1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 u32 btf_id; 242 u32 ret_btf_id; 243 }; 244 245 struct btf *btf_vmlinux; 246 247 static DEFINE_MUTEX(bpf_verifier_lock); 248 249 static const struct bpf_line_info * 250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 251 { 252 const struct bpf_line_info *linfo; 253 const struct bpf_prog *prog; 254 u32 i, nr_linfo; 255 256 prog = env->prog; 257 nr_linfo = prog->aux->nr_linfo; 258 259 if (!nr_linfo || insn_off >= prog->len) 260 return NULL; 261 262 linfo = prog->aux->linfo; 263 for (i = 1; i < nr_linfo; i++) 264 if (insn_off < linfo[i].insn_off) 265 break; 266 267 return &linfo[i - 1]; 268 } 269 270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 271 va_list args) 272 { 273 unsigned int n; 274 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 276 277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 278 "verifier log line truncated - local buffer too short\n"); 279 280 n = min(log->len_total - log->len_used - 1, n); 281 log->kbuf[n] = '\0'; 282 283 if (log->level == BPF_LOG_KERNEL) { 284 pr_err("BPF:%s\n", log->kbuf); 285 return; 286 } 287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 288 log->len_used += n; 289 else 290 log->ubuf = NULL; 291 } 292 293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 294 { 295 char zero = 0; 296 297 if (!bpf_verifier_log_needed(log)) 298 return; 299 300 log->len_used = new_pos; 301 if (put_user(zero, log->ubuf + new_pos)) 302 log->ubuf = NULL; 303 } 304 305 /* log_level controls verbosity level of eBPF verifier. 306 * bpf_verifier_log_write() is used to dump the verification trace to the log, 307 * so the user can figure out what's wrong with the program 308 */ 309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 310 const char *fmt, ...) 311 { 312 va_list args; 313 314 if (!bpf_verifier_log_needed(&env->log)) 315 return; 316 317 va_start(args, fmt); 318 bpf_verifier_vlog(&env->log, fmt, args); 319 va_end(args); 320 } 321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 322 323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 324 { 325 struct bpf_verifier_env *env = private_data; 326 va_list args; 327 328 if (!bpf_verifier_log_needed(&env->log)) 329 return; 330 331 va_start(args, fmt); 332 bpf_verifier_vlog(&env->log, fmt, args); 333 va_end(args); 334 } 335 336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 if (!bpf_verifier_log_needed(log)) 342 return; 343 344 va_start(args, fmt); 345 bpf_verifier_vlog(log, fmt, args); 346 va_end(args); 347 } 348 349 static const char *ltrim(const char *s) 350 { 351 while (isspace(*s)) 352 s++; 353 354 return s; 355 } 356 357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 358 u32 insn_off, 359 const char *prefix_fmt, ...) 360 { 361 const struct bpf_line_info *linfo; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 linfo = find_linfo(env, insn_off); 367 if (!linfo || linfo == env->prev_linfo) 368 return; 369 370 if (prefix_fmt) { 371 va_list args; 372 373 va_start(args, prefix_fmt); 374 bpf_verifier_vlog(&env->log, prefix_fmt, args); 375 va_end(args); 376 } 377 378 verbose(env, "%s\n", 379 ltrim(btf_name_by_offset(env->prog->aux->btf, 380 linfo->line_off))); 381 382 env->prev_linfo = linfo; 383 } 384 385 static bool type_is_pkt_pointer(enum bpf_reg_type type) 386 { 387 return type == PTR_TO_PACKET || 388 type == PTR_TO_PACKET_META; 389 } 390 391 static bool type_is_sk_pointer(enum bpf_reg_type type) 392 { 393 return type == PTR_TO_SOCKET || 394 type == PTR_TO_SOCK_COMMON || 395 type == PTR_TO_TCP_SOCK || 396 type == PTR_TO_XDP_SOCK; 397 } 398 399 static bool reg_type_not_null(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_SOCK_COMMON; 405 } 406 407 static bool reg_type_may_be_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_MAP_VALUE_OR_NULL || 410 type == PTR_TO_SOCKET_OR_NULL || 411 type == PTR_TO_SOCK_COMMON_OR_NULL || 412 type == PTR_TO_TCP_SOCK_OR_NULL || 413 type == PTR_TO_BTF_ID_OR_NULL || 414 type == PTR_TO_MEM_OR_NULL || 415 type == PTR_TO_RDONLY_BUF_OR_NULL || 416 type == PTR_TO_RDWR_BUF_OR_NULL; 417 } 418 419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 420 { 421 return reg->type == PTR_TO_MAP_VALUE && 422 map_value_has_spin_lock(reg->map_ptr); 423 } 424 425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_SOCKET || 428 type == PTR_TO_SOCKET_OR_NULL || 429 type == PTR_TO_TCP_SOCK || 430 type == PTR_TO_TCP_SOCK_OR_NULL || 431 type == PTR_TO_MEM || 432 type == PTR_TO_MEM_OR_NULL; 433 } 434 435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 436 { 437 return type == ARG_PTR_TO_SOCK_COMMON; 438 } 439 440 static bool arg_type_may_be_null(enum bpf_arg_type type) 441 { 442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 443 type == ARG_PTR_TO_MEM_OR_NULL || 444 type == ARG_PTR_TO_CTX_OR_NULL || 445 type == ARG_PTR_TO_SOCKET_OR_NULL || 446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 447 } 448 449 /* Determine whether the function releases some resources allocated by another 450 * function call. The first reference type argument will be assumed to be 451 * released by release_reference(). 452 */ 453 static bool is_release_function(enum bpf_func_id func_id) 454 { 455 return func_id == BPF_FUNC_sk_release || 456 func_id == BPF_FUNC_ringbuf_submit || 457 func_id == BPF_FUNC_ringbuf_discard; 458 } 459 460 static bool may_be_acquire_function(enum bpf_func_id func_id) 461 { 462 return func_id == BPF_FUNC_sk_lookup_tcp || 463 func_id == BPF_FUNC_sk_lookup_udp || 464 func_id == BPF_FUNC_skc_lookup_tcp || 465 func_id == BPF_FUNC_map_lookup_elem || 466 func_id == BPF_FUNC_ringbuf_reserve; 467 } 468 469 static bool is_acquire_function(enum bpf_func_id func_id, 470 const struct bpf_map *map) 471 { 472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 473 474 if (func_id == BPF_FUNC_sk_lookup_tcp || 475 func_id == BPF_FUNC_sk_lookup_udp || 476 func_id == BPF_FUNC_skc_lookup_tcp || 477 func_id == BPF_FUNC_ringbuf_reserve) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 /* string representation of 'enum bpf_reg_type' */ 500 static const char * const reg_type_str[] = { 501 [NOT_INIT] = "?", 502 [SCALAR_VALUE] = "inv", 503 [PTR_TO_CTX] = "ctx", 504 [CONST_PTR_TO_MAP] = "map_ptr", 505 [PTR_TO_MAP_VALUE] = "map_value", 506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 507 [PTR_TO_STACK] = "fp", 508 [PTR_TO_PACKET] = "pkt", 509 [PTR_TO_PACKET_META] = "pkt_meta", 510 [PTR_TO_PACKET_END] = "pkt_end", 511 [PTR_TO_FLOW_KEYS] = "flow_keys", 512 [PTR_TO_SOCKET] = "sock", 513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 514 [PTR_TO_SOCK_COMMON] = "sock_common", 515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 516 [PTR_TO_TCP_SOCK] = "tcp_sock", 517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 518 [PTR_TO_TP_BUFFER] = "tp_buffer", 519 [PTR_TO_XDP_SOCK] = "xdp_sock", 520 [PTR_TO_BTF_ID] = "ptr_", 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 523 [PTR_TO_MEM] = "mem", 524 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 525 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 527 [PTR_TO_RDWR_BUF] = "rdwr_buf", 528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 529 }; 530 531 static char slot_type_char[] = { 532 [STACK_INVALID] = '?', 533 [STACK_SPILL] = 'r', 534 [STACK_MISC] = 'm', 535 [STACK_ZERO] = '0', 536 }; 537 538 static void print_liveness(struct bpf_verifier_env *env, 539 enum bpf_reg_liveness live) 540 { 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 542 verbose(env, "_"); 543 if (live & REG_LIVE_READ) 544 verbose(env, "r"); 545 if (live & REG_LIVE_WRITTEN) 546 verbose(env, "w"); 547 if (live & REG_LIVE_DONE) 548 verbose(env, "D"); 549 } 550 551 static struct bpf_func_state *func(struct bpf_verifier_env *env, 552 const struct bpf_reg_state *reg) 553 { 554 struct bpf_verifier_state *cur = env->cur_state; 555 556 return cur->frame[reg->frameno]; 557 } 558 559 const char *kernel_type_name(u32 id) 560 { 561 return btf_name_by_offset(btf_vmlinux, 562 btf_type_by_id(btf_vmlinux, id)->name_off); 563 } 564 565 static void print_verifier_state(struct bpf_verifier_env *env, 566 const struct bpf_func_state *state) 567 { 568 const struct bpf_reg_state *reg; 569 enum bpf_reg_type t; 570 int i; 571 572 if (state->frameno) 573 verbose(env, " frame%d:", state->frameno); 574 for (i = 0; i < MAX_BPF_REG; i++) { 575 reg = &state->regs[i]; 576 t = reg->type; 577 if (t == NOT_INIT) 578 continue; 579 verbose(env, " R%d", i); 580 print_liveness(env, reg->live); 581 verbose(env, "=%s", reg_type_str[t]); 582 if (t == SCALAR_VALUE && reg->precise) 583 verbose(env, "P"); 584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 585 tnum_is_const(reg->var_off)) { 586 /* reg->off should be 0 for SCALAR_VALUE */ 587 verbose(env, "%lld", reg->var_off.value + reg->off); 588 } else { 589 if (t == PTR_TO_BTF_ID || 590 t == PTR_TO_BTF_ID_OR_NULL || 591 t == PTR_TO_PERCPU_BTF_ID) 592 verbose(env, "%s", kernel_type_name(reg->btf_id)); 593 verbose(env, "(id=%d", reg->id); 594 if (reg_type_may_be_refcounted_or_null(t)) 595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 596 if (t != SCALAR_VALUE) 597 verbose(env, ",off=%d", reg->off); 598 if (type_is_pkt_pointer(t)) 599 verbose(env, ",r=%d", reg->range); 600 else if (t == CONST_PTR_TO_MAP || 601 t == PTR_TO_MAP_VALUE || 602 t == PTR_TO_MAP_VALUE_OR_NULL) 603 verbose(env, ",ks=%d,vs=%d", 604 reg->map_ptr->key_size, 605 reg->map_ptr->value_size); 606 if (tnum_is_const(reg->var_off)) { 607 /* Typically an immediate SCALAR_VALUE, but 608 * could be a pointer whose offset is too big 609 * for reg->off 610 */ 611 verbose(env, ",imm=%llx", reg->var_off.value); 612 } else { 613 if (reg->smin_value != reg->umin_value && 614 reg->smin_value != S64_MIN) 615 verbose(env, ",smin_value=%lld", 616 (long long)reg->smin_value); 617 if (reg->smax_value != reg->umax_value && 618 reg->smax_value != S64_MAX) 619 verbose(env, ",smax_value=%lld", 620 (long long)reg->smax_value); 621 if (reg->umin_value != 0) 622 verbose(env, ",umin_value=%llu", 623 (unsigned long long)reg->umin_value); 624 if (reg->umax_value != U64_MAX) 625 verbose(env, ",umax_value=%llu", 626 (unsigned long long)reg->umax_value); 627 if (!tnum_is_unknown(reg->var_off)) { 628 char tn_buf[48]; 629 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 631 verbose(env, ",var_off=%s", tn_buf); 632 } 633 if (reg->s32_min_value != reg->smin_value && 634 reg->s32_min_value != S32_MIN) 635 verbose(env, ",s32_min_value=%d", 636 (int)(reg->s32_min_value)); 637 if (reg->s32_max_value != reg->smax_value && 638 reg->s32_max_value != S32_MAX) 639 verbose(env, ",s32_max_value=%d", 640 (int)(reg->s32_max_value)); 641 if (reg->u32_min_value != reg->umin_value && 642 reg->u32_min_value != U32_MIN) 643 verbose(env, ",u32_min_value=%d", 644 (int)(reg->u32_min_value)); 645 if (reg->u32_max_value != reg->umax_value && 646 reg->u32_max_value != U32_MAX) 647 verbose(env, ",u32_max_value=%d", 648 (int)(reg->u32_max_value)); 649 } 650 verbose(env, ")"); 651 } 652 } 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 654 char types_buf[BPF_REG_SIZE + 1]; 655 bool valid = false; 656 int j; 657 658 for (j = 0; j < BPF_REG_SIZE; j++) { 659 if (state->stack[i].slot_type[j] != STACK_INVALID) 660 valid = true; 661 types_buf[j] = slot_type_char[ 662 state->stack[i].slot_type[j]]; 663 } 664 types_buf[BPF_REG_SIZE] = 0; 665 if (!valid) 666 continue; 667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 668 print_liveness(env, state->stack[i].spilled_ptr.live); 669 if (state->stack[i].slot_type[0] == STACK_SPILL) { 670 reg = &state->stack[i].spilled_ptr; 671 t = reg->type; 672 verbose(env, "=%s", reg_type_str[t]); 673 if (t == SCALAR_VALUE && reg->precise) 674 verbose(env, "P"); 675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 676 verbose(env, "%lld", reg->var_off.value + reg->off); 677 } else { 678 verbose(env, "=%s", types_buf); 679 } 680 } 681 if (state->acquired_refs && state->refs[0].id) { 682 verbose(env, " refs=%d", state->refs[0].id); 683 for (i = 1; i < state->acquired_refs; i++) 684 if (state->refs[i].id) 685 verbose(env, ",%d", state->refs[i].id); 686 } 687 verbose(env, "\n"); 688 } 689 690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 691 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 692 const struct bpf_func_state *src) \ 693 { \ 694 if (!src->FIELD) \ 695 return 0; \ 696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 697 /* internal bug, make state invalid to reject the program */ \ 698 memset(dst, 0, sizeof(*dst)); \ 699 return -EFAULT; \ 700 } \ 701 memcpy(dst->FIELD, src->FIELD, \ 702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 703 return 0; \ 704 } 705 /* copy_reference_state() */ 706 COPY_STATE_FN(reference, acquired_refs, refs, 1) 707 /* copy_stack_state() */ 708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 709 #undef COPY_STATE_FN 710 711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 713 bool copy_old) \ 714 { \ 715 u32 old_size = state->COUNT; \ 716 struct bpf_##NAME##_state *new_##FIELD; \ 717 int slot = size / SIZE; \ 718 \ 719 if (size <= old_size || !size) { \ 720 if (copy_old) \ 721 return 0; \ 722 state->COUNT = slot * SIZE; \ 723 if (!size && old_size) { \ 724 kfree(state->FIELD); \ 725 state->FIELD = NULL; \ 726 } \ 727 return 0; \ 728 } \ 729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 730 GFP_KERNEL); \ 731 if (!new_##FIELD) \ 732 return -ENOMEM; \ 733 if (copy_old) { \ 734 if (state->FIELD) \ 735 memcpy(new_##FIELD, state->FIELD, \ 736 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 737 memset(new_##FIELD + old_size / SIZE, 0, \ 738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 739 } \ 740 state->COUNT = slot * SIZE; \ 741 kfree(state->FIELD); \ 742 state->FIELD = new_##FIELD; \ 743 return 0; \ 744 } 745 /* realloc_reference_state() */ 746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 747 /* realloc_stack_state() */ 748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 749 #undef REALLOC_STATE_FN 750 751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 752 * make it consume minimal amount of memory. check_stack_write() access from 753 * the program calls into realloc_func_state() to grow the stack size. 754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 755 * which realloc_stack_state() copies over. It points to previous 756 * bpf_verifier_state which is never reallocated. 757 */ 758 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 759 int refs_size, bool copy_old) 760 { 761 int err = realloc_reference_state(state, refs_size, copy_old); 762 if (err) 763 return err; 764 return realloc_stack_state(state, stack_size, copy_old); 765 } 766 767 /* Acquire a pointer id from the env and update the state->refs to include 768 * this new pointer reference. 769 * On success, returns a valid pointer id to associate with the register 770 * On failure, returns a negative errno. 771 */ 772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 773 { 774 struct bpf_func_state *state = cur_func(env); 775 int new_ofs = state->acquired_refs; 776 int id, err; 777 778 err = realloc_reference_state(state, state->acquired_refs + 1, true); 779 if (err) 780 return err; 781 id = ++env->id_gen; 782 state->refs[new_ofs].id = id; 783 state->refs[new_ofs].insn_idx = insn_idx; 784 785 return id; 786 } 787 788 /* release function corresponding to acquire_reference_state(). Idempotent. */ 789 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 790 { 791 int i, last_idx; 792 793 last_idx = state->acquired_refs - 1; 794 for (i = 0; i < state->acquired_refs; i++) { 795 if (state->refs[i].id == ptr_id) { 796 if (last_idx && i != last_idx) 797 memcpy(&state->refs[i], &state->refs[last_idx], 798 sizeof(*state->refs)); 799 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 800 state->acquired_refs--; 801 return 0; 802 } 803 } 804 return -EINVAL; 805 } 806 807 static int transfer_reference_state(struct bpf_func_state *dst, 808 struct bpf_func_state *src) 809 { 810 int err = realloc_reference_state(dst, src->acquired_refs, false); 811 if (err) 812 return err; 813 err = copy_reference_state(dst, src); 814 if (err) 815 return err; 816 return 0; 817 } 818 819 static void free_func_state(struct bpf_func_state *state) 820 { 821 if (!state) 822 return; 823 kfree(state->refs); 824 kfree(state->stack); 825 kfree(state); 826 } 827 828 static void clear_jmp_history(struct bpf_verifier_state *state) 829 { 830 kfree(state->jmp_history); 831 state->jmp_history = NULL; 832 state->jmp_history_cnt = 0; 833 } 834 835 static void free_verifier_state(struct bpf_verifier_state *state, 836 bool free_self) 837 { 838 int i; 839 840 for (i = 0; i <= state->curframe; i++) { 841 free_func_state(state->frame[i]); 842 state->frame[i] = NULL; 843 } 844 clear_jmp_history(state); 845 if (free_self) 846 kfree(state); 847 } 848 849 /* copy verifier state from src to dst growing dst stack space 850 * when necessary to accommodate larger src stack 851 */ 852 static int copy_func_state(struct bpf_func_state *dst, 853 const struct bpf_func_state *src) 854 { 855 int err; 856 857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 858 false); 859 if (err) 860 return err; 861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 862 err = copy_reference_state(dst, src); 863 if (err) 864 return err; 865 return copy_stack_state(dst, src); 866 } 867 868 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 869 const struct bpf_verifier_state *src) 870 { 871 struct bpf_func_state *dst; 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 873 int i, err; 874 875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 876 kfree(dst_state->jmp_history); 877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 878 if (!dst_state->jmp_history) 879 return -ENOMEM; 880 } 881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 882 dst_state->jmp_history_cnt = src->jmp_history_cnt; 883 884 /* if dst has more stack frames then src frame, free them */ 885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 886 free_func_state(dst_state->frame[i]); 887 dst_state->frame[i] = NULL; 888 } 889 dst_state->speculative = src->speculative; 890 dst_state->curframe = src->curframe; 891 dst_state->active_spin_lock = src->active_spin_lock; 892 dst_state->branches = src->branches; 893 dst_state->parent = src->parent; 894 dst_state->first_insn_idx = src->first_insn_idx; 895 dst_state->last_insn_idx = src->last_insn_idx; 896 for (i = 0; i <= src->curframe; i++) { 897 dst = dst_state->frame[i]; 898 if (!dst) { 899 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 900 if (!dst) 901 return -ENOMEM; 902 dst_state->frame[i] = dst; 903 } 904 err = copy_func_state(dst, src->frame[i]); 905 if (err) 906 return err; 907 } 908 return 0; 909 } 910 911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 912 { 913 while (st) { 914 u32 br = --st->branches; 915 916 /* WARN_ON(br > 1) technically makes sense here, 917 * but see comment in push_stack(), hence: 918 */ 919 WARN_ONCE((int)br < 0, 920 "BUG update_branch_counts:branches_to_explore=%d\n", 921 br); 922 if (br) 923 break; 924 st = st->parent; 925 } 926 } 927 928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 929 int *insn_idx, bool pop_log) 930 { 931 struct bpf_verifier_state *cur = env->cur_state; 932 struct bpf_verifier_stack_elem *elem, *head = env->head; 933 int err; 934 935 if (env->head == NULL) 936 return -ENOENT; 937 938 if (cur) { 939 err = copy_verifier_state(cur, &head->st); 940 if (err) 941 return err; 942 } 943 if (pop_log) 944 bpf_vlog_reset(&env->log, head->log_pos); 945 if (insn_idx) 946 *insn_idx = head->insn_idx; 947 if (prev_insn_idx) 948 *prev_insn_idx = head->prev_insn_idx; 949 elem = head->next; 950 free_verifier_state(&head->st, false); 951 kfree(head); 952 env->head = elem; 953 env->stack_size--; 954 return 0; 955 } 956 957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 958 int insn_idx, int prev_insn_idx, 959 bool speculative) 960 { 961 struct bpf_verifier_state *cur = env->cur_state; 962 struct bpf_verifier_stack_elem *elem; 963 int err; 964 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 966 if (!elem) 967 goto err; 968 969 elem->insn_idx = insn_idx; 970 elem->prev_insn_idx = prev_insn_idx; 971 elem->next = env->head; 972 elem->log_pos = env->log.len_used; 973 env->head = elem; 974 env->stack_size++; 975 err = copy_verifier_state(&elem->st, cur); 976 if (err) 977 goto err; 978 elem->st.speculative |= speculative; 979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 980 verbose(env, "The sequence of %d jumps is too complex.\n", 981 env->stack_size); 982 goto err; 983 } 984 if (elem->st.parent) { 985 ++elem->st.parent->branches; 986 /* WARN_ON(branches > 2) technically makes sense here, 987 * but 988 * 1. speculative states will bump 'branches' for non-branch 989 * instructions 990 * 2. is_state_visited() heuristics may decide not to create 991 * a new state for a sequence of branches and all such current 992 * and cloned states will be pointing to a single parent state 993 * which might have large 'branches' count. 994 */ 995 } 996 return &elem->st; 997 err: 998 free_verifier_state(env->cur_state, true); 999 env->cur_state = NULL; 1000 /* pop all elements and return */ 1001 while (!pop_stack(env, NULL, NULL, false)); 1002 return NULL; 1003 } 1004 1005 #define CALLER_SAVED_REGS 6 1006 static const int caller_saved[CALLER_SAVED_REGS] = { 1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1008 }; 1009 1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1011 struct bpf_reg_state *reg); 1012 1013 /* This helper doesn't clear reg->id */ 1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1015 { 1016 reg->var_off = tnum_const(imm); 1017 reg->smin_value = (s64)imm; 1018 reg->smax_value = (s64)imm; 1019 reg->umin_value = imm; 1020 reg->umax_value = imm; 1021 1022 reg->s32_min_value = (s32)imm; 1023 reg->s32_max_value = (s32)imm; 1024 reg->u32_min_value = (u32)imm; 1025 reg->u32_max_value = (u32)imm; 1026 } 1027 1028 /* Mark the unknown part of a register (variable offset or scalar value) as 1029 * known to have the value @imm. 1030 */ 1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1032 { 1033 /* Clear id, off, and union(map_ptr, range) */ 1034 memset(((u8 *)reg) + sizeof(reg->type), 0, 1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1036 ___mark_reg_known(reg, imm); 1037 } 1038 1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1040 { 1041 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1042 reg->s32_min_value = (s32)imm; 1043 reg->s32_max_value = (s32)imm; 1044 reg->u32_min_value = (u32)imm; 1045 reg->u32_max_value = (u32)imm; 1046 } 1047 1048 /* Mark the 'variable offset' part of a register as zero. This should be 1049 * used only on registers holding a pointer type. 1050 */ 1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1052 { 1053 __mark_reg_known(reg, 0); 1054 } 1055 1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1057 { 1058 __mark_reg_known(reg, 0); 1059 reg->type = SCALAR_VALUE; 1060 } 1061 1062 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1063 struct bpf_reg_state *regs, u32 regno) 1064 { 1065 if (WARN_ON(regno >= MAX_BPF_REG)) { 1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1067 /* Something bad happened, let's kill all regs */ 1068 for (regno = 0; regno < MAX_BPF_REG; regno++) 1069 __mark_reg_not_init(env, regs + regno); 1070 return; 1071 } 1072 __mark_reg_known_zero(regs + regno); 1073 } 1074 1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1076 { 1077 return type_is_pkt_pointer(reg->type); 1078 } 1079 1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1081 { 1082 return reg_is_pkt_pointer(reg) || 1083 reg->type == PTR_TO_PACKET_END; 1084 } 1085 1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1088 enum bpf_reg_type which) 1089 { 1090 /* The register can already have a range from prior markings. 1091 * This is fine as long as it hasn't been advanced from its 1092 * origin. 1093 */ 1094 return reg->type == which && 1095 reg->id == 0 && 1096 reg->off == 0 && 1097 tnum_equals_const(reg->var_off, 0); 1098 } 1099 1100 /* Reset the min/max bounds of a register */ 1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1102 { 1103 reg->smin_value = S64_MIN; 1104 reg->smax_value = S64_MAX; 1105 reg->umin_value = 0; 1106 reg->umax_value = U64_MAX; 1107 1108 reg->s32_min_value = S32_MIN; 1109 reg->s32_max_value = S32_MAX; 1110 reg->u32_min_value = 0; 1111 reg->u32_max_value = U32_MAX; 1112 } 1113 1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1115 { 1116 reg->smin_value = S64_MIN; 1117 reg->smax_value = S64_MAX; 1118 reg->umin_value = 0; 1119 reg->umax_value = U64_MAX; 1120 } 1121 1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1123 { 1124 reg->s32_min_value = S32_MIN; 1125 reg->s32_max_value = S32_MAX; 1126 reg->u32_min_value = 0; 1127 reg->u32_max_value = U32_MAX; 1128 } 1129 1130 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1131 { 1132 struct tnum var32_off = tnum_subreg(reg->var_off); 1133 1134 /* min signed is max(sign bit) | min(other bits) */ 1135 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1136 var32_off.value | (var32_off.mask & S32_MIN)); 1137 /* max signed is min(sign bit) | max(other bits) */ 1138 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1139 var32_off.value | (var32_off.mask & S32_MAX)); 1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1141 reg->u32_max_value = min(reg->u32_max_value, 1142 (u32)(var32_off.value | var32_off.mask)); 1143 } 1144 1145 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1146 { 1147 /* min signed is max(sign bit) | min(other bits) */ 1148 reg->smin_value = max_t(s64, reg->smin_value, 1149 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1150 /* max signed is min(sign bit) | max(other bits) */ 1151 reg->smax_value = min_t(s64, reg->smax_value, 1152 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1153 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1154 reg->umax_value = min(reg->umax_value, 1155 reg->var_off.value | reg->var_off.mask); 1156 } 1157 1158 static void __update_reg_bounds(struct bpf_reg_state *reg) 1159 { 1160 __update_reg32_bounds(reg); 1161 __update_reg64_bounds(reg); 1162 } 1163 1164 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1166 { 1167 /* Learn sign from signed bounds. 1168 * If we cannot cross the sign boundary, then signed and unsigned bounds 1169 * are the same, so combine. This works even in the negative case, e.g. 1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1171 */ 1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1173 reg->s32_min_value = reg->u32_min_value = 1174 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1175 reg->s32_max_value = reg->u32_max_value = 1176 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1177 return; 1178 } 1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1180 * boundary, so we must be careful. 1181 */ 1182 if ((s32)reg->u32_max_value >= 0) { 1183 /* Positive. We can't learn anything from the smin, but smax 1184 * is positive, hence safe. 1185 */ 1186 reg->s32_min_value = reg->u32_min_value; 1187 reg->s32_max_value = reg->u32_max_value = 1188 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1189 } else if ((s32)reg->u32_min_value < 0) { 1190 /* Negative. We can't learn anything from the smax, but smin 1191 * is negative, hence safe. 1192 */ 1193 reg->s32_min_value = reg->u32_min_value = 1194 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1195 reg->s32_max_value = reg->u32_max_value; 1196 } 1197 } 1198 1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1200 { 1201 /* Learn sign from signed bounds. 1202 * If we cannot cross the sign boundary, then signed and unsigned bounds 1203 * are the same, so combine. This works even in the negative case, e.g. 1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1205 */ 1206 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1208 reg->umin_value); 1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1210 reg->umax_value); 1211 return; 1212 } 1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1214 * boundary, so we must be careful. 1215 */ 1216 if ((s64)reg->umax_value >= 0) { 1217 /* Positive. We can't learn anything from the smin, but smax 1218 * is positive, hence safe. 1219 */ 1220 reg->smin_value = reg->umin_value; 1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1222 reg->umax_value); 1223 } else if ((s64)reg->umin_value < 0) { 1224 /* Negative. We can't learn anything from the smax, but smin 1225 * is negative, hence safe. 1226 */ 1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1228 reg->umin_value); 1229 reg->smax_value = reg->umax_value; 1230 } 1231 } 1232 1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1234 { 1235 __reg32_deduce_bounds(reg); 1236 __reg64_deduce_bounds(reg); 1237 } 1238 1239 /* Attempts to improve var_off based on unsigned min/max information */ 1240 static void __reg_bound_offset(struct bpf_reg_state *reg) 1241 { 1242 struct tnum var64_off = tnum_intersect(reg->var_off, 1243 tnum_range(reg->umin_value, 1244 reg->umax_value)); 1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1246 tnum_range(reg->u32_min_value, 1247 reg->u32_max_value)); 1248 1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1250 } 1251 1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1253 { 1254 reg->umin_value = reg->u32_min_value; 1255 reg->umax_value = reg->u32_max_value; 1256 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1257 * but must be positive otherwise set to worse case bounds 1258 * and refine later from tnum. 1259 */ 1260 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1261 reg->smax_value = reg->s32_max_value; 1262 else 1263 reg->smax_value = U32_MAX; 1264 if (reg->s32_min_value >= 0) 1265 reg->smin_value = reg->s32_min_value; 1266 else 1267 reg->smin_value = 0; 1268 } 1269 1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1271 { 1272 /* special case when 64-bit register has upper 32-bit register 1273 * zeroed. Typically happens after zext or <<32, >>32 sequence 1274 * allowing us to use 32-bit bounds directly, 1275 */ 1276 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1277 __reg_assign_32_into_64(reg); 1278 } else { 1279 /* Otherwise the best we can do is push lower 32bit known and 1280 * unknown bits into register (var_off set from jmp logic) 1281 * then learn as much as possible from the 64-bit tnum 1282 * known and unknown bits. The previous smin/smax bounds are 1283 * invalid here because of jmp32 compare so mark them unknown 1284 * so they do not impact tnum bounds calculation. 1285 */ 1286 __mark_reg64_unbounded(reg); 1287 __update_reg_bounds(reg); 1288 } 1289 1290 /* Intersecting with the old var_off might have improved our bounds 1291 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1292 * then new var_off is (0; 0x7f...fc) which improves our umax. 1293 */ 1294 __reg_deduce_bounds(reg); 1295 __reg_bound_offset(reg); 1296 __update_reg_bounds(reg); 1297 } 1298 1299 static bool __reg64_bound_s32(s64 a) 1300 { 1301 if (a > S32_MIN && a < S32_MAX) 1302 return true; 1303 return false; 1304 } 1305 1306 static bool __reg64_bound_u32(u64 a) 1307 { 1308 if (a > U32_MIN && a < U32_MAX) 1309 return true; 1310 return false; 1311 } 1312 1313 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1314 { 1315 __mark_reg32_unbounded(reg); 1316 1317 if (__reg64_bound_s32(reg->smin_value)) 1318 reg->s32_min_value = (s32)reg->smin_value; 1319 if (__reg64_bound_s32(reg->smax_value)) 1320 reg->s32_max_value = (s32)reg->smax_value; 1321 if (__reg64_bound_u32(reg->umin_value)) 1322 reg->u32_min_value = (u32)reg->umin_value; 1323 if (__reg64_bound_u32(reg->umax_value)) 1324 reg->u32_max_value = (u32)reg->umax_value; 1325 1326 /* Intersecting with the old var_off might have improved our bounds 1327 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1328 * then new var_off is (0; 0x7f...fc) which improves our umax. 1329 */ 1330 __reg_deduce_bounds(reg); 1331 __reg_bound_offset(reg); 1332 __update_reg_bounds(reg); 1333 } 1334 1335 /* Mark a register as having a completely unknown (scalar) value. */ 1336 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1337 struct bpf_reg_state *reg) 1338 { 1339 /* 1340 * Clear type, id, off, and union(map_ptr, range) and 1341 * padding between 'type' and union 1342 */ 1343 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1344 reg->type = SCALAR_VALUE; 1345 reg->var_off = tnum_unknown; 1346 reg->frameno = 0; 1347 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1348 __mark_reg_unbounded(reg); 1349 } 1350 1351 static void mark_reg_unknown(struct bpf_verifier_env *env, 1352 struct bpf_reg_state *regs, u32 regno) 1353 { 1354 if (WARN_ON(regno >= MAX_BPF_REG)) { 1355 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1356 /* Something bad happened, let's kill all regs except FP */ 1357 for (regno = 0; regno < BPF_REG_FP; regno++) 1358 __mark_reg_not_init(env, regs + regno); 1359 return; 1360 } 1361 __mark_reg_unknown(env, regs + regno); 1362 } 1363 1364 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1365 struct bpf_reg_state *reg) 1366 { 1367 __mark_reg_unknown(env, reg); 1368 reg->type = NOT_INIT; 1369 } 1370 1371 static void mark_reg_not_init(struct bpf_verifier_env *env, 1372 struct bpf_reg_state *regs, u32 regno) 1373 { 1374 if (WARN_ON(regno >= MAX_BPF_REG)) { 1375 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1376 /* Something bad happened, let's kill all regs except FP */ 1377 for (regno = 0; regno < BPF_REG_FP; regno++) 1378 __mark_reg_not_init(env, regs + regno); 1379 return; 1380 } 1381 __mark_reg_not_init(env, regs + regno); 1382 } 1383 1384 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1385 struct bpf_reg_state *regs, u32 regno, 1386 enum bpf_reg_type reg_type, u32 btf_id) 1387 { 1388 if (reg_type == SCALAR_VALUE) { 1389 mark_reg_unknown(env, regs, regno); 1390 return; 1391 } 1392 mark_reg_known_zero(env, regs, regno); 1393 regs[regno].type = PTR_TO_BTF_ID; 1394 regs[regno].btf_id = btf_id; 1395 } 1396 1397 #define DEF_NOT_SUBREG (0) 1398 static void init_reg_state(struct bpf_verifier_env *env, 1399 struct bpf_func_state *state) 1400 { 1401 struct bpf_reg_state *regs = state->regs; 1402 int i; 1403 1404 for (i = 0; i < MAX_BPF_REG; i++) { 1405 mark_reg_not_init(env, regs, i); 1406 regs[i].live = REG_LIVE_NONE; 1407 regs[i].parent = NULL; 1408 regs[i].subreg_def = DEF_NOT_SUBREG; 1409 } 1410 1411 /* frame pointer */ 1412 regs[BPF_REG_FP].type = PTR_TO_STACK; 1413 mark_reg_known_zero(env, regs, BPF_REG_FP); 1414 regs[BPF_REG_FP].frameno = state->frameno; 1415 } 1416 1417 #define BPF_MAIN_FUNC (-1) 1418 static void init_func_state(struct bpf_verifier_env *env, 1419 struct bpf_func_state *state, 1420 int callsite, int frameno, int subprogno) 1421 { 1422 state->callsite = callsite; 1423 state->frameno = frameno; 1424 state->subprogno = subprogno; 1425 init_reg_state(env, state); 1426 } 1427 1428 enum reg_arg_type { 1429 SRC_OP, /* register is used as source operand */ 1430 DST_OP, /* register is used as destination operand */ 1431 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1432 }; 1433 1434 static int cmp_subprogs(const void *a, const void *b) 1435 { 1436 return ((struct bpf_subprog_info *)a)->start - 1437 ((struct bpf_subprog_info *)b)->start; 1438 } 1439 1440 static int find_subprog(struct bpf_verifier_env *env, int off) 1441 { 1442 struct bpf_subprog_info *p; 1443 1444 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1445 sizeof(env->subprog_info[0]), cmp_subprogs); 1446 if (!p) 1447 return -ENOENT; 1448 return p - env->subprog_info; 1449 1450 } 1451 1452 static int add_subprog(struct bpf_verifier_env *env, int off) 1453 { 1454 int insn_cnt = env->prog->len; 1455 int ret; 1456 1457 if (off >= insn_cnt || off < 0) { 1458 verbose(env, "call to invalid destination\n"); 1459 return -EINVAL; 1460 } 1461 ret = find_subprog(env, off); 1462 if (ret >= 0) 1463 return 0; 1464 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1465 verbose(env, "too many subprograms\n"); 1466 return -E2BIG; 1467 } 1468 env->subprog_info[env->subprog_cnt++].start = off; 1469 sort(env->subprog_info, env->subprog_cnt, 1470 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1471 return 0; 1472 } 1473 1474 static int check_subprogs(struct bpf_verifier_env *env) 1475 { 1476 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1477 struct bpf_subprog_info *subprog = env->subprog_info; 1478 struct bpf_insn *insn = env->prog->insnsi; 1479 int insn_cnt = env->prog->len; 1480 1481 /* Add entry function. */ 1482 ret = add_subprog(env, 0); 1483 if (ret < 0) 1484 return ret; 1485 1486 /* determine subprog starts. The end is one before the next starts */ 1487 for (i = 0; i < insn_cnt; i++) { 1488 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1489 continue; 1490 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1491 continue; 1492 if (!env->bpf_capable) { 1493 verbose(env, 1494 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1495 return -EPERM; 1496 } 1497 ret = add_subprog(env, i + insn[i].imm + 1); 1498 if (ret < 0) 1499 return ret; 1500 } 1501 1502 /* Add a fake 'exit' subprog which could simplify subprog iteration 1503 * logic. 'subprog_cnt' should not be increased. 1504 */ 1505 subprog[env->subprog_cnt].start = insn_cnt; 1506 1507 if (env->log.level & BPF_LOG_LEVEL2) 1508 for (i = 0; i < env->subprog_cnt; i++) 1509 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1510 1511 /* now check that all jumps are within the same subprog */ 1512 subprog_start = subprog[cur_subprog].start; 1513 subprog_end = subprog[cur_subprog + 1].start; 1514 for (i = 0; i < insn_cnt; i++) { 1515 u8 code = insn[i].code; 1516 1517 if (code == (BPF_JMP | BPF_CALL) && 1518 insn[i].imm == BPF_FUNC_tail_call && 1519 insn[i].src_reg != BPF_PSEUDO_CALL) 1520 subprog[cur_subprog].has_tail_call = true; 1521 if (BPF_CLASS(code) == BPF_LD && 1522 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1523 subprog[cur_subprog].has_ld_abs = true; 1524 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1525 goto next; 1526 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1527 goto next; 1528 off = i + insn[i].off + 1; 1529 if (off < subprog_start || off >= subprog_end) { 1530 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1531 return -EINVAL; 1532 } 1533 next: 1534 if (i == subprog_end - 1) { 1535 /* to avoid fall-through from one subprog into another 1536 * the last insn of the subprog should be either exit 1537 * or unconditional jump back 1538 */ 1539 if (code != (BPF_JMP | BPF_EXIT) && 1540 code != (BPF_JMP | BPF_JA)) { 1541 verbose(env, "last insn is not an exit or jmp\n"); 1542 return -EINVAL; 1543 } 1544 subprog_start = subprog_end; 1545 cur_subprog++; 1546 if (cur_subprog < env->subprog_cnt) 1547 subprog_end = subprog[cur_subprog + 1].start; 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 /* Parentage chain of this register (or stack slot) should take care of all 1554 * issues like callee-saved registers, stack slot allocation time, etc. 1555 */ 1556 static int mark_reg_read(struct bpf_verifier_env *env, 1557 const struct bpf_reg_state *state, 1558 struct bpf_reg_state *parent, u8 flag) 1559 { 1560 bool writes = parent == state->parent; /* Observe write marks */ 1561 int cnt = 0; 1562 1563 while (parent) { 1564 /* if read wasn't screened by an earlier write ... */ 1565 if (writes && state->live & REG_LIVE_WRITTEN) 1566 break; 1567 if (parent->live & REG_LIVE_DONE) { 1568 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1569 reg_type_str[parent->type], 1570 parent->var_off.value, parent->off); 1571 return -EFAULT; 1572 } 1573 /* The first condition is more likely to be true than the 1574 * second, checked it first. 1575 */ 1576 if ((parent->live & REG_LIVE_READ) == flag || 1577 parent->live & REG_LIVE_READ64) 1578 /* The parentage chain never changes and 1579 * this parent was already marked as LIVE_READ. 1580 * There is no need to keep walking the chain again and 1581 * keep re-marking all parents as LIVE_READ. 1582 * This case happens when the same register is read 1583 * multiple times without writes into it in-between. 1584 * Also, if parent has the stronger REG_LIVE_READ64 set, 1585 * then no need to set the weak REG_LIVE_READ32. 1586 */ 1587 break; 1588 /* ... then we depend on parent's value */ 1589 parent->live |= flag; 1590 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1591 if (flag == REG_LIVE_READ64) 1592 parent->live &= ~REG_LIVE_READ32; 1593 state = parent; 1594 parent = state->parent; 1595 writes = true; 1596 cnt++; 1597 } 1598 1599 if (env->longest_mark_read_walk < cnt) 1600 env->longest_mark_read_walk = cnt; 1601 return 0; 1602 } 1603 1604 /* This function is supposed to be used by the following 32-bit optimization 1605 * code only. It returns TRUE if the source or destination register operates 1606 * on 64-bit, otherwise return FALSE. 1607 */ 1608 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1609 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1610 { 1611 u8 code, class, op; 1612 1613 code = insn->code; 1614 class = BPF_CLASS(code); 1615 op = BPF_OP(code); 1616 if (class == BPF_JMP) { 1617 /* BPF_EXIT for "main" will reach here. Return TRUE 1618 * conservatively. 1619 */ 1620 if (op == BPF_EXIT) 1621 return true; 1622 if (op == BPF_CALL) { 1623 /* BPF to BPF call will reach here because of marking 1624 * caller saved clobber with DST_OP_NO_MARK for which we 1625 * don't care the register def because they are anyway 1626 * marked as NOT_INIT already. 1627 */ 1628 if (insn->src_reg == BPF_PSEUDO_CALL) 1629 return false; 1630 /* Helper call will reach here because of arg type 1631 * check, conservatively return TRUE. 1632 */ 1633 if (t == SRC_OP) 1634 return true; 1635 1636 return false; 1637 } 1638 } 1639 1640 if (class == BPF_ALU64 || class == BPF_JMP || 1641 /* BPF_END always use BPF_ALU class. */ 1642 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1643 return true; 1644 1645 if (class == BPF_ALU || class == BPF_JMP32) 1646 return false; 1647 1648 if (class == BPF_LDX) { 1649 if (t != SRC_OP) 1650 return BPF_SIZE(code) == BPF_DW; 1651 /* LDX source must be ptr. */ 1652 return true; 1653 } 1654 1655 if (class == BPF_STX) { 1656 if (reg->type != SCALAR_VALUE) 1657 return true; 1658 return BPF_SIZE(code) == BPF_DW; 1659 } 1660 1661 if (class == BPF_LD) { 1662 u8 mode = BPF_MODE(code); 1663 1664 /* LD_IMM64 */ 1665 if (mode == BPF_IMM) 1666 return true; 1667 1668 /* Both LD_IND and LD_ABS return 32-bit data. */ 1669 if (t != SRC_OP) 1670 return false; 1671 1672 /* Implicit ctx ptr. */ 1673 if (regno == BPF_REG_6) 1674 return true; 1675 1676 /* Explicit source could be any width. */ 1677 return true; 1678 } 1679 1680 if (class == BPF_ST) 1681 /* The only source register for BPF_ST is a ptr. */ 1682 return true; 1683 1684 /* Conservatively return true at default. */ 1685 return true; 1686 } 1687 1688 /* Return TRUE if INSN doesn't have explicit value define. */ 1689 static bool insn_no_def(struct bpf_insn *insn) 1690 { 1691 u8 class = BPF_CLASS(insn->code); 1692 1693 return (class == BPF_JMP || class == BPF_JMP32 || 1694 class == BPF_STX || class == BPF_ST); 1695 } 1696 1697 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1698 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1699 { 1700 if (insn_no_def(insn)) 1701 return false; 1702 1703 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1704 } 1705 1706 static void mark_insn_zext(struct bpf_verifier_env *env, 1707 struct bpf_reg_state *reg) 1708 { 1709 s32 def_idx = reg->subreg_def; 1710 1711 if (def_idx == DEF_NOT_SUBREG) 1712 return; 1713 1714 env->insn_aux_data[def_idx - 1].zext_dst = true; 1715 /* The dst will be zero extended, so won't be sub-register anymore. */ 1716 reg->subreg_def = DEF_NOT_SUBREG; 1717 } 1718 1719 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1720 enum reg_arg_type t) 1721 { 1722 struct bpf_verifier_state *vstate = env->cur_state; 1723 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1724 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1725 struct bpf_reg_state *reg, *regs = state->regs; 1726 bool rw64; 1727 1728 if (regno >= MAX_BPF_REG) { 1729 verbose(env, "R%d is invalid\n", regno); 1730 return -EINVAL; 1731 } 1732 1733 reg = ®s[regno]; 1734 rw64 = is_reg64(env, insn, regno, reg, t); 1735 if (t == SRC_OP) { 1736 /* check whether register used as source operand can be read */ 1737 if (reg->type == NOT_INIT) { 1738 verbose(env, "R%d !read_ok\n", regno); 1739 return -EACCES; 1740 } 1741 /* We don't need to worry about FP liveness because it's read-only */ 1742 if (regno == BPF_REG_FP) 1743 return 0; 1744 1745 if (rw64) 1746 mark_insn_zext(env, reg); 1747 1748 return mark_reg_read(env, reg, reg->parent, 1749 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1750 } else { 1751 /* check whether register used as dest operand can be written to */ 1752 if (regno == BPF_REG_FP) { 1753 verbose(env, "frame pointer is read only\n"); 1754 return -EACCES; 1755 } 1756 reg->live |= REG_LIVE_WRITTEN; 1757 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1758 if (t == DST_OP) 1759 mark_reg_unknown(env, regs, regno); 1760 } 1761 return 0; 1762 } 1763 1764 /* for any branch, call, exit record the history of jmps in the given state */ 1765 static int push_jmp_history(struct bpf_verifier_env *env, 1766 struct bpf_verifier_state *cur) 1767 { 1768 u32 cnt = cur->jmp_history_cnt; 1769 struct bpf_idx_pair *p; 1770 1771 cnt++; 1772 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1773 if (!p) 1774 return -ENOMEM; 1775 p[cnt - 1].idx = env->insn_idx; 1776 p[cnt - 1].prev_idx = env->prev_insn_idx; 1777 cur->jmp_history = p; 1778 cur->jmp_history_cnt = cnt; 1779 return 0; 1780 } 1781 1782 /* Backtrack one insn at a time. If idx is not at the top of recorded 1783 * history then previous instruction came from straight line execution. 1784 */ 1785 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1786 u32 *history) 1787 { 1788 u32 cnt = *history; 1789 1790 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1791 i = st->jmp_history[cnt - 1].prev_idx; 1792 (*history)--; 1793 } else { 1794 i--; 1795 } 1796 return i; 1797 } 1798 1799 /* For given verifier state backtrack_insn() is called from the last insn to 1800 * the first insn. Its purpose is to compute a bitmask of registers and 1801 * stack slots that needs precision in the parent verifier state. 1802 */ 1803 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1804 u32 *reg_mask, u64 *stack_mask) 1805 { 1806 const struct bpf_insn_cbs cbs = { 1807 .cb_print = verbose, 1808 .private_data = env, 1809 }; 1810 struct bpf_insn *insn = env->prog->insnsi + idx; 1811 u8 class = BPF_CLASS(insn->code); 1812 u8 opcode = BPF_OP(insn->code); 1813 u8 mode = BPF_MODE(insn->code); 1814 u32 dreg = 1u << insn->dst_reg; 1815 u32 sreg = 1u << insn->src_reg; 1816 u32 spi; 1817 1818 if (insn->code == 0) 1819 return 0; 1820 if (env->log.level & BPF_LOG_LEVEL) { 1821 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1822 verbose(env, "%d: ", idx); 1823 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1824 } 1825 1826 if (class == BPF_ALU || class == BPF_ALU64) { 1827 if (!(*reg_mask & dreg)) 1828 return 0; 1829 if (opcode == BPF_MOV) { 1830 if (BPF_SRC(insn->code) == BPF_X) { 1831 /* dreg = sreg 1832 * dreg needs precision after this insn 1833 * sreg needs precision before this insn 1834 */ 1835 *reg_mask &= ~dreg; 1836 *reg_mask |= sreg; 1837 } else { 1838 /* dreg = K 1839 * dreg needs precision after this insn. 1840 * Corresponding register is already marked 1841 * as precise=true in this verifier state. 1842 * No further markings in parent are necessary 1843 */ 1844 *reg_mask &= ~dreg; 1845 } 1846 } else { 1847 if (BPF_SRC(insn->code) == BPF_X) { 1848 /* dreg += sreg 1849 * both dreg and sreg need precision 1850 * before this insn 1851 */ 1852 *reg_mask |= sreg; 1853 } /* else dreg += K 1854 * dreg still needs precision before this insn 1855 */ 1856 } 1857 } else if (class == BPF_LDX) { 1858 if (!(*reg_mask & dreg)) 1859 return 0; 1860 *reg_mask &= ~dreg; 1861 1862 /* scalars can only be spilled into stack w/o losing precision. 1863 * Load from any other memory can be zero extended. 1864 * The desire to keep that precision is already indicated 1865 * by 'precise' mark in corresponding register of this state. 1866 * No further tracking necessary. 1867 */ 1868 if (insn->src_reg != BPF_REG_FP) 1869 return 0; 1870 if (BPF_SIZE(insn->code) != BPF_DW) 1871 return 0; 1872 1873 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1874 * that [fp - off] slot contains scalar that needs to be 1875 * tracked with precision 1876 */ 1877 spi = (-insn->off - 1) / BPF_REG_SIZE; 1878 if (spi >= 64) { 1879 verbose(env, "BUG spi %d\n", spi); 1880 WARN_ONCE(1, "verifier backtracking bug"); 1881 return -EFAULT; 1882 } 1883 *stack_mask |= 1ull << spi; 1884 } else if (class == BPF_STX || class == BPF_ST) { 1885 if (*reg_mask & dreg) 1886 /* stx & st shouldn't be using _scalar_ dst_reg 1887 * to access memory. It means backtracking 1888 * encountered a case of pointer subtraction. 1889 */ 1890 return -ENOTSUPP; 1891 /* scalars can only be spilled into stack */ 1892 if (insn->dst_reg != BPF_REG_FP) 1893 return 0; 1894 if (BPF_SIZE(insn->code) != BPF_DW) 1895 return 0; 1896 spi = (-insn->off - 1) / BPF_REG_SIZE; 1897 if (spi >= 64) { 1898 verbose(env, "BUG spi %d\n", spi); 1899 WARN_ONCE(1, "verifier backtracking bug"); 1900 return -EFAULT; 1901 } 1902 if (!(*stack_mask & (1ull << spi))) 1903 return 0; 1904 *stack_mask &= ~(1ull << spi); 1905 if (class == BPF_STX) 1906 *reg_mask |= sreg; 1907 } else if (class == BPF_JMP || class == BPF_JMP32) { 1908 if (opcode == BPF_CALL) { 1909 if (insn->src_reg == BPF_PSEUDO_CALL) 1910 return -ENOTSUPP; 1911 /* regular helper call sets R0 */ 1912 *reg_mask &= ~1; 1913 if (*reg_mask & 0x3f) { 1914 /* if backtracing was looking for registers R1-R5 1915 * they should have been found already. 1916 */ 1917 verbose(env, "BUG regs %x\n", *reg_mask); 1918 WARN_ONCE(1, "verifier backtracking bug"); 1919 return -EFAULT; 1920 } 1921 } else if (opcode == BPF_EXIT) { 1922 return -ENOTSUPP; 1923 } 1924 } else if (class == BPF_LD) { 1925 if (!(*reg_mask & dreg)) 1926 return 0; 1927 *reg_mask &= ~dreg; 1928 /* It's ld_imm64 or ld_abs or ld_ind. 1929 * For ld_imm64 no further tracking of precision 1930 * into parent is necessary 1931 */ 1932 if (mode == BPF_IND || mode == BPF_ABS) 1933 /* to be analyzed */ 1934 return -ENOTSUPP; 1935 } 1936 return 0; 1937 } 1938 1939 /* the scalar precision tracking algorithm: 1940 * . at the start all registers have precise=false. 1941 * . scalar ranges are tracked as normal through alu and jmp insns. 1942 * . once precise value of the scalar register is used in: 1943 * . ptr + scalar alu 1944 * . if (scalar cond K|scalar) 1945 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1946 * backtrack through the verifier states and mark all registers and 1947 * stack slots with spilled constants that these scalar regisers 1948 * should be precise. 1949 * . during state pruning two registers (or spilled stack slots) 1950 * are equivalent if both are not precise. 1951 * 1952 * Note the verifier cannot simply walk register parentage chain, 1953 * since many different registers and stack slots could have been 1954 * used to compute single precise scalar. 1955 * 1956 * The approach of starting with precise=true for all registers and then 1957 * backtrack to mark a register as not precise when the verifier detects 1958 * that program doesn't care about specific value (e.g., when helper 1959 * takes register as ARG_ANYTHING parameter) is not safe. 1960 * 1961 * It's ok to walk single parentage chain of the verifier states. 1962 * It's possible that this backtracking will go all the way till 1st insn. 1963 * All other branches will be explored for needing precision later. 1964 * 1965 * The backtracking needs to deal with cases like: 1966 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1967 * r9 -= r8 1968 * r5 = r9 1969 * if r5 > 0x79f goto pc+7 1970 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1971 * r5 += 1 1972 * ... 1973 * call bpf_perf_event_output#25 1974 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1975 * 1976 * and this case: 1977 * r6 = 1 1978 * call foo // uses callee's r6 inside to compute r0 1979 * r0 += r6 1980 * if r0 == 0 goto 1981 * 1982 * to track above reg_mask/stack_mask needs to be independent for each frame. 1983 * 1984 * Also if parent's curframe > frame where backtracking started, 1985 * the verifier need to mark registers in both frames, otherwise callees 1986 * may incorrectly prune callers. This is similar to 1987 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1988 * 1989 * For now backtracking falls back into conservative marking. 1990 */ 1991 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1992 struct bpf_verifier_state *st) 1993 { 1994 struct bpf_func_state *func; 1995 struct bpf_reg_state *reg; 1996 int i, j; 1997 1998 /* big hammer: mark all scalars precise in this path. 1999 * pop_stack may still get !precise scalars. 2000 */ 2001 for (; st; st = st->parent) 2002 for (i = 0; i <= st->curframe; i++) { 2003 func = st->frame[i]; 2004 for (j = 0; j < BPF_REG_FP; j++) { 2005 reg = &func->regs[j]; 2006 if (reg->type != SCALAR_VALUE) 2007 continue; 2008 reg->precise = true; 2009 } 2010 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2011 if (func->stack[j].slot_type[0] != STACK_SPILL) 2012 continue; 2013 reg = &func->stack[j].spilled_ptr; 2014 if (reg->type != SCALAR_VALUE) 2015 continue; 2016 reg->precise = true; 2017 } 2018 } 2019 } 2020 2021 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2022 int spi) 2023 { 2024 struct bpf_verifier_state *st = env->cur_state; 2025 int first_idx = st->first_insn_idx; 2026 int last_idx = env->insn_idx; 2027 struct bpf_func_state *func; 2028 struct bpf_reg_state *reg; 2029 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2030 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2031 bool skip_first = true; 2032 bool new_marks = false; 2033 int i, err; 2034 2035 if (!env->bpf_capable) 2036 return 0; 2037 2038 func = st->frame[st->curframe]; 2039 if (regno >= 0) { 2040 reg = &func->regs[regno]; 2041 if (reg->type != SCALAR_VALUE) { 2042 WARN_ONCE(1, "backtracing misuse"); 2043 return -EFAULT; 2044 } 2045 if (!reg->precise) 2046 new_marks = true; 2047 else 2048 reg_mask = 0; 2049 reg->precise = true; 2050 } 2051 2052 while (spi >= 0) { 2053 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2054 stack_mask = 0; 2055 break; 2056 } 2057 reg = &func->stack[spi].spilled_ptr; 2058 if (reg->type != SCALAR_VALUE) { 2059 stack_mask = 0; 2060 break; 2061 } 2062 if (!reg->precise) 2063 new_marks = true; 2064 else 2065 stack_mask = 0; 2066 reg->precise = true; 2067 break; 2068 } 2069 2070 if (!new_marks) 2071 return 0; 2072 if (!reg_mask && !stack_mask) 2073 return 0; 2074 for (;;) { 2075 DECLARE_BITMAP(mask, 64); 2076 u32 history = st->jmp_history_cnt; 2077 2078 if (env->log.level & BPF_LOG_LEVEL) 2079 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2080 for (i = last_idx;;) { 2081 if (skip_first) { 2082 err = 0; 2083 skip_first = false; 2084 } else { 2085 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2086 } 2087 if (err == -ENOTSUPP) { 2088 mark_all_scalars_precise(env, st); 2089 return 0; 2090 } else if (err) { 2091 return err; 2092 } 2093 if (!reg_mask && !stack_mask) 2094 /* Found assignment(s) into tracked register in this state. 2095 * Since this state is already marked, just return. 2096 * Nothing to be tracked further in the parent state. 2097 */ 2098 return 0; 2099 if (i == first_idx) 2100 break; 2101 i = get_prev_insn_idx(st, i, &history); 2102 if (i >= env->prog->len) { 2103 /* This can happen if backtracking reached insn 0 2104 * and there are still reg_mask or stack_mask 2105 * to backtrack. 2106 * It means the backtracking missed the spot where 2107 * particular register was initialized with a constant. 2108 */ 2109 verbose(env, "BUG backtracking idx %d\n", i); 2110 WARN_ONCE(1, "verifier backtracking bug"); 2111 return -EFAULT; 2112 } 2113 } 2114 st = st->parent; 2115 if (!st) 2116 break; 2117 2118 new_marks = false; 2119 func = st->frame[st->curframe]; 2120 bitmap_from_u64(mask, reg_mask); 2121 for_each_set_bit(i, mask, 32) { 2122 reg = &func->regs[i]; 2123 if (reg->type != SCALAR_VALUE) { 2124 reg_mask &= ~(1u << i); 2125 continue; 2126 } 2127 if (!reg->precise) 2128 new_marks = true; 2129 reg->precise = true; 2130 } 2131 2132 bitmap_from_u64(mask, stack_mask); 2133 for_each_set_bit(i, mask, 64) { 2134 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2135 /* the sequence of instructions: 2136 * 2: (bf) r3 = r10 2137 * 3: (7b) *(u64 *)(r3 -8) = r0 2138 * 4: (79) r4 = *(u64 *)(r10 -8) 2139 * doesn't contain jmps. It's backtracked 2140 * as a single block. 2141 * During backtracking insn 3 is not recognized as 2142 * stack access, so at the end of backtracking 2143 * stack slot fp-8 is still marked in stack_mask. 2144 * However the parent state may not have accessed 2145 * fp-8 and it's "unallocated" stack space. 2146 * In such case fallback to conservative. 2147 */ 2148 mark_all_scalars_precise(env, st); 2149 return 0; 2150 } 2151 2152 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2153 stack_mask &= ~(1ull << i); 2154 continue; 2155 } 2156 reg = &func->stack[i].spilled_ptr; 2157 if (reg->type != SCALAR_VALUE) { 2158 stack_mask &= ~(1ull << i); 2159 continue; 2160 } 2161 if (!reg->precise) 2162 new_marks = true; 2163 reg->precise = true; 2164 } 2165 if (env->log.level & BPF_LOG_LEVEL) { 2166 print_verifier_state(env, func); 2167 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2168 new_marks ? "didn't have" : "already had", 2169 reg_mask, stack_mask); 2170 } 2171 2172 if (!reg_mask && !stack_mask) 2173 break; 2174 if (!new_marks) 2175 break; 2176 2177 last_idx = st->last_insn_idx; 2178 first_idx = st->first_insn_idx; 2179 } 2180 return 0; 2181 } 2182 2183 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2184 { 2185 return __mark_chain_precision(env, regno, -1); 2186 } 2187 2188 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2189 { 2190 return __mark_chain_precision(env, -1, spi); 2191 } 2192 2193 static bool is_spillable_regtype(enum bpf_reg_type type) 2194 { 2195 switch (type) { 2196 case PTR_TO_MAP_VALUE: 2197 case PTR_TO_MAP_VALUE_OR_NULL: 2198 case PTR_TO_STACK: 2199 case PTR_TO_CTX: 2200 case PTR_TO_PACKET: 2201 case PTR_TO_PACKET_META: 2202 case PTR_TO_PACKET_END: 2203 case PTR_TO_FLOW_KEYS: 2204 case CONST_PTR_TO_MAP: 2205 case PTR_TO_SOCKET: 2206 case PTR_TO_SOCKET_OR_NULL: 2207 case PTR_TO_SOCK_COMMON: 2208 case PTR_TO_SOCK_COMMON_OR_NULL: 2209 case PTR_TO_TCP_SOCK: 2210 case PTR_TO_TCP_SOCK_OR_NULL: 2211 case PTR_TO_XDP_SOCK: 2212 case PTR_TO_BTF_ID: 2213 case PTR_TO_BTF_ID_OR_NULL: 2214 case PTR_TO_RDONLY_BUF: 2215 case PTR_TO_RDONLY_BUF_OR_NULL: 2216 case PTR_TO_RDWR_BUF: 2217 case PTR_TO_RDWR_BUF_OR_NULL: 2218 case PTR_TO_PERCPU_BTF_ID: 2219 return true; 2220 default: 2221 return false; 2222 } 2223 } 2224 2225 /* Does this register contain a constant zero? */ 2226 static bool register_is_null(struct bpf_reg_state *reg) 2227 { 2228 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2229 } 2230 2231 static bool register_is_const(struct bpf_reg_state *reg) 2232 { 2233 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2234 } 2235 2236 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2237 { 2238 return tnum_is_unknown(reg->var_off) && 2239 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2240 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2241 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2242 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2243 } 2244 2245 static bool register_is_bounded(struct bpf_reg_state *reg) 2246 { 2247 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2248 } 2249 2250 static bool __is_pointer_value(bool allow_ptr_leaks, 2251 const struct bpf_reg_state *reg) 2252 { 2253 if (allow_ptr_leaks) 2254 return false; 2255 2256 return reg->type != SCALAR_VALUE; 2257 } 2258 2259 static void save_register_state(struct bpf_func_state *state, 2260 int spi, struct bpf_reg_state *reg) 2261 { 2262 int i; 2263 2264 state->stack[spi].spilled_ptr = *reg; 2265 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2266 2267 for (i = 0; i < BPF_REG_SIZE; i++) 2268 state->stack[spi].slot_type[i] = STACK_SPILL; 2269 } 2270 2271 /* check_stack_read/write functions track spill/fill of registers, 2272 * stack boundary and alignment are checked in check_mem_access() 2273 */ 2274 static int check_stack_write(struct bpf_verifier_env *env, 2275 struct bpf_func_state *state, /* func where register points to */ 2276 int off, int size, int value_regno, int insn_idx) 2277 { 2278 struct bpf_func_state *cur; /* state of the current function */ 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2280 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2281 struct bpf_reg_state *reg = NULL; 2282 2283 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2284 state->acquired_refs, true); 2285 if (err) 2286 return err; 2287 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2288 * so it's aligned access and [off, off + size) are within stack limits 2289 */ 2290 if (!env->allow_ptr_leaks && 2291 state->stack[spi].slot_type[0] == STACK_SPILL && 2292 size != BPF_REG_SIZE) { 2293 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2294 return -EACCES; 2295 } 2296 2297 cur = env->cur_state->frame[env->cur_state->curframe]; 2298 if (value_regno >= 0) 2299 reg = &cur->regs[value_regno]; 2300 2301 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2302 !register_is_null(reg) && env->bpf_capable) { 2303 if (dst_reg != BPF_REG_FP) { 2304 /* The backtracking logic can only recognize explicit 2305 * stack slot address like [fp - 8]. Other spill of 2306 * scalar via different register has to be conervative. 2307 * Backtrack from here and mark all registers as precise 2308 * that contributed into 'reg' being a constant. 2309 */ 2310 err = mark_chain_precision(env, value_regno); 2311 if (err) 2312 return err; 2313 } 2314 save_register_state(state, spi, reg); 2315 } else if (reg && is_spillable_regtype(reg->type)) { 2316 /* register containing pointer is being spilled into stack */ 2317 if (size != BPF_REG_SIZE) { 2318 verbose_linfo(env, insn_idx, "; "); 2319 verbose(env, "invalid size of register spill\n"); 2320 return -EACCES; 2321 } 2322 2323 if (state != cur && reg->type == PTR_TO_STACK) { 2324 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2325 return -EINVAL; 2326 } 2327 2328 if (!env->bypass_spec_v4) { 2329 bool sanitize = false; 2330 2331 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2332 register_is_const(&state->stack[spi].spilled_ptr)) 2333 sanitize = true; 2334 for (i = 0; i < BPF_REG_SIZE; i++) 2335 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2336 sanitize = true; 2337 break; 2338 } 2339 if (sanitize) { 2340 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2341 int soff = (-spi - 1) * BPF_REG_SIZE; 2342 2343 /* detected reuse of integer stack slot with a pointer 2344 * which means either llvm is reusing stack slot or 2345 * an attacker is trying to exploit CVE-2018-3639 2346 * (speculative store bypass) 2347 * Have to sanitize that slot with preemptive 2348 * store of zero. 2349 */ 2350 if (*poff && *poff != soff) { 2351 /* disallow programs where single insn stores 2352 * into two different stack slots, since verifier 2353 * cannot sanitize them 2354 */ 2355 verbose(env, 2356 "insn %d cannot access two stack slots fp%d and fp%d", 2357 insn_idx, *poff, soff); 2358 return -EINVAL; 2359 } 2360 *poff = soff; 2361 } 2362 } 2363 save_register_state(state, spi, reg); 2364 } else { 2365 u8 type = STACK_MISC; 2366 2367 /* regular write of data into stack destroys any spilled ptr */ 2368 state->stack[spi].spilled_ptr.type = NOT_INIT; 2369 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2370 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2371 for (i = 0; i < BPF_REG_SIZE; i++) 2372 state->stack[spi].slot_type[i] = STACK_MISC; 2373 2374 /* only mark the slot as written if all 8 bytes were written 2375 * otherwise read propagation may incorrectly stop too soon 2376 * when stack slots are partially written. 2377 * This heuristic means that read propagation will be 2378 * conservative, since it will add reg_live_read marks 2379 * to stack slots all the way to first state when programs 2380 * writes+reads less than 8 bytes 2381 */ 2382 if (size == BPF_REG_SIZE) 2383 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2384 2385 /* when we zero initialize stack slots mark them as such */ 2386 if (reg && register_is_null(reg)) { 2387 /* backtracking doesn't work for STACK_ZERO yet. */ 2388 err = mark_chain_precision(env, value_regno); 2389 if (err) 2390 return err; 2391 type = STACK_ZERO; 2392 } 2393 2394 /* Mark slots affected by this stack write. */ 2395 for (i = 0; i < size; i++) 2396 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2397 type; 2398 } 2399 return 0; 2400 } 2401 2402 static int check_stack_read(struct bpf_verifier_env *env, 2403 struct bpf_func_state *reg_state /* func where register points to */, 2404 int off, int size, int value_regno) 2405 { 2406 struct bpf_verifier_state *vstate = env->cur_state; 2407 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2408 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2409 struct bpf_reg_state *reg; 2410 u8 *stype; 2411 2412 if (reg_state->allocated_stack <= slot) { 2413 verbose(env, "invalid read from stack off %d+0 size %d\n", 2414 off, size); 2415 return -EACCES; 2416 } 2417 stype = reg_state->stack[spi].slot_type; 2418 reg = ®_state->stack[spi].spilled_ptr; 2419 2420 if (stype[0] == STACK_SPILL) { 2421 if (size != BPF_REG_SIZE) { 2422 if (reg->type != SCALAR_VALUE) { 2423 verbose_linfo(env, env->insn_idx, "; "); 2424 verbose(env, "invalid size of register fill\n"); 2425 return -EACCES; 2426 } 2427 if (value_regno >= 0) { 2428 mark_reg_unknown(env, state->regs, value_regno); 2429 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2430 } 2431 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2432 return 0; 2433 } 2434 for (i = 1; i < BPF_REG_SIZE; i++) { 2435 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2436 verbose(env, "corrupted spill memory\n"); 2437 return -EACCES; 2438 } 2439 } 2440 2441 if (value_regno >= 0) { 2442 /* restore register state from stack */ 2443 state->regs[value_regno] = *reg; 2444 /* mark reg as written since spilled pointer state likely 2445 * has its liveness marks cleared by is_state_visited() 2446 * which resets stack/reg liveness for state transitions 2447 */ 2448 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2449 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2450 /* If value_regno==-1, the caller is asking us whether 2451 * it is acceptable to use this value as a SCALAR_VALUE 2452 * (e.g. for XADD). 2453 * We must not allow unprivileged callers to do that 2454 * with spilled pointers. 2455 */ 2456 verbose(env, "leaking pointer from stack off %d\n", 2457 off); 2458 return -EACCES; 2459 } 2460 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2461 } else { 2462 int zeros = 0; 2463 2464 for (i = 0; i < size; i++) { 2465 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2466 continue; 2467 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2468 zeros++; 2469 continue; 2470 } 2471 verbose(env, "invalid read from stack off %d+%d size %d\n", 2472 off, i, size); 2473 return -EACCES; 2474 } 2475 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2476 if (value_regno >= 0) { 2477 if (zeros == size) { 2478 /* any size read into register is zero extended, 2479 * so the whole register == const_zero 2480 */ 2481 __mark_reg_const_zero(&state->regs[value_regno]); 2482 /* backtracking doesn't support STACK_ZERO yet, 2483 * so mark it precise here, so that later 2484 * backtracking can stop here. 2485 * Backtracking may not need this if this register 2486 * doesn't participate in pointer adjustment. 2487 * Forward propagation of precise flag is not 2488 * necessary either. This mark is only to stop 2489 * backtracking. Any register that contributed 2490 * to const 0 was marked precise before spill. 2491 */ 2492 state->regs[value_regno].precise = true; 2493 } else { 2494 /* have read misc data from the stack */ 2495 mark_reg_unknown(env, state->regs, value_regno); 2496 } 2497 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2498 } 2499 } 2500 return 0; 2501 } 2502 2503 static int check_stack_access(struct bpf_verifier_env *env, 2504 const struct bpf_reg_state *reg, 2505 int off, int size) 2506 { 2507 /* Stack accesses must be at a fixed offset, so that we 2508 * can determine what type of data were returned. See 2509 * check_stack_read(). 2510 */ 2511 if (!tnum_is_const(reg->var_off)) { 2512 char tn_buf[48]; 2513 2514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2515 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2516 tn_buf, off, size); 2517 return -EACCES; 2518 } 2519 2520 if (off >= 0 || off < -MAX_BPF_STACK) { 2521 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2522 return -EACCES; 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2529 int off, int size, enum bpf_access_type type) 2530 { 2531 struct bpf_reg_state *regs = cur_regs(env); 2532 struct bpf_map *map = regs[regno].map_ptr; 2533 u32 cap = bpf_map_flags_to_cap(map); 2534 2535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2537 map->value_size, off, size); 2538 return -EACCES; 2539 } 2540 2541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2543 map->value_size, off, size); 2544 return -EACCES; 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2551 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2552 int off, int size, u32 mem_size, 2553 bool zero_size_allowed) 2554 { 2555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2556 struct bpf_reg_state *reg; 2557 2558 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2559 return 0; 2560 2561 reg = &cur_regs(env)[regno]; 2562 switch (reg->type) { 2563 case PTR_TO_MAP_VALUE: 2564 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2565 mem_size, off, size); 2566 break; 2567 case PTR_TO_PACKET: 2568 case PTR_TO_PACKET_META: 2569 case PTR_TO_PACKET_END: 2570 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2571 off, size, regno, reg->id, off, mem_size); 2572 break; 2573 case PTR_TO_MEM: 2574 default: 2575 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2576 mem_size, off, size); 2577 } 2578 2579 return -EACCES; 2580 } 2581 2582 /* check read/write into a memory region with possible variable offset */ 2583 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2584 int off, int size, u32 mem_size, 2585 bool zero_size_allowed) 2586 { 2587 struct bpf_verifier_state *vstate = env->cur_state; 2588 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2589 struct bpf_reg_state *reg = &state->regs[regno]; 2590 int err; 2591 2592 /* We may have adjusted the register pointing to memory region, so we 2593 * need to try adding each of min_value and max_value to off 2594 * to make sure our theoretical access will be safe. 2595 */ 2596 if (env->log.level & BPF_LOG_LEVEL) 2597 print_verifier_state(env, state); 2598 2599 /* The minimum value is only important with signed 2600 * comparisons where we can't assume the floor of a 2601 * value is 0. If we are using signed variables for our 2602 * index'es we need to make sure that whatever we use 2603 * will have a set floor within our range. 2604 */ 2605 if (reg->smin_value < 0 && 2606 (reg->smin_value == S64_MIN || 2607 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2608 reg->smin_value + off < 0)) { 2609 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2610 regno); 2611 return -EACCES; 2612 } 2613 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2614 mem_size, zero_size_allowed); 2615 if (err) { 2616 verbose(env, "R%d min value is outside of the allowed memory range\n", 2617 regno); 2618 return err; 2619 } 2620 2621 /* If we haven't set a max value then we need to bail since we can't be 2622 * sure we won't do bad things. 2623 * If reg->umax_value + off could overflow, treat that as unbounded too. 2624 */ 2625 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2626 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2627 regno); 2628 return -EACCES; 2629 } 2630 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2631 mem_size, zero_size_allowed); 2632 if (err) { 2633 verbose(env, "R%d max value is outside of the allowed memory range\n", 2634 regno); 2635 return err; 2636 } 2637 2638 return 0; 2639 } 2640 2641 /* check read/write into a map element with possible variable offset */ 2642 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2643 int off, int size, bool zero_size_allowed) 2644 { 2645 struct bpf_verifier_state *vstate = env->cur_state; 2646 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2647 struct bpf_reg_state *reg = &state->regs[regno]; 2648 struct bpf_map *map = reg->map_ptr; 2649 int err; 2650 2651 err = check_mem_region_access(env, regno, off, size, map->value_size, 2652 zero_size_allowed); 2653 if (err) 2654 return err; 2655 2656 if (map_value_has_spin_lock(map)) { 2657 u32 lock = map->spin_lock_off; 2658 2659 /* if any part of struct bpf_spin_lock can be touched by 2660 * load/store reject this program. 2661 * To check that [x1, x2) overlaps with [y1, y2) 2662 * it is sufficient to check x1 < y2 && y1 < x2. 2663 */ 2664 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2665 lock < reg->umax_value + off + size) { 2666 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2667 return -EACCES; 2668 } 2669 } 2670 return err; 2671 } 2672 2673 #define MAX_PACKET_OFF 0xffff 2674 2675 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2676 { 2677 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2678 } 2679 2680 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2681 const struct bpf_call_arg_meta *meta, 2682 enum bpf_access_type t) 2683 { 2684 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2685 2686 switch (prog_type) { 2687 /* Program types only with direct read access go here! */ 2688 case BPF_PROG_TYPE_LWT_IN: 2689 case BPF_PROG_TYPE_LWT_OUT: 2690 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2691 case BPF_PROG_TYPE_SK_REUSEPORT: 2692 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2693 case BPF_PROG_TYPE_CGROUP_SKB: 2694 if (t == BPF_WRITE) 2695 return false; 2696 fallthrough; 2697 2698 /* Program types with direct read + write access go here! */ 2699 case BPF_PROG_TYPE_SCHED_CLS: 2700 case BPF_PROG_TYPE_SCHED_ACT: 2701 case BPF_PROG_TYPE_XDP: 2702 case BPF_PROG_TYPE_LWT_XMIT: 2703 case BPF_PROG_TYPE_SK_SKB: 2704 case BPF_PROG_TYPE_SK_MSG: 2705 if (meta) 2706 return meta->pkt_access; 2707 2708 env->seen_direct_write = true; 2709 return true; 2710 2711 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2712 if (t == BPF_WRITE) 2713 env->seen_direct_write = true; 2714 2715 return true; 2716 2717 default: 2718 return false; 2719 } 2720 } 2721 2722 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2723 int size, bool zero_size_allowed) 2724 { 2725 struct bpf_reg_state *regs = cur_regs(env); 2726 struct bpf_reg_state *reg = ®s[regno]; 2727 int err; 2728 2729 /* We may have added a variable offset to the packet pointer; but any 2730 * reg->range we have comes after that. We are only checking the fixed 2731 * offset. 2732 */ 2733 2734 /* We don't allow negative numbers, because we aren't tracking enough 2735 * detail to prove they're safe. 2736 */ 2737 if (reg->smin_value < 0) { 2738 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2739 regno); 2740 return -EACCES; 2741 } 2742 2743 err = reg->range < 0 ? -EINVAL : 2744 __check_mem_access(env, regno, off, size, reg->range, 2745 zero_size_allowed); 2746 if (err) { 2747 verbose(env, "R%d offset is outside of the packet\n", regno); 2748 return err; 2749 } 2750 2751 /* __check_mem_access has made sure "off + size - 1" is within u16. 2752 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2753 * otherwise find_good_pkt_pointers would have refused to set range info 2754 * that __check_mem_access would have rejected this pkt access. 2755 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2756 */ 2757 env->prog->aux->max_pkt_offset = 2758 max_t(u32, env->prog->aux->max_pkt_offset, 2759 off + reg->umax_value + size - 1); 2760 2761 return err; 2762 } 2763 2764 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2765 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2766 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2767 u32 *btf_id) 2768 { 2769 struct bpf_insn_access_aux info = { 2770 .reg_type = *reg_type, 2771 .log = &env->log, 2772 }; 2773 2774 if (env->ops->is_valid_access && 2775 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2776 /* A non zero info.ctx_field_size indicates that this field is a 2777 * candidate for later verifier transformation to load the whole 2778 * field and then apply a mask when accessed with a narrower 2779 * access than actual ctx access size. A zero info.ctx_field_size 2780 * will only allow for whole field access and rejects any other 2781 * type of narrower access. 2782 */ 2783 *reg_type = info.reg_type; 2784 2785 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2786 *btf_id = info.btf_id; 2787 else 2788 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2789 /* remember the offset of last byte accessed in ctx */ 2790 if (env->prog->aux->max_ctx_offset < off + size) 2791 env->prog->aux->max_ctx_offset = off + size; 2792 return 0; 2793 } 2794 2795 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2796 return -EACCES; 2797 } 2798 2799 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2800 int size) 2801 { 2802 if (size < 0 || off < 0 || 2803 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2804 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2805 off, size); 2806 return -EACCES; 2807 } 2808 return 0; 2809 } 2810 2811 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2812 u32 regno, int off, int size, 2813 enum bpf_access_type t) 2814 { 2815 struct bpf_reg_state *regs = cur_regs(env); 2816 struct bpf_reg_state *reg = ®s[regno]; 2817 struct bpf_insn_access_aux info = {}; 2818 bool valid; 2819 2820 if (reg->smin_value < 0) { 2821 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2822 regno); 2823 return -EACCES; 2824 } 2825 2826 switch (reg->type) { 2827 case PTR_TO_SOCK_COMMON: 2828 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2829 break; 2830 case PTR_TO_SOCKET: 2831 valid = bpf_sock_is_valid_access(off, size, t, &info); 2832 break; 2833 case PTR_TO_TCP_SOCK: 2834 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2835 break; 2836 case PTR_TO_XDP_SOCK: 2837 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2838 break; 2839 default: 2840 valid = false; 2841 } 2842 2843 2844 if (valid) { 2845 env->insn_aux_data[insn_idx].ctx_field_size = 2846 info.ctx_field_size; 2847 return 0; 2848 } 2849 2850 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2851 regno, reg_type_str[reg->type], off, size); 2852 2853 return -EACCES; 2854 } 2855 2856 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2857 { 2858 return cur_regs(env) + regno; 2859 } 2860 2861 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2862 { 2863 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2864 } 2865 2866 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2867 { 2868 const struct bpf_reg_state *reg = reg_state(env, regno); 2869 2870 return reg->type == PTR_TO_CTX; 2871 } 2872 2873 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2874 { 2875 const struct bpf_reg_state *reg = reg_state(env, regno); 2876 2877 return type_is_sk_pointer(reg->type); 2878 } 2879 2880 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2881 { 2882 const struct bpf_reg_state *reg = reg_state(env, regno); 2883 2884 return type_is_pkt_pointer(reg->type); 2885 } 2886 2887 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2888 { 2889 const struct bpf_reg_state *reg = reg_state(env, regno); 2890 2891 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2892 return reg->type == PTR_TO_FLOW_KEYS; 2893 } 2894 2895 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2896 const struct bpf_reg_state *reg, 2897 int off, int size, bool strict) 2898 { 2899 struct tnum reg_off; 2900 int ip_align; 2901 2902 /* Byte size accesses are always allowed. */ 2903 if (!strict || size == 1) 2904 return 0; 2905 2906 /* For platforms that do not have a Kconfig enabling 2907 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2908 * NET_IP_ALIGN is universally set to '2'. And on platforms 2909 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2910 * to this code only in strict mode where we want to emulate 2911 * the NET_IP_ALIGN==2 checking. Therefore use an 2912 * unconditional IP align value of '2'. 2913 */ 2914 ip_align = 2; 2915 2916 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2917 if (!tnum_is_aligned(reg_off, size)) { 2918 char tn_buf[48]; 2919 2920 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2921 verbose(env, 2922 "misaligned packet access off %d+%s+%d+%d size %d\n", 2923 ip_align, tn_buf, reg->off, off, size); 2924 return -EACCES; 2925 } 2926 2927 return 0; 2928 } 2929 2930 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2931 const struct bpf_reg_state *reg, 2932 const char *pointer_desc, 2933 int off, int size, bool strict) 2934 { 2935 struct tnum reg_off; 2936 2937 /* Byte size accesses are always allowed. */ 2938 if (!strict || size == 1) 2939 return 0; 2940 2941 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2942 if (!tnum_is_aligned(reg_off, size)) { 2943 char tn_buf[48]; 2944 2945 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2946 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2947 pointer_desc, tn_buf, reg->off, off, size); 2948 return -EACCES; 2949 } 2950 2951 return 0; 2952 } 2953 2954 static int check_ptr_alignment(struct bpf_verifier_env *env, 2955 const struct bpf_reg_state *reg, int off, 2956 int size, bool strict_alignment_once) 2957 { 2958 bool strict = env->strict_alignment || strict_alignment_once; 2959 const char *pointer_desc = ""; 2960 2961 switch (reg->type) { 2962 case PTR_TO_PACKET: 2963 case PTR_TO_PACKET_META: 2964 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2965 * right in front, treat it the very same way. 2966 */ 2967 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2968 case PTR_TO_FLOW_KEYS: 2969 pointer_desc = "flow keys "; 2970 break; 2971 case PTR_TO_MAP_VALUE: 2972 pointer_desc = "value "; 2973 break; 2974 case PTR_TO_CTX: 2975 pointer_desc = "context "; 2976 break; 2977 case PTR_TO_STACK: 2978 pointer_desc = "stack "; 2979 /* The stack spill tracking logic in check_stack_write() 2980 * and check_stack_read() relies on stack accesses being 2981 * aligned. 2982 */ 2983 strict = true; 2984 break; 2985 case PTR_TO_SOCKET: 2986 pointer_desc = "sock "; 2987 break; 2988 case PTR_TO_SOCK_COMMON: 2989 pointer_desc = "sock_common "; 2990 break; 2991 case PTR_TO_TCP_SOCK: 2992 pointer_desc = "tcp_sock "; 2993 break; 2994 case PTR_TO_XDP_SOCK: 2995 pointer_desc = "xdp_sock "; 2996 break; 2997 default: 2998 break; 2999 } 3000 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3001 strict); 3002 } 3003 3004 static int update_stack_depth(struct bpf_verifier_env *env, 3005 const struct bpf_func_state *func, 3006 int off) 3007 { 3008 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3009 3010 if (stack >= -off) 3011 return 0; 3012 3013 /* update known max for given subprogram */ 3014 env->subprog_info[func->subprogno].stack_depth = -off; 3015 return 0; 3016 } 3017 3018 /* starting from main bpf function walk all instructions of the function 3019 * and recursively walk all callees that given function can call. 3020 * Ignore jump and exit insns. 3021 * Since recursion is prevented by check_cfg() this algorithm 3022 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3023 */ 3024 static int check_max_stack_depth(struct bpf_verifier_env *env) 3025 { 3026 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3027 struct bpf_subprog_info *subprog = env->subprog_info; 3028 struct bpf_insn *insn = env->prog->insnsi; 3029 bool tail_call_reachable = false; 3030 int ret_insn[MAX_CALL_FRAMES]; 3031 int ret_prog[MAX_CALL_FRAMES]; 3032 int j; 3033 3034 process_func: 3035 /* protect against potential stack overflow that might happen when 3036 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3037 * depth for such case down to 256 so that the worst case scenario 3038 * would result in 8k stack size (32 which is tailcall limit * 256 = 3039 * 8k). 3040 * 3041 * To get the idea what might happen, see an example: 3042 * func1 -> sub rsp, 128 3043 * subfunc1 -> sub rsp, 256 3044 * tailcall1 -> add rsp, 256 3045 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3046 * subfunc2 -> sub rsp, 64 3047 * subfunc22 -> sub rsp, 128 3048 * tailcall2 -> add rsp, 128 3049 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3050 * 3051 * tailcall will unwind the current stack frame but it will not get rid 3052 * of caller's stack as shown on the example above. 3053 */ 3054 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3055 verbose(env, 3056 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3057 depth); 3058 return -EACCES; 3059 } 3060 /* round up to 32-bytes, since this is granularity 3061 * of interpreter stack size 3062 */ 3063 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3064 if (depth > MAX_BPF_STACK) { 3065 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3066 frame + 1, depth); 3067 return -EACCES; 3068 } 3069 continue_func: 3070 subprog_end = subprog[idx + 1].start; 3071 for (; i < subprog_end; i++) { 3072 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3073 continue; 3074 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3075 continue; 3076 /* remember insn and function to return to */ 3077 ret_insn[frame] = i + 1; 3078 ret_prog[frame] = idx; 3079 3080 /* find the callee */ 3081 i = i + insn[i].imm + 1; 3082 idx = find_subprog(env, i); 3083 if (idx < 0) { 3084 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3085 i); 3086 return -EFAULT; 3087 } 3088 3089 if (subprog[idx].has_tail_call) 3090 tail_call_reachable = true; 3091 3092 frame++; 3093 if (frame >= MAX_CALL_FRAMES) { 3094 verbose(env, "the call stack of %d frames is too deep !\n", 3095 frame); 3096 return -E2BIG; 3097 } 3098 goto process_func; 3099 } 3100 /* if tail call got detected across bpf2bpf calls then mark each of the 3101 * currently present subprog frames as tail call reachable subprogs; 3102 * this info will be utilized by JIT so that we will be preserving the 3103 * tail call counter throughout bpf2bpf calls combined with tailcalls 3104 */ 3105 if (tail_call_reachable) 3106 for (j = 0; j < frame; j++) 3107 subprog[ret_prog[j]].tail_call_reachable = true; 3108 3109 /* end of for() loop means the last insn of the 'subprog' 3110 * was reached. Doesn't matter whether it was JA or EXIT 3111 */ 3112 if (frame == 0) 3113 return 0; 3114 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3115 frame--; 3116 i = ret_insn[frame]; 3117 idx = ret_prog[frame]; 3118 goto continue_func; 3119 } 3120 3121 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3122 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3123 const struct bpf_insn *insn, int idx) 3124 { 3125 int start = idx + insn->imm + 1, subprog; 3126 3127 subprog = find_subprog(env, start); 3128 if (subprog < 0) { 3129 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3130 start); 3131 return -EFAULT; 3132 } 3133 return env->subprog_info[subprog].stack_depth; 3134 } 3135 #endif 3136 3137 int check_ctx_reg(struct bpf_verifier_env *env, 3138 const struct bpf_reg_state *reg, int regno) 3139 { 3140 /* Access to ctx or passing it to a helper is only allowed in 3141 * its original, unmodified form. 3142 */ 3143 3144 if (reg->off) { 3145 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3146 regno, reg->off); 3147 return -EACCES; 3148 } 3149 3150 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3151 char tn_buf[48]; 3152 3153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3154 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3155 return -EACCES; 3156 } 3157 3158 return 0; 3159 } 3160 3161 static int __check_buffer_access(struct bpf_verifier_env *env, 3162 const char *buf_info, 3163 const struct bpf_reg_state *reg, 3164 int regno, int off, int size) 3165 { 3166 if (off < 0) { 3167 verbose(env, 3168 "R%d invalid %s buffer access: off=%d, size=%d\n", 3169 regno, buf_info, off, size); 3170 return -EACCES; 3171 } 3172 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3173 char tn_buf[48]; 3174 3175 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3176 verbose(env, 3177 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3178 regno, off, tn_buf); 3179 return -EACCES; 3180 } 3181 3182 return 0; 3183 } 3184 3185 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3186 const struct bpf_reg_state *reg, 3187 int regno, int off, int size) 3188 { 3189 int err; 3190 3191 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3192 if (err) 3193 return err; 3194 3195 if (off + size > env->prog->aux->max_tp_access) 3196 env->prog->aux->max_tp_access = off + size; 3197 3198 return 0; 3199 } 3200 3201 static int check_buffer_access(struct bpf_verifier_env *env, 3202 const struct bpf_reg_state *reg, 3203 int regno, int off, int size, 3204 bool zero_size_allowed, 3205 const char *buf_info, 3206 u32 *max_access) 3207 { 3208 int err; 3209 3210 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3211 if (err) 3212 return err; 3213 3214 if (off + size > *max_access) 3215 *max_access = off + size; 3216 3217 return 0; 3218 } 3219 3220 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3221 static void zext_32_to_64(struct bpf_reg_state *reg) 3222 { 3223 reg->var_off = tnum_subreg(reg->var_off); 3224 __reg_assign_32_into_64(reg); 3225 } 3226 3227 /* truncate register to smaller size (in bytes) 3228 * must be called with size < BPF_REG_SIZE 3229 */ 3230 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3231 { 3232 u64 mask; 3233 3234 /* clear high bits in bit representation */ 3235 reg->var_off = tnum_cast(reg->var_off, size); 3236 3237 /* fix arithmetic bounds */ 3238 mask = ((u64)1 << (size * 8)) - 1; 3239 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3240 reg->umin_value &= mask; 3241 reg->umax_value &= mask; 3242 } else { 3243 reg->umin_value = 0; 3244 reg->umax_value = mask; 3245 } 3246 reg->smin_value = reg->umin_value; 3247 reg->smax_value = reg->umax_value; 3248 3249 /* If size is smaller than 32bit register the 32bit register 3250 * values are also truncated so we push 64-bit bounds into 3251 * 32-bit bounds. Above were truncated < 32-bits already. 3252 */ 3253 if (size >= 4) 3254 return; 3255 __reg_combine_64_into_32(reg); 3256 } 3257 3258 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3259 { 3260 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3261 } 3262 3263 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3264 { 3265 void *ptr; 3266 u64 addr; 3267 int err; 3268 3269 err = map->ops->map_direct_value_addr(map, &addr, off); 3270 if (err) 3271 return err; 3272 ptr = (void *)(long)addr + off; 3273 3274 switch (size) { 3275 case sizeof(u8): 3276 *val = (u64)*(u8 *)ptr; 3277 break; 3278 case sizeof(u16): 3279 *val = (u64)*(u16 *)ptr; 3280 break; 3281 case sizeof(u32): 3282 *val = (u64)*(u32 *)ptr; 3283 break; 3284 case sizeof(u64): 3285 *val = *(u64 *)ptr; 3286 break; 3287 default: 3288 return -EINVAL; 3289 } 3290 return 0; 3291 } 3292 3293 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3294 struct bpf_reg_state *regs, 3295 int regno, int off, int size, 3296 enum bpf_access_type atype, 3297 int value_regno) 3298 { 3299 struct bpf_reg_state *reg = regs + regno; 3300 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3301 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3302 u32 btf_id; 3303 int ret; 3304 3305 if (off < 0) { 3306 verbose(env, 3307 "R%d is ptr_%s invalid negative access: off=%d\n", 3308 regno, tname, off); 3309 return -EACCES; 3310 } 3311 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3312 char tn_buf[48]; 3313 3314 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3315 verbose(env, 3316 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3317 regno, tname, off, tn_buf); 3318 return -EACCES; 3319 } 3320 3321 if (env->ops->btf_struct_access) { 3322 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3323 atype, &btf_id); 3324 } else { 3325 if (atype != BPF_READ) { 3326 verbose(env, "only read is supported\n"); 3327 return -EACCES; 3328 } 3329 3330 ret = btf_struct_access(&env->log, t, off, size, atype, 3331 &btf_id); 3332 } 3333 3334 if (ret < 0) 3335 return ret; 3336 3337 if (atype == BPF_READ && value_regno >= 0) 3338 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3339 3340 return 0; 3341 } 3342 3343 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3344 struct bpf_reg_state *regs, 3345 int regno, int off, int size, 3346 enum bpf_access_type atype, 3347 int value_regno) 3348 { 3349 struct bpf_reg_state *reg = regs + regno; 3350 struct bpf_map *map = reg->map_ptr; 3351 const struct btf_type *t; 3352 const char *tname; 3353 u32 btf_id; 3354 int ret; 3355 3356 if (!btf_vmlinux) { 3357 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3358 return -ENOTSUPP; 3359 } 3360 3361 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3362 verbose(env, "map_ptr access not supported for map type %d\n", 3363 map->map_type); 3364 return -ENOTSUPP; 3365 } 3366 3367 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3368 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3369 3370 if (!env->allow_ptr_to_map_access) { 3371 verbose(env, 3372 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3373 tname); 3374 return -EPERM; 3375 } 3376 3377 if (off < 0) { 3378 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3379 regno, tname, off); 3380 return -EACCES; 3381 } 3382 3383 if (atype != BPF_READ) { 3384 verbose(env, "only read from %s is supported\n", tname); 3385 return -EACCES; 3386 } 3387 3388 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3389 if (ret < 0) 3390 return ret; 3391 3392 if (value_regno >= 0) 3393 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3394 3395 return 0; 3396 } 3397 3398 3399 /* check whether memory at (regno + off) is accessible for t = (read | write) 3400 * if t==write, value_regno is a register which value is stored into memory 3401 * if t==read, value_regno is a register which will receive the value from memory 3402 * if t==write && value_regno==-1, some unknown value is stored into memory 3403 * if t==read && value_regno==-1, don't care what we read from memory 3404 */ 3405 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3406 int off, int bpf_size, enum bpf_access_type t, 3407 int value_regno, bool strict_alignment_once) 3408 { 3409 struct bpf_reg_state *regs = cur_regs(env); 3410 struct bpf_reg_state *reg = regs + regno; 3411 struct bpf_func_state *state; 3412 int size, err = 0; 3413 3414 size = bpf_size_to_bytes(bpf_size); 3415 if (size < 0) 3416 return size; 3417 3418 /* alignment checks will add in reg->off themselves */ 3419 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3420 if (err) 3421 return err; 3422 3423 /* for access checks, reg->off is just part of off */ 3424 off += reg->off; 3425 3426 if (reg->type == PTR_TO_MAP_VALUE) { 3427 if (t == BPF_WRITE && value_regno >= 0 && 3428 is_pointer_value(env, value_regno)) { 3429 verbose(env, "R%d leaks addr into map\n", value_regno); 3430 return -EACCES; 3431 } 3432 err = check_map_access_type(env, regno, off, size, t); 3433 if (err) 3434 return err; 3435 err = check_map_access(env, regno, off, size, false); 3436 if (!err && t == BPF_READ && value_regno >= 0) { 3437 struct bpf_map *map = reg->map_ptr; 3438 3439 /* if map is read-only, track its contents as scalars */ 3440 if (tnum_is_const(reg->var_off) && 3441 bpf_map_is_rdonly(map) && 3442 map->ops->map_direct_value_addr) { 3443 int map_off = off + reg->var_off.value; 3444 u64 val = 0; 3445 3446 err = bpf_map_direct_read(map, map_off, size, 3447 &val); 3448 if (err) 3449 return err; 3450 3451 regs[value_regno].type = SCALAR_VALUE; 3452 __mark_reg_known(®s[value_regno], val); 3453 } else { 3454 mark_reg_unknown(env, regs, value_regno); 3455 } 3456 } 3457 } else if (reg->type == PTR_TO_MEM) { 3458 if (t == BPF_WRITE && value_regno >= 0 && 3459 is_pointer_value(env, value_regno)) { 3460 verbose(env, "R%d leaks addr into mem\n", value_regno); 3461 return -EACCES; 3462 } 3463 err = check_mem_region_access(env, regno, off, size, 3464 reg->mem_size, false); 3465 if (!err && t == BPF_READ && value_regno >= 0) 3466 mark_reg_unknown(env, regs, value_regno); 3467 } else if (reg->type == PTR_TO_CTX) { 3468 enum bpf_reg_type reg_type = SCALAR_VALUE; 3469 u32 btf_id = 0; 3470 3471 if (t == BPF_WRITE && value_regno >= 0 && 3472 is_pointer_value(env, value_regno)) { 3473 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3474 return -EACCES; 3475 } 3476 3477 err = check_ctx_reg(env, reg, regno); 3478 if (err < 0) 3479 return err; 3480 3481 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3482 if (err) 3483 verbose_linfo(env, insn_idx, "; "); 3484 if (!err && t == BPF_READ && value_regno >= 0) { 3485 /* ctx access returns either a scalar, or a 3486 * PTR_TO_PACKET[_META,_END]. In the latter 3487 * case, we know the offset is zero. 3488 */ 3489 if (reg_type == SCALAR_VALUE) { 3490 mark_reg_unknown(env, regs, value_regno); 3491 } else { 3492 mark_reg_known_zero(env, regs, 3493 value_regno); 3494 if (reg_type_may_be_null(reg_type)) 3495 regs[value_regno].id = ++env->id_gen; 3496 /* A load of ctx field could have different 3497 * actual load size with the one encoded in the 3498 * insn. When the dst is PTR, it is for sure not 3499 * a sub-register. 3500 */ 3501 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3502 if (reg_type == PTR_TO_BTF_ID || 3503 reg_type == PTR_TO_BTF_ID_OR_NULL) 3504 regs[value_regno].btf_id = btf_id; 3505 } 3506 regs[value_regno].type = reg_type; 3507 } 3508 3509 } else if (reg->type == PTR_TO_STACK) { 3510 off += reg->var_off.value; 3511 err = check_stack_access(env, reg, off, size); 3512 if (err) 3513 return err; 3514 3515 state = func(env, reg); 3516 err = update_stack_depth(env, state, off); 3517 if (err) 3518 return err; 3519 3520 if (t == BPF_WRITE) 3521 err = check_stack_write(env, state, off, size, 3522 value_regno, insn_idx); 3523 else 3524 err = check_stack_read(env, state, off, size, 3525 value_regno); 3526 } else if (reg_is_pkt_pointer(reg)) { 3527 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3528 verbose(env, "cannot write into packet\n"); 3529 return -EACCES; 3530 } 3531 if (t == BPF_WRITE && value_regno >= 0 && 3532 is_pointer_value(env, value_regno)) { 3533 verbose(env, "R%d leaks addr into packet\n", 3534 value_regno); 3535 return -EACCES; 3536 } 3537 err = check_packet_access(env, regno, off, size, false); 3538 if (!err && t == BPF_READ && value_regno >= 0) 3539 mark_reg_unknown(env, regs, value_regno); 3540 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3541 if (t == BPF_WRITE && value_regno >= 0 && 3542 is_pointer_value(env, value_regno)) { 3543 verbose(env, "R%d leaks addr into flow keys\n", 3544 value_regno); 3545 return -EACCES; 3546 } 3547 3548 err = check_flow_keys_access(env, off, size); 3549 if (!err && t == BPF_READ && value_regno >= 0) 3550 mark_reg_unknown(env, regs, value_regno); 3551 } else if (type_is_sk_pointer(reg->type)) { 3552 if (t == BPF_WRITE) { 3553 verbose(env, "R%d cannot write into %s\n", 3554 regno, reg_type_str[reg->type]); 3555 return -EACCES; 3556 } 3557 err = check_sock_access(env, insn_idx, regno, off, size, t); 3558 if (!err && value_regno >= 0) 3559 mark_reg_unknown(env, regs, value_regno); 3560 } else if (reg->type == PTR_TO_TP_BUFFER) { 3561 err = check_tp_buffer_access(env, reg, regno, off, size); 3562 if (!err && t == BPF_READ && value_regno >= 0) 3563 mark_reg_unknown(env, regs, value_regno); 3564 } else if (reg->type == PTR_TO_BTF_ID) { 3565 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3566 value_regno); 3567 } else if (reg->type == CONST_PTR_TO_MAP) { 3568 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3569 value_regno); 3570 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3571 if (t == BPF_WRITE) { 3572 verbose(env, "R%d cannot write into %s\n", 3573 regno, reg_type_str[reg->type]); 3574 return -EACCES; 3575 } 3576 err = check_buffer_access(env, reg, regno, off, size, false, 3577 "rdonly", 3578 &env->prog->aux->max_rdonly_access); 3579 if (!err && value_regno >= 0) 3580 mark_reg_unknown(env, regs, value_regno); 3581 } else if (reg->type == PTR_TO_RDWR_BUF) { 3582 err = check_buffer_access(env, reg, regno, off, size, false, 3583 "rdwr", 3584 &env->prog->aux->max_rdwr_access); 3585 if (!err && t == BPF_READ && value_regno >= 0) 3586 mark_reg_unknown(env, regs, value_regno); 3587 } else { 3588 verbose(env, "R%d invalid mem access '%s'\n", regno, 3589 reg_type_str[reg->type]); 3590 return -EACCES; 3591 } 3592 3593 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3594 regs[value_regno].type == SCALAR_VALUE) { 3595 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3596 coerce_reg_to_size(®s[value_regno], size); 3597 } 3598 return err; 3599 } 3600 3601 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3602 { 3603 int err; 3604 3605 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3606 insn->imm != 0) { 3607 verbose(env, "BPF_XADD uses reserved fields\n"); 3608 return -EINVAL; 3609 } 3610 3611 /* check src1 operand */ 3612 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3613 if (err) 3614 return err; 3615 3616 /* check src2 operand */ 3617 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3618 if (err) 3619 return err; 3620 3621 if (is_pointer_value(env, insn->src_reg)) { 3622 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3623 return -EACCES; 3624 } 3625 3626 if (is_ctx_reg(env, insn->dst_reg) || 3627 is_pkt_reg(env, insn->dst_reg) || 3628 is_flow_key_reg(env, insn->dst_reg) || 3629 is_sk_reg(env, insn->dst_reg)) { 3630 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3631 insn->dst_reg, 3632 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3633 return -EACCES; 3634 } 3635 3636 /* check whether atomic_add can read the memory */ 3637 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3638 BPF_SIZE(insn->code), BPF_READ, -1, true); 3639 if (err) 3640 return err; 3641 3642 /* check whether atomic_add can write into the same memory */ 3643 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3644 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3645 } 3646 3647 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3648 int off, int access_size, 3649 bool zero_size_allowed) 3650 { 3651 struct bpf_reg_state *reg = reg_state(env, regno); 3652 3653 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3654 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3655 if (tnum_is_const(reg->var_off)) { 3656 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3657 regno, off, access_size); 3658 } else { 3659 char tn_buf[48]; 3660 3661 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3662 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3663 regno, tn_buf, access_size); 3664 } 3665 return -EACCES; 3666 } 3667 return 0; 3668 } 3669 3670 /* when register 'regno' is passed into function that will read 'access_size' 3671 * bytes from that pointer, make sure that it's within stack boundary 3672 * and all elements of stack are initialized. 3673 * Unlike most pointer bounds-checking functions, this one doesn't take an 3674 * 'off' argument, so it has to add in reg->off itself. 3675 */ 3676 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3677 int access_size, bool zero_size_allowed, 3678 struct bpf_call_arg_meta *meta) 3679 { 3680 struct bpf_reg_state *reg = reg_state(env, regno); 3681 struct bpf_func_state *state = func(env, reg); 3682 int err, min_off, max_off, i, j, slot, spi; 3683 3684 if (tnum_is_const(reg->var_off)) { 3685 min_off = max_off = reg->var_off.value + reg->off; 3686 err = __check_stack_boundary(env, regno, min_off, access_size, 3687 zero_size_allowed); 3688 if (err) 3689 return err; 3690 } else { 3691 /* Variable offset is prohibited for unprivileged mode for 3692 * simplicity since it requires corresponding support in 3693 * Spectre masking for stack ALU. 3694 * See also retrieve_ptr_limit(). 3695 */ 3696 if (!env->bypass_spec_v1) { 3697 char tn_buf[48]; 3698 3699 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3700 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3701 regno, tn_buf); 3702 return -EACCES; 3703 } 3704 /* Only initialized buffer on stack is allowed to be accessed 3705 * with variable offset. With uninitialized buffer it's hard to 3706 * guarantee that whole memory is marked as initialized on 3707 * helper return since specific bounds are unknown what may 3708 * cause uninitialized stack leaking. 3709 */ 3710 if (meta && meta->raw_mode) 3711 meta = NULL; 3712 3713 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3714 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3715 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3716 regno); 3717 return -EACCES; 3718 } 3719 min_off = reg->smin_value + reg->off; 3720 max_off = reg->smax_value + reg->off; 3721 err = __check_stack_boundary(env, regno, min_off, access_size, 3722 zero_size_allowed); 3723 if (err) { 3724 verbose(env, "R%d min value is outside of stack bound\n", 3725 regno); 3726 return err; 3727 } 3728 err = __check_stack_boundary(env, regno, max_off, access_size, 3729 zero_size_allowed); 3730 if (err) { 3731 verbose(env, "R%d max value is outside of stack bound\n", 3732 regno); 3733 return err; 3734 } 3735 } 3736 3737 if (meta && meta->raw_mode) { 3738 meta->access_size = access_size; 3739 meta->regno = regno; 3740 return 0; 3741 } 3742 3743 for (i = min_off; i < max_off + access_size; i++) { 3744 u8 *stype; 3745 3746 slot = -i - 1; 3747 spi = slot / BPF_REG_SIZE; 3748 if (state->allocated_stack <= slot) 3749 goto err; 3750 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3751 if (*stype == STACK_MISC) 3752 goto mark; 3753 if (*stype == STACK_ZERO) { 3754 /* helper can write anything into the stack */ 3755 *stype = STACK_MISC; 3756 goto mark; 3757 } 3758 3759 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3760 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3761 goto mark; 3762 3763 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3764 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3765 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3766 for (j = 0; j < BPF_REG_SIZE; j++) 3767 state->stack[spi].slot_type[j] = STACK_MISC; 3768 goto mark; 3769 } 3770 3771 err: 3772 if (tnum_is_const(reg->var_off)) { 3773 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3774 min_off, i - min_off, access_size); 3775 } else { 3776 char tn_buf[48]; 3777 3778 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3779 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3780 tn_buf, i - min_off, access_size); 3781 } 3782 return -EACCES; 3783 mark: 3784 /* reading any byte out of 8-byte 'spill_slot' will cause 3785 * the whole slot to be marked as 'read' 3786 */ 3787 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3788 state->stack[spi].spilled_ptr.parent, 3789 REG_LIVE_READ64); 3790 } 3791 return update_stack_depth(env, state, min_off); 3792 } 3793 3794 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3795 int access_size, bool zero_size_allowed, 3796 struct bpf_call_arg_meta *meta) 3797 { 3798 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3799 3800 switch (reg->type) { 3801 case PTR_TO_PACKET: 3802 case PTR_TO_PACKET_META: 3803 return check_packet_access(env, regno, reg->off, access_size, 3804 zero_size_allowed); 3805 case PTR_TO_MAP_VALUE: 3806 if (check_map_access_type(env, regno, reg->off, access_size, 3807 meta && meta->raw_mode ? BPF_WRITE : 3808 BPF_READ)) 3809 return -EACCES; 3810 return check_map_access(env, regno, reg->off, access_size, 3811 zero_size_allowed); 3812 case PTR_TO_MEM: 3813 return check_mem_region_access(env, regno, reg->off, 3814 access_size, reg->mem_size, 3815 zero_size_allowed); 3816 case PTR_TO_RDONLY_BUF: 3817 if (meta && meta->raw_mode) 3818 return -EACCES; 3819 return check_buffer_access(env, reg, regno, reg->off, 3820 access_size, zero_size_allowed, 3821 "rdonly", 3822 &env->prog->aux->max_rdonly_access); 3823 case PTR_TO_RDWR_BUF: 3824 return check_buffer_access(env, reg, regno, reg->off, 3825 access_size, zero_size_allowed, 3826 "rdwr", 3827 &env->prog->aux->max_rdwr_access); 3828 case PTR_TO_STACK: 3829 return check_stack_boundary(env, regno, access_size, 3830 zero_size_allowed, meta); 3831 default: /* scalar_value or invalid ptr */ 3832 /* Allow zero-byte read from NULL, regardless of pointer type */ 3833 if (zero_size_allowed && access_size == 0 && 3834 register_is_null(reg)) 3835 return 0; 3836 3837 verbose(env, "R%d type=%s expected=%s\n", regno, 3838 reg_type_str[reg->type], 3839 reg_type_str[PTR_TO_STACK]); 3840 return -EACCES; 3841 } 3842 } 3843 3844 /* Implementation details: 3845 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3846 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3847 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3848 * value_or_null->value transition, since the verifier only cares about 3849 * the range of access to valid map value pointer and doesn't care about actual 3850 * address of the map element. 3851 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3852 * reg->id > 0 after value_or_null->value transition. By doing so 3853 * two bpf_map_lookups will be considered two different pointers that 3854 * point to different bpf_spin_locks. 3855 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3856 * dead-locks. 3857 * Since only one bpf_spin_lock is allowed the checks are simpler than 3858 * reg_is_refcounted() logic. The verifier needs to remember only 3859 * one spin_lock instead of array of acquired_refs. 3860 * cur_state->active_spin_lock remembers which map value element got locked 3861 * and clears it after bpf_spin_unlock. 3862 */ 3863 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3864 bool is_lock) 3865 { 3866 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3867 struct bpf_verifier_state *cur = env->cur_state; 3868 bool is_const = tnum_is_const(reg->var_off); 3869 struct bpf_map *map = reg->map_ptr; 3870 u64 val = reg->var_off.value; 3871 3872 if (!is_const) { 3873 verbose(env, 3874 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3875 regno); 3876 return -EINVAL; 3877 } 3878 if (!map->btf) { 3879 verbose(env, 3880 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3881 map->name); 3882 return -EINVAL; 3883 } 3884 if (!map_value_has_spin_lock(map)) { 3885 if (map->spin_lock_off == -E2BIG) 3886 verbose(env, 3887 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3888 map->name); 3889 else if (map->spin_lock_off == -ENOENT) 3890 verbose(env, 3891 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3892 map->name); 3893 else 3894 verbose(env, 3895 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3896 map->name); 3897 return -EINVAL; 3898 } 3899 if (map->spin_lock_off != val + reg->off) { 3900 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3901 val + reg->off); 3902 return -EINVAL; 3903 } 3904 if (is_lock) { 3905 if (cur->active_spin_lock) { 3906 verbose(env, 3907 "Locking two bpf_spin_locks are not allowed\n"); 3908 return -EINVAL; 3909 } 3910 cur->active_spin_lock = reg->id; 3911 } else { 3912 if (!cur->active_spin_lock) { 3913 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3914 return -EINVAL; 3915 } 3916 if (cur->active_spin_lock != reg->id) { 3917 verbose(env, "bpf_spin_unlock of different lock\n"); 3918 return -EINVAL; 3919 } 3920 cur->active_spin_lock = 0; 3921 } 3922 return 0; 3923 } 3924 3925 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3926 { 3927 return type == ARG_PTR_TO_MEM || 3928 type == ARG_PTR_TO_MEM_OR_NULL || 3929 type == ARG_PTR_TO_UNINIT_MEM; 3930 } 3931 3932 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3933 { 3934 return type == ARG_CONST_SIZE || 3935 type == ARG_CONST_SIZE_OR_ZERO; 3936 } 3937 3938 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3939 { 3940 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3941 } 3942 3943 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3944 { 3945 return type == ARG_PTR_TO_INT || 3946 type == ARG_PTR_TO_LONG; 3947 } 3948 3949 static int int_ptr_type_to_size(enum bpf_arg_type type) 3950 { 3951 if (type == ARG_PTR_TO_INT) 3952 return sizeof(u32); 3953 else if (type == ARG_PTR_TO_LONG) 3954 return sizeof(u64); 3955 3956 return -EINVAL; 3957 } 3958 3959 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3960 const struct bpf_call_arg_meta *meta, 3961 enum bpf_arg_type *arg_type) 3962 { 3963 if (!meta->map_ptr) { 3964 /* kernel subsystem misconfigured verifier */ 3965 verbose(env, "invalid map_ptr to access map->type\n"); 3966 return -EACCES; 3967 } 3968 3969 switch (meta->map_ptr->map_type) { 3970 case BPF_MAP_TYPE_SOCKMAP: 3971 case BPF_MAP_TYPE_SOCKHASH: 3972 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3973 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 3974 } else { 3975 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3976 return -EINVAL; 3977 } 3978 break; 3979 3980 default: 3981 break; 3982 } 3983 return 0; 3984 } 3985 3986 struct bpf_reg_types { 3987 const enum bpf_reg_type types[10]; 3988 u32 *btf_id; 3989 }; 3990 3991 static const struct bpf_reg_types map_key_value_types = { 3992 .types = { 3993 PTR_TO_STACK, 3994 PTR_TO_PACKET, 3995 PTR_TO_PACKET_META, 3996 PTR_TO_MAP_VALUE, 3997 }, 3998 }; 3999 4000 static const struct bpf_reg_types sock_types = { 4001 .types = { 4002 PTR_TO_SOCK_COMMON, 4003 PTR_TO_SOCKET, 4004 PTR_TO_TCP_SOCK, 4005 PTR_TO_XDP_SOCK, 4006 }, 4007 }; 4008 4009 #ifdef CONFIG_NET 4010 static const struct bpf_reg_types btf_id_sock_common_types = { 4011 .types = { 4012 PTR_TO_SOCK_COMMON, 4013 PTR_TO_SOCKET, 4014 PTR_TO_TCP_SOCK, 4015 PTR_TO_XDP_SOCK, 4016 PTR_TO_BTF_ID, 4017 }, 4018 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4019 }; 4020 #endif 4021 4022 static const struct bpf_reg_types mem_types = { 4023 .types = { 4024 PTR_TO_STACK, 4025 PTR_TO_PACKET, 4026 PTR_TO_PACKET_META, 4027 PTR_TO_MAP_VALUE, 4028 PTR_TO_MEM, 4029 PTR_TO_RDONLY_BUF, 4030 PTR_TO_RDWR_BUF, 4031 }, 4032 }; 4033 4034 static const struct bpf_reg_types int_ptr_types = { 4035 .types = { 4036 PTR_TO_STACK, 4037 PTR_TO_PACKET, 4038 PTR_TO_PACKET_META, 4039 PTR_TO_MAP_VALUE, 4040 }, 4041 }; 4042 4043 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4044 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4045 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4046 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4047 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4048 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4049 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4050 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4051 4052 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4053 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4054 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4055 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4056 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4057 [ARG_CONST_SIZE] = &scalar_types, 4058 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4059 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4060 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4061 [ARG_PTR_TO_CTX] = &context_types, 4062 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4063 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4064 #ifdef CONFIG_NET 4065 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4066 #endif 4067 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4068 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4069 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4070 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4071 [ARG_PTR_TO_MEM] = &mem_types, 4072 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4073 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4074 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4075 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4076 [ARG_PTR_TO_INT] = &int_ptr_types, 4077 [ARG_PTR_TO_LONG] = &int_ptr_types, 4078 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4079 }; 4080 4081 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4082 enum bpf_arg_type arg_type, 4083 const u32 *arg_btf_id) 4084 { 4085 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4086 enum bpf_reg_type expected, type = reg->type; 4087 const struct bpf_reg_types *compatible; 4088 int i, j; 4089 4090 compatible = compatible_reg_types[arg_type]; 4091 if (!compatible) { 4092 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4093 return -EFAULT; 4094 } 4095 4096 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4097 expected = compatible->types[i]; 4098 if (expected == NOT_INIT) 4099 break; 4100 4101 if (type == expected) 4102 goto found; 4103 } 4104 4105 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4106 for (j = 0; j + 1 < i; j++) 4107 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4108 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4109 return -EACCES; 4110 4111 found: 4112 if (type == PTR_TO_BTF_ID) { 4113 if (!arg_btf_id) { 4114 if (!compatible->btf_id) { 4115 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4116 return -EFAULT; 4117 } 4118 arg_btf_id = compatible->btf_id; 4119 } 4120 4121 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, 4122 *arg_btf_id)) { 4123 verbose(env, "R%d is of type %s but %s is expected\n", 4124 regno, kernel_type_name(reg->btf_id), 4125 kernel_type_name(*arg_btf_id)); 4126 return -EACCES; 4127 } 4128 4129 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4130 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4131 regno); 4132 return -EACCES; 4133 } 4134 } 4135 4136 return 0; 4137 } 4138 4139 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4140 struct bpf_call_arg_meta *meta, 4141 const struct bpf_func_proto *fn) 4142 { 4143 u32 regno = BPF_REG_1 + arg; 4144 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4145 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4146 enum bpf_reg_type type = reg->type; 4147 int err = 0; 4148 4149 if (arg_type == ARG_DONTCARE) 4150 return 0; 4151 4152 err = check_reg_arg(env, regno, SRC_OP); 4153 if (err) 4154 return err; 4155 4156 if (arg_type == ARG_ANYTHING) { 4157 if (is_pointer_value(env, regno)) { 4158 verbose(env, "R%d leaks addr into helper function\n", 4159 regno); 4160 return -EACCES; 4161 } 4162 return 0; 4163 } 4164 4165 if (type_is_pkt_pointer(type) && 4166 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4167 verbose(env, "helper access to the packet is not allowed\n"); 4168 return -EACCES; 4169 } 4170 4171 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4172 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4173 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4174 err = resolve_map_arg_type(env, meta, &arg_type); 4175 if (err) 4176 return err; 4177 } 4178 4179 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4180 /* A NULL register has a SCALAR_VALUE type, so skip 4181 * type checking. 4182 */ 4183 goto skip_type_check; 4184 4185 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4186 if (err) 4187 return err; 4188 4189 if (type == PTR_TO_CTX) { 4190 err = check_ctx_reg(env, reg, regno); 4191 if (err < 0) 4192 return err; 4193 } 4194 4195 skip_type_check: 4196 if (reg->ref_obj_id) { 4197 if (meta->ref_obj_id) { 4198 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4199 regno, reg->ref_obj_id, 4200 meta->ref_obj_id); 4201 return -EFAULT; 4202 } 4203 meta->ref_obj_id = reg->ref_obj_id; 4204 } 4205 4206 if (arg_type == ARG_CONST_MAP_PTR) { 4207 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4208 meta->map_ptr = reg->map_ptr; 4209 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4210 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4211 * check that [key, key + map->key_size) are within 4212 * stack limits and initialized 4213 */ 4214 if (!meta->map_ptr) { 4215 /* in function declaration map_ptr must come before 4216 * map_key, so that it's verified and known before 4217 * we have to check map_key here. Otherwise it means 4218 * that kernel subsystem misconfigured verifier 4219 */ 4220 verbose(env, "invalid map_ptr to access map->key\n"); 4221 return -EACCES; 4222 } 4223 err = check_helper_mem_access(env, regno, 4224 meta->map_ptr->key_size, false, 4225 NULL); 4226 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4227 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4228 !register_is_null(reg)) || 4229 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4230 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4231 * check [value, value + map->value_size) validity 4232 */ 4233 if (!meta->map_ptr) { 4234 /* kernel subsystem misconfigured verifier */ 4235 verbose(env, "invalid map_ptr to access map->value\n"); 4236 return -EACCES; 4237 } 4238 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4239 err = check_helper_mem_access(env, regno, 4240 meta->map_ptr->value_size, false, 4241 meta); 4242 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4243 if (!reg->btf_id) { 4244 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4245 return -EACCES; 4246 } 4247 meta->ret_btf_id = reg->btf_id; 4248 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4249 if (meta->func_id == BPF_FUNC_spin_lock) { 4250 if (process_spin_lock(env, regno, true)) 4251 return -EACCES; 4252 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4253 if (process_spin_lock(env, regno, false)) 4254 return -EACCES; 4255 } else { 4256 verbose(env, "verifier internal error\n"); 4257 return -EFAULT; 4258 } 4259 } else if (arg_type_is_mem_ptr(arg_type)) { 4260 /* The access to this pointer is only checked when we hit the 4261 * next is_mem_size argument below. 4262 */ 4263 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4264 } else if (arg_type_is_mem_size(arg_type)) { 4265 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4266 4267 /* This is used to refine r0 return value bounds for helpers 4268 * that enforce this value as an upper bound on return values. 4269 * See do_refine_retval_range() for helpers that can refine 4270 * the return value. C type of helper is u32 so we pull register 4271 * bound from umax_value however, if negative verifier errors 4272 * out. Only upper bounds can be learned because retval is an 4273 * int type and negative retvals are allowed. 4274 */ 4275 meta->msize_max_value = reg->umax_value; 4276 4277 /* The register is SCALAR_VALUE; the access check 4278 * happens using its boundaries. 4279 */ 4280 if (!tnum_is_const(reg->var_off)) 4281 /* For unprivileged variable accesses, disable raw 4282 * mode so that the program is required to 4283 * initialize all the memory that the helper could 4284 * just partially fill up. 4285 */ 4286 meta = NULL; 4287 4288 if (reg->smin_value < 0) { 4289 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4290 regno); 4291 return -EACCES; 4292 } 4293 4294 if (reg->umin_value == 0) { 4295 err = check_helper_mem_access(env, regno - 1, 0, 4296 zero_size_allowed, 4297 meta); 4298 if (err) 4299 return err; 4300 } 4301 4302 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4303 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4304 regno); 4305 return -EACCES; 4306 } 4307 err = check_helper_mem_access(env, regno - 1, 4308 reg->umax_value, 4309 zero_size_allowed, meta); 4310 if (!err) 4311 err = mark_chain_precision(env, regno); 4312 } else if (arg_type_is_alloc_size(arg_type)) { 4313 if (!tnum_is_const(reg->var_off)) { 4314 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4315 regno); 4316 return -EACCES; 4317 } 4318 meta->mem_size = reg->var_off.value; 4319 } else if (arg_type_is_int_ptr(arg_type)) { 4320 int size = int_ptr_type_to_size(arg_type); 4321 4322 err = check_helper_mem_access(env, regno, size, false, meta); 4323 if (err) 4324 return err; 4325 err = check_ptr_alignment(env, reg, 0, size, true); 4326 } 4327 4328 return err; 4329 } 4330 4331 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4332 { 4333 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4334 enum bpf_prog_type type = resolve_prog_type(env->prog); 4335 4336 if (func_id != BPF_FUNC_map_update_elem) 4337 return false; 4338 4339 /* It's not possible to get access to a locked struct sock in these 4340 * contexts, so updating is safe. 4341 */ 4342 switch (type) { 4343 case BPF_PROG_TYPE_TRACING: 4344 if (eatype == BPF_TRACE_ITER) 4345 return true; 4346 break; 4347 case BPF_PROG_TYPE_SOCKET_FILTER: 4348 case BPF_PROG_TYPE_SCHED_CLS: 4349 case BPF_PROG_TYPE_SCHED_ACT: 4350 case BPF_PROG_TYPE_XDP: 4351 case BPF_PROG_TYPE_SK_REUSEPORT: 4352 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4353 case BPF_PROG_TYPE_SK_LOOKUP: 4354 return true; 4355 default: 4356 break; 4357 } 4358 4359 verbose(env, "cannot update sockmap in this context\n"); 4360 return false; 4361 } 4362 4363 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4364 { 4365 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4366 } 4367 4368 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4369 struct bpf_map *map, int func_id) 4370 { 4371 if (!map) 4372 return 0; 4373 4374 /* We need a two way check, first is from map perspective ... */ 4375 switch (map->map_type) { 4376 case BPF_MAP_TYPE_PROG_ARRAY: 4377 if (func_id != BPF_FUNC_tail_call) 4378 goto error; 4379 break; 4380 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4381 if (func_id != BPF_FUNC_perf_event_read && 4382 func_id != BPF_FUNC_perf_event_output && 4383 func_id != BPF_FUNC_skb_output && 4384 func_id != BPF_FUNC_perf_event_read_value && 4385 func_id != BPF_FUNC_xdp_output) 4386 goto error; 4387 break; 4388 case BPF_MAP_TYPE_RINGBUF: 4389 if (func_id != BPF_FUNC_ringbuf_output && 4390 func_id != BPF_FUNC_ringbuf_reserve && 4391 func_id != BPF_FUNC_ringbuf_submit && 4392 func_id != BPF_FUNC_ringbuf_discard && 4393 func_id != BPF_FUNC_ringbuf_query) 4394 goto error; 4395 break; 4396 case BPF_MAP_TYPE_STACK_TRACE: 4397 if (func_id != BPF_FUNC_get_stackid) 4398 goto error; 4399 break; 4400 case BPF_MAP_TYPE_CGROUP_ARRAY: 4401 if (func_id != BPF_FUNC_skb_under_cgroup && 4402 func_id != BPF_FUNC_current_task_under_cgroup) 4403 goto error; 4404 break; 4405 case BPF_MAP_TYPE_CGROUP_STORAGE: 4406 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4407 if (func_id != BPF_FUNC_get_local_storage) 4408 goto error; 4409 break; 4410 case BPF_MAP_TYPE_DEVMAP: 4411 case BPF_MAP_TYPE_DEVMAP_HASH: 4412 if (func_id != BPF_FUNC_redirect_map && 4413 func_id != BPF_FUNC_map_lookup_elem) 4414 goto error; 4415 break; 4416 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4417 * appear. 4418 */ 4419 case BPF_MAP_TYPE_CPUMAP: 4420 if (func_id != BPF_FUNC_redirect_map) 4421 goto error; 4422 break; 4423 case BPF_MAP_TYPE_XSKMAP: 4424 if (func_id != BPF_FUNC_redirect_map && 4425 func_id != BPF_FUNC_map_lookup_elem) 4426 goto error; 4427 break; 4428 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4429 case BPF_MAP_TYPE_HASH_OF_MAPS: 4430 if (func_id != BPF_FUNC_map_lookup_elem) 4431 goto error; 4432 break; 4433 case BPF_MAP_TYPE_SOCKMAP: 4434 if (func_id != BPF_FUNC_sk_redirect_map && 4435 func_id != BPF_FUNC_sock_map_update && 4436 func_id != BPF_FUNC_map_delete_elem && 4437 func_id != BPF_FUNC_msg_redirect_map && 4438 func_id != BPF_FUNC_sk_select_reuseport && 4439 func_id != BPF_FUNC_map_lookup_elem && 4440 !may_update_sockmap(env, func_id)) 4441 goto error; 4442 break; 4443 case BPF_MAP_TYPE_SOCKHASH: 4444 if (func_id != BPF_FUNC_sk_redirect_hash && 4445 func_id != BPF_FUNC_sock_hash_update && 4446 func_id != BPF_FUNC_map_delete_elem && 4447 func_id != BPF_FUNC_msg_redirect_hash && 4448 func_id != BPF_FUNC_sk_select_reuseport && 4449 func_id != BPF_FUNC_map_lookup_elem && 4450 !may_update_sockmap(env, func_id)) 4451 goto error; 4452 break; 4453 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4454 if (func_id != BPF_FUNC_sk_select_reuseport) 4455 goto error; 4456 break; 4457 case BPF_MAP_TYPE_QUEUE: 4458 case BPF_MAP_TYPE_STACK: 4459 if (func_id != BPF_FUNC_map_peek_elem && 4460 func_id != BPF_FUNC_map_pop_elem && 4461 func_id != BPF_FUNC_map_push_elem) 4462 goto error; 4463 break; 4464 case BPF_MAP_TYPE_SK_STORAGE: 4465 if (func_id != BPF_FUNC_sk_storage_get && 4466 func_id != BPF_FUNC_sk_storage_delete) 4467 goto error; 4468 break; 4469 case BPF_MAP_TYPE_INODE_STORAGE: 4470 if (func_id != BPF_FUNC_inode_storage_get && 4471 func_id != BPF_FUNC_inode_storage_delete) 4472 goto error; 4473 break; 4474 case BPF_MAP_TYPE_TASK_STORAGE: 4475 if (func_id != BPF_FUNC_task_storage_get && 4476 func_id != BPF_FUNC_task_storage_delete) 4477 goto error; 4478 break; 4479 default: 4480 break; 4481 } 4482 4483 /* ... and second from the function itself. */ 4484 switch (func_id) { 4485 case BPF_FUNC_tail_call: 4486 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4487 goto error; 4488 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4489 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4490 return -EINVAL; 4491 } 4492 break; 4493 case BPF_FUNC_perf_event_read: 4494 case BPF_FUNC_perf_event_output: 4495 case BPF_FUNC_perf_event_read_value: 4496 case BPF_FUNC_skb_output: 4497 case BPF_FUNC_xdp_output: 4498 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4499 goto error; 4500 break; 4501 case BPF_FUNC_get_stackid: 4502 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4503 goto error; 4504 break; 4505 case BPF_FUNC_current_task_under_cgroup: 4506 case BPF_FUNC_skb_under_cgroup: 4507 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4508 goto error; 4509 break; 4510 case BPF_FUNC_redirect_map: 4511 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4512 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4513 map->map_type != BPF_MAP_TYPE_CPUMAP && 4514 map->map_type != BPF_MAP_TYPE_XSKMAP) 4515 goto error; 4516 break; 4517 case BPF_FUNC_sk_redirect_map: 4518 case BPF_FUNC_msg_redirect_map: 4519 case BPF_FUNC_sock_map_update: 4520 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4521 goto error; 4522 break; 4523 case BPF_FUNC_sk_redirect_hash: 4524 case BPF_FUNC_msg_redirect_hash: 4525 case BPF_FUNC_sock_hash_update: 4526 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4527 goto error; 4528 break; 4529 case BPF_FUNC_get_local_storage: 4530 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4531 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4532 goto error; 4533 break; 4534 case BPF_FUNC_sk_select_reuseport: 4535 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4536 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4537 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4538 goto error; 4539 break; 4540 case BPF_FUNC_map_peek_elem: 4541 case BPF_FUNC_map_pop_elem: 4542 case BPF_FUNC_map_push_elem: 4543 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4544 map->map_type != BPF_MAP_TYPE_STACK) 4545 goto error; 4546 break; 4547 case BPF_FUNC_sk_storage_get: 4548 case BPF_FUNC_sk_storage_delete: 4549 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4550 goto error; 4551 break; 4552 case BPF_FUNC_inode_storage_get: 4553 case BPF_FUNC_inode_storage_delete: 4554 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4555 goto error; 4556 break; 4557 case BPF_FUNC_task_storage_get: 4558 case BPF_FUNC_task_storage_delete: 4559 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 4560 goto error; 4561 break; 4562 default: 4563 break; 4564 } 4565 4566 return 0; 4567 error: 4568 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4569 map->map_type, func_id_name(func_id), func_id); 4570 return -EINVAL; 4571 } 4572 4573 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4574 { 4575 int count = 0; 4576 4577 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4578 count++; 4579 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4580 count++; 4581 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4582 count++; 4583 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4584 count++; 4585 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4586 count++; 4587 4588 /* We only support one arg being in raw mode at the moment, 4589 * which is sufficient for the helper functions we have 4590 * right now. 4591 */ 4592 return count <= 1; 4593 } 4594 4595 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4596 enum bpf_arg_type arg_next) 4597 { 4598 return (arg_type_is_mem_ptr(arg_curr) && 4599 !arg_type_is_mem_size(arg_next)) || 4600 (!arg_type_is_mem_ptr(arg_curr) && 4601 arg_type_is_mem_size(arg_next)); 4602 } 4603 4604 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4605 { 4606 /* bpf_xxx(..., buf, len) call will access 'len' 4607 * bytes from memory 'buf'. Both arg types need 4608 * to be paired, so make sure there's no buggy 4609 * helper function specification. 4610 */ 4611 if (arg_type_is_mem_size(fn->arg1_type) || 4612 arg_type_is_mem_ptr(fn->arg5_type) || 4613 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4614 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4615 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4616 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4617 return false; 4618 4619 return true; 4620 } 4621 4622 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4623 { 4624 int count = 0; 4625 4626 if (arg_type_may_be_refcounted(fn->arg1_type)) 4627 count++; 4628 if (arg_type_may_be_refcounted(fn->arg2_type)) 4629 count++; 4630 if (arg_type_may_be_refcounted(fn->arg3_type)) 4631 count++; 4632 if (arg_type_may_be_refcounted(fn->arg4_type)) 4633 count++; 4634 if (arg_type_may_be_refcounted(fn->arg5_type)) 4635 count++; 4636 4637 /* A reference acquiring function cannot acquire 4638 * another refcounted ptr. 4639 */ 4640 if (may_be_acquire_function(func_id) && count) 4641 return false; 4642 4643 /* We only support one arg being unreferenced at the moment, 4644 * which is sufficient for the helper functions we have right now. 4645 */ 4646 return count <= 1; 4647 } 4648 4649 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4650 { 4651 int i; 4652 4653 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4654 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4655 return false; 4656 4657 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 4658 return false; 4659 } 4660 4661 return true; 4662 } 4663 4664 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4665 { 4666 return check_raw_mode_ok(fn) && 4667 check_arg_pair_ok(fn) && 4668 check_btf_id_ok(fn) && 4669 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4670 } 4671 4672 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4673 * are now invalid, so turn them into unknown SCALAR_VALUE. 4674 */ 4675 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4676 struct bpf_func_state *state) 4677 { 4678 struct bpf_reg_state *regs = state->regs, *reg; 4679 int i; 4680 4681 for (i = 0; i < MAX_BPF_REG; i++) 4682 if (reg_is_pkt_pointer_any(®s[i])) 4683 mark_reg_unknown(env, regs, i); 4684 4685 bpf_for_each_spilled_reg(i, state, reg) { 4686 if (!reg) 4687 continue; 4688 if (reg_is_pkt_pointer_any(reg)) 4689 __mark_reg_unknown(env, reg); 4690 } 4691 } 4692 4693 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4694 { 4695 struct bpf_verifier_state *vstate = env->cur_state; 4696 int i; 4697 4698 for (i = 0; i <= vstate->curframe; i++) 4699 __clear_all_pkt_pointers(env, vstate->frame[i]); 4700 } 4701 4702 enum { 4703 AT_PKT_END = -1, 4704 BEYOND_PKT_END = -2, 4705 }; 4706 4707 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 4708 { 4709 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4710 struct bpf_reg_state *reg = &state->regs[regn]; 4711 4712 if (reg->type != PTR_TO_PACKET) 4713 /* PTR_TO_PACKET_META is not supported yet */ 4714 return; 4715 4716 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 4717 * How far beyond pkt_end it goes is unknown. 4718 * if (!range_open) it's the case of pkt >= pkt_end 4719 * if (range_open) it's the case of pkt > pkt_end 4720 * hence this pointer is at least 1 byte bigger than pkt_end 4721 */ 4722 if (range_open) 4723 reg->range = BEYOND_PKT_END; 4724 else 4725 reg->range = AT_PKT_END; 4726 } 4727 4728 static void release_reg_references(struct bpf_verifier_env *env, 4729 struct bpf_func_state *state, 4730 int ref_obj_id) 4731 { 4732 struct bpf_reg_state *regs = state->regs, *reg; 4733 int i; 4734 4735 for (i = 0; i < MAX_BPF_REG; i++) 4736 if (regs[i].ref_obj_id == ref_obj_id) 4737 mark_reg_unknown(env, regs, i); 4738 4739 bpf_for_each_spilled_reg(i, state, reg) { 4740 if (!reg) 4741 continue; 4742 if (reg->ref_obj_id == ref_obj_id) 4743 __mark_reg_unknown(env, reg); 4744 } 4745 } 4746 4747 /* The pointer with the specified id has released its reference to kernel 4748 * resources. Identify all copies of the same pointer and clear the reference. 4749 */ 4750 static int release_reference(struct bpf_verifier_env *env, 4751 int ref_obj_id) 4752 { 4753 struct bpf_verifier_state *vstate = env->cur_state; 4754 int err; 4755 int i; 4756 4757 err = release_reference_state(cur_func(env), ref_obj_id); 4758 if (err) 4759 return err; 4760 4761 for (i = 0; i <= vstate->curframe; i++) 4762 release_reg_references(env, vstate->frame[i], ref_obj_id); 4763 4764 return 0; 4765 } 4766 4767 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4768 struct bpf_reg_state *regs) 4769 { 4770 int i; 4771 4772 /* after the call registers r0 - r5 were scratched */ 4773 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4774 mark_reg_not_init(env, regs, caller_saved[i]); 4775 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4776 } 4777 } 4778 4779 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4780 int *insn_idx) 4781 { 4782 struct bpf_verifier_state *state = env->cur_state; 4783 struct bpf_func_info_aux *func_info_aux; 4784 struct bpf_func_state *caller, *callee; 4785 int i, err, subprog, target_insn; 4786 bool is_global = false; 4787 4788 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4789 verbose(env, "the call stack of %d frames is too deep\n", 4790 state->curframe + 2); 4791 return -E2BIG; 4792 } 4793 4794 target_insn = *insn_idx + insn->imm; 4795 subprog = find_subprog(env, target_insn + 1); 4796 if (subprog < 0) { 4797 verbose(env, "verifier bug. No program starts at insn %d\n", 4798 target_insn + 1); 4799 return -EFAULT; 4800 } 4801 4802 caller = state->frame[state->curframe]; 4803 if (state->frame[state->curframe + 1]) { 4804 verbose(env, "verifier bug. Frame %d already allocated\n", 4805 state->curframe + 1); 4806 return -EFAULT; 4807 } 4808 4809 func_info_aux = env->prog->aux->func_info_aux; 4810 if (func_info_aux) 4811 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4812 err = btf_check_func_arg_match(env, subprog, caller->regs); 4813 if (err == -EFAULT) 4814 return err; 4815 if (is_global) { 4816 if (err) { 4817 verbose(env, "Caller passes invalid args into func#%d\n", 4818 subprog); 4819 return err; 4820 } else { 4821 if (env->log.level & BPF_LOG_LEVEL) 4822 verbose(env, 4823 "Func#%d is global and valid. Skipping.\n", 4824 subprog); 4825 clear_caller_saved_regs(env, caller->regs); 4826 4827 /* All global functions return SCALAR_VALUE */ 4828 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4829 4830 /* continue with next insn after call */ 4831 return 0; 4832 } 4833 } 4834 4835 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4836 if (!callee) 4837 return -ENOMEM; 4838 state->frame[state->curframe + 1] = callee; 4839 4840 /* callee cannot access r0, r6 - r9 for reading and has to write 4841 * into its own stack before reading from it. 4842 * callee can read/write into caller's stack 4843 */ 4844 init_func_state(env, callee, 4845 /* remember the callsite, it will be used by bpf_exit */ 4846 *insn_idx /* callsite */, 4847 state->curframe + 1 /* frameno within this callchain */, 4848 subprog /* subprog number within this prog */); 4849 4850 /* Transfer references to the callee */ 4851 err = transfer_reference_state(callee, caller); 4852 if (err) 4853 return err; 4854 4855 /* copy r1 - r5 args that callee can access. The copy includes parent 4856 * pointers, which connects us up to the liveness chain 4857 */ 4858 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4859 callee->regs[i] = caller->regs[i]; 4860 4861 clear_caller_saved_regs(env, caller->regs); 4862 4863 /* only increment it after check_reg_arg() finished */ 4864 state->curframe++; 4865 4866 /* and go analyze first insn of the callee */ 4867 *insn_idx = target_insn; 4868 4869 if (env->log.level & BPF_LOG_LEVEL) { 4870 verbose(env, "caller:\n"); 4871 print_verifier_state(env, caller); 4872 verbose(env, "callee:\n"); 4873 print_verifier_state(env, callee); 4874 } 4875 return 0; 4876 } 4877 4878 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4879 { 4880 struct bpf_verifier_state *state = env->cur_state; 4881 struct bpf_func_state *caller, *callee; 4882 struct bpf_reg_state *r0; 4883 int err; 4884 4885 callee = state->frame[state->curframe]; 4886 r0 = &callee->regs[BPF_REG_0]; 4887 if (r0->type == PTR_TO_STACK) { 4888 /* technically it's ok to return caller's stack pointer 4889 * (or caller's caller's pointer) back to the caller, 4890 * since these pointers are valid. Only current stack 4891 * pointer will be invalid as soon as function exits, 4892 * but let's be conservative 4893 */ 4894 verbose(env, "cannot return stack pointer to the caller\n"); 4895 return -EINVAL; 4896 } 4897 4898 state->curframe--; 4899 caller = state->frame[state->curframe]; 4900 /* return to the caller whatever r0 had in the callee */ 4901 caller->regs[BPF_REG_0] = *r0; 4902 4903 /* Transfer references to the caller */ 4904 err = transfer_reference_state(caller, callee); 4905 if (err) 4906 return err; 4907 4908 *insn_idx = callee->callsite + 1; 4909 if (env->log.level & BPF_LOG_LEVEL) { 4910 verbose(env, "returning from callee:\n"); 4911 print_verifier_state(env, callee); 4912 verbose(env, "to caller at %d:\n", *insn_idx); 4913 print_verifier_state(env, caller); 4914 } 4915 /* clear everything in the callee */ 4916 free_func_state(callee); 4917 state->frame[state->curframe + 1] = NULL; 4918 return 0; 4919 } 4920 4921 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4922 int func_id, 4923 struct bpf_call_arg_meta *meta) 4924 { 4925 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4926 4927 if (ret_type != RET_INTEGER || 4928 (func_id != BPF_FUNC_get_stack && 4929 func_id != BPF_FUNC_probe_read_str && 4930 func_id != BPF_FUNC_probe_read_kernel_str && 4931 func_id != BPF_FUNC_probe_read_user_str)) 4932 return; 4933 4934 ret_reg->smax_value = meta->msize_max_value; 4935 ret_reg->s32_max_value = meta->msize_max_value; 4936 __reg_deduce_bounds(ret_reg); 4937 __reg_bound_offset(ret_reg); 4938 __update_reg_bounds(ret_reg); 4939 } 4940 4941 static int 4942 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4943 int func_id, int insn_idx) 4944 { 4945 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4946 struct bpf_map *map = meta->map_ptr; 4947 4948 if (func_id != BPF_FUNC_tail_call && 4949 func_id != BPF_FUNC_map_lookup_elem && 4950 func_id != BPF_FUNC_map_update_elem && 4951 func_id != BPF_FUNC_map_delete_elem && 4952 func_id != BPF_FUNC_map_push_elem && 4953 func_id != BPF_FUNC_map_pop_elem && 4954 func_id != BPF_FUNC_map_peek_elem) 4955 return 0; 4956 4957 if (map == NULL) { 4958 verbose(env, "kernel subsystem misconfigured verifier\n"); 4959 return -EINVAL; 4960 } 4961 4962 /* In case of read-only, some additional restrictions 4963 * need to be applied in order to prevent altering the 4964 * state of the map from program side. 4965 */ 4966 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4967 (func_id == BPF_FUNC_map_delete_elem || 4968 func_id == BPF_FUNC_map_update_elem || 4969 func_id == BPF_FUNC_map_push_elem || 4970 func_id == BPF_FUNC_map_pop_elem)) { 4971 verbose(env, "write into map forbidden\n"); 4972 return -EACCES; 4973 } 4974 4975 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4976 bpf_map_ptr_store(aux, meta->map_ptr, 4977 !meta->map_ptr->bypass_spec_v1); 4978 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4979 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4980 !meta->map_ptr->bypass_spec_v1); 4981 return 0; 4982 } 4983 4984 static int 4985 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4986 int func_id, int insn_idx) 4987 { 4988 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4989 struct bpf_reg_state *regs = cur_regs(env), *reg; 4990 struct bpf_map *map = meta->map_ptr; 4991 struct tnum range; 4992 u64 val; 4993 int err; 4994 4995 if (func_id != BPF_FUNC_tail_call) 4996 return 0; 4997 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4998 verbose(env, "kernel subsystem misconfigured verifier\n"); 4999 return -EINVAL; 5000 } 5001 5002 range = tnum_range(0, map->max_entries - 1); 5003 reg = ®s[BPF_REG_3]; 5004 5005 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5006 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5007 return 0; 5008 } 5009 5010 err = mark_chain_precision(env, BPF_REG_3); 5011 if (err) 5012 return err; 5013 5014 val = reg->var_off.value; 5015 if (bpf_map_key_unseen(aux)) 5016 bpf_map_key_store(aux, val); 5017 else if (!bpf_map_key_poisoned(aux) && 5018 bpf_map_key_immediate(aux) != val) 5019 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5020 return 0; 5021 } 5022 5023 static int check_reference_leak(struct bpf_verifier_env *env) 5024 { 5025 struct bpf_func_state *state = cur_func(env); 5026 int i; 5027 5028 for (i = 0; i < state->acquired_refs; i++) { 5029 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5030 state->refs[i].id, state->refs[i].insn_idx); 5031 } 5032 return state->acquired_refs ? -EINVAL : 0; 5033 } 5034 5035 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5036 { 5037 const struct bpf_func_proto *fn = NULL; 5038 struct bpf_reg_state *regs; 5039 struct bpf_call_arg_meta meta; 5040 bool changes_data; 5041 int i, err; 5042 5043 /* find function prototype */ 5044 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5045 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5046 func_id); 5047 return -EINVAL; 5048 } 5049 5050 if (env->ops->get_func_proto) 5051 fn = env->ops->get_func_proto(func_id, env->prog); 5052 if (!fn) { 5053 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5054 func_id); 5055 return -EINVAL; 5056 } 5057 5058 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5059 if (!env->prog->gpl_compatible && fn->gpl_only) { 5060 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5061 return -EINVAL; 5062 } 5063 5064 if (fn->allowed && !fn->allowed(env->prog)) { 5065 verbose(env, "helper call is not allowed in probe\n"); 5066 return -EINVAL; 5067 } 5068 5069 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5070 changes_data = bpf_helper_changes_pkt_data(fn->func); 5071 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5072 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5073 func_id_name(func_id), func_id); 5074 return -EINVAL; 5075 } 5076 5077 memset(&meta, 0, sizeof(meta)); 5078 meta.pkt_access = fn->pkt_access; 5079 5080 err = check_func_proto(fn, func_id); 5081 if (err) { 5082 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5083 func_id_name(func_id), func_id); 5084 return err; 5085 } 5086 5087 meta.func_id = func_id; 5088 /* check args */ 5089 for (i = 0; i < 5; i++) { 5090 err = check_func_arg(env, i, &meta, fn); 5091 if (err) 5092 return err; 5093 } 5094 5095 err = record_func_map(env, &meta, func_id, insn_idx); 5096 if (err) 5097 return err; 5098 5099 err = record_func_key(env, &meta, func_id, insn_idx); 5100 if (err) 5101 return err; 5102 5103 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5104 * is inferred from register state. 5105 */ 5106 for (i = 0; i < meta.access_size; i++) { 5107 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5108 BPF_WRITE, -1, false); 5109 if (err) 5110 return err; 5111 } 5112 5113 if (func_id == BPF_FUNC_tail_call) { 5114 err = check_reference_leak(env); 5115 if (err) { 5116 verbose(env, "tail_call would lead to reference leak\n"); 5117 return err; 5118 } 5119 } else if (is_release_function(func_id)) { 5120 err = release_reference(env, meta.ref_obj_id); 5121 if (err) { 5122 verbose(env, "func %s#%d reference has not been acquired before\n", 5123 func_id_name(func_id), func_id); 5124 return err; 5125 } 5126 } 5127 5128 regs = cur_regs(env); 5129 5130 /* check that flags argument in get_local_storage(map, flags) is 0, 5131 * this is required because get_local_storage() can't return an error. 5132 */ 5133 if (func_id == BPF_FUNC_get_local_storage && 5134 !register_is_null(®s[BPF_REG_2])) { 5135 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5136 return -EINVAL; 5137 } 5138 5139 /* reset caller saved regs */ 5140 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5141 mark_reg_not_init(env, regs, caller_saved[i]); 5142 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5143 } 5144 5145 /* helper call returns 64-bit value. */ 5146 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5147 5148 /* update return register (already marked as written above) */ 5149 if (fn->ret_type == RET_INTEGER) { 5150 /* sets type to SCALAR_VALUE */ 5151 mark_reg_unknown(env, regs, BPF_REG_0); 5152 } else if (fn->ret_type == RET_VOID) { 5153 regs[BPF_REG_0].type = NOT_INIT; 5154 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5155 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5156 /* There is no offset yet applied, variable or fixed */ 5157 mark_reg_known_zero(env, regs, BPF_REG_0); 5158 /* remember map_ptr, so that check_map_access() 5159 * can check 'value_size' boundary of memory access 5160 * to map element returned from bpf_map_lookup_elem() 5161 */ 5162 if (meta.map_ptr == NULL) { 5163 verbose(env, 5164 "kernel subsystem misconfigured verifier\n"); 5165 return -EINVAL; 5166 } 5167 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5168 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5169 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5170 if (map_value_has_spin_lock(meta.map_ptr)) 5171 regs[BPF_REG_0].id = ++env->id_gen; 5172 } else { 5173 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5174 } 5175 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5176 mark_reg_known_zero(env, regs, BPF_REG_0); 5177 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5178 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5179 mark_reg_known_zero(env, regs, BPF_REG_0); 5180 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5181 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5182 mark_reg_known_zero(env, regs, BPF_REG_0); 5183 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5184 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5185 mark_reg_known_zero(env, regs, BPF_REG_0); 5186 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5187 regs[BPF_REG_0].mem_size = meta.mem_size; 5188 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5189 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5190 const struct btf_type *t; 5191 5192 mark_reg_known_zero(env, regs, BPF_REG_0); 5193 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL); 5194 if (!btf_type_is_struct(t)) { 5195 u32 tsize; 5196 const struct btf_type *ret; 5197 const char *tname; 5198 5199 /* resolve the type size of ksym. */ 5200 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 5201 if (IS_ERR(ret)) { 5202 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5203 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5204 tname, PTR_ERR(ret)); 5205 return -EINVAL; 5206 } 5207 regs[BPF_REG_0].type = 5208 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5209 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5210 regs[BPF_REG_0].mem_size = tsize; 5211 } else { 5212 regs[BPF_REG_0].type = 5213 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5214 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5215 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5216 } 5217 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 5218 fn->ret_type == RET_PTR_TO_BTF_ID) { 5219 int ret_btf_id; 5220 5221 mark_reg_known_zero(env, regs, BPF_REG_0); 5222 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 5223 PTR_TO_BTF_ID : 5224 PTR_TO_BTF_ID_OR_NULL; 5225 ret_btf_id = *fn->ret_btf_id; 5226 if (ret_btf_id == 0) { 5227 verbose(env, "invalid return type %d of func %s#%d\n", 5228 fn->ret_type, func_id_name(func_id), func_id); 5229 return -EINVAL; 5230 } 5231 regs[BPF_REG_0].btf_id = ret_btf_id; 5232 } else { 5233 verbose(env, "unknown return type %d of func %s#%d\n", 5234 fn->ret_type, func_id_name(func_id), func_id); 5235 return -EINVAL; 5236 } 5237 5238 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5239 regs[BPF_REG_0].id = ++env->id_gen; 5240 5241 if (is_ptr_cast_function(func_id)) { 5242 /* For release_reference() */ 5243 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5244 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5245 int id = acquire_reference_state(env, insn_idx); 5246 5247 if (id < 0) 5248 return id; 5249 /* For mark_ptr_or_null_reg() */ 5250 regs[BPF_REG_0].id = id; 5251 /* For release_reference() */ 5252 regs[BPF_REG_0].ref_obj_id = id; 5253 } 5254 5255 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5256 5257 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5258 if (err) 5259 return err; 5260 5261 if ((func_id == BPF_FUNC_get_stack || 5262 func_id == BPF_FUNC_get_task_stack) && 5263 !env->prog->has_callchain_buf) { 5264 const char *err_str; 5265 5266 #ifdef CONFIG_PERF_EVENTS 5267 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5268 err_str = "cannot get callchain buffer for func %s#%d\n"; 5269 #else 5270 err = -ENOTSUPP; 5271 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5272 #endif 5273 if (err) { 5274 verbose(env, err_str, func_id_name(func_id), func_id); 5275 return err; 5276 } 5277 5278 env->prog->has_callchain_buf = true; 5279 } 5280 5281 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5282 env->prog->call_get_stack = true; 5283 5284 if (changes_data) 5285 clear_all_pkt_pointers(env); 5286 return 0; 5287 } 5288 5289 static bool signed_add_overflows(s64 a, s64 b) 5290 { 5291 /* Do the add in u64, where overflow is well-defined */ 5292 s64 res = (s64)((u64)a + (u64)b); 5293 5294 if (b < 0) 5295 return res > a; 5296 return res < a; 5297 } 5298 5299 static bool signed_add32_overflows(s64 a, s64 b) 5300 { 5301 /* Do the add in u32, where overflow is well-defined */ 5302 s32 res = (s32)((u32)a + (u32)b); 5303 5304 if (b < 0) 5305 return res > a; 5306 return res < a; 5307 } 5308 5309 static bool signed_sub_overflows(s32 a, s32 b) 5310 { 5311 /* Do the sub in u64, where overflow is well-defined */ 5312 s64 res = (s64)((u64)a - (u64)b); 5313 5314 if (b < 0) 5315 return res < a; 5316 return res > a; 5317 } 5318 5319 static bool signed_sub32_overflows(s32 a, s32 b) 5320 { 5321 /* Do the sub in u64, where overflow is well-defined */ 5322 s32 res = (s32)((u32)a - (u32)b); 5323 5324 if (b < 0) 5325 return res < a; 5326 return res > a; 5327 } 5328 5329 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5330 const struct bpf_reg_state *reg, 5331 enum bpf_reg_type type) 5332 { 5333 bool known = tnum_is_const(reg->var_off); 5334 s64 val = reg->var_off.value; 5335 s64 smin = reg->smin_value; 5336 5337 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5338 verbose(env, "math between %s pointer and %lld is not allowed\n", 5339 reg_type_str[type], val); 5340 return false; 5341 } 5342 5343 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5344 verbose(env, "%s pointer offset %d is not allowed\n", 5345 reg_type_str[type], reg->off); 5346 return false; 5347 } 5348 5349 if (smin == S64_MIN) { 5350 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5351 reg_type_str[type]); 5352 return false; 5353 } 5354 5355 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5356 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5357 smin, reg_type_str[type]); 5358 return false; 5359 } 5360 5361 return true; 5362 } 5363 5364 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5365 { 5366 return &env->insn_aux_data[env->insn_idx]; 5367 } 5368 5369 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5370 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5371 { 5372 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5373 (opcode == BPF_SUB && !off_is_neg); 5374 u32 off; 5375 5376 switch (ptr_reg->type) { 5377 case PTR_TO_STACK: 5378 /* Indirect variable offset stack access is prohibited in 5379 * unprivileged mode so it's not handled here. 5380 */ 5381 off = ptr_reg->off + ptr_reg->var_off.value; 5382 if (mask_to_left) 5383 *ptr_limit = MAX_BPF_STACK + off; 5384 else 5385 *ptr_limit = -off; 5386 return 0; 5387 case PTR_TO_MAP_VALUE: 5388 if (mask_to_left) { 5389 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5390 } else { 5391 off = ptr_reg->smin_value + ptr_reg->off; 5392 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5393 } 5394 return 0; 5395 default: 5396 return -EINVAL; 5397 } 5398 } 5399 5400 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5401 const struct bpf_insn *insn) 5402 { 5403 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5404 } 5405 5406 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5407 u32 alu_state, u32 alu_limit) 5408 { 5409 /* If we arrived here from different branches with different 5410 * state or limits to sanitize, then this won't work. 5411 */ 5412 if (aux->alu_state && 5413 (aux->alu_state != alu_state || 5414 aux->alu_limit != alu_limit)) 5415 return -EACCES; 5416 5417 /* Corresponding fixup done in fixup_bpf_calls(). */ 5418 aux->alu_state = alu_state; 5419 aux->alu_limit = alu_limit; 5420 return 0; 5421 } 5422 5423 static int sanitize_val_alu(struct bpf_verifier_env *env, 5424 struct bpf_insn *insn) 5425 { 5426 struct bpf_insn_aux_data *aux = cur_aux(env); 5427 5428 if (can_skip_alu_sanitation(env, insn)) 5429 return 0; 5430 5431 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5432 } 5433 5434 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5435 struct bpf_insn *insn, 5436 const struct bpf_reg_state *ptr_reg, 5437 struct bpf_reg_state *dst_reg, 5438 bool off_is_neg) 5439 { 5440 struct bpf_verifier_state *vstate = env->cur_state; 5441 struct bpf_insn_aux_data *aux = cur_aux(env); 5442 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5443 u8 opcode = BPF_OP(insn->code); 5444 u32 alu_state, alu_limit; 5445 struct bpf_reg_state tmp; 5446 bool ret; 5447 5448 if (can_skip_alu_sanitation(env, insn)) 5449 return 0; 5450 5451 /* We already marked aux for masking from non-speculative 5452 * paths, thus we got here in the first place. We only care 5453 * to explore bad access from here. 5454 */ 5455 if (vstate->speculative) 5456 goto do_sim; 5457 5458 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5459 alu_state |= ptr_is_dst_reg ? 5460 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5461 5462 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5463 return 0; 5464 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5465 return -EACCES; 5466 do_sim: 5467 /* Simulate and find potential out-of-bounds access under 5468 * speculative execution from truncation as a result of 5469 * masking when off was not within expected range. If off 5470 * sits in dst, then we temporarily need to move ptr there 5471 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5472 * for cases where we use K-based arithmetic in one direction 5473 * and truncated reg-based in the other in order to explore 5474 * bad access. 5475 */ 5476 if (!ptr_is_dst_reg) { 5477 tmp = *dst_reg; 5478 *dst_reg = *ptr_reg; 5479 } 5480 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5481 if (!ptr_is_dst_reg && ret) 5482 *dst_reg = tmp; 5483 return !ret ? -EFAULT : 0; 5484 } 5485 5486 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5487 * Caller should also handle BPF_MOV case separately. 5488 * If we return -EACCES, caller may want to try again treating pointer as a 5489 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5490 */ 5491 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5492 struct bpf_insn *insn, 5493 const struct bpf_reg_state *ptr_reg, 5494 const struct bpf_reg_state *off_reg) 5495 { 5496 struct bpf_verifier_state *vstate = env->cur_state; 5497 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5498 struct bpf_reg_state *regs = state->regs, *dst_reg; 5499 bool known = tnum_is_const(off_reg->var_off); 5500 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5501 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5502 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5503 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5504 u32 dst = insn->dst_reg, src = insn->src_reg; 5505 u8 opcode = BPF_OP(insn->code); 5506 int ret; 5507 5508 dst_reg = ®s[dst]; 5509 5510 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5511 smin_val > smax_val || umin_val > umax_val) { 5512 /* Taint dst register if offset had invalid bounds derived from 5513 * e.g. dead branches. 5514 */ 5515 __mark_reg_unknown(env, dst_reg); 5516 return 0; 5517 } 5518 5519 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5520 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5521 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5522 __mark_reg_unknown(env, dst_reg); 5523 return 0; 5524 } 5525 5526 verbose(env, 5527 "R%d 32-bit pointer arithmetic prohibited\n", 5528 dst); 5529 return -EACCES; 5530 } 5531 5532 switch (ptr_reg->type) { 5533 case PTR_TO_MAP_VALUE_OR_NULL: 5534 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5535 dst, reg_type_str[ptr_reg->type]); 5536 return -EACCES; 5537 case CONST_PTR_TO_MAP: 5538 /* smin_val represents the known value */ 5539 if (known && smin_val == 0 && opcode == BPF_ADD) 5540 break; 5541 fallthrough; 5542 case PTR_TO_PACKET_END: 5543 case PTR_TO_SOCKET: 5544 case PTR_TO_SOCKET_OR_NULL: 5545 case PTR_TO_SOCK_COMMON: 5546 case PTR_TO_SOCK_COMMON_OR_NULL: 5547 case PTR_TO_TCP_SOCK: 5548 case PTR_TO_TCP_SOCK_OR_NULL: 5549 case PTR_TO_XDP_SOCK: 5550 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5551 dst, reg_type_str[ptr_reg->type]); 5552 return -EACCES; 5553 case PTR_TO_MAP_VALUE: 5554 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5555 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5556 off_reg == dst_reg ? dst : src); 5557 return -EACCES; 5558 } 5559 fallthrough; 5560 default: 5561 break; 5562 } 5563 5564 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5565 * The id may be overwritten later if we create a new variable offset. 5566 */ 5567 dst_reg->type = ptr_reg->type; 5568 dst_reg->id = ptr_reg->id; 5569 5570 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5571 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5572 return -EINVAL; 5573 5574 /* pointer types do not carry 32-bit bounds at the moment. */ 5575 __mark_reg32_unbounded(dst_reg); 5576 5577 switch (opcode) { 5578 case BPF_ADD: 5579 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5580 if (ret < 0) { 5581 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5582 return ret; 5583 } 5584 /* We can take a fixed offset as long as it doesn't overflow 5585 * the s32 'off' field 5586 */ 5587 if (known && (ptr_reg->off + smin_val == 5588 (s64)(s32)(ptr_reg->off + smin_val))) { 5589 /* pointer += K. Accumulate it into fixed offset */ 5590 dst_reg->smin_value = smin_ptr; 5591 dst_reg->smax_value = smax_ptr; 5592 dst_reg->umin_value = umin_ptr; 5593 dst_reg->umax_value = umax_ptr; 5594 dst_reg->var_off = ptr_reg->var_off; 5595 dst_reg->off = ptr_reg->off + smin_val; 5596 dst_reg->raw = ptr_reg->raw; 5597 break; 5598 } 5599 /* A new variable offset is created. Note that off_reg->off 5600 * == 0, since it's a scalar. 5601 * dst_reg gets the pointer type and since some positive 5602 * integer value was added to the pointer, give it a new 'id' 5603 * if it's a PTR_TO_PACKET. 5604 * this creates a new 'base' pointer, off_reg (variable) gets 5605 * added into the variable offset, and we copy the fixed offset 5606 * from ptr_reg. 5607 */ 5608 if (signed_add_overflows(smin_ptr, smin_val) || 5609 signed_add_overflows(smax_ptr, smax_val)) { 5610 dst_reg->smin_value = S64_MIN; 5611 dst_reg->smax_value = S64_MAX; 5612 } else { 5613 dst_reg->smin_value = smin_ptr + smin_val; 5614 dst_reg->smax_value = smax_ptr + smax_val; 5615 } 5616 if (umin_ptr + umin_val < umin_ptr || 5617 umax_ptr + umax_val < umax_ptr) { 5618 dst_reg->umin_value = 0; 5619 dst_reg->umax_value = U64_MAX; 5620 } else { 5621 dst_reg->umin_value = umin_ptr + umin_val; 5622 dst_reg->umax_value = umax_ptr + umax_val; 5623 } 5624 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5625 dst_reg->off = ptr_reg->off; 5626 dst_reg->raw = ptr_reg->raw; 5627 if (reg_is_pkt_pointer(ptr_reg)) { 5628 dst_reg->id = ++env->id_gen; 5629 /* something was added to pkt_ptr, set range to zero */ 5630 dst_reg->raw = 0; 5631 } 5632 break; 5633 case BPF_SUB: 5634 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5635 if (ret < 0) { 5636 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5637 return ret; 5638 } 5639 if (dst_reg == off_reg) { 5640 /* scalar -= pointer. Creates an unknown scalar */ 5641 verbose(env, "R%d tried to subtract pointer from scalar\n", 5642 dst); 5643 return -EACCES; 5644 } 5645 /* We don't allow subtraction from FP, because (according to 5646 * test_verifier.c test "invalid fp arithmetic", JITs might not 5647 * be able to deal with it. 5648 */ 5649 if (ptr_reg->type == PTR_TO_STACK) { 5650 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5651 dst); 5652 return -EACCES; 5653 } 5654 if (known && (ptr_reg->off - smin_val == 5655 (s64)(s32)(ptr_reg->off - smin_val))) { 5656 /* pointer -= K. Subtract it from fixed offset */ 5657 dst_reg->smin_value = smin_ptr; 5658 dst_reg->smax_value = smax_ptr; 5659 dst_reg->umin_value = umin_ptr; 5660 dst_reg->umax_value = umax_ptr; 5661 dst_reg->var_off = ptr_reg->var_off; 5662 dst_reg->id = ptr_reg->id; 5663 dst_reg->off = ptr_reg->off - smin_val; 5664 dst_reg->raw = ptr_reg->raw; 5665 break; 5666 } 5667 /* A new variable offset is created. If the subtrahend is known 5668 * nonnegative, then any reg->range we had before is still good. 5669 */ 5670 if (signed_sub_overflows(smin_ptr, smax_val) || 5671 signed_sub_overflows(smax_ptr, smin_val)) { 5672 /* Overflow possible, we know nothing */ 5673 dst_reg->smin_value = S64_MIN; 5674 dst_reg->smax_value = S64_MAX; 5675 } else { 5676 dst_reg->smin_value = smin_ptr - smax_val; 5677 dst_reg->smax_value = smax_ptr - smin_val; 5678 } 5679 if (umin_ptr < umax_val) { 5680 /* Overflow possible, we know nothing */ 5681 dst_reg->umin_value = 0; 5682 dst_reg->umax_value = U64_MAX; 5683 } else { 5684 /* Cannot overflow (as long as bounds are consistent) */ 5685 dst_reg->umin_value = umin_ptr - umax_val; 5686 dst_reg->umax_value = umax_ptr - umin_val; 5687 } 5688 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5689 dst_reg->off = ptr_reg->off; 5690 dst_reg->raw = ptr_reg->raw; 5691 if (reg_is_pkt_pointer(ptr_reg)) { 5692 dst_reg->id = ++env->id_gen; 5693 /* something was added to pkt_ptr, set range to zero */ 5694 if (smin_val < 0) 5695 dst_reg->raw = 0; 5696 } 5697 break; 5698 case BPF_AND: 5699 case BPF_OR: 5700 case BPF_XOR: 5701 /* bitwise ops on pointers are troublesome, prohibit. */ 5702 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5703 dst, bpf_alu_string[opcode >> 4]); 5704 return -EACCES; 5705 default: 5706 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5707 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5708 dst, bpf_alu_string[opcode >> 4]); 5709 return -EACCES; 5710 } 5711 5712 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5713 return -EINVAL; 5714 5715 __update_reg_bounds(dst_reg); 5716 __reg_deduce_bounds(dst_reg); 5717 __reg_bound_offset(dst_reg); 5718 5719 /* For unprivileged we require that resulting offset must be in bounds 5720 * in order to be able to sanitize access later on. 5721 */ 5722 if (!env->bypass_spec_v1) { 5723 if (dst_reg->type == PTR_TO_MAP_VALUE && 5724 check_map_access(env, dst, dst_reg->off, 1, false)) { 5725 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5726 "prohibited for !root\n", dst); 5727 return -EACCES; 5728 } else if (dst_reg->type == PTR_TO_STACK && 5729 check_stack_access(env, dst_reg, dst_reg->off + 5730 dst_reg->var_off.value, 1)) { 5731 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5732 "prohibited for !root\n", dst); 5733 return -EACCES; 5734 } 5735 } 5736 5737 return 0; 5738 } 5739 5740 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5741 struct bpf_reg_state *src_reg) 5742 { 5743 s32 smin_val = src_reg->s32_min_value; 5744 s32 smax_val = src_reg->s32_max_value; 5745 u32 umin_val = src_reg->u32_min_value; 5746 u32 umax_val = src_reg->u32_max_value; 5747 5748 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5749 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5750 dst_reg->s32_min_value = S32_MIN; 5751 dst_reg->s32_max_value = S32_MAX; 5752 } else { 5753 dst_reg->s32_min_value += smin_val; 5754 dst_reg->s32_max_value += smax_val; 5755 } 5756 if (dst_reg->u32_min_value + umin_val < umin_val || 5757 dst_reg->u32_max_value + umax_val < umax_val) { 5758 dst_reg->u32_min_value = 0; 5759 dst_reg->u32_max_value = U32_MAX; 5760 } else { 5761 dst_reg->u32_min_value += umin_val; 5762 dst_reg->u32_max_value += umax_val; 5763 } 5764 } 5765 5766 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5767 struct bpf_reg_state *src_reg) 5768 { 5769 s64 smin_val = src_reg->smin_value; 5770 s64 smax_val = src_reg->smax_value; 5771 u64 umin_val = src_reg->umin_value; 5772 u64 umax_val = src_reg->umax_value; 5773 5774 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5775 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5776 dst_reg->smin_value = S64_MIN; 5777 dst_reg->smax_value = S64_MAX; 5778 } else { 5779 dst_reg->smin_value += smin_val; 5780 dst_reg->smax_value += smax_val; 5781 } 5782 if (dst_reg->umin_value + umin_val < umin_val || 5783 dst_reg->umax_value + umax_val < umax_val) { 5784 dst_reg->umin_value = 0; 5785 dst_reg->umax_value = U64_MAX; 5786 } else { 5787 dst_reg->umin_value += umin_val; 5788 dst_reg->umax_value += umax_val; 5789 } 5790 } 5791 5792 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5793 struct bpf_reg_state *src_reg) 5794 { 5795 s32 smin_val = src_reg->s32_min_value; 5796 s32 smax_val = src_reg->s32_max_value; 5797 u32 umin_val = src_reg->u32_min_value; 5798 u32 umax_val = src_reg->u32_max_value; 5799 5800 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5801 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5802 /* Overflow possible, we know nothing */ 5803 dst_reg->s32_min_value = S32_MIN; 5804 dst_reg->s32_max_value = S32_MAX; 5805 } else { 5806 dst_reg->s32_min_value -= smax_val; 5807 dst_reg->s32_max_value -= smin_val; 5808 } 5809 if (dst_reg->u32_min_value < umax_val) { 5810 /* Overflow possible, we know nothing */ 5811 dst_reg->u32_min_value = 0; 5812 dst_reg->u32_max_value = U32_MAX; 5813 } else { 5814 /* Cannot overflow (as long as bounds are consistent) */ 5815 dst_reg->u32_min_value -= umax_val; 5816 dst_reg->u32_max_value -= umin_val; 5817 } 5818 } 5819 5820 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5821 struct bpf_reg_state *src_reg) 5822 { 5823 s64 smin_val = src_reg->smin_value; 5824 s64 smax_val = src_reg->smax_value; 5825 u64 umin_val = src_reg->umin_value; 5826 u64 umax_val = src_reg->umax_value; 5827 5828 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5829 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5830 /* Overflow possible, we know nothing */ 5831 dst_reg->smin_value = S64_MIN; 5832 dst_reg->smax_value = S64_MAX; 5833 } else { 5834 dst_reg->smin_value -= smax_val; 5835 dst_reg->smax_value -= smin_val; 5836 } 5837 if (dst_reg->umin_value < umax_val) { 5838 /* Overflow possible, we know nothing */ 5839 dst_reg->umin_value = 0; 5840 dst_reg->umax_value = U64_MAX; 5841 } else { 5842 /* Cannot overflow (as long as bounds are consistent) */ 5843 dst_reg->umin_value -= umax_val; 5844 dst_reg->umax_value -= umin_val; 5845 } 5846 } 5847 5848 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5849 struct bpf_reg_state *src_reg) 5850 { 5851 s32 smin_val = src_reg->s32_min_value; 5852 u32 umin_val = src_reg->u32_min_value; 5853 u32 umax_val = src_reg->u32_max_value; 5854 5855 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5856 /* Ain't nobody got time to multiply that sign */ 5857 __mark_reg32_unbounded(dst_reg); 5858 return; 5859 } 5860 /* Both values are positive, so we can work with unsigned and 5861 * copy the result to signed (unless it exceeds S32_MAX). 5862 */ 5863 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5864 /* Potential overflow, we know nothing */ 5865 __mark_reg32_unbounded(dst_reg); 5866 return; 5867 } 5868 dst_reg->u32_min_value *= umin_val; 5869 dst_reg->u32_max_value *= umax_val; 5870 if (dst_reg->u32_max_value > S32_MAX) { 5871 /* Overflow possible, we know nothing */ 5872 dst_reg->s32_min_value = S32_MIN; 5873 dst_reg->s32_max_value = S32_MAX; 5874 } else { 5875 dst_reg->s32_min_value = dst_reg->u32_min_value; 5876 dst_reg->s32_max_value = dst_reg->u32_max_value; 5877 } 5878 } 5879 5880 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5881 struct bpf_reg_state *src_reg) 5882 { 5883 s64 smin_val = src_reg->smin_value; 5884 u64 umin_val = src_reg->umin_value; 5885 u64 umax_val = src_reg->umax_value; 5886 5887 if (smin_val < 0 || dst_reg->smin_value < 0) { 5888 /* Ain't nobody got time to multiply that sign */ 5889 __mark_reg64_unbounded(dst_reg); 5890 return; 5891 } 5892 /* Both values are positive, so we can work with unsigned and 5893 * copy the result to signed (unless it exceeds S64_MAX). 5894 */ 5895 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5896 /* Potential overflow, we know nothing */ 5897 __mark_reg64_unbounded(dst_reg); 5898 return; 5899 } 5900 dst_reg->umin_value *= umin_val; 5901 dst_reg->umax_value *= umax_val; 5902 if (dst_reg->umax_value > S64_MAX) { 5903 /* Overflow possible, we know nothing */ 5904 dst_reg->smin_value = S64_MIN; 5905 dst_reg->smax_value = S64_MAX; 5906 } else { 5907 dst_reg->smin_value = dst_reg->umin_value; 5908 dst_reg->smax_value = dst_reg->umax_value; 5909 } 5910 } 5911 5912 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5913 struct bpf_reg_state *src_reg) 5914 { 5915 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5916 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5917 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5918 s32 smin_val = src_reg->s32_min_value; 5919 u32 umax_val = src_reg->u32_max_value; 5920 5921 /* Assuming scalar64_min_max_and will be called so its safe 5922 * to skip updating register for known 32-bit case. 5923 */ 5924 if (src_known && dst_known) 5925 return; 5926 5927 /* We get our minimum from the var_off, since that's inherently 5928 * bitwise. Our maximum is the minimum of the operands' maxima. 5929 */ 5930 dst_reg->u32_min_value = var32_off.value; 5931 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5932 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5933 /* Lose signed bounds when ANDing negative numbers, 5934 * ain't nobody got time for that. 5935 */ 5936 dst_reg->s32_min_value = S32_MIN; 5937 dst_reg->s32_max_value = S32_MAX; 5938 } else { 5939 /* ANDing two positives gives a positive, so safe to 5940 * cast result into s64. 5941 */ 5942 dst_reg->s32_min_value = dst_reg->u32_min_value; 5943 dst_reg->s32_max_value = dst_reg->u32_max_value; 5944 } 5945 5946 } 5947 5948 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5949 struct bpf_reg_state *src_reg) 5950 { 5951 bool src_known = tnum_is_const(src_reg->var_off); 5952 bool dst_known = tnum_is_const(dst_reg->var_off); 5953 s64 smin_val = src_reg->smin_value; 5954 u64 umax_val = src_reg->umax_value; 5955 5956 if (src_known && dst_known) { 5957 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5958 return; 5959 } 5960 5961 /* We get our minimum from the var_off, since that's inherently 5962 * bitwise. Our maximum is the minimum of the operands' maxima. 5963 */ 5964 dst_reg->umin_value = dst_reg->var_off.value; 5965 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5966 if (dst_reg->smin_value < 0 || smin_val < 0) { 5967 /* Lose signed bounds when ANDing negative numbers, 5968 * ain't nobody got time for that. 5969 */ 5970 dst_reg->smin_value = S64_MIN; 5971 dst_reg->smax_value = S64_MAX; 5972 } else { 5973 /* ANDing two positives gives a positive, so safe to 5974 * cast result into s64. 5975 */ 5976 dst_reg->smin_value = dst_reg->umin_value; 5977 dst_reg->smax_value = dst_reg->umax_value; 5978 } 5979 /* We may learn something more from the var_off */ 5980 __update_reg_bounds(dst_reg); 5981 } 5982 5983 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5984 struct bpf_reg_state *src_reg) 5985 { 5986 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5987 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5988 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5989 s32 smin_val = src_reg->s32_min_value; 5990 u32 umin_val = src_reg->u32_min_value; 5991 5992 /* Assuming scalar64_min_max_or will be called so it is safe 5993 * to skip updating register for known case. 5994 */ 5995 if (src_known && dst_known) 5996 return; 5997 5998 /* We get our maximum from the var_off, and our minimum is the 5999 * maximum of the operands' minima 6000 */ 6001 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 6002 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6003 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6004 /* Lose signed bounds when ORing negative numbers, 6005 * ain't nobody got time for that. 6006 */ 6007 dst_reg->s32_min_value = S32_MIN; 6008 dst_reg->s32_max_value = S32_MAX; 6009 } else { 6010 /* ORing two positives gives a positive, so safe to 6011 * cast result into s64. 6012 */ 6013 dst_reg->s32_min_value = dst_reg->u32_min_value; 6014 dst_reg->s32_max_value = dst_reg->u32_max_value; 6015 } 6016 } 6017 6018 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 6019 struct bpf_reg_state *src_reg) 6020 { 6021 bool src_known = tnum_is_const(src_reg->var_off); 6022 bool dst_known = tnum_is_const(dst_reg->var_off); 6023 s64 smin_val = src_reg->smin_value; 6024 u64 umin_val = src_reg->umin_value; 6025 6026 if (src_known && dst_known) { 6027 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6028 return; 6029 } 6030 6031 /* We get our maximum from the var_off, and our minimum is the 6032 * maximum of the operands' minima 6033 */ 6034 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6035 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6036 if (dst_reg->smin_value < 0 || smin_val < 0) { 6037 /* Lose signed bounds when ORing negative numbers, 6038 * ain't nobody got time for that. 6039 */ 6040 dst_reg->smin_value = S64_MIN; 6041 dst_reg->smax_value = S64_MAX; 6042 } else { 6043 /* ORing two positives gives a positive, so safe to 6044 * cast result into s64. 6045 */ 6046 dst_reg->smin_value = dst_reg->umin_value; 6047 dst_reg->smax_value = dst_reg->umax_value; 6048 } 6049 /* We may learn something more from the var_off */ 6050 __update_reg_bounds(dst_reg); 6051 } 6052 6053 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6054 struct bpf_reg_state *src_reg) 6055 { 6056 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6057 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6058 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6059 s32 smin_val = src_reg->s32_min_value; 6060 6061 /* Assuming scalar64_min_max_xor will be called so it is safe 6062 * to skip updating register for known case. 6063 */ 6064 if (src_known && dst_known) 6065 return; 6066 6067 /* We get both minimum and maximum from the var32_off. */ 6068 dst_reg->u32_min_value = var32_off.value; 6069 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6070 6071 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6072 /* XORing two positive sign numbers gives a positive, 6073 * so safe to cast u32 result into s32. 6074 */ 6075 dst_reg->s32_min_value = dst_reg->u32_min_value; 6076 dst_reg->s32_max_value = dst_reg->u32_max_value; 6077 } else { 6078 dst_reg->s32_min_value = S32_MIN; 6079 dst_reg->s32_max_value = S32_MAX; 6080 } 6081 } 6082 6083 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6084 struct bpf_reg_state *src_reg) 6085 { 6086 bool src_known = tnum_is_const(src_reg->var_off); 6087 bool dst_known = tnum_is_const(dst_reg->var_off); 6088 s64 smin_val = src_reg->smin_value; 6089 6090 if (src_known && dst_known) { 6091 /* dst_reg->var_off.value has been updated earlier */ 6092 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6093 return; 6094 } 6095 6096 /* We get both minimum and maximum from the var_off. */ 6097 dst_reg->umin_value = dst_reg->var_off.value; 6098 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6099 6100 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6101 /* XORing two positive sign numbers gives a positive, 6102 * so safe to cast u64 result into s64. 6103 */ 6104 dst_reg->smin_value = dst_reg->umin_value; 6105 dst_reg->smax_value = dst_reg->umax_value; 6106 } else { 6107 dst_reg->smin_value = S64_MIN; 6108 dst_reg->smax_value = S64_MAX; 6109 } 6110 6111 __update_reg_bounds(dst_reg); 6112 } 6113 6114 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6115 u64 umin_val, u64 umax_val) 6116 { 6117 /* We lose all sign bit information (except what we can pick 6118 * up from var_off) 6119 */ 6120 dst_reg->s32_min_value = S32_MIN; 6121 dst_reg->s32_max_value = S32_MAX; 6122 /* If we might shift our top bit out, then we know nothing */ 6123 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6124 dst_reg->u32_min_value = 0; 6125 dst_reg->u32_max_value = U32_MAX; 6126 } else { 6127 dst_reg->u32_min_value <<= umin_val; 6128 dst_reg->u32_max_value <<= umax_val; 6129 } 6130 } 6131 6132 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6133 struct bpf_reg_state *src_reg) 6134 { 6135 u32 umax_val = src_reg->u32_max_value; 6136 u32 umin_val = src_reg->u32_min_value; 6137 /* u32 alu operation will zext upper bits */ 6138 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6139 6140 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6141 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6142 /* Not required but being careful mark reg64 bounds as unknown so 6143 * that we are forced to pick them up from tnum and zext later and 6144 * if some path skips this step we are still safe. 6145 */ 6146 __mark_reg64_unbounded(dst_reg); 6147 __update_reg32_bounds(dst_reg); 6148 } 6149 6150 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6151 u64 umin_val, u64 umax_val) 6152 { 6153 /* Special case <<32 because it is a common compiler pattern to sign 6154 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6155 * positive we know this shift will also be positive so we can track 6156 * bounds correctly. Otherwise we lose all sign bit information except 6157 * what we can pick up from var_off. Perhaps we can generalize this 6158 * later to shifts of any length. 6159 */ 6160 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6161 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6162 else 6163 dst_reg->smax_value = S64_MAX; 6164 6165 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6166 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6167 else 6168 dst_reg->smin_value = S64_MIN; 6169 6170 /* If we might shift our top bit out, then we know nothing */ 6171 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6172 dst_reg->umin_value = 0; 6173 dst_reg->umax_value = U64_MAX; 6174 } else { 6175 dst_reg->umin_value <<= umin_val; 6176 dst_reg->umax_value <<= umax_val; 6177 } 6178 } 6179 6180 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6181 struct bpf_reg_state *src_reg) 6182 { 6183 u64 umax_val = src_reg->umax_value; 6184 u64 umin_val = src_reg->umin_value; 6185 6186 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6187 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6188 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6189 6190 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6191 /* We may learn something more from the var_off */ 6192 __update_reg_bounds(dst_reg); 6193 } 6194 6195 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6196 struct bpf_reg_state *src_reg) 6197 { 6198 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6199 u32 umax_val = src_reg->u32_max_value; 6200 u32 umin_val = src_reg->u32_min_value; 6201 6202 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6203 * be negative, then either: 6204 * 1) src_reg might be zero, so the sign bit of the result is 6205 * unknown, so we lose our signed bounds 6206 * 2) it's known negative, thus the unsigned bounds capture the 6207 * signed bounds 6208 * 3) the signed bounds cross zero, so they tell us nothing 6209 * about the result 6210 * If the value in dst_reg is known nonnegative, then again the 6211 * unsigned bounts capture the signed bounds. 6212 * Thus, in all cases it suffices to blow away our signed bounds 6213 * and rely on inferring new ones from the unsigned bounds and 6214 * var_off of the result. 6215 */ 6216 dst_reg->s32_min_value = S32_MIN; 6217 dst_reg->s32_max_value = S32_MAX; 6218 6219 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6220 dst_reg->u32_min_value >>= umax_val; 6221 dst_reg->u32_max_value >>= umin_val; 6222 6223 __mark_reg64_unbounded(dst_reg); 6224 __update_reg32_bounds(dst_reg); 6225 } 6226 6227 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6228 struct bpf_reg_state *src_reg) 6229 { 6230 u64 umax_val = src_reg->umax_value; 6231 u64 umin_val = src_reg->umin_value; 6232 6233 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6234 * be negative, then either: 6235 * 1) src_reg might be zero, so the sign bit of the result is 6236 * unknown, so we lose our signed bounds 6237 * 2) it's known negative, thus the unsigned bounds capture the 6238 * signed bounds 6239 * 3) the signed bounds cross zero, so they tell us nothing 6240 * about the result 6241 * If the value in dst_reg is known nonnegative, then again the 6242 * unsigned bounts capture the signed bounds. 6243 * Thus, in all cases it suffices to blow away our signed bounds 6244 * and rely on inferring new ones from the unsigned bounds and 6245 * var_off of the result. 6246 */ 6247 dst_reg->smin_value = S64_MIN; 6248 dst_reg->smax_value = S64_MAX; 6249 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6250 dst_reg->umin_value >>= umax_val; 6251 dst_reg->umax_value >>= umin_val; 6252 6253 /* Its not easy to operate on alu32 bounds here because it depends 6254 * on bits being shifted in. Take easy way out and mark unbounded 6255 * so we can recalculate later from tnum. 6256 */ 6257 __mark_reg32_unbounded(dst_reg); 6258 __update_reg_bounds(dst_reg); 6259 } 6260 6261 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6262 struct bpf_reg_state *src_reg) 6263 { 6264 u64 umin_val = src_reg->u32_min_value; 6265 6266 /* Upon reaching here, src_known is true and 6267 * umax_val is equal to umin_val. 6268 */ 6269 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6270 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6271 6272 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6273 6274 /* blow away the dst_reg umin_value/umax_value and rely on 6275 * dst_reg var_off to refine the result. 6276 */ 6277 dst_reg->u32_min_value = 0; 6278 dst_reg->u32_max_value = U32_MAX; 6279 6280 __mark_reg64_unbounded(dst_reg); 6281 __update_reg32_bounds(dst_reg); 6282 } 6283 6284 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6285 struct bpf_reg_state *src_reg) 6286 { 6287 u64 umin_val = src_reg->umin_value; 6288 6289 /* Upon reaching here, src_known is true and umax_val is equal 6290 * to umin_val. 6291 */ 6292 dst_reg->smin_value >>= umin_val; 6293 dst_reg->smax_value >>= umin_val; 6294 6295 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6296 6297 /* blow away the dst_reg umin_value/umax_value and rely on 6298 * dst_reg var_off to refine the result. 6299 */ 6300 dst_reg->umin_value = 0; 6301 dst_reg->umax_value = U64_MAX; 6302 6303 /* Its not easy to operate on alu32 bounds here because it depends 6304 * on bits being shifted in from upper 32-bits. Take easy way out 6305 * and mark unbounded so we can recalculate later from tnum. 6306 */ 6307 __mark_reg32_unbounded(dst_reg); 6308 __update_reg_bounds(dst_reg); 6309 } 6310 6311 /* WARNING: This function does calculations on 64-bit values, but the actual 6312 * execution may occur on 32-bit values. Therefore, things like bitshifts 6313 * need extra checks in the 32-bit case. 6314 */ 6315 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6316 struct bpf_insn *insn, 6317 struct bpf_reg_state *dst_reg, 6318 struct bpf_reg_state src_reg) 6319 { 6320 struct bpf_reg_state *regs = cur_regs(env); 6321 u8 opcode = BPF_OP(insn->code); 6322 bool src_known; 6323 s64 smin_val, smax_val; 6324 u64 umin_val, umax_val; 6325 s32 s32_min_val, s32_max_val; 6326 u32 u32_min_val, u32_max_val; 6327 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6328 u32 dst = insn->dst_reg; 6329 int ret; 6330 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6331 6332 smin_val = src_reg.smin_value; 6333 smax_val = src_reg.smax_value; 6334 umin_val = src_reg.umin_value; 6335 umax_val = src_reg.umax_value; 6336 6337 s32_min_val = src_reg.s32_min_value; 6338 s32_max_val = src_reg.s32_max_value; 6339 u32_min_val = src_reg.u32_min_value; 6340 u32_max_val = src_reg.u32_max_value; 6341 6342 if (alu32) { 6343 src_known = tnum_subreg_is_const(src_reg.var_off); 6344 if ((src_known && 6345 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6346 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6347 /* Taint dst register if offset had invalid bounds 6348 * derived from e.g. dead branches. 6349 */ 6350 __mark_reg_unknown(env, dst_reg); 6351 return 0; 6352 } 6353 } else { 6354 src_known = tnum_is_const(src_reg.var_off); 6355 if ((src_known && 6356 (smin_val != smax_val || umin_val != umax_val)) || 6357 smin_val > smax_val || umin_val > umax_val) { 6358 /* Taint dst register if offset had invalid bounds 6359 * derived from e.g. dead branches. 6360 */ 6361 __mark_reg_unknown(env, dst_reg); 6362 return 0; 6363 } 6364 } 6365 6366 if (!src_known && 6367 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6368 __mark_reg_unknown(env, dst_reg); 6369 return 0; 6370 } 6371 6372 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6373 * There are two classes of instructions: The first class we track both 6374 * alu32 and alu64 sign/unsigned bounds independently this provides the 6375 * greatest amount of precision when alu operations are mixed with jmp32 6376 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6377 * and BPF_OR. This is possible because these ops have fairly easy to 6378 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6379 * See alu32 verifier tests for examples. The second class of 6380 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6381 * with regards to tracking sign/unsigned bounds because the bits may 6382 * cross subreg boundaries in the alu64 case. When this happens we mark 6383 * the reg unbounded in the subreg bound space and use the resulting 6384 * tnum to calculate an approximation of the sign/unsigned bounds. 6385 */ 6386 switch (opcode) { 6387 case BPF_ADD: 6388 ret = sanitize_val_alu(env, insn); 6389 if (ret < 0) { 6390 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6391 return ret; 6392 } 6393 scalar32_min_max_add(dst_reg, &src_reg); 6394 scalar_min_max_add(dst_reg, &src_reg); 6395 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6396 break; 6397 case BPF_SUB: 6398 ret = sanitize_val_alu(env, insn); 6399 if (ret < 0) { 6400 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6401 return ret; 6402 } 6403 scalar32_min_max_sub(dst_reg, &src_reg); 6404 scalar_min_max_sub(dst_reg, &src_reg); 6405 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6406 break; 6407 case BPF_MUL: 6408 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6409 scalar32_min_max_mul(dst_reg, &src_reg); 6410 scalar_min_max_mul(dst_reg, &src_reg); 6411 break; 6412 case BPF_AND: 6413 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6414 scalar32_min_max_and(dst_reg, &src_reg); 6415 scalar_min_max_and(dst_reg, &src_reg); 6416 break; 6417 case BPF_OR: 6418 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6419 scalar32_min_max_or(dst_reg, &src_reg); 6420 scalar_min_max_or(dst_reg, &src_reg); 6421 break; 6422 case BPF_XOR: 6423 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6424 scalar32_min_max_xor(dst_reg, &src_reg); 6425 scalar_min_max_xor(dst_reg, &src_reg); 6426 break; 6427 case BPF_LSH: 6428 if (umax_val >= insn_bitness) { 6429 /* Shifts greater than 31 or 63 are undefined. 6430 * This includes shifts by a negative number. 6431 */ 6432 mark_reg_unknown(env, regs, insn->dst_reg); 6433 break; 6434 } 6435 if (alu32) 6436 scalar32_min_max_lsh(dst_reg, &src_reg); 6437 else 6438 scalar_min_max_lsh(dst_reg, &src_reg); 6439 break; 6440 case BPF_RSH: 6441 if (umax_val >= insn_bitness) { 6442 /* Shifts greater than 31 or 63 are undefined. 6443 * This includes shifts by a negative number. 6444 */ 6445 mark_reg_unknown(env, regs, insn->dst_reg); 6446 break; 6447 } 6448 if (alu32) 6449 scalar32_min_max_rsh(dst_reg, &src_reg); 6450 else 6451 scalar_min_max_rsh(dst_reg, &src_reg); 6452 break; 6453 case BPF_ARSH: 6454 if (umax_val >= insn_bitness) { 6455 /* Shifts greater than 31 or 63 are undefined. 6456 * This includes shifts by a negative number. 6457 */ 6458 mark_reg_unknown(env, regs, insn->dst_reg); 6459 break; 6460 } 6461 if (alu32) 6462 scalar32_min_max_arsh(dst_reg, &src_reg); 6463 else 6464 scalar_min_max_arsh(dst_reg, &src_reg); 6465 break; 6466 default: 6467 mark_reg_unknown(env, regs, insn->dst_reg); 6468 break; 6469 } 6470 6471 /* ALU32 ops are zero extended into 64bit register */ 6472 if (alu32) 6473 zext_32_to_64(dst_reg); 6474 6475 __update_reg_bounds(dst_reg); 6476 __reg_deduce_bounds(dst_reg); 6477 __reg_bound_offset(dst_reg); 6478 return 0; 6479 } 6480 6481 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6482 * and var_off. 6483 */ 6484 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6485 struct bpf_insn *insn) 6486 { 6487 struct bpf_verifier_state *vstate = env->cur_state; 6488 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6489 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6490 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6491 u8 opcode = BPF_OP(insn->code); 6492 int err; 6493 6494 dst_reg = ®s[insn->dst_reg]; 6495 src_reg = NULL; 6496 if (dst_reg->type != SCALAR_VALUE) 6497 ptr_reg = dst_reg; 6498 else 6499 /* Make sure ID is cleared otherwise dst_reg min/max could be 6500 * incorrectly propagated into other registers by find_equal_scalars() 6501 */ 6502 dst_reg->id = 0; 6503 if (BPF_SRC(insn->code) == BPF_X) { 6504 src_reg = ®s[insn->src_reg]; 6505 if (src_reg->type != SCALAR_VALUE) { 6506 if (dst_reg->type != SCALAR_VALUE) { 6507 /* Combining two pointers by any ALU op yields 6508 * an arbitrary scalar. Disallow all math except 6509 * pointer subtraction 6510 */ 6511 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6512 mark_reg_unknown(env, regs, insn->dst_reg); 6513 return 0; 6514 } 6515 verbose(env, "R%d pointer %s pointer prohibited\n", 6516 insn->dst_reg, 6517 bpf_alu_string[opcode >> 4]); 6518 return -EACCES; 6519 } else { 6520 /* scalar += pointer 6521 * This is legal, but we have to reverse our 6522 * src/dest handling in computing the range 6523 */ 6524 err = mark_chain_precision(env, insn->dst_reg); 6525 if (err) 6526 return err; 6527 return adjust_ptr_min_max_vals(env, insn, 6528 src_reg, dst_reg); 6529 } 6530 } else if (ptr_reg) { 6531 /* pointer += scalar */ 6532 err = mark_chain_precision(env, insn->src_reg); 6533 if (err) 6534 return err; 6535 return adjust_ptr_min_max_vals(env, insn, 6536 dst_reg, src_reg); 6537 } 6538 } else { 6539 /* Pretend the src is a reg with a known value, since we only 6540 * need to be able to read from this state. 6541 */ 6542 off_reg.type = SCALAR_VALUE; 6543 __mark_reg_known(&off_reg, insn->imm); 6544 src_reg = &off_reg; 6545 if (ptr_reg) /* pointer += K */ 6546 return adjust_ptr_min_max_vals(env, insn, 6547 ptr_reg, src_reg); 6548 } 6549 6550 /* Got here implies adding two SCALAR_VALUEs */ 6551 if (WARN_ON_ONCE(ptr_reg)) { 6552 print_verifier_state(env, state); 6553 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6554 return -EINVAL; 6555 } 6556 if (WARN_ON(!src_reg)) { 6557 print_verifier_state(env, state); 6558 verbose(env, "verifier internal error: no src_reg\n"); 6559 return -EINVAL; 6560 } 6561 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6562 } 6563 6564 /* check validity of 32-bit and 64-bit arithmetic operations */ 6565 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6566 { 6567 struct bpf_reg_state *regs = cur_regs(env); 6568 u8 opcode = BPF_OP(insn->code); 6569 int err; 6570 6571 if (opcode == BPF_END || opcode == BPF_NEG) { 6572 if (opcode == BPF_NEG) { 6573 if (BPF_SRC(insn->code) != 0 || 6574 insn->src_reg != BPF_REG_0 || 6575 insn->off != 0 || insn->imm != 0) { 6576 verbose(env, "BPF_NEG uses reserved fields\n"); 6577 return -EINVAL; 6578 } 6579 } else { 6580 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6581 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6582 BPF_CLASS(insn->code) == BPF_ALU64) { 6583 verbose(env, "BPF_END uses reserved fields\n"); 6584 return -EINVAL; 6585 } 6586 } 6587 6588 /* check src operand */ 6589 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6590 if (err) 6591 return err; 6592 6593 if (is_pointer_value(env, insn->dst_reg)) { 6594 verbose(env, "R%d pointer arithmetic prohibited\n", 6595 insn->dst_reg); 6596 return -EACCES; 6597 } 6598 6599 /* check dest operand */ 6600 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6601 if (err) 6602 return err; 6603 6604 } else if (opcode == BPF_MOV) { 6605 6606 if (BPF_SRC(insn->code) == BPF_X) { 6607 if (insn->imm != 0 || insn->off != 0) { 6608 verbose(env, "BPF_MOV uses reserved fields\n"); 6609 return -EINVAL; 6610 } 6611 6612 /* check src operand */ 6613 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6614 if (err) 6615 return err; 6616 } else { 6617 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6618 verbose(env, "BPF_MOV uses reserved fields\n"); 6619 return -EINVAL; 6620 } 6621 } 6622 6623 /* check dest operand, mark as required later */ 6624 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6625 if (err) 6626 return err; 6627 6628 if (BPF_SRC(insn->code) == BPF_X) { 6629 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6630 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6631 6632 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6633 /* case: R1 = R2 6634 * copy register state to dest reg 6635 */ 6636 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 6637 /* Assign src and dst registers the same ID 6638 * that will be used by find_equal_scalars() 6639 * to propagate min/max range. 6640 */ 6641 src_reg->id = ++env->id_gen; 6642 *dst_reg = *src_reg; 6643 dst_reg->live |= REG_LIVE_WRITTEN; 6644 dst_reg->subreg_def = DEF_NOT_SUBREG; 6645 } else { 6646 /* R1 = (u32) R2 */ 6647 if (is_pointer_value(env, insn->src_reg)) { 6648 verbose(env, 6649 "R%d partial copy of pointer\n", 6650 insn->src_reg); 6651 return -EACCES; 6652 } else if (src_reg->type == SCALAR_VALUE) { 6653 *dst_reg = *src_reg; 6654 /* Make sure ID is cleared otherwise 6655 * dst_reg min/max could be incorrectly 6656 * propagated into src_reg by find_equal_scalars() 6657 */ 6658 dst_reg->id = 0; 6659 dst_reg->live |= REG_LIVE_WRITTEN; 6660 dst_reg->subreg_def = env->insn_idx + 1; 6661 } else { 6662 mark_reg_unknown(env, regs, 6663 insn->dst_reg); 6664 } 6665 zext_32_to_64(dst_reg); 6666 } 6667 } else { 6668 /* case: R = imm 6669 * remember the value we stored into this reg 6670 */ 6671 /* clear any state __mark_reg_known doesn't set */ 6672 mark_reg_unknown(env, regs, insn->dst_reg); 6673 regs[insn->dst_reg].type = SCALAR_VALUE; 6674 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6675 __mark_reg_known(regs + insn->dst_reg, 6676 insn->imm); 6677 } else { 6678 __mark_reg_known(regs + insn->dst_reg, 6679 (u32)insn->imm); 6680 } 6681 } 6682 6683 } else if (opcode > BPF_END) { 6684 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6685 return -EINVAL; 6686 6687 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6688 6689 if (BPF_SRC(insn->code) == BPF_X) { 6690 if (insn->imm != 0 || insn->off != 0) { 6691 verbose(env, "BPF_ALU uses reserved fields\n"); 6692 return -EINVAL; 6693 } 6694 /* check src1 operand */ 6695 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6696 if (err) 6697 return err; 6698 } else { 6699 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6700 verbose(env, "BPF_ALU uses reserved fields\n"); 6701 return -EINVAL; 6702 } 6703 } 6704 6705 /* check src2 operand */ 6706 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6707 if (err) 6708 return err; 6709 6710 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6711 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6712 verbose(env, "div by zero\n"); 6713 return -EINVAL; 6714 } 6715 6716 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6717 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6718 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6719 6720 if (insn->imm < 0 || insn->imm >= size) { 6721 verbose(env, "invalid shift %d\n", insn->imm); 6722 return -EINVAL; 6723 } 6724 } 6725 6726 /* check dest operand */ 6727 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6728 if (err) 6729 return err; 6730 6731 return adjust_reg_min_max_vals(env, insn); 6732 } 6733 6734 return 0; 6735 } 6736 6737 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6738 struct bpf_reg_state *dst_reg, 6739 enum bpf_reg_type type, int new_range) 6740 { 6741 struct bpf_reg_state *reg; 6742 int i; 6743 6744 for (i = 0; i < MAX_BPF_REG; i++) { 6745 reg = &state->regs[i]; 6746 if (reg->type == type && reg->id == dst_reg->id) 6747 /* keep the maximum range already checked */ 6748 reg->range = max(reg->range, new_range); 6749 } 6750 6751 bpf_for_each_spilled_reg(i, state, reg) { 6752 if (!reg) 6753 continue; 6754 if (reg->type == type && reg->id == dst_reg->id) 6755 reg->range = max(reg->range, new_range); 6756 } 6757 } 6758 6759 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6760 struct bpf_reg_state *dst_reg, 6761 enum bpf_reg_type type, 6762 bool range_right_open) 6763 { 6764 int new_range, i; 6765 6766 if (dst_reg->off < 0 || 6767 (dst_reg->off == 0 && range_right_open)) 6768 /* This doesn't give us any range */ 6769 return; 6770 6771 if (dst_reg->umax_value > MAX_PACKET_OFF || 6772 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6773 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6774 * than pkt_end, but that's because it's also less than pkt. 6775 */ 6776 return; 6777 6778 new_range = dst_reg->off; 6779 if (range_right_open) 6780 new_range--; 6781 6782 /* Examples for register markings: 6783 * 6784 * pkt_data in dst register: 6785 * 6786 * r2 = r3; 6787 * r2 += 8; 6788 * if (r2 > pkt_end) goto <handle exception> 6789 * <access okay> 6790 * 6791 * r2 = r3; 6792 * r2 += 8; 6793 * if (r2 < pkt_end) goto <access okay> 6794 * <handle exception> 6795 * 6796 * Where: 6797 * r2 == dst_reg, pkt_end == src_reg 6798 * r2=pkt(id=n,off=8,r=0) 6799 * r3=pkt(id=n,off=0,r=0) 6800 * 6801 * pkt_data in src register: 6802 * 6803 * r2 = r3; 6804 * r2 += 8; 6805 * if (pkt_end >= r2) goto <access okay> 6806 * <handle exception> 6807 * 6808 * r2 = r3; 6809 * r2 += 8; 6810 * if (pkt_end <= r2) goto <handle exception> 6811 * <access okay> 6812 * 6813 * Where: 6814 * pkt_end == dst_reg, r2 == src_reg 6815 * r2=pkt(id=n,off=8,r=0) 6816 * r3=pkt(id=n,off=0,r=0) 6817 * 6818 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6819 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6820 * and [r3, r3 + 8-1) respectively is safe to access depending on 6821 * the check. 6822 */ 6823 6824 /* If our ids match, then we must have the same max_value. And we 6825 * don't care about the other reg's fixed offset, since if it's too big 6826 * the range won't allow anything. 6827 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6828 */ 6829 for (i = 0; i <= vstate->curframe; i++) 6830 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6831 new_range); 6832 } 6833 6834 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6835 { 6836 struct tnum subreg = tnum_subreg(reg->var_off); 6837 s32 sval = (s32)val; 6838 6839 switch (opcode) { 6840 case BPF_JEQ: 6841 if (tnum_is_const(subreg)) 6842 return !!tnum_equals_const(subreg, val); 6843 break; 6844 case BPF_JNE: 6845 if (tnum_is_const(subreg)) 6846 return !tnum_equals_const(subreg, val); 6847 break; 6848 case BPF_JSET: 6849 if ((~subreg.mask & subreg.value) & val) 6850 return 1; 6851 if (!((subreg.mask | subreg.value) & val)) 6852 return 0; 6853 break; 6854 case BPF_JGT: 6855 if (reg->u32_min_value > val) 6856 return 1; 6857 else if (reg->u32_max_value <= val) 6858 return 0; 6859 break; 6860 case BPF_JSGT: 6861 if (reg->s32_min_value > sval) 6862 return 1; 6863 else if (reg->s32_max_value < sval) 6864 return 0; 6865 break; 6866 case BPF_JLT: 6867 if (reg->u32_max_value < val) 6868 return 1; 6869 else if (reg->u32_min_value >= val) 6870 return 0; 6871 break; 6872 case BPF_JSLT: 6873 if (reg->s32_max_value < sval) 6874 return 1; 6875 else if (reg->s32_min_value >= sval) 6876 return 0; 6877 break; 6878 case BPF_JGE: 6879 if (reg->u32_min_value >= val) 6880 return 1; 6881 else if (reg->u32_max_value < val) 6882 return 0; 6883 break; 6884 case BPF_JSGE: 6885 if (reg->s32_min_value >= sval) 6886 return 1; 6887 else if (reg->s32_max_value < sval) 6888 return 0; 6889 break; 6890 case BPF_JLE: 6891 if (reg->u32_max_value <= val) 6892 return 1; 6893 else if (reg->u32_min_value > val) 6894 return 0; 6895 break; 6896 case BPF_JSLE: 6897 if (reg->s32_max_value <= sval) 6898 return 1; 6899 else if (reg->s32_min_value > sval) 6900 return 0; 6901 break; 6902 } 6903 6904 return -1; 6905 } 6906 6907 6908 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6909 { 6910 s64 sval = (s64)val; 6911 6912 switch (opcode) { 6913 case BPF_JEQ: 6914 if (tnum_is_const(reg->var_off)) 6915 return !!tnum_equals_const(reg->var_off, val); 6916 break; 6917 case BPF_JNE: 6918 if (tnum_is_const(reg->var_off)) 6919 return !tnum_equals_const(reg->var_off, val); 6920 break; 6921 case BPF_JSET: 6922 if ((~reg->var_off.mask & reg->var_off.value) & val) 6923 return 1; 6924 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6925 return 0; 6926 break; 6927 case BPF_JGT: 6928 if (reg->umin_value > val) 6929 return 1; 6930 else if (reg->umax_value <= val) 6931 return 0; 6932 break; 6933 case BPF_JSGT: 6934 if (reg->smin_value > sval) 6935 return 1; 6936 else if (reg->smax_value < sval) 6937 return 0; 6938 break; 6939 case BPF_JLT: 6940 if (reg->umax_value < val) 6941 return 1; 6942 else if (reg->umin_value >= val) 6943 return 0; 6944 break; 6945 case BPF_JSLT: 6946 if (reg->smax_value < sval) 6947 return 1; 6948 else if (reg->smin_value >= sval) 6949 return 0; 6950 break; 6951 case BPF_JGE: 6952 if (reg->umin_value >= val) 6953 return 1; 6954 else if (reg->umax_value < val) 6955 return 0; 6956 break; 6957 case BPF_JSGE: 6958 if (reg->smin_value >= sval) 6959 return 1; 6960 else if (reg->smax_value < sval) 6961 return 0; 6962 break; 6963 case BPF_JLE: 6964 if (reg->umax_value <= val) 6965 return 1; 6966 else if (reg->umin_value > val) 6967 return 0; 6968 break; 6969 case BPF_JSLE: 6970 if (reg->smax_value <= sval) 6971 return 1; 6972 else if (reg->smin_value > sval) 6973 return 0; 6974 break; 6975 } 6976 6977 return -1; 6978 } 6979 6980 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6981 * and return: 6982 * 1 - branch will be taken and "goto target" will be executed 6983 * 0 - branch will not be taken and fall-through to next insn 6984 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6985 * range [0,10] 6986 */ 6987 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6988 bool is_jmp32) 6989 { 6990 if (__is_pointer_value(false, reg)) { 6991 if (!reg_type_not_null(reg->type)) 6992 return -1; 6993 6994 /* If pointer is valid tests against zero will fail so we can 6995 * use this to direct branch taken. 6996 */ 6997 if (val != 0) 6998 return -1; 6999 7000 switch (opcode) { 7001 case BPF_JEQ: 7002 return 0; 7003 case BPF_JNE: 7004 return 1; 7005 default: 7006 return -1; 7007 } 7008 } 7009 7010 if (is_jmp32) 7011 return is_branch32_taken(reg, val, opcode); 7012 return is_branch64_taken(reg, val, opcode); 7013 } 7014 7015 static int flip_opcode(u32 opcode) 7016 { 7017 /* How can we transform "a <op> b" into "b <op> a"? */ 7018 static const u8 opcode_flip[16] = { 7019 /* these stay the same */ 7020 [BPF_JEQ >> 4] = BPF_JEQ, 7021 [BPF_JNE >> 4] = BPF_JNE, 7022 [BPF_JSET >> 4] = BPF_JSET, 7023 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7024 [BPF_JGE >> 4] = BPF_JLE, 7025 [BPF_JGT >> 4] = BPF_JLT, 7026 [BPF_JLE >> 4] = BPF_JGE, 7027 [BPF_JLT >> 4] = BPF_JGT, 7028 [BPF_JSGE >> 4] = BPF_JSLE, 7029 [BPF_JSGT >> 4] = BPF_JSLT, 7030 [BPF_JSLE >> 4] = BPF_JSGE, 7031 [BPF_JSLT >> 4] = BPF_JSGT 7032 }; 7033 return opcode_flip[opcode >> 4]; 7034 } 7035 7036 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 7037 struct bpf_reg_state *src_reg, 7038 u8 opcode) 7039 { 7040 struct bpf_reg_state *pkt; 7041 7042 if (src_reg->type == PTR_TO_PACKET_END) { 7043 pkt = dst_reg; 7044 } else if (dst_reg->type == PTR_TO_PACKET_END) { 7045 pkt = src_reg; 7046 opcode = flip_opcode(opcode); 7047 } else { 7048 return -1; 7049 } 7050 7051 if (pkt->range >= 0) 7052 return -1; 7053 7054 switch (opcode) { 7055 case BPF_JLE: 7056 /* pkt <= pkt_end */ 7057 fallthrough; 7058 case BPF_JGT: 7059 /* pkt > pkt_end */ 7060 if (pkt->range == BEYOND_PKT_END) 7061 /* pkt has at last one extra byte beyond pkt_end */ 7062 return opcode == BPF_JGT; 7063 break; 7064 case BPF_JLT: 7065 /* pkt < pkt_end */ 7066 fallthrough; 7067 case BPF_JGE: 7068 /* pkt >= pkt_end */ 7069 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 7070 return opcode == BPF_JGE; 7071 break; 7072 } 7073 return -1; 7074 } 7075 7076 /* Adjusts the register min/max values in the case that the dst_reg is the 7077 * variable register that we are working on, and src_reg is a constant or we're 7078 * simply doing a BPF_K check. 7079 * In JEQ/JNE cases we also adjust the var_off values. 7080 */ 7081 static void reg_set_min_max(struct bpf_reg_state *true_reg, 7082 struct bpf_reg_state *false_reg, 7083 u64 val, u32 val32, 7084 u8 opcode, bool is_jmp32) 7085 { 7086 struct tnum false_32off = tnum_subreg(false_reg->var_off); 7087 struct tnum false_64off = false_reg->var_off; 7088 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7089 struct tnum true_64off = true_reg->var_off; 7090 s64 sval = (s64)val; 7091 s32 sval32 = (s32)val32; 7092 7093 /* If the dst_reg is a pointer, we can't learn anything about its 7094 * variable offset from the compare (unless src_reg were a pointer into 7095 * the same object, but we don't bother with that. 7096 * Since false_reg and true_reg have the same type by construction, we 7097 * only need to check one of them for pointerness. 7098 */ 7099 if (__is_pointer_value(false, false_reg)) 7100 return; 7101 7102 switch (opcode) { 7103 case BPF_JEQ: 7104 case BPF_JNE: 7105 { 7106 struct bpf_reg_state *reg = 7107 opcode == BPF_JEQ ? true_reg : false_reg; 7108 7109 /* JEQ/JNE comparison doesn't change the register equivalence. 7110 * r1 = r2; 7111 * if (r1 == 42) goto label; 7112 * ... 7113 * label: // here both r1 and r2 are known to be 42. 7114 * 7115 * Hence when marking register as known preserve it's ID. 7116 */ 7117 if (is_jmp32) 7118 __mark_reg32_known(reg, val32); 7119 else 7120 ___mark_reg_known(reg, val); 7121 break; 7122 } 7123 case BPF_JSET: 7124 if (is_jmp32) { 7125 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7126 if (is_power_of_2(val32)) 7127 true_32off = tnum_or(true_32off, 7128 tnum_const(val32)); 7129 } else { 7130 false_64off = tnum_and(false_64off, tnum_const(~val)); 7131 if (is_power_of_2(val)) 7132 true_64off = tnum_or(true_64off, 7133 tnum_const(val)); 7134 } 7135 break; 7136 case BPF_JGE: 7137 case BPF_JGT: 7138 { 7139 if (is_jmp32) { 7140 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7141 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7142 7143 false_reg->u32_max_value = min(false_reg->u32_max_value, 7144 false_umax); 7145 true_reg->u32_min_value = max(true_reg->u32_min_value, 7146 true_umin); 7147 } else { 7148 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7149 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7150 7151 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7152 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7153 } 7154 break; 7155 } 7156 case BPF_JSGE: 7157 case BPF_JSGT: 7158 { 7159 if (is_jmp32) { 7160 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7161 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7162 7163 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7164 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7165 } else { 7166 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7167 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7168 7169 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7170 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7171 } 7172 break; 7173 } 7174 case BPF_JLE: 7175 case BPF_JLT: 7176 { 7177 if (is_jmp32) { 7178 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7179 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7180 7181 false_reg->u32_min_value = max(false_reg->u32_min_value, 7182 false_umin); 7183 true_reg->u32_max_value = min(true_reg->u32_max_value, 7184 true_umax); 7185 } else { 7186 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7187 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7188 7189 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7190 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7191 } 7192 break; 7193 } 7194 case BPF_JSLE: 7195 case BPF_JSLT: 7196 { 7197 if (is_jmp32) { 7198 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7199 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7200 7201 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7202 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7203 } else { 7204 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7205 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7206 7207 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7208 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7209 } 7210 break; 7211 } 7212 default: 7213 return; 7214 } 7215 7216 if (is_jmp32) { 7217 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7218 tnum_subreg(false_32off)); 7219 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7220 tnum_subreg(true_32off)); 7221 __reg_combine_32_into_64(false_reg); 7222 __reg_combine_32_into_64(true_reg); 7223 } else { 7224 false_reg->var_off = false_64off; 7225 true_reg->var_off = true_64off; 7226 __reg_combine_64_into_32(false_reg); 7227 __reg_combine_64_into_32(true_reg); 7228 } 7229 } 7230 7231 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7232 * the variable reg. 7233 */ 7234 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7235 struct bpf_reg_state *false_reg, 7236 u64 val, u32 val32, 7237 u8 opcode, bool is_jmp32) 7238 { 7239 opcode = flip_opcode(opcode); 7240 /* This uses zero as "not present in table"; luckily the zero opcode, 7241 * BPF_JA, can't get here. 7242 */ 7243 if (opcode) 7244 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7245 } 7246 7247 /* Regs are known to be equal, so intersect their min/max/var_off */ 7248 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7249 struct bpf_reg_state *dst_reg) 7250 { 7251 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7252 dst_reg->umin_value); 7253 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7254 dst_reg->umax_value); 7255 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7256 dst_reg->smin_value); 7257 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7258 dst_reg->smax_value); 7259 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7260 dst_reg->var_off); 7261 /* We might have learned new bounds from the var_off. */ 7262 __update_reg_bounds(src_reg); 7263 __update_reg_bounds(dst_reg); 7264 /* We might have learned something about the sign bit. */ 7265 __reg_deduce_bounds(src_reg); 7266 __reg_deduce_bounds(dst_reg); 7267 /* We might have learned some bits from the bounds. */ 7268 __reg_bound_offset(src_reg); 7269 __reg_bound_offset(dst_reg); 7270 /* Intersecting with the old var_off might have improved our bounds 7271 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7272 * then new var_off is (0; 0x7f...fc) which improves our umax. 7273 */ 7274 __update_reg_bounds(src_reg); 7275 __update_reg_bounds(dst_reg); 7276 } 7277 7278 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7279 struct bpf_reg_state *true_dst, 7280 struct bpf_reg_state *false_src, 7281 struct bpf_reg_state *false_dst, 7282 u8 opcode) 7283 { 7284 switch (opcode) { 7285 case BPF_JEQ: 7286 __reg_combine_min_max(true_src, true_dst); 7287 break; 7288 case BPF_JNE: 7289 __reg_combine_min_max(false_src, false_dst); 7290 break; 7291 } 7292 } 7293 7294 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7295 struct bpf_reg_state *reg, u32 id, 7296 bool is_null) 7297 { 7298 if (reg_type_may_be_null(reg->type) && reg->id == id && 7299 !WARN_ON_ONCE(!reg->id)) { 7300 /* Old offset (both fixed and variable parts) should 7301 * have been known-zero, because we don't allow pointer 7302 * arithmetic on pointers that might be NULL. 7303 */ 7304 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7305 !tnum_equals_const(reg->var_off, 0) || 7306 reg->off)) { 7307 __mark_reg_known_zero(reg); 7308 reg->off = 0; 7309 } 7310 if (is_null) { 7311 reg->type = SCALAR_VALUE; 7312 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7313 const struct bpf_map *map = reg->map_ptr; 7314 7315 if (map->inner_map_meta) { 7316 reg->type = CONST_PTR_TO_MAP; 7317 reg->map_ptr = map->inner_map_meta; 7318 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7319 reg->type = PTR_TO_XDP_SOCK; 7320 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7321 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7322 reg->type = PTR_TO_SOCKET; 7323 } else { 7324 reg->type = PTR_TO_MAP_VALUE; 7325 } 7326 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7327 reg->type = PTR_TO_SOCKET; 7328 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7329 reg->type = PTR_TO_SOCK_COMMON; 7330 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7331 reg->type = PTR_TO_TCP_SOCK; 7332 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7333 reg->type = PTR_TO_BTF_ID; 7334 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7335 reg->type = PTR_TO_MEM; 7336 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7337 reg->type = PTR_TO_RDONLY_BUF; 7338 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7339 reg->type = PTR_TO_RDWR_BUF; 7340 } 7341 if (is_null) { 7342 /* We don't need id and ref_obj_id from this point 7343 * onwards anymore, thus we should better reset it, 7344 * so that state pruning has chances to take effect. 7345 */ 7346 reg->id = 0; 7347 reg->ref_obj_id = 0; 7348 } else if (!reg_may_point_to_spin_lock(reg)) { 7349 /* For not-NULL ptr, reg->ref_obj_id will be reset 7350 * in release_reg_references(). 7351 * 7352 * reg->id is still used by spin_lock ptr. Other 7353 * than spin_lock ptr type, reg->id can be reset. 7354 */ 7355 reg->id = 0; 7356 } 7357 } 7358 } 7359 7360 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7361 bool is_null) 7362 { 7363 struct bpf_reg_state *reg; 7364 int i; 7365 7366 for (i = 0; i < MAX_BPF_REG; i++) 7367 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7368 7369 bpf_for_each_spilled_reg(i, state, reg) { 7370 if (!reg) 7371 continue; 7372 mark_ptr_or_null_reg(state, reg, id, is_null); 7373 } 7374 } 7375 7376 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7377 * be folded together at some point. 7378 */ 7379 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7380 bool is_null) 7381 { 7382 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7383 struct bpf_reg_state *regs = state->regs; 7384 u32 ref_obj_id = regs[regno].ref_obj_id; 7385 u32 id = regs[regno].id; 7386 int i; 7387 7388 if (ref_obj_id && ref_obj_id == id && is_null) 7389 /* regs[regno] is in the " == NULL" branch. 7390 * No one could have freed the reference state before 7391 * doing the NULL check. 7392 */ 7393 WARN_ON_ONCE(release_reference_state(state, id)); 7394 7395 for (i = 0; i <= vstate->curframe; i++) 7396 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7397 } 7398 7399 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7400 struct bpf_reg_state *dst_reg, 7401 struct bpf_reg_state *src_reg, 7402 struct bpf_verifier_state *this_branch, 7403 struct bpf_verifier_state *other_branch) 7404 { 7405 if (BPF_SRC(insn->code) != BPF_X) 7406 return false; 7407 7408 /* Pointers are always 64-bit. */ 7409 if (BPF_CLASS(insn->code) == BPF_JMP32) 7410 return false; 7411 7412 switch (BPF_OP(insn->code)) { 7413 case BPF_JGT: 7414 if ((dst_reg->type == PTR_TO_PACKET && 7415 src_reg->type == PTR_TO_PACKET_END) || 7416 (dst_reg->type == PTR_TO_PACKET_META && 7417 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7418 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7419 find_good_pkt_pointers(this_branch, dst_reg, 7420 dst_reg->type, false); 7421 mark_pkt_end(other_branch, insn->dst_reg, true); 7422 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7423 src_reg->type == PTR_TO_PACKET) || 7424 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7425 src_reg->type == PTR_TO_PACKET_META)) { 7426 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7427 find_good_pkt_pointers(other_branch, src_reg, 7428 src_reg->type, true); 7429 mark_pkt_end(this_branch, insn->src_reg, false); 7430 } else { 7431 return false; 7432 } 7433 break; 7434 case BPF_JLT: 7435 if ((dst_reg->type == PTR_TO_PACKET && 7436 src_reg->type == PTR_TO_PACKET_END) || 7437 (dst_reg->type == PTR_TO_PACKET_META && 7438 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7439 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7440 find_good_pkt_pointers(other_branch, dst_reg, 7441 dst_reg->type, true); 7442 mark_pkt_end(this_branch, insn->dst_reg, false); 7443 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7444 src_reg->type == PTR_TO_PACKET) || 7445 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7446 src_reg->type == PTR_TO_PACKET_META)) { 7447 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7448 find_good_pkt_pointers(this_branch, src_reg, 7449 src_reg->type, false); 7450 mark_pkt_end(other_branch, insn->src_reg, true); 7451 } else { 7452 return false; 7453 } 7454 break; 7455 case BPF_JGE: 7456 if ((dst_reg->type == PTR_TO_PACKET && 7457 src_reg->type == PTR_TO_PACKET_END) || 7458 (dst_reg->type == PTR_TO_PACKET_META && 7459 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7460 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7461 find_good_pkt_pointers(this_branch, dst_reg, 7462 dst_reg->type, true); 7463 mark_pkt_end(other_branch, insn->dst_reg, false); 7464 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7465 src_reg->type == PTR_TO_PACKET) || 7466 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7467 src_reg->type == PTR_TO_PACKET_META)) { 7468 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7469 find_good_pkt_pointers(other_branch, src_reg, 7470 src_reg->type, false); 7471 mark_pkt_end(this_branch, insn->src_reg, true); 7472 } else { 7473 return false; 7474 } 7475 break; 7476 case BPF_JLE: 7477 if ((dst_reg->type == PTR_TO_PACKET && 7478 src_reg->type == PTR_TO_PACKET_END) || 7479 (dst_reg->type == PTR_TO_PACKET_META && 7480 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7481 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7482 find_good_pkt_pointers(other_branch, dst_reg, 7483 dst_reg->type, false); 7484 mark_pkt_end(this_branch, insn->dst_reg, true); 7485 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7486 src_reg->type == PTR_TO_PACKET) || 7487 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7488 src_reg->type == PTR_TO_PACKET_META)) { 7489 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7490 find_good_pkt_pointers(this_branch, src_reg, 7491 src_reg->type, true); 7492 mark_pkt_end(other_branch, insn->src_reg, false); 7493 } else { 7494 return false; 7495 } 7496 break; 7497 default: 7498 return false; 7499 } 7500 7501 return true; 7502 } 7503 7504 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7505 struct bpf_reg_state *known_reg) 7506 { 7507 struct bpf_func_state *state; 7508 struct bpf_reg_state *reg; 7509 int i, j; 7510 7511 for (i = 0; i <= vstate->curframe; i++) { 7512 state = vstate->frame[i]; 7513 for (j = 0; j < MAX_BPF_REG; j++) { 7514 reg = &state->regs[j]; 7515 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7516 *reg = *known_reg; 7517 } 7518 7519 bpf_for_each_spilled_reg(j, state, reg) { 7520 if (!reg) 7521 continue; 7522 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7523 *reg = *known_reg; 7524 } 7525 } 7526 } 7527 7528 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7529 struct bpf_insn *insn, int *insn_idx) 7530 { 7531 struct bpf_verifier_state *this_branch = env->cur_state; 7532 struct bpf_verifier_state *other_branch; 7533 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7534 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7535 u8 opcode = BPF_OP(insn->code); 7536 bool is_jmp32; 7537 int pred = -1; 7538 int err; 7539 7540 /* Only conditional jumps are expected to reach here. */ 7541 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7542 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7543 return -EINVAL; 7544 } 7545 7546 if (BPF_SRC(insn->code) == BPF_X) { 7547 if (insn->imm != 0) { 7548 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7549 return -EINVAL; 7550 } 7551 7552 /* check src1 operand */ 7553 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7554 if (err) 7555 return err; 7556 7557 if (is_pointer_value(env, insn->src_reg)) { 7558 verbose(env, "R%d pointer comparison prohibited\n", 7559 insn->src_reg); 7560 return -EACCES; 7561 } 7562 src_reg = ®s[insn->src_reg]; 7563 } else { 7564 if (insn->src_reg != BPF_REG_0) { 7565 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7566 return -EINVAL; 7567 } 7568 } 7569 7570 /* check src2 operand */ 7571 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7572 if (err) 7573 return err; 7574 7575 dst_reg = ®s[insn->dst_reg]; 7576 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7577 7578 if (BPF_SRC(insn->code) == BPF_K) { 7579 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7580 } else if (src_reg->type == SCALAR_VALUE && 7581 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7582 pred = is_branch_taken(dst_reg, 7583 tnum_subreg(src_reg->var_off).value, 7584 opcode, 7585 is_jmp32); 7586 } else if (src_reg->type == SCALAR_VALUE && 7587 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7588 pred = is_branch_taken(dst_reg, 7589 src_reg->var_off.value, 7590 opcode, 7591 is_jmp32); 7592 } else if (reg_is_pkt_pointer_any(dst_reg) && 7593 reg_is_pkt_pointer_any(src_reg) && 7594 !is_jmp32) { 7595 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 7596 } 7597 7598 if (pred >= 0) { 7599 /* If we get here with a dst_reg pointer type it is because 7600 * above is_branch_taken() special cased the 0 comparison. 7601 */ 7602 if (!__is_pointer_value(false, dst_reg)) 7603 err = mark_chain_precision(env, insn->dst_reg); 7604 if (BPF_SRC(insn->code) == BPF_X && !err && 7605 !__is_pointer_value(false, src_reg)) 7606 err = mark_chain_precision(env, insn->src_reg); 7607 if (err) 7608 return err; 7609 } 7610 if (pred == 1) { 7611 /* only follow the goto, ignore fall-through */ 7612 *insn_idx += insn->off; 7613 return 0; 7614 } else if (pred == 0) { 7615 /* only follow fall-through branch, since 7616 * that's where the program will go 7617 */ 7618 return 0; 7619 } 7620 7621 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7622 false); 7623 if (!other_branch) 7624 return -EFAULT; 7625 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7626 7627 /* detect if we are comparing against a constant value so we can adjust 7628 * our min/max values for our dst register. 7629 * this is only legit if both are scalars (or pointers to the same 7630 * object, I suppose, but we don't support that right now), because 7631 * otherwise the different base pointers mean the offsets aren't 7632 * comparable. 7633 */ 7634 if (BPF_SRC(insn->code) == BPF_X) { 7635 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7636 7637 if (dst_reg->type == SCALAR_VALUE && 7638 src_reg->type == SCALAR_VALUE) { 7639 if (tnum_is_const(src_reg->var_off) || 7640 (is_jmp32 && 7641 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7642 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7643 dst_reg, 7644 src_reg->var_off.value, 7645 tnum_subreg(src_reg->var_off).value, 7646 opcode, is_jmp32); 7647 else if (tnum_is_const(dst_reg->var_off) || 7648 (is_jmp32 && 7649 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7650 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7651 src_reg, 7652 dst_reg->var_off.value, 7653 tnum_subreg(dst_reg->var_off).value, 7654 opcode, is_jmp32); 7655 else if (!is_jmp32 && 7656 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7657 /* Comparing for equality, we can combine knowledge */ 7658 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7659 &other_branch_regs[insn->dst_reg], 7660 src_reg, dst_reg, opcode); 7661 if (src_reg->id && 7662 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 7663 find_equal_scalars(this_branch, src_reg); 7664 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7665 } 7666 7667 } 7668 } else if (dst_reg->type == SCALAR_VALUE) { 7669 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7670 dst_reg, insn->imm, (u32)insn->imm, 7671 opcode, is_jmp32); 7672 } 7673 7674 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7675 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7676 find_equal_scalars(this_branch, dst_reg); 7677 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7678 } 7679 7680 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7681 * NOTE: these optimizations below are related with pointer comparison 7682 * which will never be JMP32. 7683 */ 7684 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7685 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7686 reg_type_may_be_null(dst_reg->type)) { 7687 /* Mark all identical registers in each branch as either 7688 * safe or unknown depending R == 0 or R != 0 conditional. 7689 */ 7690 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7691 opcode == BPF_JNE); 7692 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7693 opcode == BPF_JEQ); 7694 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7695 this_branch, other_branch) && 7696 is_pointer_value(env, insn->dst_reg)) { 7697 verbose(env, "R%d pointer comparison prohibited\n", 7698 insn->dst_reg); 7699 return -EACCES; 7700 } 7701 if (env->log.level & BPF_LOG_LEVEL) 7702 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7703 return 0; 7704 } 7705 7706 /* verify BPF_LD_IMM64 instruction */ 7707 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7708 { 7709 struct bpf_insn_aux_data *aux = cur_aux(env); 7710 struct bpf_reg_state *regs = cur_regs(env); 7711 struct bpf_reg_state *dst_reg; 7712 struct bpf_map *map; 7713 int err; 7714 7715 if (BPF_SIZE(insn->code) != BPF_DW) { 7716 verbose(env, "invalid BPF_LD_IMM insn\n"); 7717 return -EINVAL; 7718 } 7719 if (insn->off != 0) { 7720 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7721 return -EINVAL; 7722 } 7723 7724 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7725 if (err) 7726 return err; 7727 7728 dst_reg = ®s[insn->dst_reg]; 7729 if (insn->src_reg == 0) { 7730 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7731 7732 dst_reg->type = SCALAR_VALUE; 7733 __mark_reg_known(®s[insn->dst_reg], imm); 7734 return 0; 7735 } 7736 7737 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 7738 mark_reg_known_zero(env, regs, insn->dst_reg); 7739 7740 dst_reg->type = aux->btf_var.reg_type; 7741 switch (dst_reg->type) { 7742 case PTR_TO_MEM: 7743 dst_reg->mem_size = aux->btf_var.mem_size; 7744 break; 7745 case PTR_TO_BTF_ID: 7746 case PTR_TO_PERCPU_BTF_ID: 7747 dst_reg->btf_id = aux->btf_var.btf_id; 7748 break; 7749 default: 7750 verbose(env, "bpf verifier is misconfigured\n"); 7751 return -EFAULT; 7752 } 7753 return 0; 7754 } 7755 7756 map = env->used_maps[aux->map_index]; 7757 mark_reg_known_zero(env, regs, insn->dst_reg); 7758 dst_reg->map_ptr = map; 7759 7760 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7761 dst_reg->type = PTR_TO_MAP_VALUE; 7762 dst_reg->off = aux->map_off; 7763 if (map_value_has_spin_lock(map)) 7764 dst_reg->id = ++env->id_gen; 7765 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7766 dst_reg->type = CONST_PTR_TO_MAP; 7767 } else { 7768 verbose(env, "bpf verifier is misconfigured\n"); 7769 return -EINVAL; 7770 } 7771 7772 return 0; 7773 } 7774 7775 static bool may_access_skb(enum bpf_prog_type type) 7776 { 7777 switch (type) { 7778 case BPF_PROG_TYPE_SOCKET_FILTER: 7779 case BPF_PROG_TYPE_SCHED_CLS: 7780 case BPF_PROG_TYPE_SCHED_ACT: 7781 return true; 7782 default: 7783 return false; 7784 } 7785 } 7786 7787 /* verify safety of LD_ABS|LD_IND instructions: 7788 * - they can only appear in the programs where ctx == skb 7789 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7790 * preserve R6-R9, and store return value into R0 7791 * 7792 * Implicit input: 7793 * ctx == skb == R6 == CTX 7794 * 7795 * Explicit input: 7796 * SRC == any register 7797 * IMM == 32-bit immediate 7798 * 7799 * Output: 7800 * R0 - 8/16/32-bit skb data converted to cpu endianness 7801 */ 7802 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7803 { 7804 struct bpf_reg_state *regs = cur_regs(env); 7805 static const int ctx_reg = BPF_REG_6; 7806 u8 mode = BPF_MODE(insn->code); 7807 int i, err; 7808 7809 if (!may_access_skb(resolve_prog_type(env->prog))) { 7810 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7811 return -EINVAL; 7812 } 7813 7814 if (!env->ops->gen_ld_abs) { 7815 verbose(env, "bpf verifier is misconfigured\n"); 7816 return -EINVAL; 7817 } 7818 7819 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7820 BPF_SIZE(insn->code) == BPF_DW || 7821 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7822 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7823 return -EINVAL; 7824 } 7825 7826 /* check whether implicit source operand (register R6) is readable */ 7827 err = check_reg_arg(env, ctx_reg, SRC_OP); 7828 if (err) 7829 return err; 7830 7831 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7832 * gen_ld_abs() may terminate the program at runtime, leading to 7833 * reference leak. 7834 */ 7835 err = check_reference_leak(env); 7836 if (err) { 7837 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7838 return err; 7839 } 7840 7841 if (env->cur_state->active_spin_lock) { 7842 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7843 return -EINVAL; 7844 } 7845 7846 if (regs[ctx_reg].type != PTR_TO_CTX) { 7847 verbose(env, 7848 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7849 return -EINVAL; 7850 } 7851 7852 if (mode == BPF_IND) { 7853 /* check explicit source operand */ 7854 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7855 if (err) 7856 return err; 7857 } 7858 7859 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7860 if (err < 0) 7861 return err; 7862 7863 /* reset caller saved regs to unreadable */ 7864 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7865 mark_reg_not_init(env, regs, caller_saved[i]); 7866 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7867 } 7868 7869 /* mark destination R0 register as readable, since it contains 7870 * the value fetched from the packet. 7871 * Already marked as written above. 7872 */ 7873 mark_reg_unknown(env, regs, BPF_REG_0); 7874 /* ld_abs load up to 32-bit skb data. */ 7875 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7876 return 0; 7877 } 7878 7879 static int check_return_code(struct bpf_verifier_env *env) 7880 { 7881 struct tnum enforce_attach_type_range = tnum_unknown; 7882 const struct bpf_prog *prog = env->prog; 7883 struct bpf_reg_state *reg; 7884 struct tnum range = tnum_range(0, 1); 7885 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7886 int err; 7887 7888 /* LSM and struct_ops func-ptr's return type could be "void" */ 7889 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7890 prog_type == BPF_PROG_TYPE_LSM) && 7891 !prog->aux->attach_func_proto->type) 7892 return 0; 7893 7894 /* eBPF calling convetion is such that R0 is used 7895 * to return the value from eBPF program. 7896 * Make sure that it's readable at this time 7897 * of bpf_exit, which means that program wrote 7898 * something into it earlier 7899 */ 7900 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7901 if (err) 7902 return err; 7903 7904 if (is_pointer_value(env, BPF_REG_0)) { 7905 verbose(env, "R0 leaks addr as return value\n"); 7906 return -EACCES; 7907 } 7908 7909 switch (prog_type) { 7910 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7911 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7912 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7913 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7914 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7915 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7916 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7917 range = tnum_range(1, 1); 7918 break; 7919 case BPF_PROG_TYPE_CGROUP_SKB: 7920 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7921 range = tnum_range(0, 3); 7922 enforce_attach_type_range = tnum_range(2, 3); 7923 } 7924 break; 7925 case BPF_PROG_TYPE_CGROUP_SOCK: 7926 case BPF_PROG_TYPE_SOCK_OPS: 7927 case BPF_PROG_TYPE_CGROUP_DEVICE: 7928 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7929 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7930 break; 7931 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7932 if (!env->prog->aux->attach_btf_id) 7933 return 0; 7934 range = tnum_const(0); 7935 break; 7936 case BPF_PROG_TYPE_TRACING: 7937 switch (env->prog->expected_attach_type) { 7938 case BPF_TRACE_FENTRY: 7939 case BPF_TRACE_FEXIT: 7940 range = tnum_const(0); 7941 break; 7942 case BPF_TRACE_RAW_TP: 7943 case BPF_MODIFY_RETURN: 7944 return 0; 7945 case BPF_TRACE_ITER: 7946 break; 7947 default: 7948 return -ENOTSUPP; 7949 } 7950 break; 7951 case BPF_PROG_TYPE_SK_LOOKUP: 7952 range = tnum_range(SK_DROP, SK_PASS); 7953 break; 7954 case BPF_PROG_TYPE_EXT: 7955 /* freplace program can return anything as its return value 7956 * depends on the to-be-replaced kernel func or bpf program. 7957 */ 7958 default: 7959 return 0; 7960 } 7961 7962 reg = cur_regs(env) + BPF_REG_0; 7963 if (reg->type != SCALAR_VALUE) { 7964 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7965 reg_type_str[reg->type]); 7966 return -EINVAL; 7967 } 7968 7969 if (!tnum_in(range, reg->var_off)) { 7970 char tn_buf[48]; 7971 7972 verbose(env, "At program exit the register R0 "); 7973 if (!tnum_is_unknown(reg->var_off)) { 7974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7975 verbose(env, "has value %s", tn_buf); 7976 } else { 7977 verbose(env, "has unknown scalar value"); 7978 } 7979 tnum_strn(tn_buf, sizeof(tn_buf), range); 7980 verbose(env, " should have been in %s\n", tn_buf); 7981 return -EINVAL; 7982 } 7983 7984 if (!tnum_is_unknown(enforce_attach_type_range) && 7985 tnum_in(enforce_attach_type_range, reg->var_off)) 7986 env->prog->enforce_expected_attach_type = 1; 7987 return 0; 7988 } 7989 7990 /* non-recursive DFS pseudo code 7991 * 1 procedure DFS-iterative(G,v): 7992 * 2 label v as discovered 7993 * 3 let S be a stack 7994 * 4 S.push(v) 7995 * 5 while S is not empty 7996 * 6 t <- S.pop() 7997 * 7 if t is what we're looking for: 7998 * 8 return t 7999 * 9 for all edges e in G.adjacentEdges(t) do 8000 * 10 if edge e is already labelled 8001 * 11 continue with the next edge 8002 * 12 w <- G.adjacentVertex(t,e) 8003 * 13 if vertex w is not discovered and not explored 8004 * 14 label e as tree-edge 8005 * 15 label w as discovered 8006 * 16 S.push(w) 8007 * 17 continue at 5 8008 * 18 else if vertex w is discovered 8009 * 19 label e as back-edge 8010 * 20 else 8011 * 21 // vertex w is explored 8012 * 22 label e as forward- or cross-edge 8013 * 23 label t as explored 8014 * 24 S.pop() 8015 * 8016 * convention: 8017 * 0x10 - discovered 8018 * 0x11 - discovered and fall-through edge labelled 8019 * 0x12 - discovered and fall-through and branch edges labelled 8020 * 0x20 - explored 8021 */ 8022 8023 enum { 8024 DISCOVERED = 0x10, 8025 EXPLORED = 0x20, 8026 FALLTHROUGH = 1, 8027 BRANCH = 2, 8028 }; 8029 8030 static u32 state_htab_size(struct bpf_verifier_env *env) 8031 { 8032 return env->prog->len; 8033 } 8034 8035 static struct bpf_verifier_state_list **explored_state( 8036 struct bpf_verifier_env *env, 8037 int idx) 8038 { 8039 struct bpf_verifier_state *cur = env->cur_state; 8040 struct bpf_func_state *state = cur->frame[cur->curframe]; 8041 8042 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 8043 } 8044 8045 static void init_explored_state(struct bpf_verifier_env *env, int idx) 8046 { 8047 env->insn_aux_data[idx].prune_point = true; 8048 } 8049 8050 /* t, w, e - match pseudo-code above: 8051 * t - index of current instruction 8052 * w - next instruction 8053 * e - edge 8054 */ 8055 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 8056 bool loop_ok) 8057 { 8058 int *insn_stack = env->cfg.insn_stack; 8059 int *insn_state = env->cfg.insn_state; 8060 8061 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 8062 return 0; 8063 8064 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 8065 return 0; 8066 8067 if (w < 0 || w >= env->prog->len) { 8068 verbose_linfo(env, t, "%d: ", t); 8069 verbose(env, "jump out of range from insn %d to %d\n", t, w); 8070 return -EINVAL; 8071 } 8072 8073 if (e == BRANCH) 8074 /* mark branch target for state pruning */ 8075 init_explored_state(env, w); 8076 8077 if (insn_state[w] == 0) { 8078 /* tree-edge */ 8079 insn_state[t] = DISCOVERED | e; 8080 insn_state[w] = DISCOVERED; 8081 if (env->cfg.cur_stack >= env->prog->len) 8082 return -E2BIG; 8083 insn_stack[env->cfg.cur_stack++] = w; 8084 return 1; 8085 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8086 if (loop_ok && env->bpf_capable) 8087 return 0; 8088 verbose_linfo(env, t, "%d: ", t); 8089 verbose_linfo(env, w, "%d: ", w); 8090 verbose(env, "back-edge from insn %d to %d\n", t, w); 8091 return -EINVAL; 8092 } else if (insn_state[w] == EXPLORED) { 8093 /* forward- or cross-edge */ 8094 insn_state[t] = DISCOVERED | e; 8095 } else { 8096 verbose(env, "insn state internal bug\n"); 8097 return -EFAULT; 8098 } 8099 return 0; 8100 } 8101 8102 /* non-recursive depth-first-search to detect loops in BPF program 8103 * loop == back-edge in directed graph 8104 */ 8105 static int check_cfg(struct bpf_verifier_env *env) 8106 { 8107 struct bpf_insn *insns = env->prog->insnsi; 8108 int insn_cnt = env->prog->len; 8109 int *insn_stack, *insn_state; 8110 int ret = 0; 8111 int i, t; 8112 8113 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8114 if (!insn_state) 8115 return -ENOMEM; 8116 8117 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8118 if (!insn_stack) { 8119 kvfree(insn_state); 8120 return -ENOMEM; 8121 } 8122 8123 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8124 insn_stack[0] = 0; /* 0 is the first instruction */ 8125 env->cfg.cur_stack = 1; 8126 8127 peek_stack: 8128 if (env->cfg.cur_stack == 0) 8129 goto check_state; 8130 t = insn_stack[env->cfg.cur_stack - 1]; 8131 8132 if (BPF_CLASS(insns[t].code) == BPF_JMP || 8133 BPF_CLASS(insns[t].code) == BPF_JMP32) { 8134 u8 opcode = BPF_OP(insns[t].code); 8135 8136 if (opcode == BPF_EXIT) { 8137 goto mark_explored; 8138 } else if (opcode == BPF_CALL) { 8139 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8140 if (ret == 1) 8141 goto peek_stack; 8142 else if (ret < 0) 8143 goto err_free; 8144 if (t + 1 < insn_cnt) 8145 init_explored_state(env, t + 1); 8146 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8147 init_explored_state(env, t); 8148 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8149 env, false); 8150 if (ret == 1) 8151 goto peek_stack; 8152 else if (ret < 0) 8153 goto err_free; 8154 } 8155 } else if (opcode == BPF_JA) { 8156 if (BPF_SRC(insns[t].code) != BPF_K) { 8157 ret = -EINVAL; 8158 goto err_free; 8159 } 8160 /* unconditional jump with single edge */ 8161 ret = push_insn(t, t + insns[t].off + 1, 8162 FALLTHROUGH, env, true); 8163 if (ret == 1) 8164 goto peek_stack; 8165 else if (ret < 0) 8166 goto err_free; 8167 /* unconditional jmp is not a good pruning point, 8168 * but it's marked, since backtracking needs 8169 * to record jmp history in is_state_visited(). 8170 */ 8171 init_explored_state(env, t + insns[t].off + 1); 8172 /* tell verifier to check for equivalent states 8173 * after every call and jump 8174 */ 8175 if (t + 1 < insn_cnt) 8176 init_explored_state(env, t + 1); 8177 } else { 8178 /* conditional jump with two edges */ 8179 init_explored_state(env, t); 8180 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8181 if (ret == 1) 8182 goto peek_stack; 8183 else if (ret < 0) 8184 goto err_free; 8185 8186 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8187 if (ret == 1) 8188 goto peek_stack; 8189 else if (ret < 0) 8190 goto err_free; 8191 } 8192 } else { 8193 /* all other non-branch instructions with single 8194 * fall-through edge 8195 */ 8196 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8197 if (ret == 1) 8198 goto peek_stack; 8199 else if (ret < 0) 8200 goto err_free; 8201 } 8202 8203 mark_explored: 8204 insn_state[t] = EXPLORED; 8205 if (env->cfg.cur_stack-- <= 0) { 8206 verbose(env, "pop stack internal bug\n"); 8207 ret = -EFAULT; 8208 goto err_free; 8209 } 8210 goto peek_stack; 8211 8212 check_state: 8213 for (i = 0; i < insn_cnt; i++) { 8214 if (insn_state[i] != EXPLORED) { 8215 verbose(env, "unreachable insn %d\n", i); 8216 ret = -EINVAL; 8217 goto err_free; 8218 } 8219 } 8220 ret = 0; /* cfg looks good */ 8221 8222 err_free: 8223 kvfree(insn_state); 8224 kvfree(insn_stack); 8225 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8226 return ret; 8227 } 8228 8229 static int check_abnormal_return(struct bpf_verifier_env *env) 8230 { 8231 int i; 8232 8233 for (i = 1; i < env->subprog_cnt; i++) { 8234 if (env->subprog_info[i].has_ld_abs) { 8235 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8236 return -EINVAL; 8237 } 8238 if (env->subprog_info[i].has_tail_call) { 8239 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8240 return -EINVAL; 8241 } 8242 } 8243 return 0; 8244 } 8245 8246 /* The minimum supported BTF func info size */ 8247 #define MIN_BPF_FUNCINFO_SIZE 8 8248 #define MAX_FUNCINFO_REC_SIZE 252 8249 8250 static int check_btf_func(struct bpf_verifier_env *env, 8251 const union bpf_attr *attr, 8252 union bpf_attr __user *uattr) 8253 { 8254 const struct btf_type *type, *func_proto, *ret_type; 8255 u32 i, nfuncs, urec_size, min_size; 8256 u32 krec_size = sizeof(struct bpf_func_info); 8257 struct bpf_func_info *krecord; 8258 struct bpf_func_info_aux *info_aux = NULL; 8259 struct bpf_prog *prog; 8260 const struct btf *btf; 8261 void __user *urecord; 8262 u32 prev_offset = 0; 8263 bool scalar_return; 8264 int ret = -ENOMEM; 8265 8266 nfuncs = attr->func_info_cnt; 8267 if (!nfuncs) { 8268 if (check_abnormal_return(env)) 8269 return -EINVAL; 8270 return 0; 8271 } 8272 8273 if (nfuncs != env->subprog_cnt) { 8274 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8275 return -EINVAL; 8276 } 8277 8278 urec_size = attr->func_info_rec_size; 8279 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8280 urec_size > MAX_FUNCINFO_REC_SIZE || 8281 urec_size % sizeof(u32)) { 8282 verbose(env, "invalid func info rec size %u\n", urec_size); 8283 return -EINVAL; 8284 } 8285 8286 prog = env->prog; 8287 btf = prog->aux->btf; 8288 8289 urecord = u64_to_user_ptr(attr->func_info); 8290 min_size = min_t(u32, krec_size, urec_size); 8291 8292 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8293 if (!krecord) 8294 return -ENOMEM; 8295 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8296 if (!info_aux) 8297 goto err_free; 8298 8299 for (i = 0; i < nfuncs; i++) { 8300 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8301 if (ret) { 8302 if (ret == -E2BIG) { 8303 verbose(env, "nonzero tailing record in func info"); 8304 /* set the size kernel expects so loader can zero 8305 * out the rest of the record. 8306 */ 8307 if (put_user(min_size, &uattr->func_info_rec_size)) 8308 ret = -EFAULT; 8309 } 8310 goto err_free; 8311 } 8312 8313 if (copy_from_user(&krecord[i], urecord, min_size)) { 8314 ret = -EFAULT; 8315 goto err_free; 8316 } 8317 8318 /* check insn_off */ 8319 ret = -EINVAL; 8320 if (i == 0) { 8321 if (krecord[i].insn_off) { 8322 verbose(env, 8323 "nonzero insn_off %u for the first func info record", 8324 krecord[i].insn_off); 8325 goto err_free; 8326 } 8327 } else if (krecord[i].insn_off <= prev_offset) { 8328 verbose(env, 8329 "same or smaller insn offset (%u) than previous func info record (%u)", 8330 krecord[i].insn_off, prev_offset); 8331 goto err_free; 8332 } 8333 8334 if (env->subprog_info[i].start != krecord[i].insn_off) { 8335 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8336 goto err_free; 8337 } 8338 8339 /* check type_id */ 8340 type = btf_type_by_id(btf, krecord[i].type_id); 8341 if (!type || !btf_type_is_func(type)) { 8342 verbose(env, "invalid type id %d in func info", 8343 krecord[i].type_id); 8344 goto err_free; 8345 } 8346 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8347 8348 func_proto = btf_type_by_id(btf, type->type); 8349 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8350 /* btf_func_check() already verified it during BTF load */ 8351 goto err_free; 8352 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8353 scalar_return = 8354 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8355 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8356 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8357 goto err_free; 8358 } 8359 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8360 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8361 goto err_free; 8362 } 8363 8364 prev_offset = krecord[i].insn_off; 8365 urecord += urec_size; 8366 } 8367 8368 prog->aux->func_info = krecord; 8369 prog->aux->func_info_cnt = nfuncs; 8370 prog->aux->func_info_aux = info_aux; 8371 return 0; 8372 8373 err_free: 8374 kvfree(krecord); 8375 kfree(info_aux); 8376 return ret; 8377 } 8378 8379 static void adjust_btf_func(struct bpf_verifier_env *env) 8380 { 8381 struct bpf_prog_aux *aux = env->prog->aux; 8382 int i; 8383 8384 if (!aux->func_info) 8385 return; 8386 8387 for (i = 0; i < env->subprog_cnt; i++) 8388 aux->func_info[i].insn_off = env->subprog_info[i].start; 8389 } 8390 8391 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8392 sizeof(((struct bpf_line_info *)(0))->line_col)) 8393 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8394 8395 static int check_btf_line(struct bpf_verifier_env *env, 8396 const union bpf_attr *attr, 8397 union bpf_attr __user *uattr) 8398 { 8399 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8400 struct bpf_subprog_info *sub; 8401 struct bpf_line_info *linfo; 8402 struct bpf_prog *prog; 8403 const struct btf *btf; 8404 void __user *ulinfo; 8405 int err; 8406 8407 nr_linfo = attr->line_info_cnt; 8408 if (!nr_linfo) 8409 return 0; 8410 8411 rec_size = attr->line_info_rec_size; 8412 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8413 rec_size > MAX_LINEINFO_REC_SIZE || 8414 rec_size & (sizeof(u32) - 1)) 8415 return -EINVAL; 8416 8417 /* Need to zero it in case the userspace may 8418 * pass in a smaller bpf_line_info object. 8419 */ 8420 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8421 GFP_KERNEL | __GFP_NOWARN); 8422 if (!linfo) 8423 return -ENOMEM; 8424 8425 prog = env->prog; 8426 btf = prog->aux->btf; 8427 8428 s = 0; 8429 sub = env->subprog_info; 8430 ulinfo = u64_to_user_ptr(attr->line_info); 8431 expected_size = sizeof(struct bpf_line_info); 8432 ncopy = min_t(u32, expected_size, rec_size); 8433 for (i = 0; i < nr_linfo; i++) { 8434 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8435 if (err) { 8436 if (err == -E2BIG) { 8437 verbose(env, "nonzero tailing record in line_info"); 8438 if (put_user(expected_size, 8439 &uattr->line_info_rec_size)) 8440 err = -EFAULT; 8441 } 8442 goto err_free; 8443 } 8444 8445 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8446 err = -EFAULT; 8447 goto err_free; 8448 } 8449 8450 /* 8451 * Check insn_off to ensure 8452 * 1) strictly increasing AND 8453 * 2) bounded by prog->len 8454 * 8455 * The linfo[0].insn_off == 0 check logically falls into 8456 * the later "missing bpf_line_info for func..." case 8457 * because the first linfo[0].insn_off must be the 8458 * first sub also and the first sub must have 8459 * subprog_info[0].start == 0. 8460 */ 8461 if ((i && linfo[i].insn_off <= prev_offset) || 8462 linfo[i].insn_off >= prog->len) { 8463 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8464 i, linfo[i].insn_off, prev_offset, 8465 prog->len); 8466 err = -EINVAL; 8467 goto err_free; 8468 } 8469 8470 if (!prog->insnsi[linfo[i].insn_off].code) { 8471 verbose(env, 8472 "Invalid insn code at line_info[%u].insn_off\n", 8473 i); 8474 err = -EINVAL; 8475 goto err_free; 8476 } 8477 8478 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8479 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8480 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8481 err = -EINVAL; 8482 goto err_free; 8483 } 8484 8485 if (s != env->subprog_cnt) { 8486 if (linfo[i].insn_off == sub[s].start) { 8487 sub[s].linfo_idx = i; 8488 s++; 8489 } else if (sub[s].start < linfo[i].insn_off) { 8490 verbose(env, "missing bpf_line_info for func#%u\n", s); 8491 err = -EINVAL; 8492 goto err_free; 8493 } 8494 } 8495 8496 prev_offset = linfo[i].insn_off; 8497 ulinfo += rec_size; 8498 } 8499 8500 if (s != env->subprog_cnt) { 8501 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8502 env->subprog_cnt - s, s); 8503 err = -EINVAL; 8504 goto err_free; 8505 } 8506 8507 prog->aux->linfo = linfo; 8508 prog->aux->nr_linfo = nr_linfo; 8509 8510 return 0; 8511 8512 err_free: 8513 kvfree(linfo); 8514 return err; 8515 } 8516 8517 static int check_btf_info(struct bpf_verifier_env *env, 8518 const union bpf_attr *attr, 8519 union bpf_attr __user *uattr) 8520 { 8521 struct btf *btf; 8522 int err; 8523 8524 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8525 if (check_abnormal_return(env)) 8526 return -EINVAL; 8527 return 0; 8528 } 8529 8530 btf = btf_get_by_fd(attr->prog_btf_fd); 8531 if (IS_ERR(btf)) 8532 return PTR_ERR(btf); 8533 env->prog->aux->btf = btf; 8534 8535 err = check_btf_func(env, attr, uattr); 8536 if (err) 8537 return err; 8538 8539 err = check_btf_line(env, attr, uattr); 8540 if (err) 8541 return err; 8542 8543 return 0; 8544 } 8545 8546 /* check %cur's range satisfies %old's */ 8547 static bool range_within(struct bpf_reg_state *old, 8548 struct bpf_reg_state *cur) 8549 { 8550 return old->umin_value <= cur->umin_value && 8551 old->umax_value >= cur->umax_value && 8552 old->smin_value <= cur->smin_value && 8553 old->smax_value >= cur->smax_value; 8554 } 8555 8556 /* Maximum number of register states that can exist at once */ 8557 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8558 struct idpair { 8559 u32 old; 8560 u32 cur; 8561 }; 8562 8563 /* If in the old state two registers had the same id, then they need to have 8564 * the same id in the new state as well. But that id could be different from 8565 * the old state, so we need to track the mapping from old to new ids. 8566 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8567 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8568 * regs with a different old id could still have new id 9, we don't care about 8569 * that. 8570 * So we look through our idmap to see if this old id has been seen before. If 8571 * so, we require the new id to match; otherwise, we add the id pair to the map. 8572 */ 8573 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8574 { 8575 unsigned int i; 8576 8577 for (i = 0; i < ID_MAP_SIZE; i++) { 8578 if (!idmap[i].old) { 8579 /* Reached an empty slot; haven't seen this id before */ 8580 idmap[i].old = old_id; 8581 idmap[i].cur = cur_id; 8582 return true; 8583 } 8584 if (idmap[i].old == old_id) 8585 return idmap[i].cur == cur_id; 8586 } 8587 /* We ran out of idmap slots, which should be impossible */ 8588 WARN_ON_ONCE(1); 8589 return false; 8590 } 8591 8592 static void clean_func_state(struct bpf_verifier_env *env, 8593 struct bpf_func_state *st) 8594 { 8595 enum bpf_reg_liveness live; 8596 int i, j; 8597 8598 for (i = 0; i < BPF_REG_FP; i++) { 8599 live = st->regs[i].live; 8600 /* liveness must not touch this register anymore */ 8601 st->regs[i].live |= REG_LIVE_DONE; 8602 if (!(live & REG_LIVE_READ)) 8603 /* since the register is unused, clear its state 8604 * to make further comparison simpler 8605 */ 8606 __mark_reg_not_init(env, &st->regs[i]); 8607 } 8608 8609 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8610 live = st->stack[i].spilled_ptr.live; 8611 /* liveness must not touch this stack slot anymore */ 8612 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8613 if (!(live & REG_LIVE_READ)) { 8614 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8615 for (j = 0; j < BPF_REG_SIZE; j++) 8616 st->stack[i].slot_type[j] = STACK_INVALID; 8617 } 8618 } 8619 } 8620 8621 static void clean_verifier_state(struct bpf_verifier_env *env, 8622 struct bpf_verifier_state *st) 8623 { 8624 int i; 8625 8626 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8627 /* all regs in this state in all frames were already marked */ 8628 return; 8629 8630 for (i = 0; i <= st->curframe; i++) 8631 clean_func_state(env, st->frame[i]); 8632 } 8633 8634 /* the parentage chains form a tree. 8635 * the verifier states are added to state lists at given insn and 8636 * pushed into state stack for future exploration. 8637 * when the verifier reaches bpf_exit insn some of the verifer states 8638 * stored in the state lists have their final liveness state already, 8639 * but a lot of states will get revised from liveness point of view when 8640 * the verifier explores other branches. 8641 * Example: 8642 * 1: r0 = 1 8643 * 2: if r1 == 100 goto pc+1 8644 * 3: r0 = 2 8645 * 4: exit 8646 * when the verifier reaches exit insn the register r0 in the state list of 8647 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8648 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8649 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8650 * 8651 * Since the verifier pushes the branch states as it sees them while exploring 8652 * the program the condition of walking the branch instruction for the second 8653 * time means that all states below this branch were already explored and 8654 * their final liveness markes are already propagated. 8655 * Hence when the verifier completes the search of state list in is_state_visited() 8656 * we can call this clean_live_states() function to mark all liveness states 8657 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8658 * will not be used. 8659 * This function also clears the registers and stack for states that !READ 8660 * to simplify state merging. 8661 * 8662 * Important note here that walking the same branch instruction in the callee 8663 * doesn't meant that the states are DONE. The verifier has to compare 8664 * the callsites 8665 */ 8666 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8667 struct bpf_verifier_state *cur) 8668 { 8669 struct bpf_verifier_state_list *sl; 8670 int i; 8671 8672 sl = *explored_state(env, insn); 8673 while (sl) { 8674 if (sl->state.branches) 8675 goto next; 8676 if (sl->state.insn_idx != insn || 8677 sl->state.curframe != cur->curframe) 8678 goto next; 8679 for (i = 0; i <= cur->curframe; i++) 8680 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8681 goto next; 8682 clean_verifier_state(env, &sl->state); 8683 next: 8684 sl = sl->next; 8685 } 8686 } 8687 8688 /* Returns true if (rold safe implies rcur safe) */ 8689 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8690 struct idpair *idmap) 8691 { 8692 bool equal; 8693 8694 if (!(rold->live & REG_LIVE_READ)) 8695 /* explored state didn't use this */ 8696 return true; 8697 8698 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8699 8700 if (rold->type == PTR_TO_STACK) 8701 /* two stack pointers are equal only if they're pointing to 8702 * the same stack frame, since fp-8 in foo != fp-8 in bar 8703 */ 8704 return equal && rold->frameno == rcur->frameno; 8705 8706 if (equal) 8707 return true; 8708 8709 if (rold->type == NOT_INIT) 8710 /* explored state can't have used this */ 8711 return true; 8712 if (rcur->type == NOT_INIT) 8713 return false; 8714 switch (rold->type) { 8715 case SCALAR_VALUE: 8716 if (rcur->type == SCALAR_VALUE) { 8717 if (!rold->precise && !rcur->precise) 8718 return true; 8719 /* new val must satisfy old val knowledge */ 8720 return range_within(rold, rcur) && 8721 tnum_in(rold->var_off, rcur->var_off); 8722 } else { 8723 /* We're trying to use a pointer in place of a scalar. 8724 * Even if the scalar was unbounded, this could lead to 8725 * pointer leaks because scalars are allowed to leak 8726 * while pointers are not. We could make this safe in 8727 * special cases if root is calling us, but it's 8728 * probably not worth the hassle. 8729 */ 8730 return false; 8731 } 8732 case PTR_TO_MAP_VALUE: 8733 /* If the new min/max/var_off satisfy the old ones and 8734 * everything else matches, we are OK. 8735 * 'id' is not compared, since it's only used for maps with 8736 * bpf_spin_lock inside map element and in such cases if 8737 * the rest of the prog is valid for one map element then 8738 * it's valid for all map elements regardless of the key 8739 * used in bpf_map_lookup() 8740 */ 8741 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8742 range_within(rold, rcur) && 8743 tnum_in(rold->var_off, rcur->var_off); 8744 case PTR_TO_MAP_VALUE_OR_NULL: 8745 /* a PTR_TO_MAP_VALUE could be safe to use as a 8746 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8747 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8748 * checked, doing so could have affected others with the same 8749 * id, and we can't check for that because we lost the id when 8750 * we converted to a PTR_TO_MAP_VALUE. 8751 */ 8752 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8753 return false; 8754 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8755 return false; 8756 /* Check our ids match any regs they're supposed to */ 8757 return check_ids(rold->id, rcur->id, idmap); 8758 case PTR_TO_PACKET_META: 8759 case PTR_TO_PACKET: 8760 if (rcur->type != rold->type) 8761 return false; 8762 /* We must have at least as much range as the old ptr 8763 * did, so that any accesses which were safe before are 8764 * still safe. This is true even if old range < old off, 8765 * since someone could have accessed through (ptr - k), or 8766 * even done ptr -= k in a register, to get a safe access. 8767 */ 8768 if (rold->range > rcur->range) 8769 return false; 8770 /* If the offsets don't match, we can't trust our alignment; 8771 * nor can we be sure that we won't fall out of range. 8772 */ 8773 if (rold->off != rcur->off) 8774 return false; 8775 /* id relations must be preserved */ 8776 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8777 return false; 8778 /* new val must satisfy old val knowledge */ 8779 return range_within(rold, rcur) && 8780 tnum_in(rold->var_off, rcur->var_off); 8781 case PTR_TO_CTX: 8782 case CONST_PTR_TO_MAP: 8783 case PTR_TO_PACKET_END: 8784 case PTR_TO_FLOW_KEYS: 8785 case PTR_TO_SOCKET: 8786 case PTR_TO_SOCKET_OR_NULL: 8787 case PTR_TO_SOCK_COMMON: 8788 case PTR_TO_SOCK_COMMON_OR_NULL: 8789 case PTR_TO_TCP_SOCK: 8790 case PTR_TO_TCP_SOCK_OR_NULL: 8791 case PTR_TO_XDP_SOCK: 8792 /* Only valid matches are exact, which memcmp() above 8793 * would have accepted 8794 */ 8795 default: 8796 /* Don't know what's going on, just say it's not safe */ 8797 return false; 8798 } 8799 8800 /* Shouldn't get here; if we do, say it's not safe */ 8801 WARN_ON_ONCE(1); 8802 return false; 8803 } 8804 8805 static bool stacksafe(struct bpf_func_state *old, 8806 struct bpf_func_state *cur, 8807 struct idpair *idmap) 8808 { 8809 int i, spi; 8810 8811 /* walk slots of the explored stack and ignore any additional 8812 * slots in the current stack, since explored(safe) state 8813 * didn't use them 8814 */ 8815 for (i = 0; i < old->allocated_stack; i++) { 8816 spi = i / BPF_REG_SIZE; 8817 8818 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8819 i += BPF_REG_SIZE - 1; 8820 /* explored state didn't use this */ 8821 continue; 8822 } 8823 8824 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8825 continue; 8826 8827 /* explored stack has more populated slots than current stack 8828 * and these slots were used 8829 */ 8830 if (i >= cur->allocated_stack) 8831 return false; 8832 8833 /* if old state was safe with misc data in the stack 8834 * it will be safe with zero-initialized stack. 8835 * The opposite is not true 8836 */ 8837 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8838 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8839 continue; 8840 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8841 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8842 /* Ex: old explored (safe) state has STACK_SPILL in 8843 * this stack slot, but current has STACK_MISC -> 8844 * this verifier states are not equivalent, 8845 * return false to continue verification of this path 8846 */ 8847 return false; 8848 if (i % BPF_REG_SIZE) 8849 continue; 8850 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8851 continue; 8852 if (!regsafe(&old->stack[spi].spilled_ptr, 8853 &cur->stack[spi].spilled_ptr, 8854 idmap)) 8855 /* when explored and current stack slot are both storing 8856 * spilled registers, check that stored pointers types 8857 * are the same as well. 8858 * Ex: explored safe path could have stored 8859 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8860 * but current path has stored: 8861 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8862 * such verifier states are not equivalent. 8863 * return false to continue verification of this path 8864 */ 8865 return false; 8866 } 8867 return true; 8868 } 8869 8870 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8871 { 8872 if (old->acquired_refs != cur->acquired_refs) 8873 return false; 8874 return !memcmp(old->refs, cur->refs, 8875 sizeof(*old->refs) * old->acquired_refs); 8876 } 8877 8878 /* compare two verifier states 8879 * 8880 * all states stored in state_list are known to be valid, since 8881 * verifier reached 'bpf_exit' instruction through them 8882 * 8883 * this function is called when verifier exploring different branches of 8884 * execution popped from the state stack. If it sees an old state that has 8885 * more strict register state and more strict stack state then this execution 8886 * branch doesn't need to be explored further, since verifier already 8887 * concluded that more strict state leads to valid finish. 8888 * 8889 * Therefore two states are equivalent if register state is more conservative 8890 * and explored stack state is more conservative than the current one. 8891 * Example: 8892 * explored current 8893 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8894 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8895 * 8896 * In other words if current stack state (one being explored) has more 8897 * valid slots than old one that already passed validation, it means 8898 * the verifier can stop exploring and conclude that current state is valid too 8899 * 8900 * Similarly with registers. If explored state has register type as invalid 8901 * whereas register type in current state is meaningful, it means that 8902 * the current state will reach 'bpf_exit' instruction safely 8903 */ 8904 static bool func_states_equal(struct bpf_func_state *old, 8905 struct bpf_func_state *cur) 8906 { 8907 struct idpair *idmap; 8908 bool ret = false; 8909 int i; 8910 8911 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8912 /* If we failed to allocate the idmap, just say it's not safe */ 8913 if (!idmap) 8914 return false; 8915 8916 for (i = 0; i < MAX_BPF_REG; i++) { 8917 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8918 goto out_free; 8919 } 8920 8921 if (!stacksafe(old, cur, idmap)) 8922 goto out_free; 8923 8924 if (!refsafe(old, cur)) 8925 goto out_free; 8926 ret = true; 8927 out_free: 8928 kfree(idmap); 8929 return ret; 8930 } 8931 8932 static bool states_equal(struct bpf_verifier_env *env, 8933 struct bpf_verifier_state *old, 8934 struct bpf_verifier_state *cur) 8935 { 8936 int i; 8937 8938 if (old->curframe != cur->curframe) 8939 return false; 8940 8941 /* Verification state from speculative execution simulation 8942 * must never prune a non-speculative execution one. 8943 */ 8944 if (old->speculative && !cur->speculative) 8945 return false; 8946 8947 if (old->active_spin_lock != cur->active_spin_lock) 8948 return false; 8949 8950 /* for states to be equal callsites have to be the same 8951 * and all frame states need to be equivalent 8952 */ 8953 for (i = 0; i <= old->curframe; i++) { 8954 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8955 return false; 8956 if (!func_states_equal(old->frame[i], cur->frame[i])) 8957 return false; 8958 } 8959 return true; 8960 } 8961 8962 /* Return 0 if no propagation happened. Return negative error code if error 8963 * happened. Otherwise, return the propagated bit. 8964 */ 8965 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8966 struct bpf_reg_state *reg, 8967 struct bpf_reg_state *parent_reg) 8968 { 8969 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8970 u8 flag = reg->live & REG_LIVE_READ; 8971 int err; 8972 8973 /* When comes here, read flags of PARENT_REG or REG could be any of 8974 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8975 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8976 */ 8977 if (parent_flag == REG_LIVE_READ64 || 8978 /* Or if there is no read flag from REG. */ 8979 !flag || 8980 /* Or if the read flag from REG is the same as PARENT_REG. */ 8981 parent_flag == flag) 8982 return 0; 8983 8984 err = mark_reg_read(env, reg, parent_reg, flag); 8985 if (err) 8986 return err; 8987 8988 return flag; 8989 } 8990 8991 /* A write screens off any subsequent reads; but write marks come from the 8992 * straight-line code between a state and its parent. When we arrive at an 8993 * equivalent state (jump target or such) we didn't arrive by the straight-line 8994 * code, so read marks in the state must propagate to the parent regardless 8995 * of the state's write marks. That's what 'parent == state->parent' comparison 8996 * in mark_reg_read() is for. 8997 */ 8998 static int propagate_liveness(struct bpf_verifier_env *env, 8999 const struct bpf_verifier_state *vstate, 9000 struct bpf_verifier_state *vparent) 9001 { 9002 struct bpf_reg_state *state_reg, *parent_reg; 9003 struct bpf_func_state *state, *parent; 9004 int i, frame, err = 0; 9005 9006 if (vparent->curframe != vstate->curframe) { 9007 WARN(1, "propagate_live: parent frame %d current frame %d\n", 9008 vparent->curframe, vstate->curframe); 9009 return -EFAULT; 9010 } 9011 /* Propagate read liveness of registers... */ 9012 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 9013 for (frame = 0; frame <= vstate->curframe; frame++) { 9014 parent = vparent->frame[frame]; 9015 state = vstate->frame[frame]; 9016 parent_reg = parent->regs; 9017 state_reg = state->regs; 9018 /* We don't need to worry about FP liveness, it's read-only */ 9019 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9020 err = propagate_liveness_reg(env, &state_reg[i], 9021 &parent_reg[i]); 9022 if (err < 0) 9023 return err; 9024 if (err == REG_LIVE_READ64) 9025 mark_insn_zext(env, &parent_reg[i]); 9026 } 9027 9028 /* Propagate stack slots. */ 9029 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 9030 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 9031 parent_reg = &parent->stack[i].spilled_ptr; 9032 state_reg = &state->stack[i].spilled_ptr; 9033 err = propagate_liveness_reg(env, state_reg, 9034 parent_reg); 9035 if (err < 0) 9036 return err; 9037 } 9038 } 9039 return 0; 9040 } 9041 9042 /* find precise scalars in the previous equivalent state and 9043 * propagate them into the current state 9044 */ 9045 static int propagate_precision(struct bpf_verifier_env *env, 9046 const struct bpf_verifier_state *old) 9047 { 9048 struct bpf_reg_state *state_reg; 9049 struct bpf_func_state *state; 9050 int i, err = 0; 9051 9052 state = old->frame[old->curframe]; 9053 state_reg = state->regs; 9054 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 9055 if (state_reg->type != SCALAR_VALUE || 9056 !state_reg->precise) 9057 continue; 9058 if (env->log.level & BPF_LOG_LEVEL2) 9059 verbose(env, "propagating r%d\n", i); 9060 err = mark_chain_precision(env, i); 9061 if (err < 0) 9062 return err; 9063 } 9064 9065 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 9066 if (state->stack[i].slot_type[0] != STACK_SPILL) 9067 continue; 9068 state_reg = &state->stack[i].spilled_ptr; 9069 if (state_reg->type != SCALAR_VALUE || 9070 !state_reg->precise) 9071 continue; 9072 if (env->log.level & BPF_LOG_LEVEL2) 9073 verbose(env, "propagating fp%d\n", 9074 (-i - 1) * BPF_REG_SIZE); 9075 err = mark_chain_precision_stack(env, i); 9076 if (err < 0) 9077 return err; 9078 } 9079 return 0; 9080 } 9081 9082 static bool states_maybe_looping(struct bpf_verifier_state *old, 9083 struct bpf_verifier_state *cur) 9084 { 9085 struct bpf_func_state *fold, *fcur; 9086 int i, fr = cur->curframe; 9087 9088 if (old->curframe != fr) 9089 return false; 9090 9091 fold = old->frame[fr]; 9092 fcur = cur->frame[fr]; 9093 for (i = 0; i < MAX_BPF_REG; i++) 9094 if (memcmp(&fold->regs[i], &fcur->regs[i], 9095 offsetof(struct bpf_reg_state, parent))) 9096 return false; 9097 return true; 9098 } 9099 9100 9101 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9102 { 9103 struct bpf_verifier_state_list *new_sl; 9104 struct bpf_verifier_state_list *sl, **pprev; 9105 struct bpf_verifier_state *cur = env->cur_state, *new; 9106 int i, j, err, states_cnt = 0; 9107 bool add_new_state = env->test_state_freq ? true : false; 9108 9109 cur->last_insn_idx = env->prev_insn_idx; 9110 if (!env->insn_aux_data[insn_idx].prune_point) 9111 /* this 'insn_idx' instruction wasn't marked, so we will not 9112 * be doing state search here 9113 */ 9114 return 0; 9115 9116 /* bpf progs typically have pruning point every 4 instructions 9117 * http://vger.kernel.org/bpfconf2019.html#session-1 9118 * Do not add new state for future pruning if the verifier hasn't seen 9119 * at least 2 jumps and at least 8 instructions. 9120 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9121 * In tests that amounts to up to 50% reduction into total verifier 9122 * memory consumption and 20% verifier time speedup. 9123 */ 9124 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9125 env->insn_processed - env->prev_insn_processed >= 8) 9126 add_new_state = true; 9127 9128 pprev = explored_state(env, insn_idx); 9129 sl = *pprev; 9130 9131 clean_live_states(env, insn_idx, cur); 9132 9133 while (sl) { 9134 states_cnt++; 9135 if (sl->state.insn_idx != insn_idx) 9136 goto next; 9137 if (sl->state.branches) { 9138 if (states_maybe_looping(&sl->state, cur) && 9139 states_equal(env, &sl->state, cur)) { 9140 verbose_linfo(env, insn_idx, "; "); 9141 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9142 return -EINVAL; 9143 } 9144 /* if the verifier is processing a loop, avoid adding new state 9145 * too often, since different loop iterations have distinct 9146 * states and may not help future pruning. 9147 * This threshold shouldn't be too low to make sure that 9148 * a loop with large bound will be rejected quickly. 9149 * The most abusive loop will be: 9150 * r1 += 1 9151 * if r1 < 1000000 goto pc-2 9152 * 1M insn_procssed limit / 100 == 10k peak states. 9153 * This threshold shouldn't be too high either, since states 9154 * at the end of the loop are likely to be useful in pruning. 9155 */ 9156 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9157 env->insn_processed - env->prev_insn_processed < 100) 9158 add_new_state = false; 9159 goto miss; 9160 } 9161 if (states_equal(env, &sl->state, cur)) { 9162 sl->hit_cnt++; 9163 /* reached equivalent register/stack state, 9164 * prune the search. 9165 * Registers read by the continuation are read by us. 9166 * If we have any write marks in env->cur_state, they 9167 * will prevent corresponding reads in the continuation 9168 * from reaching our parent (an explored_state). Our 9169 * own state will get the read marks recorded, but 9170 * they'll be immediately forgotten as we're pruning 9171 * this state and will pop a new one. 9172 */ 9173 err = propagate_liveness(env, &sl->state, cur); 9174 9175 /* if previous state reached the exit with precision and 9176 * current state is equivalent to it (except precsion marks) 9177 * the precision needs to be propagated back in 9178 * the current state. 9179 */ 9180 err = err ? : push_jmp_history(env, cur); 9181 err = err ? : propagate_precision(env, &sl->state); 9182 if (err) 9183 return err; 9184 return 1; 9185 } 9186 miss: 9187 /* when new state is not going to be added do not increase miss count. 9188 * Otherwise several loop iterations will remove the state 9189 * recorded earlier. The goal of these heuristics is to have 9190 * states from some iterations of the loop (some in the beginning 9191 * and some at the end) to help pruning. 9192 */ 9193 if (add_new_state) 9194 sl->miss_cnt++; 9195 /* heuristic to determine whether this state is beneficial 9196 * to keep checking from state equivalence point of view. 9197 * Higher numbers increase max_states_per_insn and verification time, 9198 * but do not meaningfully decrease insn_processed. 9199 */ 9200 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9201 /* the state is unlikely to be useful. Remove it to 9202 * speed up verification 9203 */ 9204 *pprev = sl->next; 9205 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9206 u32 br = sl->state.branches; 9207 9208 WARN_ONCE(br, 9209 "BUG live_done but branches_to_explore %d\n", 9210 br); 9211 free_verifier_state(&sl->state, false); 9212 kfree(sl); 9213 env->peak_states--; 9214 } else { 9215 /* cannot free this state, since parentage chain may 9216 * walk it later. Add it for free_list instead to 9217 * be freed at the end of verification 9218 */ 9219 sl->next = env->free_list; 9220 env->free_list = sl; 9221 } 9222 sl = *pprev; 9223 continue; 9224 } 9225 next: 9226 pprev = &sl->next; 9227 sl = *pprev; 9228 } 9229 9230 if (env->max_states_per_insn < states_cnt) 9231 env->max_states_per_insn = states_cnt; 9232 9233 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9234 return push_jmp_history(env, cur); 9235 9236 if (!add_new_state) 9237 return push_jmp_history(env, cur); 9238 9239 /* There were no equivalent states, remember the current one. 9240 * Technically the current state is not proven to be safe yet, 9241 * but it will either reach outer most bpf_exit (which means it's safe) 9242 * or it will be rejected. When there are no loops the verifier won't be 9243 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9244 * again on the way to bpf_exit. 9245 * When looping the sl->state.branches will be > 0 and this state 9246 * will not be considered for equivalence until branches == 0. 9247 */ 9248 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9249 if (!new_sl) 9250 return -ENOMEM; 9251 env->total_states++; 9252 env->peak_states++; 9253 env->prev_jmps_processed = env->jmps_processed; 9254 env->prev_insn_processed = env->insn_processed; 9255 9256 /* add new state to the head of linked list */ 9257 new = &new_sl->state; 9258 err = copy_verifier_state(new, cur); 9259 if (err) { 9260 free_verifier_state(new, false); 9261 kfree(new_sl); 9262 return err; 9263 } 9264 new->insn_idx = insn_idx; 9265 WARN_ONCE(new->branches != 1, 9266 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9267 9268 cur->parent = new; 9269 cur->first_insn_idx = insn_idx; 9270 clear_jmp_history(cur); 9271 new_sl->next = *explored_state(env, insn_idx); 9272 *explored_state(env, insn_idx) = new_sl; 9273 /* connect new state to parentage chain. Current frame needs all 9274 * registers connected. Only r6 - r9 of the callers are alive (pushed 9275 * to the stack implicitly by JITs) so in callers' frames connect just 9276 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9277 * the state of the call instruction (with WRITTEN set), and r0 comes 9278 * from callee with its full parentage chain, anyway. 9279 */ 9280 /* clear write marks in current state: the writes we did are not writes 9281 * our child did, so they don't screen off its reads from us. 9282 * (There are no read marks in current state, because reads always mark 9283 * their parent and current state never has children yet. Only 9284 * explored_states can get read marks.) 9285 */ 9286 for (j = 0; j <= cur->curframe; j++) { 9287 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9288 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9289 for (i = 0; i < BPF_REG_FP; i++) 9290 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9291 } 9292 9293 /* all stack frames are accessible from callee, clear them all */ 9294 for (j = 0; j <= cur->curframe; j++) { 9295 struct bpf_func_state *frame = cur->frame[j]; 9296 struct bpf_func_state *newframe = new->frame[j]; 9297 9298 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9299 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9300 frame->stack[i].spilled_ptr.parent = 9301 &newframe->stack[i].spilled_ptr; 9302 } 9303 } 9304 return 0; 9305 } 9306 9307 /* Return true if it's OK to have the same insn return a different type. */ 9308 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9309 { 9310 switch (type) { 9311 case PTR_TO_CTX: 9312 case PTR_TO_SOCKET: 9313 case PTR_TO_SOCKET_OR_NULL: 9314 case PTR_TO_SOCK_COMMON: 9315 case PTR_TO_SOCK_COMMON_OR_NULL: 9316 case PTR_TO_TCP_SOCK: 9317 case PTR_TO_TCP_SOCK_OR_NULL: 9318 case PTR_TO_XDP_SOCK: 9319 case PTR_TO_BTF_ID: 9320 case PTR_TO_BTF_ID_OR_NULL: 9321 return false; 9322 default: 9323 return true; 9324 } 9325 } 9326 9327 /* If an instruction was previously used with particular pointer types, then we 9328 * need to be careful to avoid cases such as the below, where it may be ok 9329 * for one branch accessing the pointer, but not ok for the other branch: 9330 * 9331 * R1 = sock_ptr 9332 * goto X; 9333 * ... 9334 * R1 = some_other_valid_ptr; 9335 * goto X; 9336 * ... 9337 * R2 = *(u32 *)(R1 + 0); 9338 */ 9339 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9340 { 9341 return src != prev && (!reg_type_mismatch_ok(src) || 9342 !reg_type_mismatch_ok(prev)); 9343 } 9344 9345 static int do_check(struct bpf_verifier_env *env) 9346 { 9347 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9348 struct bpf_verifier_state *state = env->cur_state; 9349 struct bpf_insn *insns = env->prog->insnsi; 9350 struct bpf_reg_state *regs; 9351 int insn_cnt = env->prog->len; 9352 bool do_print_state = false; 9353 int prev_insn_idx = -1; 9354 9355 for (;;) { 9356 struct bpf_insn *insn; 9357 u8 class; 9358 int err; 9359 9360 env->prev_insn_idx = prev_insn_idx; 9361 if (env->insn_idx >= insn_cnt) { 9362 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9363 env->insn_idx, insn_cnt); 9364 return -EFAULT; 9365 } 9366 9367 insn = &insns[env->insn_idx]; 9368 class = BPF_CLASS(insn->code); 9369 9370 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9371 verbose(env, 9372 "BPF program is too large. Processed %d insn\n", 9373 env->insn_processed); 9374 return -E2BIG; 9375 } 9376 9377 err = is_state_visited(env, env->insn_idx); 9378 if (err < 0) 9379 return err; 9380 if (err == 1) { 9381 /* found equivalent state, can prune the search */ 9382 if (env->log.level & BPF_LOG_LEVEL) { 9383 if (do_print_state) 9384 verbose(env, "\nfrom %d to %d%s: safe\n", 9385 env->prev_insn_idx, env->insn_idx, 9386 env->cur_state->speculative ? 9387 " (speculative execution)" : ""); 9388 else 9389 verbose(env, "%d: safe\n", env->insn_idx); 9390 } 9391 goto process_bpf_exit; 9392 } 9393 9394 if (signal_pending(current)) 9395 return -EAGAIN; 9396 9397 if (need_resched()) 9398 cond_resched(); 9399 9400 if (env->log.level & BPF_LOG_LEVEL2 || 9401 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9402 if (env->log.level & BPF_LOG_LEVEL2) 9403 verbose(env, "%d:", env->insn_idx); 9404 else 9405 verbose(env, "\nfrom %d to %d%s:", 9406 env->prev_insn_idx, env->insn_idx, 9407 env->cur_state->speculative ? 9408 " (speculative execution)" : ""); 9409 print_verifier_state(env, state->frame[state->curframe]); 9410 do_print_state = false; 9411 } 9412 9413 if (env->log.level & BPF_LOG_LEVEL) { 9414 const struct bpf_insn_cbs cbs = { 9415 .cb_print = verbose, 9416 .private_data = env, 9417 }; 9418 9419 verbose_linfo(env, env->insn_idx, "; "); 9420 verbose(env, "%d: ", env->insn_idx); 9421 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9422 } 9423 9424 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9425 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9426 env->prev_insn_idx); 9427 if (err) 9428 return err; 9429 } 9430 9431 regs = cur_regs(env); 9432 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9433 prev_insn_idx = env->insn_idx; 9434 9435 if (class == BPF_ALU || class == BPF_ALU64) { 9436 err = check_alu_op(env, insn); 9437 if (err) 9438 return err; 9439 9440 } else if (class == BPF_LDX) { 9441 enum bpf_reg_type *prev_src_type, src_reg_type; 9442 9443 /* check for reserved fields is already done */ 9444 9445 /* check src operand */ 9446 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9447 if (err) 9448 return err; 9449 9450 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9451 if (err) 9452 return err; 9453 9454 src_reg_type = regs[insn->src_reg].type; 9455 9456 /* check that memory (src_reg + off) is readable, 9457 * the state of dst_reg will be updated by this func 9458 */ 9459 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9460 insn->off, BPF_SIZE(insn->code), 9461 BPF_READ, insn->dst_reg, false); 9462 if (err) 9463 return err; 9464 9465 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9466 9467 if (*prev_src_type == NOT_INIT) { 9468 /* saw a valid insn 9469 * dst_reg = *(u32 *)(src_reg + off) 9470 * save type to validate intersecting paths 9471 */ 9472 *prev_src_type = src_reg_type; 9473 9474 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9475 /* ABuser program is trying to use the same insn 9476 * dst_reg = *(u32*) (src_reg + off) 9477 * with different pointer types: 9478 * src_reg == ctx in one branch and 9479 * src_reg == stack|map in some other branch. 9480 * Reject it. 9481 */ 9482 verbose(env, "same insn cannot be used with different pointers\n"); 9483 return -EINVAL; 9484 } 9485 9486 } else if (class == BPF_STX) { 9487 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9488 9489 if (BPF_MODE(insn->code) == BPF_XADD) { 9490 err = check_xadd(env, env->insn_idx, insn); 9491 if (err) 9492 return err; 9493 env->insn_idx++; 9494 continue; 9495 } 9496 9497 /* check src1 operand */ 9498 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9499 if (err) 9500 return err; 9501 /* check src2 operand */ 9502 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9503 if (err) 9504 return err; 9505 9506 dst_reg_type = regs[insn->dst_reg].type; 9507 9508 /* check that memory (dst_reg + off) is writeable */ 9509 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9510 insn->off, BPF_SIZE(insn->code), 9511 BPF_WRITE, insn->src_reg, false); 9512 if (err) 9513 return err; 9514 9515 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9516 9517 if (*prev_dst_type == NOT_INIT) { 9518 *prev_dst_type = dst_reg_type; 9519 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9520 verbose(env, "same insn cannot be used with different pointers\n"); 9521 return -EINVAL; 9522 } 9523 9524 } else if (class == BPF_ST) { 9525 if (BPF_MODE(insn->code) != BPF_MEM || 9526 insn->src_reg != BPF_REG_0) { 9527 verbose(env, "BPF_ST uses reserved fields\n"); 9528 return -EINVAL; 9529 } 9530 /* check src operand */ 9531 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9532 if (err) 9533 return err; 9534 9535 if (is_ctx_reg(env, insn->dst_reg)) { 9536 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9537 insn->dst_reg, 9538 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9539 return -EACCES; 9540 } 9541 9542 /* check that memory (dst_reg + off) is writeable */ 9543 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9544 insn->off, BPF_SIZE(insn->code), 9545 BPF_WRITE, -1, false); 9546 if (err) 9547 return err; 9548 9549 } else if (class == BPF_JMP || class == BPF_JMP32) { 9550 u8 opcode = BPF_OP(insn->code); 9551 9552 env->jmps_processed++; 9553 if (opcode == BPF_CALL) { 9554 if (BPF_SRC(insn->code) != BPF_K || 9555 insn->off != 0 || 9556 (insn->src_reg != BPF_REG_0 && 9557 insn->src_reg != BPF_PSEUDO_CALL) || 9558 insn->dst_reg != BPF_REG_0 || 9559 class == BPF_JMP32) { 9560 verbose(env, "BPF_CALL uses reserved fields\n"); 9561 return -EINVAL; 9562 } 9563 9564 if (env->cur_state->active_spin_lock && 9565 (insn->src_reg == BPF_PSEUDO_CALL || 9566 insn->imm != BPF_FUNC_spin_unlock)) { 9567 verbose(env, "function calls are not allowed while holding a lock\n"); 9568 return -EINVAL; 9569 } 9570 if (insn->src_reg == BPF_PSEUDO_CALL) 9571 err = check_func_call(env, insn, &env->insn_idx); 9572 else 9573 err = check_helper_call(env, insn->imm, env->insn_idx); 9574 if (err) 9575 return err; 9576 9577 } else if (opcode == BPF_JA) { 9578 if (BPF_SRC(insn->code) != BPF_K || 9579 insn->imm != 0 || 9580 insn->src_reg != BPF_REG_0 || 9581 insn->dst_reg != BPF_REG_0 || 9582 class == BPF_JMP32) { 9583 verbose(env, "BPF_JA uses reserved fields\n"); 9584 return -EINVAL; 9585 } 9586 9587 env->insn_idx += insn->off + 1; 9588 continue; 9589 9590 } else if (opcode == BPF_EXIT) { 9591 if (BPF_SRC(insn->code) != BPF_K || 9592 insn->imm != 0 || 9593 insn->src_reg != BPF_REG_0 || 9594 insn->dst_reg != BPF_REG_0 || 9595 class == BPF_JMP32) { 9596 verbose(env, "BPF_EXIT uses reserved fields\n"); 9597 return -EINVAL; 9598 } 9599 9600 if (env->cur_state->active_spin_lock) { 9601 verbose(env, "bpf_spin_unlock is missing\n"); 9602 return -EINVAL; 9603 } 9604 9605 if (state->curframe) { 9606 /* exit from nested function */ 9607 err = prepare_func_exit(env, &env->insn_idx); 9608 if (err) 9609 return err; 9610 do_print_state = true; 9611 continue; 9612 } 9613 9614 err = check_reference_leak(env); 9615 if (err) 9616 return err; 9617 9618 err = check_return_code(env); 9619 if (err) 9620 return err; 9621 process_bpf_exit: 9622 update_branch_counts(env, env->cur_state); 9623 err = pop_stack(env, &prev_insn_idx, 9624 &env->insn_idx, pop_log); 9625 if (err < 0) { 9626 if (err != -ENOENT) 9627 return err; 9628 break; 9629 } else { 9630 do_print_state = true; 9631 continue; 9632 } 9633 } else { 9634 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9635 if (err) 9636 return err; 9637 } 9638 } else if (class == BPF_LD) { 9639 u8 mode = BPF_MODE(insn->code); 9640 9641 if (mode == BPF_ABS || mode == BPF_IND) { 9642 err = check_ld_abs(env, insn); 9643 if (err) 9644 return err; 9645 9646 } else if (mode == BPF_IMM) { 9647 err = check_ld_imm(env, insn); 9648 if (err) 9649 return err; 9650 9651 env->insn_idx++; 9652 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9653 } else { 9654 verbose(env, "invalid BPF_LD mode\n"); 9655 return -EINVAL; 9656 } 9657 } else { 9658 verbose(env, "unknown insn class %d\n", class); 9659 return -EINVAL; 9660 } 9661 9662 env->insn_idx++; 9663 } 9664 9665 return 0; 9666 } 9667 9668 /* replace pseudo btf_id with kernel symbol address */ 9669 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 9670 struct bpf_insn *insn, 9671 struct bpf_insn_aux_data *aux) 9672 { 9673 u32 datasec_id, type, id = insn->imm; 9674 const struct btf_var_secinfo *vsi; 9675 const struct btf_type *datasec; 9676 const struct btf_type *t; 9677 const char *sym_name; 9678 bool percpu = false; 9679 u64 addr; 9680 int i; 9681 9682 if (!btf_vmlinux) { 9683 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9684 return -EINVAL; 9685 } 9686 9687 if (insn[1].imm != 0) { 9688 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9689 return -EINVAL; 9690 } 9691 9692 t = btf_type_by_id(btf_vmlinux, id); 9693 if (!t) { 9694 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9695 return -ENOENT; 9696 } 9697 9698 if (!btf_type_is_var(t)) { 9699 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", 9700 id); 9701 return -EINVAL; 9702 } 9703 9704 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9705 addr = kallsyms_lookup_name(sym_name); 9706 if (!addr) { 9707 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 9708 sym_name); 9709 return -ENOENT; 9710 } 9711 9712 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", 9713 BTF_KIND_DATASEC); 9714 if (datasec_id > 0) { 9715 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 9716 for_each_vsi(i, datasec, vsi) { 9717 if (vsi->type == id) { 9718 percpu = true; 9719 break; 9720 } 9721 } 9722 } 9723 9724 insn[0].imm = (u32)addr; 9725 insn[1].imm = addr >> 32; 9726 9727 type = t->type; 9728 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 9729 if (percpu) { 9730 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 9731 aux->btf_var.btf_id = type; 9732 } else if (!btf_type_is_struct(t)) { 9733 const struct btf_type *ret; 9734 const char *tname; 9735 u32 tsize; 9736 9737 /* resolve the type size of ksym. */ 9738 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 9739 if (IS_ERR(ret)) { 9740 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9741 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 9742 tname, PTR_ERR(ret)); 9743 return -EINVAL; 9744 } 9745 aux->btf_var.reg_type = PTR_TO_MEM; 9746 aux->btf_var.mem_size = tsize; 9747 } else { 9748 aux->btf_var.reg_type = PTR_TO_BTF_ID; 9749 aux->btf_var.btf_id = type; 9750 } 9751 return 0; 9752 } 9753 9754 static int check_map_prealloc(struct bpf_map *map) 9755 { 9756 return (map->map_type != BPF_MAP_TYPE_HASH && 9757 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9758 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9759 !(map->map_flags & BPF_F_NO_PREALLOC); 9760 } 9761 9762 static bool is_tracing_prog_type(enum bpf_prog_type type) 9763 { 9764 switch (type) { 9765 case BPF_PROG_TYPE_KPROBE: 9766 case BPF_PROG_TYPE_TRACEPOINT: 9767 case BPF_PROG_TYPE_PERF_EVENT: 9768 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9769 return true; 9770 default: 9771 return false; 9772 } 9773 } 9774 9775 static bool is_preallocated_map(struct bpf_map *map) 9776 { 9777 if (!check_map_prealloc(map)) 9778 return false; 9779 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9780 return false; 9781 return true; 9782 } 9783 9784 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9785 struct bpf_map *map, 9786 struct bpf_prog *prog) 9787 9788 { 9789 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9790 /* 9791 * Validate that trace type programs use preallocated hash maps. 9792 * 9793 * For programs attached to PERF events this is mandatory as the 9794 * perf NMI can hit any arbitrary code sequence. 9795 * 9796 * All other trace types using preallocated hash maps are unsafe as 9797 * well because tracepoint or kprobes can be inside locked regions 9798 * of the memory allocator or at a place where a recursion into the 9799 * memory allocator would see inconsistent state. 9800 * 9801 * On RT enabled kernels run-time allocation of all trace type 9802 * programs is strictly prohibited due to lock type constraints. On 9803 * !RT kernels it is allowed for backwards compatibility reasons for 9804 * now, but warnings are emitted so developers are made aware of 9805 * the unsafety and can fix their programs before this is enforced. 9806 */ 9807 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9808 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9809 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9810 return -EINVAL; 9811 } 9812 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9813 verbose(env, "trace type programs can only use preallocated hash map\n"); 9814 return -EINVAL; 9815 } 9816 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9817 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9818 } 9819 9820 if (map_value_has_spin_lock(map)) { 9821 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 9822 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 9823 return -EINVAL; 9824 } 9825 9826 if (is_tracing_prog_type(prog_type)) { 9827 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9828 return -EINVAL; 9829 } 9830 9831 if (prog->aux->sleepable) { 9832 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 9833 return -EINVAL; 9834 } 9835 } 9836 9837 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9838 !bpf_offload_prog_map_match(prog, map)) { 9839 verbose(env, "offload device mismatch between prog and map\n"); 9840 return -EINVAL; 9841 } 9842 9843 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9844 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9845 return -EINVAL; 9846 } 9847 9848 if (prog->aux->sleepable) 9849 switch (map->map_type) { 9850 case BPF_MAP_TYPE_HASH: 9851 case BPF_MAP_TYPE_LRU_HASH: 9852 case BPF_MAP_TYPE_ARRAY: 9853 if (!is_preallocated_map(map)) { 9854 verbose(env, 9855 "Sleepable programs can only use preallocated hash maps\n"); 9856 return -EINVAL; 9857 } 9858 break; 9859 default: 9860 verbose(env, 9861 "Sleepable programs can only use array and hash maps\n"); 9862 return -EINVAL; 9863 } 9864 9865 return 0; 9866 } 9867 9868 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9869 { 9870 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9871 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9872 } 9873 9874 /* find and rewrite pseudo imm in ld_imm64 instructions: 9875 * 9876 * 1. if it accesses map FD, replace it with actual map pointer. 9877 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 9878 * 9879 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 9880 */ 9881 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 9882 { 9883 struct bpf_insn *insn = env->prog->insnsi; 9884 int insn_cnt = env->prog->len; 9885 int i, j, err; 9886 9887 err = bpf_prog_calc_tag(env->prog); 9888 if (err) 9889 return err; 9890 9891 for (i = 0; i < insn_cnt; i++, insn++) { 9892 if (BPF_CLASS(insn->code) == BPF_LDX && 9893 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9894 verbose(env, "BPF_LDX uses reserved fields\n"); 9895 return -EINVAL; 9896 } 9897 9898 if (BPF_CLASS(insn->code) == BPF_STX && 9899 ((BPF_MODE(insn->code) != BPF_MEM && 9900 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9901 verbose(env, "BPF_STX uses reserved fields\n"); 9902 return -EINVAL; 9903 } 9904 9905 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9906 struct bpf_insn_aux_data *aux; 9907 struct bpf_map *map; 9908 struct fd f; 9909 u64 addr; 9910 9911 if (i == insn_cnt - 1 || insn[1].code != 0 || 9912 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9913 insn[1].off != 0) { 9914 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9915 return -EINVAL; 9916 } 9917 9918 if (insn[0].src_reg == 0) 9919 /* valid generic load 64-bit imm */ 9920 goto next_insn; 9921 9922 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 9923 aux = &env->insn_aux_data[i]; 9924 err = check_pseudo_btf_id(env, insn, aux); 9925 if (err) 9926 return err; 9927 goto next_insn; 9928 } 9929 9930 /* In final convert_pseudo_ld_imm64() step, this is 9931 * converted into regular 64-bit imm load insn. 9932 */ 9933 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9934 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9935 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9936 insn[1].imm != 0)) { 9937 verbose(env, 9938 "unrecognized bpf_ld_imm64 insn\n"); 9939 return -EINVAL; 9940 } 9941 9942 f = fdget(insn[0].imm); 9943 map = __bpf_map_get(f); 9944 if (IS_ERR(map)) { 9945 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9946 insn[0].imm); 9947 return PTR_ERR(map); 9948 } 9949 9950 err = check_map_prog_compatibility(env, map, env->prog); 9951 if (err) { 9952 fdput(f); 9953 return err; 9954 } 9955 9956 aux = &env->insn_aux_data[i]; 9957 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9958 addr = (unsigned long)map; 9959 } else { 9960 u32 off = insn[1].imm; 9961 9962 if (off >= BPF_MAX_VAR_OFF) { 9963 verbose(env, "direct value offset of %u is not allowed\n", off); 9964 fdput(f); 9965 return -EINVAL; 9966 } 9967 9968 if (!map->ops->map_direct_value_addr) { 9969 verbose(env, "no direct value access support for this map type\n"); 9970 fdput(f); 9971 return -EINVAL; 9972 } 9973 9974 err = map->ops->map_direct_value_addr(map, &addr, off); 9975 if (err) { 9976 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9977 map->value_size, off); 9978 fdput(f); 9979 return err; 9980 } 9981 9982 aux->map_off = off; 9983 addr += off; 9984 } 9985 9986 insn[0].imm = (u32)addr; 9987 insn[1].imm = addr >> 32; 9988 9989 /* check whether we recorded this map already */ 9990 for (j = 0; j < env->used_map_cnt; j++) { 9991 if (env->used_maps[j] == map) { 9992 aux->map_index = j; 9993 fdput(f); 9994 goto next_insn; 9995 } 9996 } 9997 9998 if (env->used_map_cnt >= MAX_USED_MAPS) { 9999 fdput(f); 10000 return -E2BIG; 10001 } 10002 10003 /* hold the map. If the program is rejected by verifier, 10004 * the map will be released by release_maps() or it 10005 * will be used by the valid program until it's unloaded 10006 * and all maps are released in free_used_maps() 10007 */ 10008 bpf_map_inc(map); 10009 10010 aux->map_index = env->used_map_cnt; 10011 env->used_maps[env->used_map_cnt++] = map; 10012 10013 if (bpf_map_is_cgroup_storage(map) && 10014 bpf_cgroup_storage_assign(env->prog->aux, map)) { 10015 verbose(env, "only one cgroup storage of each type is allowed\n"); 10016 fdput(f); 10017 return -EBUSY; 10018 } 10019 10020 fdput(f); 10021 next_insn: 10022 insn++; 10023 i++; 10024 continue; 10025 } 10026 10027 /* Basic sanity check before we invest more work here. */ 10028 if (!bpf_opcode_in_insntable(insn->code)) { 10029 verbose(env, "unknown opcode %02x\n", insn->code); 10030 return -EINVAL; 10031 } 10032 } 10033 10034 /* now all pseudo BPF_LD_IMM64 instructions load valid 10035 * 'struct bpf_map *' into a register instead of user map_fd. 10036 * These pointers will be used later by verifier to validate map access. 10037 */ 10038 return 0; 10039 } 10040 10041 /* drop refcnt of maps used by the rejected program */ 10042 static void release_maps(struct bpf_verifier_env *env) 10043 { 10044 __bpf_free_used_maps(env->prog->aux, env->used_maps, 10045 env->used_map_cnt); 10046 } 10047 10048 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 10049 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 10050 { 10051 struct bpf_insn *insn = env->prog->insnsi; 10052 int insn_cnt = env->prog->len; 10053 int i; 10054 10055 for (i = 0; i < insn_cnt; i++, insn++) 10056 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 10057 insn->src_reg = 0; 10058 } 10059 10060 /* single env->prog->insni[off] instruction was replaced with the range 10061 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 10062 * [0, off) and [off, end) to new locations, so the patched range stays zero 10063 */ 10064 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 10065 struct bpf_prog *new_prog, u32 off, u32 cnt) 10066 { 10067 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 10068 struct bpf_insn *insn = new_prog->insnsi; 10069 u32 prog_len; 10070 int i; 10071 10072 /* aux info at OFF always needs adjustment, no matter fast path 10073 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 10074 * original insn at old prog. 10075 */ 10076 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 10077 10078 if (cnt == 1) 10079 return 0; 10080 prog_len = new_prog->len; 10081 new_data = vzalloc(array_size(prog_len, 10082 sizeof(struct bpf_insn_aux_data))); 10083 if (!new_data) 10084 return -ENOMEM; 10085 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10086 memcpy(new_data + off + cnt - 1, old_data + off, 10087 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10088 for (i = off; i < off + cnt - 1; i++) { 10089 new_data[i].seen = env->pass_cnt; 10090 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10091 } 10092 env->insn_aux_data = new_data; 10093 vfree(old_data); 10094 return 0; 10095 } 10096 10097 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10098 { 10099 int i; 10100 10101 if (len == 1) 10102 return; 10103 /* NOTE: fake 'exit' subprog should be updated as well. */ 10104 for (i = 0; i <= env->subprog_cnt; i++) { 10105 if (env->subprog_info[i].start <= off) 10106 continue; 10107 env->subprog_info[i].start += len - 1; 10108 } 10109 } 10110 10111 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10112 { 10113 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10114 int i, sz = prog->aux->size_poke_tab; 10115 struct bpf_jit_poke_descriptor *desc; 10116 10117 for (i = 0; i < sz; i++) { 10118 desc = &tab[i]; 10119 desc->insn_idx += len - 1; 10120 } 10121 } 10122 10123 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10124 const struct bpf_insn *patch, u32 len) 10125 { 10126 struct bpf_prog *new_prog; 10127 10128 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10129 if (IS_ERR(new_prog)) { 10130 if (PTR_ERR(new_prog) == -ERANGE) 10131 verbose(env, 10132 "insn %d cannot be patched due to 16-bit range\n", 10133 env->insn_aux_data[off].orig_idx); 10134 return NULL; 10135 } 10136 if (adjust_insn_aux_data(env, new_prog, off, len)) 10137 return NULL; 10138 adjust_subprog_starts(env, off, len); 10139 adjust_poke_descs(new_prog, len); 10140 return new_prog; 10141 } 10142 10143 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10144 u32 off, u32 cnt) 10145 { 10146 int i, j; 10147 10148 /* find first prog starting at or after off (first to remove) */ 10149 for (i = 0; i < env->subprog_cnt; i++) 10150 if (env->subprog_info[i].start >= off) 10151 break; 10152 /* find first prog starting at or after off + cnt (first to stay) */ 10153 for (j = i; j < env->subprog_cnt; j++) 10154 if (env->subprog_info[j].start >= off + cnt) 10155 break; 10156 /* if j doesn't start exactly at off + cnt, we are just removing 10157 * the front of previous prog 10158 */ 10159 if (env->subprog_info[j].start != off + cnt) 10160 j--; 10161 10162 if (j > i) { 10163 struct bpf_prog_aux *aux = env->prog->aux; 10164 int move; 10165 10166 /* move fake 'exit' subprog as well */ 10167 move = env->subprog_cnt + 1 - j; 10168 10169 memmove(env->subprog_info + i, 10170 env->subprog_info + j, 10171 sizeof(*env->subprog_info) * move); 10172 env->subprog_cnt -= j - i; 10173 10174 /* remove func_info */ 10175 if (aux->func_info) { 10176 move = aux->func_info_cnt - j; 10177 10178 memmove(aux->func_info + i, 10179 aux->func_info + j, 10180 sizeof(*aux->func_info) * move); 10181 aux->func_info_cnt -= j - i; 10182 /* func_info->insn_off is set after all code rewrites, 10183 * in adjust_btf_func() - no need to adjust 10184 */ 10185 } 10186 } else { 10187 /* convert i from "first prog to remove" to "first to adjust" */ 10188 if (env->subprog_info[i].start == off) 10189 i++; 10190 } 10191 10192 /* update fake 'exit' subprog as well */ 10193 for (; i <= env->subprog_cnt; i++) 10194 env->subprog_info[i].start -= cnt; 10195 10196 return 0; 10197 } 10198 10199 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10200 u32 cnt) 10201 { 10202 struct bpf_prog *prog = env->prog; 10203 u32 i, l_off, l_cnt, nr_linfo; 10204 struct bpf_line_info *linfo; 10205 10206 nr_linfo = prog->aux->nr_linfo; 10207 if (!nr_linfo) 10208 return 0; 10209 10210 linfo = prog->aux->linfo; 10211 10212 /* find first line info to remove, count lines to be removed */ 10213 for (i = 0; i < nr_linfo; i++) 10214 if (linfo[i].insn_off >= off) 10215 break; 10216 10217 l_off = i; 10218 l_cnt = 0; 10219 for (; i < nr_linfo; i++) 10220 if (linfo[i].insn_off < off + cnt) 10221 l_cnt++; 10222 else 10223 break; 10224 10225 /* First live insn doesn't match first live linfo, it needs to "inherit" 10226 * last removed linfo. prog is already modified, so prog->len == off 10227 * means no live instructions after (tail of the program was removed). 10228 */ 10229 if (prog->len != off && l_cnt && 10230 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10231 l_cnt--; 10232 linfo[--i].insn_off = off + cnt; 10233 } 10234 10235 /* remove the line info which refer to the removed instructions */ 10236 if (l_cnt) { 10237 memmove(linfo + l_off, linfo + i, 10238 sizeof(*linfo) * (nr_linfo - i)); 10239 10240 prog->aux->nr_linfo -= l_cnt; 10241 nr_linfo = prog->aux->nr_linfo; 10242 } 10243 10244 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10245 for (i = l_off; i < nr_linfo; i++) 10246 linfo[i].insn_off -= cnt; 10247 10248 /* fix up all subprogs (incl. 'exit') which start >= off */ 10249 for (i = 0; i <= env->subprog_cnt; i++) 10250 if (env->subprog_info[i].linfo_idx > l_off) { 10251 /* program may have started in the removed region but 10252 * may not be fully removed 10253 */ 10254 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10255 env->subprog_info[i].linfo_idx -= l_cnt; 10256 else 10257 env->subprog_info[i].linfo_idx = l_off; 10258 } 10259 10260 return 0; 10261 } 10262 10263 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10264 { 10265 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10266 unsigned int orig_prog_len = env->prog->len; 10267 int err; 10268 10269 if (bpf_prog_is_dev_bound(env->prog->aux)) 10270 bpf_prog_offload_remove_insns(env, off, cnt); 10271 10272 err = bpf_remove_insns(env->prog, off, cnt); 10273 if (err) 10274 return err; 10275 10276 err = adjust_subprog_starts_after_remove(env, off, cnt); 10277 if (err) 10278 return err; 10279 10280 err = bpf_adj_linfo_after_remove(env, off, cnt); 10281 if (err) 10282 return err; 10283 10284 memmove(aux_data + off, aux_data + off + cnt, 10285 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10286 10287 return 0; 10288 } 10289 10290 /* The verifier does more data flow analysis than llvm and will not 10291 * explore branches that are dead at run time. Malicious programs can 10292 * have dead code too. Therefore replace all dead at-run-time code 10293 * with 'ja -1'. 10294 * 10295 * Just nops are not optimal, e.g. if they would sit at the end of the 10296 * program and through another bug we would manage to jump there, then 10297 * we'd execute beyond program memory otherwise. Returning exception 10298 * code also wouldn't work since we can have subprogs where the dead 10299 * code could be located. 10300 */ 10301 static void sanitize_dead_code(struct bpf_verifier_env *env) 10302 { 10303 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10304 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10305 struct bpf_insn *insn = env->prog->insnsi; 10306 const int insn_cnt = env->prog->len; 10307 int i; 10308 10309 for (i = 0; i < insn_cnt; i++) { 10310 if (aux_data[i].seen) 10311 continue; 10312 memcpy(insn + i, &trap, sizeof(trap)); 10313 } 10314 } 10315 10316 static bool insn_is_cond_jump(u8 code) 10317 { 10318 u8 op; 10319 10320 if (BPF_CLASS(code) == BPF_JMP32) 10321 return true; 10322 10323 if (BPF_CLASS(code) != BPF_JMP) 10324 return false; 10325 10326 op = BPF_OP(code); 10327 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10328 } 10329 10330 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10331 { 10332 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10333 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10334 struct bpf_insn *insn = env->prog->insnsi; 10335 const int insn_cnt = env->prog->len; 10336 int i; 10337 10338 for (i = 0; i < insn_cnt; i++, insn++) { 10339 if (!insn_is_cond_jump(insn->code)) 10340 continue; 10341 10342 if (!aux_data[i + 1].seen) 10343 ja.off = insn->off; 10344 else if (!aux_data[i + 1 + insn->off].seen) 10345 ja.off = 0; 10346 else 10347 continue; 10348 10349 if (bpf_prog_is_dev_bound(env->prog->aux)) 10350 bpf_prog_offload_replace_insn(env, i, &ja); 10351 10352 memcpy(insn, &ja, sizeof(ja)); 10353 } 10354 } 10355 10356 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10357 { 10358 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10359 int insn_cnt = env->prog->len; 10360 int i, err; 10361 10362 for (i = 0; i < insn_cnt; i++) { 10363 int j; 10364 10365 j = 0; 10366 while (i + j < insn_cnt && !aux_data[i + j].seen) 10367 j++; 10368 if (!j) 10369 continue; 10370 10371 err = verifier_remove_insns(env, i, j); 10372 if (err) 10373 return err; 10374 insn_cnt = env->prog->len; 10375 } 10376 10377 return 0; 10378 } 10379 10380 static int opt_remove_nops(struct bpf_verifier_env *env) 10381 { 10382 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10383 struct bpf_insn *insn = env->prog->insnsi; 10384 int insn_cnt = env->prog->len; 10385 int i, err; 10386 10387 for (i = 0; i < insn_cnt; i++) { 10388 if (memcmp(&insn[i], &ja, sizeof(ja))) 10389 continue; 10390 10391 err = verifier_remove_insns(env, i, 1); 10392 if (err) 10393 return err; 10394 insn_cnt--; 10395 i--; 10396 } 10397 10398 return 0; 10399 } 10400 10401 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10402 const union bpf_attr *attr) 10403 { 10404 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10405 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10406 int i, patch_len, delta = 0, len = env->prog->len; 10407 struct bpf_insn *insns = env->prog->insnsi; 10408 struct bpf_prog *new_prog; 10409 bool rnd_hi32; 10410 10411 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10412 zext_patch[1] = BPF_ZEXT_REG(0); 10413 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10414 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10415 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10416 for (i = 0; i < len; i++) { 10417 int adj_idx = i + delta; 10418 struct bpf_insn insn; 10419 10420 insn = insns[adj_idx]; 10421 if (!aux[adj_idx].zext_dst) { 10422 u8 code, class; 10423 u32 imm_rnd; 10424 10425 if (!rnd_hi32) 10426 continue; 10427 10428 code = insn.code; 10429 class = BPF_CLASS(code); 10430 if (insn_no_def(&insn)) 10431 continue; 10432 10433 /* NOTE: arg "reg" (the fourth one) is only used for 10434 * BPF_STX which has been ruled out in above 10435 * check, it is safe to pass NULL here. 10436 */ 10437 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10438 if (class == BPF_LD && 10439 BPF_MODE(code) == BPF_IMM) 10440 i++; 10441 continue; 10442 } 10443 10444 /* ctx load could be transformed into wider load. */ 10445 if (class == BPF_LDX && 10446 aux[adj_idx].ptr_type == PTR_TO_CTX) 10447 continue; 10448 10449 imm_rnd = get_random_int(); 10450 rnd_hi32_patch[0] = insn; 10451 rnd_hi32_patch[1].imm = imm_rnd; 10452 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10453 patch = rnd_hi32_patch; 10454 patch_len = 4; 10455 goto apply_patch_buffer; 10456 } 10457 10458 if (!bpf_jit_needs_zext()) 10459 continue; 10460 10461 zext_patch[0] = insn; 10462 zext_patch[1].dst_reg = insn.dst_reg; 10463 zext_patch[1].src_reg = insn.dst_reg; 10464 patch = zext_patch; 10465 patch_len = 2; 10466 apply_patch_buffer: 10467 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10468 if (!new_prog) 10469 return -ENOMEM; 10470 env->prog = new_prog; 10471 insns = new_prog->insnsi; 10472 aux = env->insn_aux_data; 10473 delta += patch_len - 1; 10474 } 10475 10476 return 0; 10477 } 10478 10479 /* convert load instructions that access fields of a context type into a 10480 * sequence of instructions that access fields of the underlying structure: 10481 * struct __sk_buff -> struct sk_buff 10482 * struct bpf_sock_ops -> struct sock 10483 */ 10484 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10485 { 10486 const struct bpf_verifier_ops *ops = env->ops; 10487 int i, cnt, size, ctx_field_size, delta = 0; 10488 const int insn_cnt = env->prog->len; 10489 struct bpf_insn insn_buf[16], *insn; 10490 u32 target_size, size_default, off; 10491 struct bpf_prog *new_prog; 10492 enum bpf_access_type type; 10493 bool is_narrower_load; 10494 10495 if (ops->gen_prologue || env->seen_direct_write) { 10496 if (!ops->gen_prologue) { 10497 verbose(env, "bpf verifier is misconfigured\n"); 10498 return -EINVAL; 10499 } 10500 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10501 env->prog); 10502 if (cnt >= ARRAY_SIZE(insn_buf)) { 10503 verbose(env, "bpf verifier is misconfigured\n"); 10504 return -EINVAL; 10505 } else if (cnt) { 10506 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10507 if (!new_prog) 10508 return -ENOMEM; 10509 10510 env->prog = new_prog; 10511 delta += cnt - 1; 10512 } 10513 } 10514 10515 if (bpf_prog_is_dev_bound(env->prog->aux)) 10516 return 0; 10517 10518 insn = env->prog->insnsi + delta; 10519 10520 for (i = 0; i < insn_cnt; i++, insn++) { 10521 bpf_convert_ctx_access_t convert_ctx_access; 10522 10523 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10524 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10525 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10526 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10527 type = BPF_READ; 10528 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10529 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10530 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10531 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10532 type = BPF_WRITE; 10533 else 10534 continue; 10535 10536 if (type == BPF_WRITE && 10537 env->insn_aux_data[i + delta].sanitize_stack_off) { 10538 struct bpf_insn patch[] = { 10539 /* Sanitize suspicious stack slot with zero. 10540 * There are no memory dependencies for this store, 10541 * since it's only using frame pointer and immediate 10542 * constant of zero 10543 */ 10544 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10545 env->insn_aux_data[i + delta].sanitize_stack_off, 10546 0), 10547 /* the original STX instruction will immediately 10548 * overwrite the same stack slot with appropriate value 10549 */ 10550 *insn, 10551 }; 10552 10553 cnt = ARRAY_SIZE(patch); 10554 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10555 if (!new_prog) 10556 return -ENOMEM; 10557 10558 delta += cnt - 1; 10559 env->prog = new_prog; 10560 insn = new_prog->insnsi + i + delta; 10561 continue; 10562 } 10563 10564 switch (env->insn_aux_data[i + delta].ptr_type) { 10565 case PTR_TO_CTX: 10566 if (!ops->convert_ctx_access) 10567 continue; 10568 convert_ctx_access = ops->convert_ctx_access; 10569 break; 10570 case PTR_TO_SOCKET: 10571 case PTR_TO_SOCK_COMMON: 10572 convert_ctx_access = bpf_sock_convert_ctx_access; 10573 break; 10574 case PTR_TO_TCP_SOCK: 10575 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10576 break; 10577 case PTR_TO_XDP_SOCK: 10578 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10579 break; 10580 case PTR_TO_BTF_ID: 10581 if (type == BPF_READ) { 10582 insn->code = BPF_LDX | BPF_PROBE_MEM | 10583 BPF_SIZE((insn)->code); 10584 env->prog->aux->num_exentries++; 10585 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10586 verbose(env, "Writes through BTF pointers are not allowed\n"); 10587 return -EINVAL; 10588 } 10589 continue; 10590 default: 10591 continue; 10592 } 10593 10594 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10595 size = BPF_LDST_BYTES(insn); 10596 10597 /* If the read access is a narrower load of the field, 10598 * convert to a 4/8-byte load, to minimum program type specific 10599 * convert_ctx_access changes. If conversion is successful, 10600 * we will apply proper mask to the result. 10601 */ 10602 is_narrower_load = size < ctx_field_size; 10603 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10604 off = insn->off; 10605 if (is_narrower_load) { 10606 u8 size_code; 10607 10608 if (type == BPF_WRITE) { 10609 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10610 return -EINVAL; 10611 } 10612 10613 size_code = BPF_H; 10614 if (ctx_field_size == 4) 10615 size_code = BPF_W; 10616 else if (ctx_field_size == 8) 10617 size_code = BPF_DW; 10618 10619 insn->off = off & ~(size_default - 1); 10620 insn->code = BPF_LDX | BPF_MEM | size_code; 10621 } 10622 10623 target_size = 0; 10624 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10625 &target_size); 10626 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10627 (ctx_field_size && !target_size)) { 10628 verbose(env, "bpf verifier is misconfigured\n"); 10629 return -EINVAL; 10630 } 10631 10632 if (is_narrower_load && size < target_size) { 10633 u8 shift = bpf_ctx_narrow_access_offset( 10634 off, size, size_default) * 8; 10635 if (ctx_field_size <= 4) { 10636 if (shift) 10637 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10638 insn->dst_reg, 10639 shift); 10640 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10641 (1 << size * 8) - 1); 10642 } else { 10643 if (shift) 10644 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10645 insn->dst_reg, 10646 shift); 10647 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10648 (1ULL << size * 8) - 1); 10649 } 10650 } 10651 10652 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10653 if (!new_prog) 10654 return -ENOMEM; 10655 10656 delta += cnt - 1; 10657 10658 /* keep walking new program and skip insns we just inserted */ 10659 env->prog = new_prog; 10660 insn = new_prog->insnsi + i + delta; 10661 } 10662 10663 return 0; 10664 } 10665 10666 static int jit_subprogs(struct bpf_verifier_env *env) 10667 { 10668 struct bpf_prog *prog = env->prog, **func, *tmp; 10669 int i, j, subprog_start, subprog_end = 0, len, subprog; 10670 struct bpf_map *map_ptr; 10671 struct bpf_insn *insn; 10672 void *old_bpf_func; 10673 int err, num_exentries; 10674 10675 if (env->subprog_cnt <= 1) 10676 return 0; 10677 10678 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10679 if (insn->code != (BPF_JMP | BPF_CALL) || 10680 insn->src_reg != BPF_PSEUDO_CALL) 10681 continue; 10682 /* Upon error here we cannot fall back to interpreter but 10683 * need a hard reject of the program. Thus -EFAULT is 10684 * propagated in any case. 10685 */ 10686 subprog = find_subprog(env, i + insn->imm + 1); 10687 if (subprog < 0) { 10688 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10689 i + insn->imm + 1); 10690 return -EFAULT; 10691 } 10692 /* temporarily remember subprog id inside insn instead of 10693 * aux_data, since next loop will split up all insns into funcs 10694 */ 10695 insn->off = subprog; 10696 /* remember original imm in case JIT fails and fallback 10697 * to interpreter will be needed 10698 */ 10699 env->insn_aux_data[i].call_imm = insn->imm; 10700 /* point imm to __bpf_call_base+1 from JITs point of view */ 10701 insn->imm = 1; 10702 } 10703 10704 err = bpf_prog_alloc_jited_linfo(prog); 10705 if (err) 10706 goto out_undo_insn; 10707 10708 err = -ENOMEM; 10709 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10710 if (!func) 10711 goto out_undo_insn; 10712 10713 for (i = 0; i < env->subprog_cnt; i++) { 10714 subprog_start = subprog_end; 10715 subprog_end = env->subprog_info[i + 1].start; 10716 10717 len = subprog_end - subprog_start; 10718 /* BPF_PROG_RUN doesn't call subprogs directly, 10719 * hence main prog stats include the runtime of subprogs. 10720 * subprogs don't have IDs and not reachable via prog_get_next_id 10721 * func[i]->aux->stats will never be accessed and stays NULL 10722 */ 10723 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10724 if (!func[i]) 10725 goto out_free; 10726 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10727 len * sizeof(struct bpf_insn)); 10728 func[i]->type = prog->type; 10729 func[i]->len = len; 10730 if (bpf_prog_calc_tag(func[i])) 10731 goto out_free; 10732 func[i]->is_func = 1; 10733 func[i]->aux->func_idx = i; 10734 /* the btf and func_info will be freed only at prog->aux */ 10735 func[i]->aux->btf = prog->aux->btf; 10736 func[i]->aux->func_info = prog->aux->func_info; 10737 10738 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10739 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10740 int ret; 10741 10742 if (!(insn_idx >= subprog_start && 10743 insn_idx <= subprog_end)) 10744 continue; 10745 10746 ret = bpf_jit_add_poke_descriptor(func[i], 10747 &prog->aux->poke_tab[j]); 10748 if (ret < 0) { 10749 verbose(env, "adding tail call poke descriptor failed\n"); 10750 goto out_free; 10751 } 10752 10753 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10754 10755 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10756 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10757 if (ret < 0) { 10758 verbose(env, "tracking tail call prog failed\n"); 10759 goto out_free; 10760 } 10761 } 10762 10763 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10764 * Long term would need debug info to populate names 10765 */ 10766 func[i]->aux->name[0] = 'F'; 10767 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10768 func[i]->jit_requested = 1; 10769 func[i]->aux->linfo = prog->aux->linfo; 10770 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10771 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10772 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10773 num_exentries = 0; 10774 insn = func[i]->insnsi; 10775 for (j = 0; j < func[i]->len; j++, insn++) { 10776 if (BPF_CLASS(insn->code) == BPF_LDX && 10777 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10778 num_exentries++; 10779 } 10780 func[i]->aux->num_exentries = num_exentries; 10781 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10782 func[i] = bpf_int_jit_compile(func[i]); 10783 if (!func[i]->jited) { 10784 err = -ENOTSUPP; 10785 goto out_free; 10786 } 10787 cond_resched(); 10788 } 10789 10790 /* Untrack main program's aux structs so that during map_poke_run() 10791 * we will not stumble upon the unfilled poke descriptors; each 10792 * of the main program's poke descs got distributed across subprogs 10793 * and got tracked onto map, so we are sure that none of them will 10794 * be missed after the operation below 10795 */ 10796 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10797 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10798 10799 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10800 } 10801 10802 /* at this point all bpf functions were successfully JITed 10803 * now populate all bpf_calls with correct addresses and 10804 * run last pass of JIT 10805 */ 10806 for (i = 0; i < env->subprog_cnt; i++) { 10807 insn = func[i]->insnsi; 10808 for (j = 0; j < func[i]->len; j++, insn++) { 10809 if (insn->code != (BPF_JMP | BPF_CALL) || 10810 insn->src_reg != BPF_PSEUDO_CALL) 10811 continue; 10812 subprog = insn->off; 10813 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10814 __bpf_call_base; 10815 } 10816 10817 /* we use the aux data to keep a list of the start addresses 10818 * of the JITed images for each function in the program 10819 * 10820 * for some architectures, such as powerpc64, the imm field 10821 * might not be large enough to hold the offset of the start 10822 * address of the callee's JITed image from __bpf_call_base 10823 * 10824 * in such cases, we can lookup the start address of a callee 10825 * by using its subprog id, available from the off field of 10826 * the call instruction, as an index for this list 10827 */ 10828 func[i]->aux->func = func; 10829 func[i]->aux->func_cnt = env->subprog_cnt; 10830 } 10831 for (i = 0; i < env->subprog_cnt; i++) { 10832 old_bpf_func = func[i]->bpf_func; 10833 tmp = bpf_int_jit_compile(func[i]); 10834 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10835 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10836 err = -ENOTSUPP; 10837 goto out_free; 10838 } 10839 cond_resched(); 10840 } 10841 10842 /* finally lock prog and jit images for all functions and 10843 * populate kallsysm 10844 */ 10845 for (i = 0; i < env->subprog_cnt; i++) { 10846 bpf_prog_lock_ro(func[i]); 10847 bpf_prog_kallsyms_add(func[i]); 10848 } 10849 10850 /* Last step: make now unused interpreter insns from main 10851 * prog consistent for later dump requests, so they can 10852 * later look the same as if they were interpreted only. 10853 */ 10854 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10855 if (insn->code != (BPF_JMP | BPF_CALL) || 10856 insn->src_reg != BPF_PSEUDO_CALL) 10857 continue; 10858 insn->off = env->insn_aux_data[i].call_imm; 10859 subprog = find_subprog(env, i + insn->off + 1); 10860 insn->imm = subprog; 10861 } 10862 10863 prog->jited = 1; 10864 prog->bpf_func = func[0]->bpf_func; 10865 prog->aux->func = func; 10866 prog->aux->func_cnt = env->subprog_cnt; 10867 bpf_prog_free_unused_jited_linfo(prog); 10868 return 0; 10869 out_free: 10870 for (i = 0; i < env->subprog_cnt; i++) { 10871 if (!func[i]) 10872 continue; 10873 10874 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10875 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10876 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10877 } 10878 bpf_jit_free(func[i]); 10879 } 10880 kfree(func); 10881 out_undo_insn: 10882 /* cleanup main prog to be interpreted */ 10883 prog->jit_requested = 0; 10884 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10885 if (insn->code != (BPF_JMP | BPF_CALL) || 10886 insn->src_reg != BPF_PSEUDO_CALL) 10887 continue; 10888 insn->off = 0; 10889 insn->imm = env->insn_aux_data[i].call_imm; 10890 } 10891 bpf_prog_free_jited_linfo(prog); 10892 return err; 10893 } 10894 10895 static int fixup_call_args(struct bpf_verifier_env *env) 10896 { 10897 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10898 struct bpf_prog *prog = env->prog; 10899 struct bpf_insn *insn = prog->insnsi; 10900 int i, depth; 10901 #endif 10902 int err = 0; 10903 10904 if (env->prog->jit_requested && 10905 !bpf_prog_is_dev_bound(env->prog->aux)) { 10906 err = jit_subprogs(env); 10907 if (err == 0) 10908 return 0; 10909 if (err == -EFAULT) 10910 return err; 10911 } 10912 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10913 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10914 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10915 * have to be rejected, since interpreter doesn't support them yet. 10916 */ 10917 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10918 return -EINVAL; 10919 } 10920 for (i = 0; i < prog->len; i++, insn++) { 10921 if (insn->code != (BPF_JMP | BPF_CALL) || 10922 insn->src_reg != BPF_PSEUDO_CALL) 10923 continue; 10924 depth = get_callee_stack_depth(env, insn, i); 10925 if (depth < 0) 10926 return depth; 10927 bpf_patch_call_args(insn, depth); 10928 } 10929 err = 0; 10930 #endif 10931 return err; 10932 } 10933 10934 /* fixup insn->imm field of bpf_call instructions 10935 * and inline eligible helpers as explicit sequence of BPF instructions 10936 * 10937 * this function is called after eBPF program passed verification 10938 */ 10939 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10940 { 10941 struct bpf_prog *prog = env->prog; 10942 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10943 struct bpf_insn *insn = prog->insnsi; 10944 const struct bpf_func_proto *fn; 10945 const int insn_cnt = prog->len; 10946 const struct bpf_map_ops *ops; 10947 struct bpf_insn_aux_data *aux; 10948 struct bpf_insn insn_buf[16]; 10949 struct bpf_prog *new_prog; 10950 struct bpf_map *map_ptr; 10951 int i, ret, cnt, delta = 0; 10952 10953 for (i = 0; i < insn_cnt; i++, insn++) { 10954 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10955 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10956 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10957 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10958 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10959 struct bpf_insn mask_and_div[] = { 10960 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10961 /* Rx div 0 -> 0 */ 10962 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10963 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10964 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10965 *insn, 10966 }; 10967 struct bpf_insn mask_and_mod[] = { 10968 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10969 /* Rx mod 0 -> Rx */ 10970 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10971 *insn, 10972 }; 10973 struct bpf_insn *patchlet; 10974 10975 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10976 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10977 patchlet = mask_and_div + (is64 ? 1 : 0); 10978 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10979 } else { 10980 patchlet = mask_and_mod + (is64 ? 1 : 0); 10981 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10982 } 10983 10984 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10985 if (!new_prog) 10986 return -ENOMEM; 10987 10988 delta += cnt - 1; 10989 env->prog = prog = new_prog; 10990 insn = new_prog->insnsi + i + delta; 10991 continue; 10992 } 10993 10994 if (BPF_CLASS(insn->code) == BPF_LD && 10995 (BPF_MODE(insn->code) == BPF_ABS || 10996 BPF_MODE(insn->code) == BPF_IND)) { 10997 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10998 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10999 verbose(env, "bpf verifier is misconfigured\n"); 11000 return -EINVAL; 11001 } 11002 11003 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11004 if (!new_prog) 11005 return -ENOMEM; 11006 11007 delta += cnt - 1; 11008 env->prog = prog = new_prog; 11009 insn = new_prog->insnsi + i + delta; 11010 continue; 11011 } 11012 11013 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 11014 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 11015 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 11016 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 11017 struct bpf_insn insn_buf[16]; 11018 struct bpf_insn *patch = &insn_buf[0]; 11019 bool issrc, isneg; 11020 u32 off_reg; 11021 11022 aux = &env->insn_aux_data[i + delta]; 11023 if (!aux->alu_state || 11024 aux->alu_state == BPF_ALU_NON_POINTER) 11025 continue; 11026 11027 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 11028 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 11029 BPF_ALU_SANITIZE_SRC; 11030 11031 off_reg = issrc ? insn->src_reg : insn->dst_reg; 11032 if (isneg) 11033 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11034 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 11035 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 11036 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 11037 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 11038 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 11039 if (issrc) { 11040 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 11041 off_reg); 11042 insn->src_reg = BPF_REG_AX; 11043 } else { 11044 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 11045 BPF_REG_AX); 11046 } 11047 if (isneg) 11048 insn->code = insn->code == code_add ? 11049 code_sub : code_add; 11050 *patch++ = *insn; 11051 if (issrc && isneg) 11052 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11053 cnt = patch - insn_buf; 11054 11055 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11056 if (!new_prog) 11057 return -ENOMEM; 11058 11059 delta += cnt - 1; 11060 env->prog = prog = new_prog; 11061 insn = new_prog->insnsi + i + delta; 11062 continue; 11063 } 11064 11065 if (insn->code != (BPF_JMP | BPF_CALL)) 11066 continue; 11067 if (insn->src_reg == BPF_PSEUDO_CALL) 11068 continue; 11069 11070 if (insn->imm == BPF_FUNC_get_route_realm) 11071 prog->dst_needed = 1; 11072 if (insn->imm == BPF_FUNC_get_prandom_u32) 11073 bpf_user_rnd_init_once(); 11074 if (insn->imm == BPF_FUNC_override_return) 11075 prog->kprobe_override = 1; 11076 if (insn->imm == BPF_FUNC_tail_call) { 11077 /* If we tail call into other programs, we 11078 * cannot make any assumptions since they can 11079 * be replaced dynamically during runtime in 11080 * the program array. 11081 */ 11082 prog->cb_access = 1; 11083 if (!allow_tail_call_in_subprogs(env)) 11084 prog->aux->stack_depth = MAX_BPF_STACK; 11085 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11086 11087 /* mark bpf_tail_call as different opcode to avoid 11088 * conditional branch in the interpeter for every normal 11089 * call and to prevent accidental JITing by JIT compiler 11090 * that doesn't support bpf_tail_call yet 11091 */ 11092 insn->imm = 0; 11093 insn->code = BPF_JMP | BPF_TAIL_CALL; 11094 11095 aux = &env->insn_aux_data[i + delta]; 11096 if (env->bpf_capable && !expect_blinding && 11097 prog->jit_requested && 11098 !bpf_map_key_poisoned(aux) && 11099 !bpf_map_ptr_poisoned(aux) && 11100 !bpf_map_ptr_unpriv(aux)) { 11101 struct bpf_jit_poke_descriptor desc = { 11102 .reason = BPF_POKE_REASON_TAIL_CALL, 11103 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11104 .tail_call.key = bpf_map_key_immediate(aux), 11105 .insn_idx = i + delta, 11106 }; 11107 11108 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11109 if (ret < 0) { 11110 verbose(env, "adding tail call poke descriptor failed\n"); 11111 return ret; 11112 } 11113 11114 insn->imm = ret + 1; 11115 continue; 11116 } 11117 11118 if (!bpf_map_ptr_unpriv(aux)) 11119 continue; 11120 11121 /* instead of changing every JIT dealing with tail_call 11122 * emit two extra insns: 11123 * if (index >= max_entries) goto out; 11124 * index &= array->index_mask; 11125 * to avoid out-of-bounds cpu speculation 11126 */ 11127 if (bpf_map_ptr_poisoned(aux)) { 11128 verbose(env, "tail_call abusing map_ptr\n"); 11129 return -EINVAL; 11130 } 11131 11132 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11133 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11134 map_ptr->max_entries, 2); 11135 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11136 container_of(map_ptr, 11137 struct bpf_array, 11138 map)->index_mask); 11139 insn_buf[2] = *insn; 11140 cnt = 3; 11141 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11142 if (!new_prog) 11143 return -ENOMEM; 11144 11145 delta += cnt - 1; 11146 env->prog = prog = new_prog; 11147 insn = new_prog->insnsi + i + delta; 11148 continue; 11149 } 11150 11151 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11152 * and other inlining handlers are currently limited to 64 bit 11153 * only. 11154 */ 11155 if (prog->jit_requested && BITS_PER_LONG == 64 && 11156 (insn->imm == BPF_FUNC_map_lookup_elem || 11157 insn->imm == BPF_FUNC_map_update_elem || 11158 insn->imm == BPF_FUNC_map_delete_elem || 11159 insn->imm == BPF_FUNC_map_push_elem || 11160 insn->imm == BPF_FUNC_map_pop_elem || 11161 insn->imm == BPF_FUNC_map_peek_elem)) { 11162 aux = &env->insn_aux_data[i + delta]; 11163 if (bpf_map_ptr_poisoned(aux)) 11164 goto patch_call_imm; 11165 11166 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11167 ops = map_ptr->ops; 11168 if (insn->imm == BPF_FUNC_map_lookup_elem && 11169 ops->map_gen_lookup) { 11170 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11171 if (cnt == -EOPNOTSUPP) 11172 goto patch_map_ops_generic; 11173 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11174 verbose(env, "bpf verifier is misconfigured\n"); 11175 return -EINVAL; 11176 } 11177 11178 new_prog = bpf_patch_insn_data(env, i + delta, 11179 insn_buf, cnt); 11180 if (!new_prog) 11181 return -ENOMEM; 11182 11183 delta += cnt - 1; 11184 env->prog = prog = new_prog; 11185 insn = new_prog->insnsi + i + delta; 11186 continue; 11187 } 11188 11189 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11190 (void *(*)(struct bpf_map *map, void *key))NULL)); 11191 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11192 (int (*)(struct bpf_map *map, void *key))NULL)); 11193 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11194 (int (*)(struct bpf_map *map, void *key, void *value, 11195 u64 flags))NULL)); 11196 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11197 (int (*)(struct bpf_map *map, void *value, 11198 u64 flags))NULL)); 11199 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11200 (int (*)(struct bpf_map *map, void *value))NULL)); 11201 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11202 (int (*)(struct bpf_map *map, void *value))NULL)); 11203 patch_map_ops_generic: 11204 switch (insn->imm) { 11205 case BPF_FUNC_map_lookup_elem: 11206 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11207 __bpf_call_base; 11208 continue; 11209 case BPF_FUNC_map_update_elem: 11210 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11211 __bpf_call_base; 11212 continue; 11213 case BPF_FUNC_map_delete_elem: 11214 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11215 __bpf_call_base; 11216 continue; 11217 case BPF_FUNC_map_push_elem: 11218 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11219 __bpf_call_base; 11220 continue; 11221 case BPF_FUNC_map_pop_elem: 11222 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11223 __bpf_call_base; 11224 continue; 11225 case BPF_FUNC_map_peek_elem: 11226 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11227 __bpf_call_base; 11228 continue; 11229 } 11230 11231 goto patch_call_imm; 11232 } 11233 11234 if (prog->jit_requested && BITS_PER_LONG == 64 && 11235 insn->imm == BPF_FUNC_jiffies64) { 11236 struct bpf_insn ld_jiffies_addr[2] = { 11237 BPF_LD_IMM64(BPF_REG_0, 11238 (unsigned long)&jiffies), 11239 }; 11240 11241 insn_buf[0] = ld_jiffies_addr[0]; 11242 insn_buf[1] = ld_jiffies_addr[1]; 11243 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11244 BPF_REG_0, 0); 11245 cnt = 3; 11246 11247 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11248 cnt); 11249 if (!new_prog) 11250 return -ENOMEM; 11251 11252 delta += cnt - 1; 11253 env->prog = prog = new_prog; 11254 insn = new_prog->insnsi + i + delta; 11255 continue; 11256 } 11257 11258 patch_call_imm: 11259 fn = env->ops->get_func_proto(insn->imm, env->prog); 11260 /* all functions that have prototype and verifier allowed 11261 * programs to call them, must be real in-kernel functions 11262 */ 11263 if (!fn->func) { 11264 verbose(env, 11265 "kernel subsystem misconfigured func %s#%d\n", 11266 func_id_name(insn->imm), insn->imm); 11267 return -EFAULT; 11268 } 11269 insn->imm = fn->func - __bpf_call_base; 11270 } 11271 11272 /* Since poke tab is now finalized, publish aux to tracker. */ 11273 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11274 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11275 if (!map_ptr->ops->map_poke_track || 11276 !map_ptr->ops->map_poke_untrack || 11277 !map_ptr->ops->map_poke_run) { 11278 verbose(env, "bpf verifier is misconfigured\n"); 11279 return -EINVAL; 11280 } 11281 11282 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11283 if (ret < 0) { 11284 verbose(env, "tracking tail call prog failed\n"); 11285 return ret; 11286 } 11287 } 11288 11289 return 0; 11290 } 11291 11292 static void free_states(struct bpf_verifier_env *env) 11293 { 11294 struct bpf_verifier_state_list *sl, *sln; 11295 int i; 11296 11297 sl = env->free_list; 11298 while (sl) { 11299 sln = sl->next; 11300 free_verifier_state(&sl->state, false); 11301 kfree(sl); 11302 sl = sln; 11303 } 11304 env->free_list = NULL; 11305 11306 if (!env->explored_states) 11307 return; 11308 11309 for (i = 0; i < state_htab_size(env); i++) { 11310 sl = env->explored_states[i]; 11311 11312 while (sl) { 11313 sln = sl->next; 11314 free_verifier_state(&sl->state, false); 11315 kfree(sl); 11316 sl = sln; 11317 } 11318 env->explored_states[i] = NULL; 11319 } 11320 } 11321 11322 /* The verifier is using insn_aux_data[] to store temporary data during 11323 * verification and to store information for passes that run after the 11324 * verification like dead code sanitization. do_check_common() for subprogram N 11325 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11326 * temporary data after do_check_common() finds that subprogram N cannot be 11327 * verified independently. pass_cnt counts the number of times 11328 * do_check_common() was run and insn->aux->seen tells the pass number 11329 * insn_aux_data was touched. These variables are compared to clear temporary 11330 * data from failed pass. For testing and experiments do_check_common() can be 11331 * run multiple times even when prior attempt to verify is unsuccessful. 11332 */ 11333 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11334 { 11335 struct bpf_insn *insn = env->prog->insnsi; 11336 struct bpf_insn_aux_data *aux; 11337 int i, class; 11338 11339 for (i = 0; i < env->prog->len; i++) { 11340 class = BPF_CLASS(insn[i].code); 11341 if (class != BPF_LDX && class != BPF_STX) 11342 continue; 11343 aux = &env->insn_aux_data[i]; 11344 if (aux->seen != env->pass_cnt) 11345 continue; 11346 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11347 } 11348 } 11349 11350 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11351 { 11352 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11353 struct bpf_verifier_state *state; 11354 struct bpf_reg_state *regs; 11355 int ret, i; 11356 11357 env->prev_linfo = NULL; 11358 env->pass_cnt++; 11359 11360 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11361 if (!state) 11362 return -ENOMEM; 11363 state->curframe = 0; 11364 state->speculative = false; 11365 state->branches = 1; 11366 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11367 if (!state->frame[0]) { 11368 kfree(state); 11369 return -ENOMEM; 11370 } 11371 env->cur_state = state; 11372 init_func_state(env, state->frame[0], 11373 BPF_MAIN_FUNC /* callsite */, 11374 0 /* frameno */, 11375 subprog); 11376 11377 regs = state->frame[state->curframe]->regs; 11378 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11379 ret = btf_prepare_func_args(env, subprog, regs); 11380 if (ret) 11381 goto out; 11382 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11383 if (regs[i].type == PTR_TO_CTX) 11384 mark_reg_known_zero(env, regs, i); 11385 else if (regs[i].type == SCALAR_VALUE) 11386 mark_reg_unknown(env, regs, i); 11387 } 11388 } else { 11389 /* 1st arg to a function */ 11390 regs[BPF_REG_1].type = PTR_TO_CTX; 11391 mark_reg_known_zero(env, regs, BPF_REG_1); 11392 ret = btf_check_func_arg_match(env, subprog, regs); 11393 if (ret == -EFAULT) 11394 /* unlikely verifier bug. abort. 11395 * ret == 0 and ret < 0 are sadly acceptable for 11396 * main() function due to backward compatibility. 11397 * Like socket filter program may be written as: 11398 * int bpf_prog(struct pt_regs *ctx) 11399 * and never dereference that ctx in the program. 11400 * 'struct pt_regs' is a type mismatch for socket 11401 * filter that should be using 'struct __sk_buff'. 11402 */ 11403 goto out; 11404 } 11405 11406 ret = do_check(env); 11407 out: 11408 /* check for NULL is necessary, since cur_state can be freed inside 11409 * do_check() under memory pressure. 11410 */ 11411 if (env->cur_state) { 11412 free_verifier_state(env->cur_state, true); 11413 env->cur_state = NULL; 11414 } 11415 while (!pop_stack(env, NULL, NULL, false)); 11416 if (!ret && pop_log) 11417 bpf_vlog_reset(&env->log, 0); 11418 free_states(env); 11419 if (ret) 11420 /* clean aux data in case subprog was rejected */ 11421 sanitize_insn_aux_data(env); 11422 return ret; 11423 } 11424 11425 /* Verify all global functions in a BPF program one by one based on their BTF. 11426 * All global functions must pass verification. Otherwise the whole program is rejected. 11427 * Consider: 11428 * int bar(int); 11429 * int foo(int f) 11430 * { 11431 * return bar(f); 11432 * } 11433 * int bar(int b) 11434 * { 11435 * ... 11436 * } 11437 * foo() will be verified first for R1=any_scalar_value. During verification it 11438 * will be assumed that bar() already verified successfully and call to bar() 11439 * from foo() will be checked for type match only. Later bar() will be verified 11440 * independently to check that it's safe for R1=any_scalar_value. 11441 */ 11442 static int do_check_subprogs(struct bpf_verifier_env *env) 11443 { 11444 struct bpf_prog_aux *aux = env->prog->aux; 11445 int i, ret; 11446 11447 if (!aux->func_info) 11448 return 0; 11449 11450 for (i = 1; i < env->subprog_cnt; i++) { 11451 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11452 continue; 11453 env->insn_idx = env->subprog_info[i].start; 11454 WARN_ON_ONCE(env->insn_idx == 0); 11455 ret = do_check_common(env, i); 11456 if (ret) { 11457 return ret; 11458 } else if (env->log.level & BPF_LOG_LEVEL) { 11459 verbose(env, 11460 "Func#%d is safe for any args that match its prototype\n", 11461 i); 11462 } 11463 } 11464 return 0; 11465 } 11466 11467 static int do_check_main(struct bpf_verifier_env *env) 11468 { 11469 int ret; 11470 11471 env->insn_idx = 0; 11472 ret = do_check_common(env, 0); 11473 if (!ret) 11474 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11475 return ret; 11476 } 11477 11478 11479 static void print_verification_stats(struct bpf_verifier_env *env) 11480 { 11481 int i; 11482 11483 if (env->log.level & BPF_LOG_STATS) { 11484 verbose(env, "verification time %lld usec\n", 11485 div_u64(env->verification_time, 1000)); 11486 verbose(env, "stack depth "); 11487 for (i = 0; i < env->subprog_cnt; i++) { 11488 u32 depth = env->subprog_info[i].stack_depth; 11489 11490 verbose(env, "%d", depth); 11491 if (i + 1 < env->subprog_cnt) 11492 verbose(env, "+"); 11493 } 11494 verbose(env, "\n"); 11495 } 11496 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11497 "total_states %d peak_states %d mark_read %d\n", 11498 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11499 env->max_states_per_insn, env->total_states, 11500 env->peak_states, env->longest_mark_read_walk); 11501 } 11502 11503 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11504 { 11505 const struct btf_type *t, *func_proto; 11506 const struct bpf_struct_ops *st_ops; 11507 const struct btf_member *member; 11508 struct bpf_prog *prog = env->prog; 11509 u32 btf_id, member_idx; 11510 const char *mname; 11511 11512 btf_id = prog->aux->attach_btf_id; 11513 st_ops = bpf_struct_ops_find(btf_id); 11514 if (!st_ops) { 11515 verbose(env, "attach_btf_id %u is not a supported struct\n", 11516 btf_id); 11517 return -ENOTSUPP; 11518 } 11519 11520 t = st_ops->type; 11521 member_idx = prog->expected_attach_type; 11522 if (member_idx >= btf_type_vlen(t)) { 11523 verbose(env, "attach to invalid member idx %u of struct %s\n", 11524 member_idx, st_ops->name); 11525 return -EINVAL; 11526 } 11527 11528 member = &btf_type_member(t)[member_idx]; 11529 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11530 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11531 NULL); 11532 if (!func_proto) { 11533 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11534 mname, member_idx, st_ops->name); 11535 return -EINVAL; 11536 } 11537 11538 if (st_ops->check_member) { 11539 int err = st_ops->check_member(t, member); 11540 11541 if (err) { 11542 verbose(env, "attach to unsupported member %s of struct %s\n", 11543 mname, st_ops->name); 11544 return err; 11545 } 11546 } 11547 11548 prog->aux->attach_func_proto = func_proto; 11549 prog->aux->attach_func_name = mname; 11550 env->ops = st_ops->verifier_ops; 11551 11552 return 0; 11553 } 11554 #define SECURITY_PREFIX "security_" 11555 11556 static int check_attach_modify_return(unsigned long addr, const char *func_name) 11557 { 11558 if (within_error_injection_list(addr) || 11559 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 11560 return 0; 11561 11562 return -EINVAL; 11563 } 11564 11565 /* list of non-sleepable functions that are otherwise on 11566 * ALLOW_ERROR_INJECTION list 11567 */ 11568 BTF_SET_START(btf_non_sleepable_error_inject) 11569 /* Three functions below can be called from sleepable and non-sleepable context. 11570 * Assume non-sleepable from bpf safety point of view. 11571 */ 11572 BTF_ID(func, __add_to_page_cache_locked) 11573 BTF_ID(func, should_fail_alloc_page) 11574 BTF_ID(func, should_failslab) 11575 BTF_SET_END(btf_non_sleepable_error_inject) 11576 11577 static int check_non_sleepable_error_inject(u32 btf_id) 11578 { 11579 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11580 } 11581 11582 int bpf_check_attach_target(struct bpf_verifier_log *log, 11583 const struct bpf_prog *prog, 11584 const struct bpf_prog *tgt_prog, 11585 u32 btf_id, 11586 struct bpf_attach_target_info *tgt_info) 11587 { 11588 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11589 const char prefix[] = "btf_trace_"; 11590 int ret = 0, subprog = -1, i; 11591 const struct btf_type *t; 11592 bool conservative = true; 11593 const char *tname; 11594 struct btf *btf; 11595 long addr = 0; 11596 11597 if (!btf_id) { 11598 bpf_log(log, "Tracing programs must provide btf_id\n"); 11599 return -EINVAL; 11600 } 11601 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux; 11602 if (!btf) { 11603 bpf_log(log, 11604 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11605 return -EINVAL; 11606 } 11607 t = btf_type_by_id(btf, btf_id); 11608 if (!t) { 11609 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11610 return -EINVAL; 11611 } 11612 tname = btf_name_by_offset(btf, t->name_off); 11613 if (!tname) { 11614 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11615 return -EINVAL; 11616 } 11617 if (tgt_prog) { 11618 struct bpf_prog_aux *aux = tgt_prog->aux; 11619 11620 for (i = 0; i < aux->func_info_cnt; i++) 11621 if (aux->func_info[i].type_id == btf_id) { 11622 subprog = i; 11623 break; 11624 } 11625 if (subprog == -1) { 11626 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11627 return -EINVAL; 11628 } 11629 conservative = aux->func_info_aux[subprog].unreliable; 11630 if (prog_extension) { 11631 if (conservative) { 11632 bpf_log(log, 11633 "Cannot replace static functions\n"); 11634 return -EINVAL; 11635 } 11636 if (!prog->jit_requested) { 11637 bpf_log(log, 11638 "Extension programs should be JITed\n"); 11639 return -EINVAL; 11640 } 11641 } 11642 if (!tgt_prog->jited) { 11643 bpf_log(log, "Can attach to only JITed progs\n"); 11644 return -EINVAL; 11645 } 11646 if (tgt_prog->type == prog->type) { 11647 /* Cannot fentry/fexit another fentry/fexit program. 11648 * Cannot attach program extension to another extension. 11649 * It's ok to attach fentry/fexit to extension program. 11650 */ 11651 bpf_log(log, "Cannot recursively attach\n"); 11652 return -EINVAL; 11653 } 11654 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11655 prog_extension && 11656 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11657 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11658 /* Program extensions can extend all program types 11659 * except fentry/fexit. The reason is the following. 11660 * The fentry/fexit programs are used for performance 11661 * analysis, stats and can be attached to any program 11662 * type except themselves. When extension program is 11663 * replacing XDP function it is necessary to allow 11664 * performance analysis of all functions. Both original 11665 * XDP program and its program extension. Hence 11666 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11667 * allowed. If extending of fentry/fexit was allowed it 11668 * would be possible to create long call chain 11669 * fentry->extension->fentry->extension beyond 11670 * reasonable stack size. Hence extending fentry is not 11671 * allowed. 11672 */ 11673 bpf_log(log, "Cannot extend fentry/fexit\n"); 11674 return -EINVAL; 11675 } 11676 } else { 11677 if (prog_extension) { 11678 bpf_log(log, "Cannot replace kernel functions\n"); 11679 return -EINVAL; 11680 } 11681 } 11682 11683 switch (prog->expected_attach_type) { 11684 case BPF_TRACE_RAW_TP: 11685 if (tgt_prog) { 11686 bpf_log(log, 11687 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11688 return -EINVAL; 11689 } 11690 if (!btf_type_is_typedef(t)) { 11691 bpf_log(log, "attach_btf_id %u is not a typedef\n", 11692 btf_id); 11693 return -EINVAL; 11694 } 11695 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11696 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 11697 btf_id, tname); 11698 return -EINVAL; 11699 } 11700 tname += sizeof(prefix) - 1; 11701 t = btf_type_by_id(btf, t->type); 11702 if (!btf_type_is_ptr(t)) 11703 /* should never happen in valid vmlinux build */ 11704 return -EINVAL; 11705 t = btf_type_by_id(btf, t->type); 11706 if (!btf_type_is_func_proto(t)) 11707 /* should never happen in valid vmlinux build */ 11708 return -EINVAL; 11709 11710 break; 11711 case BPF_TRACE_ITER: 11712 if (!btf_type_is_func(t)) { 11713 bpf_log(log, "attach_btf_id %u is not a function\n", 11714 btf_id); 11715 return -EINVAL; 11716 } 11717 t = btf_type_by_id(btf, t->type); 11718 if (!btf_type_is_func_proto(t)) 11719 return -EINVAL; 11720 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11721 if (ret) 11722 return ret; 11723 break; 11724 default: 11725 if (!prog_extension) 11726 return -EINVAL; 11727 fallthrough; 11728 case BPF_MODIFY_RETURN: 11729 case BPF_LSM_MAC: 11730 case BPF_TRACE_FENTRY: 11731 case BPF_TRACE_FEXIT: 11732 if (!btf_type_is_func(t)) { 11733 bpf_log(log, "attach_btf_id %u is not a function\n", 11734 btf_id); 11735 return -EINVAL; 11736 } 11737 if (prog_extension && 11738 btf_check_type_match(log, prog, btf, t)) 11739 return -EINVAL; 11740 t = btf_type_by_id(btf, t->type); 11741 if (!btf_type_is_func_proto(t)) 11742 return -EINVAL; 11743 11744 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11745 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11746 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 11747 return -EINVAL; 11748 11749 if (tgt_prog && conservative) 11750 t = NULL; 11751 11752 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11753 if (ret < 0) 11754 return ret; 11755 11756 if (tgt_prog) { 11757 if (subprog == 0) 11758 addr = (long) tgt_prog->bpf_func; 11759 else 11760 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11761 } else { 11762 addr = kallsyms_lookup_name(tname); 11763 if (!addr) { 11764 bpf_log(log, 11765 "The address of function %s cannot be found\n", 11766 tname); 11767 return -ENOENT; 11768 } 11769 } 11770 11771 if (prog->aux->sleepable) { 11772 ret = -EINVAL; 11773 switch (prog->type) { 11774 case BPF_PROG_TYPE_TRACING: 11775 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11776 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11777 */ 11778 if (!check_non_sleepable_error_inject(btf_id) && 11779 within_error_injection_list(addr)) 11780 ret = 0; 11781 break; 11782 case BPF_PROG_TYPE_LSM: 11783 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11784 * Only some of them are sleepable. 11785 */ 11786 if (bpf_lsm_is_sleepable_hook(btf_id)) 11787 ret = 0; 11788 break; 11789 default: 11790 break; 11791 } 11792 if (ret) { 11793 bpf_log(log, "%s is not sleepable\n", tname); 11794 return ret; 11795 } 11796 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11797 if (tgt_prog) { 11798 bpf_log(log, "can't modify return codes of BPF programs\n"); 11799 return -EINVAL; 11800 } 11801 ret = check_attach_modify_return(addr, tname); 11802 if (ret) { 11803 bpf_log(log, "%s() is not modifiable\n", tname); 11804 return ret; 11805 } 11806 } 11807 11808 break; 11809 } 11810 tgt_info->tgt_addr = addr; 11811 tgt_info->tgt_name = tname; 11812 tgt_info->tgt_type = t; 11813 return 0; 11814 } 11815 11816 static int check_attach_btf_id(struct bpf_verifier_env *env) 11817 { 11818 struct bpf_prog *prog = env->prog; 11819 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 11820 struct bpf_attach_target_info tgt_info = {}; 11821 u32 btf_id = prog->aux->attach_btf_id; 11822 struct bpf_trampoline *tr; 11823 int ret; 11824 u64 key; 11825 11826 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11827 prog->type != BPF_PROG_TYPE_LSM) { 11828 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11829 return -EINVAL; 11830 } 11831 11832 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11833 return check_struct_ops_btf_id(env); 11834 11835 if (prog->type != BPF_PROG_TYPE_TRACING && 11836 prog->type != BPF_PROG_TYPE_LSM && 11837 prog->type != BPF_PROG_TYPE_EXT) 11838 return 0; 11839 11840 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 11841 if (ret) 11842 return ret; 11843 11844 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 11845 /* to make freplace equivalent to their targets, they need to 11846 * inherit env->ops and expected_attach_type for the rest of the 11847 * verification 11848 */ 11849 env->ops = bpf_verifier_ops[tgt_prog->type]; 11850 prog->expected_attach_type = tgt_prog->expected_attach_type; 11851 } 11852 11853 /* store info about the attachment target that will be used later */ 11854 prog->aux->attach_func_proto = tgt_info.tgt_type; 11855 prog->aux->attach_func_name = tgt_info.tgt_name; 11856 11857 if (tgt_prog) { 11858 prog->aux->saved_dst_prog_type = tgt_prog->type; 11859 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 11860 } 11861 11862 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 11863 prog->aux->attach_btf_trace = true; 11864 return 0; 11865 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 11866 if (!bpf_iter_prog_supported(prog)) 11867 return -EINVAL; 11868 return 0; 11869 } 11870 11871 if (prog->type == BPF_PROG_TYPE_LSM) { 11872 ret = bpf_lsm_verify_prog(&env->log, prog); 11873 if (ret < 0) 11874 return ret; 11875 } 11876 11877 key = bpf_trampoline_compute_key(tgt_prog, btf_id); 11878 tr = bpf_trampoline_get(key, &tgt_info); 11879 if (!tr) 11880 return -ENOMEM; 11881 11882 prog->aux->dst_trampoline = tr; 11883 return 0; 11884 } 11885 11886 struct btf *bpf_get_btf_vmlinux(void) 11887 { 11888 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11889 mutex_lock(&bpf_verifier_lock); 11890 if (!btf_vmlinux) 11891 btf_vmlinux = btf_parse_vmlinux(); 11892 mutex_unlock(&bpf_verifier_lock); 11893 } 11894 return btf_vmlinux; 11895 } 11896 11897 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11898 union bpf_attr __user *uattr) 11899 { 11900 u64 start_time = ktime_get_ns(); 11901 struct bpf_verifier_env *env; 11902 struct bpf_verifier_log *log; 11903 int i, len, ret = -EINVAL; 11904 bool is_priv; 11905 11906 /* no program is valid */ 11907 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11908 return -EINVAL; 11909 11910 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11911 * allocate/free it every time bpf_check() is called 11912 */ 11913 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11914 if (!env) 11915 return -ENOMEM; 11916 log = &env->log; 11917 11918 len = (*prog)->len; 11919 env->insn_aux_data = 11920 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11921 ret = -ENOMEM; 11922 if (!env->insn_aux_data) 11923 goto err_free_env; 11924 for (i = 0; i < len; i++) 11925 env->insn_aux_data[i].orig_idx = i; 11926 env->prog = *prog; 11927 env->ops = bpf_verifier_ops[env->prog->type]; 11928 is_priv = bpf_capable(); 11929 11930 bpf_get_btf_vmlinux(); 11931 11932 /* grab the mutex to protect few globals used by verifier */ 11933 if (!is_priv) 11934 mutex_lock(&bpf_verifier_lock); 11935 11936 if (attr->log_level || attr->log_buf || attr->log_size) { 11937 /* user requested verbose verifier output 11938 * and supplied buffer to store the verification trace 11939 */ 11940 log->level = attr->log_level; 11941 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11942 log->len_total = attr->log_size; 11943 11944 ret = -EINVAL; 11945 /* log attributes have to be sane */ 11946 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11947 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11948 goto err_unlock; 11949 } 11950 11951 if (IS_ERR(btf_vmlinux)) { 11952 /* Either gcc or pahole or kernel are broken. */ 11953 verbose(env, "in-kernel BTF is malformed\n"); 11954 ret = PTR_ERR(btf_vmlinux); 11955 goto skip_full_check; 11956 } 11957 11958 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11959 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11960 env->strict_alignment = true; 11961 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11962 env->strict_alignment = false; 11963 11964 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11965 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11966 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11967 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11968 env->bpf_capable = bpf_capable(); 11969 11970 if (is_priv) 11971 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11972 11973 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11974 ret = bpf_prog_offload_verifier_prep(env->prog); 11975 if (ret) 11976 goto skip_full_check; 11977 } 11978 11979 env->explored_states = kvcalloc(state_htab_size(env), 11980 sizeof(struct bpf_verifier_state_list *), 11981 GFP_USER); 11982 ret = -ENOMEM; 11983 if (!env->explored_states) 11984 goto skip_full_check; 11985 11986 ret = check_subprogs(env); 11987 if (ret < 0) 11988 goto skip_full_check; 11989 11990 ret = check_btf_info(env, attr, uattr); 11991 if (ret < 0) 11992 goto skip_full_check; 11993 11994 ret = check_attach_btf_id(env); 11995 if (ret) 11996 goto skip_full_check; 11997 11998 ret = resolve_pseudo_ldimm64(env); 11999 if (ret < 0) 12000 goto skip_full_check; 12001 12002 ret = check_cfg(env); 12003 if (ret < 0) 12004 goto skip_full_check; 12005 12006 ret = do_check_subprogs(env); 12007 ret = ret ?: do_check_main(env); 12008 12009 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 12010 ret = bpf_prog_offload_finalize(env); 12011 12012 skip_full_check: 12013 kvfree(env->explored_states); 12014 12015 if (ret == 0) 12016 ret = check_max_stack_depth(env); 12017 12018 /* instruction rewrites happen after this point */ 12019 if (is_priv) { 12020 if (ret == 0) 12021 opt_hard_wire_dead_code_branches(env); 12022 if (ret == 0) 12023 ret = opt_remove_dead_code(env); 12024 if (ret == 0) 12025 ret = opt_remove_nops(env); 12026 } else { 12027 if (ret == 0) 12028 sanitize_dead_code(env); 12029 } 12030 12031 if (ret == 0) 12032 /* program is valid, convert *(u32*)(ctx + off) accesses */ 12033 ret = convert_ctx_accesses(env); 12034 12035 if (ret == 0) 12036 ret = fixup_bpf_calls(env); 12037 12038 /* do 32-bit optimization after insn patching has done so those patched 12039 * insns could be handled correctly. 12040 */ 12041 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 12042 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 12043 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 12044 : false; 12045 } 12046 12047 if (ret == 0) 12048 ret = fixup_call_args(env); 12049 12050 env->verification_time = ktime_get_ns() - start_time; 12051 print_verification_stats(env); 12052 12053 if (log->level && bpf_verifier_log_full(log)) 12054 ret = -ENOSPC; 12055 if (log->level && !log->ubuf) { 12056 ret = -EFAULT; 12057 goto err_release_maps; 12058 } 12059 12060 if (ret == 0 && env->used_map_cnt) { 12061 /* if program passed verifier, update used_maps in bpf_prog_info */ 12062 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 12063 sizeof(env->used_maps[0]), 12064 GFP_KERNEL); 12065 12066 if (!env->prog->aux->used_maps) { 12067 ret = -ENOMEM; 12068 goto err_release_maps; 12069 } 12070 12071 memcpy(env->prog->aux->used_maps, env->used_maps, 12072 sizeof(env->used_maps[0]) * env->used_map_cnt); 12073 env->prog->aux->used_map_cnt = env->used_map_cnt; 12074 12075 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12076 * bpf_ld_imm64 instructions 12077 */ 12078 convert_pseudo_ld_imm64(env); 12079 } 12080 12081 if (ret == 0) 12082 adjust_btf_func(env); 12083 12084 err_release_maps: 12085 if (!env->prog->aux->used_maps) 12086 /* if we didn't copy map pointers into bpf_prog_info, release 12087 * them now. Otherwise free_used_maps() will release them. 12088 */ 12089 release_maps(env); 12090 12091 /* extension progs temporarily inherit the attach_type of their targets 12092 for verification purposes, so set it back to zero before returning 12093 */ 12094 if (env->prog->type == BPF_PROG_TYPE_EXT) 12095 env->prog->expected_attach_type = 0; 12096 12097 *prog = env->prog; 12098 err_unlock: 12099 if (!is_priv) 12100 mutex_unlock(&bpf_verifier_lock); 12101 vfree(env->insn_aux_data); 12102 err_free_env: 12103 kfree(env); 12104 return ret; 12105 } 12106