xref: /linux/kernel/bpf/verifier.c (revision f17c69649c698e4df3cfe0010b7bbf142dec3e40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
202 static int ref_set_non_owning(struct bpf_verifier_env *env,
203 			      struct bpf_reg_state *reg);
204 static void specialize_kfunc(struct bpf_verifier_env *env,
205 			     u32 func_id, u16 offset, unsigned long *addr);
206 static bool is_trusted_reg(const struct bpf_reg_state *reg);
207 
208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
211 }
212 
213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
216 }
217 
218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
219 			      const struct bpf_map *map, bool unpriv)
220 {
221 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
222 	unpriv |= bpf_map_ptr_unpriv(aux);
223 	aux->map_ptr_state = (unsigned long)map |
224 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	u64 mem_size;
338 };
339 
340 struct btf *btf_vmlinux;
341 
342 static DEFINE_MUTEX(bpf_verifier_lock);
343 static DEFINE_MUTEX(bpf_percpu_ma_lock);
344 
345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346 {
347 	struct bpf_verifier_env *env = private_data;
348 	va_list args;
349 
350 	if (!bpf_verifier_log_needed(&env->log))
351 		return;
352 
353 	va_start(args, fmt);
354 	bpf_verifier_vlog(&env->log, fmt, args);
355 	va_end(args);
356 }
357 
358 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
359 				   struct bpf_reg_state *reg,
360 				   struct tnum *range, const char *ctx,
361 				   const char *reg_name)
362 {
363 	char tn_buf[48];
364 
365 	verbose(env, "At %s the register %s ", ctx, reg_name);
366 	if (!tnum_is_unknown(reg->var_off)) {
367 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
368 		verbose(env, "has value %s", tn_buf);
369 	} else {
370 		verbose(env, "has unknown scalar value");
371 	}
372 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
373 	verbose(env, " should have been in %s\n", tn_buf);
374 }
375 
376 static bool type_may_be_null(u32 type)
377 {
378 	return type & PTR_MAYBE_NULL;
379 }
380 
381 static bool reg_not_null(const struct bpf_reg_state *reg)
382 {
383 	enum bpf_reg_type type;
384 
385 	type = reg->type;
386 	if (type_may_be_null(type))
387 		return false;
388 
389 	type = base_type(type);
390 	return type == PTR_TO_SOCKET ||
391 		type == PTR_TO_TCP_SOCK ||
392 		type == PTR_TO_MAP_VALUE ||
393 		type == PTR_TO_MAP_KEY ||
394 		type == PTR_TO_SOCK_COMMON ||
395 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
396 		type == PTR_TO_MEM;
397 }
398 
399 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
400 {
401 	struct btf_record *rec = NULL;
402 	struct btf_struct_meta *meta;
403 
404 	if (reg->type == PTR_TO_MAP_VALUE) {
405 		rec = reg->map_ptr->record;
406 	} else if (type_is_ptr_alloc_obj(reg->type)) {
407 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
408 		if (meta)
409 			rec = meta->record;
410 	}
411 	return rec;
412 }
413 
414 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
415 {
416 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
417 
418 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
419 }
420 
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
424 }
425 
426 static bool type_is_rdonly_mem(u32 type)
427 {
428 	return type & MEM_RDONLY;
429 }
430 
431 static bool is_acquire_function(enum bpf_func_id func_id,
432 				const struct bpf_map *map)
433 {
434 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
435 
436 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
437 	    func_id == BPF_FUNC_sk_lookup_udp ||
438 	    func_id == BPF_FUNC_skc_lookup_tcp ||
439 	    func_id == BPF_FUNC_ringbuf_reserve ||
440 	    func_id == BPF_FUNC_kptr_xchg)
441 		return true;
442 
443 	if (func_id == BPF_FUNC_map_lookup_elem &&
444 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
445 	     map_type == BPF_MAP_TYPE_SOCKHASH))
446 		return true;
447 
448 	return false;
449 }
450 
451 static bool is_ptr_cast_function(enum bpf_func_id func_id)
452 {
453 	return func_id == BPF_FUNC_tcp_sock ||
454 		func_id == BPF_FUNC_sk_fullsock ||
455 		func_id == BPF_FUNC_skc_to_tcp_sock ||
456 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
457 		func_id == BPF_FUNC_skc_to_udp6_sock ||
458 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
459 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
460 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
461 }
462 
463 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
464 {
465 	return func_id == BPF_FUNC_dynptr_data;
466 }
467 
468 static bool is_sync_callback_calling_kfunc(u32 btf_id);
469 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
470 
471 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
472 {
473 	return func_id == BPF_FUNC_for_each_map_elem ||
474 	       func_id == BPF_FUNC_find_vma ||
475 	       func_id == BPF_FUNC_loop ||
476 	       func_id == BPF_FUNC_user_ringbuf_drain;
477 }
478 
479 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
480 {
481 	return func_id == BPF_FUNC_timer_set_callback;
482 }
483 
484 static bool is_callback_calling_function(enum bpf_func_id func_id)
485 {
486 	return is_sync_callback_calling_function(func_id) ||
487 	       is_async_callback_calling_function(func_id);
488 }
489 
490 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
491 {
492 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
493 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
494 }
495 
496 static bool is_storage_get_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_sk_storage_get ||
499 	       func_id == BPF_FUNC_inode_storage_get ||
500 	       func_id == BPF_FUNC_task_storage_get ||
501 	       func_id == BPF_FUNC_cgrp_storage_get;
502 }
503 
504 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
505 					const struct bpf_map *map)
506 {
507 	int ref_obj_uses = 0;
508 
509 	if (is_ptr_cast_function(func_id))
510 		ref_obj_uses++;
511 	if (is_acquire_function(func_id, map))
512 		ref_obj_uses++;
513 	if (is_dynptr_ref_function(func_id))
514 		ref_obj_uses++;
515 
516 	return ref_obj_uses > 1;
517 }
518 
519 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
520 {
521 	return BPF_CLASS(insn->code) == BPF_STX &&
522 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
523 	       insn->imm == BPF_CMPXCHG;
524 }
525 
526 static int __get_spi(s32 off)
527 {
528 	return (-off - 1) / BPF_REG_SIZE;
529 }
530 
531 static struct bpf_func_state *func(struct bpf_verifier_env *env,
532 				   const struct bpf_reg_state *reg)
533 {
534 	struct bpf_verifier_state *cur = env->cur_state;
535 
536 	return cur->frame[reg->frameno];
537 }
538 
539 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
540 {
541        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
542 
543        /* We need to check that slots between [spi - nr_slots + 1, spi] are
544 	* within [0, allocated_stack).
545 	*
546 	* Please note that the spi grows downwards. For example, a dynptr
547 	* takes the size of two stack slots; the first slot will be at
548 	* spi and the second slot will be at spi - 1.
549 	*/
550        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
551 }
552 
553 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
554 			          const char *obj_kind, int nr_slots)
555 {
556 	int off, spi;
557 
558 	if (!tnum_is_const(reg->var_off)) {
559 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
560 		return -EINVAL;
561 	}
562 
563 	off = reg->off + reg->var_off.value;
564 	if (off % BPF_REG_SIZE) {
565 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
566 		return -EINVAL;
567 	}
568 
569 	spi = __get_spi(off);
570 	if (spi + 1 < nr_slots) {
571 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
572 		return -EINVAL;
573 	}
574 
575 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
576 		return -ERANGE;
577 	return spi;
578 }
579 
580 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
581 {
582 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
583 }
584 
585 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
586 {
587 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
588 }
589 
590 static const char *btf_type_name(const struct btf *btf, u32 id)
591 {
592 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
593 }
594 
595 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
596 {
597 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
598 	case DYNPTR_TYPE_LOCAL:
599 		return BPF_DYNPTR_TYPE_LOCAL;
600 	case DYNPTR_TYPE_RINGBUF:
601 		return BPF_DYNPTR_TYPE_RINGBUF;
602 	case DYNPTR_TYPE_SKB:
603 		return BPF_DYNPTR_TYPE_SKB;
604 	case DYNPTR_TYPE_XDP:
605 		return BPF_DYNPTR_TYPE_XDP;
606 	default:
607 		return BPF_DYNPTR_TYPE_INVALID;
608 	}
609 }
610 
611 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
612 {
613 	switch (type) {
614 	case BPF_DYNPTR_TYPE_LOCAL:
615 		return DYNPTR_TYPE_LOCAL;
616 	case BPF_DYNPTR_TYPE_RINGBUF:
617 		return DYNPTR_TYPE_RINGBUF;
618 	case BPF_DYNPTR_TYPE_SKB:
619 		return DYNPTR_TYPE_SKB;
620 	case BPF_DYNPTR_TYPE_XDP:
621 		return DYNPTR_TYPE_XDP;
622 	default:
623 		return 0;
624 	}
625 }
626 
627 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
628 {
629 	return type == BPF_DYNPTR_TYPE_RINGBUF;
630 }
631 
632 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
633 			      enum bpf_dynptr_type type,
634 			      bool first_slot, int dynptr_id);
635 
636 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
637 				struct bpf_reg_state *reg);
638 
639 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
640 				   struct bpf_reg_state *sreg1,
641 				   struct bpf_reg_state *sreg2,
642 				   enum bpf_dynptr_type type)
643 {
644 	int id = ++env->id_gen;
645 
646 	__mark_dynptr_reg(sreg1, type, true, id);
647 	__mark_dynptr_reg(sreg2, type, false, id);
648 }
649 
650 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
651 			       struct bpf_reg_state *reg,
652 			       enum bpf_dynptr_type type)
653 {
654 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
655 }
656 
657 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
658 				        struct bpf_func_state *state, int spi);
659 
660 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
661 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
662 {
663 	struct bpf_func_state *state = func(env, reg);
664 	enum bpf_dynptr_type type;
665 	int spi, i, err;
666 
667 	spi = dynptr_get_spi(env, reg);
668 	if (spi < 0)
669 		return spi;
670 
671 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
672 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
673 	 * to ensure that for the following example:
674 	 *	[d1][d1][d2][d2]
675 	 * spi    3   2   1   0
676 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
677 	 * case they do belong to same dynptr, second call won't see slot_type
678 	 * as STACK_DYNPTR and will simply skip destruction.
679 	 */
680 	err = destroy_if_dynptr_stack_slot(env, state, spi);
681 	if (err)
682 		return err;
683 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
684 	if (err)
685 		return err;
686 
687 	for (i = 0; i < BPF_REG_SIZE; i++) {
688 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
689 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
690 	}
691 
692 	type = arg_to_dynptr_type(arg_type);
693 	if (type == BPF_DYNPTR_TYPE_INVALID)
694 		return -EINVAL;
695 
696 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
697 			       &state->stack[spi - 1].spilled_ptr, type);
698 
699 	if (dynptr_type_refcounted(type)) {
700 		/* The id is used to track proper releasing */
701 		int id;
702 
703 		if (clone_ref_obj_id)
704 			id = clone_ref_obj_id;
705 		else
706 			id = acquire_reference_state(env, insn_idx);
707 
708 		if (id < 0)
709 			return id;
710 
711 		state->stack[spi].spilled_ptr.ref_obj_id = id;
712 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
713 	}
714 
715 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
716 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
717 
718 	return 0;
719 }
720 
721 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
722 {
723 	int i;
724 
725 	for (i = 0; i < BPF_REG_SIZE; i++) {
726 		state->stack[spi].slot_type[i] = STACK_INVALID;
727 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
728 	}
729 
730 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
731 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
732 
733 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
734 	 *
735 	 * While we don't allow reading STACK_INVALID, it is still possible to
736 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
737 	 * helpers or insns can do partial read of that part without failing,
738 	 * but check_stack_range_initialized, check_stack_read_var_off, and
739 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
740 	 * the slot conservatively. Hence we need to prevent those liveness
741 	 * marking walks.
742 	 *
743 	 * This was not a problem before because STACK_INVALID is only set by
744 	 * default (where the default reg state has its reg->parent as NULL), or
745 	 * in clean_live_states after REG_LIVE_DONE (at which point
746 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
747 	 * verifier state exploration (like we did above). Hence, for our case
748 	 * parentage chain will still be live (i.e. reg->parent may be
749 	 * non-NULL), while earlier reg->parent was NULL, so we need
750 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
751 	 * done later on reads or by mark_dynptr_read as well to unnecessary
752 	 * mark registers in verifier state.
753 	 */
754 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
755 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
756 }
757 
758 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
759 {
760 	struct bpf_func_state *state = func(env, reg);
761 	int spi, ref_obj_id, i;
762 
763 	spi = dynptr_get_spi(env, reg);
764 	if (spi < 0)
765 		return spi;
766 
767 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
768 		invalidate_dynptr(env, state, spi);
769 		return 0;
770 	}
771 
772 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
773 
774 	/* If the dynptr has a ref_obj_id, then we need to invalidate
775 	 * two things:
776 	 *
777 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
778 	 * 2) Any slices derived from this dynptr.
779 	 */
780 
781 	/* Invalidate any slices associated with this dynptr */
782 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
783 
784 	/* Invalidate any dynptr clones */
785 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
786 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
787 			continue;
788 
789 		/* it should always be the case that if the ref obj id
790 		 * matches then the stack slot also belongs to a
791 		 * dynptr
792 		 */
793 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
794 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
795 			return -EFAULT;
796 		}
797 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
798 			invalidate_dynptr(env, state, i);
799 	}
800 
801 	return 0;
802 }
803 
804 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
805 			       struct bpf_reg_state *reg);
806 
807 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
808 {
809 	if (!env->allow_ptr_leaks)
810 		__mark_reg_not_init(env, reg);
811 	else
812 		__mark_reg_unknown(env, reg);
813 }
814 
815 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
816 				        struct bpf_func_state *state, int spi)
817 {
818 	struct bpf_func_state *fstate;
819 	struct bpf_reg_state *dreg;
820 	int i, dynptr_id;
821 
822 	/* We always ensure that STACK_DYNPTR is never set partially,
823 	 * hence just checking for slot_type[0] is enough. This is
824 	 * different for STACK_SPILL, where it may be only set for
825 	 * 1 byte, so code has to use is_spilled_reg.
826 	 */
827 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
828 		return 0;
829 
830 	/* Reposition spi to first slot */
831 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
832 		spi = spi + 1;
833 
834 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
835 		verbose(env, "cannot overwrite referenced dynptr\n");
836 		return -EINVAL;
837 	}
838 
839 	mark_stack_slot_scratched(env, spi);
840 	mark_stack_slot_scratched(env, spi - 1);
841 
842 	/* Writing partially to one dynptr stack slot destroys both. */
843 	for (i = 0; i < BPF_REG_SIZE; i++) {
844 		state->stack[spi].slot_type[i] = STACK_INVALID;
845 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
846 	}
847 
848 	dynptr_id = state->stack[spi].spilled_ptr.id;
849 	/* Invalidate any slices associated with this dynptr */
850 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
851 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
852 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
853 			continue;
854 		if (dreg->dynptr_id == dynptr_id)
855 			mark_reg_invalid(env, dreg);
856 	}));
857 
858 	/* Do not release reference state, we are destroying dynptr on stack,
859 	 * not using some helper to release it. Just reset register.
860 	 */
861 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
862 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
863 
864 	/* Same reason as unmark_stack_slots_dynptr above */
865 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
866 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
867 
868 	return 0;
869 }
870 
871 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
872 {
873 	int spi;
874 
875 	if (reg->type == CONST_PTR_TO_DYNPTR)
876 		return false;
877 
878 	spi = dynptr_get_spi(env, reg);
879 
880 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
881 	 * error because this just means the stack state hasn't been updated yet.
882 	 * We will do check_mem_access to check and update stack bounds later.
883 	 */
884 	if (spi < 0 && spi != -ERANGE)
885 		return false;
886 
887 	/* We don't need to check if the stack slots are marked by previous
888 	 * dynptr initializations because we allow overwriting existing unreferenced
889 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
890 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
891 	 * touching are completely destructed before we reinitialize them for a new
892 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
893 	 * instead of delaying it until the end where the user will get "Unreleased
894 	 * reference" error.
895 	 */
896 	return true;
897 }
898 
899 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
900 {
901 	struct bpf_func_state *state = func(env, reg);
902 	int i, spi;
903 
904 	/* This already represents first slot of initialized bpf_dynptr.
905 	 *
906 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
907 	 * check_func_arg_reg_off's logic, so we don't need to check its
908 	 * offset and alignment.
909 	 */
910 	if (reg->type == CONST_PTR_TO_DYNPTR)
911 		return true;
912 
913 	spi = dynptr_get_spi(env, reg);
914 	if (spi < 0)
915 		return false;
916 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
917 		return false;
918 
919 	for (i = 0; i < BPF_REG_SIZE; i++) {
920 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
921 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
922 			return false;
923 	}
924 
925 	return true;
926 }
927 
928 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
929 				    enum bpf_arg_type arg_type)
930 {
931 	struct bpf_func_state *state = func(env, reg);
932 	enum bpf_dynptr_type dynptr_type;
933 	int spi;
934 
935 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
936 	if (arg_type == ARG_PTR_TO_DYNPTR)
937 		return true;
938 
939 	dynptr_type = arg_to_dynptr_type(arg_type);
940 	if (reg->type == CONST_PTR_TO_DYNPTR) {
941 		return reg->dynptr.type == dynptr_type;
942 	} else {
943 		spi = dynptr_get_spi(env, reg);
944 		if (spi < 0)
945 			return false;
946 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
947 	}
948 }
949 
950 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
951 
952 static bool in_rcu_cs(struct bpf_verifier_env *env);
953 
954 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
955 
956 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
957 				 struct bpf_kfunc_call_arg_meta *meta,
958 				 struct bpf_reg_state *reg, int insn_idx,
959 				 struct btf *btf, u32 btf_id, int nr_slots)
960 {
961 	struct bpf_func_state *state = func(env, reg);
962 	int spi, i, j, id;
963 
964 	spi = iter_get_spi(env, reg, nr_slots);
965 	if (spi < 0)
966 		return spi;
967 
968 	id = acquire_reference_state(env, insn_idx);
969 	if (id < 0)
970 		return id;
971 
972 	for (i = 0; i < nr_slots; i++) {
973 		struct bpf_stack_state *slot = &state->stack[spi - i];
974 		struct bpf_reg_state *st = &slot->spilled_ptr;
975 
976 		__mark_reg_known_zero(st);
977 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
978 		if (is_kfunc_rcu_protected(meta)) {
979 			if (in_rcu_cs(env))
980 				st->type |= MEM_RCU;
981 			else
982 				st->type |= PTR_UNTRUSTED;
983 		}
984 		st->live |= REG_LIVE_WRITTEN;
985 		st->ref_obj_id = i == 0 ? id : 0;
986 		st->iter.btf = btf;
987 		st->iter.btf_id = btf_id;
988 		st->iter.state = BPF_ITER_STATE_ACTIVE;
989 		st->iter.depth = 0;
990 
991 		for (j = 0; j < BPF_REG_SIZE; j++)
992 			slot->slot_type[j] = STACK_ITER;
993 
994 		mark_stack_slot_scratched(env, spi - i);
995 	}
996 
997 	return 0;
998 }
999 
1000 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1001 				   struct bpf_reg_state *reg, int nr_slots)
1002 {
1003 	struct bpf_func_state *state = func(env, reg);
1004 	int spi, i, j;
1005 
1006 	spi = iter_get_spi(env, reg, nr_slots);
1007 	if (spi < 0)
1008 		return spi;
1009 
1010 	for (i = 0; i < nr_slots; i++) {
1011 		struct bpf_stack_state *slot = &state->stack[spi - i];
1012 		struct bpf_reg_state *st = &slot->spilled_ptr;
1013 
1014 		if (i == 0)
1015 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1016 
1017 		__mark_reg_not_init(env, st);
1018 
1019 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1020 		st->live |= REG_LIVE_WRITTEN;
1021 
1022 		for (j = 0; j < BPF_REG_SIZE; j++)
1023 			slot->slot_type[j] = STACK_INVALID;
1024 
1025 		mark_stack_slot_scratched(env, spi - i);
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1032 				     struct bpf_reg_state *reg, int nr_slots)
1033 {
1034 	struct bpf_func_state *state = func(env, reg);
1035 	int spi, i, j;
1036 
1037 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1038 	 * will do check_mem_access to check and update stack bounds later, so
1039 	 * return true for that case.
1040 	 */
1041 	spi = iter_get_spi(env, reg, nr_slots);
1042 	if (spi == -ERANGE)
1043 		return true;
1044 	if (spi < 0)
1045 		return false;
1046 
1047 	for (i = 0; i < nr_slots; i++) {
1048 		struct bpf_stack_state *slot = &state->stack[spi - i];
1049 
1050 		for (j = 0; j < BPF_REG_SIZE; j++)
1051 			if (slot->slot_type[j] == STACK_ITER)
1052 				return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1059 				   struct btf *btf, u32 btf_id, int nr_slots)
1060 {
1061 	struct bpf_func_state *state = func(env, reg);
1062 	int spi, i, j;
1063 
1064 	spi = iter_get_spi(env, reg, nr_slots);
1065 	if (spi < 0)
1066 		return -EINVAL;
1067 
1068 	for (i = 0; i < nr_slots; i++) {
1069 		struct bpf_stack_state *slot = &state->stack[spi - i];
1070 		struct bpf_reg_state *st = &slot->spilled_ptr;
1071 
1072 		if (st->type & PTR_UNTRUSTED)
1073 			return -EPROTO;
1074 		/* only main (first) slot has ref_obj_id set */
1075 		if (i == 0 && !st->ref_obj_id)
1076 			return -EINVAL;
1077 		if (i != 0 && st->ref_obj_id)
1078 			return -EINVAL;
1079 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1080 			return -EINVAL;
1081 
1082 		for (j = 0; j < BPF_REG_SIZE; j++)
1083 			if (slot->slot_type[j] != STACK_ITER)
1084 				return -EINVAL;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 /* Check if given stack slot is "special":
1091  *   - spilled register state (STACK_SPILL);
1092  *   - dynptr state (STACK_DYNPTR);
1093  *   - iter state (STACK_ITER).
1094  */
1095 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1096 {
1097 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1098 
1099 	switch (type) {
1100 	case STACK_SPILL:
1101 	case STACK_DYNPTR:
1102 	case STACK_ITER:
1103 		return true;
1104 	case STACK_INVALID:
1105 	case STACK_MISC:
1106 	case STACK_ZERO:
1107 		return false;
1108 	default:
1109 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1110 		return true;
1111 	}
1112 }
1113 
1114 /* The reg state of a pointer or a bounded scalar was saved when
1115  * it was spilled to the stack.
1116  */
1117 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1118 {
1119 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1120 }
1121 
1122 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1123 {
1124 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1125 	       stack->spilled_ptr.type == SCALAR_VALUE;
1126 }
1127 
1128 static void scrub_spilled_slot(u8 *stype)
1129 {
1130 	if (*stype != STACK_INVALID)
1131 		*stype = STACK_MISC;
1132 }
1133 
1134 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1135  * small to hold src. This is different from krealloc since we don't want to preserve
1136  * the contents of dst.
1137  *
1138  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1139  * not be allocated.
1140  */
1141 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1142 {
1143 	size_t alloc_bytes;
1144 	void *orig = dst;
1145 	size_t bytes;
1146 
1147 	if (ZERO_OR_NULL_PTR(src))
1148 		goto out;
1149 
1150 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1151 		return NULL;
1152 
1153 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1154 	dst = krealloc(orig, alloc_bytes, flags);
1155 	if (!dst) {
1156 		kfree(orig);
1157 		return NULL;
1158 	}
1159 
1160 	memcpy(dst, src, bytes);
1161 out:
1162 	return dst ? dst : ZERO_SIZE_PTR;
1163 }
1164 
1165 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1166  * small to hold new_n items. new items are zeroed out if the array grows.
1167  *
1168  * Contrary to krealloc_array, does not free arr if new_n is zero.
1169  */
1170 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1171 {
1172 	size_t alloc_size;
1173 	void *new_arr;
1174 
1175 	if (!new_n || old_n == new_n)
1176 		goto out;
1177 
1178 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1179 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1180 	if (!new_arr) {
1181 		kfree(arr);
1182 		return NULL;
1183 	}
1184 	arr = new_arr;
1185 
1186 	if (new_n > old_n)
1187 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1188 
1189 out:
1190 	return arr ? arr : ZERO_SIZE_PTR;
1191 }
1192 
1193 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1194 {
1195 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1196 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1197 	if (!dst->refs)
1198 		return -ENOMEM;
1199 
1200 	dst->acquired_refs = src->acquired_refs;
1201 	return 0;
1202 }
1203 
1204 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1205 {
1206 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1207 
1208 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1209 				GFP_KERNEL);
1210 	if (!dst->stack)
1211 		return -ENOMEM;
1212 
1213 	dst->allocated_stack = src->allocated_stack;
1214 	return 0;
1215 }
1216 
1217 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1218 {
1219 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1220 				    sizeof(struct bpf_reference_state));
1221 	if (!state->refs)
1222 		return -ENOMEM;
1223 
1224 	state->acquired_refs = n;
1225 	return 0;
1226 }
1227 
1228 static int grow_stack_state(struct bpf_func_state *state, int size)
1229 {
1230 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1231 
1232 	if (old_n >= n)
1233 		return 0;
1234 
1235 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1236 	if (!state->stack)
1237 		return -ENOMEM;
1238 
1239 	state->allocated_stack = size;
1240 	return 0;
1241 }
1242 
1243 /* Acquire a pointer id from the env and update the state->refs to include
1244  * this new pointer reference.
1245  * On success, returns a valid pointer id to associate with the register
1246  * On failure, returns a negative errno.
1247  */
1248 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1249 {
1250 	struct bpf_func_state *state = cur_func(env);
1251 	int new_ofs = state->acquired_refs;
1252 	int id, err;
1253 
1254 	err = resize_reference_state(state, state->acquired_refs + 1);
1255 	if (err)
1256 		return err;
1257 	id = ++env->id_gen;
1258 	state->refs[new_ofs].id = id;
1259 	state->refs[new_ofs].insn_idx = insn_idx;
1260 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1261 
1262 	return id;
1263 }
1264 
1265 /* release function corresponding to acquire_reference_state(). Idempotent. */
1266 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1267 {
1268 	int i, last_idx;
1269 
1270 	last_idx = state->acquired_refs - 1;
1271 	for (i = 0; i < state->acquired_refs; i++) {
1272 		if (state->refs[i].id == ptr_id) {
1273 			/* Cannot release caller references in callbacks */
1274 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1275 				return -EINVAL;
1276 			if (last_idx && i != last_idx)
1277 				memcpy(&state->refs[i], &state->refs[last_idx],
1278 				       sizeof(*state->refs));
1279 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1280 			state->acquired_refs--;
1281 			return 0;
1282 		}
1283 	}
1284 	return -EINVAL;
1285 }
1286 
1287 static void free_func_state(struct bpf_func_state *state)
1288 {
1289 	if (!state)
1290 		return;
1291 	kfree(state->refs);
1292 	kfree(state->stack);
1293 	kfree(state);
1294 }
1295 
1296 static void clear_jmp_history(struct bpf_verifier_state *state)
1297 {
1298 	kfree(state->jmp_history);
1299 	state->jmp_history = NULL;
1300 	state->jmp_history_cnt = 0;
1301 }
1302 
1303 static void free_verifier_state(struct bpf_verifier_state *state,
1304 				bool free_self)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i <= state->curframe; i++) {
1309 		free_func_state(state->frame[i]);
1310 		state->frame[i] = NULL;
1311 	}
1312 	clear_jmp_history(state);
1313 	if (free_self)
1314 		kfree(state);
1315 }
1316 
1317 /* copy verifier state from src to dst growing dst stack space
1318  * when necessary to accommodate larger src stack
1319  */
1320 static int copy_func_state(struct bpf_func_state *dst,
1321 			   const struct bpf_func_state *src)
1322 {
1323 	int err;
1324 
1325 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1326 	err = copy_reference_state(dst, src);
1327 	if (err)
1328 		return err;
1329 	return copy_stack_state(dst, src);
1330 }
1331 
1332 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1333 			       const struct bpf_verifier_state *src)
1334 {
1335 	struct bpf_func_state *dst;
1336 	int i, err;
1337 
1338 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1339 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1340 					    GFP_USER);
1341 	if (!dst_state->jmp_history)
1342 		return -ENOMEM;
1343 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1344 
1345 	/* if dst has more stack frames then src frame, free them, this is also
1346 	 * necessary in case of exceptional exits using bpf_throw.
1347 	 */
1348 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1349 		free_func_state(dst_state->frame[i]);
1350 		dst_state->frame[i] = NULL;
1351 	}
1352 	dst_state->speculative = src->speculative;
1353 	dst_state->active_rcu_lock = src->active_rcu_lock;
1354 	dst_state->curframe = src->curframe;
1355 	dst_state->active_lock.ptr = src->active_lock.ptr;
1356 	dst_state->active_lock.id = src->active_lock.id;
1357 	dst_state->branches = src->branches;
1358 	dst_state->parent = src->parent;
1359 	dst_state->first_insn_idx = src->first_insn_idx;
1360 	dst_state->last_insn_idx = src->last_insn_idx;
1361 	dst_state->dfs_depth = src->dfs_depth;
1362 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1363 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1364 	for (i = 0; i <= src->curframe; i++) {
1365 		dst = dst_state->frame[i];
1366 		if (!dst) {
1367 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1368 			if (!dst)
1369 				return -ENOMEM;
1370 			dst_state->frame[i] = dst;
1371 		}
1372 		err = copy_func_state(dst, src->frame[i]);
1373 		if (err)
1374 			return err;
1375 	}
1376 	return 0;
1377 }
1378 
1379 static u32 state_htab_size(struct bpf_verifier_env *env)
1380 {
1381 	return env->prog->len;
1382 }
1383 
1384 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1385 {
1386 	struct bpf_verifier_state *cur = env->cur_state;
1387 	struct bpf_func_state *state = cur->frame[cur->curframe];
1388 
1389 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1390 }
1391 
1392 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1393 {
1394 	int fr;
1395 
1396 	if (a->curframe != b->curframe)
1397 		return false;
1398 
1399 	for (fr = a->curframe; fr >= 0; fr--)
1400 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1401 			return false;
1402 
1403 	return true;
1404 }
1405 
1406 /* Open coded iterators allow back-edges in the state graph in order to
1407  * check unbounded loops that iterators.
1408  *
1409  * In is_state_visited() it is necessary to know if explored states are
1410  * part of some loops in order to decide whether non-exact states
1411  * comparison could be used:
1412  * - non-exact states comparison establishes sub-state relation and uses
1413  *   read and precision marks to do so, these marks are propagated from
1414  *   children states and thus are not guaranteed to be final in a loop;
1415  * - exact states comparison just checks if current and explored states
1416  *   are identical (and thus form a back-edge).
1417  *
1418  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1419  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1420  * algorithm for loop structure detection and gives an overview of
1421  * relevant terminology. It also has helpful illustrations.
1422  *
1423  * [1] https://api.semanticscholar.org/CorpusID:15784067
1424  *
1425  * We use a similar algorithm but because loop nested structure is
1426  * irrelevant for verifier ours is significantly simpler and resembles
1427  * strongly connected components algorithm from Sedgewick's textbook.
1428  *
1429  * Define topmost loop entry as a first node of the loop traversed in a
1430  * depth first search starting from initial state. The goal of the loop
1431  * tracking algorithm is to associate topmost loop entries with states
1432  * derived from these entries.
1433  *
1434  * For each step in the DFS states traversal algorithm needs to identify
1435  * the following situations:
1436  *
1437  *          initial                     initial                   initial
1438  *            |                           |                         |
1439  *            V                           V                         V
1440  *           ...                         ...           .---------> hdr
1441  *            |                           |            |            |
1442  *            V                           V            |            V
1443  *           cur                     .-> succ          |    .------...
1444  *            |                      |    |            |    |       |
1445  *            V                      |    V            |    V       V
1446  *           succ                    '-- cur           |   ...     ...
1447  *                                                     |    |       |
1448  *                                                     |    V       V
1449  *                                                     |   succ <- cur
1450  *                                                     |    |
1451  *                                                     |    V
1452  *                                                     |   ...
1453  *                                                     |    |
1454  *                                                     '----'
1455  *
1456  *  (A) successor state of cur   (B) successor state of cur or it's entry
1457  *      not yet traversed            are in current DFS path, thus cur and succ
1458  *                                   are members of the same outermost loop
1459  *
1460  *                      initial                  initial
1461  *                        |                        |
1462  *                        V                        V
1463  *                       ...                      ...
1464  *                        |                        |
1465  *                        V                        V
1466  *                .------...               .------...
1467  *                |       |                |       |
1468  *                V       V                V       V
1469  *           .-> hdr     ...              ...     ...
1470  *           |    |       |                |       |
1471  *           |    V       V                V       V
1472  *           |   succ <- cur              succ <- cur
1473  *           |    |                        |
1474  *           |    V                        V
1475  *           |   ...                      ...
1476  *           |    |                        |
1477  *           '----'                       exit
1478  *
1479  * (C) successor state of cur is a part of some loop but this loop
1480  *     does not include cur or successor state is not in a loop at all.
1481  *
1482  * Algorithm could be described as the following python code:
1483  *
1484  *     traversed = set()   # Set of traversed nodes
1485  *     entries = {}        # Mapping from node to loop entry
1486  *     depths = {}         # Depth level assigned to graph node
1487  *     path = set()        # Current DFS path
1488  *
1489  *     # Find outermost loop entry known for n
1490  *     def get_loop_entry(n):
1491  *         h = entries.get(n, None)
1492  *         while h in entries and entries[h] != h:
1493  *             h = entries[h]
1494  *         return h
1495  *
1496  *     # Update n's loop entry if h's outermost entry comes
1497  *     # before n's outermost entry in current DFS path.
1498  *     def update_loop_entry(n, h):
1499  *         n1 = get_loop_entry(n) or n
1500  *         h1 = get_loop_entry(h) or h
1501  *         if h1 in path and depths[h1] <= depths[n1]:
1502  *             entries[n] = h1
1503  *
1504  *     def dfs(n, depth):
1505  *         traversed.add(n)
1506  *         path.add(n)
1507  *         depths[n] = depth
1508  *         for succ in G.successors(n):
1509  *             if succ not in traversed:
1510  *                 # Case A: explore succ and update cur's loop entry
1511  *                 #         only if succ's entry is in current DFS path.
1512  *                 dfs(succ, depth + 1)
1513  *                 h = get_loop_entry(succ)
1514  *                 update_loop_entry(n, h)
1515  *             else:
1516  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1517  *                 update_loop_entry(n, succ)
1518  *         path.remove(n)
1519  *
1520  * To adapt this algorithm for use with verifier:
1521  * - use st->branch == 0 as a signal that DFS of succ had been finished
1522  *   and cur's loop entry has to be updated (case A), handle this in
1523  *   update_branch_counts();
1524  * - use st->branch > 0 as a signal that st is in the current DFS path;
1525  * - handle cases B and C in is_state_visited();
1526  * - update topmost loop entry for intermediate states in get_loop_entry().
1527  */
1528 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1529 {
1530 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1531 
1532 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1533 		topmost = topmost->loop_entry;
1534 	/* Update loop entries for intermediate states to avoid this
1535 	 * traversal in future get_loop_entry() calls.
1536 	 */
1537 	while (st && st->loop_entry != topmost) {
1538 		old = st->loop_entry;
1539 		st->loop_entry = topmost;
1540 		st = old;
1541 	}
1542 	return topmost;
1543 }
1544 
1545 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1546 {
1547 	struct bpf_verifier_state *cur1, *hdr1;
1548 
1549 	cur1 = get_loop_entry(cur) ?: cur;
1550 	hdr1 = get_loop_entry(hdr) ?: hdr;
1551 	/* The head1->branches check decides between cases B and C in
1552 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1553 	 * head's topmost loop entry is not in current DFS path,
1554 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1555 	 * no need to update cur->loop_entry.
1556 	 */
1557 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1558 		cur->loop_entry = hdr;
1559 		hdr->used_as_loop_entry = true;
1560 	}
1561 }
1562 
1563 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1564 {
1565 	while (st) {
1566 		u32 br = --st->branches;
1567 
1568 		/* br == 0 signals that DFS exploration for 'st' is finished,
1569 		 * thus it is necessary to update parent's loop entry if it
1570 		 * turned out that st is a part of some loop.
1571 		 * This is a part of 'case A' in get_loop_entry() comment.
1572 		 */
1573 		if (br == 0 && st->parent && st->loop_entry)
1574 			update_loop_entry(st->parent, st->loop_entry);
1575 
1576 		/* WARN_ON(br > 1) technically makes sense here,
1577 		 * but see comment in push_stack(), hence:
1578 		 */
1579 		WARN_ONCE((int)br < 0,
1580 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1581 			  br);
1582 		if (br)
1583 			break;
1584 		st = st->parent;
1585 	}
1586 }
1587 
1588 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1589 		     int *insn_idx, bool pop_log)
1590 {
1591 	struct bpf_verifier_state *cur = env->cur_state;
1592 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1593 	int err;
1594 
1595 	if (env->head == NULL)
1596 		return -ENOENT;
1597 
1598 	if (cur) {
1599 		err = copy_verifier_state(cur, &head->st);
1600 		if (err)
1601 			return err;
1602 	}
1603 	if (pop_log)
1604 		bpf_vlog_reset(&env->log, head->log_pos);
1605 	if (insn_idx)
1606 		*insn_idx = head->insn_idx;
1607 	if (prev_insn_idx)
1608 		*prev_insn_idx = head->prev_insn_idx;
1609 	elem = head->next;
1610 	free_verifier_state(&head->st, false);
1611 	kfree(head);
1612 	env->head = elem;
1613 	env->stack_size--;
1614 	return 0;
1615 }
1616 
1617 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1618 					     int insn_idx, int prev_insn_idx,
1619 					     bool speculative)
1620 {
1621 	struct bpf_verifier_state *cur = env->cur_state;
1622 	struct bpf_verifier_stack_elem *elem;
1623 	int err;
1624 
1625 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1626 	if (!elem)
1627 		goto err;
1628 
1629 	elem->insn_idx = insn_idx;
1630 	elem->prev_insn_idx = prev_insn_idx;
1631 	elem->next = env->head;
1632 	elem->log_pos = env->log.end_pos;
1633 	env->head = elem;
1634 	env->stack_size++;
1635 	err = copy_verifier_state(&elem->st, cur);
1636 	if (err)
1637 		goto err;
1638 	elem->st.speculative |= speculative;
1639 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1640 		verbose(env, "The sequence of %d jumps is too complex.\n",
1641 			env->stack_size);
1642 		goto err;
1643 	}
1644 	if (elem->st.parent) {
1645 		++elem->st.parent->branches;
1646 		/* WARN_ON(branches > 2) technically makes sense here,
1647 		 * but
1648 		 * 1. speculative states will bump 'branches' for non-branch
1649 		 * instructions
1650 		 * 2. is_state_visited() heuristics may decide not to create
1651 		 * a new state for a sequence of branches and all such current
1652 		 * and cloned states will be pointing to a single parent state
1653 		 * which might have large 'branches' count.
1654 		 */
1655 	}
1656 	return &elem->st;
1657 err:
1658 	free_verifier_state(env->cur_state, true);
1659 	env->cur_state = NULL;
1660 	/* pop all elements and return */
1661 	while (!pop_stack(env, NULL, NULL, false));
1662 	return NULL;
1663 }
1664 
1665 #define CALLER_SAVED_REGS 6
1666 static const int caller_saved[CALLER_SAVED_REGS] = {
1667 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1668 };
1669 
1670 /* This helper doesn't clear reg->id */
1671 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1672 {
1673 	reg->var_off = tnum_const(imm);
1674 	reg->smin_value = (s64)imm;
1675 	reg->smax_value = (s64)imm;
1676 	reg->umin_value = imm;
1677 	reg->umax_value = imm;
1678 
1679 	reg->s32_min_value = (s32)imm;
1680 	reg->s32_max_value = (s32)imm;
1681 	reg->u32_min_value = (u32)imm;
1682 	reg->u32_max_value = (u32)imm;
1683 }
1684 
1685 /* Mark the unknown part of a register (variable offset or scalar value) as
1686  * known to have the value @imm.
1687  */
1688 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1689 {
1690 	/* Clear off and union(map_ptr, range) */
1691 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1692 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1693 	reg->id = 0;
1694 	reg->ref_obj_id = 0;
1695 	___mark_reg_known(reg, imm);
1696 }
1697 
1698 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1699 {
1700 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1701 	reg->s32_min_value = (s32)imm;
1702 	reg->s32_max_value = (s32)imm;
1703 	reg->u32_min_value = (u32)imm;
1704 	reg->u32_max_value = (u32)imm;
1705 }
1706 
1707 /* Mark the 'variable offset' part of a register as zero.  This should be
1708  * used only on registers holding a pointer type.
1709  */
1710 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1711 {
1712 	__mark_reg_known(reg, 0);
1713 }
1714 
1715 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1716 {
1717 	__mark_reg_known(reg, 0);
1718 	reg->type = SCALAR_VALUE;
1719 }
1720 
1721 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1722 				struct bpf_reg_state *regs, u32 regno)
1723 {
1724 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1725 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1726 		/* Something bad happened, let's kill all regs */
1727 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1728 			__mark_reg_not_init(env, regs + regno);
1729 		return;
1730 	}
1731 	__mark_reg_known_zero(regs + regno);
1732 }
1733 
1734 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1735 			      bool first_slot, int dynptr_id)
1736 {
1737 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1738 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1739 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1740 	 */
1741 	__mark_reg_known_zero(reg);
1742 	reg->type = CONST_PTR_TO_DYNPTR;
1743 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1744 	reg->id = dynptr_id;
1745 	reg->dynptr.type = type;
1746 	reg->dynptr.first_slot = first_slot;
1747 }
1748 
1749 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1750 {
1751 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1752 		const struct bpf_map *map = reg->map_ptr;
1753 
1754 		if (map->inner_map_meta) {
1755 			reg->type = CONST_PTR_TO_MAP;
1756 			reg->map_ptr = map->inner_map_meta;
1757 			/* transfer reg's id which is unique for every map_lookup_elem
1758 			 * as UID of the inner map.
1759 			 */
1760 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1761 				reg->map_uid = reg->id;
1762 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1763 			reg->type = PTR_TO_XDP_SOCK;
1764 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1765 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1766 			reg->type = PTR_TO_SOCKET;
1767 		} else {
1768 			reg->type = PTR_TO_MAP_VALUE;
1769 		}
1770 		return;
1771 	}
1772 
1773 	reg->type &= ~PTR_MAYBE_NULL;
1774 }
1775 
1776 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1777 				struct btf_field_graph_root *ds_head)
1778 {
1779 	__mark_reg_known_zero(&regs[regno]);
1780 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1781 	regs[regno].btf = ds_head->btf;
1782 	regs[regno].btf_id = ds_head->value_btf_id;
1783 	regs[regno].off = ds_head->node_offset;
1784 }
1785 
1786 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1787 {
1788 	return type_is_pkt_pointer(reg->type);
1789 }
1790 
1791 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1792 {
1793 	return reg_is_pkt_pointer(reg) ||
1794 	       reg->type == PTR_TO_PACKET_END;
1795 }
1796 
1797 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1798 {
1799 	return base_type(reg->type) == PTR_TO_MEM &&
1800 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1801 }
1802 
1803 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1804 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1805 				    enum bpf_reg_type which)
1806 {
1807 	/* The register can already have a range from prior markings.
1808 	 * This is fine as long as it hasn't been advanced from its
1809 	 * origin.
1810 	 */
1811 	return reg->type == which &&
1812 	       reg->id == 0 &&
1813 	       reg->off == 0 &&
1814 	       tnum_equals_const(reg->var_off, 0);
1815 }
1816 
1817 /* Reset the min/max bounds of a register */
1818 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1819 {
1820 	reg->smin_value = S64_MIN;
1821 	reg->smax_value = S64_MAX;
1822 	reg->umin_value = 0;
1823 	reg->umax_value = U64_MAX;
1824 
1825 	reg->s32_min_value = S32_MIN;
1826 	reg->s32_max_value = S32_MAX;
1827 	reg->u32_min_value = 0;
1828 	reg->u32_max_value = U32_MAX;
1829 }
1830 
1831 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1832 {
1833 	reg->smin_value = S64_MIN;
1834 	reg->smax_value = S64_MAX;
1835 	reg->umin_value = 0;
1836 	reg->umax_value = U64_MAX;
1837 }
1838 
1839 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1840 {
1841 	reg->s32_min_value = S32_MIN;
1842 	reg->s32_max_value = S32_MAX;
1843 	reg->u32_min_value = 0;
1844 	reg->u32_max_value = U32_MAX;
1845 }
1846 
1847 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1848 {
1849 	struct tnum var32_off = tnum_subreg(reg->var_off);
1850 
1851 	/* min signed is max(sign bit) | min(other bits) */
1852 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1853 			var32_off.value | (var32_off.mask & S32_MIN));
1854 	/* max signed is min(sign bit) | max(other bits) */
1855 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1856 			var32_off.value | (var32_off.mask & S32_MAX));
1857 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1858 	reg->u32_max_value = min(reg->u32_max_value,
1859 				 (u32)(var32_off.value | var32_off.mask));
1860 }
1861 
1862 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1863 {
1864 	/* min signed is max(sign bit) | min(other bits) */
1865 	reg->smin_value = max_t(s64, reg->smin_value,
1866 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1867 	/* max signed is min(sign bit) | max(other bits) */
1868 	reg->smax_value = min_t(s64, reg->smax_value,
1869 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1870 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1871 	reg->umax_value = min(reg->umax_value,
1872 			      reg->var_off.value | reg->var_off.mask);
1873 }
1874 
1875 static void __update_reg_bounds(struct bpf_reg_state *reg)
1876 {
1877 	__update_reg32_bounds(reg);
1878 	__update_reg64_bounds(reg);
1879 }
1880 
1881 /* Uses signed min/max values to inform unsigned, and vice-versa */
1882 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1883 {
1884 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1885 	 * bits to improve our u32/s32 boundaries.
1886 	 *
1887 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1888 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1889 	 * [10, 20] range. But this property holds for any 64-bit range as
1890 	 * long as upper 32 bits in that entire range of values stay the same.
1891 	 *
1892 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1893 	 * in decimal) has the same upper 32 bits throughout all the values in
1894 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1895 	 * range.
1896 	 *
1897 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1898 	 * following the rules outlined below about u64/s64 correspondence
1899 	 * (which equally applies to u32 vs s32 correspondence). In general it
1900 	 * depends on actual hexadecimal values of 32-bit range. They can form
1901 	 * only valid u32, or only valid s32 ranges in some cases.
1902 	 *
1903 	 * So we use all these insights to derive bounds for subregisters here.
1904 	 */
1905 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1906 		/* u64 to u32 casting preserves validity of low 32 bits as
1907 		 * a range, if upper 32 bits are the same
1908 		 */
1909 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1910 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
1911 
1912 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
1913 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1914 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1915 		}
1916 	}
1917 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
1918 		/* low 32 bits should form a proper u32 range */
1919 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
1920 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
1921 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
1922 		}
1923 		/* low 32 bits should form a proper s32 range */
1924 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
1925 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
1926 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
1927 		}
1928 	}
1929 	/* Special case where upper bits form a small sequence of two
1930 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
1931 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
1932 	 * going from negative numbers to positive numbers. E.g., let's say we
1933 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
1934 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
1935 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
1936 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
1937 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
1938 	 * upper 32 bits. As a random example, s64 range
1939 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
1940 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
1941 	 */
1942 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
1943 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
1944 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1945 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1946 	}
1947 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
1948 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
1949 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
1950 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
1951 	}
1952 	/* if u32 range forms a valid s32 range (due to matching sign bit),
1953 	 * try to learn from that
1954 	 */
1955 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
1956 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
1957 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
1958 	}
1959 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
1960 	 * are the same, so combine.  This works even in the negative case, e.g.
1961 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1962 	 */
1963 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
1964 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
1965 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
1966 	}
1967 }
1968 
1969 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1970 {
1971 	/* If u64 range forms a valid s64 range (due to matching sign bit),
1972 	 * try to learn from that. Let's do a bit of ASCII art to see when
1973 	 * this is happening. Let's take u64 range first:
1974 	 *
1975 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
1976 	 * |-------------------------------|--------------------------------|
1977 	 *
1978 	 * Valid u64 range is formed when umin and umax are anywhere in the
1979 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
1980 	 * straightforward. Let's see how s64 range maps onto the same range
1981 	 * of values, annotated below the line for comparison:
1982 	 *
1983 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
1984 	 * |-------------------------------|--------------------------------|
1985 	 * 0                        S64_MAX S64_MIN                        -1
1986 	 *
1987 	 * So s64 values basically start in the middle and they are logically
1988 	 * contiguous to the right of it, wrapping around from -1 to 0, and
1989 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
1990 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
1991 	 * more visually as mapped to sign-agnostic range of hex values.
1992 	 *
1993 	 *  u64 start                                               u64 end
1994 	 *  _______________________________________________________________
1995 	 * /                                                               \
1996 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
1997 	 * |-------------------------------|--------------------------------|
1998 	 * 0                        S64_MAX S64_MIN                        -1
1999 	 *                                / \
2000 	 * >------------------------------   ------------------------------->
2001 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2002 	 *
2003 	 * What this means is that, in general, we can't always derive
2004 	 * something new about u64 from any random s64 range, and vice versa.
2005 	 *
2006 	 * But we can do that in two particular cases. One is when entire
2007 	 * u64/s64 range is *entirely* contained within left half of the above
2008 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2009 	 *
2010 	 * |-------------------------------|--------------------------------|
2011 	 *     ^                   ^            ^                 ^
2012 	 *     A                   B            C                 D
2013 	 *
2014 	 * [A, B] and [C, D] are contained entirely in their respective halves
2015 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2016 	 * will be non-negative both as u64 and s64 (and in fact it will be
2017 	 * identical ranges no matter the signedness). [C, D] treated as s64
2018 	 * will be a range of negative values, while in u64 it will be
2019 	 * non-negative range of values larger than 0x8000000000000000.
2020 	 *
2021 	 * Now, any other range here can't be represented in both u64 and s64
2022 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2023 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2024 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2025 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2026 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2027 	 * ranges as u64. Currently reg_state can't represent two segments per
2028 	 * numeric domain, so in such situations we can only derive maximal
2029 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2030 	 *
2031 	 * So we use these facts to derive umin/umax from smin/smax and vice
2032 	 * versa only if they stay within the same "half". This is equivalent
2033 	 * to checking sign bit: lower half will have sign bit as zero, upper
2034 	 * half have sign bit 1. Below in code we simplify this by just
2035 	 * casting umin/umax as smin/smax and checking if they form valid
2036 	 * range, and vice versa. Those are equivalent checks.
2037 	 */
2038 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2039 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2040 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2041 	}
2042 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2043 	 * are the same, so combine.  This works even in the negative case, e.g.
2044 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2045 	 */
2046 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2047 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2048 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2049 	}
2050 }
2051 
2052 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2053 {
2054 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2055 	 * values on both sides of 64-bit range in hope to have tigher range.
2056 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2057 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2058 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2059 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2060 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2061 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2062 	 * We just need to make sure that derived bounds we are intersecting
2063 	 * with are well-formed ranges in respecitve s64 or u64 domain, just
2064 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2065 	 */
2066 	__u64 new_umin, new_umax;
2067 	__s64 new_smin, new_smax;
2068 
2069 	/* u32 -> u64 tightening, it's always well-formed */
2070 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2071 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2072 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2073 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2074 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2075 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2076 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2077 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2078 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2079 
2080 	/* if s32 can be treated as valid u32 range, we can use it as well */
2081 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2082 		/* s32 -> u64 tightening */
2083 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2084 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2085 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2086 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2087 		/* s32 -> s64 tightening */
2088 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2089 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2090 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2091 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2092 	}
2093 }
2094 
2095 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2096 {
2097 	__reg32_deduce_bounds(reg);
2098 	__reg64_deduce_bounds(reg);
2099 	__reg_deduce_mixed_bounds(reg);
2100 }
2101 
2102 /* Attempts to improve var_off based on unsigned min/max information */
2103 static void __reg_bound_offset(struct bpf_reg_state *reg)
2104 {
2105 	struct tnum var64_off = tnum_intersect(reg->var_off,
2106 					       tnum_range(reg->umin_value,
2107 							  reg->umax_value));
2108 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2109 					       tnum_range(reg->u32_min_value,
2110 							  reg->u32_max_value));
2111 
2112 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2113 }
2114 
2115 static void reg_bounds_sync(struct bpf_reg_state *reg)
2116 {
2117 	/* We might have learned new bounds from the var_off. */
2118 	__update_reg_bounds(reg);
2119 	/* We might have learned something about the sign bit. */
2120 	__reg_deduce_bounds(reg);
2121 	__reg_deduce_bounds(reg);
2122 	/* We might have learned some bits from the bounds. */
2123 	__reg_bound_offset(reg);
2124 	/* Intersecting with the old var_off might have improved our bounds
2125 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2126 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2127 	 */
2128 	__update_reg_bounds(reg);
2129 }
2130 
2131 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2132 				   struct bpf_reg_state *reg, const char *ctx)
2133 {
2134 	const char *msg;
2135 
2136 	if (reg->umin_value > reg->umax_value ||
2137 	    reg->smin_value > reg->smax_value ||
2138 	    reg->u32_min_value > reg->u32_max_value ||
2139 	    reg->s32_min_value > reg->s32_max_value) {
2140 		    msg = "range bounds violation";
2141 		    goto out;
2142 	}
2143 
2144 	if (tnum_is_const(reg->var_off)) {
2145 		u64 uval = reg->var_off.value;
2146 		s64 sval = (s64)uval;
2147 
2148 		if (reg->umin_value != uval || reg->umax_value != uval ||
2149 		    reg->smin_value != sval || reg->smax_value != sval) {
2150 			msg = "const tnum out of sync with range bounds";
2151 			goto out;
2152 		}
2153 	}
2154 
2155 	if (tnum_subreg_is_const(reg->var_off)) {
2156 		u32 uval32 = tnum_subreg(reg->var_off).value;
2157 		s32 sval32 = (s32)uval32;
2158 
2159 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2160 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2161 			msg = "const subreg tnum out of sync with range bounds";
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	return 0;
2167 out:
2168 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2169 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2170 		ctx, msg, reg->umin_value, reg->umax_value,
2171 		reg->smin_value, reg->smax_value,
2172 		reg->u32_min_value, reg->u32_max_value,
2173 		reg->s32_min_value, reg->s32_max_value,
2174 		reg->var_off.value, reg->var_off.mask);
2175 	if (env->test_reg_invariants)
2176 		return -EFAULT;
2177 	__mark_reg_unbounded(reg);
2178 	return 0;
2179 }
2180 
2181 static bool __reg32_bound_s64(s32 a)
2182 {
2183 	return a >= 0 && a <= S32_MAX;
2184 }
2185 
2186 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2187 {
2188 	reg->umin_value = reg->u32_min_value;
2189 	reg->umax_value = reg->u32_max_value;
2190 
2191 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2192 	 * be positive otherwise set to worse case bounds and refine later
2193 	 * from tnum.
2194 	 */
2195 	if (__reg32_bound_s64(reg->s32_min_value) &&
2196 	    __reg32_bound_s64(reg->s32_max_value)) {
2197 		reg->smin_value = reg->s32_min_value;
2198 		reg->smax_value = reg->s32_max_value;
2199 	} else {
2200 		reg->smin_value = 0;
2201 		reg->smax_value = U32_MAX;
2202 	}
2203 }
2204 
2205 /* Mark a register as having a completely unknown (scalar) value. */
2206 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2207 			       struct bpf_reg_state *reg)
2208 {
2209 	/*
2210 	 * Clear type, off, and union(map_ptr, range) and
2211 	 * padding between 'type' and union
2212 	 */
2213 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2214 	reg->type = SCALAR_VALUE;
2215 	reg->id = 0;
2216 	reg->ref_obj_id = 0;
2217 	reg->var_off = tnum_unknown;
2218 	reg->frameno = 0;
2219 	reg->precise = !env->bpf_capable;
2220 	__mark_reg_unbounded(reg);
2221 }
2222 
2223 static void mark_reg_unknown(struct bpf_verifier_env *env,
2224 			     struct bpf_reg_state *regs, u32 regno)
2225 {
2226 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2227 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2228 		/* Something bad happened, let's kill all regs except FP */
2229 		for (regno = 0; regno < BPF_REG_FP; regno++)
2230 			__mark_reg_not_init(env, regs + regno);
2231 		return;
2232 	}
2233 	__mark_reg_unknown(env, regs + regno);
2234 }
2235 
2236 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2237 				struct bpf_reg_state *reg)
2238 {
2239 	__mark_reg_unknown(env, reg);
2240 	reg->type = NOT_INIT;
2241 }
2242 
2243 static void mark_reg_not_init(struct bpf_verifier_env *env,
2244 			      struct bpf_reg_state *regs, u32 regno)
2245 {
2246 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2247 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2248 		/* Something bad happened, let's kill all regs except FP */
2249 		for (regno = 0; regno < BPF_REG_FP; regno++)
2250 			__mark_reg_not_init(env, regs + regno);
2251 		return;
2252 	}
2253 	__mark_reg_not_init(env, regs + regno);
2254 }
2255 
2256 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2257 			    struct bpf_reg_state *regs, u32 regno,
2258 			    enum bpf_reg_type reg_type,
2259 			    struct btf *btf, u32 btf_id,
2260 			    enum bpf_type_flag flag)
2261 {
2262 	if (reg_type == SCALAR_VALUE) {
2263 		mark_reg_unknown(env, regs, regno);
2264 		return;
2265 	}
2266 	mark_reg_known_zero(env, regs, regno);
2267 	regs[regno].type = PTR_TO_BTF_ID | flag;
2268 	regs[regno].btf = btf;
2269 	regs[regno].btf_id = btf_id;
2270 }
2271 
2272 #define DEF_NOT_SUBREG	(0)
2273 static void init_reg_state(struct bpf_verifier_env *env,
2274 			   struct bpf_func_state *state)
2275 {
2276 	struct bpf_reg_state *regs = state->regs;
2277 	int i;
2278 
2279 	for (i = 0; i < MAX_BPF_REG; i++) {
2280 		mark_reg_not_init(env, regs, i);
2281 		regs[i].live = REG_LIVE_NONE;
2282 		regs[i].parent = NULL;
2283 		regs[i].subreg_def = DEF_NOT_SUBREG;
2284 	}
2285 
2286 	/* frame pointer */
2287 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2288 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2289 	regs[BPF_REG_FP].frameno = state->frameno;
2290 }
2291 
2292 #define BPF_MAIN_FUNC (-1)
2293 static void init_func_state(struct bpf_verifier_env *env,
2294 			    struct bpf_func_state *state,
2295 			    int callsite, int frameno, int subprogno)
2296 {
2297 	state->callsite = callsite;
2298 	state->frameno = frameno;
2299 	state->subprogno = subprogno;
2300 	state->callback_ret_range = tnum_range(0, 0);
2301 	init_reg_state(env, state);
2302 	mark_verifier_state_scratched(env);
2303 }
2304 
2305 /* Similar to push_stack(), but for async callbacks */
2306 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2307 						int insn_idx, int prev_insn_idx,
2308 						int subprog)
2309 {
2310 	struct bpf_verifier_stack_elem *elem;
2311 	struct bpf_func_state *frame;
2312 
2313 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2314 	if (!elem)
2315 		goto err;
2316 
2317 	elem->insn_idx = insn_idx;
2318 	elem->prev_insn_idx = prev_insn_idx;
2319 	elem->next = env->head;
2320 	elem->log_pos = env->log.end_pos;
2321 	env->head = elem;
2322 	env->stack_size++;
2323 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2324 		verbose(env,
2325 			"The sequence of %d jumps is too complex for async cb.\n",
2326 			env->stack_size);
2327 		goto err;
2328 	}
2329 	/* Unlike push_stack() do not copy_verifier_state().
2330 	 * The caller state doesn't matter.
2331 	 * This is async callback. It starts in a fresh stack.
2332 	 * Initialize it similar to do_check_common().
2333 	 */
2334 	elem->st.branches = 1;
2335 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2336 	if (!frame)
2337 		goto err;
2338 	init_func_state(env, frame,
2339 			BPF_MAIN_FUNC /* callsite */,
2340 			0 /* frameno within this callchain */,
2341 			subprog /* subprog number within this prog */);
2342 	elem->st.frame[0] = frame;
2343 	return &elem->st;
2344 err:
2345 	free_verifier_state(env->cur_state, true);
2346 	env->cur_state = NULL;
2347 	/* pop all elements and return */
2348 	while (!pop_stack(env, NULL, NULL, false));
2349 	return NULL;
2350 }
2351 
2352 
2353 enum reg_arg_type {
2354 	SRC_OP,		/* register is used as source operand */
2355 	DST_OP,		/* register is used as destination operand */
2356 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2357 };
2358 
2359 static int cmp_subprogs(const void *a, const void *b)
2360 {
2361 	return ((struct bpf_subprog_info *)a)->start -
2362 	       ((struct bpf_subprog_info *)b)->start;
2363 }
2364 
2365 static int find_subprog(struct bpf_verifier_env *env, int off)
2366 {
2367 	struct bpf_subprog_info *p;
2368 
2369 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2370 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2371 	if (!p)
2372 		return -ENOENT;
2373 	return p - env->subprog_info;
2374 
2375 }
2376 
2377 static int add_subprog(struct bpf_verifier_env *env, int off)
2378 {
2379 	int insn_cnt = env->prog->len;
2380 	int ret;
2381 
2382 	if (off >= insn_cnt || off < 0) {
2383 		verbose(env, "call to invalid destination\n");
2384 		return -EINVAL;
2385 	}
2386 	ret = find_subprog(env, off);
2387 	if (ret >= 0)
2388 		return ret;
2389 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2390 		verbose(env, "too many subprograms\n");
2391 		return -E2BIG;
2392 	}
2393 	/* determine subprog starts. The end is one before the next starts */
2394 	env->subprog_info[env->subprog_cnt++].start = off;
2395 	sort(env->subprog_info, env->subprog_cnt,
2396 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2397 	return env->subprog_cnt - 1;
2398 }
2399 
2400 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2401 {
2402 	struct bpf_prog_aux *aux = env->prog->aux;
2403 	struct btf *btf = aux->btf;
2404 	const struct btf_type *t;
2405 	u32 main_btf_id, id;
2406 	const char *name;
2407 	int ret, i;
2408 
2409 	/* Non-zero func_info_cnt implies valid btf */
2410 	if (!aux->func_info_cnt)
2411 		return 0;
2412 	main_btf_id = aux->func_info[0].type_id;
2413 
2414 	t = btf_type_by_id(btf, main_btf_id);
2415 	if (!t) {
2416 		verbose(env, "invalid btf id for main subprog in func_info\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2421 	if (IS_ERR(name)) {
2422 		ret = PTR_ERR(name);
2423 		/* If there is no tag present, there is no exception callback */
2424 		if (ret == -ENOENT)
2425 			ret = 0;
2426 		else if (ret == -EEXIST)
2427 			verbose(env, "multiple exception callback tags for main subprog\n");
2428 		return ret;
2429 	}
2430 
2431 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2432 	if (ret < 0) {
2433 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2434 		return ret;
2435 	}
2436 	id = ret;
2437 	t = btf_type_by_id(btf, id);
2438 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2439 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2440 		return -EINVAL;
2441 	}
2442 	ret = 0;
2443 	for (i = 0; i < aux->func_info_cnt; i++) {
2444 		if (aux->func_info[i].type_id != id)
2445 			continue;
2446 		ret = aux->func_info[i].insn_off;
2447 		/* Further func_info and subprog checks will also happen
2448 		 * later, so assume this is the right insn_off for now.
2449 		 */
2450 		if (!ret) {
2451 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2452 			ret = -EINVAL;
2453 		}
2454 	}
2455 	if (!ret) {
2456 		verbose(env, "exception callback type id not found in func_info\n");
2457 		ret = -EINVAL;
2458 	}
2459 	return ret;
2460 }
2461 
2462 #define MAX_KFUNC_DESCS 256
2463 #define MAX_KFUNC_BTFS	256
2464 
2465 struct bpf_kfunc_desc {
2466 	struct btf_func_model func_model;
2467 	u32 func_id;
2468 	s32 imm;
2469 	u16 offset;
2470 	unsigned long addr;
2471 };
2472 
2473 struct bpf_kfunc_btf {
2474 	struct btf *btf;
2475 	struct module *module;
2476 	u16 offset;
2477 };
2478 
2479 struct bpf_kfunc_desc_tab {
2480 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2481 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2482 	 * available, therefore at the end of verification do_misc_fixups()
2483 	 * sorts this by imm and offset.
2484 	 */
2485 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2486 	u32 nr_descs;
2487 };
2488 
2489 struct bpf_kfunc_btf_tab {
2490 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2491 	u32 nr_descs;
2492 };
2493 
2494 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2495 {
2496 	const struct bpf_kfunc_desc *d0 = a;
2497 	const struct bpf_kfunc_desc *d1 = b;
2498 
2499 	/* func_id is not greater than BTF_MAX_TYPE */
2500 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2501 }
2502 
2503 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2504 {
2505 	const struct bpf_kfunc_btf *d0 = a;
2506 	const struct bpf_kfunc_btf *d1 = b;
2507 
2508 	return d0->offset - d1->offset;
2509 }
2510 
2511 static const struct bpf_kfunc_desc *
2512 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2513 {
2514 	struct bpf_kfunc_desc desc = {
2515 		.func_id = func_id,
2516 		.offset = offset,
2517 	};
2518 	struct bpf_kfunc_desc_tab *tab;
2519 
2520 	tab = prog->aux->kfunc_tab;
2521 	return bsearch(&desc, tab->descs, tab->nr_descs,
2522 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2523 }
2524 
2525 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2526 		       u16 btf_fd_idx, u8 **func_addr)
2527 {
2528 	const struct bpf_kfunc_desc *desc;
2529 
2530 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2531 	if (!desc)
2532 		return -EFAULT;
2533 
2534 	*func_addr = (u8 *)desc->addr;
2535 	return 0;
2536 }
2537 
2538 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2539 					 s16 offset)
2540 {
2541 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2542 	struct bpf_kfunc_btf_tab *tab;
2543 	struct bpf_kfunc_btf *b;
2544 	struct module *mod;
2545 	struct btf *btf;
2546 	int btf_fd;
2547 
2548 	tab = env->prog->aux->kfunc_btf_tab;
2549 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2550 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2551 	if (!b) {
2552 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2553 			verbose(env, "too many different module BTFs\n");
2554 			return ERR_PTR(-E2BIG);
2555 		}
2556 
2557 		if (bpfptr_is_null(env->fd_array)) {
2558 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2559 			return ERR_PTR(-EPROTO);
2560 		}
2561 
2562 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2563 					    offset * sizeof(btf_fd),
2564 					    sizeof(btf_fd)))
2565 			return ERR_PTR(-EFAULT);
2566 
2567 		btf = btf_get_by_fd(btf_fd);
2568 		if (IS_ERR(btf)) {
2569 			verbose(env, "invalid module BTF fd specified\n");
2570 			return btf;
2571 		}
2572 
2573 		if (!btf_is_module(btf)) {
2574 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2575 			btf_put(btf);
2576 			return ERR_PTR(-EINVAL);
2577 		}
2578 
2579 		mod = btf_try_get_module(btf);
2580 		if (!mod) {
2581 			btf_put(btf);
2582 			return ERR_PTR(-ENXIO);
2583 		}
2584 
2585 		b = &tab->descs[tab->nr_descs++];
2586 		b->btf = btf;
2587 		b->module = mod;
2588 		b->offset = offset;
2589 
2590 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2591 		     kfunc_btf_cmp_by_off, NULL);
2592 	}
2593 	return b->btf;
2594 }
2595 
2596 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2597 {
2598 	if (!tab)
2599 		return;
2600 
2601 	while (tab->nr_descs--) {
2602 		module_put(tab->descs[tab->nr_descs].module);
2603 		btf_put(tab->descs[tab->nr_descs].btf);
2604 	}
2605 	kfree(tab);
2606 }
2607 
2608 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2609 {
2610 	if (offset) {
2611 		if (offset < 0) {
2612 			/* In the future, this can be allowed to increase limit
2613 			 * of fd index into fd_array, interpreted as u16.
2614 			 */
2615 			verbose(env, "negative offset disallowed for kernel module function call\n");
2616 			return ERR_PTR(-EINVAL);
2617 		}
2618 
2619 		return __find_kfunc_desc_btf(env, offset);
2620 	}
2621 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2622 }
2623 
2624 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2625 {
2626 	const struct btf_type *func, *func_proto;
2627 	struct bpf_kfunc_btf_tab *btf_tab;
2628 	struct bpf_kfunc_desc_tab *tab;
2629 	struct bpf_prog_aux *prog_aux;
2630 	struct bpf_kfunc_desc *desc;
2631 	const char *func_name;
2632 	struct btf *desc_btf;
2633 	unsigned long call_imm;
2634 	unsigned long addr;
2635 	int err;
2636 
2637 	prog_aux = env->prog->aux;
2638 	tab = prog_aux->kfunc_tab;
2639 	btf_tab = prog_aux->kfunc_btf_tab;
2640 	if (!tab) {
2641 		if (!btf_vmlinux) {
2642 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2643 			return -ENOTSUPP;
2644 		}
2645 
2646 		if (!env->prog->jit_requested) {
2647 			verbose(env, "JIT is required for calling kernel function\n");
2648 			return -ENOTSUPP;
2649 		}
2650 
2651 		if (!bpf_jit_supports_kfunc_call()) {
2652 			verbose(env, "JIT does not support calling kernel function\n");
2653 			return -ENOTSUPP;
2654 		}
2655 
2656 		if (!env->prog->gpl_compatible) {
2657 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2658 			return -EINVAL;
2659 		}
2660 
2661 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2662 		if (!tab)
2663 			return -ENOMEM;
2664 		prog_aux->kfunc_tab = tab;
2665 	}
2666 
2667 	/* func_id == 0 is always invalid, but instead of returning an error, be
2668 	 * conservative and wait until the code elimination pass before returning
2669 	 * error, so that invalid calls that get pruned out can be in BPF programs
2670 	 * loaded from userspace.  It is also required that offset be untouched
2671 	 * for such calls.
2672 	 */
2673 	if (!func_id && !offset)
2674 		return 0;
2675 
2676 	if (!btf_tab && offset) {
2677 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2678 		if (!btf_tab)
2679 			return -ENOMEM;
2680 		prog_aux->kfunc_btf_tab = btf_tab;
2681 	}
2682 
2683 	desc_btf = find_kfunc_desc_btf(env, offset);
2684 	if (IS_ERR(desc_btf)) {
2685 		verbose(env, "failed to find BTF for kernel function\n");
2686 		return PTR_ERR(desc_btf);
2687 	}
2688 
2689 	if (find_kfunc_desc(env->prog, func_id, offset))
2690 		return 0;
2691 
2692 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2693 		verbose(env, "too many different kernel function calls\n");
2694 		return -E2BIG;
2695 	}
2696 
2697 	func = btf_type_by_id(desc_btf, func_id);
2698 	if (!func || !btf_type_is_func(func)) {
2699 		verbose(env, "kernel btf_id %u is not a function\n",
2700 			func_id);
2701 		return -EINVAL;
2702 	}
2703 	func_proto = btf_type_by_id(desc_btf, func->type);
2704 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2705 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2706 			func_id);
2707 		return -EINVAL;
2708 	}
2709 
2710 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2711 	addr = kallsyms_lookup_name(func_name);
2712 	if (!addr) {
2713 		verbose(env, "cannot find address for kernel function %s\n",
2714 			func_name);
2715 		return -EINVAL;
2716 	}
2717 	specialize_kfunc(env, func_id, offset, &addr);
2718 
2719 	if (bpf_jit_supports_far_kfunc_call()) {
2720 		call_imm = func_id;
2721 	} else {
2722 		call_imm = BPF_CALL_IMM(addr);
2723 		/* Check whether the relative offset overflows desc->imm */
2724 		if ((unsigned long)(s32)call_imm != call_imm) {
2725 			verbose(env, "address of kernel function %s is out of range\n",
2726 				func_name);
2727 			return -EINVAL;
2728 		}
2729 	}
2730 
2731 	if (bpf_dev_bound_kfunc_id(func_id)) {
2732 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2733 		if (err)
2734 			return err;
2735 	}
2736 
2737 	desc = &tab->descs[tab->nr_descs++];
2738 	desc->func_id = func_id;
2739 	desc->imm = call_imm;
2740 	desc->offset = offset;
2741 	desc->addr = addr;
2742 	err = btf_distill_func_proto(&env->log, desc_btf,
2743 				     func_proto, func_name,
2744 				     &desc->func_model);
2745 	if (!err)
2746 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2747 		     kfunc_desc_cmp_by_id_off, NULL);
2748 	return err;
2749 }
2750 
2751 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2752 {
2753 	const struct bpf_kfunc_desc *d0 = a;
2754 	const struct bpf_kfunc_desc *d1 = b;
2755 
2756 	if (d0->imm != d1->imm)
2757 		return d0->imm < d1->imm ? -1 : 1;
2758 	if (d0->offset != d1->offset)
2759 		return d0->offset < d1->offset ? -1 : 1;
2760 	return 0;
2761 }
2762 
2763 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2764 {
2765 	struct bpf_kfunc_desc_tab *tab;
2766 
2767 	tab = prog->aux->kfunc_tab;
2768 	if (!tab)
2769 		return;
2770 
2771 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2772 	     kfunc_desc_cmp_by_imm_off, NULL);
2773 }
2774 
2775 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2776 {
2777 	return !!prog->aux->kfunc_tab;
2778 }
2779 
2780 const struct btf_func_model *
2781 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2782 			 const struct bpf_insn *insn)
2783 {
2784 	const struct bpf_kfunc_desc desc = {
2785 		.imm = insn->imm,
2786 		.offset = insn->off,
2787 	};
2788 	const struct bpf_kfunc_desc *res;
2789 	struct bpf_kfunc_desc_tab *tab;
2790 
2791 	tab = prog->aux->kfunc_tab;
2792 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2793 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2794 
2795 	return res ? &res->func_model : NULL;
2796 }
2797 
2798 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2799 {
2800 	struct bpf_subprog_info *subprog = env->subprog_info;
2801 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2802 	struct bpf_insn *insn = env->prog->insnsi;
2803 
2804 	/* Add entry function. */
2805 	ret = add_subprog(env, 0);
2806 	if (ret)
2807 		return ret;
2808 
2809 	for (i = 0; i < insn_cnt; i++, insn++) {
2810 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2811 		    !bpf_pseudo_kfunc_call(insn))
2812 			continue;
2813 
2814 		if (!env->bpf_capable) {
2815 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2816 			return -EPERM;
2817 		}
2818 
2819 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2820 			ret = add_subprog(env, i + insn->imm + 1);
2821 		else
2822 			ret = add_kfunc_call(env, insn->imm, insn->off);
2823 
2824 		if (ret < 0)
2825 			return ret;
2826 	}
2827 
2828 	ret = bpf_find_exception_callback_insn_off(env);
2829 	if (ret < 0)
2830 		return ret;
2831 	ex_cb_insn = ret;
2832 
2833 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2834 	 * marked using BTF decl tag to serve as the exception callback.
2835 	 */
2836 	if (ex_cb_insn) {
2837 		ret = add_subprog(env, ex_cb_insn);
2838 		if (ret < 0)
2839 			return ret;
2840 		for (i = 1; i < env->subprog_cnt; i++) {
2841 			if (env->subprog_info[i].start != ex_cb_insn)
2842 				continue;
2843 			env->exception_callback_subprog = i;
2844 			break;
2845 		}
2846 	}
2847 
2848 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2849 	 * logic. 'subprog_cnt' should not be increased.
2850 	 */
2851 	subprog[env->subprog_cnt].start = insn_cnt;
2852 
2853 	if (env->log.level & BPF_LOG_LEVEL2)
2854 		for (i = 0; i < env->subprog_cnt; i++)
2855 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2856 
2857 	return 0;
2858 }
2859 
2860 static int check_subprogs(struct bpf_verifier_env *env)
2861 {
2862 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2863 	struct bpf_subprog_info *subprog = env->subprog_info;
2864 	struct bpf_insn *insn = env->prog->insnsi;
2865 	int insn_cnt = env->prog->len;
2866 
2867 	/* now check that all jumps are within the same subprog */
2868 	subprog_start = subprog[cur_subprog].start;
2869 	subprog_end = subprog[cur_subprog + 1].start;
2870 	for (i = 0; i < insn_cnt; i++) {
2871 		u8 code = insn[i].code;
2872 
2873 		if (code == (BPF_JMP | BPF_CALL) &&
2874 		    insn[i].src_reg == 0 &&
2875 		    insn[i].imm == BPF_FUNC_tail_call)
2876 			subprog[cur_subprog].has_tail_call = true;
2877 		if (BPF_CLASS(code) == BPF_LD &&
2878 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2879 			subprog[cur_subprog].has_ld_abs = true;
2880 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2881 			goto next;
2882 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2883 			goto next;
2884 		if (code == (BPF_JMP32 | BPF_JA))
2885 			off = i + insn[i].imm + 1;
2886 		else
2887 			off = i + insn[i].off + 1;
2888 		if (off < subprog_start || off >= subprog_end) {
2889 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2890 			return -EINVAL;
2891 		}
2892 next:
2893 		if (i == subprog_end - 1) {
2894 			/* to avoid fall-through from one subprog into another
2895 			 * the last insn of the subprog should be either exit
2896 			 * or unconditional jump back or bpf_throw call
2897 			 */
2898 			if (code != (BPF_JMP | BPF_EXIT) &&
2899 			    code != (BPF_JMP32 | BPF_JA) &&
2900 			    code != (BPF_JMP | BPF_JA)) {
2901 				verbose(env, "last insn is not an exit or jmp\n");
2902 				return -EINVAL;
2903 			}
2904 			subprog_start = subprog_end;
2905 			cur_subprog++;
2906 			if (cur_subprog < env->subprog_cnt)
2907 				subprog_end = subprog[cur_subprog + 1].start;
2908 		}
2909 	}
2910 	return 0;
2911 }
2912 
2913 /* Parentage chain of this register (or stack slot) should take care of all
2914  * issues like callee-saved registers, stack slot allocation time, etc.
2915  */
2916 static int mark_reg_read(struct bpf_verifier_env *env,
2917 			 const struct bpf_reg_state *state,
2918 			 struct bpf_reg_state *parent, u8 flag)
2919 {
2920 	bool writes = parent == state->parent; /* Observe write marks */
2921 	int cnt = 0;
2922 
2923 	while (parent) {
2924 		/* if read wasn't screened by an earlier write ... */
2925 		if (writes && state->live & REG_LIVE_WRITTEN)
2926 			break;
2927 		if (parent->live & REG_LIVE_DONE) {
2928 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2929 				reg_type_str(env, parent->type),
2930 				parent->var_off.value, parent->off);
2931 			return -EFAULT;
2932 		}
2933 		/* The first condition is more likely to be true than the
2934 		 * second, checked it first.
2935 		 */
2936 		if ((parent->live & REG_LIVE_READ) == flag ||
2937 		    parent->live & REG_LIVE_READ64)
2938 			/* The parentage chain never changes and
2939 			 * this parent was already marked as LIVE_READ.
2940 			 * There is no need to keep walking the chain again and
2941 			 * keep re-marking all parents as LIVE_READ.
2942 			 * This case happens when the same register is read
2943 			 * multiple times without writes into it in-between.
2944 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2945 			 * then no need to set the weak REG_LIVE_READ32.
2946 			 */
2947 			break;
2948 		/* ... then we depend on parent's value */
2949 		parent->live |= flag;
2950 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2951 		if (flag == REG_LIVE_READ64)
2952 			parent->live &= ~REG_LIVE_READ32;
2953 		state = parent;
2954 		parent = state->parent;
2955 		writes = true;
2956 		cnt++;
2957 	}
2958 
2959 	if (env->longest_mark_read_walk < cnt)
2960 		env->longest_mark_read_walk = cnt;
2961 	return 0;
2962 }
2963 
2964 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2965 {
2966 	struct bpf_func_state *state = func(env, reg);
2967 	int spi, ret;
2968 
2969 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2970 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2971 	 * check_kfunc_call.
2972 	 */
2973 	if (reg->type == CONST_PTR_TO_DYNPTR)
2974 		return 0;
2975 	spi = dynptr_get_spi(env, reg);
2976 	if (spi < 0)
2977 		return spi;
2978 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2979 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2980 	 * read.
2981 	 */
2982 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2983 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2984 	if (ret)
2985 		return ret;
2986 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2987 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2988 }
2989 
2990 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2991 			  int spi, int nr_slots)
2992 {
2993 	struct bpf_func_state *state = func(env, reg);
2994 	int err, i;
2995 
2996 	for (i = 0; i < nr_slots; i++) {
2997 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2998 
2999 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3000 		if (err)
3001 			return err;
3002 
3003 		mark_stack_slot_scratched(env, spi - i);
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 /* This function is supposed to be used by the following 32-bit optimization
3010  * code only. It returns TRUE if the source or destination register operates
3011  * on 64-bit, otherwise return FALSE.
3012  */
3013 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3014 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3015 {
3016 	u8 code, class, op;
3017 
3018 	code = insn->code;
3019 	class = BPF_CLASS(code);
3020 	op = BPF_OP(code);
3021 	if (class == BPF_JMP) {
3022 		/* BPF_EXIT for "main" will reach here. Return TRUE
3023 		 * conservatively.
3024 		 */
3025 		if (op == BPF_EXIT)
3026 			return true;
3027 		if (op == BPF_CALL) {
3028 			/* BPF to BPF call will reach here because of marking
3029 			 * caller saved clobber with DST_OP_NO_MARK for which we
3030 			 * don't care the register def because they are anyway
3031 			 * marked as NOT_INIT already.
3032 			 */
3033 			if (insn->src_reg == BPF_PSEUDO_CALL)
3034 				return false;
3035 			/* Helper call will reach here because of arg type
3036 			 * check, conservatively return TRUE.
3037 			 */
3038 			if (t == SRC_OP)
3039 				return true;
3040 
3041 			return false;
3042 		}
3043 	}
3044 
3045 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3046 		return false;
3047 
3048 	if (class == BPF_ALU64 || class == BPF_JMP ||
3049 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3050 		return true;
3051 
3052 	if (class == BPF_ALU || class == BPF_JMP32)
3053 		return false;
3054 
3055 	if (class == BPF_LDX) {
3056 		if (t != SRC_OP)
3057 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3058 		/* LDX source must be ptr. */
3059 		return true;
3060 	}
3061 
3062 	if (class == BPF_STX) {
3063 		/* BPF_STX (including atomic variants) has multiple source
3064 		 * operands, one of which is a ptr. Check whether the caller is
3065 		 * asking about it.
3066 		 */
3067 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3068 			return true;
3069 		return BPF_SIZE(code) == BPF_DW;
3070 	}
3071 
3072 	if (class == BPF_LD) {
3073 		u8 mode = BPF_MODE(code);
3074 
3075 		/* LD_IMM64 */
3076 		if (mode == BPF_IMM)
3077 			return true;
3078 
3079 		/* Both LD_IND and LD_ABS return 32-bit data. */
3080 		if (t != SRC_OP)
3081 			return  false;
3082 
3083 		/* Implicit ctx ptr. */
3084 		if (regno == BPF_REG_6)
3085 			return true;
3086 
3087 		/* Explicit source could be any width. */
3088 		return true;
3089 	}
3090 
3091 	if (class == BPF_ST)
3092 		/* The only source register for BPF_ST is a ptr. */
3093 		return true;
3094 
3095 	/* Conservatively return true at default. */
3096 	return true;
3097 }
3098 
3099 /* Return the regno defined by the insn, or -1. */
3100 static int insn_def_regno(const struct bpf_insn *insn)
3101 {
3102 	switch (BPF_CLASS(insn->code)) {
3103 	case BPF_JMP:
3104 	case BPF_JMP32:
3105 	case BPF_ST:
3106 		return -1;
3107 	case BPF_STX:
3108 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3109 		    (insn->imm & BPF_FETCH)) {
3110 			if (insn->imm == BPF_CMPXCHG)
3111 				return BPF_REG_0;
3112 			else
3113 				return insn->src_reg;
3114 		} else {
3115 			return -1;
3116 		}
3117 	default:
3118 		return insn->dst_reg;
3119 	}
3120 }
3121 
3122 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3123 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3124 {
3125 	int dst_reg = insn_def_regno(insn);
3126 
3127 	if (dst_reg == -1)
3128 		return false;
3129 
3130 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3131 }
3132 
3133 static void mark_insn_zext(struct bpf_verifier_env *env,
3134 			   struct bpf_reg_state *reg)
3135 {
3136 	s32 def_idx = reg->subreg_def;
3137 
3138 	if (def_idx == DEF_NOT_SUBREG)
3139 		return;
3140 
3141 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3142 	/* The dst will be zero extended, so won't be sub-register anymore. */
3143 	reg->subreg_def = DEF_NOT_SUBREG;
3144 }
3145 
3146 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3147 			   enum reg_arg_type t)
3148 {
3149 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3150 	struct bpf_reg_state *reg;
3151 	bool rw64;
3152 
3153 	if (regno >= MAX_BPF_REG) {
3154 		verbose(env, "R%d is invalid\n", regno);
3155 		return -EINVAL;
3156 	}
3157 
3158 	mark_reg_scratched(env, regno);
3159 
3160 	reg = &regs[regno];
3161 	rw64 = is_reg64(env, insn, regno, reg, t);
3162 	if (t == SRC_OP) {
3163 		/* check whether register used as source operand can be read */
3164 		if (reg->type == NOT_INIT) {
3165 			verbose(env, "R%d !read_ok\n", regno);
3166 			return -EACCES;
3167 		}
3168 		/* We don't need to worry about FP liveness because it's read-only */
3169 		if (regno == BPF_REG_FP)
3170 			return 0;
3171 
3172 		if (rw64)
3173 			mark_insn_zext(env, reg);
3174 
3175 		return mark_reg_read(env, reg, reg->parent,
3176 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3177 	} else {
3178 		/* check whether register used as dest operand can be written to */
3179 		if (regno == BPF_REG_FP) {
3180 			verbose(env, "frame pointer is read only\n");
3181 			return -EACCES;
3182 		}
3183 		reg->live |= REG_LIVE_WRITTEN;
3184 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3185 		if (t == DST_OP)
3186 			mark_reg_unknown(env, regs, regno);
3187 	}
3188 	return 0;
3189 }
3190 
3191 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3192 			 enum reg_arg_type t)
3193 {
3194 	struct bpf_verifier_state *vstate = env->cur_state;
3195 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3196 
3197 	return __check_reg_arg(env, state->regs, regno, t);
3198 }
3199 
3200 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3201 {
3202 	env->insn_aux_data[idx].jmp_point = true;
3203 }
3204 
3205 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3206 {
3207 	return env->insn_aux_data[insn_idx].jmp_point;
3208 }
3209 
3210 /* for any branch, call, exit record the history of jmps in the given state */
3211 static int push_jmp_history(struct bpf_verifier_env *env,
3212 			    struct bpf_verifier_state *cur)
3213 {
3214 	u32 cnt = cur->jmp_history_cnt;
3215 	struct bpf_idx_pair *p;
3216 	size_t alloc_size;
3217 
3218 	if (!is_jmp_point(env, env->insn_idx))
3219 		return 0;
3220 
3221 	cnt++;
3222 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3223 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3224 	if (!p)
3225 		return -ENOMEM;
3226 	p[cnt - 1].idx = env->insn_idx;
3227 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3228 	cur->jmp_history = p;
3229 	cur->jmp_history_cnt = cnt;
3230 	return 0;
3231 }
3232 
3233 /* Backtrack one insn at a time. If idx is not at the top of recorded
3234  * history then previous instruction came from straight line execution.
3235  * Return -ENOENT if we exhausted all instructions within given state.
3236  *
3237  * It's legal to have a bit of a looping with the same starting and ending
3238  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3239  * instruction index is the same as state's first_idx doesn't mean we are
3240  * done. If there is still some jump history left, we should keep going. We
3241  * need to take into account that we might have a jump history between given
3242  * state's parent and itself, due to checkpointing. In this case, we'll have
3243  * history entry recording a jump from last instruction of parent state and
3244  * first instruction of given state.
3245  */
3246 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3247 			     u32 *history)
3248 {
3249 	u32 cnt = *history;
3250 
3251 	if (i == st->first_insn_idx) {
3252 		if (cnt == 0)
3253 			return -ENOENT;
3254 		if (cnt == 1 && st->jmp_history[0].idx == i)
3255 			return -ENOENT;
3256 	}
3257 
3258 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3259 		i = st->jmp_history[cnt - 1].prev_idx;
3260 		(*history)--;
3261 	} else {
3262 		i--;
3263 	}
3264 	return i;
3265 }
3266 
3267 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3268 {
3269 	const struct btf_type *func;
3270 	struct btf *desc_btf;
3271 
3272 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3273 		return NULL;
3274 
3275 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3276 	if (IS_ERR(desc_btf))
3277 		return "<error>";
3278 
3279 	func = btf_type_by_id(desc_btf, insn->imm);
3280 	return btf_name_by_offset(desc_btf, func->name_off);
3281 }
3282 
3283 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3284 {
3285 	bt->frame = frame;
3286 }
3287 
3288 static inline void bt_reset(struct backtrack_state *bt)
3289 {
3290 	struct bpf_verifier_env *env = bt->env;
3291 
3292 	memset(bt, 0, sizeof(*bt));
3293 	bt->env = env;
3294 }
3295 
3296 static inline u32 bt_empty(struct backtrack_state *bt)
3297 {
3298 	u64 mask = 0;
3299 	int i;
3300 
3301 	for (i = 0; i <= bt->frame; i++)
3302 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3303 
3304 	return mask == 0;
3305 }
3306 
3307 static inline int bt_subprog_enter(struct backtrack_state *bt)
3308 {
3309 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3310 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3311 		WARN_ONCE(1, "verifier backtracking bug");
3312 		return -EFAULT;
3313 	}
3314 	bt->frame++;
3315 	return 0;
3316 }
3317 
3318 static inline int bt_subprog_exit(struct backtrack_state *bt)
3319 {
3320 	if (bt->frame == 0) {
3321 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3322 		WARN_ONCE(1, "verifier backtracking bug");
3323 		return -EFAULT;
3324 	}
3325 	bt->frame--;
3326 	return 0;
3327 }
3328 
3329 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3330 {
3331 	bt->reg_masks[frame] |= 1 << reg;
3332 }
3333 
3334 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3335 {
3336 	bt->reg_masks[frame] &= ~(1 << reg);
3337 }
3338 
3339 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3340 {
3341 	bt_set_frame_reg(bt, bt->frame, reg);
3342 }
3343 
3344 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3345 {
3346 	bt_clear_frame_reg(bt, bt->frame, reg);
3347 }
3348 
3349 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3350 {
3351 	bt->stack_masks[frame] |= 1ull << slot;
3352 }
3353 
3354 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3355 {
3356 	bt->stack_masks[frame] &= ~(1ull << slot);
3357 }
3358 
3359 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3360 {
3361 	bt_set_frame_slot(bt, bt->frame, slot);
3362 }
3363 
3364 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3365 {
3366 	bt_clear_frame_slot(bt, bt->frame, slot);
3367 }
3368 
3369 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3370 {
3371 	return bt->reg_masks[frame];
3372 }
3373 
3374 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3375 {
3376 	return bt->reg_masks[bt->frame];
3377 }
3378 
3379 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3380 {
3381 	return bt->stack_masks[frame];
3382 }
3383 
3384 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3385 {
3386 	return bt->stack_masks[bt->frame];
3387 }
3388 
3389 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3390 {
3391 	return bt->reg_masks[bt->frame] & (1 << reg);
3392 }
3393 
3394 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3395 {
3396 	return bt->stack_masks[bt->frame] & (1ull << slot);
3397 }
3398 
3399 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3400 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3401 {
3402 	DECLARE_BITMAP(mask, 64);
3403 	bool first = true;
3404 	int i, n;
3405 
3406 	buf[0] = '\0';
3407 
3408 	bitmap_from_u64(mask, reg_mask);
3409 	for_each_set_bit(i, mask, 32) {
3410 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3411 		first = false;
3412 		buf += n;
3413 		buf_sz -= n;
3414 		if (buf_sz < 0)
3415 			break;
3416 	}
3417 }
3418 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3419 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3420 {
3421 	DECLARE_BITMAP(mask, 64);
3422 	bool first = true;
3423 	int i, n;
3424 
3425 	buf[0] = '\0';
3426 
3427 	bitmap_from_u64(mask, stack_mask);
3428 	for_each_set_bit(i, mask, 64) {
3429 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3430 		first = false;
3431 		buf += n;
3432 		buf_sz -= n;
3433 		if (buf_sz < 0)
3434 			break;
3435 	}
3436 }
3437 
3438 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3439 
3440 /* For given verifier state backtrack_insn() is called from the last insn to
3441  * the first insn. Its purpose is to compute a bitmask of registers and
3442  * stack slots that needs precision in the parent verifier state.
3443  *
3444  * @idx is an index of the instruction we are currently processing;
3445  * @subseq_idx is an index of the subsequent instruction that:
3446  *   - *would be* executed next, if jump history is viewed in forward order;
3447  *   - *was* processed previously during backtracking.
3448  */
3449 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3450 			  struct backtrack_state *bt)
3451 {
3452 	const struct bpf_insn_cbs cbs = {
3453 		.cb_call	= disasm_kfunc_name,
3454 		.cb_print	= verbose,
3455 		.private_data	= env,
3456 	};
3457 	struct bpf_insn *insn = env->prog->insnsi + idx;
3458 	u8 class = BPF_CLASS(insn->code);
3459 	u8 opcode = BPF_OP(insn->code);
3460 	u8 mode = BPF_MODE(insn->code);
3461 	u32 dreg = insn->dst_reg;
3462 	u32 sreg = insn->src_reg;
3463 	u32 spi, i;
3464 
3465 	if (insn->code == 0)
3466 		return 0;
3467 	if (env->log.level & BPF_LOG_LEVEL2) {
3468 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3469 		verbose(env, "mark_precise: frame%d: regs=%s ",
3470 			bt->frame, env->tmp_str_buf);
3471 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3472 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3473 		verbose(env, "%d: ", idx);
3474 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3475 	}
3476 
3477 	if (class == BPF_ALU || class == BPF_ALU64) {
3478 		if (!bt_is_reg_set(bt, dreg))
3479 			return 0;
3480 		if (opcode == BPF_END || opcode == BPF_NEG) {
3481 			/* sreg is reserved and unused
3482 			 * dreg still need precision before this insn
3483 			 */
3484 			return 0;
3485 		} else if (opcode == BPF_MOV) {
3486 			if (BPF_SRC(insn->code) == BPF_X) {
3487 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3488 				 * dreg needs precision after this insn
3489 				 * sreg needs precision before this insn
3490 				 */
3491 				bt_clear_reg(bt, dreg);
3492 				bt_set_reg(bt, sreg);
3493 			} else {
3494 				/* dreg = K
3495 				 * dreg needs precision after this insn.
3496 				 * Corresponding register is already marked
3497 				 * as precise=true in this verifier state.
3498 				 * No further markings in parent are necessary
3499 				 */
3500 				bt_clear_reg(bt, dreg);
3501 			}
3502 		} else {
3503 			if (BPF_SRC(insn->code) == BPF_X) {
3504 				/* dreg += sreg
3505 				 * both dreg and sreg need precision
3506 				 * before this insn
3507 				 */
3508 				bt_set_reg(bt, sreg);
3509 			} /* else dreg += K
3510 			   * dreg still needs precision before this insn
3511 			   */
3512 		}
3513 	} else if (class == BPF_LDX) {
3514 		if (!bt_is_reg_set(bt, dreg))
3515 			return 0;
3516 		bt_clear_reg(bt, dreg);
3517 
3518 		/* scalars can only be spilled into stack w/o losing precision.
3519 		 * Load from any other memory can be zero extended.
3520 		 * The desire to keep that precision is already indicated
3521 		 * by 'precise' mark in corresponding register of this state.
3522 		 * No further tracking necessary.
3523 		 */
3524 		if (insn->src_reg != BPF_REG_FP)
3525 			return 0;
3526 
3527 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3528 		 * that [fp - off] slot contains scalar that needs to be
3529 		 * tracked with precision
3530 		 */
3531 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3532 		if (spi >= 64) {
3533 			verbose(env, "BUG spi %d\n", spi);
3534 			WARN_ONCE(1, "verifier backtracking bug");
3535 			return -EFAULT;
3536 		}
3537 		bt_set_slot(bt, spi);
3538 	} else if (class == BPF_STX || class == BPF_ST) {
3539 		if (bt_is_reg_set(bt, dreg))
3540 			/* stx & st shouldn't be using _scalar_ dst_reg
3541 			 * to access memory. It means backtracking
3542 			 * encountered a case of pointer subtraction.
3543 			 */
3544 			return -ENOTSUPP;
3545 		/* scalars can only be spilled into stack */
3546 		if (insn->dst_reg != BPF_REG_FP)
3547 			return 0;
3548 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3549 		if (spi >= 64) {
3550 			verbose(env, "BUG spi %d\n", spi);
3551 			WARN_ONCE(1, "verifier backtracking bug");
3552 			return -EFAULT;
3553 		}
3554 		if (!bt_is_slot_set(bt, spi))
3555 			return 0;
3556 		bt_clear_slot(bt, spi);
3557 		if (class == BPF_STX)
3558 			bt_set_reg(bt, sreg);
3559 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3560 		if (bpf_pseudo_call(insn)) {
3561 			int subprog_insn_idx, subprog;
3562 
3563 			subprog_insn_idx = idx + insn->imm + 1;
3564 			subprog = find_subprog(env, subprog_insn_idx);
3565 			if (subprog < 0)
3566 				return -EFAULT;
3567 
3568 			if (subprog_is_global(env, subprog)) {
3569 				/* check that jump history doesn't have any
3570 				 * extra instructions from subprog; the next
3571 				 * instruction after call to global subprog
3572 				 * should be literally next instruction in
3573 				 * caller program
3574 				 */
3575 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3576 				/* r1-r5 are invalidated after subprog call,
3577 				 * so for global func call it shouldn't be set
3578 				 * anymore
3579 				 */
3580 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3581 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3582 					WARN_ONCE(1, "verifier backtracking bug");
3583 					return -EFAULT;
3584 				}
3585 				/* global subprog always sets R0 */
3586 				bt_clear_reg(bt, BPF_REG_0);
3587 				return 0;
3588 			} else {
3589 				/* static subprog call instruction, which
3590 				 * means that we are exiting current subprog,
3591 				 * so only r1-r5 could be still requested as
3592 				 * precise, r0 and r6-r10 or any stack slot in
3593 				 * the current frame should be zero by now
3594 				 */
3595 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3596 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3597 					WARN_ONCE(1, "verifier backtracking bug");
3598 					return -EFAULT;
3599 				}
3600 				/* we don't track register spills perfectly,
3601 				 * so fallback to force-precise instead of failing */
3602 				if (bt_stack_mask(bt) != 0)
3603 					return -ENOTSUPP;
3604 				/* propagate r1-r5 to the caller */
3605 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3606 					if (bt_is_reg_set(bt, i)) {
3607 						bt_clear_reg(bt, i);
3608 						bt_set_frame_reg(bt, bt->frame - 1, i);
3609 					}
3610 				}
3611 				if (bt_subprog_exit(bt))
3612 					return -EFAULT;
3613 				return 0;
3614 			}
3615 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3616 			/* exit from callback subprog to callback-calling helper or
3617 			 * kfunc call. Use idx/subseq_idx check to discern it from
3618 			 * straight line code backtracking.
3619 			 * Unlike the subprog call handling above, we shouldn't
3620 			 * propagate precision of r1-r5 (if any requested), as they are
3621 			 * not actually arguments passed directly to callback subprogs
3622 			 */
3623 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3624 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3625 				WARN_ONCE(1, "verifier backtracking bug");
3626 				return -EFAULT;
3627 			}
3628 			if (bt_stack_mask(bt) != 0)
3629 				return -ENOTSUPP;
3630 			/* clear r1-r5 in callback subprog's mask */
3631 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3632 				bt_clear_reg(bt, i);
3633 			if (bt_subprog_exit(bt))
3634 				return -EFAULT;
3635 			return 0;
3636 		} else if (opcode == BPF_CALL) {
3637 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3638 			 * catch this error later. Make backtracking conservative
3639 			 * with ENOTSUPP.
3640 			 */
3641 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3642 				return -ENOTSUPP;
3643 			/* regular helper call sets R0 */
3644 			bt_clear_reg(bt, BPF_REG_0);
3645 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3646 				/* if backtracing was looking for registers R1-R5
3647 				 * they should have been found already.
3648 				 */
3649 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3650 				WARN_ONCE(1, "verifier backtracking bug");
3651 				return -EFAULT;
3652 			}
3653 		} else if (opcode == BPF_EXIT) {
3654 			bool r0_precise;
3655 
3656 			/* Backtracking to a nested function call, 'idx' is a part of
3657 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3658 			 * In case of a regular function call, instructions giving
3659 			 * precision to registers R1-R5 should have been found already.
3660 			 * In case of a callback, it is ok to have R1-R5 marked for
3661 			 * backtracking, as these registers are set by the function
3662 			 * invoking callback.
3663 			 */
3664 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3665 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3666 					bt_clear_reg(bt, i);
3667 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3668 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3669 				WARN_ONCE(1, "verifier backtracking bug");
3670 				return -EFAULT;
3671 			}
3672 
3673 			/* BPF_EXIT in subprog or callback always returns
3674 			 * right after the call instruction, so by checking
3675 			 * whether the instruction at subseq_idx-1 is subprog
3676 			 * call or not we can distinguish actual exit from
3677 			 * *subprog* from exit from *callback*. In the former
3678 			 * case, we need to propagate r0 precision, if
3679 			 * necessary. In the former we never do that.
3680 			 */
3681 			r0_precise = subseq_idx - 1 >= 0 &&
3682 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3683 				     bt_is_reg_set(bt, BPF_REG_0);
3684 
3685 			bt_clear_reg(bt, BPF_REG_0);
3686 			if (bt_subprog_enter(bt))
3687 				return -EFAULT;
3688 
3689 			if (r0_precise)
3690 				bt_set_reg(bt, BPF_REG_0);
3691 			/* r6-r9 and stack slots will stay set in caller frame
3692 			 * bitmasks until we return back from callee(s)
3693 			 */
3694 			return 0;
3695 		} else if (BPF_SRC(insn->code) == BPF_X) {
3696 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3697 				return 0;
3698 			/* dreg <cond> sreg
3699 			 * Both dreg and sreg need precision before
3700 			 * this insn. If only sreg was marked precise
3701 			 * before it would be equally necessary to
3702 			 * propagate it to dreg.
3703 			 */
3704 			bt_set_reg(bt, dreg);
3705 			bt_set_reg(bt, sreg);
3706 			 /* else dreg <cond> K
3707 			  * Only dreg still needs precision before
3708 			  * this insn, so for the K-based conditional
3709 			  * there is nothing new to be marked.
3710 			  */
3711 		}
3712 	} else if (class == BPF_LD) {
3713 		if (!bt_is_reg_set(bt, dreg))
3714 			return 0;
3715 		bt_clear_reg(bt, dreg);
3716 		/* It's ld_imm64 or ld_abs or ld_ind.
3717 		 * For ld_imm64 no further tracking of precision
3718 		 * into parent is necessary
3719 		 */
3720 		if (mode == BPF_IND || mode == BPF_ABS)
3721 			/* to be analyzed */
3722 			return -ENOTSUPP;
3723 	}
3724 	return 0;
3725 }
3726 
3727 /* the scalar precision tracking algorithm:
3728  * . at the start all registers have precise=false.
3729  * . scalar ranges are tracked as normal through alu and jmp insns.
3730  * . once precise value of the scalar register is used in:
3731  *   .  ptr + scalar alu
3732  *   . if (scalar cond K|scalar)
3733  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3734  *   backtrack through the verifier states and mark all registers and
3735  *   stack slots with spilled constants that these scalar regisers
3736  *   should be precise.
3737  * . during state pruning two registers (or spilled stack slots)
3738  *   are equivalent if both are not precise.
3739  *
3740  * Note the verifier cannot simply walk register parentage chain,
3741  * since many different registers and stack slots could have been
3742  * used to compute single precise scalar.
3743  *
3744  * The approach of starting with precise=true for all registers and then
3745  * backtrack to mark a register as not precise when the verifier detects
3746  * that program doesn't care about specific value (e.g., when helper
3747  * takes register as ARG_ANYTHING parameter) is not safe.
3748  *
3749  * It's ok to walk single parentage chain of the verifier states.
3750  * It's possible that this backtracking will go all the way till 1st insn.
3751  * All other branches will be explored for needing precision later.
3752  *
3753  * The backtracking needs to deal with cases like:
3754  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3755  * r9 -= r8
3756  * r5 = r9
3757  * if r5 > 0x79f goto pc+7
3758  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3759  * r5 += 1
3760  * ...
3761  * call bpf_perf_event_output#25
3762  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3763  *
3764  * and this case:
3765  * r6 = 1
3766  * call foo // uses callee's r6 inside to compute r0
3767  * r0 += r6
3768  * if r0 == 0 goto
3769  *
3770  * to track above reg_mask/stack_mask needs to be independent for each frame.
3771  *
3772  * Also if parent's curframe > frame where backtracking started,
3773  * the verifier need to mark registers in both frames, otherwise callees
3774  * may incorrectly prune callers. This is similar to
3775  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3776  *
3777  * For now backtracking falls back into conservative marking.
3778  */
3779 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3780 				     struct bpf_verifier_state *st)
3781 {
3782 	struct bpf_func_state *func;
3783 	struct bpf_reg_state *reg;
3784 	int i, j;
3785 
3786 	if (env->log.level & BPF_LOG_LEVEL2) {
3787 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3788 			st->curframe);
3789 	}
3790 
3791 	/* big hammer: mark all scalars precise in this path.
3792 	 * pop_stack may still get !precise scalars.
3793 	 * We also skip current state and go straight to first parent state,
3794 	 * because precision markings in current non-checkpointed state are
3795 	 * not needed. See why in the comment in __mark_chain_precision below.
3796 	 */
3797 	for (st = st->parent; st; st = st->parent) {
3798 		for (i = 0; i <= st->curframe; i++) {
3799 			func = st->frame[i];
3800 			for (j = 0; j < BPF_REG_FP; j++) {
3801 				reg = &func->regs[j];
3802 				if (reg->type != SCALAR_VALUE || reg->precise)
3803 					continue;
3804 				reg->precise = true;
3805 				if (env->log.level & BPF_LOG_LEVEL2) {
3806 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3807 						i, j);
3808 				}
3809 			}
3810 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3811 				if (!is_spilled_reg(&func->stack[j]))
3812 					continue;
3813 				reg = &func->stack[j].spilled_ptr;
3814 				if (reg->type != SCALAR_VALUE || reg->precise)
3815 					continue;
3816 				reg->precise = true;
3817 				if (env->log.level & BPF_LOG_LEVEL2) {
3818 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3819 						i, -(j + 1) * 8);
3820 				}
3821 			}
3822 		}
3823 	}
3824 }
3825 
3826 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3827 {
3828 	struct bpf_func_state *func;
3829 	struct bpf_reg_state *reg;
3830 	int i, j;
3831 
3832 	for (i = 0; i <= st->curframe; i++) {
3833 		func = st->frame[i];
3834 		for (j = 0; j < BPF_REG_FP; j++) {
3835 			reg = &func->regs[j];
3836 			if (reg->type != SCALAR_VALUE)
3837 				continue;
3838 			reg->precise = false;
3839 		}
3840 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3841 			if (!is_spilled_reg(&func->stack[j]))
3842 				continue;
3843 			reg = &func->stack[j].spilled_ptr;
3844 			if (reg->type != SCALAR_VALUE)
3845 				continue;
3846 			reg->precise = false;
3847 		}
3848 	}
3849 }
3850 
3851 static bool idset_contains(struct bpf_idset *s, u32 id)
3852 {
3853 	u32 i;
3854 
3855 	for (i = 0; i < s->count; ++i)
3856 		if (s->ids[i] == id)
3857 			return true;
3858 
3859 	return false;
3860 }
3861 
3862 static int idset_push(struct bpf_idset *s, u32 id)
3863 {
3864 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3865 		return -EFAULT;
3866 	s->ids[s->count++] = id;
3867 	return 0;
3868 }
3869 
3870 static void idset_reset(struct bpf_idset *s)
3871 {
3872 	s->count = 0;
3873 }
3874 
3875 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3876  * Mark all registers with these IDs as precise.
3877  */
3878 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3879 {
3880 	struct bpf_idset *precise_ids = &env->idset_scratch;
3881 	struct backtrack_state *bt = &env->bt;
3882 	struct bpf_func_state *func;
3883 	struct bpf_reg_state *reg;
3884 	DECLARE_BITMAP(mask, 64);
3885 	int i, fr;
3886 
3887 	idset_reset(precise_ids);
3888 
3889 	for (fr = bt->frame; fr >= 0; fr--) {
3890 		func = st->frame[fr];
3891 
3892 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3893 		for_each_set_bit(i, mask, 32) {
3894 			reg = &func->regs[i];
3895 			if (!reg->id || reg->type != SCALAR_VALUE)
3896 				continue;
3897 			if (idset_push(precise_ids, reg->id))
3898 				return -EFAULT;
3899 		}
3900 
3901 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3902 		for_each_set_bit(i, mask, 64) {
3903 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3904 				break;
3905 			if (!is_spilled_scalar_reg(&func->stack[i]))
3906 				continue;
3907 			reg = &func->stack[i].spilled_ptr;
3908 			if (!reg->id)
3909 				continue;
3910 			if (idset_push(precise_ids, reg->id))
3911 				return -EFAULT;
3912 		}
3913 	}
3914 
3915 	for (fr = 0; fr <= st->curframe; ++fr) {
3916 		func = st->frame[fr];
3917 
3918 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3919 			reg = &func->regs[i];
3920 			if (!reg->id)
3921 				continue;
3922 			if (!idset_contains(precise_ids, reg->id))
3923 				continue;
3924 			bt_set_frame_reg(bt, fr, i);
3925 		}
3926 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3927 			if (!is_spilled_scalar_reg(&func->stack[i]))
3928 				continue;
3929 			reg = &func->stack[i].spilled_ptr;
3930 			if (!reg->id)
3931 				continue;
3932 			if (!idset_contains(precise_ids, reg->id))
3933 				continue;
3934 			bt_set_frame_slot(bt, fr, i);
3935 		}
3936 	}
3937 
3938 	return 0;
3939 }
3940 
3941 /*
3942  * __mark_chain_precision() backtracks BPF program instruction sequence and
3943  * chain of verifier states making sure that register *regno* (if regno >= 0)
3944  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3945  * SCALARS, as well as any other registers and slots that contribute to
3946  * a tracked state of given registers/stack slots, depending on specific BPF
3947  * assembly instructions (see backtrack_insns() for exact instruction handling
3948  * logic). This backtracking relies on recorded jmp_history and is able to
3949  * traverse entire chain of parent states. This process ends only when all the
3950  * necessary registers/slots and their transitive dependencies are marked as
3951  * precise.
3952  *
3953  * One important and subtle aspect is that precise marks *do not matter* in
3954  * the currently verified state (current state). It is important to understand
3955  * why this is the case.
3956  *
3957  * First, note that current state is the state that is not yet "checkpointed",
3958  * i.e., it is not yet put into env->explored_states, and it has no children
3959  * states as well. It's ephemeral, and can end up either a) being discarded if
3960  * compatible explored state is found at some point or BPF_EXIT instruction is
3961  * reached or b) checkpointed and put into env->explored_states, branching out
3962  * into one or more children states.
3963  *
3964  * In the former case, precise markings in current state are completely
3965  * ignored by state comparison code (see regsafe() for details). Only
3966  * checkpointed ("old") state precise markings are important, and if old
3967  * state's register/slot is precise, regsafe() assumes current state's
3968  * register/slot as precise and checks value ranges exactly and precisely. If
3969  * states turn out to be compatible, current state's necessary precise
3970  * markings and any required parent states' precise markings are enforced
3971  * after the fact with propagate_precision() logic, after the fact. But it's
3972  * important to realize that in this case, even after marking current state
3973  * registers/slots as precise, we immediately discard current state. So what
3974  * actually matters is any of the precise markings propagated into current
3975  * state's parent states, which are always checkpointed (due to b) case above).
3976  * As such, for scenario a) it doesn't matter if current state has precise
3977  * markings set or not.
3978  *
3979  * Now, for the scenario b), checkpointing and forking into child(ren)
3980  * state(s). Note that before current state gets to checkpointing step, any
3981  * processed instruction always assumes precise SCALAR register/slot
3982  * knowledge: if precise value or range is useful to prune jump branch, BPF
3983  * verifier takes this opportunity enthusiastically. Similarly, when
3984  * register's value is used to calculate offset or memory address, exact
3985  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3986  * what we mentioned above about state comparison ignoring precise markings
3987  * during state comparison, BPF verifier ignores and also assumes precise
3988  * markings *at will* during instruction verification process. But as verifier
3989  * assumes precision, it also propagates any precision dependencies across
3990  * parent states, which are not yet finalized, so can be further restricted
3991  * based on new knowledge gained from restrictions enforced by their children
3992  * states. This is so that once those parent states are finalized, i.e., when
3993  * they have no more active children state, state comparison logic in
3994  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3995  * required for correctness.
3996  *
3997  * To build a bit more intuition, note also that once a state is checkpointed,
3998  * the path we took to get to that state is not important. This is crucial
3999  * property for state pruning. When state is checkpointed and finalized at
4000  * some instruction index, it can be correctly and safely used to "short
4001  * circuit" any *compatible* state that reaches exactly the same instruction
4002  * index. I.e., if we jumped to that instruction from a completely different
4003  * code path than original finalized state was derived from, it doesn't
4004  * matter, current state can be discarded because from that instruction
4005  * forward having a compatible state will ensure we will safely reach the
4006  * exit. States describe preconditions for further exploration, but completely
4007  * forget the history of how we got here.
4008  *
4009  * This also means that even if we needed precise SCALAR range to get to
4010  * finalized state, but from that point forward *that same* SCALAR register is
4011  * never used in a precise context (i.e., it's precise value is not needed for
4012  * correctness), it's correct and safe to mark such register as "imprecise"
4013  * (i.e., precise marking set to false). This is what we rely on when we do
4014  * not set precise marking in current state. If no child state requires
4015  * precision for any given SCALAR register, it's safe to dictate that it can
4016  * be imprecise. If any child state does require this register to be precise,
4017  * we'll mark it precise later retroactively during precise markings
4018  * propagation from child state to parent states.
4019  *
4020  * Skipping precise marking setting in current state is a mild version of
4021  * relying on the above observation. But we can utilize this property even
4022  * more aggressively by proactively forgetting any precise marking in the
4023  * current state (which we inherited from the parent state), right before we
4024  * checkpoint it and branch off into new child state. This is done by
4025  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4026  * finalized states which help in short circuiting more future states.
4027  */
4028 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4029 {
4030 	struct backtrack_state *bt = &env->bt;
4031 	struct bpf_verifier_state *st = env->cur_state;
4032 	int first_idx = st->first_insn_idx;
4033 	int last_idx = env->insn_idx;
4034 	int subseq_idx = -1;
4035 	struct bpf_func_state *func;
4036 	struct bpf_reg_state *reg;
4037 	bool skip_first = true;
4038 	int i, fr, err;
4039 
4040 	if (!env->bpf_capable)
4041 		return 0;
4042 
4043 	/* set frame number from which we are starting to backtrack */
4044 	bt_init(bt, env->cur_state->curframe);
4045 
4046 	/* Do sanity checks against current state of register and/or stack
4047 	 * slot, but don't set precise flag in current state, as precision
4048 	 * tracking in the current state is unnecessary.
4049 	 */
4050 	func = st->frame[bt->frame];
4051 	if (regno >= 0) {
4052 		reg = &func->regs[regno];
4053 		if (reg->type != SCALAR_VALUE) {
4054 			WARN_ONCE(1, "backtracing misuse");
4055 			return -EFAULT;
4056 		}
4057 		bt_set_reg(bt, regno);
4058 	}
4059 
4060 	if (bt_empty(bt))
4061 		return 0;
4062 
4063 	for (;;) {
4064 		DECLARE_BITMAP(mask, 64);
4065 		u32 history = st->jmp_history_cnt;
4066 
4067 		if (env->log.level & BPF_LOG_LEVEL2) {
4068 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4069 				bt->frame, last_idx, first_idx, subseq_idx);
4070 		}
4071 
4072 		/* If some register with scalar ID is marked as precise,
4073 		 * make sure that all registers sharing this ID are also precise.
4074 		 * This is needed to estimate effect of find_equal_scalars().
4075 		 * Do this at the last instruction of each state,
4076 		 * bpf_reg_state::id fields are valid for these instructions.
4077 		 *
4078 		 * Allows to track precision in situation like below:
4079 		 *
4080 		 *     r2 = unknown value
4081 		 *     ...
4082 		 *   --- state #0 ---
4083 		 *     ...
4084 		 *     r1 = r2                 // r1 and r2 now share the same ID
4085 		 *     ...
4086 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4087 		 *     ...
4088 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4089 		 *     ...
4090 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4091 		 *     r3 = r10
4092 		 *     r3 += r1                // need to mark both r1 and r2
4093 		 */
4094 		if (mark_precise_scalar_ids(env, st))
4095 			return -EFAULT;
4096 
4097 		if (last_idx < 0) {
4098 			/* we are at the entry into subprog, which
4099 			 * is expected for global funcs, but only if
4100 			 * requested precise registers are R1-R5
4101 			 * (which are global func's input arguments)
4102 			 */
4103 			if (st->curframe == 0 &&
4104 			    st->frame[0]->subprogno > 0 &&
4105 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4106 			    bt_stack_mask(bt) == 0 &&
4107 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4108 				bitmap_from_u64(mask, bt_reg_mask(bt));
4109 				for_each_set_bit(i, mask, 32) {
4110 					reg = &st->frame[0]->regs[i];
4111 					bt_clear_reg(bt, i);
4112 					if (reg->type == SCALAR_VALUE)
4113 						reg->precise = true;
4114 				}
4115 				return 0;
4116 			}
4117 
4118 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4119 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4120 			WARN_ONCE(1, "verifier backtracking bug");
4121 			return -EFAULT;
4122 		}
4123 
4124 		for (i = last_idx;;) {
4125 			if (skip_first) {
4126 				err = 0;
4127 				skip_first = false;
4128 			} else {
4129 				err = backtrack_insn(env, i, subseq_idx, bt);
4130 			}
4131 			if (err == -ENOTSUPP) {
4132 				mark_all_scalars_precise(env, env->cur_state);
4133 				bt_reset(bt);
4134 				return 0;
4135 			} else if (err) {
4136 				return err;
4137 			}
4138 			if (bt_empty(bt))
4139 				/* Found assignment(s) into tracked register in this state.
4140 				 * Since this state is already marked, just return.
4141 				 * Nothing to be tracked further in the parent state.
4142 				 */
4143 				return 0;
4144 			subseq_idx = i;
4145 			i = get_prev_insn_idx(st, i, &history);
4146 			if (i == -ENOENT)
4147 				break;
4148 			if (i >= env->prog->len) {
4149 				/* This can happen if backtracking reached insn 0
4150 				 * and there are still reg_mask or stack_mask
4151 				 * to backtrack.
4152 				 * It means the backtracking missed the spot where
4153 				 * particular register was initialized with a constant.
4154 				 */
4155 				verbose(env, "BUG backtracking idx %d\n", i);
4156 				WARN_ONCE(1, "verifier backtracking bug");
4157 				return -EFAULT;
4158 			}
4159 		}
4160 		st = st->parent;
4161 		if (!st)
4162 			break;
4163 
4164 		for (fr = bt->frame; fr >= 0; fr--) {
4165 			func = st->frame[fr];
4166 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4167 			for_each_set_bit(i, mask, 32) {
4168 				reg = &func->regs[i];
4169 				if (reg->type != SCALAR_VALUE) {
4170 					bt_clear_frame_reg(bt, fr, i);
4171 					continue;
4172 				}
4173 				if (reg->precise)
4174 					bt_clear_frame_reg(bt, fr, i);
4175 				else
4176 					reg->precise = true;
4177 			}
4178 
4179 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4180 			for_each_set_bit(i, mask, 64) {
4181 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4182 					/* the sequence of instructions:
4183 					 * 2: (bf) r3 = r10
4184 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4185 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4186 					 * doesn't contain jmps. It's backtracked
4187 					 * as a single block.
4188 					 * During backtracking insn 3 is not recognized as
4189 					 * stack access, so at the end of backtracking
4190 					 * stack slot fp-8 is still marked in stack_mask.
4191 					 * However the parent state may not have accessed
4192 					 * fp-8 and it's "unallocated" stack space.
4193 					 * In such case fallback to conservative.
4194 					 */
4195 					mark_all_scalars_precise(env, env->cur_state);
4196 					bt_reset(bt);
4197 					return 0;
4198 				}
4199 
4200 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4201 					bt_clear_frame_slot(bt, fr, i);
4202 					continue;
4203 				}
4204 				reg = &func->stack[i].spilled_ptr;
4205 				if (reg->precise)
4206 					bt_clear_frame_slot(bt, fr, i);
4207 				else
4208 					reg->precise = true;
4209 			}
4210 			if (env->log.level & BPF_LOG_LEVEL2) {
4211 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4212 					     bt_frame_reg_mask(bt, fr));
4213 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4214 					fr, env->tmp_str_buf);
4215 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4216 					       bt_frame_stack_mask(bt, fr));
4217 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4218 				print_verifier_state(env, func, true);
4219 			}
4220 		}
4221 
4222 		if (bt_empty(bt))
4223 			return 0;
4224 
4225 		subseq_idx = first_idx;
4226 		last_idx = st->last_insn_idx;
4227 		first_idx = st->first_insn_idx;
4228 	}
4229 
4230 	/* if we still have requested precise regs or slots, we missed
4231 	 * something (e.g., stack access through non-r10 register), so
4232 	 * fallback to marking all precise
4233 	 */
4234 	if (!bt_empty(bt)) {
4235 		mark_all_scalars_precise(env, env->cur_state);
4236 		bt_reset(bt);
4237 	}
4238 
4239 	return 0;
4240 }
4241 
4242 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4243 {
4244 	return __mark_chain_precision(env, regno);
4245 }
4246 
4247 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4248  * desired reg and stack masks across all relevant frames
4249  */
4250 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4251 {
4252 	return __mark_chain_precision(env, -1);
4253 }
4254 
4255 static bool is_spillable_regtype(enum bpf_reg_type type)
4256 {
4257 	switch (base_type(type)) {
4258 	case PTR_TO_MAP_VALUE:
4259 	case PTR_TO_STACK:
4260 	case PTR_TO_CTX:
4261 	case PTR_TO_PACKET:
4262 	case PTR_TO_PACKET_META:
4263 	case PTR_TO_PACKET_END:
4264 	case PTR_TO_FLOW_KEYS:
4265 	case CONST_PTR_TO_MAP:
4266 	case PTR_TO_SOCKET:
4267 	case PTR_TO_SOCK_COMMON:
4268 	case PTR_TO_TCP_SOCK:
4269 	case PTR_TO_XDP_SOCK:
4270 	case PTR_TO_BTF_ID:
4271 	case PTR_TO_BUF:
4272 	case PTR_TO_MEM:
4273 	case PTR_TO_FUNC:
4274 	case PTR_TO_MAP_KEY:
4275 		return true;
4276 	default:
4277 		return false;
4278 	}
4279 }
4280 
4281 /* Does this register contain a constant zero? */
4282 static bool register_is_null(struct bpf_reg_state *reg)
4283 {
4284 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4285 }
4286 
4287 /* check if register is a constant scalar value */
4288 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4289 {
4290 	return reg->type == SCALAR_VALUE &&
4291 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4292 }
4293 
4294 /* assuming is_reg_const() is true, return constant value of a register */
4295 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4296 {
4297 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4298 }
4299 
4300 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4301 {
4302 	return tnum_is_unknown(reg->var_off) &&
4303 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4304 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4305 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4306 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4307 }
4308 
4309 static bool register_is_bounded(struct bpf_reg_state *reg)
4310 {
4311 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4312 }
4313 
4314 static bool __is_pointer_value(bool allow_ptr_leaks,
4315 			       const struct bpf_reg_state *reg)
4316 {
4317 	if (allow_ptr_leaks)
4318 		return false;
4319 
4320 	return reg->type != SCALAR_VALUE;
4321 }
4322 
4323 /* Copy src state preserving dst->parent and dst->live fields */
4324 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4325 {
4326 	struct bpf_reg_state *parent = dst->parent;
4327 	enum bpf_reg_liveness live = dst->live;
4328 
4329 	*dst = *src;
4330 	dst->parent = parent;
4331 	dst->live = live;
4332 }
4333 
4334 static void save_register_state(struct bpf_func_state *state,
4335 				int spi, struct bpf_reg_state *reg,
4336 				int size)
4337 {
4338 	int i;
4339 
4340 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4341 	if (size == BPF_REG_SIZE)
4342 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4343 
4344 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4345 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4346 
4347 	/* size < 8 bytes spill */
4348 	for (; i; i--)
4349 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4350 }
4351 
4352 static bool is_bpf_st_mem(struct bpf_insn *insn)
4353 {
4354 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4355 }
4356 
4357 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4358  * stack boundary and alignment are checked in check_mem_access()
4359  */
4360 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4361 				       /* stack frame we're writing to */
4362 				       struct bpf_func_state *state,
4363 				       int off, int size, int value_regno,
4364 				       int insn_idx)
4365 {
4366 	struct bpf_func_state *cur; /* state of the current function */
4367 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4368 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4369 	struct bpf_reg_state *reg = NULL;
4370 	u32 dst_reg = insn->dst_reg;
4371 
4372 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4373 	if (err)
4374 		return err;
4375 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4376 	 * so it's aligned access and [off, off + size) are within stack limits
4377 	 */
4378 	if (!env->allow_ptr_leaks &&
4379 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4380 	    size != BPF_REG_SIZE) {
4381 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4382 		return -EACCES;
4383 	}
4384 
4385 	cur = env->cur_state->frame[env->cur_state->curframe];
4386 	if (value_regno >= 0)
4387 		reg = &cur->regs[value_regno];
4388 	if (!env->bypass_spec_v4) {
4389 		bool sanitize = reg && is_spillable_regtype(reg->type);
4390 
4391 		for (i = 0; i < size; i++) {
4392 			u8 type = state->stack[spi].slot_type[i];
4393 
4394 			if (type != STACK_MISC && type != STACK_ZERO) {
4395 				sanitize = true;
4396 				break;
4397 			}
4398 		}
4399 
4400 		if (sanitize)
4401 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4402 	}
4403 
4404 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4405 	if (err)
4406 		return err;
4407 
4408 	mark_stack_slot_scratched(env, spi);
4409 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4410 	    !register_is_null(reg) && env->bpf_capable) {
4411 		if (dst_reg != BPF_REG_FP) {
4412 			/* The backtracking logic can only recognize explicit
4413 			 * stack slot address like [fp - 8]. Other spill of
4414 			 * scalar via different register has to be conservative.
4415 			 * Backtrack from here and mark all registers as precise
4416 			 * that contributed into 'reg' being a constant.
4417 			 */
4418 			err = mark_chain_precision(env, value_regno);
4419 			if (err)
4420 				return err;
4421 		}
4422 		save_register_state(state, spi, reg, size);
4423 		/* Break the relation on a narrowing spill. */
4424 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4425 			state->stack[spi].spilled_ptr.id = 0;
4426 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4427 		   insn->imm != 0 && env->bpf_capable) {
4428 		struct bpf_reg_state fake_reg = {};
4429 
4430 		__mark_reg_known(&fake_reg, insn->imm);
4431 		fake_reg.type = SCALAR_VALUE;
4432 		save_register_state(state, spi, &fake_reg, size);
4433 	} else if (reg && is_spillable_regtype(reg->type)) {
4434 		/* register containing pointer is being spilled into stack */
4435 		if (size != BPF_REG_SIZE) {
4436 			verbose_linfo(env, insn_idx, "; ");
4437 			verbose(env, "invalid size of register spill\n");
4438 			return -EACCES;
4439 		}
4440 		if (state != cur && reg->type == PTR_TO_STACK) {
4441 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4442 			return -EINVAL;
4443 		}
4444 		save_register_state(state, spi, reg, size);
4445 	} else {
4446 		u8 type = STACK_MISC;
4447 
4448 		/* regular write of data into stack destroys any spilled ptr */
4449 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4450 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4451 		if (is_stack_slot_special(&state->stack[spi]))
4452 			for (i = 0; i < BPF_REG_SIZE; i++)
4453 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4454 
4455 		/* only mark the slot as written if all 8 bytes were written
4456 		 * otherwise read propagation may incorrectly stop too soon
4457 		 * when stack slots are partially written.
4458 		 * This heuristic means that read propagation will be
4459 		 * conservative, since it will add reg_live_read marks
4460 		 * to stack slots all the way to first state when programs
4461 		 * writes+reads less than 8 bytes
4462 		 */
4463 		if (size == BPF_REG_SIZE)
4464 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4465 
4466 		/* when we zero initialize stack slots mark them as such */
4467 		if ((reg && register_is_null(reg)) ||
4468 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4469 			/* backtracking doesn't work for STACK_ZERO yet. */
4470 			err = mark_chain_precision(env, value_regno);
4471 			if (err)
4472 				return err;
4473 			type = STACK_ZERO;
4474 		}
4475 
4476 		/* Mark slots affected by this stack write. */
4477 		for (i = 0; i < size; i++)
4478 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4479 				type;
4480 	}
4481 	return 0;
4482 }
4483 
4484 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4485  * known to contain a variable offset.
4486  * This function checks whether the write is permitted and conservatively
4487  * tracks the effects of the write, considering that each stack slot in the
4488  * dynamic range is potentially written to.
4489  *
4490  * 'off' includes 'regno->off'.
4491  * 'value_regno' can be -1, meaning that an unknown value is being written to
4492  * the stack.
4493  *
4494  * Spilled pointers in range are not marked as written because we don't know
4495  * what's going to be actually written. This means that read propagation for
4496  * future reads cannot be terminated by this write.
4497  *
4498  * For privileged programs, uninitialized stack slots are considered
4499  * initialized by this write (even though we don't know exactly what offsets
4500  * are going to be written to). The idea is that we don't want the verifier to
4501  * reject future reads that access slots written to through variable offsets.
4502  */
4503 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4504 				     /* func where register points to */
4505 				     struct bpf_func_state *state,
4506 				     int ptr_regno, int off, int size,
4507 				     int value_regno, int insn_idx)
4508 {
4509 	struct bpf_func_state *cur; /* state of the current function */
4510 	int min_off, max_off;
4511 	int i, err;
4512 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4513 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4514 	bool writing_zero = false;
4515 	/* set if the fact that we're writing a zero is used to let any
4516 	 * stack slots remain STACK_ZERO
4517 	 */
4518 	bool zero_used = false;
4519 
4520 	cur = env->cur_state->frame[env->cur_state->curframe];
4521 	ptr_reg = &cur->regs[ptr_regno];
4522 	min_off = ptr_reg->smin_value + off;
4523 	max_off = ptr_reg->smax_value + off + size;
4524 	if (value_regno >= 0)
4525 		value_reg = &cur->regs[value_regno];
4526 	if ((value_reg && register_is_null(value_reg)) ||
4527 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4528 		writing_zero = true;
4529 
4530 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4531 	if (err)
4532 		return err;
4533 
4534 	for (i = min_off; i < max_off; i++) {
4535 		int spi;
4536 
4537 		spi = __get_spi(i);
4538 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4539 		if (err)
4540 			return err;
4541 	}
4542 
4543 	/* Variable offset writes destroy any spilled pointers in range. */
4544 	for (i = min_off; i < max_off; i++) {
4545 		u8 new_type, *stype;
4546 		int slot, spi;
4547 
4548 		slot = -i - 1;
4549 		spi = slot / BPF_REG_SIZE;
4550 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4551 		mark_stack_slot_scratched(env, spi);
4552 
4553 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4554 			/* Reject the write if range we may write to has not
4555 			 * been initialized beforehand. If we didn't reject
4556 			 * here, the ptr status would be erased below (even
4557 			 * though not all slots are actually overwritten),
4558 			 * possibly opening the door to leaks.
4559 			 *
4560 			 * We do however catch STACK_INVALID case below, and
4561 			 * only allow reading possibly uninitialized memory
4562 			 * later for CAP_PERFMON, as the write may not happen to
4563 			 * that slot.
4564 			 */
4565 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4566 				insn_idx, i);
4567 			return -EINVAL;
4568 		}
4569 
4570 		/* Erase all spilled pointers. */
4571 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4572 
4573 		/* Update the slot type. */
4574 		new_type = STACK_MISC;
4575 		if (writing_zero && *stype == STACK_ZERO) {
4576 			new_type = STACK_ZERO;
4577 			zero_used = true;
4578 		}
4579 		/* If the slot is STACK_INVALID, we check whether it's OK to
4580 		 * pretend that it will be initialized by this write. The slot
4581 		 * might not actually be written to, and so if we mark it as
4582 		 * initialized future reads might leak uninitialized memory.
4583 		 * For privileged programs, we will accept such reads to slots
4584 		 * that may or may not be written because, if we're reject
4585 		 * them, the error would be too confusing.
4586 		 */
4587 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4588 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4589 					insn_idx, i);
4590 			return -EINVAL;
4591 		}
4592 		*stype = new_type;
4593 	}
4594 	if (zero_used) {
4595 		/* backtracking doesn't work for STACK_ZERO yet. */
4596 		err = mark_chain_precision(env, value_regno);
4597 		if (err)
4598 			return err;
4599 	}
4600 	return 0;
4601 }
4602 
4603 /* When register 'dst_regno' is assigned some values from stack[min_off,
4604  * max_off), we set the register's type according to the types of the
4605  * respective stack slots. If all the stack values are known to be zeros, then
4606  * so is the destination reg. Otherwise, the register is considered to be
4607  * SCALAR. This function does not deal with register filling; the caller must
4608  * ensure that all spilled registers in the stack range have been marked as
4609  * read.
4610  */
4611 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4612 				/* func where src register points to */
4613 				struct bpf_func_state *ptr_state,
4614 				int min_off, int max_off, int dst_regno)
4615 {
4616 	struct bpf_verifier_state *vstate = env->cur_state;
4617 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4618 	int i, slot, spi;
4619 	u8 *stype;
4620 	int zeros = 0;
4621 
4622 	for (i = min_off; i < max_off; i++) {
4623 		slot = -i - 1;
4624 		spi = slot / BPF_REG_SIZE;
4625 		mark_stack_slot_scratched(env, spi);
4626 		stype = ptr_state->stack[spi].slot_type;
4627 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4628 			break;
4629 		zeros++;
4630 	}
4631 	if (zeros == max_off - min_off) {
4632 		/* any access_size read into register is zero extended,
4633 		 * so the whole register == const_zero
4634 		 */
4635 		__mark_reg_const_zero(&state->regs[dst_regno]);
4636 		/* backtracking doesn't support STACK_ZERO yet,
4637 		 * so mark it precise here, so that later
4638 		 * backtracking can stop here.
4639 		 * Backtracking may not need this if this register
4640 		 * doesn't participate in pointer adjustment.
4641 		 * Forward propagation of precise flag is not
4642 		 * necessary either. This mark is only to stop
4643 		 * backtracking. Any register that contributed
4644 		 * to const 0 was marked precise before spill.
4645 		 */
4646 		state->regs[dst_regno].precise = true;
4647 	} else {
4648 		/* have read misc data from the stack */
4649 		mark_reg_unknown(env, state->regs, dst_regno);
4650 	}
4651 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4652 }
4653 
4654 /* Read the stack at 'off' and put the results into the register indicated by
4655  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4656  * spilled reg.
4657  *
4658  * 'dst_regno' can be -1, meaning that the read value is not going to a
4659  * register.
4660  *
4661  * The access is assumed to be within the current stack bounds.
4662  */
4663 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4664 				      /* func where src register points to */
4665 				      struct bpf_func_state *reg_state,
4666 				      int off, int size, int dst_regno)
4667 {
4668 	struct bpf_verifier_state *vstate = env->cur_state;
4669 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4670 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4671 	struct bpf_reg_state *reg;
4672 	u8 *stype, type;
4673 
4674 	stype = reg_state->stack[spi].slot_type;
4675 	reg = &reg_state->stack[spi].spilled_ptr;
4676 
4677 	mark_stack_slot_scratched(env, spi);
4678 
4679 	if (is_spilled_reg(&reg_state->stack[spi])) {
4680 		u8 spill_size = 1;
4681 
4682 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4683 			spill_size++;
4684 
4685 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4686 			if (reg->type != SCALAR_VALUE) {
4687 				verbose_linfo(env, env->insn_idx, "; ");
4688 				verbose(env, "invalid size of register fill\n");
4689 				return -EACCES;
4690 			}
4691 
4692 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4693 			if (dst_regno < 0)
4694 				return 0;
4695 
4696 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4697 				/* The earlier check_reg_arg() has decided the
4698 				 * subreg_def for this insn.  Save it first.
4699 				 */
4700 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4701 
4702 				copy_register_state(&state->regs[dst_regno], reg);
4703 				state->regs[dst_regno].subreg_def = subreg_def;
4704 			} else {
4705 				for (i = 0; i < size; i++) {
4706 					type = stype[(slot - i) % BPF_REG_SIZE];
4707 					if (type == STACK_SPILL)
4708 						continue;
4709 					if (type == STACK_MISC)
4710 						continue;
4711 					if (type == STACK_INVALID && env->allow_uninit_stack)
4712 						continue;
4713 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4714 						off, i, size);
4715 					return -EACCES;
4716 				}
4717 				mark_reg_unknown(env, state->regs, dst_regno);
4718 			}
4719 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4720 			return 0;
4721 		}
4722 
4723 		if (dst_regno >= 0) {
4724 			/* restore register state from stack */
4725 			copy_register_state(&state->regs[dst_regno], reg);
4726 			/* mark reg as written since spilled pointer state likely
4727 			 * has its liveness marks cleared by is_state_visited()
4728 			 * which resets stack/reg liveness for state transitions
4729 			 */
4730 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4731 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4732 			/* If dst_regno==-1, the caller is asking us whether
4733 			 * it is acceptable to use this value as a SCALAR_VALUE
4734 			 * (e.g. for XADD).
4735 			 * We must not allow unprivileged callers to do that
4736 			 * with spilled pointers.
4737 			 */
4738 			verbose(env, "leaking pointer from stack off %d\n",
4739 				off);
4740 			return -EACCES;
4741 		}
4742 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4743 	} else {
4744 		for (i = 0; i < size; i++) {
4745 			type = stype[(slot - i) % BPF_REG_SIZE];
4746 			if (type == STACK_MISC)
4747 				continue;
4748 			if (type == STACK_ZERO)
4749 				continue;
4750 			if (type == STACK_INVALID && env->allow_uninit_stack)
4751 				continue;
4752 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4753 				off, i, size);
4754 			return -EACCES;
4755 		}
4756 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4757 		if (dst_regno >= 0)
4758 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4759 	}
4760 	return 0;
4761 }
4762 
4763 enum bpf_access_src {
4764 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4765 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4766 };
4767 
4768 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4769 					 int regno, int off, int access_size,
4770 					 bool zero_size_allowed,
4771 					 enum bpf_access_src type,
4772 					 struct bpf_call_arg_meta *meta);
4773 
4774 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4775 {
4776 	return cur_regs(env) + regno;
4777 }
4778 
4779 /* Read the stack at 'ptr_regno + off' and put the result into the register
4780  * 'dst_regno'.
4781  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4782  * but not its variable offset.
4783  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4784  *
4785  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4786  * filling registers (i.e. reads of spilled register cannot be detected when
4787  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4788  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4789  * offset; for a fixed offset check_stack_read_fixed_off should be used
4790  * instead.
4791  */
4792 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4793 				    int ptr_regno, int off, int size, int dst_regno)
4794 {
4795 	/* The state of the source register. */
4796 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4797 	struct bpf_func_state *ptr_state = func(env, reg);
4798 	int err;
4799 	int min_off, max_off;
4800 
4801 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4802 	 */
4803 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4804 					    false, ACCESS_DIRECT, NULL);
4805 	if (err)
4806 		return err;
4807 
4808 	min_off = reg->smin_value + off;
4809 	max_off = reg->smax_value + off;
4810 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4811 	return 0;
4812 }
4813 
4814 /* check_stack_read dispatches to check_stack_read_fixed_off or
4815  * check_stack_read_var_off.
4816  *
4817  * The caller must ensure that the offset falls within the allocated stack
4818  * bounds.
4819  *
4820  * 'dst_regno' is a register which will receive the value from the stack. It
4821  * can be -1, meaning that the read value is not going to a register.
4822  */
4823 static int check_stack_read(struct bpf_verifier_env *env,
4824 			    int ptr_regno, int off, int size,
4825 			    int dst_regno)
4826 {
4827 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4828 	struct bpf_func_state *state = func(env, reg);
4829 	int err;
4830 	/* Some accesses are only permitted with a static offset. */
4831 	bool var_off = !tnum_is_const(reg->var_off);
4832 
4833 	/* The offset is required to be static when reads don't go to a
4834 	 * register, in order to not leak pointers (see
4835 	 * check_stack_read_fixed_off).
4836 	 */
4837 	if (dst_regno < 0 && var_off) {
4838 		char tn_buf[48];
4839 
4840 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4841 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4842 			tn_buf, off, size);
4843 		return -EACCES;
4844 	}
4845 	/* Variable offset is prohibited for unprivileged mode for simplicity
4846 	 * since it requires corresponding support in Spectre masking for stack
4847 	 * ALU. See also retrieve_ptr_limit(). The check in
4848 	 * check_stack_access_for_ptr_arithmetic() called by
4849 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4850 	 * with variable offsets, therefore no check is required here. Further,
4851 	 * just checking it here would be insufficient as speculative stack
4852 	 * writes could still lead to unsafe speculative behaviour.
4853 	 */
4854 	if (!var_off) {
4855 		off += reg->var_off.value;
4856 		err = check_stack_read_fixed_off(env, state, off, size,
4857 						 dst_regno);
4858 	} else {
4859 		/* Variable offset stack reads need more conservative handling
4860 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4861 		 * branch.
4862 		 */
4863 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4864 					       dst_regno);
4865 	}
4866 	return err;
4867 }
4868 
4869 
4870 /* check_stack_write dispatches to check_stack_write_fixed_off or
4871  * check_stack_write_var_off.
4872  *
4873  * 'ptr_regno' is the register used as a pointer into the stack.
4874  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4875  * 'value_regno' is the register whose value we're writing to the stack. It can
4876  * be -1, meaning that we're not writing from a register.
4877  *
4878  * The caller must ensure that the offset falls within the maximum stack size.
4879  */
4880 static int check_stack_write(struct bpf_verifier_env *env,
4881 			     int ptr_regno, int off, int size,
4882 			     int value_regno, int insn_idx)
4883 {
4884 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4885 	struct bpf_func_state *state = func(env, reg);
4886 	int err;
4887 
4888 	if (tnum_is_const(reg->var_off)) {
4889 		off += reg->var_off.value;
4890 		err = check_stack_write_fixed_off(env, state, off, size,
4891 						  value_regno, insn_idx);
4892 	} else {
4893 		/* Variable offset stack reads need more conservative handling
4894 		 * than fixed offset ones.
4895 		 */
4896 		err = check_stack_write_var_off(env, state,
4897 						ptr_regno, off, size,
4898 						value_regno, insn_idx);
4899 	}
4900 	return err;
4901 }
4902 
4903 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4904 				 int off, int size, enum bpf_access_type type)
4905 {
4906 	struct bpf_reg_state *regs = cur_regs(env);
4907 	struct bpf_map *map = regs[regno].map_ptr;
4908 	u32 cap = bpf_map_flags_to_cap(map);
4909 
4910 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4911 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4912 			map->value_size, off, size);
4913 		return -EACCES;
4914 	}
4915 
4916 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4917 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4918 			map->value_size, off, size);
4919 		return -EACCES;
4920 	}
4921 
4922 	return 0;
4923 }
4924 
4925 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4926 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4927 			      int off, int size, u32 mem_size,
4928 			      bool zero_size_allowed)
4929 {
4930 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4931 	struct bpf_reg_state *reg;
4932 
4933 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4934 		return 0;
4935 
4936 	reg = &cur_regs(env)[regno];
4937 	switch (reg->type) {
4938 	case PTR_TO_MAP_KEY:
4939 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4940 			mem_size, off, size);
4941 		break;
4942 	case PTR_TO_MAP_VALUE:
4943 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4944 			mem_size, off, size);
4945 		break;
4946 	case PTR_TO_PACKET:
4947 	case PTR_TO_PACKET_META:
4948 	case PTR_TO_PACKET_END:
4949 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4950 			off, size, regno, reg->id, off, mem_size);
4951 		break;
4952 	case PTR_TO_MEM:
4953 	default:
4954 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4955 			mem_size, off, size);
4956 	}
4957 
4958 	return -EACCES;
4959 }
4960 
4961 /* check read/write into a memory region with possible variable offset */
4962 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4963 				   int off, int size, u32 mem_size,
4964 				   bool zero_size_allowed)
4965 {
4966 	struct bpf_verifier_state *vstate = env->cur_state;
4967 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4968 	struct bpf_reg_state *reg = &state->regs[regno];
4969 	int err;
4970 
4971 	/* We may have adjusted the register pointing to memory region, so we
4972 	 * need to try adding each of min_value and max_value to off
4973 	 * to make sure our theoretical access will be safe.
4974 	 *
4975 	 * The minimum value is only important with signed
4976 	 * comparisons where we can't assume the floor of a
4977 	 * value is 0.  If we are using signed variables for our
4978 	 * index'es we need to make sure that whatever we use
4979 	 * will have a set floor within our range.
4980 	 */
4981 	if (reg->smin_value < 0 &&
4982 	    (reg->smin_value == S64_MIN ||
4983 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4984 	      reg->smin_value + off < 0)) {
4985 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4986 			regno);
4987 		return -EACCES;
4988 	}
4989 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4990 				 mem_size, zero_size_allowed);
4991 	if (err) {
4992 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4993 			regno);
4994 		return err;
4995 	}
4996 
4997 	/* If we haven't set a max value then we need to bail since we can't be
4998 	 * sure we won't do bad things.
4999 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5000 	 */
5001 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5002 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5003 			regno);
5004 		return -EACCES;
5005 	}
5006 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5007 				 mem_size, zero_size_allowed);
5008 	if (err) {
5009 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5010 			regno);
5011 		return err;
5012 	}
5013 
5014 	return 0;
5015 }
5016 
5017 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5018 			       const struct bpf_reg_state *reg, int regno,
5019 			       bool fixed_off_ok)
5020 {
5021 	/* Access to this pointer-typed register or passing it to a helper
5022 	 * is only allowed in its original, unmodified form.
5023 	 */
5024 
5025 	if (reg->off < 0) {
5026 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5027 			reg_type_str(env, reg->type), regno, reg->off);
5028 		return -EACCES;
5029 	}
5030 
5031 	if (!fixed_off_ok && reg->off) {
5032 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5033 			reg_type_str(env, reg->type), regno, reg->off);
5034 		return -EACCES;
5035 	}
5036 
5037 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5038 		char tn_buf[48];
5039 
5040 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5041 		verbose(env, "variable %s access var_off=%s disallowed\n",
5042 			reg_type_str(env, reg->type), tn_buf);
5043 		return -EACCES;
5044 	}
5045 
5046 	return 0;
5047 }
5048 
5049 int check_ptr_off_reg(struct bpf_verifier_env *env,
5050 		      const struct bpf_reg_state *reg, int regno)
5051 {
5052 	return __check_ptr_off_reg(env, reg, regno, false);
5053 }
5054 
5055 static int map_kptr_match_type(struct bpf_verifier_env *env,
5056 			       struct btf_field *kptr_field,
5057 			       struct bpf_reg_state *reg, u32 regno)
5058 {
5059 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5060 	int perm_flags;
5061 	const char *reg_name = "";
5062 
5063 	if (btf_is_kernel(reg->btf)) {
5064 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5065 
5066 		/* Only unreferenced case accepts untrusted pointers */
5067 		if (kptr_field->type == BPF_KPTR_UNREF)
5068 			perm_flags |= PTR_UNTRUSTED;
5069 	} else {
5070 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5071 		if (kptr_field->type == BPF_KPTR_PERCPU)
5072 			perm_flags |= MEM_PERCPU;
5073 	}
5074 
5075 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5076 		goto bad_type;
5077 
5078 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5079 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5080 
5081 	/* For ref_ptr case, release function check should ensure we get one
5082 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5083 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5084 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5085 	 * reg->off and reg->ref_obj_id are not needed here.
5086 	 */
5087 	if (__check_ptr_off_reg(env, reg, regno, true))
5088 		return -EACCES;
5089 
5090 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5091 	 * we also need to take into account the reg->off.
5092 	 *
5093 	 * We want to support cases like:
5094 	 *
5095 	 * struct foo {
5096 	 *         struct bar br;
5097 	 *         struct baz bz;
5098 	 * };
5099 	 *
5100 	 * struct foo *v;
5101 	 * v = func();	      // PTR_TO_BTF_ID
5102 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5103 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5104 	 *                    // first member type of struct after comparison fails
5105 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5106 	 *                    // to match type
5107 	 *
5108 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5109 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5110 	 * the struct to match type against first member of struct, i.e. reject
5111 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5112 	 * strict mode to true for type match.
5113 	 */
5114 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5115 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5116 				  kptr_field->type != BPF_KPTR_UNREF))
5117 		goto bad_type;
5118 	return 0;
5119 bad_type:
5120 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5121 		reg_type_str(env, reg->type), reg_name);
5122 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5123 	if (kptr_field->type == BPF_KPTR_UNREF)
5124 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5125 			targ_name);
5126 	else
5127 		verbose(env, "\n");
5128 	return -EINVAL;
5129 }
5130 
5131 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5132  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5133  */
5134 static bool in_rcu_cs(struct bpf_verifier_env *env)
5135 {
5136 	return env->cur_state->active_rcu_lock ||
5137 	       env->cur_state->active_lock.ptr ||
5138 	       !env->prog->aux->sleepable;
5139 }
5140 
5141 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5142 BTF_SET_START(rcu_protected_types)
5143 BTF_ID(struct, prog_test_ref_kfunc)
5144 #ifdef CONFIG_CGROUPS
5145 BTF_ID(struct, cgroup)
5146 #endif
5147 BTF_ID(struct, bpf_cpumask)
5148 BTF_ID(struct, task_struct)
5149 BTF_SET_END(rcu_protected_types)
5150 
5151 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5152 {
5153 	if (!btf_is_kernel(btf))
5154 		return true;
5155 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5156 }
5157 
5158 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5159 {
5160 	struct btf_struct_meta *meta;
5161 
5162 	if (btf_is_kernel(kptr_field->kptr.btf))
5163 		return NULL;
5164 
5165 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5166 				    kptr_field->kptr.btf_id);
5167 
5168 	return meta ? meta->record : NULL;
5169 }
5170 
5171 static bool rcu_safe_kptr(const struct btf_field *field)
5172 {
5173 	const struct btf_field_kptr *kptr = &field->kptr;
5174 
5175 	return field->type == BPF_KPTR_PERCPU ||
5176 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5177 }
5178 
5179 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5180 {
5181 	struct btf_record *rec;
5182 	u32 ret;
5183 
5184 	ret = PTR_MAYBE_NULL;
5185 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5186 		ret |= MEM_RCU;
5187 		if (kptr_field->type == BPF_KPTR_PERCPU)
5188 			ret |= MEM_PERCPU;
5189 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5190 			ret |= MEM_ALLOC;
5191 
5192 		rec = kptr_pointee_btf_record(kptr_field);
5193 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5194 			ret |= NON_OWN_REF;
5195 	} else {
5196 		ret |= PTR_UNTRUSTED;
5197 	}
5198 
5199 	return ret;
5200 }
5201 
5202 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5203 				 int value_regno, int insn_idx,
5204 				 struct btf_field *kptr_field)
5205 {
5206 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5207 	int class = BPF_CLASS(insn->code);
5208 	struct bpf_reg_state *val_reg;
5209 
5210 	/* Things we already checked for in check_map_access and caller:
5211 	 *  - Reject cases where variable offset may touch kptr
5212 	 *  - size of access (must be BPF_DW)
5213 	 *  - tnum_is_const(reg->var_off)
5214 	 *  - kptr_field->offset == off + reg->var_off.value
5215 	 */
5216 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5217 	if (BPF_MODE(insn->code) != BPF_MEM) {
5218 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5219 		return -EACCES;
5220 	}
5221 
5222 	/* We only allow loading referenced kptr, since it will be marked as
5223 	 * untrusted, similar to unreferenced kptr.
5224 	 */
5225 	if (class != BPF_LDX &&
5226 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5227 		verbose(env, "store to referenced kptr disallowed\n");
5228 		return -EACCES;
5229 	}
5230 
5231 	if (class == BPF_LDX) {
5232 		val_reg = reg_state(env, value_regno);
5233 		/* We can simply mark the value_regno receiving the pointer
5234 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5235 		 */
5236 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5237 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5238 		/* For mark_ptr_or_null_reg */
5239 		val_reg->id = ++env->id_gen;
5240 	} else if (class == BPF_STX) {
5241 		val_reg = reg_state(env, value_regno);
5242 		if (!register_is_null(val_reg) &&
5243 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5244 			return -EACCES;
5245 	} else if (class == BPF_ST) {
5246 		if (insn->imm) {
5247 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5248 				kptr_field->offset);
5249 			return -EACCES;
5250 		}
5251 	} else {
5252 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5253 		return -EACCES;
5254 	}
5255 	return 0;
5256 }
5257 
5258 /* check read/write into a map element with possible variable offset */
5259 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5260 			    int off, int size, bool zero_size_allowed,
5261 			    enum bpf_access_src src)
5262 {
5263 	struct bpf_verifier_state *vstate = env->cur_state;
5264 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5265 	struct bpf_reg_state *reg = &state->regs[regno];
5266 	struct bpf_map *map = reg->map_ptr;
5267 	struct btf_record *rec;
5268 	int err, i;
5269 
5270 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5271 				      zero_size_allowed);
5272 	if (err)
5273 		return err;
5274 
5275 	if (IS_ERR_OR_NULL(map->record))
5276 		return 0;
5277 	rec = map->record;
5278 	for (i = 0; i < rec->cnt; i++) {
5279 		struct btf_field *field = &rec->fields[i];
5280 		u32 p = field->offset;
5281 
5282 		/* If any part of a field  can be touched by load/store, reject
5283 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5284 		 * it is sufficient to check x1 < y2 && y1 < x2.
5285 		 */
5286 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5287 		    p < reg->umax_value + off + size) {
5288 			switch (field->type) {
5289 			case BPF_KPTR_UNREF:
5290 			case BPF_KPTR_REF:
5291 			case BPF_KPTR_PERCPU:
5292 				if (src != ACCESS_DIRECT) {
5293 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5294 					return -EACCES;
5295 				}
5296 				if (!tnum_is_const(reg->var_off)) {
5297 					verbose(env, "kptr access cannot have variable offset\n");
5298 					return -EACCES;
5299 				}
5300 				if (p != off + reg->var_off.value) {
5301 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5302 						p, off + reg->var_off.value);
5303 					return -EACCES;
5304 				}
5305 				if (size != bpf_size_to_bytes(BPF_DW)) {
5306 					verbose(env, "kptr access size must be BPF_DW\n");
5307 					return -EACCES;
5308 				}
5309 				break;
5310 			default:
5311 				verbose(env, "%s cannot be accessed directly by load/store\n",
5312 					btf_field_type_name(field->type));
5313 				return -EACCES;
5314 			}
5315 		}
5316 	}
5317 	return 0;
5318 }
5319 
5320 #define MAX_PACKET_OFF 0xffff
5321 
5322 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5323 				       const struct bpf_call_arg_meta *meta,
5324 				       enum bpf_access_type t)
5325 {
5326 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5327 
5328 	switch (prog_type) {
5329 	/* Program types only with direct read access go here! */
5330 	case BPF_PROG_TYPE_LWT_IN:
5331 	case BPF_PROG_TYPE_LWT_OUT:
5332 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5333 	case BPF_PROG_TYPE_SK_REUSEPORT:
5334 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5335 	case BPF_PROG_TYPE_CGROUP_SKB:
5336 		if (t == BPF_WRITE)
5337 			return false;
5338 		fallthrough;
5339 
5340 	/* Program types with direct read + write access go here! */
5341 	case BPF_PROG_TYPE_SCHED_CLS:
5342 	case BPF_PROG_TYPE_SCHED_ACT:
5343 	case BPF_PROG_TYPE_XDP:
5344 	case BPF_PROG_TYPE_LWT_XMIT:
5345 	case BPF_PROG_TYPE_SK_SKB:
5346 	case BPF_PROG_TYPE_SK_MSG:
5347 		if (meta)
5348 			return meta->pkt_access;
5349 
5350 		env->seen_direct_write = true;
5351 		return true;
5352 
5353 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5354 		if (t == BPF_WRITE)
5355 			env->seen_direct_write = true;
5356 
5357 		return true;
5358 
5359 	default:
5360 		return false;
5361 	}
5362 }
5363 
5364 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5365 			       int size, bool zero_size_allowed)
5366 {
5367 	struct bpf_reg_state *regs = cur_regs(env);
5368 	struct bpf_reg_state *reg = &regs[regno];
5369 	int err;
5370 
5371 	/* We may have added a variable offset to the packet pointer; but any
5372 	 * reg->range we have comes after that.  We are only checking the fixed
5373 	 * offset.
5374 	 */
5375 
5376 	/* We don't allow negative numbers, because we aren't tracking enough
5377 	 * detail to prove they're safe.
5378 	 */
5379 	if (reg->smin_value < 0) {
5380 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5381 			regno);
5382 		return -EACCES;
5383 	}
5384 
5385 	err = reg->range < 0 ? -EINVAL :
5386 	      __check_mem_access(env, regno, off, size, reg->range,
5387 				 zero_size_allowed);
5388 	if (err) {
5389 		verbose(env, "R%d offset is outside of the packet\n", regno);
5390 		return err;
5391 	}
5392 
5393 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5394 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5395 	 * otherwise find_good_pkt_pointers would have refused to set range info
5396 	 * that __check_mem_access would have rejected this pkt access.
5397 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5398 	 */
5399 	env->prog->aux->max_pkt_offset =
5400 		max_t(u32, env->prog->aux->max_pkt_offset,
5401 		      off + reg->umax_value + size - 1);
5402 
5403 	return err;
5404 }
5405 
5406 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5407 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5408 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5409 			    struct btf **btf, u32 *btf_id)
5410 {
5411 	struct bpf_insn_access_aux info = {
5412 		.reg_type = *reg_type,
5413 		.log = &env->log,
5414 	};
5415 
5416 	if (env->ops->is_valid_access &&
5417 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5418 		/* A non zero info.ctx_field_size indicates that this field is a
5419 		 * candidate for later verifier transformation to load the whole
5420 		 * field and then apply a mask when accessed with a narrower
5421 		 * access than actual ctx access size. A zero info.ctx_field_size
5422 		 * will only allow for whole field access and rejects any other
5423 		 * type of narrower access.
5424 		 */
5425 		*reg_type = info.reg_type;
5426 
5427 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5428 			*btf = info.btf;
5429 			*btf_id = info.btf_id;
5430 		} else {
5431 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5432 		}
5433 		/* remember the offset of last byte accessed in ctx */
5434 		if (env->prog->aux->max_ctx_offset < off + size)
5435 			env->prog->aux->max_ctx_offset = off + size;
5436 		return 0;
5437 	}
5438 
5439 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5440 	return -EACCES;
5441 }
5442 
5443 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5444 				  int size)
5445 {
5446 	if (size < 0 || off < 0 ||
5447 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5448 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5449 			off, size);
5450 		return -EACCES;
5451 	}
5452 	return 0;
5453 }
5454 
5455 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5456 			     u32 regno, int off, int size,
5457 			     enum bpf_access_type t)
5458 {
5459 	struct bpf_reg_state *regs = cur_regs(env);
5460 	struct bpf_reg_state *reg = &regs[regno];
5461 	struct bpf_insn_access_aux info = {};
5462 	bool valid;
5463 
5464 	if (reg->smin_value < 0) {
5465 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5466 			regno);
5467 		return -EACCES;
5468 	}
5469 
5470 	switch (reg->type) {
5471 	case PTR_TO_SOCK_COMMON:
5472 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5473 		break;
5474 	case PTR_TO_SOCKET:
5475 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5476 		break;
5477 	case PTR_TO_TCP_SOCK:
5478 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5479 		break;
5480 	case PTR_TO_XDP_SOCK:
5481 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5482 		break;
5483 	default:
5484 		valid = false;
5485 	}
5486 
5487 
5488 	if (valid) {
5489 		env->insn_aux_data[insn_idx].ctx_field_size =
5490 			info.ctx_field_size;
5491 		return 0;
5492 	}
5493 
5494 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5495 		regno, reg_type_str(env, reg->type), off, size);
5496 
5497 	return -EACCES;
5498 }
5499 
5500 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5501 {
5502 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5503 }
5504 
5505 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5506 {
5507 	const struct bpf_reg_state *reg = reg_state(env, regno);
5508 
5509 	return reg->type == PTR_TO_CTX;
5510 }
5511 
5512 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5513 {
5514 	const struct bpf_reg_state *reg = reg_state(env, regno);
5515 
5516 	return type_is_sk_pointer(reg->type);
5517 }
5518 
5519 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5520 {
5521 	const struct bpf_reg_state *reg = reg_state(env, regno);
5522 
5523 	return type_is_pkt_pointer(reg->type);
5524 }
5525 
5526 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5527 {
5528 	const struct bpf_reg_state *reg = reg_state(env, regno);
5529 
5530 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5531 	return reg->type == PTR_TO_FLOW_KEYS;
5532 }
5533 
5534 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5535 #ifdef CONFIG_NET
5536 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5537 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5538 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5539 #endif
5540 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5541 };
5542 
5543 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5544 {
5545 	/* A referenced register is always trusted. */
5546 	if (reg->ref_obj_id)
5547 		return true;
5548 
5549 	/* Types listed in the reg2btf_ids are always trusted */
5550 	if (reg2btf_ids[base_type(reg->type)])
5551 		return true;
5552 
5553 	/* If a register is not referenced, it is trusted if it has the
5554 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5555 	 * other type modifiers may be safe, but we elect to take an opt-in
5556 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5557 	 * not.
5558 	 *
5559 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5560 	 * for whether a register is trusted.
5561 	 */
5562 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5563 	       !bpf_type_has_unsafe_modifiers(reg->type);
5564 }
5565 
5566 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5567 {
5568 	return reg->type & MEM_RCU;
5569 }
5570 
5571 static void clear_trusted_flags(enum bpf_type_flag *flag)
5572 {
5573 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5574 }
5575 
5576 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5577 				   const struct bpf_reg_state *reg,
5578 				   int off, int size, bool strict)
5579 {
5580 	struct tnum reg_off;
5581 	int ip_align;
5582 
5583 	/* Byte size accesses are always allowed. */
5584 	if (!strict || size == 1)
5585 		return 0;
5586 
5587 	/* For platforms that do not have a Kconfig enabling
5588 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5589 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5590 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5591 	 * to this code only in strict mode where we want to emulate
5592 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5593 	 * unconditional IP align value of '2'.
5594 	 */
5595 	ip_align = 2;
5596 
5597 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5598 	if (!tnum_is_aligned(reg_off, size)) {
5599 		char tn_buf[48];
5600 
5601 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5602 		verbose(env,
5603 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5604 			ip_align, tn_buf, reg->off, off, size);
5605 		return -EACCES;
5606 	}
5607 
5608 	return 0;
5609 }
5610 
5611 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5612 				       const struct bpf_reg_state *reg,
5613 				       const char *pointer_desc,
5614 				       int off, int size, bool strict)
5615 {
5616 	struct tnum reg_off;
5617 
5618 	/* Byte size accesses are always allowed. */
5619 	if (!strict || size == 1)
5620 		return 0;
5621 
5622 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5623 	if (!tnum_is_aligned(reg_off, size)) {
5624 		char tn_buf[48];
5625 
5626 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5627 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5628 			pointer_desc, tn_buf, reg->off, off, size);
5629 		return -EACCES;
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static int check_ptr_alignment(struct bpf_verifier_env *env,
5636 			       const struct bpf_reg_state *reg, int off,
5637 			       int size, bool strict_alignment_once)
5638 {
5639 	bool strict = env->strict_alignment || strict_alignment_once;
5640 	const char *pointer_desc = "";
5641 
5642 	switch (reg->type) {
5643 	case PTR_TO_PACKET:
5644 	case PTR_TO_PACKET_META:
5645 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5646 		 * right in front, treat it the very same way.
5647 		 */
5648 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5649 	case PTR_TO_FLOW_KEYS:
5650 		pointer_desc = "flow keys ";
5651 		break;
5652 	case PTR_TO_MAP_KEY:
5653 		pointer_desc = "key ";
5654 		break;
5655 	case PTR_TO_MAP_VALUE:
5656 		pointer_desc = "value ";
5657 		break;
5658 	case PTR_TO_CTX:
5659 		pointer_desc = "context ";
5660 		break;
5661 	case PTR_TO_STACK:
5662 		pointer_desc = "stack ";
5663 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5664 		 * and check_stack_read_fixed_off() relies on stack accesses being
5665 		 * aligned.
5666 		 */
5667 		strict = true;
5668 		break;
5669 	case PTR_TO_SOCKET:
5670 		pointer_desc = "sock ";
5671 		break;
5672 	case PTR_TO_SOCK_COMMON:
5673 		pointer_desc = "sock_common ";
5674 		break;
5675 	case PTR_TO_TCP_SOCK:
5676 		pointer_desc = "tcp_sock ";
5677 		break;
5678 	case PTR_TO_XDP_SOCK:
5679 		pointer_desc = "xdp_sock ";
5680 		break;
5681 	default:
5682 		break;
5683 	}
5684 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5685 					   strict);
5686 }
5687 
5688 static int update_stack_depth(struct bpf_verifier_env *env,
5689 			      const struct bpf_func_state *func,
5690 			      int off)
5691 {
5692 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5693 
5694 	if (stack >= -off)
5695 		return 0;
5696 
5697 	/* update known max for given subprogram */
5698 	env->subprog_info[func->subprogno].stack_depth = -off;
5699 	return 0;
5700 }
5701 
5702 /* starting from main bpf function walk all instructions of the function
5703  * and recursively walk all callees that given function can call.
5704  * Ignore jump and exit insns.
5705  * Since recursion is prevented by check_cfg() this algorithm
5706  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5707  */
5708 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5709 {
5710 	struct bpf_subprog_info *subprog = env->subprog_info;
5711 	struct bpf_insn *insn = env->prog->insnsi;
5712 	int depth = 0, frame = 0, i, subprog_end;
5713 	bool tail_call_reachable = false;
5714 	int ret_insn[MAX_CALL_FRAMES];
5715 	int ret_prog[MAX_CALL_FRAMES];
5716 	int j;
5717 
5718 	i = subprog[idx].start;
5719 process_func:
5720 	/* protect against potential stack overflow that might happen when
5721 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5722 	 * depth for such case down to 256 so that the worst case scenario
5723 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5724 	 * 8k).
5725 	 *
5726 	 * To get the idea what might happen, see an example:
5727 	 * func1 -> sub rsp, 128
5728 	 *  subfunc1 -> sub rsp, 256
5729 	 *  tailcall1 -> add rsp, 256
5730 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5731 	 *   subfunc2 -> sub rsp, 64
5732 	 *   subfunc22 -> sub rsp, 128
5733 	 *   tailcall2 -> add rsp, 128
5734 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5735 	 *
5736 	 * tailcall will unwind the current stack frame but it will not get rid
5737 	 * of caller's stack as shown on the example above.
5738 	 */
5739 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5740 		verbose(env,
5741 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5742 			depth);
5743 		return -EACCES;
5744 	}
5745 	/* round up to 32-bytes, since this is granularity
5746 	 * of interpreter stack size
5747 	 */
5748 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5749 	if (depth > MAX_BPF_STACK) {
5750 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5751 			frame + 1, depth);
5752 		return -EACCES;
5753 	}
5754 continue_func:
5755 	subprog_end = subprog[idx + 1].start;
5756 	for (; i < subprog_end; i++) {
5757 		int next_insn, sidx;
5758 
5759 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5760 			bool err = false;
5761 
5762 			if (!is_bpf_throw_kfunc(insn + i))
5763 				continue;
5764 			if (subprog[idx].is_cb)
5765 				err = true;
5766 			for (int c = 0; c < frame && !err; c++) {
5767 				if (subprog[ret_prog[c]].is_cb) {
5768 					err = true;
5769 					break;
5770 				}
5771 			}
5772 			if (!err)
5773 				continue;
5774 			verbose(env,
5775 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5776 				i, idx);
5777 			return -EINVAL;
5778 		}
5779 
5780 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5781 			continue;
5782 		/* remember insn and function to return to */
5783 		ret_insn[frame] = i + 1;
5784 		ret_prog[frame] = idx;
5785 
5786 		/* find the callee */
5787 		next_insn = i + insn[i].imm + 1;
5788 		sidx = find_subprog(env, next_insn);
5789 		if (sidx < 0) {
5790 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5791 				  next_insn);
5792 			return -EFAULT;
5793 		}
5794 		if (subprog[sidx].is_async_cb) {
5795 			if (subprog[sidx].has_tail_call) {
5796 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5797 				return -EFAULT;
5798 			}
5799 			/* async callbacks don't increase bpf prog stack size unless called directly */
5800 			if (!bpf_pseudo_call(insn + i))
5801 				continue;
5802 			if (subprog[sidx].is_exception_cb) {
5803 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5804 				return -EINVAL;
5805 			}
5806 		}
5807 		i = next_insn;
5808 		idx = sidx;
5809 
5810 		if (subprog[idx].has_tail_call)
5811 			tail_call_reachable = true;
5812 
5813 		frame++;
5814 		if (frame >= MAX_CALL_FRAMES) {
5815 			verbose(env, "the call stack of %d frames is too deep !\n",
5816 				frame);
5817 			return -E2BIG;
5818 		}
5819 		goto process_func;
5820 	}
5821 	/* if tail call got detected across bpf2bpf calls then mark each of the
5822 	 * currently present subprog frames as tail call reachable subprogs;
5823 	 * this info will be utilized by JIT so that we will be preserving the
5824 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5825 	 */
5826 	if (tail_call_reachable)
5827 		for (j = 0; j < frame; j++) {
5828 			if (subprog[ret_prog[j]].is_exception_cb) {
5829 				verbose(env, "cannot tail call within exception cb\n");
5830 				return -EINVAL;
5831 			}
5832 			subprog[ret_prog[j]].tail_call_reachable = true;
5833 		}
5834 	if (subprog[0].tail_call_reachable)
5835 		env->prog->aux->tail_call_reachable = true;
5836 
5837 	/* end of for() loop means the last insn of the 'subprog'
5838 	 * was reached. Doesn't matter whether it was JA or EXIT
5839 	 */
5840 	if (frame == 0)
5841 		return 0;
5842 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5843 	frame--;
5844 	i = ret_insn[frame];
5845 	idx = ret_prog[frame];
5846 	goto continue_func;
5847 }
5848 
5849 static int check_max_stack_depth(struct bpf_verifier_env *env)
5850 {
5851 	struct bpf_subprog_info *si = env->subprog_info;
5852 	int ret;
5853 
5854 	for (int i = 0; i < env->subprog_cnt; i++) {
5855 		if (!i || si[i].is_async_cb) {
5856 			ret = check_max_stack_depth_subprog(env, i);
5857 			if (ret < 0)
5858 				return ret;
5859 		}
5860 		continue;
5861 	}
5862 	return 0;
5863 }
5864 
5865 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5866 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5867 				  const struct bpf_insn *insn, int idx)
5868 {
5869 	int start = idx + insn->imm + 1, subprog;
5870 
5871 	subprog = find_subprog(env, start);
5872 	if (subprog < 0) {
5873 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5874 			  start);
5875 		return -EFAULT;
5876 	}
5877 	return env->subprog_info[subprog].stack_depth;
5878 }
5879 #endif
5880 
5881 static int __check_buffer_access(struct bpf_verifier_env *env,
5882 				 const char *buf_info,
5883 				 const struct bpf_reg_state *reg,
5884 				 int regno, int off, int size)
5885 {
5886 	if (off < 0) {
5887 		verbose(env,
5888 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5889 			regno, buf_info, off, size);
5890 		return -EACCES;
5891 	}
5892 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5893 		char tn_buf[48];
5894 
5895 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5896 		verbose(env,
5897 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5898 			regno, off, tn_buf);
5899 		return -EACCES;
5900 	}
5901 
5902 	return 0;
5903 }
5904 
5905 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5906 				  const struct bpf_reg_state *reg,
5907 				  int regno, int off, int size)
5908 {
5909 	int err;
5910 
5911 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5912 	if (err)
5913 		return err;
5914 
5915 	if (off + size > env->prog->aux->max_tp_access)
5916 		env->prog->aux->max_tp_access = off + size;
5917 
5918 	return 0;
5919 }
5920 
5921 static int check_buffer_access(struct bpf_verifier_env *env,
5922 			       const struct bpf_reg_state *reg,
5923 			       int regno, int off, int size,
5924 			       bool zero_size_allowed,
5925 			       u32 *max_access)
5926 {
5927 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5928 	int err;
5929 
5930 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5931 	if (err)
5932 		return err;
5933 
5934 	if (off + size > *max_access)
5935 		*max_access = off + size;
5936 
5937 	return 0;
5938 }
5939 
5940 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5941 static void zext_32_to_64(struct bpf_reg_state *reg)
5942 {
5943 	reg->var_off = tnum_subreg(reg->var_off);
5944 	__reg_assign_32_into_64(reg);
5945 }
5946 
5947 /* truncate register to smaller size (in bytes)
5948  * must be called with size < BPF_REG_SIZE
5949  */
5950 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5951 {
5952 	u64 mask;
5953 
5954 	/* clear high bits in bit representation */
5955 	reg->var_off = tnum_cast(reg->var_off, size);
5956 
5957 	/* fix arithmetic bounds */
5958 	mask = ((u64)1 << (size * 8)) - 1;
5959 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5960 		reg->umin_value &= mask;
5961 		reg->umax_value &= mask;
5962 	} else {
5963 		reg->umin_value = 0;
5964 		reg->umax_value = mask;
5965 	}
5966 	reg->smin_value = reg->umin_value;
5967 	reg->smax_value = reg->umax_value;
5968 
5969 	/* If size is smaller than 32bit register the 32bit register
5970 	 * values are also truncated so we push 64-bit bounds into
5971 	 * 32-bit bounds. Above were truncated < 32-bits already.
5972 	 */
5973 	if (size < 4) {
5974 		__mark_reg32_unbounded(reg);
5975 		reg_bounds_sync(reg);
5976 	}
5977 }
5978 
5979 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5980 {
5981 	if (size == 1) {
5982 		reg->smin_value = reg->s32_min_value = S8_MIN;
5983 		reg->smax_value = reg->s32_max_value = S8_MAX;
5984 	} else if (size == 2) {
5985 		reg->smin_value = reg->s32_min_value = S16_MIN;
5986 		reg->smax_value = reg->s32_max_value = S16_MAX;
5987 	} else {
5988 		/* size == 4 */
5989 		reg->smin_value = reg->s32_min_value = S32_MIN;
5990 		reg->smax_value = reg->s32_max_value = S32_MAX;
5991 	}
5992 	reg->umin_value = reg->u32_min_value = 0;
5993 	reg->umax_value = U64_MAX;
5994 	reg->u32_max_value = U32_MAX;
5995 	reg->var_off = tnum_unknown;
5996 }
5997 
5998 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5999 {
6000 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6001 	u64 top_smax_value, top_smin_value;
6002 	u64 num_bits = size * 8;
6003 
6004 	if (tnum_is_const(reg->var_off)) {
6005 		u64_cval = reg->var_off.value;
6006 		if (size == 1)
6007 			reg->var_off = tnum_const((s8)u64_cval);
6008 		else if (size == 2)
6009 			reg->var_off = tnum_const((s16)u64_cval);
6010 		else
6011 			/* size == 4 */
6012 			reg->var_off = tnum_const((s32)u64_cval);
6013 
6014 		u64_cval = reg->var_off.value;
6015 		reg->smax_value = reg->smin_value = u64_cval;
6016 		reg->umax_value = reg->umin_value = u64_cval;
6017 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6018 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6019 		return;
6020 	}
6021 
6022 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6023 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6024 
6025 	if (top_smax_value != top_smin_value)
6026 		goto out;
6027 
6028 	/* find the s64_min and s64_min after sign extension */
6029 	if (size == 1) {
6030 		init_s64_max = (s8)reg->smax_value;
6031 		init_s64_min = (s8)reg->smin_value;
6032 	} else if (size == 2) {
6033 		init_s64_max = (s16)reg->smax_value;
6034 		init_s64_min = (s16)reg->smin_value;
6035 	} else {
6036 		init_s64_max = (s32)reg->smax_value;
6037 		init_s64_min = (s32)reg->smin_value;
6038 	}
6039 
6040 	s64_max = max(init_s64_max, init_s64_min);
6041 	s64_min = min(init_s64_max, init_s64_min);
6042 
6043 	/* both of s64_max/s64_min positive or negative */
6044 	if ((s64_max >= 0) == (s64_min >= 0)) {
6045 		reg->smin_value = reg->s32_min_value = s64_min;
6046 		reg->smax_value = reg->s32_max_value = s64_max;
6047 		reg->umin_value = reg->u32_min_value = s64_min;
6048 		reg->umax_value = reg->u32_max_value = s64_max;
6049 		reg->var_off = tnum_range(s64_min, s64_max);
6050 		return;
6051 	}
6052 
6053 out:
6054 	set_sext64_default_val(reg, size);
6055 }
6056 
6057 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6058 {
6059 	if (size == 1) {
6060 		reg->s32_min_value = S8_MIN;
6061 		reg->s32_max_value = S8_MAX;
6062 	} else {
6063 		/* size == 2 */
6064 		reg->s32_min_value = S16_MIN;
6065 		reg->s32_max_value = S16_MAX;
6066 	}
6067 	reg->u32_min_value = 0;
6068 	reg->u32_max_value = U32_MAX;
6069 }
6070 
6071 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6072 {
6073 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6074 	u32 top_smax_value, top_smin_value;
6075 	u32 num_bits = size * 8;
6076 
6077 	if (tnum_is_const(reg->var_off)) {
6078 		u32_val = reg->var_off.value;
6079 		if (size == 1)
6080 			reg->var_off = tnum_const((s8)u32_val);
6081 		else
6082 			reg->var_off = tnum_const((s16)u32_val);
6083 
6084 		u32_val = reg->var_off.value;
6085 		reg->s32_min_value = reg->s32_max_value = u32_val;
6086 		reg->u32_min_value = reg->u32_max_value = u32_val;
6087 		return;
6088 	}
6089 
6090 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6091 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6092 
6093 	if (top_smax_value != top_smin_value)
6094 		goto out;
6095 
6096 	/* find the s32_min and s32_min after sign extension */
6097 	if (size == 1) {
6098 		init_s32_max = (s8)reg->s32_max_value;
6099 		init_s32_min = (s8)reg->s32_min_value;
6100 	} else {
6101 		/* size == 2 */
6102 		init_s32_max = (s16)reg->s32_max_value;
6103 		init_s32_min = (s16)reg->s32_min_value;
6104 	}
6105 	s32_max = max(init_s32_max, init_s32_min);
6106 	s32_min = min(init_s32_max, init_s32_min);
6107 
6108 	if ((s32_min >= 0) == (s32_max >= 0)) {
6109 		reg->s32_min_value = s32_min;
6110 		reg->s32_max_value = s32_max;
6111 		reg->u32_min_value = (u32)s32_min;
6112 		reg->u32_max_value = (u32)s32_max;
6113 		return;
6114 	}
6115 
6116 out:
6117 	set_sext32_default_val(reg, size);
6118 }
6119 
6120 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6121 {
6122 	/* A map is considered read-only if the following condition are true:
6123 	 *
6124 	 * 1) BPF program side cannot change any of the map content. The
6125 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6126 	 *    and was set at map creation time.
6127 	 * 2) The map value(s) have been initialized from user space by a
6128 	 *    loader and then "frozen", such that no new map update/delete
6129 	 *    operations from syscall side are possible for the rest of
6130 	 *    the map's lifetime from that point onwards.
6131 	 * 3) Any parallel/pending map update/delete operations from syscall
6132 	 *    side have been completed. Only after that point, it's safe to
6133 	 *    assume that map value(s) are immutable.
6134 	 */
6135 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6136 	       READ_ONCE(map->frozen) &&
6137 	       !bpf_map_write_active(map);
6138 }
6139 
6140 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6141 			       bool is_ldsx)
6142 {
6143 	void *ptr;
6144 	u64 addr;
6145 	int err;
6146 
6147 	err = map->ops->map_direct_value_addr(map, &addr, off);
6148 	if (err)
6149 		return err;
6150 	ptr = (void *)(long)addr + off;
6151 
6152 	switch (size) {
6153 	case sizeof(u8):
6154 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6155 		break;
6156 	case sizeof(u16):
6157 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6158 		break;
6159 	case sizeof(u32):
6160 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6161 		break;
6162 	case sizeof(u64):
6163 		*val = *(u64 *)ptr;
6164 		break;
6165 	default:
6166 		return -EINVAL;
6167 	}
6168 	return 0;
6169 }
6170 
6171 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6172 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6173 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6174 
6175 /*
6176  * Allow list few fields as RCU trusted or full trusted.
6177  * This logic doesn't allow mix tagging and will be removed once GCC supports
6178  * btf_type_tag.
6179  */
6180 
6181 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6182 BTF_TYPE_SAFE_RCU(struct task_struct) {
6183 	const cpumask_t *cpus_ptr;
6184 	struct css_set __rcu *cgroups;
6185 	struct task_struct __rcu *real_parent;
6186 	struct task_struct *group_leader;
6187 };
6188 
6189 BTF_TYPE_SAFE_RCU(struct cgroup) {
6190 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6191 	struct kernfs_node *kn;
6192 };
6193 
6194 BTF_TYPE_SAFE_RCU(struct css_set) {
6195 	struct cgroup *dfl_cgrp;
6196 };
6197 
6198 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6199 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6200 	struct file __rcu *exe_file;
6201 };
6202 
6203 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6204  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6205  */
6206 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6207 	struct sock *sk;
6208 };
6209 
6210 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6211 	struct sock *sk;
6212 };
6213 
6214 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6215 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6216 	struct seq_file *seq;
6217 };
6218 
6219 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6220 	struct bpf_iter_meta *meta;
6221 	struct task_struct *task;
6222 };
6223 
6224 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6225 	struct file *file;
6226 };
6227 
6228 BTF_TYPE_SAFE_TRUSTED(struct file) {
6229 	struct inode *f_inode;
6230 };
6231 
6232 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6233 	/* no negative dentry-s in places where bpf can see it */
6234 	struct inode *d_inode;
6235 };
6236 
6237 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6238 	struct sock *sk;
6239 };
6240 
6241 static bool type_is_rcu(struct bpf_verifier_env *env,
6242 			struct bpf_reg_state *reg,
6243 			const char *field_name, u32 btf_id)
6244 {
6245 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6246 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6247 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6248 
6249 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6250 }
6251 
6252 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6253 				struct bpf_reg_state *reg,
6254 				const char *field_name, u32 btf_id)
6255 {
6256 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6257 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6258 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6259 
6260 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6261 }
6262 
6263 static bool type_is_trusted(struct bpf_verifier_env *env,
6264 			    struct bpf_reg_state *reg,
6265 			    const char *field_name, u32 btf_id)
6266 {
6267 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6268 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6269 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6270 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6271 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6272 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6273 
6274 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6275 }
6276 
6277 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6278 				   struct bpf_reg_state *regs,
6279 				   int regno, int off, int size,
6280 				   enum bpf_access_type atype,
6281 				   int value_regno)
6282 {
6283 	struct bpf_reg_state *reg = regs + regno;
6284 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6285 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6286 	const char *field_name = NULL;
6287 	enum bpf_type_flag flag = 0;
6288 	u32 btf_id = 0;
6289 	int ret;
6290 
6291 	if (!env->allow_ptr_leaks) {
6292 		verbose(env,
6293 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6294 			tname);
6295 		return -EPERM;
6296 	}
6297 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6298 		verbose(env,
6299 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6300 			tname);
6301 		return -EINVAL;
6302 	}
6303 	if (off < 0) {
6304 		verbose(env,
6305 			"R%d is ptr_%s invalid negative access: off=%d\n",
6306 			regno, tname, off);
6307 		return -EACCES;
6308 	}
6309 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6310 		char tn_buf[48];
6311 
6312 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6313 		verbose(env,
6314 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6315 			regno, tname, off, tn_buf);
6316 		return -EACCES;
6317 	}
6318 
6319 	if (reg->type & MEM_USER) {
6320 		verbose(env,
6321 			"R%d is ptr_%s access user memory: off=%d\n",
6322 			regno, tname, off);
6323 		return -EACCES;
6324 	}
6325 
6326 	if (reg->type & MEM_PERCPU) {
6327 		verbose(env,
6328 			"R%d is ptr_%s access percpu memory: off=%d\n",
6329 			regno, tname, off);
6330 		return -EACCES;
6331 	}
6332 
6333 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6334 		if (!btf_is_kernel(reg->btf)) {
6335 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6336 			return -EFAULT;
6337 		}
6338 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6339 	} else {
6340 		/* Writes are permitted with default btf_struct_access for
6341 		 * program allocated objects (which always have ref_obj_id > 0),
6342 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6343 		 */
6344 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6345 			verbose(env, "only read is supported\n");
6346 			return -EACCES;
6347 		}
6348 
6349 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6350 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6351 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6352 			return -EFAULT;
6353 		}
6354 
6355 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6356 	}
6357 
6358 	if (ret < 0)
6359 		return ret;
6360 
6361 	if (ret != PTR_TO_BTF_ID) {
6362 		/* just mark; */
6363 
6364 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6365 		/* If this is an untrusted pointer, all pointers formed by walking it
6366 		 * also inherit the untrusted flag.
6367 		 */
6368 		flag = PTR_UNTRUSTED;
6369 
6370 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6371 		/* By default any pointer obtained from walking a trusted pointer is no
6372 		 * longer trusted, unless the field being accessed has explicitly been
6373 		 * marked as inheriting its parent's state of trust (either full or RCU).
6374 		 * For example:
6375 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6376 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6377 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6378 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6379 		 *
6380 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6381 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6382 		 */
6383 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6384 			flag |= PTR_TRUSTED;
6385 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6386 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6387 				/* ignore __rcu tag and mark it MEM_RCU */
6388 				flag |= MEM_RCU;
6389 			} else if (flag & MEM_RCU ||
6390 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6391 				/* __rcu tagged pointers can be NULL */
6392 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6393 
6394 				/* We always trust them */
6395 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6396 				    flag & PTR_UNTRUSTED)
6397 					flag &= ~PTR_UNTRUSTED;
6398 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6399 				/* keep as-is */
6400 			} else {
6401 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6402 				clear_trusted_flags(&flag);
6403 			}
6404 		} else {
6405 			/*
6406 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6407 			 * aggressively mark as untrusted otherwise such
6408 			 * pointers will be plain PTR_TO_BTF_ID without flags
6409 			 * and will be allowed to be passed into helpers for
6410 			 * compat reasons.
6411 			 */
6412 			flag = PTR_UNTRUSTED;
6413 		}
6414 	} else {
6415 		/* Old compat. Deprecated */
6416 		clear_trusted_flags(&flag);
6417 	}
6418 
6419 	if (atype == BPF_READ && value_regno >= 0)
6420 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6421 
6422 	return 0;
6423 }
6424 
6425 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6426 				   struct bpf_reg_state *regs,
6427 				   int regno, int off, int size,
6428 				   enum bpf_access_type atype,
6429 				   int value_regno)
6430 {
6431 	struct bpf_reg_state *reg = regs + regno;
6432 	struct bpf_map *map = reg->map_ptr;
6433 	struct bpf_reg_state map_reg;
6434 	enum bpf_type_flag flag = 0;
6435 	const struct btf_type *t;
6436 	const char *tname;
6437 	u32 btf_id;
6438 	int ret;
6439 
6440 	if (!btf_vmlinux) {
6441 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6442 		return -ENOTSUPP;
6443 	}
6444 
6445 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6446 		verbose(env, "map_ptr access not supported for map type %d\n",
6447 			map->map_type);
6448 		return -ENOTSUPP;
6449 	}
6450 
6451 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6452 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6453 
6454 	if (!env->allow_ptr_leaks) {
6455 		verbose(env,
6456 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6457 			tname);
6458 		return -EPERM;
6459 	}
6460 
6461 	if (off < 0) {
6462 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6463 			regno, tname, off);
6464 		return -EACCES;
6465 	}
6466 
6467 	if (atype != BPF_READ) {
6468 		verbose(env, "only read from %s is supported\n", tname);
6469 		return -EACCES;
6470 	}
6471 
6472 	/* Simulate access to a PTR_TO_BTF_ID */
6473 	memset(&map_reg, 0, sizeof(map_reg));
6474 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6475 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6476 	if (ret < 0)
6477 		return ret;
6478 
6479 	if (value_regno >= 0)
6480 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6481 
6482 	return 0;
6483 }
6484 
6485 /* Check that the stack access at the given offset is within bounds. The
6486  * maximum valid offset is -1.
6487  *
6488  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6489  * -state->allocated_stack for reads.
6490  */
6491 static int check_stack_slot_within_bounds(int off,
6492 					  struct bpf_func_state *state,
6493 					  enum bpf_access_type t)
6494 {
6495 	int min_valid_off;
6496 
6497 	if (t == BPF_WRITE)
6498 		min_valid_off = -MAX_BPF_STACK;
6499 	else
6500 		min_valid_off = -state->allocated_stack;
6501 
6502 	if (off < min_valid_off || off > -1)
6503 		return -EACCES;
6504 	return 0;
6505 }
6506 
6507 /* Check that the stack access at 'regno + off' falls within the maximum stack
6508  * bounds.
6509  *
6510  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6511  */
6512 static int check_stack_access_within_bounds(
6513 		struct bpf_verifier_env *env,
6514 		int regno, int off, int access_size,
6515 		enum bpf_access_src src, enum bpf_access_type type)
6516 {
6517 	struct bpf_reg_state *regs = cur_regs(env);
6518 	struct bpf_reg_state *reg = regs + regno;
6519 	struct bpf_func_state *state = func(env, reg);
6520 	int min_off, max_off;
6521 	int err;
6522 	char *err_extra;
6523 
6524 	if (src == ACCESS_HELPER)
6525 		/* We don't know if helpers are reading or writing (or both). */
6526 		err_extra = " indirect access to";
6527 	else if (type == BPF_READ)
6528 		err_extra = " read from";
6529 	else
6530 		err_extra = " write to";
6531 
6532 	if (tnum_is_const(reg->var_off)) {
6533 		min_off = reg->var_off.value + off;
6534 		if (access_size > 0)
6535 			max_off = min_off + access_size - 1;
6536 		else
6537 			max_off = min_off;
6538 	} else {
6539 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6540 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6541 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6542 				err_extra, regno);
6543 			return -EACCES;
6544 		}
6545 		min_off = reg->smin_value + off;
6546 		if (access_size > 0)
6547 			max_off = reg->smax_value + off + access_size - 1;
6548 		else
6549 			max_off = min_off;
6550 	}
6551 
6552 	err = check_stack_slot_within_bounds(min_off, state, type);
6553 	if (!err)
6554 		err = check_stack_slot_within_bounds(max_off, state, type);
6555 
6556 	if (err) {
6557 		if (tnum_is_const(reg->var_off)) {
6558 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6559 				err_extra, regno, off, access_size);
6560 		} else {
6561 			char tn_buf[48];
6562 
6563 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6564 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6565 				err_extra, regno, tn_buf, access_size);
6566 		}
6567 	}
6568 	return err;
6569 }
6570 
6571 /* check whether memory at (regno + off) is accessible for t = (read | write)
6572  * if t==write, value_regno is a register which value is stored into memory
6573  * if t==read, value_regno is a register which will receive the value from memory
6574  * if t==write && value_regno==-1, some unknown value is stored into memory
6575  * if t==read && value_regno==-1, don't care what we read from memory
6576  */
6577 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6578 			    int off, int bpf_size, enum bpf_access_type t,
6579 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6580 {
6581 	struct bpf_reg_state *regs = cur_regs(env);
6582 	struct bpf_reg_state *reg = regs + regno;
6583 	struct bpf_func_state *state;
6584 	int size, err = 0;
6585 
6586 	size = bpf_size_to_bytes(bpf_size);
6587 	if (size < 0)
6588 		return size;
6589 
6590 	/* alignment checks will add in reg->off themselves */
6591 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6592 	if (err)
6593 		return err;
6594 
6595 	/* for access checks, reg->off is just part of off */
6596 	off += reg->off;
6597 
6598 	if (reg->type == PTR_TO_MAP_KEY) {
6599 		if (t == BPF_WRITE) {
6600 			verbose(env, "write to change key R%d not allowed\n", regno);
6601 			return -EACCES;
6602 		}
6603 
6604 		err = check_mem_region_access(env, regno, off, size,
6605 					      reg->map_ptr->key_size, false);
6606 		if (err)
6607 			return err;
6608 		if (value_regno >= 0)
6609 			mark_reg_unknown(env, regs, value_regno);
6610 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6611 		struct btf_field *kptr_field = NULL;
6612 
6613 		if (t == BPF_WRITE && value_regno >= 0 &&
6614 		    is_pointer_value(env, value_regno)) {
6615 			verbose(env, "R%d leaks addr into map\n", value_regno);
6616 			return -EACCES;
6617 		}
6618 		err = check_map_access_type(env, regno, off, size, t);
6619 		if (err)
6620 			return err;
6621 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6622 		if (err)
6623 			return err;
6624 		if (tnum_is_const(reg->var_off))
6625 			kptr_field = btf_record_find(reg->map_ptr->record,
6626 						     off + reg->var_off.value, BPF_KPTR);
6627 		if (kptr_field) {
6628 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6629 		} else if (t == BPF_READ && value_regno >= 0) {
6630 			struct bpf_map *map = reg->map_ptr;
6631 
6632 			/* if map is read-only, track its contents as scalars */
6633 			if (tnum_is_const(reg->var_off) &&
6634 			    bpf_map_is_rdonly(map) &&
6635 			    map->ops->map_direct_value_addr) {
6636 				int map_off = off + reg->var_off.value;
6637 				u64 val = 0;
6638 
6639 				err = bpf_map_direct_read(map, map_off, size,
6640 							  &val, is_ldsx);
6641 				if (err)
6642 					return err;
6643 
6644 				regs[value_regno].type = SCALAR_VALUE;
6645 				__mark_reg_known(&regs[value_regno], val);
6646 			} else {
6647 				mark_reg_unknown(env, regs, value_regno);
6648 			}
6649 		}
6650 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6651 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6652 
6653 		if (type_may_be_null(reg->type)) {
6654 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6655 				reg_type_str(env, reg->type));
6656 			return -EACCES;
6657 		}
6658 
6659 		if (t == BPF_WRITE && rdonly_mem) {
6660 			verbose(env, "R%d cannot write into %s\n",
6661 				regno, reg_type_str(env, reg->type));
6662 			return -EACCES;
6663 		}
6664 
6665 		if (t == BPF_WRITE && value_regno >= 0 &&
6666 		    is_pointer_value(env, value_regno)) {
6667 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6668 			return -EACCES;
6669 		}
6670 
6671 		err = check_mem_region_access(env, regno, off, size,
6672 					      reg->mem_size, false);
6673 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6674 			mark_reg_unknown(env, regs, value_regno);
6675 	} else if (reg->type == PTR_TO_CTX) {
6676 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6677 		struct btf *btf = NULL;
6678 		u32 btf_id = 0;
6679 
6680 		if (t == BPF_WRITE && value_regno >= 0 &&
6681 		    is_pointer_value(env, value_regno)) {
6682 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6683 			return -EACCES;
6684 		}
6685 
6686 		err = check_ptr_off_reg(env, reg, regno);
6687 		if (err < 0)
6688 			return err;
6689 
6690 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6691 				       &btf_id);
6692 		if (err)
6693 			verbose_linfo(env, insn_idx, "; ");
6694 		if (!err && t == BPF_READ && value_regno >= 0) {
6695 			/* ctx access returns either a scalar, or a
6696 			 * PTR_TO_PACKET[_META,_END]. In the latter
6697 			 * case, we know the offset is zero.
6698 			 */
6699 			if (reg_type == SCALAR_VALUE) {
6700 				mark_reg_unknown(env, regs, value_regno);
6701 			} else {
6702 				mark_reg_known_zero(env, regs,
6703 						    value_regno);
6704 				if (type_may_be_null(reg_type))
6705 					regs[value_regno].id = ++env->id_gen;
6706 				/* A load of ctx field could have different
6707 				 * actual load size with the one encoded in the
6708 				 * insn. When the dst is PTR, it is for sure not
6709 				 * a sub-register.
6710 				 */
6711 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6712 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6713 					regs[value_regno].btf = btf;
6714 					regs[value_regno].btf_id = btf_id;
6715 				}
6716 			}
6717 			regs[value_regno].type = reg_type;
6718 		}
6719 
6720 	} else if (reg->type == PTR_TO_STACK) {
6721 		/* Basic bounds checks. */
6722 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6723 		if (err)
6724 			return err;
6725 
6726 		state = func(env, reg);
6727 		err = update_stack_depth(env, state, off);
6728 		if (err)
6729 			return err;
6730 
6731 		if (t == BPF_READ)
6732 			err = check_stack_read(env, regno, off, size,
6733 					       value_regno);
6734 		else
6735 			err = check_stack_write(env, regno, off, size,
6736 						value_regno, insn_idx);
6737 	} else if (reg_is_pkt_pointer(reg)) {
6738 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6739 			verbose(env, "cannot write into packet\n");
6740 			return -EACCES;
6741 		}
6742 		if (t == BPF_WRITE && value_regno >= 0 &&
6743 		    is_pointer_value(env, value_regno)) {
6744 			verbose(env, "R%d leaks addr into packet\n",
6745 				value_regno);
6746 			return -EACCES;
6747 		}
6748 		err = check_packet_access(env, regno, off, size, false);
6749 		if (!err && t == BPF_READ && value_regno >= 0)
6750 			mark_reg_unknown(env, regs, value_regno);
6751 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6752 		if (t == BPF_WRITE && value_regno >= 0 &&
6753 		    is_pointer_value(env, value_regno)) {
6754 			verbose(env, "R%d leaks addr into flow keys\n",
6755 				value_regno);
6756 			return -EACCES;
6757 		}
6758 
6759 		err = check_flow_keys_access(env, off, size);
6760 		if (!err && t == BPF_READ && value_regno >= 0)
6761 			mark_reg_unknown(env, regs, value_regno);
6762 	} else if (type_is_sk_pointer(reg->type)) {
6763 		if (t == BPF_WRITE) {
6764 			verbose(env, "R%d cannot write into %s\n",
6765 				regno, reg_type_str(env, reg->type));
6766 			return -EACCES;
6767 		}
6768 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6769 		if (!err && value_regno >= 0)
6770 			mark_reg_unknown(env, regs, value_regno);
6771 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6772 		err = check_tp_buffer_access(env, reg, regno, off, size);
6773 		if (!err && t == BPF_READ && value_regno >= 0)
6774 			mark_reg_unknown(env, regs, value_regno);
6775 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6776 		   !type_may_be_null(reg->type)) {
6777 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6778 					      value_regno);
6779 	} else if (reg->type == CONST_PTR_TO_MAP) {
6780 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6781 					      value_regno);
6782 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6783 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6784 		u32 *max_access;
6785 
6786 		if (rdonly_mem) {
6787 			if (t == BPF_WRITE) {
6788 				verbose(env, "R%d cannot write into %s\n",
6789 					regno, reg_type_str(env, reg->type));
6790 				return -EACCES;
6791 			}
6792 			max_access = &env->prog->aux->max_rdonly_access;
6793 		} else {
6794 			max_access = &env->prog->aux->max_rdwr_access;
6795 		}
6796 
6797 		err = check_buffer_access(env, reg, regno, off, size, false,
6798 					  max_access);
6799 
6800 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6801 			mark_reg_unknown(env, regs, value_regno);
6802 	} else {
6803 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6804 			reg_type_str(env, reg->type));
6805 		return -EACCES;
6806 	}
6807 
6808 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6809 	    regs[value_regno].type == SCALAR_VALUE) {
6810 		if (!is_ldsx)
6811 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6812 			coerce_reg_to_size(&regs[value_regno], size);
6813 		else
6814 			coerce_reg_to_size_sx(&regs[value_regno], size);
6815 	}
6816 	return err;
6817 }
6818 
6819 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6820 {
6821 	int load_reg;
6822 	int err;
6823 
6824 	switch (insn->imm) {
6825 	case BPF_ADD:
6826 	case BPF_ADD | BPF_FETCH:
6827 	case BPF_AND:
6828 	case BPF_AND | BPF_FETCH:
6829 	case BPF_OR:
6830 	case BPF_OR | BPF_FETCH:
6831 	case BPF_XOR:
6832 	case BPF_XOR | BPF_FETCH:
6833 	case BPF_XCHG:
6834 	case BPF_CMPXCHG:
6835 		break;
6836 	default:
6837 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6838 		return -EINVAL;
6839 	}
6840 
6841 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6842 		verbose(env, "invalid atomic operand size\n");
6843 		return -EINVAL;
6844 	}
6845 
6846 	/* check src1 operand */
6847 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6848 	if (err)
6849 		return err;
6850 
6851 	/* check src2 operand */
6852 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6853 	if (err)
6854 		return err;
6855 
6856 	if (insn->imm == BPF_CMPXCHG) {
6857 		/* Check comparison of R0 with memory location */
6858 		const u32 aux_reg = BPF_REG_0;
6859 
6860 		err = check_reg_arg(env, aux_reg, SRC_OP);
6861 		if (err)
6862 			return err;
6863 
6864 		if (is_pointer_value(env, aux_reg)) {
6865 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6866 			return -EACCES;
6867 		}
6868 	}
6869 
6870 	if (is_pointer_value(env, insn->src_reg)) {
6871 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6872 		return -EACCES;
6873 	}
6874 
6875 	if (is_ctx_reg(env, insn->dst_reg) ||
6876 	    is_pkt_reg(env, insn->dst_reg) ||
6877 	    is_flow_key_reg(env, insn->dst_reg) ||
6878 	    is_sk_reg(env, insn->dst_reg)) {
6879 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6880 			insn->dst_reg,
6881 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6882 		return -EACCES;
6883 	}
6884 
6885 	if (insn->imm & BPF_FETCH) {
6886 		if (insn->imm == BPF_CMPXCHG)
6887 			load_reg = BPF_REG_0;
6888 		else
6889 			load_reg = insn->src_reg;
6890 
6891 		/* check and record load of old value */
6892 		err = check_reg_arg(env, load_reg, DST_OP);
6893 		if (err)
6894 			return err;
6895 	} else {
6896 		/* This instruction accesses a memory location but doesn't
6897 		 * actually load it into a register.
6898 		 */
6899 		load_reg = -1;
6900 	}
6901 
6902 	/* Check whether we can read the memory, with second call for fetch
6903 	 * case to simulate the register fill.
6904 	 */
6905 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6906 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6907 	if (!err && load_reg >= 0)
6908 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6909 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6910 				       true, false);
6911 	if (err)
6912 		return err;
6913 
6914 	/* Check whether we can write into the same memory. */
6915 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6916 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6917 	if (err)
6918 		return err;
6919 
6920 	return 0;
6921 }
6922 
6923 /* When register 'regno' is used to read the stack (either directly or through
6924  * a helper function) make sure that it's within stack boundary and, depending
6925  * on the access type, that all elements of the stack are initialized.
6926  *
6927  * 'off' includes 'regno->off', but not its dynamic part (if any).
6928  *
6929  * All registers that have been spilled on the stack in the slots within the
6930  * read offsets are marked as read.
6931  */
6932 static int check_stack_range_initialized(
6933 		struct bpf_verifier_env *env, int regno, int off,
6934 		int access_size, bool zero_size_allowed,
6935 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6936 {
6937 	struct bpf_reg_state *reg = reg_state(env, regno);
6938 	struct bpf_func_state *state = func(env, reg);
6939 	int err, min_off, max_off, i, j, slot, spi;
6940 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6941 	enum bpf_access_type bounds_check_type;
6942 	/* Some accesses can write anything into the stack, others are
6943 	 * read-only.
6944 	 */
6945 	bool clobber = false;
6946 
6947 	if (access_size == 0 && !zero_size_allowed) {
6948 		verbose(env, "invalid zero-sized read\n");
6949 		return -EACCES;
6950 	}
6951 
6952 	if (type == ACCESS_HELPER) {
6953 		/* The bounds checks for writes are more permissive than for
6954 		 * reads. However, if raw_mode is not set, we'll do extra
6955 		 * checks below.
6956 		 */
6957 		bounds_check_type = BPF_WRITE;
6958 		clobber = true;
6959 	} else {
6960 		bounds_check_type = BPF_READ;
6961 	}
6962 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6963 					       type, bounds_check_type);
6964 	if (err)
6965 		return err;
6966 
6967 
6968 	if (tnum_is_const(reg->var_off)) {
6969 		min_off = max_off = reg->var_off.value + off;
6970 	} else {
6971 		/* Variable offset is prohibited for unprivileged mode for
6972 		 * simplicity since it requires corresponding support in
6973 		 * Spectre masking for stack ALU.
6974 		 * See also retrieve_ptr_limit().
6975 		 */
6976 		if (!env->bypass_spec_v1) {
6977 			char tn_buf[48];
6978 
6979 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6980 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6981 				regno, err_extra, tn_buf);
6982 			return -EACCES;
6983 		}
6984 		/* Only initialized buffer on stack is allowed to be accessed
6985 		 * with variable offset. With uninitialized buffer it's hard to
6986 		 * guarantee that whole memory is marked as initialized on
6987 		 * helper return since specific bounds are unknown what may
6988 		 * cause uninitialized stack leaking.
6989 		 */
6990 		if (meta && meta->raw_mode)
6991 			meta = NULL;
6992 
6993 		min_off = reg->smin_value + off;
6994 		max_off = reg->smax_value + off;
6995 	}
6996 
6997 	if (meta && meta->raw_mode) {
6998 		/* Ensure we won't be overwriting dynptrs when simulating byte
6999 		 * by byte access in check_helper_call using meta.access_size.
7000 		 * This would be a problem if we have a helper in the future
7001 		 * which takes:
7002 		 *
7003 		 *	helper(uninit_mem, len, dynptr)
7004 		 *
7005 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7006 		 * may end up writing to dynptr itself when touching memory from
7007 		 * arg 1. This can be relaxed on a case by case basis for known
7008 		 * safe cases, but reject due to the possibilitiy of aliasing by
7009 		 * default.
7010 		 */
7011 		for (i = min_off; i < max_off + access_size; i++) {
7012 			int stack_off = -i - 1;
7013 
7014 			spi = __get_spi(i);
7015 			/* raw_mode may write past allocated_stack */
7016 			if (state->allocated_stack <= stack_off)
7017 				continue;
7018 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7019 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7020 				return -EACCES;
7021 			}
7022 		}
7023 		meta->access_size = access_size;
7024 		meta->regno = regno;
7025 		return 0;
7026 	}
7027 
7028 	for (i = min_off; i < max_off + access_size; i++) {
7029 		u8 *stype;
7030 
7031 		slot = -i - 1;
7032 		spi = slot / BPF_REG_SIZE;
7033 		if (state->allocated_stack <= slot)
7034 			goto err;
7035 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7036 		if (*stype == STACK_MISC)
7037 			goto mark;
7038 		if ((*stype == STACK_ZERO) ||
7039 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7040 			if (clobber) {
7041 				/* helper can write anything into the stack */
7042 				*stype = STACK_MISC;
7043 			}
7044 			goto mark;
7045 		}
7046 
7047 		if (is_spilled_reg(&state->stack[spi]) &&
7048 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7049 		     env->allow_ptr_leaks)) {
7050 			if (clobber) {
7051 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7052 				for (j = 0; j < BPF_REG_SIZE; j++)
7053 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7054 			}
7055 			goto mark;
7056 		}
7057 
7058 err:
7059 		if (tnum_is_const(reg->var_off)) {
7060 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7061 				err_extra, regno, min_off, i - min_off, access_size);
7062 		} else {
7063 			char tn_buf[48];
7064 
7065 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7066 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7067 				err_extra, regno, tn_buf, i - min_off, access_size);
7068 		}
7069 		return -EACCES;
7070 mark:
7071 		/* reading any byte out of 8-byte 'spill_slot' will cause
7072 		 * the whole slot to be marked as 'read'
7073 		 */
7074 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7075 			      state->stack[spi].spilled_ptr.parent,
7076 			      REG_LIVE_READ64);
7077 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7078 		 * be sure that whether stack slot is written to or not. Hence,
7079 		 * we must still conservatively propagate reads upwards even if
7080 		 * helper may write to the entire memory range.
7081 		 */
7082 	}
7083 	return update_stack_depth(env, state, min_off);
7084 }
7085 
7086 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7087 				   int access_size, bool zero_size_allowed,
7088 				   struct bpf_call_arg_meta *meta)
7089 {
7090 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7091 	u32 *max_access;
7092 
7093 	switch (base_type(reg->type)) {
7094 	case PTR_TO_PACKET:
7095 	case PTR_TO_PACKET_META:
7096 		return check_packet_access(env, regno, reg->off, access_size,
7097 					   zero_size_allowed);
7098 	case PTR_TO_MAP_KEY:
7099 		if (meta && meta->raw_mode) {
7100 			verbose(env, "R%d cannot write into %s\n", regno,
7101 				reg_type_str(env, reg->type));
7102 			return -EACCES;
7103 		}
7104 		return check_mem_region_access(env, regno, reg->off, access_size,
7105 					       reg->map_ptr->key_size, false);
7106 	case PTR_TO_MAP_VALUE:
7107 		if (check_map_access_type(env, regno, reg->off, access_size,
7108 					  meta && meta->raw_mode ? BPF_WRITE :
7109 					  BPF_READ))
7110 			return -EACCES;
7111 		return check_map_access(env, regno, reg->off, access_size,
7112 					zero_size_allowed, ACCESS_HELPER);
7113 	case PTR_TO_MEM:
7114 		if (type_is_rdonly_mem(reg->type)) {
7115 			if (meta && meta->raw_mode) {
7116 				verbose(env, "R%d cannot write into %s\n", regno,
7117 					reg_type_str(env, reg->type));
7118 				return -EACCES;
7119 			}
7120 		}
7121 		return check_mem_region_access(env, regno, reg->off,
7122 					       access_size, reg->mem_size,
7123 					       zero_size_allowed);
7124 	case PTR_TO_BUF:
7125 		if (type_is_rdonly_mem(reg->type)) {
7126 			if (meta && meta->raw_mode) {
7127 				verbose(env, "R%d cannot write into %s\n", regno,
7128 					reg_type_str(env, reg->type));
7129 				return -EACCES;
7130 			}
7131 
7132 			max_access = &env->prog->aux->max_rdonly_access;
7133 		} else {
7134 			max_access = &env->prog->aux->max_rdwr_access;
7135 		}
7136 		return check_buffer_access(env, reg, regno, reg->off,
7137 					   access_size, zero_size_allowed,
7138 					   max_access);
7139 	case PTR_TO_STACK:
7140 		return check_stack_range_initialized(
7141 				env,
7142 				regno, reg->off, access_size,
7143 				zero_size_allowed, ACCESS_HELPER, meta);
7144 	case PTR_TO_BTF_ID:
7145 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7146 					       access_size, BPF_READ, -1);
7147 	case PTR_TO_CTX:
7148 		/* in case the function doesn't know how to access the context,
7149 		 * (because we are in a program of type SYSCALL for example), we
7150 		 * can not statically check its size.
7151 		 * Dynamically check it now.
7152 		 */
7153 		if (!env->ops->convert_ctx_access) {
7154 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7155 			int offset = access_size - 1;
7156 
7157 			/* Allow zero-byte read from PTR_TO_CTX */
7158 			if (access_size == 0)
7159 				return zero_size_allowed ? 0 : -EACCES;
7160 
7161 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7162 						atype, -1, false, false);
7163 		}
7164 
7165 		fallthrough;
7166 	default: /* scalar_value or invalid ptr */
7167 		/* Allow zero-byte read from NULL, regardless of pointer type */
7168 		if (zero_size_allowed && access_size == 0 &&
7169 		    register_is_null(reg))
7170 			return 0;
7171 
7172 		verbose(env, "R%d type=%s ", regno,
7173 			reg_type_str(env, reg->type));
7174 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7175 		return -EACCES;
7176 	}
7177 }
7178 
7179 static int check_mem_size_reg(struct bpf_verifier_env *env,
7180 			      struct bpf_reg_state *reg, u32 regno,
7181 			      bool zero_size_allowed,
7182 			      struct bpf_call_arg_meta *meta)
7183 {
7184 	int err;
7185 
7186 	/* This is used to refine r0 return value bounds for helpers
7187 	 * that enforce this value as an upper bound on return values.
7188 	 * See do_refine_retval_range() for helpers that can refine
7189 	 * the return value. C type of helper is u32 so we pull register
7190 	 * bound from umax_value however, if negative verifier errors
7191 	 * out. Only upper bounds can be learned because retval is an
7192 	 * int type and negative retvals are allowed.
7193 	 */
7194 	meta->msize_max_value = reg->umax_value;
7195 
7196 	/* The register is SCALAR_VALUE; the access check
7197 	 * happens using its boundaries.
7198 	 */
7199 	if (!tnum_is_const(reg->var_off))
7200 		/* For unprivileged variable accesses, disable raw
7201 		 * mode so that the program is required to
7202 		 * initialize all the memory that the helper could
7203 		 * just partially fill up.
7204 		 */
7205 		meta = NULL;
7206 
7207 	if (reg->smin_value < 0) {
7208 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7209 			regno);
7210 		return -EACCES;
7211 	}
7212 
7213 	if (reg->umin_value == 0) {
7214 		err = check_helper_mem_access(env, regno - 1, 0,
7215 					      zero_size_allowed,
7216 					      meta);
7217 		if (err)
7218 			return err;
7219 	}
7220 
7221 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7222 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7223 			regno);
7224 		return -EACCES;
7225 	}
7226 	err = check_helper_mem_access(env, regno - 1,
7227 				      reg->umax_value,
7228 				      zero_size_allowed, meta);
7229 	if (!err)
7230 		err = mark_chain_precision(env, regno);
7231 	return err;
7232 }
7233 
7234 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7235 		   u32 regno, u32 mem_size)
7236 {
7237 	bool may_be_null = type_may_be_null(reg->type);
7238 	struct bpf_reg_state saved_reg;
7239 	struct bpf_call_arg_meta meta;
7240 	int err;
7241 
7242 	if (register_is_null(reg))
7243 		return 0;
7244 
7245 	memset(&meta, 0, sizeof(meta));
7246 	/* Assuming that the register contains a value check if the memory
7247 	 * access is safe. Temporarily save and restore the register's state as
7248 	 * the conversion shouldn't be visible to a caller.
7249 	 */
7250 	if (may_be_null) {
7251 		saved_reg = *reg;
7252 		mark_ptr_not_null_reg(reg);
7253 	}
7254 
7255 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7256 	/* Check access for BPF_WRITE */
7257 	meta.raw_mode = true;
7258 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7259 
7260 	if (may_be_null)
7261 		*reg = saved_reg;
7262 
7263 	return err;
7264 }
7265 
7266 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7267 				    u32 regno)
7268 {
7269 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7270 	bool may_be_null = type_may_be_null(mem_reg->type);
7271 	struct bpf_reg_state saved_reg;
7272 	struct bpf_call_arg_meta meta;
7273 	int err;
7274 
7275 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7276 
7277 	memset(&meta, 0, sizeof(meta));
7278 
7279 	if (may_be_null) {
7280 		saved_reg = *mem_reg;
7281 		mark_ptr_not_null_reg(mem_reg);
7282 	}
7283 
7284 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7285 	/* Check access for BPF_WRITE */
7286 	meta.raw_mode = true;
7287 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7288 
7289 	if (may_be_null)
7290 		*mem_reg = saved_reg;
7291 	return err;
7292 }
7293 
7294 /* Implementation details:
7295  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7296  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7297  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7298  * Two separate bpf_obj_new will also have different reg->id.
7299  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7300  * clears reg->id after value_or_null->value transition, since the verifier only
7301  * cares about the range of access to valid map value pointer and doesn't care
7302  * about actual address of the map element.
7303  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7304  * reg->id > 0 after value_or_null->value transition. By doing so
7305  * two bpf_map_lookups will be considered two different pointers that
7306  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7307  * returned from bpf_obj_new.
7308  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7309  * dead-locks.
7310  * Since only one bpf_spin_lock is allowed the checks are simpler than
7311  * reg_is_refcounted() logic. The verifier needs to remember only
7312  * one spin_lock instead of array of acquired_refs.
7313  * cur_state->active_lock remembers which map value element or allocated
7314  * object got locked and clears it after bpf_spin_unlock.
7315  */
7316 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7317 			     bool is_lock)
7318 {
7319 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7320 	struct bpf_verifier_state *cur = env->cur_state;
7321 	bool is_const = tnum_is_const(reg->var_off);
7322 	u64 val = reg->var_off.value;
7323 	struct bpf_map *map = NULL;
7324 	struct btf *btf = NULL;
7325 	struct btf_record *rec;
7326 
7327 	if (!is_const) {
7328 		verbose(env,
7329 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7330 			regno);
7331 		return -EINVAL;
7332 	}
7333 	if (reg->type == PTR_TO_MAP_VALUE) {
7334 		map = reg->map_ptr;
7335 		if (!map->btf) {
7336 			verbose(env,
7337 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7338 				map->name);
7339 			return -EINVAL;
7340 		}
7341 	} else {
7342 		btf = reg->btf;
7343 	}
7344 
7345 	rec = reg_btf_record(reg);
7346 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7347 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7348 			map ? map->name : "kptr");
7349 		return -EINVAL;
7350 	}
7351 	if (rec->spin_lock_off != val + reg->off) {
7352 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7353 			val + reg->off, rec->spin_lock_off);
7354 		return -EINVAL;
7355 	}
7356 	if (is_lock) {
7357 		if (cur->active_lock.ptr) {
7358 			verbose(env,
7359 				"Locking two bpf_spin_locks are not allowed\n");
7360 			return -EINVAL;
7361 		}
7362 		if (map)
7363 			cur->active_lock.ptr = map;
7364 		else
7365 			cur->active_lock.ptr = btf;
7366 		cur->active_lock.id = reg->id;
7367 	} else {
7368 		void *ptr;
7369 
7370 		if (map)
7371 			ptr = map;
7372 		else
7373 			ptr = btf;
7374 
7375 		if (!cur->active_lock.ptr) {
7376 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7377 			return -EINVAL;
7378 		}
7379 		if (cur->active_lock.ptr != ptr ||
7380 		    cur->active_lock.id != reg->id) {
7381 			verbose(env, "bpf_spin_unlock of different lock\n");
7382 			return -EINVAL;
7383 		}
7384 
7385 		invalidate_non_owning_refs(env);
7386 
7387 		cur->active_lock.ptr = NULL;
7388 		cur->active_lock.id = 0;
7389 	}
7390 	return 0;
7391 }
7392 
7393 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7394 			      struct bpf_call_arg_meta *meta)
7395 {
7396 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7397 	bool is_const = tnum_is_const(reg->var_off);
7398 	struct bpf_map *map = reg->map_ptr;
7399 	u64 val = reg->var_off.value;
7400 
7401 	if (!is_const) {
7402 		verbose(env,
7403 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7404 			regno);
7405 		return -EINVAL;
7406 	}
7407 	if (!map->btf) {
7408 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7409 			map->name);
7410 		return -EINVAL;
7411 	}
7412 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7413 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7414 		return -EINVAL;
7415 	}
7416 	if (map->record->timer_off != val + reg->off) {
7417 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7418 			val + reg->off, map->record->timer_off);
7419 		return -EINVAL;
7420 	}
7421 	if (meta->map_ptr) {
7422 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7423 		return -EFAULT;
7424 	}
7425 	meta->map_uid = reg->map_uid;
7426 	meta->map_ptr = map;
7427 	return 0;
7428 }
7429 
7430 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7431 			     struct bpf_call_arg_meta *meta)
7432 {
7433 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7434 	struct bpf_map *map_ptr = reg->map_ptr;
7435 	struct btf_field *kptr_field;
7436 	u32 kptr_off;
7437 
7438 	if (!tnum_is_const(reg->var_off)) {
7439 		verbose(env,
7440 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7441 			regno);
7442 		return -EINVAL;
7443 	}
7444 	if (!map_ptr->btf) {
7445 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7446 			map_ptr->name);
7447 		return -EINVAL;
7448 	}
7449 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7450 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7451 		return -EINVAL;
7452 	}
7453 
7454 	meta->map_ptr = map_ptr;
7455 	kptr_off = reg->off + reg->var_off.value;
7456 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7457 	if (!kptr_field) {
7458 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7459 		return -EACCES;
7460 	}
7461 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7462 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7463 		return -EACCES;
7464 	}
7465 	meta->kptr_field = kptr_field;
7466 	return 0;
7467 }
7468 
7469 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7470  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7471  *
7472  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7473  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7474  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7475  *
7476  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7477  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7478  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7479  * mutate the view of the dynptr and also possibly destroy it. In the latter
7480  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7481  * memory that dynptr points to.
7482  *
7483  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7484  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7485  * readonly dynptr view yet, hence only the first case is tracked and checked.
7486  *
7487  * This is consistent with how C applies the const modifier to a struct object,
7488  * where the pointer itself inside bpf_dynptr becomes const but not what it
7489  * points to.
7490  *
7491  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7492  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7493  */
7494 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7495 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7496 {
7497 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7498 	int err;
7499 
7500 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7501 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7502 	 */
7503 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7504 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7505 		return -EFAULT;
7506 	}
7507 
7508 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7509 	 *		 constructing a mutable bpf_dynptr object.
7510 	 *
7511 	 *		 Currently, this is only possible with PTR_TO_STACK
7512 	 *		 pointing to a region of at least 16 bytes which doesn't
7513 	 *		 contain an existing bpf_dynptr.
7514 	 *
7515 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7516 	 *		 mutated or destroyed. However, the memory it points to
7517 	 *		 may be mutated.
7518 	 *
7519 	 *  None       - Points to a initialized dynptr that can be mutated and
7520 	 *		 destroyed, including mutation of the memory it points
7521 	 *		 to.
7522 	 */
7523 	if (arg_type & MEM_UNINIT) {
7524 		int i;
7525 
7526 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7527 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7528 			return -EINVAL;
7529 		}
7530 
7531 		/* we write BPF_DW bits (8 bytes) at a time */
7532 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7533 			err = check_mem_access(env, insn_idx, regno,
7534 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7535 			if (err)
7536 				return err;
7537 		}
7538 
7539 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7540 	} else /* MEM_RDONLY and None case from above */ {
7541 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7542 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7543 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7544 			return -EINVAL;
7545 		}
7546 
7547 		if (!is_dynptr_reg_valid_init(env, reg)) {
7548 			verbose(env,
7549 				"Expected an initialized dynptr as arg #%d\n",
7550 				regno);
7551 			return -EINVAL;
7552 		}
7553 
7554 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7555 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7556 			verbose(env,
7557 				"Expected a dynptr of type %s as arg #%d\n",
7558 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7559 			return -EINVAL;
7560 		}
7561 
7562 		err = mark_dynptr_read(env, reg);
7563 	}
7564 	return err;
7565 }
7566 
7567 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7568 {
7569 	struct bpf_func_state *state = func(env, reg);
7570 
7571 	return state->stack[spi].spilled_ptr.ref_obj_id;
7572 }
7573 
7574 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7575 {
7576 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7577 }
7578 
7579 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7580 {
7581 	return meta->kfunc_flags & KF_ITER_NEW;
7582 }
7583 
7584 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7585 {
7586 	return meta->kfunc_flags & KF_ITER_NEXT;
7587 }
7588 
7589 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7590 {
7591 	return meta->kfunc_flags & KF_ITER_DESTROY;
7592 }
7593 
7594 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7595 {
7596 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7597 	 * kfunc is iter state pointer
7598 	 */
7599 	return arg == 0 && is_iter_kfunc(meta);
7600 }
7601 
7602 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7603 			    struct bpf_kfunc_call_arg_meta *meta)
7604 {
7605 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7606 	const struct btf_type *t;
7607 	const struct btf_param *arg;
7608 	int spi, err, i, nr_slots;
7609 	u32 btf_id;
7610 
7611 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7612 	arg = &btf_params(meta->func_proto)[0];
7613 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7614 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7615 	nr_slots = t->size / BPF_REG_SIZE;
7616 
7617 	if (is_iter_new_kfunc(meta)) {
7618 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7619 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7620 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7621 				iter_type_str(meta->btf, btf_id), regno);
7622 			return -EINVAL;
7623 		}
7624 
7625 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7626 			err = check_mem_access(env, insn_idx, regno,
7627 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7628 			if (err)
7629 				return err;
7630 		}
7631 
7632 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7633 		if (err)
7634 			return err;
7635 	} else {
7636 		/* iter_next() or iter_destroy() expect initialized iter state*/
7637 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7638 		switch (err) {
7639 		case 0:
7640 			break;
7641 		case -EINVAL:
7642 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7643 				iter_type_str(meta->btf, btf_id), regno);
7644 			return err;
7645 		case -EPROTO:
7646 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7647 			return err;
7648 		default:
7649 			return err;
7650 		}
7651 
7652 		spi = iter_get_spi(env, reg, nr_slots);
7653 		if (spi < 0)
7654 			return spi;
7655 
7656 		err = mark_iter_read(env, reg, spi, nr_slots);
7657 		if (err)
7658 			return err;
7659 
7660 		/* remember meta->iter info for process_iter_next_call() */
7661 		meta->iter.spi = spi;
7662 		meta->iter.frameno = reg->frameno;
7663 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7664 
7665 		if (is_iter_destroy_kfunc(meta)) {
7666 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7667 			if (err)
7668 				return err;
7669 		}
7670 	}
7671 
7672 	return 0;
7673 }
7674 
7675 /* Look for a previous loop entry at insn_idx: nearest parent state
7676  * stopped at insn_idx with callsites matching those in cur->frame.
7677  */
7678 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7679 						  struct bpf_verifier_state *cur,
7680 						  int insn_idx)
7681 {
7682 	struct bpf_verifier_state_list *sl;
7683 	struct bpf_verifier_state *st;
7684 
7685 	/* Explored states are pushed in stack order, most recent states come first */
7686 	sl = *explored_state(env, insn_idx);
7687 	for (; sl; sl = sl->next) {
7688 		/* If st->branches != 0 state is a part of current DFS verification path,
7689 		 * hence cur & st for a loop.
7690 		 */
7691 		st = &sl->state;
7692 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7693 		    st->dfs_depth < cur->dfs_depth)
7694 			return st;
7695 	}
7696 
7697 	return NULL;
7698 }
7699 
7700 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7701 static bool regs_exact(const struct bpf_reg_state *rold,
7702 		       const struct bpf_reg_state *rcur,
7703 		       struct bpf_idmap *idmap);
7704 
7705 static void maybe_widen_reg(struct bpf_verifier_env *env,
7706 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7707 			    struct bpf_idmap *idmap)
7708 {
7709 	if (rold->type != SCALAR_VALUE)
7710 		return;
7711 	if (rold->type != rcur->type)
7712 		return;
7713 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7714 		return;
7715 	__mark_reg_unknown(env, rcur);
7716 }
7717 
7718 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7719 				   struct bpf_verifier_state *old,
7720 				   struct bpf_verifier_state *cur)
7721 {
7722 	struct bpf_func_state *fold, *fcur;
7723 	int i, fr;
7724 
7725 	reset_idmap_scratch(env);
7726 	for (fr = old->curframe; fr >= 0; fr--) {
7727 		fold = old->frame[fr];
7728 		fcur = cur->frame[fr];
7729 
7730 		for (i = 0; i < MAX_BPF_REG; i++)
7731 			maybe_widen_reg(env,
7732 					&fold->regs[i],
7733 					&fcur->regs[i],
7734 					&env->idmap_scratch);
7735 
7736 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7737 			if (!is_spilled_reg(&fold->stack[i]) ||
7738 			    !is_spilled_reg(&fcur->stack[i]))
7739 				continue;
7740 
7741 			maybe_widen_reg(env,
7742 					&fold->stack[i].spilled_ptr,
7743 					&fcur->stack[i].spilled_ptr,
7744 					&env->idmap_scratch);
7745 		}
7746 	}
7747 	return 0;
7748 }
7749 
7750 /* process_iter_next_call() is called when verifier gets to iterator's next
7751  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7752  * to it as just "iter_next()" in comments below.
7753  *
7754  * BPF verifier relies on a crucial contract for any iter_next()
7755  * implementation: it should *eventually* return NULL, and once that happens
7756  * it should keep returning NULL. That is, once iterator exhausts elements to
7757  * iterate, it should never reset or spuriously return new elements.
7758  *
7759  * With the assumption of such contract, process_iter_next_call() simulates
7760  * a fork in the verifier state to validate loop logic correctness and safety
7761  * without having to simulate infinite amount of iterations.
7762  *
7763  * In current state, we first assume that iter_next() returned NULL and
7764  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7765  * conditions we should not form an infinite loop and should eventually reach
7766  * exit.
7767  *
7768  * Besides that, we also fork current state and enqueue it for later
7769  * verification. In a forked state we keep iterator state as ACTIVE
7770  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7771  * also bump iteration depth to prevent erroneous infinite loop detection
7772  * later on (see iter_active_depths_differ() comment for details). In this
7773  * state we assume that we'll eventually loop back to another iter_next()
7774  * calls (it could be in exactly same location or in some other instruction,
7775  * it doesn't matter, we don't make any unnecessary assumptions about this,
7776  * everything revolves around iterator state in a stack slot, not which
7777  * instruction is calling iter_next()). When that happens, we either will come
7778  * to iter_next() with equivalent state and can conclude that next iteration
7779  * will proceed in exactly the same way as we just verified, so it's safe to
7780  * assume that loop converges. If not, we'll go on another iteration
7781  * simulation with a different input state, until all possible starting states
7782  * are validated or we reach maximum number of instructions limit.
7783  *
7784  * This way, we will either exhaustively discover all possible input states
7785  * that iterator loop can start with and eventually will converge, or we'll
7786  * effectively regress into bounded loop simulation logic and either reach
7787  * maximum number of instructions if loop is not provably convergent, or there
7788  * is some statically known limit on number of iterations (e.g., if there is
7789  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7790  *
7791  * Iteration convergence logic in is_state_visited() relies on exact
7792  * states comparison, which ignores read and precision marks.
7793  * This is necessary because read and precision marks are not finalized
7794  * while in the loop. Exact comparison might preclude convergence for
7795  * simple programs like below:
7796  *
7797  *     i = 0;
7798  *     while(iter_next(&it))
7799  *       i++;
7800  *
7801  * At each iteration step i++ would produce a new distinct state and
7802  * eventually instruction processing limit would be reached.
7803  *
7804  * To avoid such behavior speculatively forget (widen) range for
7805  * imprecise scalar registers, if those registers were not precise at the
7806  * end of the previous iteration and do not match exactly.
7807  *
7808  * This is a conservative heuristic that allows to verify wide range of programs,
7809  * however it precludes verification of programs that conjure an
7810  * imprecise value on the first loop iteration and use it as precise on a second.
7811  * For example, the following safe program would fail to verify:
7812  *
7813  *     struct bpf_num_iter it;
7814  *     int arr[10];
7815  *     int i = 0, a = 0;
7816  *     bpf_iter_num_new(&it, 0, 10);
7817  *     while (bpf_iter_num_next(&it)) {
7818  *       if (a == 0) {
7819  *         a = 1;
7820  *         i = 7; // Because i changed verifier would forget
7821  *                // it's range on second loop entry.
7822  *       } else {
7823  *         arr[i] = 42; // This would fail to verify.
7824  *       }
7825  *     }
7826  *     bpf_iter_num_destroy(&it);
7827  */
7828 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7829 				  struct bpf_kfunc_call_arg_meta *meta)
7830 {
7831 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7832 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7833 	struct bpf_reg_state *cur_iter, *queued_iter;
7834 	int iter_frameno = meta->iter.frameno;
7835 	int iter_spi = meta->iter.spi;
7836 
7837 	BTF_TYPE_EMIT(struct bpf_iter);
7838 
7839 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7840 
7841 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7842 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7843 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7844 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7845 		return -EFAULT;
7846 	}
7847 
7848 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7849 		/* Because iter_next() call is a checkpoint is_state_visitied()
7850 		 * should guarantee parent state with same call sites and insn_idx.
7851 		 */
7852 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7853 		    !same_callsites(cur_st->parent, cur_st)) {
7854 			verbose(env, "bug: bad parent state for iter next call");
7855 			return -EFAULT;
7856 		}
7857 		/* Note cur_st->parent in the call below, it is necessary to skip
7858 		 * checkpoint created for cur_st by is_state_visited()
7859 		 * right at this instruction.
7860 		 */
7861 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7862 		/* branch out active iter state */
7863 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7864 		if (!queued_st)
7865 			return -ENOMEM;
7866 
7867 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7868 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7869 		queued_iter->iter.depth++;
7870 		if (prev_st)
7871 			widen_imprecise_scalars(env, prev_st, queued_st);
7872 
7873 		queued_fr = queued_st->frame[queued_st->curframe];
7874 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7875 	}
7876 
7877 	/* switch to DRAINED state, but keep the depth unchanged */
7878 	/* mark current iter state as drained and assume returned NULL */
7879 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7880 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7881 
7882 	return 0;
7883 }
7884 
7885 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7886 {
7887 	return type == ARG_CONST_SIZE ||
7888 	       type == ARG_CONST_SIZE_OR_ZERO;
7889 }
7890 
7891 static bool arg_type_is_release(enum bpf_arg_type type)
7892 {
7893 	return type & OBJ_RELEASE;
7894 }
7895 
7896 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7897 {
7898 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7899 }
7900 
7901 static int int_ptr_type_to_size(enum bpf_arg_type type)
7902 {
7903 	if (type == ARG_PTR_TO_INT)
7904 		return sizeof(u32);
7905 	else if (type == ARG_PTR_TO_LONG)
7906 		return sizeof(u64);
7907 
7908 	return -EINVAL;
7909 }
7910 
7911 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7912 				 const struct bpf_call_arg_meta *meta,
7913 				 enum bpf_arg_type *arg_type)
7914 {
7915 	if (!meta->map_ptr) {
7916 		/* kernel subsystem misconfigured verifier */
7917 		verbose(env, "invalid map_ptr to access map->type\n");
7918 		return -EACCES;
7919 	}
7920 
7921 	switch (meta->map_ptr->map_type) {
7922 	case BPF_MAP_TYPE_SOCKMAP:
7923 	case BPF_MAP_TYPE_SOCKHASH:
7924 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7925 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7926 		} else {
7927 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7928 			return -EINVAL;
7929 		}
7930 		break;
7931 	case BPF_MAP_TYPE_BLOOM_FILTER:
7932 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7933 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7934 		break;
7935 	default:
7936 		break;
7937 	}
7938 	return 0;
7939 }
7940 
7941 struct bpf_reg_types {
7942 	const enum bpf_reg_type types[10];
7943 	u32 *btf_id;
7944 };
7945 
7946 static const struct bpf_reg_types sock_types = {
7947 	.types = {
7948 		PTR_TO_SOCK_COMMON,
7949 		PTR_TO_SOCKET,
7950 		PTR_TO_TCP_SOCK,
7951 		PTR_TO_XDP_SOCK,
7952 	},
7953 };
7954 
7955 #ifdef CONFIG_NET
7956 static const struct bpf_reg_types btf_id_sock_common_types = {
7957 	.types = {
7958 		PTR_TO_SOCK_COMMON,
7959 		PTR_TO_SOCKET,
7960 		PTR_TO_TCP_SOCK,
7961 		PTR_TO_XDP_SOCK,
7962 		PTR_TO_BTF_ID,
7963 		PTR_TO_BTF_ID | PTR_TRUSTED,
7964 	},
7965 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7966 };
7967 #endif
7968 
7969 static const struct bpf_reg_types mem_types = {
7970 	.types = {
7971 		PTR_TO_STACK,
7972 		PTR_TO_PACKET,
7973 		PTR_TO_PACKET_META,
7974 		PTR_TO_MAP_KEY,
7975 		PTR_TO_MAP_VALUE,
7976 		PTR_TO_MEM,
7977 		PTR_TO_MEM | MEM_RINGBUF,
7978 		PTR_TO_BUF,
7979 		PTR_TO_BTF_ID | PTR_TRUSTED,
7980 	},
7981 };
7982 
7983 static const struct bpf_reg_types int_ptr_types = {
7984 	.types = {
7985 		PTR_TO_STACK,
7986 		PTR_TO_PACKET,
7987 		PTR_TO_PACKET_META,
7988 		PTR_TO_MAP_KEY,
7989 		PTR_TO_MAP_VALUE,
7990 	},
7991 };
7992 
7993 static const struct bpf_reg_types spin_lock_types = {
7994 	.types = {
7995 		PTR_TO_MAP_VALUE,
7996 		PTR_TO_BTF_ID | MEM_ALLOC,
7997 	}
7998 };
7999 
8000 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8001 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8002 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8003 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8004 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8005 static const struct bpf_reg_types btf_ptr_types = {
8006 	.types = {
8007 		PTR_TO_BTF_ID,
8008 		PTR_TO_BTF_ID | PTR_TRUSTED,
8009 		PTR_TO_BTF_ID | MEM_RCU,
8010 	},
8011 };
8012 static const struct bpf_reg_types percpu_btf_ptr_types = {
8013 	.types = {
8014 		PTR_TO_BTF_ID | MEM_PERCPU,
8015 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8016 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8017 	}
8018 };
8019 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8020 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8021 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8022 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8023 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8024 static const struct bpf_reg_types dynptr_types = {
8025 	.types = {
8026 		PTR_TO_STACK,
8027 		CONST_PTR_TO_DYNPTR,
8028 	}
8029 };
8030 
8031 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8032 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8033 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8034 	[ARG_CONST_SIZE]		= &scalar_types,
8035 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8036 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8037 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8038 	[ARG_PTR_TO_CTX]		= &context_types,
8039 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8040 #ifdef CONFIG_NET
8041 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8042 #endif
8043 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8044 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8045 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8046 	[ARG_PTR_TO_MEM]		= &mem_types,
8047 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8048 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8049 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8050 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8051 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8052 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8053 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8054 	[ARG_PTR_TO_TIMER]		= &timer_types,
8055 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8056 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8057 };
8058 
8059 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8060 			  enum bpf_arg_type arg_type,
8061 			  const u32 *arg_btf_id,
8062 			  struct bpf_call_arg_meta *meta)
8063 {
8064 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8065 	enum bpf_reg_type expected, type = reg->type;
8066 	const struct bpf_reg_types *compatible;
8067 	int i, j;
8068 
8069 	compatible = compatible_reg_types[base_type(arg_type)];
8070 	if (!compatible) {
8071 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8072 		return -EFAULT;
8073 	}
8074 
8075 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8076 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8077 	 *
8078 	 * Same for MAYBE_NULL:
8079 	 *
8080 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8081 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8082 	 *
8083 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8084 	 *
8085 	 * Therefore we fold these flags depending on the arg_type before comparison.
8086 	 */
8087 	if (arg_type & MEM_RDONLY)
8088 		type &= ~MEM_RDONLY;
8089 	if (arg_type & PTR_MAYBE_NULL)
8090 		type &= ~PTR_MAYBE_NULL;
8091 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8092 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8093 
8094 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8095 		type &= ~MEM_ALLOC;
8096 		type &= ~MEM_PERCPU;
8097 	}
8098 
8099 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8100 		expected = compatible->types[i];
8101 		if (expected == NOT_INIT)
8102 			break;
8103 
8104 		if (type == expected)
8105 			goto found;
8106 	}
8107 
8108 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8109 	for (j = 0; j + 1 < i; j++)
8110 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8111 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8112 	return -EACCES;
8113 
8114 found:
8115 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8116 		return 0;
8117 
8118 	if (compatible == &mem_types) {
8119 		if (!(arg_type & MEM_RDONLY)) {
8120 			verbose(env,
8121 				"%s() may write into memory pointed by R%d type=%s\n",
8122 				func_id_name(meta->func_id),
8123 				regno, reg_type_str(env, reg->type));
8124 			return -EACCES;
8125 		}
8126 		return 0;
8127 	}
8128 
8129 	switch ((int)reg->type) {
8130 	case PTR_TO_BTF_ID:
8131 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8132 	case PTR_TO_BTF_ID | MEM_RCU:
8133 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8134 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8135 	{
8136 		/* For bpf_sk_release, it needs to match against first member
8137 		 * 'struct sock_common', hence make an exception for it. This
8138 		 * allows bpf_sk_release to work for multiple socket types.
8139 		 */
8140 		bool strict_type_match = arg_type_is_release(arg_type) &&
8141 					 meta->func_id != BPF_FUNC_sk_release;
8142 
8143 		if (type_may_be_null(reg->type) &&
8144 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8145 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8146 			return -EACCES;
8147 		}
8148 
8149 		if (!arg_btf_id) {
8150 			if (!compatible->btf_id) {
8151 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8152 				return -EFAULT;
8153 			}
8154 			arg_btf_id = compatible->btf_id;
8155 		}
8156 
8157 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8158 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8159 				return -EACCES;
8160 		} else {
8161 			if (arg_btf_id == BPF_PTR_POISON) {
8162 				verbose(env, "verifier internal error:");
8163 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8164 					regno);
8165 				return -EACCES;
8166 			}
8167 
8168 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8169 						  btf_vmlinux, *arg_btf_id,
8170 						  strict_type_match)) {
8171 				verbose(env, "R%d is of type %s but %s is expected\n",
8172 					regno, btf_type_name(reg->btf, reg->btf_id),
8173 					btf_type_name(btf_vmlinux, *arg_btf_id));
8174 				return -EACCES;
8175 			}
8176 		}
8177 		break;
8178 	}
8179 	case PTR_TO_BTF_ID | MEM_ALLOC:
8180 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8181 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8182 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8183 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8184 			return -EFAULT;
8185 		}
8186 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8187 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8188 				return -EACCES;
8189 		}
8190 		break;
8191 	case PTR_TO_BTF_ID | MEM_PERCPU:
8192 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8193 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8194 		/* Handled by helper specific checks */
8195 		break;
8196 	default:
8197 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8198 		return -EFAULT;
8199 	}
8200 	return 0;
8201 }
8202 
8203 static struct btf_field *
8204 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8205 {
8206 	struct btf_field *field;
8207 	struct btf_record *rec;
8208 
8209 	rec = reg_btf_record(reg);
8210 	if (!rec)
8211 		return NULL;
8212 
8213 	field = btf_record_find(rec, off, fields);
8214 	if (!field)
8215 		return NULL;
8216 
8217 	return field;
8218 }
8219 
8220 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8221 			   const struct bpf_reg_state *reg, int regno,
8222 			   enum bpf_arg_type arg_type)
8223 {
8224 	u32 type = reg->type;
8225 
8226 	/* When referenced register is passed to release function, its fixed
8227 	 * offset must be 0.
8228 	 *
8229 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8230 	 * meta->release_regno.
8231 	 */
8232 	if (arg_type_is_release(arg_type)) {
8233 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8234 		 * may not directly point to the object being released, but to
8235 		 * dynptr pointing to such object, which might be at some offset
8236 		 * on the stack. In that case, we simply to fallback to the
8237 		 * default handling.
8238 		 */
8239 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8240 			return 0;
8241 
8242 		/* Doing check_ptr_off_reg check for the offset will catch this
8243 		 * because fixed_off_ok is false, but checking here allows us
8244 		 * to give the user a better error message.
8245 		 */
8246 		if (reg->off) {
8247 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8248 				regno);
8249 			return -EINVAL;
8250 		}
8251 		return __check_ptr_off_reg(env, reg, regno, false);
8252 	}
8253 
8254 	switch (type) {
8255 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8256 	case PTR_TO_STACK:
8257 	case PTR_TO_PACKET:
8258 	case PTR_TO_PACKET_META:
8259 	case PTR_TO_MAP_KEY:
8260 	case PTR_TO_MAP_VALUE:
8261 	case PTR_TO_MEM:
8262 	case PTR_TO_MEM | MEM_RDONLY:
8263 	case PTR_TO_MEM | MEM_RINGBUF:
8264 	case PTR_TO_BUF:
8265 	case PTR_TO_BUF | MEM_RDONLY:
8266 	case SCALAR_VALUE:
8267 		return 0;
8268 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8269 	 * fixed offset.
8270 	 */
8271 	case PTR_TO_BTF_ID:
8272 	case PTR_TO_BTF_ID | MEM_ALLOC:
8273 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8274 	case PTR_TO_BTF_ID | MEM_RCU:
8275 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8276 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8277 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8278 		 * its fixed offset must be 0. In the other cases, fixed offset
8279 		 * can be non-zero. This was already checked above. So pass
8280 		 * fixed_off_ok as true to allow fixed offset for all other
8281 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8282 		 * still need to do checks instead of returning.
8283 		 */
8284 		return __check_ptr_off_reg(env, reg, regno, true);
8285 	default:
8286 		return __check_ptr_off_reg(env, reg, regno, false);
8287 	}
8288 }
8289 
8290 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8291 						const struct bpf_func_proto *fn,
8292 						struct bpf_reg_state *regs)
8293 {
8294 	struct bpf_reg_state *state = NULL;
8295 	int i;
8296 
8297 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8298 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8299 			if (state) {
8300 				verbose(env, "verifier internal error: multiple dynptr args\n");
8301 				return NULL;
8302 			}
8303 			state = &regs[BPF_REG_1 + i];
8304 		}
8305 
8306 	if (!state)
8307 		verbose(env, "verifier internal error: no dynptr arg found\n");
8308 
8309 	return state;
8310 }
8311 
8312 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8313 {
8314 	struct bpf_func_state *state = func(env, reg);
8315 	int spi;
8316 
8317 	if (reg->type == CONST_PTR_TO_DYNPTR)
8318 		return reg->id;
8319 	spi = dynptr_get_spi(env, reg);
8320 	if (spi < 0)
8321 		return spi;
8322 	return state->stack[spi].spilled_ptr.id;
8323 }
8324 
8325 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8326 {
8327 	struct bpf_func_state *state = func(env, reg);
8328 	int spi;
8329 
8330 	if (reg->type == CONST_PTR_TO_DYNPTR)
8331 		return reg->ref_obj_id;
8332 	spi = dynptr_get_spi(env, reg);
8333 	if (spi < 0)
8334 		return spi;
8335 	return state->stack[spi].spilled_ptr.ref_obj_id;
8336 }
8337 
8338 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8339 					    struct bpf_reg_state *reg)
8340 {
8341 	struct bpf_func_state *state = func(env, reg);
8342 	int spi;
8343 
8344 	if (reg->type == CONST_PTR_TO_DYNPTR)
8345 		return reg->dynptr.type;
8346 
8347 	spi = __get_spi(reg->off);
8348 	if (spi < 0) {
8349 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8350 		return BPF_DYNPTR_TYPE_INVALID;
8351 	}
8352 
8353 	return state->stack[spi].spilled_ptr.dynptr.type;
8354 }
8355 
8356 static int check_reg_const_str(struct bpf_verifier_env *env,
8357 			       struct bpf_reg_state *reg, u32 regno)
8358 {
8359 	struct bpf_map *map = reg->map_ptr;
8360 	int err;
8361 	int map_off;
8362 	u64 map_addr;
8363 	char *str_ptr;
8364 
8365 	if (reg->type != PTR_TO_MAP_VALUE)
8366 		return -EINVAL;
8367 
8368 	if (!bpf_map_is_rdonly(map)) {
8369 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8370 		return -EACCES;
8371 	}
8372 
8373 	if (!tnum_is_const(reg->var_off)) {
8374 		verbose(env, "R%d is not a constant address'\n", regno);
8375 		return -EACCES;
8376 	}
8377 
8378 	if (!map->ops->map_direct_value_addr) {
8379 		verbose(env, "no direct value access support for this map type\n");
8380 		return -EACCES;
8381 	}
8382 
8383 	err = check_map_access(env, regno, reg->off,
8384 			       map->value_size - reg->off, false,
8385 			       ACCESS_HELPER);
8386 	if (err)
8387 		return err;
8388 
8389 	map_off = reg->off + reg->var_off.value;
8390 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8391 	if (err) {
8392 		verbose(env, "direct value access on string failed\n");
8393 		return err;
8394 	}
8395 
8396 	str_ptr = (char *)(long)(map_addr);
8397 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8398 		verbose(env, "string is not zero-terminated\n");
8399 		return -EINVAL;
8400 	}
8401 	return 0;
8402 }
8403 
8404 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8405 			  struct bpf_call_arg_meta *meta,
8406 			  const struct bpf_func_proto *fn,
8407 			  int insn_idx)
8408 {
8409 	u32 regno = BPF_REG_1 + arg;
8410 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8411 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8412 	enum bpf_reg_type type = reg->type;
8413 	u32 *arg_btf_id = NULL;
8414 	int err = 0;
8415 
8416 	if (arg_type == ARG_DONTCARE)
8417 		return 0;
8418 
8419 	err = check_reg_arg(env, regno, SRC_OP);
8420 	if (err)
8421 		return err;
8422 
8423 	if (arg_type == ARG_ANYTHING) {
8424 		if (is_pointer_value(env, regno)) {
8425 			verbose(env, "R%d leaks addr into helper function\n",
8426 				regno);
8427 			return -EACCES;
8428 		}
8429 		return 0;
8430 	}
8431 
8432 	if (type_is_pkt_pointer(type) &&
8433 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8434 		verbose(env, "helper access to the packet is not allowed\n");
8435 		return -EACCES;
8436 	}
8437 
8438 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8439 		err = resolve_map_arg_type(env, meta, &arg_type);
8440 		if (err)
8441 			return err;
8442 	}
8443 
8444 	if (register_is_null(reg) && type_may_be_null(arg_type))
8445 		/* A NULL register has a SCALAR_VALUE type, so skip
8446 		 * type checking.
8447 		 */
8448 		goto skip_type_check;
8449 
8450 	/* arg_btf_id and arg_size are in a union. */
8451 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8452 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8453 		arg_btf_id = fn->arg_btf_id[arg];
8454 
8455 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8456 	if (err)
8457 		return err;
8458 
8459 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8460 	if (err)
8461 		return err;
8462 
8463 skip_type_check:
8464 	if (arg_type_is_release(arg_type)) {
8465 		if (arg_type_is_dynptr(arg_type)) {
8466 			struct bpf_func_state *state = func(env, reg);
8467 			int spi;
8468 
8469 			/* Only dynptr created on stack can be released, thus
8470 			 * the get_spi and stack state checks for spilled_ptr
8471 			 * should only be done before process_dynptr_func for
8472 			 * PTR_TO_STACK.
8473 			 */
8474 			if (reg->type == PTR_TO_STACK) {
8475 				spi = dynptr_get_spi(env, reg);
8476 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8477 					verbose(env, "arg %d is an unacquired reference\n", regno);
8478 					return -EINVAL;
8479 				}
8480 			} else {
8481 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8482 				return -EINVAL;
8483 			}
8484 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8485 			verbose(env, "R%d must be referenced when passed to release function\n",
8486 				regno);
8487 			return -EINVAL;
8488 		}
8489 		if (meta->release_regno) {
8490 			verbose(env, "verifier internal error: more than one release argument\n");
8491 			return -EFAULT;
8492 		}
8493 		meta->release_regno = regno;
8494 	}
8495 
8496 	if (reg->ref_obj_id) {
8497 		if (meta->ref_obj_id) {
8498 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8499 				regno, reg->ref_obj_id,
8500 				meta->ref_obj_id);
8501 			return -EFAULT;
8502 		}
8503 		meta->ref_obj_id = reg->ref_obj_id;
8504 	}
8505 
8506 	switch (base_type(arg_type)) {
8507 	case ARG_CONST_MAP_PTR:
8508 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8509 		if (meta->map_ptr) {
8510 			/* Use map_uid (which is unique id of inner map) to reject:
8511 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8512 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8513 			 * if (inner_map1 && inner_map2) {
8514 			 *     timer = bpf_map_lookup_elem(inner_map1);
8515 			 *     if (timer)
8516 			 *         // mismatch would have been allowed
8517 			 *         bpf_timer_init(timer, inner_map2);
8518 			 * }
8519 			 *
8520 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8521 			 */
8522 			if (meta->map_ptr != reg->map_ptr ||
8523 			    meta->map_uid != reg->map_uid) {
8524 				verbose(env,
8525 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8526 					meta->map_uid, reg->map_uid);
8527 				return -EINVAL;
8528 			}
8529 		}
8530 		meta->map_ptr = reg->map_ptr;
8531 		meta->map_uid = reg->map_uid;
8532 		break;
8533 	case ARG_PTR_TO_MAP_KEY:
8534 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8535 		 * check that [key, key + map->key_size) are within
8536 		 * stack limits and initialized
8537 		 */
8538 		if (!meta->map_ptr) {
8539 			/* in function declaration map_ptr must come before
8540 			 * map_key, so that it's verified and known before
8541 			 * we have to check map_key here. Otherwise it means
8542 			 * that kernel subsystem misconfigured verifier
8543 			 */
8544 			verbose(env, "invalid map_ptr to access map->key\n");
8545 			return -EACCES;
8546 		}
8547 		err = check_helper_mem_access(env, regno,
8548 					      meta->map_ptr->key_size, false,
8549 					      NULL);
8550 		break;
8551 	case ARG_PTR_TO_MAP_VALUE:
8552 		if (type_may_be_null(arg_type) && register_is_null(reg))
8553 			return 0;
8554 
8555 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8556 		 * check [value, value + map->value_size) validity
8557 		 */
8558 		if (!meta->map_ptr) {
8559 			/* kernel subsystem misconfigured verifier */
8560 			verbose(env, "invalid map_ptr to access map->value\n");
8561 			return -EACCES;
8562 		}
8563 		meta->raw_mode = arg_type & MEM_UNINIT;
8564 		err = check_helper_mem_access(env, regno,
8565 					      meta->map_ptr->value_size, false,
8566 					      meta);
8567 		break;
8568 	case ARG_PTR_TO_PERCPU_BTF_ID:
8569 		if (!reg->btf_id) {
8570 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8571 			return -EACCES;
8572 		}
8573 		meta->ret_btf = reg->btf;
8574 		meta->ret_btf_id = reg->btf_id;
8575 		break;
8576 	case ARG_PTR_TO_SPIN_LOCK:
8577 		if (in_rbtree_lock_required_cb(env)) {
8578 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8579 			return -EACCES;
8580 		}
8581 		if (meta->func_id == BPF_FUNC_spin_lock) {
8582 			err = process_spin_lock(env, regno, true);
8583 			if (err)
8584 				return err;
8585 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8586 			err = process_spin_lock(env, regno, false);
8587 			if (err)
8588 				return err;
8589 		} else {
8590 			verbose(env, "verifier internal error\n");
8591 			return -EFAULT;
8592 		}
8593 		break;
8594 	case ARG_PTR_TO_TIMER:
8595 		err = process_timer_func(env, regno, meta);
8596 		if (err)
8597 			return err;
8598 		break;
8599 	case ARG_PTR_TO_FUNC:
8600 		meta->subprogno = reg->subprogno;
8601 		break;
8602 	case ARG_PTR_TO_MEM:
8603 		/* The access to this pointer is only checked when we hit the
8604 		 * next is_mem_size argument below.
8605 		 */
8606 		meta->raw_mode = arg_type & MEM_UNINIT;
8607 		if (arg_type & MEM_FIXED_SIZE) {
8608 			err = check_helper_mem_access(env, regno,
8609 						      fn->arg_size[arg], false,
8610 						      meta);
8611 		}
8612 		break;
8613 	case ARG_CONST_SIZE:
8614 		err = check_mem_size_reg(env, reg, regno, false, meta);
8615 		break;
8616 	case ARG_CONST_SIZE_OR_ZERO:
8617 		err = check_mem_size_reg(env, reg, regno, true, meta);
8618 		break;
8619 	case ARG_PTR_TO_DYNPTR:
8620 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8621 		if (err)
8622 			return err;
8623 		break;
8624 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8625 		if (!tnum_is_const(reg->var_off)) {
8626 			verbose(env, "R%d is not a known constant'\n",
8627 				regno);
8628 			return -EACCES;
8629 		}
8630 		meta->mem_size = reg->var_off.value;
8631 		err = mark_chain_precision(env, regno);
8632 		if (err)
8633 			return err;
8634 		break;
8635 	case ARG_PTR_TO_INT:
8636 	case ARG_PTR_TO_LONG:
8637 	{
8638 		int size = int_ptr_type_to_size(arg_type);
8639 
8640 		err = check_helper_mem_access(env, regno, size, false, meta);
8641 		if (err)
8642 			return err;
8643 		err = check_ptr_alignment(env, reg, 0, size, true);
8644 		break;
8645 	}
8646 	case ARG_PTR_TO_CONST_STR:
8647 	{
8648 		err = check_reg_const_str(env, reg, regno);
8649 		if (err)
8650 			return err;
8651 		break;
8652 	}
8653 	case ARG_PTR_TO_KPTR:
8654 		err = process_kptr_func(env, regno, meta);
8655 		if (err)
8656 			return err;
8657 		break;
8658 	}
8659 
8660 	return err;
8661 }
8662 
8663 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8664 {
8665 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8666 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8667 
8668 	if (func_id != BPF_FUNC_map_update_elem)
8669 		return false;
8670 
8671 	/* It's not possible to get access to a locked struct sock in these
8672 	 * contexts, so updating is safe.
8673 	 */
8674 	switch (type) {
8675 	case BPF_PROG_TYPE_TRACING:
8676 		if (eatype == BPF_TRACE_ITER)
8677 			return true;
8678 		break;
8679 	case BPF_PROG_TYPE_SOCKET_FILTER:
8680 	case BPF_PROG_TYPE_SCHED_CLS:
8681 	case BPF_PROG_TYPE_SCHED_ACT:
8682 	case BPF_PROG_TYPE_XDP:
8683 	case BPF_PROG_TYPE_SK_REUSEPORT:
8684 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8685 	case BPF_PROG_TYPE_SK_LOOKUP:
8686 		return true;
8687 	default:
8688 		break;
8689 	}
8690 
8691 	verbose(env, "cannot update sockmap in this context\n");
8692 	return false;
8693 }
8694 
8695 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8696 {
8697 	return env->prog->jit_requested &&
8698 	       bpf_jit_supports_subprog_tailcalls();
8699 }
8700 
8701 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8702 					struct bpf_map *map, int func_id)
8703 {
8704 	if (!map)
8705 		return 0;
8706 
8707 	/* We need a two way check, first is from map perspective ... */
8708 	switch (map->map_type) {
8709 	case BPF_MAP_TYPE_PROG_ARRAY:
8710 		if (func_id != BPF_FUNC_tail_call)
8711 			goto error;
8712 		break;
8713 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8714 		if (func_id != BPF_FUNC_perf_event_read &&
8715 		    func_id != BPF_FUNC_perf_event_output &&
8716 		    func_id != BPF_FUNC_skb_output &&
8717 		    func_id != BPF_FUNC_perf_event_read_value &&
8718 		    func_id != BPF_FUNC_xdp_output)
8719 			goto error;
8720 		break;
8721 	case BPF_MAP_TYPE_RINGBUF:
8722 		if (func_id != BPF_FUNC_ringbuf_output &&
8723 		    func_id != BPF_FUNC_ringbuf_reserve &&
8724 		    func_id != BPF_FUNC_ringbuf_query &&
8725 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8726 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8727 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8728 			goto error;
8729 		break;
8730 	case BPF_MAP_TYPE_USER_RINGBUF:
8731 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8732 			goto error;
8733 		break;
8734 	case BPF_MAP_TYPE_STACK_TRACE:
8735 		if (func_id != BPF_FUNC_get_stackid)
8736 			goto error;
8737 		break;
8738 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8739 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8740 		    func_id != BPF_FUNC_current_task_under_cgroup)
8741 			goto error;
8742 		break;
8743 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8744 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8745 		if (func_id != BPF_FUNC_get_local_storage)
8746 			goto error;
8747 		break;
8748 	case BPF_MAP_TYPE_DEVMAP:
8749 	case BPF_MAP_TYPE_DEVMAP_HASH:
8750 		if (func_id != BPF_FUNC_redirect_map &&
8751 		    func_id != BPF_FUNC_map_lookup_elem)
8752 			goto error;
8753 		break;
8754 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8755 	 * appear.
8756 	 */
8757 	case BPF_MAP_TYPE_CPUMAP:
8758 		if (func_id != BPF_FUNC_redirect_map)
8759 			goto error;
8760 		break;
8761 	case BPF_MAP_TYPE_XSKMAP:
8762 		if (func_id != BPF_FUNC_redirect_map &&
8763 		    func_id != BPF_FUNC_map_lookup_elem)
8764 			goto error;
8765 		break;
8766 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8767 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8768 		if (func_id != BPF_FUNC_map_lookup_elem)
8769 			goto error;
8770 		break;
8771 	case BPF_MAP_TYPE_SOCKMAP:
8772 		if (func_id != BPF_FUNC_sk_redirect_map &&
8773 		    func_id != BPF_FUNC_sock_map_update &&
8774 		    func_id != BPF_FUNC_map_delete_elem &&
8775 		    func_id != BPF_FUNC_msg_redirect_map &&
8776 		    func_id != BPF_FUNC_sk_select_reuseport &&
8777 		    func_id != BPF_FUNC_map_lookup_elem &&
8778 		    !may_update_sockmap(env, func_id))
8779 			goto error;
8780 		break;
8781 	case BPF_MAP_TYPE_SOCKHASH:
8782 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8783 		    func_id != BPF_FUNC_sock_hash_update &&
8784 		    func_id != BPF_FUNC_map_delete_elem &&
8785 		    func_id != BPF_FUNC_msg_redirect_hash &&
8786 		    func_id != BPF_FUNC_sk_select_reuseport &&
8787 		    func_id != BPF_FUNC_map_lookup_elem &&
8788 		    !may_update_sockmap(env, func_id))
8789 			goto error;
8790 		break;
8791 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8792 		if (func_id != BPF_FUNC_sk_select_reuseport)
8793 			goto error;
8794 		break;
8795 	case BPF_MAP_TYPE_QUEUE:
8796 	case BPF_MAP_TYPE_STACK:
8797 		if (func_id != BPF_FUNC_map_peek_elem &&
8798 		    func_id != BPF_FUNC_map_pop_elem &&
8799 		    func_id != BPF_FUNC_map_push_elem)
8800 			goto error;
8801 		break;
8802 	case BPF_MAP_TYPE_SK_STORAGE:
8803 		if (func_id != BPF_FUNC_sk_storage_get &&
8804 		    func_id != BPF_FUNC_sk_storage_delete &&
8805 		    func_id != BPF_FUNC_kptr_xchg)
8806 			goto error;
8807 		break;
8808 	case BPF_MAP_TYPE_INODE_STORAGE:
8809 		if (func_id != BPF_FUNC_inode_storage_get &&
8810 		    func_id != BPF_FUNC_inode_storage_delete &&
8811 		    func_id != BPF_FUNC_kptr_xchg)
8812 			goto error;
8813 		break;
8814 	case BPF_MAP_TYPE_TASK_STORAGE:
8815 		if (func_id != BPF_FUNC_task_storage_get &&
8816 		    func_id != BPF_FUNC_task_storage_delete &&
8817 		    func_id != BPF_FUNC_kptr_xchg)
8818 			goto error;
8819 		break;
8820 	case BPF_MAP_TYPE_CGRP_STORAGE:
8821 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8822 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8823 		    func_id != BPF_FUNC_kptr_xchg)
8824 			goto error;
8825 		break;
8826 	case BPF_MAP_TYPE_BLOOM_FILTER:
8827 		if (func_id != BPF_FUNC_map_peek_elem &&
8828 		    func_id != BPF_FUNC_map_push_elem)
8829 			goto error;
8830 		break;
8831 	default:
8832 		break;
8833 	}
8834 
8835 	/* ... and second from the function itself. */
8836 	switch (func_id) {
8837 	case BPF_FUNC_tail_call:
8838 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8839 			goto error;
8840 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8841 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8842 			return -EINVAL;
8843 		}
8844 		break;
8845 	case BPF_FUNC_perf_event_read:
8846 	case BPF_FUNC_perf_event_output:
8847 	case BPF_FUNC_perf_event_read_value:
8848 	case BPF_FUNC_skb_output:
8849 	case BPF_FUNC_xdp_output:
8850 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8851 			goto error;
8852 		break;
8853 	case BPF_FUNC_ringbuf_output:
8854 	case BPF_FUNC_ringbuf_reserve:
8855 	case BPF_FUNC_ringbuf_query:
8856 	case BPF_FUNC_ringbuf_reserve_dynptr:
8857 	case BPF_FUNC_ringbuf_submit_dynptr:
8858 	case BPF_FUNC_ringbuf_discard_dynptr:
8859 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8860 			goto error;
8861 		break;
8862 	case BPF_FUNC_user_ringbuf_drain:
8863 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8864 			goto error;
8865 		break;
8866 	case BPF_FUNC_get_stackid:
8867 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8868 			goto error;
8869 		break;
8870 	case BPF_FUNC_current_task_under_cgroup:
8871 	case BPF_FUNC_skb_under_cgroup:
8872 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8873 			goto error;
8874 		break;
8875 	case BPF_FUNC_redirect_map:
8876 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8877 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8878 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8879 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8880 			goto error;
8881 		break;
8882 	case BPF_FUNC_sk_redirect_map:
8883 	case BPF_FUNC_msg_redirect_map:
8884 	case BPF_FUNC_sock_map_update:
8885 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8886 			goto error;
8887 		break;
8888 	case BPF_FUNC_sk_redirect_hash:
8889 	case BPF_FUNC_msg_redirect_hash:
8890 	case BPF_FUNC_sock_hash_update:
8891 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8892 			goto error;
8893 		break;
8894 	case BPF_FUNC_get_local_storage:
8895 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8896 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8897 			goto error;
8898 		break;
8899 	case BPF_FUNC_sk_select_reuseport:
8900 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8901 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8902 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8903 			goto error;
8904 		break;
8905 	case BPF_FUNC_map_pop_elem:
8906 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8907 		    map->map_type != BPF_MAP_TYPE_STACK)
8908 			goto error;
8909 		break;
8910 	case BPF_FUNC_map_peek_elem:
8911 	case BPF_FUNC_map_push_elem:
8912 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8913 		    map->map_type != BPF_MAP_TYPE_STACK &&
8914 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8915 			goto error;
8916 		break;
8917 	case BPF_FUNC_map_lookup_percpu_elem:
8918 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8919 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8920 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8921 			goto error;
8922 		break;
8923 	case BPF_FUNC_sk_storage_get:
8924 	case BPF_FUNC_sk_storage_delete:
8925 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8926 			goto error;
8927 		break;
8928 	case BPF_FUNC_inode_storage_get:
8929 	case BPF_FUNC_inode_storage_delete:
8930 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8931 			goto error;
8932 		break;
8933 	case BPF_FUNC_task_storage_get:
8934 	case BPF_FUNC_task_storage_delete:
8935 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8936 			goto error;
8937 		break;
8938 	case BPF_FUNC_cgrp_storage_get:
8939 	case BPF_FUNC_cgrp_storage_delete:
8940 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8941 			goto error;
8942 		break;
8943 	default:
8944 		break;
8945 	}
8946 
8947 	return 0;
8948 error:
8949 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8950 		map->map_type, func_id_name(func_id), func_id);
8951 	return -EINVAL;
8952 }
8953 
8954 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8955 {
8956 	int count = 0;
8957 
8958 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8959 		count++;
8960 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8961 		count++;
8962 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8963 		count++;
8964 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8965 		count++;
8966 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8967 		count++;
8968 
8969 	/* We only support one arg being in raw mode at the moment,
8970 	 * which is sufficient for the helper functions we have
8971 	 * right now.
8972 	 */
8973 	return count <= 1;
8974 }
8975 
8976 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8977 {
8978 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8979 	bool has_size = fn->arg_size[arg] != 0;
8980 	bool is_next_size = false;
8981 
8982 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8983 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8984 
8985 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8986 		return is_next_size;
8987 
8988 	return has_size == is_next_size || is_next_size == is_fixed;
8989 }
8990 
8991 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8992 {
8993 	/* bpf_xxx(..., buf, len) call will access 'len'
8994 	 * bytes from memory 'buf'. Both arg types need
8995 	 * to be paired, so make sure there's no buggy
8996 	 * helper function specification.
8997 	 */
8998 	if (arg_type_is_mem_size(fn->arg1_type) ||
8999 	    check_args_pair_invalid(fn, 0) ||
9000 	    check_args_pair_invalid(fn, 1) ||
9001 	    check_args_pair_invalid(fn, 2) ||
9002 	    check_args_pair_invalid(fn, 3) ||
9003 	    check_args_pair_invalid(fn, 4))
9004 		return false;
9005 
9006 	return true;
9007 }
9008 
9009 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9010 {
9011 	int i;
9012 
9013 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9014 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9015 			return !!fn->arg_btf_id[i];
9016 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9017 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9018 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9019 		    /* arg_btf_id and arg_size are in a union. */
9020 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9021 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9022 			return false;
9023 	}
9024 
9025 	return true;
9026 }
9027 
9028 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9029 {
9030 	return check_raw_mode_ok(fn) &&
9031 	       check_arg_pair_ok(fn) &&
9032 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9033 }
9034 
9035 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9036  * are now invalid, so turn them into unknown SCALAR_VALUE.
9037  *
9038  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9039  * since these slices point to packet data.
9040  */
9041 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9042 {
9043 	struct bpf_func_state *state;
9044 	struct bpf_reg_state *reg;
9045 
9046 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9047 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9048 			mark_reg_invalid(env, reg);
9049 	}));
9050 }
9051 
9052 enum {
9053 	AT_PKT_END = -1,
9054 	BEYOND_PKT_END = -2,
9055 };
9056 
9057 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9058 {
9059 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9060 	struct bpf_reg_state *reg = &state->regs[regn];
9061 
9062 	if (reg->type != PTR_TO_PACKET)
9063 		/* PTR_TO_PACKET_META is not supported yet */
9064 		return;
9065 
9066 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9067 	 * How far beyond pkt_end it goes is unknown.
9068 	 * if (!range_open) it's the case of pkt >= pkt_end
9069 	 * if (range_open) it's the case of pkt > pkt_end
9070 	 * hence this pointer is at least 1 byte bigger than pkt_end
9071 	 */
9072 	if (range_open)
9073 		reg->range = BEYOND_PKT_END;
9074 	else
9075 		reg->range = AT_PKT_END;
9076 }
9077 
9078 /* The pointer with the specified id has released its reference to kernel
9079  * resources. Identify all copies of the same pointer and clear the reference.
9080  */
9081 static int release_reference(struct bpf_verifier_env *env,
9082 			     int ref_obj_id)
9083 {
9084 	struct bpf_func_state *state;
9085 	struct bpf_reg_state *reg;
9086 	int err;
9087 
9088 	err = release_reference_state(cur_func(env), ref_obj_id);
9089 	if (err)
9090 		return err;
9091 
9092 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9093 		if (reg->ref_obj_id == ref_obj_id)
9094 			mark_reg_invalid(env, reg);
9095 	}));
9096 
9097 	return 0;
9098 }
9099 
9100 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9101 {
9102 	struct bpf_func_state *unused;
9103 	struct bpf_reg_state *reg;
9104 
9105 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9106 		if (type_is_non_owning_ref(reg->type))
9107 			mark_reg_invalid(env, reg);
9108 	}));
9109 }
9110 
9111 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9112 				    struct bpf_reg_state *regs)
9113 {
9114 	int i;
9115 
9116 	/* after the call registers r0 - r5 were scratched */
9117 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9118 		mark_reg_not_init(env, regs, caller_saved[i]);
9119 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9120 	}
9121 }
9122 
9123 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9124 				   struct bpf_func_state *caller,
9125 				   struct bpf_func_state *callee,
9126 				   int insn_idx);
9127 
9128 static int set_callee_state(struct bpf_verifier_env *env,
9129 			    struct bpf_func_state *caller,
9130 			    struct bpf_func_state *callee, int insn_idx);
9131 
9132 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9133 			    set_callee_state_fn set_callee_state_cb,
9134 			    struct bpf_verifier_state *state)
9135 {
9136 	struct bpf_func_state *caller, *callee;
9137 	int err;
9138 
9139 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9140 		verbose(env, "the call stack of %d frames is too deep\n",
9141 			state->curframe + 2);
9142 		return -E2BIG;
9143 	}
9144 
9145 	if (state->frame[state->curframe + 1]) {
9146 		verbose(env, "verifier bug. Frame %d already allocated\n",
9147 			state->curframe + 1);
9148 		return -EFAULT;
9149 	}
9150 
9151 	caller = state->frame[state->curframe];
9152 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9153 	if (!callee)
9154 		return -ENOMEM;
9155 	state->frame[state->curframe + 1] = callee;
9156 
9157 	/* callee cannot access r0, r6 - r9 for reading and has to write
9158 	 * into its own stack before reading from it.
9159 	 * callee can read/write into caller's stack
9160 	 */
9161 	init_func_state(env, callee,
9162 			/* remember the callsite, it will be used by bpf_exit */
9163 			callsite,
9164 			state->curframe + 1 /* frameno within this callchain */,
9165 			subprog /* subprog number within this prog */);
9166 	/* Transfer references to the callee */
9167 	err = copy_reference_state(callee, caller);
9168 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9169 	if (err)
9170 		goto err_out;
9171 
9172 	/* only increment it after check_reg_arg() finished */
9173 	state->curframe++;
9174 
9175 	return 0;
9176 
9177 err_out:
9178 	free_func_state(callee);
9179 	state->frame[state->curframe + 1] = NULL;
9180 	return err;
9181 }
9182 
9183 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9184 			      int insn_idx, int subprog,
9185 			      set_callee_state_fn set_callee_state_cb)
9186 {
9187 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9188 	struct bpf_func_state *caller, *callee;
9189 	int err;
9190 
9191 	caller = state->frame[state->curframe];
9192 	err = btf_check_subprog_call(env, subprog, caller->regs);
9193 	if (err == -EFAULT)
9194 		return err;
9195 
9196 	/* set_callee_state is used for direct subprog calls, but we are
9197 	 * interested in validating only BPF helpers that can call subprogs as
9198 	 * callbacks
9199 	 */
9200 	env->subprog_info[subprog].is_cb = true;
9201 	if (bpf_pseudo_kfunc_call(insn) &&
9202 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9203 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9204 			func_id_name(insn->imm), insn->imm);
9205 		return -EFAULT;
9206 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9207 		   !is_callback_calling_function(insn->imm)) { /* helper */
9208 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9209 			func_id_name(insn->imm), insn->imm);
9210 		return -EFAULT;
9211 	}
9212 
9213 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9214 	    insn->src_reg == 0 &&
9215 	    insn->imm == BPF_FUNC_timer_set_callback) {
9216 		struct bpf_verifier_state *async_cb;
9217 
9218 		/* there is no real recursion here. timer callbacks are async */
9219 		env->subprog_info[subprog].is_async_cb = true;
9220 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9221 					 insn_idx, subprog);
9222 		if (!async_cb)
9223 			return -EFAULT;
9224 		callee = async_cb->frame[0];
9225 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9226 
9227 		/* Convert bpf_timer_set_callback() args into timer callback args */
9228 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9229 		if (err)
9230 			return err;
9231 
9232 		return 0;
9233 	}
9234 
9235 	/* for callback functions enqueue entry to callback and
9236 	 * proceed with next instruction within current frame.
9237 	 */
9238 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9239 	if (!callback_state)
9240 		return -ENOMEM;
9241 
9242 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9243 			       callback_state);
9244 	if (err)
9245 		return err;
9246 
9247 	callback_state->callback_unroll_depth++;
9248 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9249 	caller->callback_depth = 0;
9250 	return 0;
9251 }
9252 
9253 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9254 			   int *insn_idx)
9255 {
9256 	struct bpf_verifier_state *state = env->cur_state;
9257 	struct bpf_func_state *caller;
9258 	int err, subprog, target_insn;
9259 
9260 	target_insn = *insn_idx + insn->imm + 1;
9261 	subprog = find_subprog(env, target_insn);
9262 	if (subprog < 0) {
9263 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9264 		return -EFAULT;
9265 	}
9266 
9267 	caller = state->frame[state->curframe];
9268 	err = btf_check_subprog_call(env, subprog, caller->regs);
9269 	if (err == -EFAULT)
9270 		return err;
9271 	if (subprog_is_global(env, subprog)) {
9272 		if (err) {
9273 			verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9274 			return err;
9275 		}
9276 
9277 		if (env->log.level & BPF_LOG_LEVEL)
9278 			verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9279 		clear_caller_saved_regs(env, caller->regs);
9280 
9281 		/* All global functions return a 64-bit SCALAR_VALUE */
9282 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9283 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9284 
9285 		/* continue with next insn after call */
9286 		return 0;
9287 	}
9288 
9289 	/* for regular function entry setup new frame and continue
9290 	 * from that frame.
9291 	 */
9292 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9293 	if (err)
9294 		return err;
9295 
9296 	clear_caller_saved_regs(env, caller->regs);
9297 
9298 	/* and go analyze first insn of the callee */
9299 	*insn_idx = env->subprog_info[subprog].start - 1;
9300 
9301 	if (env->log.level & BPF_LOG_LEVEL) {
9302 		verbose(env, "caller:\n");
9303 		print_verifier_state(env, caller, true);
9304 		verbose(env, "callee:\n");
9305 		print_verifier_state(env, state->frame[state->curframe], true);
9306 	}
9307 
9308 	return 0;
9309 }
9310 
9311 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9312 				   struct bpf_func_state *caller,
9313 				   struct bpf_func_state *callee)
9314 {
9315 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9316 	 *      void *callback_ctx, u64 flags);
9317 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9318 	 *      void *callback_ctx);
9319 	 */
9320 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9321 
9322 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9323 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9324 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9325 
9326 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9327 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9328 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9329 
9330 	/* pointer to stack or null */
9331 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9332 
9333 	/* unused */
9334 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9335 	return 0;
9336 }
9337 
9338 static int set_callee_state(struct bpf_verifier_env *env,
9339 			    struct bpf_func_state *caller,
9340 			    struct bpf_func_state *callee, int insn_idx)
9341 {
9342 	int i;
9343 
9344 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9345 	 * pointers, which connects us up to the liveness chain
9346 	 */
9347 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9348 		callee->regs[i] = caller->regs[i];
9349 	return 0;
9350 }
9351 
9352 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9353 				       struct bpf_func_state *caller,
9354 				       struct bpf_func_state *callee,
9355 				       int insn_idx)
9356 {
9357 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9358 	struct bpf_map *map;
9359 	int err;
9360 
9361 	if (bpf_map_ptr_poisoned(insn_aux)) {
9362 		verbose(env, "tail_call abusing map_ptr\n");
9363 		return -EINVAL;
9364 	}
9365 
9366 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9367 	if (!map->ops->map_set_for_each_callback_args ||
9368 	    !map->ops->map_for_each_callback) {
9369 		verbose(env, "callback function not allowed for map\n");
9370 		return -ENOTSUPP;
9371 	}
9372 
9373 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9374 	if (err)
9375 		return err;
9376 
9377 	callee->in_callback_fn = true;
9378 	callee->callback_ret_range = tnum_range(0, 1);
9379 	return 0;
9380 }
9381 
9382 static int set_loop_callback_state(struct bpf_verifier_env *env,
9383 				   struct bpf_func_state *caller,
9384 				   struct bpf_func_state *callee,
9385 				   int insn_idx)
9386 {
9387 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9388 	 *	    u64 flags);
9389 	 * callback_fn(u32 index, void *callback_ctx);
9390 	 */
9391 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9392 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9393 
9394 	/* unused */
9395 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9396 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9397 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9398 
9399 	callee->in_callback_fn = true;
9400 	callee->callback_ret_range = tnum_range(0, 1);
9401 	return 0;
9402 }
9403 
9404 static int set_timer_callback_state(struct bpf_verifier_env *env,
9405 				    struct bpf_func_state *caller,
9406 				    struct bpf_func_state *callee,
9407 				    int insn_idx)
9408 {
9409 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9410 
9411 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9412 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9413 	 */
9414 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9415 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9416 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9417 
9418 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9419 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9420 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9421 
9422 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9423 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9424 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9425 
9426 	/* unused */
9427 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9428 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9429 	callee->in_async_callback_fn = true;
9430 	callee->callback_ret_range = tnum_range(0, 1);
9431 	return 0;
9432 }
9433 
9434 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9435 				       struct bpf_func_state *caller,
9436 				       struct bpf_func_state *callee,
9437 				       int insn_idx)
9438 {
9439 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9440 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9441 	 * (callback_fn)(struct task_struct *task,
9442 	 *               struct vm_area_struct *vma, void *callback_ctx);
9443 	 */
9444 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9445 
9446 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9447 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9448 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9449 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9450 
9451 	/* pointer to stack or null */
9452 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9453 
9454 	/* unused */
9455 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9456 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9457 	callee->in_callback_fn = true;
9458 	callee->callback_ret_range = tnum_range(0, 1);
9459 	return 0;
9460 }
9461 
9462 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9463 					   struct bpf_func_state *caller,
9464 					   struct bpf_func_state *callee,
9465 					   int insn_idx)
9466 {
9467 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9468 	 *			  callback_ctx, u64 flags);
9469 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9470 	 */
9471 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9472 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9473 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9474 
9475 	/* unused */
9476 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9477 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9478 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9479 
9480 	callee->in_callback_fn = true;
9481 	callee->callback_ret_range = tnum_range(0, 1);
9482 	return 0;
9483 }
9484 
9485 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9486 					 struct bpf_func_state *caller,
9487 					 struct bpf_func_state *callee,
9488 					 int insn_idx)
9489 {
9490 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9491 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9492 	 *
9493 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9494 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9495 	 * by this point, so look at 'root'
9496 	 */
9497 	struct btf_field *field;
9498 
9499 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9500 				      BPF_RB_ROOT);
9501 	if (!field || !field->graph_root.value_btf_id)
9502 		return -EFAULT;
9503 
9504 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9505 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9506 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9507 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9508 
9509 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9510 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9511 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9512 	callee->in_callback_fn = true;
9513 	callee->callback_ret_range = tnum_range(0, 1);
9514 	return 0;
9515 }
9516 
9517 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9518 
9519 /* Are we currently verifying the callback for a rbtree helper that must
9520  * be called with lock held? If so, no need to complain about unreleased
9521  * lock
9522  */
9523 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9524 {
9525 	struct bpf_verifier_state *state = env->cur_state;
9526 	struct bpf_insn *insn = env->prog->insnsi;
9527 	struct bpf_func_state *callee;
9528 	int kfunc_btf_id;
9529 
9530 	if (!state->curframe)
9531 		return false;
9532 
9533 	callee = state->frame[state->curframe];
9534 
9535 	if (!callee->in_callback_fn)
9536 		return false;
9537 
9538 	kfunc_btf_id = insn[callee->callsite].imm;
9539 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9540 }
9541 
9542 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9543 {
9544 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9545 	struct bpf_func_state *caller, *callee;
9546 	struct bpf_reg_state *r0;
9547 	bool in_callback_fn;
9548 	int err;
9549 
9550 	callee = state->frame[state->curframe];
9551 	r0 = &callee->regs[BPF_REG_0];
9552 	if (r0->type == PTR_TO_STACK) {
9553 		/* technically it's ok to return caller's stack pointer
9554 		 * (or caller's caller's pointer) back to the caller,
9555 		 * since these pointers are valid. Only current stack
9556 		 * pointer will be invalid as soon as function exits,
9557 		 * but let's be conservative
9558 		 */
9559 		verbose(env, "cannot return stack pointer to the caller\n");
9560 		return -EINVAL;
9561 	}
9562 
9563 	caller = state->frame[state->curframe - 1];
9564 	if (callee->in_callback_fn) {
9565 		/* enforce R0 return value range [0, 1]. */
9566 		struct tnum range = callee->callback_ret_range;
9567 
9568 		if (r0->type != SCALAR_VALUE) {
9569 			verbose(env, "R0 not a scalar value\n");
9570 			return -EACCES;
9571 		}
9572 		if (!tnum_in(range, r0->var_off)) {
9573 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9574 			return -EINVAL;
9575 		}
9576 		if (!calls_callback(env, callee->callsite)) {
9577 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9578 				*insn_idx, callee->callsite);
9579 			return -EFAULT;
9580 		}
9581 	} else {
9582 		/* return to the caller whatever r0 had in the callee */
9583 		caller->regs[BPF_REG_0] = *r0;
9584 	}
9585 
9586 	/* callback_fn frame should have released its own additions to parent's
9587 	 * reference state at this point, or check_reference_leak would
9588 	 * complain, hence it must be the same as the caller. There is no need
9589 	 * to copy it back.
9590 	 */
9591 	if (!callee->in_callback_fn) {
9592 		/* Transfer references to the caller */
9593 		err = copy_reference_state(caller, callee);
9594 		if (err)
9595 			return err;
9596 	}
9597 
9598 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9599 	 * there function call logic would reschedule callback visit. If iteration
9600 	 * converges is_state_visited() would prune that visit eventually.
9601 	 */
9602 	in_callback_fn = callee->in_callback_fn;
9603 	if (in_callback_fn)
9604 		*insn_idx = callee->callsite;
9605 	else
9606 		*insn_idx = callee->callsite + 1;
9607 
9608 	if (env->log.level & BPF_LOG_LEVEL) {
9609 		verbose(env, "returning from callee:\n");
9610 		print_verifier_state(env, callee, true);
9611 		verbose(env, "to caller at %d:\n", *insn_idx);
9612 		print_verifier_state(env, caller, true);
9613 	}
9614 	/* clear everything in the callee. In case of exceptional exits using
9615 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9616 	free_func_state(callee);
9617 	state->frame[state->curframe--] = NULL;
9618 
9619 	/* for callbacks widen imprecise scalars to make programs like below verify:
9620 	 *
9621 	 *   struct ctx { int i; }
9622 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9623 	 *   ...
9624 	 *   struct ctx = { .i = 0; }
9625 	 *   bpf_loop(100, cb, &ctx, 0);
9626 	 *
9627 	 * This is similar to what is done in process_iter_next_call() for open
9628 	 * coded iterators.
9629 	 */
9630 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9631 	if (prev_st) {
9632 		err = widen_imprecise_scalars(env, prev_st, state);
9633 		if (err)
9634 			return err;
9635 	}
9636 	return 0;
9637 }
9638 
9639 static int do_refine_retval_range(struct bpf_verifier_env *env,
9640 				  struct bpf_reg_state *regs, int ret_type,
9641 				  int func_id,
9642 				  struct bpf_call_arg_meta *meta)
9643 {
9644 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9645 
9646 	if (ret_type != RET_INTEGER)
9647 		return 0;
9648 
9649 	switch (func_id) {
9650 	case BPF_FUNC_get_stack:
9651 	case BPF_FUNC_get_task_stack:
9652 	case BPF_FUNC_probe_read_str:
9653 	case BPF_FUNC_probe_read_kernel_str:
9654 	case BPF_FUNC_probe_read_user_str:
9655 		ret_reg->smax_value = meta->msize_max_value;
9656 		ret_reg->s32_max_value = meta->msize_max_value;
9657 		ret_reg->smin_value = -MAX_ERRNO;
9658 		ret_reg->s32_min_value = -MAX_ERRNO;
9659 		reg_bounds_sync(ret_reg);
9660 		break;
9661 	case BPF_FUNC_get_smp_processor_id:
9662 		ret_reg->umax_value = nr_cpu_ids - 1;
9663 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9664 		ret_reg->smax_value = nr_cpu_ids - 1;
9665 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9666 		ret_reg->umin_value = 0;
9667 		ret_reg->u32_min_value = 0;
9668 		ret_reg->smin_value = 0;
9669 		ret_reg->s32_min_value = 0;
9670 		reg_bounds_sync(ret_reg);
9671 		break;
9672 	}
9673 
9674 	return reg_bounds_sanity_check(env, ret_reg, "retval");
9675 }
9676 
9677 static int
9678 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9679 		int func_id, int insn_idx)
9680 {
9681 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9682 	struct bpf_map *map = meta->map_ptr;
9683 
9684 	if (func_id != BPF_FUNC_tail_call &&
9685 	    func_id != BPF_FUNC_map_lookup_elem &&
9686 	    func_id != BPF_FUNC_map_update_elem &&
9687 	    func_id != BPF_FUNC_map_delete_elem &&
9688 	    func_id != BPF_FUNC_map_push_elem &&
9689 	    func_id != BPF_FUNC_map_pop_elem &&
9690 	    func_id != BPF_FUNC_map_peek_elem &&
9691 	    func_id != BPF_FUNC_for_each_map_elem &&
9692 	    func_id != BPF_FUNC_redirect_map &&
9693 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9694 		return 0;
9695 
9696 	if (map == NULL) {
9697 		verbose(env, "kernel subsystem misconfigured verifier\n");
9698 		return -EINVAL;
9699 	}
9700 
9701 	/* In case of read-only, some additional restrictions
9702 	 * need to be applied in order to prevent altering the
9703 	 * state of the map from program side.
9704 	 */
9705 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9706 	    (func_id == BPF_FUNC_map_delete_elem ||
9707 	     func_id == BPF_FUNC_map_update_elem ||
9708 	     func_id == BPF_FUNC_map_push_elem ||
9709 	     func_id == BPF_FUNC_map_pop_elem)) {
9710 		verbose(env, "write into map forbidden\n");
9711 		return -EACCES;
9712 	}
9713 
9714 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9715 		bpf_map_ptr_store(aux, meta->map_ptr,
9716 				  !meta->map_ptr->bypass_spec_v1);
9717 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9718 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9719 				  !meta->map_ptr->bypass_spec_v1);
9720 	return 0;
9721 }
9722 
9723 static int
9724 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9725 		int func_id, int insn_idx)
9726 {
9727 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9728 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9729 	struct bpf_map *map = meta->map_ptr;
9730 	u64 val, max;
9731 	int err;
9732 
9733 	if (func_id != BPF_FUNC_tail_call)
9734 		return 0;
9735 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9736 		verbose(env, "kernel subsystem misconfigured verifier\n");
9737 		return -EINVAL;
9738 	}
9739 
9740 	reg = &regs[BPF_REG_3];
9741 	val = reg->var_off.value;
9742 	max = map->max_entries;
9743 
9744 	if (!(is_reg_const(reg, false) && val < max)) {
9745 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9746 		return 0;
9747 	}
9748 
9749 	err = mark_chain_precision(env, BPF_REG_3);
9750 	if (err)
9751 		return err;
9752 	if (bpf_map_key_unseen(aux))
9753 		bpf_map_key_store(aux, val);
9754 	else if (!bpf_map_key_poisoned(aux) &&
9755 		  bpf_map_key_immediate(aux) != val)
9756 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9757 	return 0;
9758 }
9759 
9760 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9761 {
9762 	struct bpf_func_state *state = cur_func(env);
9763 	bool refs_lingering = false;
9764 	int i;
9765 
9766 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9767 		return 0;
9768 
9769 	for (i = 0; i < state->acquired_refs; i++) {
9770 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9771 			continue;
9772 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9773 			state->refs[i].id, state->refs[i].insn_idx);
9774 		refs_lingering = true;
9775 	}
9776 	return refs_lingering ? -EINVAL : 0;
9777 }
9778 
9779 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9780 				   struct bpf_reg_state *regs)
9781 {
9782 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9783 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9784 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9785 	struct bpf_bprintf_data data = {};
9786 	int err, fmt_map_off, num_args;
9787 	u64 fmt_addr;
9788 	char *fmt;
9789 
9790 	/* data must be an array of u64 */
9791 	if (data_len_reg->var_off.value % 8)
9792 		return -EINVAL;
9793 	num_args = data_len_reg->var_off.value / 8;
9794 
9795 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9796 	 * and map_direct_value_addr is set.
9797 	 */
9798 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9799 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9800 						  fmt_map_off);
9801 	if (err) {
9802 		verbose(env, "verifier bug\n");
9803 		return -EFAULT;
9804 	}
9805 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9806 
9807 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9808 	 * can focus on validating the format specifiers.
9809 	 */
9810 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9811 	if (err < 0)
9812 		verbose(env, "Invalid format string\n");
9813 
9814 	return err;
9815 }
9816 
9817 static int check_get_func_ip(struct bpf_verifier_env *env)
9818 {
9819 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9820 	int func_id = BPF_FUNC_get_func_ip;
9821 
9822 	if (type == BPF_PROG_TYPE_TRACING) {
9823 		if (!bpf_prog_has_trampoline(env->prog)) {
9824 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9825 				func_id_name(func_id), func_id);
9826 			return -ENOTSUPP;
9827 		}
9828 		return 0;
9829 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9830 		return 0;
9831 	}
9832 
9833 	verbose(env, "func %s#%d not supported for program type %d\n",
9834 		func_id_name(func_id), func_id, type);
9835 	return -ENOTSUPP;
9836 }
9837 
9838 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9839 {
9840 	return &env->insn_aux_data[env->insn_idx];
9841 }
9842 
9843 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9844 {
9845 	struct bpf_reg_state *regs = cur_regs(env);
9846 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9847 	bool reg_is_null = register_is_null(reg);
9848 
9849 	if (reg_is_null)
9850 		mark_chain_precision(env, BPF_REG_4);
9851 
9852 	return reg_is_null;
9853 }
9854 
9855 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9856 {
9857 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9858 
9859 	if (!state->initialized) {
9860 		state->initialized = 1;
9861 		state->fit_for_inline = loop_flag_is_zero(env);
9862 		state->callback_subprogno = subprogno;
9863 		return;
9864 	}
9865 
9866 	if (!state->fit_for_inline)
9867 		return;
9868 
9869 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9870 				 state->callback_subprogno == subprogno);
9871 }
9872 
9873 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9874 			     int *insn_idx_p)
9875 {
9876 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9877 	bool returns_cpu_specific_alloc_ptr = false;
9878 	const struct bpf_func_proto *fn = NULL;
9879 	enum bpf_return_type ret_type;
9880 	enum bpf_type_flag ret_flag;
9881 	struct bpf_reg_state *regs;
9882 	struct bpf_call_arg_meta meta;
9883 	int insn_idx = *insn_idx_p;
9884 	bool changes_data;
9885 	int i, err, func_id;
9886 
9887 	/* find function prototype */
9888 	func_id = insn->imm;
9889 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9890 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9891 			func_id);
9892 		return -EINVAL;
9893 	}
9894 
9895 	if (env->ops->get_func_proto)
9896 		fn = env->ops->get_func_proto(func_id, env->prog);
9897 	if (!fn) {
9898 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9899 			func_id);
9900 		return -EINVAL;
9901 	}
9902 
9903 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9904 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9905 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9906 		return -EINVAL;
9907 	}
9908 
9909 	if (fn->allowed && !fn->allowed(env->prog)) {
9910 		verbose(env, "helper call is not allowed in probe\n");
9911 		return -EINVAL;
9912 	}
9913 
9914 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9915 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9916 		return -EINVAL;
9917 	}
9918 
9919 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9920 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9921 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9922 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9923 			func_id_name(func_id), func_id);
9924 		return -EINVAL;
9925 	}
9926 
9927 	memset(&meta, 0, sizeof(meta));
9928 	meta.pkt_access = fn->pkt_access;
9929 
9930 	err = check_func_proto(fn, func_id);
9931 	if (err) {
9932 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9933 			func_id_name(func_id), func_id);
9934 		return err;
9935 	}
9936 
9937 	if (env->cur_state->active_rcu_lock) {
9938 		if (fn->might_sleep) {
9939 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9940 				func_id_name(func_id), func_id);
9941 			return -EINVAL;
9942 		}
9943 
9944 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9945 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9946 	}
9947 
9948 	meta.func_id = func_id;
9949 	/* check args */
9950 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9951 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9952 		if (err)
9953 			return err;
9954 	}
9955 
9956 	err = record_func_map(env, &meta, func_id, insn_idx);
9957 	if (err)
9958 		return err;
9959 
9960 	err = record_func_key(env, &meta, func_id, insn_idx);
9961 	if (err)
9962 		return err;
9963 
9964 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9965 	 * is inferred from register state.
9966 	 */
9967 	for (i = 0; i < meta.access_size; i++) {
9968 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9969 				       BPF_WRITE, -1, false, false);
9970 		if (err)
9971 			return err;
9972 	}
9973 
9974 	regs = cur_regs(env);
9975 
9976 	if (meta.release_regno) {
9977 		err = -EINVAL;
9978 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9979 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9980 		 * is safe to do directly.
9981 		 */
9982 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9983 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9984 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9985 				return -EFAULT;
9986 			}
9987 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9988 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
9989 			u32 ref_obj_id = meta.ref_obj_id;
9990 			bool in_rcu = in_rcu_cs(env);
9991 			struct bpf_func_state *state;
9992 			struct bpf_reg_state *reg;
9993 
9994 			err = release_reference_state(cur_func(env), ref_obj_id);
9995 			if (!err) {
9996 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9997 					if (reg->ref_obj_id == ref_obj_id) {
9998 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
9999 							reg->ref_obj_id = 0;
10000 							reg->type &= ~MEM_ALLOC;
10001 							reg->type |= MEM_RCU;
10002 						} else {
10003 							mark_reg_invalid(env, reg);
10004 						}
10005 					}
10006 				}));
10007 			}
10008 		} else if (meta.ref_obj_id) {
10009 			err = release_reference(env, meta.ref_obj_id);
10010 		} else if (register_is_null(&regs[meta.release_regno])) {
10011 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10012 			 * released is NULL, which must be > R0.
10013 			 */
10014 			err = 0;
10015 		}
10016 		if (err) {
10017 			verbose(env, "func %s#%d reference has not been acquired before\n",
10018 				func_id_name(func_id), func_id);
10019 			return err;
10020 		}
10021 	}
10022 
10023 	switch (func_id) {
10024 	case BPF_FUNC_tail_call:
10025 		err = check_reference_leak(env, false);
10026 		if (err) {
10027 			verbose(env, "tail_call would lead to reference leak\n");
10028 			return err;
10029 		}
10030 		break;
10031 	case BPF_FUNC_get_local_storage:
10032 		/* check that flags argument in get_local_storage(map, flags) is 0,
10033 		 * this is required because get_local_storage() can't return an error.
10034 		 */
10035 		if (!register_is_null(&regs[BPF_REG_2])) {
10036 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10037 			return -EINVAL;
10038 		}
10039 		break;
10040 	case BPF_FUNC_for_each_map_elem:
10041 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10042 					 set_map_elem_callback_state);
10043 		break;
10044 	case BPF_FUNC_timer_set_callback:
10045 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10046 					 set_timer_callback_state);
10047 		break;
10048 	case BPF_FUNC_find_vma:
10049 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10050 					 set_find_vma_callback_state);
10051 		break;
10052 	case BPF_FUNC_snprintf:
10053 		err = check_bpf_snprintf_call(env, regs);
10054 		break;
10055 	case BPF_FUNC_loop:
10056 		update_loop_inline_state(env, meta.subprogno);
10057 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10058 		 * is finished, thus mark it precise.
10059 		 */
10060 		err = mark_chain_precision(env, BPF_REG_1);
10061 		if (err)
10062 			return err;
10063 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10064 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10065 						 set_loop_callback_state);
10066 		} else {
10067 			cur_func(env)->callback_depth = 0;
10068 			if (env->log.level & BPF_LOG_LEVEL2)
10069 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10070 					env->cur_state->curframe);
10071 		}
10072 		break;
10073 	case BPF_FUNC_dynptr_from_mem:
10074 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10075 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10076 				reg_type_str(env, regs[BPF_REG_1].type));
10077 			return -EACCES;
10078 		}
10079 		break;
10080 	case BPF_FUNC_set_retval:
10081 		if (prog_type == BPF_PROG_TYPE_LSM &&
10082 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10083 			if (!env->prog->aux->attach_func_proto->type) {
10084 				/* Make sure programs that attach to void
10085 				 * hooks don't try to modify return value.
10086 				 */
10087 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10088 				return -EINVAL;
10089 			}
10090 		}
10091 		break;
10092 	case BPF_FUNC_dynptr_data:
10093 	{
10094 		struct bpf_reg_state *reg;
10095 		int id, ref_obj_id;
10096 
10097 		reg = get_dynptr_arg_reg(env, fn, regs);
10098 		if (!reg)
10099 			return -EFAULT;
10100 
10101 
10102 		if (meta.dynptr_id) {
10103 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10104 			return -EFAULT;
10105 		}
10106 		if (meta.ref_obj_id) {
10107 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10108 			return -EFAULT;
10109 		}
10110 
10111 		id = dynptr_id(env, reg);
10112 		if (id < 0) {
10113 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10114 			return id;
10115 		}
10116 
10117 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10118 		if (ref_obj_id < 0) {
10119 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10120 			return ref_obj_id;
10121 		}
10122 
10123 		meta.dynptr_id = id;
10124 		meta.ref_obj_id = ref_obj_id;
10125 
10126 		break;
10127 	}
10128 	case BPF_FUNC_dynptr_write:
10129 	{
10130 		enum bpf_dynptr_type dynptr_type;
10131 		struct bpf_reg_state *reg;
10132 
10133 		reg = get_dynptr_arg_reg(env, fn, regs);
10134 		if (!reg)
10135 			return -EFAULT;
10136 
10137 		dynptr_type = dynptr_get_type(env, reg);
10138 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10139 			return -EFAULT;
10140 
10141 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10142 			/* this will trigger clear_all_pkt_pointers(), which will
10143 			 * invalidate all dynptr slices associated with the skb
10144 			 */
10145 			changes_data = true;
10146 
10147 		break;
10148 	}
10149 	case BPF_FUNC_per_cpu_ptr:
10150 	case BPF_FUNC_this_cpu_ptr:
10151 	{
10152 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10153 		const struct btf_type *type;
10154 
10155 		if (reg->type & MEM_RCU) {
10156 			type = btf_type_by_id(reg->btf, reg->btf_id);
10157 			if (!type || !btf_type_is_struct(type)) {
10158 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10159 				return -EFAULT;
10160 			}
10161 			returns_cpu_specific_alloc_ptr = true;
10162 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10163 		}
10164 		break;
10165 	}
10166 	case BPF_FUNC_user_ringbuf_drain:
10167 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10168 					 set_user_ringbuf_callback_state);
10169 		break;
10170 	}
10171 
10172 	if (err)
10173 		return err;
10174 
10175 	/* reset caller saved regs */
10176 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10177 		mark_reg_not_init(env, regs, caller_saved[i]);
10178 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10179 	}
10180 
10181 	/* helper call returns 64-bit value. */
10182 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10183 
10184 	/* update return register (already marked as written above) */
10185 	ret_type = fn->ret_type;
10186 	ret_flag = type_flag(ret_type);
10187 
10188 	switch (base_type(ret_type)) {
10189 	case RET_INTEGER:
10190 		/* sets type to SCALAR_VALUE */
10191 		mark_reg_unknown(env, regs, BPF_REG_0);
10192 		break;
10193 	case RET_VOID:
10194 		regs[BPF_REG_0].type = NOT_INIT;
10195 		break;
10196 	case RET_PTR_TO_MAP_VALUE:
10197 		/* There is no offset yet applied, variable or fixed */
10198 		mark_reg_known_zero(env, regs, BPF_REG_0);
10199 		/* remember map_ptr, so that check_map_access()
10200 		 * can check 'value_size' boundary of memory access
10201 		 * to map element returned from bpf_map_lookup_elem()
10202 		 */
10203 		if (meta.map_ptr == NULL) {
10204 			verbose(env,
10205 				"kernel subsystem misconfigured verifier\n");
10206 			return -EINVAL;
10207 		}
10208 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10209 		regs[BPF_REG_0].map_uid = meta.map_uid;
10210 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10211 		if (!type_may_be_null(ret_type) &&
10212 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10213 			regs[BPF_REG_0].id = ++env->id_gen;
10214 		}
10215 		break;
10216 	case RET_PTR_TO_SOCKET:
10217 		mark_reg_known_zero(env, regs, BPF_REG_0);
10218 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10219 		break;
10220 	case RET_PTR_TO_SOCK_COMMON:
10221 		mark_reg_known_zero(env, regs, BPF_REG_0);
10222 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10223 		break;
10224 	case RET_PTR_TO_TCP_SOCK:
10225 		mark_reg_known_zero(env, regs, BPF_REG_0);
10226 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10227 		break;
10228 	case RET_PTR_TO_MEM:
10229 		mark_reg_known_zero(env, regs, BPF_REG_0);
10230 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10231 		regs[BPF_REG_0].mem_size = meta.mem_size;
10232 		break;
10233 	case RET_PTR_TO_MEM_OR_BTF_ID:
10234 	{
10235 		const struct btf_type *t;
10236 
10237 		mark_reg_known_zero(env, regs, BPF_REG_0);
10238 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10239 		if (!btf_type_is_struct(t)) {
10240 			u32 tsize;
10241 			const struct btf_type *ret;
10242 			const char *tname;
10243 
10244 			/* resolve the type size of ksym. */
10245 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10246 			if (IS_ERR(ret)) {
10247 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10248 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10249 					tname, PTR_ERR(ret));
10250 				return -EINVAL;
10251 			}
10252 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10253 			regs[BPF_REG_0].mem_size = tsize;
10254 		} else {
10255 			if (returns_cpu_specific_alloc_ptr) {
10256 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10257 			} else {
10258 				/* MEM_RDONLY may be carried from ret_flag, but it
10259 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10260 				 * it will confuse the check of PTR_TO_BTF_ID in
10261 				 * check_mem_access().
10262 				 */
10263 				ret_flag &= ~MEM_RDONLY;
10264 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10265 			}
10266 
10267 			regs[BPF_REG_0].btf = meta.ret_btf;
10268 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10269 		}
10270 		break;
10271 	}
10272 	case RET_PTR_TO_BTF_ID:
10273 	{
10274 		struct btf *ret_btf;
10275 		int ret_btf_id;
10276 
10277 		mark_reg_known_zero(env, regs, BPF_REG_0);
10278 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10279 		if (func_id == BPF_FUNC_kptr_xchg) {
10280 			ret_btf = meta.kptr_field->kptr.btf;
10281 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10282 			if (!btf_is_kernel(ret_btf)) {
10283 				regs[BPF_REG_0].type |= MEM_ALLOC;
10284 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10285 					regs[BPF_REG_0].type |= MEM_PERCPU;
10286 			}
10287 		} else {
10288 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10289 				verbose(env, "verifier internal error:");
10290 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10291 					func_id_name(func_id));
10292 				return -EINVAL;
10293 			}
10294 			ret_btf = btf_vmlinux;
10295 			ret_btf_id = *fn->ret_btf_id;
10296 		}
10297 		if (ret_btf_id == 0) {
10298 			verbose(env, "invalid return type %u of func %s#%d\n",
10299 				base_type(ret_type), func_id_name(func_id),
10300 				func_id);
10301 			return -EINVAL;
10302 		}
10303 		regs[BPF_REG_0].btf = ret_btf;
10304 		regs[BPF_REG_0].btf_id = ret_btf_id;
10305 		break;
10306 	}
10307 	default:
10308 		verbose(env, "unknown return type %u of func %s#%d\n",
10309 			base_type(ret_type), func_id_name(func_id), func_id);
10310 		return -EINVAL;
10311 	}
10312 
10313 	if (type_may_be_null(regs[BPF_REG_0].type))
10314 		regs[BPF_REG_0].id = ++env->id_gen;
10315 
10316 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10317 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10318 			func_id_name(func_id), func_id);
10319 		return -EFAULT;
10320 	}
10321 
10322 	if (is_dynptr_ref_function(func_id))
10323 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10324 
10325 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10326 		/* For release_reference() */
10327 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10328 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10329 		int id = acquire_reference_state(env, insn_idx);
10330 
10331 		if (id < 0)
10332 			return id;
10333 		/* For mark_ptr_or_null_reg() */
10334 		regs[BPF_REG_0].id = id;
10335 		/* For release_reference() */
10336 		regs[BPF_REG_0].ref_obj_id = id;
10337 	}
10338 
10339 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10340 	if (err)
10341 		return err;
10342 
10343 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10344 	if (err)
10345 		return err;
10346 
10347 	if ((func_id == BPF_FUNC_get_stack ||
10348 	     func_id == BPF_FUNC_get_task_stack) &&
10349 	    !env->prog->has_callchain_buf) {
10350 		const char *err_str;
10351 
10352 #ifdef CONFIG_PERF_EVENTS
10353 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10354 		err_str = "cannot get callchain buffer for func %s#%d\n";
10355 #else
10356 		err = -ENOTSUPP;
10357 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10358 #endif
10359 		if (err) {
10360 			verbose(env, err_str, func_id_name(func_id), func_id);
10361 			return err;
10362 		}
10363 
10364 		env->prog->has_callchain_buf = true;
10365 	}
10366 
10367 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10368 		env->prog->call_get_stack = true;
10369 
10370 	if (func_id == BPF_FUNC_get_func_ip) {
10371 		if (check_get_func_ip(env))
10372 			return -ENOTSUPP;
10373 		env->prog->call_get_func_ip = true;
10374 	}
10375 
10376 	if (changes_data)
10377 		clear_all_pkt_pointers(env);
10378 	return 0;
10379 }
10380 
10381 /* mark_btf_func_reg_size() is used when the reg size is determined by
10382  * the BTF func_proto's return value size and argument.
10383  */
10384 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10385 				   size_t reg_size)
10386 {
10387 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10388 
10389 	if (regno == BPF_REG_0) {
10390 		/* Function return value */
10391 		reg->live |= REG_LIVE_WRITTEN;
10392 		reg->subreg_def = reg_size == sizeof(u64) ?
10393 			DEF_NOT_SUBREG : env->insn_idx + 1;
10394 	} else {
10395 		/* Function argument */
10396 		if (reg_size == sizeof(u64)) {
10397 			mark_insn_zext(env, reg);
10398 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10399 		} else {
10400 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10401 		}
10402 	}
10403 }
10404 
10405 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10406 {
10407 	return meta->kfunc_flags & KF_ACQUIRE;
10408 }
10409 
10410 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10411 {
10412 	return meta->kfunc_flags & KF_RELEASE;
10413 }
10414 
10415 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10416 {
10417 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10418 }
10419 
10420 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10421 {
10422 	return meta->kfunc_flags & KF_SLEEPABLE;
10423 }
10424 
10425 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10426 {
10427 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10428 }
10429 
10430 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10431 {
10432 	return meta->kfunc_flags & KF_RCU;
10433 }
10434 
10435 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10436 {
10437 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10438 }
10439 
10440 static bool __kfunc_param_match_suffix(const struct btf *btf,
10441 				       const struct btf_param *arg,
10442 				       const char *suffix)
10443 {
10444 	int suffix_len = strlen(suffix), len;
10445 	const char *param_name;
10446 
10447 	/* In the future, this can be ported to use BTF tagging */
10448 	param_name = btf_name_by_offset(btf, arg->name_off);
10449 	if (str_is_empty(param_name))
10450 		return false;
10451 	len = strlen(param_name);
10452 	if (len < suffix_len)
10453 		return false;
10454 	param_name += len - suffix_len;
10455 	return !strncmp(param_name, suffix, suffix_len);
10456 }
10457 
10458 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10459 				  const struct btf_param *arg,
10460 				  const struct bpf_reg_state *reg)
10461 {
10462 	const struct btf_type *t;
10463 
10464 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10465 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10466 		return false;
10467 
10468 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10469 }
10470 
10471 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10472 					const struct btf_param *arg,
10473 					const struct bpf_reg_state *reg)
10474 {
10475 	const struct btf_type *t;
10476 
10477 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10478 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10479 		return false;
10480 
10481 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10482 }
10483 
10484 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10485 {
10486 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10487 }
10488 
10489 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10490 {
10491 	return __kfunc_param_match_suffix(btf, arg, "__k");
10492 }
10493 
10494 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10495 {
10496 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10497 }
10498 
10499 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10500 {
10501 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10502 }
10503 
10504 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10505 {
10506 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10507 }
10508 
10509 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10510 {
10511 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10512 }
10513 
10514 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10515 {
10516 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10517 }
10518 
10519 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10520 {
10521 	return __kfunc_param_match_suffix(btf, arg, "__str");
10522 }
10523 
10524 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10525 					  const struct btf_param *arg,
10526 					  const char *name)
10527 {
10528 	int len, target_len = strlen(name);
10529 	const char *param_name;
10530 
10531 	param_name = btf_name_by_offset(btf, arg->name_off);
10532 	if (str_is_empty(param_name))
10533 		return false;
10534 	len = strlen(param_name);
10535 	if (len != target_len)
10536 		return false;
10537 	if (strcmp(param_name, name))
10538 		return false;
10539 
10540 	return true;
10541 }
10542 
10543 enum {
10544 	KF_ARG_DYNPTR_ID,
10545 	KF_ARG_LIST_HEAD_ID,
10546 	KF_ARG_LIST_NODE_ID,
10547 	KF_ARG_RB_ROOT_ID,
10548 	KF_ARG_RB_NODE_ID,
10549 };
10550 
10551 BTF_ID_LIST(kf_arg_btf_ids)
10552 BTF_ID(struct, bpf_dynptr_kern)
10553 BTF_ID(struct, bpf_list_head)
10554 BTF_ID(struct, bpf_list_node)
10555 BTF_ID(struct, bpf_rb_root)
10556 BTF_ID(struct, bpf_rb_node)
10557 
10558 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10559 				    const struct btf_param *arg, int type)
10560 {
10561 	const struct btf_type *t;
10562 	u32 res_id;
10563 
10564 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10565 	if (!t)
10566 		return false;
10567 	if (!btf_type_is_ptr(t))
10568 		return false;
10569 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10570 	if (!t)
10571 		return false;
10572 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10573 }
10574 
10575 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10576 {
10577 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10578 }
10579 
10580 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10581 {
10582 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10583 }
10584 
10585 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10586 {
10587 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10588 }
10589 
10590 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10591 {
10592 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10593 }
10594 
10595 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10596 {
10597 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10598 }
10599 
10600 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10601 				  const struct btf_param *arg)
10602 {
10603 	const struct btf_type *t;
10604 
10605 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10606 	if (!t)
10607 		return false;
10608 
10609 	return true;
10610 }
10611 
10612 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10613 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10614 					const struct btf *btf,
10615 					const struct btf_type *t, int rec)
10616 {
10617 	const struct btf_type *member_type;
10618 	const struct btf_member *member;
10619 	u32 i;
10620 
10621 	if (!btf_type_is_struct(t))
10622 		return false;
10623 
10624 	for_each_member(i, t, member) {
10625 		const struct btf_array *array;
10626 
10627 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10628 		if (btf_type_is_struct(member_type)) {
10629 			if (rec >= 3) {
10630 				verbose(env, "max struct nesting depth exceeded\n");
10631 				return false;
10632 			}
10633 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10634 				return false;
10635 			continue;
10636 		}
10637 		if (btf_type_is_array(member_type)) {
10638 			array = btf_array(member_type);
10639 			if (!array->nelems)
10640 				return false;
10641 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10642 			if (!btf_type_is_scalar(member_type))
10643 				return false;
10644 			continue;
10645 		}
10646 		if (!btf_type_is_scalar(member_type))
10647 			return false;
10648 	}
10649 	return true;
10650 }
10651 
10652 enum kfunc_ptr_arg_type {
10653 	KF_ARG_PTR_TO_CTX,
10654 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10655 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10656 	KF_ARG_PTR_TO_DYNPTR,
10657 	KF_ARG_PTR_TO_ITER,
10658 	KF_ARG_PTR_TO_LIST_HEAD,
10659 	KF_ARG_PTR_TO_LIST_NODE,
10660 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10661 	KF_ARG_PTR_TO_MEM,
10662 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10663 	KF_ARG_PTR_TO_CALLBACK,
10664 	KF_ARG_PTR_TO_RB_ROOT,
10665 	KF_ARG_PTR_TO_RB_NODE,
10666 	KF_ARG_PTR_TO_NULL,
10667 	KF_ARG_PTR_TO_CONST_STR,
10668 };
10669 
10670 enum special_kfunc_type {
10671 	KF_bpf_obj_new_impl,
10672 	KF_bpf_obj_drop_impl,
10673 	KF_bpf_refcount_acquire_impl,
10674 	KF_bpf_list_push_front_impl,
10675 	KF_bpf_list_push_back_impl,
10676 	KF_bpf_list_pop_front,
10677 	KF_bpf_list_pop_back,
10678 	KF_bpf_cast_to_kern_ctx,
10679 	KF_bpf_rdonly_cast,
10680 	KF_bpf_rcu_read_lock,
10681 	KF_bpf_rcu_read_unlock,
10682 	KF_bpf_rbtree_remove,
10683 	KF_bpf_rbtree_add_impl,
10684 	KF_bpf_rbtree_first,
10685 	KF_bpf_dynptr_from_skb,
10686 	KF_bpf_dynptr_from_xdp,
10687 	KF_bpf_dynptr_slice,
10688 	KF_bpf_dynptr_slice_rdwr,
10689 	KF_bpf_dynptr_clone,
10690 	KF_bpf_percpu_obj_new_impl,
10691 	KF_bpf_percpu_obj_drop_impl,
10692 	KF_bpf_throw,
10693 	KF_bpf_iter_css_task_new,
10694 };
10695 
10696 BTF_SET_START(special_kfunc_set)
10697 BTF_ID(func, bpf_obj_new_impl)
10698 BTF_ID(func, bpf_obj_drop_impl)
10699 BTF_ID(func, bpf_refcount_acquire_impl)
10700 BTF_ID(func, bpf_list_push_front_impl)
10701 BTF_ID(func, bpf_list_push_back_impl)
10702 BTF_ID(func, bpf_list_pop_front)
10703 BTF_ID(func, bpf_list_pop_back)
10704 BTF_ID(func, bpf_cast_to_kern_ctx)
10705 BTF_ID(func, bpf_rdonly_cast)
10706 BTF_ID(func, bpf_rbtree_remove)
10707 BTF_ID(func, bpf_rbtree_add_impl)
10708 BTF_ID(func, bpf_rbtree_first)
10709 BTF_ID(func, bpf_dynptr_from_skb)
10710 BTF_ID(func, bpf_dynptr_from_xdp)
10711 BTF_ID(func, bpf_dynptr_slice)
10712 BTF_ID(func, bpf_dynptr_slice_rdwr)
10713 BTF_ID(func, bpf_dynptr_clone)
10714 BTF_ID(func, bpf_percpu_obj_new_impl)
10715 BTF_ID(func, bpf_percpu_obj_drop_impl)
10716 BTF_ID(func, bpf_throw)
10717 #ifdef CONFIG_CGROUPS
10718 BTF_ID(func, bpf_iter_css_task_new)
10719 #endif
10720 BTF_SET_END(special_kfunc_set)
10721 
10722 BTF_ID_LIST(special_kfunc_list)
10723 BTF_ID(func, bpf_obj_new_impl)
10724 BTF_ID(func, bpf_obj_drop_impl)
10725 BTF_ID(func, bpf_refcount_acquire_impl)
10726 BTF_ID(func, bpf_list_push_front_impl)
10727 BTF_ID(func, bpf_list_push_back_impl)
10728 BTF_ID(func, bpf_list_pop_front)
10729 BTF_ID(func, bpf_list_pop_back)
10730 BTF_ID(func, bpf_cast_to_kern_ctx)
10731 BTF_ID(func, bpf_rdonly_cast)
10732 BTF_ID(func, bpf_rcu_read_lock)
10733 BTF_ID(func, bpf_rcu_read_unlock)
10734 BTF_ID(func, bpf_rbtree_remove)
10735 BTF_ID(func, bpf_rbtree_add_impl)
10736 BTF_ID(func, bpf_rbtree_first)
10737 BTF_ID(func, bpf_dynptr_from_skb)
10738 BTF_ID(func, bpf_dynptr_from_xdp)
10739 BTF_ID(func, bpf_dynptr_slice)
10740 BTF_ID(func, bpf_dynptr_slice_rdwr)
10741 BTF_ID(func, bpf_dynptr_clone)
10742 BTF_ID(func, bpf_percpu_obj_new_impl)
10743 BTF_ID(func, bpf_percpu_obj_drop_impl)
10744 BTF_ID(func, bpf_throw)
10745 #ifdef CONFIG_CGROUPS
10746 BTF_ID(func, bpf_iter_css_task_new)
10747 #else
10748 BTF_ID_UNUSED
10749 #endif
10750 
10751 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10752 {
10753 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10754 	    meta->arg_owning_ref) {
10755 		return false;
10756 	}
10757 
10758 	return meta->kfunc_flags & KF_RET_NULL;
10759 }
10760 
10761 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10762 {
10763 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10764 }
10765 
10766 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10767 {
10768 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10769 }
10770 
10771 static enum kfunc_ptr_arg_type
10772 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10773 		       struct bpf_kfunc_call_arg_meta *meta,
10774 		       const struct btf_type *t, const struct btf_type *ref_t,
10775 		       const char *ref_tname, const struct btf_param *args,
10776 		       int argno, int nargs)
10777 {
10778 	u32 regno = argno + 1;
10779 	struct bpf_reg_state *regs = cur_regs(env);
10780 	struct bpf_reg_state *reg = &regs[regno];
10781 	bool arg_mem_size = false;
10782 
10783 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10784 		return KF_ARG_PTR_TO_CTX;
10785 
10786 	/* In this function, we verify the kfunc's BTF as per the argument type,
10787 	 * leaving the rest of the verification with respect to the register
10788 	 * type to our caller. When a set of conditions hold in the BTF type of
10789 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10790 	 */
10791 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10792 		return KF_ARG_PTR_TO_CTX;
10793 
10794 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10795 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10796 
10797 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10798 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10799 
10800 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10801 		return KF_ARG_PTR_TO_DYNPTR;
10802 
10803 	if (is_kfunc_arg_iter(meta, argno))
10804 		return KF_ARG_PTR_TO_ITER;
10805 
10806 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10807 		return KF_ARG_PTR_TO_LIST_HEAD;
10808 
10809 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10810 		return KF_ARG_PTR_TO_LIST_NODE;
10811 
10812 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10813 		return KF_ARG_PTR_TO_RB_ROOT;
10814 
10815 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10816 		return KF_ARG_PTR_TO_RB_NODE;
10817 
10818 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
10819 		return KF_ARG_PTR_TO_CONST_STR;
10820 
10821 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10822 		if (!btf_type_is_struct(ref_t)) {
10823 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10824 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10825 			return -EINVAL;
10826 		}
10827 		return KF_ARG_PTR_TO_BTF_ID;
10828 	}
10829 
10830 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10831 		return KF_ARG_PTR_TO_CALLBACK;
10832 
10833 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10834 		return KF_ARG_PTR_TO_NULL;
10835 
10836 	if (argno + 1 < nargs &&
10837 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10838 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10839 		arg_mem_size = true;
10840 
10841 	/* This is the catch all argument type of register types supported by
10842 	 * check_helper_mem_access. However, we only allow when argument type is
10843 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10844 	 * arg_mem_size is true, the pointer can be void *.
10845 	 */
10846 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10847 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10848 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10849 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10850 		return -EINVAL;
10851 	}
10852 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10853 }
10854 
10855 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10856 					struct bpf_reg_state *reg,
10857 					const struct btf_type *ref_t,
10858 					const char *ref_tname, u32 ref_id,
10859 					struct bpf_kfunc_call_arg_meta *meta,
10860 					int argno)
10861 {
10862 	const struct btf_type *reg_ref_t;
10863 	bool strict_type_match = false;
10864 	const struct btf *reg_btf;
10865 	const char *reg_ref_tname;
10866 	u32 reg_ref_id;
10867 
10868 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10869 		reg_btf = reg->btf;
10870 		reg_ref_id = reg->btf_id;
10871 	} else {
10872 		reg_btf = btf_vmlinux;
10873 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10874 	}
10875 
10876 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10877 	 * or releasing a reference, or are no-cast aliases. We do _not_
10878 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10879 	 * as we want to enable BPF programs to pass types that are bitwise
10880 	 * equivalent without forcing them to explicitly cast with something
10881 	 * like bpf_cast_to_kern_ctx().
10882 	 *
10883 	 * For example, say we had a type like the following:
10884 	 *
10885 	 * struct bpf_cpumask {
10886 	 *	cpumask_t cpumask;
10887 	 *	refcount_t usage;
10888 	 * };
10889 	 *
10890 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10891 	 * to a struct cpumask, so it would be safe to pass a struct
10892 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10893 	 *
10894 	 * The philosophy here is similar to how we allow scalars of different
10895 	 * types to be passed to kfuncs as long as the size is the same. The
10896 	 * only difference here is that we're simply allowing
10897 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10898 	 * resolve types.
10899 	 */
10900 	if (is_kfunc_acquire(meta) ||
10901 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10902 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10903 		strict_type_match = true;
10904 
10905 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10906 
10907 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10908 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10909 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10910 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10911 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10912 			btf_type_str(reg_ref_t), reg_ref_tname);
10913 		return -EINVAL;
10914 	}
10915 	return 0;
10916 }
10917 
10918 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10919 {
10920 	struct bpf_verifier_state *state = env->cur_state;
10921 	struct btf_record *rec = reg_btf_record(reg);
10922 
10923 	if (!state->active_lock.ptr) {
10924 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10925 		return -EFAULT;
10926 	}
10927 
10928 	if (type_flag(reg->type) & NON_OWN_REF) {
10929 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10930 		return -EFAULT;
10931 	}
10932 
10933 	reg->type |= NON_OWN_REF;
10934 	if (rec->refcount_off >= 0)
10935 		reg->type |= MEM_RCU;
10936 
10937 	return 0;
10938 }
10939 
10940 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10941 {
10942 	struct bpf_func_state *state, *unused;
10943 	struct bpf_reg_state *reg;
10944 	int i;
10945 
10946 	state = cur_func(env);
10947 
10948 	if (!ref_obj_id) {
10949 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10950 			     "owning -> non-owning conversion\n");
10951 		return -EFAULT;
10952 	}
10953 
10954 	for (i = 0; i < state->acquired_refs; i++) {
10955 		if (state->refs[i].id != ref_obj_id)
10956 			continue;
10957 
10958 		/* Clear ref_obj_id here so release_reference doesn't clobber
10959 		 * the whole reg
10960 		 */
10961 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10962 			if (reg->ref_obj_id == ref_obj_id) {
10963 				reg->ref_obj_id = 0;
10964 				ref_set_non_owning(env, reg);
10965 			}
10966 		}));
10967 		return 0;
10968 	}
10969 
10970 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10971 	return -EFAULT;
10972 }
10973 
10974 /* Implementation details:
10975  *
10976  * Each register points to some region of memory, which we define as an
10977  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10978  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10979  * allocation. The lock and the data it protects are colocated in the same
10980  * memory region.
10981  *
10982  * Hence, everytime a register holds a pointer value pointing to such
10983  * allocation, the verifier preserves a unique reg->id for it.
10984  *
10985  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10986  * bpf_spin_lock is called.
10987  *
10988  * To enable this, lock state in the verifier captures two values:
10989  *	active_lock.ptr = Register's type specific pointer
10990  *	active_lock.id  = A unique ID for each register pointer value
10991  *
10992  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10993  * supported register types.
10994  *
10995  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10996  * allocated objects is the reg->btf pointer.
10997  *
10998  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10999  * can establish the provenance of the map value statically for each distinct
11000  * lookup into such maps. They always contain a single map value hence unique
11001  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11002  *
11003  * So, in case of global variables, they use array maps with max_entries = 1,
11004  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11005  * into the same map value as max_entries is 1, as described above).
11006  *
11007  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11008  * outer map pointer (in verifier context), but each lookup into an inner map
11009  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11010  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11011  * will get different reg->id assigned to each lookup, hence different
11012  * active_lock.id.
11013  *
11014  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11015  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11016  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11017  */
11018 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11019 {
11020 	void *ptr;
11021 	u32 id;
11022 
11023 	switch ((int)reg->type) {
11024 	case PTR_TO_MAP_VALUE:
11025 		ptr = reg->map_ptr;
11026 		break;
11027 	case PTR_TO_BTF_ID | MEM_ALLOC:
11028 		ptr = reg->btf;
11029 		break;
11030 	default:
11031 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11032 		return -EFAULT;
11033 	}
11034 	id = reg->id;
11035 
11036 	if (!env->cur_state->active_lock.ptr)
11037 		return -EINVAL;
11038 	if (env->cur_state->active_lock.ptr != ptr ||
11039 	    env->cur_state->active_lock.id != id) {
11040 		verbose(env, "held lock and object are not in the same allocation\n");
11041 		return -EINVAL;
11042 	}
11043 	return 0;
11044 }
11045 
11046 static bool is_bpf_list_api_kfunc(u32 btf_id)
11047 {
11048 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11049 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11050 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11051 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11052 }
11053 
11054 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11055 {
11056 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11057 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11058 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11059 }
11060 
11061 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11062 {
11063 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11064 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11065 }
11066 
11067 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11068 {
11069 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11070 }
11071 
11072 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11073 {
11074 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11075 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11076 }
11077 
11078 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11079 {
11080 	return is_bpf_rbtree_api_kfunc(btf_id);
11081 }
11082 
11083 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11084 					  enum btf_field_type head_field_type,
11085 					  u32 kfunc_btf_id)
11086 {
11087 	bool ret;
11088 
11089 	switch (head_field_type) {
11090 	case BPF_LIST_HEAD:
11091 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11092 		break;
11093 	case BPF_RB_ROOT:
11094 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11095 		break;
11096 	default:
11097 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11098 			btf_field_type_name(head_field_type));
11099 		return false;
11100 	}
11101 
11102 	if (!ret)
11103 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11104 			btf_field_type_name(head_field_type));
11105 	return ret;
11106 }
11107 
11108 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11109 					  enum btf_field_type node_field_type,
11110 					  u32 kfunc_btf_id)
11111 {
11112 	bool ret;
11113 
11114 	switch (node_field_type) {
11115 	case BPF_LIST_NODE:
11116 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11117 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11118 		break;
11119 	case BPF_RB_NODE:
11120 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11121 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11122 		break;
11123 	default:
11124 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11125 			btf_field_type_name(node_field_type));
11126 		return false;
11127 	}
11128 
11129 	if (!ret)
11130 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11131 			btf_field_type_name(node_field_type));
11132 	return ret;
11133 }
11134 
11135 static int
11136 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11137 				   struct bpf_reg_state *reg, u32 regno,
11138 				   struct bpf_kfunc_call_arg_meta *meta,
11139 				   enum btf_field_type head_field_type,
11140 				   struct btf_field **head_field)
11141 {
11142 	const char *head_type_name;
11143 	struct btf_field *field;
11144 	struct btf_record *rec;
11145 	u32 head_off;
11146 
11147 	if (meta->btf != btf_vmlinux) {
11148 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11149 		return -EFAULT;
11150 	}
11151 
11152 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11153 		return -EFAULT;
11154 
11155 	head_type_name = btf_field_type_name(head_field_type);
11156 	if (!tnum_is_const(reg->var_off)) {
11157 		verbose(env,
11158 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11159 			regno, head_type_name);
11160 		return -EINVAL;
11161 	}
11162 
11163 	rec = reg_btf_record(reg);
11164 	head_off = reg->off + reg->var_off.value;
11165 	field = btf_record_find(rec, head_off, head_field_type);
11166 	if (!field) {
11167 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11168 		return -EINVAL;
11169 	}
11170 
11171 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11172 	if (check_reg_allocation_locked(env, reg)) {
11173 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11174 			rec->spin_lock_off, head_type_name);
11175 		return -EINVAL;
11176 	}
11177 
11178 	if (*head_field) {
11179 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11180 		return -EFAULT;
11181 	}
11182 	*head_field = field;
11183 	return 0;
11184 }
11185 
11186 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11187 					   struct bpf_reg_state *reg, u32 regno,
11188 					   struct bpf_kfunc_call_arg_meta *meta)
11189 {
11190 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11191 							  &meta->arg_list_head.field);
11192 }
11193 
11194 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11195 					     struct bpf_reg_state *reg, u32 regno,
11196 					     struct bpf_kfunc_call_arg_meta *meta)
11197 {
11198 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11199 							  &meta->arg_rbtree_root.field);
11200 }
11201 
11202 static int
11203 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11204 				   struct bpf_reg_state *reg, u32 regno,
11205 				   struct bpf_kfunc_call_arg_meta *meta,
11206 				   enum btf_field_type head_field_type,
11207 				   enum btf_field_type node_field_type,
11208 				   struct btf_field **node_field)
11209 {
11210 	const char *node_type_name;
11211 	const struct btf_type *et, *t;
11212 	struct btf_field *field;
11213 	u32 node_off;
11214 
11215 	if (meta->btf != btf_vmlinux) {
11216 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11217 		return -EFAULT;
11218 	}
11219 
11220 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11221 		return -EFAULT;
11222 
11223 	node_type_name = btf_field_type_name(node_field_type);
11224 	if (!tnum_is_const(reg->var_off)) {
11225 		verbose(env,
11226 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11227 			regno, node_type_name);
11228 		return -EINVAL;
11229 	}
11230 
11231 	node_off = reg->off + reg->var_off.value;
11232 	field = reg_find_field_offset(reg, node_off, node_field_type);
11233 	if (!field || field->offset != node_off) {
11234 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11235 		return -EINVAL;
11236 	}
11237 
11238 	field = *node_field;
11239 
11240 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11241 	t = btf_type_by_id(reg->btf, reg->btf_id);
11242 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11243 				  field->graph_root.value_btf_id, true)) {
11244 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11245 			"in struct %s, but arg is at offset=%d in struct %s\n",
11246 			btf_field_type_name(head_field_type),
11247 			btf_field_type_name(node_field_type),
11248 			field->graph_root.node_offset,
11249 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11250 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11251 		return -EINVAL;
11252 	}
11253 	meta->arg_btf = reg->btf;
11254 	meta->arg_btf_id = reg->btf_id;
11255 
11256 	if (node_off != field->graph_root.node_offset) {
11257 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11258 			node_off, btf_field_type_name(node_field_type),
11259 			field->graph_root.node_offset,
11260 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11261 		return -EINVAL;
11262 	}
11263 
11264 	return 0;
11265 }
11266 
11267 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11268 					   struct bpf_reg_state *reg, u32 regno,
11269 					   struct bpf_kfunc_call_arg_meta *meta)
11270 {
11271 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11272 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11273 						  &meta->arg_list_head.field);
11274 }
11275 
11276 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11277 					     struct bpf_reg_state *reg, u32 regno,
11278 					     struct bpf_kfunc_call_arg_meta *meta)
11279 {
11280 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11281 						  BPF_RB_ROOT, BPF_RB_NODE,
11282 						  &meta->arg_rbtree_root.field);
11283 }
11284 
11285 /*
11286  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11287  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11288  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11289  * them can only be attached to some specific hook points.
11290  */
11291 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11292 {
11293 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11294 
11295 	switch (prog_type) {
11296 	case BPF_PROG_TYPE_LSM:
11297 		return true;
11298 	case BPF_PROG_TYPE_TRACING:
11299 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11300 			return true;
11301 		fallthrough;
11302 	default:
11303 		return env->prog->aux->sleepable;
11304 	}
11305 }
11306 
11307 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11308 			    int insn_idx)
11309 {
11310 	const char *func_name = meta->func_name, *ref_tname;
11311 	const struct btf *btf = meta->btf;
11312 	const struct btf_param *args;
11313 	struct btf_record *rec;
11314 	u32 i, nargs;
11315 	int ret;
11316 
11317 	args = (const struct btf_param *)(meta->func_proto + 1);
11318 	nargs = btf_type_vlen(meta->func_proto);
11319 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11320 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11321 			MAX_BPF_FUNC_REG_ARGS);
11322 		return -EINVAL;
11323 	}
11324 
11325 	/* Check that BTF function arguments match actual types that the
11326 	 * verifier sees.
11327 	 */
11328 	for (i = 0; i < nargs; i++) {
11329 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11330 		const struct btf_type *t, *ref_t, *resolve_ret;
11331 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11332 		u32 regno = i + 1, ref_id, type_size;
11333 		bool is_ret_buf_sz = false;
11334 		int kf_arg_type;
11335 
11336 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11337 
11338 		if (is_kfunc_arg_ignore(btf, &args[i]))
11339 			continue;
11340 
11341 		if (btf_type_is_scalar(t)) {
11342 			if (reg->type != SCALAR_VALUE) {
11343 				verbose(env, "R%d is not a scalar\n", regno);
11344 				return -EINVAL;
11345 			}
11346 
11347 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11348 				if (meta->arg_constant.found) {
11349 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11350 					return -EFAULT;
11351 				}
11352 				if (!tnum_is_const(reg->var_off)) {
11353 					verbose(env, "R%d must be a known constant\n", regno);
11354 					return -EINVAL;
11355 				}
11356 				ret = mark_chain_precision(env, regno);
11357 				if (ret < 0)
11358 					return ret;
11359 				meta->arg_constant.found = true;
11360 				meta->arg_constant.value = reg->var_off.value;
11361 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11362 				meta->r0_rdonly = true;
11363 				is_ret_buf_sz = true;
11364 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11365 				is_ret_buf_sz = true;
11366 			}
11367 
11368 			if (is_ret_buf_sz) {
11369 				if (meta->r0_size) {
11370 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11371 					return -EINVAL;
11372 				}
11373 
11374 				if (!tnum_is_const(reg->var_off)) {
11375 					verbose(env, "R%d is not a const\n", regno);
11376 					return -EINVAL;
11377 				}
11378 
11379 				meta->r0_size = reg->var_off.value;
11380 				ret = mark_chain_precision(env, regno);
11381 				if (ret)
11382 					return ret;
11383 			}
11384 			continue;
11385 		}
11386 
11387 		if (!btf_type_is_ptr(t)) {
11388 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11389 			return -EINVAL;
11390 		}
11391 
11392 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11393 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11394 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11395 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11396 			return -EACCES;
11397 		}
11398 
11399 		if (reg->ref_obj_id) {
11400 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11401 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11402 					regno, reg->ref_obj_id,
11403 					meta->ref_obj_id);
11404 				return -EFAULT;
11405 			}
11406 			meta->ref_obj_id = reg->ref_obj_id;
11407 			if (is_kfunc_release(meta))
11408 				meta->release_regno = regno;
11409 		}
11410 
11411 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11412 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11413 
11414 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11415 		if (kf_arg_type < 0)
11416 			return kf_arg_type;
11417 
11418 		switch (kf_arg_type) {
11419 		case KF_ARG_PTR_TO_NULL:
11420 			continue;
11421 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11422 		case KF_ARG_PTR_TO_BTF_ID:
11423 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11424 				break;
11425 
11426 			if (!is_trusted_reg(reg)) {
11427 				if (!is_kfunc_rcu(meta)) {
11428 					verbose(env, "R%d must be referenced or trusted\n", regno);
11429 					return -EINVAL;
11430 				}
11431 				if (!is_rcu_reg(reg)) {
11432 					verbose(env, "R%d must be a rcu pointer\n", regno);
11433 					return -EINVAL;
11434 				}
11435 			}
11436 
11437 			fallthrough;
11438 		case KF_ARG_PTR_TO_CTX:
11439 			/* Trusted arguments have the same offset checks as release arguments */
11440 			arg_type |= OBJ_RELEASE;
11441 			break;
11442 		case KF_ARG_PTR_TO_DYNPTR:
11443 		case KF_ARG_PTR_TO_ITER:
11444 		case KF_ARG_PTR_TO_LIST_HEAD:
11445 		case KF_ARG_PTR_TO_LIST_NODE:
11446 		case KF_ARG_PTR_TO_RB_ROOT:
11447 		case KF_ARG_PTR_TO_RB_NODE:
11448 		case KF_ARG_PTR_TO_MEM:
11449 		case KF_ARG_PTR_TO_MEM_SIZE:
11450 		case KF_ARG_PTR_TO_CALLBACK:
11451 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11452 		case KF_ARG_PTR_TO_CONST_STR:
11453 			/* Trusted by default */
11454 			break;
11455 		default:
11456 			WARN_ON_ONCE(1);
11457 			return -EFAULT;
11458 		}
11459 
11460 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11461 			arg_type |= OBJ_RELEASE;
11462 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11463 		if (ret < 0)
11464 			return ret;
11465 
11466 		switch (kf_arg_type) {
11467 		case KF_ARG_PTR_TO_CTX:
11468 			if (reg->type != PTR_TO_CTX) {
11469 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11470 				return -EINVAL;
11471 			}
11472 
11473 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11474 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11475 				if (ret < 0)
11476 					return -EINVAL;
11477 				meta->ret_btf_id  = ret;
11478 			}
11479 			break;
11480 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11481 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11482 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11483 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11484 					return -EINVAL;
11485 				}
11486 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11487 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11488 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11489 					return -EINVAL;
11490 				}
11491 			} else {
11492 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11493 				return -EINVAL;
11494 			}
11495 			if (!reg->ref_obj_id) {
11496 				verbose(env, "allocated object must be referenced\n");
11497 				return -EINVAL;
11498 			}
11499 			if (meta->btf == btf_vmlinux) {
11500 				meta->arg_btf = reg->btf;
11501 				meta->arg_btf_id = reg->btf_id;
11502 			}
11503 			break;
11504 		case KF_ARG_PTR_TO_DYNPTR:
11505 		{
11506 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11507 			int clone_ref_obj_id = 0;
11508 
11509 			if (reg->type != PTR_TO_STACK &&
11510 			    reg->type != CONST_PTR_TO_DYNPTR) {
11511 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11512 				return -EINVAL;
11513 			}
11514 
11515 			if (reg->type == CONST_PTR_TO_DYNPTR)
11516 				dynptr_arg_type |= MEM_RDONLY;
11517 
11518 			if (is_kfunc_arg_uninit(btf, &args[i]))
11519 				dynptr_arg_type |= MEM_UNINIT;
11520 
11521 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11522 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11523 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11524 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11525 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11526 				   (dynptr_arg_type & MEM_UNINIT)) {
11527 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11528 
11529 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11530 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11531 					return -EFAULT;
11532 				}
11533 
11534 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11535 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11536 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11537 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11538 					return -EFAULT;
11539 				}
11540 			}
11541 
11542 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11543 			if (ret < 0)
11544 				return ret;
11545 
11546 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11547 				int id = dynptr_id(env, reg);
11548 
11549 				if (id < 0) {
11550 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11551 					return id;
11552 				}
11553 				meta->initialized_dynptr.id = id;
11554 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11555 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11556 			}
11557 
11558 			break;
11559 		}
11560 		case KF_ARG_PTR_TO_ITER:
11561 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11562 				if (!check_css_task_iter_allowlist(env)) {
11563 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11564 					return -EINVAL;
11565 				}
11566 			}
11567 			ret = process_iter_arg(env, regno, insn_idx, meta);
11568 			if (ret < 0)
11569 				return ret;
11570 			break;
11571 		case KF_ARG_PTR_TO_LIST_HEAD:
11572 			if (reg->type != PTR_TO_MAP_VALUE &&
11573 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11574 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11575 				return -EINVAL;
11576 			}
11577 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11578 				verbose(env, "allocated object must be referenced\n");
11579 				return -EINVAL;
11580 			}
11581 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11582 			if (ret < 0)
11583 				return ret;
11584 			break;
11585 		case KF_ARG_PTR_TO_RB_ROOT:
11586 			if (reg->type != PTR_TO_MAP_VALUE &&
11587 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11588 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11589 				return -EINVAL;
11590 			}
11591 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11592 				verbose(env, "allocated object must be referenced\n");
11593 				return -EINVAL;
11594 			}
11595 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11596 			if (ret < 0)
11597 				return ret;
11598 			break;
11599 		case KF_ARG_PTR_TO_LIST_NODE:
11600 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11601 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11602 				return -EINVAL;
11603 			}
11604 			if (!reg->ref_obj_id) {
11605 				verbose(env, "allocated object must be referenced\n");
11606 				return -EINVAL;
11607 			}
11608 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11609 			if (ret < 0)
11610 				return ret;
11611 			break;
11612 		case KF_ARG_PTR_TO_RB_NODE:
11613 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11614 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11615 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11616 					return -EINVAL;
11617 				}
11618 				if (in_rbtree_lock_required_cb(env)) {
11619 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11620 					return -EINVAL;
11621 				}
11622 			} else {
11623 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11624 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11625 					return -EINVAL;
11626 				}
11627 				if (!reg->ref_obj_id) {
11628 					verbose(env, "allocated object must be referenced\n");
11629 					return -EINVAL;
11630 				}
11631 			}
11632 
11633 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11634 			if (ret < 0)
11635 				return ret;
11636 			break;
11637 		case KF_ARG_PTR_TO_BTF_ID:
11638 			/* Only base_type is checked, further checks are done here */
11639 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11640 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11641 			    !reg2btf_ids[base_type(reg->type)]) {
11642 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11643 				verbose(env, "expected %s or socket\n",
11644 					reg_type_str(env, base_type(reg->type) |
11645 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11646 				return -EINVAL;
11647 			}
11648 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11649 			if (ret < 0)
11650 				return ret;
11651 			break;
11652 		case KF_ARG_PTR_TO_MEM:
11653 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11654 			if (IS_ERR(resolve_ret)) {
11655 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11656 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11657 				return -EINVAL;
11658 			}
11659 			ret = check_mem_reg(env, reg, regno, type_size);
11660 			if (ret < 0)
11661 				return ret;
11662 			break;
11663 		case KF_ARG_PTR_TO_MEM_SIZE:
11664 		{
11665 			struct bpf_reg_state *buff_reg = &regs[regno];
11666 			const struct btf_param *buff_arg = &args[i];
11667 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11668 			const struct btf_param *size_arg = &args[i + 1];
11669 
11670 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11671 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11672 				if (ret < 0) {
11673 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11674 					return ret;
11675 				}
11676 			}
11677 
11678 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11679 				if (meta->arg_constant.found) {
11680 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11681 					return -EFAULT;
11682 				}
11683 				if (!tnum_is_const(size_reg->var_off)) {
11684 					verbose(env, "R%d must be a known constant\n", regno + 1);
11685 					return -EINVAL;
11686 				}
11687 				meta->arg_constant.found = true;
11688 				meta->arg_constant.value = size_reg->var_off.value;
11689 			}
11690 
11691 			/* Skip next '__sz' or '__szk' argument */
11692 			i++;
11693 			break;
11694 		}
11695 		case KF_ARG_PTR_TO_CALLBACK:
11696 			if (reg->type != PTR_TO_FUNC) {
11697 				verbose(env, "arg%d expected pointer to func\n", i);
11698 				return -EINVAL;
11699 			}
11700 			meta->subprogno = reg->subprogno;
11701 			break;
11702 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11703 			if (!type_is_ptr_alloc_obj(reg->type)) {
11704 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11705 				return -EINVAL;
11706 			}
11707 			if (!type_is_non_owning_ref(reg->type))
11708 				meta->arg_owning_ref = true;
11709 
11710 			rec = reg_btf_record(reg);
11711 			if (!rec) {
11712 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11713 				return -EFAULT;
11714 			}
11715 
11716 			if (rec->refcount_off < 0) {
11717 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11718 				return -EINVAL;
11719 			}
11720 
11721 			meta->arg_btf = reg->btf;
11722 			meta->arg_btf_id = reg->btf_id;
11723 			break;
11724 		case KF_ARG_PTR_TO_CONST_STR:
11725 			if (reg->type != PTR_TO_MAP_VALUE) {
11726 				verbose(env, "arg#%d doesn't point to a const string\n", i);
11727 				return -EINVAL;
11728 			}
11729 			ret = check_reg_const_str(env, reg, regno);
11730 			if (ret)
11731 				return ret;
11732 			break;
11733 		}
11734 	}
11735 
11736 	if (is_kfunc_release(meta) && !meta->release_regno) {
11737 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11738 			func_name);
11739 		return -EINVAL;
11740 	}
11741 
11742 	return 0;
11743 }
11744 
11745 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11746 			    struct bpf_insn *insn,
11747 			    struct bpf_kfunc_call_arg_meta *meta,
11748 			    const char **kfunc_name)
11749 {
11750 	const struct btf_type *func, *func_proto;
11751 	u32 func_id, *kfunc_flags;
11752 	const char *func_name;
11753 	struct btf *desc_btf;
11754 
11755 	if (kfunc_name)
11756 		*kfunc_name = NULL;
11757 
11758 	if (!insn->imm)
11759 		return -EINVAL;
11760 
11761 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11762 	if (IS_ERR(desc_btf))
11763 		return PTR_ERR(desc_btf);
11764 
11765 	func_id = insn->imm;
11766 	func = btf_type_by_id(desc_btf, func_id);
11767 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11768 	if (kfunc_name)
11769 		*kfunc_name = func_name;
11770 	func_proto = btf_type_by_id(desc_btf, func->type);
11771 
11772 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11773 	if (!kfunc_flags) {
11774 		return -EACCES;
11775 	}
11776 
11777 	memset(meta, 0, sizeof(*meta));
11778 	meta->btf = desc_btf;
11779 	meta->func_id = func_id;
11780 	meta->kfunc_flags = *kfunc_flags;
11781 	meta->func_proto = func_proto;
11782 	meta->func_name = func_name;
11783 
11784 	return 0;
11785 }
11786 
11787 static int check_return_code(struct bpf_verifier_env *env, int regno);
11788 
11789 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11790 			    int *insn_idx_p)
11791 {
11792 	const struct btf_type *t, *ptr_type;
11793 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11794 	struct bpf_reg_state *regs = cur_regs(env);
11795 	const char *func_name, *ptr_type_name;
11796 	bool sleepable, rcu_lock, rcu_unlock;
11797 	struct bpf_kfunc_call_arg_meta meta;
11798 	struct bpf_insn_aux_data *insn_aux;
11799 	int err, insn_idx = *insn_idx_p;
11800 	const struct btf_param *args;
11801 	const struct btf_type *ret_t;
11802 	struct btf *desc_btf;
11803 
11804 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11805 	if (!insn->imm)
11806 		return 0;
11807 
11808 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11809 	if (err == -EACCES && func_name)
11810 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11811 	if (err)
11812 		return err;
11813 	desc_btf = meta.btf;
11814 	insn_aux = &env->insn_aux_data[insn_idx];
11815 
11816 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11817 
11818 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11819 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11820 		return -EACCES;
11821 	}
11822 
11823 	sleepable = is_kfunc_sleepable(&meta);
11824 	if (sleepable && !env->prog->aux->sleepable) {
11825 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11826 		return -EACCES;
11827 	}
11828 
11829 	/* Check the arguments */
11830 	err = check_kfunc_args(env, &meta, insn_idx);
11831 	if (err < 0)
11832 		return err;
11833 
11834 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11835 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11836 					 set_rbtree_add_callback_state);
11837 		if (err) {
11838 			verbose(env, "kfunc %s#%d failed callback verification\n",
11839 				func_name, meta.func_id);
11840 			return err;
11841 		}
11842 	}
11843 
11844 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11845 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11846 
11847 	if (env->cur_state->active_rcu_lock) {
11848 		struct bpf_func_state *state;
11849 		struct bpf_reg_state *reg;
11850 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11851 
11852 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11853 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11854 			return -EACCES;
11855 		}
11856 
11857 		if (rcu_lock) {
11858 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11859 			return -EINVAL;
11860 		} else if (rcu_unlock) {
11861 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11862 				if (reg->type & MEM_RCU) {
11863 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11864 					reg->type |= PTR_UNTRUSTED;
11865 				}
11866 			}));
11867 			env->cur_state->active_rcu_lock = false;
11868 		} else if (sleepable) {
11869 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11870 			return -EACCES;
11871 		}
11872 	} else if (rcu_lock) {
11873 		env->cur_state->active_rcu_lock = true;
11874 	} else if (rcu_unlock) {
11875 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11876 		return -EINVAL;
11877 	}
11878 
11879 	/* In case of release function, we get register number of refcounted
11880 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11881 	 */
11882 	if (meta.release_regno) {
11883 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11884 		if (err) {
11885 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11886 				func_name, meta.func_id);
11887 			return err;
11888 		}
11889 	}
11890 
11891 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11892 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11893 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11894 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11895 		insn_aux->insert_off = regs[BPF_REG_2].off;
11896 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11897 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11898 		if (err) {
11899 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11900 				func_name, meta.func_id);
11901 			return err;
11902 		}
11903 
11904 		err = release_reference(env, release_ref_obj_id);
11905 		if (err) {
11906 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11907 				func_name, meta.func_id);
11908 			return err;
11909 		}
11910 	}
11911 
11912 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
11913 		if (!bpf_jit_supports_exceptions()) {
11914 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
11915 				func_name, meta.func_id);
11916 			return -ENOTSUPP;
11917 		}
11918 		env->seen_exception = true;
11919 
11920 		/* In the case of the default callback, the cookie value passed
11921 		 * to bpf_throw becomes the return value of the program.
11922 		 */
11923 		if (!env->exception_callback_subprog) {
11924 			err = check_return_code(env, BPF_REG_1);
11925 			if (err < 0)
11926 				return err;
11927 		}
11928 	}
11929 
11930 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11931 		mark_reg_not_init(env, regs, caller_saved[i]);
11932 
11933 	/* Check return type */
11934 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11935 
11936 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11937 		/* Only exception is bpf_obj_new_impl */
11938 		if (meta.btf != btf_vmlinux ||
11939 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11940 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
11941 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11942 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11943 			return -EINVAL;
11944 		}
11945 	}
11946 
11947 	if (btf_type_is_scalar(t)) {
11948 		mark_reg_unknown(env, regs, BPF_REG_0);
11949 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11950 	} else if (btf_type_is_ptr(t)) {
11951 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11952 
11953 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11954 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
11955 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11956 				struct btf_struct_meta *struct_meta;
11957 				struct btf *ret_btf;
11958 				u32 ret_btf_id;
11959 
11960 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
11961 					return -ENOMEM;
11962 
11963 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11964 					if (!bpf_global_percpu_ma_set) {
11965 						mutex_lock(&bpf_percpu_ma_lock);
11966 						if (!bpf_global_percpu_ma_set) {
11967 							err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true);
11968 							if (!err)
11969 								bpf_global_percpu_ma_set = true;
11970 						}
11971 						mutex_unlock(&bpf_percpu_ma_lock);
11972 						if (err)
11973 							return err;
11974 					}
11975 				}
11976 
11977 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11978 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11979 					return -EINVAL;
11980 				}
11981 
11982 				ret_btf = env->prog->aux->btf;
11983 				ret_btf_id = meta.arg_constant.value;
11984 
11985 				/* This may be NULL due to user not supplying a BTF */
11986 				if (!ret_btf) {
11987 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
11988 					return -EINVAL;
11989 				}
11990 
11991 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11992 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11993 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
11994 					return -EINVAL;
11995 				}
11996 
11997 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
11998 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
11999 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12000 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12001 						return -EINVAL;
12002 					}
12003 
12004 					if (struct_meta) {
12005 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12006 						return -EINVAL;
12007 					}
12008 				}
12009 
12010 				mark_reg_known_zero(env, regs, BPF_REG_0);
12011 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12012 				regs[BPF_REG_0].btf = ret_btf;
12013 				regs[BPF_REG_0].btf_id = ret_btf_id;
12014 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12015 					regs[BPF_REG_0].type |= MEM_PERCPU;
12016 
12017 				insn_aux->obj_new_size = ret_t->size;
12018 				insn_aux->kptr_struct_meta = struct_meta;
12019 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12020 				mark_reg_known_zero(env, regs, BPF_REG_0);
12021 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12022 				regs[BPF_REG_0].btf = meta.arg_btf;
12023 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12024 
12025 				insn_aux->kptr_struct_meta =
12026 					btf_find_struct_meta(meta.arg_btf,
12027 							     meta.arg_btf_id);
12028 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12029 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12030 				struct btf_field *field = meta.arg_list_head.field;
12031 
12032 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12033 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12034 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12035 				struct btf_field *field = meta.arg_rbtree_root.field;
12036 
12037 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12038 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12039 				mark_reg_known_zero(env, regs, BPF_REG_0);
12040 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12041 				regs[BPF_REG_0].btf = desc_btf;
12042 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12043 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12044 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12045 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12046 					verbose(env,
12047 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12048 					return -EINVAL;
12049 				}
12050 
12051 				mark_reg_known_zero(env, regs, BPF_REG_0);
12052 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12053 				regs[BPF_REG_0].btf = desc_btf;
12054 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12055 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12056 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12057 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12058 
12059 				mark_reg_known_zero(env, regs, BPF_REG_0);
12060 
12061 				if (!meta.arg_constant.found) {
12062 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12063 					return -EFAULT;
12064 				}
12065 
12066 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12067 
12068 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12069 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12070 
12071 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12072 					regs[BPF_REG_0].type |= MEM_RDONLY;
12073 				} else {
12074 					/* this will set env->seen_direct_write to true */
12075 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12076 						verbose(env, "the prog does not allow writes to packet data\n");
12077 						return -EINVAL;
12078 					}
12079 				}
12080 
12081 				if (!meta.initialized_dynptr.id) {
12082 					verbose(env, "verifier internal error: no dynptr id\n");
12083 					return -EFAULT;
12084 				}
12085 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12086 
12087 				/* we don't need to set BPF_REG_0's ref obj id
12088 				 * because packet slices are not refcounted (see
12089 				 * dynptr_type_refcounted)
12090 				 */
12091 			} else {
12092 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12093 					meta.func_name);
12094 				return -EFAULT;
12095 			}
12096 		} else if (!__btf_type_is_struct(ptr_type)) {
12097 			if (!meta.r0_size) {
12098 				__u32 sz;
12099 
12100 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12101 					meta.r0_size = sz;
12102 					meta.r0_rdonly = true;
12103 				}
12104 			}
12105 			if (!meta.r0_size) {
12106 				ptr_type_name = btf_name_by_offset(desc_btf,
12107 								   ptr_type->name_off);
12108 				verbose(env,
12109 					"kernel function %s returns pointer type %s %s is not supported\n",
12110 					func_name,
12111 					btf_type_str(ptr_type),
12112 					ptr_type_name);
12113 				return -EINVAL;
12114 			}
12115 
12116 			mark_reg_known_zero(env, regs, BPF_REG_0);
12117 			regs[BPF_REG_0].type = PTR_TO_MEM;
12118 			regs[BPF_REG_0].mem_size = meta.r0_size;
12119 
12120 			if (meta.r0_rdonly)
12121 				regs[BPF_REG_0].type |= MEM_RDONLY;
12122 
12123 			/* Ensures we don't access the memory after a release_reference() */
12124 			if (meta.ref_obj_id)
12125 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12126 		} else {
12127 			mark_reg_known_zero(env, regs, BPF_REG_0);
12128 			regs[BPF_REG_0].btf = desc_btf;
12129 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12130 			regs[BPF_REG_0].btf_id = ptr_type_id;
12131 		}
12132 
12133 		if (is_kfunc_ret_null(&meta)) {
12134 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12135 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12136 			regs[BPF_REG_0].id = ++env->id_gen;
12137 		}
12138 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12139 		if (is_kfunc_acquire(&meta)) {
12140 			int id = acquire_reference_state(env, insn_idx);
12141 
12142 			if (id < 0)
12143 				return id;
12144 			if (is_kfunc_ret_null(&meta))
12145 				regs[BPF_REG_0].id = id;
12146 			regs[BPF_REG_0].ref_obj_id = id;
12147 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12148 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12149 		}
12150 
12151 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12152 			regs[BPF_REG_0].id = ++env->id_gen;
12153 	} else if (btf_type_is_void(t)) {
12154 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12155 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12156 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12157 				insn_aux->kptr_struct_meta =
12158 					btf_find_struct_meta(meta.arg_btf,
12159 							     meta.arg_btf_id);
12160 			}
12161 		}
12162 	}
12163 
12164 	nargs = btf_type_vlen(meta.func_proto);
12165 	args = (const struct btf_param *)(meta.func_proto + 1);
12166 	for (i = 0; i < nargs; i++) {
12167 		u32 regno = i + 1;
12168 
12169 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12170 		if (btf_type_is_ptr(t))
12171 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12172 		else
12173 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12174 			mark_btf_func_reg_size(env, regno, t->size);
12175 	}
12176 
12177 	if (is_iter_next_kfunc(&meta)) {
12178 		err = process_iter_next_call(env, insn_idx, &meta);
12179 		if (err)
12180 			return err;
12181 	}
12182 
12183 	return 0;
12184 }
12185 
12186 static bool signed_add_overflows(s64 a, s64 b)
12187 {
12188 	/* Do the add in u64, where overflow is well-defined */
12189 	s64 res = (s64)((u64)a + (u64)b);
12190 
12191 	if (b < 0)
12192 		return res > a;
12193 	return res < a;
12194 }
12195 
12196 static bool signed_add32_overflows(s32 a, s32 b)
12197 {
12198 	/* Do the add in u32, where overflow is well-defined */
12199 	s32 res = (s32)((u32)a + (u32)b);
12200 
12201 	if (b < 0)
12202 		return res > a;
12203 	return res < a;
12204 }
12205 
12206 static bool signed_sub_overflows(s64 a, s64 b)
12207 {
12208 	/* Do the sub in u64, where overflow is well-defined */
12209 	s64 res = (s64)((u64)a - (u64)b);
12210 
12211 	if (b < 0)
12212 		return res < a;
12213 	return res > a;
12214 }
12215 
12216 static bool signed_sub32_overflows(s32 a, s32 b)
12217 {
12218 	/* Do the sub in u32, where overflow is well-defined */
12219 	s32 res = (s32)((u32)a - (u32)b);
12220 
12221 	if (b < 0)
12222 		return res < a;
12223 	return res > a;
12224 }
12225 
12226 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12227 				  const struct bpf_reg_state *reg,
12228 				  enum bpf_reg_type type)
12229 {
12230 	bool known = tnum_is_const(reg->var_off);
12231 	s64 val = reg->var_off.value;
12232 	s64 smin = reg->smin_value;
12233 
12234 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12235 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12236 			reg_type_str(env, type), val);
12237 		return false;
12238 	}
12239 
12240 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12241 		verbose(env, "%s pointer offset %d is not allowed\n",
12242 			reg_type_str(env, type), reg->off);
12243 		return false;
12244 	}
12245 
12246 	if (smin == S64_MIN) {
12247 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12248 			reg_type_str(env, type));
12249 		return false;
12250 	}
12251 
12252 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12253 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12254 			smin, reg_type_str(env, type));
12255 		return false;
12256 	}
12257 
12258 	return true;
12259 }
12260 
12261 enum {
12262 	REASON_BOUNDS	= -1,
12263 	REASON_TYPE	= -2,
12264 	REASON_PATHS	= -3,
12265 	REASON_LIMIT	= -4,
12266 	REASON_STACK	= -5,
12267 };
12268 
12269 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12270 			      u32 *alu_limit, bool mask_to_left)
12271 {
12272 	u32 max = 0, ptr_limit = 0;
12273 
12274 	switch (ptr_reg->type) {
12275 	case PTR_TO_STACK:
12276 		/* Offset 0 is out-of-bounds, but acceptable start for the
12277 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12278 		 * offset where we would need to deal with min/max bounds is
12279 		 * currently prohibited for unprivileged.
12280 		 */
12281 		max = MAX_BPF_STACK + mask_to_left;
12282 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12283 		break;
12284 	case PTR_TO_MAP_VALUE:
12285 		max = ptr_reg->map_ptr->value_size;
12286 		ptr_limit = (mask_to_left ?
12287 			     ptr_reg->smin_value :
12288 			     ptr_reg->umax_value) + ptr_reg->off;
12289 		break;
12290 	default:
12291 		return REASON_TYPE;
12292 	}
12293 
12294 	if (ptr_limit >= max)
12295 		return REASON_LIMIT;
12296 	*alu_limit = ptr_limit;
12297 	return 0;
12298 }
12299 
12300 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12301 				    const struct bpf_insn *insn)
12302 {
12303 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12304 }
12305 
12306 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12307 				       u32 alu_state, u32 alu_limit)
12308 {
12309 	/* If we arrived here from different branches with different
12310 	 * state or limits to sanitize, then this won't work.
12311 	 */
12312 	if (aux->alu_state &&
12313 	    (aux->alu_state != alu_state ||
12314 	     aux->alu_limit != alu_limit))
12315 		return REASON_PATHS;
12316 
12317 	/* Corresponding fixup done in do_misc_fixups(). */
12318 	aux->alu_state = alu_state;
12319 	aux->alu_limit = alu_limit;
12320 	return 0;
12321 }
12322 
12323 static int sanitize_val_alu(struct bpf_verifier_env *env,
12324 			    struct bpf_insn *insn)
12325 {
12326 	struct bpf_insn_aux_data *aux = cur_aux(env);
12327 
12328 	if (can_skip_alu_sanitation(env, insn))
12329 		return 0;
12330 
12331 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12332 }
12333 
12334 static bool sanitize_needed(u8 opcode)
12335 {
12336 	return opcode == BPF_ADD || opcode == BPF_SUB;
12337 }
12338 
12339 struct bpf_sanitize_info {
12340 	struct bpf_insn_aux_data aux;
12341 	bool mask_to_left;
12342 };
12343 
12344 static struct bpf_verifier_state *
12345 sanitize_speculative_path(struct bpf_verifier_env *env,
12346 			  const struct bpf_insn *insn,
12347 			  u32 next_idx, u32 curr_idx)
12348 {
12349 	struct bpf_verifier_state *branch;
12350 	struct bpf_reg_state *regs;
12351 
12352 	branch = push_stack(env, next_idx, curr_idx, true);
12353 	if (branch && insn) {
12354 		regs = branch->frame[branch->curframe]->regs;
12355 		if (BPF_SRC(insn->code) == BPF_K) {
12356 			mark_reg_unknown(env, regs, insn->dst_reg);
12357 		} else if (BPF_SRC(insn->code) == BPF_X) {
12358 			mark_reg_unknown(env, regs, insn->dst_reg);
12359 			mark_reg_unknown(env, regs, insn->src_reg);
12360 		}
12361 	}
12362 	return branch;
12363 }
12364 
12365 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12366 			    struct bpf_insn *insn,
12367 			    const struct bpf_reg_state *ptr_reg,
12368 			    const struct bpf_reg_state *off_reg,
12369 			    struct bpf_reg_state *dst_reg,
12370 			    struct bpf_sanitize_info *info,
12371 			    const bool commit_window)
12372 {
12373 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12374 	struct bpf_verifier_state *vstate = env->cur_state;
12375 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12376 	bool off_is_neg = off_reg->smin_value < 0;
12377 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12378 	u8 opcode = BPF_OP(insn->code);
12379 	u32 alu_state, alu_limit;
12380 	struct bpf_reg_state tmp;
12381 	bool ret;
12382 	int err;
12383 
12384 	if (can_skip_alu_sanitation(env, insn))
12385 		return 0;
12386 
12387 	/* We already marked aux for masking from non-speculative
12388 	 * paths, thus we got here in the first place. We only care
12389 	 * to explore bad access from here.
12390 	 */
12391 	if (vstate->speculative)
12392 		goto do_sim;
12393 
12394 	if (!commit_window) {
12395 		if (!tnum_is_const(off_reg->var_off) &&
12396 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12397 			return REASON_BOUNDS;
12398 
12399 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12400 				     (opcode == BPF_SUB && !off_is_neg);
12401 	}
12402 
12403 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12404 	if (err < 0)
12405 		return err;
12406 
12407 	if (commit_window) {
12408 		/* In commit phase we narrow the masking window based on
12409 		 * the observed pointer move after the simulated operation.
12410 		 */
12411 		alu_state = info->aux.alu_state;
12412 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12413 	} else {
12414 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12415 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12416 		alu_state |= ptr_is_dst_reg ?
12417 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12418 
12419 		/* Limit pruning on unknown scalars to enable deep search for
12420 		 * potential masking differences from other program paths.
12421 		 */
12422 		if (!off_is_imm)
12423 			env->explore_alu_limits = true;
12424 	}
12425 
12426 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12427 	if (err < 0)
12428 		return err;
12429 do_sim:
12430 	/* If we're in commit phase, we're done here given we already
12431 	 * pushed the truncated dst_reg into the speculative verification
12432 	 * stack.
12433 	 *
12434 	 * Also, when register is a known constant, we rewrite register-based
12435 	 * operation to immediate-based, and thus do not need masking (and as
12436 	 * a consequence, do not need to simulate the zero-truncation either).
12437 	 */
12438 	if (commit_window || off_is_imm)
12439 		return 0;
12440 
12441 	/* Simulate and find potential out-of-bounds access under
12442 	 * speculative execution from truncation as a result of
12443 	 * masking when off was not within expected range. If off
12444 	 * sits in dst, then we temporarily need to move ptr there
12445 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12446 	 * for cases where we use K-based arithmetic in one direction
12447 	 * and truncated reg-based in the other in order to explore
12448 	 * bad access.
12449 	 */
12450 	if (!ptr_is_dst_reg) {
12451 		tmp = *dst_reg;
12452 		copy_register_state(dst_reg, ptr_reg);
12453 	}
12454 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12455 					env->insn_idx);
12456 	if (!ptr_is_dst_reg && ret)
12457 		*dst_reg = tmp;
12458 	return !ret ? REASON_STACK : 0;
12459 }
12460 
12461 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12462 {
12463 	struct bpf_verifier_state *vstate = env->cur_state;
12464 
12465 	/* If we simulate paths under speculation, we don't update the
12466 	 * insn as 'seen' such that when we verify unreachable paths in
12467 	 * the non-speculative domain, sanitize_dead_code() can still
12468 	 * rewrite/sanitize them.
12469 	 */
12470 	if (!vstate->speculative)
12471 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12472 }
12473 
12474 static int sanitize_err(struct bpf_verifier_env *env,
12475 			const struct bpf_insn *insn, int reason,
12476 			const struct bpf_reg_state *off_reg,
12477 			const struct bpf_reg_state *dst_reg)
12478 {
12479 	static const char *err = "pointer arithmetic with it prohibited for !root";
12480 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12481 	u32 dst = insn->dst_reg, src = insn->src_reg;
12482 
12483 	switch (reason) {
12484 	case REASON_BOUNDS:
12485 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12486 			off_reg == dst_reg ? dst : src, err);
12487 		break;
12488 	case REASON_TYPE:
12489 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12490 			off_reg == dst_reg ? src : dst, err);
12491 		break;
12492 	case REASON_PATHS:
12493 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12494 			dst, op, err);
12495 		break;
12496 	case REASON_LIMIT:
12497 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12498 			dst, op, err);
12499 		break;
12500 	case REASON_STACK:
12501 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12502 			dst, err);
12503 		break;
12504 	default:
12505 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12506 			reason);
12507 		break;
12508 	}
12509 
12510 	return -EACCES;
12511 }
12512 
12513 /* check that stack access falls within stack limits and that 'reg' doesn't
12514  * have a variable offset.
12515  *
12516  * Variable offset is prohibited for unprivileged mode for simplicity since it
12517  * requires corresponding support in Spectre masking for stack ALU.  See also
12518  * retrieve_ptr_limit().
12519  *
12520  *
12521  * 'off' includes 'reg->off'.
12522  */
12523 static int check_stack_access_for_ptr_arithmetic(
12524 				struct bpf_verifier_env *env,
12525 				int regno,
12526 				const struct bpf_reg_state *reg,
12527 				int off)
12528 {
12529 	if (!tnum_is_const(reg->var_off)) {
12530 		char tn_buf[48];
12531 
12532 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12533 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12534 			regno, tn_buf, off);
12535 		return -EACCES;
12536 	}
12537 
12538 	if (off >= 0 || off < -MAX_BPF_STACK) {
12539 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12540 			"prohibited for !root; off=%d\n", regno, off);
12541 		return -EACCES;
12542 	}
12543 
12544 	return 0;
12545 }
12546 
12547 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12548 				 const struct bpf_insn *insn,
12549 				 const struct bpf_reg_state *dst_reg)
12550 {
12551 	u32 dst = insn->dst_reg;
12552 
12553 	/* For unprivileged we require that resulting offset must be in bounds
12554 	 * in order to be able to sanitize access later on.
12555 	 */
12556 	if (env->bypass_spec_v1)
12557 		return 0;
12558 
12559 	switch (dst_reg->type) {
12560 	case PTR_TO_STACK:
12561 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12562 					dst_reg->off + dst_reg->var_off.value))
12563 			return -EACCES;
12564 		break;
12565 	case PTR_TO_MAP_VALUE:
12566 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12567 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12568 				"prohibited for !root\n", dst);
12569 			return -EACCES;
12570 		}
12571 		break;
12572 	default:
12573 		break;
12574 	}
12575 
12576 	return 0;
12577 }
12578 
12579 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12580  * Caller should also handle BPF_MOV case separately.
12581  * If we return -EACCES, caller may want to try again treating pointer as a
12582  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12583  */
12584 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12585 				   struct bpf_insn *insn,
12586 				   const struct bpf_reg_state *ptr_reg,
12587 				   const struct bpf_reg_state *off_reg)
12588 {
12589 	struct bpf_verifier_state *vstate = env->cur_state;
12590 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12591 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12592 	bool known = tnum_is_const(off_reg->var_off);
12593 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12594 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12595 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12596 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12597 	struct bpf_sanitize_info info = {};
12598 	u8 opcode = BPF_OP(insn->code);
12599 	u32 dst = insn->dst_reg;
12600 	int ret;
12601 
12602 	dst_reg = &regs[dst];
12603 
12604 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12605 	    smin_val > smax_val || umin_val > umax_val) {
12606 		/* Taint dst register if offset had invalid bounds derived from
12607 		 * e.g. dead branches.
12608 		 */
12609 		__mark_reg_unknown(env, dst_reg);
12610 		return 0;
12611 	}
12612 
12613 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12614 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12615 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12616 			__mark_reg_unknown(env, dst_reg);
12617 			return 0;
12618 		}
12619 
12620 		verbose(env,
12621 			"R%d 32-bit pointer arithmetic prohibited\n",
12622 			dst);
12623 		return -EACCES;
12624 	}
12625 
12626 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12627 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12628 			dst, reg_type_str(env, ptr_reg->type));
12629 		return -EACCES;
12630 	}
12631 
12632 	switch (base_type(ptr_reg->type)) {
12633 	case CONST_PTR_TO_MAP:
12634 		/* smin_val represents the known value */
12635 		if (known && smin_val == 0 && opcode == BPF_ADD)
12636 			break;
12637 		fallthrough;
12638 	case PTR_TO_PACKET_END:
12639 	case PTR_TO_SOCKET:
12640 	case PTR_TO_SOCK_COMMON:
12641 	case PTR_TO_TCP_SOCK:
12642 	case PTR_TO_XDP_SOCK:
12643 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12644 			dst, reg_type_str(env, ptr_reg->type));
12645 		return -EACCES;
12646 	default:
12647 		break;
12648 	}
12649 
12650 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12651 	 * The id may be overwritten later if we create a new variable offset.
12652 	 */
12653 	dst_reg->type = ptr_reg->type;
12654 	dst_reg->id = ptr_reg->id;
12655 
12656 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12657 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12658 		return -EINVAL;
12659 
12660 	/* pointer types do not carry 32-bit bounds at the moment. */
12661 	__mark_reg32_unbounded(dst_reg);
12662 
12663 	if (sanitize_needed(opcode)) {
12664 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12665 				       &info, false);
12666 		if (ret < 0)
12667 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12668 	}
12669 
12670 	switch (opcode) {
12671 	case BPF_ADD:
12672 		/* We can take a fixed offset as long as it doesn't overflow
12673 		 * the s32 'off' field
12674 		 */
12675 		if (known && (ptr_reg->off + smin_val ==
12676 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12677 			/* pointer += K.  Accumulate it into fixed offset */
12678 			dst_reg->smin_value = smin_ptr;
12679 			dst_reg->smax_value = smax_ptr;
12680 			dst_reg->umin_value = umin_ptr;
12681 			dst_reg->umax_value = umax_ptr;
12682 			dst_reg->var_off = ptr_reg->var_off;
12683 			dst_reg->off = ptr_reg->off + smin_val;
12684 			dst_reg->raw = ptr_reg->raw;
12685 			break;
12686 		}
12687 		/* A new variable offset is created.  Note that off_reg->off
12688 		 * == 0, since it's a scalar.
12689 		 * dst_reg gets the pointer type and since some positive
12690 		 * integer value was added to the pointer, give it a new 'id'
12691 		 * if it's a PTR_TO_PACKET.
12692 		 * this creates a new 'base' pointer, off_reg (variable) gets
12693 		 * added into the variable offset, and we copy the fixed offset
12694 		 * from ptr_reg.
12695 		 */
12696 		if (signed_add_overflows(smin_ptr, smin_val) ||
12697 		    signed_add_overflows(smax_ptr, smax_val)) {
12698 			dst_reg->smin_value = S64_MIN;
12699 			dst_reg->smax_value = S64_MAX;
12700 		} else {
12701 			dst_reg->smin_value = smin_ptr + smin_val;
12702 			dst_reg->smax_value = smax_ptr + smax_val;
12703 		}
12704 		if (umin_ptr + umin_val < umin_ptr ||
12705 		    umax_ptr + umax_val < umax_ptr) {
12706 			dst_reg->umin_value = 0;
12707 			dst_reg->umax_value = U64_MAX;
12708 		} else {
12709 			dst_reg->umin_value = umin_ptr + umin_val;
12710 			dst_reg->umax_value = umax_ptr + umax_val;
12711 		}
12712 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12713 		dst_reg->off = ptr_reg->off;
12714 		dst_reg->raw = ptr_reg->raw;
12715 		if (reg_is_pkt_pointer(ptr_reg)) {
12716 			dst_reg->id = ++env->id_gen;
12717 			/* something was added to pkt_ptr, set range to zero */
12718 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12719 		}
12720 		break;
12721 	case BPF_SUB:
12722 		if (dst_reg == off_reg) {
12723 			/* scalar -= pointer.  Creates an unknown scalar */
12724 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12725 				dst);
12726 			return -EACCES;
12727 		}
12728 		/* We don't allow subtraction from FP, because (according to
12729 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12730 		 * be able to deal with it.
12731 		 */
12732 		if (ptr_reg->type == PTR_TO_STACK) {
12733 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12734 				dst);
12735 			return -EACCES;
12736 		}
12737 		if (known && (ptr_reg->off - smin_val ==
12738 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12739 			/* pointer -= K.  Subtract it from fixed offset */
12740 			dst_reg->smin_value = smin_ptr;
12741 			dst_reg->smax_value = smax_ptr;
12742 			dst_reg->umin_value = umin_ptr;
12743 			dst_reg->umax_value = umax_ptr;
12744 			dst_reg->var_off = ptr_reg->var_off;
12745 			dst_reg->id = ptr_reg->id;
12746 			dst_reg->off = ptr_reg->off - smin_val;
12747 			dst_reg->raw = ptr_reg->raw;
12748 			break;
12749 		}
12750 		/* A new variable offset is created.  If the subtrahend is known
12751 		 * nonnegative, then any reg->range we had before is still good.
12752 		 */
12753 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12754 		    signed_sub_overflows(smax_ptr, smin_val)) {
12755 			/* Overflow possible, we know nothing */
12756 			dst_reg->smin_value = S64_MIN;
12757 			dst_reg->smax_value = S64_MAX;
12758 		} else {
12759 			dst_reg->smin_value = smin_ptr - smax_val;
12760 			dst_reg->smax_value = smax_ptr - smin_val;
12761 		}
12762 		if (umin_ptr < umax_val) {
12763 			/* Overflow possible, we know nothing */
12764 			dst_reg->umin_value = 0;
12765 			dst_reg->umax_value = U64_MAX;
12766 		} else {
12767 			/* Cannot overflow (as long as bounds are consistent) */
12768 			dst_reg->umin_value = umin_ptr - umax_val;
12769 			dst_reg->umax_value = umax_ptr - umin_val;
12770 		}
12771 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12772 		dst_reg->off = ptr_reg->off;
12773 		dst_reg->raw = ptr_reg->raw;
12774 		if (reg_is_pkt_pointer(ptr_reg)) {
12775 			dst_reg->id = ++env->id_gen;
12776 			/* something was added to pkt_ptr, set range to zero */
12777 			if (smin_val < 0)
12778 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12779 		}
12780 		break;
12781 	case BPF_AND:
12782 	case BPF_OR:
12783 	case BPF_XOR:
12784 		/* bitwise ops on pointers are troublesome, prohibit. */
12785 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12786 			dst, bpf_alu_string[opcode >> 4]);
12787 		return -EACCES;
12788 	default:
12789 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12790 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12791 			dst, bpf_alu_string[opcode >> 4]);
12792 		return -EACCES;
12793 	}
12794 
12795 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12796 		return -EINVAL;
12797 	reg_bounds_sync(dst_reg);
12798 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12799 		return -EACCES;
12800 	if (sanitize_needed(opcode)) {
12801 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12802 				       &info, true);
12803 		if (ret < 0)
12804 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12805 	}
12806 
12807 	return 0;
12808 }
12809 
12810 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12811 				 struct bpf_reg_state *src_reg)
12812 {
12813 	s32 smin_val = src_reg->s32_min_value;
12814 	s32 smax_val = src_reg->s32_max_value;
12815 	u32 umin_val = src_reg->u32_min_value;
12816 	u32 umax_val = src_reg->u32_max_value;
12817 
12818 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12819 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12820 		dst_reg->s32_min_value = S32_MIN;
12821 		dst_reg->s32_max_value = S32_MAX;
12822 	} else {
12823 		dst_reg->s32_min_value += smin_val;
12824 		dst_reg->s32_max_value += smax_val;
12825 	}
12826 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12827 	    dst_reg->u32_max_value + umax_val < umax_val) {
12828 		dst_reg->u32_min_value = 0;
12829 		dst_reg->u32_max_value = U32_MAX;
12830 	} else {
12831 		dst_reg->u32_min_value += umin_val;
12832 		dst_reg->u32_max_value += umax_val;
12833 	}
12834 }
12835 
12836 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12837 			       struct bpf_reg_state *src_reg)
12838 {
12839 	s64 smin_val = src_reg->smin_value;
12840 	s64 smax_val = src_reg->smax_value;
12841 	u64 umin_val = src_reg->umin_value;
12842 	u64 umax_val = src_reg->umax_value;
12843 
12844 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12845 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12846 		dst_reg->smin_value = S64_MIN;
12847 		dst_reg->smax_value = S64_MAX;
12848 	} else {
12849 		dst_reg->smin_value += smin_val;
12850 		dst_reg->smax_value += smax_val;
12851 	}
12852 	if (dst_reg->umin_value + umin_val < umin_val ||
12853 	    dst_reg->umax_value + umax_val < umax_val) {
12854 		dst_reg->umin_value = 0;
12855 		dst_reg->umax_value = U64_MAX;
12856 	} else {
12857 		dst_reg->umin_value += umin_val;
12858 		dst_reg->umax_value += umax_val;
12859 	}
12860 }
12861 
12862 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12863 				 struct bpf_reg_state *src_reg)
12864 {
12865 	s32 smin_val = src_reg->s32_min_value;
12866 	s32 smax_val = src_reg->s32_max_value;
12867 	u32 umin_val = src_reg->u32_min_value;
12868 	u32 umax_val = src_reg->u32_max_value;
12869 
12870 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12871 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12872 		/* Overflow possible, we know nothing */
12873 		dst_reg->s32_min_value = S32_MIN;
12874 		dst_reg->s32_max_value = S32_MAX;
12875 	} else {
12876 		dst_reg->s32_min_value -= smax_val;
12877 		dst_reg->s32_max_value -= smin_val;
12878 	}
12879 	if (dst_reg->u32_min_value < umax_val) {
12880 		/* Overflow possible, we know nothing */
12881 		dst_reg->u32_min_value = 0;
12882 		dst_reg->u32_max_value = U32_MAX;
12883 	} else {
12884 		/* Cannot overflow (as long as bounds are consistent) */
12885 		dst_reg->u32_min_value -= umax_val;
12886 		dst_reg->u32_max_value -= umin_val;
12887 	}
12888 }
12889 
12890 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12891 			       struct bpf_reg_state *src_reg)
12892 {
12893 	s64 smin_val = src_reg->smin_value;
12894 	s64 smax_val = src_reg->smax_value;
12895 	u64 umin_val = src_reg->umin_value;
12896 	u64 umax_val = src_reg->umax_value;
12897 
12898 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12899 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12900 		/* Overflow possible, we know nothing */
12901 		dst_reg->smin_value = S64_MIN;
12902 		dst_reg->smax_value = S64_MAX;
12903 	} else {
12904 		dst_reg->smin_value -= smax_val;
12905 		dst_reg->smax_value -= smin_val;
12906 	}
12907 	if (dst_reg->umin_value < umax_val) {
12908 		/* Overflow possible, we know nothing */
12909 		dst_reg->umin_value = 0;
12910 		dst_reg->umax_value = U64_MAX;
12911 	} else {
12912 		/* Cannot overflow (as long as bounds are consistent) */
12913 		dst_reg->umin_value -= umax_val;
12914 		dst_reg->umax_value -= umin_val;
12915 	}
12916 }
12917 
12918 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12919 				 struct bpf_reg_state *src_reg)
12920 {
12921 	s32 smin_val = src_reg->s32_min_value;
12922 	u32 umin_val = src_reg->u32_min_value;
12923 	u32 umax_val = src_reg->u32_max_value;
12924 
12925 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12926 		/* Ain't nobody got time to multiply that sign */
12927 		__mark_reg32_unbounded(dst_reg);
12928 		return;
12929 	}
12930 	/* Both values are positive, so we can work with unsigned and
12931 	 * copy the result to signed (unless it exceeds S32_MAX).
12932 	 */
12933 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12934 		/* Potential overflow, we know nothing */
12935 		__mark_reg32_unbounded(dst_reg);
12936 		return;
12937 	}
12938 	dst_reg->u32_min_value *= umin_val;
12939 	dst_reg->u32_max_value *= umax_val;
12940 	if (dst_reg->u32_max_value > S32_MAX) {
12941 		/* Overflow possible, we know nothing */
12942 		dst_reg->s32_min_value = S32_MIN;
12943 		dst_reg->s32_max_value = S32_MAX;
12944 	} else {
12945 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12946 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12947 	}
12948 }
12949 
12950 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12951 			       struct bpf_reg_state *src_reg)
12952 {
12953 	s64 smin_val = src_reg->smin_value;
12954 	u64 umin_val = src_reg->umin_value;
12955 	u64 umax_val = src_reg->umax_value;
12956 
12957 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12958 		/* Ain't nobody got time to multiply that sign */
12959 		__mark_reg64_unbounded(dst_reg);
12960 		return;
12961 	}
12962 	/* Both values are positive, so we can work with unsigned and
12963 	 * copy the result to signed (unless it exceeds S64_MAX).
12964 	 */
12965 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12966 		/* Potential overflow, we know nothing */
12967 		__mark_reg64_unbounded(dst_reg);
12968 		return;
12969 	}
12970 	dst_reg->umin_value *= umin_val;
12971 	dst_reg->umax_value *= umax_val;
12972 	if (dst_reg->umax_value > S64_MAX) {
12973 		/* Overflow possible, we know nothing */
12974 		dst_reg->smin_value = S64_MIN;
12975 		dst_reg->smax_value = S64_MAX;
12976 	} else {
12977 		dst_reg->smin_value = dst_reg->umin_value;
12978 		dst_reg->smax_value = dst_reg->umax_value;
12979 	}
12980 }
12981 
12982 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12983 				 struct bpf_reg_state *src_reg)
12984 {
12985 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12986 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12987 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12988 	s32 smin_val = src_reg->s32_min_value;
12989 	u32 umax_val = src_reg->u32_max_value;
12990 
12991 	if (src_known && dst_known) {
12992 		__mark_reg32_known(dst_reg, var32_off.value);
12993 		return;
12994 	}
12995 
12996 	/* We get our minimum from the var_off, since that's inherently
12997 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12998 	 */
12999 	dst_reg->u32_min_value = var32_off.value;
13000 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13001 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13002 		/* Lose signed bounds when ANDing negative numbers,
13003 		 * ain't nobody got time for that.
13004 		 */
13005 		dst_reg->s32_min_value = S32_MIN;
13006 		dst_reg->s32_max_value = S32_MAX;
13007 	} else {
13008 		/* ANDing two positives gives a positive, so safe to
13009 		 * cast result into s64.
13010 		 */
13011 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13012 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13013 	}
13014 }
13015 
13016 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13017 			       struct bpf_reg_state *src_reg)
13018 {
13019 	bool src_known = tnum_is_const(src_reg->var_off);
13020 	bool dst_known = tnum_is_const(dst_reg->var_off);
13021 	s64 smin_val = src_reg->smin_value;
13022 	u64 umax_val = src_reg->umax_value;
13023 
13024 	if (src_known && dst_known) {
13025 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13026 		return;
13027 	}
13028 
13029 	/* We get our minimum from the var_off, since that's inherently
13030 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13031 	 */
13032 	dst_reg->umin_value = dst_reg->var_off.value;
13033 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13034 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13035 		/* Lose signed bounds when ANDing negative numbers,
13036 		 * ain't nobody got time for that.
13037 		 */
13038 		dst_reg->smin_value = S64_MIN;
13039 		dst_reg->smax_value = S64_MAX;
13040 	} else {
13041 		/* ANDing two positives gives a positive, so safe to
13042 		 * cast result into s64.
13043 		 */
13044 		dst_reg->smin_value = dst_reg->umin_value;
13045 		dst_reg->smax_value = dst_reg->umax_value;
13046 	}
13047 	/* We may learn something more from the var_off */
13048 	__update_reg_bounds(dst_reg);
13049 }
13050 
13051 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13052 				struct bpf_reg_state *src_reg)
13053 {
13054 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13055 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13056 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13057 	s32 smin_val = src_reg->s32_min_value;
13058 	u32 umin_val = src_reg->u32_min_value;
13059 
13060 	if (src_known && dst_known) {
13061 		__mark_reg32_known(dst_reg, var32_off.value);
13062 		return;
13063 	}
13064 
13065 	/* We get our maximum from the var_off, and our minimum is the
13066 	 * maximum of the operands' minima
13067 	 */
13068 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13069 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13070 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13071 		/* Lose signed bounds when ORing negative numbers,
13072 		 * ain't nobody got time for that.
13073 		 */
13074 		dst_reg->s32_min_value = S32_MIN;
13075 		dst_reg->s32_max_value = S32_MAX;
13076 	} else {
13077 		/* ORing two positives gives a positive, so safe to
13078 		 * cast result into s64.
13079 		 */
13080 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13081 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13082 	}
13083 }
13084 
13085 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13086 			      struct bpf_reg_state *src_reg)
13087 {
13088 	bool src_known = tnum_is_const(src_reg->var_off);
13089 	bool dst_known = tnum_is_const(dst_reg->var_off);
13090 	s64 smin_val = src_reg->smin_value;
13091 	u64 umin_val = src_reg->umin_value;
13092 
13093 	if (src_known && dst_known) {
13094 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13095 		return;
13096 	}
13097 
13098 	/* We get our maximum from the var_off, and our minimum is the
13099 	 * maximum of the operands' minima
13100 	 */
13101 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13102 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13103 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13104 		/* Lose signed bounds when ORing negative numbers,
13105 		 * ain't nobody got time for that.
13106 		 */
13107 		dst_reg->smin_value = S64_MIN;
13108 		dst_reg->smax_value = S64_MAX;
13109 	} else {
13110 		/* ORing two positives gives a positive, so safe to
13111 		 * cast result into s64.
13112 		 */
13113 		dst_reg->smin_value = dst_reg->umin_value;
13114 		dst_reg->smax_value = dst_reg->umax_value;
13115 	}
13116 	/* We may learn something more from the var_off */
13117 	__update_reg_bounds(dst_reg);
13118 }
13119 
13120 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13121 				 struct bpf_reg_state *src_reg)
13122 {
13123 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13124 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13125 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13126 	s32 smin_val = src_reg->s32_min_value;
13127 
13128 	if (src_known && dst_known) {
13129 		__mark_reg32_known(dst_reg, var32_off.value);
13130 		return;
13131 	}
13132 
13133 	/* We get both minimum and maximum from the var32_off. */
13134 	dst_reg->u32_min_value = var32_off.value;
13135 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13136 
13137 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13138 		/* XORing two positive sign numbers gives a positive,
13139 		 * so safe to cast u32 result into s32.
13140 		 */
13141 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13142 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13143 	} else {
13144 		dst_reg->s32_min_value = S32_MIN;
13145 		dst_reg->s32_max_value = S32_MAX;
13146 	}
13147 }
13148 
13149 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13150 			       struct bpf_reg_state *src_reg)
13151 {
13152 	bool src_known = tnum_is_const(src_reg->var_off);
13153 	bool dst_known = tnum_is_const(dst_reg->var_off);
13154 	s64 smin_val = src_reg->smin_value;
13155 
13156 	if (src_known && dst_known) {
13157 		/* dst_reg->var_off.value has been updated earlier */
13158 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13159 		return;
13160 	}
13161 
13162 	/* We get both minimum and maximum from the var_off. */
13163 	dst_reg->umin_value = dst_reg->var_off.value;
13164 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13165 
13166 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13167 		/* XORing two positive sign numbers gives a positive,
13168 		 * so safe to cast u64 result into s64.
13169 		 */
13170 		dst_reg->smin_value = dst_reg->umin_value;
13171 		dst_reg->smax_value = dst_reg->umax_value;
13172 	} else {
13173 		dst_reg->smin_value = S64_MIN;
13174 		dst_reg->smax_value = S64_MAX;
13175 	}
13176 
13177 	__update_reg_bounds(dst_reg);
13178 }
13179 
13180 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13181 				   u64 umin_val, u64 umax_val)
13182 {
13183 	/* We lose all sign bit information (except what we can pick
13184 	 * up from var_off)
13185 	 */
13186 	dst_reg->s32_min_value = S32_MIN;
13187 	dst_reg->s32_max_value = S32_MAX;
13188 	/* If we might shift our top bit out, then we know nothing */
13189 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13190 		dst_reg->u32_min_value = 0;
13191 		dst_reg->u32_max_value = U32_MAX;
13192 	} else {
13193 		dst_reg->u32_min_value <<= umin_val;
13194 		dst_reg->u32_max_value <<= umax_val;
13195 	}
13196 }
13197 
13198 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13199 				 struct bpf_reg_state *src_reg)
13200 {
13201 	u32 umax_val = src_reg->u32_max_value;
13202 	u32 umin_val = src_reg->u32_min_value;
13203 	/* u32 alu operation will zext upper bits */
13204 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13205 
13206 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13207 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13208 	/* Not required but being careful mark reg64 bounds as unknown so
13209 	 * that we are forced to pick them up from tnum and zext later and
13210 	 * if some path skips this step we are still safe.
13211 	 */
13212 	__mark_reg64_unbounded(dst_reg);
13213 	__update_reg32_bounds(dst_reg);
13214 }
13215 
13216 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13217 				   u64 umin_val, u64 umax_val)
13218 {
13219 	/* Special case <<32 because it is a common compiler pattern to sign
13220 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13221 	 * positive we know this shift will also be positive so we can track
13222 	 * bounds correctly. Otherwise we lose all sign bit information except
13223 	 * what we can pick up from var_off. Perhaps we can generalize this
13224 	 * later to shifts of any length.
13225 	 */
13226 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13227 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13228 	else
13229 		dst_reg->smax_value = S64_MAX;
13230 
13231 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13232 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13233 	else
13234 		dst_reg->smin_value = S64_MIN;
13235 
13236 	/* If we might shift our top bit out, then we know nothing */
13237 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13238 		dst_reg->umin_value = 0;
13239 		dst_reg->umax_value = U64_MAX;
13240 	} else {
13241 		dst_reg->umin_value <<= umin_val;
13242 		dst_reg->umax_value <<= umax_val;
13243 	}
13244 }
13245 
13246 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13247 			       struct bpf_reg_state *src_reg)
13248 {
13249 	u64 umax_val = src_reg->umax_value;
13250 	u64 umin_val = src_reg->umin_value;
13251 
13252 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13253 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13254 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13255 
13256 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13257 	/* We may learn something more from the var_off */
13258 	__update_reg_bounds(dst_reg);
13259 }
13260 
13261 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13262 				 struct bpf_reg_state *src_reg)
13263 {
13264 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13265 	u32 umax_val = src_reg->u32_max_value;
13266 	u32 umin_val = src_reg->u32_min_value;
13267 
13268 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13269 	 * be negative, then either:
13270 	 * 1) src_reg might be zero, so the sign bit of the result is
13271 	 *    unknown, so we lose our signed bounds
13272 	 * 2) it's known negative, thus the unsigned bounds capture the
13273 	 *    signed bounds
13274 	 * 3) the signed bounds cross zero, so they tell us nothing
13275 	 *    about the result
13276 	 * If the value in dst_reg is known nonnegative, then again the
13277 	 * unsigned bounds capture the signed bounds.
13278 	 * Thus, in all cases it suffices to blow away our signed bounds
13279 	 * and rely on inferring new ones from the unsigned bounds and
13280 	 * var_off of the result.
13281 	 */
13282 	dst_reg->s32_min_value = S32_MIN;
13283 	dst_reg->s32_max_value = S32_MAX;
13284 
13285 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13286 	dst_reg->u32_min_value >>= umax_val;
13287 	dst_reg->u32_max_value >>= umin_val;
13288 
13289 	__mark_reg64_unbounded(dst_reg);
13290 	__update_reg32_bounds(dst_reg);
13291 }
13292 
13293 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13294 			       struct bpf_reg_state *src_reg)
13295 {
13296 	u64 umax_val = src_reg->umax_value;
13297 	u64 umin_val = src_reg->umin_value;
13298 
13299 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13300 	 * be negative, then either:
13301 	 * 1) src_reg might be zero, so the sign bit of the result is
13302 	 *    unknown, so we lose our signed bounds
13303 	 * 2) it's known negative, thus the unsigned bounds capture the
13304 	 *    signed bounds
13305 	 * 3) the signed bounds cross zero, so they tell us nothing
13306 	 *    about the result
13307 	 * If the value in dst_reg is known nonnegative, then again the
13308 	 * unsigned bounds capture the signed bounds.
13309 	 * Thus, in all cases it suffices to blow away our signed bounds
13310 	 * and rely on inferring new ones from the unsigned bounds and
13311 	 * var_off of the result.
13312 	 */
13313 	dst_reg->smin_value = S64_MIN;
13314 	dst_reg->smax_value = S64_MAX;
13315 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13316 	dst_reg->umin_value >>= umax_val;
13317 	dst_reg->umax_value >>= umin_val;
13318 
13319 	/* Its not easy to operate on alu32 bounds here because it depends
13320 	 * on bits being shifted in. Take easy way out and mark unbounded
13321 	 * so we can recalculate later from tnum.
13322 	 */
13323 	__mark_reg32_unbounded(dst_reg);
13324 	__update_reg_bounds(dst_reg);
13325 }
13326 
13327 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13328 				  struct bpf_reg_state *src_reg)
13329 {
13330 	u64 umin_val = src_reg->u32_min_value;
13331 
13332 	/* Upon reaching here, src_known is true and
13333 	 * umax_val is equal to umin_val.
13334 	 */
13335 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13336 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13337 
13338 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13339 
13340 	/* blow away the dst_reg umin_value/umax_value and rely on
13341 	 * dst_reg var_off to refine the result.
13342 	 */
13343 	dst_reg->u32_min_value = 0;
13344 	dst_reg->u32_max_value = U32_MAX;
13345 
13346 	__mark_reg64_unbounded(dst_reg);
13347 	__update_reg32_bounds(dst_reg);
13348 }
13349 
13350 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13351 				struct bpf_reg_state *src_reg)
13352 {
13353 	u64 umin_val = src_reg->umin_value;
13354 
13355 	/* Upon reaching here, src_known is true and umax_val is equal
13356 	 * to umin_val.
13357 	 */
13358 	dst_reg->smin_value >>= umin_val;
13359 	dst_reg->smax_value >>= umin_val;
13360 
13361 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13362 
13363 	/* blow away the dst_reg umin_value/umax_value and rely on
13364 	 * dst_reg var_off to refine the result.
13365 	 */
13366 	dst_reg->umin_value = 0;
13367 	dst_reg->umax_value = U64_MAX;
13368 
13369 	/* Its not easy to operate on alu32 bounds here because it depends
13370 	 * on bits being shifted in from upper 32-bits. Take easy way out
13371 	 * and mark unbounded so we can recalculate later from tnum.
13372 	 */
13373 	__mark_reg32_unbounded(dst_reg);
13374 	__update_reg_bounds(dst_reg);
13375 }
13376 
13377 /* WARNING: This function does calculations on 64-bit values, but the actual
13378  * execution may occur on 32-bit values. Therefore, things like bitshifts
13379  * need extra checks in the 32-bit case.
13380  */
13381 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13382 				      struct bpf_insn *insn,
13383 				      struct bpf_reg_state *dst_reg,
13384 				      struct bpf_reg_state src_reg)
13385 {
13386 	struct bpf_reg_state *regs = cur_regs(env);
13387 	u8 opcode = BPF_OP(insn->code);
13388 	bool src_known;
13389 	s64 smin_val, smax_val;
13390 	u64 umin_val, umax_val;
13391 	s32 s32_min_val, s32_max_val;
13392 	u32 u32_min_val, u32_max_val;
13393 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13394 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13395 	int ret;
13396 
13397 	smin_val = src_reg.smin_value;
13398 	smax_val = src_reg.smax_value;
13399 	umin_val = src_reg.umin_value;
13400 	umax_val = src_reg.umax_value;
13401 
13402 	s32_min_val = src_reg.s32_min_value;
13403 	s32_max_val = src_reg.s32_max_value;
13404 	u32_min_val = src_reg.u32_min_value;
13405 	u32_max_val = src_reg.u32_max_value;
13406 
13407 	if (alu32) {
13408 		src_known = tnum_subreg_is_const(src_reg.var_off);
13409 		if ((src_known &&
13410 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13411 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13412 			/* Taint dst register if offset had invalid bounds
13413 			 * derived from e.g. dead branches.
13414 			 */
13415 			__mark_reg_unknown(env, dst_reg);
13416 			return 0;
13417 		}
13418 	} else {
13419 		src_known = tnum_is_const(src_reg.var_off);
13420 		if ((src_known &&
13421 		     (smin_val != smax_val || umin_val != umax_val)) ||
13422 		    smin_val > smax_val || umin_val > umax_val) {
13423 			/* Taint dst register if offset had invalid bounds
13424 			 * derived from e.g. dead branches.
13425 			 */
13426 			__mark_reg_unknown(env, dst_reg);
13427 			return 0;
13428 		}
13429 	}
13430 
13431 	if (!src_known &&
13432 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13433 		__mark_reg_unknown(env, dst_reg);
13434 		return 0;
13435 	}
13436 
13437 	if (sanitize_needed(opcode)) {
13438 		ret = sanitize_val_alu(env, insn);
13439 		if (ret < 0)
13440 			return sanitize_err(env, insn, ret, NULL, NULL);
13441 	}
13442 
13443 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13444 	 * There are two classes of instructions: The first class we track both
13445 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13446 	 * greatest amount of precision when alu operations are mixed with jmp32
13447 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13448 	 * and BPF_OR. This is possible because these ops have fairly easy to
13449 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13450 	 * See alu32 verifier tests for examples. The second class of
13451 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13452 	 * with regards to tracking sign/unsigned bounds because the bits may
13453 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13454 	 * the reg unbounded in the subreg bound space and use the resulting
13455 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13456 	 */
13457 	switch (opcode) {
13458 	case BPF_ADD:
13459 		scalar32_min_max_add(dst_reg, &src_reg);
13460 		scalar_min_max_add(dst_reg, &src_reg);
13461 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13462 		break;
13463 	case BPF_SUB:
13464 		scalar32_min_max_sub(dst_reg, &src_reg);
13465 		scalar_min_max_sub(dst_reg, &src_reg);
13466 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13467 		break;
13468 	case BPF_MUL:
13469 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13470 		scalar32_min_max_mul(dst_reg, &src_reg);
13471 		scalar_min_max_mul(dst_reg, &src_reg);
13472 		break;
13473 	case BPF_AND:
13474 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13475 		scalar32_min_max_and(dst_reg, &src_reg);
13476 		scalar_min_max_and(dst_reg, &src_reg);
13477 		break;
13478 	case BPF_OR:
13479 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13480 		scalar32_min_max_or(dst_reg, &src_reg);
13481 		scalar_min_max_or(dst_reg, &src_reg);
13482 		break;
13483 	case BPF_XOR:
13484 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13485 		scalar32_min_max_xor(dst_reg, &src_reg);
13486 		scalar_min_max_xor(dst_reg, &src_reg);
13487 		break;
13488 	case BPF_LSH:
13489 		if (umax_val >= insn_bitness) {
13490 			/* Shifts greater than 31 or 63 are undefined.
13491 			 * This includes shifts by a negative number.
13492 			 */
13493 			mark_reg_unknown(env, regs, insn->dst_reg);
13494 			break;
13495 		}
13496 		if (alu32)
13497 			scalar32_min_max_lsh(dst_reg, &src_reg);
13498 		else
13499 			scalar_min_max_lsh(dst_reg, &src_reg);
13500 		break;
13501 	case BPF_RSH:
13502 		if (umax_val >= insn_bitness) {
13503 			/* Shifts greater than 31 or 63 are undefined.
13504 			 * This includes shifts by a negative number.
13505 			 */
13506 			mark_reg_unknown(env, regs, insn->dst_reg);
13507 			break;
13508 		}
13509 		if (alu32)
13510 			scalar32_min_max_rsh(dst_reg, &src_reg);
13511 		else
13512 			scalar_min_max_rsh(dst_reg, &src_reg);
13513 		break;
13514 	case BPF_ARSH:
13515 		if (umax_val >= insn_bitness) {
13516 			/* Shifts greater than 31 or 63 are undefined.
13517 			 * This includes shifts by a negative number.
13518 			 */
13519 			mark_reg_unknown(env, regs, insn->dst_reg);
13520 			break;
13521 		}
13522 		if (alu32)
13523 			scalar32_min_max_arsh(dst_reg, &src_reg);
13524 		else
13525 			scalar_min_max_arsh(dst_reg, &src_reg);
13526 		break;
13527 	default:
13528 		mark_reg_unknown(env, regs, insn->dst_reg);
13529 		break;
13530 	}
13531 
13532 	/* ALU32 ops are zero extended into 64bit register */
13533 	if (alu32)
13534 		zext_32_to_64(dst_reg);
13535 	reg_bounds_sync(dst_reg);
13536 	return 0;
13537 }
13538 
13539 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13540  * and var_off.
13541  */
13542 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13543 				   struct bpf_insn *insn)
13544 {
13545 	struct bpf_verifier_state *vstate = env->cur_state;
13546 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13547 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13548 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13549 	u8 opcode = BPF_OP(insn->code);
13550 	int err;
13551 
13552 	dst_reg = &regs[insn->dst_reg];
13553 	src_reg = NULL;
13554 	if (dst_reg->type != SCALAR_VALUE)
13555 		ptr_reg = dst_reg;
13556 	else
13557 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13558 		 * incorrectly propagated into other registers by find_equal_scalars()
13559 		 */
13560 		dst_reg->id = 0;
13561 	if (BPF_SRC(insn->code) == BPF_X) {
13562 		src_reg = &regs[insn->src_reg];
13563 		if (src_reg->type != SCALAR_VALUE) {
13564 			if (dst_reg->type != SCALAR_VALUE) {
13565 				/* Combining two pointers by any ALU op yields
13566 				 * an arbitrary scalar. Disallow all math except
13567 				 * pointer subtraction
13568 				 */
13569 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13570 					mark_reg_unknown(env, regs, insn->dst_reg);
13571 					return 0;
13572 				}
13573 				verbose(env, "R%d pointer %s pointer prohibited\n",
13574 					insn->dst_reg,
13575 					bpf_alu_string[opcode >> 4]);
13576 				return -EACCES;
13577 			} else {
13578 				/* scalar += pointer
13579 				 * This is legal, but we have to reverse our
13580 				 * src/dest handling in computing the range
13581 				 */
13582 				err = mark_chain_precision(env, insn->dst_reg);
13583 				if (err)
13584 					return err;
13585 				return adjust_ptr_min_max_vals(env, insn,
13586 							       src_reg, dst_reg);
13587 			}
13588 		} else if (ptr_reg) {
13589 			/* pointer += scalar */
13590 			err = mark_chain_precision(env, insn->src_reg);
13591 			if (err)
13592 				return err;
13593 			return adjust_ptr_min_max_vals(env, insn,
13594 						       dst_reg, src_reg);
13595 		} else if (dst_reg->precise) {
13596 			/* if dst_reg is precise, src_reg should be precise as well */
13597 			err = mark_chain_precision(env, insn->src_reg);
13598 			if (err)
13599 				return err;
13600 		}
13601 	} else {
13602 		/* Pretend the src is a reg with a known value, since we only
13603 		 * need to be able to read from this state.
13604 		 */
13605 		off_reg.type = SCALAR_VALUE;
13606 		__mark_reg_known(&off_reg, insn->imm);
13607 		src_reg = &off_reg;
13608 		if (ptr_reg) /* pointer += K */
13609 			return adjust_ptr_min_max_vals(env, insn,
13610 						       ptr_reg, src_reg);
13611 	}
13612 
13613 	/* Got here implies adding two SCALAR_VALUEs */
13614 	if (WARN_ON_ONCE(ptr_reg)) {
13615 		print_verifier_state(env, state, true);
13616 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13617 		return -EINVAL;
13618 	}
13619 	if (WARN_ON(!src_reg)) {
13620 		print_verifier_state(env, state, true);
13621 		verbose(env, "verifier internal error: no src_reg\n");
13622 		return -EINVAL;
13623 	}
13624 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13625 }
13626 
13627 /* check validity of 32-bit and 64-bit arithmetic operations */
13628 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13629 {
13630 	struct bpf_reg_state *regs = cur_regs(env);
13631 	u8 opcode = BPF_OP(insn->code);
13632 	int err;
13633 
13634 	if (opcode == BPF_END || opcode == BPF_NEG) {
13635 		if (opcode == BPF_NEG) {
13636 			if (BPF_SRC(insn->code) != BPF_K ||
13637 			    insn->src_reg != BPF_REG_0 ||
13638 			    insn->off != 0 || insn->imm != 0) {
13639 				verbose(env, "BPF_NEG uses reserved fields\n");
13640 				return -EINVAL;
13641 			}
13642 		} else {
13643 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13644 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13645 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13646 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13647 				verbose(env, "BPF_END uses reserved fields\n");
13648 				return -EINVAL;
13649 			}
13650 		}
13651 
13652 		/* check src operand */
13653 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13654 		if (err)
13655 			return err;
13656 
13657 		if (is_pointer_value(env, insn->dst_reg)) {
13658 			verbose(env, "R%d pointer arithmetic prohibited\n",
13659 				insn->dst_reg);
13660 			return -EACCES;
13661 		}
13662 
13663 		/* check dest operand */
13664 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13665 		if (err)
13666 			return err;
13667 
13668 	} else if (opcode == BPF_MOV) {
13669 
13670 		if (BPF_SRC(insn->code) == BPF_X) {
13671 			if (insn->imm != 0) {
13672 				verbose(env, "BPF_MOV uses reserved fields\n");
13673 				return -EINVAL;
13674 			}
13675 
13676 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13677 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13678 					verbose(env, "BPF_MOV uses reserved fields\n");
13679 					return -EINVAL;
13680 				}
13681 			} else {
13682 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13683 				    insn->off != 32) {
13684 					verbose(env, "BPF_MOV uses reserved fields\n");
13685 					return -EINVAL;
13686 				}
13687 			}
13688 
13689 			/* check src operand */
13690 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13691 			if (err)
13692 				return err;
13693 		} else {
13694 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13695 				verbose(env, "BPF_MOV uses reserved fields\n");
13696 				return -EINVAL;
13697 			}
13698 		}
13699 
13700 		/* check dest operand, mark as required later */
13701 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13702 		if (err)
13703 			return err;
13704 
13705 		if (BPF_SRC(insn->code) == BPF_X) {
13706 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13707 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13708 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13709 				       !tnum_is_const(src_reg->var_off);
13710 
13711 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13712 				if (insn->off == 0) {
13713 					/* case: R1 = R2
13714 					 * copy register state to dest reg
13715 					 */
13716 					if (need_id)
13717 						/* Assign src and dst registers the same ID
13718 						 * that will be used by find_equal_scalars()
13719 						 * to propagate min/max range.
13720 						 */
13721 						src_reg->id = ++env->id_gen;
13722 					copy_register_state(dst_reg, src_reg);
13723 					dst_reg->live |= REG_LIVE_WRITTEN;
13724 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13725 				} else {
13726 					/* case: R1 = (s8, s16 s32)R2 */
13727 					if (is_pointer_value(env, insn->src_reg)) {
13728 						verbose(env,
13729 							"R%d sign-extension part of pointer\n",
13730 							insn->src_reg);
13731 						return -EACCES;
13732 					} else if (src_reg->type == SCALAR_VALUE) {
13733 						bool no_sext;
13734 
13735 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13736 						if (no_sext && need_id)
13737 							src_reg->id = ++env->id_gen;
13738 						copy_register_state(dst_reg, src_reg);
13739 						if (!no_sext)
13740 							dst_reg->id = 0;
13741 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13742 						dst_reg->live |= REG_LIVE_WRITTEN;
13743 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13744 					} else {
13745 						mark_reg_unknown(env, regs, insn->dst_reg);
13746 					}
13747 				}
13748 			} else {
13749 				/* R1 = (u32) R2 */
13750 				if (is_pointer_value(env, insn->src_reg)) {
13751 					verbose(env,
13752 						"R%d partial copy of pointer\n",
13753 						insn->src_reg);
13754 					return -EACCES;
13755 				} else if (src_reg->type == SCALAR_VALUE) {
13756 					if (insn->off == 0) {
13757 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13758 
13759 						if (is_src_reg_u32 && need_id)
13760 							src_reg->id = ++env->id_gen;
13761 						copy_register_state(dst_reg, src_reg);
13762 						/* Make sure ID is cleared if src_reg is not in u32
13763 						 * range otherwise dst_reg min/max could be incorrectly
13764 						 * propagated into src_reg by find_equal_scalars()
13765 						 */
13766 						if (!is_src_reg_u32)
13767 							dst_reg->id = 0;
13768 						dst_reg->live |= REG_LIVE_WRITTEN;
13769 						dst_reg->subreg_def = env->insn_idx + 1;
13770 					} else {
13771 						/* case: W1 = (s8, s16)W2 */
13772 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13773 
13774 						if (no_sext && need_id)
13775 							src_reg->id = ++env->id_gen;
13776 						copy_register_state(dst_reg, src_reg);
13777 						if (!no_sext)
13778 							dst_reg->id = 0;
13779 						dst_reg->live |= REG_LIVE_WRITTEN;
13780 						dst_reg->subreg_def = env->insn_idx + 1;
13781 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13782 					}
13783 				} else {
13784 					mark_reg_unknown(env, regs,
13785 							 insn->dst_reg);
13786 				}
13787 				zext_32_to_64(dst_reg);
13788 				reg_bounds_sync(dst_reg);
13789 			}
13790 		} else {
13791 			/* case: R = imm
13792 			 * remember the value we stored into this reg
13793 			 */
13794 			/* clear any state __mark_reg_known doesn't set */
13795 			mark_reg_unknown(env, regs, insn->dst_reg);
13796 			regs[insn->dst_reg].type = SCALAR_VALUE;
13797 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13798 				__mark_reg_known(regs + insn->dst_reg,
13799 						 insn->imm);
13800 			} else {
13801 				__mark_reg_known(regs + insn->dst_reg,
13802 						 (u32)insn->imm);
13803 			}
13804 		}
13805 
13806 	} else if (opcode > BPF_END) {
13807 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13808 		return -EINVAL;
13809 
13810 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13811 
13812 		if (BPF_SRC(insn->code) == BPF_X) {
13813 			if (insn->imm != 0 || insn->off > 1 ||
13814 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13815 				verbose(env, "BPF_ALU uses reserved fields\n");
13816 				return -EINVAL;
13817 			}
13818 			/* check src1 operand */
13819 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13820 			if (err)
13821 				return err;
13822 		} else {
13823 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13824 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13825 				verbose(env, "BPF_ALU uses reserved fields\n");
13826 				return -EINVAL;
13827 			}
13828 		}
13829 
13830 		/* check src2 operand */
13831 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13832 		if (err)
13833 			return err;
13834 
13835 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13836 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13837 			verbose(env, "div by zero\n");
13838 			return -EINVAL;
13839 		}
13840 
13841 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13842 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13843 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13844 
13845 			if (insn->imm < 0 || insn->imm >= size) {
13846 				verbose(env, "invalid shift %d\n", insn->imm);
13847 				return -EINVAL;
13848 			}
13849 		}
13850 
13851 		/* check dest operand */
13852 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13853 		err = err ?: adjust_reg_min_max_vals(env, insn);
13854 		if (err)
13855 			return err;
13856 	}
13857 
13858 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
13859 }
13860 
13861 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13862 				   struct bpf_reg_state *dst_reg,
13863 				   enum bpf_reg_type type,
13864 				   bool range_right_open)
13865 {
13866 	struct bpf_func_state *state;
13867 	struct bpf_reg_state *reg;
13868 	int new_range;
13869 
13870 	if (dst_reg->off < 0 ||
13871 	    (dst_reg->off == 0 && range_right_open))
13872 		/* This doesn't give us any range */
13873 		return;
13874 
13875 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13876 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13877 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13878 		 * than pkt_end, but that's because it's also less than pkt.
13879 		 */
13880 		return;
13881 
13882 	new_range = dst_reg->off;
13883 	if (range_right_open)
13884 		new_range++;
13885 
13886 	/* Examples for register markings:
13887 	 *
13888 	 * pkt_data in dst register:
13889 	 *
13890 	 *   r2 = r3;
13891 	 *   r2 += 8;
13892 	 *   if (r2 > pkt_end) goto <handle exception>
13893 	 *   <access okay>
13894 	 *
13895 	 *   r2 = r3;
13896 	 *   r2 += 8;
13897 	 *   if (r2 < pkt_end) goto <access okay>
13898 	 *   <handle exception>
13899 	 *
13900 	 *   Where:
13901 	 *     r2 == dst_reg, pkt_end == src_reg
13902 	 *     r2=pkt(id=n,off=8,r=0)
13903 	 *     r3=pkt(id=n,off=0,r=0)
13904 	 *
13905 	 * pkt_data in src register:
13906 	 *
13907 	 *   r2 = r3;
13908 	 *   r2 += 8;
13909 	 *   if (pkt_end >= r2) goto <access okay>
13910 	 *   <handle exception>
13911 	 *
13912 	 *   r2 = r3;
13913 	 *   r2 += 8;
13914 	 *   if (pkt_end <= r2) goto <handle exception>
13915 	 *   <access okay>
13916 	 *
13917 	 *   Where:
13918 	 *     pkt_end == dst_reg, r2 == src_reg
13919 	 *     r2=pkt(id=n,off=8,r=0)
13920 	 *     r3=pkt(id=n,off=0,r=0)
13921 	 *
13922 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13923 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13924 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13925 	 * the check.
13926 	 */
13927 
13928 	/* If our ids match, then we must have the same max_value.  And we
13929 	 * don't care about the other reg's fixed offset, since if it's too big
13930 	 * the range won't allow anything.
13931 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13932 	 */
13933 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13934 		if (reg->type == type && reg->id == dst_reg->id)
13935 			/* keep the maximum range already checked */
13936 			reg->range = max(reg->range, new_range);
13937 	}));
13938 }
13939 
13940 /*
13941  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
13942  */
13943 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
13944 				  u8 opcode, bool is_jmp32)
13945 {
13946 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
13947 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
13948 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
13949 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
13950 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
13951 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
13952 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
13953 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
13954 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
13955 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
13956 
13957 	switch (opcode) {
13958 	case BPF_JEQ:
13959 		/* constants, umin/umax and smin/smax checks would be
13960 		 * redundant in this case because they all should match
13961 		 */
13962 		if (tnum_is_const(t1) && tnum_is_const(t2))
13963 			return t1.value == t2.value;
13964 		/* non-overlapping ranges */
13965 		if (umin1 > umax2 || umax1 < umin2)
13966 			return 0;
13967 		if (smin1 > smax2 || smax1 < smin2)
13968 			return 0;
13969 		if (!is_jmp32) {
13970 			/* if 64-bit ranges are inconclusive, see if we can
13971 			 * utilize 32-bit subrange knowledge to eliminate
13972 			 * branches that can't be taken a priori
13973 			 */
13974 			if (reg1->u32_min_value > reg2->u32_max_value ||
13975 			    reg1->u32_max_value < reg2->u32_min_value)
13976 				return 0;
13977 			if (reg1->s32_min_value > reg2->s32_max_value ||
13978 			    reg1->s32_max_value < reg2->s32_min_value)
13979 				return 0;
13980 		}
13981 		break;
13982 	case BPF_JNE:
13983 		/* constants, umin/umax and smin/smax checks would be
13984 		 * redundant in this case because they all should match
13985 		 */
13986 		if (tnum_is_const(t1) && tnum_is_const(t2))
13987 			return t1.value != t2.value;
13988 		/* non-overlapping ranges */
13989 		if (umin1 > umax2 || umax1 < umin2)
13990 			return 1;
13991 		if (smin1 > smax2 || smax1 < smin2)
13992 			return 1;
13993 		if (!is_jmp32) {
13994 			/* if 64-bit ranges are inconclusive, see if we can
13995 			 * utilize 32-bit subrange knowledge to eliminate
13996 			 * branches that can't be taken a priori
13997 			 */
13998 			if (reg1->u32_min_value > reg2->u32_max_value ||
13999 			    reg1->u32_max_value < reg2->u32_min_value)
14000 				return 1;
14001 			if (reg1->s32_min_value > reg2->s32_max_value ||
14002 			    reg1->s32_max_value < reg2->s32_min_value)
14003 				return 1;
14004 		}
14005 		break;
14006 	case BPF_JSET:
14007 		if (!is_reg_const(reg2, is_jmp32)) {
14008 			swap(reg1, reg2);
14009 			swap(t1, t2);
14010 		}
14011 		if (!is_reg_const(reg2, is_jmp32))
14012 			return -1;
14013 		if ((~t1.mask & t1.value) & t2.value)
14014 			return 1;
14015 		if (!((t1.mask | t1.value) & t2.value))
14016 			return 0;
14017 		break;
14018 	case BPF_JGT:
14019 		if (umin1 > umax2)
14020 			return 1;
14021 		else if (umax1 <= umin2)
14022 			return 0;
14023 		break;
14024 	case BPF_JSGT:
14025 		if (smin1 > smax2)
14026 			return 1;
14027 		else if (smax1 <= smin2)
14028 			return 0;
14029 		break;
14030 	case BPF_JLT:
14031 		if (umax1 < umin2)
14032 			return 1;
14033 		else if (umin1 >= umax2)
14034 			return 0;
14035 		break;
14036 	case BPF_JSLT:
14037 		if (smax1 < smin2)
14038 			return 1;
14039 		else if (smin1 >= smax2)
14040 			return 0;
14041 		break;
14042 	case BPF_JGE:
14043 		if (umin1 >= umax2)
14044 			return 1;
14045 		else if (umax1 < umin2)
14046 			return 0;
14047 		break;
14048 	case BPF_JSGE:
14049 		if (smin1 >= smax2)
14050 			return 1;
14051 		else if (smax1 < smin2)
14052 			return 0;
14053 		break;
14054 	case BPF_JLE:
14055 		if (umax1 <= umin2)
14056 			return 1;
14057 		else if (umin1 > umax2)
14058 			return 0;
14059 		break;
14060 	case BPF_JSLE:
14061 		if (smax1 <= smin2)
14062 			return 1;
14063 		else if (smin1 > smax2)
14064 			return 0;
14065 		break;
14066 	}
14067 
14068 	return -1;
14069 }
14070 
14071 static int flip_opcode(u32 opcode)
14072 {
14073 	/* How can we transform "a <op> b" into "b <op> a"? */
14074 	static const u8 opcode_flip[16] = {
14075 		/* these stay the same */
14076 		[BPF_JEQ  >> 4] = BPF_JEQ,
14077 		[BPF_JNE  >> 4] = BPF_JNE,
14078 		[BPF_JSET >> 4] = BPF_JSET,
14079 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14080 		[BPF_JGE  >> 4] = BPF_JLE,
14081 		[BPF_JGT  >> 4] = BPF_JLT,
14082 		[BPF_JLE  >> 4] = BPF_JGE,
14083 		[BPF_JLT  >> 4] = BPF_JGT,
14084 		[BPF_JSGE >> 4] = BPF_JSLE,
14085 		[BPF_JSGT >> 4] = BPF_JSLT,
14086 		[BPF_JSLE >> 4] = BPF_JSGE,
14087 		[BPF_JSLT >> 4] = BPF_JSGT
14088 	};
14089 	return opcode_flip[opcode >> 4];
14090 }
14091 
14092 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14093 				   struct bpf_reg_state *src_reg,
14094 				   u8 opcode)
14095 {
14096 	struct bpf_reg_state *pkt;
14097 
14098 	if (src_reg->type == PTR_TO_PACKET_END) {
14099 		pkt = dst_reg;
14100 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14101 		pkt = src_reg;
14102 		opcode = flip_opcode(opcode);
14103 	} else {
14104 		return -1;
14105 	}
14106 
14107 	if (pkt->range >= 0)
14108 		return -1;
14109 
14110 	switch (opcode) {
14111 	case BPF_JLE:
14112 		/* pkt <= pkt_end */
14113 		fallthrough;
14114 	case BPF_JGT:
14115 		/* pkt > pkt_end */
14116 		if (pkt->range == BEYOND_PKT_END)
14117 			/* pkt has at last one extra byte beyond pkt_end */
14118 			return opcode == BPF_JGT;
14119 		break;
14120 	case BPF_JLT:
14121 		/* pkt < pkt_end */
14122 		fallthrough;
14123 	case BPF_JGE:
14124 		/* pkt >= pkt_end */
14125 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14126 			return opcode == BPF_JGE;
14127 		break;
14128 	}
14129 	return -1;
14130 }
14131 
14132 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14133  * and return:
14134  *  1 - branch will be taken and "goto target" will be executed
14135  *  0 - branch will not be taken and fall-through to next insn
14136  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14137  *      range [0,10]
14138  */
14139 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14140 			   u8 opcode, bool is_jmp32)
14141 {
14142 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14143 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14144 
14145 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14146 		u64 val;
14147 
14148 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14149 		if (!is_reg_const(reg2, is_jmp32)) {
14150 			opcode = flip_opcode(opcode);
14151 			swap(reg1, reg2);
14152 		}
14153 		/* and ensure that reg2 is a constant */
14154 		if (!is_reg_const(reg2, is_jmp32))
14155 			return -1;
14156 
14157 		if (!reg_not_null(reg1))
14158 			return -1;
14159 
14160 		/* If pointer is valid tests against zero will fail so we can
14161 		 * use this to direct branch taken.
14162 		 */
14163 		val = reg_const_value(reg2, is_jmp32);
14164 		if (val != 0)
14165 			return -1;
14166 
14167 		switch (opcode) {
14168 		case BPF_JEQ:
14169 			return 0;
14170 		case BPF_JNE:
14171 			return 1;
14172 		default:
14173 			return -1;
14174 		}
14175 	}
14176 
14177 	/* now deal with two scalars, but not necessarily constants */
14178 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14179 }
14180 
14181 /* Opcode that corresponds to a *false* branch condition.
14182  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14183  */
14184 static u8 rev_opcode(u8 opcode)
14185 {
14186 	switch (opcode) {
14187 	case BPF_JEQ:		return BPF_JNE;
14188 	case BPF_JNE:		return BPF_JEQ;
14189 	/* JSET doesn't have it's reverse opcode in BPF, so add
14190 	 * BPF_X flag to denote the reverse of that operation
14191 	 */
14192 	case BPF_JSET:		return BPF_JSET | BPF_X;
14193 	case BPF_JSET | BPF_X:	return BPF_JSET;
14194 	case BPF_JGE:		return BPF_JLT;
14195 	case BPF_JGT:		return BPF_JLE;
14196 	case BPF_JLE:		return BPF_JGT;
14197 	case BPF_JLT:		return BPF_JGE;
14198 	case BPF_JSGE:		return BPF_JSLT;
14199 	case BPF_JSGT:		return BPF_JSLE;
14200 	case BPF_JSLE:		return BPF_JSGT;
14201 	case BPF_JSLT:		return BPF_JSGE;
14202 	default:		return 0;
14203 	}
14204 }
14205 
14206 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14207 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14208 				u8 opcode, bool is_jmp32)
14209 {
14210 	struct tnum t;
14211 	u64 val;
14212 
14213 again:
14214 	switch (opcode) {
14215 	case BPF_JEQ:
14216 		if (is_jmp32) {
14217 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14218 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14219 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14220 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14221 			reg2->u32_min_value = reg1->u32_min_value;
14222 			reg2->u32_max_value = reg1->u32_max_value;
14223 			reg2->s32_min_value = reg1->s32_min_value;
14224 			reg2->s32_max_value = reg1->s32_max_value;
14225 
14226 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14227 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14228 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14229 		} else {
14230 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14231 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14232 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14233 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14234 			reg2->umin_value = reg1->umin_value;
14235 			reg2->umax_value = reg1->umax_value;
14236 			reg2->smin_value = reg1->smin_value;
14237 			reg2->smax_value = reg1->smax_value;
14238 
14239 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14240 			reg2->var_off = reg1->var_off;
14241 		}
14242 		break;
14243 	case BPF_JNE:
14244 		/* we don't derive any new information for inequality yet */
14245 		break;
14246 	case BPF_JSET:
14247 		if (!is_reg_const(reg2, is_jmp32))
14248 			swap(reg1, reg2);
14249 		if (!is_reg_const(reg2, is_jmp32))
14250 			break;
14251 		val = reg_const_value(reg2, is_jmp32);
14252 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14253 		 * requires single bit to learn something useful. E.g., if we
14254 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14255 		 * are actually set? We can learn something definite only if
14256 		 * it's a single-bit value to begin with.
14257 		 *
14258 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14259 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14260 		 * bit 1 is set, which we can readily use in adjustments.
14261 		 */
14262 		if (!is_power_of_2(val))
14263 			break;
14264 		if (is_jmp32) {
14265 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14266 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14267 		} else {
14268 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14269 		}
14270 		break;
14271 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14272 		if (!is_reg_const(reg2, is_jmp32))
14273 			swap(reg1, reg2);
14274 		if (!is_reg_const(reg2, is_jmp32))
14275 			break;
14276 		val = reg_const_value(reg2, is_jmp32);
14277 		if (is_jmp32) {
14278 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14279 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14280 		} else {
14281 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14282 		}
14283 		break;
14284 	case BPF_JLE:
14285 		if (is_jmp32) {
14286 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14287 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14288 		} else {
14289 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14290 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14291 		}
14292 		break;
14293 	case BPF_JLT:
14294 		if (is_jmp32) {
14295 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14296 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14297 		} else {
14298 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14299 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14300 		}
14301 		break;
14302 	case BPF_JSLE:
14303 		if (is_jmp32) {
14304 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14305 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14306 		} else {
14307 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14308 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14309 		}
14310 		break;
14311 	case BPF_JSLT:
14312 		if (is_jmp32) {
14313 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14314 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14315 		} else {
14316 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14317 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14318 		}
14319 		break;
14320 	case BPF_JGE:
14321 	case BPF_JGT:
14322 	case BPF_JSGE:
14323 	case BPF_JSGT:
14324 		/* just reuse LE/LT logic above */
14325 		opcode = flip_opcode(opcode);
14326 		swap(reg1, reg2);
14327 		goto again;
14328 	default:
14329 		return;
14330 	}
14331 }
14332 
14333 /* Adjusts the register min/max values in the case that the dst_reg and
14334  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14335  * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
14336  * Technically we can do similar adjustments for pointers to the same object,
14337  * but we don't support that right now.
14338  */
14339 static int reg_set_min_max(struct bpf_verifier_env *env,
14340 			   struct bpf_reg_state *true_reg1,
14341 			   struct bpf_reg_state *true_reg2,
14342 			   struct bpf_reg_state *false_reg1,
14343 			   struct bpf_reg_state *false_reg2,
14344 			   u8 opcode, bool is_jmp32)
14345 {
14346 	int err;
14347 
14348 	/* If either register is a pointer, we can't learn anything about its
14349 	 * variable offset from the compare (unless they were a pointer into
14350 	 * the same object, but we don't bother with that).
14351 	 */
14352 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14353 		return 0;
14354 
14355 	/* fallthrough (FALSE) branch */
14356 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14357 	reg_bounds_sync(false_reg1);
14358 	reg_bounds_sync(false_reg2);
14359 
14360 	/* jump (TRUE) branch */
14361 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14362 	reg_bounds_sync(true_reg1);
14363 	reg_bounds_sync(true_reg2);
14364 
14365 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14366 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14367 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14368 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14369 	return err;
14370 }
14371 
14372 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14373 				 struct bpf_reg_state *reg, u32 id,
14374 				 bool is_null)
14375 {
14376 	if (type_may_be_null(reg->type) && reg->id == id &&
14377 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14378 		/* Old offset (both fixed and variable parts) should have been
14379 		 * known-zero, because we don't allow pointer arithmetic on
14380 		 * pointers that might be NULL. If we see this happening, don't
14381 		 * convert the register.
14382 		 *
14383 		 * But in some cases, some helpers that return local kptrs
14384 		 * advance offset for the returned pointer. In those cases, it
14385 		 * is fine to expect to see reg->off.
14386 		 */
14387 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14388 			return;
14389 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14390 		    WARN_ON_ONCE(reg->off))
14391 			return;
14392 
14393 		if (is_null) {
14394 			reg->type = SCALAR_VALUE;
14395 			/* We don't need id and ref_obj_id from this point
14396 			 * onwards anymore, thus we should better reset it,
14397 			 * so that state pruning has chances to take effect.
14398 			 */
14399 			reg->id = 0;
14400 			reg->ref_obj_id = 0;
14401 
14402 			return;
14403 		}
14404 
14405 		mark_ptr_not_null_reg(reg);
14406 
14407 		if (!reg_may_point_to_spin_lock(reg)) {
14408 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14409 			 * in release_reference().
14410 			 *
14411 			 * reg->id is still used by spin_lock ptr. Other
14412 			 * than spin_lock ptr type, reg->id can be reset.
14413 			 */
14414 			reg->id = 0;
14415 		}
14416 	}
14417 }
14418 
14419 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14420  * be folded together at some point.
14421  */
14422 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14423 				  bool is_null)
14424 {
14425 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14426 	struct bpf_reg_state *regs = state->regs, *reg;
14427 	u32 ref_obj_id = regs[regno].ref_obj_id;
14428 	u32 id = regs[regno].id;
14429 
14430 	if (ref_obj_id && ref_obj_id == id && is_null)
14431 		/* regs[regno] is in the " == NULL" branch.
14432 		 * No one could have freed the reference state before
14433 		 * doing the NULL check.
14434 		 */
14435 		WARN_ON_ONCE(release_reference_state(state, id));
14436 
14437 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14438 		mark_ptr_or_null_reg(state, reg, id, is_null);
14439 	}));
14440 }
14441 
14442 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14443 				   struct bpf_reg_state *dst_reg,
14444 				   struct bpf_reg_state *src_reg,
14445 				   struct bpf_verifier_state *this_branch,
14446 				   struct bpf_verifier_state *other_branch)
14447 {
14448 	if (BPF_SRC(insn->code) != BPF_X)
14449 		return false;
14450 
14451 	/* Pointers are always 64-bit. */
14452 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14453 		return false;
14454 
14455 	switch (BPF_OP(insn->code)) {
14456 	case BPF_JGT:
14457 		if ((dst_reg->type == PTR_TO_PACKET &&
14458 		     src_reg->type == PTR_TO_PACKET_END) ||
14459 		    (dst_reg->type == PTR_TO_PACKET_META &&
14460 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14461 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14462 			find_good_pkt_pointers(this_branch, dst_reg,
14463 					       dst_reg->type, false);
14464 			mark_pkt_end(other_branch, insn->dst_reg, true);
14465 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14466 			    src_reg->type == PTR_TO_PACKET) ||
14467 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14468 			    src_reg->type == PTR_TO_PACKET_META)) {
14469 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14470 			find_good_pkt_pointers(other_branch, src_reg,
14471 					       src_reg->type, true);
14472 			mark_pkt_end(this_branch, insn->src_reg, false);
14473 		} else {
14474 			return false;
14475 		}
14476 		break;
14477 	case BPF_JLT:
14478 		if ((dst_reg->type == PTR_TO_PACKET &&
14479 		     src_reg->type == PTR_TO_PACKET_END) ||
14480 		    (dst_reg->type == PTR_TO_PACKET_META &&
14481 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14482 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14483 			find_good_pkt_pointers(other_branch, dst_reg,
14484 					       dst_reg->type, true);
14485 			mark_pkt_end(this_branch, insn->dst_reg, false);
14486 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14487 			    src_reg->type == PTR_TO_PACKET) ||
14488 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14489 			    src_reg->type == PTR_TO_PACKET_META)) {
14490 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14491 			find_good_pkt_pointers(this_branch, src_reg,
14492 					       src_reg->type, false);
14493 			mark_pkt_end(other_branch, insn->src_reg, true);
14494 		} else {
14495 			return false;
14496 		}
14497 		break;
14498 	case BPF_JGE:
14499 		if ((dst_reg->type == PTR_TO_PACKET &&
14500 		     src_reg->type == PTR_TO_PACKET_END) ||
14501 		    (dst_reg->type == PTR_TO_PACKET_META &&
14502 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14503 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14504 			find_good_pkt_pointers(this_branch, dst_reg,
14505 					       dst_reg->type, true);
14506 			mark_pkt_end(other_branch, insn->dst_reg, false);
14507 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14508 			    src_reg->type == PTR_TO_PACKET) ||
14509 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14510 			    src_reg->type == PTR_TO_PACKET_META)) {
14511 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14512 			find_good_pkt_pointers(other_branch, src_reg,
14513 					       src_reg->type, false);
14514 			mark_pkt_end(this_branch, insn->src_reg, true);
14515 		} else {
14516 			return false;
14517 		}
14518 		break;
14519 	case BPF_JLE:
14520 		if ((dst_reg->type == PTR_TO_PACKET &&
14521 		     src_reg->type == PTR_TO_PACKET_END) ||
14522 		    (dst_reg->type == PTR_TO_PACKET_META &&
14523 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14524 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14525 			find_good_pkt_pointers(other_branch, dst_reg,
14526 					       dst_reg->type, false);
14527 			mark_pkt_end(this_branch, insn->dst_reg, true);
14528 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14529 			    src_reg->type == PTR_TO_PACKET) ||
14530 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14531 			    src_reg->type == PTR_TO_PACKET_META)) {
14532 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14533 			find_good_pkt_pointers(this_branch, src_reg,
14534 					       src_reg->type, true);
14535 			mark_pkt_end(other_branch, insn->src_reg, false);
14536 		} else {
14537 			return false;
14538 		}
14539 		break;
14540 	default:
14541 		return false;
14542 	}
14543 
14544 	return true;
14545 }
14546 
14547 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14548 			       struct bpf_reg_state *known_reg)
14549 {
14550 	struct bpf_func_state *state;
14551 	struct bpf_reg_state *reg;
14552 
14553 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14554 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14555 			copy_register_state(reg, known_reg);
14556 	}));
14557 }
14558 
14559 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14560 			     struct bpf_insn *insn, int *insn_idx)
14561 {
14562 	struct bpf_verifier_state *this_branch = env->cur_state;
14563 	struct bpf_verifier_state *other_branch;
14564 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14565 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14566 	struct bpf_reg_state *eq_branch_regs;
14567 	struct bpf_reg_state fake_reg = {};
14568 	u8 opcode = BPF_OP(insn->code);
14569 	bool is_jmp32;
14570 	int pred = -1;
14571 	int err;
14572 
14573 	/* Only conditional jumps are expected to reach here. */
14574 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14575 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14576 		return -EINVAL;
14577 	}
14578 
14579 	/* check src2 operand */
14580 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14581 	if (err)
14582 		return err;
14583 
14584 	dst_reg = &regs[insn->dst_reg];
14585 	if (BPF_SRC(insn->code) == BPF_X) {
14586 		if (insn->imm != 0) {
14587 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14588 			return -EINVAL;
14589 		}
14590 
14591 		/* check src1 operand */
14592 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14593 		if (err)
14594 			return err;
14595 
14596 		src_reg = &regs[insn->src_reg];
14597 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14598 		    is_pointer_value(env, insn->src_reg)) {
14599 			verbose(env, "R%d pointer comparison prohibited\n",
14600 				insn->src_reg);
14601 			return -EACCES;
14602 		}
14603 	} else {
14604 		if (insn->src_reg != BPF_REG_0) {
14605 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14606 			return -EINVAL;
14607 		}
14608 		src_reg = &fake_reg;
14609 		src_reg->type = SCALAR_VALUE;
14610 		__mark_reg_known(src_reg, insn->imm);
14611 	}
14612 
14613 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14614 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
14615 	if (pred >= 0) {
14616 		/* If we get here with a dst_reg pointer type it is because
14617 		 * above is_branch_taken() special cased the 0 comparison.
14618 		 */
14619 		if (!__is_pointer_value(false, dst_reg))
14620 			err = mark_chain_precision(env, insn->dst_reg);
14621 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14622 		    !__is_pointer_value(false, src_reg))
14623 			err = mark_chain_precision(env, insn->src_reg);
14624 		if (err)
14625 			return err;
14626 	}
14627 
14628 	if (pred == 1) {
14629 		/* Only follow the goto, ignore fall-through. If needed, push
14630 		 * the fall-through branch for simulation under speculative
14631 		 * execution.
14632 		 */
14633 		if (!env->bypass_spec_v1 &&
14634 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14635 					       *insn_idx))
14636 			return -EFAULT;
14637 		if (env->log.level & BPF_LOG_LEVEL)
14638 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14639 		*insn_idx += insn->off;
14640 		return 0;
14641 	} else if (pred == 0) {
14642 		/* Only follow the fall-through branch, since that's where the
14643 		 * program will go. If needed, push the goto branch for
14644 		 * simulation under speculative execution.
14645 		 */
14646 		if (!env->bypass_spec_v1 &&
14647 		    !sanitize_speculative_path(env, insn,
14648 					       *insn_idx + insn->off + 1,
14649 					       *insn_idx))
14650 			return -EFAULT;
14651 		if (env->log.level & BPF_LOG_LEVEL)
14652 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14653 		return 0;
14654 	}
14655 
14656 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14657 				  false);
14658 	if (!other_branch)
14659 		return -EFAULT;
14660 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14661 
14662 	if (BPF_SRC(insn->code) == BPF_X) {
14663 		err = reg_set_min_max(env,
14664 				      &other_branch_regs[insn->dst_reg],
14665 				      &other_branch_regs[insn->src_reg],
14666 				      dst_reg, src_reg, opcode, is_jmp32);
14667 	} else /* BPF_SRC(insn->code) == BPF_K */ {
14668 		err = reg_set_min_max(env,
14669 				      &other_branch_regs[insn->dst_reg],
14670 				      src_reg /* fake one */,
14671 				      dst_reg, src_reg /* same fake one */,
14672 				      opcode, is_jmp32);
14673 	}
14674 	if (err)
14675 		return err;
14676 
14677 	if (BPF_SRC(insn->code) == BPF_X &&
14678 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
14679 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14680 		find_equal_scalars(this_branch, src_reg);
14681 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14682 	}
14683 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14684 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14685 		find_equal_scalars(this_branch, dst_reg);
14686 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14687 	}
14688 
14689 	/* if one pointer register is compared to another pointer
14690 	 * register check if PTR_MAYBE_NULL could be lifted.
14691 	 * E.g. register A - maybe null
14692 	 *      register B - not null
14693 	 * for JNE A, B, ... - A is not null in the false branch;
14694 	 * for JEQ A, B, ... - A is not null in the true branch.
14695 	 *
14696 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14697 	 * not need to be null checked by the BPF program, i.e.,
14698 	 * could be null even without PTR_MAYBE_NULL marking, so
14699 	 * only propagate nullness when neither reg is that type.
14700 	 */
14701 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14702 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14703 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14704 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14705 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14706 		eq_branch_regs = NULL;
14707 		switch (opcode) {
14708 		case BPF_JEQ:
14709 			eq_branch_regs = other_branch_regs;
14710 			break;
14711 		case BPF_JNE:
14712 			eq_branch_regs = regs;
14713 			break;
14714 		default:
14715 			/* do nothing */
14716 			break;
14717 		}
14718 		if (eq_branch_regs) {
14719 			if (type_may_be_null(src_reg->type))
14720 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14721 			else
14722 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14723 		}
14724 	}
14725 
14726 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14727 	 * NOTE: these optimizations below are related with pointer comparison
14728 	 *       which will never be JMP32.
14729 	 */
14730 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14731 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14732 	    type_may_be_null(dst_reg->type)) {
14733 		/* Mark all identical registers in each branch as either
14734 		 * safe or unknown depending R == 0 or R != 0 conditional.
14735 		 */
14736 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14737 				      opcode == BPF_JNE);
14738 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14739 				      opcode == BPF_JEQ);
14740 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14741 					   this_branch, other_branch) &&
14742 		   is_pointer_value(env, insn->dst_reg)) {
14743 		verbose(env, "R%d pointer comparison prohibited\n",
14744 			insn->dst_reg);
14745 		return -EACCES;
14746 	}
14747 	if (env->log.level & BPF_LOG_LEVEL)
14748 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14749 	return 0;
14750 }
14751 
14752 /* verify BPF_LD_IMM64 instruction */
14753 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14754 {
14755 	struct bpf_insn_aux_data *aux = cur_aux(env);
14756 	struct bpf_reg_state *regs = cur_regs(env);
14757 	struct bpf_reg_state *dst_reg;
14758 	struct bpf_map *map;
14759 	int err;
14760 
14761 	if (BPF_SIZE(insn->code) != BPF_DW) {
14762 		verbose(env, "invalid BPF_LD_IMM insn\n");
14763 		return -EINVAL;
14764 	}
14765 	if (insn->off != 0) {
14766 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14767 		return -EINVAL;
14768 	}
14769 
14770 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14771 	if (err)
14772 		return err;
14773 
14774 	dst_reg = &regs[insn->dst_reg];
14775 	if (insn->src_reg == 0) {
14776 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14777 
14778 		dst_reg->type = SCALAR_VALUE;
14779 		__mark_reg_known(&regs[insn->dst_reg], imm);
14780 		return 0;
14781 	}
14782 
14783 	/* All special src_reg cases are listed below. From this point onwards
14784 	 * we either succeed and assign a corresponding dst_reg->type after
14785 	 * zeroing the offset, or fail and reject the program.
14786 	 */
14787 	mark_reg_known_zero(env, regs, insn->dst_reg);
14788 
14789 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14790 		dst_reg->type = aux->btf_var.reg_type;
14791 		switch (base_type(dst_reg->type)) {
14792 		case PTR_TO_MEM:
14793 			dst_reg->mem_size = aux->btf_var.mem_size;
14794 			break;
14795 		case PTR_TO_BTF_ID:
14796 			dst_reg->btf = aux->btf_var.btf;
14797 			dst_reg->btf_id = aux->btf_var.btf_id;
14798 			break;
14799 		default:
14800 			verbose(env, "bpf verifier is misconfigured\n");
14801 			return -EFAULT;
14802 		}
14803 		return 0;
14804 	}
14805 
14806 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14807 		struct bpf_prog_aux *aux = env->prog->aux;
14808 		u32 subprogno = find_subprog(env,
14809 					     env->insn_idx + insn->imm + 1);
14810 
14811 		if (!aux->func_info) {
14812 			verbose(env, "missing btf func_info\n");
14813 			return -EINVAL;
14814 		}
14815 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14816 			verbose(env, "callback function not static\n");
14817 			return -EINVAL;
14818 		}
14819 
14820 		dst_reg->type = PTR_TO_FUNC;
14821 		dst_reg->subprogno = subprogno;
14822 		return 0;
14823 	}
14824 
14825 	map = env->used_maps[aux->map_index];
14826 	dst_reg->map_ptr = map;
14827 
14828 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14829 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14830 		dst_reg->type = PTR_TO_MAP_VALUE;
14831 		dst_reg->off = aux->map_off;
14832 		WARN_ON_ONCE(map->max_entries != 1);
14833 		/* We want reg->id to be same (0) as map_value is not distinct */
14834 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14835 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14836 		dst_reg->type = CONST_PTR_TO_MAP;
14837 	} else {
14838 		verbose(env, "bpf verifier is misconfigured\n");
14839 		return -EINVAL;
14840 	}
14841 
14842 	return 0;
14843 }
14844 
14845 static bool may_access_skb(enum bpf_prog_type type)
14846 {
14847 	switch (type) {
14848 	case BPF_PROG_TYPE_SOCKET_FILTER:
14849 	case BPF_PROG_TYPE_SCHED_CLS:
14850 	case BPF_PROG_TYPE_SCHED_ACT:
14851 		return true;
14852 	default:
14853 		return false;
14854 	}
14855 }
14856 
14857 /* verify safety of LD_ABS|LD_IND instructions:
14858  * - they can only appear in the programs where ctx == skb
14859  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14860  *   preserve R6-R9, and store return value into R0
14861  *
14862  * Implicit input:
14863  *   ctx == skb == R6 == CTX
14864  *
14865  * Explicit input:
14866  *   SRC == any register
14867  *   IMM == 32-bit immediate
14868  *
14869  * Output:
14870  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14871  */
14872 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14873 {
14874 	struct bpf_reg_state *regs = cur_regs(env);
14875 	static const int ctx_reg = BPF_REG_6;
14876 	u8 mode = BPF_MODE(insn->code);
14877 	int i, err;
14878 
14879 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14880 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14881 		return -EINVAL;
14882 	}
14883 
14884 	if (!env->ops->gen_ld_abs) {
14885 		verbose(env, "bpf verifier is misconfigured\n");
14886 		return -EINVAL;
14887 	}
14888 
14889 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14890 	    BPF_SIZE(insn->code) == BPF_DW ||
14891 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14892 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14893 		return -EINVAL;
14894 	}
14895 
14896 	/* check whether implicit source operand (register R6) is readable */
14897 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14898 	if (err)
14899 		return err;
14900 
14901 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14902 	 * gen_ld_abs() may terminate the program at runtime, leading to
14903 	 * reference leak.
14904 	 */
14905 	err = check_reference_leak(env, false);
14906 	if (err) {
14907 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14908 		return err;
14909 	}
14910 
14911 	if (env->cur_state->active_lock.ptr) {
14912 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14913 		return -EINVAL;
14914 	}
14915 
14916 	if (env->cur_state->active_rcu_lock) {
14917 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14918 		return -EINVAL;
14919 	}
14920 
14921 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14922 		verbose(env,
14923 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14924 		return -EINVAL;
14925 	}
14926 
14927 	if (mode == BPF_IND) {
14928 		/* check explicit source operand */
14929 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14930 		if (err)
14931 			return err;
14932 	}
14933 
14934 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14935 	if (err < 0)
14936 		return err;
14937 
14938 	/* reset caller saved regs to unreadable */
14939 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14940 		mark_reg_not_init(env, regs, caller_saved[i]);
14941 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14942 	}
14943 
14944 	/* mark destination R0 register as readable, since it contains
14945 	 * the value fetched from the packet.
14946 	 * Already marked as written above.
14947 	 */
14948 	mark_reg_unknown(env, regs, BPF_REG_0);
14949 	/* ld_abs load up to 32-bit skb data. */
14950 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14951 	return 0;
14952 }
14953 
14954 static int check_return_code(struct bpf_verifier_env *env, int regno)
14955 {
14956 	struct tnum enforce_attach_type_range = tnum_unknown;
14957 	const struct bpf_prog *prog = env->prog;
14958 	struct bpf_reg_state *reg;
14959 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14960 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14961 	int err;
14962 	struct bpf_func_state *frame = env->cur_state->frame[0];
14963 	const bool is_subprog = frame->subprogno;
14964 
14965 	/* LSM and struct_ops func-ptr's return type could be "void" */
14966 	if (!is_subprog || frame->in_exception_callback_fn) {
14967 		switch (prog_type) {
14968 		case BPF_PROG_TYPE_LSM:
14969 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14970 				/* See below, can be 0 or 0-1 depending on hook. */
14971 				break;
14972 			fallthrough;
14973 		case BPF_PROG_TYPE_STRUCT_OPS:
14974 			if (!prog->aux->attach_func_proto->type)
14975 				return 0;
14976 			break;
14977 		default:
14978 			break;
14979 		}
14980 	}
14981 
14982 	/* eBPF calling convention is such that R0 is used
14983 	 * to return the value from eBPF program.
14984 	 * Make sure that it's readable at this time
14985 	 * of bpf_exit, which means that program wrote
14986 	 * something into it earlier
14987 	 */
14988 	err = check_reg_arg(env, regno, SRC_OP);
14989 	if (err)
14990 		return err;
14991 
14992 	if (is_pointer_value(env, regno)) {
14993 		verbose(env, "R%d leaks addr as return value\n", regno);
14994 		return -EACCES;
14995 	}
14996 
14997 	reg = cur_regs(env) + regno;
14998 
14999 	if (frame->in_async_callback_fn) {
15000 		/* enforce return zero from async callbacks like timer */
15001 		if (reg->type != SCALAR_VALUE) {
15002 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15003 				regno, reg_type_str(env, reg->type));
15004 			return -EINVAL;
15005 		}
15006 
15007 		if (!tnum_in(const_0, reg->var_off)) {
15008 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15009 			return -EINVAL;
15010 		}
15011 		return 0;
15012 	}
15013 
15014 	if (is_subprog && !frame->in_exception_callback_fn) {
15015 		if (reg->type != SCALAR_VALUE) {
15016 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15017 				regno, reg_type_str(env, reg->type));
15018 			return -EINVAL;
15019 		}
15020 		return 0;
15021 	}
15022 
15023 	switch (prog_type) {
15024 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15025 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15026 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15027 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15028 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15029 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15030 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15031 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15032 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15033 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15034 			range = tnum_range(1, 1);
15035 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15036 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15037 			range = tnum_range(0, 3);
15038 		break;
15039 	case BPF_PROG_TYPE_CGROUP_SKB:
15040 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15041 			range = tnum_range(0, 3);
15042 			enforce_attach_type_range = tnum_range(2, 3);
15043 		}
15044 		break;
15045 	case BPF_PROG_TYPE_CGROUP_SOCK:
15046 	case BPF_PROG_TYPE_SOCK_OPS:
15047 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15048 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15049 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15050 		break;
15051 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15052 		if (!env->prog->aux->attach_btf_id)
15053 			return 0;
15054 		range = tnum_const(0);
15055 		break;
15056 	case BPF_PROG_TYPE_TRACING:
15057 		switch (env->prog->expected_attach_type) {
15058 		case BPF_TRACE_FENTRY:
15059 		case BPF_TRACE_FEXIT:
15060 			range = tnum_const(0);
15061 			break;
15062 		case BPF_TRACE_RAW_TP:
15063 		case BPF_MODIFY_RETURN:
15064 			return 0;
15065 		case BPF_TRACE_ITER:
15066 			break;
15067 		default:
15068 			return -ENOTSUPP;
15069 		}
15070 		break;
15071 	case BPF_PROG_TYPE_SK_LOOKUP:
15072 		range = tnum_range(SK_DROP, SK_PASS);
15073 		break;
15074 
15075 	case BPF_PROG_TYPE_LSM:
15076 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15077 			/* Regular BPF_PROG_TYPE_LSM programs can return
15078 			 * any value.
15079 			 */
15080 			return 0;
15081 		}
15082 		if (!env->prog->aux->attach_func_proto->type) {
15083 			/* Make sure programs that attach to void
15084 			 * hooks don't try to modify return value.
15085 			 */
15086 			range = tnum_range(1, 1);
15087 		}
15088 		break;
15089 
15090 	case BPF_PROG_TYPE_NETFILTER:
15091 		range = tnum_range(NF_DROP, NF_ACCEPT);
15092 		break;
15093 	case BPF_PROG_TYPE_EXT:
15094 		/* freplace program can return anything as its return value
15095 		 * depends on the to-be-replaced kernel func or bpf program.
15096 		 */
15097 	default:
15098 		return 0;
15099 	}
15100 
15101 	if (reg->type != SCALAR_VALUE) {
15102 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15103 			regno, reg_type_str(env, reg->type));
15104 		return -EINVAL;
15105 	}
15106 
15107 	if (!tnum_in(range, reg->var_off)) {
15108 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15109 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15110 		    prog_type == BPF_PROG_TYPE_LSM &&
15111 		    !prog->aux->attach_func_proto->type)
15112 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15113 		return -EINVAL;
15114 	}
15115 
15116 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15117 	    tnum_in(enforce_attach_type_range, reg->var_off))
15118 		env->prog->enforce_expected_attach_type = 1;
15119 	return 0;
15120 }
15121 
15122 /* non-recursive DFS pseudo code
15123  * 1  procedure DFS-iterative(G,v):
15124  * 2      label v as discovered
15125  * 3      let S be a stack
15126  * 4      S.push(v)
15127  * 5      while S is not empty
15128  * 6            t <- S.peek()
15129  * 7            if t is what we're looking for:
15130  * 8                return t
15131  * 9            for all edges e in G.adjacentEdges(t) do
15132  * 10               if edge e is already labelled
15133  * 11                   continue with the next edge
15134  * 12               w <- G.adjacentVertex(t,e)
15135  * 13               if vertex w is not discovered and not explored
15136  * 14                   label e as tree-edge
15137  * 15                   label w as discovered
15138  * 16                   S.push(w)
15139  * 17                   continue at 5
15140  * 18               else if vertex w is discovered
15141  * 19                   label e as back-edge
15142  * 20               else
15143  * 21                   // vertex w is explored
15144  * 22                   label e as forward- or cross-edge
15145  * 23           label t as explored
15146  * 24           S.pop()
15147  *
15148  * convention:
15149  * 0x10 - discovered
15150  * 0x11 - discovered and fall-through edge labelled
15151  * 0x12 - discovered and fall-through and branch edges labelled
15152  * 0x20 - explored
15153  */
15154 
15155 enum {
15156 	DISCOVERED = 0x10,
15157 	EXPLORED = 0x20,
15158 	FALLTHROUGH = 1,
15159 	BRANCH = 2,
15160 };
15161 
15162 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15163 {
15164 	env->insn_aux_data[idx].prune_point = true;
15165 }
15166 
15167 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15168 {
15169 	return env->insn_aux_data[insn_idx].prune_point;
15170 }
15171 
15172 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15173 {
15174 	env->insn_aux_data[idx].force_checkpoint = true;
15175 }
15176 
15177 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15178 {
15179 	return env->insn_aux_data[insn_idx].force_checkpoint;
15180 }
15181 
15182 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15183 {
15184 	env->insn_aux_data[idx].calls_callback = true;
15185 }
15186 
15187 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15188 {
15189 	return env->insn_aux_data[insn_idx].calls_callback;
15190 }
15191 
15192 enum {
15193 	DONE_EXPLORING = 0,
15194 	KEEP_EXPLORING = 1,
15195 };
15196 
15197 /* t, w, e - match pseudo-code above:
15198  * t - index of current instruction
15199  * w - next instruction
15200  * e - edge
15201  */
15202 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15203 {
15204 	int *insn_stack = env->cfg.insn_stack;
15205 	int *insn_state = env->cfg.insn_state;
15206 
15207 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15208 		return DONE_EXPLORING;
15209 
15210 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15211 		return DONE_EXPLORING;
15212 
15213 	if (w < 0 || w >= env->prog->len) {
15214 		verbose_linfo(env, t, "%d: ", t);
15215 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15216 		return -EINVAL;
15217 	}
15218 
15219 	if (e == BRANCH) {
15220 		/* mark branch target for state pruning */
15221 		mark_prune_point(env, w);
15222 		mark_jmp_point(env, w);
15223 	}
15224 
15225 	if (insn_state[w] == 0) {
15226 		/* tree-edge */
15227 		insn_state[t] = DISCOVERED | e;
15228 		insn_state[w] = DISCOVERED;
15229 		if (env->cfg.cur_stack >= env->prog->len)
15230 			return -E2BIG;
15231 		insn_stack[env->cfg.cur_stack++] = w;
15232 		return KEEP_EXPLORING;
15233 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15234 		if (env->bpf_capable)
15235 			return DONE_EXPLORING;
15236 		verbose_linfo(env, t, "%d: ", t);
15237 		verbose_linfo(env, w, "%d: ", w);
15238 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15239 		return -EINVAL;
15240 	} else if (insn_state[w] == EXPLORED) {
15241 		/* forward- or cross-edge */
15242 		insn_state[t] = DISCOVERED | e;
15243 	} else {
15244 		verbose(env, "insn state internal bug\n");
15245 		return -EFAULT;
15246 	}
15247 	return DONE_EXPLORING;
15248 }
15249 
15250 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15251 				struct bpf_verifier_env *env,
15252 				bool visit_callee)
15253 {
15254 	int ret, insn_sz;
15255 
15256 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15257 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15258 	if (ret)
15259 		return ret;
15260 
15261 	mark_prune_point(env, t + insn_sz);
15262 	/* when we exit from subprog, we need to record non-linear history */
15263 	mark_jmp_point(env, t + insn_sz);
15264 
15265 	if (visit_callee) {
15266 		mark_prune_point(env, t);
15267 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15268 	}
15269 	return ret;
15270 }
15271 
15272 /* Visits the instruction at index t and returns one of the following:
15273  *  < 0 - an error occurred
15274  *  DONE_EXPLORING - the instruction was fully explored
15275  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15276  */
15277 static int visit_insn(int t, struct bpf_verifier_env *env)
15278 {
15279 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15280 	int ret, off, insn_sz;
15281 
15282 	if (bpf_pseudo_func(insn))
15283 		return visit_func_call_insn(t, insns, env, true);
15284 
15285 	/* All non-branch instructions have a single fall-through edge. */
15286 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15287 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15288 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15289 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15290 	}
15291 
15292 	switch (BPF_OP(insn->code)) {
15293 	case BPF_EXIT:
15294 		return DONE_EXPLORING;
15295 
15296 	case BPF_CALL:
15297 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15298 			/* Mark this call insn as a prune point to trigger
15299 			 * is_state_visited() check before call itself is
15300 			 * processed by __check_func_call(). Otherwise new
15301 			 * async state will be pushed for further exploration.
15302 			 */
15303 			mark_prune_point(env, t);
15304 		/* For functions that invoke callbacks it is not known how many times
15305 		 * callback would be called. Verifier models callback calling functions
15306 		 * by repeatedly visiting callback bodies and returning to origin call
15307 		 * instruction.
15308 		 * In order to stop such iteration verifier needs to identify when a
15309 		 * state identical some state from a previous iteration is reached.
15310 		 * Check below forces creation of checkpoint before callback calling
15311 		 * instruction to allow search for such identical states.
15312 		 */
15313 		if (is_sync_callback_calling_insn(insn)) {
15314 			mark_calls_callback(env, t);
15315 			mark_force_checkpoint(env, t);
15316 			mark_prune_point(env, t);
15317 			mark_jmp_point(env, t);
15318 		}
15319 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15320 			struct bpf_kfunc_call_arg_meta meta;
15321 
15322 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15323 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15324 				mark_prune_point(env, t);
15325 				/* Checking and saving state checkpoints at iter_next() call
15326 				 * is crucial for fast convergence of open-coded iterator loop
15327 				 * logic, so we need to force it. If we don't do that,
15328 				 * is_state_visited() might skip saving a checkpoint, causing
15329 				 * unnecessarily long sequence of not checkpointed
15330 				 * instructions and jumps, leading to exhaustion of jump
15331 				 * history buffer, and potentially other undesired outcomes.
15332 				 * It is expected that with correct open-coded iterators
15333 				 * convergence will happen quickly, so we don't run a risk of
15334 				 * exhausting memory.
15335 				 */
15336 				mark_force_checkpoint(env, t);
15337 			}
15338 		}
15339 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15340 
15341 	case BPF_JA:
15342 		if (BPF_SRC(insn->code) != BPF_K)
15343 			return -EINVAL;
15344 
15345 		if (BPF_CLASS(insn->code) == BPF_JMP)
15346 			off = insn->off;
15347 		else
15348 			off = insn->imm;
15349 
15350 		/* unconditional jump with single edge */
15351 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15352 		if (ret)
15353 			return ret;
15354 
15355 		mark_prune_point(env, t + off + 1);
15356 		mark_jmp_point(env, t + off + 1);
15357 
15358 		return ret;
15359 
15360 	default:
15361 		/* conditional jump with two edges */
15362 		mark_prune_point(env, t);
15363 
15364 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15365 		if (ret)
15366 			return ret;
15367 
15368 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15369 	}
15370 }
15371 
15372 /* non-recursive depth-first-search to detect loops in BPF program
15373  * loop == back-edge in directed graph
15374  */
15375 static int check_cfg(struct bpf_verifier_env *env)
15376 {
15377 	int insn_cnt = env->prog->len;
15378 	int *insn_stack, *insn_state;
15379 	int ex_insn_beg, i, ret = 0;
15380 	bool ex_done = false;
15381 
15382 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15383 	if (!insn_state)
15384 		return -ENOMEM;
15385 
15386 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15387 	if (!insn_stack) {
15388 		kvfree(insn_state);
15389 		return -ENOMEM;
15390 	}
15391 
15392 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15393 	insn_stack[0] = 0; /* 0 is the first instruction */
15394 	env->cfg.cur_stack = 1;
15395 
15396 walk_cfg:
15397 	while (env->cfg.cur_stack > 0) {
15398 		int t = insn_stack[env->cfg.cur_stack - 1];
15399 
15400 		ret = visit_insn(t, env);
15401 		switch (ret) {
15402 		case DONE_EXPLORING:
15403 			insn_state[t] = EXPLORED;
15404 			env->cfg.cur_stack--;
15405 			break;
15406 		case KEEP_EXPLORING:
15407 			break;
15408 		default:
15409 			if (ret > 0) {
15410 				verbose(env, "visit_insn internal bug\n");
15411 				ret = -EFAULT;
15412 			}
15413 			goto err_free;
15414 		}
15415 	}
15416 
15417 	if (env->cfg.cur_stack < 0) {
15418 		verbose(env, "pop stack internal bug\n");
15419 		ret = -EFAULT;
15420 		goto err_free;
15421 	}
15422 
15423 	if (env->exception_callback_subprog && !ex_done) {
15424 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15425 
15426 		insn_state[ex_insn_beg] = DISCOVERED;
15427 		insn_stack[0] = ex_insn_beg;
15428 		env->cfg.cur_stack = 1;
15429 		ex_done = true;
15430 		goto walk_cfg;
15431 	}
15432 
15433 	for (i = 0; i < insn_cnt; i++) {
15434 		struct bpf_insn *insn = &env->prog->insnsi[i];
15435 
15436 		if (insn_state[i] != EXPLORED) {
15437 			verbose(env, "unreachable insn %d\n", i);
15438 			ret = -EINVAL;
15439 			goto err_free;
15440 		}
15441 		if (bpf_is_ldimm64(insn)) {
15442 			if (insn_state[i + 1] != 0) {
15443 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15444 				ret = -EINVAL;
15445 				goto err_free;
15446 			}
15447 			i++; /* skip second half of ldimm64 */
15448 		}
15449 	}
15450 	ret = 0; /* cfg looks good */
15451 
15452 err_free:
15453 	kvfree(insn_state);
15454 	kvfree(insn_stack);
15455 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15456 	return ret;
15457 }
15458 
15459 static int check_abnormal_return(struct bpf_verifier_env *env)
15460 {
15461 	int i;
15462 
15463 	for (i = 1; i < env->subprog_cnt; i++) {
15464 		if (env->subprog_info[i].has_ld_abs) {
15465 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15466 			return -EINVAL;
15467 		}
15468 		if (env->subprog_info[i].has_tail_call) {
15469 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15470 			return -EINVAL;
15471 		}
15472 	}
15473 	return 0;
15474 }
15475 
15476 /* The minimum supported BTF func info size */
15477 #define MIN_BPF_FUNCINFO_SIZE	8
15478 #define MAX_FUNCINFO_REC_SIZE	252
15479 
15480 static int check_btf_func_early(struct bpf_verifier_env *env,
15481 				const union bpf_attr *attr,
15482 				bpfptr_t uattr)
15483 {
15484 	u32 krec_size = sizeof(struct bpf_func_info);
15485 	const struct btf_type *type, *func_proto;
15486 	u32 i, nfuncs, urec_size, min_size;
15487 	struct bpf_func_info *krecord;
15488 	struct bpf_prog *prog;
15489 	const struct btf *btf;
15490 	u32 prev_offset = 0;
15491 	bpfptr_t urecord;
15492 	int ret = -ENOMEM;
15493 
15494 	nfuncs = attr->func_info_cnt;
15495 	if (!nfuncs) {
15496 		if (check_abnormal_return(env))
15497 			return -EINVAL;
15498 		return 0;
15499 	}
15500 
15501 	urec_size = attr->func_info_rec_size;
15502 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15503 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15504 	    urec_size % sizeof(u32)) {
15505 		verbose(env, "invalid func info rec size %u\n", urec_size);
15506 		return -EINVAL;
15507 	}
15508 
15509 	prog = env->prog;
15510 	btf = prog->aux->btf;
15511 
15512 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15513 	min_size = min_t(u32, krec_size, urec_size);
15514 
15515 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15516 	if (!krecord)
15517 		return -ENOMEM;
15518 
15519 	for (i = 0; i < nfuncs; i++) {
15520 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15521 		if (ret) {
15522 			if (ret == -E2BIG) {
15523 				verbose(env, "nonzero tailing record in func info");
15524 				/* set the size kernel expects so loader can zero
15525 				 * out the rest of the record.
15526 				 */
15527 				if (copy_to_bpfptr_offset(uattr,
15528 							  offsetof(union bpf_attr, func_info_rec_size),
15529 							  &min_size, sizeof(min_size)))
15530 					ret = -EFAULT;
15531 			}
15532 			goto err_free;
15533 		}
15534 
15535 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15536 			ret = -EFAULT;
15537 			goto err_free;
15538 		}
15539 
15540 		/* check insn_off */
15541 		ret = -EINVAL;
15542 		if (i == 0) {
15543 			if (krecord[i].insn_off) {
15544 				verbose(env,
15545 					"nonzero insn_off %u for the first func info record",
15546 					krecord[i].insn_off);
15547 				goto err_free;
15548 			}
15549 		} else if (krecord[i].insn_off <= prev_offset) {
15550 			verbose(env,
15551 				"same or smaller insn offset (%u) than previous func info record (%u)",
15552 				krecord[i].insn_off, prev_offset);
15553 			goto err_free;
15554 		}
15555 
15556 		/* check type_id */
15557 		type = btf_type_by_id(btf, krecord[i].type_id);
15558 		if (!type || !btf_type_is_func(type)) {
15559 			verbose(env, "invalid type id %d in func info",
15560 				krecord[i].type_id);
15561 			goto err_free;
15562 		}
15563 
15564 		func_proto = btf_type_by_id(btf, type->type);
15565 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15566 			/* btf_func_check() already verified it during BTF load */
15567 			goto err_free;
15568 
15569 		prev_offset = krecord[i].insn_off;
15570 		bpfptr_add(&urecord, urec_size);
15571 	}
15572 
15573 	prog->aux->func_info = krecord;
15574 	prog->aux->func_info_cnt = nfuncs;
15575 	return 0;
15576 
15577 err_free:
15578 	kvfree(krecord);
15579 	return ret;
15580 }
15581 
15582 static int check_btf_func(struct bpf_verifier_env *env,
15583 			  const union bpf_attr *attr,
15584 			  bpfptr_t uattr)
15585 {
15586 	const struct btf_type *type, *func_proto, *ret_type;
15587 	u32 i, nfuncs, urec_size;
15588 	struct bpf_func_info *krecord;
15589 	struct bpf_func_info_aux *info_aux = NULL;
15590 	struct bpf_prog *prog;
15591 	const struct btf *btf;
15592 	bpfptr_t urecord;
15593 	bool scalar_return;
15594 	int ret = -ENOMEM;
15595 
15596 	nfuncs = attr->func_info_cnt;
15597 	if (!nfuncs) {
15598 		if (check_abnormal_return(env))
15599 			return -EINVAL;
15600 		return 0;
15601 	}
15602 	if (nfuncs != env->subprog_cnt) {
15603 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15604 		return -EINVAL;
15605 	}
15606 
15607 	urec_size = attr->func_info_rec_size;
15608 
15609 	prog = env->prog;
15610 	btf = prog->aux->btf;
15611 
15612 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15613 
15614 	krecord = prog->aux->func_info;
15615 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15616 	if (!info_aux)
15617 		return -ENOMEM;
15618 
15619 	for (i = 0; i < nfuncs; i++) {
15620 		/* check insn_off */
15621 		ret = -EINVAL;
15622 
15623 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15624 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15625 			goto err_free;
15626 		}
15627 
15628 		/* Already checked type_id */
15629 		type = btf_type_by_id(btf, krecord[i].type_id);
15630 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15631 		/* Already checked func_proto */
15632 		func_proto = btf_type_by_id(btf, type->type);
15633 
15634 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15635 		scalar_return =
15636 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15637 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15638 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15639 			goto err_free;
15640 		}
15641 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15642 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15643 			goto err_free;
15644 		}
15645 
15646 		bpfptr_add(&urecord, urec_size);
15647 	}
15648 
15649 	prog->aux->func_info_aux = info_aux;
15650 	return 0;
15651 
15652 err_free:
15653 	kfree(info_aux);
15654 	return ret;
15655 }
15656 
15657 static void adjust_btf_func(struct bpf_verifier_env *env)
15658 {
15659 	struct bpf_prog_aux *aux = env->prog->aux;
15660 	int i;
15661 
15662 	if (!aux->func_info)
15663 		return;
15664 
15665 	/* func_info is not available for hidden subprogs */
15666 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15667 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15668 }
15669 
15670 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15671 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15672 
15673 static int check_btf_line(struct bpf_verifier_env *env,
15674 			  const union bpf_attr *attr,
15675 			  bpfptr_t uattr)
15676 {
15677 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15678 	struct bpf_subprog_info *sub;
15679 	struct bpf_line_info *linfo;
15680 	struct bpf_prog *prog;
15681 	const struct btf *btf;
15682 	bpfptr_t ulinfo;
15683 	int err;
15684 
15685 	nr_linfo = attr->line_info_cnt;
15686 	if (!nr_linfo)
15687 		return 0;
15688 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15689 		return -EINVAL;
15690 
15691 	rec_size = attr->line_info_rec_size;
15692 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15693 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15694 	    rec_size & (sizeof(u32) - 1))
15695 		return -EINVAL;
15696 
15697 	/* Need to zero it in case the userspace may
15698 	 * pass in a smaller bpf_line_info object.
15699 	 */
15700 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15701 			 GFP_KERNEL | __GFP_NOWARN);
15702 	if (!linfo)
15703 		return -ENOMEM;
15704 
15705 	prog = env->prog;
15706 	btf = prog->aux->btf;
15707 
15708 	s = 0;
15709 	sub = env->subprog_info;
15710 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15711 	expected_size = sizeof(struct bpf_line_info);
15712 	ncopy = min_t(u32, expected_size, rec_size);
15713 	for (i = 0; i < nr_linfo; i++) {
15714 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15715 		if (err) {
15716 			if (err == -E2BIG) {
15717 				verbose(env, "nonzero tailing record in line_info");
15718 				if (copy_to_bpfptr_offset(uattr,
15719 							  offsetof(union bpf_attr, line_info_rec_size),
15720 							  &expected_size, sizeof(expected_size)))
15721 					err = -EFAULT;
15722 			}
15723 			goto err_free;
15724 		}
15725 
15726 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15727 			err = -EFAULT;
15728 			goto err_free;
15729 		}
15730 
15731 		/*
15732 		 * Check insn_off to ensure
15733 		 * 1) strictly increasing AND
15734 		 * 2) bounded by prog->len
15735 		 *
15736 		 * The linfo[0].insn_off == 0 check logically falls into
15737 		 * the later "missing bpf_line_info for func..." case
15738 		 * because the first linfo[0].insn_off must be the
15739 		 * first sub also and the first sub must have
15740 		 * subprog_info[0].start == 0.
15741 		 */
15742 		if ((i && linfo[i].insn_off <= prev_offset) ||
15743 		    linfo[i].insn_off >= prog->len) {
15744 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15745 				i, linfo[i].insn_off, prev_offset,
15746 				prog->len);
15747 			err = -EINVAL;
15748 			goto err_free;
15749 		}
15750 
15751 		if (!prog->insnsi[linfo[i].insn_off].code) {
15752 			verbose(env,
15753 				"Invalid insn code at line_info[%u].insn_off\n",
15754 				i);
15755 			err = -EINVAL;
15756 			goto err_free;
15757 		}
15758 
15759 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15760 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15761 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15762 			err = -EINVAL;
15763 			goto err_free;
15764 		}
15765 
15766 		if (s != env->subprog_cnt) {
15767 			if (linfo[i].insn_off == sub[s].start) {
15768 				sub[s].linfo_idx = i;
15769 				s++;
15770 			} else if (sub[s].start < linfo[i].insn_off) {
15771 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15772 				err = -EINVAL;
15773 				goto err_free;
15774 			}
15775 		}
15776 
15777 		prev_offset = linfo[i].insn_off;
15778 		bpfptr_add(&ulinfo, rec_size);
15779 	}
15780 
15781 	if (s != env->subprog_cnt) {
15782 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15783 			env->subprog_cnt - s, s);
15784 		err = -EINVAL;
15785 		goto err_free;
15786 	}
15787 
15788 	prog->aux->linfo = linfo;
15789 	prog->aux->nr_linfo = nr_linfo;
15790 
15791 	return 0;
15792 
15793 err_free:
15794 	kvfree(linfo);
15795 	return err;
15796 }
15797 
15798 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15799 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15800 
15801 static int check_core_relo(struct bpf_verifier_env *env,
15802 			   const union bpf_attr *attr,
15803 			   bpfptr_t uattr)
15804 {
15805 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15806 	struct bpf_core_relo core_relo = {};
15807 	struct bpf_prog *prog = env->prog;
15808 	const struct btf *btf = prog->aux->btf;
15809 	struct bpf_core_ctx ctx = {
15810 		.log = &env->log,
15811 		.btf = btf,
15812 	};
15813 	bpfptr_t u_core_relo;
15814 	int err;
15815 
15816 	nr_core_relo = attr->core_relo_cnt;
15817 	if (!nr_core_relo)
15818 		return 0;
15819 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15820 		return -EINVAL;
15821 
15822 	rec_size = attr->core_relo_rec_size;
15823 	if (rec_size < MIN_CORE_RELO_SIZE ||
15824 	    rec_size > MAX_CORE_RELO_SIZE ||
15825 	    rec_size % sizeof(u32))
15826 		return -EINVAL;
15827 
15828 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15829 	expected_size = sizeof(struct bpf_core_relo);
15830 	ncopy = min_t(u32, expected_size, rec_size);
15831 
15832 	/* Unlike func_info and line_info, copy and apply each CO-RE
15833 	 * relocation record one at a time.
15834 	 */
15835 	for (i = 0; i < nr_core_relo; i++) {
15836 		/* future proofing when sizeof(bpf_core_relo) changes */
15837 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15838 		if (err) {
15839 			if (err == -E2BIG) {
15840 				verbose(env, "nonzero tailing record in core_relo");
15841 				if (copy_to_bpfptr_offset(uattr,
15842 							  offsetof(union bpf_attr, core_relo_rec_size),
15843 							  &expected_size, sizeof(expected_size)))
15844 					err = -EFAULT;
15845 			}
15846 			break;
15847 		}
15848 
15849 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15850 			err = -EFAULT;
15851 			break;
15852 		}
15853 
15854 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15855 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15856 				i, core_relo.insn_off, prog->len);
15857 			err = -EINVAL;
15858 			break;
15859 		}
15860 
15861 		err = bpf_core_apply(&ctx, &core_relo, i,
15862 				     &prog->insnsi[core_relo.insn_off / 8]);
15863 		if (err)
15864 			break;
15865 		bpfptr_add(&u_core_relo, rec_size);
15866 	}
15867 	return err;
15868 }
15869 
15870 static int check_btf_info_early(struct bpf_verifier_env *env,
15871 				const union bpf_attr *attr,
15872 				bpfptr_t uattr)
15873 {
15874 	struct btf *btf;
15875 	int err;
15876 
15877 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15878 		if (check_abnormal_return(env))
15879 			return -EINVAL;
15880 		return 0;
15881 	}
15882 
15883 	btf = btf_get_by_fd(attr->prog_btf_fd);
15884 	if (IS_ERR(btf))
15885 		return PTR_ERR(btf);
15886 	if (btf_is_kernel(btf)) {
15887 		btf_put(btf);
15888 		return -EACCES;
15889 	}
15890 	env->prog->aux->btf = btf;
15891 
15892 	err = check_btf_func_early(env, attr, uattr);
15893 	if (err)
15894 		return err;
15895 	return 0;
15896 }
15897 
15898 static int check_btf_info(struct bpf_verifier_env *env,
15899 			  const union bpf_attr *attr,
15900 			  bpfptr_t uattr)
15901 {
15902 	int err;
15903 
15904 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15905 		if (check_abnormal_return(env))
15906 			return -EINVAL;
15907 		return 0;
15908 	}
15909 
15910 	err = check_btf_func(env, attr, uattr);
15911 	if (err)
15912 		return err;
15913 
15914 	err = check_btf_line(env, attr, uattr);
15915 	if (err)
15916 		return err;
15917 
15918 	err = check_core_relo(env, attr, uattr);
15919 	if (err)
15920 		return err;
15921 
15922 	return 0;
15923 }
15924 
15925 /* check %cur's range satisfies %old's */
15926 static bool range_within(struct bpf_reg_state *old,
15927 			 struct bpf_reg_state *cur)
15928 {
15929 	return old->umin_value <= cur->umin_value &&
15930 	       old->umax_value >= cur->umax_value &&
15931 	       old->smin_value <= cur->smin_value &&
15932 	       old->smax_value >= cur->smax_value &&
15933 	       old->u32_min_value <= cur->u32_min_value &&
15934 	       old->u32_max_value >= cur->u32_max_value &&
15935 	       old->s32_min_value <= cur->s32_min_value &&
15936 	       old->s32_max_value >= cur->s32_max_value;
15937 }
15938 
15939 /* If in the old state two registers had the same id, then they need to have
15940  * the same id in the new state as well.  But that id could be different from
15941  * the old state, so we need to track the mapping from old to new ids.
15942  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15943  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15944  * regs with a different old id could still have new id 9, we don't care about
15945  * that.
15946  * So we look through our idmap to see if this old id has been seen before.  If
15947  * so, we require the new id to match; otherwise, we add the id pair to the map.
15948  */
15949 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15950 {
15951 	struct bpf_id_pair *map = idmap->map;
15952 	unsigned int i;
15953 
15954 	/* either both IDs should be set or both should be zero */
15955 	if (!!old_id != !!cur_id)
15956 		return false;
15957 
15958 	if (old_id == 0) /* cur_id == 0 as well */
15959 		return true;
15960 
15961 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15962 		if (!map[i].old) {
15963 			/* Reached an empty slot; haven't seen this id before */
15964 			map[i].old = old_id;
15965 			map[i].cur = cur_id;
15966 			return true;
15967 		}
15968 		if (map[i].old == old_id)
15969 			return map[i].cur == cur_id;
15970 		if (map[i].cur == cur_id)
15971 			return false;
15972 	}
15973 	/* We ran out of idmap slots, which should be impossible */
15974 	WARN_ON_ONCE(1);
15975 	return false;
15976 }
15977 
15978 /* Similar to check_ids(), but allocate a unique temporary ID
15979  * for 'old_id' or 'cur_id' of zero.
15980  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15981  */
15982 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15983 {
15984 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15985 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15986 
15987 	return check_ids(old_id, cur_id, idmap);
15988 }
15989 
15990 static void clean_func_state(struct bpf_verifier_env *env,
15991 			     struct bpf_func_state *st)
15992 {
15993 	enum bpf_reg_liveness live;
15994 	int i, j;
15995 
15996 	for (i = 0; i < BPF_REG_FP; i++) {
15997 		live = st->regs[i].live;
15998 		/* liveness must not touch this register anymore */
15999 		st->regs[i].live |= REG_LIVE_DONE;
16000 		if (!(live & REG_LIVE_READ))
16001 			/* since the register is unused, clear its state
16002 			 * to make further comparison simpler
16003 			 */
16004 			__mark_reg_not_init(env, &st->regs[i]);
16005 	}
16006 
16007 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16008 		live = st->stack[i].spilled_ptr.live;
16009 		/* liveness must not touch this stack slot anymore */
16010 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16011 		if (!(live & REG_LIVE_READ)) {
16012 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16013 			for (j = 0; j < BPF_REG_SIZE; j++)
16014 				st->stack[i].slot_type[j] = STACK_INVALID;
16015 		}
16016 	}
16017 }
16018 
16019 static void clean_verifier_state(struct bpf_verifier_env *env,
16020 				 struct bpf_verifier_state *st)
16021 {
16022 	int i;
16023 
16024 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16025 		/* all regs in this state in all frames were already marked */
16026 		return;
16027 
16028 	for (i = 0; i <= st->curframe; i++)
16029 		clean_func_state(env, st->frame[i]);
16030 }
16031 
16032 /* the parentage chains form a tree.
16033  * the verifier states are added to state lists at given insn and
16034  * pushed into state stack for future exploration.
16035  * when the verifier reaches bpf_exit insn some of the verifer states
16036  * stored in the state lists have their final liveness state already,
16037  * but a lot of states will get revised from liveness point of view when
16038  * the verifier explores other branches.
16039  * Example:
16040  * 1: r0 = 1
16041  * 2: if r1 == 100 goto pc+1
16042  * 3: r0 = 2
16043  * 4: exit
16044  * when the verifier reaches exit insn the register r0 in the state list of
16045  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16046  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16047  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16048  *
16049  * Since the verifier pushes the branch states as it sees them while exploring
16050  * the program the condition of walking the branch instruction for the second
16051  * time means that all states below this branch were already explored and
16052  * their final liveness marks are already propagated.
16053  * Hence when the verifier completes the search of state list in is_state_visited()
16054  * we can call this clean_live_states() function to mark all liveness states
16055  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16056  * will not be used.
16057  * This function also clears the registers and stack for states that !READ
16058  * to simplify state merging.
16059  *
16060  * Important note here that walking the same branch instruction in the callee
16061  * doesn't meant that the states are DONE. The verifier has to compare
16062  * the callsites
16063  */
16064 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16065 			      struct bpf_verifier_state *cur)
16066 {
16067 	struct bpf_verifier_state_list *sl;
16068 
16069 	sl = *explored_state(env, insn);
16070 	while (sl) {
16071 		if (sl->state.branches)
16072 			goto next;
16073 		if (sl->state.insn_idx != insn ||
16074 		    !same_callsites(&sl->state, cur))
16075 			goto next;
16076 		clean_verifier_state(env, &sl->state);
16077 next:
16078 		sl = sl->next;
16079 	}
16080 }
16081 
16082 static bool regs_exact(const struct bpf_reg_state *rold,
16083 		       const struct bpf_reg_state *rcur,
16084 		       struct bpf_idmap *idmap)
16085 {
16086 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16087 	       check_ids(rold->id, rcur->id, idmap) &&
16088 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16089 }
16090 
16091 /* Returns true if (rold safe implies rcur safe) */
16092 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16093 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16094 {
16095 	if (exact)
16096 		return regs_exact(rold, rcur, idmap);
16097 
16098 	if (!(rold->live & REG_LIVE_READ))
16099 		/* explored state didn't use this */
16100 		return true;
16101 	if (rold->type == NOT_INIT)
16102 		/* explored state can't have used this */
16103 		return true;
16104 	if (rcur->type == NOT_INIT)
16105 		return false;
16106 
16107 	/* Enforce that register types have to match exactly, including their
16108 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16109 	 * rule.
16110 	 *
16111 	 * One can make a point that using a pointer register as unbounded
16112 	 * SCALAR would be technically acceptable, but this could lead to
16113 	 * pointer leaks because scalars are allowed to leak while pointers
16114 	 * are not. We could make this safe in special cases if root is
16115 	 * calling us, but it's probably not worth the hassle.
16116 	 *
16117 	 * Also, register types that are *not* MAYBE_NULL could technically be
16118 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16119 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16120 	 * to the same map).
16121 	 * However, if the old MAYBE_NULL register then got NULL checked,
16122 	 * doing so could have affected others with the same id, and we can't
16123 	 * check for that because we lost the id when we converted to
16124 	 * a non-MAYBE_NULL variant.
16125 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16126 	 * non-MAYBE_NULL registers as well.
16127 	 */
16128 	if (rold->type != rcur->type)
16129 		return false;
16130 
16131 	switch (base_type(rold->type)) {
16132 	case SCALAR_VALUE:
16133 		if (env->explore_alu_limits) {
16134 			/* explore_alu_limits disables tnum_in() and range_within()
16135 			 * logic and requires everything to be strict
16136 			 */
16137 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16138 			       check_scalar_ids(rold->id, rcur->id, idmap);
16139 		}
16140 		if (!rold->precise)
16141 			return true;
16142 		/* Why check_ids() for scalar registers?
16143 		 *
16144 		 * Consider the following BPF code:
16145 		 *   1: r6 = ... unbound scalar, ID=a ...
16146 		 *   2: r7 = ... unbound scalar, ID=b ...
16147 		 *   3: if (r6 > r7) goto +1
16148 		 *   4: r6 = r7
16149 		 *   5: if (r6 > X) goto ...
16150 		 *   6: ... memory operation using r7 ...
16151 		 *
16152 		 * First verification path is [1-6]:
16153 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16154 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16155 		 *   r7 <= X, because r6 and r7 share same id.
16156 		 * Next verification path is [1-4, 6].
16157 		 *
16158 		 * Instruction (6) would be reached in two states:
16159 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16160 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16161 		 *
16162 		 * Use check_ids() to distinguish these states.
16163 		 * ---
16164 		 * Also verify that new value satisfies old value range knowledge.
16165 		 */
16166 		return range_within(rold, rcur) &&
16167 		       tnum_in(rold->var_off, rcur->var_off) &&
16168 		       check_scalar_ids(rold->id, rcur->id, idmap);
16169 	case PTR_TO_MAP_KEY:
16170 	case PTR_TO_MAP_VALUE:
16171 	case PTR_TO_MEM:
16172 	case PTR_TO_BUF:
16173 	case PTR_TO_TP_BUFFER:
16174 		/* If the new min/max/var_off satisfy the old ones and
16175 		 * everything else matches, we are OK.
16176 		 */
16177 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16178 		       range_within(rold, rcur) &&
16179 		       tnum_in(rold->var_off, rcur->var_off) &&
16180 		       check_ids(rold->id, rcur->id, idmap) &&
16181 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16182 	case PTR_TO_PACKET_META:
16183 	case PTR_TO_PACKET:
16184 		/* We must have at least as much range as the old ptr
16185 		 * did, so that any accesses which were safe before are
16186 		 * still safe.  This is true even if old range < old off,
16187 		 * since someone could have accessed through (ptr - k), or
16188 		 * even done ptr -= k in a register, to get a safe access.
16189 		 */
16190 		if (rold->range > rcur->range)
16191 			return false;
16192 		/* If the offsets don't match, we can't trust our alignment;
16193 		 * nor can we be sure that we won't fall out of range.
16194 		 */
16195 		if (rold->off != rcur->off)
16196 			return false;
16197 		/* id relations must be preserved */
16198 		if (!check_ids(rold->id, rcur->id, idmap))
16199 			return false;
16200 		/* new val must satisfy old val knowledge */
16201 		return range_within(rold, rcur) &&
16202 		       tnum_in(rold->var_off, rcur->var_off);
16203 	case PTR_TO_STACK:
16204 		/* two stack pointers are equal only if they're pointing to
16205 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16206 		 */
16207 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16208 	default:
16209 		return regs_exact(rold, rcur, idmap);
16210 	}
16211 }
16212 
16213 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16214 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16215 {
16216 	int i, spi;
16217 
16218 	/* walk slots of the explored stack and ignore any additional
16219 	 * slots in the current stack, since explored(safe) state
16220 	 * didn't use them
16221 	 */
16222 	for (i = 0; i < old->allocated_stack; i++) {
16223 		struct bpf_reg_state *old_reg, *cur_reg;
16224 
16225 		spi = i / BPF_REG_SIZE;
16226 
16227 		if (exact &&
16228 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16229 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16230 			return false;
16231 
16232 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16233 			i += BPF_REG_SIZE - 1;
16234 			/* explored state didn't use this */
16235 			continue;
16236 		}
16237 
16238 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16239 			continue;
16240 
16241 		if (env->allow_uninit_stack &&
16242 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16243 			continue;
16244 
16245 		/* explored stack has more populated slots than current stack
16246 		 * and these slots were used
16247 		 */
16248 		if (i >= cur->allocated_stack)
16249 			return false;
16250 
16251 		/* if old state was safe with misc data in the stack
16252 		 * it will be safe with zero-initialized stack.
16253 		 * The opposite is not true
16254 		 */
16255 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16256 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16257 			continue;
16258 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16259 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16260 			/* Ex: old explored (safe) state has STACK_SPILL in
16261 			 * this stack slot, but current has STACK_MISC ->
16262 			 * this verifier states are not equivalent,
16263 			 * return false to continue verification of this path
16264 			 */
16265 			return false;
16266 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16267 			continue;
16268 		/* Both old and cur are having same slot_type */
16269 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16270 		case STACK_SPILL:
16271 			/* when explored and current stack slot are both storing
16272 			 * spilled registers, check that stored pointers types
16273 			 * are the same as well.
16274 			 * Ex: explored safe path could have stored
16275 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16276 			 * but current path has stored:
16277 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16278 			 * such verifier states are not equivalent.
16279 			 * return false to continue verification of this path
16280 			 */
16281 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16282 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16283 				return false;
16284 			break;
16285 		case STACK_DYNPTR:
16286 			old_reg = &old->stack[spi].spilled_ptr;
16287 			cur_reg = &cur->stack[spi].spilled_ptr;
16288 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16289 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16290 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16291 				return false;
16292 			break;
16293 		case STACK_ITER:
16294 			old_reg = &old->stack[spi].spilled_ptr;
16295 			cur_reg = &cur->stack[spi].spilled_ptr;
16296 			/* iter.depth is not compared between states as it
16297 			 * doesn't matter for correctness and would otherwise
16298 			 * prevent convergence; we maintain it only to prevent
16299 			 * infinite loop check triggering, see
16300 			 * iter_active_depths_differ()
16301 			 */
16302 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16303 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16304 			    old_reg->iter.state != cur_reg->iter.state ||
16305 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16306 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16307 				return false;
16308 			break;
16309 		case STACK_MISC:
16310 		case STACK_ZERO:
16311 		case STACK_INVALID:
16312 			continue;
16313 		/* Ensure that new unhandled slot types return false by default */
16314 		default:
16315 			return false;
16316 		}
16317 	}
16318 	return true;
16319 }
16320 
16321 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16322 		    struct bpf_idmap *idmap)
16323 {
16324 	int i;
16325 
16326 	if (old->acquired_refs != cur->acquired_refs)
16327 		return false;
16328 
16329 	for (i = 0; i < old->acquired_refs; i++) {
16330 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16331 			return false;
16332 	}
16333 
16334 	return true;
16335 }
16336 
16337 /* compare two verifier states
16338  *
16339  * all states stored in state_list are known to be valid, since
16340  * verifier reached 'bpf_exit' instruction through them
16341  *
16342  * this function is called when verifier exploring different branches of
16343  * execution popped from the state stack. If it sees an old state that has
16344  * more strict register state and more strict stack state then this execution
16345  * branch doesn't need to be explored further, since verifier already
16346  * concluded that more strict state leads to valid finish.
16347  *
16348  * Therefore two states are equivalent if register state is more conservative
16349  * and explored stack state is more conservative than the current one.
16350  * Example:
16351  *       explored                   current
16352  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16353  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16354  *
16355  * In other words if current stack state (one being explored) has more
16356  * valid slots than old one that already passed validation, it means
16357  * the verifier can stop exploring and conclude that current state is valid too
16358  *
16359  * Similarly with registers. If explored state has register type as invalid
16360  * whereas register type in current state is meaningful, it means that
16361  * the current state will reach 'bpf_exit' instruction safely
16362  */
16363 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16364 			      struct bpf_func_state *cur, bool exact)
16365 {
16366 	int i;
16367 
16368 	for (i = 0; i < MAX_BPF_REG; i++)
16369 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16370 			     &env->idmap_scratch, exact))
16371 			return false;
16372 
16373 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16374 		return false;
16375 
16376 	if (!refsafe(old, cur, &env->idmap_scratch))
16377 		return false;
16378 
16379 	return true;
16380 }
16381 
16382 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16383 {
16384 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16385 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16386 }
16387 
16388 static bool states_equal(struct bpf_verifier_env *env,
16389 			 struct bpf_verifier_state *old,
16390 			 struct bpf_verifier_state *cur,
16391 			 bool exact)
16392 {
16393 	int i;
16394 
16395 	if (old->curframe != cur->curframe)
16396 		return false;
16397 
16398 	reset_idmap_scratch(env);
16399 
16400 	/* Verification state from speculative execution simulation
16401 	 * must never prune a non-speculative execution one.
16402 	 */
16403 	if (old->speculative && !cur->speculative)
16404 		return false;
16405 
16406 	if (old->active_lock.ptr != cur->active_lock.ptr)
16407 		return false;
16408 
16409 	/* Old and cur active_lock's have to be either both present
16410 	 * or both absent.
16411 	 */
16412 	if (!!old->active_lock.id != !!cur->active_lock.id)
16413 		return false;
16414 
16415 	if (old->active_lock.id &&
16416 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16417 		return false;
16418 
16419 	if (old->active_rcu_lock != cur->active_rcu_lock)
16420 		return false;
16421 
16422 	/* for states to be equal callsites have to be the same
16423 	 * and all frame states need to be equivalent
16424 	 */
16425 	for (i = 0; i <= old->curframe; i++) {
16426 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16427 			return false;
16428 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16429 			return false;
16430 	}
16431 	return true;
16432 }
16433 
16434 /* Return 0 if no propagation happened. Return negative error code if error
16435  * happened. Otherwise, return the propagated bit.
16436  */
16437 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16438 				  struct bpf_reg_state *reg,
16439 				  struct bpf_reg_state *parent_reg)
16440 {
16441 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16442 	u8 flag = reg->live & REG_LIVE_READ;
16443 	int err;
16444 
16445 	/* When comes here, read flags of PARENT_REG or REG could be any of
16446 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16447 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16448 	 */
16449 	if (parent_flag == REG_LIVE_READ64 ||
16450 	    /* Or if there is no read flag from REG. */
16451 	    !flag ||
16452 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16453 	    parent_flag == flag)
16454 		return 0;
16455 
16456 	err = mark_reg_read(env, reg, parent_reg, flag);
16457 	if (err)
16458 		return err;
16459 
16460 	return flag;
16461 }
16462 
16463 /* A write screens off any subsequent reads; but write marks come from the
16464  * straight-line code between a state and its parent.  When we arrive at an
16465  * equivalent state (jump target or such) we didn't arrive by the straight-line
16466  * code, so read marks in the state must propagate to the parent regardless
16467  * of the state's write marks. That's what 'parent == state->parent' comparison
16468  * in mark_reg_read() is for.
16469  */
16470 static int propagate_liveness(struct bpf_verifier_env *env,
16471 			      const struct bpf_verifier_state *vstate,
16472 			      struct bpf_verifier_state *vparent)
16473 {
16474 	struct bpf_reg_state *state_reg, *parent_reg;
16475 	struct bpf_func_state *state, *parent;
16476 	int i, frame, err = 0;
16477 
16478 	if (vparent->curframe != vstate->curframe) {
16479 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16480 		     vparent->curframe, vstate->curframe);
16481 		return -EFAULT;
16482 	}
16483 	/* Propagate read liveness of registers... */
16484 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16485 	for (frame = 0; frame <= vstate->curframe; frame++) {
16486 		parent = vparent->frame[frame];
16487 		state = vstate->frame[frame];
16488 		parent_reg = parent->regs;
16489 		state_reg = state->regs;
16490 		/* We don't need to worry about FP liveness, it's read-only */
16491 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16492 			err = propagate_liveness_reg(env, &state_reg[i],
16493 						     &parent_reg[i]);
16494 			if (err < 0)
16495 				return err;
16496 			if (err == REG_LIVE_READ64)
16497 				mark_insn_zext(env, &parent_reg[i]);
16498 		}
16499 
16500 		/* Propagate stack slots. */
16501 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16502 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16503 			parent_reg = &parent->stack[i].spilled_ptr;
16504 			state_reg = &state->stack[i].spilled_ptr;
16505 			err = propagate_liveness_reg(env, state_reg,
16506 						     parent_reg);
16507 			if (err < 0)
16508 				return err;
16509 		}
16510 	}
16511 	return 0;
16512 }
16513 
16514 /* find precise scalars in the previous equivalent state and
16515  * propagate them into the current state
16516  */
16517 static int propagate_precision(struct bpf_verifier_env *env,
16518 			       const struct bpf_verifier_state *old)
16519 {
16520 	struct bpf_reg_state *state_reg;
16521 	struct bpf_func_state *state;
16522 	int i, err = 0, fr;
16523 	bool first;
16524 
16525 	for (fr = old->curframe; fr >= 0; fr--) {
16526 		state = old->frame[fr];
16527 		state_reg = state->regs;
16528 		first = true;
16529 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16530 			if (state_reg->type != SCALAR_VALUE ||
16531 			    !state_reg->precise ||
16532 			    !(state_reg->live & REG_LIVE_READ))
16533 				continue;
16534 			if (env->log.level & BPF_LOG_LEVEL2) {
16535 				if (first)
16536 					verbose(env, "frame %d: propagating r%d", fr, i);
16537 				else
16538 					verbose(env, ",r%d", i);
16539 			}
16540 			bt_set_frame_reg(&env->bt, fr, i);
16541 			first = false;
16542 		}
16543 
16544 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16545 			if (!is_spilled_reg(&state->stack[i]))
16546 				continue;
16547 			state_reg = &state->stack[i].spilled_ptr;
16548 			if (state_reg->type != SCALAR_VALUE ||
16549 			    !state_reg->precise ||
16550 			    !(state_reg->live & REG_LIVE_READ))
16551 				continue;
16552 			if (env->log.level & BPF_LOG_LEVEL2) {
16553 				if (first)
16554 					verbose(env, "frame %d: propagating fp%d",
16555 						fr, (-i - 1) * BPF_REG_SIZE);
16556 				else
16557 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16558 			}
16559 			bt_set_frame_slot(&env->bt, fr, i);
16560 			first = false;
16561 		}
16562 		if (!first)
16563 			verbose(env, "\n");
16564 	}
16565 
16566 	err = mark_chain_precision_batch(env);
16567 	if (err < 0)
16568 		return err;
16569 
16570 	return 0;
16571 }
16572 
16573 static bool states_maybe_looping(struct bpf_verifier_state *old,
16574 				 struct bpf_verifier_state *cur)
16575 {
16576 	struct bpf_func_state *fold, *fcur;
16577 	int i, fr = cur->curframe;
16578 
16579 	if (old->curframe != fr)
16580 		return false;
16581 
16582 	fold = old->frame[fr];
16583 	fcur = cur->frame[fr];
16584 	for (i = 0; i < MAX_BPF_REG; i++)
16585 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16586 			   offsetof(struct bpf_reg_state, parent)))
16587 			return false;
16588 	return true;
16589 }
16590 
16591 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16592 {
16593 	return env->insn_aux_data[insn_idx].is_iter_next;
16594 }
16595 
16596 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16597  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16598  * states to match, which otherwise would look like an infinite loop. So while
16599  * iter_next() calls are taken care of, we still need to be careful and
16600  * prevent erroneous and too eager declaration of "ininite loop", when
16601  * iterators are involved.
16602  *
16603  * Here's a situation in pseudo-BPF assembly form:
16604  *
16605  *   0: again:                          ; set up iter_next() call args
16606  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16607  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16608  *   3:   if r0 == 0 goto done
16609  *   4:   ... something useful here ...
16610  *   5:   goto again                    ; another iteration
16611  *   6: done:
16612  *   7:   r1 = &it
16613  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16614  *   9:   exit
16615  *
16616  * This is a typical loop. Let's assume that we have a prune point at 1:,
16617  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16618  * again`, assuming other heuristics don't get in a way).
16619  *
16620  * When we first time come to 1:, let's say we have some state X. We proceed
16621  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16622  * Now we come back to validate that forked ACTIVE state. We proceed through
16623  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16624  * are converging. But the problem is that we don't know that yet, as this
16625  * convergence has to happen at iter_next() call site only. So if nothing is
16626  * done, at 1: verifier will use bounded loop logic and declare infinite
16627  * looping (and would be *technically* correct, if not for iterator's
16628  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16629  * don't want that. So what we do in process_iter_next_call() when we go on
16630  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16631  * a different iteration. So when we suspect an infinite loop, we additionally
16632  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16633  * pretend we are not looping and wait for next iter_next() call.
16634  *
16635  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16636  * loop, because that would actually mean infinite loop, as DRAINED state is
16637  * "sticky", and so we'll keep returning into the same instruction with the
16638  * same state (at least in one of possible code paths).
16639  *
16640  * This approach allows to keep infinite loop heuristic even in the face of
16641  * active iterator. E.g., C snippet below is and will be detected as
16642  * inifintely looping:
16643  *
16644  *   struct bpf_iter_num it;
16645  *   int *p, x;
16646  *
16647  *   bpf_iter_num_new(&it, 0, 10);
16648  *   while ((p = bpf_iter_num_next(&t))) {
16649  *       x = p;
16650  *       while (x--) {} // <<-- infinite loop here
16651  *   }
16652  *
16653  */
16654 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16655 {
16656 	struct bpf_reg_state *slot, *cur_slot;
16657 	struct bpf_func_state *state;
16658 	int i, fr;
16659 
16660 	for (fr = old->curframe; fr >= 0; fr--) {
16661 		state = old->frame[fr];
16662 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16663 			if (state->stack[i].slot_type[0] != STACK_ITER)
16664 				continue;
16665 
16666 			slot = &state->stack[i].spilled_ptr;
16667 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16668 				continue;
16669 
16670 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16671 			if (cur_slot->iter.depth != slot->iter.depth)
16672 				return true;
16673 		}
16674 	}
16675 	return false;
16676 }
16677 
16678 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16679 {
16680 	struct bpf_verifier_state_list *new_sl;
16681 	struct bpf_verifier_state_list *sl, **pprev;
16682 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16683 	int i, j, n, err, states_cnt = 0;
16684 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16685 	bool add_new_state = force_new_state;
16686 	bool force_exact;
16687 
16688 	/* bpf progs typically have pruning point every 4 instructions
16689 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16690 	 * Do not add new state for future pruning if the verifier hasn't seen
16691 	 * at least 2 jumps and at least 8 instructions.
16692 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16693 	 * In tests that amounts to up to 50% reduction into total verifier
16694 	 * memory consumption and 20% verifier time speedup.
16695 	 */
16696 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16697 	    env->insn_processed - env->prev_insn_processed >= 8)
16698 		add_new_state = true;
16699 
16700 	pprev = explored_state(env, insn_idx);
16701 	sl = *pprev;
16702 
16703 	clean_live_states(env, insn_idx, cur);
16704 
16705 	while (sl) {
16706 		states_cnt++;
16707 		if (sl->state.insn_idx != insn_idx)
16708 			goto next;
16709 
16710 		if (sl->state.branches) {
16711 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16712 
16713 			if (frame->in_async_callback_fn &&
16714 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16715 				/* Different async_entry_cnt means that the verifier is
16716 				 * processing another entry into async callback.
16717 				 * Seeing the same state is not an indication of infinite
16718 				 * loop or infinite recursion.
16719 				 * But finding the same state doesn't mean that it's safe
16720 				 * to stop processing the current state. The previous state
16721 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16722 				 * Checking in_async_callback_fn alone is not enough either.
16723 				 * Since the verifier still needs to catch infinite loops
16724 				 * inside async callbacks.
16725 				 */
16726 				goto skip_inf_loop_check;
16727 			}
16728 			/* BPF open-coded iterators loop detection is special.
16729 			 * states_maybe_looping() logic is too simplistic in detecting
16730 			 * states that *might* be equivalent, because it doesn't know
16731 			 * about ID remapping, so don't even perform it.
16732 			 * See process_iter_next_call() and iter_active_depths_differ()
16733 			 * for overview of the logic. When current and one of parent
16734 			 * states are detected as equivalent, it's a good thing: we prove
16735 			 * convergence and can stop simulating further iterations.
16736 			 * It's safe to assume that iterator loop will finish, taking into
16737 			 * account iter_next() contract of eventually returning
16738 			 * sticky NULL result.
16739 			 *
16740 			 * Note, that states have to be compared exactly in this case because
16741 			 * read and precision marks might not be finalized inside the loop.
16742 			 * E.g. as in the program below:
16743 			 *
16744 			 *     1. r7 = -16
16745 			 *     2. r6 = bpf_get_prandom_u32()
16746 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16747 			 *     4.   if (r6 != 42) {
16748 			 *     5.     r7 = -32
16749 			 *     6.     r6 = bpf_get_prandom_u32()
16750 			 *     7.     continue
16751 			 *     8.   }
16752 			 *     9.   r0 = r10
16753 			 *    10.   r0 += r7
16754 			 *    11.   r8 = *(u64 *)(r0 + 0)
16755 			 *    12.   r6 = bpf_get_prandom_u32()
16756 			 *    13. }
16757 			 *
16758 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16759 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16760 			 * not have read or precision mark for r7 yet, thus inexact states
16761 			 * comparison would discard current state with r7=-32
16762 			 * => unsafe memory access at 11 would not be caught.
16763 			 */
16764 			if (is_iter_next_insn(env, insn_idx)) {
16765 				if (states_equal(env, &sl->state, cur, true)) {
16766 					struct bpf_func_state *cur_frame;
16767 					struct bpf_reg_state *iter_state, *iter_reg;
16768 					int spi;
16769 
16770 					cur_frame = cur->frame[cur->curframe];
16771 					/* btf_check_iter_kfuncs() enforces that
16772 					 * iter state pointer is always the first arg
16773 					 */
16774 					iter_reg = &cur_frame->regs[BPF_REG_1];
16775 					/* current state is valid due to states_equal(),
16776 					 * so we can assume valid iter and reg state,
16777 					 * no need for extra (re-)validations
16778 					 */
16779 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16780 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16781 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16782 						update_loop_entry(cur, &sl->state);
16783 						goto hit;
16784 					}
16785 				}
16786 				goto skip_inf_loop_check;
16787 			}
16788 			if (calls_callback(env, insn_idx)) {
16789 				if (states_equal(env, &sl->state, cur, true))
16790 					goto hit;
16791 				goto skip_inf_loop_check;
16792 			}
16793 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16794 			if (states_maybe_looping(&sl->state, cur) &&
16795 			    states_equal(env, &sl->state, cur, false) &&
16796 			    !iter_active_depths_differ(&sl->state, cur) &&
16797 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16798 				verbose_linfo(env, insn_idx, "; ");
16799 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16800 				verbose(env, "cur state:");
16801 				print_verifier_state(env, cur->frame[cur->curframe], true);
16802 				verbose(env, "old state:");
16803 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16804 				return -EINVAL;
16805 			}
16806 			/* if the verifier is processing a loop, avoid adding new state
16807 			 * too often, since different loop iterations have distinct
16808 			 * states and may not help future pruning.
16809 			 * This threshold shouldn't be too low to make sure that
16810 			 * a loop with large bound will be rejected quickly.
16811 			 * The most abusive loop will be:
16812 			 * r1 += 1
16813 			 * if r1 < 1000000 goto pc-2
16814 			 * 1M insn_procssed limit / 100 == 10k peak states.
16815 			 * This threshold shouldn't be too high either, since states
16816 			 * at the end of the loop are likely to be useful in pruning.
16817 			 */
16818 skip_inf_loop_check:
16819 			if (!force_new_state &&
16820 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16821 			    env->insn_processed - env->prev_insn_processed < 100)
16822 				add_new_state = false;
16823 			goto miss;
16824 		}
16825 		/* If sl->state is a part of a loop and this loop's entry is a part of
16826 		 * current verification path then states have to be compared exactly.
16827 		 * 'force_exact' is needed to catch the following case:
16828 		 *
16829 		 *                initial     Here state 'succ' was processed first,
16830 		 *                  |         it was eventually tracked to produce a
16831 		 *                  V         state identical to 'hdr'.
16832 		 *     .---------> hdr        All branches from 'succ' had been explored
16833 		 *     |            |         and thus 'succ' has its .branches == 0.
16834 		 *     |            V
16835 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16836 		 *     |    |       |         to the same instruction + callsites.
16837 		 *     |    V       V         In such case it is necessary to check
16838 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16839 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16840 		 *     |    V       V         same loop exact flag has to be set.
16841 		 *     |   succ <- cur        To check if that is the case, verify
16842 		 *     |    |                 if loop entry of 'succ' is in current
16843 		 *     |    V                 DFS path.
16844 		 *     |   ...
16845 		 *     |    |
16846 		 *     '----'
16847 		 *
16848 		 * Additional details are in the comment before get_loop_entry().
16849 		 */
16850 		loop_entry = get_loop_entry(&sl->state);
16851 		force_exact = loop_entry && loop_entry->branches > 0;
16852 		if (states_equal(env, &sl->state, cur, force_exact)) {
16853 			if (force_exact)
16854 				update_loop_entry(cur, loop_entry);
16855 hit:
16856 			sl->hit_cnt++;
16857 			/* reached equivalent register/stack state,
16858 			 * prune the search.
16859 			 * Registers read by the continuation are read by us.
16860 			 * If we have any write marks in env->cur_state, they
16861 			 * will prevent corresponding reads in the continuation
16862 			 * from reaching our parent (an explored_state).  Our
16863 			 * own state will get the read marks recorded, but
16864 			 * they'll be immediately forgotten as we're pruning
16865 			 * this state and will pop a new one.
16866 			 */
16867 			err = propagate_liveness(env, &sl->state, cur);
16868 
16869 			/* if previous state reached the exit with precision and
16870 			 * current state is equivalent to it (except precsion marks)
16871 			 * the precision needs to be propagated back in
16872 			 * the current state.
16873 			 */
16874 			err = err ? : push_jmp_history(env, cur);
16875 			err = err ? : propagate_precision(env, &sl->state);
16876 			if (err)
16877 				return err;
16878 			return 1;
16879 		}
16880 miss:
16881 		/* when new state is not going to be added do not increase miss count.
16882 		 * Otherwise several loop iterations will remove the state
16883 		 * recorded earlier. The goal of these heuristics is to have
16884 		 * states from some iterations of the loop (some in the beginning
16885 		 * and some at the end) to help pruning.
16886 		 */
16887 		if (add_new_state)
16888 			sl->miss_cnt++;
16889 		/* heuristic to determine whether this state is beneficial
16890 		 * to keep checking from state equivalence point of view.
16891 		 * Higher numbers increase max_states_per_insn and verification time,
16892 		 * but do not meaningfully decrease insn_processed.
16893 		 * 'n' controls how many times state could miss before eviction.
16894 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
16895 		 * too early would hinder iterator convergence.
16896 		 */
16897 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16898 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
16899 			/* the state is unlikely to be useful. Remove it to
16900 			 * speed up verification
16901 			 */
16902 			*pprev = sl->next;
16903 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16904 			    !sl->state.used_as_loop_entry) {
16905 				u32 br = sl->state.branches;
16906 
16907 				WARN_ONCE(br,
16908 					  "BUG live_done but branches_to_explore %d\n",
16909 					  br);
16910 				free_verifier_state(&sl->state, false);
16911 				kfree(sl);
16912 				env->peak_states--;
16913 			} else {
16914 				/* cannot free this state, since parentage chain may
16915 				 * walk it later. Add it for free_list instead to
16916 				 * be freed at the end of verification
16917 				 */
16918 				sl->next = env->free_list;
16919 				env->free_list = sl;
16920 			}
16921 			sl = *pprev;
16922 			continue;
16923 		}
16924 next:
16925 		pprev = &sl->next;
16926 		sl = *pprev;
16927 	}
16928 
16929 	if (env->max_states_per_insn < states_cnt)
16930 		env->max_states_per_insn = states_cnt;
16931 
16932 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16933 		return 0;
16934 
16935 	if (!add_new_state)
16936 		return 0;
16937 
16938 	/* There were no equivalent states, remember the current one.
16939 	 * Technically the current state is not proven to be safe yet,
16940 	 * but it will either reach outer most bpf_exit (which means it's safe)
16941 	 * or it will be rejected. When there are no loops the verifier won't be
16942 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16943 	 * again on the way to bpf_exit.
16944 	 * When looping the sl->state.branches will be > 0 and this state
16945 	 * will not be considered for equivalence until branches == 0.
16946 	 */
16947 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16948 	if (!new_sl)
16949 		return -ENOMEM;
16950 	env->total_states++;
16951 	env->peak_states++;
16952 	env->prev_jmps_processed = env->jmps_processed;
16953 	env->prev_insn_processed = env->insn_processed;
16954 
16955 	/* forget precise markings we inherited, see __mark_chain_precision */
16956 	if (env->bpf_capable)
16957 		mark_all_scalars_imprecise(env, cur);
16958 
16959 	/* add new state to the head of linked list */
16960 	new = &new_sl->state;
16961 	err = copy_verifier_state(new, cur);
16962 	if (err) {
16963 		free_verifier_state(new, false);
16964 		kfree(new_sl);
16965 		return err;
16966 	}
16967 	new->insn_idx = insn_idx;
16968 	WARN_ONCE(new->branches != 1,
16969 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16970 
16971 	cur->parent = new;
16972 	cur->first_insn_idx = insn_idx;
16973 	cur->dfs_depth = new->dfs_depth + 1;
16974 	clear_jmp_history(cur);
16975 	new_sl->next = *explored_state(env, insn_idx);
16976 	*explored_state(env, insn_idx) = new_sl;
16977 	/* connect new state to parentage chain. Current frame needs all
16978 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16979 	 * to the stack implicitly by JITs) so in callers' frames connect just
16980 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16981 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16982 	 * from callee with its full parentage chain, anyway.
16983 	 */
16984 	/* clear write marks in current state: the writes we did are not writes
16985 	 * our child did, so they don't screen off its reads from us.
16986 	 * (There are no read marks in current state, because reads always mark
16987 	 * their parent and current state never has children yet.  Only
16988 	 * explored_states can get read marks.)
16989 	 */
16990 	for (j = 0; j <= cur->curframe; j++) {
16991 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16992 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16993 		for (i = 0; i < BPF_REG_FP; i++)
16994 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16995 	}
16996 
16997 	/* all stack frames are accessible from callee, clear them all */
16998 	for (j = 0; j <= cur->curframe; j++) {
16999 		struct bpf_func_state *frame = cur->frame[j];
17000 		struct bpf_func_state *newframe = new->frame[j];
17001 
17002 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17003 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17004 			frame->stack[i].spilled_ptr.parent =
17005 						&newframe->stack[i].spilled_ptr;
17006 		}
17007 	}
17008 	return 0;
17009 }
17010 
17011 /* Return true if it's OK to have the same insn return a different type. */
17012 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17013 {
17014 	switch (base_type(type)) {
17015 	case PTR_TO_CTX:
17016 	case PTR_TO_SOCKET:
17017 	case PTR_TO_SOCK_COMMON:
17018 	case PTR_TO_TCP_SOCK:
17019 	case PTR_TO_XDP_SOCK:
17020 	case PTR_TO_BTF_ID:
17021 		return false;
17022 	default:
17023 		return true;
17024 	}
17025 }
17026 
17027 /* If an instruction was previously used with particular pointer types, then we
17028  * need to be careful to avoid cases such as the below, where it may be ok
17029  * for one branch accessing the pointer, but not ok for the other branch:
17030  *
17031  * R1 = sock_ptr
17032  * goto X;
17033  * ...
17034  * R1 = some_other_valid_ptr;
17035  * goto X;
17036  * ...
17037  * R2 = *(u32 *)(R1 + 0);
17038  */
17039 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17040 {
17041 	return src != prev && (!reg_type_mismatch_ok(src) ||
17042 			       !reg_type_mismatch_ok(prev));
17043 }
17044 
17045 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17046 			     bool allow_trust_missmatch)
17047 {
17048 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17049 
17050 	if (*prev_type == NOT_INIT) {
17051 		/* Saw a valid insn
17052 		 * dst_reg = *(u32 *)(src_reg + off)
17053 		 * save type to validate intersecting paths
17054 		 */
17055 		*prev_type = type;
17056 	} else if (reg_type_mismatch(type, *prev_type)) {
17057 		/* Abuser program is trying to use the same insn
17058 		 * dst_reg = *(u32*) (src_reg + off)
17059 		 * with different pointer types:
17060 		 * src_reg == ctx in one branch and
17061 		 * src_reg == stack|map in some other branch.
17062 		 * Reject it.
17063 		 */
17064 		if (allow_trust_missmatch &&
17065 		    base_type(type) == PTR_TO_BTF_ID &&
17066 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17067 			/*
17068 			 * Have to support a use case when one path through
17069 			 * the program yields TRUSTED pointer while another
17070 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17071 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17072 			 */
17073 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17074 		} else {
17075 			verbose(env, "same insn cannot be used with different pointers\n");
17076 			return -EINVAL;
17077 		}
17078 	}
17079 
17080 	return 0;
17081 }
17082 
17083 static int do_check(struct bpf_verifier_env *env)
17084 {
17085 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17086 	struct bpf_verifier_state *state = env->cur_state;
17087 	struct bpf_insn *insns = env->prog->insnsi;
17088 	struct bpf_reg_state *regs;
17089 	int insn_cnt = env->prog->len;
17090 	bool do_print_state = false;
17091 	int prev_insn_idx = -1;
17092 
17093 	for (;;) {
17094 		bool exception_exit = false;
17095 		struct bpf_insn *insn;
17096 		u8 class;
17097 		int err;
17098 
17099 		env->prev_insn_idx = prev_insn_idx;
17100 		if (env->insn_idx >= insn_cnt) {
17101 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17102 				env->insn_idx, insn_cnt);
17103 			return -EFAULT;
17104 		}
17105 
17106 		insn = &insns[env->insn_idx];
17107 		class = BPF_CLASS(insn->code);
17108 
17109 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17110 			verbose(env,
17111 				"BPF program is too large. Processed %d insn\n",
17112 				env->insn_processed);
17113 			return -E2BIG;
17114 		}
17115 
17116 		state->last_insn_idx = env->prev_insn_idx;
17117 
17118 		if (is_prune_point(env, env->insn_idx)) {
17119 			err = is_state_visited(env, env->insn_idx);
17120 			if (err < 0)
17121 				return err;
17122 			if (err == 1) {
17123 				/* found equivalent state, can prune the search */
17124 				if (env->log.level & BPF_LOG_LEVEL) {
17125 					if (do_print_state)
17126 						verbose(env, "\nfrom %d to %d%s: safe\n",
17127 							env->prev_insn_idx, env->insn_idx,
17128 							env->cur_state->speculative ?
17129 							" (speculative execution)" : "");
17130 					else
17131 						verbose(env, "%d: safe\n", env->insn_idx);
17132 				}
17133 				goto process_bpf_exit;
17134 			}
17135 		}
17136 
17137 		if (is_jmp_point(env, env->insn_idx)) {
17138 			err = push_jmp_history(env, state);
17139 			if (err)
17140 				return err;
17141 		}
17142 
17143 		if (signal_pending(current))
17144 			return -EAGAIN;
17145 
17146 		if (need_resched())
17147 			cond_resched();
17148 
17149 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17150 			verbose(env, "\nfrom %d to %d%s:",
17151 				env->prev_insn_idx, env->insn_idx,
17152 				env->cur_state->speculative ?
17153 				" (speculative execution)" : "");
17154 			print_verifier_state(env, state->frame[state->curframe], true);
17155 			do_print_state = false;
17156 		}
17157 
17158 		if (env->log.level & BPF_LOG_LEVEL) {
17159 			const struct bpf_insn_cbs cbs = {
17160 				.cb_call	= disasm_kfunc_name,
17161 				.cb_print	= verbose,
17162 				.private_data	= env,
17163 			};
17164 
17165 			if (verifier_state_scratched(env))
17166 				print_insn_state(env, state->frame[state->curframe]);
17167 
17168 			verbose_linfo(env, env->insn_idx, "; ");
17169 			env->prev_log_pos = env->log.end_pos;
17170 			verbose(env, "%d: ", env->insn_idx);
17171 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17172 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17173 			env->prev_log_pos = env->log.end_pos;
17174 		}
17175 
17176 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17177 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17178 							   env->prev_insn_idx);
17179 			if (err)
17180 				return err;
17181 		}
17182 
17183 		regs = cur_regs(env);
17184 		sanitize_mark_insn_seen(env);
17185 		prev_insn_idx = env->insn_idx;
17186 
17187 		if (class == BPF_ALU || class == BPF_ALU64) {
17188 			err = check_alu_op(env, insn);
17189 			if (err)
17190 				return err;
17191 
17192 		} else if (class == BPF_LDX) {
17193 			enum bpf_reg_type src_reg_type;
17194 
17195 			/* check for reserved fields is already done */
17196 
17197 			/* check src operand */
17198 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17199 			if (err)
17200 				return err;
17201 
17202 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17203 			if (err)
17204 				return err;
17205 
17206 			src_reg_type = regs[insn->src_reg].type;
17207 
17208 			/* check that memory (src_reg + off) is readable,
17209 			 * the state of dst_reg will be updated by this func
17210 			 */
17211 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17212 					       insn->off, BPF_SIZE(insn->code),
17213 					       BPF_READ, insn->dst_reg, false,
17214 					       BPF_MODE(insn->code) == BPF_MEMSX);
17215 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17216 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17217 			if (err)
17218 				return err;
17219 		} else if (class == BPF_STX) {
17220 			enum bpf_reg_type dst_reg_type;
17221 
17222 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17223 				err = check_atomic(env, env->insn_idx, insn);
17224 				if (err)
17225 					return err;
17226 				env->insn_idx++;
17227 				continue;
17228 			}
17229 
17230 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17231 				verbose(env, "BPF_STX uses reserved fields\n");
17232 				return -EINVAL;
17233 			}
17234 
17235 			/* check src1 operand */
17236 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17237 			if (err)
17238 				return err;
17239 			/* check src2 operand */
17240 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17241 			if (err)
17242 				return err;
17243 
17244 			dst_reg_type = regs[insn->dst_reg].type;
17245 
17246 			/* check that memory (dst_reg + off) is writeable */
17247 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17248 					       insn->off, BPF_SIZE(insn->code),
17249 					       BPF_WRITE, insn->src_reg, false, false);
17250 			if (err)
17251 				return err;
17252 
17253 			err = save_aux_ptr_type(env, dst_reg_type, false);
17254 			if (err)
17255 				return err;
17256 		} else if (class == BPF_ST) {
17257 			enum bpf_reg_type dst_reg_type;
17258 
17259 			if (BPF_MODE(insn->code) != BPF_MEM ||
17260 			    insn->src_reg != BPF_REG_0) {
17261 				verbose(env, "BPF_ST uses reserved fields\n");
17262 				return -EINVAL;
17263 			}
17264 			/* check src operand */
17265 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17266 			if (err)
17267 				return err;
17268 
17269 			dst_reg_type = regs[insn->dst_reg].type;
17270 
17271 			/* check that memory (dst_reg + off) is writeable */
17272 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17273 					       insn->off, BPF_SIZE(insn->code),
17274 					       BPF_WRITE, -1, false, false);
17275 			if (err)
17276 				return err;
17277 
17278 			err = save_aux_ptr_type(env, dst_reg_type, false);
17279 			if (err)
17280 				return err;
17281 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17282 			u8 opcode = BPF_OP(insn->code);
17283 
17284 			env->jmps_processed++;
17285 			if (opcode == BPF_CALL) {
17286 				if (BPF_SRC(insn->code) != BPF_K ||
17287 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17288 				     && insn->off != 0) ||
17289 				    (insn->src_reg != BPF_REG_0 &&
17290 				     insn->src_reg != BPF_PSEUDO_CALL &&
17291 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17292 				    insn->dst_reg != BPF_REG_0 ||
17293 				    class == BPF_JMP32) {
17294 					verbose(env, "BPF_CALL uses reserved fields\n");
17295 					return -EINVAL;
17296 				}
17297 
17298 				if (env->cur_state->active_lock.ptr) {
17299 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17300 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17301 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17302 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17303 						verbose(env, "function calls are not allowed while holding a lock\n");
17304 						return -EINVAL;
17305 					}
17306 				}
17307 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17308 					err = check_func_call(env, insn, &env->insn_idx);
17309 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17310 					err = check_kfunc_call(env, insn, &env->insn_idx);
17311 					if (!err && is_bpf_throw_kfunc(insn)) {
17312 						exception_exit = true;
17313 						goto process_bpf_exit_full;
17314 					}
17315 				} else {
17316 					err = check_helper_call(env, insn, &env->insn_idx);
17317 				}
17318 				if (err)
17319 					return err;
17320 
17321 				mark_reg_scratched(env, BPF_REG_0);
17322 			} else if (opcode == BPF_JA) {
17323 				if (BPF_SRC(insn->code) != BPF_K ||
17324 				    insn->src_reg != BPF_REG_0 ||
17325 				    insn->dst_reg != BPF_REG_0 ||
17326 				    (class == BPF_JMP && insn->imm != 0) ||
17327 				    (class == BPF_JMP32 && insn->off != 0)) {
17328 					verbose(env, "BPF_JA uses reserved fields\n");
17329 					return -EINVAL;
17330 				}
17331 
17332 				if (class == BPF_JMP)
17333 					env->insn_idx += insn->off + 1;
17334 				else
17335 					env->insn_idx += insn->imm + 1;
17336 				continue;
17337 
17338 			} else if (opcode == BPF_EXIT) {
17339 				if (BPF_SRC(insn->code) != BPF_K ||
17340 				    insn->imm != 0 ||
17341 				    insn->src_reg != BPF_REG_0 ||
17342 				    insn->dst_reg != BPF_REG_0 ||
17343 				    class == BPF_JMP32) {
17344 					verbose(env, "BPF_EXIT uses reserved fields\n");
17345 					return -EINVAL;
17346 				}
17347 process_bpf_exit_full:
17348 				if (env->cur_state->active_lock.ptr &&
17349 				    !in_rbtree_lock_required_cb(env)) {
17350 					verbose(env, "bpf_spin_unlock is missing\n");
17351 					return -EINVAL;
17352 				}
17353 
17354 				if (env->cur_state->active_rcu_lock &&
17355 				    !in_rbtree_lock_required_cb(env)) {
17356 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17357 					return -EINVAL;
17358 				}
17359 
17360 				/* We must do check_reference_leak here before
17361 				 * prepare_func_exit to handle the case when
17362 				 * state->curframe > 0, it may be a callback
17363 				 * function, for which reference_state must
17364 				 * match caller reference state when it exits.
17365 				 */
17366 				err = check_reference_leak(env, exception_exit);
17367 				if (err)
17368 					return err;
17369 
17370 				/* The side effect of the prepare_func_exit
17371 				 * which is being skipped is that it frees
17372 				 * bpf_func_state. Typically, process_bpf_exit
17373 				 * will only be hit with outermost exit.
17374 				 * copy_verifier_state in pop_stack will handle
17375 				 * freeing of any extra bpf_func_state left over
17376 				 * from not processing all nested function
17377 				 * exits. We also skip return code checks as
17378 				 * they are not needed for exceptional exits.
17379 				 */
17380 				if (exception_exit)
17381 					goto process_bpf_exit;
17382 
17383 				if (state->curframe) {
17384 					/* exit from nested function */
17385 					err = prepare_func_exit(env, &env->insn_idx);
17386 					if (err)
17387 						return err;
17388 					do_print_state = true;
17389 					continue;
17390 				}
17391 
17392 				err = check_return_code(env, BPF_REG_0);
17393 				if (err)
17394 					return err;
17395 process_bpf_exit:
17396 				mark_verifier_state_scratched(env);
17397 				update_branch_counts(env, env->cur_state);
17398 				err = pop_stack(env, &prev_insn_idx,
17399 						&env->insn_idx, pop_log);
17400 				if (err < 0) {
17401 					if (err != -ENOENT)
17402 						return err;
17403 					break;
17404 				} else {
17405 					do_print_state = true;
17406 					continue;
17407 				}
17408 			} else {
17409 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17410 				if (err)
17411 					return err;
17412 			}
17413 		} else if (class == BPF_LD) {
17414 			u8 mode = BPF_MODE(insn->code);
17415 
17416 			if (mode == BPF_ABS || mode == BPF_IND) {
17417 				err = check_ld_abs(env, insn);
17418 				if (err)
17419 					return err;
17420 
17421 			} else if (mode == BPF_IMM) {
17422 				err = check_ld_imm(env, insn);
17423 				if (err)
17424 					return err;
17425 
17426 				env->insn_idx++;
17427 				sanitize_mark_insn_seen(env);
17428 			} else {
17429 				verbose(env, "invalid BPF_LD mode\n");
17430 				return -EINVAL;
17431 			}
17432 		} else {
17433 			verbose(env, "unknown insn class %d\n", class);
17434 			return -EINVAL;
17435 		}
17436 
17437 		env->insn_idx++;
17438 	}
17439 
17440 	return 0;
17441 }
17442 
17443 static int find_btf_percpu_datasec(struct btf *btf)
17444 {
17445 	const struct btf_type *t;
17446 	const char *tname;
17447 	int i, n;
17448 
17449 	/*
17450 	 * Both vmlinux and module each have their own ".data..percpu"
17451 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17452 	 * types to look at only module's own BTF types.
17453 	 */
17454 	n = btf_nr_types(btf);
17455 	if (btf_is_module(btf))
17456 		i = btf_nr_types(btf_vmlinux);
17457 	else
17458 		i = 1;
17459 
17460 	for(; i < n; i++) {
17461 		t = btf_type_by_id(btf, i);
17462 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17463 			continue;
17464 
17465 		tname = btf_name_by_offset(btf, t->name_off);
17466 		if (!strcmp(tname, ".data..percpu"))
17467 			return i;
17468 	}
17469 
17470 	return -ENOENT;
17471 }
17472 
17473 /* replace pseudo btf_id with kernel symbol address */
17474 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17475 			       struct bpf_insn *insn,
17476 			       struct bpf_insn_aux_data *aux)
17477 {
17478 	const struct btf_var_secinfo *vsi;
17479 	const struct btf_type *datasec;
17480 	struct btf_mod_pair *btf_mod;
17481 	const struct btf_type *t;
17482 	const char *sym_name;
17483 	bool percpu = false;
17484 	u32 type, id = insn->imm;
17485 	struct btf *btf;
17486 	s32 datasec_id;
17487 	u64 addr;
17488 	int i, btf_fd, err;
17489 
17490 	btf_fd = insn[1].imm;
17491 	if (btf_fd) {
17492 		btf = btf_get_by_fd(btf_fd);
17493 		if (IS_ERR(btf)) {
17494 			verbose(env, "invalid module BTF object FD specified.\n");
17495 			return -EINVAL;
17496 		}
17497 	} else {
17498 		if (!btf_vmlinux) {
17499 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17500 			return -EINVAL;
17501 		}
17502 		btf = btf_vmlinux;
17503 		btf_get(btf);
17504 	}
17505 
17506 	t = btf_type_by_id(btf, id);
17507 	if (!t) {
17508 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17509 		err = -ENOENT;
17510 		goto err_put;
17511 	}
17512 
17513 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17514 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17515 		err = -EINVAL;
17516 		goto err_put;
17517 	}
17518 
17519 	sym_name = btf_name_by_offset(btf, t->name_off);
17520 	addr = kallsyms_lookup_name(sym_name);
17521 	if (!addr) {
17522 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17523 			sym_name);
17524 		err = -ENOENT;
17525 		goto err_put;
17526 	}
17527 	insn[0].imm = (u32)addr;
17528 	insn[1].imm = addr >> 32;
17529 
17530 	if (btf_type_is_func(t)) {
17531 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17532 		aux->btf_var.mem_size = 0;
17533 		goto check_btf;
17534 	}
17535 
17536 	datasec_id = find_btf_percpu_datasec(btf);
17537 	if (datasec_id > 0) {
17538 		datasec = btf_type_by_id(btf, datasec_id);
17539 		for_each_vsi(i, datasec, vsi) {
17540 			if (vsi->type == id) {
17541 				percpu = true;
17542 				break;
17543 			}
17544 		}
17545 	}
17546 
17547 	type = t->type;
17548 	t = btf_type_skip_modifiers(btf, type, NULL);
17549 	if (percpu) {
17550 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17551 		aux->btf_var.btf = btf;
17552 		aux->btf_var.btf_id = type;
17553 	} else if (!btf_type_is_struct(t)) {
17554 		const struct btf_type *ret;
17555 		const char *tname;
17556 		u32 tsize;
17557 
17558 		/* resolve the type size of ksym. */
17559 		ret = btf_resolve_size(btf, t, &tsize);
17560 		if (IS_ERR(ret)) {
17561 			tname = btf_name_by_offset(btf, t->name_off);
17562 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17563 				tname, PTR_ERR(ret));
17564 			err = -EINVAL;
17565 			goto err_put;
17566 		}
17567 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17568 		aux->btf_var.mem_size = tsize;
17569 	} else {
17570 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17571 		aux->btf_var.btf = btf;
17572 		aux->btf_var.btf_id = type;
17573 	}
17574 check_btf:
17575 	/* check whether we recorded this BTF (and maybe module) already */
17576 	for (i = 0; i < env->used_btf_cnt; i++) {
17577 		if (env->used_btfs[i].btf == btf) {
17578 			btf_put(btf);
17579 			return 0;
17580 		}
17581 	}
17582 
17583 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17584 		err = -E2BIG;
17585 		goto err_put;
17586 	}
17587 
17588 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17589 	btf_mod->btf = btf;
17590 	btf_mod->module = NULL;
17591 
17592 	/* if we reference variables from kernel module, bump its refcount */
17593 	if (btf_is_module(btf)) {
17594 		btf_mod->module = btf_try_get_module(btf);
17595 		if (!btf_mod->module) {
17596 			err = -ENXIO;
17597 			goto err_put;
17598 		}
17599 	}
17600 
17601 	env->used_btf_cnt++;
17602 
17603 	return 0;
17604 err_put:
17605 	btf_put(btf);
17606 	return err;
17607 }
17608 
17609 static bool is_tracing_prog_type(enum bpf_prog_type type)
17610 {
17611 	switch (type) {
17612 	case BPF_PROG_TYPE_KPROBE:
17613 	case BPF_PROG_TYPE_TRACEPOINT:
17614 	case BPF_PROG_TYPE_PERF_EVENT:
17615 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17616 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17617 		return true;
17618 	default:
17619 		return false;
17620 	}
17621 }
17622 
17623 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17624 					struct bpf_map *map,
17625 					struct bpf_prog *prog)
17626 
17627 {
17628 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17629 
17630 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17631 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17632 		if (is_tracing_prog_type(prog_type)) {
17633 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17634 			return -EINVAL;
17635 		}
17636 	}
17637 
17638 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17639 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17640 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17641 			return -EINVAL;
17642 		}
17643 
17644 		if (is_tracing_prog_type(prog_type)) {
17645 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17646 			return -EINVAL;
17647 		}
17648 	}
17649 
17650 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17651 		if (is_tracing_prog_type(prog_type)) {
17652 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17653 			return -EINVAL;
17654 		}
17655 	}
17656 
17657 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17658 	    !bpf_offload_prog_map_match(prog, map)) {
17659 		verbose(env, "offload device mismatch between prog and map\n");
17660 		return -EINVAL;
17661 	}
17662 
17663 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17664 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17665 		return -EINVAL;
17666 	}
17667 
17668 	if (prog->aux->sleepable)
17669 		switch (map->map_type) {
17670 		case BPF_MAP_TYPE_HASH:
17671 		case BPF_MAP_TYPE_LRU_HASH:
17672 		case BPF_MAP_TYPE_ARRAY:
17673 		case BPF_MAP_TYPE_PERCPU_HASH:
17674 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17675 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17676 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17677 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17678 		case BPF_MAP_TYPE_RINGBUF:
17679 		case BPF_MAP_TYPE_USER_RINGBUF:
17680 		case BPF_MAP_TYPE_INODE_STORAGE:
17681 		case BPF_MAP_TYPE_SK_STORAGE:
17682 		case BPF_MAP_TYPE_TASK_STORAGE:
17683 		case BPF_MAP_TYPE_CGRP_STORAGE:
17684 			break;
17685 		default:
17686 			verbose(env,
17687 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17688 			return -EINVAL;
17689 		}
17690 
17691 	return 0;
17692 }
17693 
17694 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17695 {
17696 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17697 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17698 }
17699 
17700 /* find and rewrite pseudo imm in ld_imm64 instructions:
17701  *
17702  * 1. if it accesses map FD, replace it with actual map pointer.
17703  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17704  *
17705  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17706  */
17707 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17708 {
17709 	struct bpf_insn *insn = env->prog->insnsi;
17710 	int insn_cnt = env->prog->len;
17711 	int i, j, err;
17712 
17713 	err = bpf_prog_calc_tag(env->prog);
17714 	if (err)
17715 		return err;
17716 
17717 	for (i = 0; i < insn_cnt; i++, insn++) {
17718 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17719 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17720 		    insn->imm != 0)) {
17721 			verbose(env, "BPF_LDX uses reserved fields\n");
17722 			return -EINVAL;
17723 		}
17724 
17725 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17726 			struct bpf_insn_aux_data *aux;
17727 			struct bpf_map *map;
17728 			struct fd f;
17729 			u64 addr;
17730 			u32 fd;
17731 
17732 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17733 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17734 			    insn[1].off != 0) {
17735 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17736 				return -EINVAL;
17737 			}
17738 
17739 			if (insn[0].src_reg == 0)
17740 				/* valid generic load 64-bit imm */
17741 				goto next_insn;
17742 
17743 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17744 				aux = &env->insn_aux_data[i];
17745 				err = check_pseudo_btf_id(env, insn, aux);
17746 				if (err)
17747 					return err;
17748 				goto next_insn;
17749 			}
17750 
17751 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17752 				aux = &env->insn_aux_data[i];
17753 				aux->ptr_type = PTR_TO_FUNC;
17754 				goto next_insn;
17755 			}
17756 
17757 			/* In final convert_pseudo_ld_imm64() step, this is
17758 			 * converted into regular 64-bit imm load insn.
17759 			 */
17760 			switch (insn[0].src_reg) {
17761 			case BPF_PSEUDO_MAP_VALUE:
17762 			case BPF_PSEUDO_MAP_IDX_VALUE:
17763 				break;
17764 			case BPF_PSEUDO_MAP_FD:
17765 			case BPF_PSEUDO_MAP_IDX:
17766 				if (insn[1].imm == 0)
17767 					break;
17768 				fallthrough;
17769 			default:
17770 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17771 				return -EINVAL;
17772 			}
17773 
17774 			switch (insn[0].src_reg) {
17775 			case BPF_PSEUDO_MAP_IDX_VALUE:
17776 			case BPF_PSEUDO_MAP_IDX:
17777 				if (bpfptr_is_null(env->fd_array)) {
17778 					verbose(env, "fd_idx without fd_array is invalid\n");
17779 					return -EPROTO;
17780 				}
17781 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17782 							    insn[0].imm * sizeof(fd),
17783 							    sizeof(fd)))
17784 					return -EFAULT;
17785 				break;
17786 			default:
17787 				fd = insn[0].imm;
17788 				break;
17789 			}
17790 
17791 			f = fdget(fd);
17792 			map = __bpf_map_get(f);
17793 			if (IS_ERR(map)) {
17794 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17795 					insn[0].imm);
17796 				return PTR_ERR(map);
17797 			}
17798 
17799 			err = check_map_prog_compatibility(env, map, env->prog);
17800 			if (err) {
17801 				fdput(f);
17802 				return err;
17803 			}
17804 
17805 			aux = &env->insn_aux_data[i];
17806 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17807 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17808 				addr = (unsigned long)map;
17809 			} else {
17810 				u32 off = insn[1].imm;
17811 
17812 				if (off >= BPF_MAX_VAR_OFF) {
17813 					verbose(env, "direct value offset of %u is not allowed\n", off);
17814 					fdput(f);
17815 					return -EINVAL;
17816 				}
17817 
17818 				if (!map->ops->map_direct_value_addr) {
17819 					verbose(env, "no direct value access support for this map type\n");
17820 					fdput(f);
17821 					return -EINVAL;
17822 				}
17823 
17824 				err = map->ops->map_direct_value_addr(map, &addr, off);
17825 				if (err) {
17826 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17827 						map->value_size, off);
17828 					fdput(f);
17829 					return err;
17830 				}
17831 
17832 				aux->map_off = off;
17833 				addr += off;
17834 			}
17835 
17836 			insn[0].imm = (u32)addr;
17837 			insn[1].imm = addr >> 32;
17838 
17839 			/* check whether we recorded this map already */
17840 			for (j = 0; j < env->used_map_cnt; j++) {
17841 				if (env->used_maps[j] == map) {
17842 					aux->map_index = j;
17843 					fdput(f);
17844 					goto next_insn;
17845 				}
17846 			}
17847 
17848 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17849 				fdput(f);
17850 				return -E2BIG;
17851 			}
17852 
17853 			/* hold the map. If the program is rejected by verifier,
17854 			 * the map will be released by release_maps() or it
17855 			 * will be used by the valid program until it's unloaded
17856 			 * and all maps are released in free_used_maps()
17857 			 */
17858 			bpf_map_inc(map);
17859 
17860 			aux->map_index = env->used_map_cnt;
17861 			env->used_maps[env->used_map_cnt++] = map;
17862 
17863 			if (bpf_map_is_cgroup_storage(map) &&
17864 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17865 				verbose(env, "only one cgroup storage of each type is allowed\n");
17866 				fdput(f);
17867 				return -EBUSY;
17868 			}
17869 
17870 			fdput(f);
17871 next_insn:
17872 			insn++;
17873 			i++;
17874 			continue;
17875 		}
17876 
17877 		/* Basic sanity check before we invest more work here. */
17878 		if (!bpf_opcode_in_insntable(insn->code)) {
17879 			verbose(env, "unknown opcode %02x\n", insn->code);
17880 			return -EINVAL;
17881 		}
17882 	}
17883 
17884 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17885 	 * 'struct bpf_map *' into a register instead of user map_fd.
17886 	 * These pointers will be used later by verifier to validate map access.
17887 	 */
17888 	return 0;
17889 }
17890 
17891 /* drop refcnt of maps used by the rejected program */
17892 static void release_maps(struct bpf_verifier_env *env)
17893 {
17894 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17895 			     env->used_map_cnt);
17896 }
17897 
17898 /* drop refcnt of maps used by the rejected program */
17899 static void release_btfs(struct bpf_verifier_env *env)
17900 {
17901 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17902 			     env->used_btf_cnt);
17903 }
17904 
17905 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17906 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17907 {
17908 	struct bpf_insn *insn = env->prog->insnsi;
17909 	int insn_cnt = env->prog->len;
17910 	int i;
17911 
17912 	for (i = 0; i < insn_cnt; i++, insn++) {
17913 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17914 			continue;
17915 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17916 			continue;
17917 		insn->src_reg = 0;
17918 	}
17919 }
17920 
17921 /* single env->prog->insni[off] instruction was replaced with the range
17922  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17923  * [0, off) and [off, end) to new locations, so the patched range stays zero
17924  */
17925 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17926 				 struct bpf_insn_aux_data *new_data,
17927 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17928 {
17929 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17930 	struct bpf_insn *insn = new_prog->insnsi;
17931 	u32 old_seen = old_data[off].seen;
17932 	u32 prog_len;
17933 	int i;
17934 
17935 	/* aux info at OFF always needs adjustment, no matter fast path
17936 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17937 	 * original insn at old prog.
17938 	 */
17939 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17940 
17941 	if (cnt == 1)
17942 		return;
17943 	prog_len = new_prog->len;
17944 
17945 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17946 	memcpy(new_data + off + cnt - 1, old_data + off,
17947 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17948 	for (i = off; i < off + cnt - 1; i++) {
17949 		/* Expand insni[off]'s seen count to the patched range. */
17950 		new_data[i].seen = old_seen;
17951 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17952 	}
17953 	env->insn_aux_data = new_data;
17954 	vfree(old_data);
17955 }
17956 
17957 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17958 {
17959 	int i;
17960 
17961 	if (len == 1)
17962 		return;
17963 	/* NOTE: fake 'exit' subprog should be updated as well. */
17964 	for (i = 0; i <= env->subprog_cnt; i++) {
17965 		if (env->subprog_info[i].start <= off)
17966 			continue;
17967 		env->subprog_info[i].start += len - 1;
17968 	}
17969 }
17970 
17971 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17972 {
17973 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17974 	int i, sz = prog->aux->size_poke_tab;
17975 	struct bpf_jit_poke_descriptor *desc;
17976 
17977 	for (i = 0; i < sz; i++) {
17978 		desc = &tab[i];
17979 		if (desc->insn_idx <= off)
17980 			continue;
17981 		desc->insn_idx += len - 1;
17982 	}
17983 }
17984 
17985 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17986 					    const struct bpf_insn *patch, u32 len)
17987 {
17988 	struct bpf_prog *new_prog;
17989 	struct bpf_insn_aux_data *new_data = NULL;
17990 
17991 	if (len > 1) {
17992 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17993 					      sizeof(struct bpf_insn_aux_data)));
17994 		if (!new_data)
17995 			return NULL;
17996 	}
17997 
17998 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17999 	if (IS_ERR(new_prog)) {
18000 		if (PTR_ERR(new_prog) == -ERANGE)
18001 			verbose(env,
18002 				"insn %d cannot be patched due to 16-bit range\n",
18003 				env->insn_aux_data[off].orig_idx);
18004 		vfree(new_data);
18005 		return NULL;
18006 	}
18007 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18008 	adjust_subprog_starts(env, off, len);
18009 	adjust_poke_descs(new_prog, off, len);
18010 	return new_prog;
18011 }
18012 
18013 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18014 					      u32 off, u32 cnt)
18015 {
18016 	int i, j;
18017 
18018 	/* find first prog starting at or after off (first to remove) */
18019 	for (i = 0; i < env->subprog_cnt; i++)
18020 		if (env->subprog_info[i].start >= off)
18021 			break;
18022 	/* find first prog starting at or after off + cnt (first to stay) */
18023 	for (j = i; j < env->subprog_cnt; j++)
18024 		if (env->subprog_info[j].start >= off + cnt)
18025 			break;
18026 	/* if j doesn't start exactly at off + cnt, we are just removing
18027 	 * the front of previous prog
18028 	 */
18029 	if (env->subprog_info[j].start != off + cnt)
18030 		j--;
18031 
18032 	if (j > i) {
18033 		struct bpf_prog_aux *aux = env->prog->aux;
18034 		int move;
18035 
18036 		/* move fake 'exit' subprog as well */
18037 		move = env->subprog_cnt + 1 - j;
18038 
18039 		memmove(env->subprog_info + i,
18040 			env->subprog_info + j,
18041 			sizeof(*env->subprog_info) * move);
18042 		env->subprog_cnt -= j - i;
18043 
18044 		/* remove func_info */
18045 		if (aux->func_info) {
18046 			move = aux->func_info_cnt - j;
18047 
18048 			memmove(aux->func_info + i,
18049 				aux->func_info + j,
18050 				sizeof(*aux->func_info) * move);
18051 			aux->func_info_cnt -= j - i;
18052 			/* func_info->insn_off is set after all code rewrites,
18053 			 * in adjust_btf_func() - no need to adjust
18054 			 */
18055 		}
18056 	} else {
18057 		/* convert i from "first prog to remove" to "first to adjust" */
18058 		if (env->subprog_info[i].start == off)
18059 			i++;
18060 	}
18061 
18062 	/* update fake 'exit' subprog as well */
18063 	for (; i <= env->subprog_cnt; i++)
18064 		env->subprog_info[i].start -= cnt;
18065 
18066 	return 0;
18067 }
18068 
18069 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18070 				      u32 cnt)
18071 {
18072 	struct bpf_prog *prog = env->prog;
18073 	u32 i, l_off, l_cnt, nr_linfo;
18074 	struct bpf_line_info *linfo;
18075 
18076 	nr_linfo = prog->aux->nr_linfo;
18077 	if (!nr_linfo)
18078 		return 0;
18079 
18080 	linfo = prog->aux->linfo;
18081 
18082 	/* find first line info to remove, count lines to be removed */
18083 	for (i = 0; i < nr_linfo; i++)
18084 		if (linfo[i].insn_off >= off)
18085 			break;
18086 
18087 	l_off = i;
18088 	l_cnt = 0;
18089 	for (; i < nr_linfo; i++)
18090 		if (linfo[i].insn_off < off + cnt)
18091 			l_cnt++;
18092 		else
18093 			break;
18094 
18095 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18096 	 * last removed linfo.  prog is already modified, so prog->len == off
18097 	 * means no live instructions after (tail of the program was removed).
18098 	 */
18099 	if (prog->len != off && l_cnt &&
18100 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18101 		l_cnt--;
18102 		linfo[--i].insn_off = off + cnt;
18103 	}
18104 
18105 	/* remove the line info which refer to the removed instructions */
18106 	if (l_cnt) {
18107 		memmove(linfo + l_off, linfo + i,
18108 			sizeof(*linfo) * (nr_linfo - i));
18109 
18110 		prog->aux->nr_linfo -= l_cnt;
18111 		nr_linfo = prog->aux->nr_linfo;
18112 	}
18113 
18114 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18115 	for (i = l_off; i < nr_linfo; i++)
18116 		linfo[i].insn_off -= cnt;
18117 
18118 	/* fix up all subprogs (incl. 'exit') which start >= off */
18119 	for (i = 0; i <= env->subprog_cnt; i++)
18120 		if (env->subprog_info[i].linfo_idx > l_off) {
18121 			/* program may have started in the removed region but
18122 			 * may not be fully removed
18123 			 */
18124 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18125 				env->subprog_info[i].linfo_idx -= l_cnt;
18126 			else
18127 				env->subprog_info[i].linfo_idx = l_off;
18128 		}
18129 
18130 	return 0;
18131 }
18132 
18133 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18134 {
18135 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18136 	unsigned int orig_prog_len = env->prog->len;
18137 	int err;
18138 
18139 	if (bpf_prog_is_offloaded(env->prog->aux))
18140 		bpf_prog_offload_remove_insns(env, off, cnt);
18141 
18142 	err = bpf_remove_insns(env->prog, off, cnt);
18143 	if (err)
18144 		return err;
18145 
18146 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18147 	if (err)
18148 		return err;
18149 
18150 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18151 	if (err)
18152 		return err;
18153 
18154 	memmove(aux_data + off,	aux_data + off + cnt,
18155 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18156 
18157 	return 0;
18158 }
18159 
18160 /* The verifier does more data flow analysis than llvm and will not
18161  * explore branches that are dead at run time. Malicious programs can
18162  * have dead code too. Therefore replace all dead at-run-time code
18163  * with 'ja -1'.
18164  *
18165  * Just nops are not optimal, e.g. if they would sit at the end of the
18166  * program and through another bug we would manage to jump there, then
18167  * we'd execute beyond program memory otherwise. Returning exception
18168  * code also wouldn't work since we can have subprogs where the dead
18169  * code could be located.
18170  */
18171 static void sanitize_dead_code(struct bpf_verifier_env *env)
18172 {
18173 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18174 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18175 	struct bpf_insn *insn = env->prog->insnsi;
18176 	const int insn_cnt = env->prog->len;
18177 	int i;
18178 
18179 	for (i = 0; i < insn_cnt; i++) {
18180 		if (aux_data[i].seen)
18181 			continue;
18182 		memcpy(insn + i, &trap, sizeof(trap));
18183 		aux_data[i].zext_dst = false;
18184 	}
18185 }
18186 
18187 static bool insn_is_cond_jump(u8 code)
18188 {
18189 	u8 op;
18190 
18191 	op = BPF_OP(code);
18192 	if (BPF_CLASS(code) == BPF_JMP32)
18193 		return op != BPF_JA;
18194 
18195 	if (BPF_CLASS(code) != BPF_JMP)
18196 		return false;
18197 
18198 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18199 }
18200 
18201 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18202 {
18203 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18204 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18205 	struct bpf_insn *insn = env->prog->insnsi;
18206 	const int insn_cnt = env->prog->len;
18207 	int i;
18208 
18209 	for (i = 0; i < insn_cnt; i++, insn++) {
18210 		if (!insn_is_cond_jump(insn->code))
18211 			continue;
18212 
18213 		if (!aux_data[i + 1].seen)
18214 			ja.off = insn->off;
18215 		else if (!aux_data[i + 1 + insn->off].seen)
18216 			ja.off = 0;
18217 		else
18218 			continue;
18219 
18220 		if (bpf_prog_is_offloaded(env->prog->aux))
18221 			bpf_prog_offload_replace_insn(env, i, &ja);
18222 
18223 		memcpy(insn, &ja, sizeof(ja));
18224 	}
18225 }
18226 
18227 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18228 {
18229 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18230 	int insn_cnt = env->prog->len;
18231 	int i, err;
18232 
18233 	for (i = 0; i < insn_cnt; i++) {
18234 		int j;
18235 
18236 		j = 0;
18237 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18238 			j++;
18239 		if (!j)
18240 			continue;
18241 
18242 		err = verifier_remove_insns(env, i, j);
18243 		if (err)
18244 			return err;
18245 		insn_cnt = env->prog->len;
18246 	}
18247 
18248 	return 0;
18249 }
18250 
18251 static int opt_remove_nops(struct bpf_verifier_env *env)
18252 {
18253 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18254 	struct bpf_insn *insn = env->prog->insnsi;
18255 	int insn_cnt = env->prog->len;
18256 	int i, err;
18257 
18258 	for (i = 0; i < insn_cnt; i++) {
18259 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18260 			continue;
18261 
18262 		err = verifier_remove_insns(env, i, 1);
18263 		if (err)
18264 			return err;
18265 		insn_cnt--;
18266 		i--;
18267 	}
18268 
18269 	return 0;
18270 }
18271 
18272 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18273 					 const union bpf_attr *attr)
18274 {
18275 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18276 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18277 	int i, patch_len, delta = 0, len = env->prog->len;
18278 	struct bpf_insn *insns = env->prog->insnsi;
18279 	struct bpf_prog *new_prog;
18280 	bool rnd_hi32;
18281 
18282 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18283 	zext_patch[1] = BPF_ZEXT_REG(0);
18284 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18285 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18286 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18287 	for (i = 0; i < len; i++) {
18288 		int adj_idx = i + delta;
18289 		struct bpf_insn insn;
18290 		int load_reg;
18291 
18292 		insn = insns[adj_idx];
18293 		load_reg = insn_def_regno(&insn);
18294 		if (!aux[adj_idx].zext_dst) {
18295 			u8 code, class;
18296 			u32 imm_rnd;
18297 
18298 			if (!rnd_hi32)
18299 				continue;
18300 
18301 			code = insn.code;
18302 			class = BPF_CLASS(code);
18303 			if (load_reg == -1)
18304 				continue;
18305 
18306 			/* NOTE: arg "reg" (the fourth one) is only used for
18307 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18308 			 *       here.
18309 			 */
18310 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18311 				if (class == BPF_LD &&
18312 				    BPF_MODE(code) == BPF_IMM)
18313 					i++;
18314 				continue;
18315 			}
18316 
18317 			/* ctx load could be transformed into wider load. */
18318 			if (class == BPF_LDX &&
18319 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18320 				continue;
18321 
18322 			imm_rnd = get_random_u32();
18323 			rnd_hi32_patch[0] = insn;
18324 			rnd_hi32_patch[1].imm = imm_rnd;
18325 			rnd_hi32_patch[3].dst_reg = load_reg;
18326 			patch = rnd_hi32_patch;
18327 			patch_len = 4;
18328 			goto apply_patch_buffer;
18329 		}
18330 
18331 		/* Add in an zero-extend instruction if a) the JIT has requested
18332 		 * it or b) it's a CMPXCHG.
18333 		 *
18334 		 * The latter is because: BPF_CMPXCHG always loads a value into
18335 		 * R0, therefore always zero-extends. However some archs'
18336 		 * equivalent instruction only does this load when the
18337 		 * comparison is successful. This detail of CMPXCHG is
18338 		 * orthogonal to the general zero-extension behaviour of the
18339 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18340 		 */
18341 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18342 			continue;
18343 
18344 		/* Zero-extension is done by the caller. */
18345 		if (bpf_pseudo_kfunc_call(&insn))
18346 			continue;
18347 
18348 		if (WARN_ON(load_reg == -1)) {
18349 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18350 			return -EFAULT;
18351 		}
18352 
18353 		zext_patch[0] = insn;
18354 		zext_patch[1].dst_reg = load_reg;
18355 		zext_patch[1].src_reg = load_reg;
18356 		patch = zext_patch;
18357 		patch_len = 2;
18358 apply_patch_buffer:
18359 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18360 		if (!new_prog)
18361 			return -ENOMEM;
18362 		env->prog = new_prog;
18363 		insns = new_prog->insnsi;
18364 		aux = env->insn_aux_data;
18365 		delta += patch_len - 1;
18366 	}
18367 
18368 	return 0;
18369 }
18370 
18371 /* convert load instructions that access fields of a context type into a
18372  * sequence of instructions that access fields of the underlying structure:
18373  *     struct __sk_buff    -> struct sk_buff
18374  *     struct bpf_sock_ops -> struct sock
18375  */
18376 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18377 {
18378 	const struct bpf_verifier_ops *ops = env->ops;
18379 	int i, cnt, size, ctx_field_size, delta = 0;
18380 	const int insn_cnt = env->prog->len;
18381 	struct bpf_insn insn_buf[16], *insn;
18382 	u32 target_size, size_default, off;
18383 	struct bpf_prog *new_prog;
18384 	enum bpf_access_type type;
18385 	bool is_narrower_load;
18386 
18387 	if (ops->gen_prologue || env->seen_direct_write) {
18388 		if (!ops->gen_prologue) {
18389 			verbose(env, "bpf verifier is misconfigured\n");
18390 			return -EINVAL;
18391 		}
18392 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18393 					env->prog);
18394 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18395 			verbose(env, "bpf verifier is misconfigured\n");
18396 			return -EINVAL;
18397 		} else if (cnt) {
18398 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18399 			if (!new_prog)
18400 				return -ENOMEM;
18401 
18402 			env->prog = new_prog;
18403 			delta += cnt - 1;
18404 		}
18405 	}
18406 
18407 	if (bpf_prog_is_offloaded(env->prog->aux))
18408 		return 0;
18409 
18410 	insn = env->prog->insnsi + delta;
18411 
18412 	for (i = 0; i < insn_cnt; i++, insn++) {
18413 		bpf_convert_ctx_access_t convert_ctx_access;
18414 		u8 mode;
18415 
18416 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18417 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18418 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18419 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18420 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18421 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18422 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18423 			type = BPF_READ;
18424 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18425 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18426 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18427 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18428 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18429 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18430 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18431 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18432 			type = BPF_WRITE;
18433 		} else {
18434 			continue;
18435 		}
18436 
18437 		if (type == BPF_WRITE &&
18438 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18439 			struct bpf_insn patch[] = {
18440 				*insn,
18441 				BPF_ST_NOSPEC(),
18442 			};
18443 
18444 			cnt = ARRAY_SIZE(patch);
18445 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18446 			if (!new_prog)
18447 				return -ENOMEM;
18448 
18449 			delta    += cnt - 1;
18450 			env->prog = new_prog;
18451 			insn      = new_prog->insnsi + i + delta;
18452 			continue;
18453 		}
18454 
18455 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18456 		case PTR_TO_CTX:
18457 			if (!ops->convert_ctx_access)
18458 				continue;
18459 			convert_ctx_access = ops->convert_ctx_access;
18460 			break;
18461 		case PTR_TO_SOCKET:
18462 		case PTR_TO_SOCK_COMMON:
18463 			convert_ctx_access = bpf_sock_convert_ctx_access;
18464 			break;
18465 		case PTR_TO_TCP_SOCK:
18466 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18467 			break;
18468 		case PTR_TO_XDP_SOCK:
18469 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18470 			break;
18471 		case PTR_TO_BTF_ID:
18472 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18473 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18474 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18475 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18476 		 * any faults for loads into such types. BPF_WRITE is disallowed
18477 		 * for this case.
18478 		 */
18479 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18480 			if (type == BPF_READ) {
18481 				if (BPF_MODE(insn->code) == BPF_MEM)
18482 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18483 						     BPF_SIZE((insn)->code);
18484 				else
18485 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18486 						     BPF_SIZE((insn)->code);
18487 				env->prog->aux->num_exentries++;
18488 			}
18489 			continue;
18490 		default:
18491 			continue;
18492 		}
18493 
18494 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18495 		size = BPF_LDST_BYTES(insn);
18496 		mode = BPF_MODE(insn->code);
18497 
18498 		/* If the read access is a narrower load of the field,
18499 		 * convert to a 4/8-byte load, to minimum program type specific
18500 		 * convert_ctx_access changes. If conversion is successful,
18501 		 * we will apply proper mask to the result.
18502 		 */
18503 		is_narrower_load = size < ctx_field_size;
18504 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18505 		off = insn->off;
18506 		if (is_narrower_load) {
18507 			u8 size_code;
18508 
18509 			if (type == BPF_WRITE) {
18510 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18511 				return -EINVAL;
18512 			}
18513 
18514 			size_code = BPF_H;
18515 			if (ctx_field_size == 4)
18516 				size_code = BPF_W;
18517 			else if (ctx_field_size == 8)
18518 				size_code = BPF_DW;
18519 
18520 			insn->off = off & ~(size_default - 1);
18521 			insn->code = BPF_LDX | BPF_MEM | size_code;
18522 		}
18523 
18524 		target_size = 0;
18525 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18526 					 &target_size);
18527 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18528 		    (ctx_field_size && !target_size)) {
18529 			verbose(env, "bpf verifier is misconfigured\n");
18530 			return -EINVAL;
18531 		}
18532 
18533 		if (is_narrower_load && size < target_size) {
18534 			u8 shift = bpf_ctx_narrow_access_offset(
18535 				off, size, size_default) * 8;
18536 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18537 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18538 				return -EINVAL;
18539 			}
18540 			if (ctx_field_size <= 4) {
18541 				if (shift)
18542 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18543 									insn->dst_reg,
18544 									shift);
18545 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18546 								(1 << size * 8) - 1);
18547 			} else {
18548 				if (shift)
18549 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18550 									insn->dst_reg,
18551 									shift);
18552 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18553 								(1ULL << size * 8) - 1);
18554 			}
18555 		}
18556 		if (mode == BPF_MEMSX)
18557 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18558 						       insn->dst_reg, insn->dst_reg,
18559 						       size * 8, 0);
18560 
18561 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18562 		if (!new_prog)
18563 			return -ENOMEM;
18564 
18565 		delta += cnt - 1;
18566 
18567 		/* keep walking new program and skip insns we just inserted */
18568 		env->prog = new_prog;
18569 		insn      = new_prog->insnsi + i + delta;
18570 	}
18571 
18572 	return 0;
18573 }
18574 
18575 static int jit_subprogs(struct bpf_verifier_env *env)
18576 {
18577 	struct bpf_prog *prog = env->prog, **func, *tmp;
18578 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18579 	struct bpf_map *map_ptr;
18580 	struct bpf_insn *insn;
18581 	void *old_bpf_func;
18582 	int err, num_exentries;
18583 
18584 	if (env->subprog_cnt <= 1)
18585 		return 0;
18586 
18587 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18588 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18589 			continue;
18590 
18591 		/* Upon error here we cannot fall back to interpreter but
18592 		 * need a hard reject of the program. Thus -EFAULT is
18593 		 * propagated in any case.
18594 		 */
18595 		subprog = find_subprog(env, i + insn->imm + 1);
18596 		if (subprog < 0) {
18597 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18598 				  i + insn->imm + 1);
18599 			return -EFAULT;
18600 		}
18601 		/* temporarily remember subprog id inside insn instead of
18602 		 * aux_data, since next loop will split up all insns into funcs
18603 		 */
18604 		insn->off = subprog;
18605 		/* remember original imm in case JIT fails and fallback
18606 		 * to interpreter will be needed
18607 		 */
18608 		env->insn_aux_data[i].call_imm = insn->imm;
18609 		/* point imm to __bpf_call_base+1 from JITs point of view */
18610 		insn->imm = 1;
18611 		if (bpf_pseudo_func(insn))
18612 			/* jit (e.g. x86_64) may emit fewer instructions
18613 			 * if it learns a u32 imm is the same as a u64 imm.
18614 			 * Force a non zero here.
18615 			 */
18616 			insn[1].imm = 1;
18617 	}
18618 
18619 	err = bpf_prog_alloc_jited_linfo(prog);
18620 	if (err)
18621 		goto out_undo_insn;
18622 
18623 	err = -ENOMEM;
18624 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18625 	if (!func)
18626 		goto out_undo_insn;
18627 
18628 	for (i = 0; i < env->subprog_cnt; i++) {
18629 		subprog_start = subprog_end;
18630 		subprog_end = env->subprog_info[i + 1].start;
18631 
18632 		len = subprog_end - subprog_start;
18633 		/* bpf_prog_run() doesn't call subprogs directly,
18634 		 * hence main prog stats include the runtime of subprogs.
18635 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18636 		 * func[i]->stats will never be accessed and stays NULL
18637 		 */
18638 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18639 		if (!func[i])
18640 			goto out_free;
18641 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18642 		       len * sizeof(struct bpf_insn));
18643 		func[i]->type = prog->type;
18644 		func[i]->len = len;
18645 		if (bpf_prog_calc_tag(func[i]))
18646 			goto out_free;
18647 		func[i]->is_func = 1;
18648 		func[i]->aux->func_idx = i;
18649 		/* Below members will be freed only at prog->aux */
18650 		func[i]->aux->btf = prog->aux->btf;
18651 		func[i]->aux->func_info = prog->aux->func_info;
18652 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18653 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18654 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18655 
18656 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18657 			struct bpf_jit_poke_descriptor *poke;
18658 
18659 			poke = &prog->aux->poke_tab[j];
18660 			if (poke->insn_idx < subprog_end &&
18661 			    poke->insn_idx >= subprog_start)
18662 				poke->aux = func[i]->aux;
18663 		}
18664 
18665 		func[i]->aux->name[0] = 'F';
18666 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18667 		func[i]->jit_requested = 1;
18668 		func[i]->blinding_requested = prog->blinding_requested;
18669 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18670 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18671 		func[i]->aux->linfo = prog->aux->linfo;
18672 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18673 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18674 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18675 		num_exentries = 0;
18676 		insn = func[i]->insnsi;
18677 		for (j = 0; j < func[i]->len; j++, insn++) {
18678 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18679 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18680 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18681 				num_exentries++;
18682 		}
18683 		func[i]->aux->num_exentries = num_exentries;
18684 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18685 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18686 		if (!i)
18687 			func[i]->aux->exception_boundary = env->seen_exception;
18688 		func[i] = bpf_int_jit_compile(func[i]);
18689 		if (!func[i]->jited) {
18690 			err = -ENOTSUPP;
18691 			goto out_free;
18692 		}
18693 		cond_resched();
18694 	}
18695 
18696 	/* at this point all bpf functions were successfully JITed
18697 	 * now populate all bpf_calls with correct addresses and
18698 	 * run last pass of JIT
18699 	 */
18700 	for (i = 0; i < env->subprog_cnt; i++) {
18701 		insn = func[i]->insnsi;
18702 		for (j = 0; j < func[i]->len; j++, insn++) {
18703 			if (bpf_pseudo_func(insn)) {
18704 				subprog = insn->off;
18705 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18706 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18707 				continue;
18708 			}
18709 			if (!bpf_pseudo_call(insn))
18710 				continue;
18711 			subprog = insn->off;
18712 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18713 		}
18714 
18715 		/* we use the aux data to keep a list of the start addresses
18716 		 * of the JITed images for each function in the program
18717 		 *
18718 		 * for some architectures, such as powerpc64, the imm field
18719 		 * might not be large enough to hold the offset of the start
18720 		 * address of the callee's JITed image from __bpf_call_base
18721 		 *
18722 		 * in such cases, we can lookup the start address of a callee
18723 		 * by using its subprog id, available from the off field of
18724 		 * the call instruction, as an index for this list
18725 		 */
18726 		func[i]->aux->func = func;
18727 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18728 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18729 	}
18730 	for (i = 0; i < env->subprog_cnt; i++) {
18731 		old_bpf_func = func[i]->bpf_func;
18732 		tmp = bpf_int_jit_compile(func[i]);
18733 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18734 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18735 			err = -ENOTSUPP;
18736 			goto out_free;
18737 		}
18738 		cond_resched();
18739 	}
18740 
18741 	/* finally lock prog and jit images for all functions and
18742 	 * populate kallsysm. Begin at the first subprogram, since
18743 	 * bpf_prog_load will add the kallsyms for the main program.
18744 	 */
18745 	for (i = 1; i < env->subprog_cnt; i++) {
18746 		bpf_prog_lock_ro(func[i]);
18747 		bpf_prog_kallsyms_add(func[i]);
18748 	}
18749 
18750 	/* Last step: make now unused interpreter insns from main
18751 	 * prog consistent for later dump requests, so they can
18752 	 * later look the same as if they were interpreted only.
18753 	 */
18754 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18755 		if (bpf_pseudo_func(insn)) {
18756 			insn[0].imm = env->insn_aux_data[i].call_imm;
18757 			insn[1].imm = insn->off;
18758 			insn->off = 0;
18759 			continue;
18760 		}
18761 		if (!bpf_pseudo_call(insn))
18762 			continue;
18763 		insn->off = env->insn_aux_data[i].call_imm;
18764 		subprog = find_subprog(env, i + insn->off + 1);
18765 		insn->imm = subprog;
18766 	}
18767 
18768 	prog->jited = 1;
18769 	prog->bpf_func = func[0]->bpf_func;
18770 	prog->jited_len = func[0]->jited_len;
18771 	prog->aux->extable = func[0]->aux->extable;
18772 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18773 	prog->aux->func = func;
18774 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18775 	prog->aux->real_func_cnt = env->subprog_cnt;
18776 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18777 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18778 	bpf_prog_jit_attempt_done(prog);
18779 	return 0;
18780 out_free:
18781 	/* We failed JIT'ing, so at this point we need to unregister poke
18782 	 * descriptors from subprogs, so that kernel is not attempting to
18783 	 * patch it anymore as we're freeing the subprog JIT memory.
18784 	 */
18785 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18786 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18787 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18788 	}
18789 	/* At this point we're guaranteed that poke descriptors are not
18790 	 * live anymore. We can just unlink its descriptor table as it's
18791 	 * released with the main prog.
18792 	 */
18793 	for (i = 0; i < env->subprog_cnt; i++) {
18794 		if (!func[i])
18795 			continue;
18796 		func[i]->aux->poke_tab = NULL;
18797 		bpf_jit_free(func[i]);
18798 	}
18799 	kfree(func);
18800 out_undo_insn:
18801 	/* cleanup main prog to be interpreted */
18802 	prog->jit_requested = 0;
18803 	prog->blinding_requested = 0;
18804 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18805 		if (!bpf_pseudo_call(insn))
18806 			continue;
18807 		insn->off = 0;
18808 		insn->imm = env->insn_aux_data[i].call_imm;
18809 	}
18810 	bpf_prog_jit_attempt_done(prog);
18811 	return err;
18812 }
18813 
18814 static int fixup_call_args(struct bpf_verifier_env *env)
18815 {
18816 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18817 	struct bpf_prog *prog = env->prog;
18818 	struct bpf_insn *insn = prog->insnsi;
18819 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18820 	int i, depth;
18821 #endif
18822 	int err = 0;
18823 
18824 	if (env->prog->jit_requested &&
18825 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18826 		err = jit_subprogs(env);
18827 		if (err == 0)
18828 			return 0;
18829 		if (err == -EFAULT)
18830 			return err;
18831 	}
18832 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18833 	if (has_kfunc_call) {
18834 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18835 		return -EINVAL;
18836 	}
18837 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18838 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18839 		 * have to be rejected, since interpreter doesn't support them yet.
18840 		 */
18841 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18842 		return -EINVAL;
18843 	}
18844 	for (i = 0; i < prog->len; i++, insn++) {
18845 		if (bpf_pseudo_func(insn)) {
18846 			/* When JIT fails the progs with callback calls
18847 			 * have to be rejected, since interpreter doesn't support them yet.
18848 			 */
18849 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18850 			return -EINVAL;
18851 		}
18852 
18853 		if (!bpf_pseudo_call(insn))
18854 			continue;
18855 		depth = get_callee_stack_depth(env, insn, i);
18856 		if (depth < 0)
18857 			return depth;
18858 		bpf_patch_call_args(insn, depth);
18859 	}
18860 	err = 0;
18861 #endif
18862 	return err;
18863 }
18864 
18865 /* replace a generic kfunc with a specialized version if necessary */
18866 static void specialize_kfunc(struct bpf_verifier_env *env,
18867 			     u32 func_id, u16 offset, unsigned long *addr)
18868 {
18869 	struct bpf_prog *prog = env->prog;
18870 	bool seen_direct_write;
18871 	void *xdp_kfunc;
18872 	bool is_rdonly;
18873 
18874 	if (bpf_dev_bound_kfunc_id(func_id)) {
18875 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18876 		if (xdp_kfunc) {
18877 			*addr = (unsigned long)xdp_kfunc;
18878 			return;
18879 		}
18880 		/* fallback to default kfunc when not supported by netdev */
18881 	}
18882 
18883 	if (offset)
18884 		return;
18885 
18886 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18887 		seen_direct_write = env->seen_direct_write;
18888 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18889 
18890 		if (is_rdonly)
18891 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18892 
18893 		/* restore env->seen_direct_write to its original value, since
18894 		 * may_access_direct_pkt_data mutates it
18895 		 */
18896 		env->seen_direct_write = seen_direct_write;
18897 	}
18898 }
18899 
18900 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18901 					    u16 struct_meta_reg,
18902 					    u16 node_offset_reg,
18903 					    struct bpf_insn *insn,
18904 					    struct bpf_insn *insn_buf,
18905 					    int *cnt)
18906 {
18907 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18908 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18909 
18910 	insn_buf[0] = addr[0];
18911 	insn_buf[1] = addr[1];
18912 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18913 	insn_buf[3] = *insn;
18914 	*cnt = 4;
18915 }
18916 
18917 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18918 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18919 {
18920 	const struct bpf_kfunc_desc *desc;
18921 
18922 	if (!insn->imm) {
18923 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18924 		return -EINVAL;
18925 	}
18926 
18927 	*cnt = 0;
18928 
18929 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18930 	 * __bpf_call_base, unless the JIT needs to call functions that are
18931 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18932 	 */
18933 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18934 	if (!desc) {
18935 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18936 			insn->imm);
18937 		return -EFAULT;
18938 	}
18939 
18940 	if (!bpf_jit_supports_far_kfunc_call())
18941 		insn->imm = BPF_CALL_IMM(desc->addr);
18942 	if (insn->off)
18943 		return 0;
18944 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
18945 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
18946 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18947 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18948 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18949 
18950 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
18951 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18952 				insn_idx);
18953 			return -EFAULT;
18954 		}
18955 
18956 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18957 		insn_buf[1] = addr[0];
18958 		insn_buf[2] = addr[1];
18959 		insn_buf[3] = *insn;
18960 		*cnt = 4;
18961 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18962 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
18963 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18964 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18965 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18966 
18967 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
18968 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
18969 				insn_idx);
18970 			return -EFAULT;
18971 		}
18972 
18973 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18974 		    !kptr_struct_meta) {
18975 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18976 				insn_idx);
18977 			return -EFAULT;
18978 		}
18979 
18980 		insn_buf[0] = addr[0];
18981 		insn_buf[1] = addr[1];
18982 		insn_buf[2] = *insn;
18983 		*cnt = 3;
18984 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18985 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18986 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18987 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18988 		int struct_meta_reg = BPF_REG_3;
18989 		int node_offset_reg = BPF_REG_4;
18990 
18991 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18992 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18993 			struct_meta_reg = BPF_REG_4;
18994 			node_offset_reg = BPF_REG_5;
18995 		}
18996 
18997 		if (!kptr_struct_meta) {
18998 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18999 				insn_idx);
19000 			return -EFAULT;
19001 		}
19002 
19003 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19004 						node_offset_reg, insn, insn_buf, cnt);
19005 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19006 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19007 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19008 		*cnt = 1;
19009 	}
19010 	return 0;
19011 }
19012 
19013 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19014 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19015 {
19016 	struct bpf_subprog_info *info = env->subprog_info;
19017 	int cnt = env->subprog_cnt;
19018 	struct bpf_prog *prog;
19019 
19020 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19021 	if (env->hidden_subprog_cnt) {
19022 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19023 		return -EFAULT;
19024 	}
19025 	/* We're not patching any existing instruction, just appending the new
19026 	 * ones for the hidden subprog. Hence all of the adjustment operations
19027 	 * in bpf_patch_insn_data are no-ops.
19028 	 */
19029 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19030 	if (!prog)
19031 		return -ENOMEM;
19032 	env->prog = prog;
19033 	info[cnt + 1].start = info[cnt].start;
19034 	info[cnt].start = prog->len - len + 1;
19035 	env->subprog_cnt++;
19036 	env->hidden_subprog_cnt++;
19037 	return 0;
19038 }
19039 
19040 /* Do various post-verification rewrites in a single program pass.
19041  * These rewrites simplify JIT and interpreter implementations.
19042  */
19043 static int do_misc_fixups(struct bpf_verifier_env *env)
19044 {
19045 	struct bpf_prog *prog = env->prog;
19046 	enum bpf_attach_type eatype = prog->expected_attach_type;
19047 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19048 	struct bpf_insn *insn = prog->insnsi;
19049 	const struct bpf_func_proto *fn;
19050 	const int insn_cnt = prog->len;
19051 	const struct bpf_map_ops *ops;
19052 	struct bpf_insn_aux_data *aux;
19053 	struct bpf_insn insn_buf[16];
19054 	struct bpf_prog *new_prog;
19055 	struct bpf_map *map_ptr;
19056 	int i, ret, cnt, delta = 0;
19057 
19058 	if (env->seen_exception && !env->exception_callback_subprog) {
19059 		struct bpf_insn patch[] = {
19060 			env->prog->insnsi[insn_cnt - 1],
19061 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19062 			BPF_EXIT_INSN(),
19063 		};
19064 
19065 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19066 		if (ret < 0)
19067 			return ret;
19068 		prog = env->prog;
19069 		insn = prog->insnsi;
19070 
19071 		env->exception_callback_subprog = env->subprog_cnt - 1;
19072 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19073 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
19074 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19075 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19076 	}
19077 
19078 	for (i = 0; i < insn_cnt; i++, insn++) {
19079 		/* Make divide-by-zero exceptions impossible. */
19080 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19081 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19082 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19083 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19084 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19085 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19086 			struct bpf_insn *patchlet;
19087 			struct bpf_insn chk_and_div[] = {
19088 				/* [R,W]x div 0 -> 0 */
19089 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19090 					     BPF_JNE | BPF_K, insn->src_reg,
19091 					     0, 2, 0),
19092 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19093 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19094 				*insn,
19095 			};
19096 			struct bpf_insn chk_and_mod[] = {
19097 				/* [R,W]x mod 0 -> [R,W]x */
19098 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19099 					     BPF_JEQ | BPF_K, insn->src_reg,
19100 					     0, 1 + (is64 ? 0 : 1), 0),
19101 				*insn,
19102 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19103 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19104 			};
19105 
19106 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19107 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19108 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19109 
19110 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19111 			if (!new_prog)
19112 				return -ENOMEM;
19113 
19114 			delta    += cnt - 1;
19115 			env->prog = prog = new_prog;
19116 			insn      = new_prog->insnsi + i + delta;
19117 			continue;
19118 		}
19119 
19120 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19121 		if (BPF_CLASS(insn->code) == BPF_LD &&
19122 		    (BPF_MODE(insn->code) == BPF_ABS ||
19123 		     BPF_MODE(insn->code) == BPF_IND)) {
19124 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19125 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19126 				verbose(env, "bpf verifier is misconfigured\n");
19127 				return -EINVAL;
19128 			}
19129 
19130 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19131 			if (!new_prog)
19132 				return -ENOMEM;
19133 
19134 			delta    += cnt - 1;
19135 			env->prog = prog = new_prog;
19136 			insn      = new_prog->insnsi + i + delta;
19137 			continue;
19138 		}
19139 
19140 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19141 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19142 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19143 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19144 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19145 			struct bpf_insn *patch = &insn_buf[0];
19146 			bool issrc, isneg, isimm;
19147 			u32 off_reg;
19148 
19149 			aux = &env->insn_aux_data[i + delta];
19150 			if (!aux->alu_state ||
19151 			    aux->alu_state == BPF_ALU_NON_POINTER)
19152 				continue;
19153 
19154 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19155 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19156 				BPF_ALU_SANITIZE_SRC;
19157 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19158 
19159 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19160 			if (isimm) {
19161 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19162 			} else {
19163 				if (isneg)
19164 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19165 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19166 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19167 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19168 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19169 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19170 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19171 			}
19172 			if (!issrc)
19173 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19174 			insn->src_reg = BPF_REG_AX;
19175 			if (isneg)
19176 				insn->code = insn->code == code_add ?
19177 					     code_sub : code_add;
19178 			*patch++ = *insn;
19179 			if (issrc && isneg && !isimm)
19180 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19181 			cnt = patch - insn_buf;
19182 
19183 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19184 			if (!new_prog)
19185 				return -ENOMEM;
19186 
19187 			delta    += cnt - 1;
19188 			env->prog = prog = new_prog;
19189 			insn      = new_prog->insnsi + i + delta;
19190 			continue;
19191 		}
19192 
19193 		if (insn->code != (BPF_JMP | BPF_CALL))
19194 			continue;
19195 		if (insn->src_reg == BPF_PSEUDO_CALL)
19196 			continue;
19197 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19198 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19199 			if (ret)
19200 				return ret;
19201 			if (cnt == 0)
19202 				continue;
19203 
19204 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19205 			if (!new_prog)
19206 				return -ENOMEM;
19207 
19208 			delta	 += cnt - 1;
19209 			env->prog = prog = new_prog;
19210 			insn	  = new_prog->insnsi + i + delta;
19211 			continue;
19212 		}
19213 
19214 		if (insn->imm == BPF_FUNC_get_route_realm)
19215 			prog->dst_needed = 1;
19216 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19217 			bpf_user_rnd_init_once();
19218 		if (insn->imm == BPF_FUNC_override_return)
19219 			prog->kprobe_override = 1;
19220 		if (insn->imm == BPF_FUNC_tail_call) {
19221 			/* If we tail call into other programs, we
19222 			 * cannot make any assumptions since they can
19223 			 * be replaced dynamically during runtime in
19224 			 * the program array.
19225 			 */
19226 			prog->cb_access = 1;
19227 			if (!allow_tail_call_in_subprogs(env))
19228 				prog->aux->stack_depth = MAX_BPF_STACK;
19229 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19230 
19231 			/* mark bpf_tail_call as different opcode to avoid
19232 			 * conditional branch in the interpreter for every normal
19233 			 * call and to prevent accidental JITing by JIT compiler
19234 			 * that doesn't support bpf_tail_call yet
19235 			 */
19236 			insn->imm = 0;
19237 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19238 
19239 			aux = &env->insn_aux_data[i + delta];
19240 			if (env->bpf_capable && !prog->blinding_requested &&
19241 			    prog->jit_requested &&
19242 			    !bpf_map_key_poisoned(aux) &&
19243 			    !bpf_map_ptr_poisoned(aux) &&
19244 			    !bpf_map_ptr_unpriv(aux)) {
19245 				struct bpf_jit_poke_descriptor desc = {
19246 					.reason = BPF_POKE_REASON_TAIL_CALL,
19247 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19248 					.tail_call.key = bpf_map_key_immediate(aux),
19249 					.insn_idx = i + delta,
19250 				};
19251 
19252 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19253 				if (ret < 0) {
19254 					verbose(env, "adding tail call poke descriptor failed\n");
19255 					return ret;
19256 				}
19257 
19258 				insn->imm = ret + 1;
19259 				continue;
19260 			}
19261 
19262 			if (!bpf_map_ptr_unpriv(aux))
19263 				continue;
19264 
19265 			/* instead of changing every JIT dealing with tail_call
19266 			 * emit two extra insns:
19267 			 * if (index >= max_entries) goto out;
19268 			 * index &= array->index_mask;
19269 			 * to avoid out-of-bounds cpu speculation
19270 			 */
19271 			if (bpf_map_ptr_poisoned(aux)) {
19272 				verbose(env, "tail_call abusing map_ptr\n");
19273 				return -EINVAL;
19274 			}
19275 
19276 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19277 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19278 						  map_ptr->max_entries, 2);
19279 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19280 						    container_of(map_ptr,
19281 								 struct bpf_array,
19282 								 map)->index_mask);
19283 			insn_buf[2] = *insn;
19284 			cnt = 3;
19285 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19286 			if (!new_prog)
19287 				return -ENOMEM;
19288 
19289 			delta    += cnt - 1;
19290 			env->prog = prog = new_prog;
19291 			insn      = new_prog->insnsi + i + delta;
19292 			continue;
19293 		}
19294 
19295 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19296 			/* The verifier will process callback_fn as many times as necessary
19297 			 * with different maps and the register states prepared by
19298 			 * set_timer_callback_state will be accurate.
19299 			 *
19300 			 * The following use case is valid:
19301 			 *   map1 is shared by prog1, prog2, prog3.
19302 			 *   prog1 calls bpf_timer_init for some map1 elements
19303 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19304 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19305 			 *   prog3 calls bpf_timer_start for some map1 elements.
19306 			 *     Those that were not both bpf_timer_init-ed and
19307 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19308 			 */
19309 			struct bpf_insn ld_addrs[2] = {
19310 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19311 			};
19312 
19313 			insn_buf[0] = ld_addrs[0];
19314 			insn_buf[1] = ld_addrs[1];
19315 			insn_buf[2] = *insn;
19316 			cnt = 3;
19317 
19318 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19319 			if (!new_prog)
19320 				return -ENOMEM;
19321 
19322 			delta    += cnt - 1;
19323 			env->prog = prog = new_prog;
19324 			insn      = new_prog->insnsi + i + delta;
19325 			goto patch_call_imm;
19326 		}
19327 
19328 		if (is_storage_get_function(insn->imm)) {
19329 			if (!env->prog->aux->sleepable ||
19330 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19331 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19332 			else
19333 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19334 			insn_buf[1] = *insn;
19335 			cnt = 2;
19336 
19337 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19338 			if (!new_prog)
19339 				return -ENOMEM;
19340 
19341 			delta += cnt - 1;
19342 			env->prog = prog = new_prog;
19343 			insn = new_prog->insnsi + i + delta;
19344 			goto patch_call_imm;
19345 		}
19346 
19347 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19348 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19349 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19350 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19351 			 */
19352 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19353 			insn_buf[1] = *insn;
19354 			cnt = 2;
19355 
19356 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19357 			if (!new_prog)
19358 				return -ENOMEM;
19359 
19360 			delta += cnt - 1;
19361 			env->prog = prog = new_prog;
19362 			insn = new_prog->insnsi + i + delta;
19363 			goto patch_call_imm;
19364 		}
19365 
19366 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19367 		 * and other inlining handlers are currently limited to 64 bit
19368 		 * only.
19369 		 */
19370 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19371 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19372 		     insn->imm == BPF_FUNC_map_update_elem ||
19373 		     insn->imm == BPF_FUNC_map_delete_elem ||
19374 		     insn->imm == BPF_FUNC_map_push_elem   ||
19375 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19376 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19377 		     insn->imm == BPF_FUNC_redirect_map    ||
19378 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19379 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19380 			aux = &env->insn_aux_data[i + delta];
19381 			if (bpf_map_ptr_poisoned(aux))
19382 				goto patch_call_imm;
19383 
19384 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19385 			ops = map_ptr->ops;
19386 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19387 			    ops->map_gen_lookup) {
19388 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19389 				if (cnt == -EOPNOTSUPP)
19390 					goto patch_map_ops_generic;
19391 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19392 					verbose(env, "bpf verifier is misconfigured\n");
19393 					return -EINVAL;
19394 				}
19395 
19396 				new_prog = bpf_patch_insn_data(env, i + delta,
19397 							       insn_buf, cnt);
19398 				if (!new_prog)
19399 					return -ENOMEM;
19400 
19401 				delta    += cnt - 1;
19402 				env->prog = prog = new_prog;
19403 				insn      = new_prog->insnsi + i + delta;
19404 				continue;
19405 			}
19406 
19407 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19408 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19409 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19410 				     (long (*)(struct bpf_map *map, void *key))NULL));
19411 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19412 				     (long (*)(struct bpf_map *map, void *key, void *value,
19413 					      u64 flags))NULL));
19414 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19415 				     (long (*)(struct bpf_map *map, void *value,
19416 					      u64 flags))NULL));
19417 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19418 				     (long (*)(struct bpf_map *map, void *value))NULL));
19419 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19420 				     (long (*)(struct bpf_map *map, void *value))NULL));
19421 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19422 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19423 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19424 				     (long (*)(struct bpf_map *map,
19425 					      bpf_callback_t callback_fn,
19426 					      void *callback_ctx,
19427 					      u64 flags))NULL));
19428 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19429 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19430 
19431 patch_map_ops_generic:
19432 			switch (insn->imm) {
19433 			case BPF_FUNC_map_lookup_elem:
19434 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19435 				continue;
19436 			case BPF_FUNC_map_update_elem:
19437 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19438 				continue;
19439 			case BPF_FUNC_map_delete_elem:
19440 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19441 				continue;
19442 			case BPF_FUNC_map_push_elem:
19443 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19444 				continue;
19445 			case BPF_FUNC_map_pop_elem:
19446 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19447 				continue;
19448 			case BPF_FUNC_map_peek_elem:
19449 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19450 				continue;
19451 			case BPF_FUNC_redirect_map:
19452 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19453 				continue;
19454 			case BPF_FUNC_for_each_map_elem:
19455 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19456 				continue;
19457 			case BPF_FUNC_map_lookup_percpu_elem:
19458 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19459 				continue;
19460 			}
19461 
19462 			goto patch_call_imm;
19463 		}
19464 
19465 		/* Implement bpf_jiffies64 inline. */
19466 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19467 		    insn->imm == BPF_FUNC_jiffies64) {
19468 			struct bpf_insn ld_jiffies_addr[2] = {
19469 				BPF_LD_IMM64(BPF_REG_0,
19470 					     (unsigned long)&jiffies),
19471 			};
19472 
19473 			insn_buf[0] = ld_jiffies_addr[0];
19474 			insn_buf[1] = ld_jiffies_addr[1];
19475 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19476 						  BPF_REG_0, 0);
19477 			cnt = 3;
19478 
19479 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19480 						       cnt);
19481 			if (!new_prog)
19482 				return -ENOMEM;
19483 
19484 			delta    += cnt - 1;
19485 			env->prog = prog = new_prog;
19486 			insn      = new_prog->insnsi + i + delta;
19487 			continue;
19488 		}
19489 
19490 		/* Implement bpf_get_func_arg inline. */
19491 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19492 		    insn->imm == BPF_FUNC_get_func_arg) {
19493 			/* Load nr_args from ctx - 8 */
19494 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19495 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19496 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19497 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19498 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19499 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19500 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19501 			insn_buf[7] = BPF_JMP_A(1);
19502 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19503 			cnt = 9;
19504 
19505 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19506 			if (!new_prog)
19507 				return -ENOMEM;
19508 
19509 			delta    += cnt - 1;
19510 			env->prog = prog = new_prog;
19511 			insn      = new_prog->insnsi + i + delta;
19512 			continue;
19513 		}
19514 
19515 		/* Implement bpf_get_func_ret inline. */
19516 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19517 		    insn->imm == BPF_FUNC_get_func_ret) {
19518 			if (eatype == BPF_TRACE_FEXIT ||
19519 			    eatype == BPF_MODIFY_RETURN) {
19520 				/* Load nr_args from ctx - 8 */
19521 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19522 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19523 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19524 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19525 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19526 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19527 				cnt = 6;
19528 			} else {
19529 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19530 				cnt = 1;
19531 			}
19532 
19533 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19534 			if (!new_prog)
19535 				return -ENOMEM;
19536 
19537 			delta    += cnt - 1;
19538 			env->prog = prog = new_prog;
19539 			insn      = new_prog->insnsi + i + delta;
19540 			continue;
19541 		}
19542 
19543 		/* Implement get_func_arg_cnt inline. */
19544 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19545 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19546 			/* Load nr_args from ctx - 8 */
19547 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19548 
19549 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19550 			if (!new_prog)
19551 				return -ENOMEM;
19552 
19553 			env->prog = prog = new_prog;
19554 			insn      = new_prog->insnsi + i + delta;
19555 			continue;
19556 		}
19557 
19558 		/* Implement bpf_get_func_ip inline. */
19559 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19560 		    insn->imm == BPF_FUNC_get_func_ip) {
19561 			/* Load IP address from ctx - 16 */
19562 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19563 
19564 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19565 			if (!new_prog)
19566 				return -ENOMEM;
19567 
19568 			env->prog = prog = new_prog;
19569 			insn      = new_prog->insnsi + i + delta;
19570 			continue;
19571 		}
19572 
19573 patch_call_imm:
19574 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19575 		/* all functions that have prototype and verifier allowed
19576 		 * programs to call them, must be real in-kernel functions
19577 		 */
19578 		if (!fn->func) {
19579 			verbose(env,
19580 				"kernel subsystem misconfigured func %s#%d\n",
19581 				func_id_name(insn->imm), insn->imm);
19582 			return -EFAULT;
19583 		}
19584 		insn->imm = fn->func - __bpf_call_base;
19585 	}
19586 
19587 	/* Since poke tab is now finalized, publish aux to tracker. */
19588 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19589 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19590 		if (!map_ptr->ops->map_poke_track ||
19591 		    !map_ptr->ops->map_poke_untrack ||
19592 		    !map_ptr->ops->map_poke_run) {
19593 			verbose(env, "bpf verifier is misconfigured\n");
19594 			return -EINVAL;
19595 		}
19596 
19597 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19598 		if (ret < 0) {
19599 			verbose(env, "tracking tail call prog failed\n");
19600 			return ret;
19601 		}
19602 	}
19603 
19604 	sort_kfunc_descs_by_imm_off(env->prog);
19605 
19606 	return 0;
19607 }
19608 
19609 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19610 					int position,
19611 					s32 stack_base,
19612 					u32 callback_subprogno,
19613 					u32 *cnt)
19614 {
19615 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19616 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19617 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19618 	int reg_loop_max = BPF_REG_6;
19619 	int reg_loop_cnt = BPF_REG_7;
19620 	int reg_loop_ctx = BPF_REG_8;
19621 
19622 	struct bpf_prog *new_prog;
19623 	u32 callback_start;
19624 	u32 call_insn_offset;
19625 	s32 callback_offset;
19626 
19627 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19628 	 * be careful to modify this code in sync.
19629 	 */
19630 	struct bpf_insn insn_buf[] = {
19631 		/* Return error and jump to the end of the patch if
19632 		 * expected number of iterations is too big.
19633 		 */
19634 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19635 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19636 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19637 		/* spill R6, R7, R8 to use these as loop vars */
19638 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19639 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19640 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19641 		/* initialize loop vars */
19642 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19643 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19644 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19645 		/* loop header,
19646 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19647 		 */
19648 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19649 		/* callback call,
19650 		 * correct callback offset would be set after patching
19651 		 */
19652 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19653 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19654 		BPF_CALL_REL(0),
19655 		/* increment loop counter */
19656 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19657 		/* jump to loop header if callback returned 0 */
19658 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19659 		/* return value of bpf_loop,
19660 		 * set R0 to the number of iterations
19661 		 */
19662 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19663 		/* restore original values of R6, R7, R8 */
19664 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19665 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19666 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19667 	};
19668 
19669 	*cnt = ARRAY_SIZE(insn_buf);
19670 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19671 	if (!new_prog)
19672 		return new_prog;
19673 
19674 	/* callback start is known only after patching */
19675 	callback_start = env->subprog_info[callback_subprogno].start;
19676 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19677 	call_insn_offset = position + 12;
19678 	callback_offset = callback_start - call_insn_offset - 1;
19679 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19680 
19681 	return new_prog;
19682 }
19683 
19684 static bool is_bpf_loop_call(struct bpf_insn *insn)
19685 {
19686 	return insn->code == (BPF_JMP | BPF_CALL) &&
19687 		insn->src_reg == 0 &&
19688 		insn->imm == BPF_FUNC_loop;
19689 }
19690 
19691 /* For all sub-programs in the program (including main) check
19692  * insn_aux_data to see if there are bpf_loop calls that require
19693  * inlining. If such calls are found the calls are replaced with a
19694  * sequence of instructions produced by `inline_bpf_loop` function and
19695  * subprog stack_depth is increased by the size of 3 registers.
19696  * This stack space is used to spill values of the R6, R7, R8.  These
19697  * registers are used to store the loop bound, counter and context
19698  * variables.
19699  */
19700 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19701 {
19702 	struct bpf_subprog_info *subprogs = env->subprog_info;
19703 	int i, cur_subprog = 0, cnt, delta = 0;
19704 	struct bpf_insn *insn = env->prog->insnsi;
19705 	int insn_cnt = env->prog->len;
19706 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19707 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19708 	u16 stack_depth_extra = 0;
19709 
19710 	for (i = 0; i < insn_cnt; i++, insn++) {
19711 		struct bpf_loop_inline_state *inline_state =
19712 			&env->insn_aux_data[i + delta].loop_inline_state;
19713 
19714 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19715 			struct bpf_prog *new_prog;
19716 
19717 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19718 			new_prog = inline_bpf_loop(env,
19719 						   i + delta,
19720 						   -(stack_depth + stack_depth_extra),
19721 						   inline_state->callback_subprogno,
19722 						   &cnt);
19723 			if (!new_prog)
19724 				return -ENOMEM;
19725 
19726 			delta     += cnt - 1;
19727 			env->prog  = new_prog;
19728 			insn       = new_prog->insnsi + i + delta;
19729 		}
19730 
19731 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19732 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19733 			cur_subprog++;
19734 			stack_depth = subprogs[cur_subprog].stack_depth;
19735 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19736 			stack_depth_extra = 0;
19737 		}
19738 	}
19739 
19740 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19741 
19742 	return 0;
19743 }
19744 
19745 static void free_states(struct bpf_verifier_env *env)
19746 {
19747 	struct bpf_verifier_state_list *sl, *sln;
19748 	int i;
19749 
19750 	sl = env->free_list;
19751 	while (sl) {
19752 		sln = sl->next;
19753 		free_verifier_state(&sl->state, false);
19754 		kfree(sl);
19755 		sl = sln;
19756 	}
19757 	env->free_list = NULL;
19758 
19759 	if (!env->explored_states)
19760 		return;
19761 
19762 	for (i = 0; i < state_htab_size(env); i++) {
19763 		sl = env->explored_states[i];
19764 
19765 		while (sl) {
19766 			sln = sl->next;
19767 			free_verifier_state(&sl->state, false);
19768 			kfree(sl);
19769 			sl = sln;
19770 		}
19771 		env->explored_states[i] = NULL;
19772 	}
19773 }
19774 
19775 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19776 {
19777 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19778 	struct bpf_verifier_state *state;
19779 	struct bpf_reg_state *regs;
19780 	int ret, i;
19781 
19782 	env->prev_linfo = NULL;
19783 	env->pass_cnt++;
19784 
19785 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19786 	if (!state)
19787 		return -ENOMEM;
19788 	state->curframe = 0;
19789 	state->speculative = false;
19790 	state->branches = 1;
19791 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19792 	if (!state->frame[0]) {
19793 		kfree(state);
19794 		return -ENOMEM;
19795 	}
19796 	env->cur_state = state;
19797 	init_func_state(env, state->frame[0],
19798 			BPF_MAIN_FUNC /* callsite */,
19799 			0 /* frameno */,
19800 			subprog);
19801 	state->first_insn_idx = env->subprog_info[subprog].start;
19802 	state->last_insn_idx = -1;
19803 
19804 	regs = state->frame[state->curframe]->regs;
19805 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19806 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19807 		if (ret)
19808 			goto out;
19809 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19810 			if (regs[i].type == PTR_TO_CTX)
19811 				mark_reg_known_zero(env, regs, i);
19812 			else if (regs[i].type == SCALAR_VALUE)
19813 				mark_reg_unknown(env, regs, i);
19814 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19815 				const u32 mem_size = regs[i].mem_size;
19816 
19817 				mark_reg_known_zero(env, regs, i);
19818 				regs[i].mem_size = mem_size;
19819 				regs[i].id = ++env->id_gen;
19820 			}
19821 		}
19822 		if (is_ex_cb) {
19823 			state->frame[0]->in_exception_callback_fn = true;
19824 			env->subprog_info[subprog].is_cb = true;
19825 			env->subprog_info[subprog].is_async_cb = true;
19826 			env->subprog_info[subprog].is_exception_cb = true;
19827 		}
19828 	} else {
19829 		/* 1st arg to a function */
19830 		regs[BPF_REG_1].type = PTR_TO_CTX;
19831 		mark_reg_known_zero(env, regs, BPF_REG_1);
19832 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19833 		if (ret == -EFAULT)
19834 			/* unlikely verifier bug. abort.
19835 			 * ret == 0 and ret < 0 are sadly acceptable for
19836 			 * main() function due to backward compatibility.
19837 			 * Like socket filter program may be written as:
19838 			 * int bpf_prog(struct pt_regs *ctx)
19839 			 * and never dereference that ctx in the program.
19840 			 * 'struct pt_regs' is a type mismatch for socket
19841 			 * filter that should be using 'struct __sk_buff'.
19842 			 */
19843 			goto out;
19844 	}
19845 
19846 	ret = do_check(env);
19847 out:
19848 	/* check for NULL is necessary, since cur_state can be freed inside
19849 	 * do_check() under memory pressure.
19850 	 */
19851 	if (env->cur_state) {
19852 		free_verifier_state(env->cur_state, true);
19853 		env->cur_state = NULL;
19854 	}
19855 	while (!pop_stack(env, NULL, NULL, false));
19856 	if (!ret && pop_log)
19857 		bpf_vlog_reset(&env->log, 0);
19858 	free_states(env);
19859 	return ret;
19860 }
19861 
19862 /* Verify all global functions in a BPF program one by one based on their BTF.
19863  * All global functions must pass verification. Otherwise the whole program is rejected.
19864  * Consider:
19865  * int bar(int);
19866  * int foo(int f)
19867  * {
19868  *    return bar(f);
19869  * }
19870  * int bar(int b)
19871  * {
19872  *    ...
19873  * }
19874  * foo() will be verified first for R1=any_scalar_value. During verification it
19875  * will be assumed that bar() already verified successfully and call to bar()
19876  * from foo() will be checked for type match only. Later bar() will be verified
19877  * independently to check that it's safe for R1=any_scalar_value.
19878  */
19879 static int do_check_subprogs(struct bpf_verifier_env *env)
19880 {
19881 	struct bpf_prog_aux *aux = env->prog->aux;
19882 	int i, ret;
19883 
19884 	if (!aux->func_info)
19885 		return 0;
19886 
19887 	for (i = 1; i < env->subprog_cnt; i++) {
19888 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19889 			continue;
19890 		env->insn_idx = env->subprog_info[i].start;
19891 		WARN_ON_ONCE(env->insn_idx == 0);
19892 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
19893 		if (ret) {
19894 			return ret;
19895 		} else if (env->log.level & BPF_LOG_LEVEL) {
19896 			verbose(env,
19897 				"Func#%d is safe for any args that match its prototype\n",
19898 				i);
19899 		}
19900 	}
19901 	return 0;
19902 }
19903 
19904 static int do_check_main(struct bpf_verifier_env *env)
19905 {
19906 	int ret;
19907 
19908 	env->insn_idx = 0;
19909 	ret = do_check_common(env, 0, false);
19910 	if (!ret)
19911 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19912 	return ret;
19913 }
19914 
19915 
19916 static void print_verification_stats(struct bpf_verifier_env *env)
19917 {
19918 	int i;
19919 
19920 	if (env->log.level & BPF_LOG_STATS) {
19921 		verbose(env, "verification time %lld usec\n",
19922 			div_u64(env->verification_time, 1000));
19923 		verbose(env, "stack depth ");
19924 		for (i = 0; i < env->subprog_cnt; i++) {
19925 			u32 depth = env->subprog_info[i].stack_depth;
19926 
19927 			verbose(env, "%d", depth);
19928 			if (i + 1 < env->subprog_cnt)
19929 				verbose(env, "+");
19930 		}
19931 		verbose(env, "\n");
19932 	}
19933 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19934 		"total_states %d peak_states %d mark_read %d\n",
19935 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19936 		env->max_states_per_insn, env->total_states,
19937 		env->peak_states, env->longest_mark_read_walk);
19938 }
19939 
19940 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19941 {
19942 	const struct btf_type *t, *func_proto;
19943 	const struct bpf_struct_ops *st_ops;
19944 	const struct btf_member *member;
19945 	struct bpf_prog *prog = env->prog;
19946 	u32 btf_id, member_idx;
19947 	const char *mname;
19948 
19949 	if (!prog->gpl_compatible) {
19950 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19951 		return -EINVAL;
19952 	}
19953 
19954 	btf_id = prog->aux->attach_btf_id;
19955 	st_ops = bpf_struct_ops_find(btf_id);
19956 	if (!st_ops) {
19957 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19958 			btf_id);
19959 		return -ENOTSUPP;
19960 	}
19961 
19962 	t = st_ops->type;
19963 	member_idx = prog->expected_attach_type;
19964 	if (member_idx >= btf_type_vlen(t)) {
19965 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19966 			member_idx, st_ops->name);
19967 		return -EINVAL;
19968 	}
19969 
19970 	member = &btf_type_member(t)[member_idx];
19971 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19972 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19973 					       NULL);
19974 	if (!func_proto) {
19975 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19976 			mname, member_idx, st_ops->name);
19977 		return -EINVAL;
19978 	}
19979 
19980 	if (st_ops->check_member) {
19981 		int err = st_ops->check_member(t, member, prog);
19982 
19983 		if (err) {
19984 			verbose(env, "attach to unsupported member %s of struct %s\n",
19985 				mname, st_ops->name);
19986 			return err;
19987 		}
19988 	}
19989 
19990 	prog->aux->attach_func_proto = func_proto;
19991 	prog->aux->attach_func_name = mname;
19992 	env->ops = st_ops->verifier_ops;
19993 
19994 	return 0;
19995 }
19996 #define SECURITY_PREFIX "security_"
19997 
19998 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19999 {
20000 	if (within_error_injection_list(addr) ||
20001 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20002 		return 0;
20003 
20004 	return -EINVAL;
20005 }
20006 
20007 /* list of non-sleepable functions that are otherwise on
20008  * ALLOW_ERROR_INJECTION list
20009  */
20010 BTF_SET_START(btf_non_sleepable_error_inject)
20011 /* Three functions below can be called from sleepable and non-sleepable context.
20012  * Assume non-sleepable from bpf safety point of view.
20013  */
20014 BTF_ID(func, __filemap_add_folio)
20015 BTF_ID(func, should_fail_alloc_page)
20016 BTF_ID(func, should_failslab)
20017 BTF_SET_END(btf_non_sleepable_error_inject)
20018 
20019 static int check_non_sleepable_error_inject(u32 btf_id)
20020 {
20021 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20022 }
20023 
20024 int bpf_check_attach_target(struct bpf_verifier_log *log,
20025 			    const struct bpf_prog *prog,
20026 			    const struct bpf_prog *tgt_prog,
20027 			    u32 btf_id,
20028 			    struct bpf_attach_target_info *tgt_info)
20029 {
20030 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20031 	const char prefix[] = "btf_trace_";
20032 	int ret = 0, subprog = -1, i;
20033 	const struct btf_type *t;
20034 	bool conservative = true;
20035 	const char *tname;
20036 	struct btf *btf;
20037 	long addr = 0;
20038 	struct module *mod = NULL;
20039 
20040 	if (!btf_id) {
20041 		bpf_log(log, "Tracing programs must provide btf_id\n");
20042 		return -EINVAL;
20043 	}
20044 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20045 	if (!btf) {
20046 		bpf_log(log,
20047 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20048 		return -EINVAL;
20049 	}
20050 	t = btf_type_by_id(btf, btf_id);
20051 	if (!t) {
20052 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20053 		return -EINVAL;
20054 	}
20055 	tname = btf_name_by_offset(btf, t->name_off);
20056 	if (!tname) {
20057 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20058 		return -EINVAL;
20059 	}
20060 	if (tgt_prog) {
20061 		struct bpf_prog_aux *aux = tgt_prog->aux;
20062 
20063 		if (bpf_prog_is_dev_bound(prog->aux) &&
20064 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20065 			bpf_log(log, "Target program bound device mismatch");
20066 			return -EINVAL;
20067 		}
20068 
20069 		for (i = 0; i < aux->func_info_cnt; i++)
20070 			if (aux->func_info[i].type_id == btf_id) {
20071 				subprog = i;
20072 				break;
20073 			}
20074 		if (subprog == -1) {
20075 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20076 			return -EINVAL;
20077 		}
20078 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20079 			bpf_log(log,
20080 				"%s programs cannot attach to exception callback\n",
20081 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20082 			return -EINVAL;
20083 		}
20084 		conservative = aux->func_info_aux[subprog].unreliable;
20085 		if (prog_extension) {
20086 			if (conservative) {
20087 				bpf_log(log,
20088 					"Cannot replace static functions\n");
20089 				return -EINVAL;
20090 			}
20091 			if (!prog->jit_requested) {
20092 				bpf_log(log,
20093 					"Extension programs should be JITed\n");
20094 				return -EINVAL;
20095 			}
20096 		}
20097 		if (!tgt_prog->jited) {
20098 			bpf_log(log, "Can attach to only JITed progs\n");
20099 			return -EINVAL;
20100 		}
20101 		if (tgt_prog->type == prog->type) {
20102 			/* Cannot fentry/fexit another fentry/fexit program.
20103 			 * Cannot attach program extension to another extension.
20104 			 * It's ok to attach fentry/fexit to extension program.
20105 			 */
20106 			bpf_log(log, "Cannot recursively attach\n");
20107 			return -EINVAL;
20108 		}
20109 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20110 		    prog_extension &&
20111 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20112 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20113 			/* Program extensions can extend all program types
20114 			 * except fentry/fexit. The reason is the following.
20115 			 * The fentry/fexit programs are used for performance
20116 			 * analysis, stats and can be attached to any program
20117 			 * type except themselves. When extension program is
20118 			 * replacing XDP function it is necessary to allow
20119 			 * performance analysis of all functions. Both original
20120 			 * XDP program and its program extension. Hence
20121 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20122 			 * allowed. If extending of fentry/fexit was allowed it
20123 			 * would be possible to create long call chain
20124 			 * fentry->extension->fentry->extension beyond
20125 			 * reasonable stack size. Hence extending fentry is not
20126 			 * allowed.
20127 			 */
20128 			bpf_log(log, "Cannot extend fentry/fexit\n");
20129 			return -EINVAL;
20130 		}
20131 	} else {
20132 		if (prog_extension) {
20133 			bpf_log(log, "Cannot replace kernel functions\n");
20134 			return -EINVAL;
20135 		}
20136 	}
20137 
20138 	switch (prog->expected_attach_type) {
20139 	case BPF_TRACE_RAW_TP:
20140 		if (tgt_prog) {
20141 			bpf_log(log,
20142 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20143 			return -EINVAL;
20144 		}
20145 		if (!btf_type_is_typedef(t)) {
20146 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20147 				btf_id);
20148 			return -EINVAL;
20149 		}
20150 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20151 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20152 				btf_id, tname);
20153 			return -EINVAL;
20154 		}
20155 		tname += sizeof(prefix) - 1;
20156 		t = btf_type_by_id(btf, t->type);
20157 		if (!btf_type_is_ptr(t))
20158 			/* should never happen in valid vmlinux build */
20159 			return -EINVAL;
20160 		t = btf_type_by_id(btf, t->type);
20161 		if (!btf_type_is_func_proto(t))
20162 			/* should never happen in valid vmlinux build */
20163 			return -EINVAL;
20164 
20165 		break;
20166 	case BPF_TRACE_ITER:
20167 		if (!btf_type_is_func(t)) {
20168 			bpf_log(log, "attach_btf_id %u is not a function\n",
20169 				btf_id);
20170 			return -EINVAL;
20171 		}
20172 		t = btf_type_by_id(btf, t->type);
20173 		if (!btf_type_is_func_proto(t))
20174 			return -EINVAL;
20175 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20176 		if (ret)
20177 			return ret;
20178 		break;
20179 	default:
20180 		if (!prog_extension)
20181 			return -EINVAL;
20182 		fallthrough;
20183 	case BPF_MODIFY_RETURN:
20184 	case BPF_LSM_MAC:
20185 	case BPF_LSM_CGROUP:
20186 	case BPF_TRACE_FENTRY:
20187 	case BPF_TRACE_FEXIT:
20188 		if (!btf_type_is_func(t)) {
20189 			bpf_log(log, "attach_btf_id %u is not a function\n",
20190 				btf_id);
20191 			return -EINVAL;
20192 		}
20193 		if (prog_extension &&
20194 		    btf_check_type_match(log, prog, btf, t))
20195 			return -EINVAL;
20196 		t = btf_type_by_id(btf, t->type);
20197 		if (!btf_type_is_func_proto(t))
20198 			return -EINVAL;
20199 
20200 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20201 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20202 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20203 			return -EINVAL;
20204 
20205 		if (tgt_prog && conservative)
20206 			t = NULL;
20207 
20208 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20209 		if (ret < 0)
20210 			return ret;
20211 
20212 		if (tgt_prog) {
20213 			if (subprog == 0)
20214 				addr = (long) tgt_prog->bpf_func;
20215 			else
20216 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20217 		} else {
20218 			if (btf_is_module(btf)) {
20219 				mod = btf_try_get_module(btf);
20220 				if (mod)
20221 					addr = find_kallsyms_symbol_value(mod, tname);
20222 				else
20223 					addr = 0;
20224 			} else {
20225 				addr = kallsyms_lookup_name(tname);
20226 			}
20227 			if (!addr) {
20228 				module_put(mod);
20229 				bpf_log(log,
20230 					"The address of function %s cannot be found\n",
20231 					tname);
20232 				return -ENOENT;
20233 			}
20234 		}
20235 
20236 		if (prog->aux->sleepable) {
20237 			ret = -EINVAL;
20238 			switch (prog->type) {
20239 			case BPF_PROG_TYPE_TRACING:
20240 
20241 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20242 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20243 				 */
20244 				if (!check_non_sleepable_error_inject(btf_id) &&
20245 				    within_error_injection_list(addr))
20246 					ret = 0;
20247 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20248 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20249 				 */
20250 				else {
20251 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20252 										prog);
20253 
20254 					if (flags && (*flags & KF_SLEEPABLE))
20255 						ret = 0;
20256 				}
20257 				break;
20258 			case BPF_PROG_TYPE_LSM:
20259 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20260 				 * Only some of them are sleepable.
20261 				 */
20262 				if (bpf_lsm_is_sleepable_hook(btf_id))
20263 					ret = 0;
20264 				break;
20265 			default:
20266 				break;
20267 			}
20268 			if (ret) {
20269 				module_put(mod);
20270 				bpf_log(log, "%s is not sleepable\n", tname);
20271 				return ret;
20272 			}
20273 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20274 			if (tgt_prog) {
20275 				module_put(mod);
20276 				bpf_log(log, "can't modify return codes of BPF programs\n");
20277 				return -EINVAL;
20278 			}
20279 			ret = -EINVAL;
20280 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20281 			    !check_attach_modify_return(addr, tname))
20282 				ret = 0;
20283 			if (ret) {
20284 				module_put(mod);
20285 				bpf_log(log, "%s() is not modifiable\n", tname);
20286 				return ret;
20287 			}
20288 		}
20289 
20290 		break;
20291 	}
20292 	tgt_info->tgt_addr = addr;
20293 	tgt_info->tgt_name = tname;
20294 	tgt_info->tgt_type = t;
20295 	tgt_info->tgt_mod = mod;
20296 	return 0;
20297 }
20298 
20299 BTF_SET_START(btf_id_deny)
20300 BTF_ID_UNUSED
20301 #ifdef CONFIG_SMP
20302 BTF_ID(func, migrate_disable)
20303 BTF_ID(func, migrate_enable)
20304 #endif
20305 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20306 BTF_ID(func, rcu_read_unlock_strict)
20307 #endif
20308 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20309 BTF_ID(func, preempt_count_add)
20310 BTF_ID(func, preempt_count_sub)
20311 #endif
20312 #ifdef CONFIG_PREEMPT_RCU
20313 BTF_ID(func, __rcu_read_lock)
20314 BTF_ID(func, __rcu_read_unlock)
20315 #endif
20316 BTF_SET_END(btf_id_deny)
20317 
20318 static bool can_be_sleepable(struct bpf_prog *prog)
20319 {
20320 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20321 		switch (prog->expected_attach_type) {
20322 		case BPF_TRACE_FENTRY:
20323 		case BPF_TRACE_FEXIT:
20324 		case BPF_MODIFY_RETURN:
20325 		case BPF_TRACE_ITER:
20326 			return true;
20327 		default:
20328 			return false;
20329 		}
20330 	}
20331 	return prog->type == BPF_PROG_TYPE_LSM ||
20332 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20333 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20334 }
20335 
20336 static int check_attach_btf_id(struct bpf_verifier_env *env)
20337 {
20338 	struct bpf_prog *prog = env->prog;
20339 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20340 	struct bpf_attach_target_info tgt_info = {};
20341 	u32 btf_id = prog->aux->attach_btf_id;
20342 	struct bpf_trampoline *tr;
20343 	int ret;
20344 	u64 key;
20345 
20346 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20347 		if (prog->aux->sleepable)
20348 			/* attach_btf_id checked to be zero already */
20349 			return 0;
20350 		verbose(env, "Syscall programs can only be sleepable\n");
20351 		return -EINVAL;
20352 	}
20353 
20354 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20355 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20356 		return -EINVAL;
20357 	}
20358 
20359 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20360 		return check_struct_ops_btf_id(env);
20361 
20362 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20363 	    prog->type != BPF_PROG_TYPE_LSM &&
20364 	    prog->type != BPF_PROG_TYPE_EXT)
20365 		return 0;
20366 
20367 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20368 	if (ret)
20369 		return ret;
20370 
20371 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20372 		/* to make freplace equivalent to their targets, they need to
20373 		 * inherit env->ops and expected_attach_type for the rest of the
20374 		 * verification
20375 		 */
20376 		env->ops = bpf_verifier_ops[tgt_prog->type];
20377 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20378 	}
20379 
20380 	/* store info about the attachment target that will be used later */
20381 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20382 	prog->aux->attach_func_name = tgt_info.tgt_name;
20383 	prog->aux->mod = tgt_info.tgt_mod;
20384 
20385 	if (tgt_prog) {
20386 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20387 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20388 	}
20389 
20390 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20391 		prog->aux->attach_btf_trace = true;
20392 		return 0;
20393 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20394 		if (!bpf_iter_prog_supported(prog))
20395 			return -EINVAL;
20396 		return 0;
20397 	}
20398 
20399 	if (prog->type == BPF_PROG_TYPE_LSM) {
20400 		ret = bpf_lsm_verify_prog(&env->log, prog);
20401 		if (ret < 0)
20402 			return ret;
20403 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20404 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20405 		return -EINVAL;
20406 	}
20407 
20408 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20409 	tr = bpf_trampoline_get(key, &tgt_info);
20410 	if (!tr)
20411 		return -ENOMEM;
20412 
20413 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20414 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20415 
20416 	prog->aux->dst_trampoline = tr;
20417 	return 0;
20418 }
20419 
20420 struct btf *bpf_get_btf_vmlinux(void)
20421 {
20422 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20423 		mutex_lock(&bpf_verifier_lock);
20424 		if (!btf_vmlinux)
20425 			btf_vmlinux = btf_parse_vmlinux();
20426 		mutex_unlock(&bpf_verifier_lock);
20427 	}
20428 	return btf_vmlinux;
20429 }
20430 
20431 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20432 {
20433 	u64 start_time = ktime_get_ns();
20434 	struct bpf_verifier_env *env;
20435 	int i, len, ret = -EINVAL, err;
20436 	u32 log_true_size;
20437 	bool is_priv;
20438 
20439 	/* no program is valid */
20440 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20441 		return -EINVAL;
20442 
20443 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20444 	 * allocate/free it every time bpf_check() is called
20445 	 */
20446 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20447 	if (!env)
20448 		return -ENOMEM;
20449 
20450 	env->bt.env = env;
20451 
20452 	len = (*prog)->len;
20453 	env->insn_aux_data =
20454 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20455 	ret = -ENOMEM;
20456 	if (!env->insn_aux_data)
20457 		goto err_free_env;
20458 	for (i = 0; i < len; i++)
20459 		env->insn_aux_data[i].orig_idx = i;
20460 	env->prog = *prog;
20461 	env->ops = bpf_verifier_ops[env->prog->type];
20462 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20463 	is_priv = bpf_capable();
20464 
20465 	bpf_get_btf_vmlinux();
20466 
20467 	/* grab the mutex to protect few globals used by verifier */
20468 	if (!is_priv)
20469 		mutex_lock(&bpf_verifier_lock);
20470 
20471 	/* user could have requested verbose verifier output
20472 	 * and supplied buffer to store the verification trace
20473 	 */
20474 	ret = bpf_vlog_init(&env->log, attr->log_level,
20475 			    (char __user *) (unsigned long) attr->log_buf,
20476 			    attr->log_size);
20477 	if (ret)
20478 		goto err_unlock;
20479 
20480 	mark_verifier_state_clean(env);
20481 
20482 	if (IS_ERR(btf_vmlinux)) {
20483 		/* Either gcc or pahole or kernel are broken. */
20484 		verbose(env, "in-kernel BTF is malformed\n");
20485 		ret = PTR_ERR(btf_vmlinux);
20486 		goto skip_full_check;
20487 	}
20488 
20489 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20490 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20491 		env->strict_alignment = true;
20492 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20493 		env->strict_alignment = false;
20494 
20495 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20496 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20497 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20498 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20499 	env->bpf_capable = bpf_capable();
20500 
20501 	if (is_priv)
20502 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20503 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
20504 
20505 	env->explored_states = kvcalloc(state_htab_size(env),
20506 				       sizeof(struct bpf_verifier_state_list *),
20507 				       GFP_USER);
20508 	ret = -ENOMEM;
20509 	if (!env->explored_states)
20510 		goto skip_full_check;
20511 
20512 	ret = check_btf_info_early(env, attr, uattr);
20513 	if (ret < 0)
20514 		goto skip_full_check;
20515 
20516 	ret = add_subprog_and_kfunc(env);
20517 	if (ret < 0)
20518 		goto skip_full_check;
20519 
20520 	ret = check_subprogs(env);
20521 	if (ret < 0)
20522 		goto skip_full_check;
20523 
20524 	ret = check_btf_info(env, attr, uattr);
20525 	if (ret < 0)
20526 		goto skip_full_check;
20527 
20528 	ret = check_attach_btf_id(env);
20529 	if (ret)
20530 		goto skip_full_check;
20531 
20532 	ret = resolve_pseudo_ldimm64(env);
20533 	if (ret < 0)
20534 		goto skip_full_check;
20535 
20536 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20537 		ret = bpf_prog_offload_verifier_prep(env->prog);
20538 		if (ret)
20539 			goto skip_full_check;
20540 	}
20541 
20542 	ret = check_cfg(env);
20543 	if (ret < 0)
20544 		goto skip_full_check;
20545 
20546 	ret = do_check_subprogs(env);
20547 	ret = ret ?: do_check_main(env);
20548 
20549 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20550 		ret = bpf_prog_offload_finalize(env);
20551 
20552 skip_full_check:
20553 	kvfree(env->explored_states);
20554 
20555 	if (ret == 0)
20556 		ret = check_max_stack_depth(env);
20557 
20558 	/* instruction rewrites happen after this point */
20559 	if (ret == 0)
20560 		ret = optimize_bpf_loop(env);
20561 
20562 	if (is_priv) {
20563 		if (ret == 0)
20564 			opt_hard_wire_dead_code_branches(env);
20565 		if (ret == 0)
20566 			ret = opt_remove_dead_code(env);
20567 		if (ret == 0)
20568 			ret = opt_remove_nops(env);
20569 	} else {
20570 		if (ret == 0)
20571 			sanitize_dead_code(env);
20572 	}
20573 
20574 	if (ret == 0)
20575 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20576 		ret = convert_ctx_accesses(env);
20577 
20578 	if (ret == 0)
20579 		ret = do_misc_fixups(env);
20580 
20581 	/* do 32-bit optimization after insn patching has done so those patched
20582 	 * insns could be handled correctly.
20583 	 */
20584 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20585 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20586 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20587 								     : false;
20588 	}
20589 
20590 	if (ret == 0)
20591 		ret = fixup_call_args(env);
20592 
20593 	env->verification_time = ktime_get_ns() - start_time;
20594 	print_verification_stats(env);
20595 	env->prog->aux->verified_insns = env->insn_processed;
20596 
20597 	/* preserve original error even if log finalization is successful */
20598 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20599 	if (err)
20600 		ret = err;
20601 
20602 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20603 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20604 				  &log_true_size, sizeof(log_true_size))) {
20605 		ret = -EFAULT;
20606 		goto err_release_maps;
20607 	}
20608 
20609 	if (ret)
20610 		goto err_release_maps;
20611 
20612 	if (env->used_map_cnt) {
20613 		/* if program passed verifier, update used_maps in bpf_prog_info */
20614 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20615 							  sizeof(env->used_maps[0]),
20616 							  GFP_KERNEL);
20617 
20618 		if (!env->prog->aux->used_maps) {
20619 			ret = -ENOMEM;
20620 			goto err_release_maps;
20621 		}
20622 
20623 		memcpy(env->prog->aux->used_maps, env->used_maps,
20624 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20625 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20626 	}
20627 	if (env->used_btf_cnt) {
20628 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20629 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20630 							  sizeof(env->used_btfs[0]),
20631 							  GFP_KERNEL);
20632 		if (!env->prog->aux->used_btfs) {
20633 			ret = -ENOMEM;
20634 			goto err_release_maps;
20635 		}
20636 
20637 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20638 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20639 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20640 	}
20641 	if (env->used_map_cnt || env->used_btf_cnt) {
20642 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20643 		 * bpf_ld_imm64 instructions
20644 		 */
20645 		convert_pseudo_ld_imm64(env);
20646 	}
20647 
20648 	adjust_btf_func(env);
20649 
20650 err_release_maps:
20651 	if (!env->prog->aux->used_maps)
20652 		/* if we didn't copy map pointers into bpf_prog_info, release
20653 		 * them now. Otherwise free_used_maps() will release them.
20654 		 */
20655 		release_maps(env);
20656 	if (!env->prog->aux->used_btfs)
20657 		release_btfs(env);
20658 
20659 	/* extension progs temporarily inherit the attach_type of their targets
20660 	   for verification purposes, so set it back to zero before returning
20661 	 */
20662 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20663 		env->prog->expected_attach_type = 0;
20664 
20665 	*prog = env->prog;
20666 err_unlock:
20667 	if (!is_priv)
20668 		mutex_unlock(&bpf_verifier_lock);
20669 	vfree(env->insn_aux_data);
20670 err_free_env:
20671 	kfree(env);
20672 	return ret;
20673 }
20674