xref: /linux/kernel/bpf/verifier.c (revision f2527d8f566a45fa00ee5abd04d1c9476d4d704f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct btf_field *kptr_field;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
454 static bool type_is_ptr_alloc_obj(u32 type)
455 {
456 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
457 }
458 
459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
460 {
461 	struct btf_record *rec = NULL;
462 	struct btf_struct_meta *meta;
463 
464 	if (reg->type == PTR_TO_MAP_VALUE) {
465 		rec = reg->map_ptr->record;
466 	} else if (type_is_ptr_alloc_obj(reg->type)) {
467 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
468 		if (meta)
469 			rec = meta->record;
470 	}
471 	return rec;
472 }
473 
474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
475 {
476 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
477 }
478 
479 static bool type_is_rdonly_mem(u32 type)
480 {
481 	return type & MEM_RDONLY;
482 }
483 
484 static bool type_may_be_null(u32 type)
485 {
486 	return type & PTR_MAYBE_NULL;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
522 {
523 	return func_id == BPF_FUNC_dynptr_data;
524 }
525 
526 static bool is_callback_calling_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_for_each_map_elem ||
529 	       func_id == BPF_FUNC_timer_set_callback ||
530 	       func_id == BPF_FUNC_find_vma ||
531 	       func_id == BPF_FUNC_loop ||
532 	       func_id == BPF_FUNC_user_ringbuf_drain;
533 }
534 
535 static bool is_storage_get_function(enum bpf_func_id func_id)
536 {
537 	return func_id == BPF_FUNC_sk_storage_get ||
538 	       func_id == BPF_FUNC_inode_storage_get ||
539 	       func_id == BPF_FUNC_task_storage_get ||
540 	       func_id == BPF_FUNC_cgrp_storage_get;
541 }
542 
543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
544 					const struct bpf_map *map)
545 {
546 	int ref_obj_uses = 0;
547 
548 	if (is_ptr_cast_function(func_id))
549 		ref_obj_uses++;
550 	if (is_acquire_function(func_id, map))
551 		ref_obj_uses++;
552 	if (is_dynptr_ref_function(func_id))
553 		ref_obj_uses++;
554 
555 	return ref_obj_uses > 1;
556 }
557 
558 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
559 {
560 	return BPF_CLASS(insn->code) == BPF_STX &&
561 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
562 	       insn->imm == BPF_CMPXCHG;
563 }
564 
565 /* string representation of 'enum bpf_reg_type'
566  *
567  * Note that reg_type_str() can not appear more than once in a single verbose()
568  * statement.
569  */
570 static const char *reg_type_str(struct bpf_verifier_env *env,
571 				enum bpf_reg_type type)
572 {
573 	char postfix[16] = {0}, prefix[64] = {0};
574 	static const char * const str[] = {
575 		[NOT_INIT]		= "?",
576 		[SCALAR_VALUE]		= "scalar",
577 		[PTR_TO_CTX]		= "ctx",
578 		[CONST_PTR_TO_MAP]	= "map_ptr",
579 		[PTR_TO_MAP_VALUE]	= "map_value",
580 		[PTR_TO_STACK]		= "fp",
581 		[PTR_TO_PACKET]		= "pkt",
582 		[PTR_TO_PACKET_META]	= "pkt_meta",
583 		[PTR_TO_PACKET_END]	= "pkt_end",
584 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
585 		[PTR_TO_SOCKET]		= "sock",
586 		[PTR_TO_SOCK_COMMON]	= "sock_common",
587 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
588 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
589 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
590 		[PTR_TO_BTF_ID]		= "ptr_",
591 		[PTR_TO_MEM]		= "mem",
592 		[PTR_TO_BUF]		= "buf",
593 		[PTR_TO_FUNC]		= "func",
594 		[PTR_TO_MAP_KEY]	= "map_key",
595 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
596 	};
597 
598 	if (type & PTR_MAYBE_NULL) {
599 		if (base_type(type) == PTR_TO_BTF_ID)
600 			strncpy(postfix, "or_null_", 16);
601 		else
602 			strncpy(postfix, "_or_null", 16);
603 	}
604 
605 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
606 		 type & MEM_RDONLY ? "rdonly_" : "",
607 		 type & MEM_RINGBUF ? "ringbuf_" : "",
608 		 type & MEM_USER ? "user_" : "",
609 		 type & MEM_PERCPU ? "percpu_" : "",
610 		 type & MEM_RCU ? "rcu_" : "",
611 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
612 		 type & PTR_TRUSTED ? "trusted_" : ""
613 	);
614 
615 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
616 		 prefix, str[base_type(type)], postfix);
617 	return env->type_str_buf;
618 }
619 
620 static char slot_type_char[] = {
621 	[STACK_INVALID]	= '?',
622 	[STACK_SPILL]	= 'r',
623 	[STACK_MISC]	= 'm',
624 	[STACK_ZERO]	= '0',
625 	[STACK_DYNPTR]	= 'd',
626 };
627 
628 static void print_liveness(struct bpf_verifier_env *env,
629 			   enum bpf_reg_liveness live)
630 {
631 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
632 	    verbose(env, "_");
633 	if (live & REG_LIVE_READ)
634 		verbose(env, "r");
635 	if (live & REG_LIVE_WRITTEN)
636 		verbose(env, "w");
637 	if (live & REG_LIVE_DONE)
638 		verbose(env, "D");
639 }
640 
641 static int get_spi(s32 off)
642 {
643 	return (-off - 1) / BPF_REG_SIZE;
644 }
645 
646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
647 {
648 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
649 
650 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
651 	 * within [0, allocated_stack).
652 	 *
653 	 * Please note that the spi grows downwards. For example, a dynptr
654 	 * takes the size of two stack slots; the first slot will be at
655 	 * spi and the second slot will be at spi - 1.
656 	 */
657 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
658 }
659 
660 static struct bpf_func_state *func(struct bpf_verifier_env *env,
661 				   const struct bpf_reg_state *reg)
662 {
663 	struct bpf_verifier_state *cur = env->cur_state;
664 
665 	return cur->frame[reg->frameno];
666 }
667 
668 static const char *kernel_type_name(const struct btf* btf, u32 id)
669 {
670 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
671 }
672 
673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
674 {
675 	env->scratched_regs |= 1U << regno;
676 }
677 
678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
679 {
680 	env->scratched_stack_slots |= 1ULL << spi;
681 }
682 
683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
684 {
685 	return (env->scratched_regs >> regno) & 1;
686 }
687 
688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
689 {
690 	return (env->scratched_stack_slots >> regno) & 1;
691 }
692 
693 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
694 {
695 	return env->scratched_regs || env->scratched_stack_slots;
696 }
697 
698 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
699 {
700 	env->scratched_regs = 0U;
701 	env->scratched_stack_slots = 0ULL;
702 }
703 
704 /* Used for printing the entire verifier state. */
705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
706 {
707 	env->scratched_regs = ~0U;
708 	env->scratched_stack_slots = ~0ULL;
709 }
710 
711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
712 {
713 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
714 	case DYNPTR_TYPE_LOCAL:
715 		return BPF_DYNPTR_TYPE_LOCAL;
716 	case DYNPTR_TYPE_RINGBUF:
717 		return BPF_DYNPTR_TYPE_RINGBUF;
718 	default:
719 		return BPF_DYNPTR_TYPE_INVALID;
720 	}
721 }
722 
723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
724 {
725 	return type == BPF_DYNPTR_TYPE_RINGBUF;
726 }
727 
728 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
729 			      enum bpf_dynptr_type type,
730 			      bool first_slot);
731 
732 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
733 				struct bpf_reg_state *reg);
734 
735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1,
736 				   struct bpf_reg_state *sreg2,
737 				   enum bpf_dynptr_type type)
738 {
739 	__mark_dynptr_reg(sreg1, type, true);
740 	__mark_dynptr_reg(sreg2, type, false);
741 }
742 
743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg,
744 			       enum bpf_dynptr_type type)
745 {
746 	__mark_dynptr_reg(reg, type, true);
747 }
748 
749 
750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
751 				   enum bpf_arg_type arg_type, int insn_idx)
752 {
753 	struct bpf_func_state *state = func(env, reg);
754 	enum bpf_dynptr_type type;
755 	int spi, i, id;
756 
757 	spi = get_spi(reg->off);
758 
759 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
760 		return -EINVAL;
761 
762 	for (i = 0; i < BPF_REG_SIZE; i++) {
763 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
764 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
765 	}
766 
767 	type = arg_to_dynptr_type(arg_type);
768 	if (type == BPF_DYNPTR_TYPE_INVALID)
769 		return -EINVAL;
770 
771 	mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr,
772 			       &state->stack[spi - 1].spilled_ptr, type);
773 
774 	if (dynptr_type_refcounted(type)) {
775 		/* The id is used to track proper releasing */
776 		id = acquire_reference_state(env, insn_idx);
777 		if (id < 0)
778 			return id;
779 
780 		state->stack[spi].spilled_ptr.ref_obj_id = id;
781 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
782 	}
783 
784 	return 0;
785 }
786 
787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
788 {
789 	struct bpf_func_state *state = func(env, reg);
790 	int spi, i;
791 
792 	spi = get_spi(reg->off);
793 
794 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
795 		return -EINVAL;
796 
797 	for (i = 0; i < BPF_REG_SIZE; i++) {
798 		state->stack[spi].slot_type[i] = STACK_INVALID;
799 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
800 	}
801 
802 	/* Invalidate any slices associated with this dynptr */
803 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
804 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
805 
806 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
807 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
808 	return 0;
809 }
810 
811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
812 {
813 	struct bpf_func_state *state = func(env, reg);
814 	int spi, i;
815 
816 	if (reg->type == CONST_PTR_TO_DYNPTR)
817 		return false;
818 
819 	spi = get_spi(reg->off);
820 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
821 		return true;
822 
823 	for (i = 0; i < BPF_REG_SIZE; i++) {
824 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
825 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
826 			return false;
827 	}
828 
829 	return true;
830 }
831 
832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
833 {
834 	struct bpf_func_state *state = func(env, reg);
835 	int spi;
836 	int i;
837 
838 	/* This already represents first slot of initialized bpf_dynptr */
839 	if (reg->type == CONST_PTR_TO_DYNPTR)
840 		return true;
841 
842 	spi = get_spi(reg->off);
843 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
844 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
845 		return false;
846 
847 	for (i = 0; i < BPF_REG_SIZE; i++) {
848 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
849 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
850 			return false;
851 	}
852 
853 	return true;
854 }
855 
856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
857 				    enum bpf_arg_type arg_type)
858 {
859 	struct bpf_func_state *state = func(env, reg);
860 	enum bpf_dynptr_type dynptr_type;
861 	int spi;
862 
863 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
864 	if (arg_type == ARG_PTR_TO_DYNPTR)
865 		return true;
866 
867 	dynptr_type = arg_to_dynptr_type(arg_type);
868 	if (reg->type == CONST_PTR_TO_DYNPTR) {
869 		return reg->dynptr.type == dynptr_type;
870 	} else {
871 		spi = get_spi(reg->off);
872 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
873 	}
874 }
875 
876 /* The reg state of a pointer or a bounded scalar was saved when
877  * it was spilled to the stack.
878  */
879 static bool is_spilled_reg(const struct bpf_stack_state *stack)
880 {
881 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
882 }
883 
884 static void scrub_spilled_slot(u8 *stype)
885 {
886 	if (*stype != STACK_INVALID)
887 		*stype = STACK_MISC;
888 }
889 
890 static void print_verifier_state(struct bpf_verifier_env *env,
891 				 const struct bpf_func_state *state,
892 				 bool print_all)
893 {
894 	const struct bpf_reg_state *reg;
895 	enum bpf_reg_type t;
896 	int i;
897 
898 	if (state->frameno)
899 		verbose(env, " frame%d:", state->frameno);
900 	for (i = 0; i < MAX_BPF_REG; i++) {
901 		reg = &state->regs[i];
902 		t = reg->type;
903 		if (t == NOT_INIT)
904 			continue;
905 		if (!print_all && !reg_scratched(env, i))
906 			continue;
907 		verbose(env, " R%d", i);
908 		print_liveness(env, reg->live);
909 		verbose(env, "=");
910 		if (t == SCALAR_VALUE && reg->precise)
911 			verbose(env, "P");
912 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
913 		    tnum_is_const(reg->var_off)) {
914 			/* reg->off should be 0 for SCALAR_VALUE */
915 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
916 			verbose(env, "%lld", reg->var_off.value + reg->off);
917 		} else {
918 			const char *sep = "";
919 
920 			verbose(env, "%s", reg_type_str(env, t));
921 			if (base_type(t) == PTR_TO_BTF_ID)
922 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
923 			verbose(env, "(");
924 /*
925  * _a stands for append, was shortened to avoid multiline statements below.
926  * This macro is used to output a comma separated list of attributes.
927  */
928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
929 
930 			if (reg->id)
931 				verbose_a("id=%d", reg->id);
932 			if (reg->ref_obj_id)
933 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
934 			if (t != SCALAR_VALUE)
935 				verbose_a("off=%d", reg->off);
936 			if (type_is_pkt_pointer(t))
937 				verbose_a("r=%d", reg->range);
938 			else if (base_type(t) == CONST_PTR_TO_MAP ||
939 				 base_type(t) == PTR_TO_MAP_KEY ||
940 				 base_type(t) == PTR_TO_MAP_VALUE)
941 				verbose_a("ks=%d,vs=%d",
942 					  reg->map_ptr->key_size,
943 					  reg->map_ptr->value_size);
944 			if (tnum_is_const(reg->var_off)) {
945 				/* Typically an immediate SCALAR_VALUE, but
946 				 * could be a pointer whose offset is too big
947 				 * for reg->off
948 				 */
949 				verbose_a("imm=%llx", reg->var_off.value);
950 			} else {
951 				if (reg->smin_value != reg->umin_value &&
952 				    reg->smin_value != S64_MIN)
953 					verbose_a("smin=%lld", (long long)reg->smin_value);
954 				if (reg->smax_value != reg->umax_value &&
955 				    reg->smax_value != S64_MAX)
956 					verbose_a("smax=%lld", (long long)reg->smax_value);
957 				if (reg->umin_value != 0)
958 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
959 				if (reg->umax_value != U64_MAX)
960 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
961 				if (!tnum_is_unknown(reg->var_off)) {
962 					char tn_buf[48];
963 
964 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
965 					verbose_a("var_off=%s", tn_buf);
966 				}
967 				if (reg->s32_min_value != reg->smin_value &&
968 				    reg->s32_min_value != S32_MIN)
969 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
970 				if (reg->s32_max_value != reg->smax_value &&
971 				    reg->s32_max_value != S32_MAX)
972 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
973 				if (reg->u32_min_value != reg->umin_value &&
974 				    reg->u32_min_value != U32_MIN)
975 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
976 				if (reg->u32_max_value != reg->umax_value &&
977 				    reg->u32_max_value != U32_MAX)
978 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
979 			}
980 #undef verbose_a
981 
982 			verbose(env, ")");
983 		}
984 	}
985 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
986 		char types_buf[BPF_REG_SIZE + 1];
987 		bool valid = false;
988 		int j;
989 
990 		for (j = 0; j < BPF_REG_SIZE; j++) {
991 			if (state->stack[i].slot_type[j] != STACK_INVALID)
992 				valid = true;
993 			types_buf[j] = slot_type_char[
994 					state->stack[i].slot_type[j]];
995 		}
996 		types_buf[BPF_REG_SIZE] = 0;
997 		if (!valid)
998 			continue;
999 		if (!print_all && !stack_slot_scratched(env, i))
1000 			continue;
1001 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1002 		print_liveness(env, state->stack[i].spilled_ptr.live);
1003 		if (is_spilled_reg(&state->stack[i])) {
1004 			reg = &state->stack[i].spilled_ptr;
1005 			t = reg->type;
1006 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1007 			if (t == SCALAR_VALUE && reg->precise)
1008 				verbose(env, "P");
1009 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1010 				verbose(env, "%lld", reg->var_off.value + reg->off);
1011 		} else {
1012 			verbose(env, "=%s", types_buf);
1013 		}
1014 	}
1015 	if (state->acquired_refs && state->refs[0].id) {
1016 		verbose(env, " refs=%d", state->refs[0].id);
1017 		for (i = 1; i < state->acquired_refs; i++)
1018 			if (state->refs[i].id)
1019 				verbose(env, ",%d", state->refs[i].id);
1020 	}
1021 	if (state->in_callback_fn)
1022 		verbose(env, " cb");
1023 	if (state->in_async_callback_fn)
1024 		verbose(env, " async_cb");
1025 	verbose(env, "\n");
1026 	mark_verifier_state_clean(env);
1027 }
1028 
1029 static inline u32 vlog_alignment(u32 pos)
1030 {
1031 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1032 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1033 }
1034 
1035 static void print_insn_state(struct bpf_verifier_env *env,
1036 			     const struct bpf_func_state *state)
1037 {
1038 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1039 		/* remove new line character */
1040 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1041 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1042 	} else {
1043 		verbose(env, "%d:", env->insn_idx);
1044 	}
1045 	print_verifier_state(env, state, false);
1046 }
1047 
1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1049  * small to hold src. This is different from krealloc since we don't want to preserve
1050  * the contents of dst.
1051  *
1052  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1053  * not be allocated.
1054  */
1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1056 {
1057 	size_t alloc_bytes;
1058 	void *orig = dst;
1059 	size_t bytes;
1060 
1061 	if (ZERO_OR_NULL_PTR(src))
1062 		goto out;
1063 
1064 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1065 		return NULL;
1066 
1067 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1068 	dst = krealloc(orig, alloc_bytes, flags);
1069 	if (!dst) {
1070 		kfree(orig);
1071 		return NULL;
1072 	}
1073 
1074 	memcpy(dst, src, bytes);
1075 out:
1076 	return dst ? dst : ZERO_SIZE_PTR;
1077 }
1078 
1079 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1080  * small to hold new_n items. new items are zeroed out if the array grows.
1081  *
1082  * Contrary to krealloc_array, does not free arr if new_n is zero.
1083  */
1084 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1085 {
1086 	size_t alloc_size;
1087 	void *new_arr;
1088 
1089 	if (!new_n || old_n == new_n)
1090 		goto out;
1091 
1092 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1093 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1094 	if (!new_arr) {
1095 		kfree(arr);
1096 		return NULL;
1097 	}
1098 	arr = new_arr;
1099 
1100 	if (new_n > old_n)
1101 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1102 
1103 out:
1104 	return arr ? arr : ZERO_SIZE_PTR;
1105 }
1106 
1107 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1108 {
1109 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1110 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1111 	if (!dst->refs)
1112 		return -ENOMEM;
1113 
1114 	dst->acquired_refs = src->acquired_refs;
1115 	return 0;
1116 }
1117 
1118 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1119 {
1120 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1121 
1122 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1123 				GFP_KERNEL);
1124 	if (!dst->stack)
1125 		return -ENOMEM;
1126 
1127 	dst->allocated_stack = src->allocated_stack;
1128 	return 0;
1129 }
1130 
1131 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1132 {
1133 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1134 				    sizeof(struct bpf_reference_state));
1135 	if (!state->refs)
1136 		return -ENOMEM;
1137 
1138 	state->acquired_refs = n;
1139 	return 0;
1140 }
1141 
1142 static int grow_stack_state(struct bpf_func_state *state, int size)
1143 {
1144 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1145 
1146 	if (old_n >= n)
1147 		return 0;
1148 
1149 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1150 	if (!state->stack)
1151 		return -ENOMEM;
1152 
1153 	state->allocated_stack = size;
1154 	return 0;
1155 }
1156 
1157 /* Acquire a pointer id from the env and update the state->refs to include
1158  * this new pointer reference.
1159  * On success, returns a valid pointer id to associate with the register
1160  * On failure, returns a negative errno.
1161  */
1162 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1163 {
1164 	struct bpf_func_state *state = cur_func(env);
1165 	int new_ofs = state->acquired_refs;
1166 	int id, err;
1167 
1168 	err = resize_reference_state(state, state->acquired_refs + 1);
1169 	if (err)
1170 		return err;
1171 	id = ++env->id_gen;
1172 	state->refs[new_ofs].id = id;
1173 	state->refs[new_ofs].insn_idx = insn_idx;
1174 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1175 
1176 	return id;
1177 }
1178 
1179 /* release function corresponding to acquire_reference_state(). Idempotent. */
1180 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1181 {
1182 	int i, last_idx;
1183 
1184 	last_idx = state->acquired_refs - 1;
1185 	for (i = 0; i < state->acquired_refs; i++) {
1186 		if (state->refs[i].id == ptr_id) {
1187 			/* Cannot release caller references in callbacks */
1188 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1189 				return -EINVAL;
1190 			if (last_idx && i != last_idx)
1191 				memcpy(&state->refs[i], &state->refs[last_idx],
1192 				       sizeof(*state->refs));
1193 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1194 			state->acquired_refs--;
1195 			return 0;
1196 		}
1197 	}
1198 	return -EINVAL;
1199 }
1200 
1201 static void free_func_state(struct bpf_func_state *state)
1202 {
1203 	if (!state)
1204 		return;
1205 	kfree(state->refs);
1206 	kfree(state->stack);
1207 	kfree(state);
1208 }
1209 
1210 static void clear_jmp_history(struct bpf_verifier_state *state)
1211 {
1212 	kfree(state->jmp_history);
1213 	state->jmp_history = NULL;
1214 	state->jmp_history_cnt = 0;
1215 }
1216 
1217 static void free_verifier_state(struct bpf_verifier_state *state,
1218 				bool free_self)
1219 {
1220 	int i;
1221 
1222 	for (i = 0; i <= state->curframe; i++) {
1223 		free_func_state(state->frame[i]);
1224 		state->frame[i] = NULL;
1225 	}
1226 	clear_jmp_history(state);
1227 	if (free_self)
1228 		kfree(state);
1229 }
1230 
1231 /* copy verifier state from src to dst growing dst stack space
1232  * when necessary to accommodate larger src stack
1233  */
1234 static int copy_func_state(struct bpf_func_state *dst,
1235 			   const struct bpf_func_state *src)
1236 {
1237 	int err;
1238 
1239 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1240 	err = copy_reference_state(dst, src);
1241 	if (err)
1242 		return err;
1243 	return copy_stack_state(dst, src);
1244 }
1245 
1246 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1247 			       const struct bpf_verifier_state *src)
1248 {
1249 	struct bpf_func_state *dst;
1250 	int i, err;
1251 
1252 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1253 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1254 					    GFP_USER);
1255 	if (!dst_state->jmp_history)
1256 		return -ENOMEM;
1257 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1258 
1259 	/* if dst has more stack frames then src frame, free them */
1260 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1261 		free_func_state(dst_state->frame[i]);
1262 		dst_state->frame[i] = NULL;
1263 	}
1264 	dst_state->speculative = src->speculative;
1265 	dst_state->active_rcu_lock = src->active_rcu_lock;
1266 	dst_state->curframe = src->curframe;
1267 	dst_state->active_lock.ptr = src->active_lock.ptr;
1268 	dst_state->active_lock.id = src->active_lock.id;
1269 	dst_state->branches = src->branches;
1270 	dst_state->parent = src->parent;
1271 	dst_state->first_insn_idx = src->first_insn_idx;
1272 	dst_state->last_insn_idx = src->last_insn_idx;
1273 	for (i = 0; i <= src->curframe; i++) {
1274 		dst = dst_state->frame[i];
1275 		if (!dst) {
1276 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1277 			if (!dst)
1278 				return -ENOMEM;
1279 			dst_state->frame[i] = dst;
1280 		}
1281 		err = copy_func_state(dst, src->frame[i]);
1282 		if (err)
1283 			return err;
1284 	}
1285 	return 0;
1286 }
1287 
1288 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1289 {
1290 	while (st) {
1291 		u32 br = --st->branches;
1292 
1293 		/* WARN_ON(br > 1) technically makes sense here,
1294 		 * but see comment in push_stack(), hence:
1295 		 */
1296 		WARN_ONCE((int)br < 0,
1297 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1298 			  br);
1299 		if (br)
1300 			break;
1301 		st = st->parent;
1302 	}
1303 }
1304 
1305 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1306 		     int *insn_idx, bool pop_log)
1307 {
1308 	struct bpf_verifier_state *cur = env->cur_state;
1309 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1310 	int err;
1311 
1312 	if (env->head == NULL)
1313 		return -ENOENT;
1314 
1315 	if (cur) {
1316 		err = copy_verifier_state(cur, &head->st);
1317 		if (err)
1318 			return err;
1319 	}
1320 	if (pop_log)
1321 		bpf_vlog_reset(&env->log, head->log_pos);
1322 	if (insn_idx)
1323 		*insn_idx = head->insn_idx;
1324 	if (prev_insn_idx)
1325 		*prev_insn_idx = head->prev_insn_idx;
1326 	elem = head->next;
1327 	free_verifier_state(&head->st, false);
1328 	kfree(head);
1329 	env->head = elem;
1330 	env->stack_size--;
1331 	return 0;
1332 }
1333 
1334 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1335 					     int insn_idx, int prev_insn_idx,
1336 					     bool speculative)
1337 {
1338 	struct bpf_verifier_state *cur = env->cur_state;
1339 	struct bpf_verifier_stack_elem *elem;
1340 	int err;
1341 
1342 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1343 	if (!elem)
1344 		goto err;
1345 
1346 	elem->insn_idx = insn_idx;
1347 	elem->prev_insn_idx = prev_insn_idx;
1348 	elem->next = env->head;
1349 	elem->log_pos = env->log.len_used;
1350 	env->head = elem;
1351 	env->stack_size++;
1352 	err = copy_verifier_state(&elem->st, cur);
1353 	if (err)
1354 		goto err;
1355 	elem->st.speculative |= speculative;
1356 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1357 		verbose(env, "The sequence of %d jumps is too complex.\n",
1358 			env->stack_size);
1359 		goto err;
1360 	}
1361 	if (elem->st.parent) {
1362 		++elem->st.parent->branches;
1363 		/* WARN_ON(branches > 2) technically makes sense here,
1364 		 * but
1365 		 * 1. speculative states will bump 'branches' for non-branch
1366 		 * instructions
1367 		 * 2. is_state_visited() heuristics may decide not to create
1368 		 * a new state for a sequence of branches and all such current
1369 		 * and cloned states will be pointing to a single parent state
1370 		 * which might have large 'branches' count.
1371 		 */
1372 	}
1373 	return &elem->st;
1374 err:
1375 	free_verifier_state(env->cur_state, true);
1376 	env->cur_state = NULL;
1377 	/* pop all elements and return */
1378 	while (!pop_stack(env, NULL, NULL, false));
1379 	return NULL;
1380 }
1381 
1382 #define CALLER_SAVED_REGS 6
1383 static const int caller_saved[CALLER_SAVED_REGS] = {
1384 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1385 };
1386 
1387 /* This helper doesn't clear reg->id */
1388 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1389 {
1390 	reg->var_off = tnum_const(imm);
1391 	reg->smin_value = (s64)imm;
1392 	reg->smax_value = (s64)imm;
1393 	reg->umin_value = imm;
1394 	reg->umax_value = imm;
1395 
1396 	reg->s32_min_value = (s32)imm;
1397 	reg->s32_max_value = (s32)imm;
1398 	reg->u32_min_value = (u32)imm;
1399 	reg->u32_max_value = (u32)imm;
1400 }
1401 
1402 /* Mark the unknown part of a register (variable offset or scalar value) as
1403  * known to have the value @imm.
1404  */
1405 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1406 {
1407 	/* Clear id, off, and union(map_ptr, range) */
1408 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1409 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1410 	___mark_reg_known(reg, imm);
1411 }
1412 
1413 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1414 {
1415 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1416 	reg->s32_min_value = (s32)imm;
1417 	reg->s32_max_value = (s32)imm;
1418 	reg->u32_min_value = (u32)imm;
1419 	reg->u32_max_value = (u32)imm;
1420 }
1421 
1422 /* Mark the 'variable offset' part of a register as zero.  This should be
1423  * used only on registers holding a pointer type.
1424  */
1425 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1426 {
1427 	__mark_reg_known(reg, 0);
1428 }
1429 
1430 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1431 {
1432 	__mark_reg_known(reg, 0);
1433 	reg->type = SCALAR_VALUE;
1434 }
1435 
1436 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1437 				struct bpf_reg_state *regs, u32 regno)
1438 {
1439 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1440 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1441 		/* Something bad happened, let's kill all regs */
1442 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1443 			__mark_reg_not_init(env, regs + regno);
1444 		return;
1445 	}
1446 	__mark_reg_known_zero(regs + regno);
1447 }
1448 
1449 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1450 			      bool first_slot)
1451 {
1452 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1453 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1454 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1455 	 */
1456 	__mark_reg_known_zero(reg);
1457 	reg->type = CONST_PTR_TO_DYNPTR;
1458 	reg->dynptr.type = type;
1459 	reg->dynptr.first_slot = first_slot;
1460 }
1461 
1462 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1463 {
1464 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1465 		const struct bpf_map *map = reg->map_ptr;
1466 
1467 		if (map->inner_map_meta) {
1468 			reg->type = CONST_PTR_TO_MAP;
1469 			reg->map_ptr = map->inner_map_meta;
1470 			/* transfer reg's id which is unique for every map_lookup_elem
1471 			 * as UID of the inner map.
1472 			 */
1473 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1474 				reg->map_uid = reg->id;
1475 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1476 			reg->type = PTR_TO_XDP_SOCK;
1477 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1478 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1479 			reg->type = PTR_TO_SOCKET;
1480 		} else {
1481 			reg->type = PTR_TO_MAP_VALUE;
1482 		}
1483 		return;
1484 	}
1485 
1486 	reg->type &= ~PTR_MAYBE_NULL;
1487 }
1488 
1489 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1490 {
1491 	return type_is_pkt_pointer(reg->type);
1492 }
1493 
1494 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1495 {
1496 	return reg_is_pkt_pointer(reg) ||
1497 	       reg->type == PTR_TO_PACKET_END;
1498 }
1499 
1500 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1501 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1502 				    enum bpf_reg_type which)
1503 {
1504 	/* The register can already have a range from prior markings.
1505 	 * This is fine as long as it hasn't been advanced from its
1506 	 * origin.
1507 	 */
1508 	return reg->type == which &&
1509 	       reg->id == 0 &&
1510 	       reg->off == 0 &&
1511 	       tnum_equals_const(reg->var_off, 0);
1512 }
1513 
1514 /* Reset the min/max bounds of a register */
1515 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1516 {
1517 	reg->smin_value = S64_MIN;
1518 	reg->smax_value = S64_MAX;
1519 	reg->umin_value = 0;
1520 	reg->umax_value = U64_MAX;
1521 
1522 	reg->s32_min_value = S32_MIN;
1523 	reg->s32_max_value = S32_MAX;
1524 	reg->u32_min_value = 0;
1525 	reg->u32_max_value = U32_MAX;
1526 }
1527 
1528 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1529 {
1530 	reg->smin_value = S64_MIN;
1531 	reg->smax_value = S64_MAX;
1532 	reg->umin_value = 0;
1533 	reg->umax_value = U64_MAX;
1534 }
1535 
1536 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1537 {
1538 	reg->s32_min_value = S32_MIN;
1539 	reg->s32_max_value = S32_MAX;
1540 	reg->u32_min_value = 0;
1541 	reg->u32_max_value = U32_MAX;
1542 }
1543 
1544 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1545 {
1546 	struct tnum var32_off = tnum_subreg(reg->var_off);
1547 
1548 	/* min signed is max(sign bit) | min(other bits) */
1549 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1550 			var32_off.value | (var32_off.mask & S32_MIN));
1551 	/* max signed is min(sign bit) | max(other bits) */
1552 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1553 			var32_off.value | (var32_off.mask & S32_MAX));
1554 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1555 	reg->u32_max_value = min(reg->u32_max_value,
1556 				 (u32)(var32_off.value | var32_off.mask));
1557 }
1558 
1559 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1560 {
1561 	/* min signed is max(sign bit) | min(other bits) */
1562 	reg->smin_value = max_t(s64, reg->smin_value,
1563 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1564 	/* max signed is min(sign bit) | max(other bits) */
1565 	reg->smax_value = min_t(s64, reg->smax_value,
1566 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1567 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1568 	reg->umax_value = min(reg->umax_value,
1569 			      reg->var_off.value | reg->var_off.mask);
1570 }
1571 
1572 static void __update_reg_bounds(struct bpf_reg_state *reg)
1573 {
1574 	__update_reg32_bounds(reg);
1575 	__update_reg64_bounds(reg);
1576 }
1577 
1578 /* Uses signed min/max values to inform unsigned, and vice-versa */
1579 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1580 {
1581 	/* Learn sign from signed bounds.
1582 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1583 	 * are the same, so combine.  This works even in the negative case, e.g.
1584 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1585 	 */
1586 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1587 		reg->s32_min_value = reg->u32_min_value =
1588 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1589 		reg->s32_max_value = reg->u32_max_value =
1590 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1591 		return;
1592 	}
1593 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1594 	 * boundary, so we must be careful.
1595 	 */
1596 	if ((s32)reg->u32_max_value >= 0) {
1597 		/* Positive.  We can't learn anything from the smin, but smax
1598 		 * is positive, hence safe.
1599 		 */
1600 		reg->s32_min_value = reg->u32_min_value;
1601 		reg->s32_max_value = reg->u32_max_value =
1602 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1603 	} else if ((s32)reg->u32_min_value < 0) {
1604 		/* Negative.  We can't learn anything from the smax, but smin
1605 		 * is negative, hence safe.
1606 		 */
1607 		reg->s32_min_value = reg->u32_min_value =
1608 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1609 		reg->s32_max_value = reg->u32_max_value;
1610 	}
1611 }
1612 
1613 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1614 {
1615 	/* Learn sign from signed bounds.
1616 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1617 	 * are the same, so combine.  This works even in the negative case, e.g.
1618 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1619 	 */
1620 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1621 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1622 							  reg->umin_value);
1623 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1624 							  reg->umax_value);
1625 		return;
1626 	}
1627 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1628 	 * boundary, so we must be careful.
1629 	 */
1630 	if ((s64)reg->umax_value >= 0) {
1631 		/* Positive.  We can't learn anything from the smin, but smax
1632 		 * is positive, hence safe.
1633 		 */
1634 		reg->smin_value = reg->umin_value;
1635 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1636 							  reg->umax_value);
1637 	} else if ((s64)reg->umin_value < 0) {
1638 		/* Negative.  We can't learn anything from the smax, but smin
1639 		 * is negative, hence safe.
1640 		 */
1641 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1642 							  reg->umin_value);
1643 		reg->smax_value = reg->umax_value;
1644 	}
1645 }
1646 
1647 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1648 {
1649 	__reg32_deduce_bounds(reg);
1650 	__reg64_deduce_bounds(reg);
1651 }
1652 
1653 /* Attempts to improve var_off based on unsigned min/max information */
1654 static void __reg_bound_offset(struct bpf_reg_state *reg)
1655 {
1656 	struct tnum var64_off = tnum_intersect(reg->var_off,
1657 					       tnum_range(reg->umin_value,
1658 							  reg->umax_value));
1659 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1660 						tnum_range(reg->u32_min_value,
1661 							   reg->u32_max_value));
1662 
1663 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1664 }
1665 
1666 static void reg_bounds_sync(struct bpf_reg_state *reg)
1667 {
1668 	/* We might have learned new bounds from the var_off. */
1669 	__update_reg_bounds(reg);
1670 	/* We might have learned something about the sign bit. */
1671 	__reg_deduce_bounds(reg);
1672 	/* We might have learned some bits from the bounds. */
1673 	__reg_bound_offset(reg);
1674 	/* Intersecting with the old var_off might have improved our bounds
1675 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1676 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1677 	 */
1678 	__update_reg_bounds(reg);
1679 }
1680 
1681 static bool __reg32_bound_s64(s32 a)
1682 {
1683 	return a >= 0 && a <= S32_MAX;
1684 }
1685 
1686 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1687 {
1688 	reg->umin_value = reg->u32_min_value;
1689 	reg->umax_value = reg->u32_max_value;
1690 
1691 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1692 	 * be positive otherwise set to worse case bounds and refine later
1693 	 * from tnum.
1694 	 */
1695 	if (__reg32_bound_s64(reg->s32_min_value) &&
1696 	    __reg32_bound_s64(reg->s32_max_value)) {
1697 		reg->smin_value = reg->s32_min_value;
1698 		reg->smax_value = reg->s32_max_value;
1699 	} else {
1700 		reg->smin_value = 0;
1701 		reg->smax_value = U32_MAX;
1702 	}
1703 }
1704 
1705 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1706 {
1707 	/* special case when 64-bit register has upper 32-bit register
1708 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1709 	 * allowing us to use 32-bit bounds directly,
1710 	 */
1711 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1712 		__reg_assign_32_into_64(reg);
1713 	} else {
1714 		/* Otherwise the best we can do is push lower 32bit known and
1715 		 * unknown bits into register (var_off set from jmp logic)
1716 		 * then learn as much as possible from the 64-bit tnum
1717 		 * known and unknown bits. The previous smin/smax bounds are
1718 		 * invalid here because of jmp32 compare so mark them unknown
1719 		 * so they do not impact tnum bounds calculation.
1720 		 */
1721 		__mark_reg64_unbounded(reg);
1722 	}
1723 	reg_bounds_sync(reg);
1724 }
1725 
1726 static bool __reg64_bound_s32(s64 a)
1727 {
1728 	return a >= S32_MIN && a <= S32_MAX;
1729 }
1730 
1731 static bool __reg64_bound_u32(u64 a)
1732 {
1733 	return a >= U32_MIN && a <= U32_MAX;
1734 }
1735 
1736 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1737 {
1738 	__mark_reg32_unbounded(reg);
1739 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1740 		reg->s32_min_value = (s32)reg->smin_value;
1741 		reg->s32_max_value = (s32)reg->smax_value;
1742 	}
1743 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1744 		reg->u32_min_value = (u32)reg->umin_value;
1745 		reg->u32_max_value = (u32)reg->umax_value;
1746 	}
1747 	reg_bounds_sync(reg);
1748 }
1749 
1750 /* Mark a register as having a completely unknown (scalar) value. */
1751 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1752 			       struct bpf_reg_state *reg)
1753 {
1754 	/*
1755 	 * Clear type, id, off, and union(map_ptr, range) and
1756 	 * padding between 'type' and union
1757 	 */
1758 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1759 	reg->type = SCALAR_VALUE;
1760 	reg->var_off = tnum_unknown;
1761 	reg->frameno = 0;
1762 	reg->precise = !env->bpf_capable;
1763 	__mark_reg_unbounded(reg);
1764 }
1765 
1766 static void mark_reg_unknown(struct bpf_verifier_env *env,
1767 			     struct bpf_reg_state *regs, u32 regno)
1768 {
1769 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1770 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1771 		/* Something bad happened, let's kill all regs except FP */
1772 		for (regno = 0; regno < BPF_REG_FP; regno++)
1773 			__mark_reg_not_init(env, regs + regno);
1774 		return;
1775 	}
1776 	__mark_reg_unknown(env, regs + regno);
1777 }
1778 
1779 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1780 				struct bpf_reg_state *reg)
1781 {
1782 	__mark_reg_unknown(env, reg);
1783 	reg->type = NOT_INIT;
1784 }
1785 
1786 static void mark_reg_not_init(struct bpf_verifier_env *env,
1787 			      struct bpf_reg_state *regs, u32 regno)
1788 {
1789 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1790 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1791 		/* Something bad happened, let's kill all regs except FP */
1792 		for (regno = 0; regno < BPF_REG_FP; regno++)
1793 			__mark_reg_not_init(env, regs + regno);
1794 		return;
1795 	}
1796 	__mark_reg_not_init(env, regs + regno);
1797 }
1798 
1799 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1800 			    struct bpf_reg_state *regs, u32 regno,
1801 			    enum bpf_reg_type reg_type,
1802 			    struct btf *btf, u32 btf_id,
1803 			    enum bpf_type_flag flag)
1804 {
1805 	if (reg_type == SCALAR_VALUE) {
1806 		mark_reg_unknown(env, regs, regno);
1807 		return;
1808 	}
1809 	mark_reg_known_zero(env, regs, regno);
1810 	regs[regno].type = PTR_TO_BTF_ID | flag;
1811 	regs[regno].btf = btf;
1812 	regs[regno].btf_id = btf_id;
1813 }
1814 
1815 #define DEF_NOT_SUBREG	(0)
1816 static void init_reg_state(struct bpf_verifier_env *env,
1817 			   struct bpf_func_state *state)
1818 {
1819 	struct bpf_reg_state *regs = state->regs;
1820 	int i;
1821 
1822 	for (i = 0; i < MAX_BPF_REG; i++) {
1823 		mark_reg_not_init(env, regs, i);
1824 		regs[i].live = REG_LIVE_NONE;
1825 		regs[i].parent = NULL;
1826 		regs[i].subreg_def = DEF_NOT_SUBREG;
1827 	}
1828 
1829 	/* frame pointer */
1830 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1831 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1832 	regs[BPF_REG_FP].frameno = state->frameno;
1833 }
1834 
1835 #define BPF_MAIN_FUNC (-1)
1836 static void init_func_state(struct bpf_verifier_env *env,
1837 			    struct bpf_func_state *state,
1838 			    int callsite, int frameno, int subprogno)
1839 {
1840 	state->callsite = callsite;
1841 	state->frameno = frameno;
1842 	state->subprogno = subprogno;
1843 	state->callback_ret_range = tnum_range(0, 0);
1844 	init_reg_state(env, state);
1845 	mark_verifier_state_scratched(env);
1846 }
1847 
1848 /* Similar to push_stack(), but for async callbacks */
1849 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1850 						int insn_idx, int prev_insn_idx,
1851 						int subprog)
1852 {
1853 	struct bpf_verifier_stack_elem *elem;
1854 	struct bpf_func_state *frame;
1855 
1856 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1857 	if (!elem)
1858 		goto err;
1859 
1860 	elem->insn_idx = insn_idx;
1861 	elem->prev_insn_idx = prev_insn_idx;
1862 	elem->next = env->head;
1863 	elem->log_pos = env->log.len_used;
1864 	env->head = elem;
1865 	env->stack_size++;
1866 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1867 		verbose(env,
1868 			"The sequence of %d jumps is too complex for async cb.\n",
1869 			env->stack_size);
1870 		goto err;
1871 	}
1872 	/* Unlike push_stack() do not copy_verifier_state().
1873 	 * The caller state doesn't matter.
1874 	 * This is async callback. It starts in a fresh stack.
1875 	 * Initialize it similar to do_check_common().
1876 	 */
1877 	elem->st.branches = 1;
1878 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1879 	if (!frame)
1880 		goto err;
1881 	init_func_state(env, frame,
1882 			BPF_MAIN_FUNC /* callsite */,
1883 			0 /* frameno within this callchain */,
1884 			subprog /* subprog number within this prog */);
1885 	elem->st.frame[0] = frame;
1886 	return &elem->st;
1887 err:
1888 	free_verifier_state(env->cur_state, true);
1889 	env->cur_state = NULL;
1890 	/* pop all elements and return */
1891 	while (!pop_stack(env, NULL, NULL, false));
1892 	return NULL;
1893 }
1894 
1895 
1896 enum reg_arg_type {
1897 	SRC_OP,		/* register is used as source operand */
1898 	DST_OP,		/* register is used as destination operand */
1899 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1900 };
1901 
1902 static int cmp_subprogs(const void *a, const void *b)
1903 {
1904 	return ((struct bpf_subprog_info *)a)->start -
1905 	       ((struct bpf_subprog_info *)b)->start;
1906 }
1907 
1908 static int find_subprog(struct bpf_verifier_env *env, int off)
1909 {
1910 	struct bpf_subprog_info *p;
1911 
1912 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1913 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1914 	if (!p)
1915 		return -ENOENT;
1916 	return p - env->subprog_info;
1917 
1918 }
1919 
1920 static int add_subprog(struct bpf_verifier_env *env, int off)
1921 {
1922 	int insn_cnt = env->prog->len;
1923 	int ret;
1924 
1925 	if (off >= insn_cnt || off < 0) {
1926 		verbose(env, "call to invalid destination\n");
1927 		return -EINVAL;
1928 	}
1929 	ret = find_subprog(env, off);
1930 	if (ret >= 0)
1931 		return ret;
1932 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1933 		verbose(env, "too many subprograms\n");
1934 		return -E2BIG;
1935 	}
1936 	/* determine subprog starts. The end is one before the next starts */
1937 	env->subprog_info[env->subprog_cnt++].start = off;
1938 	sort(env->subprog_info, env->subprog_cnt,
1939 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1940 	return env->subprog_cnt - 1;
1941 }
1942 
1943 #define MAX_KFUNC_DESCS 256
1944 #define MAX_KFUNC_BTFS	256
1945 
1946 struct bpf_kfunc_desc {
1947 	struct btf_func_model func_model;
1948 	u32 func_id;
1949 	s32 imm;
1950 	u16 offset;
1951 };
1952 
1953 struct bpf_kfunc_btf {
1954 	struct btf *btf;
1955 	struct module *module;
1956 	u16 offset;
1957 };
1958 
1959 struct bpf_kfunc_desc_tab {
1960 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1961 	u32 nr_descs;
1962 };
1963 
1964 struct bpf_kfunc_btf_tab {
1965 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1966 	u32 nr_descs;
1967 };
1968 
1969 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1970 {
1971 	const struct bpf_kfunc_desc *d0 = a;
1972 	const struct bpf_kfunc_desc *d1 = b;
1973 
1974 	/* func_id is not greater than BTF_MAX_TYPE */
1975 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1976 }
1977 
1978 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1979 {
1980 	const struct bpf_kfunc_btf *d0 = a;
1981 	const struct bpf_kfunc_btf *d1 = b;
1982 
1983 	return d0->offset - d1->offset;
1984 }
1985 
1986 static const struct bpf_kfunc_desc *
1987 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1988 {
1989 	struct bpf_kfunc_desc desc = {
1990 		.func_id = func_id,
1991 		.offset = offset,
1992 	};
1993 	struct bpf_kfunc_desc_tab *tab;
1994 
1995 	tab = prog->aux->kfunc_tab;
1996 	return bsearch(&desc, tab->descs, tab->nr_descs,
1997 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1998 }
1999 
2000 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2001 					 s16 offset)
2002 {
2003 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2004 	struct bpf_kfunc_btf_tab *tab;
2005 	struct bpf_kfunc_btf *b;
2006 	struct module *mod;
2007 	struct btf *btf;
2008 	int btf_fd;
2009 
2010 	tab = env->prog->aux->kfunc_btf_tab;
2011 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2012 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2013 	if (!b) {
2014 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2015 			verbose(env, "too many different module BTFs\n");
2016 			return ERR_PTR(-E2BIG);
2017 		}
2018 
2019 		if (bpfptr_is_null(env->fd_array)) {
2020 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2021 			return ERR_PTR(-EPROTO);
2022 		}
2023 
2024 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2025 					    offset * sizeof(btf_fd),
2026 					    sizeof(btf_fd)))
2027 			return ERR_PTR(-EFAULT);
2028 
2029 		btf = btf_get_by_fd(btf_fd);
2030 		if (IS_ERR(btf)) {
2031 			verbose(env, "invalid module BTF fd specified\n");
2032 			return btf;
2033 		}
2034 
2035 		if (!btf_is_module(btf)) {
2036 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2037 			btf_put(btf);
2038 			return ERR_PTR(-EINVAL);
2039 		}
2040 
2041 		mod = btf_try_get_module(btf);
2042 		if (!mod) {
2043 			btf_put(btf);
2044 			return ERR_PTR(-ENXIO);
2045 		}
2046 
2047 		b = &tab->descs[tab->nr_descs++];
2048 		b->btf = btf;
2049 		b->module = mod;
2050 		b->offset = offset;
2051 
2052 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2053 		     kfunc_btf_cmp_by_off, NULL);
2054 	}
2055 	return b->btf;
2056 }
2057 
2058 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2059 {
2060 	if (!tab)
2061 		return;
2062 
2063 	while (tab->nr_descs--) {
2064 		module_put(tab->descs[tab->nr_descs].module);
2065 		btf_put(tab->descs[tab->nr_descs].btf);
2066 	}
2067 	kfree(tab);
2068 }
2069 
2070 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2071 {
2072 	if (offset) {
2073 		if (offset < 0) {
2074 			/* In the future, this can be allowed to increase limit
2075 			 * of fd index into fd_array, interpreted as u16.
2076 			 */
2077 			verbose(env, "negative offset disallowed for kernel module function call\n");
2078 			return ERR_PTR(-EINVAL);
2079 		}
2080 
2081 		return __find_kfunc_desc_btf(env, offset);
2082 	}
2083 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2084 }
2085 
2086 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2087 {
2088 	const struct btf_type *func, *func_proto;
2089 	struct bpf_kfunc_btf_tab *btf_tab;
2090 	struct bpf_kfunc_desc_tab *tab;
2091 	struct bpf_prog_aux *prog_aux;
2092 	struct bpf_kfunc_desc *desc;
2093 	const char *func_name;
2094 	struct btf *desc_btf;
2095 	unsigned long call_imm;
2096 	unsigned long addr;
2097 	int err;
2098 
2099 	prog_aux = env->prog->aux;
2100 	tab = prog_aux->kfunc_tab;
2101 	btf_tab = prog_aux->kfunc_btf_tab;
2102 	if (!tab) {
2103 		if (!btf_vmlinux) {
2104 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2105 			return -ENOTSUPP;
2106 		}
2107 
2108 		if (!env->prog->jit_requested) {
2109 			verbose(env, "JIT is required for calling kernel function\n");
2110 			return -ENOTSUPP;
2111 		}
2112 
2113 		if (!bpf_jit_supports_kfunc_call()) {
2114 			verbose(env, "JIT does not support calling kernel function\n");
2115 			return -ENOTSUPP;
2116 		}
2117 
2118 		if (!env->prog->gpl_compatible) {
2119 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2120 			return -EINVAL;
2121 		}
2122 
2123 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2124 		if (!tab)
2125 			return -ENOMEM;
2126 		prog_aux->kfunc_tab = tab;
2127 	}
2128 
2129 	/* func_id == 0 is always invalid, but instead of returning an error, be
2130 	 * conservative and wait until the code elimination pass before returning
2131 	 * error, so that invalid calls that get pruned out can be in BPF programs
2132 	 * loaded from userspace.  It is also required that offset be untouched
2133 	 * for such calls.
2134 	 */
2135 	if (!func_id && !offset)
2136 		return 0;
2137 
2138 	if (!btf_tab && offset) {
2139 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2140 		if (!btf_tab)
2141 			return -ENOMEM;
2142 		prog_aux->kfunc_btf_tab = btf_tab;
2143 	}
2144 
2145 	desc_btf = find_kfunc_desc_btf(env, offset);
2146 	if (IS_ERR(desc_btf)) {
2147 		verbose(env, "failed to find BTF for kernel function\n");
2148 		return PTR_ERR(desc_btf);
2149 	}
2150 
2151 	if (find_kfunc_desc(env->prog, func_id, offset))
2152 		return 0;
2153 
2154 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2155 		verbose(env, "too many different kernel function calls\n");
2156 		return -E2BIG;
2157 	}
2158 
2159 	func = btf_type_by_id(desc_btf, func_id);
2160 	if (!func || !btf_type_is_func(func)) {
2161 		verbose(env, "kernel btf_id %u is not a function\n",
2162 			func_id);
2163 		return -EINVAL;
2164 	}
2165 	func_proto = btf_type_by_id(desc_btf, func->type);
2166 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2167 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2168 			func_id);
2169 		return -EINVAL;
2170 	}
2171 
2172 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2173 	addr = kallsyms_lookup_name(func_name);
2174 	if (!addr) {
2175 		verbose(env, "cannot find address for kernel function %s\n",
2176 			func_name);
2177 		return -EINVAL;
2178 	}
2179 
2180 	call_imm = BPF_CALL_IMM(addr);
2181 	/* Check whether or not the relative offset overflows desc->imm */
2182 	if ((unsigned long)(s32)call_imm != call_imm) {
2183 		verbose(env, "address of kernel function %s is out of range\n",
2184 			func_name);
2185 		return -EINVAL;
2186 	}
2187 
2188 	desc = &tab->descs[tab->nr_descs++];
2189 	desc->func_id = func_id;
2190 	desc->imm = call_imm;
2191 	desc->offset = offset;
2192 	err = btf_distill_func_proto(&env->log, desc_btf,
2193 				     func_proto, func_name,
2194 				     &desc->func_model);
2195 	if (!err)
2196 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2197 		     kfunc_desc_cmp_by_id_off, NULL);
2198 	return err;
2199 }
2200 
2201 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2202 {
2203 	const struct bpf_kfunc_desc *d0 = a;
2204 	const struct bpf_kfunc_desc *d1 = b;
2205 
2206 	if (d0->imm > d1->imm)
2207 		return 1;
2208 	else if (d0->imm < d1->imm)
2209 		return -1;
2210 	return 0;
2211 }
2212 
2213 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2214 {
2215 	struct bpf_kfunc_desc_tab *tab;
2216 
2217 	tab = prog->aux->kfunc_tab;
2218 	if (!tab)
2219 		return;
2220 
2221 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2222 	     kfunc_desc_cmp_by_imm, NULL);
2223 }
2224 
2225 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2226 {
2227 	return !!prog->aux->kfunc_tab;
2228 }
2229 
2230 const struct btf_func_model *
2231 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2232 			 const struct bpf_insn *insn)
2233 {
2234 	const struct bpf_kfunc_desc desc = {
2235 		.imm = insn->imm,
2236 	};
2237 	const struct bpf_kfunc_desc *res;
2238 	struct bpf_kfunc_desc_tab *tab;
2239 
2240 	tab = prog->aux->kfunc_tab;
2241 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2242 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2243 
2244 	return res ? &res->func_model : NULL;
2245 }
2246 
2247 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2248 {
2249 	struct bpf_subprog_info *subprog = env->subprog_info;
2250 	struct bpf_insn *insn = env->prog->insnsi;
2251 	int i, ret, insn_cnt = env->prog->len;
2252 
2253 	/* Add entry function. */
2254 	ret = add_subprog(env, 0);
2255 	if (ret)
2256 		return ret;
2257 
2258 	for (i = 0; i < insn_cnt; i++, insn++) {
2259 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2260 		    !bpf_pseudo_kfunc_call(insn))
2261 			continue;
2262 
2263 		if (!env->bpf_capable) {
2264 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2265 			return -EPERM;
2266 		}
2267 
2268 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2269 			ret = add_subprog(env, i + insn->imm + 1);
2270 		else
2271 			ret = add_kfunc_call(env, insn->imm, insn->off);
2272 
2273 		if (ret < 0)
2274 			return ret;
2275 	}
2276 
2277 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2278 	 * logic. 'subprog_cnt' should not be increased.
2279 	 */
2280 	subprog[env->subprog_cnt].start = insn_cnt;
2281 
2282 	if (env->log.level & BPF_LOG_LEVEL2)
2283 		for (i = 0; i < env->subprog_cnt; i++)
2284 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2285 
2286 	return 0;
2287 }
2288 
2289 static int check_subprogs(struct bpf_verifier_env *env)
2290 {
2291 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2292 	struct bpf_subprog_info *subprog = env->subprog_info;
2293 	struct bpf_insn *insn = env->prog->insnsi;
2294 	int insn_cnt = env->prog->len;
2295 
2296 	/* now check that all jumps are within the same subprog */
2297 	subprog_start = subprog[cur_subprog].start;
2298 	subprog_end = subprog[cur_subprog + 1].start;
2299 	for (i = 0; i < insn_cnt; i++) {
2300 		u8 code = insn[i].code;
2301 
2302 		if (code == (BPF_JMP | BPF_CALL) &&
2303 		    insn[i].imm == BPF_FUNC_tail_call &&
2304 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2305 			subprog[cur_subprog].has_tail_call = true;
2306 		if (BPF_CLASS(code) == BPF_LD &&
2307 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2308 			subprog[cur_subprog].has_ld_abs = true;
2309 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2310 			goto next;
2311 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2312 			goto next;
2313 		off = i + insn[i].off + 1;
2314 		if (off < subprog_start || off >= subprog_end) {
2315 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2316 			return -EINVAL;
2317 		}
2318 next:
2319 		if (i == subprog_end - 1) {
2320 			/* to avoid fall-through from one subprog into another
2321 			 * the last insn of the subprog should be either exit
2322 			 * or unconditional jump back
2323 			 */
2324 			if (code != (BPF_JMP | BPF_EXIT) &&
2325 			    code != (BPF_JMP | BPF_JA)) {
2326 				verbose(env, "last insn is not an exit or jmp\n");
2327 				return -EINVAL;
2328 			}
2329 			subprog_start = subprog_end;
2330 			cur_subprog++;
2331 			if (cur_subprog < env->subprog_cnt)
2332 				subprog_end = subprog[cur_subprog + 1].start;
2333 		}
2334 	}
2335 	return 0;
2336 }
2337 
2338 /* Parentage chain of this register (or stack slot) should take care of all
2339  * issues like callee-saved registers, stack slot allocation time, etc.
2340  */
2341 static int mark_reg_read(struct bpf_verifier_env *env,
2342 			 const struct bpf_reg_state *state,
2343 			 struct bpf_reg_state *parent, u8 flag)
2344 {
2345 	bool writes = parent == state->parent; /* Observe write marks */
2346 	int cnt = 0;
2347 
2348 	while (parent) {
2349 		/* if read wasn't screened by an earlier write ... */
2350 		if (writes && state->live & REG_LIVE_WRITTEN)
2351 			break;
2352 		if (parent->live & REG_LIVE_DONE) {
2353 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2354 				reg_type_str(env, parent->type),
2355 				parent->var_off.value, parent->off);
2356 			return -EFAULT;
2357 		}
2358 		/* The first condition is more likely to be true than the
2359 		 * second, checked it first.
2360 		 */
2361 		if ((parent->live & REG_LIVE_READ) == flag ||
2362 		    parent->live & REG_LIVE_READ64)
2363 			/* The parentage chain never changes and
2364 			 * this parent was already marked as LIVE_READ.
2365 			 * There is no need to keep walking the chain again and
2366 			 * keep re-marking all parents as LIVE_READ.
2367 			 * This case happens when the same register is read
2368 			 * multiple times without writes into it in-between.
2369 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2370 			 * then no need to set the weak REG_LIVE_READ32.
2371 			 */
2372 			break;
2373 		/* ... then we depend on parent's value */
2374 		parent->live |= flag;
2375 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2376 		if (flag == REG_LIVE_READ64)
2377 			parent->live &= ~REG_LIVE_READ32;
2378 		state = parent;
2379 		parent = state->parent;
2380 		writes = true;
2381 		cnt++;
2382 	}
2383 
2384 	if (env->longest_mark_read_walk < cnt)
2385 		env->longest_mark_read_walk = cnt;
2386 	return 0;
2387 }
2388 
2389 /* This function is supposed to be used by the following 32-bit optimization
2390  * code only. It returns TRUE if the source or destination register operates
2391  * on 64-bit, otherwise return FALSE.
2392  */
2393 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2394 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2395 {
2396 	u8 code, class, op;
2397 
2398 	code = insn->code;
2399 	class = BPF_CLASS(code);
2400 	op = BPF_OP(code);
2401 	if (class == BPF_JMP) {
2402 		/* BPF_EXIT for "main" will reach here. Return TRUE
2403 		 * conservatively.
2404 		 */
2405 		if (op == BPF_EXIT)
2406 			return true;
2407 		if (op == BPF_CALL) {
2408 			/* BPF to BPF call will reach here because of marking
2409 			 * caller saved clobber with DST_OP_NO_MARK for which we
2410 			 * don't care the register def because they are anyway
2411 			 * marked as NOT_INIT already.
2412 			 */
2413 			if (insn->src_reg == BPF_PSEUDO_CALL)
2414 				return false;
2415 			/* Helper call will reach here because of arg type
2416 			 * check, conservatively return TRUE.
2417 			 */
2418 			if (t == SRC_OP)
2419 				return true;
2420 
2421 			return false;
2422 		}
2423 	}
2424 
2425 	if (class == BPF_ALU64 || class == BPF_JMP ||
2426 	    /* BPF_END always use BPF_ALU class. */
2427 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2428 		return true;
2429 
2430 	if (class == BPF_ALU || class == BPF_JMP32)
2431 		return false;
2432 
2433 	if (class == BPF_LDX) {
2434 		if (t != SRC_OP)
2435 			return BPF_SIZE(code) == BPF_DW;
2436 		/* LDX source must be ptr. */
2437 		return true;
2438 	}
2439 
2440 	if (class == BPF_STX) {
2441 		/* BPF_STX (including atomic variants) has multiple source
2442 		 * operands, one of which is a ptr. Check whether the caller is
2443 		 * asking about it.
2444 		 */
2445 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2446 			return true;
2447 		return BPF_SIZE(code) == BPF_DW;
2448 	}
2449 
2450 	if (class == BPF_LD) {
2451 		u8 mode = BPF_MODE(code);
2452 
2453 		/* LD_IMM64 */
2454 		if (mode == BPF_IMM)
2455 			return true;
2456 
2457 		/* Both LD_IND and LD_ABS return 32-bit data. */
2458 		if (t != SRC_OP)
2459 			return  false;
2460 
2461 		/* Implicit ctx ptr. */
2462 		if (regno == BPF_REG_6)
2463 			return true;
2464 
2465 		/* Explicit source could be any width. */
2466 		return true;
2467 	}
2468 
2469 	if (class == BPF_ST)
2470 		/* The only source register for BPF_ST is a ptr. */
2471 		return true;
2472 
2473 	/* Conservatively return true at default. */
2474 	return true;
2475 }
2476 
2477 /* Return the regno defined by the insn, or -1. */
2478 static int insn_def_regno(const struct bpf_insn *insn)
2479 {
2480 	switch (BPF_CLASS(insn->code)) {
2481 	case BPF_JMP:
2482 	case BPF_JMP32:
2483 	case BPF_ST:
2484 		return -1;
2485 	case BPF_STX:
2486 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2487 		    (insn->imm & BPF_FETCH)) {
2488 			if (insn->imm == BPF_CMPXCHG)
2489 				return BPF_REG_0;
2490 			else
2491 				return insn->src_reg;
2492 		} else {
2493 			return -1;
2494 		}
2495 	default:
2496 		return insn->dst_reg;
2497 	}
2498 }
2499 
2500 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2501 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2502 {
2503 	int dst_reg = insn_def_regno(insn);
2504 
2505 	if (dst_reg == -1)
2506 		return false;
2507 
2508 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2509 }
2510 
2511 static void mark_insn_zext(struct bpf_verifier_env *env,
2512 			   struct bpf_reg_state *reg)
2513 {
2514 	s32 def_idx = reg->subreg_def;
2515 
2516 	if (def_idx == DEF_NOT_SUBREG)
2517 		return;
2518 
2519 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2520 	/* The dst will be zero extended, so won't be sub-register anymore. */
2521 	reg->subreg_def = DEF_NOT_SUBREG;
2522 }
2523 
2524 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2525 			 enum reg_arg_type t)
2526 {
2527 	struct bpf_verifier_state *vstate = env->cur_state;
2528 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2529 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2530 	struct bpf_reg_state *reg, *regs = state->regs;
2531 	bool rw64;
2532 
2533 	if (regno >= MAX_BPF_REG) {
2534 		verbose(env, "R%d is invalid\n", regno);
2535 		return -EINVAL;
2536 	}
2537 
2538 	mark_reg_scratched(env, regno);
2539 
2540 	reg = &regs[regno];
2541 	rw64 = is_reg64(env, insn, regno, reg, t);
2542 	if (t == SRC_OP) {
2543 		/* check whether register used as source operand can be read */
2544 		if (reg->type == NOT_INIT) {
2545 			verbose(env, "R%d !read_ok\n", regno);
2546 			return -EACCES;
2547 		}
2548 		/* We don't need to worry about FP liveness because it's read-only */
2549 		if (regno == BPF_REG_FP)
2550 			return 0;
2551 
2552 		if (rw64)
2553 			mark_insn_zext(env, reg);
2554 
2555 		return mark_reg_read(env, reg, reg->parent,
2556 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2557 	} else {
2558 		/* check whether register used as dest operand can be written to */
2559 		if (regno == BPF_REG_FP) {
2560 			verbose(env, "frame pointer is read only\n");
2561 			return -EACCES;
2562 		}
2563 		reg->live |= REG_LIVE_WRITTEN;
2564 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2565 		if (t == DST_OP)
2566 			mark_reg_unknown(env, regs, regno);
2567 	}
2568 	return 0;
2569 }
2570 
2571 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
2572 {
2573 	env->insn_aux_data[idx].jmp_point = true;
2574 }
2575 
2576 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
2577 {
2578 	return env->insn_aux_data[insn_idx].jmp_point;
2579 }
2580 
2581 /* for any branch, call, exit record the history of jmps in the given state */
2582 static int push_jmp_history(struct bpf_verifier_env *env,
2583 			    struct bpf_verifier_state *cur)
2584 {
2585 	u32 cnt = cur->jmp_history_cnt;
2586 	struct bpf_idx_pair *p;
2587 	size_t alloc_size;
2588 
2589 	if (!is_jmp_point(env, env->insn_idx))
2590 		return 0;
2591 
2592 	cnt++;
2593 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2594 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2595 	if (!p)
2596 		return -ENOMEM;
2597 	p[cnt - 1].idx = env->insn_idx;
2598 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2599 	cur->jmp_history = p;
2600 	cur->jmp_history_cnt = cnt;
2601 	return 0;
2602 }
2603 
2604 /* Backtrack one insn at a time. If idx is not at the top of recorded
2605  * history then previous instruction came from straight line execution.
2606  */
2607 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2608 			     u32 *history)
2609 {
2610 	u32 cnt = *history;
2611 
2612 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2613 		i = st->jmp_history[cnt - 1].prev_idx;
2614 		(*history)--;
2615 	} else {
2616 		i--;
2617 	}
2618 	return i;
2619 }
2620 
2621 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2622 {
2623 	const struct btf_type *func;
2624 	struct btf *desc_btf;
2625 
2626 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2627 		return NULL;
2628 
2629 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2630 	if (IS_ERR(desc_btf))
2631 		return "<error>";
2632 
2633 	func = btf_type_by_id(desc_btf, insn->imm);
2634 	return btf_name_by_offset(desc_btf, func->name_off);
2635 }
2636 
2637 /* For given verifier state backtrack_insn() is called from the last insn to
2638  * the first insn. Its purpose is to compute a bitmask of registers and
2639  * stack slots that needs precision in the parent verifier state.
2640  */
2641 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2642 			  u32 *reg_mask, u64 *stack_mask)
2643 {
2644 	const struct bpf_insn_cbs cbs = {
2645 		.cb_call	= disasm_kfunc_name,
2646 		.cb_print	= verbose,
2647 		.private_data	= env,
2648 	};
2649 	struct bpf_insn *insn = env->prog->insnsi + idx;
2650 	u8 class = BPF_CLASS(insn->code);
2651 	u8 opcode = BPF_OP(insn->code);
2652 	u8 mode = BPF_MODE(insn->code);
2653 	u32 dreg = 1u << insn->dst_reg;
2654 	u32 sreg = 1u << insn->src_reg;
2655 	u32 spi;
2656 
2657 	if (insn->code == 0)
2658 		return 0;
2659 	if (env->log.level & BPF_LOG_LEVEL2) {
2660 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2661 		verbose(env, "%d: ", idx);
2662 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2663 	}
2664 
2665 	if (class == BPF_ALU || class == BPF_ALU64) {
2666 		if (!(*reg_mask & dreg))
2667 			return 0;
2668 		if (opcode == BPF_MOV) {
2669 			if (BPF_SRC(insn->code) == BPF_X) {
2670 				/* dreg = sreg
2671 				 * dreg needs precision after this insn
2672 				 * sreg needs precision before this insn
2673 				 */
2674 				*reg_mask &= ~dreg;
2675 				*reg_mask |= sreg;
2676 			} else {
2677 				/* dreg = K
2678 				 * dreg needs precision after this insn.
2679 				 * Corresponding register is already marked
2680 				 * as precise=true in this verifier state.
2681 				 * No further markings in parent are necessary
2682 				 */
2683 				*reg_mask &= ~dreg;
2684 			}
2685 		} else {
2686 			if (BPF_SRC(insn->code) == BPF_X) {
2687 				/* dreg += sreg
2688 				 * both dreg and sreg need precision
2689 				 * before this insn
2690 				 */
2691 				*reg_mask |= sreg;
2692 			} /* else dreg += K
2693 			   * dreg still needs precision before this insn
2694 			   */
2695 		}
2696 	} else if (class == BPF_LDX) {
2697 		if (!(*reg_mask & dreg))
2698 			return 0;
2699 		*reg_mask &= ~dreg;
2700 
2701 		/* scalars can only be spilled into stack w/o losing precision.
2702 		 * Load from any other memory can be zero extended.
2703 		 * The desire to keep that precision is already indicated
2704 		 * by 'precise' mark in corresponding register of this state.
2705 		 * No further tracking necessary.
2706 		 */
2707 		if (insn->src_reg != BPF_REG_FP)
2708 			return 0;
2709 
2710 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2711 		 * that [fp - off] slot contains scalar that needs to be
2712 		 * tracked with precision
2713 		 */
2714 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2715 		if (spi >= 64) {
2716 			verbose(env, "BUG spi %d\n", spi);
2717 			WARN_ONCE(1, "verifier backtracking bug");
2718 			return -EFAULT;
2719 		}
2720 		*stack_mask |= 1ull << spi;
2721 	} else if (class == BPF_STX || class == BPF_ST) {
2722 		if (*reg_mask & dreg)
2723 			/* stx & st shouldn't be using _scalar_ dst_reg
2724 			 * to access memory. It means backtracking
2725 			 * encountered a case of pointer subtraction.
2726 			 */
2727 			return -ENOTSUPP;
2728 		/* scalars can only be spilled into stack */
2729 		if (insn->dst_reg != BPF_REG_FP)
2730 			return 0;
2731 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2732 		if (spi >= 64) {
2733 			verbose(env, "BUG spi %d\n", spi);
2734 			WARN_ONCE(1, "verifier backtracking bug");
2735 			return -EFAULT;
2736 		}
2737 		if (!(*stack_mask & (1ull << spi)))
2738 			return 0;
2739 		*stack_mask &= ~(1ull << spi);
2740 		if (class == BPF_STX)
2741 			*reg_mask |= sreg;
2742 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2743 		if (opcode == BPF_CALL) {
2744 			if (insn->src_reg == BPF_PSEUDO_CALL)
2745 				return -ENOTSUPP;
2746 			/* BPF helpers that invoke callback subprogs are
2747 			 * equivalent to BPF_PSEUDO_CALL above
2748 			 */
2749 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2750 				return -ENOTSUPP;
2751 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
2752 			 * catch this error later. Make backtracking conservative
2753 			 * with ENOTSUPP.
2754 			 */
2755 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
2756 				return -ENOTSUPP;
2757 			/* regular helper call sets R0 */
2758 			*reg_mask &= ~1;
2759 			if (*reg_mask & 0x3f) {
2760 				/* if backtracing was looking for registers R1-R5
2761 				 * they should have been found already.
2762 				 */
2763 				verbose(env, "BUG regs %x\n", *reg_mask);
2764 				WARN_ONCE(1, "verifier backtracking bug");
2765 				return -EFAULT;
2766 			}
2767 		} else if (opcode == BPF_EXIT) {
2768 			return -ENOTSUPP;
2769 		}
2770 	} else if (class == BPF_LD) {
2771 		if (!(*reg_mask & dreg))
2772 			return 0;
2773 		*reg_mask &= ~dreg;
2774 		/* It's ld_imm64 or ld_abs or ld_ind.
2775 		 * For ld_imm64 no further tracking of precision
2776 		 * into parent is necessary
2777 		 */
2778 		if (mode == BPF_IND || mode == BPF_ABS)
2779 			/* to be analyzed */
2780 			return -ENOTSUPP;
2781 	}
2782 	return 0;
2783 }
2784 
2785 /* the scalar precision tracking algorithm:
2786  * . at the start all registers have precise=false.
2787  * . scalar ranges are tracked as normal through alu and jmp insns.
2788  * . once precise value of the scalar register is used in:
2789  *   .  ptr + scalar alu
2790  *   . if (scalar cond K|scalar)
2791  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2792  *   backtrack through the verifier states and mark all registers and
2793  *   stack slots with spilled constants that these scalar regisers
2794  *   should be precise.
2795  * . during state pruning two registers (or spilled stack slots)
2796  *   are equivalent if both are not precise.
2797  *
2798  * Note the verifier cannot simply walk register parentage chain,
2799  * since many different registers and stack slots could have been
2800  * used to compute single precise scalar.
2801  *
2802  * The approach of starting with precise=true for all registers and then
2803  * backtrack to mark a register as not precise when the verifier detects
2804  * that program doesn't care about specific value (e.g., when helper
2805  * takes register as ARG_ANYTHING parameter) is not safe.
2806  *
2807  * It's ok to walk single parentage chain of the verifier states.
2808  * It's possible that this backtracking will go all the way till 1st insn.
2809  * All other branches will be explored for needing precision later.
2810  *
2811  * The backtracking needs to deal with cases like:
2812  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2813  * r9 -= r8
2814  * r5 = r9
2815  * if r5 > 0x79f goto pc+7
2816  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2817  * r5 += 1
2818  * ...
2819  * call bpf_perf_event_output#25
2820  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2821  *
2822  * and this case:
2823  * r6 = 1
2824  * call foo // uses callee's r6 inside to compute r0
2825  * r0 += r6
2826  * if r0 == 0 goto
2827  *
2828  * to track above reg_mask/stack_mask needs to be independent for each frame.
2829  *
2830  * Also if parent's curframe > frame where backtracking started,
2831  * the verifier need to mark registers in both frames, otherwise callees
2832  * may incorrectly prune callers. This is similar to
2833  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2834  *
2835  * For now backtracking falls back into conservative marking.
2836  */
2837 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2838 				     struct bpf_verifier_state *st)
2839 {
2840 	struct bpf_func_state *func;
2841 	struct bpf_reg_state *reg;
2842 	int i, j;
2843 
2844 	/* big hammer: mark all scalars precise in this path.
2845 	 * pop_stack may still get !precise scalars.
2846 	 * We also skip current state and go straight to first parent state,
2847 	 * because precision markings in current non-checkpointed state are
2848 	 * not needed. See why in the comment in __mark_chain_precision below.
2849 	 */
2850 	for (st = st->parent; st; st = st->parent) {
2851 		for (i = 0; i <= st->curframe; i++) {
2852 			func = st->frame[i];
2853 			for (j = 0; j < BPF_REG_FP; j++) {
2854 				reg = &func->regs[j];
2855 				if (reg->type != SCALAR_VALUE)
2856 					continue;
2857 				reg->precise = true;
2858 			}
2859 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2860 				if (!is_spilled_reg(&func->stack[j]))
2861 					continue;
2862 				reg = &func->stack[j].spilled_ptr;
2863 				if (reg->type != SCALAR_VALUE)
2864 					continue;
2865 				reg->precise = true;
2866 			}
2867 		}
2868 	}
2869 }
2870 
2871 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2872 {
2873 	struct bpf_func_state *func;
2874 	struct bpf_reg_state *reg;
2875 	int i, j;
2876 
2877 	for (i = 0; i <= st->curframe; i++) {
2878 		func = st->frame[i];
2879 		for (j = 0; j < BPF_REG_FP; j++) {
2880 			reg = &func->regs[j];
2881 			if (reg->type != SCALAR_VALUE)
2882 				continue;
2883 			reg->precise = false;
2884 		}
2885 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2886 			if (!is_spilled_reg(&func->stack[j]))
2887 				continue;
2888 			reg = &func->stack[j].spilled_ptr;
2889 			if (reg->type != SCALAR_VALUE)
2890 				continue;
2891 			reg->precise = false;
2892 		}
2893 	}
2894 }
2895 
2896 /*
2897  * __mark_chain_precision() backtracks BPF program instruction sequence and
2898  * chain of verifier states making sure that register *regno* (if regno >= 0)
2899  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2900  * SCALARS, as well as any other registers and slots that contribute to
2901  * a tracked state of given registers/stack slots, depending on specific BPF
2902  * assembly instructions (see backtrack_insns() for exact instruction handling
2903  * logic). This backtracking relies on recorded jmp_history and is able to
2904  * traverse entire chain of parent states. This process ends only when all the
2905  * necessary registers/slots and their transitive dependencies are marked as
2906  * precise.
2907  *
2908  * One important and subtle aspect is that precise marks *do not matter* in
2909  * the currently verified state (current state). It is important to understand
2910  * why this is the case.
2911  *
2912  * First, note that current state is the state that is not yet "checkpointed",
2913  * i.e., it is not yet put into env->explored_states, and it has no children
2914  * states as well. It's ephemeral, and can end up either a) being discarded if
2915  * compatible explored state is found at some point or BPF_EXIT instruction is
2916  * reached or b) checkpointed and put into env->explored_states, branching out
2917  * into one or more children states.
2918  *
2919  * In the former case, precise markings in current state are completely
2920  * ignored by state comparison code (see regsafe() for details). Only
2921  * checkpointed ("old") state precise markings are important, and if old
2922  * state's register/slot is precise, regsafe() assumes current state's
2923  * register/slot as precise and checks value ranges exactly and precisely. If
2924  * states turn out to be compatible, current state's necessary precise
2925  * markings and any required parent states' precise markings are enforced
2926  * after the fact with propagate_precision() logic, after the fact. But it's
2927  * important to realize that in this case, even after marking current state
2928  * registers/slots as precise, we immediately discard current state. So what
2929  * actually matters is any of the precise markings propagated into current
2930  * state's parent states, which are always checkpointed (due to b) case above).
2931  * As such, for scenario a) it doesn't matter if current state has precise
2932  * markings set or not.
2933  *
2934  * Now, for the scenario b), checkpointing and forking into child(ren)
2935  * state(s). Note that before current state gets to checkpointing step, any
2936  * processed instruction always assumes precise SCALAR register/slot
2937  * knowledge: if precise value or range is useful to prune jump branch, BPF
2938  * verifier takes this opportunity enthusiastically. Similarly, when
2939  * register's value is used to calculate offset or memory address, exact
2940  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2941  * what we mentioned above about state comparison ignoring precise markings
2942  * during state comparison, BPF verifier ignores and also assumes precise
2943  * markings *at will* during instruction verification process. But as verifier
2944  * assumes precision, it also propagates any precision dependencies across
2945  * parent states, which are not yet finalized, so can be further restricted
2946  * based on new knowledge gained from restrictions enforced by their children
2947  * states. This is so that once those parent states are finalized, i.e., when
2948  * they have no more active children state, state comparison logic in
2949  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2950  * required for correctness.
2951  *
2952  * To build a bit more intuition, note also that once a state is checkpointed,
2953  * the path we took to get to that state is not important. This is crucial
2954  * property for state pruning. When state is checkpointed and finalized at
2955  * some instruction index, it can be correctly and safely used to "short
2956  * circuit" any *compatible* state that reaches exactly the same instruction
2957  * index. I.e., if we jumped to that instruction from a completely different
2958  * code path than original finalized state was derived from, it doesn't
2959  * matter, current state can be discarded because from that instruction
2960  * forward having a compatible state will ensure we will safely reach the
2961  * exit. States describe preconditions for further exploration, but completely
2962  * forget the history of how we got here.
2963  *
2964  * This also means that even if we needed precise SCALAR range to get to
2965  * finalized state, but from that point forward *that same* SCALAR register is
2966  * never used in a precise context (i.e., it's precise value is not needed for
2967  * correctness), it's correct and safe to mark such register as "imprecise"
2968  * (i.e., precise marking set to false). This is what we rely on when we do
2969  * not set precise marking in current state. If no child state requires
2970  * precision for any given SCALAR register, it's safe to dictate that it can
2971  * be imprecise. If any child state does require this register to be precise,
2972  * we'll mark it precise later retroactively during precise markings
2973  * propagation from child state to parent states.
2974  *
2975  * Skipping precise marking setting in current state is a mild version of
2976  * relying on the above observation. But we can utilize this property even
2977  * more aggressively by proactively forgetting any precise marking in the
2978  * current state (which we inherited from the parent state), right before we
2979  * checkpoint it and branch off into new child state. This is done by
2980  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2981  * finalized states which help in short circuiting more future states.
2982  */
2983 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2984 				  int spi)
2985 {
2986 	struct bpf_verifier_state *st = env->cur_state;
2987 	int first_idx = st->first_insn_idx;
2988 	int last_idx = env->insn_idx;
2989 	struct bpf_func_state *func;
2990 	struct bpf_reg_state *reg;
2991 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2992 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2993 	bool skip_first = true;
2994 	bool new_marks = false;
2995 	int i, err;
2996 
2997 	if (!env->bpf_capable)
2998 		return 0;
2999 
3000 	/* Do sanity checks against current state of register and/or stack
3001 	 * slot, but don't set precise flag in current state, as precision
3002 	 * tracking in the current state is unnecessary.
3003 	 */
3004 	func = st->frame[frame];
3005 	if (regno >= 0) {
3006 		reg = &func->regs[regno];
3007 		if (reg->type != SCALAR_VALUE) {
3008 			WARN_ONCE(1, "backtracing misuse");
3009 			return -EFAULT;
3010 		}
3011 		new_marks = true;
3012 	}
3013 
3014 	while (spi >= 0) {
3015 		if (!is_spilled_reg(&func->stack[spi])) {
3016 			stack_mask = 0;
3017 			break;
3018 		}
3019 		reg = &func->stack[spi].spilled_ptr;
3020 		if (reg->type != SCALAR_VALUE) {
3021 			stack_mask = 0;
3022 			break;
3023 		}
3024 		new_marks = true;
3025 		break;
3026 	}
3027 
3028 	if (!new_marks)
3029 		return 0;
3030 	if (!reg_mask && !stack_mask)
3031 		return 0;
3032 
3033 	for (;;) {
3034 		DECLARE_BITMAP(mask, 64);
3035 		u32 history = st->jmp_history_cnt;
3036 
3037 		if (env->log.level & BPF_LOG_LEVEL2)
3038 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3039 
3040 		if (last_idx < 0) {
3041 			/* we are at the entry into subprog, which
3042 			 * is expected for global funcs, but only if
3043 			 * requested precise registers are R1-R5
3044 			 * (which are global func's input arguments)
3045 			 */
3046 			if (st->curframe == 0 &&
3047 			    st->frame[0]->subprogno > 0 &&
3048 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3049 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3050 				bitmap_from_u64(mask, reg_mask);
3051 				for_each_set_bit(i, mask, 32) {
3052 					reg = &st->frame[0]->regs[i];
3053 					if (reg->type != SCALAR_VALUE) {
3054 						reg_mask &= ~(1u << i);
3055 						continue;
3056 					}
3057 					reg->precise = true;
3058 				}
3059 				return 0;
3060 			}
3061 
3062 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3063 				st->frame[0]->subprogno, reg_mask, stack_mask);
3064 			WARN_ONCE(1, "verifier backtracking bug");
3065 			return -EFAULT;
3066 		}
3067 
3068 		for (i = last_idx;;) {
3069 			if (skip_first) {
3070 				err = 0;
3071 				skip_first = false;
3072 			} else {
3073 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3074 			}
3075 			if (err == -ENOTSUPP) {
3076 				mark_all_scalars_precise(env, st);
3077 				return 0;
3078 			} else if (err) {
3079 				return err;
3080 			}
3081 			if (!reg_mask && !stack_mask)
3082 				/* Found assignment(s) into tracked register in this state.
3083 				 * Since this state is already marked, just return.
3084 				 * Nothing to be tracked further in the parent state.
3085 				 */
3086 				return 0;
3087 			if (i == first_idx)
3088 				break;
3089 			i = get_prev_insn_idx(st, i, &history);
3090 			if (i >= env->prog->len) {
3091 				/* This can happen if backtracking reached insn 0
3092 				 * and there are still reg_mask or stack_mask
3093 				 * to backtrack.
3094 				 * It means the backtracking missed the spot where
3095 				 * particular register was initialized with a constant.
3096 				 */
3097 				verbose(env, "BUG backtracking idx %d\n", i);
3098 				WARN_ONCE(1, "verifier backtracking bug");
3099 				return -EFAULT;
3100 			}
3101 		}
3102 		st = st->parent;
3103 		if (!st)
3104 			break;
3105 
3106 		new_marks = false;
3107 		func = st->frame[frame];
3108 		bitmap_from_u64(mask, reg_mask);
3109 		for_each_set_bit(i, mask, 32) {
3110 			reg = &func->regs[i];
3111 			if (reg->type != SCALAR_VALUE) {
3112 				reg_mask &= ~(1u << i);
3113 				continue;
3114 			}
3115 			if (!reg->precise)
3116 				new_marks = true;
3117 			reg->precise = true;
3118 		}
3119 
3120 		bitmap_from_u64(mask, stack_mask);
3121 		for_each_set_bit(i, mask, 64) {
3122 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3123 				/* the sequence of instructions:
3124 				 * 2: (bf) r3 = r10
3125 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3126 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3127 				 * doesn't contain jmps. It's backtracked
3128 				 * as a single block.
3129 				 * During backtracking insn 3 is not recognized as
3130 				 * stack access, so at the end of backtracking
3131 				 * stack slot fp-8 is still marked in stack_mask.
3132 				 * However the parent state may not have accessed
3133 				 * fp-8 and it's "unallocated" stack space.
3134 				 * In such case fallback to conservative.
3135 				 */
3136 				mark_all_scalars_precise(env, st);
3137 				return 0;
3138 			}
3139 
3140 			if (!is_spilled_reg(&func->stack[i])) {
3141 				stack_mask &= ~(1ull << i);
3142 				continue;
3143 			}
3144 			reg = &func->stack[i].spilled_ptr;
3145 			if (reg->type != SCALAR_VALUE) {
3146 				stack_mask &= ~(1ull << i);
3147 				continue;
3148 			}
3149 			if (!reg->precise)
3150 				new_marks = true;
3151 			reg->precise = true;
3152 		}
3153 		if (env->log.level & BPF_LOG_LEVEL2) {
3154 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3155 				new_marks ? "didn't have" : "already had",
3156 				reg_mask, stack_mask);
3157 			print_verifier_state(env, func, true);
3158 		}
3159 
3160 		if (!reg_mask && !stack_mask)
3161 			break;
3162 		if (!new_marks)
3163 			break;
3164 
3165 		last_idx = st->last_insn_idx;
3166 		first_idx = st->first_insn_idx;
3167 	}
3168 	return 0;
3169 }
3170 
3171 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3172 {
3173 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3174 }
3175 
3176 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3177 {
3178 	return __mark_chain_precision(env, frame, regno, -1);
3179 }
3180 
3181 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3182 {
3183 	return __mark_chain_precision(env, frame, -1, spi);
3184 }
3185 
3186 static bool is_spillable_regtype(enum bpf_reg_type type)
3187 {
3188 	switch (base_type(type)) {
3189 	case PTR_TO_MAP_VALUE:
3190 	case PTR_TO_STACK:
3191 	case PTR_TO_CTX:
3192 	case PTR_TO_PACKET:
3193 	case PTR_TO_PACKET_META:
3194 	case PTR_TO_PACKET_END:
3195 	case PTR_TO_FLOW_KEYS:
3196 	case CONST_PTR_TO_MAP:
3197 	case PTR_TO_SOCKET:
3198 	case PTR_TO_SOCK_COMMON:
3199 	case PTR_TO_TCP_SOCK:
3200 	case PTR_TO_XDP_SOCK:
3201 	case PTR_TO_BTF_ID:
3202 	case PTR_TO_BUF:
3203 	case PTR_TO_MEM:
3204 	case PTR_TO_FUNC:
3205 	case PTR_TO_MAP_KEY:
3206 		return true;
3207 	default:
3208 		return false;
3209 	}
3210 }
3211 
3212 /* Does this register contain a constant zero? */
3213 static bool register_is_null(struct bpf_reg_state *reg)
3214 {
3215 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3216 }
3217 
3218 static bool register_is_const(struct bpf_reg_state *reg)
3219 {
3220 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3221 }
3222 
3223 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3224 {
3225 	return tnum_is_unknown(reg->var_off) &&
3226 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3227 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3228 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3229 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3230 }
3231 
3232 static bool register_is_bounded(struct bpf_reg_state *reg)
3233 {
3234 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3235 }
3236 
3237 static bool __is_pointer_value(bool allow_ptr_leaks,
3238 			       const struct bpf_reg_state *reg)
3239 {
3240 	if (allow_ptr_leaks)
3241 		return false;
3242 
3243 	return reg->type != SCALAR_VALUE;
3244 }
3245 
3246 static void save_register_state(struct bpf_func_state *state,
3247 				int spi, struct bpf_reg_state *reg,
3248 				int size)
3249 {
3250 	int i;
3251 
3252 	state->stack[spi].spilled_ptr = *reg;
3253 	if (size == BPF_REG_SIZE)
3254 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3255 
3256 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3257 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3258 
3259 	/* size < 8 bytes spill */
3260 	for (; i; i--)
3261 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3262 }
3263 
3264 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3265  * stack boundary and alignment are checked in check_mem_access()
3266  */
3267 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3268 				       /* stack frame we're writing to */
3269 				       struct bpf_func_state *state,
3270 				       int off, int size, int value_regno,
3271 				       int insn_idx)
3272 {
3273 	struct bpf_func_state *cur; /* state of the current function */
3274 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3275 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3276 	struct bpf_reg_state *reg = NULL;
3277 
3278 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3279 	if (err)
3280 		return err;
3281 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3282 	 * so it's aligned access and [off, off + size) are within stack limits
3283 	 */
3284 	if (!env->allow_ptr_leaks &&
3285 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3286 	    size != BPF_REG_SIZE) {
3287 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3288 		return -EACCES;
3289 	}
3290 
3291 	cur = env->cur_state->frame[env->cur_state->curframe];
3292 	if (value_regno >= 0)
3293 		reg = &cur->regs[value_regno];
3294 	if (!env->bypass_spec_v4) {
3295 		bool sanitize = reg && is_spillable_regtype(reg->type);
3296 
3297 		for (i = 0; i < size; i++) {
3298 			u8 type = state->stack[spi].slot_type[i];
3299 
3300 			if (type != STACK_MISC && type != STACK_ZERO) {
3301 				sanitize = true;
3302 				break;
3303 			}
3304 		}
3305 
3306 		if (sanitize)
3307 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3308 	}
3309 
3310 	mark_stack_slot_scratched(env, spi);
3311 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3312 	    !register_is_null(reg) && env->bpf_capable) {
3313 		if (dst_reg != BPF_REG_FP) {
3314 			/* The backtracking logic can only recognize explicit
3315 			 * stack slot address like [fp - 8]. Other spill of
3316 			 * scalar via different register has to be conservative.
3317 			 * Backtrack from here and mark all registers as precise
3318 			 * that contributed into 'reg' being a constant.
3319 			 */
3320 			err = mark_chain_precision(env, value_regno);
3321 			if (err)
3322 				return err;
3323 		}
3324 		save_register_state(state, spi, reg, size);
3325 	} else if (reg && is_spillable_regtype(reg->type)) {
3326 		/* register containing pointer is being spilled into stack */
3327 		if (size != BPF_REG_SIZE) {
3328 			verbose_linfo(env, insn_idx, "; ");
3329 			verbose(env, "invalid size of register spill\n");
3330 			return -EACCES;
3331 		}
3332 		if (state != cur && reg->type == PTR_TO_STACK) {
3333 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3334 			return -EINVAL;
3335 		}
3336 		save_register_state(state, spi, reg, size);
3337 	} else {
3338 		u8 type = STACK_MISC;
3339 
3340 		/* regular write of data into stack destroys any spilled ptr */
3341 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3342 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3343 		if (is_spilled_reg(&state->stack[spi]))
3344 			for (i = 0; i < BPF_REG_SIZE; i++)
3345 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3346 
3347 		/* only mark the slot as written if all 8 bytes were written
3348 		 * otherwise read propagation may incorrectly stop too soon
3349 		 * when stack slots are partially written.
3350 		 * This heuristic means that read propagation will be
3351 		 * conservative, since it will add reg_live_read marks
3352 		 * to stack slots all the way to first state when programs
3353 		 * writes+reads less than 8 bytes
3354 		 */
3355 		if (size == BPF_REG_SIZE)
3356 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3357 
3358 		/* when we zero initialize stack slots mark them as such */
3359 		if (reg && register_is_null(reg)) {
3360 			/* backtracking doesn't work for STACK_ZERO yet. */
3361 			err = mark_chain_precision(env, value_regno);
3362 			if (err)
3363 				return err;
3364 			type = STACK_ZERO;
3365 		}
3366 
3367 		/* Mark slots affected by this stack write. */
3368 		for (i = 0; i < size; i++)
3369 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3370 				type;
3371 	}
3372 	return 0;
3373 }
3374 
3375 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3376  * known to contain a variable offset.
3377  * This function checks whether the write is permitted and conservatively
3378  * tracks the effects of the write, considering that each stack slot in the
3379  * dynamic range is potentially written to.
3380  *
3381  * 'off' includes 'regno->off'.
3382  * 'value_regno' can be -1, meaning that an unknown value is being written to
3383  * the stack.
3384  *
3385  * Spilled pointers in range are not marked as written because we don't know
3386  * what's going to be actually written. This means that read propagation for
3387  * future reads cannot be terminated by this write.
3388  *
3389  * For privileged programs, uninitialized stack slots are considered
3390  * initialized by this write (even though we don't know exactly what offsets
3391  * are going to be written to). The idea is that we don't want the verifier to
3392  * reject future reads that access slots written to through variable offsets.
3393  */
3394 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3395 				     /* func where register points to */
3396 				     struct bpf_func_state *state,
3397 				     int ptr_regno, int off, int size,
3398 				     int value_regno, int insn_idx)
3399 {
3400 	struct bpf_func_state *cur; /* state of the current function */
3401 	int min_off, max_off;
3402 	int i, err;
3403 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3404 	bool writing_zero = false;
3405 	/* set if the fact that we're writing a zero is used to let any
3406 	 * stack slots remain STACK_ZERO
3407 	 */
3408 	bool zero_used = false;
3409 
3410 	cur = env->cur_state->frame[env->cur_state->curframe];
3411 	ptr_reg = &cur->regs[ptr_regno];
3412 	min_off = ptr_reg->smin_value + off;
3413 	max_off = ptr_reg->smax_value + off + size;
3414 	if (value_regno >= 0)
3415 		value_reg = &cur->regs[value_regno];
3416 	if (value_reg && register_is_null(value_reg))
3417 		writing_zero = true;
3418 
3419 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3420 	if (err)
3421 		return err;
3422 
3423 
3424 	/* Variable offset writes destroy any spilled pointers in range. */
3425 	for (i = min_off; i < max_off; i++) {
3426 		u8 new_type, *stype;
3427 		int slot, spi;
3428 
3429 		slot = -i - 1;
3430 		spi = slot / BPF_REG_SIZE;
3431 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3432 		mark_stack_slot_scratched(env, spi);
3433 
3434 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3435 			/* Reject the write if range we may write to has not
3436 			 * been initialized beforehand. If we didn't reject
3437 			 * here, the ptr status would be erased below (even
3438 			 * though not all slots are actually overwritten),
3439 			 * possibly opening the door to leaks.
3440 			 *
3441 			 * We do however catch STACK_INVALID case below, and
3442 			 * only allow reading possibly uninitialized memory
3443 			 * later for CAP_PERFMON, as the write may not happen to
3444 			 * that slot.
3445 			 */
3446 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3447 				insn_idx, i);
3448 			return -EINVAL;
3449 		}
3450 
3451 		/* Erase all spilled pointers. */
3452 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3453 
3454 		/* Update the slot type. */
3455 		new_type = STACK_MISC;
3456 		if (writing_zero && *stype == STACK_ZERO) {
3457 			new_type = STACK_ZERO;
3458 			zero_used = true;
3459 		}
3460 		/* If the slot is STACK_INVALID, we check whether it's OK to
3461 		 * pretend that it will be initialized by this write. The slot
3462 		 * might not actually be written to, and so if we mark it as
3463 		 * initialized future reads might leak uninitialized memory.
3464 		 * For privileged programs, we will accept such reads to slots
3465 		 * that may or may not be written because, if we're reject
3466 		 * them, the error would be too confusing.
3467 		 */
3468 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3469 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3470 					insn_idx, i);
3471 			return -EINVAL;
3472 		}
3473 		*stype = new_type;
3474 	}
3475 	if (zero_used) {
3476 		/* backtracking doesn't work for STACK_ZERO yet. */
3477 		err = mark_chain_precision(env, value_regno);
3478 		if (err)
3479 			return err;
3480 	}
3481 	return 0;
3482 }
3483 
3484 /* When register 'dst_regno' is assigned some values from stack[min_off,
3485  * max_off), we set the register's type according to the types of the
3486  * respective stack slots. If all the stack values are known to be zeros, then
3487  * so is the destination reg. Otherwise, the register is considered to be
3488  * SCALAR. This function does not deal with register filling; the caller must
3489  * ensure that all spilled registers in the stack range have been marked as
3490  * read.
3491  */
3492 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3493 				/* func where src register points to */
3494 				struct bpf_func_state *ptr_state,
3495 				int min_off, int max_off, int dst_regno)
3496 {
3497 	struct bpf_verifier_state *vstate = env->cur_state;
3498 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3499 	int i, slot, spi;
3500 	u8 *stype;
3501 	int zeros = 0;
3502 
3503 	for (i = min_off; i < max_off; i++) {
3504 		slot = -i - 1;
3505 		spi = slot / BPF_REG_SIZE;
3506 		stype = ptr_state->stack[spi].slot_type;
3507 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3508 			break;
3509 		zeros++;
3510 	}
3511 	if (zeros == max_off - min_off) {
3512 		/* any access_size read into register is zero extended,
3513 		 * so the whole register == const_zero
3514 		 */
3515 		__mark_reg_const_zero(&state->regs[dst_regno]);
3516 		/* backtracking doesn't support STACK_ZERO yet,
3517 		 * so mark it precise here, so that later
3518 		 * backtracking can stop here.
3519 		 * Backtracking may not need this if this register
3520 		 * doesn't participate in pointer adjustment.
3521 		 * Forward propagation of precise flag is not
3522 		 * necessary either. This mark is only to stop
3523 		 * backtracking. Any register that contributed
3524 		 * to const 0 was marked precise before spill.
3525 		 */
3526 		state->regs[dst_regno].precise = true;
3527 	} else {
3528 		/* have read misc data from the stack */
3529 		mark_reg_unknown(env, state->regs, dst_regno);
3530 	}
3531 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3532 }
3533 
3534 /* Read the stack at 'off' and put the results into the register indicated by
3535  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3536  * spilled reg.
3537  *
3538  * 'dst_regno' can be -1, meaning that the read value is not going to a
3539  * register.
3540  *
3541  * The access is assumed to be within the current stack bounds.
3542  */
3543 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3544 				      /* func where src register points to */
3545 				      struct bpf_func_state *reg_state,
3546 				      int off, int size, int dst_regno)
3547 {
3548 	struct bpf_verifier_state *vstate = env->cur_state;
3549 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3550 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3551 	struct bpf_reg_state *reg;
3552 	u8 *stype, type;
3553 
3554 	stype = reg_state->stack[spi].slot_type;
3555 	reg = &reg_state->stack[spi].spilled_ptr;
3556 
3557 	if (is_spilled_reg(&reg_state->stack[spi])) {
3558 		u8 spill_size = 1;
3559 
3560 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3561 			spill_size++;
3562 
3563 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3564 			if (reg->type != SCALAR_VALUE) {
3565 				verbose_linfo(env, env->insn_idx, "; ");
3566 				verbose(env, "invalid size of register fill\n");
3567 				return -EACCES;
3568 			}
3569 
3570 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3571 			if (dst_regno < 0)
3572 				return 0;
3573 
3574 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3575 				/* The earlier check_reg_arg() has decided the
3576 				 * subreg_def for this insn.  Save it first.
3577 				 */
3578 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3579 
3580 				state->regs[dst_regno] = *reg;
3581 				state->regs[dst_regno].subreg_def = subreg_def;
3582 			} else {
3583 				for (i = 0; i < size; i++) {
3584 					type = stype[(slot - i) % BPF_REG_SIZE];
3585 					if (type == STACK_SPILL)
3586 						continue;
3587 					if (type == STACK_MISC)
3588 						continue;
3589 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3590 						off, i, size);
3591 					return -EACCES;
3592 				}
3593 				mark_reg_unknown(env, state->regs, dst_regno);
3594 			}
3595 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3596 			return 0;
3597 		}
3598 
3599 		if (dst_regno >= 0) {
3600 			/* restore register state from stack */
3601 			state->regs[dst_regno] = *reg;
3602 			/* mark reg as written since spilled pointer state likely
3603 			 * has its liveness marks cleared by is_state_visited()
3604 			 * which resets stack/reg liveness for state transitions
3605 			 */
3606 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3607 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3608 			/* If dst_regno==-1, the caller is asking us whether
3609 			 * it is acceptable to use this value as a SCALAR_VALUE
3610 			 * (e.g. for XADD).
3611 			 * We must not allow unprivileged callers to do that
3612 			 * with spilled pointers.
3613 			 */
3614 			verbose(env, "leaking pointer from stack off %d\n",
3615 				off);
3616 			return -EACCES;
3617 		}
3618 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3619 	} else {
3620 		for (i = 0; i < size; i++) {
3621 			type = stype[(slot - i) % BPF_REG_SIZE];
3622 			if (type == STACK_MISC)
3623 				continue;
3624 			if (type == STACK_ZERO)
3625 				continue;
3626 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3627 				off, i, size);
3628 			return -EACCES;
3629 		}
3630 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3631 		if (dst_regno >= 0)
3632 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3633 	}
3634 	return 0;
3635 }
3636 
3637 enum bpf_access_src {
3638 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3639 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3640 };
3641 
3642 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3643 					 int regno, int off, int access_size,
3644 					 bool zero_size_allowed,
3645 					 enum bpf_access_src type,
3646 					 struct bpf_call_arg_meta *meta);
3647 
3648 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3649 {
3650 	return cur_regs(env) + regno;
3651 }
3652 
3653 /* Read the stack at 'ptr_regno + off' and put the result into the register
3654  * 'dst_regno'.
3655  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3656  * but not its variable offset.
3657  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3658  *
3659  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3660  * filling registers (i.e. reads of spilled register cannot be detected when
3661  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3662  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3663  * offset; for a fixed offset check_stack_read_fixed_off should be used
3664  * instead.
3665  */
3666 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3667 				    int ptr_regno, int off, int size, int dst_regno)
3668 {
3669 	/* The state of the source register. */
3670 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3671 	struct bpf_func_state *ptr_state = func(env, reg);
3672 	int err;
3673 	int min_off, max_off;
3674 
3675 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3676 	 */
3677 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3678 					    false, ACCESS_DIRECT, NULL);
3679 	if (err)
3680 		return err;
3681 
3682 	min_off = reg->smin_value + off;
3683 	max_off = reg->smax_value + off;
3684 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3685 	return 0;
3686 }
3687 
3688 /* check_stack_read dispatches to check_stack_read_fixed_off or
3689  * check_stack_read_var_off.
3690  *
3691  * The caller must ensure that the offset falls within the allocated stack
3692  * bounds.
3693  *
3694  * 'dst_regno' is a register which will receive the value from the stack. It
3695  * can be -1, meaning that the read value is not going to a register.
3696  */
3697 static int check_stack_read(struct bpf_verifier_env *env,
3698 			    int ptr_regno, int off, int size,
3699 			    int dst_regno)
3700 {
3701 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3702 	struct bpf_func_state *state = func(env, reg);
3703 	int err;
3704 	/* Some accesses are only permitted with a static offset. */
3705 	bool var_off = !tnum_is_const(reg->var_off);
3706 
3707 	/* The offset is required to be static when reads don't go to a
3708 	 * register, in order to not leak pointers (see
3709 	 * check_stack_read_fixed_off).
3710 	 */
3711 	if (dst_regno < 0 && var_off) {
3712 		char tn_buf[48];
3713 
3714 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3715 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3716 			tn_buf, off, size);
3717 		return -EACCES;
3718 	}
3719 	/* Variable offset is prohibited for unprivileged mode for simplicity
3720 	 * since it requires corresponding support in Spectre masking for stack
3721 	 * ALU. See also retrieve_ptr_limit().
3722 	 */
3723 	if (!env->bypass_spec_v1 && var_off) {
3724 		char tn_buf[48];
3725 
3726 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3727 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3728 				ptr_regno, tn_buf);
3729 		return -EACCES;
3730 	}
3731 
3732 	if (!var_off) {
3733 		off += reg->var_off.value;
3734 		err = check_stack_read_fixed_off(env, state, off, size,
3735 						 dst_regno);
3736 	} else {
3737 		/* Variable offset stack reads need more conservative handling
3738 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3739 		 * branch.
3740 		 */
3741 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3742 					       dst_regno);
3743 	}
3744 	return err;
3745 }
3746 
3747 
3748 /* check_stack_write dispatches to check_stack_write_fixed_off or
3749  * check_stack_write_var_off.
3750  *
3751  * 'ptr_regno' is the register used as a pointer into the stack.
3752  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3753  * 'value_regno' is the register whose value we're writing to the stack. It can
3754  * be -1, meaning that we're not writing from a register.
3755  *
3756  * The caller must ensure that the offset falls within the maximum stack size.
3757  */
3758 static int check_stack_write(struct bpf_verifier_env *env,
3759 			     int ptr_regno, int off, int size,
3760 			     int value_regno, int insn_idx)
3761 {
3762 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3763 	struct bpf_func_state *state = func(env, reg);
3764 	int err;
3765 
3766 	if (tnum_is_const(reg->var_off)) {
3767 		off += reg->var_off.value;
3768 		err = check_stack_write_fixed_off(env, state, off, size,
3769 						  value_regno, insn_idx);
3770 	} else {
3771 		/* Variable offset stack reads need more conservative handling
3772 		 * than fixed offset ones.
3773 		 */
3774 		err = check_stack_write_var_off(env, state,
3775 						ptr_regno, off, size,
3776 						value_regno, insn_idx);
3777 	}
3778 	return err;
3779 }
3780 
3781 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3782 				 int off, int size, enum bpf_access_type type)
3783 {
3784 	struct bpf_reg_state *regs = cur_regs(env);
3785 	struct bpf_map *map = regs[regno].map_ptr;
3786 	u32 cap = bpf_map_flags_to_cap(map);
3787 
3788 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3789 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3790 			map->value_size, off, size);
3791 		return -EACCES;
3792 	}
3793 
3794 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3795 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3796 			map->value_size, off, size);
3797 		return -EACCES;
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3804 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3805 			      int off, int size, u32 mem_size,
3806 			      bool zero_size_allowed)
3807 {
3808 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3809 	struct bpf_reg_state *reg;
3810 
3811 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3812 		return 0;
3813 
3814 	reg = &cur_regs(env)[regno];
3815 	switch (reg->type) {
3816 	case PTR_TO_MAP_KEY:
3817 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3818 			mem_size, off, size);
3819 		break;
3820 	case PTR_TO_MAP_VALUE:
3821 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3822 			mem_size, off, size);
3823 		break;
3824 	case PTR_TO_PACKET:
3825 	case PTR_TO_PACKET_META:
3826 	case PTR_TO_PACKET_END:
3827 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3828 			off, size, regno, reg->id, off, mem_size);
3829 		break;
3830 	case PTR_TO_MEM:
3831 	default:
3832 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3833 			mem_size, off, size);
3834 	}
3835 
3836 	return -EACCES;
3837 }
3838 
3839 /* check read/write into a memory region with possible variable offset */
3840 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3841 				   int off, int size, u32 mem_size,
3842 				   bool zero_size_allowed)
3843 {
3844 	struct bpf_verifier_state *vstate = env->cur_state;
3845 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3846 	struct bpf_reg_state *reg = &state->regs[regno];
3847 	int err;
3848 
3849 	/* We may have adjusted the register pointing to memory region, so we
3850 	 * need to try adding each of min_value and max_value to off
3851 	 * to make sure our theoretical access will be safe.
3852 	 *
3853 	 * The minimum value is only important with signed
3854 	 * comparisons where we can't assume the floor of a
3855 	 * value is 0.  If we are using signed variables for our
3856 	 * index'es we need to make sure that whatever we use
3857 	 * will have a set floor within our range.
3858 	 */
3859 	if (reg->smin_value < 0 &&
3860 	    (reg->smin_value == S64_MIN ||
3861 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3862 	      reg->smin_value + off < 0)) {
3863 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3864 			regno);
3865 		return -EACCES;
3866 	}
3867 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3868 				 mem_size, zero_size_allowed);
3869 	if (err) {
3870 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3871 			regno);
3872 		return err;
3873 	}
3874 
3875 	/* If we haven't set a max value then we need to bail since we can't be
3876 	 * sure we won't do bad things.
3877 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3878 	 */
3879 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3880 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3881 			regno);
3882 		return -EACCES;
3883 	}
3884 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3885 				 mem_size, zero_size_allowed);
3886 	if (err) {
3887 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3888 			regno);
3889 		return err;
3890 	}
3891 
3892 	return 0;
3893 }
3894 
3895 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3896 			       const struct bpf_reg_state *reg, int regno,
3897 			       bool fixed_off_ok)
3898 {
3899 	/* Access to this pointer-typed register or passing it to a helper
3900 	 * is only allowed in its original, unmodified form.
3901 	 */
3902 
3903 	if (reg->off < 0) {
3904 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3905 			reg_type_str(env, reg->type), regno, reg->off);
3906 		return -EACCES;
3907 	}
3908 
3909 	if (!fixed_off_ok && reg->off) {
3910 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3911 			reg_type_str(env, reg->type), regno, reg->off);
3912 		return -EACCES;
3913 	}
3914 
3915 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3916 		char tn_buf[48];
3917 
3918 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3919 		verbose(env, "variable %s access var_off=%s disallowed\n",
3920 			reg_type_str(env, reg->type), tn_buf);
3921 		return -EACCES;
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 int check_ptr_off_reg(struct bpf_verifier_env *env,
3928 		      const struct bpf_reg_state *reg, int regno)
3929 {
3930 	return __check_ptr_off_reg(env, reg, regno, false);
3931 }
3932 
3933 static int map_kptr_match_type(struct bpf_verifier_env *env,
3934 			       struct btf_field *kptr_field,
3935 			       struct bpf_reg_state *reg, u32 regno)
3936 {
3937 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3938 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
3939 	const char *reg_name = "";
3940 
3941 	/* Only unreferenced case accepts untrusted pointers */
3942 	if (kptr_field->type == BPF_KPTR_UNREF)
3943 		perm_flags |= PTR_UNTRUSTED;
3944 
3945 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3946 		goto bad_type;
3947 
3948 	if (!btf_is_kernel(reg->btf)) {
3949 		verbose(env, "R%d must point to kernel BTF\n", regno);
3950 		return -EINVAL;
3951 	}
3952 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3953 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3954 
3955 	/* For ref_ptr case, release function check should ensure we get one
3956 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3957 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3958 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3959 	 * reg->off and reg->ref_obj_id are not needed here.
3960 	 */
3961 	if (__check_ptr_off_reg(env, reg, regno, true))
3962 		return -EACCES;
3963 
3964 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3965 	 * we also need to take into account the reg->off.
3966 	 *
3967 	 * We want to support cases like:
3968 	 *
3969 	 * struct foo {
3970 	 *         struct bar br;
3971 	 *         struct baz bz;
3972 	 * };
3973 	 *
3974 	 * struct foo *v;
3975 	 * v = func();	      // PTR_TO_BTF_ID
3976 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3977 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3978 	 *                    // first member type of struct after comparison fails
3979 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3980 	 *                    // to match type
3981 	 *
3982 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3983 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3984 	 * the struct to match type against first member of struct, i.e. reject
3985 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3986 	 * strict mode to true for type match.
3987 	 */
3988 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3989 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3990 				  kptr_field->type == BPF_KPTR_REF))
3991 		goto bad_type;
3992 	return 0;
3993 bad_type:
3994 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3995 		reg_type_str(env, reg->type), reg_name);
3996 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3997 	if (kptr_field->type == BPF_KPTR_UNREF)
3998 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3999 			targ_name);
4000 	else
4001 		verbose(env, "\n");
4002 	return -EINVAL;
4003 }
4004 
4005 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4006 				 int value_regno, int insn_idx,
4007 				 struct btf_field *kptr_field)
4008 {
4009 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4010 	int class = BPF_CLASS(insn->code);
4011 	struct bpf_reg_state *val_reg;
4012 
4013 	/* Things we already checked for in check_map_access and caller:
4014 	 *  - Reject cases where variable offset may touch kptr
4015 	 *  - size of access (must be BPF_DW)
4016 	 *  - tnum_is_const(reg->var_off)
4017 	 *  - kptr_field->offset == off + reg->var_off.value
4018 	 */
4019 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4020 	if (BPF_MODE(insn->code) != BPF_MEM) {
4021 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4022 		return -EACCES;
4023 	}
4024 
4025 	/* We only allow loading referenced kptr, since it will be marked as
4026 	 * untrusted, similar to unreferenced kptr.
4027 	 */
4028 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4029 		verbose(env, "store to referenced kptr disallowed\n");
4030 		return -EACCES;
4031 	}
4032 
4033 	if (class == BPF_LDX) {
4034 		val_reg = reg_state(env, value_regno);
4035 		/* We can simply mark the value_regno receiving the pointer
4036 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4037 		 */
4038 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4039 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
4040 		/* For mark_ptr_or_null_reg */
4041 		val_reg->id = ++env->id_gen;
4042 	} else if (class == BPF_STX) {
4043 		val_reg = reg_state(env, value_regno);
4044 		if (!register_is_null(val_reg) &&
4045 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4046 			return -EACCES;
4047 	} else if (class == BPF_ST) {
4048 		if (insn->imm) {
4049 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4050 				kptr_field->offset);
4051 			return -EACCES;
4052 		}
4053 	} else {
4054 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4055 		return -EACCES;
4056 	}
4057 	return 0;
4058 }
4059 
4060 /* check read/write into a map element with possible variable offset */
4061 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4062 			    int off, int size, bool zero_size_allowed,
4063 			    enum bpf_access_src src)
4064 {
4065 	struct bpf_verifier_state *vstate = env->cur_state;
4066 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4067 	struct bpf_reg_state *reg = &state->regs[regno];
4068 	struct bpf_map *map = reg->map_ptr;
4069 	struct btf_record *rec;
4070 	int err, i;
4071 
4072 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4073 				      zero_size_allowed);
4074 	if (err)
4075 		return err;
4076 
4077 	if (IS_ERR_OR_NULL(map->record))
4078 		return 0;
4079 	rec = map->record;
4080 	for (i = 0; i < rec->cnt; i++) {
4081 		struct btf_field *field = &rec->fields[i];
4082 		u32 p = field->offset;
4083 
4084 		/* If any part of a field  can be touched by load/store, reject
4085 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4086 		 * it is sufficient to check x1 < y2 && y1 < x2.
4087 		 */
4088 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4089 		    p < reg->umax_value + off + size) {
4090 			switch (field->type) {
4091 			case BPF_KPTR_UNREF:
4092 			case BPF_KPTR_REF:
4093 				if (src != ACCESS_DIRECT) {
4094 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4095 					return -EACCES;
4096 				}
4097 				if (!tnum_is_const(reg->var_off)) {
4098 					verbose(env, "kptr access cannot have variable offset\n");
4099 					return -EACCES;
4100 				}
4101 				if (p != off + reg->var_off.value) {
4102 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4103 						p, off + reg->var_off.value);
4104 					return -EACCES;
4105 				}
4106 				if (size != bpf_size_to_bytes(BPF_DW)) {
4107 					verbose(env, "kptr access size must be BPF_DW\n");
4108 					return -EACCES;
4109 				}
4110 				break;
4111 			default:
4112 				verbose(env, "%s cannot be accessed directly by load/store\n",
4113 					btf_field_type_name(field->type));
4114 				return -EACCES;
4115 			}
4116 		}
4117 	}
4118 	return 0;
4119 }
4120 
4121 #define MAX_PACKET_OFF 0xffff
4122 
4123 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4124 				       const struct bpf_call_arg_meta *meta,
4125 				       enum bpf_access_type t)
4126 {
4127 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4128 
4129 	switch (prog_type) {
4130 	/* Program types only with direct read access go here! */
4131 	case BPF_PROG_TYPE_LWT_IN:
4132 	case BPF_PROG_TYPE_LWT_OUT:
4133 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4134 	case BPF_PROG_TYPE_SK_REUSEPORT:
4135 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4136 	case BPF_PROG_TYPE_CGROUP_SKB:
4137 		if (t == BPF_WRITE)
4138 			return false;
4139 		fallthrough;
4140 
4141 	/* Program types with direct read + write access go here! */
4142 	case BPF_PROG_TYPE_SCHED_CLS:
4143 	case BPF_PROG_TYPE_SCHED_ACT:
4144 	case BPF_PROG_TYPE_XDP:
4145 	case BPF_PROG_TYPE_LWT_XMIT:
4146 	case BPF_PROG_TYPE_SK_SKB:
4147 	case BPF_PROG_TYPE_SK_MSG:
4148 		if (meta)
4149 			return meta->pkt_access;
4150 
4151 		env->seen_direct_write = true;
4152 		return true;
4153 
4154 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4155 		if (t == BPF_WRITE)
4156 			env->seen_direct_write = true;
4157 
4158 		return true;
4159 
4160 	default:
4161 		return false;
4162 	}
4163 }
4164 
4165 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4166 			       int size, bool zero_size_allowed)
4167 {
4168 	struct bpf_reg_state *regs = cur_regs(env);
4169 	struct bpf_reg_state *reg = &regs[regno];
4170 	int err;
4171 
4172 	/* We may have added a variable offset to the packet pointer; but any
4173 	 * reg->range we have comes after that.  We are only checking the fixed
4174 	 * offset.
4175 	 */
4176 
4177 	/* We don't allow negative numbers, because we aren't tracking enough
4178 	 * detail to prove they're safe.
4179 	 */
4180 	if (reg->smin_value < 0) {
4181 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4182 			regno);
4183 		return -EACCES;
4184 	}
4185 
4186 	err = reg->range < 0 ? -EINVAL :
4187 	      __check_mem_access(env, regno, off, size, reg->range,
4188 				 zero_size_allowed);
4189 	if (err) {
4190 		verbose(env, "R%d offset is outside of the packet\n", regno);
4191 		return err;
4192 	}
4193 
4194 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4195 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4196 	 * otherwise find_good_pkt_pointers would have refused to set range info
4197 	 * that __check_mem_access would have rejected this pkt access.
4198 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4199 	 */
4200 	env->prog->aux->max_pkt_offset =
4201 		max_t(u32, env->prog->aux->max_pkt_offset,
4202 		      off + reg->umax_value + size - 1);
4203 
4204 	return err;
4205 }
4206 
4207 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4208 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4209 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4210 			    struct btf **btf, u32 *btf_id)
4211 {
4212 	struct bpf_insn_access_aux info = {
4213 		.reg_type = *reg_type,
4214 		.log = &env->log,
4215 	};
4216 
4217 	if (env->ops->is_valid_access &&
4218 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4219 		/* A non zero info.ctx_field_size indicates that this field is a
4220 		 * candidate for later verifier transformation to load the whole
4221 		 * field and then apply a mask when accessed with a narrower
4222 		 * access than actual ctx access size. A zero info.ctx_field_size
4223 		 * will only allow for whole field access and rejects any other
4224 		 * type of narrower access.
4225 		 */
4226 		*reg_type = info.reg_type;
4227 
4228 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4229 			*btf = info.btf;
4230 			*btf_id = info.btf_id;
4231 		} else {
4232 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4233 		}
4234 		/* remember the offset of last byte accessed in ctx */
4235 		if (env->prog->aux->max_ctx_offset < off + size)
4236 			env->prog->aux->max_ctx_offset = off + size;
4237 		return 0;
4238 	}
4239 
4240 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4241 	return -EACCES;
4242 }
4243 
4244 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4245 				  int size)
4246 {
4247 	if (size < 0 || off < 0 ||
4248 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4249 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4250 			off, size);
4251 		return -EACCES;
4252 	}
4253 	return 0;
4254 }
4255 
4256 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4257 			     u32 regno, int off, int size,
4258 			     enum bpf_access_type t)
4259 {
4260 	struct bpf_reg_state *regs = cur_regs(env);
4261 	struct bpf_reg_state *reg = &regs[regno];
4262 	struct bpf_insn_access_aux info = {};
4263 	bool valid;
4264 
4265 	if (reg->smin_value < 0) {
4266 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4267 			regno);
4268 		return -EACCES;
4269 	}
4270 
4271 	switch (reg->type) {
4272 	case PTR_TO_SOCK_COMMON:
4273 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4274 		break;
4275 	case PTR_TO_SOCKET:
4276 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4277 		break;
4278 	case PTR_TO_TCP_SOCK:
4279 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4280 		break;
4281 	case PTR_TO_XDP_SOCK:
4282 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4283 		break;
4284 	default:
4285 		valid = false;
4286 	}
4287 
4288 
4289 	if (valid) {
4290 		env->insn_aux_data[insn_idx].ctx_field_size =
4291 			info.ctx_field_size;
4292 		return 0;
4293 	}
4294 
4295 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4296 		regno, reg_type_str(env, reg->type), off, size);
4297 
4298 	return -EACCES;
4299 }
4300 
4301 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4302 {
4303 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4304 }
4305 
4306 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4307 {
4308 	const struct bpf_reg_state *reg = reg_state(env, regno);
4309 
4310 	return reg->type == PTR_TO_CTX;
4311 }
4312 
4313 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4314 {
4315 	const struct bpf_reg_state *reg = reg_state(env, regno);
4316 
4317 	return type_is_sk_pointer(reg->type);
4318 }
4319 
4320 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4321 {
4322 	const struct bpf_reg_state *reg = reg_state(env, regno);
4323 
4324 	return type_is_pkt_pointer(reg->type);
4325 }
4326 
4327 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4328 {
4329 	const struct bpf_reg_state *reg = reg_state(env, regno);
4330 
4331 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4332 	return reg->type == PTR_TO_FLOW_KEYS;
4333 }
4334 
4335 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4336 {
4337 	/* A referenced register is always trusted. */
4338 	if (reg->ref_obj_id)
4339 		return true;
4340 
4341 	/* If a register is not referenced, it is trusted if it has the
4342 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4343 	 * other type modifiers may be safe, but we elect to take an opt-in
4344 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4345 	 * not.
4346 	 *
4347 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4348 	 * for whether a register is trusted.
4349 	 */
4350 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4351 	       !bpf_type_has_unsafe_modifiers(reg->type);
4352 }
4353 
4354 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4355 {
4356 	return reg->type & MEM_RCU;
4357 }
4358 
4359 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4360 				   const struct bpf_reg_state *reg,
4361 				   int off, int size, bool strict)
4362 {
4363 	struct tnum reg_off;
4364 	int ip_align;
4365 
4366 	/* Byte size accesses are always allowed. */
4367 	if (!strict || size == 1)
4368 		return 0;
4369 
4370 	/* For platforms that do not have a Kconfig enabling
4371 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4372 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4373 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4374 	 * to this code only in strict mode where we want to emulate
4375 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4376 	 * unconditional IP align value of '2'.
4377 	 */
4378 	ip_align = 2;
4379 
4380 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4381 	if (!tnum_is_aligned(reg_off, size)) {
4382 		char tn_buf[48];
4383 
4384 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4385 		verbose(env,
4386 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4387 			ip_align, tn_buf, reg->off, off, size);
4388 		return -EACCES;
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4395 				       const struct bpf_reg_state *reg,
4396 				       const char *pointer_desc,
4397 				       int off, int size, bool strict)
4398 {
4399 	struct tnum reg_off;
4400 
4401 	/* Byte size accesses are always allowed. */
4402 	if (!strict || size == 1)
4403 		return 0;
4404 
4405 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4406 	if (!tnum_is_aligned(reg_off, size)) {
4407 		char tn_buf[48];
4408 
4409 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4410 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4411 			pointer_desc, tn_buf, reg->off, off, size);
4412 		return -EACCES;
4413 	}
4414 
4415 	return 0;
4416 }
4417 
4418 static int check_ptr_alignment(struct bpf_verifier_env *env,
4419 			       const struct bpf_reg_state *reg, int off,
4420 			       int size, bool strict_alignment_once)
4421 {
4422 	bool strict = env->strict_alignment || strict_alignment_once;
4423 	const char *pointer_desc = "";
4424 
4425 	switch (reg->type) {
4426 	case PTR_TO_PACKET:
4427 	case PTR_TO_PACKET_META:
4428 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4429 		 * right in front, treat it the very same way.
4430 		 */
4431 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4432 	case PTR_TO_FLOW_KEYS:
4433 		pointer_desc = "flow keys ";
4434 		break;
4435 	case PTR_TO_MAP_KEY:
4436 		pointer_desc = "key ";
4437 		break;
4438 	case PTR_TO_MAP_VALUE:
4439 		pointer_desc = "value ";
4440 		break;
4441 	case PTR_TO_CTX:
4442 		pointer_desc = "context ";
4443 		break;
4444 	case PTR_TO_STACK:
4445 		pointer_desc = "stack ";
4446 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4447 		 * and check_stack_read_fixed_off() relies on stack accesses being
4448 		 * aligned.
4449 		 */
4450 		strict = true;
4451 		break;
4452 	case PTR_TO_SOCKET:
4453 		pointer_desc = "sock ";
4454 		break;
4455 	case PTR_TO_SOCK_COMMON:
4456 		pointer_desc = "sock_common ";
4457 		break;
4458 	case PTR_TO_TCP_SOCK:
4459 		pointer_desc = "tcp_sock ";
4460 		break;
4461 	case PTR_TO_XDP_SOCK:
4462 		pointer_desc = "xdp_sock ";
4463 		break;
4464 	default:
4465 		break;
4466 	}
4467 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4468 					   strict);
4469 }
4470 
4471 static int update_stack_depth(struct bpf_verifier_env *env,
4472 			      const struct bpf_func_state *func,
4473 			      int off)
4474 {
4475 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4476 
4477 	if (stack >= -off)
4478 		return 0;
4479 
4480 	/* update known max for given subprogram */
4481 	env->subprog_info[func->subprogno].stack_depth = -off;
4482 	return 0;
4483 }
4484 
4485 /* starting from main bpf function walk all instructions of the function
4486  * and recursively walk all callees that given function can call.
4487  * Ignore jump and exit insns.
4488  * Since recursion is prevented by check_cfg() this algorithm
4489  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4490  */
4491 static int check_max_stack_depth(struct bpf_verifier_env *env)
4492 {
4493 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4494 	struct bpf_subprog_info *subprog = env->subprog_info;
4495 	struct bpf_insn *insn = env->prog->insnsi;
4496 	bool tail_call_reachable = false;
4497 	int ret_insn[MAX_CALL_FRAMES];
4498 	int ret_prog[MAX_CALL_FRAMES];
4499 	int j;
4500 
4501 process_func:
4502 	/* protect against potential stack overflow that might happen when
4503 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4504 	 * depth for such case down to 256 so that the worst case scenario
4505 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4506 	 * 8k).
4507 	 *
4508 	 * To get the idea what might happen, see an example:
4509 	 * func1 -> sub rsp, 128
4510 	 *  subfunc1 -> sub rsp, 256
4511 	 *  tailcall1 -> add rsp, 256
4512 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4513 	 *   subfunc2 -> sub rsp, 64
4514 	 *   subfunc22 -> sub rsp, 128
4515 	 *   tailcall2 -> add rsp, 128
4516 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4517 	 *
4518 	 * tailcall will unwind the current stack frame but it will not get rid
4519 	 * of caller's stack as shown on the example above.
4520 	 */
4521 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4522 		verbose(env,
4523 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4524 			depth);
4525 		return -EACCES;
4526 	}
4527 	/* round up to 32-bytes, since this is granularity
4528 	 * of interpreter stack size
4529 	 */
4530 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4531 	if (depth > MAX_BPF_STACK) {
4532 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4533 			frame + 1, depth);
4534 		return -EACCES;
4535 	}
4536 continue_func:
4537 	subprog_end = subprog[idx + 1].start;
4538 	for (; i < subprog_end; i++) {
4539 		int next_insn;
4540 
4541 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4542 			continue;
4543 		/* remember insn and function to return to */
4544 		ret_insn[frame] = i + 1;
4545 		ret_prog[frame] = idx;
4546 
4547 		/* find the callee */
4548 		next_insn = i + insn[i].imm + 1;
4549 		idx = find_subprog(env, next_insn);
4550 		if (idx < 0) {
4551 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4552 				  next_insn);
4553 			return -EFAULT;
4554 		}
4555 		if (subprog[idx].is_async_cb) {
4556 			if (subprog[idx].has_tail_call) {
4557 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4558 				return -EFAULT;
4559 			}
4560 			 /* async callbacks don't increase bpf prog stack size */
4561 			continue;
4562 		}
4563 		i = next_insn;
4564 
4565 		if (subprog[idx].has_tail_call)
4566 			tail_call_reachable = true;
4567 
4568 		frame++;
4569 		if (frame >= MAX_CALL_FRAMES) {
4570 			verbose(env, "the call stack of %d frames is too deep !\n",
4571 				frame);
4572 			return -E2BIG;
4573 		}
4574 		goto process_func;
4575 	}
4576 	/* if tail call got detected across bpf2bpf calls then mark each of the
4577 	 * currently present subprog frames as tail call reachable subprogs;
4578 	 * this info will be utilized by JIT so that we will be preserving the
4579 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4580 	 */
4581 	if (tail_call_reachable)
4582 		for (j = 0; j < frame; j++)
4583 			subprog[ret_prog[j]].tail_call_reachable = true;
4584 	if (subprog[0].tail_call_reachable)
4585 		env->prog->aux->tail_call_reachable = true;
4586 
4587 	/* end of for() loop means the last insn of the 'subprog'
4588 	 * was reached. Doesn't matter whether it was JA or EXIT
4589 	 */
4590 	if (frame == 0)
4591 		return 0;
4592 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4593 	frame--;
4594 	i = ret_insn[frame];
4595 	idx = ret_prog[frame];
4596 	goto continue_func;
4597 }
4598 
4599 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4600 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4601 				  const struct bpf_insn *insn, int idx)
4602 {
4603 	int start = idx + insn->imm + 1, subprog;
4604 
4605 	subprog = find_subprog(env, start);
4606 	if (subprog < 0) {
4607 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4608 			  start);
4609 		return -EFAULT;
4610 	}
4611 	return env->subprog_info[subprog].stack_depth;
4612 }
4613 #endif
4614 
4615 static int __check_buffer_access(struct bpf_verifier_env *env,
4616 				 const char *buf_info,
4617 				 const struct bpf_reg_state *reg,
4618 				 int regno, int off, int size)
4619 {
4620 	if (off < 0) {
4621 		verbose(env,
4622 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4623 			regno, buf_info, off, size);
4624 		return -EACCES;
4625 	}
4626 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4627 		char tn_buf[48];
4628 
4629 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4630 		verbose(env,
4631 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4632 			regno, off, tn_buf);
4633 		return -EACCES;
4634 	}
4635 
4636 	return 0;
4637 }
4638 
4639 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4640 				  const struct bpf_reg_state *reg,
4641 				  int regno, int off, int size)
4642 {
4643 	int err;
4644 
4645 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4646 	if (err)
4647 		return err;
4648 
4649 	if (off + size > env->prog->aux->max_tp_access)
4650 		env->prog->aux->max_tp_access = off + size;
4651 
4652 	return 0;
4653 }
4654 
4655 static int check_buffer_access(struct bpf_verifier_env *env,
4656 			       const struct bpf_reg_state *reg,
4657 			       int regno, int off, int size,
4658 			       bool zero_size_allowed,
4659 			       u32 *max_access)
4660 {
4661 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4662 	int err;
4663 
4664 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4665 	if (err)
4666 		return err;
4667 
4668 	if (off + size > *max_access)
4669 		*max_access = off + size;
4670 
4671 	return 0;
4672 }
4673 
4674 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4675 static void zext_32_to_64(struct bpf_reg_state *reg)
4676 {
4677 	reg->var_off = tnum_subreg(reg->var_off);
4678 	__reg_assign_32_into_64(reg);
4679 }
4680 
4681 /* truncate register to smaller size (in bytes)
4682  * must be called with size < BPF_REG_SIZE
4683  */
4684 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4685 {
4686 	u64 mask;
4687 
4688 	/* clear high bits in bit representation */
4689 	reg->var_off = tnum_cast(reg->var_off, size);
4690 
4691 	/* fix arithmetic bounds */
4692 	mask = ((u64)1 << (size * 8)) - 1;
4693 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4694 		reg->umin_value &= mask;
4695 		reg->umax_value &= mask;
4696 	} else {
4697 		reg->umin_value = 0;
4698 		reg->umax_value = mask;
4699 	}
4700 	reg->smin_value = reg->umin_value;
4701 	reg->smax_value = reg->umax_value;
4702 
4703 	/* If size is smaller than 32bit register the 32bit register
4704 	 * values are also truncated so we push 64-bit bounds into
4705 	 * 32-bit bounds. Above were truncated < 32-bits already.
4706 	 */
4707 	if (size >= 4)
4708 		return;
4709 	__reg_combine_64_into_32(reg);
4710 }
4711 
4712 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4713 {
4714 	/* A map is considered read-only if the following condition are true:
4715 	 *
4716 	 * 1) BPF program side cannot change any of the map content. The
4717 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4718 	 *    and was set at map creation time.
4719 	 * 2) The map value(s) have been initialized from user space by a
4720 	 *    loader and then "frozen", such that no new map update/delete
4721 	 *    operations from syscall side are possible for the rest of
4722 	 *    the map's lifetime from that point onwards.
4723 	 * 3) Any parallel/pending map update/delete operations from syscall
4724 	 *    side have been completed. Only after that point, it's safe to
4725 	 *    assume that map value(s) are immutable.
4726 	 */
4727 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4728 	       READ_ONCE(map->frozen) &&
4729 	       !bpf_map_write_active(map);
4730 }
4731 
4732 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4733 {
4734 	void *ptr;
4735 	u64 addr;
4736 	int err;
4737 
4738 	err = map->ops->map_direct_value_addr(map, &addr, off);
4739 	if (err)
4740 		return err;
4741 	ptr = (void *)(long)addr + off;
4742 
4743 	switch (size) {
4744 	case sizeof(u8):
4745 		*val = (u64)*(u8 *)ptr;
4746 		break;
4747 	case sizeof(u16):
4748 		*val = (u64)*(u16 *)ptr;
4749 		break;
4750 	case sizeof(u32):
4751 		*val = (u64)*(u32 *)ptr;
4752 		break;
4753 	case sizeof(u64):
4754 		*val = *(u64 *)ptr;
4755 		break;
4756 	default:
4757 		return -EINVAL;
4758 	}
4759 	return 0;
4760 }
4761 
4762 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4763 				   struct bpf_reg_state *regs,
4764 				   int regno, int off, int size,
4765 				   enum bpf_access_type atype,
4766 				   int value_regno)
4767 {
4768 	struct bpf_reg_state *reg = regs + regno;
4769 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4770 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4771 	enum bpf_type_flag flag = 0;
4772 	u32 btf_id;
4773 	int ret;
4774 
4775 	if (!env->allow_ptr_leaks) {
4776 		verbose(env,
4777 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4778 			tname);
4779 		return -EPERM;
4780 	}
4781 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4782 		verbose(env,
4783 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4784 			tname);
4785 		return -EINVAL;
4786 	}
4787 	if (off < 0) {
4788 		verbose(env,
4789 			"R%d is ptr_%s invalid negative access: off=%d\n",
4790 			regno, tname, off);
4791 		return -EACCES;
4792 	}
4793 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4794 		char tn_buf[48];
4795 
4796 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4797 		verbose(env,
4798 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4799 			regno, tname, off, tn_buf);
4800 		return -EACCES;
4801 	}
4802 
4803 	if (reg->type & MEM_USER) {
4804 		verbose(env,
4805 			"R%d is ptr_%s access user memory: off=%d\n",
4806 			regno, tname, off);
4807 		return -EACCES;
4808 	}
4809 
4810 	if (reg->type & MEM_PERCPU) {
4811 		verbose(env,
4812 			"R%d is ptr_%s access percpu memory: off=%d\n",
4813 			regno, tname, off);
4814 		return -EACCES;
4815 	}
4816 
4817 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4818 		if (!btf_is_kernel(reg->btf)) {
4819 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4820 			return -EFAULT;
4821 		}
4822 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4823 	} else {
4824 		/* Writes are permitted with default btf_struct_access for
4825 		 * program allocated objects (which always have ref_obj_id > 0),
4826 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4827 		 */
4828 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
4829 			verbose(env, "only read is supported\n");
4830 			return -EACCES;
4831 		}
4832 
4833 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4834 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4835 			return -EFAULT;
4836 		}
4837 
4838 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4839 	}
4840 
4841 	if (ret < 0)
4842 		return ret;
4843 
4844 	/* If this is an untrusted pointer, all pointers formed by walking it
4845 	 * also inherit the untrusted flag.
4846 	 */
4847 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4848 		flag |= PTR_UNTRUSTED;
4849 
4850 	/* By default any pointer obtained from walking a trusted pointer is
4851 	 * no longer trusted except the rcu case below.
4852 	 */
4853 	flag &= ~PTR_TRUSTED;
4854 
4855 	if (flag & MEM_RCU) {
4856 		/* Mark value register as MEM_RCU only if it is protected by
4857 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
4858 		 * itself can already indicate trustedness inside the rcu
4859 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
4860 		 * it could be null in some cases.
4861 		 */
4862 		if (!env->cur_state->active_rcu_lock ||
4863 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
4864 			flag &= ~MEM_RCU;
4865 		else
4866 			flag |= PTR_MAYBE_NULL;
4867 	} else if (reg->type & MEM_RCU) {
4868 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
4869 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
4870 		 */
4871 		flag |= PTR_UNTRUSTED;
4872 	}
4873 
4874 	if (atype == BPF_READ && value_regno >= 0)
4875 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4876 
4877 	return 0;
4878 }
4879 
4880 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4881 				   struct bpf_reg_state *regs,
4882 				   int regno, int off, int size,
4883 				   enum bpf_access_type atype,
4884 				   int value_regno)
4885 {
4886 	struct bpf_reg_state *reg = regs + regno;
4887 	struct bpf_map *map = reg->map_ptr;
4888 	struct bpf_reg_state map_reg;
4889 	enum bpf_type_flag flag = 0;
4890 	const struct btf_type *t;
4891 	const char *tname;
4892 	u32 btf_id;
4893 	int ret;
4894 
4895 	if (!btf_vmlinux) {
4896 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4897 		return -ENOTSUPP;
4898 	}
4899 
4900 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4901 		verbose(env, "map_ptr access not supported for map type %d\n",
4902 			map->map_type);
4903 		return -ENOTSUPP;
4904 	}
4905 
4906 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4907 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4908 
4909 	if (!env->allow_ptr_leaks) {
4910 		verbose(env,
4911 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4912 			tname);
4913 		return -EPERM;
4914 	}
4915 
4916 	if (off < 0) {
4917 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4918 			regno, tname, off);
4919 		return -EACCES;
4920 	}
4921 
4922 	if (atype != BPF_READ) {
4923 		verbose(env, "only read from %s is supported\n", tname);
4924 		return -EACCES;
4925 	}
4926 
4927 	/* Simulate access to a PTR_TO_BTF_ID */
4928 	memset(&map_reg, 0, sizeof(map_reg));
4929 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4930 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
4931 	if (ret < 0)
4932 		return ret;
4933 
4934 	if (value_regno >= 0)
4935 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4936 
4937 	return 0;
4938 }
4939 
4940 /* Check that the stack access at the given offset is within bounds. The
4941  * maximum valid offset is -1.
4942  *
4943  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4944  * -state->allocated_stack for reads.
4945  */
4946 static int check_stack_slot_within_bounds(int off,
4947 					  struct bpf_func_state *state,
4948 					  enum bpf_access_type t)
4949 {
4950 	int min_valid_off;
4951 
4952 	if (t == BPF_WRITE)
4953 		min_valid_off = -MAX_BPF_STACK;
4954 	else
4955 		min_valid_off = -state->allocated_stack;
4956 
4957 	if (off < min_valid_off || off > -1)
4958 		return -EACCES;
4959 	return 0;
4960 }
4961 
4962 /* Check that the stack access at 'regno + off' falls within the maximum stack
4963  * bounds.
4964  *
4965  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4966  */
4967 static int check_stack_access_within_bounds(
4968 		struct bpf_verifier_env *env,
4969 		int regno, int off, int access_size,
4970 		enum bpf_access_src src, enum bpf_access_type type)
4971 {
4972 	struct bpf_reg_state *regs = cur_regs(env);
4973 	struct bpf_reg_state *reg = regs + regno;
4974 	struct bpf_func_state *state = func(env, reg);
4975 	int min_off, max_off;
4976 	int err;
4977 	char *err_extra;
4978 
4979 	if (src == ACCESS_HELPER)
4980 		/* We don't know if helpers are reading or writing (or both). */
4981 		err_extra = " indirect access to";
4982 	else if (type == BPF_READ)
4983 		err_extra = " read from";
4984 	else
4985 		err_extra = " write to";
4986 
4987 	if (tnum_is_const(reg->var_off)) {
4988 		min_off = reg->var_off.value + off;
4989 		if (access_size > 0)
4990 			max_off = min_off + access_size - 1;
4991 		else
4992 			max_off = min_off;
4993 	} else {
4994 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4995 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4996 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4997 				err_extra, regno);
4998 			return -EACCES;
4999 		}
5000 		min_off = reg->smin_value + off;
5001 		if (access_size > 0)
5002 			max_off = reg->smax_value + off + access_size - 1;
5003 		else
5004 			max_off = min_off;
5005 	}
5006 
5007 	err = check_stack_slot_within_bounds(min_off, state, type);
5008 	if (!err)
5009 		err = check_stack_slot_within_bounds(max_off, state, type);
5010 
5011 	if (err) {
5012 		if (tnum_is_const(reg->var_off)) {
5013 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5014 				err_extra, regno, off, access_size);
5015 		} else {
5016 			char tn_buf[48];
5017 
5018 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5019 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5020 				err_extra, regno, tn_buf, access_size);
5021 		}
5022 	}
5023 	return err;
5024 }
5025 
5026 /* check whether memory at (regno + off) is accessible for t = (read | write)
5027  * if t==write, value_regno is a register which value is stored into memory
5028  * if t==read, value_regno is a register which will receive the value from memory
5029  * if t==write && value_regno==-1, some unknown value is stored into memory
5030  * if t==read && value_regno==-1, don't care what we read from memory
5031  */
5032 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5033 			    int off, int bpf_size, enum bpf_access_type t,
5034 			    int value_regno, bool strict_alignment_once)
5035 {
5036 	struct bpf_reg_state *regs = cur_regs(env);
5037 	struct bpf_reg_state *reg = regs + regno;
5038 	struct bpf_func_state *state;
5039 	int size, err = 0;
5040 
5041 	size = bpf_size_to_bytes(bpf_size);
5042 	if (size < 0)
5043 		return size;
5044 
5045 	/* alignment checks will add in reg->off themselves */
5046 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5047 	if (err)
5048 		return err;
5049 
5050 	/* for access checks, reg->off is just part of off */
5051 	off += reg->off;
5052 
5053 	if (reg->type == PTR_TO_MAP_KEY) {
5054 		if (t == BPF_WRITE) {
5055 			verbose(env, "write to change key R%d not allowed\n", regno);
5056 			return -EACCES;
5057 		}
5058 
5059 		err = check_mem_region_access(env, regno, off, size,
5060 					      reg->map_ptr->key_size, false);
5061 		if (err)
5062 			return err;
5063 		if (value_regno >= 0)
5064 			mark_reg_unknown(env, regs, value_regno);
5065 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5066 		struct btf_field *kptr_field = NULL;
5067 
5068 		if (t == BPF_WRITE && value_regno >= 0 &&
5069 		    is_pointer_value(env, value_regno)) {
5070 			verbose(env, "R%d leaks addr into map\n", value_regno);
5071 			return -EACCES;
5072 		}
5073 		err = check_map_access_type(env, regno, off, size, t);
5074 		if (err)
5075 			return err;
5076 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5077 		if (err)
5078 			return err;
5079 		if (tnum_is_const(reg->var_off))
5080 			kptr_field = btf_record_find(reg->map_ptr->record,
5081 						     off + reg->var_off.value, BPF_KPTR);
5082 		if (kptr_field) {
5083 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5084 		} else if (t == BPF_READ && value_regno >= 0) {
5085 			struct bpf_map *map = reg->map_ptr;
5086 
5087 			/* if map is read-only, track its contents as scalars */
5088 			if (tnum_is_const(reg->var_off) &&
5089 			    bpf_map_is_rdonly(map) &&
5090 			    map->ops->map_direct_value_addr) {
5091 				int map_off = off + reg->var_off.value;
5092 				u64 val = 0;
5093 
5094 				err = bpf_map_direct_read(map, map_off, size,
5095 							  &val);
5096 				if (err)
5097 					return err;
5098 
5099 				regs[value_regno].type = SCALAR_VALUE;
5100 				__mark_reg_known(&regs[value_regno], val);
5101 			} else {
5102 				mark_reg_unknown(env, regs, value_regno);
5103 			}
5104 		}
5105 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5106 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5107 
5108 		if (type_may_be_null(reg->type)) {
5109 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5110 				reg_type_str(env, reg->type));
5111 			return -EACCES;
5112 		}
5113 
5114 		if (t == BPF_WRITE && rdonly_mem) {
5115 			verbose(env, "R%d cannot write into %s\n",
5116 				regno, reg_type_str(env, reg->type));
5117 			return -EACCES;
5118 		}
5119 
5120 		if (t == BPF_WRITE && value_regno >= 0 &&
5121 		    is_pointer_value(env, value_regno)) {
5122 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5123 			return -EACCES;
5124 		}
5125 
5126 		err = check_mem_region_access(env, regno, off, size,
5127 					      reg->mem_size, false);
5128 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5129 			mark_reg_unknown(env, regs, value_regno);
5130 	} else if (reg->type == PTR_TO_CTX) {
5131 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5132 		struct btf *btf = NULL;
5133 		u32 btf_id = 0;
5134 
5135 		if (t == BPF_WRITE && value_regno >= 0 &&
5136 		    is_pointer_value(env, value_regno)) {
5137 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5138 			return -EACCES;
5139 		}
5140 
5141 		err = check_ptr_off_reg(env, reg, regno);
5142 		if (err < 0)
5143 			return err;
5144 
5145 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5146 				       &btf_id);
5147 		if (err)
5148 			verbose_linfo(env, insn_idx, "; ");
5149 		if (!err && t == BPF_READ && value_regno >= 0) {
5150 			/* ctx access returns either a scalar, or a
5151 			 * PTR_TO_PACKET[_META,_END]. In the latter
5152 			 * case, we know the offset is zero.
5153 			 */
5154 			if (reg_type == SCALAR_VALUE) {
5155 				mark_reg_unknown(env, regs, value_regno);
5156 			} else {
5157 				mark_reg_known_zero(env, regs,
5158 						    value_regno);
5159 				if (type_may_be_null(reg_type))
5160 					regs[value_regno].id = ++env->id_gen;
5161 				/* A load of ctx field could have different
5162 				 * actual load size with the one encoded in the
5163 				 * insn. When the dst is PTR, it is for sure not
5164 				 * a sub-register.
5165 				 */
5166 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5167 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5168 					regs[value_regno].btf = btf;
5169 					regs[value_regno].btf_id = btf_id;
5170 				}
5171 			}
5172 			regs[value_regno].type = reg_type;
5173 		}
5174 
5175 	} else if (reg->type == PTR_TO_STACK) {
5176 		/* Basic bounds checks. */
5177 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5178 		if (err)
5179 			return err;
5180 
5181 		state = func(env, reg);
5182 		err = update_stack_depth(env, state, off);
5183 		if (err)
5184 			return err;
5185 
5186 		if (t == BPF_READ)
5187 			err = check_stack_read(env, regno, off, size,
5188 					       value_regno);
5189 		else
5190 			err = check_stack_write(env, regno, off, size,
5191 						value_regno, insn_idx);
5192 	} else if (reg_is_pkt_pointer(reg)) {
5193 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5194 			verbose(env, "cannot write into packet\n");
5195 			return -EACCES;
5196 		}
5197 		if (t == BPF_WRITE && value_regno >= 0 &&
5198 		    is_pointer_value(env, value_regno)) {
5199 			verbose(env, "R%d leaks addr into packet\n",
5200 				value_regno);
5201 			return -EACCES;
5202 		}
5203 		err = check_packet_access(env, regno, off, size, false);
5204 		if (!err && t == BPF_READ && value_regno >= 0)
5205 			mark_reg_unknown(env, regs, value_regno);
5206 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5207 		if (t == BPF_WRITE && value_regno >= 0 &&
5208 		    is_pointer_value(env, value_regno)) {
5209 			verbose(env, "R%d leaks addr into flow keys\n",
5210 				value_regno);
5211 			return -EACCES;
5212 		}
5213 
5214 		err = check_flow_keys_access(env, off, size);
5215 		if (!err && t == BPF_READ && value_regno >= 0)
5216 			mark_reg_unknown(env, regs, value_regno);
5217 	} else if (type_is_sk_pointer(reg->type)) {
5218 		if (t == BPF_WRITE) {
5219 			verbose(env, "R%d cannot write into %s\n",
5220 				regno, reg_type_str(env, reg->type));
5221 			return -EACCES;
5222 		}
5223 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5224 		if (!err && value_regno >= 0)
5225 			mark_reg_unknown(env, regs, value_regno);
5226 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5227 		err = check_tp_buffer_access(env, reg, regno, off, size);
5228 		if (!err && t == BPF_READ && value_regno >= 0)
5229 			mark_reg_unknown(env, regs, value_regno);
5230 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5231 		   !type_may_be_null(reg->type)) {
5232 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5233 					      value_regno);
5234 	} else if (reg->type == CONST_PTR_TO_MAP) {
5235 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5236 					      value_regno);
5237 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5238 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5239 		u32 *max_access;
5240 
5241 		if (rdonly_mem) {
5242 			if (t == BPF_WRITE) {
5243 				verbose(env, "R%d cannot write into %s\n",
5244 					regno, reg_type_str(env, reg->type));
5245 				return -EACCES;
5246 			}
5247 			max_access = &env->prog->aux->max_rdonly_access;
5248 		} else {
5249 			max_access = &env->prog->aux->max_rdwr_access;
5250 		}
5251 
5252 		err = check_buffer_access(env, reg, regno, off, size, false,
5253 					  max_access);
5254 
5255 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5256 			mark_reg_unknown(env, regs, value_regno);
5257 	} else {
5258 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5259 			reg_type_str(env, reg->type));
5260 		return -EACCES;
5261 	}
5262 
5263 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5264 	    regs[value_regno].type == SCALAR_VALUE) {
5265 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5266 		coerce_reg_to_size(&regs[value_regno], size);
5267 	}
5268 	return err;
5269 }
5270 
5271 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5272 {
5273 	int load_reg;
5274 	int err;
5275 
5276 	switch (insn->imm) {
5277 	case BPF_ADD:
5278 	case BPF_ADD | BPF_FETCH:
5279 	case BPF_AND:
5280 	case BPF_AND | BPF_FETCH:
5281 	case BPF_OR:
5282 	case BPF_OR | BPF_FETCH:
5283 	case BPF_XOR:
5284 	case BPF_XOR | BPF_FETCH:
5285 	case BPF_XCHG:
5286 	case BPF_CMPXCHG:
5287 		break;
5288 	default:
5289 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5290 		return -EINVAL;
5291 	}
5292 
5293 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5294 		verbose(env, "invalid atomic operand size\n");
5295 		return -EINVAL;
5296 	}
5297 
5298 	/* check src1 operand */
5299 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5300 	if (err)
5301 		return err;
5302 
5303 	/* check src2 operand */
5304 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5305 	if (err)
5306 		return err;
5307 
5308 	if (insn->imm == BPF_CMPXCHG) {
5309 		/* Check comparison of R0 with memory location */
5310 		const u32 aux_reg = BPF_REG_0;
5311 
5312 		err = check_reg_arg(env, aux_reg, SRC_OP);
5313 		if (err)
5314 			return err;
5315 
5316 		if (is_pointer_value(env, aux_reg)) {
5317 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5318 			return -EACCES;
5319 		}
5320 	}
5321 
5322 	if (is_pointer_value(env, insn->src_reg)) {
5323 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5324 		return -EACCES;
5325 	}
5326 
5327 	if (is_ctx_reg(env, insn->dst_reg) ||
5328 	    is_pkt_reg(env, insn->dst_reg) ||
5329 	    is_flow_key_reg(env, insn->dst_reg) ||
5330 	    is_sk_reg(env, insn->dst_reg)) {
5331 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5332 			insn->dst_reg,
5333 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5334 		return -EACCES;
5335 	}
5336 
5337 	if (insn->imm & BPF_FETCH) {
5338 		if (insn->imm == BPF_CMPXCHG)
5339 			load_reg = BPF_REG_0;
5340 		else
5341 			load_reg = insn->src_reg;
5342 
5343 		/* check and record load of old value */
5344 		err = check_reg_arg(env, load_reg, DST_OP);
5345 		if (err)
5346 			return err;
5347 	} else {
5348 		/* This instruction accesses a memory location but doesn't
5349 		 * actually load it into a register.
5350 		 */
5351 		load_reg = -1;
5352 	}
5353 
5354 	/* Check whether we can read the memory, with second call for fetch
5355 	 * case to simulate the register fill.
5356 	 */
5357 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5358 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5359 	if (!err && load_reg >= 0)
5360 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5361 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5362 				       true);
5363 	if (err)
5364 		return err;
5365 
5366 	/* Check whether we can write into the same memory. */
5367 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5368 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5369 	if (err)
5370 		return err;
5371 
5372 	return 0;
5373 }
5374 
5375 /* When register 'regno' is used to read the stack (either directly or through
5376  * a helper function) make sure that it's within stack boundary and, depending
5377  * on the access type, that all elements of the stack are initialized.
5378  *
5379  * 'off' includes 'regno->off', but not its dynamic part (if any).
5380  *
5381  * All registers that have been spilled on the stack in the slots within the
5382  * read offsets are marked as read.
5383  */
5384 static int check_stack_range_initialized(
5385 		struct bpf_verifier_env *env, int regno, int off,
5386 		int access_size, bool zero_size_allowed,
5387 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5388 {
5389 	struct bpf_reg_state *reg = reg_state(env, regno);
5390 	struct bpf_func_state *state = func(env, reg);
5391 	int err, min_off, max_off, i, j, slot, spi;
5392 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5393 	enum bpf_access_type bounds_check_type;
5394 	/* Some accesses can write anything into the stack, others are
5395 	 * read-only.
5396 	 */
5397 	bool clobber = false;
5398 
5399 	if (access_size == 0 && !zero_size_allowed) {
5400 		verbose(env, "invalid zero-sized read\n");
5401 		return -EACCES;
5402 	}
5403 
5404 	if (type == ACCESS_HELPER) {
5405 		/* The bounds checks for writes are more permissive than for
5406 		 * reads. However, if raw_mode is not set, we'll do extra
5407 		 * checks below.
5408 		 */
5409 		bounds_check_type = BPF_WRITE;
5410 		clobber = true;
5411 	} else {
5412 		bounds_check_type = BPF_READ;
5413 	}
5414 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5415 					       type, bounds_check_type);
5416 	if (err)
5417 		return err;
5418 
5419 
5420 	if (tnum_is_const(reg->var_off)) {
5421 		min_off = max_off = reg->var_off.value + off;
5422 	} else {
5423 		/* Variable offset is prohibited for unprivileged mode for
5424 		 * simplicity since it requires corresponding support in
5425 		 * Spectre masking for stack ALU.
5426 		 * See also retrieve_ptr_limit().
5427 		 */
5428 		if (!env->bypass_spec_v1) {
5429 			char tn_buf[48];
5430 
5431 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5432 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5433 				regno, err_extra, tn_buf);
5434 			return -EACCES;
5435 		}
5436 		/* Only initialized buffer on stack is allowed to be accessed
5437 		 * with variable offset. With uninitialized buffer it's hard to
5438 		 * guarantee that whole memory is marked as initialized on
5439 		 * helper return since specific bounds are unknown what may
5440 		 * cause uninitialized stack leaking.
5441 		 */
5442 		if (meta && meta->raw_mode)
5443 			meta = NULL;
5444 
5445 		min_off = reg->smin_value + off;
5446 		max_off = reg->smax_value + off;
5447 	}
5448 
5449 	if (meta && meta->raw_mode) {
5450 		meta->access_size = access_size;
5451 		meta->regno = regno;
5452 		return 0;
5453 	}
5454 
5455 	for (i = min_off; i < max_off + access_size; i++) {
5456 		u8 *stype;
5457 
5458 		slot = -i - 1;
5459 		spi = slot / BPF_REG_SIZE;
5460 		if (state->allocated_stack <= slot)
5461 			goto err;
5462 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5463 		if (*stype == STACK_MISC)
5464 			goto mark;
5465 		if (*stype == STACK_ZERO) {
5466 			if (clobber) {
5467 				/* helper can write anything into the stack */
5468 				*stype = STACK_MISC;
5469 			}
5470 			goto mark;
5471 		}
5472 
5473 		if (is_spilled_reg(&state->stack[spi]) &&
5474 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5475 		     env->allow_ptr_leaks)) {
5476 			if (clobber) {
5477 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5478 				for (j = 0; j < BPF_REG_SIZE; j++)
5479 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5480 			}
5481 			goto mark;
5482 		}
5483 
5484 err:
5485 		if (tnum_is_const(reg->var_off)) {
5486 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5487 				err_extra, regno, min_off, i - min_off, access_size);
5488 		} else {
5489 			char tn_buf[48];
5490 
5491 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5492 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5493 				err_extra, regno, tn_buf, i - min_off, access_size);
5494 		}
5495 		return -EACCES;
5496 mark:
5497 		/* reading any byte out of 8-byte 'spill_slot' will cause
5498 		 * the whole slot to be marked as 'read'
5499 		 */
5500 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5501 			      state->stack[spi].spilled_ptr.parent,
5502 			      REG_LIVE_READ64);
5503 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5504 		 * be sure that whether stack slot is written to or not. Hence,
5505 		 * we must still conservatively propagate reads upwards even if
5506 		 * helper may write to the entire memory range.
5507 		 */
5508 	}
5509 	return update_stack_depth(env, state, min_off);
5510 }
5511 
5512 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5513 				   int access_size, bool zero_size_allowed,
5514 				   struct bpf_call_arg_meta *meta)
5515 {
5516 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5517 	u32 *max_access;
5518 
5519 	switch (base_type(reg->type)) {
5520 	case PTR_TO_PACKET:
5521 	case PTR_TO_PACKET_META:
5522 		return check_packet_access(env, regno, reg->off, access_size,
5523 					   zero_size_allowed);
5524 	case PTR_TO_MAP_KEY:
5525 		if (meta && meta->raw_mode) {
5526 			verbose(env, "R%d cannot write into %s\n", regno,
5527 				reg_type_str(env, reg->type));
5528 			return -EACCES;
5529 		}
5530 		return check_mem_region_access(env, regno, reg->off, access_size,
5531 					       reg->map_ptr->key_size, false);
5532 	case PTR_TO_MAP_VALUE:
5533 		if (check_map_access_type(env, regno, reg->off, access_size,
5534 					  meta && meta->raw_mode ? BPF_WRITE :
5535 					  BPF_READ))
5536 			return -EACCES;
5537 		return check_map_access(env, regno, reg->off, access_size,
5538 					zero_size_allowed, ACCESS_HELPER);
5539 	case PTR_TO_MEM:
5540 		if (type_is_rdonly_mem(reg->type)) {
5541 			if (meta && meta->raw_mode) {
5542 				verbose(env, "R%d cannot write into %s\n", regno,
5543 					reg_type_str(env, reg->type));
5544 				return -EACCES;
5545 			}
5546 		}
5547 		return check_mem_region_access(env, regno, reg->off,
5548 					       access_size, reg->mem_size,
5549 					       zero_size_allowed);
5550 	case PTR_TO_BUF:
5551 		if (type_is_rdonly_mem(reg->type)) {
5552 			if (meta && meta->raw_mode) {
5553 				verbose(env, "R%d cannot write into %s\n", regno,
5554 					reg_type_str(env, reg->type));
5555 				return -EACCES;
5556 			}
5557 
5558 			max_access = &env->prog->aux->max_rdonly_access;
5559 		} else {
5560 			max_access = &env->prog->aux->max_rdwr_access;
5561 		}
5562 		return check_buffer_access(env, reg, regno, reg->off,
5563 					   access_size, zero_size_allowed,
5564 					   max_access);
5565 	case PTR_TO_STACK:
5566 		return check_stack_range_initialized(
5567 				env,
5568 				regno, reg->off, access_size,
5569 				zero_size_allowed, ACCESS_HELPER, meta);
5570 	case PTR_TO_CTX:
5571 		/* in case the function doesn't know how to access the context,
5572 		 * (because we are in a program of type SYSCALL for example), we
5573 		 * can not statically check its size.
5574 		 * Dynamically check it now.
5575 		 */
5576 		if (!env->ops->convert_ctx_access) {
5577 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5578 			int offset = access_size - 1;
5579 
5580 			/* Allow zero-byte read from PTR_TO_CTX */
5581 			if (access_size == 0)
5582 				return zero_size_allowed ? 0 : -EACCES;
5583 
5584 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5585 						atype, -1, false);
5586 		}
5587 
5588 		fallthrough;
5589 	default: /* scalar_value or invalid ptr */
5590 		/* Allow zero-byte read from NULL, regardless of pointer type */
5591 		if (zero_size_allowed && access_size == 0 &&
5592 		    register_is_null(reg))
5593 			return 0;
5594 
5595 		verbose(env, "R%d type=%s ", regno,
5596 			reg_type_str(env, reg->type));
5597 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5598 		return -EACCES;
5599 	}
5600 }
5601 
5602 static int check_mem_size_reg(struct bpf_verifier_env *env,
5603 			      struct bpf_reg_state *reg, u32 regno,
5604 			      bool zero_size_allowed,
5605 			      struct bpf_call_arg_meta *meta)
5606 {
5607 	int err;
5608 
5609 	/* This is used to refine r0 return value bounds for helpers
5610 	 * that enforce this value as an upper bound on return values.
5611 	 * See do_refine_retval_range() for helpers that can refine
5612 	 * the return value. C type of helper is u32 so we pull register
5613 	 * bound from umax_value however, if negative verifier errors
5614 	 * out. Only upper bounds can be learned because retval is an
5615 	 * int type and negative retvals are allowed.
5616 	 */
5617 	meta->msize_max_value = reg->umax_value;
5618 
5619 	/* The register is SCALAR_VALUE; the access check
5620 	 * happens using its boundaries.
5621 	 */
5622 	if (!tnum_is_const(reg->var_off))
5623 		/* For unprivileged variable accesses, disable raw
5624 		 * mode so that the program is required to
5625 		 * initialize all the memory that the helper could
5626 		 * just partially fill up.
5627 		 */
5628 		meta = NULL;
5629 
5630 	if (reg->smin_value < 0) {
5631 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5632 			regno);
5633 		return -EACCES;
5634 	}
5635 
5636 	if (reg->umin_value == 0) {
5637 		err = check_helper_mem_access(env, regno - 1, 0,
5638 					      zero_size_allowed,
5639 					      meta);
5640 		if (err)
5641 			return err;
5642 	}
5643 
5644 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5645 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5646 			regno);
5647 		return -EACCES;
5648 	}
5649 	err = check_helper_mem_access(env, regno - 1,
5650 				      reg->umax_value,
5651 				      zero_size_allowed, meta);
5652 	if (!err)
5653 		err = mark_chain_precision(env, regno);
5654 	return err;
5655 }
5656 
5657 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5658 		   u32 regno, u32 mem_size)
5659 {
5660 	bool may_be_null = type_may_be_null(reg->type);
5661 	struct bpf_reg_state saved_reg;
5662 	struct bpf_call_arg_meta meta;
5663 	int err;
5664 
5665 	if (register_is_null(reg))
5666 		return 0;
5667 
5668 	memset(&meta, 0, sizeof(meta));
5669 	/* Assuming that the register contains a value check if the memory
5670 	 * access is safe. Temporarily save and restore the register's state as
5671 	 * the conversion shouldn't be visible to a caller.
5672 	 */
5673 	if (may_be_null) {
5674 		saved_reg = *reg;
5675 		mark_ptr_not_null_reg(reg);
5676 	}
5677 
5678 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5679 	/* Check access for BPF_WRITE */
5680 	meta.raw_mode = true;
5681 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5682 
5683 	if (may_be_null)
5684 		*reg = saved_reg;
5685 
5686 	return err;
5687 }
5688 
5689 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5690 				    u32 regno)
5691 {
5692 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5693 	bool may_be_null = type_may_be_null(mem_reg->type);
5694 	struct bpf_reg_state saved_reg;
5695 	struct bpf_call_arg_meta meta;
5696 	int err;
5697 
5698 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5699 
5700 	memset(&meta, 0, sizeof(meta));
5701 
5702 	if (may_be_null) {
5703 		saved_reg = *mem_reg;
5704 		mark_ptr_not_null_reg(mem_reg);
5705 	}
5706 
5707 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5708 	/* Check access for BPF_WRITE */
5709 	meta.raw_mode = true;
5710 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5711 
5712 	if (may_be_null)
5713 		*mem_reg = saved_reg;
5714 	return err;
5715 }
5716 
5717 /* Implementation details:
5718  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5719  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5720  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5721  * Two separate bpf_obj_new will also have different reg->id.
5722  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5723  * clears reg->id after value_or_null->value transition, since the verifier only
5724  * cares about the range of access to valid map value pointer and doesn't care
5725  * about actual address of the map element.
5726  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5727  * reg->id > 0 after value_or_null->value transition. By doing so
5728  * two bpf_map_lookups will be considered two different pointers that
5729  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5730  * returned from bpf_obj_new.
5731  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5732  * dead-locks.
5733  * Since only one bpf_spin_lock is allowed the checks are simpler than
5734  * reg_is_refcounted() logic. The verifier needs to remember only
5735  * one spin_lock instead of array of acquired_refs.
5736  * cur_state->active_lock remembers which map value element or allocated
5737  * object got locked and clears it after bpf_spin_unlock.
5738  */
5739 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5740 			     bool is_lock)
5741 {
5742 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5743 	struct bpf_verifier_state *cur = env->cur_state;
5744 	bool is_const = tnum_is_const(reg->var_off);
5745 	u64 val = reg->var_off.value;
5746 	struct bpf_map *map = NULL;
5747 	struct btf *btf = NULL;
5748 	struct btf_record *rec;
5749 
5750 	if (!is_const) {
5751 		verbose(env,
5752 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5753 			regno);
5754 		return -EINVAL;
5755 	}
5756 	if (reg->type == PTR_TO_MAP_VALUE) {
5757 		map = reg->map_ptr;
5758 		if (!map->btf) {
5759 			verbose(env,
5760 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5761 				map->name);
5762 			return -EINVAL;
5763 		}
5764 	} else {
5765 		btf = reg->btf;
5766 	}
5767 
5768 	rec = reg_btf_record(reg);
5769 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5770 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5771 			map ? map->name : "kptr");
5772 		return -EINVAL;
5773 	}
5774 	if (rec->spin_lock_off != val + reg->off) {
5775 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5776 			val + reg->off, rec->spin_lock_off);
5777 		return -EINVAL;
5778 	}
5779 	if (is_lock) {
5780 		if (cur->active_lock.ptr) {
5781 			verbose(env,
5782 				"Locking two bpf_spin_locks are not allowed\n");
5783 			return -EINVAL;
5784 		}
5785 		if (map)
5786 			cur->active_lock.ptr = map;
5787 		else
5788 			cur->active_lock.ptr = btf;
5789 		cur->active_lock.id = reg->id;
5790 	} else {
5791 		struct bpf_func_state *fstate = cur_func(env);
5792 		void *ptr;
5793 		int i;
5794 
5795 		if (map)
5796 			ptr = map;
5797 		else
5798 			ptr = btf;
5799 
5800 		if (!cur->active_lock.ptr) {
5801 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5802 			return -EINVAL;
5803 		}
5804 		if (cur->active_lock.ptr != ptr ||
5805 		    cur->active_lock.id != reg->id) {
5806 			verbose(env, "bpf_spin_unlock of different lock\n");
5807 			return -EINVAL;
5808 		}
5809 		cur->active_lock.ptr = NULL;
5810 		cur->active_lock.id = 0;
5811 
5812 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
5813 			int err;
5814 
5815 			/* Complain on error because this reference state cannot
5816 			 * be freed before this point, as bpf_spin_lock critical
5817 			 * section does not allow functions that release the
5818 			 * allocated object immediately.
5819 			 */
5820 			if (!fstate->refs[i].release_on_unlock)
5821 				continue;
5822 			err = release_reference(env, fstate->refs[i].id);
5823 			if (err) {
5824 				verbose(env, "failed to release release_on_unlock reference");
5825 				return err;
5826 			}
5827 		}
5828 	}
5829 	return 0;
5830 }
5831 
5832 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5833 			      struct bpf_call_arg_meta *meta)
5834 {
5835 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5836 	bool is_const = tnum_is_const(reg->var_off);
5837 	struct bpf_map *map = reg->map_ptr;
5838 	u64 val = reg->var_off.value;
5839 
5840 	if (!is_const) {
5841 		verbose(env,
5842 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5843 			regno);
5844 		return -EINVAL;
5845 	}
5846 	if (!map->btf) {
5847 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5848 			map->name);
5849 		return -EINVAL;
5850 	}
5851 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
5852 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
5853 		return -EINVAL;
5854 	}
5855 	if (map->record->timer_off != val + reg->off) {
5856 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5857 			val + reg->off, map->record->timer_off);
5858 		return -EINVAL;
5859 	}
5860 	if (meta->map_ptr) {
5861 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5862 		return -EFAULT;
5863 	}
5864 	meta->map_uid = reg->map_uid;
5865 	meta->map_ptr = map;
5866 	return 0;
5867 }
5868 
5869 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5870 			     struct bpf_call_arg_meta *meta)
5871 {
5872 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5873 	struct bpf_map *map_ptr = reg->map_ptr;
5874 	struct btf_field *kptr_field;
5875 	u32 kptr_off;
5876 
5877 	if (!tnum_is_const(reg->var_off)) {
5878 		verbose(env,
5879 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5880 			regno);
5881 		return -EINVAL;
5882 	}
5883 	if (!map_ptr->btf) {
5884 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5885 			map_ptr->name);
5886 		return -EINVAL;
5887 	}
5888 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5889 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5890 		return -EINVAL;
5891 	}
5892 
5893 	meta->map_ptr = map_ptr;
5894 	kptr_off = reg->off + reg->var_off.value;
5895 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5896 	if (!kptr_field) {
5897 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5898 		return -EACCES;
5899 	}
5900 	if (kptr_field->type != BPF_KPTR_REF) {
5901 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5902 		return -EACCES;
5903 	}
5904 	meta->kptr_field = kptr_field;
5905 	return 0;
5906 }
5907 
5908 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
5909  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
5910  *
5911  * In both cases we deal with the first 8 bytes, but need to mark the next 8
5912  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
5913  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
5914  *
5915  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
5916  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
5917  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
5918  * mutate the view of the dynptr and also possibly destroy it. In the latter
5919  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
5920  * memory that dynptr points to.
5921  *
5922  * The verifier will keep track both levels of mutation (bpf_dynptr's in
5923  * reg->type and the memory's in reg->dynptr.type), but there is no support for
5924  * readonly dynptr view yet, hence only the first case is tracked and checked.
5925  *
5926  * This is consistent with how C applies the const modifier to a struct object,
5927  * where the pointer itself inside bpf_dynptr becomes const but not what it
5928  * points to.
5929  *
5930  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
5931  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
5932  */
5933 int process_dynptr_func(struct bpf_verifier_env *env, int regno,
5934 			enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta)
5935 {
5936 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5937 
5938 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
5939 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
5940 	 */
5941 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
5942 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
5943 		return -EFAULT;
5944 	}
5945 	/* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
5946 	 * check_func_arg_reg_off's logic. We only need to check offset
5947 	 * alignment for PTR_TO_STACK.
5948 	 */
5949 	if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) {
5950 		verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off);
5951 		return -EINVAL;
5952 	}
5953 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
5954 	 *		 constructing a mutable bpf_dynptr object.
5955 	 *
5956 	 *		 Currently, this is only possible with PTR_TO_STACK
5957 	 *		 pointing to a region of at least 16 bytes which doesn't
5958 	 *		 contain an existing bpf_dynptr.
5959 	 *
5960 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
5961 	 *		 mutated or destroyed. However, the memory it points to
5962 	 *		 may be mutated.
5963 	 *
5964 	 *  None       - Points to a initialized dynptr that can be mutated and
5965 	 *		 destroyed, including mutation of the memory it points
5966 	 *		 to.
5967 	 */
5968 	if (arg_type & MEM_UNINIT) {
5969 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
5970 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
5971 			return -EINVAL;
5972 		}
5973 
5974 		/* We only support one dynptr being uninitialized at the moment,
5975 		 * which is sufficient for the helper functions we have right now.
5976 		 */
5977 		if (meta->uninit_dynptr_regno) {
5978 			verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
5979 			return -EFAULT;
5980 		}
5981 
5982 		meta->uninit_dynptr_regno = regno;
5983 	} else /* MEM_RDONLY and None case from above */ {
5984 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
5985 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
5986 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
5987 			return -EINVAL;
5988 		}
5989 
5990 		if (!is_dynptr_reg_valid_init(env, reg)) {
5991 			verbose(env,
5992 				"Expected an initialized dynptr as arg #%d\n",
5993 				regno);
5994 			return -EINVAL;
5995 		}
5996 
5997 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
5998 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
5999 			const char *err_extra = "";
6000 
6001 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6002 			case DYNPTR_TYPE_LOCAL:
6003 				err_extra = "local";
6004 				break;
6005 			case DYNPTR_TYPE_RINGBUF:
6006 				err_extra = "ringbuf";
6007 				break;
6008 			default:
6009 				err_extra = "<unknown>";
6010 				break;
6011 			}
6012 			verbose(env,
6013 				"Expected a dynptr of type %s as arg #%d\n",
6014 				err_extra, regno);
6015 			return -EINVAL;
6016 		}
6017 	}
6018 	return 0;
6019 }
6020 
6021 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6022 {
6023 	return type == ARG_CONST_SIZE ||
6024 	       type == ARG_CONST_SIZE_OR_ZERO;
6025 }
6026 
6027 static bool arg_type_is_release(enum bpf_arg_type type)
6028 {
6029 	return type & OBJ_RELEASE;
6030 }
6031 
6032 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6033 {
6034 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6035 }
6036 
6037 static int int_ptr_type_to_size(enum bpf_arg_type type)
6038 {
6039 	if (type == ARG_PTR_TO_INT)
6040 		return sizeof(u32);
6041 	else if (type == ARG_PTR_TO_LONG)
6042 		return sizeof(u64);
6043 
6044 	return -EINVAL;
6045 }
6046 
6047 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6048 				 const struct bpf_call_arg_meta *meta,
6049 				 enum bpf_arg_type *arg_type)
6050 {
6051 	if (!meta->map_ptr) {
6052 		/* kernel subsystem misconfigured verifier */
6053 		verbose(env, "invalid map_ptr to access map->type\n");
6054 		return -EACCES;
6055 	}
6056 
6057 	switch (meta->map_ptr->map_type) {
6058 	case BPF_MAP_TYPE_SOCKMAP:
6059 	case BPF_MAP_TYPE_SOCKHASH:
6060 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6061 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
6062 		} else {
6063 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
6064 			return -EINVAL;
6065 		}
6066 		break;
6067 	case BPF_MAP_TYPE_BLOOM_FILTER:
6068 		if (meta->func_id == BPF_FUNC_map_peek_elem)
6069 			*arg_type = ARG_PTR_TO_MAP_VALUE;
6070 		break;
6071 	default:
6072 		break;
6073 	}
6074 	return 0;
6075 }
6076 
6077 struct bpf_reg_types {
6078 	const enum bpf_reg_type types[10];
6079 	u32 *btf_id;
6080 };
6081 
6082 static const struct bpf_reg_types sock_types = {
6083 	.types = {
6084 		PTR_TO_SOCK_COMMON,
6085 		PTR_TO_SOCKET,
6086 		PTR_TO_TCP_SOCK,
6087 		PTR_TO_XDP_SOCK,
6088 	},
6089 };
6090 
6091 #ifdef CONFIG_NET
6092 static const struct bpf_reg_types btf_id_sock_common_types = {
6093 	.types = {
6094 		PTR_TO_SOCK_COMMON,
6095 		PTR_TO_SOCKET,
6096 		PTR_TO_TCP_SOCK,
6097 		PTR_TO_XDP_SOCK,
6098 		PTR_TO_BTF_ID,
6099 		PTR_TO_BTF_ID | PTR_TRUSTED,
6100 	},
6101 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6102 };
6103 #endif
6104 
6105 static const struct bpf_reg_types mem_types = {
6106 	.types = {
6107 		PTR_TO_STACK,
6108 		PTR_TO_PACKET,
6109 		PTR_TO_PACKET_META,
6110 		PTR_TO_MAP_KEY,
6111 		PTR_TO_MAP_VALUE,
6112 		PTR_TO_MEM,
6113 		PTR_TO_MEM | MEM_RINGBUF,
6114 		PTR_TO_BUF,
6115 	},
6116 };
6117 
6118 static const struct bpf_reg_types int_ptr_types = {
6119 	.types = {
6120 		PTR_TO_STACK,
6121 		PTR_TO_PACKET,
6122 		PTR_TO_PACKET_META,
6123 		PTR_TO_MAP_KEY,
6124 		PTR_TO_MAP_VALUE,
6125 	},
6126 };
6127 
6128 static const struct bpf_reg_types spin_lock_types = {
6129 	.types = {
6130 		PTR_TO_MAP_VALUE,
6131 		PTR_TO_BTF_ID | MEM_ALLOC,
6132 	}
6133 };
6134 
6135 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
6136 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
6137 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
6138 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
6139 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
6140 static const struct bpf_reg_types btf_ptr_types = {
6141 	.types = {
6142 		PTR_TO_BTF_ID,
6143 		PTR_TO_BTF_ID | PTR_TRUSTED,
6144 		PTR_TO_BTF_ID | MEM_RCU,
6145 	},
6146 };
6147 static const struct bpf_reg_types percpu_btf_ptr_types = {
6148 	.types = {
6149 		PTR_TO_BTF_ID | MEM_PERCPU,
6150 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
6151 	}
6152 };
6153 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
6154 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
6155 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
6156 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
6157 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
6158 static const struct bpf_reg_types dynptr_types = {
6159 	.types = {
6160 		PTR_TO_STACK,
6161 		CONST_PTR_TO_DYNPTR,
6162 	}
6163 };
6164 
6165 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
6166 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
6167 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
6168 	[ARG_CONST_SIZE]		= &scalar_types,
6169 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
6170 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
6171 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6172 	[ARG_PTR_TO_CTX]		= &context_types,
6173 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6174 #ifdef CONFIG_NET
6175 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6176 #endif
6177 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6178 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6179 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6180 	[ARG_PTR_TO_MEM]		= &mem_types,
6181 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6182 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6183 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6184 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6185 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6186 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6187 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6188 	[ARG_PTR_TO_TIMER]		= &timer_types,
6189 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6190 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6191 };
6192 
6193 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6194 			  enum bpf_arg_type arg_type,
6195 			  const u32 *arg_btf_id,
6196 			  struct bpf_call_arg_meta *meta)
6197 {
6198 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6199 	enum bpf_reg_type expected, type = reg->type;
6200 	const struct bpf_reg_types *compatible;
6201 	int i, j;
6202 
6203 	compatible = compatible_reg_types[base_type(arg_type)];
6204 	if (!compatible) {
6205 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6206 		return -EFAULT;
6207 	}
6208 
6209 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6210 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6211 	 *
6212 	 * Same for MAYBE_NULL:
6213 	 *
6214 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6215 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6216 	 *
6217 	 * Therefore we fold these flags depending on the arg_type before comparison.
6218 	 */
6219 	if (arg_type & MEM_RDONLY)
6220 		type &= ~MEM_RDONLY;
6221 	if (arg_type & PTR_MAYBE_NULL)
6222 		type &= ~PTR_MAYBE_NULL;
6223 
6224 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6225 		expected = compatible->types[i];
6226 		if (expected == NOT_INIT)
6227 			break;
6228 
6229 		if (type == expected)
6230 			goto found;
6231 	}
6232 
6233 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6234 	for (j = 0; j + 1 < i; j++)
6235 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6236 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6237 	return -EACCES;
6238 
6239 found:
6240 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6241 		/* For bpf_sk_release, it needs to match against first member
6242 		 * 'struct sock_common', hence make an exception for it. This
6243 		 * allows bpf_sk_release to work for multiple socket types.
6244 		 */
6245 		bool strict_type_match = arg_type_is_release(arg_type) &&
6246 					 meta->func_id != BPF_FUNC_sk_release;
6247 
6248 		if (!arg_btf_id) {
6249 			if (!compatible->btf_id) {
6250 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6251 				return -EFAULT;
6252 			}
6253 			arg_btf_id = compatible->btf_id;
6254 		}
6255 
6256 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6257 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6258 				return -EACCES;
6259 		} else {
6260 			if (arg_btf_id == BPF_PTR_POISON) {
6261 				verbose(env, "verifier internal error:");
6262 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6263 					regno);
6264 				return -EACCES;
6265 			}
6266 
6267 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6268 						  btf_vmlinux, *arg_btf_id,
6269 						  strict_type_match)) {
6270 				verbose(env, "R%d is of type %s but %s is expected\n",
6271 					regno, kernel_type_name(reg->btf, reg->btf_id),
6272 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6273 				return -EACCES;
6274 			}
6275 		}
6276 	} else if (type_is_alloc(reg->type)) {
6277 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6278 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6279 			return -EFAULT;
6280 		}
6281 	}
6282 
6283 	return 0;
6284 }
6285 
6286 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6287 			   const struct bpf_reg_state *reg, int regno,
6288 			   enum bpf_arg_type arg_type)
6289 {
6290 	u32 type = reg->type;
6291 
6292 	/* When referenced register is passed to release function, its fixed
6293 	 * offset must be 0.
6294 	 *
6295 	 * We will check arg_type_is_release reg has ref_obj_id when storing
6296 	 * meta->release_regno.
6297 	 */
6298 	if (arg_type_is_release(arg_type)) {
6299 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
6300 		 * may not directly point to the object being released, but to
6301 		 * dynptr pointing to such object, which might be at some offset
6302 		 * on the stack. In that case, we simply to fallback to the
6303 		 * default handling.
6304 		 */
6305 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
6306 			return 0;
6307 		/* Doing check_ptr_off_reg check for the offset will catch this
6308 		 * because fixed_off_ok is false, but checking here allows us
6309 		 * to give the user a better error message.
6310 		 */
6311 		if (reg->off) {
6312 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
6313 				regno);
6314 			return -EINVAL;
6315 		}
6316 		return __check_ptr_off_reg(env, reg, regno, false);
6317 	}
6318 
6319 	switch (type) {
6320 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
6321 	case PTR_TO_STACK:
6322 	case PTR_TO_PACKET:
6323 	case PTR_TO_PACKET_META:
6324 	case PTR_TO_MAP_KEY:
6325 	case PTR_TO_MAP_VALUE:
6326 	case PTR_TO_MEM:
6327 	case PTR_TO_MEM | MEM_RDONLY:
6328 	case PTR_TO_MEM | MEM_RINGBUF:
6329 	case PTR_TO_BUF:
6330 	case PTR_TO_BUF | MEM_RDONLY:
6331 	case SCALAR_VALUE:
6332 		return 0;
6333 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6334 	 * fixed offset.
6335 	 */
6336 	case PTR_TO_BTF_ID:
6337 	case PTR_TO_BTF_ID | MEM_ALLOC:
6338 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6339 	case PTR_TO_BTF_ID | MEM_RCU:
6340 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6341 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6342 		 * its fixed offset must be 0. In the other cases, fixed offset
6343 		 * can be non-zero. This was already checked above. So pass
6344 		 * fixed_off_ok as true to allow fixed offset for all other
6345 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
6346 		 * still need to do checks instead of returning.
6347 		 */
6348 		return __check_ptr_off_reg(env, reg, regno, true);
6349 	default:
6350 		return __check_ptr_off_reg(env, reg, regno, false);
6351 	}
6352 }
6353 
6354 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6355 {
6356 	struct bpf_func_state *state = func(env, reg);
6357 	int spi;
6358 
6359 	if (reg->type == CONST_PTR_TO_DYNPTR)
6360 		return reg->ref_obj_id;
6361 
6362 	spi = get_spi(reg->off);
6363 	return state->stack[spi].spilled_ptr.ref_obj_id;
6364 }
6365 
6366 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6367 			  struct bpf_call_arg_meta *meta,
6368 			  const struct bpf_func_proto *fn)
6369 {
6370 	u32 regno = BPF_REG_1 + arg;
6371 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6372 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6373 	enum bpf_reg_type type = reg->type;
6374 	u32 *arg_btf_id = NULL;
6375 	int err = 0;
6376 
6377 	if (arg_type == ARG_DONTCARE)
6378 		return 0;
6379 
6380 	err = check_reg_arg(env, regno, SRC_OP);
6381 	if (err)
6382 		return err;
6383 
6384 	if (arg_type == ARG_ANYTHING) {
6385 		if (is_pointer_value(env, regno)) {
6386 			verbose(env, "R%d leaks addr into helper function\n",
6387 				regno);
6388 			return -EACCES;
6389 		}
6390 		return 0;
6391 	}
6392 
6393 	if (type_is_pkt_pointer(type) &&
6394 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6395 		verbose(env, "helper access to the packet is not allowed\n");
6396 		return -EACCES;
6397 	}
6398 
6399 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6400 		err = resolve_map_arg_type(env, meta, &arg_type);
6401 		if (err)
6402 			return err;
6403 	}
6404 
6405 	if (register_is_null(reg) && type_may_be_null(arg_type))
6406 		/* A NULL register has a SCALAR_VALUE type, so skip
6407 		 * type checking.
6408 		 */
6409 		goto skip_type_check;
6410 
6411 	/* arg_btf_id and arg_size are in a union. */
6412 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6413 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6414 		arg_btf_id = fn->arg_btf_id[arg];
6415 
6416 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6417 	if (err)
6418 		return err;
6419 
6420 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6421 	if (err)
6422 		return err;
6423 
6424 skip_type_check:
6425 	if (arg_type_is_release(arg_type)) {
6426 		if (arg_type_is_dynptr(arg_type)) {
6427 			struct bpf_func_state *state = func(env, reg);
6428 			int spi;
6429 
6430 			/* Only dynptr created on stack can be released, thus
6431 			 * the get_spi and stack state checks for spilled_ptr
6432 			 * should only be done before process_dynptr_func for
6433 			 * PTR_TO_STACK.
6434 			 */
6435 			if (reg->type == PTR_TO_STACK) {
6436 				spi = get_spi(reg->off);
6437 				if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6438 				    !state->stack[spi].spilled_ptr.ref_obj_id) {
6439 					verbose(env, "arg %d is an unacquired reference\n", regno);
6440 					return -EINVAL;
6441 				}
6442 			} else {
6443 				verbose(env, "cannot release unowned const bpf_dynptr\n");
6444 				return -EINVAL;
6445 			}
6446 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6447 			verbose(env, "R%d must be referenced when passed to release function\n",
6448 				regno);
6449 			return -EINVAL;
6450 		}
6451 		if (meta->release_regno) {
6452 			verbose(env, "verifier internal error: more than one release argument\n");
6453 			return -EFAULT;
6454 		}
6455 		meta->release_regno = regno;
6456 	}
6457 
6458 	if (reg->ref_obj_id) {
6459 		if (meta->ref_obj_id) {
6460 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6461 				regno, reg->ref_obj_id,
6462 				meta->ref_obj_id);
6463 			return -EFAULT;
6464 		}
6465 		meta->ref_obj_id = reg->ref_obj_id;
6466 	}
6467 
6468 	switch (base_type(arg_type)) {
6469 	case ARG_CONST_MAP_PTR:
6470 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6471 		if (meta->map_ptr) {
6472 			/* Use map_uid (which is unique id of inner map) to reject:
6473 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6474 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6475 			 * if (inner_map1 && inner_map2) {
6476 			 *     timer = bpf_map_lookup_elem(inner_map1);
6477 			 *     if (timer)
6478 			 *         // mismatch would have been allowed
6479 			 *         bpf_timer_init(timer, inner_map2);
6480 			 * }
6481 			 *
6482 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6483 			 */
6484 			if (meta->map_ptr != reg->map_ptr ||
6485 			    meta->map_uid != reg->map_uid) {
6486 				verbose(env,
6487 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6488 					meta->map_uid, reg->map_uid);
6489 				return -EINVAL;
6490 			}
6491 		}
6492 		meta->map_ptr = reg->map_ptr;
6493 		meta->map_uid = reg->map_uid;
6494 		break;
6495 	case ARG_PTR_TO_MAP_KEY:
6496 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6497 		 * check that [key, key + map->key_size) are within
6498 		 * stack limits and initialized
6499 		 */
6500 		if (!meta->map_ptr) {
6501 			/* in function declaration map_ptr must come before
6502 			 * map_key, so that it's verified and known before
6503 			 * we have to check map_key here. Otherwise it means
6504 			 * that kernel subsystem misconfigured verifier
6505 			 */
6506 			verbose(env, "invalid map_ptr to access map->key\n");
6507 			return -EACCES;
6508 		}
6509 		err = check_helper_mem_access(env, regno,
6510 					      meta->map_ptr->key_size, false,
6511 					      NULL);
6512 		break;
6513 	case ARG_PTR_TO_MAP_VALUE:
6514 		if (type_may_be_null(arg_type) && register_is_null(reg))
6515 			return 0;
6516 
6517 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6518 		 * check [value, value + map->value_size) validity
6519 		 */
6520 		if (!meta->map_ptr) {
6521 			/* kernel subsystem misconfigured verifier */
6522 			verbose(env, "invalid map_ptr to access map->value\n");
6523 			return -EACCES;
6524 		}
6525 		meta->raw_mode = arg_type & MEM_UNINIT;
6526 		err = check_helper_mem_access(env, regno,
6527 					      meta->map_ptr->value_size, false,
6528 					      meta);
6529 		break;
6530 	case ARG_PTR_TO_PERCPU_BTF_ID:
6531 		if (!reg->btf_id) {
6532 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6533 			return -EACCES;
6534 		}
6535 		meta->ret_btf = reg->btf;
6536 		meta->ret_btf_id = reg->btf_id;
6537 		break;
6538 	case ARG_PTR_TO_SPIN_LOCK:
6539 		if (meta->func_id == BPF_FUNC_spin_lock) {
6540 			err = process_spin_lock(env, regno, true);
6541 			if (err)
6542 				return err;
6543 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6544 			err = process_spin_lock(env, regno, false);
6545 			if (err)
6546 				return err;
6547 		} else {
6548 			verbose(env, "verifier internal error\n");
6549 			return -EFAULT;
6550 		}
6551 		break;
6552 	case ARG_PTR_TO_TIMER:
6553 		err = process_timer_func(env, regno, meta);
6554 		if (err)
6555 			return err;
6556 		break;
6557 	case ARG_PTR_TO_FUNC:
6558 		meta->subprogno = reg->subprogno;
6559 		break;
6560 	case ARG_PTR_TO_MEM:
6561 		/* The access to this pointer is only checked when we hit the
6562 		 * next is_mem_size argument below.
6563 		 */
6564 		meta->raw_mode = arg_type & MEM_UNINIT;
6565 		if (arg_type & MEM_FIXED_SIZE) {
6566 			err = check_helper_mem_access(env, regno,
6567 						      fn->arg_size[arg], false,
6568 						      meta);
6569 		}
6570 		break;
6571 	case ARG_CONST_SIZE:
6572 		err = check_mem_size_reg(env, reg, regno, false, meta);
6573 		break;
6574 	case ARG_CONST_SIZE_OR_ZERO:
6575 		err = check_mem_size_reg(env, reg, regno, true, meta);
6576 		break;
6577 	case ARG_PTR_TO_DYNPTR:
6578 		err = process_dynptr_func(env, regno, arg_type, meta);
6579 		if (err)
6580 			return err;
6581 		break;
6582 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6583 		if (!tnum_is_const(reg->var_off)) {
6584 			verbose(env, "R%d is not a known constant'\n",
6585 				regno);
6586 			return -EACCES;
6587 		}
6588 		meta->mem_size = reg->var_off.value;
6589 		err = mark_chain_precision(env, regno);
6590 		if (err)
6591 			return err;
6592 		break;
6593 	case ARG_PTR_TO_INT:
6594 	case ARG_PTR_TO_LONG:
6595 	{
6596 		int size = int_ptr_type_to_size(arg_type);
6597 
6598 		err = check_helper_mem_access(env, regno, size, false, meta);
6599 		if (err)
6600 			return err;
6601 		err = check_ptr_alignment(env, reg, 0, size, true);
6602 		break;
6603 	}
6604 	case ARG_PTR_TO_CONST_STR:
6605 	{
6606 		struct bpf_map *map = reg->map_ptr;
6607 		int map_off;
6608 		u64 map_addr;
6609 		char *str_ptr;
6610 
6611 		if (!bpf_map_is_rdonly(map)) {
6612 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6613 			return -EACCES;
6614 		}
6615 
6616 		if (!tnum_is_const(reg->var_off)) {
6617 			verbose(env, "R%d is not a constant address'\n", regno);
6618 			return -EACCES;
6619 		}
6620 
6621 		if (!map->ops->map_direct_value_addr) {
6622 			verbose(env, "no direct value access support for this map type\n");
6623 			return -EACCES;
6624 		}
6625 
6626 		err = check_map_access(env, regno, reg->off,
6627 				       map->value_size - reg->off, false,
6628 				       ACCESS_HELPER);
6629 		if (err)
6630 			return err;
6631 
6632 		map_off = reg->off + reg->var_off.value;
6633 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6634 		if (err) {
6635 			verbose(env, "direct value access on string failed\n");
6636 			return err;
6637 		}
6638 
6639 		str_ptr = (char *)(long)(map_addr);
6640 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6641 			verbose(env, "string is not zero-terminated\n");
6642 			return -EINVAL;
6643 		}
6644 		break;
6645 	}
6646 	case ARG_PTR_TO_KPTR:
6647 		err = process_kptr_func(env, regno, meta);
6648 		if (err)
6649 			return err;
6650 		break;
6651 	}
6652 
6653 	return err;
6654 }
6655 
6656 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6657 {
6658 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6659 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6660 
6661 	if (func_id != BPF_FUNC_map_update_elem)
6662 		return false;
6663 
6664 	/* It's not possible to get access to a locked struct sock in these
6665 	 * contexts, so updating is safe.
6666 	 */
6667 	switch (type) {
6668 	case BPF_PROG_TYPE_TRACING:
6669 		if (eatype == BPF_TRACE_ITER)
6670 			return true;
6671 		break;
6672 	case BPF_PROG_TYPE_SOCKET_FILTER:
6673 	case BPF_PROG_TYPE_SCHED_CLS:
6674 	case BPF_PROG_TYPE_SCHED_ACT:
6675 	case BPF_PROG_TYPE_XDP:
6676 	case BPF_PROG_TYPE_SK_REUSEPORT:
6677 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6678 	case BPF_PROG_TYPE_SK_LOOKUP:
6679 		return true;
6680 	default:
6681 		break;
6682 	}
6683 
6684 	verbose(env, "cannot update sockmap in this context\n");
6685 	return false;
6686 }
6687 
6688 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6689 {
6690 	return env->prog->jit_requested &&
6691 	       bpf_jit_supports_subprog_tailcalls();
6692 }
6693 
6694 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6695 					struct bpf_map *map, int func_id)
6696 {
6697 	if (!map)
6698 		return 0;
6699 
6700 	/* We need a two way check, first is from map perspective ... */
6701 	switch (map->map_type) {
6702 	case BPF_MAP_TYPE_PROG_ARRAY:
6703 		if (func_id != BPF_FUNC_tail_call)
6704 			goto error;
6705 		break;
6706 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6707 		if (func_id != BPF_FUNC_perf_event_read &&
6708 		    func_id != BPF_FUNC_perf_event_output &&
6709 		    func_id != BPF_FUNC_skb_output &&
6710 		    func_id != BPF_FUNC_perf_event_read_value &&
6711 		    func_id != BPF_FUNC_xdp_output)
6712 			goto error;
6713 		break;
6714 	case BPF_MAP_TYPE_RINGBUF:
6715 		if (func_id != BPF_FUNC_ringbuf_output &&
6716 		    func_id != BPF_FUNC_ringbuf_reserve &&
6717 		    func_id != BPF_FUNC_ringbuf_query &&
6718 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6719 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6720 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6721 			goto error;
6722 		break;
6723 	case BPF_MAP_TYPE_USER_RINGBUF:
6724 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6725 			goto error;
6726 		break;
6727 	case BPF_MAP_TYPE_STACK_TRACE:
6728 		if (func_id != BPF_FUNC_get_stackid)
6729 			goto error;
6730 		break;
6731 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6732 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6733 		    func_id != BPF_FUNC_current_task_under_cgroup)
6734 			goto error;
6735 		break;
6736 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6737 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6738 		if (func_id != BPF_FUNC_get_local_storage)
6739 			goto error;
6740 		break;
6741 	case BPF_MAP_TYPE_DEVMAP:
6742 	case BPF_MAP_TYPE_DEVMAP_HASH:
6743 		if (func_id != BPF_FUNC_redirect_map &&
6744 		    func_id != BPF_FUNC_map_lookup_elem)
6745 			goto error;
6746 		break;
6747 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6748 	 * appear.
6749 	 */
6750 	case BPF_MAP_TYPE_CPUMAP:
6751 		if (func_id != BPF_FUNC_redirect_map)
6752 			goto error;
6753 		break;
6754 	case BPF_MAP_TYPE_XSKMAP:
6755 		if (func_id != BPF_FUNC_redirect_map &&
6756 		    func_id != BPF_FUNC_map_lookup_elem)
6757 			goto error;
6758 		break;
6759 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6760 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6761 		if (func_id != BPF_FUNC_map_lookup_elem)
6762 			goto error;
6763 		break;
6764 	case BPF_MAP_TYPE_SOCKMAP:
6765 		if (func_id != BPF_FUNC_sk_redirect_map &&
6766 		    func_id != BPF_FUNC_sock_map_update &&
6767 		    func_id != BPF_FUNC_map_delete_elem &&
6768 		    func_id != BPF_FUNC_msg_redirect_map &&
6769 		    func_id != BPF_FUNC_sk_select_reuseport &&
6770 		    func_id != BPF_FUNC_map_lookup_elem &&
6771 		    !may_update_sockmap(env, func_id))
6772 			goto error;
6773 		break;
6774 	case BPF_MAP_TYPE_SOCKHASH:
6775 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6776 		    func_id != BPF_FUNC_sock_hash_update &&
6777 		    func_id != BPF_FUNC_map_delete_elem &&
6778 		    func_id != BPF_FUNC_msg_redirect_hash &&
6779 		    func_id != BPF_FUNC_sk_select_reuseport &&
6780 		    func_id != BPF_FUNC_map_lookup_elem &&
6781 		    !may_update_sockmap(env, func_id))
6782 			goto error;
6783 		break;
6784 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6785 		if (func_id != BPF_FUNC_sk_select_reuseport)
6786 			goto error;
6787 		break;
6788 	case BPF_MAP_TYPE_QUEUE:
6789 	case BPF_MAP_TYPE_STACK:
6790 		if (func_id != BPF_FUNC_map_peek_elem &&
6791 		    func_id != BPF_FUNC_map_pop_elem &&
6792 		    func_id != BPF_FUNC_map_push_elem)
6793 			goto error;
6794 		break;
6795 	case BPF_MAP_TYPE_SK_STORAGE:
6796 		if (func_id != BPF_FUNC_sk_storage_get &&
6797 		    func_id != BPF_FUNC_sk_storage_delete)
6798 			goto error;
6799 		break;
6800 	case BPF_MAP_TYPE_INODE_STORAGE:
6801 		if (func_id != BPF_FUNC_inode_storage_get &&
6802 		    func_id != BPF_FUNC_inode_storage_delete)
6803 			goto error;
6804 		break;
6805 	case BPF_MAP_TYPE_TASK_STORAGE:
6806 		if (func_id != BPF_FUNC_task_storage_get &&
6807 		    func_id != BPF_FUNC_task_storage_delete)
6808 			goto error;
6809 		break;
6810 	case BPF_MAP_TYPE_CGRP_STORAGE:
6811 		if (func_id != BPF_FUNC_cgrp_storage_get &&
6812 		    func_id != BPF_FUNC_cgrp_storage_delete)
6813 			goto error;
6814 		break;
6815 	case BPF_MAP_TYPE_BLOOM_FILTER:
6816 		if (func_id != BPF_FUNC_map_peek_elem &&
6817 		    func_id != BPF_FUNC_map_push_elem)
6818 			goto error;
6819 		break;
6820 	default:
6821 		break;
6822 	}
6823 
6824 	/* ... and second from the function itself. */
6825 	switch (func_id) {
6826 	case BPF_FUNC_tail_call:
6827 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6828 			goto error;
6829 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6830 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6831 			return -EINVAL;
6832 		}
6833 		break;
6834 	case BPF_FUNC_perf_event_read:
6835 	case BPF_FUNC_perf_event_output:
6836 	case BPF_FUNC_perf_event_read_value:
6837 	case BPF_FUNC_skb_output:
6838 	case BPF_FUNC_xdp_output:
6839 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6840 			goto error;
6841 		break;
6842 	case BPF_FUNC_ringbuf_output:
6843 	case BPF_FUNC_ringbuf_reserve:
6844 	case BPF_FUNC_ringbuf_query:
6845 	case BPF_FUNC_ringbuf_reserve_dynptr:
6846 	case BPF_FUNC_ringbuf_submit_dynptr:
6847 	case BPF_FUNC_ringbuf_discard_dynptr:
6848 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6849 			goto error;
6850 		break;
6851 	case BPF_FUNC_user_ringbuf_drain:
6852 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6853 			goto error;
6854 		break;
6855 	case BPF_FUNC_get_stackid:
6856 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6857 			goto error;
6858 		break;
6859 	case BPF_FUNC_current_task_under_cgroup:
6860 	case BPF_FUNC_skb_under_cgroup:
6861 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6862 			goto error;
6863 		break;
6864 	case BPF_FUNC_redirect_map:
6865 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6866 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6867 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6868 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6869 			goto error;
6870 		break;
6871 	case BPF_FUNC_sk_redirect_map:
6872 	case BPF_FUNC_msg_redirect_map:
6873 	case BPF_FUNC_sock_map_update:
6874 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6875 			goto error;
6876 		break;
6877 	case BPF_FUNC_sk_redirect_hash:
6878 	case BPF_FUNC_msg_redirect_hash:
6879 	case BPF_FUNC_sock_hash_update:
6880 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6881 			goto error;
6882 		break;
6883 	case BPF_FUNC_get_local_storage:
6884 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6885 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6886 			goto error;
6887 		break;
6888 	case BPF_FUNC_sk_select_reuseport:
6889 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6890 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6891 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6892 			goto error;
6893 		break;
6894 	case BPF_FUNC_map_pop_elem:
6895 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6896 		    map->map_type != BPF_MAP_TYPE_STACK)
6897 			goto error;
6898 		break;
6899 	case BPF_FUNC_map_peek_elem:
6900 	case BPF_FUNC_map_push_elem:
6901 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6902 		    map->map_type != BPF_MAP_TYPE_STACK &&
6903 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6904 			goto error;
6905 		break;
6906 	case BPF_FUNC_map_lookup_percpu_elem:
6907 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6908 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6909 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6910 			goto error;
6911 		break;
6912 	case BPF_FUNC_sk_storage_get:
6913 	case BPF_FUNC_sk_storage_delete:
6914 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6915 			goto error;
6916 		break;
6917 	case BPF_FUNC_inode_storage_get:
6918 	case BPF_FUNC_inode_storage_delete:
6919 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6920 			goto error;
6921 		break;
6922 	case BPF_FUNC_task_storage_get:
6923 	case BPF_FUNC_task_storage_delete:
6924 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6925 			goto error;
6926 		break;
6927 	case BPF_FUNC_cgrp_storage_get:
6928 	case BPF_FUNC_cgrp_storage_delete:
6929 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6930 			goto error;
6931 		break;
6932 	default:
6933 		break;
6934 	}
6935 
6936 	return 0;
6937 error:
6938 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6939 		map->map_type, func_id_name(func_id), func_id);
6940 	return -EINVAL;
6941 }
6942 
6943 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6944 {
6945 	int count = 0;
6946 
6947 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6948 		count++;
6949 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6950 		count++;
6951 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6952 		count++;
6953 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6954 		count++;
6955 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6956 		count++;
6957 
6958 	/* We only support one arg being in raw mode at the moment,
6959 	 * which is sufficient for the helper functions we have
6960 	 * right now.
6961 	 */
6962 	return count <= 1;
6963 }
6964 
6965 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6966 {
6967 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6968 	bool has_size = fn->arg_size[arg] != 0;
6969 	bool is_next_size = false;
6970 
6971 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6972 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6973 
6974 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6975 		return is_next_size;
6976 
6977 	return has_size == is_next_size || is_next_size == is_fixed;
6978 }
6979 
6980 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6981 {
6982 	/* bpf_xxx(..., buf, len) call will access 'len'
6983 	 * bytes from memory 'buf'. Both arg types need
6984 	 * to be paired, so make sure there's no buggy
6985 	 * helper function specification.
6986 	 */
6987 	if (arg_type_is_mem_size(fn->arg1_type) ||
6988 	    check_args_pair_invalid(fn, 0) ||
6989 	    check_args_pair_invalid(fn, 1) ||
6990 	    check_args_pair_invalid(fn, 2) ||
6991 	    check_args_pair_invalid(fn, 3) ||
6992 	    check_args_pair_invalid(fn, 4))
6993 		return false;
6994 
6995 	return true;
6996 }
6997 
6998 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6999 {
7000 	int i;
7001 
7002 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
7003 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
7004 			return !!fn->arg_btf_id[i];
7005 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
7006 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
7007 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
7008 		    /* arg_btf_id and arg_size are in a union. */
7009 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
7010 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
7011 			return false;
7012 	}
7013 
7014 	return true;
7015 }
7016 
7017 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
7018 {
7019 	return check_raw_mode_ok(fn) &&
7020 	       check_arg_pair_ok(fn) &&
7021 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
7022 }
7023 
7024 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
7025  * are now invalid, so turn them into unknown SCALAR_VALUE.
7026  */
7027 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
7028 {
7029 	struct bpf_func_state *state;
7030 	struct bpf_reg_state *reg;
7031 
7032 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7033 		if (reg_is_pkt_pointer_any(reg))
7034 			__mark_reg_unknown(env, reg);
7035 	}));
7036 }
7037 
7038 enum {
7039 	AT_PKT_END = -1,
7040 	BEYOND_PKT_END = -2,
7041 };
7042 
7043 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
7044 {
7045 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7046 	struct bpf_reg_state *reg = &state->regs[regn];
7047 
7048 	if (reg->type != PTR_TO_PACKET)
7049 		/* PTR_TO_PACKET_META is not supported yet */
7050 		return;
7051 
7052 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
7053 	 * How far beyond pkt_end it goes is unknown.
7054 	 * if (!range_open) it's the case of pkt >= pkt_end
7055 	 * if (range_open) it's the case of pkt > pkt_end
7056 	 * hence this pointer is at least 1 byte bigger than pkt_end
7057 	 */
7058 	if (range_open)
7059 		reg->range = BEYOND_PKT_END;
7060 	else
7061 		reg->range = AT_PKT_END;
7062 }
7063 
7064 /* The pointer with the specified id has released its reference to kernel
7065  * resources. Identify all copies of the same pointer and clear the reference.
7066  */
7067 static int release_reference(struct bpf_verifier_env *env,
7068 			     int ref_obj_id)
7069 {
7070 	struct bpf_func_state *state;
7071 	struct bpf_reg_state *reg;
7072 	int err;
7073 
7074 	err = release_reference_state(cur_func(env), ref_obj_id);
7075 	if (err)
7076 		return err;
7077 
7078 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7079 		if (reg->ref_obj_id == ref_obj_id) {
7080 			if (!env->allow_ptr_leaks)
7081 				__mark_reg_not_init(env, reg);
7082 			else
7083 				__mark_reg_unknown(env, reg);
7084 		}
7085 	}));
7086 
7087 	return 0;
7088 }
7089 
7090 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
7091 				    struct bpf_reg_state *regs)
7092 {
7093 	int i;
7094 
7095 	/* after the call registers r0 - r5 were scratched */
7096 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7097 		mark_reg_not_init(env, regs, caller_saved[i]);
7098 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7099 	}
7100 }
7101 
7102 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
7103 				   struct bpf_func_state *caller,
7104 				   struct bpf_func_state *callee,
7105 				   int insn_idx);
7106 
7107 static int set_callee_state(struct bpf_verifier_env *env,
7108 			    struct bpf_func_state *caller,
7109 			    struct bpf_func_state *callee, int insn_idx);
7110 
7111 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7112 			     int *insn_idx, int subprog,
7113 			     set_callee_state_fn set_callee_state_cb)
7114 {
7115 	struct bpf_verifier_state *state = env->cur_state;
7116 	struct bpf_func_info_aux *func_info_aux;
7117 	struct bpf_func_state *caller, *callee;
7118 	int err;
7119 	bool is_global = false;
7120 
7121 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
7122 		verbose(env, "the call stack of %d frames is too deep\n",
7123 			state->curframe + 2);
7124 		return -E2BIG;
7125 	}
7126 
7127 	caller = state->frame[state->curframe];
7128 	if (state->frame[state->curframe + 1]) {
7129 		verbose(env, "verifier bug. Frame %d already allocated\n",
7130 			state->curframe + 1);
7131 		return -EFAULT;
7132 	}
7133 
7134 	func_info_aux = env->prog->aux->func_info_aux;
7135 	if (func_info_aux)
7136 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
7137 	err = btf_check_subprog_call(env, subprog, caller->regs);
7138 	if (err == -EFAULT)
7139 		return err;
7140 	if (is_global) {
7141 		if (err) {
7142 			verbose(env, "Caller passes invalid args into func#%d\n",
7143 				subprog);
7144 			return err;
7145 		} else {
7146 			if (env->log.level & BPF_LOG_LEVEL)
7147 				verbose(env,
7148 					"Func#%d is global and valid. Skipping.\n",
7149 					subprog);
7150 			clear_caller_saved_regs(env, caller->regs);
7151 
7152 			/* All global functions return a 64-bit SCALAR_VALUE */
7153 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
7154 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7155 
7156 			/* continue with next insn after call */
7157 			return 0;
7158 		}
7159 	}
7160 
7161 	/* set_callee_state is used for direct subprog calls, but we are
7162 	 * interested in validating only BPF helpers that can call subprogs as
7163 	 * callbacks
7164 	 */
7165 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7166 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7167 			func_id_name(insn->imm), insn->imm);
7168 		return -EFAULT;
7169 	}
7170 
7171 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7172 	    insn->src_reg == 0 &&
7173 	    insn->imm == BPF_FUNC_timer_set_callback) {
7174 		struct bpf_verifier_state *async_cb;
7175 
7176 		/* there is no real recursion here. timer callbacks are async */
7177 		env->subprog_info[subprog].is_async_cb = true;
7178 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7179 					 *insn_idx, subprog);
7180 		if (!async_cb)
7181 			return -EFAULT;
7182 		callee = async_cb->frame[0];
7183 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7184 
7185 		/* Convert bpf_timer_set_callback() args into timer callback args */
7186 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7187 		if (err)
7188 			return err;
7189 
7190 		clear_caller_saved_regs(env, caller->regs);
7191 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7192 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7193 		/* continue with next insn after call */
7194 		return 0;
7195 	}
7196 
7197 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7198 	if (!callee)
7199 		return -ENOMEM;
7200 	state->frame[state->curframe + 1] = callee;
7201 
7202 	/* callee cannot access r0, r6 - r9 for reading and has to write
7203 	 * into its own stack before reading from it.
7204 	 * callee can read/write into caller's stack
7205 	 */
7206 	init_func_state(env, callee,
7207 			/* remember the callsite, it will be used by bpf_exit */
7208 			*insn_idx /* callsite */,
7209 			state->curframe + 1 /* frameno within this callchain */,
7210 			subprog /* subprog number within this prog */);
7211 
7212 	/* Transfer references to the callee */
7213 	err = copy_reference_state(callee, caller);
7214 	if (err)
7215 		goto err_out;
7216 
7217 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7218 	if (err)
7219 		goto err_out;
7220 
7221 	clear_caller_saved_regs(env, caller->regs);
7222 
7223 	/* only increment it after check_reg_arg() finished */
7224 	state->curframe++;
7225 
7226 	/* and go analyze first insn of the callee */
7227 	*insn_idx = env->subprog_info[subprog].start - 1;
7228 
7229 	if (env->log.level & BPF_LOG_LEVEL) {
7230 		verbose(env, "caller:\n");
7231 		print_verifier_state(env, caller, true);
7232 		verbose(env, "callee:\n");
7233 		print_verifier_state(env, callee, true);
7234 	}
7235 	return 0;
7236 
7237 err_out:
7238 	free_func_state(callee);
7239 	state->frame[state->curframe + 1] = NULL;
7240 	return err;
7241 }
7242 
7243 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7244 				   struct bpf_func_state *caller,
7245 				   struct bpf_func_state *callee)
7246 {
7247 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7248 	 *      void *callback_ctx, u64 flags);
7249 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7250 	 *      void *callback_ctx);
7251 	 */
7252 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7253 
7254 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7255 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7256 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7257 
7258 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7259 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7260 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7261 
7262 	/* pointer to stack or null */
7263 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7264 
7265 	/* unused */
7266 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7267 	return 0;
7268 }
7269 
7270 static int set_callee_state(struct bpf_verifier_env *env,
7271 			    struct bpf_func_state *caller,
7272 			    struct bpf_func_state *callee, int insn_idx)
7273 {
7274 	int i;
7275 
7276 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7277 	 * pointers, which connects us up to the liveness chain
7278 	 */
7279 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7280 		callee->regs[i] = caller->regs[i];
7281 	return 0;
7282 }
7283 
7284 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7285 			   int *insn_idx)
7286 {
7287 	int subprog, target_insn;
7288 
7289 	target_insn = *insn_idx + insn->imm + 1;
7290 	subprog = find_subprog(env, target_insn);
7291 	if (subprog < 0) {
7292 		verbose(env, "verifier bug. No program starts at insn %d\n",
7293 			target_insn);
7294 		return -EFAULT;
7295 	}
7296 
7297 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7298 }
7299 
7300 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7301 				       struct bpf_func_state *caller,
7302 				       struct bpf_func_state *callee,
7303 				       int insn_idx)
7304 {
7305 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7306 	struct bpf_map *map;
7307 	int err;
7308 
7309 	if (bpf_map_ptr_poisoned(insn_aux)) {
7310 		verbose(env, "tail_call abusing map_ptr\n");
7311 		return -EINVAL;
7312 	}
7313 
7314 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7315 	if (!map->ops->map_set_for_each_callback_args ||
7316 	    !map->ops->map_for_each_callback) {
7317 		verbose(env, "callback function not allowed for map\n");
7318 		return -ENOTSUPP;
7319 	}
7320 
7321 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7322 	if (err)
7323 		return err;
7324 
7325 	callee->in_callback_fn = true;
7326 	callee->callback_ret_range = tnum_range(0, 1);
7327 	return 0;
7328 }
7329 
7330 static int set_loop_callback_state(struct bpf_verifier_env *env,
7331 				   struct bpf_func_state *caller,
7332 				   struct bpf_func_state *callee,
7333 				   int insn_idx)
7334 {
7335 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7336 	 *	    u64 flags);
7337 	 * callback_fn(u32 index, void *callback_ctx);
7338 	 */
7339 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7340 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7341 
7342 	/* unused */
7343 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7344 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7345 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7346 
7347 	callee->in_callback_fn = true;
7348 	callee->callback_ret_range = tnum_range(0, 1);
7349 	return 0;
7350 }
7351 
7352 static int set_timer_callback_state(struct bpf_verifier_env *env,
7353 				    struct bpf_func_state *caller,
7354 				    struct bpf_func_state *callee,
7355 				    int insn_idx)
7356 {
7357 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7358 
7359 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7360 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7361 	 */
7362 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7363 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7364 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7365 
7366 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7367 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7368 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7369 
7370 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7371 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7372 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7373 
7374 	/* unused */
7375 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7376 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7377 	callee->in_async_callback_fn = true;
7378 	callee->callback_ret_range = tnum_range(0, 1);
7379 	return 0;
7380 }
7381 
7382 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7383 				       struct bpf_func_state *caller,
7384 				       struct bpf_func_state *callee,
7385 				       int insn_idx)
7386 {
7387 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7388 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7389 	 * (callback_fn)(struct task_struct *task,
7390 	 *               struct vm_area_struct *vma, void *callback_ctx);
7391 	 */
7392 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7393 
7394 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7395 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7396 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7397 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7398 
7399 	/* pointer to stack or null */
7400 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7401 
7402 	/* unused */
7403 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7404 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7405 	callee->in_callback_fn = true;
7406 	callee->callback_ret_range = tnum_range(0, 1);
7407 	return 0;
7408 }
7409 
7410 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7411 					   struct bpf_func_state *caller,
7412 					   struct bpf_func_state *callee,
7413 					   int insn_idx)
7414 {
7415 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7416 	 *			  callback_ctx, u64 flags);
7417 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
7418 	 */
7419 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7420 	mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
7421 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7422 
7423 	/* unused */
7424 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7425 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7426 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7427 
7428 	callee->in_callback_fn = true;
7429 	callee->callback_ret_range = tnum_range(0, 1);
7430 	return 0;
7431 }
7432 
7433 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7434 {
7435 	struct bpf_verifier_state *state = env->cur_state;
7436 	struct bpf_func_state *caller, *callee;
7437 	struct bpf_reg_state *r0;
7438 	int err;
7439 
7440 	callee = state->frame[state->curframe];
7441 	r0 = &callee->regs[BPF_REG_0];
7442 	if (r0->type == PTR_TO_STACK) {
7443 		/* technically it's ok to return caller's stack pointer
7444 		 * (or caller's caller's pointer) back to the caller,
7445 		 * since these pointers are valid. Only current stack
7446 		 * pointer will be invalid as soon as function exits,
7447 		 * but let's be conservative
7448 		 */
7449 		verbose(env, "cannot return stack pointer to the caller\n");
7450 		return -EINVAL;
7451 	}
7452 
7453 	caller = state->frame[state->curframe - 1];
7454 	if (callee->in_callback_fn) {
7455 		/* enforce R0 return value range [0, 1]. */
7456 		struct tnum range = callee->callback_ret_range;
7457 
7458 		if (r0->type != SCALAR_VALUE) {
7459 			verbose(env, "R0 not a scalar value\n");
7460 			return -EACCES;
7461 		}
7462 		if (!tnum_in(range, r0->var_off)) {
7463 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7464 			return -EINVAL;
7465 		}
7466 	} else {
7467 		/* return to the caller whatever r0 had in the callee */
7468 		caller->regs[BPF_REG_0] = *r0;
7469 	}
7470 
7471 	/* callback_fn frame should have released its own additions to parent's
7472 	 * reference state at this point, or check_reference_leak would
7473 	 * complain, hence it must be the same as the caller. There is no need
7474 	 * to copy it back.
7475 	 */
7476 	if (!callee->in_callback_fn) {
7477 		/* Transfer references to the caller */
7478 		err = copy_reference_state(caller, callee);
7479 		if (err)
7480 			return err;
7481 	}
7482 
7483 	*insn_idx = callee->callsite + 1;
7484 	if (env->log.level & BPF_LOG_LEVEL) {
7485 		verbose(env, "returning from callee:\n");
7486 		print_verifier_state(env, callee, true);
7487 		verbose(env, "to caller at %d:\n", *insn_idx);
7488 		print_verifier_state(env, caller, true);
7489 	}
7490 	/* clear everything in the callee */
7491 	free_func_state(callee);
7492 	state->frame[state->curframe--] = NULL;
7493 	return 0;
7494 }
7495 
7496 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7497 				   int func_id,
7498 				   struct bpf_call_arg_meta *meta)
7499 {
7500 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7501 
7502 	if (ret_type != RET_INTEGER ||
7503 	    (func_id != BPF_FUNC_get_stack &&
7504 	     func_id != BPF_FUNC_get_task_stack &&
7505 	     func_id != BPF_FUNC_probe_read_str &&
7506 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7507 	     func_id != BPF_FUNC_probe_read_user_str))
7508 		return;
7509 
7510 	ret_reg->smax_value = meta->msize_max_value;
7511 	ret_reg->s32_max_value = meta->msize_max_value;
7512 	ret_reg->smin_value = -MAX_ERRNO;
7513 	ret_reg->s32_min_value = -MAX_ERRNO;
7514 	reg_bounds_sync(ret_reg);
7515 }
7516 
7517 static int
7518 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7519 		int func_id, int insn_idx)
7520 {
7521 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7522 	struct bpf_map *map = meta->map_ptr;
7523 
7524 	if (func_id != BPF_FUNC_tail_call &&
7525 	    func_id != BPF_FUNC_map_lookup_elem &&
7526 	    func_id != BPF_FUNC_map_update_elem &&
7527 	    func_id != BPF_FUNC_map_delete_elem &&
7528 	    func_id != BPF_FUNC_map_push_elem &&
7529 	    func_id != BPF_FUNC_map_pop_elem &&
7530 	    func_id != BPF_FUNC_map_peek_elem &&
7531 	    func_id != BPF_FUNC_for_each_map_elem &&
7532 	    func_id != BPF_FUNC_redirect_map &&
7533 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7534 		return 0;
7535 
7536 	if (map == NULL) {
7537 		verbose(env, "kernel subsystem misconfigured verifier\n");
7538 		return -EINVAL;
7539 	}
7540 
7541 	/* In case of read-only, some additional restrictions
7542 	 * need to be applied in order to prevent altering the
7543 	 * state of the map from program side.
7544 	 */
7545 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7546 	    (func_id == BPF_FUNC_map_delete_elem ||
7547 	     func_id == BPF_FUNC_map_update_elem ||
7548 	     func_id == BPF_FUNC_map_push_elem ||
7549 	     func_id == BPF_FUNC_map_pop_elem)) {
7550 		verbose(env, "write into map forbidden\n");
7551 		return -EACCES;
7552 	}
7553 
7554 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7555 		bpf_map_ptr_store(aux, meta->map_ptr,
7556 				  !meta->map_ptr->bypass_spec_v1);
7557 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7558 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7559 				  !meta->map_ptr->bypass_spec_v1);
7560 	return 0;
7561 }
7562 
7563 static int
7564 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7565 		int func_id, int insn_idx)
7566 {
7567 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7568 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7569 	struct bpf_map *map = meta->map_ptr;
7570 	u64 val, max;
7571 	int err;
7572 
7573 	if (func_id != BPF_FUNC_tail_call)
7574 		return 0;
7575 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7576 		verbose(env, "kernel subsystem misconfigured verifier\n");
7577 		return -EINVAL;
7578 	}
7579 
7580 	reg = &regs[BPF_REG_3];
7581 	val = reg->var_off.value;
7582 	max = map->max_entries;
7583 
7584 	if (!(register_is_const(reg) && val < max)) {
7585 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7586 		return 0;
7587 	}
7588 
7589 	err = mark_chain_precision(env, BPF_REG_3);
7590 	if (err)
7591 		return err;
7592 	if (bpf_map_key_unseen(aux))
7593 		bpf_map_key_store(aux, val);
7594 	else if (!bpf_map_key_poisoned(aux) &&
7595 		  bpf_map_key_immediate(aux) != val)
7596 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7597 	return 0;
7598 }
7599 
7600 static int check_reference_leak(struct bpf_verifier_env *env)
7601 {
7602 	struct bpf_func_state *state = cur_func(env);
7603 	bool refs_lingering = false;
7604 	int i;
7605 
7606 	if (state->frameno && !state->in_callback_fn)
7607 		return 0;
7608 
7609 	for (i = 0; i < state->acquired_refs; i++) {
7610 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7611 			continue;
7612 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7613 			state->refs[i].id, state->refs[i].insn_idx);
7614 		refs_lingering = true;
7615 	}
7616 	return refs_lingering ? -EINVAL : 0;
7617 }
7618 
7619 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7620 				   struct bpf_reg_state *regs)
7621 {
7622 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7623 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7624 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7625 	int err, fmt_map_off, num_args;
7626 	u64 fmt_addr;
7627 	char *fmt;
7628 
7629 	/* data must be an array of u64 */
7630 	if (data_len_reg->var_off.value % 8)
7631 		return -EINVAL;
7632 	num_args = data_len_reg->var_off.value / 8;
7633 
7634 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7635 	 * and map_direct_value_addr is set.
7636 	 */
7637 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7638 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7639 						  fmt_map_off);
7640 	if (err) {
7641 		verbose(env, "verifier bug\n");
7642 		return -EFAULT;
7643 	}
7644 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7645 
7646 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7647 	 * can focus on validating the format specifiers.
7648 	 */
7649 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7650 	if (err < 0)
7651 		verbose(env, "Invalid format string\n");
7652 
7653 	return err;
7654 }
7655 
7656 static int check_get_func_ip(struct bpf_verifier_env *env)
7657 {
7658 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7659 	int func_id = BPF_FUNC_get_func_ip;
7660 
7661 	if (type == BPF_PROG_TYPE_TRACING) {
7662 		if (!bpf_prog_has_trampoline(env->prog)) {
7663 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7664 				func_id_name(func_id), func_id);
7665 			return -ENOTSUPP;
7666 		}
7667 		return 0;
7668 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7669 		return 0;
7670 	}
7671 
7672 	verbose(env, "func %s#%d not supported for program type %d\n",
7673 		func_id_name(func_id), func_id, type);
7674 	return -ENOTSUPP;
7675 }
7676 
7677 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7678 {
7679 	return &env->insn_aux_data[env->insn_idx];
7680 }
7681 
7682 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7683 {
7684 	struct bpf_reg_state *regs = cur_regs(env);
7685 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7686 	bool reg_is_null = register_is_null(reg);
7687 
7688 	if (reg_is_null)
7689 		mark_chain_precision(env, BPF_REG_4);
7690 
7691 	return reg_is_null;
7692 }
7693 
7694 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7695 {
7696 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7697 
7698 	if (!state->initialized) {
7699 		state->initialized = 1;
7700 		state->fit_for_inline = loop_flag_is_zero(env);
7701 		state->callback_subprogno = subprogno;
7702 		return;
7703 	}
7704 
7705 	if (!state->fit_for_inline)
7706 		return;
7707 
7708 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7709 				 state->callback_subprogno == subprogno);
7710 }
7711 
7712 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7713 			     int *insn_idx_p)
7714 {
7715 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7716 	const struct bpf_func_proto *fn = NULL;
7717 	enum bpf_return_type ret_type;
7718 	enum bpf_type_flag ret_flag;
7719 	struct bpf_reg_state *regs;
7720 	struct bpf_call_arg_meta meta;
7721 	int insn_idx = *insn_idx_p;
7722 	bool changes_data;
7723 	int i, err, func_id;
7724 
7725 	/* find function prototype */
7726 	func_id = insn->imm;
7727 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7728 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7729 			func_id);
7730 		return -EINVAL;
7731 	}
7732 
7733 	if (env->ops->get_func_proto)
7734 		fn = env->ops->get_func_proto(func_id, env->prog);
7735 	if (!fn) {
7736 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7737 			func_id);
7738 		return -EINVAL;
7739 	}
7740 
7741 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7742 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7743 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7744 		return -EINVAL;
7745 	}
7746 
7747 	if (fn->allowed && !fn->allowed(env->prog)) {
7748 		verbose(env, "helper call is not allowed in probe\n");
7749 		return -EINVAL;
7750 	}
7751 
7752 	if (!env->prog->aux->sleepable && fn->might_sleep) {
7753 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
7754 		return -EINVAL;
7755 	}
7756 
7757 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7758 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7759 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7760 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7761 			func_id_name(func_id), func_id);
7762 		return -EINVAL;
7763 	}
7764 
7765 	memset(&meta, 0, sizeof(meta));
7766 	meta.pkt_access = fn->pkt_access;
7767 
7768 	err = check_func_proto(fn, func_id);
7769 	if (err) {
7770 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7771 			func_id_name(func_id), func_id);
7772 		return err;
7773 	}
7774 
7775 	if (env->cur_state->active_rcu_lock) {
7776 		if (fn->might_sleep) {
7777 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
7778 				func_id_name(func_id), func_id);
7779 			return -EINVAL;
7780 		}
7781 
7782 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
7783 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
7784 	}
7785 
7786 	meta.func_id = func_id;
7787 	/* check args */
7788 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7789 		err = check_func_arg(env, i, &meta, fn);
7790 		if (err)
7791 			return err;
7792 	}
7793 
7794 	err = record_func_map(env, &meta, func_id, insn_idx);
7795 	if (err)
7796 		return err;
7797 
7798 	err = record_func_key(env, &meta, func_id, insn_idx);
7799 	if (err)
7800 		return err;
7801 
7802 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7803 	 * is inferred from register state.
7804 	 */
7805 	for (i = 0; i < meta.access_size; i++) {
7806 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7807 				       BPF_WRITE, -1, false);
7808 		if (err)
7809 			return err;
7810 	}
7811 
7812 	regs = cur_regs(env);
7813 
7814 	/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
7815 	 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr
7816 	 * is safe to do directly.
7817 	 */
7818 	if (meta.uninit_dynptr_regno) {
7819 		if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) {
7820 			verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n");
7821 			return -EFAULT;
7822 		}
7823 		/* we write BPF_DW bits (8 bytes) at a time */
7824 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7825 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7826 					       i, BPF_DW, BPF_WRITE, -1, false);
7827 			if (err)
7828 				return err;
7829 		}
7830 
7831 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7832 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7833 					      insn_idx);
7834 		if (err)
7835 			return err;
7836 	}
7837 
7838 	if (meta.release_regno) {
7839 		err = -EINVAL;
7840 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
7841 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
7842 		 * is safe to do directly.
7843 		 */
7844 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
7845 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
7846 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
7847 				return -EFAULT;
7848 			}
7849 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7850 		} else if (meta.ref_obj_id) {
7851 			err = release_reference(env, meta.ref_obj_id);
7852 		} else if (register_is_null(&regs[meta.release_regno])) {
7853 			/* meta.ref_obj_id can only be 0 if register that is meant to be
7854 			 * released is NULL, which must be > R0.
7855 			 */
7856 			err = 0;
7857 		}
7858 		if (err) {
7859 			verbose(env, "func %s#%d reference has not been acquired before\n",
7860 				func_id_name(func_id), func_id);
7861 			return err;
7862 		}
7863 	}
7864 
7865 	switch (func_id) {
7866 	case BPF_FUNC_tail_call:
7867 		err = check_reference_leak(env);
7868 		if (err) {
7869 			verbose(env, "tail_call would lead to reference leak\n");
7870 			return err;
7871 		}
7872 		break;
7873 	case BPF_FUNC_get_local_storage:
7874 		/* check that flags argument in get_local_storage(map, flags) is 0,
7875 		 * this is required because get_local_storage() can't return an error.
7876 		 */
7877 		if (!register_is_null(&regs[BPF_REG_2])) {
7878 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7879 			return -EINVAL;
7880 		}
7881 		break;
7882 	case BPF_FUNC_for_each_map_elem:
7883 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7884 					set_map_elem_callback_state);
7885 		break;
7886 	case BPF_FUNC_timer_set_callback:
7887 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7888 					set_timer_callback_state);
7889 		break;
7890 	case BPF_FUNC_find_vma:
7891 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7892 					set_find_vma_callback_state);
7893 		break;
7894 	case BPF_FUNC_snprintf:
7895 		err = check_bpf_snprintf_call(env, regs);
7896 		break;
7897 	case BPF_FUNC_loop:
7898 		update_loop_inline_state(env, meta.subprogno);
7899 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7900 					set_loop_callback_state);
7901 		break;
7902 	case BPF_FUNC_dynptr_from_mem:
7903 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7904 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7905 				reg_type_str(env, regs[BPF_REG_1].type));
7906 			return -EACCES;
7907 		}
7908 		break;
7909 	case BPF_FUNC_set_retval:
7910 		if (prog_type == BPF_PROG_TYPE_LSM &&
7911 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7912 			if (!env->prog->aux->attach_func_proto->type) {
7913 				/* Make sure programs that attach to void
7914 				 * hooks don't try to modify return value.
7915 				 */
7916 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7917 				return -EINVAL;
7918 			}
7919 		}
7920 		break;
7921 	case BPF_FUNC_dynptr_data:
7922 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7923 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7924 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7925 
7926 				if (meta.ref_obj_id) {
7927 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7928 					return -EFAULT;
7929 				}
7930 
7931 				meta.ref_obj_id = dynptr_ref_obj_id(env, reg);
7932 				break;
7933 			}
7934 		}
7935 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7936 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7937 			return -EFAULT;
7938 		}
7939 		break;
7940 	case BPF_FUNC_user_ringbuf_drain:
7941 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7942 					set_user_ringbuf_callback_state);
7943 		break;
7944 	}
7945 
7946 	if (err)
7947 		return err;
7948 
7949 	/* reset caller saved regs */
7950 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7951 		mark_reg_not_init(env, regs, caller_saved[i]);
7952 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7953 	}
7954 
7955 	/* helper call returns 64-bit value. */
7956 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7957 
7958 	/* update return register (already marked as written above) */
7959 	ret_type = fn->ret_type;
7960 	ret_flag = type_flag(ret_type);
7961 
7962 	switch (base_type(ret_type)) {
7963 	case RET_INTEGER:
7964 		/* sets type to SCALAR_VALUE */
7965 		mark_reg_unknown(env, regs, BPF_REG_0);
7966 		break;
7967 	case RET_VOID:
7968 		regs[BPF_REG_0].type = NOT_INIT;
7969 		break;
7970 	case RET_PTR_TO_MAP_VALUE:
7971 		/* There is no offset yet applied, variable or fixed */
7972 		mark_reg_known_zero(env, regs, BPF_REG_0);
7973 		/* remember map_ptr, so that check_map_access()
7974 		 * can check 'value_size' boundary of memory access
7975 		 * to map element returned from bpf_map_lookup_elem()
7976 		 */
7977 		if (meta.map_ptr == NULL) {
7978 			verbose(env,
7979 				"kernel subsystem misconfigured verifier\n");
7980 			return -EINVAL;
7981 		}
7982 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7983 		regs[BPF_REG_0].map_uid = meta.map_uid;
7984 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7985 		if (!type_may_be_null(ret_type) &&
7986 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
7987 			regs[BPF_REG_0].id = ++env->id_gen;
7988 		}
7989 		break;
7990 	case RET_PTR_TO_SOCKET:
7991 		mark_reg_known_zero(env, regs, BPF_REG_0);
7992 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7993 		break;
7994 	case RET_PTR_TO_SOCK_COMMON:
7995 		mark_reg_known_zero(env, regs, BPF_REG_0);
7996 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7997 		break;
7998 	case RET_PTR_TO_TCP_SOCK:
7999 		mark_reg_known_zero(env, regs, BPF_REG_0);
8000 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
8001 		break;
8002 	case RET_PTR_TO_MEM:
8003 		mark_reg_known_zero(env, regs, BPF_REG_0);
8004 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8005 		regs[BPF_REG_0].mem_size = meta.mem_size;
8006 		break;
8007 	case RET_PTR_TO_MEM_OR_BTF_ID:
8008 	{
8009 		const struct btf_type *t;
8010 
8011 		mark_reg_known_zero(env, regs, BPF_REG_0);
8012 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
8013 		if (!btf_type_is_struct(t)) {
8014 			u32 tsize;
8015 			const struct btf_type *ret;
8016 			const char *tname;
8017 
8018 			/* resolve the type size of ksym. */
8019 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
8020 			if (IS_ERR(ret)) {
8021 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
8022 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
8023 					tname, PTR_ERR(ret));
8024 				return -EINVAL;
8025 			}
8026 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8027 			regs[BPF_REG_0].mem_size = tsize;
8028 		} else {
8029 			/* MEM_RDONLY may be carried from ret_flag, but it
8030 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
8031 			 * it will confuse the check of PTR_TO_BTF_ID in
8032 			 * check_mem_access().
8033 			 */
8034 			ret_flag &= ~MEM_RDONLY;
8035 
8036 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8037 			regs[BPF_REG_0].btf = meta.ret_btf;
8038 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
8039 		}
8040 		break;
8041 	}
8042 	case RET_PTR_TO_BTF_ID:
8043 	{
8044 		struct btf *ret_btf;
8045 		int ret_btf_id;
8046 
8047 		mark_reg_known_zero(env, regs, BPF_REG_0);
8048 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8049 		if (func_id == BPF_FUNC_kptr_xchg) {
8050 			ret_btf = meta.kptr_field->kptr.btf;
8051 			ret_btf_id = meta.kptr_field->kptr.btf_id;
8052 		} else {
8053 			if (fn->ret_btf_id == BPF_PTR_POISON) {
8054 				verbose(env, "verifier internal error:");
8055 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
8056 					func_id_name(func_id));
8057 				return -EINVAL;
8058 			}
8059 			ret_btf = btf_vmlinux;
8060 			ret_btf_id = *fn->ret_btf_id;
8061 		}
8062 		if (ret_btf_id == 0) {
8063 			verbose(env, "invalid return type %u of func %s#%d\n",
8064 				base_type(ret_type), func_id_name(func_id),
8065 				func_id);
8066 			return -EINVAL;
8067 		}
8068 		regs[BPF_REG_0].btf = ret_btf;
8069 		regs[BPF_REG_0].btf_id = ret_btf_id;
8070 		break;
8071 	}
8072 	default:
8073 		verbose(env, "unknown return type %u of func %s#%d\n",
8074 			base_type(ret_type), func_id_name(func_id), func_id);
8075 		return -EINVAL;
8076 	}
8077 
8078 	if (type_may_be_null(regs[BPF_REG_0].type))
8079 		regs[BPF_REG_0].id = ++env->id_gen;
8080 
8081 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
8082 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
8083 			func_id_name(func_id), func_id);
8084 		return -EFAULT;
8085 	}
8086 
8087 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
8088 		/* For release_reference() */
8089 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8090 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
8091 		int id = acquire_reference_state(env, insn_idx);
8092 
8093 		if (id < 0)
8094 			return id;
8095 		/* For mark_ptr_or_null_reg() */
8096 		regs[BPF_REG_0].id = id;
8097 		/* For release_reference() */
8098 		regs[BPF_REG_0].ref_obj_id = id;
8099 	}
8100 
8101 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
8102 
8103 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
8104 	if (err)
8105 		return err;
8106 
8107 	if ((func_id == BPF_FUNC_get_stack ||
8108 	     func_id == BPF_FUNC_get_task_stack) &&
8109 	    !env->prog->has_callchain_buf) {
8110 		const char *err_str;
8111 
8112 #ifdef CONFIG_PERF_EVENTS
8113 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
8114 		err_str = "cannot get callchain buffer for func %s#%d\n";
8115 #else
8116 		err = -ENOTSUPP;
8117 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
8118 #endif
8119 		if (err) {
8120 			verbose(env, err_str, func_id_name(func_id), func_id);
8121 			return err;
8122 		}
8123 
8124 		env->prog->has_callchain_buf = true;
8125 	}
8126 
8127 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
8128 		env->prog->call_get_stack = true;
8129 
8130 	if (func_id == BPF_FUNC_get_func_ip) {
8131 		if (check_get_func_ip(env))
8132 			return -ENOTSUPP;
8133 		env->prog->call_get_func_ip = true;
8134 	}
8135 
8136 	if (changes_data)
8137 		clear_all_pkt_pointers(env);
8138 	return 0;
8139 }
8140 
8141 /* mark_btf_func_reg_size() is used when the reg size is determined by
8142  * the BTF func_proto's return value size and argument.
8143  */
8144 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
8145 				   size_t reg_size)
8146 {
8147 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
8148 
8149 	if (regno == BPF_REG_0) {
8150 		/* Function return value */
8151 		reg->live |= REG_LIVE_WRITTEN;
8152 		reg->subreg_def = reg_size == sizeof(u64) ?
8153 			DEF_NOT_SUBREG : env->insn_idx + 1;
8154 	} else {
8155 		/* Function argument */
8156 		if (reg_size == sizeof(u64)) {
8157 			mark_insn_zext(env, reg);
8158 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
8159 		} else {
8160 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
8161 		}
8162 	}
8163 }
8164 
8165 struct bpf_kfunc_call_arg_meta {
8166 	/* In parameters */
8167 	struct btf *btf;
8168 	u32 func_id;
8169 	u32 kfunc_flags;
8170 	const struct btf_type *func_proto;
8171 	const char *func_name;
8172 	/* Out parameters */
8173 	u32 ref_obj_id;
8174 	u8 release_regno;
8175 	bool r0_rdonly;
8176 	u32 ret_btf_id;
8177 	u64 r0_size;
8178 	struct {
8179 		u64 value;
8180 		bool found;
8181 	} arg_constant;
8182 	struct {
8183 		struct btf *btf;
8184 		u32 btf_id;
8185 	} arg_obj_drop;
8186 	struct {
8187 		struct btf_field *field;
8188 	} arg_list_head;
8189 };
8190 
8191 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8192 {
8193 	return meta->kfunc_flags & KF_ACQUIRE;
8194 }
8195 
8196 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8197 {
8198 	return meta->kfunc_flags & KF_RET_NULL;
8199 }
8200 
8201 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8202 {
8203 	return meta->kfunc_flags & KF_RELEASE;
8204 }
8205 
8206 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8207 {
8208 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8209 }
8210 
8211 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8212 {
8213 	return meta->kfunc_flags & KF_SLEEPABLE;
8214 }
8215 
8216 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8217 {
8218 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8219 }
8220 
8221 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8222 {
8223 	return meta->kfunc_flags & KF_RCU;
8224 }
8225 
8226 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8227 {
8228 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8229 }
8230 
8231 static bool __kfunc_param_match_suffix(const struct btf *btf,
8232 				       const struct btf_param *arg,
8233 				       const char *suffix)
8234 {
8235 	int suffix_len = strlen(suffix), len;
8236 	const char *param_name;
8237 
8238 	/* In the future, this can be ported to use BTF tagging */
8239 	param_name = btf_name_by_offset(btf, arg->name_off);
8240 	if (str_is_empty(param_name))
8241 		return false;
8242 	len = strlen(param_name);
8243 	if (len < suffix_len)
8244 		return false;
8245 	param_name += len - suffix_len;
8246 	return !strncmp(param_name, suffix, suffix_len);
8247 }
8248 
8249 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8250 				  const struct btf_param *arg,
8251 				  const struct bpf_reg_state *reg)
8252 {
8253 	const struct btf_type *t;
8254 
8255 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8256 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8257 		return false;
8258 
8259 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8260 }
8261 
8262 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8263 {
8264 	return __kfunc_param_match_suffix(btf, arg, "__k");
8265 }
8266 
8267 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8268 {
8269 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8270 }
8271 
8272 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8273 {
8274 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8275 }
8276 
8277 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8278 					  const struct btf_param *arg,
8279 					  const char *name)
8280 {
8281 	int len, target_len = strlen(name);
8282 	const char *param_name;
8283 
8284 	param_name = btf_name_by_offset(btf, arg->name_off);
8285 	if (str_is_empty(param_name))
8286 		return false;
8287 	len = strlen(param_name);
8288 	if (len != target_len)
8289 		return false;
8290 	if (strcmp(param_name, name))
8291 		return false;
8292 
8293 	return true;
8294 }
8295 
8296 enum {
8297 	KF_ARG_DYNPTR_ID,
8298 	KF_ARG_LIST_HEAD_ID,
8299 	KF_ARG_LIST_NODE_ID,
8300 };
8301 
8302 BTF_ID_LIST(kf_arg_btf_ids)
8303 BTF_ID(struct, bpf_dynptr_kern)
8304 BTF_ID(struct, bpf_list_head)
8305 BTF_ID(struct, bpf_list_node)
8306 
8307 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8308 				    const struct btf_param *arg, int type)
8309 {
8310 	const struct btf_type *t;
8311 	u32 res_id;
8312 
8313 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8314 	if (!t)
8315 		return false;
8316 	if (!btf_type_is_ptr(t))
8317 		return false;
8318 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8319 	if (!t)
8320 		return false;
8321 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8322 }
8323 
8324 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8325 {
8326 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8327 }
8328 
8329 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8330 {
8331 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8332 }
8333 
8334 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8335 {
8336 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8337 }
8338 
8339 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8340 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8341 					const struct btf *btf,
8342 					const struct btf_type *t, int rec)
8343 {
8344 	const struct btf_type *member_type;
8345 	const struct btf_member *member;
8346 	u32 i;
8347 
8348 	if (!btf_type_is_struct(t))
8349 		return false;
8350 
8351 	for_each_member(i, t, member) {
8352 		const struct btf_array *array;
8353 
8354 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8355 		if (btf_type_is_struct(member_type)) {
8356 			if (rec >= 3) {
8357 				verbose(env, "max struct nesting depth exceeded\n");
8358 				return false;
8359 			}
8360 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8361 				return false;
8362 			continue;
8363 		}
8364 		if (btf_type_is_array(member_type)) {
8365 			array = btf_array(member_type);
8366 			if (!array->nelems)
8367 				return false;
8368 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8369 			if (!btf_type_is_scalar(member_type))
8370 				return false;
8371 			continue;
8372 		}
8373 		if (!btf_type_is_scalar(member_type))
8374 			return false;
8375 	}
8376 	return true;
8377 }
8378 
8379 
8380 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8381 #ifdef CONFIG_NET
8382 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8383 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8384 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8385 #endif
8386 };
8387 
8388 enum kfunc_ptr_arg_type {
8389 	KF_ARG_PTR_TO_CTX,
8390 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8391 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8392 	KF_ARG_PTR_TO_DYNPTR,
8393 	KF_ARG_PTR_TO_LIST_HEAD,
8394 	KF_ARG_PTR_TO_LIST_NODE,
8395 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8396 	KF_ARG_PTR_TO_MEM,
8397 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8398 };
8399 
8400 enum special_kfunc_type {
8401 	KF_bpf_obj_new_impl,
8402 	KF_bpf_obj_drop_impl,
8403 	KF_bpf_list_push_front,
8404 	KF_bpf_list_push_back,
8405 	KF_bpf_list_pop_front,
8406 	KF_bpf_list_pop_back,
8407 	KF_bpf_cast_to_kern_ctx,
8408 	KF_bpf_rdonly_cast,
8409 	KF_bpf_rcu_read_lock,
8410 	KF_bpf_rcu_read_unlock,
8411 };
8412 
8413 BTF_SET_START(special_kfunc_set)
8414 BTF_ID(func, bpf_obj_new_impl)
8415 BTF_ID(func, bpf_obj_drop_impl)
8416 BTF_ID(func, bpf_list_push_front)
8417 BTF_ID(func, bpf_list_push_back)
8418 BTF_ID(func, bpf_list_pop_front)
8419 BTF_ID(func, bpf_list_pop_back)
8420 BTF_ID(func, bpf_cast_to_kern_ctx)
8421 BTF_ID(func, bpf_rdonly_cast)
8422 BTF_SET_END(special_kfunc_set)
8423 
8424 BTF_ID_LIST(special_kfunc_list)
8425 BTF_ID(func, bpf_obj_new_impl)
8426 BTF_ID(func, bpf_obj_drop_impl)
8427 BTF_ID(func, bpf_list_push_front)
8428 BTF_ID(func, bpf_list_push_back)
8429 BTF_ID(func, bpf_list_pop_front)
8430 BTF_ID(func, bpf_list_pop_back)
8431 BTF_ID(func, bpf_cast_to_kern_ctx)
8432 BTF_ID(func, bpf_rdonly_cast)
8433 BTF_ID(func, bpf_rcu_read_lock)
8434 BTF_ID(func, bpf_rcu_read_unlock)
8435 
8436 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8437 {
8438 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8439 }
8440 
8441 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8442 {
8443 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8444 }
8445 
8446 static enum kfunc_ptr_arg_type
8447 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8448 		       struct bpf_kfunc_call_arg_meta *meta,
8449 		       const struct btf_type *t, const struct btf_type *ref_t,
8450 		       const char *ref_tname, const struct btf_param *args,
8451 		       int argno, int nargs)
8452 {
8453 	u32 regno = argno + 1;
8454 	struct bpf_reg_state *regs = cur_regs(env);
8455 	struct bpf_reg_state *reg = &regs[regno];
8456 	bool arg_mem_size = false;
8457 
8458 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8459 		return KF_ARG_PTR_TO_CTX;
8460 
8461 	/* In this function, we verify the kfunc's BTF as per the argument type,
8462 	 * leaving the rest of the verification with respect to the register
8463 	 * type to our caller. When a set of conditions hold in the BTF type of
8464 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8465 	 */
8466 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8467 		return KF_ARG_PTR_TO_CTX;
8468 
8469 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8470 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8471 
8472 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8473 		if (!btf_type_is_ptr(ref_t)) {
8474 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8475 			return -EINVAL;
8476 		}
8477 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8478 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8479 		if (!btf_type_is_struct(ref_t)) {
8480 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8481 				meta->func_name, btf_type_str(ref_t), ref_tname);
8482 			return -EINVAL;
8483 		}
8484 		return KF_ARG_PTR_TO_KPTR;
8485 	}
8486 
8487 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8488 		return KF_ARG_PTR_TO_DYNPTR;
8489 
8490 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8491 		return KF_ARG_PTR_TO_LIST_HEAD;
8492 
8493 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8494 		return KF_ARG_PTR_TO_LIST_NODE;
8495 
8496 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8497 		if (!btf_type_is_struct(ref_t)) {
8498 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8499 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8500 			return -EINVAL;
8501 		}
8502 		return KF_ARG_PTR_TO_BTF_ID;
8503 	}
8504 
8505 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8506 		arg_mem_size = true;
8507 
8508 	/* This is the catch all argument type of register types supported by
8509 	 * check_helper_mem_access. However, we only allow when argument type is
8510 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8511 	 * arg_mem_size is true, the pointer can be void *.
8512 	 */
8513 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8514 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8515 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8516 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8517 		return -EINVAL;
8518 	}
8519 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8520 }
8521 
8522 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8523 					struct bpf_reg_state *reg,
8524 					const struct btf_type *ref_t,
8525 					const char *ref_tname, u32 ref_id,
8526 					struct bpf_kfunc_call_arg_meta *meta,
8527 					int argno)
8528 {
8529 	const struct btf_type *reg_ref_t;
8530 	bool strict_type_match = false;
8531 	const struct btf *reg_btf;
8532 	const char *reg_ref_tname;
8533 	u32 reg_ref_id;
8534 
8535 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8536 		reg_btf = reg->btf;
8537 		reg_ref_id = reg->btf_id;
8538 	} else {
8539 		reg_btf = btf_vmlinux;
8540 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8541 	}
8542 
8543 	if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8544 		strict_type_match = true;
8545 
8546 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8547 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8548 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8549 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8550 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8551 			btf_type_str(reg_ref_t), reg_ref_tname);
8552 		return -EINVAL;
8553 	}
8554 	return 0;
8555 }
8556 
8557 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8558 				      struct bpf_reg_state *reg,
8559 				      const struct btf_type *ref_t,
8560 				      const char *ref_tname,
8561 				      struct bpf_kfunc_call_arg_meta *meta,
8562 				      int argno)
8563 {
8564 	struct btf_field *kptr_field;
8565 
8566 	/* check_func_arg_reg_off allows var_off for
8567 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8568 	 * off_desc.
8569 	 */
8570 	if (!tnum_is_const(reg->var_off)) {
8571 		verbose(env, "arg#0 must have constant offset\n");
8572 		return -EINVAL;
8573 	}
8574 
8575 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8576 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8577 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8578 			reg->off + reg->var_off.value);
8579 		return -EINVAL;
8580 	}
8581 
8582 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8583 				  kptr_field->kptr.btf_id, true)) {
8584 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8585 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8586 		return -EINVAL;
8587 	}
8588 	return 0;
8589 }
8590 
8591 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8592 {
8593 	struct bpf_func_state *state = cur_func(env);
8594 	struct bpf_reg_state *reg;
8595 	int i;
8596 
8597 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8598 	 * subprogs, no global functions. This means that the references would
8599 	 * not be released inside the critical section but they may be added to
8600 	 * the reference state, and the acquired_refs are never copied out for a
8601 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8602 	 * critical sections.
8603 	 */
8604 	if (!ref_obj_id) {
8605 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8606 		return -EFAULT;
8607 	}
8608 	for (i = 0; i < state->acquired_refs; i++) {
8609 		if (state->refs[i].id == ref_obj_id) {
8610 			if (state->refs[i].release_on_unlock) {
8611 				verbose(env, "verifier internal error: expected false release_on_unlock");
8612 				return -EFAULT;
8613 			}
8614 			state->refs[i].release_on_unlock = true;
8615 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8616 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8617 				if (reg->ref_obj_id == ref_obj_id)
8618 					reg->type |= PTR_UNTRUSTED;
8619 			}));
8620 			return 0;
8621 		}
8622 	}
8623 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8624 	return -EFAULT;
8625 }
8626 
8627 /* Implementation details:
8628  *
8629  * Each register points to some region of memory, which we define as an
8630  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8631  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8632  * allocation. The lock and the data it protects are colocated in the same
8633  * memory region.
8634  *
8635  * Hence, everytime a register holds a pointer value pointing to such
8636  * allocation, the verifier preserves a unique reg->id for it.
8637  *
8638  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8639  * bpf_spin_lock is called.
8640  *
8641  * To enable this, lock state in the verifier captures two values:
8642  *	active_lock.ptr = Register's type specific pointer
8643  *	active_lock.id  = A unique ID for each register pointer value
8644  *
8645  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8646  * supported register types.
8647  *
8648  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8649  * allocated objects is the reg->btf pointer.
8650  *
8651  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8652  * can establish the provenance of the map value statically for each distinct
8653  * lookup into such maps. They always contain a single map value hence unique
8654  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8655  *
8656  * So, in case of global variables, they use array maps with max_entries = 1,
8657  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8658  * into the same map value as max_entries is 1, as described above).
8659  *
8660  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8661  * outer map pointer (in verifier context), but each lookup into an inner map
8662  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8663  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8664  * will get different reg->id assigned to each lookup, hence different
8665  * active_lock.id.
8666  *
8667  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8668  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8669  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8670  */
8671 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8672 {
8673 	void *ptr;
8674 	u32 id;
8675 
8676 	switch ((int)reg->type) {
8677 	case PTR_TO_MAP_VALUE:
8678 		ptr = reg->map_ptr;
8679 		break;
8680 	case PTR_TO_BTF_ID | MEM_ALLOC:
8681 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8682 		ptr = reg->btf;
8683 		break;
8684 	default:
8685 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8686 		return -EFAULT;
8687 	}
8688 	id = reg->id;
8689 
8690 	if (!env->cur_state->active_lock.ptr)
8691 		return -EINVAL;
8692 	if (env->cur_state->active_lock.ptr != ptr ||
8693 	    env->cur_state->active_lock.id != id) {
8694 		verbose(env, "held lock and object are not in the same allocation\n");
8695 		return -EINVAL;
8696 	}
8697 	return 0;
8698 }
8699 
8700 static bool is_bpf_list_api_kfunc(u32 btf_id)
8701 {
8702 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8703 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8704 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8705 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8706 }
8707 
8708 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8709 					   struct bpf_reg_state *reg, u32 regno,
8710 					   struct bpf_kfunc_call_arg_meta *meta)
8711 {
8712 	struct btf_field *field;
8713 	struct btf_record *rec;
8714 	u32 list_head_off;
8715 
8716 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8717 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8718 		return -EFAULT;
8719 	}
8720 
8721 	if (!tnum_is_const(reg->var_off)) {
8722 		verbose(env,
8723 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8724 			regno);
8725 		return -EINVAL;
8726 	}
8727 
8728 	rec = reg_btf_record(reg);
8729 	list_head_off = reg->off + reg->var_off.value;
8730 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8731 	if (!field) {
8732 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8733 		return -EINVAL;
8734 	}
8735 
8736 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8737 	if (check_reg_allocation_locked(env, reg)) {
8738 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8739 			rec->spin_lock_off);
8740 		return -EINVAL;
8741 	}
8742 
8743 	if (meta->arg_list_head.field) {
8744 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8745 		return -EFAULT;
8746 	}
8747 	meta->arg_list_head.field = field;
8748 	return 0;
8749 }
8750 
8751 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8752 					   struct bpf_reg_state *reg, u32 regno,
8753 					   struct bpf_kfunc_call_arg_meta *meta)
8754 {
8755 	const struct btf_type *et, *t;
8756 	struct btf_field *field;
8757 	struct btf_record *rec;
8758 	u32 list_node_off;
8759 
8760 	if (meta->btf != btf_vmlinux ||
8761 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8762 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8763 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8764 		return -EFAULT;
8765 	}
8766 
8767 	if (!tnum_is_const(reg->var_off)) {
8768 		verbose(env,
8769 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8770 			regno);
8771 		return -EINVAL;
8772 	}
8773 
8774 	rec = reg_btf_record(reg);
8775 	list_node_off = reg->off + reg->var_off.value;
8776 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8777 	if (!field || field->offset != list_node_off) {
8778 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8779 		return -EINVAL;
8780 	}
8781 
8782 	field = meta->arg_list_head.field;
8783 
8784 	et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id);
8785 	t = btf_type_by_id(reg->btf, reg->btf_id);
8786 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf,
8787 				  field->list_head.value_btf_id, true)) {
8788 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8789 			"in struct %s, but arg is at offset=%d in struct %s\n",
8790 			field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off),
8791 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8792 		return -EINVAL;
8793 	}
8794 
8795 	if (list_node_off != field->list_head.node_offset) {
8796 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8797 			list_node_off, field->list_head.node_offset,
8798 			btf_name_by_offset(field->list_head.btf, et->name_off));
8799 		return -EINVAL;
8800 	}
8801 	/* Set arg#1 for expiration after unlock */
8802 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
8803 }
8804 
8805 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8806 {
8807 	const char *func_name = meta->func_name, *ref_tname;
8808 	const struct btf *btf = meta->btf;
8809 	const struct btf_param *args;
8810 	u32 i, nargs;
8811 	int ret;
8812 
8813 	args = (const struct btf_param *)(meta->func_proto + 1);
8814 	nargs = btf_type_vlen(meta->func_proto);
8815 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8816 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8817 			MAX_BPF_FUNC_REG_ARGS);
8818 		return -EINVAL;
8819 	}
8820 
8821 	/* Check that BTF function arguments match actual types that the
8822 	 * verifier sees.
8823 	 */
8824 	for (i = 0; i < nargs; i++) {
8825 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8826 		const struct btf_type *t, *ref_t, *resolve_ret;
8827 		enum bpf_arg_type arg_type = ARG_DONTCARE;
8828 		u32 regno = i + 1, ref_id, type_size;
8829 		bool is_ret_buf_sz = false;
8830 		int kf_arg_type;
8831 
8832 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
8833 
8834 		if (is_kfunc_arg_ignore(btf, &args[i]))
8835 			continue;
8836 
8837 		if (btf_type_is_scalar(t)) {
8838 			if (reg->type != SCALAR_VALUE) {
8839 				verbose(env, "R%d is not a scalar\n", regno);
8840 				return -EINVAL;
8841 			}
8842 
8843 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8844 				if (meta->arg_constant.found) {
8845 					verbose(env, "verifier internal error: only one constant argument permitted\n");
8846 					return -EFAULT;
8847 				}
8848 				if (!tnum_is_const(reg->var_off)) {
8849 					verbose(env, "R%d must be a known constant\n", regno);
8850 					return -EINVAL;
8851 				}
8852 				ret = mark_chain_precision(env, regno);
8853 				if (ret < 0)
8854 					return ret;
8855 				meta->arg_constant.found = true;
8856 				meta->arg_constant.value = reg->var_off.value;
8857 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
8858 				meta->r0_rdonly = true;
8859 				is_ret_buf_sz = true;
8860 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8861 				is_ret_buf_sz = true;
8862 			}
8863 
8864 			if (is_ret_buf_sz) {
8865 				if (meta->r0_size) {
8866 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8867 					return -EINVAL;
8868 				}
8869 
8870 				if (!tnum_is_const(reg->var_off)) {
8871 					verbose(env, "R%d is not a const\n", regno);
8872 					return -EINVAL;
8873 				}
8874 
8875 				meta->r0_size = reg->var_off.value;
8876 				ret = mark_chain_precision(env, regno);
8877 				if (ret)
8878 					return ret;
8879 			}
8880 			continue;
8881 		}
8882 
8883 		if (!btf_type_is_ptr(t)) {
8884 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8885 			return -EINVAL;
8886 		}
8887 
8888 		if (reg->ref_obj_id) {
8889 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
8890 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8891 					regno, reg->ref_obj_id,
8892 					meta->ref_obj_id);
8893 				return -EFAULT;
8894 			}
8895 			meta->ref_obj_id = reg->ref_obj_id;
8896 			if (is_kfunc_release(meta))
8897 				meta->release_regno = regno;
8898 		}
8899 
8900 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8901 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8902 
8903 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8904 		if (kf_arg_type < 0)
8905 			return kf_arg_type;
8906 
8907 		switch (kf_arg_type) {
8908 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8909 		case KF_ARG_PTR_TO_BTF_ID:
8910 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
8911 				break;
8912 
8913 			if (!is_trusted_reg(reg)) {
8914 				if (!is_kfunc_rcu(meta)) {
8915 					verbose(env, "R%d must be referenced or trusted\n", regno);
8916 					return -EINVAL;
8917 				}
8918 				if (!is_rcu_reg(reg)) {
8919 					verbose(env, "R%d must be a rcu pointer\n", regno);
8920 					return -EINVAL;
8921 				}
8922 			}
8923 
8924 			fallthrough;
8925 		case KF_ARG_PTR_TO_CTX:
8926 			/* Trusted arguments have the same offset checks as release arguments */
8927 			arg_type |= OBJ_RELEASE;
8928 			break;
8929 		case KF_ARG_PTR_TO_KPTR:
8930 		case KF_ARG_PTR_TO_DYNPTR:
8931 		case KF_ARG_PTR_TO_LIST_HEAD:
8932 		case KF_ARG_PTR_TO_LIST_NODE:
8933 		case KF_ARG_PTR_TO_MEM:
8934 		case KF_ARG_PTR_TO_MEM_SIZE:
8935 			/* Trusted by default */
8936 			break;
8937 		default:
8938 			WARN_ON_ONCE(1);
8939 			return -EFAULT;
8940 		}
8941 
8942 		if (is_kfunc_release(meta) && reg->ref_obj_id)
8943 			arg_type |= OBJ_RELEASE;
8944 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8945 		if (ret < 0)
8946 			return ret;
8947 
8948 		switch (kf_arg_type) {
8949 		case KF_ARG_PTR_TO_CTX:
8950 			if (reg->type != PTR_TO_CTX) {
8951 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8952 				return -EINVAL;
8953 			}
8954 
8955 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8956 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8957 				if (ret < 0)
8958 					return -EINVAL;
8959 				meta->ret_btf_id  = ret;
8960 			}
8961 			break;
8962 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8963 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8964 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8965 				return -EINVAL;
8966 			}
8967 			if (!reg->ref_obj_id) {
8968 				verbose(env, "allocated object must be referenced\n");
8969 				return -EINVAL;
8970 			}
8971 			if (meta->btf == btf_vmlinux &&
8972 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8973 				meta->arg_obj_drop.btf = reg->btf;
8974 				meta->arg_obj_drop.btf_id = reg->btf_id;
8975 			}
8976 			break;
8977 		case KF_ARG_PTR_TO_KPTR:
8978 			if (reg->type != PTR_TO_MAP_VALUE) {
8979 				verbose(env, "arg#0 expected pointer to map value\n");
8980 				return -EINVAL;
8981 			}
8982 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8983 			if (ret < 0)
8984 				return ret;
8985 			break;
8986 		case KF_ARG_PTR_TO_DYNPTR:
8987 			if (reg->type != PTR_TO_STACK &&
8988 			    reg->type != CONST_PTR_TO_DYNPTR) {
8989 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
8990 				return -EINVAL;
8991 			}
8992 
8993 			ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL);
8994 			if (ret < 0)
8995 				return ret;
8996 			break;
8997 		case KF_ARG_PTR_TO_LIST_HEAD:
8998 			if (reg->type != PTR_TO_MAP_VALUE &&
8999 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9000 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
9001 				return -EINVAL;
9002 			}
9003 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
9004 				verbose(env, "allocated object must be referenced\n");
9005 				return -EINVAL;
9006 			}
9007 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
9008 			if (ret < 0)
9009 				return ret;
9010 			break;
9011 		case KF_ARG_PTR_TO_LIST_NODE:
9012 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9013 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9014 				return -EINVAL;
9015 			}
9016 			if (!reg->ref_obj_id) {
9017 				verbose(env, "allocated object must be referenced\n");
9018 				return -EINVAL;
9019 			}
9020 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
9021 			if (ret < 0)
9022 				return ret;
9023 			break;
9024 		case KF_ARG_PTR_TO_BTF_ID:
9025 			/* Only base_type is checked, further checks are done here */
9026 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
9027 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
9028 			    !reg2btf_ids[base_type(reg->type)]) {
9029 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
9030 				verbose(env, "expected %s or socket\n",
9031 					reg_type_str(env, base_type(reg->type) |
9032 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
9033 				return -EINVAL;
9034 			}
9035 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
9036 			if (ret < 0)
9037 				return ret;
9038 			break;
9039 		case KF_ARG_PTR_TO_MEM:
9040 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
9041 			if (IS_ERR(resolve_ret)) {
9042 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
9043 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
9044 				return -EINVAL;
9045 			}
9046 			ret = check_mem_reg(env, reg, regno, type_size);
9047 			if (ret < 0)
9048 				return ret;
9049 			break;
9050 		case KF_ARG_PTR_TO_MEM_SIZE:
9051 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
9052 			if (ret < 0) {
9053 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
9054 				return ret;
9055 			}
9056 			/* Skip next '__sz' argument */
9057 			i++;
9058 			break;
9059 		}
9060 	}
9061 
9062 	if (is_kfunc_release(meta) && !meta->release_regno) {
9063 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
9064 			func_name);
9065 		return -EINVAL;
9066 	}
9067 
9068 	return 0;
9069 }
9070 
9071 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9072 			    int *insn_idx_p)
9073 {
9074 	const struct btf_type *t, *func, *func_proto, *ptr_type;
9075 	struct bpf_reg_state *regs = cur_regs(env);
9076 	const char *func_name, *ptr_type_name;
9077 	bool sleepable, rcu_lock, rcu_unlock;
9078 	struct bpf_kfunc_call_arg_meta meta;
9079 	u32 i, nargs, func_id, ptr_type_id;
9080 	int err, insn_idx = *insn_idx_p;
9081 	const struct btf_param *args;
9082 	const struct btf_type *ret_t;
9083 	struct btf *desc_btf;
9084 	u32 *kfunc_flags;
9085 
9086 	/* skip for now, but return error when we find this in fixup_kfunc_call */
9087 	if (!insn->imm)
9088 		return 0;
9089 
9090 	desc_btf = find_kfunc_desc_btf(env, insn->off);
9091 	if (IS_ERR(desc_btf))
9092 		return PTR_ERR(desc_btf);
9093 
9094 	func_id = insn->imm;
9095 	func = btf_type_by_id(desc_btf, func_id);
9096 	func_name = btf_name_by_offset(desc_btf, func->name_off);
9097 	func_proto = btf_type_by_id(desc_btf, func->type);
9098 
9099 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
9100 	if (!kfunc_flags) {
9101 		verbose(env, "calling kernel function %s is not allowed\n",
9102 			func_name);
9103 		return -EACCES;
9104 	}
9105 
9106 	/* Prepare kfunc call metadata */
9107 	memset(&meta, 0, sizeof(meta));
9108 	meta.btf = desc_btf;
9109 	meta.func_id = func_id;
9110 	meta.kfunc_flags = *kfunc_flags;
9111 	meta.func_proto = func_proto;
9112 	meta.func_name = func_name;
9113 
9114 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
9115 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
9116 		return -EACCES;
9117 	}
9118 
9119 	sleepable = is_kfunc_sleepable(&meta);
9120 	if (sleepable && !env->prog->aux->sleepable) {
9121 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
9122 		return -EACCES;
9123 	}
9124 
9125 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
9126 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9127 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
9128 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
9129 		return -EACCES;
9130 	}
9131 
9132 	if (env->cur_state->active_rcu_lock) {
9133 		struct bpf_func_state *state;
9134 		struct bpf_reg_state *reg;
9135 
9136 		if (rcu_lock) {
9137 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
9138 			return -EINVAL;
9139 		} else if (rcu_unlock) {
9140 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9141 				if (reg->type & MEM_RCU) {
9142 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9143 					reg->type |= PTR_UNTRUSTED;
9144 				}
9145 			}));
9146 			env->cur_state->active_rcu_lock = false;
9147 		} else if (sleepable) {
9148 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
9149 			return -EACCES;
9150 		}
9151 	} else if (rcu_lock) {
9152 		env->cur_state->active_rcu_lock = true;
9153 	} else if (rcu_unlock) {
9154 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
9155 		return -EINVAL;
9156 	}
9157 
9158 	/* Check the arguments */
9159 	err = check_kfunc_args(env, &meta);
9160 	if (err < 0)
9161 		return err;
9162 	/* In case of release function, we get register number of refcounted
9163 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9164 	 */
9165 	if (meta.release_regno) {
9166 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9167 		if (err) {
9168 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9169 				func_name, func_id);
9170 			return err;
9171 		}
9172 	}
9173 
9174 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9175 		mark_reg_not_init(env, regs, caller_saved[i]);
9176 
9177 	/* Check return type */
9178 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9179 
9180 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9181 		/* Only exception is bpf_obj_new_impl */
9182 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9183 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9184 			return -EINVAL;
9185 		}
9186 	}
9187 
9188 	if (btf_type_is_scalar(t)) {
9189 		mark_reg_unknown(env, regs, BPF_REG_0);
9190 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9191 	} else if (btf_type_is_ptr(t)) {
9192 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9193 
9194 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9195 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9196 				struct btf *ret_btf;
9197 				u32 ret_btf_id;
9198 
9199 				if (unlikely(!bpf_global_ma_set))
9200 					return -ENOMEM;
9201 
9202 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9203 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9204 					return -EINVAL;
9205 				}
9206 
9207 				ret_btf = env->prog->aux->btf;
9208 				ret_btf_id = meta.arg_constant.value;
9209 
9210 				/* This may be NULL due to user not supplying a BTF */
9211 				if (!ret_btf) {
9212 					verbose(env, "bpf_obj_new requires prog BTF\n");
9213 					return -EINVAL;
9214 				}
9215 
9216 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9217 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9218 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9219 					return -EINVAL;
9220 				}
9221 
9222 				mark_reg_known_zero(env, regs, BPF_REG_0);
9223 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9224 				regs[BPF_REG_0].btf = ret_btf;
9225 				regs[BPF_REG_0].btf_id = ret_btf_id;
9226 
9227 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9228 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9229 					btf_find_struct_meta(ret_btf, ret_btf_id);
9230 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9231 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9232 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9233 							     meta.arg_obj_drop.btf_id);
9234 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9235 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9236 				struct btf_field *field = meta.arg_list_head.field;
9237 
9238 				mark_reg_known_zero(env, regs, BPF_REG_0);
9239 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9240 				regs[BPF_REG_0].btf = field->list_head.btf;
9241 				regs[BPF_REG_0].btf_id = field->list_head.value_btf_id;
9242 				regs[BPF_REG_0].off = field->list_head.node_offset;
9243 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9244 				mark_reg_known_zero(env, regs, BPF_REG_0);
9245 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9246 				regs[BPF_REG_0].btf = desc_btf;
9247 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9248 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9249 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9250 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9251 					verbose(env,
9252 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9253 					return -EINVAL;
9254 				}
9255 
9256 				mark_reg_known_zero(env, regs, BPF_REG_0);
9257 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9258 				regs[BPF_REG_0].btf = desc_btf;
9259 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9260 			} else {
9261 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9262 					meta.func_name);
9263 				return -EFAULT;
9264 			}
9265 		} else if (!__btf_type_is_struct(ptr_type)) {
9266 			if (!meta.r0_size) {
9267 				ptr_type_name = btf_name_by_offset(desc_btf,
9268 								   ptr_type->name_off);
9269 				verbose(env,
9270 					"kernel function %s returns pointer type %s %s is not supported\n",
9271 					func_name,
9272 					btf_type_str(ptr_type),
9273 					ptr_type_name);
9274 				return -EINVAL;
9275 			}
9276 
9277 			mark_reg_known_zero(env, regs, BPF_REG_0);
9278 			regs[BPF_REG_0].type = PTR_TO_MEM;
9279 			regs[BPF_REG_0].mem_size = meta.r0_size;
9280 
9281 			if (meta.r0_rdonly)
9282 				regs[BPF_REG_0].type |= MEM_RDONLY;
9283 
9284 			/* Ensures we don't access the memory after a release_reference() */
9285 			if (meta.ref_obj_id)
9286 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9287 		} else {
9288 			mark_reg_known_zero(env, regs, BPF_REG_0);
9289 			regs[BPF_REG_0].btf = desc_btf;
9290 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9291 			regs[BPF_REG_0].btf_id = ptr_type_id;
9292 		}
9293 
9294 		if (is_kfunc_ret_null(&meta)) {
9295 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9296 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9297 			regs[BPF_REG_0].id = ++env->id_gen;
9298 		}
9299 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9300 		if (is_kfunc_acquire(&meta)) {
9301 			int id = acquire_reference_state(env, insn_idx);
9302 
9303 			if (id < 0)
9304 				return id;
9305 			if (is_kfunc_ret_null(&meta))
9306 				regs[BPF_REG_0].id = id;
9307 			regs[BPF_REG_0].ref_obj_id = id;
9308 		}
9309 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9310 			regs[BPF_REG_0].id = ++env->id_gen;
9311 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9312 
9313 	nargs = btf_type_vlen(func_proto);
9314 	args = (const struct btf_param *)(func_proto + 1);
9315 	for (i = 0; i < nargs; i++) {
9316 		u32 regno = i + 1;
9317 
9318 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9319 		if (btf_type_is_ptr(t))
9320 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9321 		else
9322 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9323 			mark_btf_func_reg_size(env, regno, t->size);
9324 	}
9325 
9326 	return 0;
9327 }
9328 
9329 static bool signed_add_overflows(s64 a, s64 b)
9330 {
9331 	/* Do the add in u64, where overflow is well-defined */
9332 	s64 res = (s64)((u64)a + (u64)b);
9333 
9334 	if (b < 0)
9335 		return res > a;
9336 	return res < a;
9337 }
9338 
9339 static bool signed_add32_overflows(s32 a, s32 b)
9340 {
9341 	/* Do the add in u32, where overflow is well-defined */
9342 	s32 res = (s32)((u32)a + (u32)b);
9343 
9344 	if (b < 0)
9345 		return res > a;
9346 	return res < a;
9347 }
9348 
9349 static bool signed_sub_overflows(s64 a, s64 b)
9350 {
9351 	/* Do the sub in u64, where overflow is well-defined */
9352 	s64 res = (s64)((u64)a - (u64)b);
9353 
9354 	if (b < 0)
9355 		return res < a;
9356 	return res > a;
9357 }
9358 
9359 static bool signed_sub32_overflows(s32 a, s32 b)
9360 {
9361 	/* Do the sub in u32, where overflow is well-defined */
9362 	s32 res = (s32)((u32)a - (u32)b);
9363 
9364 	if (b < 0)
9365 		return res < a;
9366 	return res > a;
9367 }
9368 
9369 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9370 				  const struct bpf_reg_state *reg,
9371 				  enum bpf_reg_type type)
9372 {
9373 	bool known = tnum_is_const(reg->var_off);
9374 	s64 val = reg->var_off.value;
9375 	s64 smin = reg->smin_value;
9376 
9377 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9378 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9379 			reg_type_str(env, type), val);
9380 		return false;
9381 	}
9382 
9383 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9384 		verbose(env, "%s pointer offset %d is not allowed\n",
9385 			reg_type_str(env, type), reg->off);
9386 		return false;
9387 	}
9388 
9389 	if (smin == S64_MIN) {
9390 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9391 			reg_type_str(env, type));
9392 		return false;
9393 	}
9394 
9395 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9396 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9397 			smin, reg_type_str(env, type));
9398 		return false;
9399 	}
9400 
9401 	return true;
9402 }
9403 
9404 enum {
9405 	REASON_BOUNDS	= -1,
9406 	REASON_TYPE	= -2,
9407 	REASON_PATHS	= -3,
9408 	REASON_LIMIT	= -4,
9409 	REASON_STACK	= -5,
9410 };
9411 
9412 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9413 			      u32 *alu_limit, bool mask_to_left)
9414 {
9415 	u32 max = 0, ptr_limit = 0;
9416 
9417 	switch (ptr_reg->type) {
9418 	case PTR_TO_STACK:
9419 		/* Offset 0 is out-of-bounds, but acceptable start for the
9420 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9421 		 * offset where we would need to deal with min/max bounds is
9422 		 * currently prohibited for unprivileged.
9423 		 */
9424 		max = MAX_BPF_STACK + mask_to_left;
9425 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9426 		break;
9427 	case PTR_TO_MAP_VALUE:
9428 		max = ptr_reg->map_ptr->value_size;
9429 		ptr_limit = (mask_to_left ?
9430 			     ptr_reg->smin_value :
9431 			     ptr_reg->umax_value) + ptr_reg->off;
9432 		break;
9433 	default:
9434 		return REASON_TYPE;
9435 	}
9436 
9437 	if (ptr_limit >= max)
9438 		return REASON_LIMIT;
9439 	*alu_limit = ptr_limit;
9440 	return 0;
9441 }
9442 
9443 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9444 				    const struct bpf_insn *insn)
9445 {
9446 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9447 }
9448 
9449 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9450 				       u32 alu_state, u32 alu_limit)
9451 {
9452 	/* If we arrived here from different branches with different
9453 	 * state or limits to sanitize, then this won't work.
9454 	 */
9455 	if (aux->alu_state &&
9456 	    (aux->alu_state != alu_state ||
9457 	     aux->alu_limit != alu_limit))
9458 		return REASON_PATHS;
9459 
9460 	/* Corresponding fixup done in do_misc_fixups(). */
9461 	aux->alu_state = alu_state;
9462 	aux->alu_limit = alu_limit;
9463 	return 0;
9464 }
9465 
9466 static int sanitize_val_alu(struct bpf_verifier_env *env,
9467 			    struct bpf_insn *insn)
9468 {
9469 	struct bpf_insn_aux_data *aux = cur_aux(env);
9470 
9471 	if (can_skip_alu_sanitation(env, insn))
9472 		return 0;
9473 
9474 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9475 }
9476 
9477 static bool sanitize_needed(u8 opcode)
9478 {
9479 	return opcode == BPF_ADD || opcode == BPF_SUB;
9480 }
9481 
9482 struct bpf_sanitize_info {
9483 	struct bpf_insn_aux_data aux;
9484 	bool mask_to_left;
9485 };
9486 
9487 static struct bpf_verifier_state *
9488 sanitize_speculative_path(struct bpf_verifier_env *env,
9489 			  const struct bpf_insn *insn,
9490 			  u32 next_idx, u32 curr_idx)
9491 {
9492 	struct bpf_verifier_state *branch;
9493 	struct bpf_reg_state *regs;
9494 
9495 	branch = push_stack(env, next_idx, curr_idx, true);
9496 	if (branch && insn) {
9497 		regs = branch->frame[branch->curframe]->regs;
9498 		if (BPF_SRC(insn->code) == BPF_K) {
9499 			mark_reg_unknown(env, regs, insn->dst_reg);
9500 		} else if (BPF_SRC(insn->code) == BPF_X) {
9501 			mark_reg_unknown(env, regs, insn->dst_reg);
9502 			mark_reg_unknown(env, regs, insn->src_reg);
9503 		}
9504 	}
9505 	return branch;
9506 }
9507 
9508 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9509 			    struct bpf_insn *insn,
9510 			    const struct bpf_reg_state *ptr_reg,
9511 			    const struct bpf_reg_state *off_reg,
9512 			    struct bpf_reg_state *dst_reg,
9513 			    struct bpf_sanitize_info *info,
9514 			    const bool commit_window)
9515 {
9516 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9517 	struct bpf_verifier_state *vstate = env->cur_state;
9518 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9519 	bool off_is_neg = off_reg->smin_value < 0;
9520 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9521 	u8 opcode = BPF_OP(insn->code);
9522 	u32 alu_state, alu_limit;
9523 	struct bpf_reg_state tmp;
9524 	bool ret;
9525 	int err;
9526 
9527 	if (can_skip_alu_sanitation(env, insn))
9528 		return 0;
9529 
9530 	/* We already marked aux for masking from non-speculative
9531 	 * paths, thus we got here in the first place. We only care
9532 	 * to explore bad access from here.
9533 	 */
9534 	if (vstate->speculative)
9535 		goto do_sim;
9536 
9537 	if (!commit_window) {
9538 		if (!tnum_is_const(off_reg->var_off) &&
9539 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9540 			return REASON_BOUNDS;
9541 
9542 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9543 				     (opcode == BPF_SUB && !off_is_neg);
9544 	}
9545 
9546 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9547 	if (err < 0)
9548 		return err;
9549 
9550 	if (commit_window) {
9551 		/* In commit phase we narrow the masking window based on
9552 		 * the observed pointer move after the simulated operation.
9553 		 */
9554 		alu_state = info->aux.alu_state;
9555 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9556 	} else {
9557 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9558 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9559 		alu_state |= ptr_is_dst_reg ?
9560 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9561 
9562 		/* Limit pruning on unknown scalars to enable deep search for
9563 		 * potential masking differences from other program paths.
9564 		 */
9565 		if (!off_is_imm)
9566 			env->explore_alu_limits = true;
9567 	}
9568 
9569 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9570 	if (err < 0)
9571 		return err;
9572 do_sim:
9573 	/* If we're in commit phase, we're done here given we already
9574 	 * pushed the truncated dst_reg into the speculative verification
9575 	 * stack.
9576 	 *
9577 	 * Also, when register is a known constant, we rewrite register-based
9578 	 * operation to immediate-based, and thus do not need masking (and as
9579 	 * a consequence, do not need to simulate the zero-truncation either).
9580 	 */
9581 	if (commit_window || off_is_imm)
9582 		return 0;
9583 
9584 	/* Simulate and find potential out-of-bounds access under
9585 	 * speculative execution from truncation as a result of
9586 	 * masking when off was not within expected range. If off
9587 	 * sits in dst, then we temporarily need to move ptr there
9588 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9589 	 * for cases where we use K-based arithmetic in one direction
9590 	 * and truncated reg-based in the other in order to explore
9591 	 * bad access.
9592 	 */
9593 	if (!ptr_is_dst_reg) {
9594 		tmp = *dst_reg;
9595 		*dst_reg = *ptr_reg;
9596 	}
9597 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9598 					env->insn_idx);
9599 	if (!ptr_is_dst_reg && ret)
9600 		*dst_reg = tmp;
9601 	return !ret ? REASON_STACK : 0;
9602 }
9603 
9604 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9605 {
9606 	struct bpf_verifier_state *vstate = env->cur_state;
9607 
9608 	/* If we simulate paths under speculation, we don't update the
9609 	 * insn as 'seen' such that when we verify unreachable paths in
9610 	 * the non-speculative domain, sanitize_dead_code() can still
9611 	 * rewrite/sanitize them.
9612 	 */
9613 	if (!vstate->speculative)
9614 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9615 }
9616 
9617 static int sanitize_err(struct bpf_verifier_env *env,
9618 			const struct bpf_insn *insn, int reason,
9619 			const struct bpf_reg_state *off_reg,
9620 			const struct bpf_reg_state *dst_reg)
9621 {
9622 	static const char *err = "pointer arithmetic with it prohibited for !root";
9623 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9624 	u32 dst = insn->dst_reg, src = insn->src_reg;
9625 
9626 	switch (reason) {
9627 	case REASON_BOUNDS:
9628 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9629 			off_reg == dst_reg ? dst : src, err);
9630 		break;
9631 	case REASON_TYPE:
9632 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9633 			off_reg == dst_reg ? src : dst, err);
9634 		break;
9635 	case REASON_PATHS:
9636 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9637 			dst, op, err);
9638 		break;
9639 	case REASON_LIMIT:
9640 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9641 			dst, op, err);
9642 		break;
9643 	case REASON_STACK:
9644 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9645 			dst, err);
9646 		break;
9647 	default:
9648 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9649 			reason);
9650 		break;
9651 	}
9652 
9653 	return -EACCES;
9654 }
9655 
9656 /* check that stack access falls within stack limits and that 'reg' doesn't
9657  * have a variable offset.
9658  *
9659  * Variable offset is prohibited for unprivileged mode for simplicity since it
9660  * requires corresponding support in Spectre masking for stack ALU.  See also
9661  * retrieve_ptr_limit().
9662  *
9663  *
9664  * 'off' includes 'reg->off'.
9665  */
9666 static int check_stack_access_for_ptr_arithmetic(
9667 				struct bpf_verifier_env *env,
9668 				int regno,
9669 				const struct bpf_reg_state *reg,
9670 				int off)
9671 {
9672 	if (!tnum_is_const(reg->var_off)) {
9673 		char tn_buf[48];
9674 
9675 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9676 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9677 			regno, tn_buf, off);
9678 		return -EACCES;
9679 	}
9680 
9681 	if (off >= 0 || off < -MAX_BPF_STACK) {
9682 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9683 			"prohibited for !root; off=%d\n", regno, off);
9684 		return -EACCES;
9685 	}
9686 
9687 	return 0;
9688 }
9689 
9690 static int sanitize_check_bounds(struct bpf_verifier_env *env,
9691 				 const struct bpf_insn *insn,
9692 				 const struct bpf_reg_state *dst_reg)
9693 {
9694 	u32 dst = insn->dst_reg;
9695 
9696 	/* For unprivileged we require that resulting offset must be in bounds
9697 	 * in order to be able to sanitize access later on.
9698 	 */
9699 	if (env->bypass_spec_v1)
9700 		return 0;
9701 
9702 	switch (dst_reg->type) {
9703 	case PTR_TO_STACK:
9704 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9705 					dst_reg->off + dst_reg->var_off.value))
9706 			return -EACCES;
9707 		break;
9708 	case PTR_TO_MAP_VALUE:
9709 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
9710 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9711 				"prohibited for !root\n", dst);
9712 			return -EACCES;
9713 		}
9714 		break;
9715 	default:
9716 		break;
9717 	}
9718 
9719 	return 0;
9720 }
9721 
9722 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
9723  * Caller should also handle BPF_MOV case separately.
9724  * If we return -EACCES, caller may want to try again treating pointer as a
9725  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
9726  */
9727 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9728 				   struct bpf_insn *insn,
9729 				   const struct bpf_reg_state *ptr_reg,
9730 				   const struct bpf_reg_state *off_reg)
9731 {
9732 	struct bpf_verifier_state *vstate = env->cur_state;
9733 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9734 	struct bpf_reg_state *regs = state->regs, *dst_reg;
9735 	bool known = tnum_is_const(off_reg->var_off);
9736 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9737 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9738 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9739 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9740 	struct bpf_sanitize_info info = {};
9741 	u8 opcode = BPF_OP(insn->code);
9742 	u32 dst = insn->dst_reg;
9743 	int ret;
9744 
9745 	dst_reg = &regs[dst];
9746 
9747 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9748 	    smin_val > smax_val || umin_val > umax_val) {
9749 		/* Taint dst register if offset had invalid bounds derived from
9750 		 * e.g. dead branches.
9751 		 */
9752 		__mark_reg_unknown(env, dst_reg);
9753 		return 0;
9754 	}
9755 
9756 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
9757 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
9758 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9759 			__mark_reg_unknown(env, dst_reg);
9760 			return 0;
9761 		}
9762 
9763 		verbose(env,
9764 			"R%d 32-bit pointer arithmetic prohibited\n",
9765 			dst);
9766 		return -EACCES;
9767 	}
9768 
9769 	if (ptr_reg->type & PTR_MAYBE_NULL) {
9770 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
9771 			dst, reg_type_str(env, ptr_reg->type));
9772 		return -EACCES;
9773 	}
9774 
9775 	switch (base_type(ptr_reg->type)) {
9776 	case CONST_PTR_TO_MAP:
9777 		/* smin_val represents the known value */
9778 		if (known && smin_val == 0 && opcode == BPF_ADD)
9779 			break;
9780 		fallthrough;
9781 	case PTR_TO_PACKET_END:
9782 	case PTR_TO_SOCKET:
9783 	case PTR_TO_SOCK_COMMON:
9784 	case PTR_TO_TCP_SOCK:
9785 	case PTR_TO_XDP_SOCK:
9786 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
9787 			dst, reg_type_str(env, ptr_reg->type));
9788 		return -EACCES;
9789 	default:
9790 		break;
9791 	}
9792 
9793 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9794 	 * The id may be overwritten later if we create a new variable offset.
9795 	 */
9796 	dst_reg->type = ptr_reg->type;
9797 	dst_reg->id = ptr_reg->id;
9798 
9799 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9800 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9801 		return -EINVAL;
9802 
9803 	/* pointer types do not carry 32-bit bounds at the moment. */
9804 	__mark_reg32_unbounded(dst_reg);
9805 
9806 	if (sanitize_needed(opcode)) {
9807 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
9808 				       &info, false);
9809 		if (ret < 0)
9810 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9811 	}
9812 
9813 	switch (opcode) {
9814 	case BPF_ADD:
9815 		/* We can take a fixed offset as long as it doesn't overflow
9816 		 * the s32 'off' field
9817 		 */
9818 		if (known && (ptr_reg->off + smin_val ==
9819 			      (s64)(s32)(ptr_reg->off + smin_val))) {
9820 			/* pointer += K.  Accumulate it into fixed offset */
9821 			dst_reg->smin_value = smin_ptr;
9822 			dst_reg->smax_value = smax_ptr;
9823 			dst_reg->umin_value = umin_ptr;
9824 			dst_reg->umax_value = umax_ptr;
9825 			dst_reg->var_off = ptr_reg->var_off;
9826 			dst_reg->off = ptr_reg->off + smin_val;
9827 			dst_reg->raw = ptr_reg->raw;
9828 			break;
9829 		}
9830 		/* A new variable offset is created.  Note that off_reg->off
9831 		 * == 0, since it's a scalar.
9832 		 * dst_reg gets the pointer type and since some positive
9833 		 * integer value was added to the pointer, give it a new 'id'
9834 		 * if it's a PTR_TO_PACKET.
9835 		 * this creates a new 'base' pointer, off_reg (variable) gets
9836 		 * added into the variable offset, and we copy the fixed offset
9837 		 * from ptr_reg.
9838 		 */
9839 		if (signed_add_overflows(smin_ptr, smin_val) ||
9840 		    signed_add_overflows(smax_ptr, smax_val)) {
9841 			dst_reg->smin_value = S64_MIN;
9842 			dst_reg->smax_value = S64_MAX;
9843 		} else {
9844 			dst_reg->smin_value = smin_ptr + smin_val;
9845 			dst_reg->smax_value = smax_ptr + smax_val;
9846 		}
9847 		if (umin_ptr + umin_val < umin_ptr ||
9848 		    umax_ptr + umax_val < umax_ptr) {
9849 			dst_reg->umin_value = 0;
9850 			dst_reg->umax_value = U64_MAX;
9851 		} else {
9852 			dst_reg->umin_value = umin_ptr + umin_val;
9853 			dst_reg->umax_value = umax_ptr + umax_val;
9854 		}
9855 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9856 		dst_reg->off = ptr_reg->off;
9857 		dst_reg->raw = ptr_reg->raw;
9858 		if (reg_is_pkt_pointer(ptr_reg)) {
9859 			dst_reg->id = ++env->id_gen;
9860 			/* something was added to pkt_ptr, set range to zero */
9861 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9862 		}
9863 		break;
9864 	case BPF_SUB:
9865 		if (dst_reg == off_reg) {
9866 			/* scalar -= pointer.  Creates an unknown scalar */
9867 			verbose(env, "R%d tried to subtract pointer from scalar\n",
9868 				dst);
9869 			return -EACCES;
9870 		}
9871 		/* We don't allow subtraction from FP, because (according to
9872 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
9873 		 * be able to deal with it.
9874 		 */
9875 		if (ptr_reg->type == PTR_TO_STACK) {
9876 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
9877 				dst);
9878 			return -EACCES;
9879 		}
9880 		if (known && (ptr_reg->off - smin_val ==
9881 			      (s64)(s32)(ptr_reg->off - smin_val))) {
9882 			/* pointer -= K.  Subtract it from fixed offset */
9883 			dst_reg->smin_value = smin_ptr;
9884 			dst_reg->smax_value = smax_ptr;
9885 			dst_reg->umin_value = umin_ptr;
9886 			dst_reg->umax_value = umax_ptr;
9887 			dst_reg->var_off = ptr_reg->var_off;
9888 			dst_reg->id = ptr_reg->id;
9889 			dst_reg->off = ptr_reg->off - smin_val;
9890 			dst_reg->raw = ptr_reg->raw;
9891 			break;
9892 		}
9893 		/* A new variable offset is created.  If the subtrahend is known
9894 		 * nonnegative, then any reg->range we had before is still good.
9895 		 */
9896 		if (signed_sub_overflows(smin_ptr, smax_val) ||
9897 		    signed_sub_overflows(smax_ptr, smin_val)) {
9898 			/* Overflow possible, we know nothing */
9899 			dst_reg->smin_value = S64_MIN;
9900 			dst_reg->smax_value = S64_MAX;
9901 		} else {
9902 			dst_reg->smin_value = smin_ptr - smax_val;
9903 			dst_reg->smax_value = smax_ptr - smin_val;
9904 		}
9905 		if (umin_ptr < umax_val) {
9906 			/* Overflow possible, we know nothing */
9907 			dst_reg->umin_value = 0;
9908 			dst_reg->umax_value = U64_MAX;
9909 		} else {
9910 			/* Cannot overflow (as long as bounds are consistent) */
9911 			dst_reg->umin_value = umin_ptr - umax_val;
9912 			dst_reg->umax_value = umax_ptr - umin_val;
9913 		}
9914 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9915 		dst_reg->off = ptr_reg->off;
9916 		dst_reg->raw = ptr_reg->raw;
9917 		if (reg_is_pkt_pointer(ptr_reg)) {
9918 			dst_reg->id = ++env->id_gen;
9919 			/* something was added to pkt_ptr, set range to zero */
9920 			if (smin_val < 0)
9921 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9922 		}
9923 		break;
9924 	case BPF_AND:
9925 	case BPF_OR:
9926 	case BPF_XOR:
9927 		/* bitwise ops on pointers are troublesome, prohibit. */
9928 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9929 			dst, bpf_alu_string[opcode >> 4]);
9930 		return -EACCES;
9931 	default:
9932 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
9933 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9934 			dst, bpf_alu_string[opcode >> 4]);
9935 		return -EACCES;
9936 	}
9937 
9938 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9939 		return -EINVAL;
9940 	reg_bounds_sync(dst_reg);
9941 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9942 		return -EACCES;
9943 	if (sanitize_needed(opcode)) {
9944 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
9945 				       &info, true);
9946 		if (ret < 0)
9947 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9948 	}
9949 
9950 	return 0;
9951 }
9952 
9953 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9954 				 struct bpf_reg_state *src_reg)
9955 {
9956 	s32 smin_val = src_reg->s32_min_value;
9957 	s32 smax_val = src_reg->s32_max_value;
9958 	u32 umin_val = src_reg->u32_min_value;
9959 	u32 umax_val = src_reg->u32_max_value;
9960 
9961 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9962 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9963 		dst_reg->s32_min_value = S32_MIN;
9964 		dst_reg->s32_max_value = S32_MAX;
9965 	} else {
9966 		dst_reg->s32_min_value += smin_val;
9967 		dst_reg->s32_max_value += smax_val;
9968 	}
9969 	if (dst_reg->u32_min_value + umin_val < umin_val ||
9970 	    dst_reg->u32_max_value + umax_val < umax_val) {
9971 		dst_reg->u32_min_value = 0;
9972 		dst_reg->u32_max_value = U32_MAX;
9973 	} else {
9974 		dst_reg->u32_min_value += umin_val;
9975 		dst_reg->u32_max_value += umax_val;
9976 	}
9977 }
9978 
9979 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9980 			       struct bpf_reg_state *src_reg)
9981 {
9982 	s64 smin_val = src_reg->smin_value;
9983 	s64 smax_val = src_reg->smax_value;
9984 	u64 umin_val = src_reg->umin_value;
9985 	u64 umax_val = src_reg->umax_value;
9986 
9987 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9988 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
9989 		dst_reg->smin_value = S64_MIN;
9990 		dst_reg->smax_value = S64_MAX;
9991 	} else {
9992 		dst_reg->smin_value += smin_val;
9993 		dst_reg->smax_value += smax_val;
9994 	}
9995 	if (dst_reg->umin_value + umin_val < umin_val ||
9996 	    dst_reg->umax_value + umax_val < umax_val) {
9997 		dst_reg->umin_value = 0;
9998 		dst_reg->umax_value = U64_MAX;
9999 	} else {
10000 		dst_reg->umin_value += umin_val;
10001 		dst_reg->umax_value += umax_val;
10002 	}
10003 }
10004 
10005 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
10006 				 struct bpf_reg_state *src_reg)
10007 {
10008 	s32 smin_val = src_reg->s32_min_value;
10009 	s32 smax_val = src_reg->s32_max_value;
10010 	u32 umin_val = src_reg->u32_min_value;
10011 	u32 umax_val = src_reg->u32_max_value;
10012 
10013 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
10014 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
10015 		/* Overflow possible, we know nothing */
10016 		dst_reg->s32_min_value = S32_MIN;
10017 		dst_reg->s32_max_value = S32_MAX;
10018 	} else {
10019 		dst_reg->s32_min_value -= smax_val;
10020 		dst_reg->s32_max_value -= smin_val;
10021 	}
10022 	if (dst_reg->u32_min_value < umax_val) {
10023 		/* Overflow possible, we know nothing */
10024 		dst_reg->u32_min_value = 0;
10025 		dst_reg->u32_max_value = U32_MAX;
10026 	} else {
10027 		/* Cannot overflow (as long as bounds are consistent) */
10028 		dst_reg->u32_min_value -= umax_val;
10029 		dst_reg->u32_max_value -= umin_val;
10030 	}
10031 }
10032 
10033 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
10034 			       struct bpf_reg_state *src_reg)
10035 {
10036 	s64 smin_val = src_reg->smin_value;
10037 	s64 smax_val = src_reg->smax_value;
10038 	u64 umin_val = src_reg->umin_value;
10039 	u64 umax_val = src_reg->umax_value;
10040 
10041 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
10042 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
10043 		/* Overflow possible, we know nothing */
10044 		dst_reg->smin_value = S64_MIN;
10045 		dst_reg->smax_value = S64_MAX;
10046 	} else {
10047 		dst_reg->smin_value -= smax_val;
10048 		dst_reg->smax_value -= smin_val;
10049 	}
10050 	if (dst_reg->umin_value < umax_val) {
10051 		/* Overflow possible, we know nothing */
10052 		dst_reg->umin_value = 0;
10053 		dst_reg->umax_value = U64_MAX;
10054 	} else {
10055 		/* Cannot overflow (as long as bounds are consistent) */
10056 		dst_reg->umin_value -= umax_val;
10057 		dst_reg->umax_value -= umin_val;
10058 	}
10059 }
10060 
10061 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
10062 				 struct bpf_reg_state *src_reg)
10063 {
10064 	s32 smin_val = src_reg->s32_min_value;
10065 	u32 umin_val = src_reg->u32_min_value;
10066 	u32 umax_val = src_reg->u32_max_value;
10067 
10068 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
10069 		/* Ain't nobody got time to multiply that sign */
10070 		__mark_reg32_unbounded(dst_reg);
10071 		return;
10072 	}
10073 	/* Both values are positive, so we can work with unsigned and
10074 	 * copy the result to signed (unless it exceeds S32_MAX).
10075 	 */
10076 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
10077 		/* Potential overflow, we know nothing */
10078 		__mark_reg32_unbounded(dst_reg);
10079 		return;
10080 	}
10081 	dst_reg->u32_min_value *= umin_val;
10082 	dst_reg->u32_max_value *= umax_val;
10083 	if (dst_reg->u32_max_value > S32_MAX) {
10084 		/* Overflow possible, we know nothing */
10085 		dst_reg->s32_min_value = S32_MIN;
10086 		dst_reg->s32_max_value = S32_MAX;
10087 	} else {
10088 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10089 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10090 	}
10091 }
10092 
10093 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
10094 			       struct bpf_reg_state *src_reg)
10095 {
10096 	s64 smin_val = src_reg->smin_value;
10097 	u64 umin_val = src_reg->umin_value;
10098 	u64 umax_val = src_reg->umax_value;
10099 
10100 	if (smin_val < 0 || dst_reg->smin_value < 0) {
10101 		/* Ain't nobody got time to multiply that sign */
10102 		__mark_reg64_unbounded(dst_reg);
10103 		return;
10104 	}
10105 	/* Both values are positive, so we can work with unsigned and
10106 	 * copy the result to signed (unless it exceeds S64_MAX).
10107 	 */
10108 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
10109 		/* Potential overflow, we know nothing */
10110 		__mark_reg64_unbounded(dst_reg);
10111 		return;
10112 	}
10113 	dst_reg->umin_value *= umin_val;
10114 	dst_reg->umax_value *= umax_val;
10115 	if (dst_reg->umax_value > S64_MAX) {
10116 		/* Overflow possible, we know nothing */
10117 		dst_reg->smin_value = S64_MIN;
10118 		dst_reg->smax_value = S64_MAX;
10119 	} else {
10120 		dst_reg->smin_value = dst_reg->umin_value;
10121 		dst_reg->smax_value = dst_reg->umax_value;
10122 	}
10123 }
10124 
10125 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
10126 				 struct bpf_reg_state *src_reg)
10127 {
10128 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10129 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10130 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10131 	s32 smin_val = src_reg->s32_min_value;
10132 	u32 umax_val = src_reg->u32_max_value;
10133 
10134 	if (src_known && dst_known) {
10135 		__mark_reg32_known(dst_reg, var32_off.value);
10136 		return;
10137 	}
10138 
10139 	/* We get our minimum from the var_off, since that's inherently
10140 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10141 	 */
10142 	dst_reg->u32_min_value = var32_off.value;
10143 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
10144 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10145 		/* Lose signed bounds when ANDing negative numbers,
10146 		 * ain't nobody got time for that.
10147 		 */
10148 		dst_reg->s32_min_value = S32_MIN;
10149 		dst_reg->s32_max_value = S32_MAX;
10150 	} else {
10151 		/* ANDing two positives gives a positive, so safe to
10152 		 * cast result into s64.
10153 		 */
10154 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10155 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10156 	}
10157 }
10158 
10159 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
10160 			       struct bpf_reg_state *src_reg)
10161 {
10162 	bool src_known = tnum_is_const(src_reg->var_off);
10163 	bool dst_known = tnum_is_const(dst_reg->var_off);
10164 	s64 smin_val = src_reg->smin_value;
10165 	u64 umax_val = src_reg->umax_value;
10166 
10167 	if (src_known && dst_known) {
10168 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10169 		return;
10170 	}
10171 
10172 	/* We get our minimum from the var_off, since that's inherently
10173 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10174 	 */
10175 	dst_reg->umin_value = dst_reg->var_off.value;
10176 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10177 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10178 		/* Lose signed bounds when ANDing negative numbers,
10179 		 * ain't nobody got time for that.
10180 		 */
10181 		dst_reg->smin_value = S64_MIN;
10182 		dst_reg->smax_value = S64_MAX;
10183 	} else {
10184 		/* ANDing two positives gives a positive, so safe to
10185 		 * cast result into s64.
10186 		 */
10187 		dst_reg->smin_value = dst_reg->umin_value;
10188 		dst_reg->smax_value = dst_reg->umax_value;
10189 	}
10190 	/* We may learn something more from the var_off */
10191 	__update_reg_bounds(dst_reg);
10192 }
10193 
10194 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10195 				struct bpf_reg_state *src_reg)
10196 {
10197 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10198 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10199 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10200 	s32 smin_val = src_reg->s32_min_value;
10201 	u32 umin_val = src_reg->u32_min_value;
10202 
10203 	if (src_known && dst_known) {
10204 		__mark_reg32_known(dst_reg, var32_off.value);
10205 		return;
10206 	}
10207 
10208 	/* We get our maximum from the var_off, and our minimum is the
10209 	 * maximum of the operands' minima
10210 	 */
10211 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10212 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10213 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10214 		/* Lose signed bounds when ORing negative numbers,
10215 		 * ain't nobody got time for that.
10216 		 */
10217 		dst_reg->s32_min_value = S32_MIN;
10218 		dst_reg->s32_max_value = S32_MAX;
10219 	} else {
10220 		/* ORing two positives gives a positive, so safe to
10221 		 * cast result into s64.
10222 		 */
10223 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10224 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10225 	}
10226 }
10227 
10228 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10229 			      struct bpf_reg_state *src_reg)
10230 {
10231 	bool src_known = tnum_is_const(src_reg->var_off);
10232 	bool dst_known = tnum_is_const(dst_reg->var_off);
10233 	s64 smin_val = src_reg->smin_value;
10234 	u64 umin_val = src_reg->umin_value;
10235 
10236 	if (src_known && dst_known) {
10237 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10238 		return;
10239 	}
10240 
10241 	/* We get our maximum from the var_off, and our minimum is the
10242 	 * maximum of the operands' minima
10243 	 */
10244 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10245 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10246 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10247 		/* Lose signed bounds when ORing negative numbers,
10248 		 * ain't nobody got time for that.
10249 		 */
10250 		dst_reg->smin_value = S64_MIN;
10251 		dst_reg->smax_value = S64_MAX;
10252 	} else {
10253 		/* ORing two positives gives a positive, so safe to
10254 		 * cast result into s64.
10255 		 */
10256 		dst_reg->smin_value = dst_reg->umin_value;
10257 		dst_reg->smax_value = dst_reg->umax_value;
10258 	}
10259 	/* We may learn something more from the var_off */
10260 	__update_reg_bounds(dst_reg);
10261 }
10262 
10263 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10264 				 struct bpf_reg_state *src_reg)
10265 {
10266 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10267 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10268 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10269 	s32 smin_val = src_reg->s32_min_value;
10270 
10271 	if (src_known && dst_known) {
10272 		__mark_reg32_known(dst_reg, var32_off.value);
10273 		return;
10274 	}
10275 
10276 	/* We get both minimum and maximum from the var32_off. */
10277 	dst_reg->u32_min_value = var32_off.value;
10278 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10279 
10280 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10281 		/* XORing two positive sign numbers gives a positive,
10282 		 * so safe to cast u32 result into s32.
10283 		 */
10284 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10285 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10286 	} else {
10287 		dst_reg->s32_min_value = S32_MIN;
10288 		dst_reg->s32_max_value = S32_MAX;
10289 	}
10290 }
10291 
10292 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10293 			       struct bpf_reg_state *src_reg)
10294 {
10295 	bool src_known = tnum_is_const(src_reg->var_off);
10296 	bool dst_known = tnum_is_const(dst_reg->var_off);
10297 	s64 smin_val = src_reg->smin_value;
10298 
10299 	if (src_known && dst_known) {
10300 		/* dst_reg->var_off.value has been updated earlier */
10301 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10302 		return;
10303 	}
10304 
10305 	/* We get both minimum and maximum from the var_off. */
10306 	dst_reg->umin_value = dst_reg->var_off.value;
10307 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10308 
10309 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10310 		/* XORing two positive sign numbers gives a positive,
10311 		 * so safe to cast u64 result into s64.
10312 		 */
10313 		dst_reg->smin_value = dst_reg->umin_value;
10314 		dst_reg->smax_value = dst_reg->umax_value;
10315 	} else {
10316 		dst_reg->smin_value = S64_MIN;
10317 		dst_reg->smax_value = S64_MAX;
10318 	}
10319 
10320 	__update_reg_bounds(dst_reg);
10321 }
10322 
10323 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10324 				   u64 umin_val, u64 umax_val)
10325 {
10326 	/* We lose all sign bit information (except what we can pick
10327 	 * up from var_off)
10328 	 */
10329 	dst_reg->s32_min_value = S32_MIN;
10330 	dst_reg->s32_max_value = S32_MAX;
10331 	/* If we might shift our top bit out, then we know nothing */
10332 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10333 		dst_reg->u32_min_value = 0;
10334 		dst_reg->u32_max_value = U32_MAX;
10335 	} else {
10336 		dst_reg->u32_min_value <<= umin_val;
10337 		dst_reg->u32_max_value <<= umax_val;
10338 	}
10339 }
10340 
10341 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10342 				 struct bpf_reg_state *src_reg)
10343 {
10344 	u32 umax_val = src_reg->u32_max_value;
10345 	u32 umin_val = src_reg->u32_min_value;
10346 	/* u32 alu operation will zext upper bits */
10347 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10348 
10349 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10350 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10351 	/* Not required but being careful mark reg64 bounds as unknown so
10352 	 * that we are forced to pick them up from tnum and zext later and
10353 	 * if some path skips this step we are still safe.
10354 	 */
10355 	__mark_reg64_unbounded(dst_reg);
10356 	__update_reg32_bounds(dst_reg);
10357 }
10358 
10359 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10360 				   u64 umin_val, u64 umax_val)
10361 {
10362 	/* Special case <<32 because it is a common compiler pattern to sign
10363 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10364 	 * positive we know this shift will also be positive so we can track
10365 	 * bounds correctly. Otherwise we lose all sign bit information except
10366 	 * what we can pick up from var_off. Perhaps we can generalize this
10367 	 * later to shifts of any length.
10368 	 */
10369 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10370 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10371 	else
10372 		dst_reg->smax_value = S64_MAX;
10373 
10374 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10375 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10376 	else
10377 		dst_reg->smin_value = S64_MIN;
10378 
10379 	/* If we might shift our top bit out, then we know nothing */
10380 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10381 		dst_reg->umin_value = 0;
10382 		dst_reg->umax_value = U64_MAX;
10383 	} else {
10384 		dst_reg->umin_value <<= umin_val;
10385 		dst_reg->umax_value <<= umax_val;
10386 	}
10387 }
10388 
10389 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10390 			       struct bpf_reg_state *src_reg)
10391 {
10392 	u64 umax_val = src_reg->umax_value;
10393 	u64 umin_val = src_reg->umin_value;
10394 
10395 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10396 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10397 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10398 
10399 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10400 	/* We may learn something more from the var_off */
10401 	__update_reg_bounds(dst_reg);
10402 }
10403 
10404 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10405 				 struct bpf_reg_state *src_reg)
10406 {
10407 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10408 	u32 umax_val = src_reg->u32_max_value;
10409 	u32 umin_val = src_reg->u32_min_value;
10410 
10411 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10412 	 * be negative, then either:
10413 	 * 1) src_reg might be zero, so the sign bit of the result is
10414 	 *    unknown, so we lose our signed bounds
10415 	 * 2) it's known negative, thus the unsigned bounds capture the
10416 	 *    signed bounds
10417 	 * 3) the signed bounds cross zero, so they tell us nothing
10418 	 *    about the result
10419 	 * If the value in dst_reg is known nonnegative, then again the
10420 	 * unsigned bounds capture the signed bounds.
10421 	 * Thus, in all cases it suffices to blow away our signed bounds
10422 	 * and rely on inferring new ones from the unsigned bounds and
10423 	 * var_off of the result.
10424 	 */
10425 	dst_reg->s32_min_value = S32_MIN;
10426 	dst_reg->s32_max_value = S32_MAX;
10427 
10428 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10429 	dst_reg->u32_min_value >>= umax_val;
10430 	dst_reg->u32_max_value >>= umin_val;
10431 
10432 	__mark_reg64_unbounded(dst_reg);
10433 	__update_reg32_bounds(dst_reg);
10434 }
10435 
10436 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10437 			       struct bpf_reg_state *src_reg)
10438 {
10439 	u64 umax_val = src_reg->umax_value;
10440 	u64 umin_val = src_reg->umin_value;
10441 
10442 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10443 	 * be negative, then either:
10444 	 * 1) src_reg might be zero, so the sign bit of the result is
10445 	 *    unknown, so we lose our signed bounds
10446 	 * 2) it's known negative, thus the unsigned bounds capture the
10447 	 *    signed bounds
10448 	 * 3) the signed bounds cross zero, so they tell us nothing
10449 	 *    about the result
10450 	 * If the value in dst_reg is known nonnegative, then again the
10451 	 * unsigned bounds capture the signed bounds.
10452 	 * Thus, in all cases it suffices to blow away our signed bounds
10453 	 * and rely on inferring new ones from the unsigned bounds and
10454 	 * var_off of the result.
10455 	 */
10456 	dst_reg->smin_value = S64_MIN;
10457 	dst_reg->smax_value = S64_MAX;
10458 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10459 	dst_reg->umin_value >>= umax_val;
10460 	dst_reg->umax_value >>= umin_val;
10461 
10462 	/* Its not easy to operate on alu32 bounds here because it depends
10463 	 * on bits being shifted in. Take easy way out and mark unbounded
10464 	 * so we can recalculate later from tnum.
10465 	 */
10466 	__mark_reg32_unbounded(dst_reg);
10467 	__update_reg_bounds(dst_reg);
10468 }
10469 
10470 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10471 				  struct bpf_reg_state *src_reg)
10472 {
10473 	u64 umin_val = src_reg->u32_min_value;
10474 
10475 	/* Upon reaching here, src_known is true and
10476 	 * umax_val is equal to umin_val.
10477 	 */
10478 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10479 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10480 
10481 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10482 
10483 	/* blow away the dst_reg umin_value/umax_value and rely on
10484 	 * dst_reg var_off to refine the result.
10485 	 */
10486 	dst_reg->u32_min_value = 0;
10487 	dst_reg->u32_max_value = U32_MAX;
10488 
10489 	__mark_reg64_unbounded(dst_reg);
10490 	__update_reg32_bounds(dst_reg);
10491 }
10492 
10493 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10494 				struct bpf_reg_state *src_reg)
10495 {
10496 	u64 umin_val = src_reg->umin_value;
10497 
10498 	/* Upon reaching here, src_known is true and umax_val is equal
10499 	 * to umin_val.
10500 	 */
10501 	dst_reg->smin_value >>= umin_val;
10502 	dst_reg->smax_value >>= umin_val;
10503 
10504 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10505 
10506 	/* blow away the dst_reg umin_value/umax_value and rely on
10507 	 * dst_reg var_off to refine the result.
10508 	 */
10509 	dst_reg->umin_value = 0;
10510 	dst_reg->umax_value = U64_MAX;
10511 
10512 	/* Its not easy to operate on alu32 bounds here because it depends
10513 	 * on bits being shifted in from upper 32-bits. Take easy way out
10514 	 * and mark unbounded so we can recalculate later from tnum.
10515 	 */
10516 	__mark_reg32_unbounded(dst_reg);
10517 	__update_reg_bounds(dst_reg);
10518 }
10519 
10520 /* WARNING: This function does calculations on 64-bit values, but the actual
10521  * execution may occur on 32-bit values. Therefore, things like bitshifts
10522  * need extra checks in the 32-bit case.
10523  */
10524 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10525 				      struct bpf_insn *insn,
10526 				      struct bpf_reg_state *dst_reg,
10527 				      struct bpf_reg_state src_reg)
10528 {
10529 	struct bpf_reg_state *regs = cur_regs(env);
10530 	u8 opcode = BPF_OP(insn->code);
10531 	bool src_known;
10532 	s64 smin_val, smax_val;
10533 	u64 umin_val, umax_val;
10534 	s32 s32_min_val, s32_max_val;
10535 	u32 u32_min_val, u32_max_val;
10536 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10537 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10538 	int ret;
10539 
10540 	smin_val = src_reg.smin_value;
10541 	smax_val = src_reg.smax_value;
10542 	umin_val = src_reg.umin_value;
10543 	umax_val = src_reg.umax_value;
10544 
10545 	s32_min_val = src_reg.s32_min_value;
10546 	s32_max_val = src_reg.s32_max_value;
10547 	u32_min_val = src_reg.u32_min_value;
10548 	u32_max_val = src_reg.u32_max_value;
10549 
10550 	if (alu32) {
10551 		src_known = tnum_subreg_is_const(src_reg.var_off);
10552 		if ((src_known &&
10553 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10554 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10555 			/* Taint dst register if offset had invalid bounds
10556 			 * derived from e.g. dead branches.
10557 			 */
10558 			__mark_reg_unknown(env, dst_reg);
10559 			return 0;
10560 		}
10561 	} else {
10562 		src_known = tnum_is_const(src_reg.var_off);
10563 		if ((src_known &&
10564 		     (smin_val != smax_val || umin_val != umax_val)) ||
10565 		    smin_val > smax_val || umin_val > umax_val) {
10566 			/* Taint dst register if offset had invalid bounds
10567 			 * derived from e.g. dead branches.
10568 			 */
10569 			__mark_reg_unknown(env, dst_reg);
10570 			return 0;
10571 		}
10572 	}
10573 
10574 	if (!src_known &&
10575 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10576 		__mark_reg_unknown(env, dst_reg);
10577 		return 0;
10578 	}
10579 
10580 	if (sanitize_needed(opcode)) {
10581 		ret = sanitize_val_alu(env, insn);
10582 		if (ret < 0)
10583 			return sanitize_err(env, insn, ret, NULL, NULL);
10584 	}
10585 
10586 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10587 	 * There are two classes of instructions: The first class we track both
10588 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10589 	 * greatest amount of precision when alu operations are mixed with jmp32
10590 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10591 	 * and BPF_OR. This is possible because these ops have fairly easy to
10592 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10593 	 * See alu32 verifier tests for examples. The second class of
10594 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10595 	 * with regards to tracking sign/unsigned bounds because the bits may
10596 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10597 	 * the reg unbounded in the subreg bound space and use the resulting
10598 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10599 	 */
10600 	switch (opcode) {
10601 	case BPF_ADD:
10602 		scalar32_min_max_add(dst_reg, &src_reg);
10603 		scalar_min_max_add(dst_reg, &src_reg);
10604 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10605 		break;
10606 	case BPF_SUB:
10607 		scalar32_min_max_sub(dst_reg, &src_reg);
10608 		scalar_min_max_sub(dst_reg, &src_reg);
10609 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10610 		break;
10611 	case BPF_MUL:
10612 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10613 		scalar32_min_max_mul(dst_reg, &src_reg);
10614 		scalar_min_max_mul(dst_reg, &src_reg);
10615 		break;
10616 	case BPF_AND:
10617 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10618 		scalar32_min_max_and(dst_reg, &src_reg);
10619 		scalar_min_max_and(dst_reg, &src_reg);
10620 		break;
10621 	case BPF_OR:
10622 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10623 		scalar32_min_max_or(dst_reg, &src_reg);
10624 		scalar_min_max_or(dst_reg, &src_reg);
10625 		break;
10626 	case BPF_XOR:
10627 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10628 		scalar32_min_max_xor(dst_reg, &src_reg);
10629 		scalar_min_max_xor(dst_reg, &src_reg);
10630 		break;
10631 	case BPF_LSH:
10632 		if (umax_val >= insn_bitness) {
10633 			/* Shifts greater than 31 or 63 are undefined.
10634 			 * This includes shifts by a negative number.
10635 			 */
10636 			mark_reg_unknown(env, regs, insn->dst_reg);
10637 			break;
10638 		}
10639 		if (alu32)
10640 			scalar32_min_max_lsh(dst_reg, &src_reg);
10641 		else
10642 			scalar_min_max_lsh(dst_reg, &src_reg);
10643 		break;
10644 	case BPF_RSH:
10645 		if (umax_val >= insn_bitness) {
10646 			/* Shifts greater than 31 or 63 are undefined.
10647 			 * This includes shifts by a negative number.
10648 			 */
10649 			mark_reg_unknown(env, regs, insn->dst_reg);
10650 			break;
10651 		}
10652 		if (alu32)
10653 			scalar32_min_max_rsh(dst_reg, &src_reg);
10654 		else
10655 			scalar_min_max_rsh(dst_reg, &src_reg);
10656 		break;
10657 	case BPF_ARSH:
10658 		if (umax_val >= insn_bitness) {
10659 			/* Shifts greater than 31 or 63 are undefined.
10660 			 * This includes shifts by a negative number.
10661 			 */
10662 			mark_reg_unknown(env, regs, insn->dst_reg);
10663 			break;
10664 		}
10665 		if (alu32)
10666 			scalar32_min_max_arsh(dst_reg, &src_reg);
10667 		else
10668 			scalar_min_max_arsh(dst_reg, &src_reg);
10669 		break;
10670 	default:
10671 		mark_reg_unknown(env, regs, insn->dst_reg);
10672 		break;
10673 	}
10674 
10675 	/* ALU32 ops are zero extended into 64bit register */
10676 	if (alu32)
10677 		zext_32_to_64(dst_reg);
10678 	reg_bounds_sync(dst_reg);
10679 	return 0;
10680 }
10681 
10682 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10683  * and var_off.
10684  */
10685 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10686 				   struct bpf_insn *insn)
10687 {
10688 	struct bpf_verifier_state *vstate = env->cur_state;
10689 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10690 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
10691 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10692 	u8 opcode = BPF_OP(insn->code);
10693 	int err;
10694 
10695 	dst_reg = &regs[insn->dst_reg];
10696 	src_reg = NULL;
10697 	if (dst_reg->type != SCALAR_VALUE)
10698 		ptr_reg = dst_reg;
10699 	else
10700 		/* Make sure ID is cleared otherwise dst_reg min/max could be
10701 		 * incorrectly propagated into other registers by find_equal_scalars()
10702 		 */
10703 		dst_reg->id = 0;
10704 	if (BPF_SRC(insn->code) == BPF_X) {
10705 		src_reg = &regs[insn->src_reg];
10706 		if (src_reg->type != SCALAR_VALUE) {
10707 			if (dst_reg->type != SCALAR_VALUE) {
10708 				/* Combining two pointers by any ALU op yields
10709 				 * an arbitrary scalar. Disallow all math except
10710 				 * pointer subtraction
10711 				 */
10712 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10713 					mark_reg_unknown(env, regs, insn->dst_reg);
10714 					return 0;
10715 				}
10716 				verbose(env, "R%d pointer %s pointer prohibited\n",
10717 					insn->dst_reg,
10718 					bpf_alu_string[opcode >> 4]);
10719 				return -EACCES;
10720 			} else {
10721 				/* scalar += pointer
10722 				 * This is legal, but we have to reverse our
10723 				 * src/dest handling in computing the range
10724 				 */
10725 				err = mark_chain_precision(env, insn->dst_reg);
10726 				if (err)
10727 					return err;
10728 				return adjust_ptr_min_max_vals(env, insn,
10729 							       src_reg, dst_reg);
10730 			}
10731 		} else if (ptr_reg) {
10732 			/* pointer += scalar */
10733 			err = mark_chain_precision(env, insn->src_reg);
10734 			if (err)
10735 				return err;
10736 			return adjust_ptr_min_max_vals(env, insn,
10737 						       dst_reg, src_reg);
10738 		} else if (dst_reg->precise) {
10739 			/* if dst_reg is precise, src_reg should be precise as well */
10740 			err = mark_chain_precision(env, insn->src_reg);
10741 			if (err)
10742 				return err;
10743 		}
10744 	} else {
10745 		/* Pretend the src is a reg with a known value, since we only
10746 		 * need to be able to read from this state.
10747 		 */
10748 		off_reg.type = SCALAR_VALUE;
10749 		__mark_reg_known(&off_reg, insn->imm);
10750 		src_reg = &off_reg;
10751 		if (ptr_reg) /* pointer += K */
10752 			return adjust_ptr_min_max_vals(env, insn,
10753 						       ptr_reg, src_reg);
10754 	}
10755 
10756 	/* Got here implies adding two SCALAR_VALUEs */
10757 	if (WARN_ON_ONCE(ptr_reg)) {
10758 		print_verifier_state(env, state, true);
10759 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
10760 		return -EINVAL;
10761 	}
10762 	if (WARN_ON(!src_reg)) {
10763 		print_verifier_state(env, state, true);
10764 		verbose(env, "verifier internal error: no src_reg\n");
10765 		return -EINVAL;
10766 	}
10767 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
10768 }
10769 
10770 /* check validity of 32-bit and 64-bit arithmetic operations */
10771 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
10772 {
10773 	struct bpf_reg_state *regs = cur_regs(env);
10774 	u8 opcode = BPF_OP(insn->code);
10775 	int err;
10776 
10777 	if (opcode == BPF_END || opcode == BPF_NEG) {
10778 		if (opcode == BPF_NEG) {
10779 			if (BPF_SRC(insn->code) != BPF_K ||
10780 			    insn->src_reg != BPF_REG_0 ||
10781 			    insn->off != 0 || insn->imm != 0) {
10782 				verbose(env, "BPF_NEG uses reserved fields\n");
10783 				return -EINVAL;
10784 			}
10785 		} else {
10786 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
10787 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10788 			    BPF_CLASS(insn->code) == BPF_ALU64) {
10789 				verbose(env, "BPF_END uses reserved fields\n");
10790 				return -EINVAL;
10791 			}
10792 		}
10793 
10794 		/* check src operand */
10795 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10796 		if (err)
10797 			return err;
10798 
10799 		if (is_pointer_value(env, insn->dst_reg)) {
10800 			verbose(env, "R%d pointer arithmetic prohibited\n",
10801 				insn->dst_reg);
10802 			return -EACCES;
10803 		}
10804 
10805 		/* check dest operand */
10806 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
10807 		if (err)
10808 			return err;
10809 
10810 	} else if (opcode == BPF_MOV) {
10811 
10812 		if (BPF_SRC(insn->code) == BPF_X) {
10813 			if (insn->imm != 0 || insn->off != 0) {
10814 				verbose(env, "BPF_MOV uses reserved fields\n");
10815 				return -EINVAL;
10816 			}
10817 
10818 			/* check src operand */
10819 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10820 			if (err)
10821 				return err;
10822 		} else {
10823 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10824 				verbose(env, "BPF_MOV uses reserved fields\n");
10825 				return -EINVAL;
10826 			}
10827 		}
10828 
10829 		/* check dest operand, mark as required later */
10830 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10831 		if (err)
10832 			return err;
10833 
10834 		if (BPF_SRC(insn->code) == BPF_X) {
10835 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
10836 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10837 
10838 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10839 				/* case: R1 = R2
10840 				 * copy register state to dest reg
10841 				 */
10842 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10843 					/* Assign src and dst registers the same ID
10844 					 * that will be used by find_equal_scalars()
10845 					 * to propagate min/max range.
10846 					 */
10847 					src_reg->id = ++env->id_gen;
10848 				*dst_reg = *src_reg;
10849 				dst_reg->live |= REG_LIVE_WRITTEN;
10850 				dst_reg->subreg_def = DEF_NOT_SUBREG;
10851 			} else {
10852 				/* R1 = (u32) R2 */
10853 				if (is_pointer_value(env, insn->src_reg)) {
10854 					verbose(env,
10855 						"R%d partial copy of pointer\n",
10856 						insn->src_reg);
10857 					return -EACCES;
10858 				} else if (src_reg->type == SCALAR_VALUE) {
10859 					*dst_reg = *src_reg;
10860 					/* Make sure ID is cleared otherwise
10861 					 * dst_reg min/max could be incorrectly
10862 					 * propagated into src_reg by find_equal_scalars()
10863 					 */
10864 					dst_reg->id = 0;
10865 					dst_reg->live |= REG_LIVE_WRITTEN;
10866 					dst_reg->subreg_def = env->insn_idx + 1;
10867 				} else {
10868 					mark_reg_unknown(env, regs,
10869 							 insn->dst_reg);
10870 				}
10871 				zext_32_to_64(dst_reg);
10872 				reg_bounds_sync(dst_reg);
10873 			}
10874 		} else {
10875 			/* case: R = imm
10876 			 * remember the value we stored into this reg
10877 			 */
10878 			/* clear any state __mark_reg_known doesn't set */
10879 			mark_reg_unknown(env, regs, insn->dst_reg);
10880 			regs[insn->dst_reg].type = SCALAR_VALUE;
10881 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10882 				__mark_reg_known(regs + insn->dst_reg,
10883 						 insn->imm);
10884 			} else {
10885 				__mark_reg_known(regs + insn->dst_reg,
10886 						 (u32)insn->imm);
10887 			}
10888 		}
10889 
10890 	} else if (opcode > BPF_END) {
10891 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
10892 		return -EINVAL;
10893 
10894 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
10895 
10896 		if (BPF_SRC(insn->code) == BPF_X) {
10897 			if (insn->imm != 0 || insn->off != 0) {
10898 				verbose(env, "BPF_ALU uses reserved fields\n");
10899 				return -EINVAL;
10900 			}
10901 			/* check src1 operand */
10902 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10903 			if (err)
10904 				return err;
10905 		} else {
10906 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10907 				verbose(env, "BPF_ALU uses reserved fields\n");
10908 				return -EINVAL;
10909 			}
10910 		}
10911 
10912 		/* check src2 operand */
10913 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10914 		if (err)
10915 			return err;
10916 
10917 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10918 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
10919 			verbose(env, "div by zero\n");
10920 			return -EINVAL;
10921 		}
10922 
10923 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10924 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10925 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10926 
10927 			if (insn->imm < 0 || insn->imm >= size) {
10928 				verbose(env, "invalid shift %d\n", insn->imm);
10929 				return -EINVAL;
10930 			}
10931 		}
10932 
10933 		/* check dest operand */
10934 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10935 		if (err)
10936 			return err;
10937 
10938 		return adjust_reg_min_max_vals(env, insn);
10939 	}
10940 
10941 	return 0;
10942 }
10943 
10944 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
10945 				   struct bpf_reg_state *dst_reg,
10946 				   enum bpf_reg_type type,
10947 				   bool range_right_open)
10948 {
10949 	struct bpf_func_state *state;
10950 	struct bpf_reg_state *reg;
10951 	int new_range;
10952 
10953 	if (dst_reg->off < 0 ||
10954 	    (dst_reg->off == 0 && range_right_open))
10955 		/* This doesn't give us any range */
10956 		return;
10957 
10958 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
10959 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
10960 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
10961 		 * than pkt_end, but that's because it's also less than pkt.
10962 		 */
10963 		return;
10964 
10965 	new_range = dst_reg->off;
10966 	if (range_right_open)
10967 		new_range++;
10968 
10969 	/* Examples for register markings:
10970 	 *
10971 	 * pkt_data in dst register:
10972 	 *
10973 	 *   r2 = r3;
10974 	 *   r2 += 8;
10975 	 *   if (r2 > pkt_end) goto <handle exception>
10976 	 *   <access okay>
10977 	 *
10978 	 *   r2 = r3;
10979 	 *   r2 += 8;
10980 	 *   if (r2 < pkt_end) goto <access okay>
10981 	 *   <handle exception>
10982 	 *
10983 	 *   Where:
10984 	 *     r2 == dst_reg, pkt_end == src_reg
10985 	 *     r2=pkt(id=n,off=8,r=0)
10986 	 *     r3=pkt(id=n,off=0,r=0)
10987 	 *
10988 	 * pkt_data in src register:
10989 	 *
10990 	 *   r2 = r3;
10991 	 *   r2 += 8;
10992 	 *   if (pkt_end >= r2) goto <access okay>
10993 	 *   <handle exception>
10994 	 *
10995 	 *   r2 = r3;
10996 	 *   r2 += 8;
10997 	 *   if (pkt_end <= r2) goto <handle exception>
10998 	 *   <access okay>
10999 	 *
11000 	 *   Where:
11001 	 *     pkt_end == dst_reg, r2 == src_reg
11002 	 *     r2=pkt(id=n,off=8,r=0)
11003 	 *     r3=pkt(id=n,off=0,r=0)
11004 	 *
11005 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
11006 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
11007 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
11008 	 * the check.
11009 	 */
11010 
11011 	/* If our ids match, then we must have the same max_value.  And we
11012 	 * don't care about the other reg's fixed offset, since if it's too big
11013 	 * the range won't allow anything.
11014 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
11015 	 */
11016 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11017 		if (reg->type == type && reg->id == dst_reg->id)
11018 			/* keep the maximum range already checked */
11019 			reg->range = max(reg->range, new_range);
11020 	}));
11021 }
11022 
11023 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
11024 {
11025 	struct tnum subreg = tnum_subreg(reg->var_off);
11026 	s32 sval = (s32)val;
11027 
11028 	switch (opcode) {
11029 	case BPF_JEQ:
11030 		if (tnum_is_const(subreg))
11031 			return !!tnum_equals_const(subreg, val);
11032 		break;
11033 	case BPF_JNE:
11034 		if (tnum_is_const(subreg))
11035 			return !tnum_equals_const(subreg, val);
11036 		break;
11037 	case BPF_JSET:
11038 		if ((~subreg.mask & subreg.value) & val)
11039 			return 1;
11040 		if (!((subreg.mask | subreg.value) & val))
11041 			return 0;
11042 		break;
11043 	case BPF_JGT:
11044 		if (reg->u32_min_value > val)
11045 			return 1;
11046 		else if (reg->u32_max_value <= val)
11047 			return 0;
11048 		break;
11049 	case BPF_JSGT:
11050 		if (reg->s32_min_value > sval)
11051 			return 1;
11052 		else if (reg->s32_max_value <= sval)
11053 			return 0;
11054 		break;
11055 	case BPF_JLT:
11056 		if (reg->u32_max_value < val)
11057 			return 1;
11058 		else if (reg->u32_min_value >= val)
11059 			return 0;
11060 		break;
11061 	case BPF_JSLT:
11062 		if (reg->s32_max_value < sval)
11063 			return 1;
11064 		else if (reg->s32_min_value >= sval)
11065 			return 0;
11066 		break;
11067 	case BPF_JGE:
11068 		if (reg->u32_min_value >= val)
11069 			return 1;
11070 		else if (reg->u32_max_value < val)
11071 			return 0;
11072 		break;
11073 	case BPF_JSGE:
11074 		if (reg->s32_min_value >= sval)
11075 			return 1;
11076 		else if (reg->s32_max_value < sval)
11077 			return 0;
11078 		break;
11079 	case BPF_JLE:
11080 		if (reg->u32_max_value <= val)
11081 			return 1;
11082 		else if (reg->u32_min_value > val)
11083 			return 0;
11084 		break;
11085 	case BPF_JSLE:
11086 		if (reg->s32_max_value <= sval)
11087 			return 1;
11088 		else if (reg->s32_min_value > sval)
11089 			return 0;
11090 		break;
11091 	}
11092 
11093 	return -1;
11094 }
11095 
11096 
11097 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
11098 {
11099 	s64 sval = (s64)val;
11100 
11101 	switch (opcode) {
11102 	case BPF_JEQ:
11103 		if (tnum_is_const(reg->var_off))
11104 			return !!tnum_equals_const(reg->var_off, val);
11105 		break;
11106 	case BPF_JNE:
11107 		if (tnum_is_const(reg->var_off))
11108 			return !tnum_equals_const(reg->var_off, val);
11109 		break;
11110 	case BPF_JSET:
11111 		if ((~reg->var_off.mask & reg->var_off.value) & val)
11112 			return 1;
11113 		if (!((reg->var_off.mask | reg->var_off.value) & val))
11114 			return 0;
11115 		break;
11116 	case BPF_JGT:
11117 		if (reg->umin_value > val)
11118 			return 1;
11119 		else if (reg->umax_value <= val)
11120 			return 0;
11121 		break;
11122 	case BPF_JSGT:
11123 		if (reg->smin_value > sval)
11124 			return 1;
11125 		else if (reg->smax_value <= sval)
11126 			return 0;
11127 		break;
11128 	case BPF_JLT:
11129 		if (reg->umax_value < val)
11130 			return 1;
11131 		else if (reg->umin_value >= val)
11132 			return 0;
11133 		break;
11134 	case BPF_JSLT:
11135 		if (reg->smax_value < sval)
11136 			return 1;
11137 		else if (reg->smin_value >= sval)
11138 			return 0;
11139 		break;
11140 	case BPF_JGE:
11141 		if (reg->umin_value >= val)
11142 			return 1;
11143 		else if (reg->umax_value < val)
11144 			return 0;
11145 		break;
11146 	case BPF_JSGE:
11147 		if (reg->smin_value >= sval)
11148 			return 1;
11149 		else if (reg->smax_value < sval)
11150 			return 0;
11151 		break;
11152 	case BPF_JLE:
11153 		if (reg->umax_value <= val)
11154 			return 1;
11155 		else if (reg->umin_value > val)
11156 			return 0;
11157 		break;
11158 	case BPF_JSLE:
11159 		if (reg->smax_value <= sval)
11160 			return 1;
11161 		else if (reg->smin_value > sval)
11162 			return 0;
11163 		break;
11164 	}
11165 
11166 	return -1;
11167 }
11168 
11169 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11170  * and return:
11171  *  1 - branch will be taken and "goto target" will be executed
11172  *  0 - branch will not be taken and fall-through to next insn
11173  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11174  *      range [0,10]
11175  */
11176 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11177 			   bool is_jmp32)
11178 {
11179 	if (__is_pointer_value(false, reg)) {
11180 		if (!reg_type_not_null(reg->type))
11181 			return -1;
11182 
11183 		/* If pointer is valid tests against zero will fail so we can
11184 		 * use this to direct branch taken.
11185 		 */
11186 		if (val != 0)
11187 			return -1;
11188 
11189 		switch (opcode) {
11190 		case BPF_JEQ:
11191 			return 0;
11192 		case BPF_JNE:
11193 			return 1;
11194 		default:
11195 			return -1;
11196 		}
11197 	}
11198 
11199 	if (is_jmp32)
11200 		return is_branch32_taken(reg, val, opcode);
11201 	return is_branch64_taken(reg, val, opcode);
11202 }
11203 
11204 static int flip_opcode(u32 opcode)
11205 {
11206 	/* How can we transform "a <op> b" into "b <op> a"? */
11207 	static const u8 opcode_flip[16] = {
11208 		/* these stay the same */
11209 		[BPF_JEQ  >> 4] = BPF_JEQ,
11210 		[BPF_JNE  >> 4] = BPF_JNE,
11211 		[BPF_JSET >> 4] = BPF_JSET,
11212 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11213 		[BPF_JGE  >> 4] = BPF_JLE,
11214 		[BPF_JGT  >> 4] = BPF_JLT,
11215 		[BPF_JLE  >> 4] = BPF_JGE,
11216 		[BPF_JLT  >> 4] = BPF_JGT,
11217 		[BPF_JSGE >> 4] = BPF_JSLE,
11218 		[BPF_JSGT >> 4] = BPF_JSLT,
11219 		[BPF_JSLE >> 4] = BPF_JSGE,
11220 		[BPF_JSLT >> 4] = BPF_JSGT
11221 	};
11222 	return opcode_flip[opcode >> 4];
11223 }
11224 
11225 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11226 				   struct bpf_reg_state *src_reg,
11227 				   u8 opcode)
11228 {
11229 	struct bpf_reg_state *pkt;
11230 
11231 	if (src_reg->type == PTR_TO_PACKET_END) {
11232 		pkt = dst_reg;
11233 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11234 		pkt = src_reg;
11235 		opcode = flip_opcode(opcode);
11236 	} else {
11237 		return -1;
11238 	}
11239 
11240 	if (pkt->range >= 0)
11241 		return -1;
11242 
11243 	switch (opcode) {
11244 	case BPF_JLE:
11245 		/* pkt <= pkt_end */
11246 		fallthrough;
11247 	case BPF_JGT:
11248 		/* pkt > pkt_end */
11249 		if (pkt->range == BEYOND_PKT_END)
11250 			/* pkt has at last one extra byte beyond pkt_end */
11251 			return opcode == BPF_JGT;
11252 		break;
11253 	case BPF_JLT:
11254 		/* pkt < pkt_end */
11255 		fallthrough;
11256 	case BPF_JGE:
11257 		/* pkt >= pkt_end */
11258 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11259 			return opcode == BPF_JGE;
11260 		break;
11261 	}
11262 	return -1;
11263 }
11264 
11265 /* Adjusts the register min/max values in the case that the dst_reg is the
11266  * variable register that we are working on, and src_reg is a constant or we're
11267  * simply doing a BPF_K check.
11268  * In JEQ/JNE cases we also adjust the var_off values.
11269  */
11270 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11271 			    struct bpf_reg_state *false_reg,
11272 			    u64 val, u32 val32,
11273 			    u8 opcode, bool is_jmp32)
11274 {
11275 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11276 	struct tnum false_64off = false_reg->var_off;
11277 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11278 	struct tnum true_64off = true_reg->var_off;
11279 	s64 sval = (s64)val;
11280 	s32 sval32 = (s32)val32;
11281 
11282 	/* If the dst_reg is a pointer, we can't learn anything about its
11283 	 * variable offset from the compare (unless src_reg were a pointer into
11284 	 * the same object, but we don't bother with that.
11285 	 * Since false_reg and true_reg have the same type by construction, we
11286 	 * only need to check one of them for pointerness.
11287 	 */
11288 	if (__is_pointer_value(false, false_reg))
11289 		return;
11290 
11291 	switch (opcode) {
11292 	/* JEQ/JNE comparison doesn't change the register equivalence.
11293 	 *
11294 	 * r1 = r2;
11295 	 * if (r1 == 42) goto label;
11296 	 * ...
11297 	 * label: // here both r1 and r2 are known to be 42.
11298 	 *
11299 	 * Hence when marking register as known preserve it's ID.
11300 	 */
11301 	case BPF_JEQ:
11302 		if (is_jmp32) {
11303 			__mark_reg32_known(true_reg, val32);
11304 			true_32off = tnum_subreg(true_reg->var_off);
11305 		} else {
11306 			___mark_reg_known(true_reg, val);
11307 			true_64off = true_reg->var_off;
11308 		}
11309 		break;
11310 	case BPF_JNE:
11311 		if (is_jmp32) {
11312 			__mark_reg32_known(false_reg, val32);
11313 			false_32off = tnum_subreg(false_reg->var_off);
11314 		} else {
11315 			___mark_reg_known(false_reg, val);
11316 			false_64off = false_reg->var_off;
11317 		}
11318 		break;
11319 	case BPF_JSET:
11320 		if (is_jmp32) {
11321 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11322 			if (is_power_of_2(val32))
11323 				true_32off = tnum_or(true_32off,
11324 						     tnum_const(val32));
11325 		} else {
11326 			false_64off = tnum_and(false_64off, tnum_const(~val));
11327 			if (is_power_of_2(val))
11328 				true_64off = tnum_or(true_64off,
11329 						     tnum_const(val));
11330 		}
11331 		break;
11332 	case BPF_JGE:
11333 	case BPF_JGT:
11334 	{
11335 		if (is_jmp32) {
11336 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11337 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11338 
11339 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11340 						       false_umax);
11341 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11342 						      true_umin);
11343 		} else {
11344 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11345 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11346 
11347 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11348 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11349 		}
11350 		break;
11351 	}
11352 	case BPF_JSGE:
11353 	case BPF_JSGT:
11354 	{
11355 		if (is_jmp32) {
11356 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11357 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11358 
11359 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11360 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11361 		} else {
11362 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11363 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11364 
11365 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11366 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11367 		}
11368 		break;
11369 	}
11370 	case BPF_JLE:
11371 	case BPF_JLT:
11372 	{
11373 		if (is_jmp32) {
11374 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11375 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11376 
11377 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11378 						       false_umin);
11379 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11380 						      true_umax);
11381 		} else {
11382 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11383 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11384 
11385 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11386 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11387 		}
11388 		break;
11389 	}
11390 	case BPF_JSLE:
11391 	case BPF_JSLT:
11392 	{
11393 		if (is_jmp32) {
11394 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11395 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11396 
11397 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11398 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11399 		} else {
11400 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11401 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11402 
11403 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11404 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11405 		}
11406 		break;
11407 	}
11408 	default:
11409 		return;
11410 	}
11411 
11412 	if (is_jmp32) {
11413 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11414 					     tnum_subreg(false_32off));
11415 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11416 					    tnum_subreg(true_32off));
11417 		__reg_combine_32_into_64(false_reg);
11418 		__reg_combine_32_into_64(true_reg);
11419 	} else {
11420 		false_reg->var_off = false_64off;
11421 		true_reg->var_off = true_64off;
11422 		__reg_combine_64_into_32(false_reg);
11423 		__reg_combine_64_into_32(true_reg);
11424 	}
11425 }
11426 
11427 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11428  * the variable reg.
11429  */
11430 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11431 				struct bpf_reg_state *false_reg,
11432 				u64 val, u32 val32,
11433 				u8 opcode, bool is_jmp32)
11434 {
11435 	opcode = flip_opcode(opcode);
11436 	/* This uses zero as "not present in table"; luckily the zero opcode,
11437 	 * BPF_JA, can't get here.
11438 	 */
11439 	if (opcode)
11440 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11441 }
11442 
11443 /* Regs are known to be equal, so intersect their min/max/var_off */
11444 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11445 				  struct bpf_reg_state *dst_reg)
11446 {
11447 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11448 							dst_reg->umin_value);
11449 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11450 							dst_reg->umax_value);
11451 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11452 							dst_reg->smin_value);
11453 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11454 							dst_reg->smax_value);
11455 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11456 							     dst_reg->var_off);
11457 	reg_bounds_sync(src_reg);
11458 	reg_bounds_sync(dst_reg);
11459 }
11460 
11461 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11462 				struct bpf_reg_state *true_dst,
11463 				struct bpf_reg_state *false_src,
11464 				struct bpf_reg_state *false_dst,
11465 				u8 opcode)
11466 {
11467 	switch (opcode) {
11468 	case BPF_JEQ:
11469 		__reg_combine_min_max(true_src, true_dst);
11470 		break;
11471 	case BPF_JNE:
11472 		__reg_combine_min_max(false_src, false_dst);
11473 		break;
11474 	}
11475 }
11476 
11477 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11478 				 struct bpf_reg_state *reg, u32 id,
11479 				 bool is_null)
11480 {
11481 	if (type_may_be_null(reg->type) && reg->id == id &&
11482 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11483 		/* Old offset (both fixed and variable parts) should have been
11484 		 * known-zero, because we don't allow pointer arithmetic on
11485 		 * pointers that might be NULL. If we see this happening, don't
11486 		 * convert the register.
11487 		 *
11488 		 * But in some cases, some helpers that return local kptrs
11489 		 * advance offset for the returned pointer. In those cases, it
11490 		 * is fine to expect to see reg->off.
11491 		 */
11492 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11493 			return;
11494 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11495 			return;
11496 		if (is_null) {
11497 			reg->type = SCALAR_VALUE;
11498 			/* We don't need id and ref_obj_id from this point
11499 			 * onwards anymore, thus we should better reset it,
11500 			 * so that state pruning has chances to take effect.
11501 			 */
11502 			reg->id = 0;
11503 			reg->ref_obj_id = 0;
11504 
11505 			return;
11506 		}
11507 
11508 		mark_ptr_not_null_reg(reg);
11509 
11510 		if (!reg_may_point_to_spin_lock(reg)) {
11511 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11512 			 * in release_reference().
11513 			 *
11514 			 * reg->id is still used by spin_lock ptr. Other
11515 			 * than spin_lock ptr type, reg->id can be reset.
11516 			 */
11517 			reg->id = 0;
11518 		}
11519 	}
11520 }
11521 
11522 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11523  * be folded together at some point.
11524  */
11525 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11526 				  bool is_null)
11527 {
11528 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11529 	struct bpf_reg_state *regs = state->regs, *reg;
11530 	u32 ref_obj_id = regs[regno].ref_obj_id;
11531 	u32 id = regs[regno].id;
11532 
11533 	if (ref_obj_id && ref_obj_id == id && is_null)
11534 		/* regs[regno] is in the " == NULL" branch.
11535 		 * No one could have freed the reference state before
11536 		 * doing the NULL check.
11537 		 */
11538 		WARN_ON_ONCE(release_reference_state(state, id));
11539 
11540 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11541 		mark_ptr_or_null_reg(state, reg, id, is_null);
11542 	}));
11543 }
11544 
11545 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11546 				   struct bpf_reg_state *dst_reg,
11547 				   struct bpf_reg_state *src_reg,
11548 				   struct bpf_verifier_state *this_branch,
11549 				   struct bpf_verifier_state *other_branch)
11550 {
11551 	if (BPF_SRC(insn->code) != BPF_X)
11552 		return false;
11553 
11554 	/* Pointers are always 64-bit. */
11555 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11556 		return false;
11557 
11558 	switch (BPF_OP(insn->code)) {
11559 	case BPF_JGT:
11560 		if ((dst_reg->type == PTR_TO_PACKET &&
11561 		     src_reg->type == PTR_TO_PACKET_END) ||
11562 		    (dst_reg->type == PTR_TO_PACKET_META &&
11563 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11564 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11565 			find_good_pkt_pointers(this_branch, dst_reg,
11566 					       dst_reg->type, false);
11567 			mark_pkt_end(other_branch, insn->dst_reg, true);
11568 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11569 			    src_reg->type == PTR_TO_PACKET) ||
11570 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11571 			    src_reg->type == PTR_TO_PACKET_META)) {
11572 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11573 			find_good_pkt_pointers(other_branch, src_reg,
11574 					       src_reg->type, true);
11575 			mark_pkt_end(this_branch, insn->src_reg, false);
11576 		} else {
11577 			return false;
11578 		}
11579 		break;
11580 	case BPF_JLT:
11581 		if ((dst_reg->type == PTR_TO_PACKET &&
11582 		     src_reg->type == PTR_TO_PACKET_END) ||
11583 		    (dst_reg->type == PTR_TO_PACKET_META &&
11584 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11585 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11586 			find_good_pkt_pointers(other_branch, dst_reg,
11587 					       dst_reg->type, true);
11588 			mark_pkt_end(this_branch, insn->dst_reg, false);
11589 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11590 			    src_reg->type == PTR_TO_PACKET) ||
11591 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11592 			    src_reg->type == PTR_TO_PACKET_META)) {
11593 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11594 			find_good_pkt_pointers(this_branch, src_reg,
11595 					       src_reg->type, false);
11596 			mark_pkt_end(other_branch, insn->src_reg, true);
11597 		} else {
11598 			return false;
11599 		}
11600 		break;
11601 	case BPF_JGE:
11602 		if ((dst_reg->type == PTR_TO_PACKET &&
11603 		     src_reg->type == PTR_TO_PACKET_END) ||
11604 		    (dst_reg->type == PTR_TO_PACKET_META &&
11605 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11606 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11607 			find_good_pkt_pointers(this_branch, dst_reg,
11608 					       dst_reg->type, true);
11609 			mark_pkt_end(other_branch, insn->dst_reg, false);
11610 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11611 			    src_reg->type == PTR_TO_PACKET) ||
11612 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11613 			    src_reg->type == PTR_TO_PACKET_META)) {
11614 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11615 			find_good_pkt_pointers(other_branch, src_reg,
11616 					       src_reg->type, false);
11617 			mark_pkt_end(this_branch, insn->src_reg, true);
11618 		} else {
11619 			return false;
11620 		}
11621 		break;
11622 	case BPF_JLE:
11623 		if ((dst_reg->type == PTR_TO_PACKET &&
11624 		     src_reg->type == PTR_TO_PACKET_END) ||
11625 		    (dst_reg->type == PTR_TO_PACKET_META &&
11626 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11627 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11628 			find_good_pkt_pointers(other_branch, dst_reg,
11629 					       dst_reg->type, false);
11630 			mark_pkt_end(this_branch, insn->dst_reg, true);
11631 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11632 			    src_reg->type == PTR_TO_PACKET) ||
11633 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11634 			    src_reg->type == PTR_TO_PACKET_META)) {
11635 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11636 			find_good_pkt_pointers(this_branch, src_reg,
11637 					       src_reg->type, true);
11638 			mark_pkt_end(other_branch, insn->src_reg, false);
11639 		} else {
11640 			return false;
11641 		}
11642 		break;
11643 	default:
11644 		return false;
11645 	}
11646 
11647 	return true;
11648 }
11649 
11650 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11651 			       struct bpf_reg_state *known_reg)
11652 {
11653 	struct bpf_func_state *state;
11654 	struct bpf_reg_state *reg;
11655 
11656 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11657 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11658 			*reg = *known_reg;
11659 	}));
11660 }
11661 
11662 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11663 			     struct bpf_insn *insn, int *insn_idx)
11664 {
11665 	struct bpf_verifier_state *this_branch = env->cur_state;
11666 	struct bpf_verifier_state *other_branch;
11667 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11668 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11669 	struct bpf_reg_state *eq_branch_regs;
11670 	u8 opcode = BPF_OP(insn->code);
11671 	bool is_jmp32;
11672 	int pred = -1;
11673 	int err;
11674 
11675 	/* Only conditional jumps are expected to reach here. */
11676 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11677 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11678 		return -EINVAL;
11679 	}
11680 
11681 	if (BPF_SRC(insn->code) == BPF_X) {
11682 		if (insn->imm != 0) {
11683 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11684 			return -EINVAL;
11685 		}
11686 
11687 		/* check src1 operand */
11688 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11689 		if (err)
11690 			return err;
11691 
11692 		if (is_pointer_value(env, insn->src_reg)) {
11693 			verbose(env, "R%d pointer comparison prohibited\n",
11694 				insn->src_reg);
11695 			return -EACCES;
11696 		}
11697 		src_reg = &regs[insn->src_reg];
11698 	} else {
11699 		if (insn->src_reg != BPF_REG_0) {
11700 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11701 			return -EINVAL;
11702 		}
11703 	}
11704 
11705 	/* check src2 operand */
11706 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11707 	if (err)
11708 		return err;
11709 
11710 	dst_reg = &regs[insn->dst_reg];
11711 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
11712 
11713 	if (BPF_SRC(insn->code) == BPF_K) {
11714 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11715 	} else if (src_reg->type == SCALAR_VALUE &&
11716 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11717 		pred = is_branch_taken(dst_reg,
11718 				       tnum_subreg(src_reg->var_off).value,
11719 				       opcode,
11720 				       is_jmp32);
11721 	} else if (src_reg->type == SCALAR_VALUE &&
11722 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11723 		pred = is_branch_taken(dst_reg,
11724 				       src_reg->var_off.value,
11725 				       opcode,
11726 				       is_jmp32);
11727 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
11728 		   reg_is_pkt_pointer_any(src_reg) &&
11729 		   !is_jmp32) {
11730 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
11731 	}
11732 
11733 	if (pred >= 0) {
11734 		/* If we get here with a dst_reg pointer type it is because
11735 		 * above is_branch_taken() special cased the 0 comparison.
11736 		 */
11737 		if (!__is_pointer_value(false, dst_reg))
11738 			err = mark_chain_precision(env, insn->dst_reg);
11739 		if (BPF_SRC(insn->code) == BPF_X && !err &&
11740 		    !__is_pointer_value(false, src_reg))
11741 			err = mark_chain_precision(env, insn->src_reg);
11742 		if (err)
11743 			return err;
11744 	}
11745 
11746 	if (pred == 1) {
11747 		/* Only follow the goto, ignore fall-through. If needed, push
11748 		 * the fall-through branch for simulation under speculative
11749 		 * execution.
11750 		 */
11751 		if (!env->bypass_spec_v1 &&
11752 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
11753 					       *insn_idx))
11754 			return -EFAULT;
11755 		*insn_idx += insn->off;
11756 		return 0;
11757 	} else if (pred == 0) {
11758 		/* Only follow the fall-through branch, since that's where the
11759 		 * program will go. If needed, push the goto branch for
11760 		 * simulation under speculative execution.
11761 		 */
11762 		if (!env->bypass_spec_v1 &&
11763 		    !sanitize_speculative_path(env, insn,
11764 					       *insn_idx + insn->off + 1,
11765 					       *insn_idx))
11766 			return -EFAULT;
11767 		return 0;
11768 	}
11769 
11770 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11771 				  false);
11772 	if (!other_branch)
11773 		return -EFAULT;
11774 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
11775 
11776 	/* detect if we are comparing against a constant value so we can adjust
11777 	 * our min/max values for our dst register.
11778 	 * this is only legit if both are scalars (or pointers to the same
11779 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11780 	 * because otherwise the different base pointers mean the offsets aren't
11781 	 * comparable.
11782 	 */
11783 	if (BPF_SRC(insn->code) == BPF_X) {
11784 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
11785 
11786 		if (dst_reg->type == SCALAR_VALUE &&
11787 		    src_reg->type == SCALAR_VALUE) {
11788 			if (tnum_is_const(src_reg->var_off) ||
11789 			    (is_jmp32 &&
11790 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
11791 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
11792 						dst_reg,
11793 						src_reg->var_off.value,
11794 						tnum_subreg(src_reg->var_off).value,
11795 						opcode, is_jmp32);
11796 			else if (tnum_is_const(dst_reg->var_off) ||
11797 				 (is_jmp32 &&
11798 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
11799 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
11800 						    src_reg,
11801 						    dst_reg->var_off.value,
11802 						    tnum_subreg(dst_reg->var_off).value,
11803 						    opcode, is_jmp32);
11804 			else if (!is_jmp32 &&
11805 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
11806 				/* Comparing for equality, we can combine knowledge */
11807 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
11808 						    &other_branch_regs[insn->dst_reg],
11809 						    src_reg, dst_reg, opcode);
11810 			if (src_reg->id &&
11811 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
11812 				find_equal_scalars(this_branch, src_reg);
11813 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11814 			}
11815 
11816 		}
11817 	} else if (dst_reg->type == SCALAR_VALUE) {
11818 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
11819 					dst_reg, insn->imm, (u32)insn->imm,
11820 					opcode, is_jmp32);
11821 	}
11822 
11823 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11824 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
11825 		find_equal_scalars(this_branch, dst_reg);
11826 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11827 	}
11828 
11829 	/* if one pointer register is compared to another pointer
11830 	 * register check if PTR_MAYBE_NULL could be lifted.
11831 	 * E.g. register A - maybe null
11832 	 *      register B - not null
11833 	 * for JNE A, B, ... - A is not null in the false branch;
11834 	 * for JEQ A, B, ... - A is not null in the true branch.
11835 	 *
11836 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
11837 	 * not need to be null checked by the BPF program, i.e.,
11838 	 * could be null even without PTR_MAYBE_NULL marking, so
11839 	 * only propagate nullness when neither reg is that type.
11840 	 */
11841 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11842 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11843 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
11844 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
11845 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
11846 		eq_branch_regs = NULL;
11847 		switch (opcode) {
11848 		case BPF_JEQ:
11849 			eq_branch_regs = other_branch_regs;
11850 			break;
11851 		case BPF_JNE:
11852 			eq_branch_regs = regs;
11853 			break;
11854 		default:
11855 			/* do nothing */
11856 			break;
11857 		}
11858 		if (eq_branch_regs) {
11859 			if (type_may_be_null(src_reg->type))
11860 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11861 			else
11862 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11863 		}
11864 	}
11865 
11866 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11867 	 * NOTE: these optimizations below are related with pointer comparison
11868 	 *       which will never be JMP32.
11869 	 */
11870 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
11871 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
11872 	    type_may_be_null(dst_reg->type)) {
11873 		/* Mark all identical registers in each branch as either
11874 		 * safe or unknown depending R == 0 or R != 0 conditional.
11875 		 */
11876 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11877 				      opcode == BPF_JNE);
11878 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11879 				      opcode == BPF_JEQ);
11880 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11881 					   this_branch, other_branch) &&
11882 		   is_pointer_value(env, insn->dst_reg)) {
11883 		verbose(env, "R%d pointer comparison prohibited\n",
11884 			insn->dst_reg);
11885 		return -EACCES;
11886 	}
11887 	if (env->log.level & BPF_LOG_LEVEL)
11888 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
11889 	return 0;
11890 }
11891 
11892 /* verify BPF_LD_IMM64 instruction */
11893 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
11894 {
11895 	struct bpf_insn_aux_data *aux = cur_aux(env);
11896 	struct bpf_reg_state *regs = cur_regs(env);
11897 	struct bpf_reg_state *dst_reg;
11898 	struct bpf_map *map;
11899 	int err;
11900 
11901 	if (BPF_SIZE(insn->code) != BPF_DW) {
11902 		verbose(env, "invalid BPF_LD_IMM insn\n");
11903 		return -EINVAL;
11904 	}
11905 	if (insn->off != 0) {
11906 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
11907 		return -EINVAL;
11908 	}
11909 
11910 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
11911 	if (err)
11912 		return err;
11913 
11914 	dst_reg = &regs[insn->dst_reg];
11915 	if (insn->src_reg == 0) {
11916 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11917 
11918 		dst_reg->type = SCALAR_VALUE;
11919 		__mark_reg_known(&regs[insn->dst_reg], imm);
11920 		return 0;
11921 	}
11922 
11923 	/* All special src_reg cases are listed below. From this point onwards
11924 	 * we either succeed and assign a corresponding dst_reg->type after
11925 	 * zeroing the offset, or fail and reject the program.
11926 	 */
11927 	mark_reg_known_zero(env, regs, insn->dst_reg);
11928 
11929 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
11930 		dst_reg->type = aux->btf_var.reg_type;
11931 		switch (base_type(dst_reg->type)) {
11932 		case PTR_TO_MEM:
11933 			dst_reg->mem_size = aux->btf_var.mem_size;
11934 			break;
11935 		case PTR_TO_BTF_ID:
11936 			dst_reg->btf = aux->btf_var.btf;
11937 			dst_reg->btf_id = aux->btf_var.btf_id;
11938 			break;
11939 		default:
11940 			verbose(env, "bpf verifier is misconfigured\n");
11941 			return -EFAULT;
11942 		}
11943 		return 0;
11944 	}
11945 
11946 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
11947 		struct bpf_prog_aux *aux = env->prog->aux;
11948 		u32 subprogno = find_subprog(env,
11949 					     env->insn_idx + insn->imm + 1);
11950 
11951 		if (!aux->func_info) {
11952 			verbose(env, "missing btf func_info\n");
11953 			return -EINVAL;
11954 		}
11955 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11956 			verbose(env, "callback function not static\n");
11957 			return -EINVAL;
11958 		}
11959 
11960 		dst_reg->type = PTR_TO_FUNC;
11961 		dst_reg->subprogno = subprogno;
11962 		return 0;
11963 	}
11964 
11965 	map = env->used_maps[aux->map_index];
11966 	dst_reg->map_ptr = map;
11967 
11968 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11969 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
11970 		dst_reg->type = PTR_TO_MAP_VALUE;
11971 		dst_reg->off = aux->map_off;
11972 		WARN_ON_ONCE(map->max_entries != 1);
11973 		/* We want reg->id to be same (0) as map_value is not distinct */
11974 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11975 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
11976 		dst_reg->type = CONST_PTR_TO_MAP;
11977 	} else {
11978 		verbose(env, "bpf verifier is misconfigured\n");
11979 		return -EINVAL;
11980 	}
11981 
11982 	return 0;
11983 }
11984 
11985 static bool may_access_skb(enum bpf_prog_type type)
11986 {
11987 	switch (type) {
11988 	case BPF_PROG_TYPE_SOCKET_FILTER:
11989 	case BPF_PROG_TYPE_SCHED_CLS:
11990 	case BPF_PROG_TYPE_SCHED_ACT:
11991 		return true;
11992 	default:
11993 		return false;
11994 	}
11995 }
11996 
11997 /* verify safety of LD_ABS|LD_IND instructions:
11998  * - they can only appear in the programs where ctx == skb
11999  * - since they are wrappers of function calls, they scratch R1-R5 registers,
12000  *   preserve R6-R9, and store return value into R0
12001  *
12002  * Implicit input:
12003  *   ctx == skb == R6 == CTX
12004  *
12005  * Explicit input:
12006  *   SRC == any register
12007  *   IMM == 32-bit immediate
12008  *
12009  * Output:
12010  *   R0 - 8/16/32-bit skb data converted to cpu endianness
12011  */
12012 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
12013 {
12014 	struct bpf_reg_state *regs = cur_regs(env);
12015 	static const int ctx_reg = BPF_REG_6;
12016 	u8 mode = BPF_MODE(insn->code);
12017 	int i, err;
12018 
12019 	if (!may_access_skb(resolve_prog_type(env->prog))) {
12020 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
12021 		return -EINVAL;
12022 	}
12023 
12024 	if (!env->ops->gen_ld_abs) {
12025 		verbose(env, "bpf verifier is misconfigured\n");
12026 		return -EINVAL;
12027 	}
12028 
12029 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
12030 	    BPF_SIZE(insn->code) == BPF_DW ||
12031 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
12032 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
12033 		return -EINVAL;
12034 	}
12035 
12036 	/* check whether implicit source operand (register R6) is readable */
12037 	err = check_reg_arg(env, ctx_reg, SRC_OP);
12038 	if (err)
12039 		return err;
12040 
12041 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
12042 	 * gen_ld_abs() may terminate the program at runtime, leading to
12043 	 * reference leak.
12044 	 */
12045 	err = check_reference_leak(env);
12046 	if (err) {
12047 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
12048 		return err;
12049 	}
12050 
12051 	if (env->cur_state->active_lock.ptr) {
12052 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
12053 		return -EINVAL;
12054 	}
12055 
12056 	if (env->cur_state->active_rcu_lock) {
12057 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
12058 		return -EINVAL;
12059 	}
12060 
12061 	if (regs[ctx_reg].type != PTR_TO_CTX) {
12062 		verbose(env,
12063 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
12064 		return -EINVAL;
12065 	}
12066 
12067 	if (mode == BPF_IND) {
12068 		/* check explicit source operand */
12069 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
12070 		if (err)
12071 			return err;
12072 	}
12073 
12074 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
12075 	if (err < 0)
12076 		return err;
12077 
12078 	/* reset caller saved regs to unreadable */
12079 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
12080 		mark_reg_not_init(env, regs, caller_saved[i]);
12081 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
12082 	}
12083 
12084 	/* mark destination R0 register as readable, since it contains
12085 	 * the value fetched from the packet.
12086 	 * Already marked as written above.
12087 	 */
12088 	mark_reg_unknown(env, regs, BPF_REG_0);
12089 	/* ld_abs load up to 32-bit skb data. */
12090 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
12091 	return 0;
12092 }
12093 
12094 static int check_return_code(struct bpf_verifier_env *env)
12095 {
12096 	struct tnum enforce_attach_type_range = tnum_unknown;
12097 	const struct bpf_prog *prog = env->prog;
12098 	struct bpf_reg_state *reg;
12099 	struct tnum range = tnum_range(0, 1);
12100 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12101 	int err;
12102 	struct bpf_func_state *frame = env->cur_state->frame[0];
12103 	const bool is_subprog = frame->subprogno;
12104 
12105 	/* LSM and struct_ops func-ptr's return type could be "void" */
12106 	if (!is_subprog) {
12107 		switch (prog_type) {
12108 		case BPF_PROG_TYPE_LSM:
12109 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
12110 				/* See below, can be 0 or 0-1 depending on hook. */
12111 				break;
12112 			fallthrough;
12113 		case BPF_PROG_TYPE_STRUCT_OPS:
12114 			if (!prog->aux->attach_func_proto->type)
12115 				return 0;
12116 			break;
12117 		default:
12118 			break;
12119 		}
12120 	}
12121 
12122 	/* eBPF calling convention is such that R0 is used
12123 	 * to return the value from eBPF program.
12124 	 * Make sure that it's readable at this time
12125 	 * of bpf_exit, which means that program wrote
12126 	 * something into it earlier
12127 	 */
12128 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
12129 	if (err)
12130 		return err;
12131 
12132 	if (is_pointer_value(env, BPF_REG_0)) {
12133 		verbose(env, "R0 leaks addr as return value\n");
12134 		return -EACCES;
12135 	}
12136 
12137 	reg = cur_regs(env) + BPF_REG_0;
12138 
12139 	if (frame->in_async_callback_fn) {
12140 		/* enforce return zero from async callbacks like timer */
12141 		if (reg->type != SCALAR_VALUE) {
12142 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
12143 				reg_type_str(env, reg->type));
12144 			return -EINVAL;
12145 		}
12146 
12147 		if (!tnum_in(tnum_const(0), reg->var_off)) {
12148 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
12149 			return -EINVAL;
12150 		}
12151 		return 0;
12152 	}
12153 
12154 	if (is_subprog) {
12155 		if (reg->type != SCALAR_VALUE) {
12156 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
12157 				reg_type_str(env, reg->type));
12158 			return -EINVAL;
12159 		}
12160 		return 0;
12161 	}
12162 
12163 	switch (prog_type) {
12164 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
12165 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
12166 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
12167 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12168 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12169 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12170 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12171 			range = tnum_range(1, 1);
12172 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12173 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12174 			range = tnum_range(0, 3);
12175 		break;
12176 	case BPF_PROG_TYPE_CGROUP_SKB:
12177 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12178 			range = tnum_range(0, 3);
12179 			enforce_attach_type_range = tnum_range(2, 3);
12180 		}
12181 		break;
12182 	case BPF_PROG_TYPE_CGROUP_SOCK:
12183 	case BPF_PROG_TYPE_SOCK_OPS:
12184 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12185 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12186 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12187 		break;
12188 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12189 		if (!env->prog->aux->attach_btf_id)
12190 			return 0;
12191 		range = tnum_const(0);
12192 		break;
12193 	case BPF_PROG_TYPE_TRACING:
12194 		switch (env->prog->expected_attach_type) {
12195 		case BPF_TRACE_FENTRY:
12196 		case BPF_TRACE_FEXIT:
12197 			range = tnum_const(0);
12198 			break;
12199 		case BPF_TRACE_RAW_TP:
12200 		case BPF_MODIFY_RETURN:
12201 			return 0;
12202 		case BPF_TRACE_ITER:
12203 			break;
12204 		default:
12205 			return -ENOTSUPP;
12206 		}
12207 		break;
12208 	case BPF_PROG_TYPE_SK_LOOKUP:
12209 		range = tnum_range(SK_DROP, SK_PASS);
12210 		break;
12211 
12212 	case BPF_PROG_TYPE_LSM:
12213 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12214 			/* Regular BPF_PROG_TYPE_LSM programs can return
12215 			 * any value.
12216 			 */
12217 			return 0;
12218 		}
12219 		if (!env->prog->aux->attach_func_proto->type) {
12220 			/* Make sure programs that attach to void
12221 			 * hooks don't try to modify return value.
12222 			 */
12223 			range = tnum_range(1, 1);
12224 		}
12225 		break;
12226 
12227 	case BPF_PROG_TYPE_EXT:
12228 		/* freplace program can return anything as its return value
12229 		 * depends on the to-be-replaced kernel func or bpf program.
12230 		 */
12231 	default:
12232 		return 0;
12233 	}
12234 
12235 	if (reg->type != SCALAR_VALUE) {
12236 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12237 			reg_type_str(env, reg->type));
12238 		return -EINVAL;
12239 	}
12240 
12241 	if (!tnum_in(range, reg->var_off)) {
12242 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12243 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12244 		    prog_type == BPF_PROG_TYPE_LSM &&
12245 		    !prog->aux->attach_func_proto->type)
12246 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12247 		return -EINVAL;
12248 	}
12249 
12250 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12251 	    tnum_in(enforce_attach_type_range, reg->var_off))
12252 		env->prog->enforce_expected_attach_type = 1;
12253 	return 0;
12254 }
12255 
12256 /* non-recursive DFS pseudo code
12257  * 1  procedure DFS-iterative(G,v):
12258  * 2      label v as discovered
12259  * 3      let S be a stack
12260  * 4      S.push(v)
12261  * 5      while S is not empty
12262  * 6            t <- S.peek()
12263  * 7            if t is what we're looking for:
12264  * 8                return t
12265  * 9            for all edges e in G.adjacentEdges(t) do
12266  * 10               if edge e is already labelled
12267  * 11                   continue with the next edge
12268  * 12               w <- G.adjacentVertex(t,e)
12269  * 13               if vertex w is not discovered and not explored
12270  * 14                   label e as tree-edge
12271  * 15                   label w as discovered
12272  * 16                   S.push(w)
12273  * 17                   continue at 5
12274  * 18               else if vertex w is discovered
12275  * 19                   label e as back-edge
12276  * 20               else
12277  * 21                   // vertex w is explored
12278  * 22                   label e as forward- or cross-edge
12279  * 23           label t as explored
12280  * 24           S.pop()
12281  *
12282  * convention:
12283  * 0x10 - discovered
12284  * 0x11 - discovered and fall-through edge labelled
12285  * 0x12 - discovered and fall-through and branch edges labelled
12286  * 0x20 - explored
12287  */
12288 
12289 enum {
12290 	DISCOVERED = 0x10,
12291 	EXPLORED = 0x20,
12292 	FALLTHROUGH = 1,
12293 	BRANCH = 2,
12294 };
12295 
12296 static u32 state_htab_size(struct bpf_verifier_env *env)
12297 {
12298 	return env->prog->len;
12299 }
12300 
12301 static struct bpf_verifier_state_list **explored_state(
12302 					struct bpf_verifier_env *env,
12303 					int idx)
12304 {
12305 	struct bpf_verifier_state *cur = env->cur_state;
12306 	struct bpf_func_state *state = cur->frame[cur->curframe];
12307 
12308 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12309 }
12310 
12311 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
12312 {
12313 	env->insn_aux_data[idx].prune_point = true;
12314 }
12315 
12316 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
12317 {
12318 	return env->insn_aux_data[insn_idx].prune_point;
12319 }
12320 
12321 enum {
12322 	DONE_EXPLORING = 0,
12323 	KEEP_EXPLORING = 1,
12324 };
12325 
12326 /* t, w, e - match pseudo-code above:
12327  * t - index of current instruction
12328  * w - next instruction
12329  * e - edge
12330  */
12331 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12332 		     bool loop_ok)
12333 {
12334 	int *insn_stack = env->cfg.insn_stack;
12335 	int *insn_state = env->cfg.insn_state;
12336 
12337 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12338 		return DONE_EXPLORING;
12339 
12340 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12341 		return DONE_EXPLORING;
12342 
12343 	if (w < 0 || w >= env->prog->len) {
12344 		verbose_linfo(env, t, "%d: ", t);
12345 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12346 		return -EINVAL;
12347 	}
12348 
12349 	if (e == BRANCH) {
12350 		/* mark branch target for state pruning */
12351 		mark_prune_point(env, w);
12352 		mark_jmp_point(env, w);
12353 	}
12354 
12355 	if (insn_state[w] == 0) {
12356 		/* tree-edge */
12357 		insn_state[t] = DISCOVERED | e;
12358 		insn_state[w] = DISCOVERED;
12359 		if (env->cfg.cur_stack >= env->prog->len)
12360 			return -E2BIG;
12361 		insn_stack[env->cfg.cur_stack++] = w;
12362 		return KEEP_EXPLORING;
12363 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12364 		if (loop_ok && env->bpf_capable)
12365 			return DONE_EXPLORING;
12366 		verbose_linfo(env, t, "%d: ", t);
12367 		verbose_linfo(env, w, "%d: ", w);
12368 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12369 		return -EINVAL;
12370 	} else if (insn_state[w] == EXPLORED) {
12371 		/* forward- or cross-edge */
12372 		insn_state[t] = DISCOVERED | e;
12373 	} else {
12374 		verbose(env, "insn state internal bug\n");
12375 		return -EFAULT;
12376 	}
12377 	return DONE_EXPLORING;
12378 }
12379 
12380 static int visit_func_call_insn(int t, struct bpf_insn *insns,
12381 				struct bpf_verifier_env *env,
12382 				bool visit_callee)
12383 {
12384 	int ret;
12385 
12386 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12387 	if (ret)
12388 		return ret;
12389 
12390 	mark_prune_point(env, t + 1);
12391 	/* when we exit from subprog, we need to record non-linear history */
12392 	mark_jmp_point(env, t + 1);
12393 
12394 	if (visit_callee) {
12395 		mark_prune_point(env, t);
12396 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12397 				/* It's ok to allow recursion from CFG point of
12398 				 * view. __check_func_call() will do the actual
12399 				 * check.
12400 				 */
12401 				bpf_pseudo_func(insns + t));
12402 	}
12403 	return ret;
12404 }
12405 
12406 /* Visits the instruction at index t and returns one of the following:
12407  *  < 0 - an error occurred
12408  *  DONE_EXPLORING - the instruction was fully explored
12409  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12410  */
12411 static int visit_insn(int t, struct bpf_verifier_env *env)
12412 {
12413 	struct bpf_insn *insns = env->prog->insnsi;
12414 	int ret;
12415 
12416 	if (bpf_pseudo_func(insns + t))
12417 		return visit_func_call_insn(t, insns, env, true);
12418 
12419 	/* All non-branch instructions have a single fall-through edge. */
12420 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12421 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12422 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12423 
12424 	switch (BPF_OP(insns[t].code)) {
12425 	case BPF_EXIT:
12426 		return DONE_EXPLORING;
12427 
12428 	case BPF_CALL:
12429 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12430 			/* Mark this call insn as a prune point to trigger
12431 			 * is_state_visited() check before call itself is
12432 			 * processed by __check_func_call(). Otherwise new
12433 			 * async state will be pushed for further exploration.
12434 			 */
12435 			mark_prune_point(env, t);
12436 		return visit_func_call_insn(t, insns, env,
12437 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12438 
12439 	case BPF_JA:
12440 		if (BPF_SRC(insns[t].code) != BPF_K)
12441 			return -EINVAL;
12442 
12443 		/* unconditional jump with single edge */
12444 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12445 				true);
12446 		if (ret)
12447 			return ret;
12448 
12449 		mark_prune_point(env, t + insns[t].off + 1);
12450 		mark_jmp_point(env, t + insns[t].off + 1);
12451 
12452 		return ret;
12453 
12454 	default:
12455 		/* conditional jump with two edges */
12456 		mark_prune_point(env, t);
12457 
12458 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12459 		if (ret)
12460 			return ret;
12461 
12462 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12463 	}
12464 }
12465 
12466 /* non-recursive depth-first-search to detect loops in BPF program
12467  * loop == back-edge in directed graph
12468  */
12469 static int check_cfg(struct bpf_verifier_env *env)
12470 {
12471 	int insn_cnt = env->prog->len;
12472 	int *insn_stack, *insn_state;
12473 	int ret = 0;
12474 	int i;
12475 
12476 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12477 	if (!insn_state)
12478 		return -ENOMEM;
12479 
12480 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12481 	if (!insn_stack) {
12482 		kvfree(insn_state);
12483 		return -ENOMEM;
12484 	}
12485 
12486 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12487 	insn_stack[0] = 0; /* 0 is the first instruction */
12488 	env->cfg.cur_stack = 1;
12489 
12490 	while (env->cfg.cur_stack > 0) {
12491 		int t = insn_stack[env->cfg.cur_stack - 1];
12492 
12493 		ret = visit_insn(t, env);
12494 		switch (ret) {
12495 		case DONE_EXPLORING:
12496 			insn_state[t] = EXPLORED;
12497 			env->cfg.cur_stack--;
12498 			break;
12499 		case KEEP_EXPLORING:
12500 			break;
12501 		default:
12502 			if (ret > 0) {
12503 				verbose(env, "visit_insn internal bug\n");
12504 				ret = -EFAULT;
12505 			}
12506 			goto err_free;
12507 		}
12508 	}
12509 
12510 	if (env->cfg.cur_stack < 0) {
12511 		verbose(env, "pop stack internal bug\n");
12512 		ret = -EFAULT;
12513 		goto err_free;
12514 	}
12515 
12516 	for (i = 0; i < insn_cnt; i++) {
12517 		if (insn_state[i] != EXPLORED) {
12518 			verbose(env, "unreachable insn %d\n", i);
12519 			ret = -EINVAL;
12520 			goto err_free;
12521 		}
12522 	}
12523 	ret = 0; /* cfg looks good */
12524 
12525 err_free:
12526 	kvfree(insn_state);
12527 	kvfree(insn_stack);
12528 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12529 	return ret;
12530 }
12531 
12532 static int check_abnormal_return(struct bpf_verifier_env *env)
12533 {
12534 	int i;
12535 
12536 	for (i = 1; i < env->subprog_cnt; i++) {
12537 		if (env->subprog_info[i].has_ld_abs) {
12538 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12539 			return -EINVAL;
12540 		}
12541 		if (env->subprog_info[i].has_tail_call) {
12542 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12543 			return -EINVAL;
12544 		}
12545 	}
12546 	return 0;
12547 }
12548 
12549 /* The minimum supported BTF func info size */
12550 #define MIN_BPF_FUNCINFO_SIZE	8
12551 #define MAX_FUNCINFO_REC_SIZE	252
12552 
12553 static int check_btf_func(struct bpf_verifier_env *env,
12554 			  const union bpf_attr *attr,
12555 			  bpfptr_t uattr)
12556 {
12557 	const struct btf_type *type, *func_proto, *ret_type;
12558 	u32 i, nfuncs, urec_size, min_size;
12559 	u32 krec_size = sizeof(struct bpf_func_info);
12560 	struct bpf_func_info *krecord;
12561 	struct bpf_func_info_aux *info_aux = NULL;
12562 	struct bpf_prog *prog;
12563 	const struct btf *btf;
12564 	bpfptr_t urecord;
12565 	u32 prev_offset = 0;
12566 	bool scalar_return;
12567 	int ret = -ENOMEM;
12568 
12569 	nfuncs = attr->func_info_cnt;
12570 	if (!nfuncs) {
12571 		if (check_abnormal_return(env))
12572 			return -EINVAL;
12573 		return 0;
12574 	}
12575 
12576 	if (nfuncs != env->subprog_cnt) {
12577 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12578 		return -EINVAL;
12579 	}
12580 
12581 	urec_size = attr->func_info_rec_size;
12582 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12583 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12584 	    urec_size % sizeof(u32)) {
12585 		verbose(env, "invalid func info rec size %u\n", urec_size);
12586 		return -EINVAL;
12587 	}
12588 
12589 	prog = env->prog;
12590 	btf = prog->aux->btf;
12591 
12592 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12593 	min_size = min_t(u32, krec_size, urec_size);
12594 
12595 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12596 	if (!krecord)
12597 		return -ENOMEM;
12598 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12599 	if (!info_aux)
12600 		goto err_free;
12601 
12602 	for (i = 0; i < nfuncs; i++) {
12603 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12604 		if (ret) {
12605 			if (ret == -E2BIG) {
12606 				verbose(env, "nonzero tailing record in func info");
12607 				/* set the size kernel expects so loader can zero
12608 				 * out the rest of the record.
12609 				 */
12610 				if (copy_to_bpfptr_offset(uattr,
12611 							  offsetof(union bpf_attr, func_info_rec_size),
12612 							  &min_size, sizeof(min_size)))
12613 					ret = -EFAULT;
12614 			}
12615 			goto err_free;
12616 		}
12617 
12618 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12619 			ret = -EFAULT;
12620 			goto err_free;
12621 		}
12622 
12623 		/* check insn_off */
12624 		ret = -EINVAL;
12625 		if (i == 0) {
12626 			if (krecord[i].insn_off) {
12627 				verbose(env,
12628 					"nonzero insn_off %u for the first func info record",
12629 					krecord[i].insn_off);
12630 				goto err_free;
12631 			}
12632 		} else if (krecord[i].insn_off <= prev_offset) {
12633 			verbose(env,
12634 				"same or smaller insn offset (%u) than previous func info record (%u)",
12635 				krecord[i].insn_off, prev_offset);
12636 			goto err_free;
12637 		}
12638 
12639 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12640 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12641 			goto err_free;
12642 		}
12643 
12644 		/* check type_id */
12645 		type = btf_type_by_id(btf, krecord[i].type_id);
12646 		if (!type || !btf_type_is_func(type)) {
12647 			verbose(env, "invalid type id %d in func info",
12648 				krecord[i].type_id);
12649 			goto err_free;
12650 		}
12651 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12652 
12653 		func_proto = btf_type_by_id(btf, type->type);
12654 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12655 			/* btf_func_check() already verified it during BTF load */
12656 			goto err_free;
12657 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12658 		scalar_return =
12659 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12660 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12661 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12662 			goto err_free;
12663 		}
12664 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12665 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12666 			goto err_free;
12667 		}
12668 
12669 		prev_offset = krecord[i].insn_off;
12670 		bpfptr_add(&urecord, urec_size);
12671 	}
12672 
12673 	prog->aux->func_info = krecord;
12674 	prog->aux->func_info_cnt = nfuncs;
12675 	prog->aux->func_info_aux = info_aux;
12676 	return 0;
12677 
12678 err_free:
12679 	kvfree(krecord);
12680 	kfree(info_aux);
12681 	return ret;
12682 }
12683 
12684 static void adjust_btf_func(struct bpf_verifier_env *env)
12685 {
12686 	struct bpf_prog_aux *aux = env->prog->aux;
12687 	int i;
12688 
12689 	if (!aux->func_info)
12690 		return;
12691 
12692 	for (i = 0; i < env->subprog_cnt; i++)
12693 		aux->func_info[i].insn_off = env->subprog_info[i].start;
12694 }
12695 
12696 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
12697 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
12698 
12699 static int check_btf_line(struct bpf_verifier_env *env,
12700 			  const union bpf_attr *attr,
12701 			  bpfptr_t uattr)
12702 {
12703 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12704 	struct bpf_subprog_info *sub;
12705 	struct bpf_line_info *linfo;
12706 	struct bpf_prog *prog;
12707 	const struct btf *btf;
12708 	bpfptr_t ulinfo;
12709 	int err;
12710 
12711 	nr_linfo = attr->line_info_cnt;
12712 	if (!nr_linfo)
12713 		return 0;
12714 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12715 		return -EINVAL;
12716 
12717 	rec_size = attr->line_info_rec_size;
12718 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12719 	    rec_size > MAX_LINEINFO_REC_SIZE ||
12720 	    rec_size & (sizeof(u32) - 1))
12721 		return -EINVAL;
12722 
12723 	/* Need to zero it in case the userspace may
12724 	 * pass in a smaller bpf_line_info object.
12725 	 */
12726 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12727 			 GFP_KERNEL | __GFP_NOWARN);
12728 	if (!linfo)
12729 		return -ENOMEM;
12730 
12731 	prog = env->prog;
12732 	btf = prog->aux->btf;
12733 
12734 	s = 0;
12735 	sub = env->subprog_info;
12736 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
12737 	expected_size = sizeof(struct bpf_line_info);
12738 	ncopy = min_t(u32, expected_size, rec_size);
12739 	for (i = 0; i < nr_linfo; i++) {
12740 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12741 		if (err) {
12742 			if (err == -E2BIG) {
12743 				verbose(env, "nonzero tailing record in line_info");
12744 				if (copy_to_bpfptr_offset(uattr,
12745 							  offsetof(union bpf_attr, line_info_rec_size),
12746 							  &expected_size, sizeof(expected_size)))
12747 					err = -EFAULT;
12748 			}
12749 			goto err_free;
12750 		}
12751 
12752 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
12753 			err = -EFAULT;
12754 			goto err_free;
12755 		}
12756 
12757 		/*
12758 		 * Check insn_off to ensure
12759 		 * 1) strictly increasing AND
12760 		 * 2) bounded by prog->len
12761 		 *
12762 		 * The linfo[0].insn_off == 0 check logically falls into
12763 		 * the later "missing bpf_line_info for func..." case
12764 		 * because the first linfo[0].insn_off must be the
12765 		 * first sub also and the first sub must have
12766 		 * subprog_info[0].start == 0.
12767 		 */
12768 		if ((i && linfo[i].insn_off <= prev_offset) ||
12769 		    linfo[i].insn_off >= prog->len) {
12770 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12771 				i, linfo[i].insn_off, prev_offset,
12772 				prog->len);
12773 			err = -EINVAL;
12774 			goto err_free;
12775 		}
12776 
12777 		if (!prog->insnsi[linfo[i].insn_off].code) {
12778 			verbose(env,
12779 				"Invalid insn code at line_info[%u].insn_off\n",
12780 				i);
12781 			err = -EINVAL;
12782 			goto err_free;
12783 		}
12784 
12785 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12786 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
12787 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12788 			err = -EINVAL;
12789 			goto err_free;
12790 		}
12791 
12792 		if (s != env->subprog_cnt) {
12793 			if (linfo[i].insn_off == sub[s].start) {
12794 				sub[s].linfo_idx = i;
12795 				s++;
12796 			} else if (sub[s].start < linfo[i].insn_off) {
12797 				verbose(env, "missing bpf_line_info for func#%u\n", s);
12798 				err = -EINVAL;
12799 				goto err_free;
12800 			}
12801 		}
12802 
12803 		prev_offset = linfo[i].insn_off;
12804 		bpfptr_add(&ulinfo, rec_size);
12805 	}
12806 
12807 	if (s != env->subprog_cnt) {
12808 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12809 			env->subprog_cnt - s, s);
12810 		err = -EINVAL;
12811 		goto err_free;
12812 	}
12813 
12814 	prog->aux->linfo = linfo;
12815 	prog->aux->nr_linfo = nr_linfo;
12816 
12817 	return 0;
12818 
12819 err_free:
12820 	kvfree(linfo);
12821 	return err;
12822 }
12823 
12824 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
12825 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
12826 
12827 static int check_core_relo(struct bpf_verifier_env *env,
12828 			   const union bpf_attr *attr,
12829 			   bpfptr_t uattr)
12830 {
12831 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12832 	struct bpf_core_relo core_relo = {};
12833 	struct bpf_prog *prog = env->prog;
12834 	const struct btf *btf = prog->aux->btf;
12835 	struct bpf_core_ctx ctx = {
12836 		.log = &env->log,
12837 		.btf = btf,
12838 	};
12839 	bpfptr_t u_core_relo;
12840 	int err;
12841 
12842 	nr_core_relo = attr->core_relo_cnt;
12843 	if (!nr_core_relo)
12844 		return 0;
12845 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12846 		return -EINVAL;
12847 
12848 	rec_size = attr->core_relo_rec_size;
12849 	if (rec_size < MIN_CORE_RELO_SIZE ||
12850 	    rec_size > MAX_CORE_RELO_SIZE ||
12851 	    rec_size % sizeof(u32))
12852 		return -EINVAL;
12853 
12854 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12855 	expected_size = sizeof(struct bpf_core_relo);
12856 	ncopy = min_t(u32, expected_size, rec_size);
12857 
12858 	/* Unlike func_info and line_info, copy and apply each CO-RE
12859 	 * relocation record one at a time.
12860 	 */
12861 	for (i = 0; i < nr_core_relo; i++) {
12862 		/* future proofing when sizeof(bpf_core_relo) changes */
12863 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12864 		if (err) {
12865 			if (err == -E2BIG) {
12866 				verbose(env, "nonzero tailing record in core_relo");
12867 				if (copy_to_bpfptr_offset(uattr,
12868 							  offsetof(union bpf_attr, core_relo_rec_size),
12869 							  &expected_size, sizeof(expected_size)))
12870 					err = -EFAULT;
12871 			}
12872 			break;
12873 		}
12874 
12875 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12876 			err = -EFAULT;
12877 			break;
12878 		}
12879 
12880 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12881 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12882 				i, core_relo.insn_off, prog->len);
12883 			err = -EINVAL;
12884 			break;
12885 		}
12886 
12887 		err = bpf_core_apply(&ctx, &core_relo, i,
12888 				     &prog->insnsi[core_relo.insn_off / 8]);
12889 		if (err)
12890 			break;
12891 		bpfptr_add(&u_core_relo, rec_size);
12892 	}
12893 	return err;
12894 }
12895 
12896 static int check_btf_info(struct bpf_verifier_env *env,
12897 			  const union bpf_attr *attr,
12898 			  bpfptr_t uattr)
12899 {
12900 	struct btf *btf;
12901 	int err;
12902 
12903 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
12904 		if (check_abnormal_return(env))
12905 			return -EINVAL;
12906 		return 0;
12907 	}
12908 
12909 	btf = btf_get_by_fd(attr->prog_btf_fd);
12910 	if (IS_ERR(btf))
12911 		return PTR_ERR(btf);
12912 	if (btf_is_kernel(btf)) {
12913 		btf_put(btf);
12914 		return -EACCES;
12915 	}
12916 	env->prog->aux->btf = btf;
12917 
12918 	err = check_btf_func(env, attr, uattr);
12919 	if (err)
12920 		return err;
12921 
12922 	err = check_btf_line(env, attr, uattr);
12923 	if (err)
12924 		return err;
12925 
12926 	err = check_core_relo(env, attr, uattr);
12927 	if (err)
12928 		return err;
12929 
12930 	return 0;
12931 }
12932 
12933 /* check %cur's range satisfies %old's */
12934 static bool range_within(struct bpf_reg_state *old,
12935 			 struct bpf_reg_state *cur)
12936 {
12937 	return old->umin_value <= cur->umin_value &&
12938 	       old->umax_value >= cur->umax_value &&
12939 	       old->smin_value <= cur->smin_value &&
12940 	       old->smax_value >= cur->smax_value &&
12941 	       old->u32_min_value <= cur->u32_min_value &&
12942 	       old->u32_max_value >= cur->u32_max_value &&
12943 	       old->s32_min_value <= cur->s32_min_value &&
12944 	       old->s32_max_value >= cur->s32_max_value;
12945 }
12946 
12947 /* If in the old state two registers had the same id, then they need to have
12948  * the same id in the new state as well.  But that id could be different from
12949  * the old state, so we need to track the mapping from old to new ids.
12950  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12951  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
12952  * regs with a different old id could still have new id 9, we don't care about
12953  * that.
12954  * So we look through our idmap to see if this old id has been seen before.  If
12955  * so, we require the new id to match; otherwise, we add the id pair to the map.
12956  */
12957 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
12958 {
12959 	unsigned int i;
12960 
12961 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
12962 		if (!idmap[i].old) {
12963 			/* Reached an empty slot; haven't seen this id before */
12964 			idmap[i].old = old_id;
12965 			idmap[i].cur = cur_id;
12966 			return true;
12967 		}
12968 		if (idmap[i].old == old_id)
12969 			return idmap[i].cur == cur_id;
12970 	}
12971 	/* We ran out of idmap slots, which should be impossible */
12972 	WARN_ON_ONCE(1);
12973 	return false;
12974 }
12975 
12976 static void clean_func_state(struct bpf_verifier_env *env,
12977 			     struct bpf_func_state *st)
12978 {
12979 	enum bpf_reg_liveness live;
12980 	int i, j;
12981 
12982 	for (i = 0; i < BPF_REG_FP; i++) {
12983 		live = st->regs[i].live;
12984 		/* liveness must not touch this register anymore */
12985 		st->regs[i].live |= REG_LIVE_DONE;
12986 		if (!(live & REG_LIVE_READ))
12987 			/* since the register is unused, clear its state
12988 			 * to make further comparison simpler
12989 			 */
12990 			__mark_reg_not_init(env, &st->regs[i]);
12991 	}
12992 
12993 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12994 		live = st->stack[i].spilled_ptr.live;
12995 		/* liveness must not touch this stack slot anymore */
12996 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12997 		if (!(live & REG_LIVE_READ)) {
12998 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
12999 			for (j = 0; j < BPF_REG_SIZE; j++)
13000 				st->stack[i].slot_type[j] = STACK_INVALID;
13001 		}
13002 	}
13003 }
13004 
13005 static void clean_verifier_state(struct bpf_verifier_env *env,
13006 				 struct bpf_verifier_state *st)
13007 {
13008 	int i;
13009 
13010 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
13011 		/* all regs in this state in all frames were already marked */
13012 		return;
13013 
13014 	for (i = 0; i <= st->curframe; i++)
13015 		clean_func_state(env, st->frame[i]);
13016 }
13017 
13018 /* the parentage chains form a tree.
13019  * the verifier states are added to state lists at given insn and
13020  * pushed into state stack for future exploration.
13021  * when the verifier reaches bpf_exit insn some of the verifer states
13022  * stored in the state lists have their final liveness state already,
13023  * but a lot of states will get revised from liveness point of view when
13024  * the verifier explores other branches.
13025  * Example:
13026  * 1: r0 = 1
13027  * 2: if r1 == 100 goto pc+1
13028  * 3: r0 = 2
13029  * 4: exit
13030  * when the verifier reaches exit insn the register r0 in the state list of
13031  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
13032  * of insn 2 and goes exploring further. At the insn 4 it will walk the
13033  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
13034  *
13035  * Since the verifier pushes the branch states as it sees them while exploring
13036  * the program the condition of walking the branch instruction for the second
13037  * time means that all states below this branch were already explored and
13038  * their final liveness marks are already propagated.
13039  * Hence when the verifier completes the search of state list in is_state_visited()
13040  * we can call this clean_live_states() function to mark all liveness states
13041  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
13042  * will not be used.
13043  * This function also clears the registers and stack for states that !READ
13044  * to simplify state merging.
13045  *
13046  * Important note here that walking the same branch instruction in the callee
13047  * doesn't meant that the states are DONE. The verifier has to compare
13048  * the callsites
13049  */
13050 static void clean_live_states(struct bpf_verifier_env *env, int insn,
13051 			      struct bpf_verifier_state *cur)
13052 {
13053 	struct bpf_verifier_state_list *sl;
13054 	int i;
13055 
13056 	sl = *explored_state(env, insn);
13057 	while (sl) {
13058 		if (sl->state.branches)
13059 			goto next;
13060 		if (sl->state.insn_idx != insn ||
13061 		    sl->state.curframe != cur->curframe)
13062 			goto next;
13063 		for (i = 0; i <= cur->curframe; i++)
13064 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
13065 				goto next;
13066 		clean_verifier_state(env, &sl->state);
13067 next:
13068 		sl = sl->next;
13069 	}
13070 }
13071 
13072 /* Returns true if (rold safe implies rcur safe) */
13073 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
13074 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
13075 {
13076 	bool equal;
13077 
13078 	if (!(rold->live & REG_LIVE_READ))
13079 		/* explored state didn't use this */
13080 		return true;
13081 
13082 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
13083 
13084 	if (rold->type == NOT_INIT)
13085 		/* explored state can't have used this */
13086 		return true;
13087 	if (rcur->type == NOT_INIT)
13088 		return false;
13089 	switch (base_type(rold->type)) {
13090 	case SCALAR_VALUE:
13091 		if (equal)
13092 			return true;
13093 		if (env->explore_alu_limits)
13094 			return false;
13095 		if (rcur->type == SCALAR_VALUE) {
13096 			if (!rold->precise)
13097 				return true;
13098 			/* new val must satisfy old val knowledge */
13099 			return range_within(rold, rcur) &&
13100 			       tnum_in(rold->var_off, rcur->var_off);
13101 		} else {
13102 			/* We're trying to use a pointer in place of a scalar.
13103 			 * Even if the scalar was unbounded, this could lead to
13104 			 * pointer leaks because scalars are allowed to leak
13105 			 * while pointers are not. We could make this safe in
13106 			 * special cases if root is calling us, but it's
13107 			 * probably not worth the hassle.
13108 			 */
13109 			return false;
13110 		}
13111 	case PTR_TO_MAP_KEY:
13112 	case PTR_TO_MAP_VALUE:
13113 		/* a PTR_TO_MAP_VALUE could be safe to use as a
13114 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
13115 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
13116 		 * checked, doing so could have affected others with the same
13117 		 * id, and we can't check for that because we lost the id when
13118 		 * we converted to a PTR_TO_MAP_VALUE.
13119 		 */
13120 		if (type_may_be_null(rold->type)) {
13121 			if (!type_may_be_null(rcur->type))
13122 				return false;
13123 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
13124 				return false;
13125 			/* Check our ids match any regs they're supposed to */
13126 			return check_ids(rold->id, rcur->id, idmap);
13127 		}
13128 
13129 		/* If the new min/max/var_off satisfy the old ones and
13130 		 * everything else matches, we are OK.
13131 		 * 'id' is not compared, since it's only used for maps with
13132 		 * bpf_spin_lock inside map element and in such cases if
13133 		 * the rest of the prog is valid for one map element then
13134 		 * it's valid for all map elements regardless of the key
13135 		 * used in bpf_map_lookup()
13136 		 */
13137 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
13138 		       range_within(rold, rcur) &&
13139 		       tnum_in(rold->var_off, rcur->var_off) &&
13140 		       check_ids(rold->id, rcur->id, idmap);
13141 	case PTR_TO_PACKET_META:
13142 	case PTR_TO_PACKET:
13143 		if (rcur->type != rold->type)
13144 			return false;
13145 		/* We must have at least as much range as the old ptr
13146 		 * did, so that any accesses which were safe before are
13147 		 * still safe.  This is true even if old range < old off,
13148 		 * since someone could have accessed through (ptr - k), or
13149 		 * even done ptr -= k in a register, to get a safe access.
13150 		 */
13151 		if (rold->range > rcur->range)
13152 			return false;
13153 		/* If the offsets don't match, we can't trust our alignment;
13154 		 * nor can we be sure that we won't fall out of range.
13155 		 */
13156 		if (rold->off != rcur->off)
13157 			return false;
13158 		/* id relations must be preserved */
13159 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
13160 			return false;
13161 		/* new val must satisfy old val knowledge */
13162 		return range_within(rold, rcur) &&
13163 		       tnum_in(rold->var_off, rcur->var_off);
13164 	case PTR_TO_STACK:
13165 		/* two stack pointers are equal only if they're pointing to
13166 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
13167 		 */
13168 		return equal && rold->frameno == rcur->frameno;
13169 	default:
13170 		/* Only valid matches are exact, which memcmp() */
13171 		return equal;
13172 	}
13173 
13174 	/* Shouldn't get here; if we do, say it's not safe */
13175 	WARN_ON_ONCE(1);
13176 	return false;
13177 }
13178 
13179 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13180 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13181 {
13182 	int i, spi;
13183 
13184 	/* walk slots of the explored stack and ignore any additional
13185 	 * slots in the current stack, since explored(safe) state
13186 	 * didn't use them
13187 	 */
13188 	for (i = 0; i < old->allocated_stack; i++) {
13189 		spi = i / BPF_REG_SIZE;
13190 
13191 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13192 			i += BPF_REG_SIZE - 1;
13193 			/* explored state didn't use this */
13194 			continue;
13195 		}
13196 
13197 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13198 			continue;
13199 
13200 		/* explored stack has more populated slots than current stack
13201 		 * and these slots were used
13202 		 */
13203 		if (i >= cur->allocated_stack)
13204 			return false;
13205 
13206 		/* if old state was safe with misc data in the stack
13207 		 * it will be safe with zero-initialized stack.
13208 		 * The opposite is not true
13209 		 */
13210 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13211 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13212 			continue;
13213 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13214 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13215 			/* Ex: old explored (safe) state has STACK_SPILL in
13216 			 * this stack slot, but current has STACK_MISC ->
13217 			 * this verifier states are not equivalent,
13218 			 * return false to continue verification of this path
13219 			 */
13220 			return false;
13221 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13222 			continue;
13223 		if (!is_spilled_reg(&old->stack[spi]))
13224 			continue;
13225 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
13226 			     &cur->stack[spi].spilled_ptr, idmap))
13227 			/* when explored and current stack slot are both storing
13228 			 * spilled registers, check that stored pointers types
13229 			 * are the same as well.
13230 			 * Ex: explored safe path could have stored
13231 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13232 			 * but current path has stored:
13233 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13234 			 * such verifier states are not equivalent.
13235 			 * return false to continue verification of this path
13236 			 */
13237 			return false;
13238 	}
13239 	return true;
13240 }
13241 
13242 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
13243 {
13244 	if (old->acquired_refs != cur->acquired_refs)
13245 		return false;
13246 	return !memcmp(old->refs, cur->refs,
13247 		       sizeof(*old->refs) * old->acquired_refs);
13248 }
13249 
13250 /* compare two verifier states
13251  *
13252  * all states stored in state_list are known to be valid, since
13253  * verifier reached 'bpf_exit' instruction through them
13254  *
13255  * this function is called when verifier exploring different branches of
13256  * execution popped from the state stack. If it sees an old state that has
13257  * more strict register state and more strict stack state then this execution
13258  * branch doesn't need to be explored further, since verifier already
13259  * concluded that more strict state leads to valid finish.
13260  *
13261  * Therefore two states are equivalent if register state is more conservative
13262  * and explored stack state is more conservative than the current one.
13263  * Example:
13264  *       explored                   current
13265  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13266  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13267  *
13268  * In other words if current stack state (one being explored) has more
13269  * valid slots than old one that already passed validation, it means
13270  * the verifier can stop exploring and conclude that current state is valid too
13271  *
13272  * Similarly with registers. If explored state has register type as invalid
13273  * whereas register type in current state is meaningful, it means that
13274  * the current state will reach 'bpf_exit' instruction safely
13275  */
13276 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13277 			      struct bpf_func_state *cur)
13278 {
13279 	int i;
13280 
13281 	for (i = 0; i < MAX_BPF_REG; i++)
13282 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13283 			     env->idmap_scratch))
13284 			return false;
13285 
13286 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13287 		return false;
13288 
13289 	if (!refsafe(old, cur))
13290 		return false;
13291 
13292 	return true;
13293 }
13294 
13295 static bool states_equal(struct bpf_verifier_env *env,
13296 			 struct bpf_verifier_state *old,
13297 			 struct bpf_verifier_state *cur)
13298 {
13299 	int i;
13300 
13301 	if (old->curframe != cur->curframe)
13302 		return false;
13303 
13304 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13305 
13306 	/* Verification state from speculative execution simulation
13307 	 * must never prune a non-speculative execution one.
13308 	 */
13309 	if (old->speculative && !cur->speculative)
13310 		return false;
13311 
13312 	if (old->active_lock.ptr != cur->active_lock.ptr)
13313 		return false;
13314 
13315 	/* Old and cur active_lock's have to be either both present
13316 	 * or both absent.
13317 	 */
13318 	if (!!old->active_lock.id != !!cur->active_lock.id)
13319 		return false;
13320 
13321 	if (old->active_lock.id &&
13322 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
13323 		return false;
13324 
13325 	if (old->active_rcu_lock != cur->active_rcu_lock)
13326 		return false;
13327 
13328 	/* for states to be equal callsites have to be the same
13329 	 * and all frame states need to be equivalent
13330 	 */
13331 	for (i = 0; i <= old->curframe; i++) {
13332 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13333 			return false;
13334 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13335 			return false;
13336 	}
13337 	return true;
13338 }
13339 
13340 /* Return 0 if no propagation happened. Return negative error code if error
13341  * happened. Otherwise, return the propagated bit.
13342  */
13343 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13344 				  struct bpf_reg_state *reg,
13345 				  struct bpf_reg_state *parent_reg)
13346 {
13347 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13348 	u8 flag = reg->live & REG_LIVE_READ;
13349 	int err;
13350 
13351 	/* When comes here, read flags of PARENT_REG or REG could be any of
13352 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13353 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13354 	 */
13355 	if (parent_flag == REG_LIVE_READ64 ||
13356 	    /* Or if there is no read flag from REG. */
13357 	    !flag ||
13358 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13359 	    parent_flag == flag)
13360 		return 0;
13361 
13362 	err = mark_reg_read(env, reg, parent_reg, flag);
13363 	if (err)
13364 		return err;
13365 
13366 	return flag;
13367 }
13368 
13369 /* A write screens off any subsequent reads; but write marks come from the
13370  * straight-line code between a state and its parent.  When we arrive at an
13371  * equivalent state (jump target or such) we didn't arrive by the straight-line
13372  * code, so read marks in the state must propagate to the parent regardless
13373  * of the state's write marks. That's what 'parent == state->parent' comparison
13374  * in mark_reg_read() is for.
13375  */
13376 static int propagate_liveness(struct bpf_verifier_env *env,
13377 			      const struct bpf_verifier_state *vstate,
13378 			      struct bpf_verifier_state *vparent)
13379 {
13380 	struct bpf_reg_state *state_reg, *parent_reg;
13381 	struct bpf_func_state *state, *parent;
13382 	int i, frame, err = 0;
13383 
13384 	if (vparent->curframe != vstate->curframe) {
13385 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13386 		     vparent->curframe, vstate->curframe);
13387 		return -EFAULT;
13388 	}
13389 	/* Propagate read liveness of registers... */
13390 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13391 	for (frame = 0; frame <= vstate->curframe; frame++) {
13392 		parent = vparent->frame[frame];
13393 		state = vstate->frame[frame];
13394 		parent_reg = parent->regs;
13395 		state_reg = state->regs;
13396 		/* We don't need to worry about FP liveness, it's read-only */
13397 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13398 			err = propagate_liveness_reg(env, &state_reg[i],
13399 						     &parent_reg[i]);
13400 			if (err < 0)
13401 				return err;
13402 			if (err == REG_LIVE_READ64)
13403 				mark_insn_zext(env, &parent_reg[i]);
13404 		}
13405 
13406 		/* Propagate stack slots. */
13407 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13408 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13409 			parent_reg = &parent->stack[i].spilled_ptr;
13410 			state_reg = &state->stack[i].spilled_ptr;
13411 			err = propagate_liveness_reg(env, state_reg,
13412 						     parent_reg);
13413 			if (err < 0)
13414 				return err;
13415 		}
13416 	}
13417 	return 0;
13418 }
13419 
13420 /* find precise scalars in the previous equivalent state and
13421  * propagate them into the current state
13422  */
13423 static int propagate_precision(struct bpf_verifier_env *env,
13424 			       const struct bpf_verifier_state *old)
13425 {
13426 	struct bpf_reg_state *state_reg;
13427 	struct bpf_func_state *state;
13428 	int i, err = 0, fr;
13429 
13430 	for (fr = old->curframe; fr >= 0; fr--) {
13431 		state = old->frame[fr];
13432 		state_reg = state->regs;
13433 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13434 			if (state_reg->type != SCALAR_VALUE ||
13435 			    !state_reg->precise)
13436 				continue;
13437 			if (env->log.level & BPF_LOG_LEVEL2)
13438 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13439 			err = mark_chain_precision_frame(env, fr, i);
13440 			if (err < 0)
13441 				return err;
13442 		}
13443 
13444 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13445 			if (!is_spilled_reg(&state->stack[i]))
13446 				continue;
13447 			state_reg = &state->stack[i].spilled_ptr;
13448 			if (state_reg->type != SCALAR_VALUE ||
13449 			    !state_reg->precise)
13450 				continue;
13451 			if (env->log.level & BPF_LOG_LEVEL2)
13452 				verbose(env, "frame %d: propagating fp%d\n",
13453 					(-i - 1) * BPF_REG_SIZE, fr);
13454 			err = mark_chain_precision_stack_frame(env, fr, i);
13455 			if (err < 0)
13456 				return err;
13457 		}
13458 	}
13459 	return 0;
13460 }
13461 
13462 static bool states_maybe_looping(struct bpf_verifier_state *old,
13463 				 struct bpf_verifier_state *cur)
13464 {
13465 	struct bpf_func_state *fold, *fcur;
13466 	int i, fr = cur->curframe;
13467 
13468 	if (old->curframe != fr)
13469 		return false;
13470 
13471 	fold = old->frame[fr];
13472 	fcur = cur->frame[fr];
13473 	for (i = 0; i < MAX_BPF_REG; i++)
13474 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13475 			   offsetof(struct bpf_reg_state, parent)))
13476 			return false;
13477 	return true;
13478 }
13479 
13480 
13481 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13482 {
13483 	struct bpf_verifier_state_list *new_sl;
13484 	struct bpf_verifier_state_list *sl, **pprev;
13485 	struct bpf_verifier_state *cur = env->cur_state, *new;
13486 	int i, j, err, states_cnt = 0;
13487 	bool add_new_state = env->test_state_freq ? true : false;
13488 
13489 	/* bpf progs typically have pruning point every 4 instructions
13490 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13491 	 * Do not add new state for future pruning if the verifier hasn't seen
13492 	 * at least 2 jumps and at least 8 instructions.
13493 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13494 	 * In tests that amounts to up to 50% reduction into total verifier
13495 	 * memory consumption and 20% verifier time speedup.
13496 	 */
13497 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13498 	    env->insn_processed - env->prev_insn_processed >= 8)
13499 		add_new_state = true;
13500 
13501 	pprev = explored_state(env, insn_idx);
13502 	sl = *pprev;
13503 
13504 	clean_live_states(env, insn_idx, cur);
13505 
13506 	while (sl) {
13507 		states_cnt++;
13508 		if (sl->state.insn_idx != insn_idx)
13509 			goto next;
13510 
13511 		if (sl->state.branches) {
13512 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13513 
13514 			if (frame->in_async_callback_fn &&
13515 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13516 				/* Different async_entry_cnt means that the verifier is
13517 				 * processing another entry into async callback.
13518 				 * Seeing the same state is not an indication of infinite
13519 				 * loop or infinite recursion.
13520 				 * But finding the same state doesn't mean that it's safe
13521 				 * to stop processing the current state. The previous state
13522 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13523 				 * Checking in_async_callback_fn alone is not enough either.
13524 				 * Since the verifier still needs to catch infinite loops
13525 				 * inside async callbacks.
13526 				 */
13527 			} else if (states_maybe_looping(&sl->state, cur) &&
13528 				   states_equal(env, &sl->state, cur)) {
13529 				verbose_linfo(env, insn_idx, "; ");
13530 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13531 				return -EINVAL;
13532 			}
13533 			/* if the verifier is processing a loop, avoid adding new state
13534 			 * too often, since different loop iterations have distinct
13535 			 * states and may not help future pruning.
13536 			 * This threshold shouldn't be too low to make sure that
13537 			 * a loop with large bound will be rejected quickly.
13538 			 * The most abusive loop will be:
13539 			 * r1 += 1
13540 			 * if r1 < 1000000 goto pc-2
13541 			 * 1M insn_procssed limit / 100 == 10k peak states.
13542 			 * This threshold shouldn't be too high either, since states
13543 			 * at the end of the loop are likely to be useful in pruning.
13544 			 */
13545 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13546 			    env->insn_processed - env->prev_insn_processed < 100)
13547 				add_new_state = false;
13548 			goto miss;
13549 		}
13550 		if (states_equal(env, &sl->state, cur)) {
13551 			sl->hit_cnt++;
13552 			/* reached equivalent register/stack state,
13553 			 * prune the search.
13554 			 * Registers read by the continuation are read by us.
13555 			 * If we have any write marks in env->cur_state, they
13556 			 * will prevent corresponding reads in the continuation
13557 			 * from reaching our parent (an explored_state).  Our
13558 			 * own state will get the read marks recorded, but
13559 			 * they'll be immediately forgotten as we're pruning
13560 			 * this state and will pop a new one.
13561 			 */
13562 			err = propagate_liveness(env, &sl->state, cur);
13563 
13564 			/* if previous state reached the exit with precision and
13565 			 * current state is equivalent to it (except precsion marks)
13566 			 * the precision needs to be propagated back in
13567 			 * the current state.
13568 			 */
13569 			err = err ? : push_jmp_history(env, cur);
13570 			err = err ? : propagate_precision(env, &sl->state);
13571 			if (err)
13572 				return err;
13573 			return 1;
13574 		}
13575 miss:
13576 		/* when new state is not going to be added do not increase miss count.
13577 		 * Otherwise several loop iterations will remove the state
13578 		 * recorded earlier. The goal of these heuristics is to have
13579 		 * states from some iterations of the loop (some in the beginning
13580 		 * and some at the end) to help pruning.
13581 		 */
13582 		if (add_new_state)
13583 			sl->miss_cnt++;
13584 		/* heuristic to determine whether this state is beneficial
13585 		 * to keep checking from state equivalence point of view.
13586 		 * Higher numbers increase max_states_per_insn and verification time,
13587 		 * but do not meaningfully decrease insn_processed.
13588 		 */
13589 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13590 			/* the state is unlikely to be useful. Remove it to
13591 			 * speed up verification
13592 			 */
13593 			*pprev = sl->next;
13594 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13595 				u32 br = sl->state.branches;
13596 
13597 				WARN_ONCE(br,
13598 					  "BUG live_done but branches_to_explore %d\n",
13599 					  br);
13600 				free_verifier_state(&sl->state, false);
13601 				kfree(sl);
13602 				env->peak_states--;
13603 			} else {
13604 				/* cannot free this state, since parentage chain may
13605 				 * walk it later. Add it for free_list instead to
13606 				 * be freed at the end of verification
13607 				 */
13608 				sl->next = env->free_list;
13609 				env->free_list = sl;
13610 			}
13611 			sl = *pprev;
13612 			continue;
13613 		}
13614 next:
13615 		pprev = &sl->next;
13616 		sl = *pprev;
13617 	}
13618 
13619 	if (env->max_states_per_insn < states_cnt)
13620 		env->max_states_per_insn = states_cnt;
13621 
13622 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13623 		return 0;
13624 
13625 	if (!add_new_state)
13626 		return 0;
13627 
13628 	/* There were no equivalent states, remember the current one.
13629 	 * Technically the current state is not proven to be safe yet,
13630 	 * but it will either reach outer most bpf_exit (which means it's safe)
13631 	 * or it will be rejected. When there are no loops the verifier won't be
13632 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13633 	 * again on the way to bpf_exit.
13634 	 * When looping the sl->state.branches will be > 0 and this state
13635 	 * will not be considered for equivalence until branches == 0.
13636 	 */
13637 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13638 	if (!new_sl)
13639 		return -ENOMEM;
13640 	env->total_states++;
13641 	env->peak_states++;
13642 	env->prev_jmps_processed = env->jmps_processed;
13643 	env->prev_insn_processed = env->insn_processed;
13644 
13645 	/* forget precise markings we inherited, see __mark_chain_precision */
13646 	if (env->bpf_capable)
13647 		mark_all_scalars_imprecise(env, cur);
13648 
13649 	/* add new state to the head of linked list */
13650 	new = &new_sl->state;
13651 	err = copy_verifier_state(new, cur);
13652 	if (err) {
13653 		free_verifier_state(new, false);
13654 		kfree(new_sl);
13655 		return err;
13656 	}
13657 	new->insn_idx = insn_idx;
13658 	WARN_ONCE(new->branches != 1,
13659 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
13660 
13661 	cur->parent = new;
13662 	cur->first_insn_idx = insn_idx;
13663 	clear_jmp_history(cur);
13664 	new_sl->next = *explored_state(env, insn_idx);
13665 	*explored_state(env, insn_idx) = new_sl;
13666 	/* connect new state to parentage chain. Current frame needs all
13667 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
13668 	 * to the stack implicitly by JITs) so in callers' frames connect just
13669 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13670 	 * the state of the call instruction (with WRITTEN set), and r0 comes
13671 	 * from callee with its full parentage chain, anyway.
13672 	 */
13673 	/* clear write marks in current state: the writes we did are not writes
13674 	 * our child did, so they don't screen off its reads from us.
13675 	 * (There are no read marks in current state, because reads always mark
13676 	 * their parent and current state never has children yet.  Only
13677 	 * explored_states can get read marks.)
13678 	 */
13679 	for (j = 0; j <= cur->curframe; j++) {
13680 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13681 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13682 		for (i = 0; i < BPF_REG_FP; i++)
13683 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13684 	}
13685 
13686 	/* all stack frames are accessible from callee, clear them all */
13687 	for (j = 0; j <= cur->curframe; j++) {
13688 		struct bpf_func_state *frame = cur->frame[j];
13689 		struct bpf_func_state *newframe = new->frame[j];
13690 
13691 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
13692 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
13693 			frame->stack[i].spilled_ptr.parent =
13694 						&newframe->stack[i].spilled_ptr;
13695 		}
13696 	}
13697 	return 0;
13698 }
13699 
13700 /* Return true if it's OK to have the same insn return a different type. */
13701 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13702 {
13703 	switch (base_type(type)) {
13704 	case PTR_TO_CTX:
13705 	case PTR_TO_SOCKET:
13706 	case PTR_TO_SOCK_COMMON:
13707 	case PTR_TO_TCP_SOCK:
13708 	case PTR_TO_XDP_SOCK:
13709 	case PTR_TO_BTF_ID:
13710 		return false;
13711 	default:
13712 		return true;
13713 	}
13714 }
13715 
13716 /* If an instruction was previously used with particular pointer types, then we
13717  * need to be careful to avoid cases such as the below, where it may be ok
13718  * for one branch accessing the pointer, but not ok for the other branch:
13719  *
13720  * R1 = sock_ptr
13721  * goto X;
13722  * ...
13723  * R1 = some_other_valid_ptr;
13724  * goto X;
13725  * ...
13726  * R2 = *(u32 *)(R1 + 0);
13727  */
13728 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13729 {
13730 	return src != prev && (!reg_type_mismatch_ok(src) ||
13731 			       !reg_type_mismatch_ok(prev));
13732 }
13733 
13734 static int do_check(struct bpf_verifier_env *env)
13735 {
13736 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13737 	struct bpf_verifier_state *state = env->cur_state;
13738 	struct bpf_insn *insns = env->prog->insnsi;
13739 	struct bpf_reg_state *regs;
13740 	int insn_cnt = env->prog->len;
13741 	bool do_print_state = false;
13742 	int prev_insn_idx = -1;
13743 
13744 	for (;;) {
13745 		struct bpf_insn *insn;
13746 		u8 class;
13747 		int err;
13748 
13749 		env->prev_insn_idx = prev_insn_idx;
13750 		if (env->insn_idx >= insn_cnt) {
13751 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
13752 				env->insn_idx, insn_cnt);
13753 			return -EFAULT;
13754 		}
13755 
13756 		insn = &insns[env->insn_idx];
13757 		class = BPF_CLASS(insn->code);
13758 
13759 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
13760 			verbose(env,
13761 				"BPF program is too large. Processed %d insn\n",
13762 				env->insn_processed);
13763 			return -E2BIG;
13764 		}
13765 
13766 		state->last_insn_idx = env->prev_insn_idx;
13767 
13768 		if (is_prune_point(env, env->insn_idx)) {
13769 			err = is_state_visited(env, env->insn_idx);
13770 			if (err < 0)
13771 				return err;
13772 			if (err == 1) {
13773 				/* found equivalent state, can prune the search */
13774 				if (env->log.level & BPF_LOG_LEVEL) {
13775 					if (do_print_state)
13776 						verbose(env, "\nfrom %d to %d%s: safe\n",
13777 							env->prev_insn_idx, env->insn_idx,
13778 							env->cur_state->speculative ?
13779 							" (speculative execution)" : "");
13780 					else
13781 						verbose(env, "%d: safe\n", env->insn_idx);
13782 				}
13783 				goto process_bpf_exit;
13784 			}
13785 		}
13786 
13787 		if (is_jmp_point(env, env->insn_idx)) {
13788 			err = push_jmp_history(env, state);
13789 			if (err)
13790 				return err;
13791 		}
13792 
13793 		if (signal_pending(current))
13794 			return -EAGAIN;
13795 
13796 		if (need_resched())
13797 			cond_resched();
13798 
13799 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13800 			verbose(env, "\nfrom %d to %d%s:",
13801 				env->prev_insn_idx, env->insn_idx,
13802 				env->cur_state->speculative ?
13803 				" (speculative execution)" : "");
13804 			print_verifier_state(env, state->frame[state->curframe], true);
13805 			do_print_state = false;
13806 		}
13807 
13808 		if (env->log.level & BPF_LOG_LEVEL) {
13809 			const struct bpf_insn_cbs cbs = {
13810 				.cb_call	= disasm_kfunc_name,
13811 				.cb_print	= verbose,
13812 				.private_data	= env,
13813 			};
13814 
13815 			if (verifier_state_scratched(env))
13816 				print_insn_state(env, state->frame[state->curframe]);
13817 
13818 			verbose_linfo(env, env->insn_idx, "; ");
13819 			env->prev_log_len = env->log.len_used;
13820 			verbose(env, "%d: ", env->insn_idx);
13821 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
13822 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13823 			env->prev_log_len = env->log.len_used;
13824 		}
13825 
13826 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
13827 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13828 							   env->prev_insn_idx);
13829 			if (err)
13830 				return err;
13831 		}
13832 
13833 		regs = cur_regs(env);
13834 		sanitize_mark_insn_seen(env);
13835 		prev_insn_idx = env->insn_idx;
13836 
13837 		if (class == BPF_ALU || class == BPF_ALU64) {
13838 			err = check_alu_op(env, insn);
13839 			if (err)
13840 				return err;
13841 
13842 		} else if (class == BPF_LDX) {
13843 			enum bpf_reg_type *prev_src_type, src_reg_type;
13844 
13845 			/* check for reserved fields is already done */
13846 
13847 			/* check src operand */
13848 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13849 			if (err)
13850 				return err;
13851 
13852 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13853 			if (err)
13854 				return err;
13855 
13856 			src_reg_type = regs[insn->src_reg].type;
13857 
13858 			/* check that memory (src_reg + off) is readable,
13859 			 * the state of dst_reg will be updated by this func
13860 			 */
13861 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
13862 					       insn->off, BPF_SIZE(insn->code),
13863 					       BPF_READ, insn->dst_reg, false);
13864 			if (err)
13865 				return err;
13866 
13867 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13868 
13869 			if (*prev_src_type == NOT_INIT) {
13870 				/* saw a valid insn
13871 				 * dst_reg = *(u32 *)(src_reg + off)
13872 				 * save type to validate intersecting paths
13873 				 */
13874 				*prev_src_type = src_reg_type;
13875 
13876 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
13877 				/* ABuser program is trying to use the same insn
13878 				 * dst_reg = *(u32*) (src_reg + off)
13879 				 * with different pointer types:
13880 				 * src_reg == ctx in one branch and
13881 				 * src_reg == stack|map in some other branch.
13882 				 * Reject it.
13883 				 */
13884 				verbose(env, "same insn cannot be used with different pointers\n");
13885 				return -EINVAL;
13886 			}
13887 
13888 		} else if (class == BPF_STX) {
13889 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
13890 
13891 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13892 				err = check_atomic(env, env->insn_idx, insn);
13893 				if (err)
13894 					return err;
13895 				env->insn_idx++;
13896 				continue;
13897 			}
13898 
13899 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13900 				verbose(env, "BPF_STX uses reserved fields\n");
13901 				return -EINVAL;
13902 			}
13903 
13904 			/* check src1 operand */
13905 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13906 			if (err)
13907 				return err;
13908 			/* check src2 operand */
13909 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13910 			if (err)
13911 				return err;
13912 
13913 			dst_reg_type = regs[insn->dst_reg].type;
13914 
13915 			/* check that memory (dst_reg + off) is writeable */
13916 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13917 					       insn->off, BPF_SIZE(insn->code),
13918 					       BPF_WRITE, insn->src_reg, false);
13919 			if (err)
13920 				return err;
13921 
13922 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13923 
13924 			if (*prev_dst_type == NOT_INIT) {
13925 				*prev_dst_type = dst_reg_type;
13926 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
13927 				verbose(env, "same insn cannot be used with different pointers\n");
13928 				return -EINVAL;
13929 			}
13930 
13931 		} else if (class == BPF_ST) {
13932 			if (BPF_MODE(insn->code) != BPF_MEM ||
13933 			    insn->src_reg != BPF_REG_0) {
13934 				verbose(env, "BPF_ST uses reserved fields\n");
13935 				return -EINVAL;
13936 			}
13937 			/* check src operand */
13938 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13939 			if (err)
13940 				return err;
13941 
13942 			if (is_ctx_reg(env, insn->dst_reg)) {
13943 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
13944 					insn->dst_reg,
13945 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
13946 				return -EACCES;
13947 			}
13948 
13949 			/* check that memory (dst_reg + off) is writeable */
13950 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13951 					       insn->off, BPF_SIZE(insn->code),
13952 					       BPF_WRITE, -1, false);
13953 			if (err)
13954 				return err;
13955 
13956 		} else if (class == BPF_JMP || class == BPF_JMP32) {
13957 			u8 opcode = BPF_OP(insn->code);
13958 
13959 			env->jmps_processed++;
13960 			if (opcode == BPF_CALL) {
13961 				if (BPF_SRC(insn->code) != BPF_K ||
13962 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13963 				     && insn->off != 0) ||
13964 				    (insn->src_reg != BPF_REG_0 &&
13965 				     insn->src_reg != BPF_PSEUDO_CALL &&
13966 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
13967 				    insn->dst_reg != BPF_REG_0 ||
13968 				    class == BPF_JMP32) {
13969 					verbose(env, "BPF_CALL uses reserved fields\n");
13970 					return -EINVAL;
13971 				}
13972 
13973 				if (env->cur_state->active_lock.ptr) {
13974 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13975 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
13976 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13977 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13978 						verbose(env, "function calls are not allowed while holding a lock\n");
13979 						return -EINVAL;
13980 					}
13981 				}
13982 				if (insn->src_reg == BPF_PSEUDO_CALL)
13983 					err = check_func_call(env, insn, &env->insn_idx);
13984 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
13985 					err = check_kfunc_call(env, insn, &env->insn_idx);
13986 				else
13987 					err = check_helper_call(env, insn, &env->insn_idx);
13988 				if (err)
13989 					return err;
13990 			} else if (opcode == BPF_JA) {
13991 				if (BPF_SRC(insn->code) != BPF_K ||
13992 				    insn->imm != 0 ||
13993 				    insn->src_reg != BPF_REG_0 ||
13994 				    insn->dst_reg != BPF_REG_0 ||
13995 				    class == BPF_JMP32) {
13996 					verbose(env, "BPF_JA uses reserved fields\n");
13997 					return -EINVAL;
13998 				}
13999 
14000 				env->insn_idx += insn->off + 1;
14001 				continue;
14002 
14003 			} else if (opcode == BPF_EXIT) {
14004 				if (BPF_SRC(insn->code) != BPF_K ||
14005 				    insn->imm != 0 ||
14006 				    insn->src_reg != BPF_REG_0 ||
14007 				    insn->dst_reg != BPF_REG_0 ||
14008 				    class == BPF_JMP32) {
14009 					verbose(env, "BPF_EXIT uses reserved fields\n");
14010 					return -EINVAL;
14011 				}
14012 
14013 				if (env->cur_state->active_lock.ptr) {
14014 					verbose(env, "bpf_spin_unlock is missing\n");
14015 					return -EINVAL;
14016 				}
14017 
14018 				if (env->cur_state->active_rcu_lock) {
14019 					verbose(env, "bpf_rcu_read_unlock is missing\n");
14020 					return -EINVAL;
14021 				}
14022 
14023 				/* We must do check_reference_leak here before
14024 				 * prepare_func_exit to handle the case when
14025 				 * state->curframe > 0, it may be a callback
14026 				 * function, for which reference_state must
14027 				 * match caller reference state when it exits.
14028 				 */
14029 				err = check_reference_leak(env);
14030 				if (err)
14031 					return err;
14032 
14033 				if (state->curframe) {
14034 					/* exit from nested function */
14035 					err = prepare_func_exit(env, &env->insn_idx);
14036 					if (err)
14037 						return err;
14038 					do_print_state = true;
14039 					continue;
14040 				}
14041 
14042 				err = check_return_code(env);
14043 				if (err)
14044 					return err;
14045 process_bpf_exit:
14046 				mark_verifier_state_scratched(env);
14047 				update_branch_counts(env, env->cur_state);
14048 				err = pop_stack(env, &prev_insn_idx,
14049 						&env->insn_idx, pop_log);
14050 				if (err < 0) {
14051 					if (err != -ENOENT)
14052 						return err;
14053 					break;
14054 				} else {
14055 					do_print_state = true;
14056 					continue;
14057 				}
14058 			} else {
14059 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
14060 				if (err)
14061 					return err;
14062 			}
14063 		} else if (class == BPF_LD) {
14064 			u8 mode = BPF_MODE(insn->code);
14065 
14066 			if (mode == BPF_ABS || mode == BPF_IND) {
14067 				err = check_ld_abs(env, insn);
14068 				if (err)
14069 					return err;
14070 
14071 			} else if (mode == BPF_IMM) {
14072 				err = check_ld_imm(env, insn);
14073 				if (err)
14074 					return err;
14075 
14076 				env->insn_idx++;
14077 				sanitize_mark_insn_seen(env);
14078 			} else {
14079 				verbose(env, "invalid BPF_LD mode\n");
14080 				return -EINVAL;
14081 			}
14082 		} else {
14083 			verbose(env, "unknown insn class %d\n", class);
14084 			return -EINVAL;
14085 		}
14086 
14087 		env->insn_idx++;
14088 	}
14089 
14090 	return 0;
14091 }
14092 
14093 static int find_btf_percpu_datasec(struct btf *btf)
14094 {
14095 	const struct btf_type *t;
14096 	const char *tname;
14097 	int i, n;
14098 
14099 	/*
14100 	 * Both vmlinux and module each have their own ".data..percpu"
14101 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
14102 	 * types to look at only module's own BTF types.
14103 	 */
14104 	n = btf_nr_types(btf);
14105 	if (btf_is_module(btf))
14106 		i = btf_nr_types(btf_vmlinux);
14107 	else
14108 		i = 1;
14109 
14110 	for(; i < n; i++) {
14111 		t = btf_type_by_id(btf, i);
14112 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
14113 			continue;
14114 
14115 		tname = btf_name_by_offset(btf, t->name_off);
14116 		if (!strcmp(tname, ".data..percpu"))
14117 			return i;
14118 	}
14119 
14120 	return -ENOENT;
14121 }
14122 
14123 /* replace pseudo btf_id with kernel symbol address */
14124 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
14125 			       struct bpf_insn *insn,
14126 			       struct bpf_insn_aux_data *aux)
14127 {
14128 	const struct btf_var_secinfo *vsi;
14129 	const struct btf_type *datasec;
14130 	struct btf_mod_pair *btf_mod;
14131 	const struct btf_type *t;
14132 	const char *sym_name;
14133 	bool percpu = false;
14134 	u32 type, id = insn->imm;
14135 	struct btf *btf;
14136 	s32 datasec_id;
14137 	u64 addr;
14138 	int i, btf_fd, err;
14139 
14140 	btf_fd = insn[1].imm;
14141 	if (btf_fd) {
14142 		btf = btf_get_by_fd(btf_fd);
14143 		if (IS_ERR(btf)) {
14144 			verbose(env, "invalid module BTF object FD specified.\n");
14145 			return -EINVAL;
14146 		}
14147 	} else {
14148 		if (!btf_vmlinux) {
14149 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
14150 			return -EINVAL;
14151 		}
14152 		btf = btf_vmlinux;
14153 		btf_get(btf);
14154 	}
14155 
14156 	t = btf_type_by_id(btf, id);
14157 	if (!t) {
14158 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
14159 		err = -ENOENT;
14160 		goto err_put;
14161 	}
14162 
14163 	if (!btf_type_is_var(t)) {
14164 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
14165 		err = -EINVAL;
14166 		goto err_put;
14167 	}
14168 
14169 	sym_name = btf_name_by_offset(btf, t->name_off);
14170 	addr = kallsyms_lookup_name(sym_name);
14171 	if (!addr) {
14172 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14173 			sym_name);
14174 		err = -ENOENT;
14175 		goto err_put;
14176 	}
14177 
14178 	datasec_id = find_btf_percpu_datasec(btf);
14179 	if (datasec_id > 0) {
14180 		datasec = btf_type_by_id(btf, datasec_id);
14181 		for_each_vsi(i, datasec, vsi) {
14182 			if (vsi->type == id) {
14183 				percpu = true;
14184 				break;
14185 			}
14186 		}
14187 	}
14188 
14189 	insn[0].imm = (u32)addr;
14190 	insn[1].imm = addr >> 32;
14191 
14192 	type = t->type;
14193 	t = btf_type_skip_modifiers(btf, type, NULL);
14194 	if (percpu) {
14195 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14196 		aux->btf_var.btf = btf;
14197 		aux->btf_var.btf_id = type;
14198 	} else if (!btf_type_is_struct(t)) {
14199 		const struct btf_type *ret;
14200 		const char *tname;
14201 		u32 tsize;
14202 
14203 		/* resolve the type size of ksym. */
14204 		ret = btf_resolve_size(btf, t, &tsize);
14205 		if (IS_ERR(ret)) {
14206 			tname = btf_name_by_offset(btf, t->name_off);
14207 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14208 				tname, PTR_ERR(ret));
14209 			err = -EINVAL;
14210 			goto err_put;
14211 		}
14212 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14213 		aux->btf_var.mem_size = tsize;
14214 	} else {
14215 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14216 		aux->btf_var.btf = btf;
14217 		aux->btf_var.btf_id = type;
14218 	}
14219 
14220 	/* check whether we recorded this BTF (and maybe module) already */
14221 	for (i = 0; i < env->used_btf_cnt; i++) {
14222 		if (env->used_btfs[i].btf == btf) {
14223 			btf_put(btf);
14224 			return 0;
14225 		}
14226 	}
14227 
14228 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14229 		err = -E2BIG;
14230 		goto err_put;
14231 	}
14232 
14233 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14234 	btf_mod->btf = btf;
14235 	btf_mod->module = NULL;
14236 
14237 	/* if we reference variables from kernel module, bump its refcount */
14238 	if (btf_is_module(btf)) {
14239 		btf_mod->module = btf_try_get_module(btf);
14240 		if (!btf_mod->module) {
14241 			err = -ENXIO;
14242 			goto err_put;
14243 		}
14244 	}
14245 
14246 	env->used_btf_cnt++;
14247 
14248 	return 0;
14249 err_put:
14250 	btf_put(btf);
14251 	return err;
14252 }
14253 
14254 static bool is_tracing_prog_type(enum bpf_prog_type type)
14255 {
14256 	switch (type) {
14257 	case BPF_PROG_TYPE_KPROBE:
14258 	case BPF_PROG_TYPE_TRACEPOINT:
14259 	case BPF_PROG_TYPE_PERF_EVENT:
14260 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14261 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14262 		return true;
14263 	default:
14264 		return false;
14265 	}
14266 }
14267 
14268 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14269 					struct bpf_map *map,
14270 					struct bpf_prog *prog)
14271 
14272 {
14273 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14274 
14275 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14276 		if (is_tracing_prog_type(prog_type)) {
14277 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14278 			return -EINVAL;
14279 		}
14280 	}
14281 
14282 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14283 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14284 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14285 			return -EINVAL;
14286 		}
14287 
14288 		if (is_tracing_prog_type(prog_type)) {
14289 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14290 			return -EINVAL;
14291 		}
14292 
14293 		if (prog->aux->sleepable) {
14294 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14295 			return -EINVAL;
14296 		}
14297 	}
14298 
14299 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14300 		if (is_tracing_prog_type(prog_type)) {
14301 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14302 			return -EINVAL;
14303 		}
14304 	}
14305 
14306 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
14307 	    !bpf_offload_prog_map_match(prog, map)) {
14308 		verbose(env, "offload device mismatch between prog and map\n");
14309 		return -EINVAL;
14310 	}
14311 
14312 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14313 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14314 		return -EINVAL;
14315 	}
14316 
14317 	if (prog->aux->sleepable)
14318 		switch (map->map_type) {
14319 		case BPF_MAP_TYPE_HASH:
14320 		case BPF_MAP_TYPE_LRU_HASH:
14321 		case BPF_MAP_TYPE_ARRAY:
14322 		case BPF_MAP_TYPE_PERCPU_HASH:
14323 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14324 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14325 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14326 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14327 		case BPF_MAP_TYPE_RINGBUF:
14328 		case BPF_MAP_TYPE_USER_RINGBUF:
14329 		case BPF_MAP_TYPE_INODE_STORAGE:
14330 		case BPF_MAP_TYPE_SK_STORAGE:
14331 		case BPF_MAP_TYPE_TASK_STORAGE:
14332 		case BPF_MAP_TYPE_CGRP_STORAGE:
14333 			break;
14334 		default:
14335 			verbose(env,
14336 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14337 			return -EINVAL;
14338 		}
14339 
14340 	return 0;
14341 }
14342 
14343 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14344 {
14345 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14346 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14347 }
14348 
14349 /* find and rewrite pseudo imm in ld_imm64 instructions:
14350  *
14351  * 1. if it accesses map FD, replace it with actual map pointer.
14352  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14353  *
14354  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14355  */
14356 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14357 {
14358 	struct bpf_insn *insn = env->prog->insnsi;
14359 	int insn_cnt = env->prog->len;
14360 	int i, j, err;
14361 
14362 	err = bpf_prog_calc_tag(env->prog);
14363 	if (err)
14364 		return err;
14365 
14366 	for (i = 0; i < insn_cnt; i++, insn++) {
14367 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14368 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14369 			verbose(env, "BPF_LDX uses reserved fields\n");
14370 			return -EINVAL;
14371 		}
14372 
14373 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14374 			struct bpf_insn_aux_data *aux;
14375 			struct bpf_map *map;
14376 			struct fd f;
14377 			u64 addr;
14378 			u32 fd;
14379 
14380 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14381 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14382 			    insn[1].off != 0) {
14383 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14384 				return -EINVAL;
14385 			}
14386 
14387 			if (insn[0].src_reg == 0)
14388 				/* valid generic load 64-bit imm */
14389 				goto next_insn;
14390 
14391 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14392 				aux = &env->insn_aux_data[i];
14393 				err = check_pseudo_btf_id(env, insn, aux);
14394 				if (err)
14395 					return err;
14396 				goto next_insn;
14397 			}
14398 
14399 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14400 				aux = &env->insn_aux_data[i];
14401 				aux->ptr_type = PTR_TO_FUNC;
14402 				goto next_insn;
14403 			}
14404 
14405 			/* In final convert_pseudo_ld_imm64() step, this is
14406 			 * converted into regular 64-bit imm load insn.
14407 			 */
14408 			switch (insn[0].src_reg) {
14409 			case BPF_PSEUDO_MAP_VALUE:
14410 			case BPF_PSEUDO_MAP_IDX_VALUE:
14411 				break;
14412 			case BPF_PSEUDO_MAP_FD:
14413 			case BPF_PSEUDO_MAP_IDX:
14414 				if (insn[1].imm == 0)
14415 					break;
14416 				fallthrough;
14417 			default:
14418 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14419 				return -EINVAL;
14420 			}
14421 
14422 			switch (insn[0].src_reg) {
14423 			case BPF_PSEUDO_MAP_IDX_VALUE:
14424 			case BPF_PSEUDO_MAP_IDX:
14425 				if (bpfptr_is_null(env->fd_array)) {
14426 					verbose(env, "fd_idx without fd_array is invalid\n");
14427 					return -EPROTO;
14428 				}
14429 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14430 							    insn[0].imm * sizeof(fd),
14431 							    sizeof(fd)))
14432 					return -EFAULT;
14433 				break;
14434 			default:
14435 				fd = insn[0].imm;
14436 				break;
14437 			}
14438 
14439 			f = fdget(fd);
14440 			map = __bpf_map_get(f);
14441 			if (IS_ERR(map)) {
14442 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14443 					insn[0].imm);
14444 				return PTR_ERR(map);
14445 			}
14446 
14447 			err = check_map_prog_compatibility(env, map, env->prog);
14448 			if (err) {
14449 				fdput(f);
14450 				return err;
14451 			}
14452 
14453 			aux = &env->insn_aux_data[i];
14454 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14455 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14456 				addr = (unsigned long)map;
14457 			} else {
14458 				u32 off = insn[1].imm;
14459 
14460 				if (off >= BPF_MAX_VAR_OFF) {
14461 					verbose(env, "direct value offset of %u is not allowed\n", off);
14462 					fdput(f);
14463 					return -EINVAL;
14464 				}
14465 
14466 				if (!map->ops->map_direct_value_addr) {
14467 					verbose(env, "no direct value access support for this map type\n");
14468 					fdput(f);
14469 					return -EINVAL;
14470 				}
14471 
14472 				err = map->ops->map_direct_value_addr(map, &addr, off);
14473 				if (err) {
14474 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14475 						map->value_size, off);
14476 					fdput(f);
14477 					return err;
14478 				}
14479 
14480 				aux->map_off = off;
14481 				addr += off;
14482 			}
14483 
14484 			insn[0].imm = (u32)addr;
14485 			insn[1].imm = addr >> 32;
14486 
14487 			/* check whether we recorded this map already */
14488 			for (j = 0; j < env->used_map_cnt; j++) {
14489 				if (env->used_maps[j] == map) {
14490 					aux->map_index = j;
14491 					fdput(f);
14492 					goto next_insn;
14493 				}
14494 			}
14495 
14496 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14497 				fdput(f);
14498 				return -E2BIG;
14499 			}
14500 
14501 			/* hold the map. If the program is rejected by verifier,
14502 			 * the map will be released by release_maps() or it
14503 			 * will be used by the valid program until it's unloaded
14504 			 * and all maps are released in free_used_maps()
14505 			 */
14506 			bpf_map_inc(map);
14507 
14508 			aux->map_index = env->used_map_cnt;
14509 			env->used_maps[env->used_map_cnt++] = map;
14510 
14511 			if (bpf_map_is_cgroup_storage(map) &&
14512 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14513 				verbose(env, "only one cgroup storage of each type is allowed\n");
14514 				fdput(f);
14515 				return -EBUSY;
14516 			}
14517 
14518 			fdput(f);
14519 next_insn:
14520 			insn++;
14521 			i++;
14522 			continue;
14523 		}
14524 
14525 		/* Basic sanity check before we invest more work here. */
14526 		if (!bpf_opcode_in_insntable(insn->code)) {
14527 			verbose(env, "unknown opcode %02x\n", insn->code);
14528 			return -EINVAL;
14529 		}
14530 	}
14531 
14532 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14533 	 * 'struct bpf_map *' into a register instead of user map_fd.
14534 	 * These pointers will be used later by verifier to validate map access.
14535 	 */
14536 	return 0;
14537 }
14538 
14539 /* drop refcnt of maps used by the rejected program */
14540 static void release_maps(struct bpf_verifier_env *env)
14541 {
14542 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14543 			     env->used_map_cnt);
14544 }
14545 
14546 /* drop refcnt of maps used by the rejected program */
14547 static void release_btfs(struct bpf_verifier_env *env)
14548 {
14549 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14550 			     env->used_btf_cnt);
14551 }
14552 
14553 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14554 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14555 {
14556 	struct bpf_insn *insn = env->prog->insnsi;
14557 	int insn_cnt = env->prog->len;
14558 	int i;
14559 
14560 	for (i = 0; i < insn_cnt; i++, insn++) {
14561 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14562 			continue;
14563 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14564 			continue;
14565 		insn->src_reg = 0;
14566 	}
14567 }
14568 
14569 /* single env->prog->insni[off] instruction was replaced with the range
14570  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14571  * [0, off) and [off, end) to new locations, so the patched range stays zero
14572  */
14573 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14574 				 struct bpf_insn_aux_data *new_data,
14575 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14576 {
14577 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14578 	struct bpf_insn *insn = new_prog->insnsi;
14579 	u32 old_seen = old_data[off].seen;
14580 	u32 prog_len;
14581 	int i;
14582 
14583 	/* aux info at OFF always needs adjustment, no matter fast path
14584 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14585 	 * original insn at old prog.
14586 	 */
14587 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14588 
14589 	if (cnt == 1)
14590 		return;
14591 	prog_len = new_prog->len;
14592 
14593 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14594 	memcpy(new_data + off + cnt - 1, old_data + off,
14595 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14596 	for (i = off; i < off + cnt - 1; i++) {
14597 		/* Expand insni[off]'s seen count to the patched range. */
14598 		new_data[i].seen = old_seen;
14599 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14600 	}
14601 	env->insn_aux_data = new_data;
14602 	vfree(old_data);
14603 }
14604 
14605 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14606 {
14607 	int i;
14608 
14609 	if (len == 1)
14610 		return;
14611 	/* NOTE: fake 'exit' subprog should be updated as well. */
14612 	for (i = 0; i <= env->subprog_cnt; i++) {
14613 		if (env->subprog_info[i].start <= off)
14614 			continue;
14615 		env->subprog_info[i].start += len - 1;
14616 	}
14617 }
14618 
14619 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14620 {
14621 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14622 	int i, sz = prog->aux->size_poke_tab;
14623 	struct bpf_jit_poke_descriptor *desc;
14624 
14625 	for (i = 0; i < sz; i++) {
14626 		desc = &tab[i];
14627 		if (desc->insn_idx <= off)
14628 			continue;
14629 		desc->insn_idx += len - 1;
14630 	}
14631 }
14632 
14633 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14634 					    const struct bpf_insn *patch, u32 len)
14635 {
14636 	struct bpf_prog *new_prog;
14637 	struct bpf_insn_aux_data *new_data = NULL;
14638 
14639 	if (len > 1) {
14640 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14641 					      sizeof(struct bpf_insn_aux_data)));
14642 		if (!new_data)
14643 			return NULL;
14644 	}
14645 
14646 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14647 	if (IS_ERR(new_prog)) {
14648 		if (PTR_ERR(new_prog) == -ERANGE)
14649 			verbose(env,
14650 				"insn %d cannot be patched due to 16-bit range\n",
14651 				env->insn_aux_data[off].orig_idx);
14652 		vfree(new_data);
14653 		return NULL;
14654 	}
14655 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14656 	adjust_subprog_starts(env, off, len);
14657 	adjust_poke_descs(new_prog, off, len);
14658 	return new_prog;
14659 }
14660 
14661 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14662 					      u32 off, u32 cnt)
14663 {
14664 	int i, j;
14665 
14666 	/* find first prog starting at or after off (first to remove) */
14667 	for (i = 0; i < env->subprog_cnt; i++)
14668 		if (env->subprog_info[i].start >= off)
14669 			break;
14670 	/* find first prog starting at or after off + cnt (first to stay) */
14671 	for (j = i; j < env->subprog_cnt; j++)
14672 		if (env->subprog_info[j].start >= off + cnt)
14673 			break;
14674 	/* if j doesn't start exactly at off + cnt, we are just removing
14675 	 * the front of previous prog
14676 	 */
14677 	if (env->subprog_info[j].start != off + cnt)
14678 		j--;
14679 
14680 	if (j > i) {
14681 		struct bpf_prog_aux *aux = env->prog->aux;
14682 		int move;
14683 
14684 		/* move fake 'exit' subprog as well */
14685 		move = env->subprog_cnt + 1 - j;
14686 
14687 		memmove(env->subprog_info + i,
14688 			env->subprog_info + j,
14689 			sizeof(*env->subprog_info) * move);
14690 		env->subprog_cnt -= j - i;
14691 
14692 		/* remove func_info */
14693 		if (aux->func_info) {
14694 			move = aux->func_info_cnt - j;
14695 
14696 			memmove(aux->func_info + i,
14697 				aux->func_info + j,
14698 				sizeof(*aux->func_info) * move);
14699 			aux->func_info_cnt -= j - i;
14700 			/* func_info->insn_off is set after all code rewrites,
14701 			 * in adjust_btf_func() - no need to adjust
14702 			 */
14703 		}
14704 	} else {
14705 		/* convert i from "first prog to remove" to "first to adjust" */
14706 		if (env->subprog_info[i].start == off)
14707 			i++;
14708 	}
14709 
14710 	/* update fake 'exit' subprog as well */
14711 	for (; i <= env->subprog_cnt; i++)
14712 		env->subprog_info[i].start -= cnt;
14713 
14714 	return 0;
14715 }
14716 
14717 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14718 				      u32 cnt)
14719 {
14720 	struct bpf_prog *prog = env->prog;
14721 	u32 i, l_off, l_cnt, nr_linfo;
14722 	struct bpf_line_info *linfo;
14723 
14724 	nr_linfo = prog->aux->nr_linfo;
14725 	if (!nr_linfo)
14726 		return 0;
14727 
14728 	linfo = prog->aux->linfo;
14729 
14730 	/* find first line info to remove, count lines to be removed */
14731 	for (i = 0; i < nr_linfo; i++)
14732 		if (linfo[i].insn_off >= off)
14733 			break;
14734 
14735 	l_off = i;
14736 	l_cnt = 0;
14737 	for (; i < nr_linfo; i++)
14738 		if (linfo[i].insn_off < off + cnt)
14739 			l_cnt++;
14740 		else
14741 			break;
14742 
14743 	/* First live insn doesn't match first live linfo, it needs to "inherit"
14744 	 * last removed linfo.  prog is already modified, so prog->len == off
14745 	 * means no live instructions after (tail of the program was removed).
14746 	 */
14747 	if (prog->len != off && l_cnt &&
14748 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14749 		l_cnt--;
14750 		linfo[--i].insn_off = off + cnt;
14751 	}
14752 
14753 	/* remove the line info which refer to the removed instructions */
14754 	if (l_cnt) {
14755 		memmove(linfo + l_off, linfo + i,
14756 			sizeof(*linfo) * (nr_linfo - i));
14757 
14758 		prog->aux->nr_linfo -= l_cnt;
14759 		nr_linfo = prog->aux->nr_linfo;
14760 	}
14761 
14762 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
14763 	for (i = l_off; i < nr_linfo; i++)
14764 		linfo[i].insn_off -= cnt;
14765 
14766 	/* fix up all subprogs (incl. 'exit') which start >= off */
14767 	for (i = 0; i <= env->subprog_cnt; i++)
14768 		if (env->subprog_info[i].linfo_idx > l_off) {
14769 			/* program may have started in the removed region but
14770 			 * may not be fully removed
14771 			 */
14772 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14773 				env->subprog_info[i].linfo_idx -= l_cnt;
14774 			else
14775 				env->subprog_info[i].linfo_idx = l_off;
14776 		}
14777 
14778 	return 0;
14779 }
14780 
14781 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14782 {
14783 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14784 	unsigned int orig_prog_len = env->prog->len;
14785 	int err;
14786 
14787 	if (bpf_prog_is_dev_bound(env->prog->aux))
14788 		bpf_prog_offload_remove_insns(env, off, cnt);
14789 
14790 	err = bpf_remove_insns(env->prog, off, cnt);
14791 	if (err)
14792 		return err;
14793 
14794 	err = adjust_subprog_starts_after_remove(env, off, cnt);
14795 	if (err)
14796 		return err;
14797 
14798 	err = bpf_adj_linfo_after_remove(env, off, cnt);
14799 	if (err)
14800 		return err;
14801 
14802 	memmove(aux_data + off,	aux_data + off + cnt,
14803 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
14804 
14805 	return 0;
14806 }
14807 
14808 /* The verifier does more data flow analysis than llvm and will not
14809  * explore branches that are dead at run time. Malicious programs can
14810  * have dead code too. Therefore replace all dead at-run-time code
14811  * with 'ja -1'.
14812  *
14813  * Just nops are not optimal, e.g. if they would sit at the end of the
14814  * program and through another bug we would manage to jump there, then
14815  * we'd execute beyond program memory otherwise. Returning exception
14816  * code also wouldn't work since we can have subprogs where the dead
14817  * code could be located.
14818  */
14819 static void sanitize_dead_code(struct bpf_verifier_env *env)
14820 {
14821 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14822 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
14823 	struct bpf_insn *insn = env->prog->insnsi;
14824 	const int insn_cnt = env->prog->len;
14825 	int i;
14826 
14827 	for (i = 0; i < insn_cnt; i++) {
14828 		if (aux_data[i].seen)
14829 			continue;
14830 		memcpy(insn + i, &trap, sizeof(trap));
14831 		aux_data[i].zext_dst = false;
14832 	}
14833 }
14834 
14835 static bool insn_is_cond_jump(u8 code)
14836 {
14837 	u8 op;
14838 
14839 	if (BPF_CLASS(code) == BPF_JMP32)
14840 		return true;
14841 
14842 	if (BPF_CLASS(code) != BPF_JMP)
14843 		return false;
14844 
14845 	op = BPF_OP(code);
14846 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14847 }
14848 
14849 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14850 {
14851 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14852 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14853 	struct bpf_insn *insn = env->prog->insnsi;
14854 	const int insn_cnt = env->prog->len;
14855 	int i;
14856 
14857 	for (i = 0; i < insn_cnt; i++, insn++) {
14858 		if (!insn_is_cond_jump(insn->code))
14859 			continue;
14860 
14861 		if (!aux_data[i + 1].seen)
14862 			ja.off = insn->off;
14863 		else if (!aux_data[i + 1 + insn->off].seen)
14864 			ja.off = 0;
14865 		else
14866 			continue;
14867 
14868 		if (bpf_prog_is_dev_bound(env->prog->aux))
14869 			bpf_prog_offload_replace_insn(env, i, &ja);
14870 
14871 		memcpy(insn, &ja, sizeof(ja));
14872 	}
14873 }
14874 
14875 static int opt_remove_dead_code(struct bpf_verifier_env *env)
14876 {
14877 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14878 	int insn_cnt = env->prog->len;
14879 	int i, err;
14880 
14881 	for (i = 0; i < insn_cnt; i++) {
14882 		int j;
14883 
14884 		j = 0;
14885 		while (i + j < insn_cnt && !aux_data[i + j].seen)
14886 			j++;
14887 		if (!j)
14888 			continue;
14889 
14890 		err = verifier_remove_insns(env, i, j);
14891 		if (err)
14892 			return err;
14893 		insn_cnt = env->prog->len;
14894 	}
14895 
14896 	return 0;
14897 }
14898 
14899 static int opt_remove_nops(struct bpf_verifier_env *env)
14900 {
14901 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14902 	struct bpf_insn *insn = env->prog->insnsi;
14903 	int insn_cnt = env->prog->len;
14904 	int i, err;
14905 
14906 	for (i = 0; i < insn_cnt; i++) {
14907 		if (memcmp(&insn[i], &ja, sizeof(ja)))
14908 			continue;
14909 
14910 		err = verifier_remove_insns(env, i, 1);
14911 		if (err)
14912 			return err;
14913 		insn_cnt--;
14914 		i--;
14915 	}
14916 
14917 	return 0;
14918 }
14919 
14920 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14921 					 const union bpf_attr *attr)
14922 {
14923 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
14924 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
14925 	int i, patch_len, delta = 0, len = env->prog->len;
14926 	struct bpf_insn *insns = env->prog->insnsi;
14927 	struct bpf_prog *new_prog;
14928 	bool rnd_hi32;
14929 
14930 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
14931 	zext_patch[1] = BPF_ZEXT_REG(0);
14932 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14933 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14934 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
14935 	for (i = 0; i < len; i++) {
14936 		int adj_idx = i + delta;
14937 		struct bpf_insn insn;
14938 		int load_reg;
14939 
14940 		insn = insns[adj_idx];
14941 		load_reg = insn_def_regno(&insn);
14942 		if (!aux[adj_idx].zext_dst) {
14943 			u8 code, class;
14944 			u32 imm_rnd;
14945 
14946 			if (!rnd_hi32)
14947 				continue;
14948 
14949 			code = insn.code;
14950 			class = BPF_CLASS(code);
14951 			if (load_reg == -1)
14952 				continue;
14953 
14954 			/* NOTE: arg "reg" (the fourth one) is only used for
14955 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
14956 			 *       here.
14957 			 */
14958 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
14959 				if (class == BPF_LD &&
14960 				    BPF_MODE(code) == BPF_IMM)
14961 					i++;
14962 				continue;
14963 			}
14964 
14965 			/* ctx load could be transformed into wider load. */
14966 			if (class == BPF_LDX &&
14967 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
14968 				continue;
14969 
14970 			imm_rnd = get_random_u32();
14971 			rnd_hi32_patch[0] = insn;
14972 			rnd_hi32_patch[1].imm = imm_rnd;
14973 			rnd_hi32_patch[3].dst_reg = load_reg;
14974 			patch = rnd_hi32_patch;
14975 			patch_len = 4;
14976 			goto apply_patch_buffer;
14977 		}
14978 
14979 		/* Add in an zero-extend instruction if a) the JIT has requested
14980 		 * it or b) it's a CMPXCHG.
14981 		 *
14982 		 * The latter is because: BPF_CMPXCHG always loads a value into
14983 		 * R0, therefore always zero-extends. However some archs'
14984 		 * equivalent instruction only does this load when the
14985 		 * comparison is successful. This detail of CMPXCHG is
14986 		 * orthogonal to the general zero-extension behaviour of the
14987 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
14988 		 */
14989 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
14990 			continue;
14991 
14992 		/* Zero-extension is done by the caller. */
14993 		if (bpf_pseudo_kfunc_call(&insn))
14994 			continue;
14995 
14996 		if (WARN_ON(load_reg == -1)) {
14997 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14998 			return -EFAULT;
14999 		}
15000 
15001 		zext_patch[0] = insn;
15002 		zext_patch[1].dst_reg = load_reg;
15003 		zext_patch[1].src_reg = load_reg;
15004 		patch = zext_patch;
15005 		patch_len = 2;
15006 apply_patch_buffer:
15007 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
15008 		if (!new_prog)
15009 			return -ENOMEM;
15010 		env->prog = new_prog;
15011 		insns = new_prog->insnsi;
15012 		aux = env->insn_aux_data;
15013 		delta += patch_len - 1;
15014 	}
15015 
15016 	return 0;
15017 }
15018 
15019 /* convert load instructions that access fields of a context type into a
15020  * sequence of instructions that access fields of the underlying structure:
15021  *     struct __sk_buff    -> struct sk_buff
15022  *     struct bpf_sock_ops -> struct sock
15023  */
15024 static int convert_ctx_accesses(struct bpf_verifier_env *env)
15025 {
15026 	const struct bpf_verifier_ops *ops = env->ops;
15027 	int i, cnt, size, ctx_field_size, delta = 0;
15028 	const int insn_cnt = env->prog->len;
15029 	struct bpf_insn insn_buf[16], *insn;
15030 	u32 target_size, size_default, off;
15031 	struct bpf_prog *new_prog;
15032 	enum bpf_access_type type;
15033 	bool is_narrower_load;
15034 
15035 	if (ops->gen_prologue || env->seen_direct_write) {
15036 		if (!ops->gen_prologue) {
15037 			verbose(env, "bpf verifier is misconfigured\n");
15038 			return -EINVAL;
15039 		}
15040 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
15041 					env->prog);
15042 		if (cnt >= ARRAY_SIZE(insn_buf)) {
15043 			verbose(env, "bpf verifier is misconfigured\n");
15044 			return -EINVAL;
15045 		} else if (cnt) {
15046 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
15047 			if (!new_prog)
15048 				return -ENOMEM;
15049 
15050 			env->prog = new_prog;
15051 			delta += cnt - 1;
15052 		}
15053 	}
15054 
15055 	if (bpf_prog_is_dev_bound(env->prog->aux))
15056 		return 0;
15057 
15058 	insn = env->prog->insnsi + delta;
15059 
15060 	for (i = 0; i < insn_cnt; i++, insn++) {
15061 		bpf_convert_ctx_access_t convert_ctx_access;
15062 		bool ctx_access;
15063 
15064 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
15065 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
15066 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
15067 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
15068 			type = BPF_READ;
15069 			ctx_access = true;
15070 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
15071 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
15072 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
15073 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
15074 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
15075 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
15076 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
15077 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
15078 			type = BPF_WRITE;
15079 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
15080 		} else {
15081 			continue;
15082 		}
15083 
15084 		if (type == BPF_WRITE &&
15085 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
15086 			struct bpf_insn patch[] = {
15087 				*insn,
15088 				BPF_ST_NOSPEC(),
15089 			};
15090 
15091 			cnt = ARRAY_SIZE(patch);
15092 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
15093 			if (!new_prog)
15094 				return -ENOMEM;
15095 
15096 			delta    += cnt - 1;
15097 			env->prog = new_prog;
15098 			insn      = new_prog->insnsi + i + delta;
15099 			continue;
15100 		}
15101 
15102 		if (!ctx_access)
15103 			continue;
15104 
15105 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
15106 		case PTR_TO_CTX:
15107 			if (!ops->convert_ctx_access)
15108 				continue;
15109 			convert_ctx_access = ops->convert_ctx_access;
15110 			break;
15111 		case PTR_TO_SOCKET:
15112 		case PTR_TO_SOCK_COMMON:
15113 			convert_ctx_access = bpf_sock_convert_ctx_access;
15114 			break;
15115 		case PTR_TO_TCP_SOCK:
15116 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
15117 			break;
15118 		case PTR_TO_XDP_SOCK:
15119 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
15120 			break;
15121 		case PTR_TO_BTF_ID:
15122 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
15123 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
15124 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
15125 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
15126 		 * any faults for loads into such types. BPF_WRITE is disallowed
15127 		 * for this case.
15128 		 */
15129 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
15130 			if (type == BPF_READ) {
15131 				insn->code = BPF_LDX | BPF_PROBE_MEM |
15132 					BPF_SIZE((insn)->code);
15133 				env->prog->aux->num_exentries++;
15134 			}
15135 			continue;
15136 		default:
15137 			continue;
15138 		}
15139 
15140 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
15141 		size = BPF_LDST_BYTES(insn);
15142 
15143 		/* If the read access is a narrower load of the field,
15144 		 * convert to a 4/8-byte load, to minimum program type specific
15145 		 * convert_ctx_access changes. If conversion is successful,
15146 		 * we will apply proper mask to the result.
15147 		 */
15148 		is_narrower_load = size < ctx_field_size;
15149 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
15150 		off = insn->off;
15151 		if (is_narrower_load) {
15152 			u8 size_code;
15153 
15154 			if (type == BPF_WRITE) {
15155 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
15156 				return -EINVAL;
15157 			}
15158 
15159 			size_code = BPF_H;
15160 			if (ctx_field_size == 4)
15161 				size_code = BPF_W;
15162 			else if (ctx_field_size == 8)
15163 				size_code = BPF_DW;
15164 
15165 			insn->off = off & ~(size_default - 1);
15166 			insn->code = BPF_LDX | BPF_MEM | size_code;
15167 		}
15168 
15169 		target_size = 0;
15170 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
15171 					 &target_size);
15172 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
15173 		    (ctx_field_size && !target_size)) {
15174 			verbose(env, "bpf verifier is misconfigured\n");
15175 			return -EINVAL;
15176 		}
15177 
15178 		if (is_narrower_load && size < target_size) {
15179 			u8 shift = bpf_ctx_narrow_access_offset(
15180 				off, size, size_default) * 8;
15181 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15182 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15183 				return -EINVAL;
15184 			}
15185 			if (ctx_field_size <= 4) {
15186 				if (shift)
15187 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15188 									insn->dst_reg,
15189 									shift);
15190 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15191 								(1 << size * 8) - 1);
15192 			} else {
15193 				if (shift)
15194 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15195 									insn->dst_reg,
15196 									shift);
15197 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15198 								(1ULL << size * 8) - 1);
15199 			}
15200 		}
15201 
15202 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15203 		if (!new_prog)
15204 			return -ENOMEM;
15205 
15206 		delta += cnt - 1;
15207 
15208 		/* keep walking new program and skip insns we just inserted */
15209 		env->prog = new_prog;
15210 		insn      = new_prog->insnsi + i + delta;
15211 	}
15212 
15213 	return 0;
15214 }
15215 
15216 static int jit_subprogs(struct bpf_verifier_env *env)
15217 {
15218 	struct bpf_prog *prog = env->prog, **func, *tmp;
15219 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15220 	struct bpf_map *map_ptr;
15221 	struct bpf_insn *insn;
15222 	void *old_bpf_func;
15223 	int err, num_exentries;
15224 
15225 	if (env->subprog_cnt <= 1)
15226 		return 0;
15227 
15228 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15229 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15230 			continue;
15231 
15232 		/* Upon error here we cannot fall back to interpreter but
15233 		 * need a hard reject of the program. Thus -EFAULT is
15234 		 * propagated in any case.
15235 		 */
15236 		subprog = find_subprog(env, i + insn->imm + 1);
15237 		if (subprog < 0) {
15238 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15239 				  i + insn->imm + 1);
15240 			return -EFAULT;
15241 		}
15242 		/* temporarily remember subprog id inside insn instead of
15243 		 * aux_data, since next loop will split up all insns into funcs
15244 		 */
15245 		insn->off = subprog;
15246 		/* remember original imm in case JIT fails and fallback
15247 		 * to interpreter will be needed
15248 		 */
15249 		env->insn_aux_data[i].call_imm = insn->imm;
15250 		/* point imm to __bpf_call_base+1 from JITs point of view */
15251 		insn->imm = 1;
15252 		if (bpf_pseudo_func(insn))
15253 			/* jit (e.g. x86_64) may emit fewer instructions
15254 			 * if it learns a u32 imm is the same as a u64 imm.
15255 			 * Force a non zero here.
15256 			 */
15257 			insn[1].imm = 1;
15258 	}
15259 
15260 	err = bpf_prog_alloc_jited_linfo(prog);
15261 	if (err)
15262 		goto out_undo_insn;
15263 
15264 	err = -ENOMEM;
15265 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15266 	if (!func)
15267 		goto out_undo_insn;
15268 
15269 	for (i = 0; i < env->subprog_cnt; i++) {
15270 		subprog_start = subprog_end;
15271 		subprog_end = env->subprog_info[i + 1].start;
15272 
15273 		len = subprog_end - subprog_start;
15274 		/* bpf_prog_run() doesn't call subprogs directly,
15275 		 * hence main prog stats include the runtime of subprogs.
15276 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15277 		 * func[i]->stats will never be accessed and stays NULL
15278 		 */
15279 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15280 		if (!func[i])
15281 			goto out_free;
15282 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15283 		       len * sizeof(struct bpf_insn));
15284 		func[i]->type = prog->type;
15285 		func[i]->len = len;
15286 		if (bpf_prog_calc_tag(func[i]))
15287 			goto out_free;
15288 		func[i]->is_func = 1;
15289 		func[i]->aux->func_idx = i;
15290 		/* Below members will be freed only at prog->aux */
15291 		func[i]->aux->btf = prog->aux->btf;
15292 		func[i]->aux->func_info = prog->aux->func_info;
15293 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15294 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15295 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15296 
15297 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15298 			struct bpf_jit_poke_descriptor *poke;
15299 
15300 			poke = &prog->aux->poke_tab[j];
15301 			if (poke->insn_idx < subprog_end &&
15302 			    poke->insn_idx >= subprog_start)
15303 				poke->aux = func[i]->aux;
15304 		}
15305 
15306 		func[i]->aux->name[0] = 'F';
15307 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15308 		func[i]->jit_requested = 1;
15309 		func[i]->blinding_requested = prog->blinding_requested;
15310 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15311 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15312 		func[i]->aux->linfo = prog->aux->linfo;
15313 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15314 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15315 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15316 		num_exentries = 0;
15317 		insn = func[i]->insnsi;
15318 		for (j = 0; j < func[i]->len; j++, insn++) {
15319 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15320 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15321 				num_exentries++;
15322 		}
15323 		func[i]->aux->num_exentries = num_exentries;
15324 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15325 		func[i] = bpf_int_jit_compile(func[i]);
15326 		if (!func[i]->jited) {
15327 			err = -ENOTSUPP;
15328 			goto out_free;
15329 		}
15330 		cond_resched();
15331 	}
15332 
15333 	/* at this point all bpf functions were successfully JITed
15334 	 * now populate all bpf_calls with correct addresses and
15335 	 * run last pass of JIT
15336 	 */
15337 	for (i = 0; i < env->subprog_cnt; i++) {
15338 		insn = func[i]->insnsi;
15339 		for (j = 0; j < func[i]->len; j++, insn++) {
15340 			if (bpf_pseudo_func(insn)) {
15341 				subprog = insn->off;
15342 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15343 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15344 				continue;
15345 			}
15346 			if (!bpf_pseudo_call(insn))
15347 				continue;
15348 			subprog = insn->off;
15349 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15350 		}
15351 
15352 		/* we use the aux data to keep a list of the start addresses
15353 		 * of the JITed images for each function in the program
15354 		 *
15355 		 * for some architectures, such as powerpc64, the imm field
15356 		 * might not be large enough to hold the offset of the start
15357 		 * address of the callee's JITed image from __bpf_call_base
15358 		 *
15359 		 * in such cases, we can lookup the start address of a callee
15360 		 * by using its subprog id, available from the off field of
15361 		 * the call instruction, as an index for this list
15362 		 */
15363 		func[i]->aux->func = func;
15364 		func[i]->aux->func_cnt = env->subprog_cnt;
15365 	}
15366 	for (i = 0; i < env->subprog_cnt; i++) {
15367 		old_bpf_func = func[i]->bpf_func;
15368 		tmp = bpf_int_jit_compile(func[i]);
15369 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15370 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15371 			err = -ENOTSUPP;
15372 			goto out_free;
15373 		}
15374 		cond_resched();
15375 	}
15376 
15377 	/* finally lock prog and jit images for all functions and
15378 	 * populate kallsysm
15379 	 */
15380 	for (i = 0; i < env->subprog_cnt; i++) {
15381 		bpf_prog_lock_ro(func[i]);
15382 		bpf_prog_kallsyms_add(func[i]);
15383 	}
15384 
15385 	/* Last step: make now unused interpreter insns from main
15386 	 * prog consistent for later dump requests, so they can
15387 	 * later look the same as if they were interpreted only.
15388 	 */
15389 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15390 		if (bpf_pseudo_func(insn)) {
15391 			insn[0].imm = env->insn_aux_data[i].call_imm;
15392 			insn[1].imm = insn->off;
15393 			insn->off = 0;
15394 			continue;
15395 		}
15396 		if (!bpf_pseudo_call(insn))
15397 			continue;
15398 		insn->off = env->insn_aux_data[i].call_imm;
15399 		subprog = find_subprog(env, i + insn->off + 1);
15400 		insn->imm = subprog;
15401 	}
15402 
15403 	prog->jited = 1;
15404 	prog->bpf_func = func[0]->bpf_func;
15405 	prog->jited_len = func[0]->jited_len;
15406 	prog->aux->func = func;
15407 	prog->aux->func_cnt = env->subprog_cnt;
15408 	bpf_prog_jit_attempt_done(prog);
15409 	return 0;
15410 out_free:
15411 	/* We failed JIT'ing, so at this point we need to unregister poke
15412 	 * descriptors from subprogs, so that kernel is not attempting to
15413 	 * patch it anymore as we're freeing the subprog JIT memory.
15414 	 */
15415 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15416 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15417 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15418 	}
15419 	/* At this point we're guaranteed that poke descriptors are not
15420 	 * live anymore. We can just unlink its descriptor table as it's
15421 	 * released with the main prog.
15422 	 */
15423 	for (i = 0; i < env->subprog_cnt; i++) {
15424 		if (!func[i])
15425 			continue;
15426 		func[i]->aux->poke_tab = NULL;
15427 		bpf_jit_free(func[i]);
15428 	}
15429 	kfree(func);
15430 out_undo_insn:
15431 	/* cleanup main prog to be interpreted */
15432 	prog->jit_requested = 0;
15433 	prog->blinding_requested = 0;
15434 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15435 		if (!bpf_pseudo_call(insn))
15436 			continue;
15437 		insn->off = 0;
15438 		insn->imm = env->insn_aux_data[i].call_imm;
15439 	}
15440 	bpf_prog_jit_attempt_done(prog);
15441 	return err;
15442 }
15443 
15444 static int fixup_call_args(struct bpf_verifier_env *env)
15445 {
15446 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15447 	struct bpf_prog *prog = env->prog;
15448 	struct bpf_insn *insn = prog->insnsi;
15449 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15450 	int i, depth;
15451 #endif
15452 	int err = 0;
15453 
15454 	if (env->prog->jit_requested &&
15455 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
15456 		err = jit_subprogs(env);
15457 		if (err == 0)
15458 			return 0;
15459 		if (err == -EFAULT)
15460 			return err;
15461 	}
15462 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15463 	if (has_kfunc_call) {
15464 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15465 		return -EINVAL;
15466 	}
15467 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15468 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15469 		 * have to be rejected, since interpreter doesn't support them yet.
15470 		 */
15471 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15472 		return -EINVAL;
15473 	}
15474 	for (i = 0; i < prog->len; i++, insn++) {
15475 		if (bpf_pseudo_func(insn)) {
15476 			/* When JIT fails the progs with callback calls
15477 			 * have to be rejected, since interpreter doesn't support them yet.
15478 			 */
15479 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15480 			return -EINVAL;
15481 		}
15482 
15483 		if (!bpf_pseudo_call(insn))
15484 			continue;
15485 		depth = get_callee_stack_depth(env, insn, i);
15486 		if (depth < 0)
15487 			return depth;
15488 		bpf_patch_call_args(insn, depth);
15489 	}
15490 	err = 0;
15491 #endif
15492 	return err;
15493 }
15494 
15495 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15496 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15497 {
15498 	const struct bpf_kfunc_desc *desc;
15499 
15500 	if (!insn->imm) {
15501 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15502 		return -EINVAL;
15503 	}
15504 
15505 	/* insn->imm has the btf func_id. Replace it with
15506 	 * an address (relative to __bpf_call_base).
15507 	 */
15508 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15509 	if (!desc) {
15510 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15511 			insn->imm);
15512 		return -EFAULT;
15513 	}
15514 
15515 	*cnt = 0;
15516 	insn->imm = desc->imm;
15517 	if (insn->off)
15518 		return 0;
15519 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15520 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15521 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15522 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15523 
15524 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15525 		insn_buf[1] = addr[0];
15526 		insn_buf[2] = addr[1];
15527 		insn_buf[3] = *insn;
15528 		*cnt = 4;
15529 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15530 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15531 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15532 
15533 		insn_buf[0] = addr[0];
15534 		insn_buf[1] = addr[1];
15535 		insn_buf[2] = *insn;
15536 		*cnt = 3;
15537 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15538 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15539 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15540 		*cnt = 1;
15541 	}
15542 	return 0;
15543 }
15544 
15545 /* Do various post-verification rewrites in a single program pass.
15546  * These rewrites simplify JIT and interpreter implementations.
15547  */
15548 static int do_misc_fixups(struct bpf_verifier_env *env)
15549 {
15550 	struct bpf_prog *prog = env->prog;
15551 	enum bpf_attach_type eatype = prog->expected_attach_type;
15552 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15553 	struct bpf_insn *insn = prog->insnsi;
15554 	const struct bpf_func_proto *fn;
15555 	const int insn_cnt = prog->len;
15556 	const struct bpf_map_ops *ops;
15557 	struct bpf_insn_aux_data *aux;
15558 	struct bpf_insn insn_buf[16];
15559 	struct bpf_prog *new_prog;
15560 	struct bpf_map *map_ptr;
15561 	int i, ret, cnt, delta = 0;
15562 
15563 	for (i = 0; i < insn_cnt; i++, insn++) {
15564 		/* Make divide-by-zero exceptions impossible. */
15565 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15566 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15567 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15568 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15569 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15570 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15571 			struct bpf_insn *patchlet;
15572 			struct bpf_insn chk_and_div[] = {
15573 				/* [R,W]x div 0 -> 0 */
15574 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15575 					     BPF_JNE | BPF_K, insn->src_reg,
15576 					     0, 2, 0),
15577 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15578 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15579 				*insn,
15580 			};
15581 			struct bpf_insn chk_and_mod[] = {
15582 				/* [R,W]x mod 0 -> [R,W]x */
15583 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15584 					     BPF_JEQ | BPF_K, insn->src_reg,
15585 					     0, 1 + (is64 ? 0 : 1), 0),
15586 				*insn,
15587 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15588 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15589 			};
15590 
15591 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15592 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15593 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15594 
15595 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15596 			if (!new_prog)
15597 				return -ENOMEM;
15598 
15599 			delta    += cnt - 1;
15600 			env->prog = prog = new_prog;
15601 			insn      = new_prog->insnsi + i + delta;
15602 			continue;
15603 		}
15604 
15605 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15606 		if (BPF_CLASS(insn->code) == BPF_LD &&
15607 		    (BPF_MODE(insn->code) == BPF_ABS ||
15608 		     BPF_MODE(insn->code) == BPF_IND)) {
15609 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15610 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15611 				verbose(env, "bpf verifier is misconfigured\n");
15612 				return -EINVAL;
15613 			}
15614 
15615 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15616 			if (!new_prog)
15617 				return -ENOMEM;
15618 
15619 			delta    += cnt - 1;
15620 			env->prog = prog = new_prog;
15621 			insn      = new_prog->insnsi + i + delta;
15622 			continue;
15623 		}
15624 
15625 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15626 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15627 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15628 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15629 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15630 			struct bpf_insn *patch = &insn_buf[0];
15631 			bool issrc, isneg, isimm;
15632 			u32 off_reg;
15633 
15634 			aux = &env->insn_aux_data[i + delta];
15635 			if (!aux->alu_state ||
15636 			    aux->alu_state == BPF_ALU_NON_POINTER)
15637 				continue;
15638 
15639 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15640 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15641 				BPF_ALU_SANITIZE_SRC;
15642 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15643 
15644 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15645 			if (isimm) {
15646 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15647 			} else {
15648 				if (isneg)
15649 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15650 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15651 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15652 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15653 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15654 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15655 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15656 			}
15657 			if (!issrc)
15658 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15659 			insn->src_reg = BPF_REG_AX;
15660 			if (isneg)
15661 				insn->code = insn->code == code_add ?
15662 					     code_sub : code_add;
15663 			*patch++ = *insn;
15664 			if (issrc && isneg && !isimm)
15665 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15666 			cnt = patch - insn_buf;
15667 
15668 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15669 			if (!new_prog)
15670 				return -ENOMEM;
15671 
15672 			delta    += cnt - 1;
15673 			env->prog = prog = new_prog;
15674 			insn      = new_prog->insnsi + i + delta;
15675 			continue;
15676 		}
15677 
15678 		if (insn->code != (BPF_JMP | BPF_CALL))
15679 			continue;
15680 		if (insn->src_reg == BPF_PSEUDO_CALL)
15681 			continue;
15682 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15683 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
15684 			if (ret)
15685 				return ret;
15686 			if (cnt == 0)
15687 				continue;
15688 
15689 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15690 			if (!new_prog)
15691 				return -ENOMEM;
15692 
15693 			delta	 += cnt - 1;
15694 			env->prog = prog = new_prog;
15695 			insn	  = new_prog->insnsi + i + delta;
15696 			continue;
15697 		}
15698 
15699 		if (insn->imm == BPF_FUNC_get_route_realm)
15700 			prog->dst_needed = 1;
15701 		if (insn->imm == BPF_FUNC_get_prandom_u32)
15702 			bpf_user_rnd_init_once();
15703 		if (insn->imm == BPF_FUNC_override_return)
15704 			prog->kprobe_override = 1;
15705 		if (insn->imm == BPF_FUNC_tail_call) {
15706 			/* If we tail call into other programs, we
15707 			 * cannot make any assumptions since they can
15708 			 * be replaced dynamically during runtime in
15709 			 * the program array.
15710 			 */
15711 			prog->cb_access = 1;
15712 			if (!allow_tail_call_in_subprogs(env))
15713 				prog->aux->stack_depth = MAX_BPF_STACK;
15714 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
15715 
15716 			/* mark bpf_tail_call as different opcode to avoid
15717 			 * conditional branch in the interpreter for every normal
15718 			 * call and to prevent accidental JITing by JIT compiler
15719 			 * that doesn't support bpf_tail_call yet
15720 			 */
15721 			insn->imm = 0;
15722 			insn->code = BPF_JMP | BPF_TAIL_CALL;
15723 
15724 			aux = &env->insn_aux_data[i + delta];
15725 			if (env->bpf_capable && !prog->blinding_requested &&
15726 			    prog->jit_requested &&
15727 			    !bpf_map_key_poisoned(aux) &&
15728 			    !bpf_map_ptr_poisoned(aux) &&
15729 			    !bpf_map_ptr_unpriv(aux)) {
15730 				struct bpf_jit_poke_descriptor desc = {
15731 					.reason = BPF_POKE_REASON_TAIL_CALL,
15732 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15733 					.tail_call.key = bpf_map_key_immediate(aux),
15734 					.insn_idx = i + delta,
15735 				};
15736 
15737 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
15738 				if (ret < 0) {
15739 					verbose(env, "adding tail call poke descriptor failed\n");
15740 					return ret;
15741 				}
15742 
15743 				insn->imm = ret + 1;
15744 				continue;
15745 			}
15746 
15747 			if (!bpf_map_ptr_unpriv(aux))
15748 				continue;
15749 
15750 			/* instead of changing every JIT dealing with tail_call
15751 			 * emit two extra insns:
15752 			 * if (index >= max_entries) goto out;
15753 			 * index &= array->index_mask;
15754 			 * to avoid out-of-bounds cpu speculation
15755 			 */
15756 			if (bpf_map_ptr_poisoned(aux)) {
15757 				verbose(env, "tail_call abusing map_ptr\n");
15758 				return -EINVAL;
15759 			}
15760 
15761 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15762 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15763 						  map_ptr->max_entries, 2);
15764 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15765 						    container_of(map_ptr,
15766 								 struct bpf_array,
15767 								 map)->index_mask);
15768 			insn_buf[2] = *insn;
15769 			cnt = 3;
15770 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15771 			if (!new_prog)
15772 				return -ENOMEM;
15773 
15774 			delta    += cnt - 1;
15775 			env->prog = prog = new_prog;
15776 			insn      = new_prog->insnsi + i + delta;
15777 			continue;
15778 		}
15779 
15780 		if (insn->imm == BPF_FUNC_timer_set_callback) {
15781 			/* The verifier will process callback_fn as many times as necessary
15782 			 * with different maps and the register states prepared by
15783 			 * set_timer_callback_state will be accurate.
15784 			 *
15785 			 * The following use case is valid:
15786 			 *   map1 is shared by prog1, prog2, prog3.
15787 			 *   prog1 calls bpf_timer_init for some map1 elements
15788 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
15789 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
15790 			 *   prog3 calls bpf_timer_start for some map1 elements.
15791 			 *     Those that were not both bpf_timer_init-ed and
15792 			 *     bpf_timer_set_callback-ed will return -EINVAL.
15793 			 */
15794 			struct bpf_insn ld_addrs[2] = {
15795 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15796 			};
15797 
15798 			insn_buf[0] = ld_addrs[0];
15799 			insn_buf[1] = ld_addrs[1];
15800 			insn_buf[2] = *insn;
15801 			cnt = 3;
15802 
15803 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15804 			if (!new_prog)
15805 				return -ENOMEM;
15806 
15807 			delta    += cnt - 1;
15808 			env->prog = prog = new_prog;
15809 			insn      = new_prog->insnsi + i + delta;
15810 			goto patch_call_imm;
15811 		}
15812 
15813 		if (is_storage_get_function(insn->imm)) {
15814 			if (!env->prog->aux->sleepable ||
15815 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
15816 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
15817 			else
15818 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
15819 			insn_buf[1] = *insn;
15820 			cnt = 2;
15821 
15822 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15823 			if (!new_prog)
15824 				return -ENOMEM;
15825 
15826 			delta += cnt - 1;
15827 			env->prog = prog = new_prog;
15828 			insn = new_prog->insnsi + i + delta;
15829 			goto patch_call_imm;
15830 		}
15831 
15832 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
15833 		 * and other inlining handlers are currently limited to 64 bit
15834 		 * only.
15835 		 */
15836 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15837 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
15838 		     insn->imm == BPF_FUNC_map_update_elem ||
15839 		     insn->imm == BPF_FUNC_map_delete_elem ||
15840 		     insn->imm == BPF_FUNC_map_push_elem   ||
15841 		     insn->imm == BPF_FUNC_map_pop_elem    ||
15842 		     insn->imm == BPF_FUNC_map_peek_elem   ||
15843 		     insn->imm == BPF_FUNC_redirect_map    ||
15844 		     insn->imm == BPF_FUNC_for_each_map_elem ||
15845 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
15846 			aux = &env->insn_aux_data[i + delta];
15847 			if (bpf_map_ptr_poisoned(aux))
15848 				goto patch_call_imm;
15849 
15850 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15851 			ops = map_ptr->ops;
15852 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
15853 			    ops->map_gen_lookup) {
15854 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
15855 				if (cnt == -EOPNOTSUPP)
15856 					goto patch_map_ops_generic;
15857 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15858 					verbose(env, "bpf verifier is misconfigured\n");
15859 					return -EINVAL;
15860 				}
15861 
15862 				new_prog = bpf_patch_insn_data(env, i + delta,
15863 							       insn_buf, cnt);
15864 				if (!new_prog)
15865 					return -ENOMEM;
15866 
15867 				delta    += cnt - 1;
15868 				env->prog = prog = new_prog;
15869 				insn      = new_prog->insnsi + i + delta;
15870 				continue;
15871 			}
15872 
15873 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15874 				     (void *(*)(struct bpf_map *map, void *key))NULL));
15875 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15876 				     (int (*)(struct bpf_map *map, void *key))NULL));
15877 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15878 				     (int (*)(struct bpf_map *map, void *key, void *value,
15879 					      u64 flags))NULL));
15880 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15881 				     (int (*)(struct bpf_map *map, void *value,
15882 					      u64 flags))NULL));
15883 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15884 				     (int (*)(struct bpf_map *map, void *value))NULL));
15885 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15886 				     (int (*)(struct bpf_map *map, void *value))NULL));
15887 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
15888 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
15889 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15890 				     (int (*)(struct bpf_map *map,
15891 					      bpf_callback_t callback_fn,
15892 					      void *callback_ctx,
15893 					      u64 flags))NULL));
15894 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15895 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
15896 
15897 patch_map_ops_generic:
15898 			switch (insn->imm) {
15899 			case BPF_FUNC_map_lookup_elem:
15900 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
15901 				continue;
15902 			case BPF_FUNC_map_update_elem:
15903 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
15904 				continue;
15905 			case BPF_FUNC_map_delete_elem:
15906 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
15907 				continue;
15908 			case BPF_FUNC_map_push_elem:
15909 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
15910 				continue;
15911 			case BPF_FUNC_map_pop_elem:
15912 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
15913 				continue;
15914 			case BPF_FUNC_map_peek_elem:
15915 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
15916 				continue;
15917 			case BPF_FUNC_redirect_map:
15918 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
15919 				continue;
15920 			case BPF_FUNC_for_each_map_elem:
15921 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
15922 				continue;
15923 			case BPF_FUNC_map_lookup_percpu_elem:
15924 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15925 				continue;
15926 			}
15927 
15928 			goto patch_call_imm;
15929 		}
15930 
15931 		/* Implement bpf_jiffies64 inline. */
15932 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15933 		    insn->imm == BPF_FUNC_jiffies64) {
15934 			struct bpf_insn ld_jiffies_addr[2] = {
15935 				BPF_LD_IMM64(BPF_REG_0,
15936 					     (unsigned long)&jiffies),
15937 			};
15938 
15939 			insn_buf[0] = ld_jiffies_addr[0];
15940 			insn_buf[1] = ld_jiffies_addr[1];
15941 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15942 						  BPF_REG_0, 0);
15943 			cnt = 3;
15944 
15945 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15946 						       cnt);
15947 			if (!new_prog)
15948 				return -ENOMEM;
15949 
15950 			delta    += cnt - 1;
15951 			env->prog = prog = new_prog;
15952 			insn      = new_prog->insnsi + i + delta;
15953 			continue;
15954 		}
15955 
15956 		/* Implement bpf_get_func_arg inline. */
15957 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15958 		    insn->imm == BPF_FUNC_get_func_arg) {
15959 			/* Load nr_args from ctx - 8 */
15960 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15961 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15962 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15963 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15964 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15965 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15966 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15967 			insn_buf[7] = BPF_JMP_A(1);
15968 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15969 			cnt = 9;
15970 
15971 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15972 			if (!new_prog)
15973 				return -ENOMEM;
15974 
15975 			delta    += cnt - 1;
15976 			env->prog = prog = new_prog;
15977 			insn      = new_prog->insnsi + i + delta;
15978 			continue;
15979 		}
15980 
15981 		/* Implement bpf_get_func_ret inline. */
15982 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15983 		    insn->imm == BPF_FUNC_get_func_ret) {
15984 			if (eatype == BPF_TRACE_FEXIT ||
15985 			    eatype == BPF_MODIFY_RETURN) {
15986 				/* Load nr_args from ctx - 8 */
15987 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15988 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15989 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15990 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15991 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15992 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15993 				cnt = 6;
15994 			} else {
15995 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15996 				cnt = 1;
15997 			}
15998 
15999 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16000 			if (!new_prog)
16001 				return -ENOMEM;
16002 
16003 			delta    += cnt - 1;
16004 			env->prog = prog = new_prog;
16005 			insn      = new_prog->insnsi + i + delta;
16006 			continue;
16007 		}
16008 
16009 		/* Implement get_func_arg_cnt inline. */
16010 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16011 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
16012 			/* Load nr_args from ctx - 8 */
16013 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16014 
16015 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16016 			if (!new_prog)
16017 				return -ENOMEM;
16018 
16019 			env->prog = prog = new_prog;
16020 			insn      = new_prog->insnsi + i + delta;
16021 			continue;
16022 		}
16023 
16024 		/* Implement bpf_get_func_ip inline. */
16025 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16026 		    insn->imm == BPF_FUNC_get_func_ip) {
16027 			/* Load IP address from ctx - 16 */
16028 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
16029 
16030 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16031 			if (!new_prog)
16032 				return -ENOMEM;
16033 
16034 			env->prog = prog = new_prog;
16035 			insn      = new_prog->insnsi + i + delta;
16036 			continue;
16037 		}
16038 
16039 patch_call_imm:
16040 		fn = env->ops->get_func_proto(insn->imm, env->prog);
16041 		/* all functions that have prototype and verifier allowed
16042 		 * programs to call them, must be real in-kernel functions
16043 		 */
16044 		if (!fn->func) {
16045 			verbose(env,
16046 				"kernel subsystem misconfigured func %s#%d\n",
16047 				func_id_name(insn->imm), insn->imm);
16048 			return -EFAULT;
16049 		}
16050 		insn->imm = fn->func - __bpf_call_base;
16051 	}
16052 
16053 	/* Since poke tab is now finalized, publish aux to tracker. */
16054 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
16055 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
16056 		if (!map_ptr->ops->map_poke_track ||
16057 		    !map_ptr->ops->map_poke_untrack ||
16058 		    !map_ptr->ops->map_poke_run) {
16059 			verbose(env, "bpf verifier is misconfigured\n");
16060 			return -EINVAL;
16061 		}
16062 
16063 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
16064 		if (ret < 0) {
16065 			verbose(env, "tracking tail call prog failed\n");
16066 			return ret;
16067 		}
16068 	}
16069 
16070 	sort_kfunc_descs_by_imm(env->prog);
16071 
16072 	return 0;
16073 }
16074 
16075 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
16076 					int position,
16077 					s32 stack_base,
16078 					u32 callback_subprogno,
16079 					u32 *cnt)
16080 {
16081 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
16082 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
16083 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
16084 	int reg_loop_max = BPF_REG_6;
16085 	int reg_loop_cnt = BPF_REG_7;
16086 	int reg_loop_ctx = BPF_REG_8;
16087 
16088 	struct bpf_prog *new_prog;
16089 	u32 callback_start;
16090 	u32 call_insn_offset;
16091 	s32 callback_offset;
16092 
16093 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
16094 	 * be careful to modify this code in sync.
16095 	 */
16096 	struct bpf_insn insn_buf[] = {
16097 		/* Return error and jump to the end of the patch if
16098 		 * expected number of iterations is too big.
16099 		 */
16100 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
16101 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
16102 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
16103 		/* spill R6, R7, R8 to use these as loop vars */
16104 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
16105 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
16106 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
16107 		/* initialize loop vars */
16108 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
16109 		BPF_MOV32_IMM(reg_loop_cnt, 0),
16110 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
16111 		/* loop header,
16112 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
16113 		 */
16114 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
16115 		/* callback call,
16116 		 * correct callback offset would be set after patching
16117 		 */
16118 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
16119 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
16120 		BPF_CALL_REL(0),
16121 		/* increment loop counter */
16122 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
16123 		/* jump to loop header if callback returned 0 */
16124 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
16125 		/* return value of bpf_loop,
16126 		 * set R0 to the number of iterations
16127 		 */
16128 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
16129 		/* restore original values of R6, R7, R8 */
16130 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
16131 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
16132 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
16133 	};
16134 
16135 	*cnt = ARRAY_SIZE(insn_buf);
16136 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
16137 	if (!new_prog)
16138 		return new_prog;
16139 
16140 	/* callback start is known only after patching */
16141 	callback_start = env->subprog_info[callback_subprogno].start;
16142 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
16143 	call_insn_offset = position + 12;
16144 	callback_offset = callback_start - call_insn_offset - 1;
16145 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
16146 
16147 	return new_prog;
16148 }
16149 
16150 static bool is_bpf_loop_call(struct bpf_insn *insn)
16151 {
16152 	return insn->code == (BPF_JMP | BPF_CALL) &&
16153 		insn->src_reg == 0 &&
16154 		insn->imm == BPF_FUNC_loop;
16155 }
16156 
16157 /* For all sub-programs in the program (including main) check
16158  * insn_aux_data to see if there are bpf_loop calls that require
16159  * inlining. If such calls are found the calls are replaced with a
16160  * sequence of instructions produced by `inline_bpf_loop` function and
16161  * subprog stack_depth is increased by the size of 3 registers.
16162  * This stack space is used to spill values of the R6, R7, R8.  These
16163  * registers are used to store the loop bound, counter and context
16164  * variables.
16165  */
16166 static int optimize_bpf_loop(struct bpf_verifier_env *env)
16167 {
16168 	struct bpf_subprog_info *subprogs = env->subprog_info;
16169 	int i, cur_subprog = 0, cnt, delta = 0;
16170 	struct bpf_insn *insn = env->prog->insnsi;
16171 	int insn_cnt = env->prog->len;
16172 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
16173 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16174 	u16 stack_depth_extra = 0;
16175 
16176 	for (i = 0; i < insn_cnt; i++, insn++) {
16177 		struct bpf_loop_inline_state *inline_state =
16178 			&env->insn_aux_data[i + delta].loop_inline_state;
16179 
16180 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16181 			struct bpf_prog *new_prog;
16182 
16183 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16184 			new_prog = inline_bpf_loop(env,
16185 						   i + delta,
16186 						   -(stack_depth + stack_depth_extra),
16187 						   inline_state->callback_subprogno,
16188 						   &cnt);
16189 			if (!new_prog)
16190 				return -ENOMEM;
16191 
16192 			delta     += cnt - 1;
16193 			env->prog  = new_prog;
16194 			insn       = new_prog->insnsi + i + delta;
16195 		}
16196 
16197 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16198 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16199 			cur_subprog++;
16200 			stack_depth = subprogs[cur_subprog].stack_depth;
16201 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16202 			stack_depth_extra = 0;
16203 		}
16204 	}
16205 
16206 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16207 
16208 	return 0;
16209 }
16210 
16211 static void free_states(struct bpf_verifier_env *env)
16212 {
16213 	struct bpf_verifier_state_list *sl, *sln;
16214 	int i;
16215 
16216 	sl = env->free_list;
16217 	while (sl) {
16218 		sln = sl->next;
16219 		free_verifier_state(&sl->state, false);
16220 		kfree(sl);
16221 		sl = sln;
16222 	}
16223 	env->free_list = NULL;
16224 
16225 	if (!env->explored_states)
16226 		return;
16227 
16228 	for (i = 0; i < state_htab_size(env); i++) {
16229 		sl = env->explored_states[i];
16230 
16231 		while (sl) {
16232 			sln = sl->next;
16233 			free_verifier_state(&sl->state, false);
16234 			kfree(sl);
16235 			sl = sln;
16236 		}
16237 		env->explored_states[i] = NULL;
16238 	}
16239 }
16240 
16241 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16242 {
16243 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16244 	struct bpf_verifier_state *state;
16245 	struct bpf_reg_state *regs;
16246 	int ret, i;
16247 
16248 	env->prev_linfo = NULL;
16249 	env->pass_cnt++;
16250 
16251 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16252 	if (!state)
16253 		return -ENOMEM;
16254 	state->curframe = 0;
16255 	state->speculative = false;
16256 	state->branches = 1;
16257 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16258 	if (!state->frame[0]) {
16259 		kfree(state);
16260 		return -ENOMEM;
16261 	}
16262 	env->cur_state = state;
16263 	init_func_state(env, state->frame[0],
16264 			BPF_MAIN_FUNC /* callsite */,
16265 			0 /* frameno */,
16266 			subprog);
16267 	state->first_insn_idx = env->subprog_info[subprog].start;
16268 	state->last_insn_idx = -1;
16269 
16270 	regs = state->frame[state->curframe]->regs;
16271 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16272 		ret = btf_prepare_func_args(env, subprog, regs);
16273 		if (ret)
16274 			goto out;
16275 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16276 			if (regs[i].type == PTR_TO_CTX)
16277 				mark_reg_known_zero(env, regs, i);
16278 			else if (regs[i].type == SCALAR_VALUE)
16279 				mark_reg_unknown(env, regs, i);
16280 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16281 				const u32 mem_size = regs[i].mem_size;
16282 
16283 				mark_reg_known_zero(env, regs, i);
16284 				regs[i].mem_size = mem_size;
16285 				regs[i].id = ++env->id_gen;
16286 			}
16287 		}
16288 	} else {
16289 		/* 1st arg to a function */
16290 		regs[BPF_REG_1].type = PTR_TO_CTX;
16291 		mark_reg_known_zero(env, regs, BPF_REG_1);
16292 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16293 		if (ret == -EFAULT)
16294 			/* unlikely verifier bug. abort.
16295 			 * ret == 0 and ret < 0 are sadly acceptable for
16296 			 * main() function due to backward compatibility.
16297 			 * Like socket filter program may be written as:
16298 			 * int bpf_prog(struct pt_regs *ctx)
16299 			 * and never dereference that ctx in the program.
16300 			 * 'struct pt_regs' is a type mismatch for socket
16301 			 * filter that should be using 'struct __sk_buff'.
16302 			 */
16303 			goto out;
16304 	}
16305 
16306 	ret = do_check(env);
16307 out:
16308 	/* check for NULL is necessary, since cur_state can be freed inside
16309 	 * do_check() under memory pressure.
16310 	 */
16311 	if (env->cur_state) {
16312 		free_verifier_state(env->cur_state, true);
16313 		env->cur_state = NULL;
16314 	}
16315 	while (!pop_stack(env, NULL, NULL, false));
16316 	if (!ret && pop_log)
16317 		bpf_vlog_reset(&env->log, 0);
16318 	free_states(env);
16319 	return ret;
16320 }
16321 
16322 /* Verify all global functions in a BPF program one by one based on their BTF.
16323  * All global functions must pass verification. Otherwise the whole program is rejected.
16324  * Consider:
16325  * int bar(int);
16326  * int foo(int f)
16327  * {
16328  *    return bar(f);
16329  * }
16330  * int bar(int b)
16331  * {
16332  *    ...
16333  * }
16334  * foo() will be verified first for R1=any_scalar_value. During verification it
16335  * will be assumed that bar() already verified successfully and call to bar()
16336  * from foo() will be checked for type match only. Later bar() will be verified
16337  * independently to check that it's safe for R1=any_scalar_value.
16338  */
16339 static int do_check_subprogs(struct bpf_verifier_env *env)
16340 {
16341 	struct bpf_prog_aux *aux = env->prog->aux;
16342 	int i, ret;
16343 
16344 	if (!aux->func_info)
16345 		return 0;
16346 
16347 	for (i = 1; i < env->subprog_cnt; i++) {
16348 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16349 			continue;
16350 		env->insn_idx = env->subprog_info[i].start;
16351 		WARN_ON_ONCE(env->insn_idx == 0);
16352 		ret = do_check_common(env, i);
16353 		if (ret) {
16354 			return ret;
16355 		} else if (env->log.level & BPF_LOG_LEVEL) {
16356 			verbose(env,
16357 				"Func#%d is safe for any args that match its prototype\n",
16358 				i);
16359 		}
16360 	}
16361 	return 0;
16362 }
16363 
16364 static int do_check_main(struct bpf_verifier_env *env)
16365 {
16366 	int ret;
16367 
16368 	env->insn_idx = 0;
16369 	ret = do_check_common(env, 0);
16370 	if (!ret)
16371 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16372 	return ret;
16373 }
16374 
16375 
16376 static void print_verification_stats(struct bpf_verifier_env *env)
16377 {
16378 	int i;
16379 
16380 	if (env->log.level & BPF_LOG_STATS) {
16381 		verbose(env, "verification time %lld usec\n",
16382 			div_u64(env->verification_time, 1000));
16383 		verbose(env, "stack depth ");
16384 		for (i = 0; i < env->subprog_cnt; i++) {
16385 			u32 depth = env->subprog_info[i].stack_depth;
16386 
16387 			verbose(env, "%d", depth);
16388 			if (i + 1 < env->subprog_cnt)
16389 				verbose(env, "+");
16390 		}
16391 		verbose(env, "\n");
16392 	}
16393 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16394 		"total_states %d peak_states %d mark_read %d\n",
16395 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16396 		env->max_states_per_insn, env->total_states,
16397 		env->peak_states, env->longest_mark_read_walk);
16398 }
16399 
16400 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16401 {
16402 	const struct btf_type *t, *func_proto;
16403 	const struct bpf_struct_ops *st_ops;
16404 	const struct btf_member *member;
16405 	struct bpf_prog *prog = env->prog;
16406 	u32 btf_id, member_idx;
16407 	const char *mname;
16408 
16409 	if (!prog->gpl_compatible) {
16410 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16411 		return -EINVAL;
16412 	}
16413 
16414 	btf_id = prog->aux->attach_btf_id;
16415 	st_ops = bpf_struct_ops_find(btf_id);
16416 	if (!st_ops) {
16417 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16418 			btf_id);
16419 		return -ENOTSUPP;
16420 	}
16421 
16422 	t = st_ops->type;
16423 	member_idx = prog->expected_attach_type;
16424 	if (member_idx >= btf_type_vlen(t)) {
16425 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16426 			member_idx, st_ops->name);
16427 		return -EINVAL;
16428 	}
16429 
16430 	member = &btf_type_member(t)[member_idx];
16431 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16432 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16433 					       NULL);
16434 	if (!func_proto) {
16435 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16436 			mname, member_idx, st_ops->name);
16437 		return -EINVAL;
16438 	}
16439 
16440 	if (st_ops->check_member) {
16441 		int err = st_ops->check_member(t, member);
16442 
16443 		if (err) {
16444 			verbose(env, "attach to unsupported member %s of struct %s\n",
16445 				mname, st_ops->name);
16446 			return err;
16447 		}
16448 	}
16449 
16450 	prog->aux->attach_func_proto = func_proto;
16451 	prog->aux->attach_func_name = mname;
16452 	env->ops = st_ops->verifier_ops;
16453 
16454 	return 0;
16455 }
16456 #define SECURITY_PREFIX "security_"
16457 
16458 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16459 {
16460 	if (within_error_injection_list(addr) ||
16461 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16462 		return 0;
16463 
16464 	return -EINVAL;
16465 }
16466 
16467 /* list of non-sleepable functions that are otherwise on
16468  * ALLOW_ERROR_INJECTION list
16469  */
16470 BTF_SET_START(btf_non_sleepable_error_inject)
16471 /* Three functions below can be called from sleepable and non-sleepable context.
16472  * Assume non-sleepable from bpf safety point of view.
16473  */
16474 BTF_ID(func, __filemap_add_folio)
16475 BTF_ID(func, should_fail_alloc_page)
16476 BTF_ID(func, should_failslab)
16477 BTF_SET_END(btf_non_sleepable_error_inject)
16478 
16479 static int check_non_sleepable_error_inject(u32 btf_id)
16480 {
16481 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16482 }
16483 
16484 int bpf_check_attach_target(struct bpf_verifier_log *log,
16485 			    const struct bpf_prog *prog,
16486 			    const struct bpf_prog *tgt_prog,
16487 			    u32 btf_id,
16488 			    struct bpf_attach_target_info *tgt_info)
16489 {
16490 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16491 	const char prefix[] = "btf_trace_";
16492 	int ret = 0, subprog = -1, i;
16493 	const struct btf_type *t;
16494 	bool conservative = true;
16495 	const char *tname;
16496 	struct btf *btf;
16497 	long addr = 0;
16498 
16499 	if (!btf_id) {
16500 		bpf_log(log, "Tracing programs must provide btf_id\n");
16501 		return -EINVAL;
16502 	}
16503 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16504 	if (!btf) {
16505 		bpf_log(log,
16506 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16507 		return -EINVAL;
16508 	}
16509 	t = btf_type_by_id(btf, btf_id);
16510 	if (!t) {
16511 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16512 		return -EINVAL;
16513 	}
16514 	tname = btf_name_by_offset(btf, t->name_off);
16515 	if (!tname) {
16516 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16517 		return -EINVAL;
16518 	}
16519 	if (tgt_prog) {
16520 		struct bpf_prog_aux *aux = tgt_prog->aux;
16521 
16522 		for (i = 0; i < aux->func_info_cnt; i++)
16523 			if (aux->func_info[i].type_id == btf_id) {
16524 				subprog = i;
16525 				break;
16526 			}
16527 		if (subprog == -1) {
16528 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16529 			return -EINVAL;
16530 		}
16531 		conservative = aux->func_info_aux[subprog].unreliable;
16532 		if (prog_extension) {
16533 			if (conservative) {
16534 				bpf_log(log,
16535 					"Cannot replace static functions\n");
16536 				return -EINVAL;
16537 			}
16538 			if (!prog->jit_requested) {
16539 				bpf_log(log,
16540 					"Extension programs should be JITed\n");
16541 				return -EINVAL;
16542 			}
16543 		}
16544 		if (!tgt_prog->jited) {
16545 			bpf_log(log, "Can attach to only JITed progs\n");
16546 			return -EINVAL;
16547 		}
16548 		if (tgt_prog->type == prog->type) {
16549 			/* Cannot fentry/fexit another fentry/fexit program.
16550 			 * Cannot attach program extension to another extension.
16551 			 * It's ok to attach fentry/fexit to extension program.
16552 			 */
16553 			bpf_log(log, "Cannot recursively attach\n");
16554 			return -EINVAL;
16555 		}
16556 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16557 		    prog_extension &&
16558 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16559 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16560 			/* Program extensions can extend all program types
16561 			 * except fentry/fexit. The reason is the following.
16562 			 * The fentry/fexit programs are used for performance
16563 			 * analysis, stats and can be attached to any program
16564 			 * type except themselves. When extension program is
16565 			 * replacing XDP function it is necessary to allow
16566 			 * performance analysis of all functions. Both original
16567 			 * XDP program and its program extension. Hence
16568 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16569 			 * allowed. If extending of fentry/fexit was allowed it
16570 			 * would be possible to create long call chain
16571 			 * fentry->extension->fentry->extension beyond
16572 			 * reasonable stack size. Hence extending fentry is not
16573 			 * allowed.
16574 			 */
16575 			bpf_log(log, "Cannot extend fentry/fexit\n");
16576 			return -EINVAL;
16577 		}
16578 	} else {
16579 		if (prog_extension) {
16580 			bpf_log(log, "Cannot replace kernel functions\n");
16581 			return -EINVAL;
16582 		}
16583 	}
16584 
16585 	switch (prog->expected_attach_type) {
16586 	case BPF_TRACE_RAW_TP:
16587 		if (tgt_prog) {
16588 			bpf_log(log,
16589 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16590 			return -EINVAL;
16591 		}
16592 		if (!btf_type_is_typedef(t)) {
16593 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16594 				btf_id);
16595 			return -EINVAL;
16596 		}
16597 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16598 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16599 				btf_id, tname);
16600 			return -EINVAL;
16601 		}
16602 		tname += sizeof(prefix) - 1;
16603 		t = btf_type_by_id(btf, t->type);
16604 		if (!btf_type_is_ptr(t))
16605 			/* should never happen in valid vmlinux build */
16606 			return -EINVAL;
16607 		t = btf_type_by_id(btf, t->type);
16608 		if (!btf_type_is_func_proto(t))
16609 			/* should never happen in valid vmlinux build */
16610 			return -EINVAL;
16611 
16612 		break;
16613 	case BPF_TRACE_ITER:
16614 		if (!btf_type_is_func(t)) {
16615 			bpf_log(log, "attach_btf_id %u is not a function\n",
16616 				btf_id);
16617 			return -EINVAL;
16618 		}
16619 		t = btf_type_by_id(btf, t->type);
16620 		if (!btf_type_is_func_proto(t))
16621 			return -EINVAL;
16622 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16623 		if (ret)
16624 			return ret;
16625 		break;
16626 	default:
16627 		if (!prog_extension)
16628 			return -EINVAL;
16629 		fallthrough;
16630 	case BPF_MODIFY_RETURN:
16631 	case BPF_LSM_MAC:
16632 	case BPF_LSM_CGROUP:
16633 	case BPF_TRACE_FENTRY:
16634 	case BPF_TRACE_FEXIT:
16635 		if (!btf_type_is_func(t)) {
16636 			bpf_log(log, "attach_btf_id %u is not a function\n",
16637 				btf_id);
16638 			return -EINVAL;
16639 		}
16640 		if (prog_extension &&
16641 		    btf_check_type_match(log, prog, btf, t))
16642 			return -EINVAL;
16643 		t = btf_type_by_id(btf, t->type);
16644 		if (!btf_type_is_func_proto(t))
16645 			return -EINVAL;
16646 
16647 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16648 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16649 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16650 			return -EINVAL;
16651 
16652 		if (tgt_prog && conservative)
16653 			t = NULL;
16654 
16655 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16656 		if (ret < 0)
16657 			return ret;
16658 
16659 		if (tgt_prog) {
16660 			if (subprog == 0)
16661 				addr = (long) tgt_prog->bpf_func;
16662 			else
16663 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
16664 		} else {
16665 			addr = kallsyms_lookup_name(tname);
16666 			if (!addr) {
16667 				bpf_log(log,
16668 					"The address of function %s cannot be found\n",
16669 					tname);
16670 				return -ENOENT;
16671 			}
16672 		}
16673 
16674 		if (prog->aux->sleepable) {
16675 			ret = -EINVAL;
16676 			switch (prog->type) {
16677 			case BPF_PROG_TYPE_TRACING:
16678 
16679 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
16680 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16681 				 */
16682 				if (!check_non_sleepable_error_inject(btf_id) &&
16683 				    within_error_injection_list(addr))
16684 					ret = 0;
16685 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
16686 				 * in the fmodret id set with the KF_SLEEPABLE flag.
16687 				 */
16688 				else {
16689 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
16690 
16691 					if (flags && (*flags & KF_SLEEPABLE))
16692 						ret = 0;
16693 				}
16694 				break;
16695 			case BPF_PROG_TYPE_LSM:
16696 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
16697 				 * Only some of them are sleepable.
16698 				 */
16699 				if (bpf_lsm_is_sleepable_hook(btf_id))
16700 					ret = 0;
16701 				break;
16702 			default:
16703 				break;
16704 			}
16705 			if (ret) {
16706 				bpf_log(log, "%s is not sleepable\n", tname);
16707 				return ret;
16708 			}
16709 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
16710 			if (tgt_prog) {
16711 				bpf_log(log, "can't modify return codes of BPF programs\n");
16712 				return -EINVAL;
16713 			}
16714 			ret = -EINVAL;
16715 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
16716 			    !check_attach_modify_return(addr, tname))
16717 				ret = 0;
16718 			if (ret) {
16719 				bpf_log(log, "%s() is not modifiable\n", tname);
16720 				return ret;
16721 			}
16722 		}
16723 
16724 		break;
16725 	}
16726 	tgt_info->tgt_addr = addr;
16727 	tgt_info->tgt_name = tname;
16728 	tgt_info->tgt_type = t;
16729 	return 0;
16730 }
16731 
16732 BTF_SET_START(btf_id_deny)
16733 BTF_ID_UNUSED
16734 #ifdef CONFIG_SMP
16735 BTF_ID(func, migrate_disable)
16736 BTF_ID(func, migrate_enable)
16737 #endif
16738 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16739 BTF_ID(func, rcu_read_unlock_strict)
16740 #endif
16741 BTF_SET_END(btf_id_deny)
16742 
16743 static int check_attach_btf_id(struct bpf_verifier_env *env)
16744 {
16745 	struct bpf_prog *prog = env->prog;
16746 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
16747 	struct bpf_attach_target_info tgt_info = {};
16748 	u32 btf_id = prog->aux->attach_btf_id;
16749 	struct bpf_trampoline *tr;
16750 	int ret;
16751 	u64 key;
16752 
16753 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16754 		if (prog->aux->sleepable)
16755 			/* attach_btf_id checked to be zero already */
16756 			return 0;
16757 		verbose(env, "Syscall programs can only be sleepable\n");
16758 		return -EINVAL;
16759 	}
16760 
16761 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
16762 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16763 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
16764 		return -EINVAL;
16765 	}
16766 
16767 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16768 		return check_struct_ops_btf_id(env);
16769 
16770 	if (prog->type != BPF_PROG_TYPE_TRACING &&
16771 	    prog->type != BPF_PROG_TYPE_LSM &&
16772 	    prog->type != BPF_PROG_TYPE_EXT)
16773 		return 0;
16774 
16775 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16776 	if (ret)
16777 		return ret;
16778 
16779 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
16780 		/* to make freplace equivalent to their targets, they need to
16781 		 * inherit env->ops and expected_attach_type for the rest of the
16782 		 * verification
16783 		 */
16784 		env->ops = bpf_verifier_ops[tgt_prog->type];
16785 		prog->expected_attach_type = tgt_prog->expected_attach_type;
16786 	}
16787 
16788 	/* store info about the attachment target that will be used later */
16789 	prog->aux->attach_func_proto = tgt_info.tgt_type;
16790 	prog->aux->attach_func_name = tgt_info.tgt_name;
16791 
16792 	if (tgt_prog) {
16793 		prog->aux->saved_dst_prog_type = tgt_prog->type;
16794 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16795 	}
16796 
16797 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16798 		prog->aux->attach_btf_trace = true;
16799 		return 0;
16800 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16801 		if (!bpf_iter_prog_supported(prog))
16802 			return -EINVAL;
16803 		return 0;
16804 	}
16805 
16806 	if (prog->type == BPF_PROG_TYPE_LSM) {
16807 		ret = bpf_lsm_verify_prog(&env->log, prog);
16808 		if (ret < 0)
16809 			return ret;
16810 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
16811 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
16812 		return -EINVAL;
16813 	}
16814 
16815 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
16816 	tr = bpf_trampoline_get(key, &tgt_info);
16817 	if (!tr)
16818 		return -ENOMEM;
16819 
16820 	prog->aux->dst_trampoline = tr;
16821 	return 0;
16822 }
16823 
16824 struct btf *bpf_get_btf_vmlinux(void)
16825 {
16826 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16827 		mutex_lock(&bpf_verifier_lock);
16828 		if (!btf_vmlinux)
16829 			btf_vmlinux = btf_parse_vmlinux();
16830 		mutex_unlock(&bpf_verifier_lock);
16831 	}
16832 	return btf_vmlinux;
16833 }
16834 
16835 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
16836 {
16837 	u64 start_time = ktime_get_ns();
16838 	struct bpf_verifier_env *env;
16839 	struct bpf_verifier_log *log;
16840 	int i, len, ret = -EINVAL;
16841 	bool is_priv;
16842 
16843 	/* no program is valid */
16844 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16845 		return -EINVAL;
16846 
16847 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
16848 	 * allocate/free it every time bpf_check() is called
16849 	 */
16850 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
16851 	if (!env)
16852 		return -ENOMEM;
16853 	log = &env->log;
16854 
16855 	len = (*prog)->len;
16856 	env->insn_aux_data =
16857 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
16858 	ret = -ENOMEM;
16859 	if (!env->insn_aux_data)
16860 		goto err_free_env;
16861 	for (i = 0; i < len; i++)
16862 		env->insn_aux_data[i].orig_idx = i;
16863 	env->prog = *prog;
16864 	env->ops = bpf_verifier_ops[env->prog->type];
16865 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
16866 	is_priv = bpf_capable();
16867 
16868 	bpf_get_btf_vmlinux();
16869 
16870 	/* grab the mutex to protect few globals used by verifier */
16871 	if (!is_priv)
16872 		mutex_lock(&bpf_verifier_lock);
16873 
16874 	if (attr->log_level || attr->log_buf || attr->log_size) {
16875 		/* user requested verbose verifier output
16876 		 * and supplied buffer to store the verification trace
16877 		 */
16878 		log->level = attr->log_level;
16879 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16880 		log->len_total = attr->log_size;
16881 
16882 		/* log attributes have to be sane */
16883 		if (!bpf_verifier_log_attr_valid(log)) {
16884 			ret = -EINVAL;
16885 			goto err_unlock;
16886 		}
16887 	}
16888 
16889 	mark_verifier_state_clean(env);
16890 
16891 	if (IS_ERR(btf_vmlinux)) {
16892 		/* Either gcc or pahole or kernel are broken. */
16893 		verbose(env, "in-kernel BTF is malformed\n");
16894 		ret = PTR_ERR(btf_vmlinux);
16895 		goto skip_full_check;
16896 	}
16897 
16898 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16899 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
16900 		env->strict_alignment = true;
16901 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16902 		env->strict_alignment = false;
16903 
16904 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
16905 	env->allow_uninit_stack = bpf_allow_uninit_stack();
16906 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
16907 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
16908 	env->bpf_capable = bpf_capable();
16909 	env->rcu_tag_supported = btf_vmlinux &&
16910 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
16911 
16912 	if (is_priv)
16913 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16914 
16915 	env->explored_states = kvcalloc(state_htab_size(env),
16916 				       sizeof(struct bpf_verifier_state_list *),
16917 				       GFP_USER);
16918 	ret = -ENOMEM;
16919 	if (!env->explored_states)
16920 		goto skip_full_check;
16921 
16922 	ret = add_subprog_and_kfunc(env);
16923 	if (ret < 0)
16924 		goto skip_full_check;
16925 
16926 	ret = check_subprogs(env);
16927 	if (ret < 0)
16928 		goto skip_full_check;
16929 
16930 	ret = check_btf_info(env, attr, uattr);
16931 	if (ret < 0)
16932 		goto skip_full_check;
16933 
16934 	ret = check_attach_btf_id(env);
16935 	if (ret)
16936 		goto skip_full_check;
16937 
16938 	ret = resolve_pseudo_ldimm64(env);
16939 	if (ret < 0)
16940 		goto skip_full_check;
16941 
16942 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
16943 		ret = bpf_prog_offload_verifier_prep(env->prog);
16944 		if (ret)
16945 			goto skip_full_check;
16946 	}
16947 
16948 	ret = check_cfg(env);
16949 	if (ret < 0)
16950 		goto skip_full_check;
16951 
16952 	ret = do_check_subprogs(env);
16953 	ret = ret ?: do_check_main(env);
16954 
16955 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16956 		ret = bpf_prog_offload_finalize(env);
16957 
16958 skip_full_check:
16959 	kvfree(env->explored_states);
16960 
16961 	if (ret == 0)
16962 		ret = check_max_stack_depth(env);
16963 
16964 	/* instruction rewrites happen after this point */
16965 	if (ret == 0)
16966 		ret = optimize_bpf_loop(env);
16967 
16968 	if (is_priv) {
16969 		if (ret == 0)
16970 			opt_hard_wire_dead_code_branches(env);
16971 		if (ret == 0)
16972 			ret = opt_remove_dead_code(env);
16973 		if (ret == 0)
16974 			ret = opt_remove_nops(env);
16975 	} else {
16976 		if (ret == 0)
16977 			sanitize_dead_code(env);
16978 	}
16979 
16980 	if (ret == 0)
16981 		/* program is valid, convert *(u32*)(ctx + off) accesses */
16982 		ret = convert_ctx_accesses(env);
16983 
16984 	if (ret == 0)
16985 		ret = do_misc_fixups(env);
16986 
16987 	/* do 32-bit optimization after insn patching has done so those patched
16988 	 * insns could be handled correctly.
16989 	 */
16990 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16991 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16992 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16993 								     : false;
16994 	}
16995 
16996 	if (ret == 0)
16997 		ret = fixup_call_args(env);
16998 
16999 	env->verification_time = ktime_get_ns() - start_time;
17000 	print_verification_stats(env);
17001 	env->prog->aux->verified_insns = env->insn_processed;
17002 
17003 	if (log->level && bpf_verifier_log_full(log))
17004 		ret = -ENOSPC;
17005 	if (log->level && !log->ubuf) {
17006 		ret = -EFAULT;
17007 		goto err_release_maps;
17008 	}
17009 
17010 	if (ret)
17011 		goto err_release_maps;
17012 
17013 	if (env->used_map_cnt) {
17014 		/* if program passed verifier, update used_maps in bpf_prog_info */
17015 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
17016 							  sizeof(env->used_maps[0]),
17017 							  GFP_KERNEL);
17018 
17019 		if (!env->prog->aux->used_maps) {
17020 			ret = -ENOMEM;
17021 			goto err_release_maps;
17022 		}
17023 
17024 		memcpy(env->prog->aux->used_maps, env->used_maps,
17025 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
17026 		env->prog->aux->used_map_cnt = env->used_map_cnt;
17027 	}
17028 	if (env->used_btf_cnt) {
17029 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
17030 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
17031 							  sizeof(env->used_btfs[0]),
17032 							  GFP_KERNEL);
17033 		if (!env->prog->aux->used_btfs) {
17034 			ret = -ENOMEM;
17035 			goto err_release_maps;
17036 		}
17037 
17038 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
17039 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
17040 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
17041 	}
17042 	if (env->used_map_cnt || env->used_btf_cnt) {
17043 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
17044 		 * bpf_ld_imm64 instructions
17045 		 */
17046 		convert_pseudo_ld_imm64(env);
17047 	}
17048 
17049 	adjust_btf_func(env);
17050 
17051 err_release_maps:
17052 	if (!env->prog->aux->used_maps)
17053 		/* if we didn't copy map pointers into bpf_prog_info, release
17054 		 * them now. Otherwise free_used_maps() will release them.
17055 		 */
17056 		release_maps(env);
17057 	if (!env->prog->aux->used_btfs)
17058 		release_btfs(env);
17059 
17060 	/* extension progs temporarily inherit the attach_type of their targets
17061 	   for verification purposes, so set it back to zero before returning
17062 	 */
17063 	if (env->prog->type == BPF_PROG_TYPE_EXT)
17064 		env->prog->expected_attach_type = 0;
17065 
17066 	*prog = env->prog;
17067 err_unlock:
17068 	if (!is_priv)
17069 		mutex_unlock(&bpf_verifier_lock);
17070 	vfree(env->insn_aux_data);
17071 err_free_env:
17072 	kfree(env);
17073 	return ret;
17074 }
17075