id);
9640 			return -ENOTSUPP;
9641 		}
9642 		return 0;
9643 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9644 		return 0;
9645 	}
9646 
9647 	verbose(env, "func %s#%d not supported for program type %d\n",
9648 		func_id_name(func_id), func_id, type);
9649 	return -ENOTSUPP;
9650 }
9651 
9652 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9653 {
9654 	return &env->insn_aux_data[env->insn_idx];
9655 }
9656 
9657 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9658 {
9659 	struct bpf_reg_state *regs = cur_regs(env);
9660 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9661 	bool reg_is_null = register_is_null(reg);
9662 
9663 	if (reg_is_null)
9664 		mark_chain_precision(env, BPF_REG_4);
9665 
9666 	return reg_is_null;
9667 }
9668 
9669 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9670 {
9671 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9672 
9673 	if (!state->initialized) {
9674 		state->initialized = 1;
9675 		state->fit_for_inline = loop_flag_is_zero(env);
9676 		state->callback_subprogno = subprogno;
9677 		return;
9678 	}
9679 
9680 	if (!state->fit_for_inline)
9681 		return;
9682 
9683 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9684 				 state->callback_subprogno == subprogno);
9685 }
9686 
9687 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9688 			     int *insn_idx_p)
9689 {
9690 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9691 	bool returns_cpu_specific_alloc_ptr = false;
9692 	const struct bpf_func_proto *fn = NULL;
9693 	enum bpf_return_type ret_type;
9694 	enum bpf_type_flag ret_flag;
9695 	struct bpf_reg_state *regs;
9696 	struct bpf_call_arg_meta meta;
9697 	int insn_idx = *insn_idx_p;
9698 	bool changes_data;
9699 	int i, err, func_id;
9700 
9701 	/* find function prototype */
9702 	func_id = insn->imm;
9703 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9704 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9705 			func_id);
9706 		return -EINVAL;
9707 	}
9708 
9709 	if (env->ops->get_func_proto)
9710 		fn = env->ops->get_func_proto(func_id, env->prog);
9711 	if (!fn) {
9712 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9713 			func_id);
9714 		return -EINVAL;
9715 	}
9716 
9717 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9718 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9719 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9720 		return -EINVAL;
9721 	}
9722 
9723 	if (fn->allowed && !fn->allowed(env->prog)) {
9724 		verbose(env, "helper call is not allowed in probe\n");
9725 		return -EINVAL;
9726 	}
9727 
9728 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9729 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9730 		return -EINVAL;
9731 	}
9732 
9733 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9734 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9735 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9736 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9737 			func_id_name(func_id), func_id);
9738 		return -EINVAL;
9739 	}
9740 
9741 	memset(&meta, 0, sizeof(meta));
9742 	meta.pkt_access = fn->pkt_access;
9743 
9744 	err = check_func_proto(fn, func_id);
9745 	if (err) {
9746 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9747 			func_id_name(func_id), func_id);
9748 		return err;
9749 	}
9750 
9751 	if (env->cur_state->active_rcu_lock) {
9752 		if (fn->might_sleep) {
9753 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9754 				func_id_name(func_id), func_id);
9755 			return -EINVAL;
9756 		}
9757 
9758 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9759 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9760 	}
9761 
9762 	meta.func_id = func_id;
9763 	/* check args */
9764 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9765 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9766 		if (err)
9767 			return err;
9768 	}
9769 
9770 	err = record_func_map(env, &meta, func_id, insn_idx);
9771 	if (err)
9772 		return err;
9773 
9774 	err = record_func_key(env, &meta, func_id, insn_idx);
9775 	if (err)
9776 		return err;
9777 
9778 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9779 	 * is inferred from register state.
9780 	 */
9781 	for (i = 0; i < meta.access_size; i++) {
9782 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9783 				       BPF_WRITE, -1, false, false);
9784 		if (err)
9785 			return err;
9786 	}
9787 
9788 	regs = cur_regs(env);
9789 
9790 	if (meta.release_regno) {
9791 		err = -EINVAL;
9792 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9793 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9794 		 * is safe to do directly.
9795 		 */
9796 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9797 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9798 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9799 				return -EFAULT;
9800 			}
9801 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9802 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
9803 			u32 ref_obj_id = meta.ref_obj_id;
9804 			bool in_rcu = in_rcu_cs(env);
9805 			struct bpf_func_state *state;
9806 			struct bpf_reg_state *reg;
9807 
9808 			err = release_reference_state(cur_func(env), ref_obj_id);
9809 			if (!err) {
9810 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9811 					if (reg->ref_obj_id == ref_obj_id) {
9812 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
9813 							reg->ref_obj_id = 0;
9814 							reg->type &= ~MEM_ALLOC;
9815 							reg->type |= MEM_RCU;
9816 						} else {
9817 							mark_reg_invalid(env, reg);
9818 						}
9819 					}
9820 				}));
9821 			}
9822 		} else if (meta.ref_obj_id) {
9823 			err = release_reference(env, meta.ref_obj_id);
9824 		} else if (register_is_null(&regs[meta.release_regno])) {
9825 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9826 			 * released is NULL, which must be > R0.
9827 			 */
9828 			err = 0;
9829 		}
9830 		if (err) {
9831 			verbose(env, "func %s#%d reference has not been acquired before\n",
9832 				func_id_name(func_id), func_id);
9833 			return err;
9834 		}
9835 	}
9836 
9837 	switch (func_id) {
9838 	case BPF_FUNC_tail_call:
9839 		err = check_reference_leak(env, false);
9840 		if (err) {
9841 			verbose(env, "tail_call would lead to reference leak\n");
9842 			return err;
9843 		}
9844 		break;
9845 	case BPF_FUNC_get_local_storage:
9846 		/* check that flags argument in get_local_storage(map, flags) is 0,
9847 		 * this is required because get_local_storage() can't return an error.
9848 		 */
9849 		if (!register_is_null(&regs[BPF_REG_2])) {
9850 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9851 			return -EINVAL;
9852 		}
9853 		break;
9854 	case BPF_FUNC_for_each_map_elem:
9855 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9856 					set_map_elem_callback_state);
9857 		break;
9858 	case BPF_FUNC_timer_set_callback:
9859 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9860 					set_timer_callback_state);
9861 		break;
9862 	case BPF_FUNC_find_vma:
9863 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9864 					set_find_vma_callback_state);
9865 		break;
9866 	case BPF_FUNC_snprintf:
9867 		err = check_bpf_snprintf_call(env, regs);
9868 		break;
9869 	case BPF_FUNC_loop:
9870 		update_loop_inline_state(env, meta.subprogno);
9871 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9872 					set_loop_callback_state);
9873 		break;
9874 	case BPF_FUNC_dynptr_from_mem:
9875 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9876 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9877 				reg_type_str(env, regs[BPF_REG_1].type));
9878 			return -EACCES;
9879 		}
9880 		break;
9881 	case BPF_FUNC_set_retval:
9882 		if (prog_type == BPF_PROG_TYPE_LSM &&
9883 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9884 			if (!env->prog->aux->attach_func_proto->type) {
9885 				/* Make sure programs that attach to void
9886 				 * hooks don't try to modify return value.
9887 				 */
9888 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9889 				return -EINVAL;
9890 			}
9891 		}
9892 		break;
9893 	case BPF_FUNC_dynptr_data:
9894 	{
9895 		struct bpf_reg_state *reg;
9896 		int id, ref_obj_id;
9897 
9898 		reg = get_dynptr_arg_reg(env, fn, regs);
9899 		if (!reg)
9900 			return -EFAULT;
9901 
9902 
9903 		if (meta.dynptr_id) {
9904 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9905 			return -EFAULT;
9906 		}
9907 		if (meta.ref_obj_id) {
9908 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9909 			return -EFAULT;
9910 		}
9911 
9912 		id = dynptr_id(env, reg);
9913 		if (id < 0) {
9914 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9915 			return id;
9916 		}
9917 
9918 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9919 		if (ref_obj_id < 0) {
9920 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9921 			return ref_obj_id;
9922 		}
9923 
9924 		meta.dynptr_id = id;
9925 		meta.ref_obj_id = ref_obj_id;
9926 
9927 		break;
9928 	}
9929 	case BPF_FUNC_dynptr_write:
9930 	{
9931 		enum bpf_dynptr_type dynptr_type;
9932 		struct bpf_reg_state *reg;
9933 
9934 		reg = get_dynptr_arg_reg(env, fn, regs);
9935 		if (!reg)
9936 			return -EFAULT;
9937 
9938 		dynptr_type = dynptr_get_type(env, reg);
9939 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9940 			return -EFAULT;
9941 
9942 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9943 			/* this will trigger clear_all_pkt_pointers(), which will
9944 			 * invalidate all dynptr slices associated with the skb
9945 			 */
9946 			changes_data = true;
9947 
9948 		break;
9949 	}
9950 	case BPF_FUNC_per_cpu_ptr:
9951 	case BPF_FUNC_this_cpu_ptr:
9952 	{
9953 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
9954 		const struct btf_type *type;
9955 
9956 		if (reg->type & MEM_RCU) {
9957 			type = btf_type_by_id(reg->btf, reg->btf_id);
9958 			if (!type || !btf_type_is_struct(type)) {
9959 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
9960 				return -EFAULT;
9961 			}
9962 			returns_cpu_specific_alloc_ptr = true;
9963 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
9964 		}
9965 		break;
9966 	}
9967 	case BPF_FUNC_user_ringbuf_drain:
9968 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9969 					set_user_ringbuf_callback_state);
9970 		break;
9971 	}
9972 
9973 	if (err)
9974 		return err;
9975 
9976 	/* reset caller saved regs */
9977 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9978 		mark_reg_not_init(env, regs, caller_saved[i]);
9979 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9980 	}
9981 
9982 	/* helper call returns 64-bit value. */
9983 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9984 
9985 	/* update return register (already marked as written above) */
9986 	ret_type = fn->ret_type;
9987 	ret_flag = type_flag(ret_type);
9988 
9989 	switch (base_type(ret_type)) {
9990 	case RET_INTEGER:
9991 		/* sets type to SCALAR_VALUE */
9992 		mark_reg_unknown(env, regs, BPF_REG_0);
9993 		break;
9994 	case RET_VOID:
9995 		regs[BPF_REG_0].type = NOT_INIT;
9996 		break;
9997 	case RET_PTR_TO_MAP_VALUE:
9998 		/* There is no offset yet applied, variable or fixed */
9999 		mark_reg_known_zero(env, regs, BPF_REG_0);
10000 		/* remember map_ptr, so that check_map_access()
10001 		 * can check 'value_size' boundary of memory access
10002 		 * to map element returned from bpf_map_lookup_elem()
10003 		 */
10004 		if (meta.map_ptr == NULL) {
10005 			verbose(env,
10006 				"kernel subsystem misconfigured verifier\n");
10007 			return -EINVAL;
10008 		}
10009 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10010 		regs[BPF_REG_0].map_uid = meta.map_uid;
10011 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10012 		if (!type_may_be_null(ret_type) &&
10013 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10014 			regs[BPF_REG_0].id = ++env->id_gen;
10015 		}
10016 		break;
10017 	case RET_PTR_TO_SOCKET:
10018 		mark_reg_known_zero(env, regs, BPF_REG_0);
10019 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10020 		break;
10021 	case RET_PTR_TO_SOCK_COMMON:
10022 		mark_reg_known_zero(env, regs, BPF_REG_0);
10023 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10024 		break;
10025 	case RET_PTR_TO_TCP_SOCK:
10026 		mark_reg_known_zero(env, regs, BPF_REG_0);
10027 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10028 		break;
10029 	case RET_PTR_TO_MEM:
10030 		mark_reg_known_zero(env, regs, BPF_REG_0);
10031 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10032 		regs[BPF_REG_0].mem_size = meta.mem_size;
10033 		break;
10034 	case RET_PTR_TO_MEM_OR_BTF_ID:
10035 	{
10036 		const struct btf_type *t;
10037 
10038 		mark_reg_known_zero(env, regs, BPF_REG_0);
10039 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10040 		if (!btf_type_is_struct(t)) {
10041 			u32 tsize;
10042 			const struct btf_type *ret;
10043 			const char *tname;
10044 
10045 			/* resolve the type size of ksym. */
10046 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10047 			if (IS_ERR(ret)) {
10048 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10049 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10050 					tname, PTR_ERR(ret));
10051 				return -EINVAL;
10052 			}
10053 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10054 			regs[BPF_REG_0].mem_size = tsize;
10055 		} else {
10056 			if (returns_cpu_specific_alloc_ptr) {
10057 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10058 			} else {
10059 				/* MEM_RDONLY may be carried from ret_flag, but it
10060 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10061 				 * it will confuse the check of PTR_TO_BTF_ID in
10062 				 * check_mem_access().
10063 				 */
10064 				ret_flag &= ~MEM_RDONLY;
10065 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10066 			}
10067 
10068 			regs[BPF_REG_0].btf = meta.ret_btf;
10069 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10070 		}
10071 		break;
10072 	}
10073 	case RET_PTR_TO_BTF_ID:
10074 	{
10075 		struct btf *ret_btf;
10076 		int ret_btf_id;
10077 
10078 		mark_reg_known_zero(env, regs, BPF_REG_0);
10079 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10080 		if (func_id == BPF_FUNC_kptr_xchg) {
10081 			ret_btf = meta.kptr_field->kptr.btf;
10082 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10083 			if (!btf_is_kernel(ret_btf)) {
10084 				regs[BPF_REG_0].type |= MEM_ALLOC;
10085 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10086 					regs[BPF_REG_0].type |= MEM_PERCPU;
10087 			}
10088 		} else {
10089 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10090 				verbose(env, "verifier internal error:");
10091 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10092 					func_id_name(func_id));
10093 				return -EINVAL;
10094 			}
10095 			ret_btf = btf_vmlinux;
10096 			ret_btf_id = *fn->ret_btf_id;
10097 		}
10098 		if (ret_btf_id == 0) {
10099 			verbose(env, "invalid return type %u of func %s#%d\n",
10100 				base_type(ret_type), func_id_name(func_id),
10101 				func_id);
10102 			return -EINVAL;
10103 		}
10104 		regs[BPF_REG_0].btf = ret_btf;
10105 		regs[BPF_REG_0].btf_id = ret_btf_id;
10106 		break;
10107 	}
10108 	default:
10109 		verbose(env, "unknown return type %u of func %s#%d\n",
10110 			base_type(ret_type), func_id_name(func_id), func_id);
10111 		return -EINVAL;
10112 	}
10113 
10114 	if (type_may_be_null(regs[BPF_REG_0].type))
10115 		regs[BPF_REG_0].id = ++env->id_gen;
10116 
10117 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10118 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10119 			func_id_name(func_id), func_id);
10120 		return -EFAULT;
10121 	}
10122 
10123 	if (is_dynptr_ref_function(func_id))
10124 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10125 
10126 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10127 		/* For release_reference() */
10128 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10129 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10130 		int id = acquire_reference_state(env, insn_idx);
10131 
10132 		if (id < 0)
10133 			return id;
10134 		/* For mark_ptr_or_null_reg() */
10135 		regs[BPF_REG_0].id = id;
10136 		/* For release_reference() */
10137 		regs[BPF_REG_0].ref_obj_id = id;
10138 	}
10139 
10140 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10141 
10142 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10143 	if (err)
10144 		return err;
10145 
10146 	if ((func_id == BPF_FUNC_get_stack ||
10147 	     func_id == BPF_FUNC_get_task_stack) &&
10148 	    !env->prog->has_callchain_buf) {
10149 		const char *err_str;
10150 
10151 #ifdef CONFIG_PERF_EVENTS
10152 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10153 		err_str = "cannot get callchain buffer for func %s#%d\n";
10154 #else
10155 		err = -ENOTSUPP;
10156 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10157 #endif
10158 		if (err) {
10159 			verbose(env, err_str, func_id_name(func_id), func_id);
10160 			return err;
10161 		}
10162 
10163 		env->prog->has_callchain_buf = true;
10164 	}
10165 
10166 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10167 		env->prog->call_get_stack = true;
10168 
10169 	if (func_id == BPF_FUNC_get_func_ip) {
10170 		if (check_get_func_ip(env))
10171 			return -ENOTSUPP;
10172 		env->prog->call_get_func_ip = true;
10173 	}
10174 
10175 	if (changes_data)
10176 		clear_all_pkt_pointers(env);
10177 	return 0;
10178 }
10179 
10180 /* mark_btf_func_reg_size() is used when the reg size is determined by
10181  * the BTF func_proto's return value size and argument.
10182  */
10183 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10184 				   size_t reg_size)
10185 {
10186 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10187 
10188 	if (regno == BPF_REG_0) {
10189 		/* Function return value */
10190 		reg->live |= REG_LIVE_WRITTEN;
10191 		reg->subreg_def = reg_size == sizeof(u64) ?
10192 			DEF_NOT_SUBREG : env->insn_idx + 1;
10193 	} else {
10194 		/* Function argument */
10195 		if (reg_size == sizeof(u64)) {
10196 			mark_insn_zext(env, reg);
10197 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10198 		} else {
10199 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10200 		}
10201 	}
10202 }
10203 
10204 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10205 {
10206 	return meta->kfunc_flags & KF_ACQUIRE;
10207 }
10208 
10209 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10210 {
10211 	return meta->kfunc_flags & KF_RELEASE;
10212 }
10213 
10214 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10215 {
10216 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10217 }
10218 
10219 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10220 {
10221 	return meta->kfunc_flags & KF_SLEEPABLE;
10222 }
10223 
10224 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10225 {
10226 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10227 }
10228 
10229 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10230 {
10231 	return meta->kfunc_flags & KF_RCU;
10232 }
10233 
10234 static bool __kfunc_param_match_suffix(const struct btf *btf,
10235 				       const struct btf_param *arg,
10236 				       const char *suffix)
10237 {
10238 	int suffix_len = strlen(suffix), len;
10239 	const char *param_name;
10240 
10241 	/* In the future, this can be ported to use BTF tagging */
10242 	param_name = btf_name_by_offset(btf, arg->name_off);
10243 	if (str_is_empty(param_name))
10244 		return false;
10245 	len = strlen(param_name);
10246 	if (len < suffix_len)
10247 		return false;
10248 	param_name += len - suffix_len;
10249 	return !strncmp(param_name, suffix, suffix_len);
10250 }
10251 
10252 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10253 				  const struct btf_param *arg,
10254 				  const struct bpf_reg_state *reg)
10255 {
10256 	const struct btf_type *t;
10257 
10258 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10259 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10260 		return false;
10261 
10262 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10263 }
10264 
10265 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10266 					const struct btf_param *arg,
10267 					const struct bpf_reg_state *reg)
10268 {
10269 	const struct btf_type *t;
10270 
10271 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10272 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10273 		return false;
10274 
10275 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10276 }
10277 
10278 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10279 {
10280 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10281 }
10282 
10283 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10284 {
10285 	return __kfunc_param_match_suffix(btf, arg, "__k");
10286 }
10287 
10288 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10289 {
10290 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10291 }
10292 
10293 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10294 {
10295 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10296 }
10297 
10298 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10299 {
10300 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10301 }
10302 
10303 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10304 {
10305 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10306 }
10307 
10308 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10309 					  const struct btf_param *arg,
10310 					  const char *name)
10311 {
10312 	int len, target_len = strlen(name);
10313 	const char *param_name;
10314 
10315 	param_name = btf_name_by_offset(btf, arg->name_off);
10316 	if (str_is_empty(param_name))
10317 		return false;
10318 	len = strlen(param_name);
10319 	if (len != target_len)
10320 		return false;
10321 	if (strcmp(param_name, name))
10322 		return false;
10323 
10324 	return true;
10325 }
10326 
10327 enum {
10328 	KF_ARG_DYNPTR_ID,
10329 	KF_ARG_LIST_HEAD_ID,
10330 	KF_ARG_LIST_NODE_ID,
10331 	KF_ARG_RB_ROOT_ID,
10332 	KF_ARG_RB_NODE_ID,
10333 };
10334 
10335 BTF_ID_LIST(kf_arg_btf_ids)
10336 BTF_ID(struct, bpf_dynptr_kern)
10337 BTF_ID(struct, bpf_list_head)
10338 BTF_ID(struct, bpf_list_node)
10339 BTF_ID(struct, bpf_rb_root)
10340 BTF_ID(struct, bpf_rb_node)
10341 
10342 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10343 				    const struct btf_param *arg, int type)
10344 {
10345 	const struct btf_type *t;
10346 	u32 res_id;
10347 
10348 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10349 	if (!t)
10350 		return false;
10351 	if (!btf_type_is_ptr(t))
10352 		return false;
10353 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10354 	if (!t)
10355 		return false;
10356 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10357 }
10358 
10359 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10360 {
10361 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10362 }
10363 
10364 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10365 {
10366 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10367 }
10368 
10369 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10370 {
10371 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10372 }
10373 
10374 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10375 {
10376 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10377 }
10378 
10379 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10380 {
10381 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10382 }
10383 
10384 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10385 				  const struct btf_param *arg)
10386 {
10387 	const struct btf_type *t;
10388 
10389 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10390 	if (!t)
10391 		return false;
10392 
10393 	return true;
10394 }
10395 
10396 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10397 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10398 					const struct btf *btf,
10399 					const struct btf_type *t, int rec)
10400 {
10401 	const struct btf_type *member_type;
10402 	const struct btf_member *member;
10403 	u32 i;
10404 
10405 	if (!btf_type_is_struct(t))
10406 		return false;
10407 
10408 	for_each_member(i, t, member) {
10409 		const struct btf_array *array;
10410 
10411 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10412 		if (btf_type_is_struct(member_type)) {
10413 			if (rec >= 3) {
10414 				verbose(env, "max struct nesting depth exceeded\n");
10415 				return false;
10416 			}
10417 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10418 				return false;
10419 			continue;
10420 		}
10421 		if (btf_type_is_array(member_type)) {
10422 			array = btf_array(member_type);
10423 			if (!array->nelems)
10424 				return false;
10425 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10426 			if (!btf_type_is_scalar(member_type))
10427 				return false;
10428 			continue;
10429 		}
10430 		if (!btf_type_is_scalar(member_type))
10431 			return false;
10432 	}
10433 	return true;
10434 }
10435 
10436 enum kfunc_ptr_arg_type {
10437 	KF_ARG_PTR_TO_CTX,
10438 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10439 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10440 	KF_ARG_PTR_TO_DYNPTR,
10441 	KF_ARG_PTR_TO_ITER,
10442 	KF_ARG_PTR_TO_LIST_HEAD,
10443 	KF_ARG_PTR_TO_LIST_NODE,
10444 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10445 	KF_ARG_PTR_TO_MEM,
10446 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10447 	KF_ARG_PTR_TO_CALLBACK,
10448 	KF_ARG_PTR_TO_RB_ROOT,
10449 	KF_ARG_PTR_TO_RB_NODE,
10450 };
10451 
10452 enum special_kfunc_type {
10453 	KF_bpf_obj_new_impl,
10454 	KF_bpf_obj_drop_impl,
10455 	KF_bpf_refcount_acquire_impl,
10456 	KF_bpf_list_push_front_impl,
10457 	KF_bpf_list_push_back_impl,
10458 	KF_bpf_list_pop_front,
10459 	KF_bpf_list_pop_back,
10460 	KF_bpf_cast_to_kern_ctx,
10461 	KF_bpf_rdonly_cast,
10462 	KF_bpf_rcu_read_lock,
10463 	KF_bpf_rcu_read_unlock,
10464 	KF_bpf_rbtree_remove,
10465 	KF_bpf_rbtree_add_impl,
10466 	KF_bpf_rbtree_first,
10467 	KF_bpf_dynptr_from_skb,
10468 	KF_bpf_dynptr_from_xdp,
10469 	KF_bpf_dynptr_slice,
10470 	KF_bpf_dynptr_slice_rdwr,
10471 	KF_bpf_dynptr_clone,
10472 	KF_bpf_percpu_obj_new_impl,
10473 	KF_bpf_percpu_obj_drop_impl,
10474 	KF_bpf_throw,
10475 };
10476 
10477 BTF_SET_START(special_kfunc_set)
10478 BTF_ID(func, bpf_obj_new_impl)
10479 BTF_ID(func, bpf_obj_drop_impl)
10480 BTF_ID(func, bpf_refcount_acquire_impl)
10481 BTF_ID(func, bpf_list_push_front_impl)
10482 BTF_ID(func, bpf_list_push_back_impl)
10483 BTF_ID(func, bpf_list_pop_front)
10484 BTF_ID(func, bpf_list_pop_back)
10485 BTF_ID(func, bpf_cast_to_kern_ctx)
10486 BTF_ID(func, bpf_rdonly_cast)
10487 BTF_ID(func, bpf_rbtree_remove)
10488 BTF_ID(func, bpf_rbtree_add_impl)
10489 BTF_ID(func, bpf_rbtree_first)
10490 BTF_ID(func, bpf_dynptr_from_skb)
10491 BTF_ID(func, bpf_dynptr_from_xdp)
10492 BTF_ID(func, bpf_dynptr_slice)
10493 BTF_ID(func, bpf_dynptr_slice_rdwr)
10494 BTF_ID(func, bpf_dynptr_clone)
10495 BTF_ID(func, bpf_percpu_obj_new_impl)
10496 BTF_ID(func, bpf_percpu_obj_drop_impl)
10497 BTF_ID(func, bpf_throw)
10498 BTF_SET_END(special_kfunc_set)
10499 
10500 BTF_ID_LIST(special_kfunc_list)
10501 BTF_ID(func, bpf_obj_new_impl)
10502 BTF_ID(func, bpf_obj_drop_impl)
10503 BTF_ID(func, bpf_refcount_acquire_impl)
10504 BTF_ID(func, bpf_list_push_front_impl)
10505 BTF_ID(func, bpf_list_push_back_impl)
10506 BTF_ID(func, bpf_list_pop_front)
10507 BTF_ID(func, bpf_list_pop_back)
10508 BTF_ID(func, bpf_cast_to_kern_ctx)
10509 BTF_ID(func, bpf_rdonly_cast)
10510 BTF_ID(func, bpf_rcu_read_lock)
10511 BTF_ID(func, bpf_rcu_read_unlock)
10512 BTF_ID(func, bpf_rbtree_remove)
10513 BTF_ID(func, bpf_rbtree_add_impl)
10514 BTF_ID(func, bpf_rbtree_first)
10515 BTF_ID(func, bpf_dynptr_from_skb)
10516 BTF_ID(func, bpf_dynptr_from_xdp)
10517 BTF_ID(func, bpf_dynptr_slice)
10518 BTF_ID(func, bpf_dynptr_slice_rdwr)
10519 BTF_ID(func, bpf_dynptr_clone)
10520 BTF_ID(func, bpf_percpu_obj_new_impl)
10521 BTF_ID(func, bpf_percpu_obj_drop_impl)
10522 BTF_ID(func, bpf_throw)
10523 
10524 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10525 {
10526 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10527 	    meta->arg_owning_ref) {
10528 		return false;
10529 	}
10530 
10531 	return meta->kfunc_flags & KF_RET_NULL;
10532 }
10533 
10534 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10535 {
10536 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10537 }
10538 
10539 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10540 {
10541 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10542 }
10543 
10544 static enum kfunc_ptr_arg_type
10545 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10546 		       struct bpf_kfunc_call_arg_meta *meta,
10547 		       const struct btf_type *t, const struct btf_type *ref_t,
10548 		       const char *ref_tname, const struct btf_param *args,
10549 		       int argno, int nargs)
10550 {
10551 	u32 regno = argno + 1;
10552 	struct bpf_reg_state *regs = cur_regs(env);
10553 	struct bpf_reg_state *reg = &regs[regno];
10554 	bool arg_mem_size = false;
10555 
10556 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10557 		return KF_ARG_PTR_TO_CTX;
10558 
10559 	/* In this function, we verify the kfunc's BTF as per the argument type,
10560 	 * leaving the rest of the verification with respect to the register
10561 	 * type to our caller. When a set of conditions hold in the BTF type of
10562 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10563 	 */
10564 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10565 		return KF_ARG_PTR_TO_CTX;
10566 
10567 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10568 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10569 
10570 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10571 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10572 
10573 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10574 		return KF_ARG_PTR_TO_DYNPTR;
10575 
10576 	if (is_kfunc_arg_iter(meta, argno))
10577 		return KF_ARG_PTR_TO_ITER;
10578 
10579 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10580 		return KF_ARG_PTR_TO_LIST_HEAD;
10581 
10582 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10583 		return KF_ARG_PTR_TO_LIST_NODE;
10584 
10585 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10586 		return KF_ARG_PTR_TO_RB_ROOT;
10587 
10588 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10589 		return KF_ARG_PTR_TO_RB_NODE;
10590 
10591 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10592 		if (!btf_type_is_struct(ref_t)) {
10593 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10594 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10595 			return -EINVAL;
10596 		}
10597 		return KF_ARG_PTR_TO_BTF_ID;
10598 	}
10599 
10600 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10601 		return KF_ARG_PTR_TO_CALLBACK;
10602 
10603 
10604 	if (argno + 1 < nargs &&
10605 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10606 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10607 		arg_mem_size = true;
10608 
10609 	/* This is the catch all argument type of register types supported by
10610 	 * check_helper_mem_access. However, we only allow when argument type is
10611 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10612 	 * arg_mem_size is true, the pointer can be void *.
10613 	 */
10614 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10615 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10616 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10617 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10618 		return -EINVAL;
10619 	}
10620 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10621 }
10622 
10623 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10624 					struct bpf_reg_state *reg,
10625 					const struct btf_type *ref_t,
10626 					const char *ref_tname, u32 ref_id,
10627 					struct bpf_kfunc_call_arg_meta *meta,
10628 					int argno)
10629 {
10630 	const struct btf_type *reg_ref_t;
10631 	bool strict_type_match = false;
10632 	const struct btf *reg_btf;
10633 	const char *reg_ref_tname;
10634 	u32 reg_ref_id;
10635 
10636 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10637 		reg_btf = reg->btf;
10638 		reg_ref_id = reg->btf_id;
10639 	} else {
10640 		reg_btf = btf_vmlinux;
10641 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10642 	}
10643 
10644 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10645 	 * or releasing a reference, or are no-cast aliases. We do _not_
10646 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10647 	 * as we want to enable BPF programs to pass types that are bitwise
10648 	 * equivalent without forcing them to explicitly cast with something
10649 	 * like bpf_cast_to_kern_ctx().
10650 	 *
10651 	 * For example, say we had a type like the following:
10652 	 *
10653 	 * struct bpf_cpumask {
10654 	 *	cpumask_t cpumask;
10655 	 *	refcount_t usage;
10656 	 * };
10657 	 *
10658 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10659 	 * to a struct cpumask, so it would be safe to pass a struct
10660 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10661 	 *
10662 	 * The philosophy here is similar to how we allow scalars of different
10663 	 * types to be passed to kfuncs as long as the size is the same. The
10664 	 * only difference here is that we're simply allowing
10665 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10666 	 * resolve types.
10667 	 */
10668 	if (is_kfunc_acquire(meta) ||
10669 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10670 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10671 		strict_type_match = true;
10672 
10673 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10674 
10675 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10676 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10677 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10678 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10679 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10680 			btf_type_str(reg_ref_t), reg_ref_tname);
10681 		return -EINVAL;
10682 	}
10683 	return 0;
10684 }
10685 
10686 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10687 {
10688 	struct bpf_verifier_state *state = env->cur_state;
10689 	struct btf_record *rec = reg_btf_record(reg);
10690 
10691 	if (!state->active_lock.ptr) {
10692 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10693 		return -EFAULT;
10694 	}
10695 
10696 	if (type_flag(reg->type) & NON_OWN_REF) {
10697 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10698 		return -EFAULT;
10699 	}
10700 
10701 	reg->type |= NON_OWN_REF;
10702 	if (rec->refcount_off >= 0)
10703 		reg->type |= MEM_RCU;
10704 
10705 	return 0;
10706 }
10707 
10708 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10709 {
10710 	struct bpf_func_state *state, *unused;
10711 	struct bpf_reg_state *reg;
10712 	int i;
10713 
10714 	state = cur_func(env);
10715 
10716 	if (!ref_obj_id) {
10717 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10718 			     "owning -> non-owning conversion\n");
10719 		return -EFAULT;
10720 	}
10721 
10722 	for (i = 0; i < state->acquired_refs; i++) {
10723 		if (state->refs[i].id != ref_obj_id)
10724 			continue;
10725 
10726 		/* Clear ref_obj_id here so release_reference doesn't clobber
10727 		 * the whole reg
10728 		 */
10729 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10730 			if (reg->ref_obj_id == ref_obj_id) {
10731 				reg->ref_obj_id = 0;
10732 				ref_set_non_owning(env, reg);
10733 			}
10734 		}));
10735 		return 0;
10736 	}
10737 
10738 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10739 	return -EFAULT;
10740 }
10741 
10742 /* Implementation details:
10743  *
10744  * Each register points to some region of memory, which we define as an
10745  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10746  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10747  * allocation. The lock and the data it protects are colocated in the same
10748  * memory region.
10749  *
10750  * Hence, everytime a register holds a pointer value pointing to such
10751  * allocation, the verifier preserves a unique reg->id for it.
10752  *
10753  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10754  * bpf_spin_lock is called.
10755  *
10756  * To enable this, lock state in the verifier captures two values:
10757  *	active_lock.ptr = Register's type specific pointer
10758  *	active_lock.id  = A unique ID for each register pointer value
10759  *
10760  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10761  * supported register types.
10762  *
10763  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10764  * allocated objects is the reg->btf pointer.
10765  *
10766  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10767  * can establish the provenance of the map value statically for each distinct
10768  * lookup into such maps. They always contain a single map value hence unique
10769  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10770  *
10771  * So, in case of global variables, they use array maps with max_entries = 1,
10772  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10773  * into the same map value as max_entries is 1, as described above).
10774  *
10775  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10776  * outer map pointer (in verifier context), but each lookup into an inner map
10777  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10778  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10779  * will get different reg->id assigned to each lookup, hence different
10780  * active_lock.id.
10781  *
10782  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10783  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10784  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10785  */
10786 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10787 {
10788 	void *ptr;
10789 	u32 id;
10790 
10791 	switch ((int)reg->type) {
10792 	case PTR_TO_MAP_VALUE:
10793 		ptr = reg->map_ptr;
10794 		break;
10795 	case PTR_TO_BTF_ID | MEM_ALLOC:
10796 		ptr = reg->btf;
10797 		break;
10798 	default:
10799 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10800 		return -EFAULT;
10801 	}
10802 	id = reg->id;
10803 
10804 	if (!env->cur_state->active_lock.ptr)
10805 		return -EINVAL;
10806 	if (env->cur_state->active_lock.ptr != ptr ||
10807 	    env->cur_state->active_lock.id != id) {
10808 		verbose(env, "held lock and object are not in the same allocation\n");
10809 		return -EINVAL;
10810 	}
10811 	return 0;
10812 }
10813 
10814 static bool is_bpf_list_api_kfunc(u32 btf_id)
10815 {
10816 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10817 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10818 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10819 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10820 }
10821 
10822 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10823 {
10824 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10825 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10826 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10827 }
10828 
10829 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10830 {
10831 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10832 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10833 }
10834 
10835 static bool is_callback_calling_kfunc(u32 btf_id)
10836 {
10837 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10838 }
10839 
10840 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
10841 {
10842 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
10843 	       insn->imm == special_kfunc_list[KF_bpf_throw];
10844 }
10845 
10846 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10847 {
10848 	return is_bpf_rbtree_api_kfunc(btf_id);
10849 }
10850 
10851 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10852 					  enum btf_field_type head_field_type,
10853 					  u32 kfunc_btf_id)
10854 {
10855 	bool ret;
10856 
10857 	switch (head_field_type) {
10858 	case BPF_LIST_HEAD:
10859 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10860 		break;
10861 	case BPF_RB_ROOT:
10862 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10863 		break;
10864 	default:
10865 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10866 			btf_field_type_name(head_field_type));
10867 		return false;
10868 	}
10869 
10870 	if (!ret)
10871 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10872 			btf_field_type_name(head_field_type));
10873 	return ret;
10874 }
10875 
10876 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10877 					  enum btf_field_type node_field_type,
10878 					  u32 kfunc_btf_id)
10879 {
10880 	bool ret;
10881 
10882 	switch (node_field_type) {
10883 	case BPF_LIST_NODE:
10884 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10885 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10886 		break;
10887 	case BPF_RB_NODE:
10888 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10889 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10890 		break;
10891 	default:
10892 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10893 			btf_field_type_name(node_field_type));
10894 		return false;
10895 	}
10896 
10897 	if (!ret)
10898 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10899 			btf_field_type_name(node_field_type));
10900 	return ret;
10901 }
10902 
10903 static int
10904 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10905 				   struct bpf_reg_state *reg, u32 regno,
10906 				   struct bpf_kfunc_call_arg_meta *meta,
10907 				   enum btf_field_type head_field_type,
10908 				   struct btf_field **head_field)
10909 {
10910 	const char *head_type_name;
10911 	struct btf_field *field;
10912 	struct btf_record *rec;
10913 	u32 head_off;
10914 
10915 	if (meta->btf != btf_vmlinux) {
10916 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10917 		return -EFAULT;
10918 	}
10919 
10920 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10921 		return -EFAULT;
10922 
10923 	head_type_name = btf_field_type_name(head_field_type);
10924 	if (!tnum_is_const(reg->var_off)) {
10925 		verbose(env,
10926 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10927 			regno, head_type_name);
10928 		return -EINVAL;
10929 	}
10930 
10931 	rec = reg_btf_record(reg);
10932 	head_off = reg->off + reg->var_off.value;
10933 	field = btf_record_find(rec, head_off, head_field_type);
10934 	if (!field) {
10935 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10936 		return -EINVAL;
10937 	}
10938 
10939 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10940 	if (check_reg_allocation_locked(env, reg)) {
10941 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10942 			rec->spin_lock_off, head_type_name);
10943 		return -EINVAL;
10944 	}
10945 
10946 	if (*head_field) {
10947 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10948 		return -EFAULT;
10949 	}
10950 	*head_field = field;
10951 	return 0;
10952 }
10953 
10954 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10955 					   struct bpf_reg_state *reg, u32 regno,
10956 					   struct bpf_kfunc_call_arg_meta *meta)
10957 {
10958 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10959 							  &meta->arg_list_head.field);
10960 }
10961 
10962 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10963 					     struct bpf_reg_state *reg, u32 regno,
10964 					     struct bpf_kfunc_call_arg_meta *meta)
10965 {
10966 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10967 							  &meta->arg_rbtree_root.field);
10968 }
10969 
10970 static int
10971 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10972 				   struct bpf_reg_state *reg, u32 regno,
10973 				   struct bpf_kfunc_call_arg_meta *meta,
10974 				   enum btf_field_type head_field_type,
10975 				   enum btf_field_type node_field_type,
10976 				   struct btf_field **node_field)
10977 {
10978 	const char *node_type_name;
10979 	const struct btf_type *et, *t;
10980 	struct btf_field *field;
10981 	u32 node_off;
10982 
10983 	if (meta->btf != btf_vmlinux) {
10984 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10985 		return -EFAULT;
10986 	}
10987 
10988 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10989 		return -EFAULT;
10990 
10991 	node_type_name = btf_field_type_name(node_field_type);
10992 	if (!tnum_is_const(reg->var_off)) {
10993 		verbose(env,
10994 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10995 			regno, node_type_name);
10996 		return -EINVAL;
10997 	}
10998 
10999 	node_off = reg->off + reg->var_off.value;
11000 	field = reg_find_field_offset(reg, node_off, node_field_type);
11001 	if (!field || field->offset != node_off) {
11002 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11003 		return -EINVAL;
11004 	}
11005 
11006 	field = *node_field;
11007 
11008 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11009 	t = btf_type_by_id(reg->btf, reg->btf_id);
11010 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11011 				  field->graph_root.value_btf_id, true)) {
11012 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11013 			"in struct %s, but arg is at offset=%d in struct %s\n",
11014 			btf_field_type_name(head_field_type),
11015 			btf_field_type_name(node_field_type),
11016 			field->graph_root.node_offset,
11017 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11018 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11019 		return -EINVAL;
11020 	}
11021 	meta->arg_btf = reg->btf;
11022 	meta->arg_btf_id = reg->btf_id;
11023 
11024 	if (node_off != field->graph_root.node_offset) {
11025 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11026 			node_off, btf_field_type_name(node_field_type),
11027 			field->graph_root.node_offset,
11028 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11029 		return -EINVAL;
11030 	}
11031 
11032 	return 0;
11033 }
11034 
11035 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11036 					   struct bpf_reg_state *reg, u32 regno,
11037 					   struct bpf_kfunc_call_arg_meta *meta)
11038 {
11039 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11040 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11041 						  &meta->arg_list_head.field);
11042 }
11043 
11044 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11045 					     struct bpf_reg_state *reg, u32 regno,
11046 					     struct bpf_kfunc_call_arg_meta *meta)
11047 {
11048 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11049 						  BPF_RB_ROOT, BPF_RB_NODE,
11050 						  &meta->arg_rbtree_root.field);
11051 }
11052 
11053 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11054 			    int insn_idx)
11055 {
11056 	const char *func_name = meta->func_name, *ref_tname;
11057 	const struct btf *btf = meta->btf;
11058 	const struct btf_param *args;
11059 	struct btf_record *rec;
11060 	u32 i, nargs;
11061 	int ret;
11062 
11063 	args = (const struct btf_param *)(meta->func_proto + 1);
11064 	nargs = btf_type_vlen(meta->func_proto);
11065 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11066 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11067 			MAX_BPF_FUNC_REG_ARGS);
11068 		return -EINVAL;
11069 	}
11070 
11071 	/* Check that BTF function arguments match actual types that the
11072 	 * verifier sees.
11073 	 */
11074 	for (i = 0; i < nargs; i++) {
11075 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11076 		const struct btf_type *t, *ref_t, *resolve_ret;
11077 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11078 		u32 regno = i + 1, ref_id, type_size;
11079 		bool is_ret_buf_sz = false;
11080 		int kf_arg_type;
11081 
11082 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11083 
11084 		if (is_kfunc_arg_ignore(btf, &args[i]))
11085 			continue;
11086 
11087 		if (btf_type_is_scalar(t)) {
11088 			if (reg->type != SCALAR_VALUE) {
11089 				verbose(env, "R%d is not a scalar\n", regno);
11090 				return -EINVAL;
11091 			}
11092 
11093 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11094 				if (meta->arg_constant.found) {
11095 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11096 					return -EFAULT;
11097 				}
11098 				if (!tnum_is_const(reg->var_off)) {
11099 					verbose(env, "R%d must be a known constant\n", regno);
11100 					return -EINVAL;
11101 				}
11102 				ret = mark_chain_precision(env, regno);
11103 				if (ret < 0)
11104 					return ret;
11105 				meta->arg_constant.found = true;
11106 				meta->arg_constant.value = reg->var_off.value;
11107 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11108 				meta->r0_rdonly = true;
11109 				is_ret_buf_sz = true;
11110 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11111 				is_ret_buf_sz = true;
11112 			}
11113 
11114 			if (is_ret_buf_sz) {
11115 				if (meta->r0_size) {
11116 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11117 					return -EINVAL;
11118 				}
11119 
11120 				if (!tnum_is_const(reg->var_off)) {
11121 					verbose(env, "R%d is not a const\n", regno);
11122 					return -EINVAL;
11123 				}
11124 
11125 				meta->r0_size = reg->var_off.value;
11126 				ret = mark_chain_precision(env, regno);
11127 				if (ret)
11128 					return ret;
11129 			}
11130 			continue;
11131 		}
11132 
11133 		if (!btf_type_is_ptr(t)) {
11134 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11135 			return -EINVAL;
11136 		}
11137 
11138 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11139 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
11140 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11141 			return -EACCES;
11142 		}
11143 
11144 		if (reg->ref_obj_id) {
11145 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11146 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11147 					regno, reg->ref_obj_id,
11148 					meta->ref_obj_id);
11149 				return -EFAULT;
11150 			}
11151 			meta->ref_obj_id = reg->ref_obj_id;
11152 			if (is_kfunc_release(meta))
11153 				meta->release_regno = regno;
11154 		}
11155 
11156 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11157 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11158 
11159 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11160 		if (kf_arg_type < 0)
11161 			return kf_arg_type;
11162 
11163 		switch (kf_arg_type) {
11164 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11165 		case KF_ARG_PTR_TO_BTF_ID:
11166 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11167 				break;
11168 
11169 			if (!is_trusted_reg(reg)) {
11170 				if (!is_kfunc_rcu(meta)) {
11171 					verbose(env, "R%d must be referenced or trusted\n", regno);
11172 					return -EINVAL;
11173 				}
11174 				if (!is_rcu_reg(reg)) {
11175 					verbose(env, "R%d must be a rcu pointer\n", regno);
11176 					return -EINVAL;
11177 				}
11178 			}
11179 
11180 			fallthrough;
11181 		case KF_ARG_PTR_TO_CTX:
11182 			/* Trusted arguments have the same offset checks as release arguments */
11183 			arg_type |= OBJ_RELEASE;
11184 			break;
11185 		case KF_ARG_PTR_TO_DYNPTR:
11186 		case KF_ARG_PTR_TO_ITER:
11187 		case KF_ARG_PTR_TO_LIST_HEAD:
11188 		case KF_ARG_PTR_TO_LIST_NODE:
11189 		case KF_ARG_PTR_TO_RB_ROOT:
11190 		case KF_ARG_PTR_TO_RB_NODE:
11191 		case KF_ARG_PTR_TO_MEM:
11192 		case KF_ARG_PTR_TO_MEM_SIZE:
11193 		case KF_ARG_PTR_TO_CALLBACK:
11194 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11195 			/* Trusted by default */
11196 			break;
11197 		default:
11198 			WARN_ON_ONCE(1);
11199 			return -EFAULT;
11200 		}
11201 
11202 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11203 			arg_type |= OBJ_RELEASE;
11204 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11205 		if (ret < 0)
11206 			return ret;
11207 
11208 		switch (kf_arg_type) {
11209 		case KF_ARG_PTR_TO_CTX:
11210 			if (reg->type != PTR_TO_CTX) {
11211 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11212 				return -EINVAL;
11213 			}
11214 
11215 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11216 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11217 				if (ret < 0)
11218 					return -EINVAL;
11219 				meta->ret_btf_id  = ret;
11220 			}
11221 			break;
11222 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11223 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11224 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11225 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11226 					return -EINVAL;
11227 				}
11228 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11229 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11230 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11231 					return -EINVAL;
11232 				}
11233 			} else {
11234 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11235 				return -EINVAL;
11236 			}
11237 			if (!reg->ref_obj_id) {
11238 				verbose(env, "allocated object must be referenced\n");
11239 				return -EINVAL;
11240 			}
11241 			if (meta->btf == btf_vmlinux) {
11242 				meta->arg_btf = reg->btf;
11243 				meta->arg_btf_id = reg->btf_id;
11244 			}
11245 			break;
11246 		case KF_ARG_PTR_TO_DYNPTR:
11247 		{
11248 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11249 			int clone_ref_obj_id = 0;
11250 
11251 			if (reg->type != PTR_TO_STACK &&
11252 			    reg->type != CONST_PTR_TO_DYNPTR) {
11253 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11254 				return -EINVAL;
11255 			}
11256 
11257 			if (reg->type == CONST_PTR_TO_DYNPTR)
11258 				dynptr_arg_type |= MEM_RDONLY;
11259 
11260 			if (is_kfunc_arg_uninit(btf, &args[i]))
11261 				dynptr_arg_type |= MEM_UNINIT;
11262 
11263 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11264 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11265 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11266 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11267 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11268 				   (dynptr_arg_type & MEM_UNINIT)) {
11269 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11270 
11271 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11272 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11273 					return -EFAULT;
11274 				}
11275 
11276 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11277 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11278 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11279 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11280 					return -EFAULT;
11281 				}
11282 			}
11283 
11284 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11285 			if (ret < 0)
11286 				return ret;
11287 
11288 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11289 				int id = dynptr_id(env, reg);
11290 
11291 				if (id < 0) {
11292 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11293 					return id;
11294 				}
11295 				meta->initialized_dynptr.id = id;
11296 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11297 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11298 			}
11299 
11300 			break;
11301 		}
11302 		case KF_ARG_PTR_TO_ITER:
11303 			ret = process_iter_arg(env, regno, insn_idx, meta);
11304 			if (ret < 0)
11305 				return ret;
11306 			break;
11307 		case KF_ARG_PTR_TO_LIST_HEAD:
11308 			if (reg->type != PTR_TO_MAP_VALUE &&
11309 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11310 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11311 				return -EINVAL;
11312 			}
11313 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11314 				verbose(env, "allocated object must be referenced\n");
11315 				return -EINVAL;
11316 			}
11317 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11318 			if (ret < 0)
11319 				return ret;
11320 			break;
11321 		case KF_ARG_PTR_TO_RB_ROOT:
11322 			if (reg->type != PTR_TO_MAP_VALUE &&
11323 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11324 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11325 				return -EINVAL;
11326 			}
11327 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11328 				verbose(env, "allocated object must be referenced\n");
11329 				return -EINVAL;
11330 			}
11331 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11332 			if (ret < 0)
11333 				return ret;
11334 			break;
11335 		case KF_ARG_PTR_TO_LIST_NODE:
11336 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11337 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11338 				return -EINVAL;
11339 			}
11340 			if (!reg->ref_obj_id) {
11341 				verbose(env, "allocated object must be referenced\n");
11342 				return -EINVAL;
11343 			}
11344 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11345 			if (ret < 0)
11346 				return ret;
11347 			break;
11348 		case KF_ARG_PTR_TO_RB_NODE:
11349 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11350 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11351 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11352 					return -EINVAL;
11353 				}
11354 				if (in_rbtree_lock_required_cb(env)) {
11355 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11356 					return -EINVAL;
11357 				}
11358 			} else {
11359 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11360 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11361 					return -EINVAL;
11362 				}
11363 				if (!reg->ref_obj_id) {
11364 					verbose(env, "allocated object must be referenced\n");
11365 					return -EINVAL;
11366 				}
11367 			}
11368 
11369 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11370 			if (ret < 0)
11371 				return ret;
11372 			break;
11373 		case KF_ARG_PTR_TO_BTF_ID:
11374 			/* Only base_type is checked, further checks are done here */
11375 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11376 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11377 			    !reg2btf_ids[base_type(reg->type)]) {
11378 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11379 				verbose(env, "expected %s or socket\n",
11380 					reg_type_str(env, base_type(reg->type) |
11381 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11382 				return -EINVAL;
11383 			}
11384 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11385 			if (ret < 0)
11386 				return ret;
11387 			break;
11388 		case KF_ARG_PTR_TO_MEM:
11389 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11390 			if (IS_ERR(resolve_ret)) {
11391 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11392 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11393 				return -EINVAL;
11394 			}
11395 			ret = check_mem_reg(env, reg, regno, type_size);
11396 			if (ret < 0)
11397 				return ret;
11398 			break;
11399 		case KF_ARG_PTR_TO_MEM_SIZE:
11400 		{
11401 			struct bpf_reg_state *buff_reg = &regs[regno];
11402 			const struct btf_param *buff_arg = &args[i];
11403 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11404 			const struct btf_param *size_arg = &args[i + 1];
11405 
11406 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11407 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11408 				if (ret < 0) {
11409 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11410 					return ret;
11411 				}
11412 			}
11413 
11414 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11415 				if (meta->arg_constant.found) {
11416 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11417 					return -EFAULT;
11418 				}
11419 				if (!tnum_is_const(size_reg->var_off)) {
11420 					verbose(env, "R%d must be a known constant\n", regno + 1);
11421 					return -EINVAL;
11422 				}
11423 				meta->arg_constant.found = true;
11424 				meta->arg_constant.value = size_reg->var_off.value;
11425 			}
11426 
11427 			/* Skip next '__sz' or '__szk' argument */
11428 			i++;
11429 			break;
11430 		}
11431 		case KF_ARG_PTR_TO_CALLBACK:
11432 			if (reg->type != PTR_TO_FUNC) {
11433 				verbose(env, "arg%d expected pointer to func\n", i);
11434 				return -EINVAL;
11435 			}
11436 			meta->subprogno = reg->subprogno;
11437 			break;
11438 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11439 			if (!type_is_ptr_alloc_obj(reg->type)) {
11440 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11441 				return -EINVAL;
11442 			}
11443 			if (!type_is_non_owning_ref(reg->type))
11444 				meta->arg_owning_ref = true;
11445 
11446 			rec = reg_btf_record(reg);
11447 			if (!rec) {
11448 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11449 				return -EFAULT;
11450 			}
11451 
11452 			if (rec->refcount_off < 0) {
11453 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11454 				return -EINVAL;
11455 			}
11456 
11457 			meta->arg_btf = reg->btf;
11458 			meta->arg_btf_id = reg->btf_id;
11459 			break;
11460 		}
11461 	}
11462 
11463 	if (is_kfunc_release(meta) && !meta->release_regno) {
11464 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11465 			func_name);
11466 		return -EINVAL;
11467 	}
11468 
11469 	return 0;
11470 }
11471 
11472 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11473 			    struct bpf_insn *insn,
11474 			    struct bpf_kfunc_call_arg_meta *meta,
11475 			    const char **kfunc_name)
11476 {
11477 	const struct btf_type *func, *func_proto;
11478 	u32 func_id, *kfunc_flags;
11479 	const char *func_name;
11480 	struct btf *desc_btf;
11481 
11482 	if (kfunc_name)
11483 		*kfunc_name = NULL;
11484 
11485 	if (!insn->imm)
11486 		return -EINVAL;
11487 
11488 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11489 	if (IS_ERR(desc_btf))
11490 		return PTR_ERR(desc_btf);
11491 
11492 	func_id = insn->imm;
11493 	func = btf_type_by_id(desc_btf, func_id);
11494 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11495 	if (kfunc_name)
11496 		*kfunc_name = func_name;
11497 	func_proto = btf_type_by_id(desc_btf, func->type);
11498 
11499 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11500 	if (!kfunc_flags) {
11501 		return -EACCES;
11502 	}
11503 
11504 	memset(meta, 0, sizeof(*meta));
11505 	meta->btf = desc_btf;
11506 	meta->func_id = func_id;
11507 	meta->kfunc_flags = *kfunc_flags;
11508 	meta->func_proto = func_proto;
11509 	meta->func_name = func_name;
11510 
11511 	return 0;
11512 }
11513 
11514 static int check_return_code(struct bpf_verifier_env *env, int regno);
11515 
11516 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11517 			    int *insn_idx_p)
11518 {
11519 	const struct btf_type *t, *ptr_type;
11520 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11521 	struct bpf_reg_state *regs = cur_regs(env);
11522 	const char *func_name, *ptr_type_name;
11523 	bool sleepable, rcu_lock, rcu_unlock;
11524 	struct bpf_kfunc_call_arg_meta meta;
11525 	struct bpf_insn_aux_data *insn_aux;
11526 	int err, insn_idx = *insn_idx_p;
11527 	const struct btf_param *args;
11528 	const struct btf_type *ret_t;
11529 	struct btf *desc_btf;
11530 
11531 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11532 	if (!insn->imm)
11533 		return 0;
11534 
11535 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11536 	if (err == -EACCES && func_name)
11537 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11538 	if (err)
11539 		return err;
11540 	desc_btf = meta.btf;
11541 	insn_aux = &env->insn_aux_data[insn_idx];
11542 
11543 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11544 
11545 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11546 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11547 		return -EACCES;
11548 	}
11549 
11550 	sleepable = is_kfunc_sleepable(&meta);
11551 	if (sleepable && !env->prog->aux->sleepable) {
11552 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11553 		return -EACCES;
11554 	}
11555 
11556 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11557 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11558 
11559 	if (env->cur_state->active_rcu_lock) {
11560 		struct bpf_func_state *state;
11561 		struct bpf_reg_state *reg;
11562 
11563 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11564 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11565 			return -EACCES;
11566 		}
11567 
11568 		if (rcu_lock) {
11569 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11570 			return -EINVAL;
11571 		} else if (rcu_unlock) {
11572 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11573 				if (reg->type & MEM_RCU) {
11574 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11575 					reg->type |= PTR_UNTRUSTED;
11576 				}
11577 			}));
11578 			env->cur_state->active_rcu_lock = false;
11579 		} else if (sleepable) {
11580 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11581 			return -EACCES;
11582 		}
11583 	} else if (rcu_lock) {
11584 		env->cur_state->active_rcu_lock = true;
11585 	} else if (rcu_unlock) {
11586 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11587 		return -EINVAL;
11588 	}
11589 
11590 	/* Check the arguments */
11591 	err = check_kfunc_args(env, &meta, insn_idx);
11592 	if (err < 0)
11593 		return err;
11594 	/* In case of release function, we get register number of refcounted
11595 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11596 	 */
11597 	if (meta.release_regno) {
11598 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11599 		if (err) {
11600 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11601 				func_name, meta.func_id);
11602 			return err;
11603 		}
11604 	}
11605 
11606 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11607 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11608 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11609 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11610 		insn_aux->insert_off = regs[BPF_REG_2].off;
11611 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11612 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11613 		if (err) {
11614 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11615 				func_name, meta.func_id);
11616 			return err;
11617 		}
11618 
11619 		err = release_reference(env, release_ref_obj_id);
11620 		if (err) {
11621 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11622 				func_name, meta.func_id);
11623 			return err;
11624 		}
11625 	}
11626 
11627 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11628 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11629 					set_rbtree_add_callback_state);
11630 		if (err) {
11631 			verbose(env, "kfunc %s#%d failed callback verification\n",
11632 				func_name, meta.func_id);
11633 			return err;
11634 		}
11635 	}
11636 
11637 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
11638 		if (!bpf_jit_supports_exceptions()) {
11639 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
11640 				func_name, meta.func_id);
11641 			return -ENOTSUPP;
11642 		}
11643 		env->seen_exception = true;
11644 
11645 		/* In the case of the default callback, the cookie value passed
11646 		 * to bpf_throw becomes the return value of the program.
11647 		 */
11648 		if (!env->exception_callback_subprog) {
11649 			err = check_return_code(env, BPF_REG_1);
11650 			if (err < 0)
11651 				return err;
11652 		}
11653 	}
11654 
11655 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11656 		mark_reg_not_init(env, regs, caller_saved[i]);
11657 
11658 	/* Check return type */
11659 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11660 
11661 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11662 		/* Only exception is bpf_obj_new_impl */
11663 		if (meta.btf != btf_vmlinux ||
11664 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11665 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
11666 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11667 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11668 			return -EINVAL;
11669 		}
11670 	}
11671 
11672 	if (btf_type_is_scalar(t)) {
11673 		mark_reg_unknown(env, regs, BPF_REG_0);
11674 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11675 	} else if (btf_type_is_ptr(t)) {
11676 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11677 
11678 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11679 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
11680 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11681 				struct btf_struct_meta *struct_meta;
11682 				struct btf *ret_btf;
11683 				u32 ret_btf_id;
11684 
11685 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
11686 					return -ENOMEM;
11687 
11688 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && !bpf_global_percpu_ma_set)
11689 					return -ENOMEM;
11690 
11691 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11692 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11693 					return -EINVAL;
11694 				}
11695 
11696 				ret_btf = env->prog->aux->btf;
11697 				ret_btf_id = meta.arg_constant.value;
11698 
11699 				/* This may be NULL due to user not supplying a BTF */
11700 				if (!ret_btf) {
11701 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
11702 					return -EINVAL;
11703 				}
11704 
11705 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11706 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11707 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
11708 					return -EINVAL;
11709 				}
11710 
11711 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
11712 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11713 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
11714 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
11715 						return -EINVAL;
11716 					}
11717 
11718 					if (struct_meta) {
11719 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
11720 						return -EINVAL;
11721 					}
11722 				}
11723 
11724 				mark_reg_known_zero(env, regs, BPF_REG_0);
11725 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11726 				regs[BPF_REG_0].btf = ret_btf;
11727 				regs[BPF_REG_0].btf_id = ret_btf_id;
11728 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
11729 					regs[BPF_REG_0].type |= MEM_PERCPU;
11730 
11731 				insn_aux->obj_new_size = ret_t->size;
11732 				insn_aux->kptr_struct_meta = struct_meta;
11733 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11734 				mark_reg_known_zero(env, regs, BPF_REG_0);
11735 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11736 				regs[BPF_REG_0].btf = meta.arg_btf;
11737 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11738 
11739 				insn_aux->kptr_struct_meta =
11740 					btf_find_struct_meta(meta.arg_btf,
11741 							     meta.arg_btf_id);
11742 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11743 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11744 				struct btf_field *field = meta.arg_list_head.field;
11745 
11746 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11747 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11748 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11749 				struct btf_field *field = meta.arg_rbtree_root.field;
11750 
11751 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11752 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11753 				mark_reg_known_zero(env, regs, BPF_REG_0);
11754 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11755 				regs[BPF_REG_0].btf = desc_btf;
11756 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11757 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11758 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11759 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11760 					verbose(env,
11761 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11762 					return -EINVAL;
11763 				}
11764 
11765 				mark_reg_known_zero(env, regs, BPF_REG_0);
11766 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11767 				regs[BPF_REG_0].btf = desc_btf;
11768 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11769 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11770 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11771 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11772 
11773 				mark_reg_known_zero(env, regs, BPF_REG_0);
11774 
11775 				if (!meta.arg_constant.found) {
11776 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11777 					return -EFAULT;
11778 				}
11779 
11780 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11781 
11782 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11783 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11784 
11785 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11786 					regs[BPF_REG_0].type |= MEM_RDONLY;
11787 				} else {
11788 					/* this will set env->seen_direct_write to true */
11789 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11790 						verbose(env, "the prog does not allow writes to packet data\n");
11791 						return -EINVAL;
11792 					}
11793 				}
11794 
11795 				if (!meta.initialized_dynptr.id) {
11796 					verbose(env, "verifier internal error: no dynptr id\n");
11797 					return -EFAULT;
11798 				}
11799 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11800 
11801 				/* we don't need to set BPF_REG_0's ref obj id
11802 				 * because packet slices are not refcounted (see
11803 				 * dynptr_type_refcounted)
11804 				 */
11805 			} else {
11806 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11807 					meta.func_name);
11808 				return -EFAULT;
11809 			}
11810 		} else if (!__btf_type_is_struct(ptr_type)) {
11811 			if (!meta.r0_size) {
11812 				__u32 sz;
11813 
11814 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11815 					meta.r0_size = sz;
11816 					meta.r0_rdonly = true;
11817 				}
11818 			}
11819 			if (!meta.r0_size) {
11820 				ptr_type_name = btf_name_by_offset(desc_btf,
11821 								   ptr_type->name_off);
11822 				verbose(env,
11823 					"kernel function %s returns pointer type %s %s is not supported\n",
11824 					func_name,
11825 					btf_type_str(ptr_type),
11826 					ptr_type_name);
11827 				return -EINVAL;
11828 			}
11829 
11830 			mark_reg_known_zero(env, regs, BPF_REG_0);
11831 			regs[BPF_REG_0].type = PTR_TO_MEM;
11832 			regs[BPF_REG_0].mem_size = meta.r0_size;
11833 
11834 			if (meta.r0_rdonly)
11835 				regs[BPF_REG_0].type |= MEM_RDONLY;
11836 
11837 			/* Ensures we don't access the memory after a release_reference() */
11838 			if (meta.ref_obj_id)
11839 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11840 		} else {
11841 			mark_reg_known_zero(env, regs, BPF_REG_0);
11842 			regs[BPF_REG_0].btf = desc_btf;
11843 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11844 			regs[BPF_REG_0].btf_id = ptr_type_id;
11845 		}
11846 
11847 		if (is_kfunc_ret_null(&meta)) {
11848 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11849 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11850 			regs[BPF_REG_0].id = ++env->id_gen;
11851 		}
11852 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11853 		if (is_kfunc_acquire(&meta)) {
11854 			int id = acquire_reference_state(env, insn_idx);
11855 
11856 			if (id < 0)
11857 				return id;
11858 			if (is_kfunc_ret_null(&meta))
11859 				regs[BPF_REG_0].id = id;
11860 			regs[BPF_REG_0].ref_obj_id = id;
11861 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11862 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11863 		}
11864 
11865 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11866 			regs[BPF_REG_0].id = ++env->id_gen;
11867 	} else if (btf_type_is_void(t)) {
11868 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11869 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
11870 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11871 				insn_aux->kptr_struct_meta =
11872 					btf_find_struct_meta(meta.arg_btf,
11873 							     meta.arg_btf_id);
11874 			}
11875 		}
11876 	}
11877 
11878 	nargs = btf_type_vlen(meta.func_proto);
11879 	args = (const struct btf_param *)(meta.func_proto + 1);
11880 	for (i = 0; i < nargs; i++) {
11881 		u32 regno = i + 1;
11882 
11883 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11884 		if (btf_type_is_ptr(t))
11885 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11886 		else
11887 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11888 			mark_btf_func_reg_size(env, regno, t->size);
11889 	}
11890 
11891 	if (is_iter_next_kfunc(&meta)) {
11892 		err = process_iter_next_call(env, insn_idx, &meta);
11893 		if (err)
11894 			return err;
11895 	}
11896 
11897 	return 0;
11898 }
11899 
11900 static bool signed_add_overflows(s64 a, s64 b)
11901 {
11902 	/* Do the add in u64, where overflow is well-defined */
11903 	s64 res = (s64)((u64)a + (u64)b);
11904 
11905 	if (b < 0)
11906 		return res > a;
11907 	return res < a;
11908 }
11909 
11910 static bool signed_add32_overflows(s32 a, s32 b)
11911 {
11912 	/* Do the add in u32, where overflow is well-defined */
11913 	s32 res = (s32)((u32)a + (u32)b);
11914 
11915 	if (b < 0)
11916 		return res > a;
11917 	return res < a;
11918 }
11919 
11920 static bool signed_sub_overflows(s64 a, s64 b)
11921 {
11922 	/* Do the sub in u64, where overflow is well-defined */
11923 	s64 res = (s64)((u64)a - (u64)b);
11924 
11925 	if (b < 0)
11926 		return res < a;
11927 	return res > a;
11928 }
11929 
11930 static bool signed_sub32_overflows(s32 a, s32 b)
11931 {
11932 	/* Do the sub in u32, where overflow is well-defined */
11933 	s32 res = (s32)((u32)a - (u32)b);
11934 
11935 	if (b < 0)
11936 		return res < a;
11937 	return res > a;
11938 }
11939 
11940 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11941 				  const struct bpf_reg_state *reg,
11942 				  enum bpf_reg_type type)
11943 {
11944 	bool known = tnum_is_const(reg->var_off);
11945 	s64 val = reg->var_off.value;
11946 	s64 smin = reg->smin_value;
11947 
11948 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11949 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11950 			reg_type_str(env, type), val);
11951 		return false;
11952 	}
11953 
11954 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11955 		verbose(env, "%s pointer offset %d is not allowed\n",
11956 			reg_type_str(env, type), reg->off);
11957 		return false;
11958 	}
11959 
11960 	if (smin == S64_MIN) {
11961 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11962 			reg_type_str(env, type));
11963 		return false;
11964 	}
11965 
11966 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11967 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11968 			smin, reg_type_str(env, type));
11969 		return false;
11970 	}
11971 
11972 	return true;
11973 }
11974 
11975 enum {
11976 	REASON_BOUNDS	= -1,
11977 	REASON_TYPE	= -2,
11978 	REASON_PATHS	= -3,
11979 	REASON_LIMIT	= -4,
11980 	REASON_STACK	= -5,
11981 };
11982 
11983 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11984 			      u32 *alu_limit, bool mask_to_left)
11985 {
11986 	u32 max = 0, ptr_limit = 0;
11987 
11988 	switch (ptr_reg->type) {
11989 	case PTR_TO_STACK:
11990 		/* Offset 0 is out-of-bounds, but acceptable start for the
11991 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11992 		 * offset where we would need to deal with min/max bounds is
11993 		 * currently prohibited for unprivileged.
11994 		 */
11995 		max = MAX_BPF_STACK + mask_to_left;
11996 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11997 		break;
11998 	case PTR_TO_MAP_VALUE:
11999 		max = ptr_reg->map_ptr->value_size;
12000 		ptr_limit = (mask_to_left ?
12001 			     ptr_reg->smin_value :
12002 			     ptr_reg->umax_value) + ptr_reg->off;
12003 		break;
12004 	default:
12005 		return REASON_TYPE;
12006 	}
12007 
12008 	if (ptr_limit >= max)
12009 		return REASON_LIMIT;
12010 	*alu_limit = ptr_limit;
12011 	return 0;
12012 }
12013 
12014 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12015 				    const struct bpf_insn *insn)
12016 {
12017 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12018 }
12019 
12020 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12021 				       u32 alu_state, u32 alu_limit)
12022 {
12023 	/* If we arrived here from different branches with different
12024 	 * state or limits to sanitize, then this won't work.
12025 	 */
12026 	if (aux->alu_state &&
12027 	    (aux->alu_state != alu_state ||
12028 	     aux->alu_limit != alu_limit))
12029 		return REASON_PATHS;
12030 
12031 	/* Corresponding fixup done in do_misc_fixups(). */
12032 	aux->alu_state = alu_state;
12033 	aux->alu_limit = alu_limit;
12034 	return 0;
12035 }
12036 
12037 static int sanitize_val_alu(struct bpf_verifier_env *env,
12038 			    struct bpf_insn *insn)
12039 {
12040 	struct bpf_insn_aux_data *aux = cur_aux(env);
12041 
12042 	if (can_skip_alu_sanitation(env, insn))
12043 		return 0;
12044 
12045 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12046 }
12047 
12048 static bool sanitize_needed(u8 opcode)
12049 {
12050 	return opcode == BPF_ADD || opcode == BPF_SUB;
12051 }
12052 
12053 struct bpf_sanitize_info {
12054 	struct bpf_insn_aux_data aux;
12055 	bool mask_to_left;
12056 };
12057 
12058 static struct bpf_verifier_state *
12059 sanitize_speculative_path(struct bpf_verifier_env *env,
12060 			  const struct bpf_insn *insn,
12061 			  u32 next_idx, u32 curr_idx)
12062 {
12063 	struct bpf_verifier_state *branch;
12064 	struct bpf_reg_state *regs;
12065 
12066 	branch = push_stack(env, next_idx, curr_idx, true);
12067 	if (branch && insn) {
12068 		regs = branch->frame[branch->curframe]->regs;
12069 		if (BPF_SRC(insn->code) == BPF_K) {
12070 			mark_reg_unknown(env, regs, insn->dst_reg);
12071 		} else if (BPF_SRC(insn->code) == BPF_X) {
12072 			mark_reg_unknown(env, regs, insn->dst_reg);
12073 			mark_reg_unknown(env, regs, insn->src_reg);
12074 		}
12075 	}
12076 	return branch;
12077 }
12078 
12079 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12080 			    struct bpf_insn *insn,
12081 			    const struct bpf_reg_state *ptr_reg,
12082 			    const struct bpf_reg_state *off_reg,
12083 			    struct bpf_reg_state *dst_reg,
12084 			    struct bpf_sanitize_info *info,
12085 			    const bool commit_window)
12086 {
12087 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12088 	struct bpf_verifier_state *vstate = env->cur_state;
12089 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12090 	bool off_is_neg = off_reg->smin_value < 0;
12091 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12092 	u8 opcode = BPF_OP(insn->code);
12093 	u32 alu_state, alu_limit;
12094 	struct bpf_reg_state tmp;
12095 	bool ret;
12096 	int err;
12097 
12098 	if (can_skip_alu_sanitation(env, insn))
12099 		return 0;
12100 
12101 	/* We already marked aux for masking from non-speculative
12102 	 * paths, thus we got here in the first place. We only care
12103 	 * to explore bad access from here.
12104 	 */
12105 	if (vstate->speculative)
12106 		goto do_sim;
12107 
12108 	if (!commit_window) {
12109 		if (!tnum_is_const(off_reg->var_off) &&
12110 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12111 			return REASON_BOUNDS;
12112 
12113 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12114 				     (opcode == BPF_SUB && !off_is_neg);
12115 	}
12116 
12117 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12118 	if (err < 0)
12119 		return err;
12120 
12121 	if (commit_window) {
12122 		/* In commit phase we narrow the masking window based on
12123 		 * the observed pointer move after the simulated operation.
12124 		 */
12125 		alu_state = info->aux.alu_state;
12126 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12127 	} else {
12128 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12129 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12130 		alu_state |= ptr_is_dst_reg ?
12131 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12132 
12133 		/* Limit pruning on unknown scalars to enable deep search for
12134 		 * potential masking differences from other program paths.
12135 		 */
12136 		if (!off_is_imm)
12137 			env->explore_alu_limits = true;
12138 	}
12139 
12140 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12141 	if (err < 0)
12142 		return err;
12143 do_sim:
12144 	/* If we're in commit phase, we're done here given we already
12145 	 * pushed the truncated dst_reg into the speculative verification
12146 	 * stack.
12147 	 *
12148 	 * Also, when register is a known constant, we rewrite register-based
12149 	 * operation to immediate-based, and thus do not need masking (and as
12150 	 * a consequence, do not need to simulate the zero-truncation either).
12151 	 */
12152 	if (commit_window || off_is_imm)
12153 		return 0;
12154 
12155 	/* Simulate and find potential out-of-bounds access under
12156 	 * speculative execution from truncation as a result of
12157 	 * masking when off was not within expected range. If off
12158 	 * sits in dst, then we temporarily need to move ptr there
12159 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12160 	 * for cases where we use K-based arithmetic in one direction
12161 	 * and truncated reg-based in the other in order to explore
12162 	 * bad access.
12163 	 */
12164 	if (!ptr_is_dst_reg) {
12165 		tmp = *dst_reg;
12166 		copy_register_state(dst_reg, ptr_reg);
12167 	}
12168 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12169 					env->insn_idx);
12170 	if (!ptr_is_dst_reg && ret)
12171 		*dst_reg = tmp;
12172 	return !ret ? REASON_STACK : 0;
12173 }
12174 
12175 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12176 {
12177 	struct bpf_verifier_state *vstate = env->cur_state;
12178 
12179 	/* If we simulate paths under speculation, we don't update the
12180 	 * insn as 'seen' such that when we verify unreachable paths in
12181 	 * the non-speculative domain, sanitize_dead_code() can still
12182 	 * rewrite/sanitize them.
12183 	 */
12184 	if (!vstate->speculative)
12185 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12186 }
12187 
12188 static int sanitize_err(struct bpf_verifier_env *env,
12189 			const struct bpf_insn *insn, int reason,
12190 			const struct bpf_reg_state *off_reg,
12191 			const struct bpf_reg_state *dst_reg)
12192 {
12193 	static const char *err = "pointer arithmetic with it prohibited for !root";
12194 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12195 	u32 dst = insn->dst_reg, src = insn->src_reg;
12196 
12197 	switch (reason) {
12198 	case REASON_BOUNDS:
12199 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12200 			off_reg == dst_reg ? dst : src, err);
12201 		break;
12202 	case REASON_TYPE:
12203 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12204 			off_reg == dst_reg ? src : dst, err);
12205 		break;
12206 	case REASON_PATHS:
12207 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12208 			dst, op, err);
12209 		break;
12210 	case REASON_LIMIT:
12211 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12212 			dst, op, err);
12213 		break;
12214 	case REASON_STACK:
12215 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12216 			dst, err);
12217 		break;
12218 	default:
12219 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12220 			reason);
12221 		break;
12222 	}
12223 
12224 	return -EACCES;
12225 }
12226 
12227 /* check that stack access falls within stack limits and that 'reg' doesn't
12228  * have a variable offset.
12229  *
12230  * Variable offset is prohibited for unprivileged mode for simplicity since it
12231  * requires corresponding support in Spectre masking for stack ALU.  See also
12232  * retrieve_ptr_limit().
12233  *
12234  *
12235  * 'off' includes 'reg->off'.
12236  */
12237 static int check_stack_access_for_ptr_arithmetic(
12238 				struct bpf_verifier_env *env,
12239 				int regno,
12240 				const struct bpf_reg_state *reg,
12241 				int off)
12242 {
12243 	if (!tnum_is_const(reg->var_off)) {
12244 		char tn_buf[48];
12245 
12246 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12247 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12248 			regno, tn_buf, off);
12249 		return -EACCES;
12250 	}
12251 
12252 	if (off >= 0 || off < -MAX_BPF_STACK) {
12253 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12254 			"prohibited for !root; off=%d\n", regno, off);
12255 		return -EACCES;
12256 	}
12257 
12258 	return 0;
12259 }
12260 
12261 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12262 				 const struct bpf_insn *insn,
12263 				 const struct bpf_reg_state *dst_reg)
12264 {
12265 	u32 dst = insn->dst_reg;
12266 
12267 	/* For unprivileged we require that resulting offset must be in bounds
12268 	 * in order to be able to sanitize access later on.
12269 	 */
12270 	if (env->bypass_spec_v1)
12271 		return 0;
12272 
12273 	switch (dst_reg->type) {
12274 	case PTR_TO_STACK:
12275 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12276 					dst_reg->off + dst_reg->var_off.value))
12277 			return -EACCES;
12278 		break;
12279 	case PTR_TO_MAP_VALUE:
12280 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12281 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12282 				"prohibited for !root\n", dst);
12283 			return -EACCES;
12284 		}
12285 		break;
12286 	default:
12287 		break;
12288 	}
12289 
12290 	return 0;
12291 }
12292 
12293 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12294  * Caller should also handle BPF_MOV case separately.
12295  * If we return -EACCES, caller may want to try again treating pointer as a
12296  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12297  */
12298 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12299 				   struct bpf_insn *insn,
12300 				   const struct bpf_reg_state *ptr_reg,
12301 				   const struct bpf_reg_state *off_reg)
12302 {
12303 	struct bpf_verifier_state *vstate = env->cur_state;
12304 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12305 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12306 	bool known = tnum_is_const(off_reg->var_off);
12307 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12308 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12309 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12310 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12311 	struct bpf_sanitize_info info = {};
12312 	u8 opcode = BPF_OP(insn->code);
12313 	u32 dst = insn->dst_reg;
12314 	int ret;
12315 
12316 	dst_reg = &regs[dst];
12317 
12318 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12319 	    smin_val > smax_val || umin_val > umax_val) {
12320 		/* Taint dst register if offset had invalid bounds derived from
12321 		 * e.g. dead branches.
12322 		 */
12323 		__mark_reg_unknown(env, dst_reg);
12324 		return 0;
12325 	}
12326 
12327 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12328 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12329 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12330 			__mark_reg_unknown(env, dst_reg);
12331 			return 0;
12332 		}
12333 
12334 		verbose(env,
12335 			"R%d 32-bit pointer arithmetic prohibited\n",
12336 			dst);
12337 		return -EACCES;
12338 	}
12339 
12340 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12341 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12342 			dst, reg_type_str(env, ptr_reg->type));
12343 		return -EACCES;
12344 	}
12345 
12346 	switch (base_type(ptr_reg->type)) {
12347 	case CONST_PTR_TO_MAP:
12348 		/* smin_val represents the known value */
12349 		if (known && smin_val == 0 && opcode == BPF_ADD)
12350 			break;
12351 		fallthrough;
12352 	case PTR_TO_PACKET_END:
12353 	case PTR_TO_SOCKET:
12354 	case PTR_TO_SOCK_COMMON:
12355 	case PTR_TO_TCP_SOCK:
12356 	case PTR_TO_XDP_SOCK:
12357 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12358 			dst, reg_type_str(env, ptr_reg->type));
12359 		return -EACCES;
12360 	default:
12361 		break;
12362 	}
12363 
12364 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12365 	 * The id may be overwritten later if we create a new variable offset.
12366 	 */
12367 	dst_reg->type = ptr_reg->type;
12368 	dst_reg->id = ptr_reg->id;
12369 
12370 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12371 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12372 		return -EINVAL;
12373 
12374 	/* pointer types do not carry 32-bit bounds at the moment. */
12375 	__mark_reg32_unbounded(dst_reg);
12376 
12377 	if (sanitize_needed(opcode)) {
12378 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12379 				       &info, false);
12380 		if (ret < 0)
12381 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12382 	}
12383 
12384 	switch (opcode) {
12385 	case BPF_ADD:
12386 		/* We can take a fixed offset as long as it doesn't overflow
12387 		 * the s32 'off' field
12388 		 */
12389 		if (known && (ptr_reg->off + smin_val ==
12390 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12391 			/* pointer += K.  Accumulate it into fixed offset */
12392 			dst_reg->smin_value = smin_ptr;
12393 			dst_reg->smax_value = smax_ptr;
12394 			dst_reg->umin_value = umin_ptr;
12395 			dst_reg->umax_value = umax_ptr;
12396 			dst_reg->var_off = ptr_reg->var_off;
12397 			dst_reg->off = ptr_reg->off + smin_val;
12398 			dst_reg->raw = ptr_reg->raw;
12399 			break;
12400 		}
12401 		/* A new variable offset is created.  Note that off_reg->off
12402 		 * == 0, since it's a scalar.
12403 		 * dst_reg gets the pointer type and since some positive
12404 		 * integer value was added to the pointer, give it a new 'id'
12405 		 * if it's a PTR_TO_PACKET.
12406 		 * this creates a new 'base' pointer, off_reg (variable) gets
12407 		 * added into the variable offset, and we copy the fixed offset
12408 		 * from ptr_reg.
12409 		 */
12410 		if (signed_add_overflows(smin_ptr, smin_val) ||
12411 		    signed_add_overflows(smax_ptr, smax_val)) {
12412 			dst_reg->smin_value = S64_MIN;
12413 			dst_reg->smax_value = S64_MAX;
12414 		} else {
12415 			dst_reg->smin_value = smin_ptr + smin_val;
12416 			dst_reg->smax_value = smax_ptr + smax_val;
12417 		}
12418 		if (umin_ptr + umin_val < umin_ptr ||
12419 		    umax_ptr + umax_val < umax_ptr) {
12420 			dst_reg->umin_value = 0;
12421 			dst_reg->umax_value = U64_MAX;
12422 		} else {
12423 			dst_reg->umin_value = umin_ptr + umin_val;
12424 			dst_reg->umax_value = umax_ptr + umax_val;
12425 		}
12426 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12427 		dst_reg->off = ptr_reg->off;
12428 		dst_reg->raw = ptr_reg->raw;
12429 		if (reg_is_pkt_pointer(ptr_reg)) {
12430 			dst_reg->id = ++env->id_gen;
12431 			/* something was added to pkt_ptr, set range to zero */
12432 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12433 		}
12434 		break;
12435 	case BPF_SUB:
12436 		if (dst_reg == off_reg) {
12437 			/* scalar -= pointer.  Creates an unknown scalar */
12438 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12439 				dst);
12440 			return -EACCES;
12441 		}
12442 		/* We don't allow subtraction from FP, because (according to
12443 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12444 		 * be able to deal with it.
12445 		 */
12446 		if (ptr_reg->type == PTR_TO_STACK) {
12447 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12448 				dst);
12449 			return -EACCES;
12450 		}
12451 		if (known && (ptr_reg->off - smin_val ==
12452 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12453 			/* pointer -= K.  Subtract it from fixed offset */
12454 			dst_reg->smin_value = smin_ptr;
12455 			dst_reg->smax_value = smax_ptr;
12456 			dst_reg->umin_value = umin_ptr;
12457 			dst_reg->umax_value = umax_ptr;
12458 			dst_reg->var_off = ptr_reg->var_off;
12459 			dst_reg->id = ptr_reg->id;
12460 			dst_reg->off = ptr_reg->off - smin_val;
12461 			dst_reg->raw = ptr_reg->raw;
12462 			break;
12463 		}
12464 		/* A new variable offset is created.  If the subtrahend is known
12465 		 * nonnegative, then any reg->range we had before is still good.
12466 		 */
12467 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12468 		    signed_sub_overflows(smax_ptr, smin_val)) {
12469 			/* Overflow possible, we know nothing */
12470 			dst_reg->smin_value = S64_MIN;
12471 			dst_reg->smax_value = S64_MAX;
12472 		} else {
12473 			dst_reg->smin_value = smin_ptr - smax_val;
12474 			dst_reg->smax_value = smax_ptr - smin_val;
12475 		}
12476 		if (umin_ptr < umax_val) {
12477 			/* Overflow possible, we know nothing */
12478 			dst_reg->umin_value = 0;
12479 			dst_reg->umax_value = U64_MAX;
12480 		} else {
12481 			/* Cannot overflow (as long as bounds are consistent) */
12482 			dst_reg->umin_value = umin_ptr - umax_val;
12483 			dst_reg->umax_value = umax_ptr - umin_val;
12484 		}
12485 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12486 		dst_reg->off = ptr_reg->off;
12487 		dst_reg->raw = ptr_reg->raw;
12488 		if (reg_is_pkt_pointer(ptr_reg)) {
12489 			dst_reg->id = ++env->id_gen;
12490 			/* something was added to pkt_ptr, set range to zero */
12491 			if (smin_val < 0)
12492 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12493 		}
12494 		break;
12495 	case BPF_AND:
12496 	case BPF_OR:
12497 	case BPF_XOR:
12498 		/* bitwise ops on pointers are troublesome, prohibit. */
12499 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12500 			dst, bpf_alu_string[opcode >> 4]);
12501 		return -EACCES;
12502 	default:
12503 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12504 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12505 			dst, bpf_alu_string[opcode >> 4]);
12506 		return -EACCES;
12507 	}
12508 
12509 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12510 		return -EINVAL;
12511 	reg_bounds_sync(dst_reg);
12512 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12513 		return -EACCES;
12514 	if (sanitize_needed(opcode)) {
12515 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12516 				       &info, true);
12517 		if (ret < 0)
12518 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12519 	}
12520 
12521 	return 0;
12522 }
12523 
12524 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12525 				 struct bpf_reg_state *src_reg)
12526 {
12527 	s32 smin_val = src_reg->s32_min_value;
12528 	s32 smax_val = src_reg->s32_max_value;
12529 	u32 umin_val = src_reg->u32_min_value;
12530 	u32 umax_val = src_reg->u32_max_value;
12531 
12532 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12533 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12534 		dst_reg->s32_min_value = S32_MIN;
12535 		dst_reg->s32_max_value = S32_MAX;
12536 	} else {
12537 		dst_reg->s32_min_value += smin_val;
12538 		dst_reg->s32_max_value += smax_val;
12539 	}
12540 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12541 	    dst_reg->u32_max_value + umax_val < umax_val) {
12542 		dst_reg->u32_min_value = 0;
12543 		dst_reg->u32_max_value = U32_MAX;
12544 	} else {
12545 		dst_reg->u32_min_value += umin_val;
12546 		dst_reg->u32_max_value += umax_val;
12547 	}
12548 }
12549 
12550 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12551 			       struct bpf_reg_state *src_reg)
12552 {
12553 	s64 smin_val = src_reg->smin_value;
12554 	s64 smax_val = src_reg->smax_value;
12555 	u64 umin_val = src_reg->umin_value;
12556 	u64 umax_val = src_reg->umax_value;
12557 
12558 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12559 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12560 		dst_reg->smin_value = S64_MIN;
12561 		dst_reg->smax_value = S64_MAX;
12562 	} else {
12563 		dst_reg->smin_value += smin_val;
12564 		dst_reg->smax_value += smax_val;
12565 	}
12566 	if (dst_reg->umin_value + umin_val < umin_val ||
12567 	    dst_reg->umax_value + umax_val < umax_val) {
12568 		dst_reg->umin_value = 0;
12569 		dst_reg->umax_value = U64_MAX;
12570 	} else {
12571 		dst_reg->umin_value += umin_val;
12572 		dst_reg->umax_value += umax_val;
12573 	}
12574 }
12575 
12576 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12577 				 struct bpf_reg_state *src_reg)
12578 {
12579 	s32 smin_val = src_reg->s32_min_value;
12580 	s32 smax_val = src_reg->s32_max_value;
12581 	u32 umin_val = src_reg->u32_min_value;
12582 	u32 umax_val = src_reg->u32_max_value;
12583 
12584 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12585 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12586 		/* Overflow possible, we know nothing */
12587 		dst_reg->s32_min_value = S32_MIN;
12588 		dst_reg->s32_max_value = S32_MAX;
12589 	} else {
12590 		dst_reg->s32_min_value -= smax_val;
12591 		dst_reg->s32_max_value -= smin_val;
12592 	}
12593 	if (dst_reg->u32_min_value < umax_val) {
12594 		/* Overflow possible, we know nothing */
12595 		dst_reg->u32_min_value = 0;
12596 		dst_reg->u32_max_value = U32_MAX;
12597 	} else {
12598 		/* Cannot overflow (as long as bounds are consistent) */
12599 		dst_reg->u32_min_value -= umax_val;
12600 		dst_reg->u32_max_value -= umin_val;
12601 	}
12602 }
12603 
12604 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12605 			       struct bpf_reg_state *src_reg)
12606 {
12607 	s64 smin_val = src_reg->smin_value;
12608 	s64 smax_val = src_reg->smax_value;
12609 	u64 umin_val = src_reg->umin_value;
12610 	u64 umax_val = src_reg->umax_value;
12611 
12612 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12613 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12614 		/* Overflow possible, we know nothing */
12615 		dst_reg->smin_value = S64_MIN;
12616 		dst_reg->smax_value = S64_MAX;
12617 	} else {
12618 		dst_reg->smin_value -= smax_val;
12619 		dst_reg->smax_value -= smin_val;
12620 	}
12621 	if (dst_reg->umin_value < umax_val) {
12622 		/* Overflow possible, we know nothing */
12623 		dst_reg->umin_value = 0;
12624 		dst_reg->umax_value = U64_MAX;
12625 	} else {
12626 		/* Cannot overflow (as long as bounds are consistent) */
12627 		dst_reg->umin_value -= umax_val;
12628 		dst_reg->umax_value -= umin_val;
12629 	}
12630 }
12631 
12632 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12633 				 struct bpf_reg_state *src_reg)
12634 {
12635 	s32 smin_val = src_reg->s32_min_value;
12636 	u32 umin_val = src_reg->u32_min_value;
12637 	u32 umax_val = src_reg->u32_max_value;
12638 
12639 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12640 		/* Ain't nobody got time to multiply that sign */
12641 		__mark_reg32_unbounded(dst_reg);
12642 		return;
12643 	}
12644 	/* Both values are positive, so we can work with unsigned and
12645 	 * copy the result to signed (unless it exceeds S32_MAX).
12646 	 */
12647 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12648 		/* Potential overflow, we know nothing */
12649 		__mark_reg32_unbounded(dst_reg);
12650 		return;
12651 	}
12652 	dst_reg->u32_min_value *= umin_val;
12653 	dst_reg->u32_max_value *= umax_val;
12654 	if (dst_reg->u32_max_value > S32_MAX) {
12655 		/* Overflow possible, we know nothing */
12656 		dst_reg->s32_min_value = S32_MIN;
12657 		dst_reg->s32_max_value = S32_MAX;
12658 	} else {
12659 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12660 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12661 	}
12662 }
12663 
12664 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12665 			       struct bpf_reg_state *src_reg)
12666 {
12667 	s64 smin_val = src_reg->smin_value;
12668 	u64 umin_val = src_reg->umin_value;
12669 	u64 umax_val = src_reg->umax_value;
12670 
12671 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12672 		/* Ain't nobody got time to multiply that sign */
12673 		__mark_reg64_unbounded(dst_reg);
12674 		return;
12675 	}
12676 	/* Both values are positive, so we can work with unsigned and
12677 	 * copy the result to signed (unless it exceeds S64_MAX).
12678 	 */
12679 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12680 		/* Potential overflow, we know nothing */
12681 		__mark_reg64_unbounded(dst_reg);
12682 		return;
12683 	}
12684 	dst_reg->umin_value *= umin_val;
12685 	dst_reg->umax_value *= umax_val;
12686 	if (dst_reg->umax_value > S64_MAX) {
12687 		/* Overflow possible, we know nothing */
12688 		dst_reg->smin_value = S64_MIN;
12689 		dst_reg->smax_value = S64_MAX;
12690 	} else {
12691 		dst_reg->smin_value = dst_reg->umin_value;
12692 		dst_reg->smax_value = dst_reg->umax_value;
12693 	}
12694 }
12695 
12696 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12697 				 struct bpf_reg_state *src_reg)
12698 {
12699 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12700 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12701 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12702 	s32 smin_val = src_reg->s32_min_value;
12703 	u32 umax_val = src_reg->u32_max_value;
12704 
12705 	if (src_known && dst_known) {
12706 		__mark_reg32_known(dst_reg, var32_off.value);
12707 		return;
12708 	}
12709 
12710 	/* We get our minimum from the var_off, since that's inherently
12711 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12712 	 */
12713 	dst_reg->u32_min_value = var32_off.value;
12714 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12715 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12716 		/* Lose signed bounds when ANDing negative numbers,
12717 		 * ain't nobody got time for that.
12718 		 */
12719 		dst_reg->s32_min_value = S32_MIN;
12720 		dst_reg->s32_max_value = S32_MAX;
12721 	} else {
12722 		/* ANDing two positives gives a positive, so safe to
12723 		 * cast result into s64.
12724 		 */
12725 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12726 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12727 	}
12728 }
12729 
12730 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12731 			       struct bpf_reg_state *src_reg)
12732 {
12733 	bool src_known = tnum_is_const(src_reg->var_off);
12734 	bool dst_known = tnum_is_const(dst_reg->var_off);
12735 	s64 smin_val = src_reg->smin_value;
12736 	u64 umax_val = src_reg->umax_value;
12737 
12738 	if (src_known && dst_known) {
12739 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12740 		return;
12741 	}
12742 
12743 	/* We get our minimum from the var_off, since that's inherently
12744 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12745 	 */
12746 	dst_reg->umin_value = dst_reg->var_off.value;
12747 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12748 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12749 		/* Lose signed bounds when ANDing negative numbers,
12750 		 * ain't nobody got time for that.
12751 		 */
12752 		dst_reg->smin_value = S64_MIN;
12753 		dst_reg->smax_value = S64_MAX;
12754 	} else {
12755 		/* ANDing two positives gives a positive, so safe to
12756 		 * cast result into s64.
12757 		 */
12758 		dst_reg->smin_value = dst_reg->umin_value;
12759 		dst_reg->smax_value = dst_reg->umax_value;
12760 	}
12761 	/* We may learn something more from the var_off */
12762 	__update_reg_bounds(dst_reg);
12763 }
12764 
12765 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12766 				struct bpf_reg_state *src_reg)
12767 {
12768 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12769 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12770 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12771 	s32 smin_val = src_reg->s32_min_value;
12772 	u32 umin_val = src_reg->u32_min_value;
12773 
12774 	if (src_known && dst_known) {
12775 		__mark_reg32_known(dst_reg, var32_off.value);
12776 		return;
12777 	}
12778 
12779 	/* We get our maximum from the var_off, and our minimum is the
12780 	 * maximum of the operands' minima
12781 	 */
12782 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12783 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12784 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12785 		/* Lose signed bounds when ORing negative numbers,
12786 		 * ain't nobody got time for that.
12787 		 */
12788 		dst_reg->s32_min_value = S32_MIN;
12789 		dst_reg->s32_max_value = S32_MAX;
12790 	} else {
12791 		/* ORing two positives gives a positive, so safe to
12792 		 * cast result into s64.
12793 		 */
12794 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12795 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12796 	}
12797 }
12798 
12799 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12800 			      struct bpf_reg_state *src_reg)
12801 {
12802 	bool src_known = tnum_is_const(src_reg->var_off);
12803 	bool dst_known = tnum_is_const(dst_reg->var_off);
12804 	s64 smin_val = src_reg->smin_value;
12805 	u64 umin_val = src_reg->umin_value;
12806 
12807 	if (src_known && dst_known) {
12808 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12809 		return;
12810 	}
12811 
12812 	/* We get our maximum from the var_off, and our minimum is the
12813 	 * maximum of the operands' minima
12814 	 */
12815 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12816 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12817 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12818 		/* Lose signed bounds when ORing negative numbers,
12819 		 * ain't nobody got time for that.
12820 		 */
12821 		dst_reg->smin_value = S64_MIN;
12822 		dst_reg->smax_value = S64_MAX;
12823 	} else {
12824 		/* ORing two positives gives a positive, so safe to
12825 		 * cast result into s64.
12826 		 */
12827 		dst_reg->smin_value = dst_reg->umin_value;
12828 		dst_reg->smax_value = dst_reg->umax_value;
12829 	}
12830 	/* We may learn something more from the var_off */
12831 	__update_reg_bounds(dst_reg);
12832 }
12833 
12834 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12835 				 struct bpf_reg_state *src_reg)
12836 {
12837 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12838 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12839 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12840 	s32 smin_val = src_reg->s32_min_value;
12841 
12842 	if (src_known && dst_known) {
12843 		__mark_reg32_known(dst_reg, var32_off.value);
12844 		return;
12845 	}
12846 
12847 	/* We get both minimum and maximum from the var32_off. */
12848 	dst_reg->u32_min_value = var32_off.value;
12849 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12850 
12851 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12852 		/* XORing two positive sign numbers gives a positive,
12853 		 * so safe to cast u32 result into s32.
12854 		 */
12855 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12856 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12857 	} else {
12858 		dst_reg->s32_min_value = S32_MIN;
12859 		dst_reg->s32_max_value = S32_MAX;
12860 	}
12861 }
12862 
12863 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12864 			       struct bpf_reg_state *src_reg)
12865 {
12866 	bool src_known = tnum_is_const(src_reg->var_off);
12867 	bool dst_known = tnum_is_const(dst_reg->var_off);
12868 	s64 smin_val = src_reg->smin_value;
12869 
12870 	if (src_known && dst_known) {
12871 		/* dst_reg->var_off.value has been updated earlier */
12872 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12873 		return;
12874 	}
12875 
12876 	/* We get both minimum and maximum from the var_off. */
12877 	dst_reg->umin_value = dst_reg->var_off.value;
12878 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12879 
12880 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12881 		/* XORing two positive sign numbers gives a positive,
12882 		 * so safe to cast u64 result into s64.
12883 		 */
12884 		dst_reg->smin_value = dst_reg->umin_value;
12885 		dst_reg->smax_value = dst_reg->umax_value;
12886 	} else {
12887 		dst_reg->smin_value = S64_MIN;
12888 		dst_reg->smax_value = S64_MAX;
12889 	}
12890 
12891 	__update_reg_bounds(dst_reg);
12892 }
12893 
12894 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12895 				   u64 umin_val, u64 umax_val)
12896 {
12897 	/* We lose all sign bit information (except what we can pick
12898 	 * up from var_off)
12899 	 */
12900 	dst_reg->s32_min_value = S32_MIN;
12901 	dst_reg->s32_max_value = S32_MAX;
12902 	/* If we might shift our top bit out, then we know nothing */
12903 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12904 		dst_reg->u32_min_value = 0;
12905 		dst_reg->u32_max_value = U32_MAX;
12906 	} else {
12907 		dst_reg->u32_min_value <<= umin_val;
12908 		dst_reg->u32_max_value <<= umax_val;
12909 	}
12910 }
12911 
12912 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12913 				 struct bpf_reg_state *src_reg)
12914 {
12915 	u32 umax_val = src_reg->u32_max_value;
12916 	u32 umin_val = src_reg->u32_min_value;
12917 	/* u32 alu operation will zext upper bits */
12918 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12919 
12920 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12921 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12922 	/* Not required but being careful mark reg64 bounds as unknown so
12923 	 * that we are forced to pick them up from tnum and zext later and
12924 	 * if some path skips this step we are still safe.
12925 	 */
12926 	__mark_reg64_unbounded(dst_reg);
12927 	__update_reg32_bounds(dst_reg);
12928 }
12929 
12930 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12931 				   u64 umin_val, u64 umax_val)
12932 {
12933 	/* Special case <<32 because it is a common compiler pattern to sign
12934 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12935 	 * positive we know this shift will also be positive so we can track
12936 	 * bounds correctly. Otherwise we lose all sign bit information except
12937 	 * what we can pick up from var_off. Perhaps we can generalize this
12938 	 * later to shifts of any length.
12939 	 */
12940 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12941 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12942 	else
12943 		dst_reg->smax_value = S64_MAX;
12944 
12945 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12946 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12947 	else
12948 		dst_reg->smin_value = S64_MIN;
12949 
12950 	/* If we might shift our top bit out, then we know nothing */
12951 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12952 		dst_reg->umin_value = 0;
12953 		dst_reg->umax_value = U64_MAX;
12954 	} else {
12955 		dst_reg->umin_value <<= umin_val;
12956 		dst_reg->umax_value <<= umax_val;
12957 	}
12958 }
12959 
12960 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12961 			       struct bpf_reg_state *src_reg)
12962 {
12963 	u64 umax_val = src_reg->umax_value;
12964 	u64 umin_val = src_reg->umin_value;
12965 
12966 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12967 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12968 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12969 
12970 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12971 	/* We may learn something more from the var_off */
12972 	__update_reg_bounds(dst_reg);
12973 }
12974 
12975 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12976 				 struct bpf_reg_state *src_reg)
12977 {
12978 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12979 	u32 umax_val = src_reg->u32_max_value;
12980 	u32 umin_val = src_reg->u32_min_value;
12981 
12982 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12983 	 * be negative, then either:
12984 	 * 1) src_reg might be zero, so the sign bit of the result is
12985 	 *    unknown, so we lose our signed bounds
12986 	 * 2) it's known negative, thus the unsigned bounds capture the
12987 	 *    signed bounds
12988 	 * 3) the signed bounds cross zero, so they tell us nothing
12989 	 *    about the result
12990 	 * If the value in dst_reg is known nonnegative, then again the
12991 	 * unsigned bounds capture the signed bounds.
12992 	 * Thus, in all cases it suffices to blow away our signed bounds
12993 	 * and rely on inferring new ones from the unsigned bounds and
12994 	 * var_off of the result.
12995 	 */
12996 	dst_reg->s32_min_value = S32_MIN;
12997 	dst_reg->s32_max_value = S32_MAX;
12998 
12999 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13000 	dst_reg->u32_min_value >>= umax_val;
13001 	dst_reg->u32_max_value >>= umin_val;
13002 
13003 	__mark_reg64_unbounded(dst_reg);
13004 	__update_reg32_bounds(dst_reg);
13005 }
13006 
13007 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13008 			       struct bpf_reg_state *src_reg)
13009 {
13010 	u64 umax_val = src_reg->umax_value;
13011 	u64 umin_val = src_reg->umin_value;
13012 
13013 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13014 	 * be negative, then either:
13015 	 * 1) src_reg might be zero, so the sign bit of the result is
13016 	 *    unknown, so we lose our signed bounds
13017 	 * 2) it's known negative, thus the unsigned bounds capture the
13018 	 *    signed bounds
13019 	 * 3) the signed bounds cross zero, so they tell us nothing
13020 	 *    about the result
13021 	 * If the value in dst_reg is known nonnegative, then again the
13022 	 * unsigned bounds capture the signed bounds.
13023 	 * Thus, in all cases it suffices to blow away our signed bounds
13024 	 * and rely on inferring new ones from the unsigned bounds and
13025 	 * var_off of the result.
13026 	 */
13027 	dst_reg->smin_value = S64_MIN;
13028 	dst_reg->smax_value = S64_MAX;
13029 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13030 	dst_reg->umin_value >>= umax_val;
13031 	dst_reg->umax_value >>= umin_val;
13032 
13033 	/* Its not easy to operate on alu32 bounds here because it depends
13034 	 * on bits being shifted in. Take easy way out and mark unbounded
13035 	 * so we can recalculate later from tnum.
13036 	 */
13037 	__mark_reg32_unbounded(dst_reg);
13038 	__update_reg_bounds(dst_reg);
13039 }
13040 
13041 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13042 				  struct bpf_reg_state *src_reg)
13043 {
13044 	u64 umin_val = src_reg->u32_min_value;
13045 
13046 	/* Upon reaching here, src_known is true and
13047 	 * umax_val is equal to umin_val.
13048 	 */
13049 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13050 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13051 
13052 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13053 
13054 	/* blow away the dst_reg umin_value/umax_value and rely on
13055 	 * dst_reg var_off to refine the result.
13056 	 */
13057 	dst_reg->u32_min_value = 0;
13058 	dst_reg->u32_max_value = U32_MAX;
13059 
13060 	__mark_reg64_unbounded(dst_reg);
13061 	__update_reg32_bounds(dst_reg);
13062 }
13063 
13064 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13065 				struct bpf_reg_state *src_reg)
13066 {
13067 	u64 umin_val = src_reg->umin_value;
13068 
13069 	/* Upon reaching here, src_known is true and umax_val is equal
13070 	 * to umin_val.
13071 	 */
13072 	dst_reg->smin_value >>= umin_val;
13073 	dst_reg->smax_value >>= umin_val;
13074 
13075 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13076 
13077 	/* blow away the dst_reg umin_value/umax_value and rely on
13078 	 * dst_reg var_off to refine the result.
13079 	 */
13080 	dst_reg->umin_value = 0;
13081 	dst_reg->umax_value = U64_MAX;
13082 
13083 	/* Its not easy to operate on alu32 bounds here because it depends
13084 	 * on bits being shifted in from upper 32-bits. Take easy way out
13085 	 * and mark unbounded so we can recalculate later from tnum.
13086 	 */
13087 	__mark_reg32_unbounded(dst_reg);
13088 	__update_reg_bounds(dst_reg);
13089 }
13090 
13091 /* WARNING: This function does calculations on 64-bit values, but the actual
13092  * execution may occur on 32-bit values. Therefore, things like bitshifts
13093  * need extra checks in the 32-bit case.
13094  */
13095 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13096 				      struct bpf_insn *insn,
13097 				      struct bpf_reg_state *dst_reg,
13098 				      struct bpf_reg_state src_reg)
13099 {
13100 	struct bpf_reg_state *regs = cur_regs(env);
13101 	u8 opcode = BPF_OP(insn->code);
13102 	bool src_known;
13103 	s64 smin_val, smax_val;
13104 	u64 umin_val, umax_val;
13105 	s32 s32_min_val, s32_max_val;
13106 	u32 u32_min_val, u32_max_val;
13107 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13108 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13109 	int ret;
13110 
13111 	smin_val = src_reg.smin_value;
13112 	smax_val = src_reg.smax_value;
13113 	umin_val = src_reg.umin_value;
13114 	umax_val = src_reg.umax_value;
13115 
13116 	s32_min_val = src_reg.s32_min_value;
13117 	s32_max_val = src_reg.s32_max_value;
13118 	u32_min_val = src_reg.u32_min_value;
13119 	u32_max_val = src_reg.u32_max_value;
13120 
13121 	if (alu32) {
13122 		src_known = tnum_subreg_is_const(src_reg.var_off);
13123 		if ((src_known &&
13124 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13125 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13126 			/* Taint dst register if offset had invalid bounds
13127 			 * derived from e.g. dead branches.
13128 			 */
13129 			__mark_reg_unknown(env, dst_reg);
13130 			return 0;
13131 		}
13132 	} else {
13133 		src_known = tnum_is_const(src_reg.var_off);
13134 		if ((src_known &&
13135 		     (smin_val != smax_val || umin_val != umax_val)) ||
13136 		    smin_val > smax_val || umin_val > umax_val) {
13137 			/* Taint dst register if offset had invalid bounds
13138 			 * derived from e.g. dead branches.
13139 			 */
13140 			__mark_reg_unknown(env, dst_reg);
13141 			return 0;
13142 		}
13143 	}
13144 
13145 	if (!src_known &&
13146 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13147 		__mark_reg_unknown(env, dst_reg);
13148 		return 0;
13149 	}
13150 
13151 	if (sanitize_needed(opcode)) {
13152 		ret = sanitize_val_alu(env, insn);
13153 		if (ret < 0)
13154 			return sanitize_err(env, insn, ret, NULL, NULL);
13155 	}
13156 
13157 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13158 	 * There are two classes of instructions: The first class we track both
13159 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13160 	 * greatest amount of precision when alu operations are mixed with jmp32
13161 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13162 	 * and BPF_OR. This is possible because these ops have fairly easy to
13163 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13164 	 * See alu32 verifier tests for examples. The second class of
13165 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13166 	 * with regards to tracking sign/unsigned bounds because the bits may
13167 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13168 	 * the reg unbounded in the subreg bound space and use the resulting
13169 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13170 	 */
13171 	switch (opcode) {
13172 	case BPF_ADD:
13173 		scalar32_min_max_add(dst_reg, &src_reg);
13174 		scalar_min_max_add(dst_reg, &src_reg);
13175 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13176 		break;
13177 	case BPF_SUB:
13178 		scalar32_min_max_sub(dst_reg, &src_reg);
13179 		scalar_min_max_sub(dst_reg, &src_reg);
13180 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13181 		break;
13182 	case BPF_MUL:
13183 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13184 		scalar32_min_max_mul(dst_reg, &src_reg);
13185 		scalar_min_max_mul(dst_reg, &src_reg);
13186 		break;
13187 	case BPF_AND:
13188 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13189 		scalar32_min_max_and(dst_reg, &src_reg);
13190 		scalar_min_max_and(dst_reg, &src_reg);
13191 		break;
13192 	case BPF_OR:
13193 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13194 		scalar32_min_max_or(dst_reg, &src_reg);
13195 		scalar_min_max_or(dst_reg, &src_reg);
13196 		break;
13197 	case BPF_XOR:
13198 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13199 		scalar32_min_max_xor(dst_reg, &src_reg);
13200 		scalar_min_max_xor(dst_reg, &src_reg);
13201 		break;
13202 	case BPF_LSH:
13203 		if (umax_val >= insn_bitness) {
13204 			/* Shifts greater than 31 or 63 are undefined.
13205 			 * This includes shifts by a negative number.
13206 			 */
13207 			mark_reg_unknown(env, regs, insn->dst_reg);
13208 			break;
13209 		}
13210 		if (alu32)
13211 			scalar32_min_max_lsh(dst_reg, &src_reg);
13212 		else
13213 			scalar_min_max_lsh(dst_reg, &src_reg);
13214 		break;
13215 	case BPF_RSH:
13216 		if (umax_val >= insn_bitness) {
13217 			/* Shifts greater than 31 or 63 are undefined.
13218 			 * This includes shifts by a negative number.
13219 			 */
13220 			mark_reg_unknown(env, regs, insn->dst_reg);
13221 			break;
13222 		}
13223 		if (alu32)
13224 			scalar32_min_max_rsh(dst_reg, &src_reg);
13225 		else
13226 			scalar_min_max_rsh(dst_reg, &src_reg);
13227 		break;
13228 	case BPF_ARSH:
13229 		if (umax_val >= insn_bitness) {
13230 			/* Shifts greater than 31 or 63 are undefined.
13231 			 * This includes shifts by a negative number.
13232 			 */
13233 			mark_reg_unknown(env, regs, insn->dst_reg);
13234 			break;
13235 		}
13236 		if (alu32)
13237 			scalar32_min_max_arsh(dst_reg, &src_reg);
13238 		else
13239 			scalar_min_max_arsh(dst_reg, &src_reg);
13240 		break;
13241 	default:
13242 		mark_reg_unknown(env, regs, insn->dst_reg);
13243 		break;
13244 	}
13245 
13246 	/* ALU32 ops are zero extended into 64bit register */
13247 	if (alu32)
13248 		zext_32_to_64(dst_reg);
13249 	reg_bounds_sync(dst_reg);
13250 	return 0;
13251 }
13252 
13253 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13254  * and var_off.
13255  */
13256 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13257 				   struct bpf_insn *insn)
13258 {
13259 	struct bpf_verifier_state *vstate = env->cur_state;
13260 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13261 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13262 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13263 	u8 opcode = BPF_OP(insn->code);
13264 	int err;
13265 
13266 	dst_reg = &regs[insn->dst_reg];
13267 	src_reg = NULL;
13268 	if (dst_reg->type != SCALAR_VALUE)
13269 		ptr_reg = dst_reg;
13270 	else
13271 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13272 		 * incorrectly propagated into other registers by find_equal_scalars()
13273 		 */
13274 		dst_reg->id = 0;
13275 	if (BPF_SRC(insn->code) == BPF_X) {
13276 		src_reg = &regs[insn->src_reg];
13277 		if (src_reg->type != SCALAR_VALUE) {
13278 			if (dst_reg->type != SCALAR_VALUE) {
13279 				/* Combining two pointers by any ALU op yields
13280 				 * an arbitrary scalar. Disallow all math except
13281 				 * pointer subtraction
13282 				 */
13283 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13284 					mark_reg_unknown(env, regs, insn->dst_reg);
13285 					return 0;
13286 				}
13287 				verbose(env, "R%d pointer %s pointer prohibited\n",
13288 					insn->dst_reg,
13289 					bpf_alu_string[opcode >> 4]);
13290 				return -EACCES;
13291 			} else {
13292 				/* scalar += pointer
13293 				 * This is legal, but we have to reverse our
13294 				 * src/dest handling in computing the range
13295 				 */
13296 				err = mark_chain_precision(env, insn->dst_reg);
13297 				if (err)
13298 					return err;
13299 				return adjust_ptr_min_max_vals(env, insn,
13300 							       src_reg, dst_reg);
13301 			}
13302 		} else if (ptr_reg) {
13303 			/* pointer += scalar */
13304 			err = mark_chain_precision(env, insn->src_reg);
13305 			if (err)
13306 				return err;
13307 			return adjust_ptr_min_max_vals(env, insn,
13308 						       dst_reg, src_reg);
13309 		} else if (dst_reg->precise) {
13310 			/* if dst_reg is precise, src_reg should be precise as well */
13311 			err = mark_chain_precision(env, insn->src_reg);
13312 			if (err)
13313 				return err;
13314 		}
13315 	} else {
13316 		/* Pretend the src is a reg with a known value, since we only
13317 		 * need to be able to read from this state.
13318 		 */
13319 		off_reg.type = SCALAR_VALUE;
13320 		__mark_reg_known(&off_reg, insn->imm);
13321 		src_reg = &off_reg;
13322 		if (ptr_reg) /* pointer += K */
13323 			return adjust_ptr_min_max_vals(env, insn,
13324 						       ptr_reg, src_reg);
13325 	}
13326 
13327 	/* Got here implies adding two SCALAR_VALUEs */
13328 	if (WARN_ON_ONCE(ptr_reg)) {
13329 		print_verifier_state(env, state, true);
13330 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13331 		return -EINVAL;
13332 	}
13333 	if (WARN_ON(!src_reg)) {
13334 		print_verifier_state(env, state, true);
13335 		verbose(env, "verifier internal error: no src_reg\n");
13336 		return -EINVAL;
13337 	}
13338 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13339 }
13340 
13341 /* check validity of 32-bit and 64-bit arithmetic operations */
13342 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13343 {
13344 	struct bpf_reg_state *regs = cur_regs(env);
13345 	u8 opcode = BPF_OP(insn->code);
13346 	int err;
13347 
13348 	if (opcode == BPF_END || opcode == BPF_NEG) {
13349 		if (opcode == BPF_NEG) {
13350 			if (BPF_SRC(insn->code) != BPF_K ||
13351 			    insn->src_reg != BPF_REG_0 ||
13352 			    insn->off != 0 || insn->imm != 0) {
13353 				verbose(env, "BPF_NEG uses reserved fields\n");
13354 				return -EINVAL;
13355 			}
13356 		} else {
13357 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13358 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13359 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13360 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13361 				verbose(env, "BPF_END uses reserved fields\n");
13362 				return -EINVAL;
13363 			}
13364 		}
13365 
13366 		/* check src operand */
13367 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13368 		if (err)
13369 			return err;
13370 
13371 		if (is_pointer_value(env, insn->dst_reg)) {
13372 			verbose(env, "R%d pointer arithmetic prohibited\n",
13373 				insn->dst_reg);
13374 			return -EACCES;
13375 		}
13376 
13377 		/* check dest operand */
13378 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13379 		if (err)
13380 			return err;
13381 
13382 	} else if (opcode == BPF_MOV) {
13383 
13384 		if (BPF_SRC(insn->code) == BPF_X) {
13385 			if (insn->imm != 0) {
13386 				verbose(env, "BPF_MOV uses reserved fields\n");
13387 				return -EINVAL;
13388 			}
13389 
13390 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13391 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13392 					verbose(env, "BPF_MOV uses reserved fields\n");
13393 					return -EINVAL;
13394 				}
13395 			} else {
13396 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13397 				    insn->off != 32) {
13398 					verbose(env, "BPF_MOV uses reserved fields\n");
13399 					return -EINVAL;
13400 				}
13401 			}
13402 
13403 			/* check src operand */
13404 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13405 			if (err)
13406 				return err;
13407 		} else {
13408 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13409 				verbose(env, "BPF_MOV uses reserved fields\n");
13410 				return -EINVAL;
13411 			}
13412 		}
13413 
13414 		/* check dest operand, mark as required later */
13415 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13416 		if (err)
13417 			return err;
13418 
13419 		if (BPF_SRC(insn->code) == BPF_X) {
13420 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13421 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13422 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13423 				       !tnum_is_const(src_reg->var_off);
13424 
13425 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13426 				if (insn->off == 0) {
13427 					/* case: R1 = R2
13428 					 * copy register state to dest reg
13429 					 */
13430 					if (need_id)
13431 						/* Assign src and dst registers the same ID
13432 						 * that will be used by find_equal_scalars()
13433 						 * to propagate min/max range.
13434 						 */
13435 						src_reg->id = ++env->id_gen;
13436 					copy_register_state(dst_reg, src_reg);
13437 					dst_reg->live |= REG_LIVE_WRITTEN;
13438 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13439 				} else {
13440 					/* case: R1 = (s8, s16 s32)R2 */
13441 					if (is_pointer_value(env, insn->src_reg)) {
13442 						verbose(env,
13443 							"R%d sign-extension part of pointer\n",
13444 							insn->src_reg);
13445 						return -EACCES;
13446 					} else if (src_reg->type == SCALAR_VALUE) {
13447 						bool no_sext;
13448 
13449 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13450 						if (no_sext && need_id)
13451 							src_reg->id = ++env->id_gen;
13452 						copy_register_state(dst_reg, src_reg);
13453 						if (!no_sext)
13454 							dst_reg->id = 0;
13455 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13456 						dst_reg->live |= REG_LIVE_WRITTEN;
13457 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13458 					} else {
13459 						mark_reg_unknown(env, regs, insn->dst_reg);
13460 					}
13461 				}
13462 			} else {
13463 				/* R1 = (u32) R2 */
13464 				if (is_pointer_value(env, insn->src_reg)) {
13465 					verbose(env,
13466 						"R%d partial copy of pointer\n",
13467 						insn->src_reg);
13468 					return -EACCES;
13469 				} else if (src_reg->type == SCALAR_VALUE) {
13470 					if (insn->off == 0) {
13471 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13472 
13473 						if (is_src_reg_u32 && need_id)
13474 							src_reg->id = ++env->id_gen;
13475 						copy_register_state(dst_reg, src_reg);
13476 						/* Make sure ID is cleared if src_reg is not in u32
13477 						 * range otherwise dst_reg min/max could be incorrectly
13478 						 * propagated into src_reg by find_equal_scalars()
13479 						 */
13480 						if (!is_src_reg_u32)
13481 							dst_reg->id = 0;
13482 						dst_reg->live |= REG_LIVE_WRITTEN;
13483 						dst_reg->subreg_def = env->insn_idx + 1;
13484 					} else {
13485 						/* case: W1 = (s8, s16)W2 */
13486 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13487 
13488 						if (no_sext && need_id)
13489 							src_reg->id = ++env->id_gen;
13490 						copy_register_state(dst_reg, src_reg);
13491 						if (!no_sext)
13492 							dst_reg->id = 0;
13493 						dst_reg->live |= REG_LIVE_WRITTEN;
13494 						dst_reg->subreg_def = env->insn_idx + 1;
13495 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13496 					}
13497 				} else {
13498 					mark_reg_unknown(env, regs,
13499 							 insn->dst_reg);
13500 				}
13501 				zext_32_to_64(dst_reg);
13502 				reg_bounds_sync(dst_reg);
13503 			}
13504 		} else {
13505 			/* case: R = imm
13506 			 * remember the value we stored into this reg
13507 			 */
13508 			/* clear any state __mark_reg_known doesn't set */
13509 			mark_reg_unknown(env, regs, insn->dst_reg);
13510 			regs[insn->dst_reg].type = SCALAR_VALUE;
13511 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13512 				__mark_reg_known(regs + insn->dst_reg,
13513 						 insn->imm);
13514 			} else {
13515 				__mark_reg_known(regs + insn->dst_reg,
13516 						 (u32)insn->imm);
13517 			}
13518 		}
13519 
13520 	} else if (opcode > BPF_END) {
13521 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13522 		return -EINVAL;
13523 
13524 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13525 
13526 		if (BPF_SRC(insn->code) == BPF_X) {
13527 			if (insn->imm != 0 || insn->off > 1 ||
13528 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13529 				verbose(env, "BPF_ALU uses reserved fields\n");
13530 				return -EINVAL;
13531 			}
13532 			/* check src1 operand */
13533 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13534 			if (err)
13535 				return err;
13536 		} else {
13537 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13538 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13539 				verbose(env, "BPF_ALU uses reserved fields\n");
13540 				return -EINVAL;
13541 			}
13542 		}
13543 
13544 		/* check src2 operand */
13545 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13546 		if (err)
13547 			return err;
13548 
13549 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13550 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13551 			verbose(env, "div by zero\n");
13552 			return -EINVAL;
13553 		}
13554 
13555 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13556 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13557 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13558 
13559 			if (insn->imm < 0 || insn->imm >= size) {
13560 				verbose(env, "invalid shift %d\n", insn->imm);
13561 				return -EINVAL;
13562 			}
13563 		}
13564 
13565 		/* check dest operand */
13566 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13567 		if (err)
13568 			return err;
13569 
13570 		return adjust_reg_min_max_vals(env, insn);
13571 	}
13572 
13573 	return 0;
13574 }
13575 
13576 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13577 				   struct bpf_reg_state *dst_reg,
13578 				   enum bpf_reg_type type,
13579 				   bool range_right_open)
13580 {
13581 	struct bpf_func_state *state;
13582 	struct bpf_reg_state *reg;
13583 	int new_range;
13584 
13585 	if (dst_reg->off < 0 ||
13586 	    (dst_reg->off == 0 && range_right_open))
13587 		/* This doesn't give us any range */
13588 		return;
13589 
13590 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13591 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13592 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13593 		 * than pkt_end, but that's because it's also less than pkt.
13594 		 */
13595 		return;
13596 
13597 	new_range = dst_reg->off;
13598 	if (range_right_open)
13599 		new_range++;
13600 
13601 	/* Examples for register markings:
13602 	 *
13603 	 * pkt_data in dst register:
13604 	 *
13605 	 *   r2 = r3;
13606 	 *   r2 += 8;
13607 	 *   if (r2 > pkt_end) goto <handle exception>
13608 	 *   <access okay>
13609 	 *
13610 	 *   r2 = r3;
13611 	 *   r2 += 8;
13612 	 *   if (r2 < pkt_end) goto <access okay>
13613 	 *   <handle exception>
13614 	 *
13615 	 *   Where:
13616 	 *     r2 == dst_reg, pkt_end == src_reg
13617 	 *     r2=pkt(id=n,off=8,r=0)
13618 	 *     r3=pkt(id=n,off=0,r=0)
13619 	 *
13620 	 * pkt_data in src register:
13621 	 *
13622 	 *   r2 = r3;
13623 	 *   r2 += 8;
13624 	 *   if (pkt_end >= r2) goto <access okay>
13625 	 *   <handle exception>
13626 	 *
13627 	 *   r2 = r3;
13628 	 *   r2 += 8;
13629 	 *   if (pkt_end <= r2) goto <handle exception>
13630 	 *   <access okay>
13631 	 *
13632 	 *   Where:
13633 	 *     pkt_end == dst_reg, r2 == src_reg
13634 	 *     r2=pkt(id=n,off=8,r=0)
13635 	 *     r3=pkt(id=n,off=0,r=0)
13636 	 *
13637 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13638 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13639 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13640 	 * the check.
13641 	 */
13642 
13643 	/* If our ids match, then we must have the same max_value.  And we
13644 	 * don't care about the other reg's fixed offset, since if it's too big
13645 	 * the range won't allow anything.
13646 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13647 	 */
13648 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13649 		if (reg->type == type && reg->id == dst_reg->id)
13650 			/* keep the maximum range already checked */
13651 			reg->range = max(reg->range, new_range);
13652 	}));
13653 }
13654 
13655 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13656 {
13657 	struct tnum subreg = tnum_subreg(reg->var_off);
13658 	s32 sval = (s32)val;
13659 
13660 	switch (opcode) {
13661 	case BPF_JEQ:
13662 		if (tnum_is_const(subreg))
13663 			return !!tnum_equals_const(subreg, val);
13664 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13665 			return 0;
13666 		break;
13667 	case BPF_JNE:
13668 		if (tnum_is_const(subreg))
13669 			return !tnum_equals_const(subreg, val);
13670 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13671 			return 1;
13672 		break;
13673 	case BPF_JSET:
13674 		if ((~subreg.mask & subreg.value) & val)
13675 			return 1;
13676 		if (!((subreg.mask | subreg.value) & val))
13677 			return 0;
13678 		break;
13679 	case BPF_JGT:
13680 		if (reg->u32_min_value > val)
13681 			return 1;
13682 		else if (reg->u32_max_value <= val)
13683 			return 0;
13684 		break;
13685 	case BPF_JSGT:
13686 		if (reg->s32_min_value > sval)
13687 			return 1;
13688 		else if (reg->s32_max_value <= sval)
13689 			return 0;
13690 		break;
13691 	case BPF_JLT:
13692 		if (reg->u32_max_value < val)
13693 			return 1;
13694 		else if (reg->u32_min_value >= val)
13695 			return 0;
13696 		break;
13697 	case BPF_JSLT:
13698 		if (reg->s32_max_value < sval)
13699 			return 1;
13700 		else if (reg->s32_min_value >= sval)
13701 			return 0;
13702 		break;
13703 	case BPF_JGE:
13704 		if (reg->u32_min_value >= val)
13705 			return 1;
13706 		else if (reg->u32_max_value < val)
13707 			return 0;
13708 		break;
13709 	case BPF_JSGE:
13710 		if (reg->s32_min_value >= sval)
13711 			return 1;
13712 		else if (reg->s32_max_value < sval)
13713 			return 0;
13714 		break;
13715 	case BPF_JLE:
13716 		if (reg->u32_max_value <= val)
13717 			return 1;
13718 		else if (reg->u32_min_value > val)
13719 			return 0;
13720 		break;
13721 	case BPF_JSLE:
13722 		if (reg->s32_max_value <= sval)
13723 			return 1;
13724 		else if (reg->s32_min_value > sval)
13725 			return 0;
13726 		break;
13727 	}
13728 
13729 	return -1;
13730 }
13731 
13732 
13733 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13734 {
13735 	s64 sval = (s64)val;
13736 
13737 	switch (opcode) {
13738 	case BPF_JEQ:
13739 		if (tnum_is_const(reg->var_off))
13740 			return !!tnum_equals_const(reg->var_off, val);
13741 		else if (val < reg->umin_value || val > reg->umax_value)
13742 			return 0;
13743 		break;
13744 	case BPF_JNE:
13745 		if (tnum_is_const(reg->var_off))
13746 			return !tnum_equals_const(reg->var_off, val);
13747 		else if (val < reg->umin_value || val > reg->umax_value)
13748 			return 1;
13749 		break;
13750 	case BPF_JSET:
13751 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13752 			return 1;
13753 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13754 			return 0;
13755 		break;
13756 	case BPF_JGT:
13757 		if (reg->umin_value > val)
13758 			return 1;
13759 		else if (reg->umax_value <= val)
13760 			return 0;
13761 		break;
13762 	case BPF_JSGT:
13763 		if (reg->smin_value > sval)
13764 			return 1;
13765 		else if (reg->smax_value <= sval)
13766 			return 0;
13767 		break;
13768 	case BPF_JLT:
13769 		if (reg->umax_value < val)
13770 			return 1;
13771 		else if (reg->umin_value >= val)
13772 			return 0;
13773 		break;
13774 	case BPF_JSLT:
13775 		if (reg->smax_value < sval)
13776 			return 1;
13777 		else if (reg->smin_value >= sval)
13778 			return 0;
13779 		break;
13780 	case BPF_JGE:
13781 		if (reg->umin_value >= val)
13782 			return 1;
13783 		else if (reg->umax_value < val)
13784 			return 0;
13785 		break;
13786 	case BPF_JSGE:
13787 		if (reg->smin_value >= sval)
13788 			return 1;
13789 		else if (reg->smax_value < sval)
13790 			return 0;
13791 		break;
13792 	case BPF_JLE:
13793 		if (reg->umax_value <= val)
13794 			return 1;
13795 		else if (reg->umin_value > val)
13796 			return 0;
13797 		break;
13798 	case BPF_JSLE:
13799 		if (reg->smax_value <= sval)
13800 			return 1;
13801 		else if (reg->smin_value > sval)
13802 			return 0;
13803 		break;
13804 	}
13805 
13806 	return -1;
13807 }
13808 
13809 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13810  * and return:
13811  *  1 - branch will be taken and "goto target" will be executed
13812  *  0 - branch will not be taken and fall-through to next insn
13813  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13814  *      range [0,10]
13815  */
13816 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13817 			   bool is_jmp32)
13818 {
13819 	if (__is_pointer_value(false, reg)) {
13820 		if (!reg_not_null(reg))
13821 			return -1;
13822 
13823 		/* If pointer is valid tests against zero will fail so we can
13824 		 * use this to direct branch taken.
13825 		 */
13826 		if (val != 0)
13827 			return -1;
13828 
13829 		switch (opcode) {
13830 		case BPF_JEQ:
13831 			return 0;
13832 		case BPF_JNE:
13833 			return 1;
13834 		default:
13835 			return -1;
13836 		}
13837 	}
13838 
13839 	if (is_jmp32)
13840 		return is_branch32_taken(reg, val, opcode);
13841 	return is_branch64_taken(reg, val, opcode);
13842 }
13843 
13844 static int flip_opcode(u32 opcode)
13845 {
13846 	/* How can we transform "a <op> b" into "b <op> a"? */
13847 	static const u8 opcode_flip[16] = {
13848 		/* these stay the same */
13849 		[BPF_JEQ  >> 4] = BPF_JEQ,
13850 		[BPF_JNE  >> 4] = BPF_JNE,
13851 		[BPF_JSET >> 4] = BPF_JSET,
13852 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13853 		[BPF_JGE  >> 4] = BPF_JLE,
13854 		[BPF_JGT  >> 4] = BPF_JLT,
13855 		[BPF_JLE  >> 4] = BPF_JGE,
13856 		[BPF_JLT  >> 4] = BPF_JGT,
13857 		[BPF_JSGE >> 4] = BPF_JSLE,
13858 		[BPF_JSGT >> 4] = BPF_JSLT,
13859 		[BPF_JSLE >> 4] = BPF_JSGE,
13860 		[BPF_JSLT >> 4] = BPF_JSGT
13861 	};
13862 	return opcode_flip[opcode >> 4];
13863 }
13864 
13865 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13866 				   struct bpf_reg_state *src_reg,
13867 				   u8 opcode)
13868 {
13869 	struct bpf_reg_state *pkt;
13870 
13871 	if (src_reg->type == PTR_TO_PACKET_END) {
13872 		pkt = dst_reg;
13873 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13874 		pkt = src_reg;
13875 		opcode = flip_opcode(opcode);
13876 	} else {
13877 		return -1;
13878 	}
13879 
13880 	if (pkt->range >= 0)
13881 		return -1;
13882 
13883 	switch (opcode) {
13884 	case BPF_JLE:
13885 		/* pkt <= pkt_end */
13886 		fallthrough;
13887 	case BPF_JGT:
13888 		/* pkt > pkt_end */
13889 		if (pkt->range == BEYOND_PKT_END)
13890 			/* pkt has at last one extra byte beyond pkt_end */
13891 			return opcode == BPF_JGT;
13892 		break;
13893 	case BPF_JLT:
13894 		/* pkt < pkt_end */
13895 		fallthrough;
13896 	case BPF_JGE:
13897 		/* pkt >= pkt_end */
13898 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13899 			return opcode == BPF_JGE;
13900 		break;
13901 	}
13902 	return -1;
13903 }
13904 
13905 /* Adjusts the register min/max values in the case that the dst_reg is the
13906  * variable register that we are working on, and src_reg is a constant or we're
13907  * simply doing a BPF_K check.
13908  * In JEQ/JNE cases we also adjust the var_off values.
13909  */
13910 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13911 			    struct bpf_reg_state *false_reg,
13912 			    u64 val, u32 val32,
13913 			    u8 opcode, bool is_jmp32)
13914 {
13915 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13916 	struct tnum false_64off = false_reg->var_off;
13917 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13918 	struct tnum true_64off = true_reg->var_off;
13919 	s64 sval = (s64)val;
13920 	s32 sval32 = (s32)val32;
13921 
13922 	/* If the dst_reg is a pointer, we can't learn anything about its
13923 	 * variable offset from the compare (unless src_reg were a pointer into
13924 	 * the same object, but we don't bother with that.
13925 	 * Since false_reg and true_reg have the same type by construction, we
13926 	 * only need to check one of them for pointerness.
13927 	 */
13928 	if (__is_pointer_value(false, false_reg))
13929 		return;
13930 
13931 	switch (opcode) {
13932 	/* JEQ/JNE comparison doesn't change the register equivalence.
13933 	 *
13934 	 * r1 = r2;
13935 	 * if (r1 == 42) goto label;
13936 	 * ...
13937 	 * label: // here both r1 and r2 are known to be 42.
13938 	 *
13939 	 * Hence when marking register as known preserve it's ID.
13940 	 */
13941 	case BPF_JEQ:
13942 		if (is_jmp32) {
13943 			__mark_reg32_known(true_reg, val32);
13944 			true_32off = tnum_subreg(true_reg->var_off);
13945 		} else {
13946 			___mark_reg_known(true_reg, val);
13947 			true_64off = true_reg->var_off;
13948 		}
13949 		break;
13950 	case BPF_JNE:
13951 		if (is_jmp32) {
13952 			__mark_reg32_known(false_reg, val32);
13953 			false_32off = tnum_subreg(false_reg->var_off);
13954 		} else {
13955 			___mark_reg_known(false_reg, val);
13956 			false_64off = false_reg->var_off;
13957 		}
13958 		break;
13959 	case BPF_JSET:
13960 		if (is_jmp32) {
13961 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13962 			if (is_power_of_2(val32))
13963 				true_32off = tnum_or(true_32off,
13964 						     tnum_const(val32));
13965 		} else {
13966 			false_64off = tnum_and(false_64off, tnum_const(~val));
13967 			if (is_power_of_2(val))
13968 				true_64off = tnum_or(true_64off,
13969 						     tnum_const(val));
13970 		}
13971 		break;
13972 	case BPF_JGE:
13973 	case BPF_JGT:
13974 	{
13975 		if (is_jmp32) {
13976 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13977 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13978 
13979 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13980 						       false_umax);
13981 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13982 						      true_umin);
13983 		} else {
13984 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13985 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13986 
13987 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13988 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13989 		}
13990 		break;
13991 	}
13992 	case BPF_JSGE:
13993 	case BPF_JSGT:
13994 	{
13995 		if (is_jmp32) {
13996 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13997 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13998 
13999 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14000 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14001 		} else {
14002 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14003 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14004 
14005 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14006 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14007 		}
14008 		break;
14009 	}
14010 	case BPF_JLE:
14011 	case BPF_JLT:
14012 	{
14013 		if (is_jmp32) {
14014 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14015 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14016 
14017 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14018 						       false_umin);
14019 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14020 						      true_umax);
14021 		} else {
14022 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14023 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14024 
14025 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14026 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14027 		}
14028 		break;
14029 	}
14030 	case BPF_JSLE:
14031 	case BPF_JSLT:
14032 	{
14033 		if (is_jmp32) {
14034 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14035 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14036 
14037 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14038 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14039 		} else {
14040 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14041 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14042 
14043 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14044 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14045 		}
14046 		break;
14047 	}
14048 	default:
14049 		return;
14050 	}
14051 
14052 	if (is_jmp32) {
14053 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14054 					     tnum_subreg(false_32off));
14055 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14056 					    tnum_subreg(true_32off));
14057 		__reg_combine_32_into_64(false_reg);
14058 		__reg_combine_32_into_64(true_reg);
14059 	} else {
14060 		false_reg->var_off = false_64off;
14061 		true_reg->var_off = true_64off;
14062 		__reg_combine_64_into_32(false_reg);
14063 		__reg_combine_64_into_32(true_reg);
14064 	}
14065 }
14066 
14067 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14068  * the variable reg.
14069  */
14070 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14071 				struct bpf_reg_state *false_reg,
14072 				u64 val, u32 val32,
14073 				u8 opcode, bool is_jmp32)
14074 {
14075 	opcode = flip_opcode(opcode);
14076 	/* This uses zero as "not present in table"; luckily the zero opcode,
14077 	 * BPF_JA, can't get here.
14078 	 */
14079 	if (opcode)
14080 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14081 }
14082 
14083 /* Regs are known to be equal, so intersect their min/max/var_off */
14084 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14085 				  struct bpf_reg_state *dst_reg)
14086 {
14087 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14088 							dst_reg->umin_value);
14089 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14090 							dst_reg->umax_value);
14091 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14092 							dst_reg->smin_value);
14093 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14094 							dst_reg->smax_value);
14095 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14096 							     dst_reg->var_off);
14097 	reg_bounds_sync(src_reg);
14098 	reg_bounds_sync(dst_reg);
14099 }
14100 
14101 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14102 				struct bpf_reg_state *true_dst,
14103 				struct bpf_reg_state *false_src,
14104 				struct bpf_reg_state *false_dst,
14105 				u8 opcode)
14106 {
14107 	switch (opcode) {
14108 	case BPF_JEQ:
14109 		__reg_combine_min_max(true_src, true_dst);
14110 		break;
14111 	case BPF_JNE:
14112 		__reg_combine_min_max(false_src, false_dst);
14113 		break;
14114 	}
14115 }
14116 
14117 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14118 				 struct bpf_reg_state *reg, u32 id,
14119 				 bool is_null)
14120 {
14121 	if (type_may_be_null(reg->type) && reg->id == id &&
14122 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14123 		/* Old offset (both fixed and variable parts) should have been
14124 		 * known-zero, because we don't allow pointer arithmetic on
14125 		 * pointers that might be NULL. If we see this happening, don't
14126 		 * convert the register.
14127 		 *
14128 		 * But in some cases, some helpers that return local kptrs
14129 		 * advance offset for the returned pointer. In those cases, it
14130 		 * is fine to expect to see reg->off.
14131 		 */
14132 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14133 			return;
14134 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14135 		    WARN_ON_ONCE(reg->off))
14136 			return;
14137 
14138 		if (is_null) {
14139 			reg->type = SCALAR_VALUE;
14140 			/* We don't need id and ref_obj_id from this point
14141 			 * onwards anymore, thus we should better reset it,
14142 			 * so that state pruning has chances to take effect.
14143 			 */
14144 			reg->id = 0;
14145 			reg->ref_obj_id = 0;
14146 
14147 			return;
14148 		}
14149 
14150 		mark_ptr_not_null_reg(reg);
14151 
14152 		if (!reg_may_point_to_spin_lock(reg)) {
14153 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14154 			 * in release_reference().
14155 			 *
14156 			 * reg->id is still used by spin_lock ptr. Other
14157 			 * than spin_lock ptr type, reg->id can be reset.
14158 			 */
14159 			reg->id = 0;
14160 		}
14161 	}
14162 }
14163 
14164 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14165  * be folded together at some point.
14166  */
14167 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14168 				  bool is_null)
14169 {
14170 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14171 	struct bpf_reg_state *regs = state->regs, *reg;
14172 	u32 ref_obj_id = regs[regno].ref_obj_id;
14173 	u32 id = regs[regno].id;
14174 
14175 	if (ref_obj_id && ref_obj_id == id && is_null)
14176 		/* regs[regno] is in the " == NULL" branch.
14177 		 * No one could have freed the reference state before
14178 		 * doing the NULL check.
14179 		 */
14180 		WARN_ON_ONCE(release_reference_state(state, id));
14181 
14182 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14183 		mark_ptr_or_null_reg(state, reg, id, is_null);
14184 	}));
14185 }
14186 
14187 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14188 				   struct bpf_reg_state *dst_reg,
14189 				   struct bpf_reg_state *src_reg,
14190 				   struct bpf_verifier_state *this_branch,
14191 				   struct bpf_verifier_state *other_branch)
14192 {
14193 	if (BPF_SRC(insn->code) != BPF_X)
14194 		return false;
14195 
14196 	/* Pointers are always 64-bit. */
14197 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14198 		return false;
14199 
14200 	switch (BPF_OP(insn->code)) {
14201 	case BPF_JGT:
14202 		if ((dst_reg->type == PTR_TO_PACKET &&
14203 		     src_reg->type == PTR_TO_PACKET_END) ||
14204 		    (dst_reg->type == PTR_TO_PACKET_META &&
14205 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14206 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14207 			find_good_pkt_pointers(this_branch, dst_reg,
14208 					       dst_reg->type, false);
14209 			mark_pkt_end(other_branch, insn->dst_reg, true);
14210 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14211 			    src_reg->type == PTR_TO_PACKET) ||
14212 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14213 			    src_reg->type == PTR_TO_PACKET_META)) {
14214 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14215 			find_good_pkt_pointers(other_branch, src_reg,
14216 					       src_reg->type, true);
14217 			mark_pkt_end(this_branch, insn->src_reg, false);
14218 		} else {
14219 			return false;
14220 		}
14221 		break;
14222 	case BPF_JLT:
14223 		if ((dst_reg->type == PTR_TO_PACKET &&
14224 		     src_reg->type == PTR_TO_PACKET_END) ||
14225 		    (dst_reg->type == PTR_TO_PACKET_META &&
14226 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14227 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14228 			find_good_pkt_pointers(other_branch, dst_reg,
14229 					       dst_reg->type, true);
14230 			mark_pkt_end(this_branch, insn->dst_reg, false);
14231 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14232 			    src_reg->type == PTR_TO_PACKET) ||
14233 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14234 			    src_reg->type == PTR_TO_PACKET_META)) {
14235 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14236 			find_good_pkt_pointers(this_branch, src_reg,
14237 					       src_reg->type, false);
14238 			mark_pkt_end(other_branch, insn->src_reg, true);
14239 		} else {
14240 			return false;
14241 		}
14242 		break;
14243 	case BPF_JGE:
14244 		if ((dst_reg->type == PTR_TO_PACKET &&
14245 		     src_reg->type == PTR_TO_PACKET_END) ||
14246 		    (dst_reg->type == PTR_TO_PACKET_META &&
14247 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14248 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14249 			find_good_pkt_pointers(this_branch, dst_reg,
14250 					       dst_reg->type, true);
14251 			mark_pkt_end(other_branch, insn->dst_reg, false);
14252 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14253 			    src_reg->type == PTR_TO_PACKET) ||
14254 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14255 			    src_reg->type == PTR_TO_PACKET_META)) {
14256 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14257 			find_good_pkt_pointers(other_branch, src_reg,
14258 					       src_reg->type, false);
14259 			mark_pkt_end(this_branch, insn->src_reg, true);
14260 		} else {
14261 			return false;
14262 		}
14263 		break;
14264 	case BPF_JLE:
14265 		if ((dst_reg->type == PTR_TO_PACKET &&
14266 		     src_reg->type == PTR_TO_PACKET_END) ||
14267 		    (dst_reg->type == PTR_TO_PACKET_META &&
14268 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14269 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14270 			find_good_pkt_pointers(other_branch, dst_reg,
14271 					       dst_reg->type, false);
14272 			mark_pkt_end(this_branch, insn->dst_reg, true);
14273 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14274 			    src_reg->type == PTR_TO_PACKET) ||
14275 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14276 			    src_reg->type == PTR_TO_PACKET_META)) {
14277 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14278 			find_good_pkt_pointers(this_branch, src_reg,
14279 					       src_reg->type, true);
14280 			mark_pkt_end(other_branch, insn->src_reg, false);
14281 		} else {
14282 			return false;
14283 		}
14284 		break;
14285 	default:
14286 		return false;
14287 	}
14288 
14289 	return true;
14290 }
14291 
14292 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14293 			       struct bpf_reg_state *known_reg)
14294 {
14295 	struct bpf_func_state *state;
14296 	struct bpf_reg_state *reg;
14297 
14298 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14299 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14300 			copy_register_state(reg, known_reg);
14301 	}));
14302 }
14303 
14304 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14305 			     struct bpf_insn *insn, int *insn_idx)
14306 {
14307 	struct bpf_verifier_state *this_branch = env->cur_state;
14308 	struct bpf_verifier_state *other_branch;
14309 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14310 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14311 	struct bpf_reg_state *eq_branch_regs;
14312 	u8 opcode = BPF_OP(insn->code);
14313 	bool is_jmp32;
14314 	int pred = -1;
14315 	int err;
14316 
14317 	/* Only conditional jumps are expected to reach here. */
14318 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14319 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14320 		return -EINVAL;
14321 	}
14322 
14323 	/* check src2 operand */
14324 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14325 	if (err)
14326 		return err;
14327 
14328 	dst_reg = &regs[insn->dst_reg];
14329 	if (BPF_SRC(insn->code) == BPF_X) {
14330 		if (insn->imm != 0) {
14331 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14332 			return -EINVAL;
14333 		}
14334 
14335 		/* check src1 operand */
14336 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14337 		if (err)
14338 			return err;
14339 
14340 		src_reg = &regs[insn->src_reg];
14341 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14342 		    is_pointer_value(env, insn->src_reg)) {
14343 			verbose(env, "R%d pointer comparison prohibited\n",
14344 				insn->src_reg);
14345 			return -EACCES;
14346 		}
14347 	} else {
14348 		if (insn->src_reg != BPF_REG_0) {
14349 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14350 			return -EINVAL;
14351 		}
14352 	}
14353 
14354 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14355 
14356 	if (BPF_SRC(insn->code) == BPF_K) {
14357 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14358 	} else if (src_reg->type == SCALAR_VALUE &&
14359 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14360 		pred = is_branch_taken(dst_reg,
14361 				       tnum_subreg(src_reg->var_off).value,
14362 				       opcode,
14363 				       is_jmp32);
14364 	} else if (src_reg->type == SCALAR_VALUE &&
14365 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14366 		pred = is_branch_taken(dst_reg,
14367 				       src_reg->var_off.value,
14368 				       opcode,
14369 				       is_jmp32);
14370 	} else if (dst_reg->type == SCALAR_VALUE &&
14371 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14372 		pred = is_branch_taken(src_reg,
14373 				       tnum_subreg(dst_reg->var_off).value,
14374 				       flip_opcode(opcode),
14375 				       is_jmp32);
14376 	} else if (dst_reg->type == SCALAR_VALUE &&
14377 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14378 		pred = is_branch_taken(src_reg,
14379 				       dst_reg->var_off.value,
14380 				       flip_opcode(opcode),
14381 				       is_jmp32);
14382 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14383 		   reg_is_pkt_pointer_any(src_reg) &&
14384 		   !is_jmp32) {
14385 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14386 	}
14387 
14388 	if (pred >= 0) {
14389 		/* If we get here with a dst_reg pointer type it is because
14390 		 * above is_branch_taken() special cased the 0 comparison.
14391 		 */
14392 		if (!__is_pointer_value(false, dst_reg))
14393 			err = mark_chain_precision(env, insn->dst_reg);
14394 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14395 		    !__is_pointer_value(false, src_reg))
14396 			err = mark_chain_precision(env, insn->src_reg);
14397 		if (err)
14398 			return err;
14399 	}
14400 
14401 	if (pred == 1) {
14402 		/* Only follow the goto, ignore fall-through. If needed, push
14403 		 * the fall-through branch for simulation under speculative
14404 		 * execution.
14405 		 */
14406 		if (!env->bypass_spec_v1 &&
14407 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14408 					       *insn_idx))
14409 			return -EFAULT;
14410 		if (env->log.level & BPF_LOG_LEVEL)
14411 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14412 		*insn_idx += insn->off;
14413 		return 0;
14414 	} else if (pred == 0) {
14415 		/* Only follow the fall-through branch, since that's where the
14416 		 * program will go. If needed, push the goto branch for
14417 		 * simulation under speculative execution.
14418 		 */
14419 		if (!env->bypass_spec_v1 &&
14420 		    !sanitize_speculative_path(env, insn,
14421 					       *insn_idx + insn->off + 1,
14422 					       *insn_idx))
14423 			return -EFAULT;
14424 		if (env->log.level & BPF_LOG_LEVEL)
14425 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14426 		return 0;
14427 	}
14428 
14429 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14430 				  false);
14431 	if (!other_branch)
14432 		return -EFAULT;
14433 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14434 
14435 	/* detect if we are comparing against a constant value so we can adjust
14436 	 * our min/max values for our dst register.
14437 	 * this is only legit if both are scalars (or pointers to the same
14438 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14439 	 * because otherwise the different base pointers mean the offsets aren't
14440 	 * comparable.
14441 	 */
14442 	if (BPF_SRC(insn->code) == BPF_X) {
14443 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14444 
14445 		if (dst_reg->type == SCALAR_VALUE &&
14446 		    src_reg->type == SCALAR_VALUE) {
14447 			if (tnum_is_const(src_reg->var_off) ||
14448 			    (is_jmp32 &&
14449 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14450 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14451 						dst_reg,
14452 						src_reg->var_off.value,
14453 						tnum_subreg(src_reg->var_off).value,
14454 						opcode, is_jmp32);
14455 			else if (tnum_is_const(dst_reg->var_off) ||
14456 				 (is_jmp32 &&
14457 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14458 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14459 						    src_reg,
14460 						    dst_reg->var_off.value,
14461 						    tnum_subreg(dst_reg->var_off).value,
14462 						    opcode, is_jmp32);
14463 			else if (!is_jmp32 &&
14464 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14465 				/* Comparing for equality, we can combine knowledge */
14466 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14467 						    &other_branch_regs[insn->dst_reg],
14468 						    src_reg, dst_reg, opcode);
14469 			if (src_reg->id &&
14470 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14471 				find_equal_scalars(this_branch, src_reg);
14472 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14473 			}
14474 
14475 		}
14476 	} else if (dst_reg->type == SCALAR_VALUE) {
14477 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14478 					dst_reg, insn->imm, (u32)insn->imm,
14479 					opcode, is_jmp32);
14480 	}
14481 
14482 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14483 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14484 		find_equal_scalars(this_branch, dst_reg);
14485 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14486 	}
14487 
14488 	/* if one pointer register is compared to another pointer
14489 	 * register check if PTR_MAYBE_NULL could be lifted.
14490 	 * E.g. register A - maybe null
14491 	 *      register B - not null
14492 	 * for JNE A, B, ... - A is not null in the false branch;
14493 	 * for JEQ A, B, ... - A is not null in the true branch.
14494 	 *
14495 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14496 	 * not need to be null checked by the BPF program, i.e.,
14497 	 * could be null even without PTR_MAYBE_NULL marking, so
14498 	 * only propagate nullness when neither reg is that type.
14499 	 */
14500 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14501 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14502 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14503 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14504 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14505 		eq_branch_regs = NULL;
14506 		switch (opcode) {
14507 		case BPF_JEQ:
14508 			eq_branch_regs = other_branch_regs;
14509 			break;
14510 		case BPF_JNE:
14511 			eq_branch_regs = regs;
14512 			break;
14513 		default:
14514 			/* do nothing */
14515 			break;
14516 		}
14517 		if (eq_branch_regs) {
14518 			if (type_may_be_null(src_reg->type))
14519 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14520 			else
14521 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14522 		}
14523 	}
14524 
14525 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14526 	 * NOTE: these optimizations below are related with pointer comparison
14527 	 *       which will never be JMP32.
14528 	 */
14529 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14530 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14531 	    type_may_be_null(dst_reg->type)) {
14532 		/* Mark all identical registers in each branch as either
14533 		 * safe or unknown depending R == 0 or R != 0 conditional.
14534 		 */
14535 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14536 				      opcode == BPF_JNE);
14537 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14538 				      opcode == BPF_JEQ);
14539 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14540 					   this_branch, other_branch) &&
14541 		   is_pointer_value(env, insn->dst_reg)) {
14542 		verbose(env, "R%d pointer comparison prohibited\n",
14543 			insn->dst_reg);
14544 		return -EACCES;
14545 	}
14546 	if (env->log.level & BPF_LOG_LEVEL)
14547 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14548 	return 0;
14549 }
14550 
14551 /* verify BPF_LD_IMM64 instruction */
14552 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14553 {
14554 	struct bpf_insn_aux_data *aux = cur_aux(env);
14555 	struct bpf_reg_state *regs = cur_regs(env);
14556 	struct bpf_reg_state *dst_reg;
14557 	struct bpf_map *map;
14558 	int err;
14559 
14560 	if (BPF_SIZE(insn->code) != BPF_DW) {
14561 		verbose(env, "invalid BPF_LD_IMM insn\n");
14562 		return -EINVAL;
14563 	}
14564 	if (insn->off != 0) {
14565 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14566 		return -EINVAL;
14567 	}
14568 
14569 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14570 	if (err)
14571 		return err;
14572 
14573 	dst_reg = &regs[insn->dst_reg];
14574 	if (insn->src_reg == 0) {
14575 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14576 
14577 		dst_reg->type = SCALAR_VALUE;
14578 		__mark_reg_known(&regs[insn->dst_reg], imm);
14579 		return 0;
14580 	}
14581 
14582 	/* All special src_reg cases are listed below. From this point onwards
14583 	 * we either succeed and assign a corresponding dst_reg->type after
14584 	 * zeroing the offset, or fail and reject the program.
14585 	 */
14586 	mark_reg_known_zero(env, regs, insn->dst_reg);
14587 
14588 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14589 		dst_reg->type = aux->btf_var.reg_type;
14590 		switch (base_type(dst_reg->type)) {
14591 		case PTR_TO_MEM:
14592 			dst_reg->mem_size = aux->btf_var.mem_size;
14593 			break;
14594 		case PTR_TO_BTF_ID:
14595 			dst_reg->btf = aux->btf_var.btf;
14596 			dst_reg->btf_id = aux->btf_var.btf_id;
14597 			break;
14598 		default:
14599 			verbose(env, "bpf verifier is misconfigured\n");
14600 			return -EFAULT;
14601 		}
14602 		return 0;
14603 	}
14604 
14605 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14606 		struct bpf_prog_aux *aux = env->prog->aux;
14607 		u32 subprogno = find_subprog(env,
14608 					     env->insn_idx + insn->imm + 1);
14609 
14610 		if (!aux->func_info) {
14611 			verbose(env, "missing btf func_info\n");
14612 			return -EINVAL;
14613 		}
14614 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14615 			verbose(env, "callback function not static\n");
14616 			return -EINVAL;
14617 		}
14618 
14619 		dst_reg->type = PTR_TO_FUNC;
14620 		dst_reg->subprogno = subprogno;
14621 		return 0;
14622 	}
14623 
14624 	map = env->used_maps[aux->map_index];
14625 	dst_reg->map_ptr = map;
14626 
14627 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14628 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14629 		dst_reg->type = PTR_TO_MAP_VALUE;
14630 		dst_reg->off = aux->map_off;
14631 		WARN_ON_ONCE(map->max_entries != 1);
14632 		/* We want reg->id to be same (0) as map_value is not distinct */
14633 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14634 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14635 		dst_reg->type = CONST_PTR_TO_MAP;
14636 	} else {
14637 		verbose(env, "bpf verifier is misconfigured\n");
14638 		return -EINVAL;
14639 	}
14640 
14641 	return 0;
14642 }
14643 
14644 static bool may_access_skb(enum bpf_prog_type type)
14645 {
14646 	switch (type) {
14647 	case BPF_PROG_TYPE_SOCKET_FILTER:
14648 	case BPF_PROG_TYPE_SCHED_CLS:
14649 	case BPF_PROG_TYPE_SCHED_ACT:
14650 		return true;
14651 	default:
14652 		return false;
14653 	}
14654 }
14655 
14656 /* verify safety of LD_ABS|LD_IND instructions:
14657  * - they can only appear in the programs where ctx == skb
14658  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14659  *   preserve R6-R9, and store return value into R0
14660  *
14661  * Implicit input:
14662  *   ctx == skb == R6 == CTX
14663  *
14664  * Explicit input:
14665  *   SRC == any register
14666  *   IMM == 32-bit immediate
14667  *
14668  * Output:
14669  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14670  */
14671 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14672 {
14673 	struct bpf_reg_state *regs = cur_regs(env);
14674 	static const int ctx_reg = BPF_REG_6;
14675 	u8 mode = BPF_MODE(insn->code);
14676 	int i, err;
14677 
14678 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14679 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14680 		return -EINVAL;
14681 	}
14682 
14683 	if (!env->ops->gen_ld_abs) {
14684 		verbose(env, "bpf verifier is misconfigured\n");
14685 		return -EINVAL;
14686 	}
14687 
14688 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14689 	    BPF_SIZE(insn->code) == BPF_DW ||
14690 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14691 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14692 		return -EINVAL;
14693 	}
14694 
14695 	/* check whether implicit source operand (register R6) is readable */
14696 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14697 	if (err)
14698 		return err;
14699 
14700 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14701 	 * gen_ld_abs() may terminate the program at runtime, leading to
14702 	 * reference leak.
14703 	 */
14704 	err = check_reference_leak(env, false);
14705 	if (err) {
14706 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14707 		return err;
14708 	}
14709 
14710 	if (env->cur_state->active_lock.ptr) {
14711 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14712 		return -EINVAL;
14713 	}
14714 
14715 	if (env->cur_state->active_rcu_lock) {
14716 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14717 		return -EINVAL;
14718 	}
14719 
14720 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14721 		verbose(env,
14722 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14723 		return -EINVAL;
14724 	}
14725 
14726 	if (mode == BPF_IND) {
14727 		/* check explicit source operand */
14728 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14729 		if (err)
14730 			return err;
14731 	}
14732 
14733 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14734 	if (err < 0)
14735 		return err;
14736 
14737 	/* reset caller saved regs to unreadable */
14738 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14739 		mark_reg_not_init(env, regs, caller_saved[i]);
14740 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14741 	}
14742 
14743 	/* mark destination R0 register as readable, since it contains
14744 	 * the value fetched from the packet.
14745 	 * Already marked as written above.
14746 	 */
14747 	mark_reg_unknown(env, regs, BPF_REG_0);
14748 	/* ld_abs load up to 32-bit skb data. */
14749 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14750 	return 0;
14751 }
14752 
14753 static int check_return_code(struct bpf_verifier_env *env, int regno)
14754 {
14755 	struct tnum enforce_attach_type_range = tnum_unknown;
14756 	const struct bpf_prog *prog = env->prog;
14757 	struct bpf_reg_state *reg;
14758 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14759 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14760 	int err;
14761 	struct bpf_func_state *frame = env->cur_state->frame[0];
14762 	const bool is_subprog = frame->subprogno;
14763 
14764 	/* LSM and struct_ops func-ptr's return type could be "void" */
14765 	if (!is_subprog || frame->in_exception_callback_fn) {
14766 		switch (prog_type) {
14767 		case BPF_PROG_TYPE_LSM:
14768 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14769 				/* See below, can be 0 or 0-1 depending on hook. */
14770 				break;
14771 			fallthrough;
14772 		case BPF_PROG_TYPE_STRUCT_OPS:
14773 			if (!prog->aux->attach_func_proto->type)
14774 				return 0;
14775 			break;
14776 		default:
14777 			break;
14778 		}
14779 	}
14780 
14781 	/* eBPF calling convention is such that R0 is used
14782 	 * to return the value from eBPF program.
14783 	 * Make sure that it's readable at this time
14784 	 * of bpf_exit, which means that program wrote
14785 	 * something into it earlier
14786 	 */
14787 	err = check_reg_arg(env, regno, SRC_OP);
14788 	if (err)
14789 		return err;
14790 
14791 	if (is_pointer_value(env, regno)) {
14792 		verbose(env, "R%d leaks addr as return value\n", regno);
14793 		return -EACCES;
14794 	}
14795 
14796 	reg = cur_regs(env) + regno;
14797 
14798 	if (frame->in_async_callback_fn) {
14799 		/* enforce return zero from async callbacks like timer */
14800 		if (reg->type != SCALAR_VALUE) {
14801 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
14802 				regno, reg_type_str(env, reg->type));
14803 			return -EINVAL;
14804 		}
14805 
14806 		if (!tnum_in(const_0, reg->var_off)) {
14807 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14808 			return -EINVAL;
14809 		}
14810 		return 0;
14811 	}
14812 
14813 	if (is_subprog && !frame->in_exception_callback_fn) {
14814 		if (reg->type != SCALAR_VALUE) {
14815 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
14816 				regno, reg_type_str(env, reg->type));
14817 			return -EINVAL;
14818 		}
14819 		return 0;
14820 	}
14821 
14822 	switch (prog_type) {
14823 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14824 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14825 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14826 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
14827 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14828 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14829 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
14830 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14831 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
14832 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
14833 			range = tnum_range(1, 1);
14834 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14835 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14836 			range = tnum_range(0, 3);
14837 		break;
14838 	case BPF_PROG_TYPE_CGROUP_SKB:
14839 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14840 			range = tnum_range(0, 3);
14841 			enforce_attach_type_range = tnum_range(2, 3);
14842 		}
14843 		break;
14844 	case BPF_PROG_TYPE_CGROUP_SOCK:
14845 	case BPF_PROG_TYPE_SOCK_OPS:
14846 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14847 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14848 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14849 		break;
14850 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14851 		if (!env->prog->aux->attach_btf_id)
14852 			return 0;
14853 		range = tnum_const(0);
14854 		break;
14855 	case BPF_PROG_TYPE_TRACING:
14856 		switch (env->prog->expected_attach_type) {
14857 		case BPF_TRACE_FENTRY:
14858 		case BPF_TRACE_FEXIT:
14859 			range = tnum_const(0);
14860 			break;
14861 		case BPF_TRACE_RAW_TP:
14862 		case BPF_MODIFY_RETURN:
14863 			return 0;
14864 		case BPF_TRACE_ITER:
14865 			break;
14866 		default:
14867 			return -ENOTSUPP;
14868 		}
14869 		break;
14870 	case BPF_PROG_TYPE_SK_LOOKUP:
14871 		range = tnum_range(SK_DROP, SK_PASS);
14872 		break;
14873 
14874 	case BPF_PROG_TYPE_LSM:
14875 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14876 			/* Regular BPF_PROG_TYPE_LSM programs can return
14877 			 * any value.
14878 			 */
14879 			return 0;
14880 		}
14881 		if (!env->prog->aux->attach_func_proto->type) {
14882 			/* Make sure programs that attach to void
14883 			 * hooks don't try to modify return value.
14884 			 */
14885 			range = tnum_range(1, 1);
14886 		}
14887 		break;
14888 
14889 	case BPF_PROG_TYPE_NETFILTER:
14890 		range = tnum_range(NF_DROP, NF_ACCEPT);
14891 		break;
14892 	case BPF_PROG_TYPE_EXT:
14893 		/* freplace program can return anything as its return value
14894 		 * depends on the to-be-replaced kernel func or bpf program.
14895 		 */
14896 	default:
14897 		return 0;
14898 	}
14899 
14900 	if (reg->type != SCALAR_VALUE) {
14901 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
14902 			regno, reg_type_str(env, reg->type));
14903 		return -EINVAL;
14904 	}
14905 
14906 	if (!tnum_in(range, reg->var_off)) {
14907 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14908 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14909 		    prog_type == BPF_PROG_TYPE_LSM &&
14910 		    !prog->aux->attach_func_proto->type)
14911 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14912 		return -EINVAL;
14913 	}
14914 
14915 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14916 	    tnum_in(enforce_attach_type_range, reg->var_off))
14917 		env->prog->enforce_expected_attach_type = 1;
14918 	return 0;
14919 }
14920 
14921 /* non-recursive DFS pseudo code
14922  * 1  procedure DFS-iterative(G,v):
14923  * 2      label v as discovered
14924  * 3      let S be a stack
14925  * 4      S.push(v)
14926  * 5      while S is not empty
14927  * 6            t <- S.peek()
14928  * 7            if t is what we're looking for:
14929  * 8                return t
14930  * 9            for all edges e in G.adjacentEdges(t) do
14931  * 10               if edge e is already labelled
14932  * 11                   continue with the next edge
14933  * 12               w <- G.adjacentVertex(t,e)
14934  * 13               if vertex w is not discovered and not explored
14935  * 14                   label e as tree-edge
14936  * 15                   label w as discovered
14937  * 16                   S.push(w)
14938  * 17                   continue at 5
14939  * 18               else if vertex w is discovered
14940  * 19                   label e as back-edge
14941  * 20               else
14942  * 21                   // vertex w is explored
14943  * 22                   label e as forward- or cross-edge
14944  * 23           label t as explored
14945  * 24           S.pop()
14946  *
14947  * convention:
14948  * 0x10 - discovered
14949  * 0x11 - discovered and fall-through edge labelled
14950  * 0x12 - discovered and fall-through and branch edges labelled
14951  * 0x20 - explored
14952  */
14953 
14954 enum {
14955 	DISCOVERED = 0x10,
14956 	EXPLORED = 0x20,
14957 	FALLTHROUGH = 1,
14958 	BRANCH = 2,
14959 };
14960 
14961 static u32 state_htab_size(struct bpf_verifier_env *env)
14962 {
14963 	return env->prog->len;
14964 }
14965 
14966 static struct bpf_verifier_state_list **explored_state(
14967 					struct bpf_verifier_env *env,
14968 					int idx)
14969 {
14970 	struct bpf_verifier_state *cur = env->cur_state;
14971 	struct bpf_func_state *state = cur->frame[cur->curframe];
14972 
14973 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14974 }
14975 
14976 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14977 {
14978 	env->insn_aux_data[idx].prune_point = true;
14979 }
14980 
14981 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14982 {
14983 	return env->insn_aux_data[insn_idx].prune_point;
14984 }
14985 
14986 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14987 {
14988 	env->insn_aux_data[idx].force_checkpoint = true;
14989 }
14990 
14991 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14992 {
14993 	return env->insn_aux_data[insn_idx].force_checkpoint;
14994 }
14995 
14996 
14997 enum {
14998 	DONE_EXPLORING = 0,
14999 	KEEP_EXPLORING = 1,
15000 };
15001 
15002 /* t, w, e - match pseudo-code above:
15003  * t - index of current instruction
15004  * w - next instruction
15005  * e - edge
15006  */
15007 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
15008 		     bool loop_ok)
15009 {
15010 	int *insn_stack = env->cfg.insn_stack;
15011 	int *insn_state = env->cfg.insn_state;
15012 
15013 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15014 		return DONE_EXPLORING;
15015 
15016 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15017 		return DONE_EXPLORING;
15018 
15019 	if (w < 0 || w >= env->prog->len) {
15020 		verbose_linfo(env, t, "%d: ", t);
15021 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15022 		return -EINVAL;
15023 	}
15024 
15025 	if (e == BRANCH) {
15026 		/* mark branch target for state pruning */
15027 		mark_prune_point(env, w);
15028 		mark_jmp_point(env, w);
15029 	}
15030 
15031 	if (insn_state[w] == 0) {
15032 		/* tree-edge */
15033 		insn_state[t] = DISCOVERED | e;
15034 		insn_state[w] = DISCOVERED;
15035 		if (env->cfg.cur_stack >= env->prog->len)
15036 			return -E2BIG;
15037 		insn_stack[env->cfg.cur_stack++] = w;
15038 		return KEEP_EXPLORING;
15039 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15040 		if (loop_ok && env->bpf_capable)
15041 			return DONE_EXPLORING;
15042 		verbose_linfo(env, t, "%d: ", t);
15043 		verbose_linfo(env, w, "%d: ", w);
15044 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15045 		return -EINVAL;
15046 	} else if (insn_state[w] == EXPLORED) {
15047 		/* forward- or cross-edge */
15048 		insn_state[t] = DISCOVERED | e;
15049 	} else {
15050 		verbose(env, "insn state internal bug\n");
15051 		return -EFAULT;
15052 	}
15053 	return DONE_EXPLORING;
15054 }
15055 
15056 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15057 				struct bpf_verifier_env *env,
15058 				bool visit_callee)
15059 {
15060 	int ret;
15061 
15062 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
15063 	if (ret)
15064 		return ret;
15065 
15066 	mark_prune_point(env, t + 1);
15067 	/* when we exit from subprog, we need to record non-linear history */
15068 	mark_jmp_point(env, t + 1);
15069 
15070 	if (visit_callee) {
15071 		mark_prune_point(env, t);
15072 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
15073 				/* It's ok to allow recursion from CFG point of
15074 				 * view. __check_func_call() will do the actual
15075 				 * check.
15076 				 */
15077 				bpf_pseudo_func(insns + t));
15078 	}
15079 	return ret;
15080 }
15081 
15082 /* Visits the instruction at index t and returns one of the following:
15083  *  < 0 - an error occurred
15084  *  DONE_EXPLORING - the instruction was fully explored
15085  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15086  */
15087 static int visit_insn(int t, struct bpf_verifier_env *env)
15088 {
15089 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15090 	int ret, off;
15091 
15092 	if (bpf_pseudo_func(insn))
15093 		return visit_func_call_insn(t, insns, env, true);
15094 
15095 	/* All non-branch instructions have a single fall-through edge. */
15096 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15097 	    BPF_CLASS(insn->code) != BPF_JMP32)
15098 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
15099 
15100 	switch (BPF_OP(insn->code)) {
15101 	case BPF_EXIT:
15102 		return DONE_EXPLORING;
15103 
15104 	case BPF_CALL:
15105 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15106 			/* Mark this call insn as a prune point to trigger
15107 			 * is_state_visited() check before call itself is
15108 			 * processed by __check_func_call(). Otherwise new
15109 			 * async state will be pushed for further exploration.
15110 			 */
15111 			mark_prune_point(env, t);
15112 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15113 			struct bpf_kfunc_call_arg_meta meta;
15114 
15115 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15116 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15117 				mark_prune_point(env, t);
15118 				/* Checking and saving state checkpoints at iter_next() call
15119 				 * is crucial for fast convergence of open-coded iterator loop
15120 				 * logic, so we need to force it. If we don't do that,
15121 				 * is_state_visited() might skip saving a checkpoint, causing
15122 				 * unnecessarily long sequence of not checkpointed
15123 				 * instructions and jumps, leading to exhaustion of jump
15124 				 * history buffer, and potentially other undesired outcomes.
15125 				 * It is expected that with correct open-coded iterators
15126 				 * convergence will happen quickly, so we don't run a risk of
15127 				 * exhausting memory.
15128 				 */
15129 				mark_force_checkpoint(env, t);
15130 			}
15131 		}
15132 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15133 
15134 	case BPF_JA:
15135 		if (BPF_SRC(insn->code) != BPF_K)
15136 			return -EINVAL;
15137 
15138 		if (BPF_CLASS(insn->code) == BPF_JMP)
15139 			off = insn->off;
15140 		else
15141 			off = insn->imm;
15142 
15143 		/* unconditional jump with single edge */
15144 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
15145 				true);
15146 		if (ret)
15147 			return ret;
15148 
15149 		mark_prune_point(env, t + off + 1);
15150 		mark_jmp_point(env, t + off + 1);
15151 
15152 		return ret;
15153 
15154 	default:
15155 		/* conditional jump with two edges */
15156 		mark_prune_point(env, t);
15157 
15158 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
15159 		if (ret)
15160 			return ret;
15161 
15162 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
15163 	}
15164 }
15165 
15166 /* non-recursive depth-first-search to detect loops in BPF program
15167  * loop == back-edge in directed graph
15168  */
15169 static int check_cfg(struct bpf_verifier_env *env)
15170 {
15171 	int insn_cnt = env->prog->len;
15172 	int *insn_stack, *insn_state;
15173 	int ex_insn_beg, i, ret = 0;
15174 	bool ex_done = false;
15175 
15176 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15177 	if (!insn_state)
15178 		return -ENOMEM;
15179 
15180 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15181 	if (!insn_stack) {
15182 		kvfree(insn_state);
15183 		return -ENOMEM;
15184 	}
15185 
15186 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15187 	insn_stack[0] = 0; /* 0 is the first instruction */
15188 	env->cfg.cur_stack = 1;
15189 
15190 walk_cfg:
15191 	while (env->cfg.cur_stack > 0) {
15192 		int t = insn_stack[env->cfg.cur_stack - 1];
15193 
15194 		ret = visit_insn(t, env);
15195 		switch (ret) {
15196 		case DONE_EXPLORING:
15197 			insn_state[t] = EXPLORED;
15198 			env->cfg.cur_stack--;
15199 			break;
15200 		case KEEP_EXPLORING:
15201 			break;
15202 		default:
15203 			if (ret > 0) {
15204 				verbose(env, "visit_insn internal bug\n");
15205 				ret = -EFAULT;
15206 			}
15207 			goto err_free;
15208 		}
15209 	}
15210 
15211 	if (env->cfg.cur_stack < 0) {
15212 		verbose(env, "pop stack internal bug\n");
15213 		ret = -EFAULT;
15214 		goto err_free;
15215 	}
15216 
15217 	if (env->exception_callback_subprog && !ex_done) {
15218 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15219 
15220 		insn_state[ex_insn_beg] = DISCOVERED;
15221 		insn_stack[0] = ex_insn_beg;
15222 		env->cfg.cur_stack = 1;
15223 		ex_done = true;
15224 		goto walk_cfg;
15225 	}
15226 
15227 	for (i = 0; i < insn_cnt; i++) {
15228 		if (insn_state[i] != EXPLORED) {
15229 			verbose(env, "unreachable insn %d\n", i);
15230 			ret = -EINVAL;
15231 			goto err_free;
15232 		}
15233 	}
15234 	ret = 0; /* cfg looks good */
15235 
15236 err_free:
15237 	kvfree(insn_state);
15238 	kvfree(insn_stack);
15239 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15240 	return ret;
15241 }
15242 
15243 static int check_abnormal_return(struct bpf_verifier_env *env)
15244 {
15245 	int i;
15246 
15247 	for (i = 1; i < env->subprog_cnt; i++) {
15248 		if (env->subprog_info[i].has_ld_abs) {
15249 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15250 			return -EINVAL;
15251 		}
15252 		if (env->subprog_info[i].has_tail_call) {
15253 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15254 			return -EINVAL;
15255 		}
15256 	}
15257 	return 0;
15258 }
15259 
15260 /* The minimum supported BTF func info size */
15261 #define MIN_BPF_FUNCINFO_SIZE	8
15262 #define MAX_FUNCINFO_REC_SIZE	252
15263 
15264 static int check_btf_func_early(struct bpf_verifier_env *env,
15265 				const union bpf_attr *attr,
15266 				bpfptr_t uattr)
15267 {
15268 	u32 krec_size = sizeof(struct bpf_func_info);
15269 	const struct btf_type *type, *func_proto;
15270 	u32 i, nfuncs, urec_size, min_size;
15271 	struct bpf_func_info *krecord;
15272 	struct bpf_prog *prog;
15273 	const struct btf *btf;
15274 	u32 prev_offset = 0;
15275 	bpfptr_t urecord;
15276 	int ret = -ENOMEM;
15277 
15278 	nfuncs = attr->func_info_cnt;
15279 	if (!nfuncs) {
15280 		if (check_abnormal_return(env))
15281 			return -EINVAL;
15282 		return 0;
15283 	}
15284 
15285 	urec_size = attr->func_info_rec_size;
15286 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15287 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15288 	    urec_size % sizeof(u32)) {
15289 		verbose(env, "invalid func info rec size %u\n", urec_size);
15290 		return -EINVAL;
15291 	}
15292 
15293 	prog = env->prog;
15294 	btf = prog->aux->btf;
15295 
15296 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15297 	min_size = min_t(u32, krec_size, urec_size);
15298 
15299 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15300 	if (!krecord)
15301 		return -ENOMEM;
15302 
15303 	for (i = 0; i < nfuncs; i++) {
15304 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15305 		if (ret) {
15306 			if (ret == -E2BIG) {
15307 				verbose(env, "nonzero tailing record in func info");
15308 				/* set the size kernel expects so loader can zero
15309 				 * out the rest of the record.
15310 				 */
15311 				if (copy_to_bpfptr_offset(uattr,
15312 							  offsetof(union bpf_attr, func_info_rec_size),
15313 							  &min_size, sizeof(min_size)))
15314 					ret = -EFAULT;
15315 			}
15316 			goto err_free;
15317 		}
15318 
15319 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15320 			ret = -EFAULT;
15321 			goto err_free;
15322 		}
15323 
15324 		/* check insn_off */
15325 		ret = -EINVAL;
15326 		if (i == 0) {
15327 			if (krecord[i].insn_off) {
15328 				verbose(env,
15329 					"nonzero insn_off %u for the first func info record",
15330 					krecord[i].insn_off);
15331 				goto err_free;
15332 			}
15333 		} else if (krecord[i].insn_off <= prev_offset) {
15334 			verbose(env,
15335 				"same or smaller insn offset (%u) than previous func info record (%u)",
15336 				krecord[i].insn_off, prev_offset);
15337 			goto err_free;
15338 		}
15339 
15340 		/* check type_id */
15341 		type = btf_type_by_id(btf, krecord[i].type_id);
15342 		if (!type || !btf_type_is_func(type)) {
15343 			verbose(env, "invalid type id %d in func info",
15344 				krecord[i].type_id);
15345 			goto err_free;
15346 		}
15347 
15348 		func_proto = btf_type_by_id(btf, type->type);
15349 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15350 			/* btf_func_check() already verified it during BTF load */
15351 			goto err_free;
15352 
15353 		prev_offset = krecord[i].insn_off;
15354 		bpfptr_add(&urecord, urec_size);
15355 	}
15356 
15357 	prog->aux->func_info = krecord;
15358 	prog->aux->func_info_cnt = nfuncs;
15359 	return 0;
15360 
15361 err_free:
15362 	kvfree(krecord);
15363 	return ret;
15364 }
15365 
15366 static int check_btf_func(struct bpf_verifier_env *env,
15367 			  const union bpf_attr *attr,
15368 			  bpfptr_t uattr)
15369 {
15370 	const struct btf_type *type, *func_proto, *ret_type;
15371 	u32 i, nfuncs, urec_size;
15372 	struct bpf_func_info *krecord;
15373 	struct bpf_func_info_aux *info_aux = NULL;
15374 	struct bpf_prog *prog;
15375 	const struct btf *btf;
15376 	bpfptr_t urecord;
15377 	bool scalar_return;
15378 	int ret = -ENOMEM;
15379 
15380 	nfuncs = attr->func_info_cnt;
15381 	if (!nfuncs) {
15382 		if (check_abnormal_return(env))
15383 			return -EINVAL;
15384 		return 0;
15385 	}
15386 	if (nfuncs != env->subprog_cnt) {
15387 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15388 		return -EINVAL;
15389 	}
15390 
15391 	urec_size = attr->func_info_rec_size;
15392 
15393 	prog = env->prog;
15394 	btf = prog->aux->btf;
15395 
15396 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15397 
15398 	krecord = prog->aux->func_info;
15399 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15400 	if (!info_aux)
15401 		return -ENOMEM;
15402 
15403 	for (i = 0; i < nfuncs; i++) {
15404 		/* check insn_off */
15405 		ret = -EINVAL;
15406 
15407 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15408 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15409 			goto err_free;
15410 		}
15411 
15412 		/* Already checked type_id */
15413 		type = btf_type_by_id(btf, krecord[i].type_id);
15414 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15415 		/* Already checked func_proto */
15416 		func_proto = btf_type_by_id(btf, type->type);
15417 
15418 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15419 		scalar_return =
15420 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15421 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15422 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15423 			goto err_free;
15424 		}
15425 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15426 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15427 			goto err_free;
15428 		}
15429 
15430 		bpfptr_add(&urecord, urec_size);
15431 	}
15432 
15433 	prog->aux->func_info_aux = info_aux;
15434 	return 0;
15435 
15436 err_free:
15437 	kfree(info_aux);
15438 	return ret;
15439 }
15440 
15441 static void adjust_btf_func(struct bpf_verifier_env *env)
15442 {
15443 	struct bpf_prog_aux *aux = env->prog->aux;
15444 	int i;
15445 
15446 	if (!aux->func_info)
15447 		return;
15448 
15449 	/* func_info is not available for hidden subprogs */
15450 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15451 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15452 }
15453 
15454 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15455 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15456 
15457 static int check_btf_line(struct bpf_verifier_env *env,
15458 			  const union bpf_attr *attr,
15459 			  bpfptr_t uattr)
15460 {
15461 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15462 	struct bpf_subprog_info *sub;
15463 	struct bpf_line_info *linfo;
15464 	struct bpf_prog *prog;
15465 	const struct btf *btf;
15466 	bpfptr_t ulinfo;
15467 	int err;
15468 
15469 	nr_linfo = attr->line_info_cnt;
15470 	if (!nr_linfo)
15471 		return 0;
15472 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15473 		return -EINVAL;
15474 
15475 	rec_size = attr->line_info_rec_size;
15476 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15477 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15478 	    rec_size & (sizeof(u32) - 1))
15479 		return -EINVAL;
15480 
15481 	/* Need to zero it in case the userspace may
15482 	 * pass in a smaller bpf_line_info object.
15483 	 */
15484 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15485 			 GFP_KERNEL | __GFP_NOWARN);
15486 	if (!linfo)
15487 		return -ENOMEM;
15488 
15489 	prog = env->prog;
15490 	btf = prog->aux->btf;
15491 
15492 	s = 0;
15493 	sub = env->subprog_info;
15494 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15495 	expected_size = sizeof(struct bpf_line_info);
15496 	ncopy = min_t(u32, expected_size, rec_size);
15497 	for (i = 0; i < nr_linfo; i++) {
15498 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15499 		if (err) {
15500 			if (err == -E2BIG) {
15501 				verbose(env, "nonzero tailing record in line_info");
15502 				if (copy_to_bpfptr_offset(uattr,
15503 							  offsetof(union bpf_attr, line_info_rec_size),
15504 							  &expected_size, sizeof(expected_size)))
15505 					err = -EFAULT;
15506 			}
15507 			goto err_free;
15508 		}
15509 
15510 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15511 			err = -EFAULT;
15512 			goto err_free;
15513 		}
15514 
15515 		/*
15516 		 * Check insn_off to ensure
15517 		 * 1) strictly increasing AND
15518 		 * 2) bounded by prog->len
15519 		 *
15520 		 * The linfo[0].insn_off == 0 check logically falls into
15521 		 * the later "missing bpf_line_info for func..." case
15522 		 * because the first linfo[0].insn_off must be the
15523 		 * first sub also and the first sub must have
15524 		 * subprog_info[0].start == 0.
15525 		 */
15526 		if ((i && linfo[i].insn_off <= prev_offset) ||
15527 		    linfo[i].insn_off >= prog->len) {
15528 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15529 				i, linfo[i].insn_off, prev_offset,
15530 				prog->len);
15531 			err = -EINVAL;
15532 			goto err_free;
15533 		}
15534 
15535 		if (!prog->insnsi[linfo[i].insn_off].code) {
15536 			verbose(env,
15537 				"Invalid insn code at line_info[%u].insn_off\n",
15538 				i);
15539 			err = -EINVAL;
15540 			goto err_free;
15541 		}
15542 
15543 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15544 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15545 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15546 			err = -EINVAL;
15547 			goto err_free;
15548 		}
15549 
15550 		if (s != env->subprog_cnt) {
15551 			if (linfo[i].insn_off == sub[s].start) {
15552 				sub[s].linfo_idx = i;
15553 				s++;
15554 			} else if (sub[s].start < linfo[i].insn_off) {
15555 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15556 				err = -EINVAL;
15557 				goto err_free;
15558 			}
15559 		}
15560 
15561 		prev_offset = linfo[i].insn_off;
15562 		bpfptr_add(&ulinfo, rec_size);
15563 	}
15564 
15565 	if (s != env->subprog_cnt) {
15566 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15567 			env->subprog_cnt - s, s);
15568 		err = -EINVAL;
15569 		goto err_free;
15570 	}
15571 
15572 	prog->aux->linfo = linfo;
15573 	prog->aux->nr_linfo = nr_linfo;
15574 
15575 	return 0;
15576 
15577 err_free:
15578 	kvfree(linfo);
15579 	return err;
15580 }
15581 
15582 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15583 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15584 
15585 static int check_core_relo(struct bpf_verifier_env *env,
15586 			   const union bpf_attr *attr,
15587 			   bpfptr_t uattr)
15588 {
15589 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15590 	struct bpf_core_relo core_relo = {};
15591 	struct bpf_prog *prog = env->prog;
15592 	const struct btf *btf = prog->aux->btf;
15593 	struct bpf_core_ctx ctx = {
15594 		.log = &env->log,
15595 		.btf = btf,
15596 	};
15597 	bpfptr_t u_core_relo;
15598 	int err;
15599 
15600 	nr_core_relo = attr->core_relo_cnt;
15601 	if (!nr_core_relo)
15602 		return 0;
15603 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15604 		return -EINVAL;
15605 
15606 	rec_size = attr->core_relo_rec_size;
15607 	if (rec_size < MIN_CORE_RELO_SIZE ||
15608 	    rec_size > MAX_CORE_RELO_SIZE ||
15609 	    rec_size % sizeof(u32))
15610 		return -EINVAL;
15611 
15612 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15613 	expected_size = sizeof(struct bpf_core_relo);
15614 	ncopy = min_t(u32, expected_size, rec_size);
15615 
15616 	/* Unlike func_info and line_info, copy and apply each CO-RE
15617 	 * relocation record one at a time.
15618 	 */
15619 	for (i = 0; i < nr_core_relo; i++) {
15620 		/* future proofing when sizeof(bpf_core_relo) changes */
15621 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15622 		if (err) {
15623 			if (err == -E2BIG) {
15624 				verbose(env, "nonzero tailing record in core_relo");
15625 				if (copy_to_bpfptr_offset(uattr,
15626 							  offsetof(union bpf_attr, core_relo_rec_size),
15627 							  &expected_size, sizeof(expected_size)))
15628 					err = -EFAULT;
15629 			}
15630 			break;
15631 		}
15632 
15633 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15634 			err = -EFAULT;
15635 			break;
15636 		}
15637 
15638 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15639 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15640 				i, core_relo.insn_off, prog->len);
15641 			err = -EINVAL;
15642 			break;
15643 		}
15644 
15645 		err = bpf_core_apply(&ctx, &core_relo, i,
15646 				     &prog->insnsi[core_relo.insn_off / 8]);
15647 		if (err)
15648 			break;
15649 		bpfptr_add(&u_core_relo, rec_size);
15650 	}
15651 	return err;
15652 }
15653 
15654 static int check_btf_info_early(struct bpf_verifier_env *env,
15655 				const union bpf_attr *attr,
15656 				bpfptr_t uattr)
15657 {
15658 	struct btf *btf;
15659 	int err;
15660 
15661 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15662 		if (check_abnormal_return(env))
15663 			return -EINVAL;
15664 		return 0;
15665 	}
15666 
15667 	btf = btf_get_by_fd(attr->prog_btf_fd);
15668 	if (IS_ERR(btf))
15669 		return PTR_ERR(btf);
15670 	if (btf_is_kernel(btf)) {
15671 		btf_put(btf);
15672 		return -EACCES;
15673 	}
15674 	env->prog->aux->btf = btf;
15675 
15676 	err = check_btf_func_early(env, attr, uattr);
15677 	if (err)
15678 		return err;
15679 	return 0;
15680 }
15681 
15682 static int check_btf_info(struct bpf_verifier_env *env,
15683 			  const union bpf_attr *attr,
15684 			  bpfptr_t uattr)
15685 {
15686 	int err;
15687 
15688 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15689 		if (check_abnormal_return(env))
15690 			return -EINVAL;
15691 		return 0;
15692 	}
15693 
15694 	err = check_btf_func(env, attr, uattr);
15695 	if (err)
15696 		return err;
15697 
15698 	err = check_btf_line(env, attr, uattr);
15699 	if (err)
15700 		return err;
15701 
15702 	err = check_core_relo(env, attr, uattr);
15703 	if (err)
15704 		return err;
15705 
15706 	return 0;
15707 }
15708 
15709 /* check %cur's range satisfies %old's */
15710 static bool range_within(struct bpf_reg_state *old,
15711 			 struct bpf_reg_state *cur)
15712 {
15713 	return old->umin_value <= cur->umin_value &&
15714 	       old->umax_value >= cur->umax_value &&
15715 	       old->smin_value <= cur->smin_value &&
15716 	       old->smax_value >= cur->smax_value &&
15717 	       old->u32_min_value <= cur->u32_min_value &&
15718 	       old->u32_max_value >= cur->u32_max_value &&
15719 	       old->s32_min_value <= cur->s32_min_value &&
15720 	       old->s32_max_value >= cur->s32_max_value;
15721 }
15722 
15723 /* If in the old state two registers had the same id, then they need to have
15724  * the same id in the new state as well.  But that id could be different from
15725  * the old state, so we need to track the mapping from old to new ids.
15726  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15727  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15728  * regs with a different old id could still have new id 9, we don't care about
15729  * that.
15730  * So we look through our idmap to see if this old id has been seen before.  If
15731  * so, we require the new id to match; otherwise, we add the id pair to the map.
15732  */
15733 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15734 {
15735 	struct bpf_id_pair *map = idmap->map;
15736 	unsigned int i;
15737 
15738 	/* either both IDs should be set or both should be zero */
15739 	if (!!old_id != !!cur_id)
15740 		return false;
15741 
15742 	if (old_id == 0) /* cur_id == 0 as well */
15743 		return true;
15744 
15745 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15746 		if (!map[i].old) {
15747 			/* Reached an empty slot; haven't seen this id before */
15748 			map[i].old = old_id;
15749 			map[i].cur = cur_id;
15750 			return true;
15751 		}
15752 		if (map[i].old == old_id)
15753 			return map[i].cur == cur_id;
15754 		if (map[i].cur == cur_id)
15755 			return false;
15756 	}
15757 	/* We ran out of idmap slots, which should be impossible */
15758 	WARN_ON_ONCE(1);
15759 	return false;
15760 }
15761 
15762 /* Similar to check_ids(), but allocate a unique temporary ID
15763  * for 'old_id' or 'cur_id' of zero.
15764  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15765  */
15766 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15767 {
15768 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15769 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15770 
15771 	return check_ids(old_id, cur_id, idmap);
15772 }
15773 
15774 static void clean_func_state(struct bpf_verifier_env *env,
15775 			     struct bpf_func_state *st)
15776 {
15777 	enum bpf_reg_liveness live;
15778 	int i, j;
15779 
15780 	for (i = 0; i < BPF_REG_FP; i++) {
15781 		live = st->regs[i].live;
15782 		/* liveness must not touch this register anymore */
15783 		st->regs[i].live |= REG_LIVE_DONE;
15784 		if (!(live & REG_LIVE_READ))
15785 			/* since the register is unused, clear its state
15786 			 * to make further comparison simpler
15787 			 */
15788 			__mark_reg_not_init(env, &st->regs[i]);
15789 	}
15790 
15791 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15792 		live = st->stack[i].spilled_ptr.live;
15793 		/* liveness must not touch this stack slot anymore */
15794 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15795 		if (!(live & REG_LIVE_READ)) {
15796 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15797 			for (j = 0; j < BPF_REG_SIZE; j++)
15798 				st->stack[i].slot_type[j] = STACK_INVALID;
15799 		}
15800 	}
15801 }
15802 
15803 static void clean_verifier_state(struct bpf_verifier_env *env,
15804 				 struct bpf_verifier_state *st)
15805 {
15806 	int i;
15807 
15808 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15809 		/* all regs in this state in all frames were already marked */
15810 		return;
15811 
15812 	for (i = 0; i <= st->curframe; i++)
15813 		clean_func_state(env, st->frame[i]);
15814 }
15815 
15816 /* the parentage chains form a tree.
15817  * the verifier states are added to state lists at given insn and
15818  * pushed into state stack for future exploration.
15819  * when the verifier reaches bpf_exit insn some of the verifer states
15820  * stored in the state lists have their final liveness state already,
15821  * but a lot of states will get revised from liveness point of view when
15822  * the verifier explores other branches.
15823  * Example:
15824  * 1: r0 = 1
15825  * 2: if r1 == 100 goto pc+1
15826  * 3: r0 = 2
15827  * 4: exit
15828  * when the verifier reaches exit insn the register r0 in the state list of
15829  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15830  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15831  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15832  *
15833  * Since the verifier pushes the branch states as it sees them while exploring
15834  * the program the condition of walking the branch instruction for the second
15835  * time means that all states below this branch were already explored and
15836  * their final liveness marks are already propagated.
15837  * Hence when the verifier completes the search of state list in is_state_visited()
15838  * we can call this clean_live_states() function to mark all liveness states
15839  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15840  * will not be used.
15841  * This function also clears the registers and stack for states that !READ
15842  * to simplify state merging.
15843  *
15844  * Important note here that walking the same branch instruction in the callee
15845  * doesn't meant that the states are DONE. The verifier has to compare
15846  * the callsites
15847  */
15848 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15849 			      struct bpf_verifier_state *cur)
15850 {
15851 	struct bpf_verifier_state_list *sl;
15852 	int i;
15853 
15854 	sl = *explored_state(env, insn);
15855 	while (sl) {
15856 		if (sl->state.branches)
15857 			goto next;
15858 		if (sl->state.insn_idx != insn ||
15859 		    sl->state.curframe != cur->curframe)
15860 			goto next;
15861 		for (i = 0; i <= cur->curframe; i++)
15862 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15863 				goto next;
15864 		clean_verifier_state(env, &sl->state);
15865 next:
15866 		sl = sl->next;
15867 	}
15868 }
15869 
15870 static bool regs_exact(const struct bpf_reg_state *rold,
15871 		       const struct bpf_reg_state *rcur,
15872 		       struct bpf_idmap *idmap)
15873 {
15874 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15875 	       check_ids(rold->id, rcur->id, idmap) &&
15876 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15877 }
15878 
15879 /* Returns true if (rold safe implies rcur safe) */
15880 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15881 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15882 {
15883 	if (!(rold->live & REG_LIVE_READ))
15884 		/* explored state didn't use this */
15885 		return true;
15886 	if (rold->type == NOT_INIT)
15887 		/* explored state can't have used this */
15888 		return true;
15889 	if (rcur->type == NOT_INIT)
15890 		return false;
15891 
15892 	/* Enforce that register types have to match exactly, including their
15893 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15894 	 * rule.
15895 	 *
15896 	 * One can make a point that using a pointer register as unbounded
15897 	 * SCALAR would be technically acceptable, but this could lead to
15898 	 * pointer leaks because scalars are allowed to leak while pointers
15899 	 * are not. We could make this safe in special cases if root is
15900 	 * calling us, but it's probably not worth the hassle.
15901 	 *
15902 	 * Also, register types that are *not* MAYBE_NULL could technically be
15903 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15904 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15905 	 * to the same map).
15906 	 * However, if the old MAYBE_NULL register then got NULL checked,
15907 	 * doing so could have affected others with the same id, and we can't
15908 	 * check for that because we lost the id when we converted to
15909 	 * a non-MAYBE_NULL variant.
15910 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15911 	 * non-MAYBE_NULL registers as well.
15912 	 */
15913 	if (rold->type != rcur->type)
15914 		return false;
15915 
15916 	switch (base_type(rold->type)) {
15917 	case SCALAR_VALUE:
15918 		if (env->explore_alu_limits) {
15919 			/* explore_alu_limits disables tnum_in() and range_within()
15920 			 * logic and requires everything to be strict
15921 			 */
15922 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15923 			       check_scalar_ids(rold->id, rcur->id, idmap);
15924 		}
15925 		if (!rold->precise)
15926 			return true;
15927 		/* Why check_ids() for scalar registers?
15928 		 *
15929 		 * Consider the following BPF code:
15930 		 *   1: r6 = ... unbound scalar, ID=a ...
15931 		 *   2: r7 = ... unbound scalar, ID=b ...
15932 		 *   3: if (r6 > r7) goto +1
15933 		 *   4: r6 = r7
15934 		 *   5: if (r6 > X) goto ...
15935 		 *   6: ... memory operation using r7 ...
15936 		 *
15937 		 * First verification path is [1-6]:
15938 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15939 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15940 		 *   r7 <= X, because r6 and r7 share same id.
15941 		 * Next verification path is [1-4, 6].
15942 		 *
15943 		 * Instruction (6) would be reached in two states:
15944 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15945 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15946 		 *
15947 		 * Use check_ids() to distinguish these states.
15948 		 * ---
15949 		 * Also verify that new value satisfies old value range knowledge.
15950 		 */
15951 		return range_within(rold, rcur) &&
15952 		       tnum_in(rold->var_off, rcur->var_off) &&
15953 		       check_scalar_ids(rold->id, rcur->id, idmap);
15954 	case PTR_TO_MAP_KEY:
15955 	case PTR_TO_MAP_VALUE:
15956 	case PTR_TO_MEM:
15957 	case PTR_TO_BUF:
15958 	case PTR_TO_TP_BUFFER:
15959 		/* If the new min/max/var_off satisfy the old ones and
15960 		 * everything else matches, we are OK.
15961 		 */
15962 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15963 		       range_within(rold, rcur) &&
15964 		       tnum_in(rold->var_off, rcur->var_off) &&
15965 		       check_ids(rold->id, rcur->id, idmap) &&
15966 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15967 	case PTR_TO_PACKET_META:
15968 	case PTR_TO_PACKET:
15969 		/* We must have at least as much range as the old ptr
15970 		 * did, so that any accesses which were safe before are
15971 		 * still safe.  This is true even if old range < old off,
15972 		 * since someone could have accessed through (ptr - k), or
15973 		 * even done ptr -= k in a register, to get a safe access.
15974 		 */
15975 		if (rold->range > rcur->range)
15976 			return false;
15977 		/* If the offsets don't match, we can't trust our alignment;
15978 		 * nor can we be sure that we won't fall out of range.
15979 		 */
15980 		if (rold->off != rcur->off)
15981 			return false;
15982 		/* id relations must be preserved */
15983 		if (!check_ids(rold->id, rcur->id, idmap))
15984 			return false;
15985 		/* new val must satisfy old val knowledge */
15986 		return range_within(rold, rcur) &&
15987 		       tnum_in(rold->var_off, rcur->var_off);
15988 	case PTR_TO_STACK:
15989 		/* two stack pointers are equal only if they're pointing to
15990 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15991 		 */
15992 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15993 	default:
15994 		return regs_exact(rold, rcur, idmap);
15995 	}
15996 }
15997 
15998 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15999 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
16000 {
16001 	int i, spi;
16002 
16003 	/* walk slots of the explored stack and ignore any additional
16004 	 * slots in the current stack, since explored(safe) state
16005 	 * didn't use them
16006 	 */
16007 	for (i = 0; i < old->allocated_stack; i++) {
16008 		struct bpf_reg_state *old_reg, *cur_reg;
16009 
16010 		spi = i / BPF_REG_SIZE;
16011 
16012 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
16013 			i += BPF_REG_SIZE - 1;
16014 			/* explored state didn't use this */
16015 			continue;
16016 		}
16017 
16018 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16019 			continue;
16020 
16021 		if (env->allow_uninit_stack &&
16022 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16023 			continue;
16024 
16025 		/* explored stack has more populated slots than current stack
16026 		 * and these slots were used
16027 		 */
16028 		if (i >= cur->allocated_stack)
16029 			return false;
16030 
16031 		/* if old state was safe with misc data in the stack
16032 		 * it will be safe with zero-initialized stack.
16033 		 * The opposite is not true
16034 		 */
16035 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16036 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16037 			continue;
16038 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16039 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16040 			/* Ex: old explored (safe) state has STACK_SPILL in
16041 			 * this stack slot, but current has STACK_MISC ->
16042 			 * this verifier states are not equivalent,
16043 			 * return false to continue verification of this path
16044 			 */
16045 			return false;
16046 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16047 			continue;
16048 		/* Both old and cur are having same slot_type */
16049 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16050 		case STACK_SPILL:
16051 			/* when explored and current stack slot are both storing
16052 			 * spilled registers, check that stored pointers types
16053 			 * are the same as well.
16054 			 * Ex: explored safe path could have stored
16055 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16056 			 * but current path has stored:
16057 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16058 			 * such verifier states are not equivalent.
16059 			 * return false to continue verification of this path
16060 			 */
16061 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16062 				     &cur->stack[spi].spilled_ptr, idmap))
16063 				return false;
16064 			break;
16065 		case STACK_DYNPTR:
16066 			old_reg = &old->stack[spi].spilled_ptr;
16067 			cur_reg = &cur->stack[spi].spilled_ptr;
16068 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16069 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16070 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16071 				return false;
16072 			break;
16073 		case STACK_ITER:
16074 			old_reg = &old->stack[spi].spilled_ptr;
16075 			cur_reg = &cur->stack[spi].spilled_ptr;
16076 			/* iter.depth is not compared between states as it
16077 			 * doesn't matter for correctness and would otherwise
16078 			 * prevent convergence; we maintain it only to prevent
16079 			 * infinite loop check triggering, see
16080 			 * iter_active_depths_differ()
16081 			 */
16082 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16083 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16084 			    old_reg->iter.state != cur_reg->iter.state ||
16085 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16086 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16087 				return false;
16088 			break;
16089 		case STACK_MISC:
16090 		case STACK_ZERO:
16091 		case STACK_INVALID:
16092 			continue;
16093 		/* Ensure that new unhandled slot types return false by default */
16094 		default:
16095 			return false;
16096 		}
16097 	}
16098 	return true;
16099 }
16100 
16101 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16102 		    struct bpf_idmap *idmap)
16103 {
16104 	int i;
16105 
16106 	if (old->acquired_refs != cur->acquired_refs)
16107 		return false;
16108 
16109 	for (i = 0; i < old->acquired_refs; i++) {
16110 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16111 			return false;
16112 	}
16113 
16114 	return true;
16115 }
16116 
16117 /* compare two verifier states
16118  *
16119  * all states stored in state_list are known to be valid, since
16120  * verifier reached 'bpf_exit' instruction through them
16121  *
16122  * this function is called when verifier exploring different branches of
16123  * execution popped from the state stack. If it sees an old state that has
16124  * more strict register state and more strict stack state then this execution
16125  * branch doesn't need to be explored further, since verifier already
16126  * concluded that more strict state leads to valid finish.
16127  *
16128  * Therefore two states are equivalent if register state is more conservative
16129  * and explored stack state is more conservative than the current one.
16130  * Example:
16131  *       explored                   current
16132  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16133  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16134  *
16135  * In other words if current stack state (one being explored) has more
16136  * valid slots than old one that already passed validation, it means
16137  * the verifier can stop exploring and conclude that current state is valid too
16138  *
16139  * Similarly with registers. If explored state has register type as invalid
16140  * whereas register type in current state is meaningful, it means that
16141  * the current state will reach 'bpf_exit' instruction safely
16142  */
16143 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16144 			      struct bpf_func_state *cur)
16145 {
16146 	int i;
16147 
16148 	for (i = 0; i < MAX_BPF_REG; i++)
16149 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16150 			     &env->idmap_scratch))
16151 			return false;
16152 
16153 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
16154 		return false;
16155 
16156 	if (!refsafe(old, cur, &env->idmap_scratch))
16157 		return false;
16158 
16159 	return true;
16160 }
16161 
16162 static bool states_equal(struct bpf_verifier_env *env,
16163 			 struct bpf_verifier_state *old,
16164 			 struct bpf_verifier_state *cur)
16165 {
16166 	int i;
16167 
16168 	if (old->curframe != cur->curframe)
16169 		return false;
16170 
16171 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16172 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16173 
16174 	/* Verification state from speculative execution simulation
16175 	 * must never prune a non-speculative execution one.
16176 	 */
16177 	if (old->speculative && !cur->speculative)
16178 		return false;
16179 
16180 	if (old->active_lock.ptr != cur->active_lock.ptr)
16181 		return false;
16182 
16183 	/* Old and cur active_lock's have to be either both present
16184 	 * or both absent.
16185 	 */
16186 	if (!!old->active_lock.id != !!cur->active_lock.id)
16187 		return false;
16188 
16189 	if (old->active_lock.id &&
16190 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16191 		return false;
16192 
16193 	if (old->active_rcu_lock != cur->active_rcu_lock)
16194 		return false;
16195 
16196 	/* for states to be equal callsites have to be the same
16197 	 * and all frame states need to be equivalent
16198 	 */
16199 	for (i = 0; i <= old->curframe; i++) {
16200 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16201 			return false;
16202 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
16203 			return false;
16204 	}
16205 	return true;
16206 }
16207 
16208 /* Return 0 if no propagation happened. Return negative error code if error
16209  * happened. Otherwise, return the propagated bit.
16210  */
16211 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16212 				  struct bpf_reg_state *reg,
16213 				  struct bpf_reg_state *parent_reg)
16214 {
16215 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16216 	u8 flag = reg->live & REG_LIVE_READ;
16217 	int err;
16218 
16219 	/* When comes here, read flags of PARENT_REG or REG could be any of
16220 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16221 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16222 	 */
16223 	if (parent_flag == REG_LIVE_READ64 ||
16224 	    /* Or if there is no read flag from REG. */
16225 	    !flag ||
16226 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16227 	    parent_flag == flag)
16228 		return 0;
16229 
16230 	err = mark_reg_read(env, reg, parent_reg, flag);
16231 	if (err)
16232 		return err;
16233 
16234 	return flag;
16235 }
16236 
16237 /* A write screens off any subsequent reads; but write marks come from the
16238  * straight-line code between a state and its parent.  When we arrive at an
16239  * equivalent state (jump target or such) we didn't arrive by the straight-line
16240  * code, so read marks in the state must propagate to the parent regardless
16241  * of the state's write marks. That's what 'parent == state->parent' comparison
16242  * in mark_reg_read() is for.
16243  */
16244 static int propagate_liveness(struct bpf_verifier_env *env,
16245 			      const struct bpf_verifier_state *vstate,
16246 			      struct bpf_verifier_state *vparent)
16247 {
16248 	struct bpf_reg_state *state_reg, *parent_reg;
16249 	struct bpf_func_state *state, *parent;
16250 	int i, frame, err = 0;
16251 
16252 	if (vparent->curframe != vstate->curframe) {
16253 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16254 		     vparent->curframe, vstate->curframe);
16255 		return -EFAULT;
16256 	}
16257 	/* Propagate read liveness of registers... */
16258 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16259 	for (frame = 0; frame <= vstate->curframe; frame++) {
16260 		parent = vparent->frame[frame];
16261 		state = vstate->frame[frame];
16262 		parent_reg = parent->regs;
16263 		state_reg = state->regs;
16264 		/* We don't need to worry about FP liveness, it's read-only */
16265 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16266 			err = propagate_liveness_reg(env, &state_reg[i],
16267 						     &parent_reg[i]);
16268 			if (err < 0)
16269 				return err;
16270 			if (err == REG_LIVE_READ64)
16271 				mark_insn_zext(env, &parent_reg[i]);
16272 		}
16273 
16274 		/* Propagate stack slots. */
16275 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16276 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16277 			parent_reg = &parent->stack[i].spilled_ptr;
16278 			state_reg = &state->stack[i].spilled_ptr;
16279 			err = propagate_liveness_reg(env, state_reg,
16280 						     parent_reg);
16281 			if (err < 0)
16282 				return err;
16283 		}
16284 	}
16285 	return 0;
16286 }
16287 
16288 /* find precise scalars in the previous equivalent state and
16289  * propagate them into the current state
16290  */
16291 static int propagate_precision(struct bpf_verifier_env *env,
16292 			       const struct bpf_verifier_state *old)
16293 {
16294 	struct bpf_reg_state *state_reg;
16295 	struct bpf_func_state *state;
16296 	int i, err = 0, fr;
16297 	bool first;
16298 
16299 	for (fr = old->curframe; fr >= 0; fr--) {
16300 		state = old->frame[fr];
16301 		state_reg = state->regs;
16302 		first = true;
16303 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16304 			if (state_reg->type != SCALAR_VALUE ||
16305 			    !state_reg->precise ||
16306 			    !(state_reg->live & REG_LIVE_READ))
16307 				continue;
16308 			if (env->log.level & BPF_LOG_LEVEL2) {
16309 				if (first)
16310 					verbose(env, "frame %d: propagating r%d", fr, i);
16311 				else
16312 					verbose(env, ",r%d", i);
16313 			}
16314 			bt_set_frame_reg(&env->bt, fr, i);
16315 			first = false;
16316 		}
16317 
16318 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16319 			if (!is_spilled_reg(&state->stack[i]))
16320 				continue;
16321 			state_reg = &state->stack[i].spilled_ptr;
16322 			if (state_reg->type != SCALAR_VALUE ||
16323 			    !state_reg->precise ||
16324 			    !(state_reg->live & REG_LIVE_READ))
16325 				continue;
16326 			if (env->log.level & BPF_LOG_LEVEL2) {
16327 				if (first)
16328 					verbose(env, "frame %d: propagating fp%d",
16329 						fr, (-i - 1) * BPF_REG_SIZE);
16330 				else
16331 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16332 			}
16333 			bt_set_frame_slot(&env->bt, fr, i);
16334 			first = false;
16335 		}
16336 		if (!first)
16337 			verbose(env, "\n");
16338 	}
16339 
16340 	err = mark_chain_precision_batch(env);
16341 	if (err < 0)
16342 		return err;
16343 
16344 	return 0;
16345 }
16346 
16347 static bool states_maybe_looping(struct bpf_verifier_state *old,
16348 				 struct bpf_verifier_state *cur)
16349 {
16350 	struct bpf_func_state *fold, *fcur;
16351 	int i, fr = cur->curframe;
16352 
16353 	if (old->curframe != fr)
16354 		return false;
16355 
16356 	fold = old->frame[fr];
16357 	fcur = cur->frame[fr];
16358 	for (i = 0; i < MAX_BPF_REG; i++)
16359 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16360 			   offsetof(struct bpf_reg_state, parent)))
16361 			return false;
16362 	return true;
16363 }
16364 
16365 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16366 {
16367 	return env->insn_aux_data[insn_idx].is_iter_next;
16368 }
16369 
16370 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16371  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16372  * states to match, which otherwise would look like an infinite loop. So while
16373  * iter_next() calls are taken care of, we still need to be careful and
16374  * prevent erroneous and too eager declaration of "ininite loop", when
16375  * iterators are involved.
16376  *
16377  * Here's a situation in pseudo-BPF assembly form:
16378  *
16379  *   0: again:                          ; set up iter_next() call args
16380  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16381  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16382  *   3:   if r0 == 0 goto done
16383  *   4:   ... something useful here ...
16384  *   5:   goto again                    ; another iteration
16385  *   6: done:
16386  *   7:   r1 = &it
16387  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16388  *   9:   exit
16389  *
16390  * This is a typical loop. Let's assume that we have a prune point at 1:,
16391  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16392  * again`, assuming other heuristics don't get in a way).
16393  *
16394  * When we first time come to 1:, let's say we have some state X. We proceed
16395  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16396  * Now we come back to validate that forked ACTIVE state. We proceed through
16397  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16398  * are converging. But the problem is that we don't know that yet, as this
16399  * convergence has to happen at iter_next() call site only. So if nothing is
16400  * done, at 1: verifier will use bounded loop logic and declare infinite
16401  * looping (and would be *technically* correct, if not for iterator's
16402  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16403  * don't want that. So what we do in process_iter_next_call() when we go on
16404  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16405  * a different iteration. So when we suspect an infinite loop, we additionally
16406  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16407  * pretend we are not looping and wait for next iter_next() call.
16408  *
16409  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16410  * loop, because that would actually mean infinite loop, as DRAINED state is
16411  * "sticky", and so we'll keep returning into the same instruction with the
16412  * same state (at least in one of possible code paths).
16413  *
16414  * This approach allows to keep infinite loop heuristic even in the face of
16415  * active iterator. E.g., C snippet below is and will be detected as
16416  * inifintely looping:
16417  *
16418  *   struct bpf_iter_num it;
16419  *   int *p, x;
16420  *
16421  *   bpf_iter_num_new(&it, 0, 10);
16422  *   while ((p = bpf_iter_num_next(&t))) {
16423  *       x = p;
16424  *       while (x--) {} // <<-- infinite loop here
16425  *   }
16426  *
16427  */
16428 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16429 {
16430 	struct bpf_reg_state *slot, *cur_slot;
16431 	struct bpf_func_state *state;
16432 	int i, fr;
16433 
16434 	for (fr = old->curframe; fr >= 0; fr--) {
16435 		state = old->frame[fr];
16436 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16437 			if (state->stack[i].slot_type[0] != STACK_ITER)
16438 				continue;
16439 
16440 			slot = &state->stack[i].spilled_ptr;
16441 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16442 				continue;
16443 
16444 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16445 			if (cur_slot->iter.depth != slot->iter.depth)
16446 				return true;
16447 		}
16448 	}
16449 	return false;
16450 }
16451 
16452 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16453 {
16454 	struct bpf_verifier_state_list *new_sl;
16455 	struct bpf_verifier_state_list *sl, **pprev;
16456 	struct bpf_verifier_state *cur = env->cur_state, *new;
16457 	int i, j, err, states_cnt = 0;
16458 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16459 	bool add_new_state = force_new_state;
16460 
16461 	/* bpf progs typically have pruning point every 4 instructions
16462 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16463 	 * Do not add new state for future pruning if the verifier hasn't seen
16464 	 * at least 2 jumps and at least 8 instructions.
16465 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16466 	 * In tests that amounts to up to 50% reduction into total verifier
16467 	 * memory consumption and 20% verifier time speedup.
16468 	 */
16469 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16470 	    env->insn_processed - env->prev_insn_processed >= 8)
16471 		add_new_state = true;
16472 
16473 	pprev = explored_state(env, insn_idx);
16474 	sl = *pprev;
16475 
16476 	clean_live_states(env, insn_idx, cur);
16477 
16478 	while (sl) {
16479 		states_cnt++;
16480 		if (sl->state.insn_idx != insn_idx)
16481 			goto next;
16482 
16483 		if (sl->state.branches) {
16484 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16485 
16486 			if (frame->in_async_callback_fn &&
16487 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16488 				/* Different async_entry_cnt means that the verifier is
16489 				 * processing another entry into async callback.
16490 				 * Seeing the same state is not an indication of infinite
16491 				 * loop or infinite recursion.
16492 				 * But finding the same state doesn't mean that it's safe
16493 				 * to stop processing the current state. The previous state
16494 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16495 				 * Checking in_async_callback_fn alone is not enough either.
16496 				 * Since the verifier still needs to catch infinite loops
16497 				 * inside async callbacks.
16498 				 */
16499 				goto skip_inf_loop_check;
16500 			}
16501 			/* BPF open-coded iterators loop detection is special.
16502 			 * states_maybe_looping() logic is too simplistic in detecting
16503 			 * states that *might* be equivalent, because it doesn't know
16504 			 * about ID remapping, so don't even perform it.
16505 			 * See process_iter_next_call() and iter_active_depths_differ()
16506 			 * for overview of the logic. When current and one of parent
16507 			 * states are detected as equivalent, it's a good thing: we prove
16508 			 * convergence and can stop simulating further iterations.
16509 			 * It's safe to assume that iterator loop will finish, taking into
16510 			 * account iter_next() contract of eventually returning
16511 			 * sticky NULL result.
16512 			 */
16513 			if (is_iter_next_insn(env, insn_idx)) {
16514 				if (states_equal(env, &sl->state, cur)) {
16515 					struct bpf_func_state *cur_frame;
16516 					struct bpf_reg_state *iter_state, *iter_reg;
16517 					int spi;
16518 
16519 					cur_frame = cur->frame[cur->curframe];
16520 					/* btf_check_iter_kfuncs() enforces that
16521 					 * iter state pointer is always the first arg
16522 					 */
16523 					iter_reg = &cur_frame->regs[BPF_REG_1];
16524 					/* current state is valid due to states_equal(),
16525 					 * so we can assume valid iter and reg state,
16526 					 * no need for extra (re-)validations
16527 					 */
16528 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16529 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16530 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16531 						goto hit;
16532 				}
16533 				goto skip_inf_loop_check;
16534 			}
16535 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16536 			if (states_maybe_looping(&sl->state, cur) &&
16537 			    states_equal(env, &sl->state, cur) &&
16538 			    !iter_active_depths_differ(&sl->state, cur)) {
16539 				verbose_linfo(env, insn_idx, "; ");
16540 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16541 				return -EINVAL;
16542 			}
16543 			/* if the verifier is processing a loop, avoid adding new state
16544 			 * too often, since different loop iterations have distinct
16545 			 * states and may not help future pruning.
16546 			 * This threshold shouldn't be too low to make sure that
16547 			 * a loop with large bound will be rejected quickly.
16548 			 * The most abusive loop will be:
16549 			 * r1 += 1
16550 			 * if r1 < 1000000 goto pc-2
16551 			 * 1M insn_procssed limit / 100 == 10k peak states.
16552 			 * This threshold shouldn't be too high either, since states
16553 			 * at the end of the loop are likely to be useful in pruning.
16554 			 */
16555 skip_inf_loop_check:
16556 			if (!force_new_state &&
16557 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16558 			    env->insn_processed - env->prev_insn_processed < 100)
16559 				add_new_state = false;
16560 			goto miss;
16561 		}
16562 		if (states_equal(env, &sl->state, cur)) {
16563 hit:
16564 			sl->hit_cnt++;
16565 			/* reached equivalent register/stack state,
16566 			 * prune the search.
16567 			 * Registers read by the continuation are read by us.
16568 			 * If we have any write marks in env->cur_state, they
16569 			 * will prevent corresponding reads in the continuation
16570 			 * from reaching our parent (an explored_state).  Our
16571 			 * own state will get the read marks recorded, but
16572 			 * they'll be immediately forgotten as we're pruning
16573 			 * this state and will pop a new one.
16574 			 */
16575 			err = propagate_liveness(env, &sl->state, cur);
16576 
16577 			/* if previous state reached the exit with precision and
16578 			 * current state is equivalent to it (except precsion marks)
16579 			 * the precision needs to be propagated back in
16580 			 * the current state.
16581 			 */
16582 			err = err ? : push_jmp_history(env, cur);
16583 			err = err ? : propagate_precision(env, &sl->state);
16584 			if (err)
16585 				return err;
16586 			return 1;
16587 		}
16588 miss:
16589 		/* when new state is not going to be added do not increase miss count.
16590 		 * Otherwise several loop iterations will remove the state
16591 		 * recorded earlier. The goal of these heuristics is to have
16592 		 * states from some iterations of the loop (some in the beginning
16593 		 * and some at the end) to help pruning.
16594 		 */
16595 		if (add_new_state)
16596 			sl->miss_cnt++;
16597 		/* heuristic to determine whether this state is beneficial
16598 		 * to keep checking from state equivalence point of view.
16599 		 * Higher numbers increase max_states_per_insn and verification time,
16600 		 * but do not meaningfully decrease insn_processed.
16601 		 */
16602 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16603 			/* the state is unlikely to be useful. Remove it to
16604 			 * speed up verification
16605 			 */
16606 			*pprev = sl->next;
16607 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16608 				u32 br = sl->state.branches;
16609 
16610 				WARN_ONCE(br,
16611 					  "BUG live_done but branches_to_explore %d\n",
16612 					  br);
16613 				free_verifier_state(&sl->state, false);
16614 				kfree(sl);
16615 				env->peak_states--;
16616 			} else {
16617 				/* cannot free this state, since parentage chain may
16618 				 * walk it later. Add it for free_list instead to
16619 				 * be freed at the end of verification
16620 				 */
16621 				sl->next = env->free_list;
16622 				env->free_list = sl;
16623 			}
16624 			sl = *pprev;
16625 			continue;
16626 		}
16627 next:
16628 		pprev = &sl->next;
16629 		sl = *pprev;
16630 	}
16631 
16632 	if (env->max_states_per_insn < states_cnt)
16633 		env->max_states_per_insn = states_cnt;
16634 
16635 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16636 		return 0;
16637 
16638 	if (!add_new_state)
16639 		return 0;
16640 
16641 	/* There were no equivalent states, remember the current one.
16642 	 * Technically the current state is not proven to be safe yet,
16643 	 * but it will either reach outer most bpf_exit (which means it's safe)
16644 	 * or it will be rejected. When there are no loops the verifier won't be
16645 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16646 	 * again on the way to bpf_exit.
16647 	 * When looping the sl->state.branches will be > 0 and this state
16648 	 * will not be considered for equivalence until branches == 0.
16649 	 */
16650 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16651 	if (!new_sl)
16652 		return -ENOMEM;
16653 	env->total_states++;
16654 	env->peak_states++;
16655 	env->prev_jmps_processed = env->jmps_processed;
16656 	env->prev_insn_processed = env->insn_processed;
16657 
16658 	/* forget precise markings we inherited, see __mark_chain_precision */
16659 	if (env->bpf_capable)
16660 		mark_all_scalars_imprecise(env, cur);
16661 
16662 	/* add new state to the head of linked list */
16663 	new = &new_sl->state;
16664 	err = copy_verifier_state(new, cur);
16665 	if (err) {
16666 		free_verifier_state(new, false);
16667 		kfree(new_sl);
16668 		return err;
16669 	}
16670 	new->insn_idx = insn_idx;
16671 	WARN_ONCE(new->branches != 1,
16672 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16673 
16674 	cur->parent = new;
16675 	cur->first_insn_idx = insn_idx;
16676 	clear_jmp_history(cur);
16677 	new_sl->next = *explored_state(env, insn_idx);
16678 	*explored_state(env, insn_idx) = new_sl;
16679 	/* connect new state to parentage chain. Current frame needs all
16680 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16681 	 * to the stack implicitly by JITs) so in callers' frames connect just
16682 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16683 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16684 	 * from callee with its full parentage chain, anyway.
16685 	 */
16686 	/* clear write marks in current state: the writes we did are not writes
16687 	 * our child did, so they don't screen off its reads from us.
16688 	 * (There are no read marks in current state, because reads always mark
16689 	 * their parent and current state never has children yet.  Only
16690 	 * explored_states can get read marks.)
16691 	 */
16692 	for (j = 0; j <= cur->curframe; j++) {
16693 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16694 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16695 		for (i = 0; i < BPF_REG_FP; i++)
16696 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16697 	}
16698 
16699 	/* all stack frames are accessible from callee, clear them all */
16700 	for (j = 0; j <= cur->curframe; j++) {
16701 		struct bpf_func_state *frame = cur->frame[j];
16702 		struct bpf_func_state *newframe = new->frame[j];
16703 
16704 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16705 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16706 			frame->stack[i].spilled_ptr.parent =
16707 						&newframe->stack[i].spilled_ptr;
16708 		}
16709 	}
16710 	return 0;
16711 }
16712 
16713 /* Return true if it's OK to have the same insn return a different type. */
16714 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16715 {
16716 	switch (base_type(type)) {
16717 	case PTR_TO_CTX:
16718 	case PTR_TO_SOCKET:
16719 	case PTR_TO_SOCK_COMMON:
16720 	case PTR_TO_TCP_SOCK:
16721 	case PTR_TO_XDP_SOCK:
16722 	case PTR_TO_BTF_ID:
16723 		return false;
16724 	default:
16725 		return true;
16726 	}
16727 }
16728 
16729 /* If an instruction was previously used with particular pointer types, then we
16730  * need to be careful to avoid cases such as the below, where it may be ok
16731  * for one branch accessing the pointer, but not ok for the other branch:
16732  *
16733  * R1 = sock_ptr
16734  * goto X;
16735  * ...
16736  * R1 = some_other_valid_ptr;
16737  * goto X;
16738  * ...
16739  * R2 = *(u32 *)(R1 + 0);
16740  */
16741 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16742 {
16743 	return src != prev && (!reg_type_mismatch_ok(src) ||
16744 			       !reg_type_mismatch_ok(prev));
16745 }
16746 
16747 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16748 			     bool allow_trust_missmatch)
16749 {
16750 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16751 
16752 	if (*prev_type == NOT_INIT) {
16753 		/* Saw a valid insn
16754 		 * dst_reg = *(u32 *)(src_reg + off)
16755 		 * save type to validate intersecting paths
16756 		 */
16757 		*prev_type = type;
16758 	} else if (reg_type_mismatch(type, *prev_type)) {
16759 		/* Abuser program is trying to use the same insn
16760 		 * dst_reg = *(u32*) (src_reg + off)
16761 		 * with different pointer types:
16762 		 * src_reg == ctx in one branch and
16763 		 * src_reg == stack|map in some other branch.
16764 		 * Reject it.
16765 		 */
16766 		if (allow_trust_missmatch &&
16767 		    base_type(type) == PTR_TO_BTF_ID &&
16768 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16769 			/*
16770 			 * Have to support a use case when one path through
16771 			 * the program yields TRUSTED pointer while another
16772 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16773 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16774 			 */
16775 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16776 		} else {
16777 			verbose(env, "same insn cannot be used with different pointers\n");
16778 			return -EINVAL;
16779 		}
16780 	}
16781 
16782 	return 0;
16783 }
16784 
16785 static int do_check(struct bpf_verifier_env *env)
16786 {
16787 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16788 	struct bpf_verifier_state *state = env->cur_state;
16789 	struct bpf_insn *insns = env->prog->insnsi;
16790 	struct bpf_reg_state *regs;
16791 	int insn_cnt = env->prog->len;
16792 	bool do_print_state = false;
16793 	int prev_insn_idx = -1;
16794 
16795 	for (;;) {
16796 		bool exception_exit = false;
16797 		struct bpf_insn *insn;
16798 		u8 class;
16799 		int err;
16800 
16801 		env->prev_insn_idx = prev_insn_idx;
16802 		if (env->insn_idx >= insn_cnt) {
16803 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16804 				env->insn_idx, insn_cnt);
16805 			return -EFAULT;
16806 		}
16807 
16808 		insn = &insns[env->insn_idx];
16809 		class = BPF_CLASS(insn->code);
16810 
16811 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16812 			verbose(env,
16813 				"BPF program is too large. Processed %d insn\n",
16814 				env->insn_processed);
16815 			return -E2BIG;
16816 		}
16817 
16818 		state->last_insn_idx = env->prev_insn_idx;
16819 
16820 		if (is_prune_point(env, env->insn_idx)) {
16821 			err = is_state_visited(env, env->insn_idx);
16822 			if (err < 0)
16823 				return err;
16824 			if (err == 1) {
16825 				/* found equivalent state, can prune the search */
16826 				if (env->log.level & BPF_LOG_LEVEL) {
16827 					if (do_print_state)
16828 						verbose(env, "\nfrom %d to %d%s: safe\n",
16829 							env->prev_insn_idx, env->insn_idx,
16830 							env->cur_state->speculative ?
16831 							" (speculative execution)" : "");
16832 					else
16833 						verbose(env, "%d: safe\n", env->insn_idx);
16834 				}
16835 				goto process_bpf_exit;
16836 			}
16837 		}
16838 
16839 		if (is_jmp_point(env, env->insn_idx)) {
16840 			err = push_jmp_history(env, state);
16841 			if (err)
16842 				return err;
16843 		}
16844 
16845 		if (signal_pending(current))
16846 			return -EAGAIN;
16847 
16848 		if (need_resched())
16849 			cond_resched();
16850 
16851 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16852 			verbose(env, "\nfrom %d to %d%s:",
16853 				env->prev_insn_idx, env->insn_idx,
16854 				env->cur_state->speculative ?
16855 				" (speculative execution)" : "");
16856 			print_verifier_state(env, state->frame[state->curframe], true);
16857 			do_print_state = false;
16858 		}
16859 
16860 		if (env->log.level & BPF_LOG_LEVEL) {
16861 			const struct bpf_insn_cbs cbs = {
16862 				.cb_call	= disasm_kfunc_name,
16863 				.cb_print	= verbose,
16864 				.private_data	= env,
16865 			};
16866 
16867 			if (verifier_state_scratched(env))
16868 				print_insn_state(env, state->frame[state->curframe]);
16869 
16870 			verbose_linfo(env, env->insn_idx, "; ");
16871 			env->prev_log_pos = env->log.end_pos;
16872 			verbose(env, "%d: ", env->insn_idx);
16873 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16874 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16875 			env->prev_log_pos = env->log.end_pos;
16876 		}
16877 
16878 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16879 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16880 							   env->prev_insn_idx);
16881 			if (err)
16882 				return err;
16883 		}
16884 
16885 		regs = cur_regs(env);
16886 		sanitize_mark_insn_seen(env);
16887 		prev_insn_idx = env->insn_idx;
16888 
16889 		if (class == BPF_ALU || class == BPF_ALU64) {
16890 			err = check_alu_op(env, insn);
16891 			if (err)
16892 				return err;
16893 
16894 		} else if (class == BPF_LDX) {
16895 			enum bpf_reg_type src_reg_type;
16896 
16897 			/* check for reserved fields is already done */
16898 
16899 			/* check src operand */
16900 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16901 			if (err)
16902 				return err;
16903 
16904 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16905 			if (err)
16906 				return err;
16907 
16908 			src_reg_type = regs[insn->src_reg].type;
16909 
16910 			/* check that memory (src_reg + off) is readable,
16911 			 * the state of dst_reg will be updated by this func
16912 			 */
16913 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16914 					       insn->off, BPF_SIZE(insn->code),
16915 					       BPF_READ, insn->dst_reg, false,
16916 					       BPF_MODE(insn->code) == BPF_MEMSX);
16917 			if (err)
16918 				return err;
16919 
16920 			err = save_aux_ptr_type(env, src_reg_type, true);
16921 			if (err)
16922 				return err;
16923 		} else if (class == BPF_STX) {
16924 			enum bpf_reg_type dst_reg_type;
16925 
16926 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16927 				err = check_atomic(env, env->insn_idx, insn);
16928 				if (err)
16929 					return err;
16930 				env->insn_idx++;
16931 				continue;
16932 			}
16933 
16934 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16935 				verbose(env, "BPF_STX uses reserved fields\n");
16936 				return -EINVAL;
16937 			}
16938 
16939 			/* check src1 operand */
16940 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16941 			if (err)
16942 				return err;
16943 			/* check src2 operand */
16944 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16945 			if (err)
16946 				return err;
16947 
16948 			dst_reg_type = regs[insn->dst_reg].type;
16949 
16950 			/* check that memory (dst_reg + off) is writeable */
16951 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16952 					       insn->off, BPF_SIZE(insn->code),
16953 					       BPF_WRITE, insn->src_reg, false, false);
16954 			if (err)
16955 				return err;
16956 
16957 			err = save_aux_ptr_type(env, dst_reg_type, false);
16958 			if (err)
16959 				return err;
16960 		} else if (class == BPF_ST) {
16961 			enum bpf_reg_type dst_reg_type;
16962 
16963 			if (BPF_MODE(insn->code) != BPF_MEM ||
16964 			    insn->src_reg != BPF_REG_0) {
16965 				verbose(env, "BPF_ST uses reserved fields\n");
16966 				return -EINVAL;
16967 			}
16968 			/* check src operand */
16969 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16970 			if (err)
16971 				return err;
16972 
16973 			dst_reg_type = regs[insn->dst_reg].type;
16974 
16975 			/* check that memory (dst_reg + off) is writeable */
16976 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16977 					       insn->off, BPF_SIZE(insn->code),
16978 					       BPF_WRITE, -1, false, false);
16979 			if (err)
16980 				return err;
16981 
16982 			err = save_aux_ptr_type(env, dst_reg_type, false);
16983 			if (err)
16984 				return err;
16985 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16986 			u8 opcode = BPF_OP(insn->code);
16987 
16988 			env->jmps_processed++;
16989 			if (opcode == BPF_CALL) {
16990 				if (BPF_SRC(insn->code) != BPF_K ||
16991 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16992 				     && insn->off != 0) ||
16993 				    (insn->src_reg != BPF_REG_0 &&
16994 				     insn->src_reg != BPF_PSEUDO_CALL &&
16995 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16996 				    insn->dst_reg != BPF_REG_0 ||
16997 				    class == BPF_JMP32) {
16998 					verbose(env, "BPF_CALL uses reserved fields\n");
16999 					return -EINVAL;
17000 				}
17001 
17002 				if (env->cur_state->active_lock.ptr) {
17003 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17004 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17005 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17006 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17007 						verbose(env, "function calls are not allowed while holding a lock\n");
17008 						return -EINVAL;
17009 					}
17010 				}
17011 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17012 					err = check_func_call(env, insn, &env->insn_idx);
17013 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17014 					err = check_kfunc_call(env, insn, &env->insn_idx);
17015 					if (!err && is_bpf_throw_kfunc(insn)) {
17016 						exception_exit = true;
17017 						goto process_bpf_exit_full;
17018 					}
17019 				} else {
17020 					err = check_helper_call(env, insn, &env->insn_idx);
17021 				}
17022 				if (err)
17023 					return err;
17024 
17025 				mark_reg_scratched(env, BPF_REG_0);
17026 			} else if (opcode == BPF_JA) {
17027 				if (BPF_SRC(insn->code) != BPF_K ||
17028 				    insn->src_reg != BPF_REG_0 ||
17029 				    insn->dst_reg != BPF_REG_0 ||
17030 				    (class == BPF_JMP && insn->imm != 0) ||
17031 				    (class == BPF_JMP32 && insn->off != 0)) {
17032 					verbose(env, "BPF_JA uses reserved fields\n");
17033 					return -EINVAL;
17034 				}
17035 
17036 				if (class == BPF_JMP)
17037 					env->insn_idx += insn->off + 1;
17038 				else
17039 					env->insn_idx += insn->imm + 1;
17040 				continue;
17041 
17042 			} else if (opcode == BPF_EXIT) {
17043 				if (BPF_SRC(insn->code) != BPF_K ||
17044 				    insn->imm != 0 ||
17045 				    insn->src_reg != BPF_REG_0 ||
17046 				    insn->dst_reg != BPF_REG_0 ||
17047 				    class == BPF_JMP32) {
17048 					verbose(env, "BPF_EXIT uses reserved fields\n");
17049 					return -EINVAL;
17050 				}
17051 process_bpf_exit_full:
17052 				if (env->cur_state->active_lock.ptr &&
17053 				    !in_rbtree_lock_required_cb(env)) {
17054 					verbose(env, "bpf_spin_unlock is missing\n");
17055 					return -EINVAL;
17056 				}
17057 
17058 				if (env->cur_state->active_rcu_lock &&
17059 				    !in_rbtree_lock_required_cb(env)) {
17060 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17061 					return -EINVAL;
17062 				}
17063 
17064 				/* We must do check_reference_leak here before
17065 				 * prepare_func_exit to handle the case when
17066 				 * state->curframe > 0, it may be a callback
17067 				 * function, for which reference_state must
17068 				 * match caller reference state when it exits.
17069 				 */
17070 				err = check_reference_leak(env, exception_exit);
17071 				if (err)
17072 					return err;
17073 
17074 				/* The side effect of the prepare_func_exit
17075 				 * which is being skipped is that it frees
17076 				 * bpf_func_state. Typically, process_bpf_exit
17077 				 * will only be hit with outermost exit.
17078 				 * copy_verifier_state in pop_stack will handle
17079 				 * freeing of any extra bpf_func_state left over
17080 				 * from not processing all nested function
17081 				 * exits. We also skip return code checks as
17082 				 * they are not needed for exceptional exits.
17083 				 */
17084 				if (exception_exit)
17085 					goto process_bpf_exit;
17086 
17087 				if (state->curframe) {
17088 					/* exit from nested function */
17089 					err = prepare_func_exit(env, &env->insn_idx);
17090 					if (err)
17091 						return err;
17092 					do_print_state = true;
17093 					continue;
17094 				}
17095 
17096 				err = check_return_code(env, BPF_REG_0);
17097 				if (err)
17098 					return err;
17099 process_bpf_exit:
17100 				mark_verifier_state_scratched(env);
17101 				update_branch_counts(env, env->cur_state);
17102 				err = pop_stack(env, &prev_insn_idx,
17103 						&env->insn_idx, pop_log);
17104 				if (err < 0) {
17105 					if (err != -ENOENT)
17106 						return err;
17107 					break;
17108 				} else {
17109 					do_print_state = true;
17110 					continue;
17111 				}
17112 			} else {
17113 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17114 				if (err)
17115 					return err;
17116 			}
17117 		} else if (class == BPF_LD) {
17118 			u8 mode = BPF_MODE(insn->code);
17119 
17120 			if (mode == BPF_ABS || mode == BPF_IND) {
17121 				err = check_ld_abs(env, insn);
17122 				if (err)
17123 					return err;
17124 
17125 			} else if (mode == BPF_IMM) {
17126 				err = check_ld_imm(env, insn);
17127 				if (err)
17128 					return err;
17129 
17130 				env->insn_idx++;
17131 				sanitize_mark_insn_seen(env);
17132 			} else {
17133 				verbose(env, "invalid BPF_LD mode\n");
17134 				return -EINVAL;
17135 			}
17136 		} else {
17137 			verbose(env, "unknown insn class %d\n", class);
17138 			return -EINVAL;
17139 		}
17140 
17141 		env->insn_idx++;
17142 	}
17143 
17144 	return 0;
17145 }
17146 
17147 static int find_btf_percpu_datasec(struct btf *btf)
17148 {
17149 	const struct btf_type *t;
17150 	const char *tname;
17151 	int i, n;
17152 
17153 	/*
17154 	 * Both vmlinux and module each have their own ".data..percpu"
17155 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17156 	 * types to look at only module's own BTF types.
17157 	 */
17158 	n = btf_nr_types(btf);
17159 	if (btf_is_module(btf))
17160 		i = btf_nr_types(btf_vmlinux);
17161 	else
17162 		i = 1;
17163 
17164 	for(; i < n; i++) {
17165 		t = btf_type_by_id(btf, i);
17166 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17167 			continue;
17168 
17169 		tname = btf_name_by_offset(btf, t->name_off);
17170 		if (!strcmp(tname, ".data..percpu"))
17171 			return i;
17172 	}
17173 
17174 	return -ENOENT;
17175 }
17176 
17177 /* replace pseudo btf_id with kernel symbol address */
17178 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17179 			       struct bpf_insn *insn,
17180 			       struct bpf_insn_aux_data *aux)
17181 {
17182 	const struct btf_var_secinfo *vsi;
17183 	const struct btf_type *datasec;
17184 	struct btf_mod_pair *btf_mod;
17185 	const struct btf_type *t;
17186 	const char *sym_name;
17187 	bool percpu = false;
17188 	u32 type, id = insn->imm;
17189 	struct btf *btf;
17190 	s32 datasec_id;
17191 	u64 addr;
17192 	int i, btf_fd, err;
17193 
17194 	btf_fd = insn[1].imm;
17195 	if (btf_fd) {
17196 		btf = btf_get_by_fd(btf_fd);
17197 		if (IS_ERR(btf)) {
17198 			verbose(env, "invalid module BTF object FD specified.\n");
17199 			return -EINVAL;
17200 		}
17201 	} else {
17202 		if (!btf_vmlinux) {
17203 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17204 			return -EINVAL;
17205 		}
17206 		btf = btf_vmlinux;
17207 		btf_get(btf);
17208 	}
17209 
17210 	t = btf_type_by_id(btf, id);
17211 	if (!t) {
17212 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17213 		err = -ENOENT;
17214 		goto err_put;
17215 	}
17216 
17217 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17218 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17219 		err = -EINVAL;
17220 		goto err_put;
17221 	}
17222 
17223 	sym_name = btf_name_by_offset(btf, t->name_off);
17224 	addr = kallsyms_lookup_name(sym_name);
17225 	if (!addr) {
17226 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17227 			sym_name);
17228 		err = -ENOENT;
17229 		goto err_put;
17230 	}
17231 	insn[0].imm = (u32)addr;
17232 	insn[1].imm = addr >> 32;
17233 
17234 	if (btf_type_is_func(t)) {
17235 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17236 		aux->btf_var.mem_size = 0;
17237 		goto check_btf;
17238 	}
17239 
17240 	datasec_id = find_btf_percpu_datasec(btf);
17241 	if (datasec_id > 0) {
17242 		datasec = btf_type_by_id(btf, datasec_id);
17243 		for_each_vsi(i, datasec, vsi) {
17244 			if (vsi->type == id) {
17245 				percpu = true;
17246 				break;
17247 			}
17248 		}
17249 	}
17250 
17251 	type = t->type;
17252 	t = btf_type_skip_modifiers(btf, type, NULL);
17253 	if (percpu) {
17254 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17255 		aux->btf_var.btf = btf;
17256 		aux->btf_var.btf_id = type;
17257 	} else if (!btf_type_is_struct(t)) {
17258 		const struct btf_type *ret;
17259 		const char *tname;
17260 		u32 tsize;
17261 
17262 		/* resolve the type size of ksym. */
17263 		ret = btf_resolve_size(btf, t, &tsize);
17264 		if (IS_ERR(ret)) {
17265 			tname = btf_name_by_offset(btf, t->name_off);
17266 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17267 				tname, PTR_ERR(ret));
17268 			err = -EINVAL;
17269 			goto err_put;
17270 		}
17271 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17272 		aux->btf_var.mem_size = tsize;
17273 	} else {
17274 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17275 		aux->btf_var.btf = btf;
17276 		aux->btf_var.btf_id = type;
17277 	}
17278 check_btf:
17279 	/* check whether we recorded this BTF (and maybe module) already */
17280 	for (i = 0; i < env->used_btf_cnt; i++) {
17281 		if (env->used_btfs[i].btf == btf) {
17282 			btf_put(btf);
17283 			return 0;
17284 		}
17285 	}
17286 
17287 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17288 		err = -E2BIG;
17289 		goto err_put;
17290 	}
17291 
17292 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17293 	btf_mod->btf = btf;
17294 	btf_mod->module = NULL;
17295 
17296 	/* if we reference variables from kernel module, bump its refcount */
17297 	if (btf_is_module(btf)) {
17298 		btf_mod->module = btf_try_get_module(btf);
17299 		if (!btf_mod->module) {
17300 			err = -ENXIO;
17301 			goto err_put;
17302 		}
17303 	}
17304 
17305 	env->used_btf_cnt++;
17306 
17307 	return 0;
17308 err_put:
17309 	btf_put(btf);
17310 	return err;
17311 }
17312 
17313 static bool is_tracing_prog_type(enum bpf_prog_type type)
17314 {
17315 	switch (type) {
17316 	case BPF_PROG_TYPE_KPROBE:
17317 	case BPF_PROG_TYPE_TRACEPOINT:
17318 	case BPF_PROG_TYPE_PERF_EVENT:
17319 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17320 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17321 		return true;
17322 	default:
17323 		return false;
17324 	}
17325 }
17326 
17327 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17328 					struct bpf_map *map,
17329 					struct bpf_prog *prog)
17330 
17331 {
17332 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17333 
17334 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17335 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17336 		if (is_tracing_prog_type(prog_type)) {
17337 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17338 			return -EINVAL;
17339 		}
17340 	}
17341 
17342 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17343 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17344 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17345 			return -EINVAL;
17346 		}
17347 
17348 		if (is_tracing_prog_type(prog_type)) {
17349 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17350 			return -EINVAL;
17351 		}
17352 	}
17353 
17354 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17355 		if (is_tracing_prog_type(prog_type)) {
17356 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17357 			return -EINVAL;
17358 		}
17359 	}
17360 
17361 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17362 	    !bpf_offload_prog_map_match(prog, map)) {
17363 		verbose(env, "offload device mismatch between prog and map\n");
17364 		return -EINVAL;
17365 	}
17366 
17367 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17368 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17369 		return -EINVAL;
17370 	}
17371 
17372 	if (prog->aux->sleepable)
17373 		switch (map->map_type) {
17374 		case BPF_MAP_TYPE_HASH:
17375 		case BPF_MAP_TYPE_LRU_HASH:
17376 		case BPF_MAP_TYPE_ARRAY:
17377 		case BPF_MAP_TYPE_PERCPU_HASH:
17378 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17379 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17380 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17381 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17382 		case BPF_MAP_TYPE_RINGBUF:
17383 		case BPF_MAP_TYPE_USER_RINGBUF:
17384 		case BPF_MAP_TYPE_INODE_STORAGE:
17385 		case BPF_MAP_TYPE_SK_STORAGE:
17386 		case BPF_MAP_TYPE_TASK_STORAGE:
17387 		case BPF_MAP_TYPE_CGRP_STORAGE:
17388 			break;
17389 		default:
17390 			verbose(env,
17391 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17392 			return -EINVAL;
17393 		}
17394 
17395 	return 0;
17396 }
17397 
17398 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17399 {
17400 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17401 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17402 }
17403 
17404 /* find and rewrite pseudo imm in ld_imm64 instructions:
17405  *
17406  * 1. if it accesses map FD, replace it with actual map pointer.
17407  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17408  *
17409  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17410  */
17411 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17412 {
17413 	struct bpf_insn *insn = env->prog->insnsi;
17414 	int insn_cnt = env->prog->len;
17415 	int i, j, err;
17416 
17417 	err = bpf_prog_calc_tag(env->prog);
17418 	if (err)
17419 		return err;
17420 
17421 	for (i = 0; i < insn_cnt; i++, insn++) {
17422 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17423 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17424 		    insn->imm != 0)) {
17425 			verbose(env, "BPF_LDX uses reserved fields\n");
17426 			return -EINVAL;
17427 		}
17428 
17429 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17430 			struct bpf_insn_aux_data *aux;
17431 			struct bpf_map *map;
17432 			struct fd f;
17433 			u64 addr;
17434 			u32 fd;
17435 
17436 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17437 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17438 			    insn[1].off != 0) {
17439 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17440 				return -EINVAL;
17441 			}
17442 
17443 			if (insn[0].src_reg == 0)
17444 				/* valid generic load 64-bit imm */
17445 				goto next_insn;
17446 
17447 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17448 				aux = &env->insn_aux_data[i];
17449 				err = check_pseudo_btf_id(env, insn, aux);
17450 				if (err)
17451 					return err;
17452 				goto next_insn;
17453 			}
17454 
17455 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17456 				aux = &env->insn_aux_data[i];
17457 				aux->ptr_type = PTR_TO_FUNC;
17458 				goto next_insn;
17459 			}
17460 
17461 			/* In final convert_pseudo_ld_imm64() step, this is
17462 			 * converted into regular 64-bit imm load insn.
17463 			 */
17464 			switch (insn[0].src_reg) {
17465 			case BPF_PSEUDO_MAP_VALUE:
17466 			case BPF_PSEUDO_MAP_IDX_VALUE:
17467 				break;
17468 			case BPF_PSEUDO_MAP_FD:
17469 			case BPF_PSEUDO_MAP_IDX:
17470 				if (insn[1].imm == 0)
17471 					break;
17472 				fallthrough;
17473 			default:
17474 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17475 				return -EINVAL;
17476 			}
17477 
17478 			switch (insn[0].src_reg) {
17479 			case BPF_PSEUDO_MAP_IDX_VALUE:
17480 			case BPF_PSEUDO_MAP_IDX:
17481 				if (bpfptr_is_null(env->fd_array)) {
17482 					verbose(env, "fd_idx without fd_array is invalid\n");
17483 					return -EPROTO;
17484 				}
17485 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17486 							    insn[0].imm * sizeof(fd),
17487 							    sizeof(fd)))
17488 					return -EFAULT;
17489 				break;
17490 			default:
17491 				fd = insn[0].imm;
17492 				break;
17493 			}
17494 
17495 			f = fdget(fd);
17496 			map = __bpf_map_get(f);
17497 			if (IS_ERR(map)) {
17498 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17499 					insn[0].imm);
17500 				return PTR_ERR(map);
17501 			}
17502 
17503 			err = check_map_prog_compatibility(env, map, env->prog);
17504 			if (err) {
17505 				fdput(f);
17506 				return err;
17507 			}
17508 
17509 			aux = &env->insn_aux_data[i];
17510 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17511 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17512 				addr = (unsigned long)map;
17513 			} else {
17514 				u32 off = insn[1].imm;
17515 
17516 				if (off >= BPF_MAX_VAR_OFF) {
17517 					verbose(env, "direct value offset of %u is not allowed\n", off);
17518 					fdput(f);
17519 					return -EINVAL;
17520 				}
17521 
17522 				if (!map->ops->map_direct_value_addr) {
17523 					verbose(env, "no direct value access support for this map type\n");
17524 					fdput(f);
17525 					return -EINVAL;
17526 				}
17527 
17528 				err = map->ops->map_direct_value_addr(map, &addr, off);
17529 				if (err) {
17530 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17531 						map->value_size, off);
17532 					fdput(f);
17533 					return err;
17534 				}
17535 
17536 				aux->map_off = off;
17537 				addr += off;
17538 			}
17539 
17540 			insn[0].imm = (u32)addr;
17541 			insn[1].imm = addr >> 32;
17542 
17543 			/* check whether we recorded this map already */
17544 			for (j = 0; j < env->used_map_cnt; j++) {
17545 				if (env->used_maps[j] == map) {
17546 					aux->map_index = j;
17547 					fdput(f);
17548 					goto next_insn;
17549 				}
17550 			}
17551 
17552 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17553 				fdput(f);
17554 				return -E2BIG;
17555 			}
17556 
17557 			/* hold the map. If the program is rejected by verifier,
17558 			 * the map will be released by release_maps() or it
17559 			 * will be used by the valid program until it's unloaded
17560 			 * and all maps are released in free_used_maps()
17561 			 */
17562 			bpf_map_inc(map);
17563 
17564 			aux->map_index = env->used_map_cnt;
17565 			env->used_maps[env->used_map_cnt++] = map;
17566 
17567 			if (bpf_map_is_cgroup_storage(map) &&
17568 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17569 				verbose(env, "only one cgroup storage of each type is allowed\n");
17570 				fdput(f);
17571 				return -EBUSY;
17572 			}
17573 
17574 			fdput(f);
17575 next_insn:
17576 			insn++;
17577 			i++;
17578 			continue;
17579 		}
17580 
17581 		/* Basic sanity check before we invest more work here. */
17582 		if (!bpf_opcode_in_insntable(insn->code)) {
17583 			verbose(env, "unknown opcode %02x\n", insn->code);
17584 			return -EINVAL;
17585 		}
17586 	}
17587 
17588 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17589 	 * 'struct bpf_map *' into a register instead of user map_fd.
17590 	 * These pointers will be used later by verifier to validate map access.
17591 	 */
17592 	return 0;
17593 }
17594 
17595 /* drop refcnt of maps used by the rejected program */
17596 static void release_maps(struct bpf_verifier_env *env)
17597 {
17598 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17599 			     env->used_map_cnt);
17600 }
17601 
17602 /* drop refcnt of maps used by the rejected program */
17603 static void release_btfs(struct bpf_verifier_env *env)
17604 {
17605 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17606 			     env->used_btf_cnt);
17607 }
17608 
17609 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17610 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17611 {
17612 	struct bpf_insn *insn = env->prog->insnsi;
17613 	int insn_cnt = env->prog->len;
17614 	int i;
17615 
17616 	for (i = 0; i < insn_cnt; i++, insn++) {
17617 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17618 			continue;
17619 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17620 			continue;
17621 		insn->src_reg = 0;
17622 	}
17623 }
17624 
17625 /* single env->prog->insni[off] instruction was replaced with the range
17626  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17627  * [0, off) and [off, end) to new locations, so the patched range stays zero
17628  */
17629 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17630 				 struct bpf_insn_aux_data *new_data,
17631 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17632 {
17633 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17634 	struct bpf_insn *insn = new_prog->insnsi;
17635 	u32 old_seen = old_data[off].seen;
17636 	u32 prog_len;
17637 	int i;
17638 
17639 	/* aux info at OFF always needs adjustment, no matter fast path
17640 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17641 	 * original insn at old prog.
17642 	 */
17643 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17644 
17645 	if (cnt == 1)
17646 		return;
17647 	prog_len = new_prog->len;
17648 
17649 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17650 	memcpy(new_data + off + cnt - 1, old_data + off,
17651 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17652 	for (i = off; i < off + cnt - 1; i++) {
17653 		/* Expand insni[off]'s seen count to the patched range. */
17654 		new_data[i].seen = old_seen;
17655 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17656 	}
17657 	env->insn_aux_data = new_data;
17658 	vfree(old_data);
17659 }
17660 
17661 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17662 {
17663 	int i;
17664 
17665 	if (len == 1)
17666 		return;
17667 	/* NOTE: fake 'exit' subprog should be updated as well. */
17668 	for (i = 0; i <= env->subprog_cnt; i++) {
17669 		if (env->subprog_info[i].start <= off)
17670 			continue;
17671 		env->subprog_info[i].start += len - 1;
17672 	}
17673 }
17674 
17675 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17676 {
17677 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17678 	int i, sz = prog->aux->size_poke_tab;
17679 	struct bpf_jit_poke_descriptor *desc;
17680 
17681 	for (i = 0; i < sz; i++) {
17682 		desc = &tab[i];
17683 		if (desc->insn_idx <= off)
17684 			continue;
17685 		desc->insn_idx += len - 1;
17686 	}
17687 }
17688 
17689 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17690 					    const struct bpf_insn *patch, u32 len)
17691 {
17692 	struct bpf_prog *new_prog;
17693 	struct bpf_insn_aux_data *new_data = NULL;
17694 
17695 	if (len > 1) {
17696 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17697 					      sizeof(struct bpf_insn_aux_data)));
17698 		if (!new_data)
17699 			return NULL;
17700 	}
17701 
17702 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17703 	if (IS_ERR(new_prog)) {
17704 		if (PTR_ERR(new_prog) == -ERANGE)
17705 			verbose(env,
17706 				"insn %d cannot be patched due to 16-bit range\n",
17707 				env->insn_aux_data[off].orig_idx);
17708 		vfree(new_data);
17709 		return NULL;
17710 	}
17711 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17712 	adjust_subprog_starts(env, off, len);
17713 	adjust_poke_descs(new_prog, off, len);
17714 	return new_prog;
17715 }
17716 
17717 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17718 					      u32 off, u32 cnt)
17719 {
17720 	int i, j;
17721 
17722 	/* find first prog starting at or after off (first to remove) */
17723 	for (i = 0; i < env->subprog_cnt; i++)
17724 		if (env->subprog_info[i].start >= off)
17725 			break;
17726 	/* find first prog starting at or after off + cnt (first to stay) */
17727 	for (j = i; j < env->subprog_cnt; j++)
17728 		if (env->subprog_info[j].start >= off + cnt)
17729 			break;
17730 	/* if j doesn't start exactly at off + cnt, we are just removing
17731 	 * the front of previous prog
17732 	 */
17733 	if (env->subprog_info[j].start != off + cnt)
17734 		j--;
17735 
17736 	if (j > i) {
17737 		struct bpf_prog_aux *aux = env->prog->aux;
17738 		int move;
17739 
17740 		/* move fake 'exit' subprog as well */
17741 		move = env->subprog_cnt + 1 - j;
17742 
17743 		memmove(env->subprog_info + i,
17744 			env->subprog_info + j,
17745 			sizeof(*env->subprog_info) * move);
17746 		env->subprog_cnt -= j - i;
17747 
17748 		/* remove func_info */
17749 		if (aux->func_info) {
17750 			move = aux->func_info_cnt - j;
17751 
17752 			memmove(aux->func_info + i,
17753 				aux->func_info + j,
17754 				sizeof(*aux->func_info) * move);
17755 			aux->func_info_cnt -= j - i;
17756 			/* func_info->insn_off is set after all code rewrites,
17757 			 * in adjust_btf_func() - no need to adjust
17758 			 */
17759 		}
17760 	} else {
17761 		/* convert i from "first prog to remove" to "first to adjust" */
17762 		if (env->subprog_info[i].start == off)
17763 			i++;
17764 	}
17765 
17766 	/* update fake 'exit' subprog as well */
17767 	for (; i <= env->subprog_cnt; i++)
17768 		env->subprog_info[i].start -= cnt;
17769 
17770 	return 0;
17771 }
17772 
17773 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17774 				      u32 cnt)
17775 {
17776 	struct bpf_prog *prog = env->prog;
17777 	u32 i, l_off, l_cnt, nr_linfo;
17778 	struct bpf_line_info *linfo;
17779 
17780 	nr_linfo = prog->aux->nr_linfo;
17781 	if (!nr_linfo)
17782 		return 0;
17783 
17784 	linfo = prog->aux->linfo;
17785 
17786 	/* find first line info to remove, count lines to be removed */
17787 	for (i = 0; i < nr_linfo; i++)
17788 		if (linfo[i].insn_off >= off)
17789 			break;
17790 
17791 	l_off = i;
17792 	l_cnt = 0;
17793 	for (; i < nr_linfo; i++)
17794 		if (linfo[i].insn_off < off + cnt)
17795 			l_cnt++;
17796 		else
17797 			break;
17798 
17799 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17800 	 * last removed linfo.  prog is already modified, so prog->len == off
17801 	 * means no live instructions after (tail of the program was removed).
17802 	 */
17803 	if (prog->len != off && l_cnt &&
17804 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17805 		l_cnt--;
17806 		linfo[--i].insn_off = off + cnt;
17807 	}
17808 
17809 	/* remove the line info which refer to the removed instructions */
17810 	if (l_cnt) {
17811 		memmove(linfo + l_off, linfo + i,
17812 			sizeof(*linfo) * (nr_linfo - i));
17813 
17814 		prog->aux->nr_linfo -= l_cnt;
17815 		nr_linfo = prog->aux->nr_linfo;
17816 	}
17817 
17818 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17819 	for (i = l_off; i < nr_linfo; i++)
17820 		linfo[i].insn_off -= cnt;
17821 
17822 	/* fix up all subprogs (incl. 'exit') which start >= off */
17823 	for (i = 0; i <= env->subprog_cnt; i++)
17824 		if (env->subprog_info[i].linfo_idx > l_off) {
17825 			/* program may have started in the removed region but
17826 			 * may not be fully removed
17827 			 */
17828 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17829 				env->subprog_info[i].linfo_idx -= l_cnt;
17830 			else
17831 				env->subprog_info[i].linfo_idx = l_off;
17832 		}
17833 
17834 	return 0;
17835 }
17836 
17837 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17838 {
17839 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17840 	unsigned int orig_prog_len = env->prog->len;
17841 	int err;
17842 
17843 	if (bpf_prog_is_offloaded(env->prog->aux))
17844 		bpf_prog_offload_remove_insns(env, off, cnt);
17845 
17846 	err = bpf_remove_insns(env->prog, off, cnt);
17847 	if (err)
17848 		return err;
17849 
17850 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17851 	if (err)
17852 		return err;
17853 
17854 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17855 	if (err)
17856 		return err;
17857 
17858 	memmove(aux_data + off,	aux_data + off + cnt,
17859 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17860 
17861 	return 0;
17862 }
17863 
17864 /* The verifier does more data flow analysis than llvm and will not
17865  * explore branches that are dead at run time. Malicious programs can
17866  * have dead code too. Therefore replace all dead at-run-time code
17867  * with 'ja -1'.
17868  *
17869  * Just nops are not optimal, e.g. if they would sit at the end of the
17870  * program and through another bug we would manage to jump there, then
17871  * we'd execute beyond program memory otherwise. Returning exception
17872  * code also wouldn't work since we can have subprogs where the dead
17873  * code could be located.
17874  */
17875 static void sanitize_dead_code(struct bpf_verifier_env *env)
17876 {
17877 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17878 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17879 	struct bpf_insn *insn = env->prog->insnsi;
17880 	const int insn_cnt = env->prog->len;
17881 	int i;
17882 
17883 	for (i = 0; i < insn_cnt; i++) {
17884 		if (aux_data[i].seen)
17885 			continue;
17886 		memcpy(insn + i, &trap, sizeof(trap));
17887 		aux_data[i].zext_dst = false;
17888 	}
17889 }
17890 
17891 static bool insn_is_cond_jump(u8 code)
17892 {
17893 	u8 op;
17894 
17895 	op = BPF_OP(code);
17896 	if (BPF_CLASS(code) == BPF_JMP32)
17897 		return op != BPF_JA;
17898 
17899 	if (BPF_CLASS(code) != BPF_JMP)
17900 		return false;
17901 
17902 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17903 }
17904 
17905 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17906 {
17907 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17908 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17909 	struct bpf_insn *insn = env->prog->insnsi;
17910 	const int insn_cnt = env->prog->len;
17911 	int i;
17912 
17913 	for (i = 0; i < insn_cnt; i++, insn++) {
17914 		if (!insn_is_cond_jump(insn->code))
17915 			continue;
17916 
17917 		if (!aux_data[i + 1].seen)
17918 			ja.off = insn->off;
17919 		else if (!aux_data[i + 1 + insn->off].seen)
17920 			ja.off = 0;
17921 		else
17922 			continue;
17923 
17924 		if (bpf_prog_is_offloaded(env->prog->aux))
17925 			bpf_prog_offload_replace_insn(env, i, &ja);
17926 
17927 		memcpy(insn, &ja, sizeof(ja));
17928 	}
17929 }
17930 
17931 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17932 {
17933 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17934 	int insn_cnt = env->prog->len;
17935 	int i, err;
17936 
17937 	for (i = 0; i < insn_cnt; i++) {
17938 		int j;
17939 
17940 		j = 0;
17941 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17942 			j++;
17943 		if (!j)
17944 			continue;
17945 
17946 		err = verifier_remove_insns(env, i, j);
17947 		if (err)
17948 			return err;
17949 		insn_cnt = env->prog->len;
17950 	}
17951 
17952 	return 0;
17953 }
17954 
17955 static int opt_remove_nops(struct bpf_verifier_env *env)
17956 {
17957 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17958 	struct bpf_insn *insn = env->prog->insnsi;
17959 	int insn_cnt = env->prog->len;
17960 	int i, err;
17961 
17962 	for (i = 0; i < insn_cnt; i++) {
17963 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17964 			continue;
17965 
17966 		err = verifier_remove_insns(env, i, 1);
17967 		if (err)
17968 			return err;
17969 		insn_cnt--;
17970 		i--;
17971 	}
17972 
17973 	return 0;
17974 }
17975 
17976 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17977 					 const union bpf_attr *attr)
17978 {
17979 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17980 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17981 	int i, patch_len, delta = 0, len = env->prog->len;
17982 	struct bpf_insn *insns = env->prog->insnsi;
17983 	struct bpf_prog *new_prog;
17984 	bool rnd_hi32;
17985 
17986 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17987 	zext_patch[1] = BPF_ZEXT_REG(0);
17988 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17989 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17990 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17991 	for (i = 0; i < len; i++) {
17992 		int adj_idx = i + delta;
17993 		struct bpf_insn insn;
17994 		int load_reg;
17995 
17996 		insn = insns[adj_idx];
17997 		load_reg = insn_def_regno(&insn);
17998 		if (!aux[adj_idx].zext_dst) {
17999 			u8 code, class;
18000 			u32 imm_rnd;
18001 
18002 			if (!rnd_hi32)
18003 				continue;
18004 
18005 			code = insn.code;
18006 			class = BPF_CLASS(code);
18007 			if (load_reg == -1)
18008 				continue;
18009 
18010 			/* NOTE: arg "reg" (the fourth one) is only used for
18011 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18012 			 *       here.
18013 			 */
18014 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18015 				if (class == BPF_LD &&
18016 				    BPF_MODE(code) == BPF_IMM)
18017 					i++;
18018 				continue;
18019 			}
18020 
18021 			/* ctx load could be transformed into wider load. */
18022 			if (class == BPF_LDX &&
18023 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18024 				continue;
18025 
18026 			imm_rnd = get_random_u32();
18027 			rnd_hi32_patch[0] = insn;
18028 			rnd_hi32_patch[1].imm = imm_rnd;
18029 			rnd_hi32_patch[3].dst_reg = load_reg;
18030 			patch = rnd_hi32_patch;
18031 			patch_len = 4;
18032 			goto apply_patch_buffer;
18033 		}
18034 
18035 		/* Add in an zero-extend instruction if a) the JIT has requested
18036 		 * it or b) it's a CMPXCHG.
18037 		 *
18038 		 * The latter is because: BPF_CMPXCHG always loads a value into
18039 		 * R0, therefore always zero-extends. However some archs'
18040 		 * equivalent instruction only does this load when the
18041 		 * comparison is successful. This detail of CMPXCHG is
18042 		 * orthogonal to the general zero-extension behaviour of the
18043 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18044 		 */
18045 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18046 			continue;
18047 
18048 		/* Zero-extension is done by the caller. */
18049 		if (bpf_pseudo_kfunc_call(&insn))
18050 			continue;
18051 
18052 		if (WARN_ON(load_reg == -1)) {
18053 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18054 			return -EFAULT;
18055 		}
18056 
18057 		zext_patch[0] = insn;
18058 		zext_patch[1].dst_reg = load_reg;
18059 		zext_patch[1].src_reg = load_reg;
18060 		patch = zext_patch;
18061 		patch_len = 2;
18062 apply_patch_buffer:
18063 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18064 		if (!new_prog)
18065 			return -ENOMEM;
18066 		env->prog = new_prog;
18067 		insns = new_prog->insnsi;
18068 		aux = env->insn_aux_data;
18069 		delta += patch_len - 1;
18070 	}
18071 
18072 	return 0;
18073 }
18074 
18075 /* convert load instructions that access fields of a context type into a
18076  * sequence of instructions that access fields of the underlying structure:
18077  *     struct __sk_buff    -> struct sk_buff
18078  *     struct bpf_sock_ops -> struct sock
18079  */
18080 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18081 {
18082 	const struct bpf_verifier_ops *ops = env->ops;
18083 	int i, cnt, size, ctx_field_size, delta = 0;
18084 	const int insn_cnt = env->prog->len;
18085 	struct bpf_insn insn_buf[16], *insn;
18086 	u32 target_size, size_default, off;
18087 	struct bpf_prog *new_prog;
18088 	enum bpf_access_type type;
18089 	bool is_narrower_load;
18090 
18091 	if (ops->gen_prologue || env->seen_direct_write) {
18092 		if (!ops->gen_prologue) {
18093 			verbose(env, "bpf verifier is misconfigured\n");
18094 			return -EINVAL;
18095 		}
18096 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18097 					env->prog);
18098 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18099 			verbose(env, "bpf verifier is misconfigured\n");
18100 			return -EINVAL;
18101 		} else if (cnt) {
18102 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18103 			if (!new_prog)
18104 				return -ENOMEM;
18105 
18106 			env->prog = new_prog;
18107 			delta += cnt - 1;
18108 		}
18109 	}
18110 
18111 	if (bpf_prog_is_offloaded(env->prog->aux))
18112 		return 0;
18113 
18114 	insn = env->prog->insnsi + delta;
18115 
18116 	for (i = 0; i < insn_cnt; i++, insn++) {
18117 		bpf_convert_ctx_access_t convert_ctx_access;
18118 		u8 mode;
18119 
18120 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18121 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18122 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18123 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18124 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18125 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18126 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18127 			type = BPF_READ;
18128 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18129 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18130 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18131 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18132 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18133 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18134 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18135 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18136 			type = BPF_WRITE;
18137 		} else {
18138 			continue;
18139 		}
18140 
18141 		if (type == BPF_WRITE &&
18142 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18143 			struct bpf_insn patch[] = {
18144 				*insn,
18145 				BPF_ST_NOSPEC(),
18146 			};
18147 
18148 			cnt = ARRAY_SIZE(patch);
18149 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18150 			if (!new_prog)
18151 				return -ENOMEM;
18152 
18153 			delta    += cnt - 1;
18154 			env->prog = new_prog;
18155 			insn      = new_prog->insnsi + i + delta;
18156 			continue;
18157 		}
18158 
18159 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18160 		case PTR_TO_CTX:
18161 			if (!ops->convert_ctx_access)
18162 				continue;
18163 			convert_ctx_access = ops->convert_ctx_access;
18164 			break;
18165 		case PTR_TO_SOCKET:
18166 		case PTR_TO_SOCK_COMMON:
18167 			convert_ctx_access = bpf_sock_convert_ctx_access;
18168 			break;
18169 		case PTR_TO_TCP_SOCK:
18170 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18171 			break;
18172 		case PTR_TO_XDP_SOCK:
18173 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18174 			break;
18175 		case PTR_TO_BTF_ID:
18176 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18177 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18178 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18179 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18180 		 * any faults for loads into such types. BPF_WRITE is disallowed
18181 		 * for this case.
18182 		 */
18183 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18184 			if (type == BPF_READ) {
18185 				if (BPF_MODE(insn->code) == BPF_MEM)
18186 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18187 						     BPF_SIZE((insn)->code);
18188 				else
18189 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18190 						     BPF_SIZE((insn)->code);
18191 				env->prog->aux->num_exentries++;
18192 			}
18193 			continue;
18194 		default:
18195 			continue;
18196 		}
18197 
18198 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18199 		size = BPF_LDST_BYTES(insn);
18200 		mode = BPF_MODE(insn->code);
18201 
18202 		/* If the read access is a narrower load of the field,
18203 		 * convert to a 4/8-byte load, to minimum program type specific
18204 		 * convert_ctx_access changes. If conversion is successful,
18205 		 * we will apply proper mask to the result.
18206 		 */
18207 		is_narrower_load = size < ctx_field_size;
18208 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18209 		off = insn->off;
18210 		if (is_narrower_load) {
18211 			u8 size_code;
18212 
18213 			if (type == BPF_WRITE) {
18214 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18215 				return -EINVAL;
18216 			}
18217 
18218 			size_code = BPF_H;
18219 			if (ctx_field_size == 4)
18220 				size_code = BPF_W;
18221 			else if (ctx_field_size == 8)
18222 				size_code = BPF_DW;
18223 
18224 			insn->off = off & ~(size_default - 1);
18225 			insn->code = BPF_LDX | BPF_MEM | size_code;
18226 		}
18227 
18228 		target_size = 0;
18229 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18230 					 &target_size);
18231 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18232 		    (ctx_field_size && !target_size)) {
18233 			verbose(env, "bpf verifier is misconfigured\n");
18234 			return -EINVAL;
18235 		}
18236 
18237 		if (is_narrower_load && size < target_size) {
18238 			u8 shift = bpf_ctx_narrow_access_offset(
18239 				off, size, size_default) * 8;
18240 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18241 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18242 				return -EINVAL;
18243 			}
18244 			if (ctx_field_size <= 4) {
18245 				if (shift)
18246 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18247 									insn->dst_reg,
18248 									shift);
18249 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18250 								(1 << size * 8) - 1);
18251 			} else {
18252 				if (shift)
18253 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18254 									insn->dst_reg,
18255 									shift);
18256 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18257 								(1ULL << size * 8) - 1);
18258 			}
18259 		}
18260 		if (mode == BPF_MEMSX)
18261 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18262 						       insn->dst_reg, insn->dst_reg,
18263 						       size * 8, 0);
18264 
18265 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18266 		if (!new_prog)
18267 			return -ENOMEM;
18268 
18269 		delta += cnt - 1;
18270 
18271 		/* keep walking new program and skip insns we just inserted */
18272 		env->prog = new_prog;
18273 		insn      = new_prog->insnsi + i + delta;
18274 	}
18275 
18276 	return 0;
18277 }
18278 
18279 static int jit_subprogs(struct bpf_verifier_env *env)
18280 {
18281 	struct bpf_prog *prog = env->prog, **func, *tmp;
18282 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18283 	struct bpf_map *map_ptr;
18284 	struct bpf_insn *insn;
18285 	void *old_bpf_func;
18286 	int err, num_exentries;
18287 
18288 	if (env->subprog_cnt <= 1)
18289 		return 0;
18290 
18291 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18292 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18293 			continue;
18294 
18295 		/* Upon error here we cannot fall back to interpreter but
18296 		 * need a hard reject of the program. Thus -EFAULT is
18297 		 * propagated in any case.
18298 		 */
18299 		subprog = find_subprog(env, i + insn->imm + 1);
18300 		if (subprog < 0) {
18301 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18302 				  i + insn->imm + 1);
18303 			return -EFAULT;
18304 		}
18305 		/* temporarily remember subprog id inside insn instead of
18306 		 * aux_data, since next loop will split up all insns into funcs
18307 		 */
18308 		insn->off = subprog;
18309 		/* remember original imm in case JIT fails and fallback
18310 		 * to interpreter will be needed
18311 		 */
18312 		env->insn_aux_data[i].call_imm = insn->imm;
18313 		/* point imm to __bpf_call_base+1 from JITs point of view */
18314 		insn->imm = 1;
18315 		if (bpf_pseudo_func(insn))
18316 			/* jit (e.g. x86_64) may emit fewer instructions
18317 			 * if it learns a u32 imm is the same as a u64 imm.
18318 			 * Force a non zero here.
18319 			 */
18320 			insn[1].imm = 1;
18321 	}
18322 
18323 	err = bpf_prog_alloc_jited_linfo(prog);
18324 	if (err)
18325 		goto out_undo_insn;
18326 
18327 	err = -ENOMEM;
18328 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18329 	if (!func)
18330 		goto out_undo_insn;
18331 
18332 	for (i = 0; i < env->subprog_cnt; i++) {
18333 		subprog_start = subprog_end;
18334 		subprog_end = env->subprog_info[i + 1].start;
18335 
18336 		len = subprog_end - subprog_start;
18337 		/* bpf_prog_run() doesn't call subprogs directly,
18338 		 * hence main prog stats include the runtime of subprogs.
18339 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18340 		 * func[i]->stats will never be accessed and stays NULL
18341 		 */
18342 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18343 		if (!func[i])
18344 			goto out_free;
18345 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18346 		       len * sizeof(struct bpf_insn));
18347 		func[i]->type = prog->type;
18348 		func[i]->len = len;
18349 		if (bpf_prog_calc_tag(func[i]))
18350 			goto out_free;
18351 		func[i]->is_func = 1;
18352 		func[i]->aux->func_idx = i;
18353 		/* Below members will be freed only at prog->aux */
18354 		func[i]->aux->btf = prog->aux->btf;
18355 		func[i]->aux->func_info = prog->aux->func_info;
18356 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18357 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18358 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18359 
18360 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18361 			struct bpf_jit_poke_descriptor *poke;
18362 
18363 			poke = &prog->aux->poke_tab[j];
18364 			if (poke->insn_idx < subprog_end &&
18365 			    poke->insn_idx >= subprog_start)
18366 				poke->aux = func[i]->aux;
18367 		}
18368 
18369 		func[i]->aux->name[0] = 'F';
18370 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18371 		func[i]->jit_requested = 1;
18372 		func[i]->blinding_requested = prog->blinding_requested;
18373 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18374 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18375 		func[i]->aux->linfo = prog->aux->linfo;
18376 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18377 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18378 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18379 		num_exentries = 0;
18380 		insn = func[i]->insnsi;
18381 		for (j = 0; j < func[i]->len; j++, insn++) {
18382 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18383 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18384 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18385 				num_exentries++;
18386 		}
18387 		func[i]->aux->num_exentries = num_exentries;
18388 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18389 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18390 		if (!i)
18391 			func[i]->aux->exception_boundary = env->seen_exception;
18392 		func[i] = bpf_int_jit_compile(func[i]);
18393 		if (!func[i]->jited) {
18394 			err = -ENOTSUPP;
18395 			goto out_free;
18396 		}
18397 		cond_resched();
18398 	}
18399 
18400 	/* at this point all bpf functions were successfully JITed
18401 	 * now populate all bpf_calls with correct addresses and
18402 	 * run last pass of JIT
18403 	 */
18404 	for (i = 0; i < env->subprog_cnt; i++) {
18405 		insn = func[i]->insnsi;
18406 		for (j = 0; j < func[i]->len; j++, insn++) {
18407 			if (bpf_pseudo_func(insn)) {
18408 				subprog = insn->off;
18409 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18410 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18411 				continue;
18412 			}
18413 			if (!bpf_pseudo_call(insn))
18414 				continue;
18415 			subprog = insn->off;
18416 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18417 		}
18418 
18419 		/* we use the aux data to keep a list of the start addresses
18420 		 * of the JITed images for each function in the program
18421 		 *
18422 		 * for some architectures, such as powerpc64, the imm field
18423 		 * might not be large enough to hold the offset of the start
18424 		 * address of the callee's JITed image from __bpf_call_base
18425 		 *
18426 		 * in such cases, we can lookup the start address of a callee
18427 		 * by using its subprog id, available from the off field of
18428 		 * the call instruction, as an index for this list
18429 		 */
18430 		func[i]->aux->func = func;
18431 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18432 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18433 	}
18434 	for (i = 0; i < env->subprog_cnt; i++) {
18435 		old_bpf_func = func[i]->bpf_func;
18436 		tmp = bpf_int_jit_compile(func[i]);
18437 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18438 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18439 			err = -ENOTSUPP;
18440 			goto out_free;
18441 		}
18442 		cond_resched();
18443 	}
18444 
18445 	/* finally lock prog and jit images for all functions and
18446 	 * populate kallsysm. Begin at the first subprogram, since
18447 	 * bpf_prog_load will add the kallsyms for the main program.
18448 	 */
18449 	for (i = 1; i < env->subprog_cnt; i++) {
18450 		bpf_prog_lock_ro(func[i]);
18451 		bpf_prog_kallsyms_add(func[i]);
18452 	}
18453 
18454 	/* Last step: make now unused interpreter insns from main
18455 	 * prog consistent for later dump requests, so they can
18456 	 * later look the same as if they were interpreted only.
18457 	 */
18458 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18459 		if (bpf_pseudo_func(insn)) {
18460 			insn[0].imm = env->insn_aux_data[i].call_imm;
18461 			insn[1].imm = insn->off;
18462 			insn->off = 0;
18463 			continue;
18464 		}
18465 		if (!bpf_pseudo_call(insn))
18466 			continue;
18467 		insn->off = env->insn_aux_data[i].call_imm;
18468 		subprog = find_subprog(env, i + insn->off + 1);
18469 		insn->imm = subprog;
18470 	}
18471 
18472 	prog->jited = 1;
18473 	prog->bpf_func = func[0]->bpf_func;
18474 	prog->jited_len = func[0]->jited_len;
18475 	prog->aux->extable = func[0]->aux->extable;
18476 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18477 	prog->aux->func = func;
18478 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18479 	prog->aux->real_func_cnt = env->subprog_cnt;
18480 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18481 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18482 	bpf_prog_jit_attempt_done(prog);
18483 	return 0;
18484 out_free:
18485 	/* We failed JIT'ing, so at this point we need to unregister poke
18486 	 * descriptors from subprogs, so that kernel is not attempting to
18487 	 * patch it anymore as we're freeing the subprog JIT memory.
18488 	 */
18489 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18490 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18491 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18492 	}
18493 	/* At this point we're guaranteed that poke descriptors are not
18494 	 * live anymore. We can just unlink its descriptor table as it's
18495 	 * released with the main prog.
18496 	 */
18497 	for (i = 0; i < env->subprog_cnt; i++) {
18498 		if (!func[i])
18499 			continue;
18500 		func[i]->aux->poke_tab = NULL;
18501 		bpf_jit_free(func[i]);
18502 	}
18503 	kfree(func);
18504 out_undo_insn:
18505 	/* cleanup main prog to be interpreted */
18506 	prog->jit_requested = 0;
18507 	prog->blinding_requested = 0;
18508 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18509 		if (!bpf_pseudo_call(insn))
18510 			continue;
18511 		insn->off = 0;
18512 		insn->imm = env->insn_aux_data[i].call_imm;
18513 	}
18514 	bpf_prog_jit_attempt_done(prog);
18515 	return err;
18516 }
18517 
18518 static int fixup_call_args(struct bpf_verifier_env *env)
18519 {
18520 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18521 	struct bpf_prog *prog = env->prog;
18522 	struct bpf_insn *insn = prog->insnsi;
18523 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18524 	int i, depth;
18525 #endif
18526 	int err = 0;
18527 
18528 	if (env->prog->jit_requested &&
18529 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18530 		err = jit_subprogs(env);
18531 		if (err == 0)
18532 			return 0;
18533 		if (err == -EFAULT)
18534 			return err;
18535 	}
18536 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18537 	if (has_kfunc_call) {
18538 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18539 		return -EINVAL;
18540 	}
18541 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18542 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18543 		 * have to be rejected, since interpreter doesn't support them yet.
18544 		 */
18545 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18546 		return -EINVAL;
18547 	}
18548 	for (i = 0; i < prog->len; i++, insn++) {
18549 		if (bpf_pseudo_func(insn)) {
18550 			/* When JIT fails the progs with callback calls
18551 			 * have to be rejected, since interpreter doesn't support them yet.
18552 			 */
18553 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18554 			return -EINVAL;
18555 		}
18556 
18557 		if (!bpf_pseudo_call(insn))
18558 			continue;
18559 		depth = get_callee_stack_depth(env, insn, i);
18560 		if (depth < 0)
18561 			return depth;
18562 		bpf_patch_call_args(insn, depth);
18563 	}
18564 	err = 0;
18565 #endif
18566 	return err;
18567 }
18568 
18569 /* replace a generic kfunc with a specialized version if necessary */
18570 static void specialize_kfunc(struct bpf_verifier_env *env,
18571 			     u32 func_id, u16 offset, unsigned long *addr)
18572 {
18573 	struct bpf_prog *prog = env->prog;
18574 	bool seen_direct_write;
18575 	void *xdp_kfunc;
18576 	bool is_rdonly;
18577 
18578 	if (bpf_dev_bound_kfunc_id(func_id)) {
18579 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18580 		if (xdp_kfunc) {
18581 			*addr = (unsigned long)xdp_kfunc;
18582 			return;
18583 		}
18584 		/* fallback to default kfunc when not supported by netdev */
18585 	}
18586 
18587 	if (offset)
18588 		return;
18589 
18590 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18591 		seen_direct_write = env->seen_direct_write;
18592 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18593 
18594 		if (is_rdonly)
18595 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18596 
18597 		/* restore env->seen_direct_write to its original value, since
18598 		 * may_access_direct_pkt_data mutates it
18599 		 */
18600 		env->seen_direct_write = seen_direct_write;
18601 	}
18602 }
18603 
18604 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18605 					    u16 struct_meta_reg,
18606 					    u16 node_offset_reg,
18607 					    struct bpf_insn *insn,
18608 					    struct bpf_insn *insn_buf,
18609 					    int *cnt)
18610 {
18611 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18612 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18613 
18614 	insn_buf[0] = addr[0];
18615 	insn_buf[1] = addr[1];
18616 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18617 	insn_buf[3] = *insn;
18618 	*cnt = 4;
18619 }
18620 
18621 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18622 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18623 {
18624 	const struct bpf_kfunc_desc *desc;
18625 
18626 	if (!insn->imm) {
18627 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18628 		return -EINVAL;
18629 	}
18630 
18631 	*cnt = 0;
18632 
18633 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18634 	 * __bpf_call_base, unless the JIT needs to call functions that are
18635 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18636 	 */
18637 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18638 	if (!desc) {
18639 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18640 			insn->imm);
18641 		return -EFAULT;
18642 	}
18643 
18644 	if (!bpf_jit_supports_far_kfunc_call())
18645 		insn->imm = BPF_CALL_IMM(desc->addr);
18646 	if (insn->off)
18647 		return 0;
18648 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
18649 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
18650 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18651 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18652 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18653 
18654 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
18655 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18656 				insn_idx);
18657 			return -EFAULT;
18658 		}
18659 
18660 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18661 		insn_buf[1] = addr[0];
18662 		insn_buf[2] = addr[1];
18663 		insn_buf[3] = *insn;
18664 		*cnt = 4;
18665 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18666 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
18667 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18668 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18669 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18670 
18671 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
18672 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18673 				insn_idx);
18674 			return -EFAULT;
18675 		}
18676 
18677 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18678 		    !kptr_struct_meta) {
18679 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18680 				insn_idx);
18681 			return -EFAULT;
18682 		}
18683 
18684 		insn_buf[0] = addr[0];
18685 		insn_buf[1] = addr[1];
18686 		insn_buf[2] = *insn;
18687 		*cnt = 3;
18688 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18689 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18690 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18691 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18692 		int struct_meta_reg = BPF_REG_3;
18693 		int node_offset_reg = BPF_REG_4;
18694 
18695 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18696 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18697 			struct_meta_reg = BPF_REG_4;
18698 			node_offset_reg = BPF_REG_5;
18699 		}
18700 
18701 		if (!kptr_struct_meta) {
18702 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18703 				insn_idx);
18704 			return -EFAULT;
18705 		}
18706 
18707 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18708 						node_offset_reg, insn, insn_buf, cnt);
18709 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18710 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18711 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18712 		*cnt = 1;
18713 	}
18714 	return 0;
18715 }
18716 
18717 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
18718 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
18719 {
18720 	struct bpf_subprog_info *info = env->subprog_info;
18721 	int cnt = env->subprog_cnt;
18722 	struct bpf_prog *prog;
18723 
18724 	/* We only reserve one slot for hidden subprogs in subprog_info. */
18725 	if (env->hidden_subprog_cnt) {
18726 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
18727 		return -EFAULT;
18728 	}
18729 	/* We're not patching any existing instruction, just appending the new
18730 	 * ones for the hidden subprog. Hence all of the adjustment operations
18731 	 * in bpf_patch_insn_data are no-ops.
18732 	 */
18733 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
18734 	if (!prog)
18735 		return -ENOMEM;
18736 	env->prog = prog;
18737 	info[cnt + 1].start = info[cnt].start;
18738 	info[cnt].start = prog->len - len + 1;
18739 	env->subprog_cnt++;
18740 	env->hidden_subprog_cnt++;
18741 	return 0;
18742 }
18743 
18744 /* Do various post-verification rewrites in a single program pass.
18745  * These rewrites simplify JIT and interpreter implementations.
18746  */
18747 static int do_misc_fixups(struct bpf_verifier_env *env)
18748 {
18749 	struct bpf_prog *prog = env->prog;
18750 	enum bpf_attach_type eatype = prog->expected_attach_type;
18751 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18752 	struct bpf_insn *insn = prog->insnsi;
18753 	const struct bpf_func_proto *fn;
18754 	const int insn_cnt = prog->len;
18755 	const struct bpf_map_ops *ops;
18756 	struct bpf_insn_aux_data *aux;
18757 	struct bpf_insn insn_buf[16];
18758 	struct bpf_prog *new_prog;
18759 	struct bpf_map *map_ptr;
18760 	int i, ret, cnt, delta = 0;
18761 
18762 	if (env->seen_exception && !env->exception_callback_subprog) {
18763 		struct bpf_insn patch[] = {
18764 			env->prog->insnsi[insn_cnt - 1],
18765 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
18766 			BPF_EXIT_INSN(),
18767 		};
18768 
18769 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
18770 		if (ret < 0)
18771 			return ret;
18772 		prog = env->prog;
18773 		insn = prog->insnsi;
18774 
18775 		env->exception_callback_subprog = env->subprog_cnt - 1;
18776 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
18777 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
18778 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
18779 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
18780 	}
18781 
18782 	for (i = 0; i < insn_cnt; i++, insn++) {
18783 		/* Make divide-by-zero exceptions impossible. */
18784 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18785 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18786 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18787 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18788 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18789 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18790 			struct bpf_insn *patchlet;
18791 			struct bpf_insn chk_and_div[] = {
18792 				/* [R,W]x div 0 -> 0 */
18793 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18794 					     BPF_JNE | BPF_K, insn->src_reg,
18795 					     0, 2, 0),
18796 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18797 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18798 				*insn,
18799 			};
18800 			struct bpf_insn chk_and_mod[] = {
18801 				/* [R,W]x mod 0 -> [R,W]x */
18802 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18803 					     BPF_JEQ | BPF_K, insn->src_reg,
18804 					     0, 1 + (is64 ? 0 : 1), 0),
18805 				*insn,
18806 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18807 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18808 			};
18809 
18810 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18811 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18812 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18813 
18814 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18815 			if (!new_prog)
18816 				return -ENOMEM;
18817 
18818 			delta    += cnt - 1;
18819 			env->prog = prog = new_prog;
18820 			insn      = new_prog->insnsi + i + delta;
18821 			continue;
18822 		}
18823 
18824 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18825 		if (BPF_CLASS(insn->code) == BPF_LD &&
18826 		    (BPF_MODE(insn->code) == BPF_ABS ||
18827 		     BPF_MODE(insn->code) == BPF_IND)) {
18828 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18829 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18830 				verbose(env, "bpf verifier is misconfigured\n");
18831 				return -EINVAL;
18832 			}
18833 
18834 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18835 			if (!new_prog)
18836 				return -ENOMEM;
18837 
18838 			delta    += cnt - 1;
18839 			env->prog = prog = new_prog;
18840 			insn      = new_prog->insnsi + i + delta;
18841 			continue;
18842 		}
18843 
18844 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18845 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18846 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18847 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18848 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18849 			struct bpf_insn *patch = &insn_buf[0];
18850 			bool issrc, isneg, isimm;
18851 			u32 off_reg;
18852 
18853 			aux = &env->insn_aux_data[i + delta];
18854 			if (!aux->alu_state ||
18855 			    aux->alu_state == BPF_ALU_NON_POINTER)
18856 				continue;
18857 
18858 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18859 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18860 				BPF_ALU_SANITIZE_SRC;
18861 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18862 
18863 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18864 			if (isimm) {
18865 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18866 			} else {
18867 				if (isneg)
18868 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18869 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18870 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18871 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18872 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18873 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18874 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18875 			}
18876 			if (!issrc)
18877 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18878 			insn->src_reg = BPF_REG_AX;
18879 			if (isneg)
18880 				insn->code = insn->code == code_add ?
18881 					     code_sub : code_add;
18882 			*patch++ = *insn;
18883 			if (issrc && isneg && !isimm)
18884 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18885 			cnt = patch - insn_buf;
18886 
18887 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18888 			if (!new_prog)
18889 				return -ENOMEM;
18890 
18891 			delta    += cnt - 1;
18892 			env->prog = prog = new_prog;
18893 			insn      = new_prog->insnsi + i + delta;
18894 			continue;
18895 		}
18896 
18897 		if (insn->code != (BPF_JMP | BPF_CALL))
18898 			continue;
18899 		if (insn->src_reg == BPF_PSEUDO_CALL)
18900 			continue;
18901 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18902 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18903 			if (ret)
18904 				return ret;
18905 			if (cnt == 0)
18906 				continue;
18907 
18908 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18909 			if (!new_prog)
18910 				return -ENOMEM;
18911 
18912 			delta	 += cnt - 1;
18913 			env->prog = prog = new_prog;
18914 			insn	  = new_prog->insnsi + i + delta;
18915 			continue;
18916 		}
18917 
18918 		if (insn->imm == BPF_FUNC_get_route_realm)
18919 			prog->dst_needed = 1;
18920 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18921 			bpf_user_rnd_init_once();
18922 		if (insn->imm == BPF_FUNC_override_return)
18923 			prog->kprobe_override = 1;
18924 		if (insn->imm == BPF_FUNC_tail_call) {
18925 			/* If we tail call into other programs, we
18926 			 * cannot make any assumptions since they can
18927 			 * be replaced dynamically during runtime in
18928 			 * the program array.
18929 			 */
18930 			prog->cb_access = 1;
18931 			if (!allow_tail_call_in_subprogs(env))
18932 				prog->aux->stack_depth = MAX_BPF_STACK;
18933 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18934 
18935 			/* mark bpf_tail_call as different opcode to avoid
18936 			 * conditional branch in the interpreter for every normal
18937 			 * call and to prevent accidental JITing by JIT compiler
18938 			 * that doesn't support bpf_tail_call yet
18939 			 */
18940 			insn->imm = 0;
18941 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18942 
18943 			aux = &env->insn_aux_data[i + delta];
18944 			if (env->bpf_capable && !prog->blinding_requested &&
18945 			    prog->jit_requested &&
18946 			    !bpf_map_key_poisoned(aux) &&
18947 			    !bpf_map_ptr_poisoned(aux) &&
18948 			    !bpf_map_ptr_unpriv(aux)) {
18949 				struct bpf_jit_poke_descriptor desc = {
18950 					.reason = BPF_POKE_REASON_TAIL_CALL,
18951 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18952 					.tail_call.key = bpf_map_key_immediate(aux),
18953 					.insn_idx = i + delta,
18954 				};
18955 
18956 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18957 				if (ret < 0) {
18958 					verbose(env, "adding tail call poke descriptor failed\n");
18959 					return ret;
18960 				}
18961 
18962 				insn->imm = ret + 1;
18963 				continue;
18964 			}
18965 
18966 			if (!bpf_map_ptr_unpriv(aux))
18967 				continue;
18968 
18969 			/* instead of changing every JIT dealing with tail_call
18970 			 * emit two extra insns:
18971 			 * if (index >= max_entries) goto out;
18972 			 * index &= array->index_mask;
18973 			 * to avoid out-of-bounds cpu speculation
18974 			 */
18975 			if (bpf_map_ptr_poisoned(aux)) {
18976 				verbose(env, "tail_call abusing map_ptr\n");
18977 				return -EINVAL;
18978 			}
18979 
18980 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18981 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18982 						  map_ptr->max_entries, 2);
18983 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18984 						    container_of(map_ptr,
18985 								 struct bpf_array,
18986 								 map)->index_mask);
18987 			insn_buf[2] = *insn;
18988 			cnt = 3;
18989 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18990 			if (!new_prog)
18991 				return -ENOMEM;
18992 
18993 			delta    += cnt - 1;
18994 			env->prog = prog = new_prog;
18995 			insn      = new_prog->insnsi + i + delta;
18996 			continue;
18997 		}
18998 
18999 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19000 			/* The verifier will process callback_fn as many times as necessary
19001 			 * with different maps and the register states prepared by
19002 			 * set_timer_callback_state will be accurate.
19003 			 *
19004 			 * The following use case is valid:
19005 			 *   map1 is shared by prog1, prog2, prog3.
19006 			 *   prog1 calls bpf_timer_init for some map1 elements
19007 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19008 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19009 			 *   prog3 calls bpf_timer_start for some map1 elements.
19010 			 *     Those that were not both bpf_timer_init-ed and
19011 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19012 			 */
19013 			struct bpf_insn ld_addrs[2] = {
19014 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19015 			};
19016 
19017 			insn_buf[0] = ld_addrs[0];
19018 			insn_buf[1] = ld_addrs[1];
19019 			insn_buf[2] = *insn;
19020 			cnt = 3;
19021 
19022 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19023 			if (!new_prog)
19024 				return -ENOMEM;
19025 
19026 			delta    += cnt - 1;
19027 			env->prog = prog = new_prog;
19028 			insn      = new_prog->insnsi + i + delta;
19029 			goto patch_call_imm;
19030 		}
19031 
19032 		if (is_storage_get_function(insn->imm)) {
19033 			if (!env->prog->aux->sleepable ||
19034 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19035 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19036 			else
19037 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19038 			insn_buf[1] = *insn;
19039 			cnt = 2;
19040 
19041 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19042 			if (!new_prog)
19043 				return -ENOMEM;
19044 
19045 			delta += cnt - 1;
19046 			env->prog = prog = new_prog;
19047 			insn = new_prog->insnsi + i + delta;
19048 			goto patch_call_imm;
19049 		}
19050 
19051 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19052 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19053 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19054 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19055 			 */
19056 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19057 			insn_buf[1] = *insn;
19058 			cnt = 2;
19059 
19060 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19061 			if (!new_prog)
19062 				return -ENOMEM;
19063 
19064 			delta += cnt - 1;
19065 			env->prog = prog = new_prog;
19066 			insn = new_prog->insnsi + i + delta;
19067 			goto patch_call_imm;
19068 		}
19069 
19070 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19071 		 * and other inlining handlers are currently limited to 64 bit
19072 		 * only.
19073 		 */
19074 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19075 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19076 		     insn->imm == BPF_FUNC_map_update_elem ||
19077 		     insn->imm == BPF_FUNC_map_delete_elem ||
19078 		     insn->imm == BPF_FUNC_map_push_elem   ||
19079 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19080 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19081 		     insn->imm == BPF_FUNC_redirect_map    ||
19082 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19083 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19084 			aux = &env->insn_aux_data[i + delta];
19085 			if (bpf_map_ptr_poisoned(aux))
19086 				goto patch_call_imm;
19087 
19088 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19089 			ops = map_ptr->ops;
19090 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19091 			    ops->map_gen_lookup) {
19092 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19093 				if (cnt == -EOPNOTSUPP)
19094 					goto patch_map_ops_generic;
19095 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19096 					verbose(env, "bpf verifier is misconfigured\n");
19097 					return -EINVAL;
19098 				}
19099 
19100 				new_prog = bpf_patch_insn_data(env, i + delta,
19101 							       insn_buf, cnt);
19102 				if (!new_prog)
19103 					return -ENOMEM;
19104 
19105 				delta    += cnt - 1;
19106 				env->prog = prog = new_prog;
19107 				insn      = new_prog->insnsi + i + delta;
19108 				continue;
19109 			}
19110 
19111 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19112 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19113 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19114 				     (long (*)(struct bpf_map *map, void *key))NULL));
19115 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19116 				     (long (*)(struct bpf_map *map, void *key, void *value,
19117 					      u64 flags))NULL));
19118 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19119 				     (long (*)(struct bpf_map *map, void *value,
19120 					      u64 flags))NULL));
19121 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19122 				     (long (*)(struct bpf_map *map, void *value))NULL));
19123 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19124 				     (long (*)(struct bpf_map *map, void *value))NULL));
19125 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19126 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19127 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19128 				     (long (*)(struct bpf_map *map,
19129 					      bpf_callback_t callback_fn,
19130 					      void *callback_ctx,
19131 					      u64 flags))NULL));
19132 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19133 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19134 
19135 patch_map_ops_generic:
19136 			switch (insn->imm) {
19137 			case BPF_FUNC_map_lookup_elem:
19138 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19139 				continue;
19140 			case BPF_FUNC_map_update_elem:
19141 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19142 				continue;
19143 			case BPF_FUNC_map_delete_elem:
19144 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19145 				continue;
19146 			case BPF_FUNC_map_push_elem:
19147 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19148 				continue;
19149 			case BPF_FUNC_map_pop_elem:
19150 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19151 				continue;
19152 			case BPF_FUNC_map_peek_elem:
19153 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19154 				continue;
19155 			case BPF_FUNC_redirect_map:
19156 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19157 				continue;
19158 			case BPF_FUNC_for_each_map_elem:
19159 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19160 				continue;
19161 			case BPF_FUNC_map_lookup_percpu_elem:
19162 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19163 				continue;
19164 			}
19165 
19166 			goto patch_call_imm;
19167 		}
19168 
19169 		/* Implement bpf_jiffies64 inline. */
19170 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19171 		    insn->imm == BPF_FUNC_jiffies64) {
19172 			struct bpf_insn ld_jiffies_addr[2] = {
19173 				BPF_LD_IMM64(BPF_REG_0,
19174 					     (unsigned long)&jiffies),
19175 			};
19176 
19177 			insn_buf[0] = ld_jiffies_addr[0];
19178 			insn_buf[1] = ld_jiffies_addr[1];
19179 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19180 						  BPF_REG_0, 0);
19181 			cnt = 3;
19182 
19183 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19184 						       cnt);
19185 			if (!new_prog)
19186 				return -ENOMEM;
19187 
19188 			delta    += cnt - 1;
19189 			env->prog = prog = new_prog;
19190 			insn      = new_prog->insnsi + i + delta;
19191 			continue;
19192 		}
19193 
19194 		/* Implement bpf_get_func_arg inline. */
19195 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19196 		    insn->imm == BPF_FUNC_get_func_arg) {
19197 			/* Load nr_args from ctx - 8 */
19198 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19199 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19200 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19201 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19202 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19203 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19204 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19205 			insn_buf[7] = BPF_JMP_A(1);
19206 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19207 			cnt = 9;
19208 
19209 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19210 			if (!new_prog)
19211 				return -ENOMEM;
19212 
19213 			delta    += cnt - 1;
19214 			env->prog = prog = new_prog;
19215 			insn      = new_prog->insnsi + i + delta;
19216 			continue;
19217 		}
19218 
19219 		/* Implement bpf_get_func_ret inline. */
19220 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19221 		    insn->imm == BPF_FUNC_get_func_ret) {
19222 			if (eatype == BPF_TRACE_FEXIT ||
19223 			    eatype == BPF_MODIFY_RETURN) {
19224 				/* Load nr_args from ctx - 8 */
19225 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19226 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19227 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19228 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19229 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19230 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19231 				cnt = 6;
19232 			} else {
19233 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19234 				cnt = 1;
19235 			}
19236 
19237 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19238 			if (!new_prog)
19239 				return -ENOMEM;
19240 
19241 			delta    += cnt - 1;
19242 			env->prog = prog = new_prog;
19243 			insn      = new_prog->insnsi + i + delta;
19244 			continue;
19245 		}
19246 
19247 		/* Implement get_func_arg_cnt inline. */
19248 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19249 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19250 			/* Load nr_args from ctx - 8 */
19251 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19252 
19253 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19254 			if (!new_prog)
19255 				return -ENOMEM;
19256 
19257 			env->prog = prog = new_prog;
19258 			insn      = new_prog->insnsi + i + delta;
19259 			continue;
19260 		}
19261 
19262 		/* Implement bpf_get_func_ip inline. */
19263 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19264 		    insn->imm == BPF_FUNC_get_func_ip) {
19265 			/* Load IP address from ctx - 16 */
19266 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19267 
19268 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19269 			if (!new_prog)
19270 				return -ENOMEM;
19271 
19272 			env->prog = prog = new_prog;
19273 			insn      = new_prog->insnsi + i + delta;
19274 			continue;
19275 		}
19276 
19277 patch_call_imm:
19278 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19279 		/* all functions that have prototype and verifier allowed
19280 		 * programs to call them, must be real in-kernel functions
19281 		 */
19282 		if (!fn->func) {
19283 			verbose(env,
19284 				"kernel subsystem misconfigured func %s#%d\n",
19285 				func_id_name(insn->imm), insn->imm);
19286 			return -EFAULT;
19287 		}
19288 		insn->imm = fn->func - __bpf_call_base;
19289 	}
19290 
19291 	/* Since poke tab is now finalized, publish aux to tracker. */
19292 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19293 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19294 		if (!map_ptr->ops->map_poke_track ||
19295 		    !map_ptr->ops->map_poke_untrack ||
19296 		    !map_ptr->ops->map_poke_run) {
19297 			verbose(env, "bpf verifier is misconfigured\n");
19298 			return -EINVAL;
19299 		}
19300 
19301 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19302 		if (ret < 0) {
19303 			verbose(env, "tracking tail call prog failed\n");
19304 			return ret;
19305 		}
19306 	}
19307 
19308 	sort_kfunc_descs_by_imm_off(env->prog);
19309 
19310 	return 0;
19311 }
19312 
19313 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19314 					int position,
19315 					s32 stack_base,
19316 					u32 callback_subprogno,
19317 					u32 *cnt)
19318 {
19319 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19320 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19321 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19322 	int reg_loop_max = BPF_REG_6;
19323 	int reg_loop_cnt = BPF_REG_7;
19324 	int reg_loop_ctx = BPF_REG_8;
19325 
19326 	struct bpf_prog *new_prog;
19327 	u32 callback_start;
19328 	u32 call_insn_offset;
19329 	s32 callback_offset;
19330 
19331 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19332 	 * be careful to modify this code in sync.
19333 	 */
19334 	struct bpf_insn insn_buf[] = {
19335 		/* Return error and jump to the end of the patch if
19336 		 * expected number of iterations is too big.
19337 		 */
19338 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19339 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19340 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19341 		/* spill R6, R7, R8 to use these as loop vars */
19342 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19343 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19344 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19345 		/* initialize loop vars */
19346 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19347 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19348 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19349 		/* loop header,
19350 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19351 		 */
19352 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19353 		/* callback call,
19354 		 * correct callback offset would be set after patching
19355 		 */
19356 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19357 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19358 		BPF_CALL_REL(0),
19359 		/* increment loop counter */
19360 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19361 		/* jump to loop header if callback returned 0 */
19362 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19363 		/* return value of bpf_loop,
19364 		 * set R0 to the number of iterations
19365 		 */
19366 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19367 		/* restore original values of R6, R7, R8 */
19368 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19369 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19370 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19371 	};
19372 
19373 	*cnt = ARRAY_SIZE(insn_buf);
19374 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19375 	if (!new_prog)
19376 		return new_prog;
19377 
19378 	/* callback start is known only after patching */
19379 	callback_start = env->subprog_info[callback_subprogno].start;
19380 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19381 	call_insn_offset = position + 12;
19382 	callback_offset = callback_start - call_insn_offset - 1;
19383 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19384 
19385 	return new_prog;
19386 }
19387 
19388 static bool is_bpf_loop_call(struct bpf_insn *insn)
19389 {
19390 	return insn->code == (BPF_JMP | BPF_CALL) &&
19391 		insn->src_reg == 0 &&
19392 		insn->imm == BPF_FUNC_loop;
19393 }
19394 
19395 /* For all sub-programs in the program (including main) check
19396  * insn_aux_data to see if there are bpf_loop calls that require
19397  * inlining. If such calls are found the calls are replaced with a
19398  * sequence of instructions produced by `inline_bpf_loop` function and
19399  * subprog stack_depth is increased by the size of 3 registers.
19400  * This stack space is used to spill values of the R6, R7, R8.  These
19401  * registers are used to store the loop bound, counter and context
19402  * variables.
19403  */
19404 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19405 {
19406 	struct bpf_subprog_info *subprogs = env->subprog_info;
19407 	int i, cur_subprog = 0, cnt, delta = 0;
19408 	struct bpf_insn *insn = env->prog->insnsi;
19409 	int insn_cnt = env->prog->len;
19410 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19411 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19412 	u16 stack_depth_extra = 0;
19413 
19414 	for (i = 0; i < insn_cnt; i++, insn++) {
19415 		struct bpf_loop_inline_state *inline_state =
19416 			&env->insn_aux_data[i + delta].loop_inline_state;
19417 
19418 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19419 			struct bpf_prog *new_prog;
19420 
19421 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19422 			new_prog = inline_bpf_loop(env,
19423 						   i + delta,
19424 						   -(stack_depth + stack_depth_extra),
19425 						   inline_state->callback_subprogno,
19426 						   &cnt);
19427 			if (!new_prog)
19428 				return -ENOMEM;
19429 
19430 			delta     += cnt - 1;
19431 			env->prog  = new_prog;
19432 			insn       = new_prog->insnsi + i + delta;
19433 		}
19434 
19435 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19436 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19437 			cur_subprog++;
19438 			stack_depth = subprogs[cur_subprog].stack_depth;
19439 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19440 			stack_depth_extra = 0;
19441 		}
19442 	}
19443 
19444 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19445 
19446 	return 0;
19447 }
19448 
19449 static void free_states(struct bpf_verifier_env *env)
19450 {
19451 	struct bpf_verifier_state_list *sl, *sln;
19452 	int i;
19453 
19454 	sl = env->free_list;
19455 	while (sl) {
19456 		sln = sl->next;
19457 		free_verifier_state(&sl->state, false);
19458 		kfree(sl);
19459 		sl = sln;
19460 	}
19461 	env->free_list = NULL;
19462 
19463 	if (!env->explored_states)
19464 		return;
19465 
19466 	for (i = 0; i < state_htab_size(env); i++) {
19467 		sl = env->explored_states[i];
19468 
19469 		while (sl) {
19470 			sln = sl->next;
19471 			free_verifier_state(&sl->state, false);
19472 			kfree(sl);
19473 			sl = sln;
19474 		}
19475 		env->explored_states[i] = NULL;
19476 	}
19477 }
19478 
19479 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19480 {
19481 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19482 	struct bpf_verifier_state *state;
19483 	struct bpf_reg_state *regs;
19484 	int ret, i;
19485 
19486 	env->prev_linfo = NULL;
19487 	env->pass_cnt++;
19488 
19489 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19490 	if (!state)
19491 		return -ENOMEM;
19492 	state->curframe = 0;
19493 	state->speculative = false;
19494 	state->branches = 1;
19495 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19496 	if (!state->frame[0]) {
19497 		kfree(state);
19498 		return -ENOMEM;
19499 	}
19500 	env->cur_state = state;
19501 	init_func_state(env, state->frame[0],
19502 			BPF_MAIN_FUNC /* callsite */,
19503 			0 /* frameno */,
19504 			subprog);
19505 	state->first_insn_idx = env->subprog_info[subprog].start;
19506 	state->last_insn_idx = -1;
19507 
19508 	regs = state->frame[state->curframe]->regs;
19509 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19510 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19511 		if (ret)
19512 			goto out;
19513 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19514 			if (regs[i].type == PTR_TO_CTX)
19515 				mark_reg_known_zero(env, regs, i);
19516 			else if (regs[i].type == SCALAR_VALUE)
19517 				mark_reg_unknown(env, regs, i);
19518 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19519 				const u32 mem_size = regs[i].mem_size;
19520 
19521 				mark_reg_known_zero(env, regs, i);
19522 				regs[i].mem_size = mem_size;
19523 				regs[i].id = ++env->id_gen;
19524 			}
19525 		}
19526 		if (is_ex_cb) {
19527 			state->frame[0]->in_exception_callback_fn = true;
19528 			env->subprog_info[subprog].is_cb = true;
19529 			env->subprog_info[subprog].is_async_cb = true;
19530 			env->subprog_info[subprog].is_exception_cb = true;
19531 		}
19532 	} else {
19533 		/* 1st arg to a function */
19534 		regs[BPF_REG_1].type = PTR_TO_CTX;
19535 		mark_reg_known_zero(env, regs, BPF_REG_1);
19536 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19537 		if (ret == -EFAULT)
19538 			/* unlikely verifier bug. abort.
19539 			 * ret == 0 and ret < 0 are sadly acceptable for
19540 			 * main() function due to backward compatibility.
19541 			 * Like socket filter program may be written as:
19542 			 * int bpf_prog(struct pt_regs *ctx)
19543 			 * and never dereference that ctx in the program.
19544 			 * 'struct pt_regs' is a type mismatch for socket
19545 			 * filter that should be using 'struct __sk_buff'.
19546 			 */
19547 			goto out;
19548 	}
19549 
19550 	ret = do_check(env);
19551 out:
19552 	/* check for NULL is necessary, since cur_state can be freed inside
19553 	 * do_check() under memory pressure.
19554 	 */
19555 	if (env->cur_state) {
19556 		free_verifier_state(env->cur_state, true);
19557 		env->cur_state = NULL;
19558 	}
19559 	while (!pop_stack(env, NULL, NULL, false));
19560 	if (!ret && pop_log)
19561 		bpf_vlog_reset(&env->log, 0);
19562 	free_states(env);
19563 	return ret;
19564 }
19565 
19566 /* Verify all global functions in a BPF program one by one based on their BTF.
19567  * All global functions must pass verification. Otherwise the whole program is rejected.
19568  * Consider:
19569  * int bar(int);
19570  * int foo(int f)
19571  * {
19572  *    return bar(f);
19573  * }
19574  * int bar(int b)
19575  * {
19576  *    ...
19577  * }
19578  * foo() will be verified first for R1=any_scalar_value. During verification it
19579  * will be assumed that bar() already verified successfully and call to bar()
19580  * from foo() will be checked for type match only. Later bar() will be verified
19581  * independently to check that it's safe for R1=any_scalar_value.
19582  */
19583 static int do_check_subprogs(struct bpf_verifier_env *env)
19584 {
19585 	struct bpf_prog_aux *aux = env->prog->aux;
19586 	int i, ret;
19587 
19588 	if (!aux->func_info)
19589 		return 0;
19590 
19591 	for (i = 1; i < env->subprog_cnt; i++) {
19592 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19593 			continue;
19594 		env->insn_idx = env->subprog_info[i].start;
19595 		WARN_ON_ONCE(env->insn_idx == 0);
19596 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
19597 		if (ret) {
19598 			return ret;
19599 		} else if (env->log.level & BPF_LOG_LEVEL) {
19600 			verbose(env,
19601 				"Func#%d is safe for any args that match its prototype\n",
19602 				i);
19603 		}
19604 	}
19605 	return 0;
19606 }
19607 
19608 static int do_check_main(struct bpf_verifier_env *env)
19609 {
19610 	int ret;
19611 
19612 	env->insn_idx = 0;
19613 	ret = do_check_common(env, 0, false);
19614 	if (!ret)
19615 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19616 	return ret;
19617 }
19618 
19619 
19620 static void print_verification_stats(struct bpf_verifier_env *env)
19621 {
19622 	int i;
19623 
19624 	if (env->log.level & BPF_LOG_STATS) {
19625 		verbose(env, "verification time %lld usec\n",
19626 			div_u64(env->verification_time, 1000));
19627 		verbose(env, "stack depth ");
19628 		for (i = 0; i < env->subprog_cnt; i++) {
19629 			u32 depth = env->subprog_info[i].stack_depth;
19630 
19631 			verbose(env, "%d", depth);
19632 			if (i + 1 < env->subprog_cnt)
19633 				verbose(env, "+");
19634 		}
19635 		verbose(env, "\n");
19636 	}
19637 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19638 		"total_states %d peak_states %d mark_read %d\n",
19639 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19640 		env->max_states_per_insn, env->total_states,
19641 		env->peak_states, env->longest_mark_read_walk);
19642 }
19643 
19644 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19645 {
19646 	const struct btf_type *t, *func_proto;
19647 	const struct bpf_struct_ops *st_ops;
19648 	const struct btf_member *member;
19649 	struct bpf_prog *prog = env->prog;
19650 	u32 btf_id, member_idx;
19651 	const char *mname;
19652 
19653 	if (!prog->gpl_compatible) {
19654 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19655 		return -EINVAL;
19656 	}
19657 
19658 	btf_id = prog->aux->attach_btf_id;
19659 	st_ops = bpf_struct_ops_find(btf_id);
19660 	if (!st_ops) {
19661 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19662 			btf_id);
19663 		return -ENOTSUPP;
19664 	}
19665 
19666 	t = st_ops->type;
19667 	member_idx = prog->expected_attach_type;
19668 	if (member_idx >= btf_type_vlen(t)) {
19669 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19670 			member_idx, st_ops->name);
19671 		return -EINVAL;
19672 	}
19673 
19674 	member = &btf_type_member(t)[member_idx];
19675 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19676 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19677 					       NULL);
19678 	if (!func_proto) {
19679 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19680 			mname, member_idx, st_ops->name);
19681 		return -EINVAL;
19682 	}
19683 
19684 	if (st_ops->check_member) {
19685 		int err = st_ops->check_member(t, member, prog);
19686 
19687 		if (err) {
19688 			verbose(env, "attach to unsupported member %s of struct %s\n",
19689 				mname, st_ops->name);
19690 			return err;
19691 		}
19692 	}
19693 
19694 	prog->aux->attach_func_proto = func_proto;
19695 	prog->aux->attach_func_name = mname;
19696 	env->ops = st_ops->verifier_ops;
19697 
19698 	return 0;
19699 }
19700 #define SECURITY_PREFIX "security_"
19701 
19702 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19703 {
19704 	if (within_error_injection_list(addr) ||
19705 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19706 		return 0;
19707 
19708 	return -EINVAL;
19709 }
19710 
19711 /* list of non-sleepable functions that are otherwise on
19712  * ALLOW_ERROR_INJECTION list
19713  */
19714 BTF_SET_START(btf_non_sleepable_error_inject)
19715 /* Three functions below can be called from sleepable and non-sleepable context.
19716  * Assume non-sleepable from bpf safety point of view.
19717  */
19718 BTF_ID(func, __filemap_add_folio)
19719 BTF_ID(func, should_fail_alloc_page)
19720 BTF_ID(func, should_failslab)
19721 BTF_SET_END(btf_non_sleepable_error_inject)
19722 
19723 static int check_non_sleepable_error_inject(u32 btf_id)
19724 {
19725 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19726 }
19727 
19728 int bpf_check_attach_target(struct bpf_verifier_log *log,
19729 			    const struct bpf_prog *prog,
19730 			    const struct bpf_prog *tgt_prog,
19731 			    u32 btf_id,
19732 			    struct bpf_attach_target_info *tgt_info)
19733 {
19734 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19735 	const char prefix[] = "btf_trace_";
19736 	int ret = 0, subprog = -1, i;
19737 	const struct btf_type *t;
19738 	bool conservative = true;
19739 	const char *tname;
19740 	struct btf *btf;
19741 	long addr = 0;
19742 	struct module *mod = NULL;
19743 
19744 	if (!btf_id) {
19745 		bpf_log(log, "Tracing programs must provide btf_id\n");
19746 		return -EINVAL;
19747 	}
19748 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19749 	if (!btf) {
19750 		bpf_log(log,
19751 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19752 		return -EINVAL;
19753 	}
19754 	t = btf_type_by_id(btf, btf_id);
19755 	if (!t) {
19756 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19757 		return -EINVAL;
19758 	}
19759 	tname = btf_name_by_offset(btf, t->name_off);
19760 	if (!tname) {
19761 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19762 		return -EINVAL;
19763 	}
19764 	if (tgt_prog) {
19765 		struct bpf_prog_aux *aux = tgt_prog->aux;
19766 
19767 		if (bpf_prog_is_dev_bound(prog->aux) &&
19768 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19769 			bpf_log(log, "Target program bound device mismatch");
19770 			return -EINVAL;
19771 		}
19772 
19773 		for (i = 0; i < aux->func_info_cnt; i++)
19774 			if (aux->func_info[i].type_id == btf_id) {
19775 				subprog = i;
19776 				break;
19777 			}
19778 		if (subprog == -1) {
19779 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19780 			return -EINVAL;
19781 		}
19782 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
19783 			bpf_log(log,
19784 				"%s programs cannot attach to exception callback\n",
19785 				prog_extension ? "Extension" : "FENTRY/FEXIT");
19786 			return -EINVAL;
19787 		}
19788 		conservative = aux->func_info_aux[subprog].unreliable;
19789 		if (prog_extension) {
19790 			if (conservative) {
19791 				bpf_log(log,
19792 					"Cannot replace static functions\n");
19793 				return -EINVAL;
19794 			}
19795 			if (!prog->jit_requested) {
19796 				bpf_log(log,
19797 					"Extension programs should be JITed\n");
19798 				return -EINVAL;
19799 			}
19800 		}
19801 		if (!tgt_prog->jited) {
19802 			bpf_log(log, "Can attach to only JITed progs\n");
19803 			return -EINVAL;
19804 		}
19805 		if (tgt_prog->type == prog->type) {
19806 			/* Cannot fentry/fexit another fentry/fexit program.
19807 			 * Cannot attach program extension to another extension.
19808 			 * It's ok to attach fentry/fexit to extension program.
19809 			 */
19810 			bpf_log(log, "Cannot recursively attach\n");
19811 			return -EINVAL;
19812 		}
19813 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19814 		    prog_extension &&
19815 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19816 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19817 			/* Program extensions can extend all program types
19818 			 * except fentry/fexit. The reason is the following.
19819 			 * The fentry/fexit programs are used for performance
19820 			 * analysis, stats and can be attached to any program
19821 			 * type except themselves. When extension program is
19822 			 * replacing XDP function it is necessary to allow
19823 			 * performance analysis of all functions. Both original
19824 			 * XDP program and its program extension. Hence
19825 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19826 			 * allowed. If extending of fentry/fexit was allowed it
19827 			 * would be possible to create long call chain
19828 			 * fentry->extension->fentry->extension beyond
19829 			 * reasonable stack size. Hence extending fentry is not
19830 			 * allowed.
19831 			 */
19832 			bpf_log(log, "Cannot extend fentry/fexit\n");
19833 			return -EINVAL;
19834 		}
19835 	} else {
19836 		if (prog_extension) {
19837 			bpf_log(log, "Cannot replace kernel functions\n");
19838 			return -EINVAL;
19839 		}
19840 	}
19841 
19842 	switch (prog->expected_attach_type) {
19843 	case BPF_TRACE_RAW_TP:
19844 		if (tgt_prog) {
19845 			bpf_log(log,
19846 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19847 			return -EINVAL;
19848 		}
19849 		if (!btf_type_is_typedef(t)) {
19850 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19851 				btf_id);
19852 			return -EINVAL;
19853 		}
19854 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19855 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19856 				btf_id, tname);
19857 			return -EINVAL;
19858 		}
19859 		tname += sizeof(prefix) - 1;
19860 		t = btf_type_by_id(btf, t->type);
19861 		if (!btf_type_is_ptr(t))
19862 			/* should never happen in valid vmlinux build */
19863 			return -EINVAL;
19864 		t = btf_type_by_id(btf, t->type);
19865 		if (!btf_type_is_func_proto(t))
19866 			/* should never happen in valid vmlinux build */
19867 			return -EINVAL;
19868 
19869 		break;
19870 	case BPF_TRACE_ITER:
19871 		if (!btf_type_is_func(t)) {
19872 			bpf_log(log, "attach_btf_id %u is not a function\n",
19873 				btf_id);
19874 			return -EINVAL;
19875 		}
19876 		t = btf_type_by_id(btf, t->type);
19877 		if (!btf_type_is_func_proto(t))
19878 			return -EINVAL;
19879 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19880 		if (ret)
19881 			return ret;
19882 		break;
19883 	default:
19884 		if (!prog_extension)
19885 			return -EINVAL;
19886 		fallthrough;
19887 	case BPF_MODIFY_RETURN:
19888 	case BPF_LSM_MAC:
19889 	case BPF_LSM_CGROUP:
19890 	case BPF_TRACE_FENTRY:
19891 	case BPF_TRACE_FEXIT:
19892 		if (!btf_type_is_func(t)) {
19893 			bpf_log(log, "attach_btf_id %u is not a function\n",
19894 				btf_id);
19895 			return -EINVAL;
19896 		}
19897 		if (prog_extension &&
19898 		    btf_check_type_match(log, prog, btf, t))
19899 			return -EINVAL;
19900 		t = btf_type_by_id(btf, t->type);
19901 		if (!btf_type_is_func_proto(t))
19902 			return -EINVAL;
19903 
19904 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19905 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19906 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19907 			return -EINVAL;
19908 
19909 		if (tgt_prog && conservative)
19910 			t = NULL;
19911 
19912 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19913 		if (ret < 0)
19914 			return ret;
19915 
19916 		if (tgt_prog) {
19917 			if (subprog == 0)
19918 				addr = (long) tgt_prog->bpf_func;
19919 			else
19920 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19921 		} else {
19922 			if (btf_is_module(btf)) {
19923 				mod = btf_try_get_module(btf);
19924 				if (mod)
19925 					addr = find_kallsyms_symbol_value(mod, tname);
19926 				else
19927 					addr = 0;
19928 			} else {
19929 				addr = kallsyms_lookup_name(tname);
19930 			}
19931 			if (!addr) {
19932 				module_put(mod);
19933 				bpf_log(log,
19934 					"The address of function %s cannot be found\n",
19935 					tname);
19936 				return -ENOENT;
19937 			}
19938 		}
19939 
19940 		if (prog->aux->sleepable) {
19941 			ret = -EINVAL;
19942 			switch (prog->type) {
19943 			case BPF_PROG_TYPE_TRACING:
19944 
19945 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19946 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19947 				 */
19948 				if (!check_non_sleepable_error_inject(btf_id) &&
19949 				    within_error_injection_list(addr))
19950 					ret = 0;
19951 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19952 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19953 				 */
19954 				else {
19955 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19956 										prog);
19957 
19958 					if (flags && (*flags & KF_SLEEPABLE))
19959 						ret = 0;
19960 				}
19961 				break;
19962 			case BPF_PROG_TYPE_LSM:
19963 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19964 				 * Only some of them are sleepable.
19965 				 */
19966 				if (bpf_lsm_is_sleepable_hook(btf_id))
19967 					ret = 0;
19968 				break;
19969 			default:
19970 				break;
19971 			}
19972 			if (ret) {
19973 				module_put(mod);
19974 				bpf_log(log, "%s is not sleepable\n", tname);
19975 				return ret;
19976 			}
19977 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19978 			if (tgt_prog) {
19979 				module_put(mod);
19980 				bpf_log(log, "can't modify return codes of BPF programs\n");
19981 				return -EINVAL;
19982 			}
19983 			ret = -EINVAL;
19984 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19985 			    !check_attach_modify_return(addr, tname))
19986 				ret = 0;
19987 			if (ret) {
19988 				module_put(mod);
19989 				bpf_log(log, "%s() is not modifiable\n", tname);
19990 				return ret;
19991 			}
19992 		}
19993 
19994 		break;
19995 	}
19996 	tgt_info->tgt_addr = addr;
19997 	tgt_info->tgt_name = tname;
19998 	tgt_info->tgt_type = t;
19999 	tgt_info->tgt_mod = mod;
20000 	return 0;
20001 }
20002 
20003 BTF_SET_START(btf_id_deny)
20004 BTF_ID_UNUSED
20005 #ifdef CONFIG_SMP
20006 BTF_ID(func, migrate_disable)
20007 BTF_ID(func, migrate_enable)
20008 #endif
20009 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20010 BTF_ID(func, rcu_read_unlock_strict)
20011 #endif
20012 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20013 BTF_ID(func, preempt_count_add)
20014 BTF_ID(func, preempt_count_sub)
20015 #endif
20016 #ifdef CONFIG_PREEMPT_RCU
20017 BTF_ID(func, __rcu_read_lock)
20018 BTF_ID(func, __rcu_read_unlock)
20019 #endif
20020 BTF_SET_END(btf_id_deny)
20021 
20022 static bool can_be_sleepable(struct bpf_prog *prog)
20023 {
20024 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20025 		switch (prog->expected_attach_type) {
20026 		case BPF_TRACE_FENTRY:
20027 		case BPF_TRACE_FEXIT:
20028 		case BPF_MODIFY_RETURN:
20029 		case BPF_TRACE_ITER:
20030 			return true;
20031 		default:
20032 			return false;
20033 		}
20034 	}
20035 	return prog->type == BPF_PROG_TYPE_LSM ||
20036 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20037 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20038 }
20039 
20040 static int check_attach_btf_id(struct bpf_verifier_env *env)
20041 {
20042 	struct bpf_prog *prog = env->prog;
20043 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20044 	struct bpf_attach_target_info tgt_info = {};
20045 	u32 btf_id = prog->aux->attach_btf_id;
20046 	struct bpf_trampoline *tr;
20047 	int ret;
20048 	u64 key;
20049 
20050 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20051 		if (prog->aux->sleepable)
20052 			/* attach_btf_id checked to be zero already */
20053 			return 0;
20054 		verbose(env, "Syscall programs can only be sleepable\n");
20055 		return -EINVAL;
20056 	}
20057 
20058 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20059 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20060 		return -EINVAL;
20061 	}
20062 
20063 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20064 		return check_struct_ops_btf_id(env);
20065 
20066 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20067 	    prog->type != BPF_PROG_TYPE_LSM &&
20068 	    prog->type != BPF_PROG_TYPE_EXT)
20069 		return 0;
20070 
20071 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20072 	if (ret)
20073 		return ret;
20074 
20075 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20076 		/* to make freplace equivalent to their targets, they need to
20077 		 * inherit env->ops and expected_attach_type for the rest of the
20078 		 * verification
20079 		 */
20080 		env->ops = bpf_verifier_ops[tgt_prog->type];
20081 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20082 	}
20083 
20084 	/* store info about the attachment target that will be used later */
20085 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20086 	prog->aux->attach_func_name = tgt_info.tgt_name;
20087 	prog->aux->mod = tgt_info.tgt_mod;
20088 
20089 	if (tgt_prog) {
20090 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20091 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20092 	}
20093 
20094 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20095 		prog->aux->attach_btf_trace = true;
20096 		return 0;
20097 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20098 		if (!bpf_iter_prog_supported(prog))
20099 			return -EINVAL;
20100 		return 0;
20101 	}
20102 
20103 	if (prog->type == BPF_PROG_TYPE_LSM) {
20104 		ret = bpf_lsm_verify_prog(&env->log, prog);
20105 		if (ret < 0)
20106 			return ret;
20107 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20108 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20109 		return -EINVAL;
20110 	}
20111 
20112 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20113 	tr = bpf_trampoline_get(key, &tgt_info);
20114 	if (!tr)
20115 		return -ENOMEM;
20116 
20117 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20118 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20119 
20120 	prog->aux->dst_trampoline = tr;
20121 	return 0;
20122 }
20123 
20124 struct btf *bpf_get_btf_vmlinux(void)
20125 {
20126 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20127 		mutex_lock(&bpf_verifier_lock);
20128 		if (!btf_vmlinux)
20129 			btf_vmlinux = btf_parse_vmlinux();
20130 		mutex_unlock(&bpf_verifier_lock);
20131 	}
20132 	return btf_vmlinux;
20133 }
20134 
20135 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20136 {
20137 	u64 start_time = ktime_get_ns();
20138 	struct bpf_verifier_env *env;
20139 	int i, len, ret = -EINVAL, err;
20140 	u32 log_true_size;
20141 	bool is_priv;
20142 
20143 	/* no program is valid */
20144 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20145 		return -EINVAL;
20146 
20147 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20148 	 * allocate/free it every time bpf_check() is called
20149 	 */
20150 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20151 	if (!env)
20152 		return -ENOMEM;
20153 
20154 	env->bt.env = env;
20155 
20156 	len = (*prog)->len;
20157 	env->insn_aux_data =
20158 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20159 	ret = -ENOMEM;
20160 	if (!env->insn_aux_data)
20161 		goto err_free_env;
20162 	for (i = 0; i < len; i++)
20163 		env->insn_aux_data[i].orig_idx = i;
20164 	env->prog = *prog;
20165 	env->ops = bpf_verifier_ops[env->prog->type];
20166 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20167 	is_priv = bpf_capable();
20168 
20169 	bpf_get_btf_vmlinux();
20170 
20171 	/* grab the mutex to protect few globals used by verifier */
20172 	if (!is_priv)
20173 		mutex_lock(&bpf_verifier_lock);
20174 
20175 	/* user could have requested verbose verifier output
20176 	 * and supplied buffer to store the verification trace
20177 	 */
20178 	ret = bpf_vlog_init(&env->log, attr->log_level,
20179 			    (char __user *) (unsigned long) attr->log_buf,
20180 			    attr->log_size);
20181 	if (ret)
20182 		goto err_unlock;
20183 
20184 	mark_verifier_state_clean(env);
20185 
20186 	if (IS_ERR(btf_vmlinux)) {
20187 		/* Either gcc or pahole or kernel are broken. */
20188 		verbose(env, "in-kernel BTF is malformed\n");
20189 		ret = PTR_ERR(btf_vmlinux);
20190 		goto skip_full_check;
20191 	}
20192 
20193 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20194 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20195 		env->strict_alignment = true;
20196 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20197 		env->strict_alignment = false;
20198 
20199 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20200 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20201 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20202 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20203 	env->bpf_capable = bpf_capable();
20204 
20205 	if (is_priv)
20206 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20207 
20208 	env->explored_states = kvcalloc(state_htab_size(env),
20209 				       sizeof(struct bpf_verifier_state_list *),
20210 				       GFP_USER);
20211 	ret = -ENOMEM;
20212 	if (!env->explored_states)
20213 		goto skip_full_check;
20214 
20215 	ret = check_btf_info_early(env, attr, uattr);
20216 	if (ret < 0)
20217 		goto skip_full_check;
20218 
20219 	ret = add_subprog_and_kfunc(env);
20220 	if (ret < 0)
20221 		goto skip_full_check;
20222 
20223 	ret = check_subprogs(env);
20224 	if (ret < 0)
20225 		goto skip_full_check;
20226 
20227 	ret = check_btf_info(env, attr, uattr);
20228 	if (ret < 0)
20229 		goto skip_full_check;
20230 
20231 	ret = check_attach_btf_id(env);
20232 	if (ret)
20233 		goto skip_full_check;
20234 
20235 	ret = resolve_pseudo_ldimm64(env);
20236 	if (ret < 0)
20237 		goto skip_full_check;
20238 
20239 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20240 		ret = bpf_prog_offload_verifier_prep(env->prog);
20241 		if (ret)
20242 			goto skip_full_check;
20243 	}
20244 
20245 	ret = check_cfg(env);
20246 	if (ret < 0)
20247 		goto skip_full_check;
20248 
20249 	ret = do_check_subprogs(env);
20250 	ret = ret ?: do_check_main(env);
20251 
20252 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20253 		ret = bpf_prog_offload_finalize(env);
20254 
20255 skip_full_check:
20256 	kvfree(env->explored_states);
20257 
20258 	if (ret == 0)
20259 		ret = check_max_stack_depth(env);
20260 
20261 	/* instruction rewrites happen after this point */
20262 	if (ret == 0)
20263 		ret = optimize_bpf_loop(env);
20264 
20265 	if (is_priv) {
20266 		if (ret == 0)
20267 			opt_hard_wire_dead_code_branches(env);
20268 		if (ret == 0)
20269 			ret = opt_remove_dead_code(env);
20270 		if (ret == 0)
20271 			ret = opt_remove_nops(env);
20272 	} else {
20273 		if (ret == 0)
20274 			sanitize_dead_code(env);
20275 	}
20276 
20277 	if (ret == 0)
20278 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20279 		ret = convert_ctx_accesses(env);
20280 
20281 	if (ret == 0)
20282 		ret = do_misc_fixups(env);
20283 
20284 	/* do 32-bit optimization after insn patching has done so those patched
20285 	 * insns could be handled correctly.
20286 	 */
20287 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20288 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20289 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20290 								     : false;
20291 	}
20292 
20293 	if (ret == 0)
20294 		ret = fixup_call_args(env);
20295 
20296 	env->verification_time = ktime_get_ns() - start_time;
20297 	print_verification_stats(env);
20298 	env->prog->aux->verified_insns = env->insn_processed;
20299 
20300 	/* preserve original error even if log finalization is successful */
20301 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20302 	if (err)
20303 		ret = err;
20304 
20305 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20306 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20307 				  &log_true_size, sizeof(log_true_size))) {
20308 		ret = -EFAULT;
20309 		goto err_release_maps;
20310 	}
20311 
20312 	if (ret)
20313 		goto err_release_maps;
20314 
20315 	if (env->used_map_cnt) {
20316 		/* if program passed verifier, update used_maps in bpf_prog_info */
20317 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20318 							  sizeof(env->used_maps[0]),
20319 							  GFP_KERNEL);
20320 
20321 		if (!env->prog->aux->used_maps) {
20322 			ret = -ENOMEM;
20323 			goto err_release_maps;
20324 		}
20325 
20326 		memcpy(env->prog->aux->used_maps, env->used_maps,
20327 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20328 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20329 	}
20330 	if (env->used_btf_cnt) {
20331 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20332 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20333 							  sizeof(env->used_btfs[0]),
20334 							  GFP_KERNEL);
20335 		if (!env->prog->aux->used_btfs) {
20336 			ret = -ENOMEM;
20337 			goto err_release_maps;
20338 		}
20339 
20340 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20341 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20342 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20343 	}
20344 	if (env->used_map_cnt || env->used_btf_cnt) {
20345 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20346 		 * bpf_ld_imm64 instructions
20347 		 */
20348 		convert_pseudo_ld_imm64(env);
20349 	}
20350 
20351 	adjust_btf_func(env);
20352 
20353 err_release_maps:
20354 	if (!env->prog->aux->used_maps)
20355 		/* if we didn't copy map pointers into bpf_prog_info, release
20356 		 * them now. Otherwise free_used_maps() will release them.
20357 		 */
20358 		release_maps(env);
20359 	if (!env->prog->aux->used_btfs)
20360 		release_btfs(env);
20361 
20362 	/* extension progs temporarily inherit the attach_type of their targets
20363 	   for verification purposes, so set it back to zero before returning
20364 	 */
20365 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20366 		env->prog->expected_attach_type = 0;
20367 
20368 	*prog = env->prog;
20369 err_unlock:
20370 	if (!is_priv)
20371 		mutex_unlock(&bpf_verifier_lock);
20372 	vfree(env->insn_aux_data);
20373 err_free_env:
20374 	kfree(env);
20375 	return ret;
20376 }
20377