xref: /linux/kernel/bpf/verifier.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	struct btf *btf;
242 	u32 btf_id;
243 	struct btf *ret_btf;
244 	u32 ret_btf_id;
245 };
246 
247 struct btf *btf_vmlinux;
248 
249 static DEFINE_MUTEX(bpf_verifier_lock);
250 
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253 {
254 	const struct bpf_line_info *linfo;
255 	const struct bpf_prog *prog;
256 	u32 i, nr_linfo;
257 
258 	prog = env->prog;
259 	nr_linfo = prog->aux->nr_linfo;
260 
261 	if (!nr_linfo || insn_off >= prog->len)
262 		return NULL;
263 
264 	linfo = prog->aux->linfo;
265 	for (i = 1; i < nr_linfo; i++)
266 		if (insn_off < linfo[i].insn_off)
267 			break;
268 
269 	return &linfo[i - 1];
270 }
271 
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 		       va_list args)
274 {
275 	unsigned int n;
276 
277 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
278 
279 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 		  "verifier log line truncated - local buffer too short\n");
281 
282 	n = min(log->len_total - log->len_used - 1, n);
283 	log->kbuf[n] = '\0';
284 
285 	if (log->level == BPF_LOG_KERNEL) {
286 		pr_err("BPF:%s\n", log->kbuf);
287 		return;
288 	}
289 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 		log->len_used += n;
291 	else
292 		log->ubuf = NULL;
293 }
294 
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296 {
297 	char zero = 0;
298 
299 	if (!bpf_verifier_log_needed(log))
300 		return;
301 
302 	log->len_used = new_pos;
303 	if (put_user(zero, log->ubuf + new_pos))
304 		log->ubuf = NULL;
305 }
306 
307 /* log_level controls verbosity level of eBPF verifier.
308  * bpf_verifier_log_write() is used to dump the verification trace to the log,
309  * so the user can figure out what's wrong with the program
310  */
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 					   const char *fmt, ...)
313 {
314 	va_list args;
315 
316 	if (!bpf_verifier_log_needed(&env->log))
317 		return;
318 
319 	va_start(args, fmt);
320 	bpf_verifier_vlog(&env->log, fmt, args);
321 	va_end(args);
322 }
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324 
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326 {
327 	struct bpf_verifier_env *env = private_data;
328 	va_list args;
329 
330 	if (!bpf_verifier_log_needed(&env->log))
331 		return;
332 
333 	va_start(args, fmt);
334 	bpf_verifier_vlog(&env->log, fmt, args);
335 	va_end(args);
336 }
337 
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 			    const char *fmt, ...)
340 {
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(log, fmt, args);
348 	va_end(args);
349 }
350 
351 static const char *ltrim(const char *s)
352 {
353 	while (isspace(*s))
354 		s++;
355 
356 	return s;
357 }
358 
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 					 u32 insn_off,
361 					 const char *prefix_fmt, ...)
362 {
363 	const struct bpf_line_info *linfo;
364 
365 	if (!bpf_verifier_log_needed(&env->log))
366 		return;
367 
368 	linfo = find_linfo(env, insn_off);
369 	if (!linfo || linfo == env->prev_linfo)
370 		return;
371 
372 	if (prefix_fmt) {
373 		va_list args;
374 
375 		va_start(args, prefix_fmt);
376 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 		va_end(args);
378 	}
379 
380 	verbose(env, "%s\n",
381 		ltrim(btf_name_by_offset(env->prog->aux->btf,
382 					 linfo->line_off)));
383 
384 	env->prev_linfo = linfo;
385 }
386 
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
388 {
389 	return type == PTR_TO_PACKET ||
390 	       type == PTR_TO_PACKET_META;
391 }
392 
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCK_COMMON ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_XDP_SOCK;
399 }
400 
401 static bool reg_type_not_null(enum bpf_reg_type type)
402 {
403 	return type == PTR_TO_SOCKET ||
404 		type == PTR_TO_TCP_SOCK ||
405 		type == PTR_TO_MAP_VALUE ||
406 		type == PTR_TO_SOCK_COMMON;
407 }
408 
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
410 {
411 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 	       type == PTR_TO_SOCKET_OR_NULL ||
413 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
415 	       type == PTR_TO_BTF_ID_OR_NULL ||
416 	       type == PTR_TO_MEM_OR_NULL ||
417 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 	       type == PTR_TO_RDWR_BUF_OR_NULL;
419 }
420 
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 	return reg->type == PTR_TO_MAP_VALUE &&
424 		map_value_has_spin_lock(reg->map_ptr);
425 }
426 
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428 {
429 	return type == PTR_TO_SOCKET ||
430 		type == PTR_TO_SOCKET_OR_NULL ||
431 		type == PTR_TO_TCP_SOCK ||
432 		type == PTR_TO_TCP_SOCK_OR_NULL ||
433 		type == PTR_TO_MEM ||
434 		type == PTR_TO_MEM_OR_NULL;
435 }
436 
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
438 {
439 	return type == ARG_PTR_TO_SOCK_COMMON;
440 }
441 
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
443 {
444 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 	       type == ARG_PTR_TO_MEM_OR_NULL ||
446 	       type == ARG_PTR_TO_CTX_OR_NULL ||
447 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449 }
450 
451 /* Determine whether the function releases some resources allocated by another
452  * function call. The first reference type argument will be assumed to be
453  * released by release_reference().
454  */
455 static bool is_release_function(enum bpf_func_id func_id)
456 {
457 	return func_id == BPF_FUNC_sk_release ||
458 	       func_id == BPF_FUNC_ringbuf_submit ||
459 	       func_id == BPF_FUNC_ringbuf_discard;
460 }
461 
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
463 {
464 	return func_id == BPF_FUNC_sk_lookup_tcp ||
465 		func_id == BPF_FUNC_sk_lookup_udp ||
466 		func_id == BPF_FUNC_skc_lookup_tcp ||
467 		func_id == BPF_FUNC_map_lookup_elem ||
468 	        func_id == BPF_FUNC_ringbuf_reserve;
469 }
470 
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 				const struct bpf_map *map)
473 {
474 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475 
476 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 	    func_id == BPF_FUNC_sk_lookup_udp ||
478 	    func_id == BPF_FUNC_skc_lookup_tcp ||
479 	    func_id == BPF_FUNC_ringbuf_reserve)
480 		return true;
481 
482 	if (func_id == BPF_FUNC_map_lookup_elem &&
483 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 	     map_type == BPF_MAP_TYPE_SOCKHASH))
485 		return true;
486 
487 	return false;
488 }
489 
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
491 {
492 	return func_id == BPF_FUNC_tcp_sock ||
493 		func_id == BPF_FUNC_sk_fullsock ||
494 		func_id == BPF_FUNC_skc_to_tcp_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 		func_id == BPF_FUNC_skc_to_udp6_sock ||
497 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
499 }
500 
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 	[NOT_INIT]		= "?",
504 	[SCALAR_VALUE]		= "inv",
505 	[PTR_TO_CTX]		= "ctx",
506 	[CONST_PTR_TO_MAP]	= "map_ptr",
507 	[PTR_TO_MAP_VALUE]	= "map_value",
508 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 	[PTR_TO_STACK]		= "fp",
510 	[PTR_TO_PACKET]		= "pkt",
511 	[PTR_TO_PACKET_META]	= "pkt_meta",
512 	[PTR_TO_PACKET_END]	= "pkt_end",
513 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
514 	[PTR_TO_SOCKET]		= "sock",
515 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 	[PTR_TO_SOCK_COMMON]	= "sock_common",
517 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
519 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
521 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
522 	[PTR_TO_BTF_ID]		= "ptr_",
523 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
524 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
525 	[PTR_TO_MEM]		= "mem",
526 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
527 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
528 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
530 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
531 };
532 
533 static char slot_type_char[] = {
534 	[STACK_INVALID]	= '?',
535 	[STACK_SPILL]	= 'r',
536 	[STACK_MISC]	= 'm',
537 	[STACK_ZERO]	= '0',
538 };
539 
540 static void print_liveness(struct bpf_verifier_env *env,
541 			   enum bpf_reg_liveness live)
542 {
543 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 	    verbose(env, "_");
545 	if (live & REG_LIVE_READ)
546 		verbose(env, "r");
547 	if (live & REG_LIVE_WRITTEN)
548 		verbose(env, "w");
549 	if (live & REG_LIVE_DONE)
550 		verbose(env, "D");
551 }
552 
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 				   const struct bpf_reg_state *reg)
555 {
556 	struct bpf_verifier_state *cur = env->cur_state;
557 
558 	return cur->frame[reg->frameno];
559 }
560 
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
562 {
563 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
564 }
565 
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 				 const struct bpf_func_state *state)
568 {
569 	const struct bpf_reg_state *reg;
570 	enum bpf_reg_type t;
571 	int i;
572 
573 	if (state->frameno)
574 		verbose(env, " frame%d:", state->frameno);
575 	for (i = 0; i < MAX_BPF_REG; i++) {
576 		reg = &state->regs[i];
577 		t = reg->type;
578 		if (t == NOT_INIT)
579 			continue;
580 		verbose(env, " R%d", i);
581 		print_liveness(env, reg->live);
582 		verbose(env, "=%s", reg_type_str[t]);
583 		if (t == SCALAR_VALUE && reg->precise)
584 			verbose(env, "P");
585 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 		    tnum_is_const(reg->var_off)) {
587 			/* reg->off should be 0 for SCALAR_VALUE */
588 			verbose(env, "%lld", reg->var_off.value + reg->off);
589 		} else {
590 			if (t == PTR_TO_BTF_ID ||
591 			    t == PTR_TO_BTF_ID_OR_NULL ||
592 			    t == PTR_TO_PERCPU_BTF_ID)
593 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 			verbose(env, "(id=%d", reg->id);
595 			if (reg_type_may_be_refcounted_or_null(t))
596 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 			if (t != SCALAR_VALUE)
598 				verbose(env, ",off=%d", reg->off);
599 			if (type_is_pkt_pointer(t))
600 				verbose(env, ",r=%d", reg->range);
601 			else if (t == CONST_PTR_TO_MAP ||
602 				 t == PTR_TO_MAP_VALUE ||
603 				 t == PTR_TO_MAP_VALUE_OR_NULL)
604 				verbose(env, ",ks=%d,vs=%d",
605 					reg->map_ptr->key_size,
606 					reg->map_ptr->value_size);
607 			if (tnum_is_const(reg->var_off)) {
608 				/* Typically an immediate SCALAR_VALUE, but
609 				 * could be a pointer whose offset is too big
610 				 * for reg->off
611 				 */
612 				verbose(env, ",imm=%llx", reg->var_off.value);
613 			} else {
614 				if (reg->smin_value != reg->umin_value &&
615 				    reg->smin_value != S64_MIN)
616 					verbose(env, ",smin_value=%lld",
617 						(long long)reg->smin_value);
618 				if (reg->smax_value != reg->umax_value &&
619 				    reg->smax_value != S64_MAX)
620 					verbose(env, ",smax_value=%lld",
621 						(long long)reg->smax_value);
622 				if (reg->umin_value != 0)
623 					verbose(env, ",umin_value=%llu",
624 						(unsigned long long)reg->umin_value);
625 				if (reg->umax_value != U64_MAX)
626 					verbose(env, ",umax_value=%llu",
627 						(unsigned long long)reg->umax_value);
628 				if (!tnum_is_unknown(reg->var_off)) {
629 					char tn_buf[48];
630 
631 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 					verbose(env, ",var_off=%s", tn_buf);
633 				}
634 				if (reg->s32_min_value != reg->smin_value &&
635 				    reg->s32_min_value != S32_MIN)
636 					verbose(env, ",s32_min_value=%d",
637 						(int)(reg->s32_min_value));
638 				if (reg->s32_max_value != reg->smax_value &&
639 				    reg->s32_max_value != S32_MAX)
640 					verbose(env, ",s32_max_value=%d",
641 						(int)(reg->s32_max_value));
642 				if (reg->u32_min_value != reg->umin_value &&
643 				    reg->u32_min_value != U32_MIN)
644 					verbose(env, ",u32_min_value=%d",
645 						(int)(reg->u32_min_value));
646 				if (reg->u32_max_value != reg->umax_value &&
647 				    reg->u32_max_value != U32_MAX)
648 					verbose(env, ",u32_max_value=%d",
649 						(int)(reg->u32_max_value));
650 			}
651 			verbose(env, ")");
652 		}
653 	}
654 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 		char types_buf[BPF_REG_SIZE + 1];
656 		bool valid = false;
657 		int j;
658 
659 		for (j = 0; j < BPF_REG_SIZE; j++) {
660 			if (state->stack[i].slot_type[j] != STACK_INVALID)
661 				valid = true;
662 			types_buf[j] = slot_type_char[
663 					state->stack[i].slot_type[j]];
664 		}
665 		types_buf[BPF_REG_SIZE] = 0;
666 		if (!valid)
667 			continue;
668 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 		print_liveness(env, state->stack[i].spilled_ptr.live);
670 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 			reg = &state->stack[i].spilled_ptr;
672 			t = reg->type;
673 			verbose(env, "=%s", reg_type_str[t]);
674 			if (t == SCALAR_VALUE && reg->precise)
675 				verbose(env, "P");
676 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 				verbose(env, "%lld", reg->var_off.value + reg->off);
678 		} else {
679 			verbose(env, "=%s", types_buf);
680 		}
681 	}
682 	if (state->acquired_refs && state->refs[0].id) {
683 		verbose(env, " refs=%d", state->refs[0].id);
684 		for (i = 1; i < state->acquired_refs; i++)
685 			if (state->refs[i].id)
686 				verbose(env, ",%d", state->refs[i].id);
687 	}
688 	verbose(env, "\n");
689 }
690 
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
692 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
693 			       const struct bpf_func_state *src)	\
694 {									\
695 	if (!src->FIELD)						\
696 		return 0;						\
697 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
698 		/* internal bug, make state invalid to reject the program */ \
699 		memset(dst, 0, sizeof(*dst));				\
700 		return -EFAULT;						\
701 	}								\
702 	memcpy(dst->FIELD, src->FIELD,					\
703 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
704 	return 0;							\
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711 
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 				  bool copy_old)			\
715 {									\
716 	u32 old_size = state->COUNT;					\
717 	struct bpf_##NAME##_state *new_##FIELD;				\
718 	int slot = size / SIZE;						\
719 									\
720 	if (size <= old_size || !size) {				\
721 		if (copy_old)						\
722 			return 0;					\
723 		state->COUNT = slot * SIZE;				\
724 		if (!size && old_size) {				\
725 			kfree(state->FIELD);				\
726 			state->FIELD = NULL;				\
727 		}							\
728 		return 0;						\
729 	}								\
730 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 				    GFP_KERNEL);			\
732 	if (!new_##FIELD)						\
733 		return -ENOMEM;						\
734 	if (copy_old) {							\
735 		if (state->FIELD)					\
736 			memcpy(new_##FIELD, state->FIELD,		\
737 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 		memset(new_##FIELD + old_size / SIZE, 0,		\
739 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 	}								\
741 	state->COUNT = slot * SIZE;					\
742 	kfree(state->FIELD);						\
743 	state->FIELD = new_##FIELD;					\
744 	return 0;							\
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751 
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753  * make it consume minimal amount of memory. check_stack_write() access from
754  * the program calls into realloc_func_state() to grow the stack size.
755  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756  * which realloc_stack_state() copies over. It points to previous
757  * bpf_verifier_state which is never reallocated.
758  */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 			      int refs_size, bool copy_old)
761 {
762 	int err = realloc_reference_state(state, refs_size, copy_old);
763 	if (err)
764 		return err;
765 	return realloc_stack_state(state, stack_size, copy_old);
766 }
767 
768 /* Acquire a pointer id from the env and update the state->refs to include
769  * this new pointer reference.
770  * On success, returns a valid pointer id to associate with the register
771  * On failure, returns a negative errno.
772  */
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 	struct bpf_func_state *state = cur_func(env);
776 	int new_ofs = state->acquired_refs;
777 	int id, err;
778 
779 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 	if (err)
781 		return err;
782 	id = ++env->id_gen;
783 	state->refs[new_ofs].id = id;
784 	state->refs[new_ofs].insn_idx = insn_idx;
785 
786 	return id;
787 }
788 
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 	int i, last_idx;
793 
794 	last_idx = state->acquired_refs - 1;
795 	for (i = 0; i < state->acquired_refs; i++) {
796 		if (state->refs[i].id == ptr_id) {
797 			if (last_idx && i != last_idx)
798 				memcpy(&state->refs[i], &state->refs[last_idx],
799 				       sizeof(*state->refs));
800 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 			state->acquired_refs--;
802 			return 0;
803 		}
804 	}
805 	return -EINVAL;
806 }
807 
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 				    struct bpf_func_state *src)
810 {
811 	int err = realloc_reference_state(dst, src->acquired_refs, false);
812 	if (err)
813 		return err;
814 	err = copy_reference_state(dst, src);
815 	if (err)
816 		return err;
817 	return 0;
818 }
819 
820 static void free_func_state(struct bpf_func_state *state)
821 {
822 	if (!state)
823 		return;
824 	kfree(state->refs);
825 	kfree(state->stack);
826 	kfree(state);
827 }
828 
829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 	kfree(state->jmp_history);
832 	state->jmp_history = NULL;
833 	state->jmp_history_cnt = 0;
834 }
835 
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 				bool free_self)
838 {
839 	int i;
840 
841 	for (i = 0; i <= state->curframe; i++) {
842 		free_func_state(state->frame[i]);
843 		state->frame[i] = NULL;
844 	}
845 	clear_jmp_history(state);
846 	if (free_self)
847 		kfree(state);
848 }
849 
850 /* copy verifier state from src to dst growing dst stack space
851  * when necessary to accommodate larger src stack
852  */
853 static int copy_func_state(struct bpf_func_state *dst,
854 			   const struct bpf_func_state *src)
855 {
856 	int err;
857 
858 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 				 false);
860 	if (err)
861 		return err;
862 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 	err = copy_reference_state(dst, src);
864 	if (err)
865 		return err;
866 	return copy_stack_state(dst, src);
867 }
868 
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 			       const struct bpf_verifier_state *src)
871 {
872 	struct bpf_func_state *dst;
873 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 	int i, err;
875 
876 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 		kfree(dst_state->jmp_history);
878 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 		if (!dst_state->jmp_history)
880 			return -ENOMEM;
881 	}
882 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
884 
885 	/* if dst has more stack frames then src frame, free them */
886 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 		free_func_state(dst_state->frame[i]);
888 		dst_state->frame[i] = NULL;
889 	}
890 	dst_state->speculative = src->speculative;
891 	dst_state->curframe = src->curframe;
892 	dst_state->active_spin_lock = src->active_spin_lock;
893 	dst_state->branches = src->branches;
894 	dst_state->parent = src->parent;
895 	dst_state->first_insn_idx = src->first_insn_idx;
896 	dst_state->last_insn_idx = src->last_insn_idx;
897 	for (i = 0; i <= src->curframe; i++) {
898 		dst = dst_state->frame[i];
899 		if (!dst) {
900 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 			if (!dst)
902 				return -ENOMEM;
903 			dst_state->frame[i] = dst;
904 		}
905 		err = copy_func_state(dst, src->frame[i]);
906 		if (err)
907 			return err;
908 	}
909 	return 0;
910 }
911 
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 	while (st) {
915 		u32 br = --st->branches;
916 
917 		/* WARN_ON(br > 1) technically makes sense here,
918 		 * but see comment in push_stack(), hence:
919 		 */
920 		WARN_ONCE((int)br < 0,
921 			  "BUG update_branch_counts:branches_to_explore=%d\n",
922 			  br);
923 		if (br)
924 			break;
925 		st = st->parent;
926 	}
927 }
928 
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 		     int *insn_idx, bool pop_log)
931 {
932 	struct bpf_verifier_state *cur = env->cur_state;
933 	struct bpf_verifier_stack_elem *elem, *head = env->head;
934 	int err;
935 
936 	if (env->head == NULL)
937 		return -ENOENT;
938 
939 	if (cur) {
940 		err = copy_verifier_state(cur, &head->st);
941 		if (err)
942 			return err;
943 	}
944 	if (pop_log)
945 		bpf_vlog_reset(&env->log, head->log_pos);
946 	if (insn_idx)
947 		*insn_idx = head->insn_idx;
948 	if (prev_insn_idx)
949 		*prev_insn_idx = head->prev_insn_idx;
950 	elem = head->next;
951 	free_verifier_state(&head->st, false);
952 	kfree(head);
953 	env->head = elem;
954 	env->stack_size--;
955 	return 0;
956 }
957 
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 					     int insn_idx, int prev_insn_idx,
960 					     bool speculative)
961 {
962 	struct bpf_verifier_state *cur = env->cur_state;
963 	struct bpf_verifier_stack_elem *elem;
964 	int err;
965 
966 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 	if (!elem)
968 		goto err;
969 
970 	elem->insn_idx = insn_idx;
971 	elem->prev_insn_idx = prev_insn_idx;
972 	elem->next = env->head;
973 	elem->log_pos = env->log.len_used;
974 	env->head = elem;
975 	env->stack_size++;
976 	err = copy_verifier_state(&elem->st, cur);
977 	if (err)
978 		goto err;
979 	elem->st.speculative |= speculative;
980 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 		verbose(env, "The sequence of %d jumps is too complex.\n",
982 			env->stack_size);
983 		goto err;
984 	}
985 	if (elem->st.parent) {
986 		++elem->st.parent->branches;
987 		/* WARN_ON(branches > 2) technically makes sense here,
988 		 * but
989 		 * 1. speculative states will bump 'branches' for non-branch
990 		 * instructions
991 		 * 2. is_state_visited() heuristics may decide not to create
992 		 * a new state for a sequence of branches and all such current
993 		 * and cloned states will be pointing to a single parent state
994 		 * which might have large 'branches' count.
995 		 */
996 	}
997 	return &elem->st;
998 err:
999 	free_verifier_state(env->cur_state, true);
1000 	env->cur_state = NULL;
1001 	/* pop all elements and return */
1002 	while (!pop_stack(env, NULL, NULL, false));
1003 	return NULL;
1004 }
1005 
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010 
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 				struct bpf_reg_state *reg);
1013 
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 	reg->var_off = tnum_const(imm);
1018 	reg->smin_value = (s64)imm;
1019 	reg->smax_value = (s64)imm;
1020 	reg->umin_value = imm;
1021 	reg->umax_value = imm;
1022 
1023 	reg->s32_min_value = (s32)imm;
1024 	reg->s32_max_value = (s32)imm;
1025 	reg->u32_min_value = (u32)imm;
1026 	reg->u32_max_value = (u32)imm;
1027 }
1028 
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030  * known to have the value @imm.
1031  */
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 	/* Clear id, off, and union(map_ptr, range) */
1035 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 	___mark_reg_known(reg, imm);
1038 }
1039 
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 	reg->s32_min_value = (s32)imm;
1044 	reg->s32_max_value = (s32)imm;
1045 	reg->u32_min_value = (u32)imm;
1046 	reg->u32_max_value = (u32)imm;
1047 }
1048 
1049 /* Mark the 'variable offset' part of a register as zero.  This should be
1050  * used only on registers holding a pointer type.
1051  */
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 	__mark_reg_known(reg, 0);
1055 }
1056 
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 	__mark_reg_known(reg, 0);
1060 	reg->type = SCALAR_VALUE;
1061 }
1062 
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 				struct bpf_reg_state *regs, u32 regno)
1065 {
1066 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 		/* Something bad happened, let's kill all regs */
1069 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 			__mark_reg_not_init(env, regs + regno);
1071 		return;
1072 	}
1073 	__mark_reg_known_zero(regs + regno);
1074 }
1075 
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 	return type_is_pkt_pointer(reg->type);
1079 }
1080 
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 	return reg_is_pkt_pointer(reg) ||
1084 	       reg->type == PTR_TO_PACKET_END;
1085 }
1086 
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 				    enum bpf_reg_type which)
1090 {
1091 	/* The register can already have a range from prior markings.
1092 	 * This is fine as long as it hasn't been advanced from its
1093 	 * origin.
1094 	 */
1095 	return reg->type == which &&
1096 	       reg->id == 0 &&
1097 	       reg->off == 0 &&
1098 	       tnum_equals_const(reg->var_off, 0);
1099 }
1100 
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 	reg->smin_value = S64_MIN;
1105 	reg->smax_value = S64_MAX;
1106 	reg->umin_value = 0;
1107 	reg->umax_value = U64_MAX;
1108 
1109 	reg->s32_min_value = S32_MIN;
1110 	reg->s32_max_value = S32_MAX;
1111 	reg->u32_min_value = 0;
1112 	reg->u32_max_value = U32_MAX;
1113 }
1114 
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 	reg->smin_value = S64_MIN;
1118 	reg->smax_value = S64_MAX;
1119 	reg->umin_value = 0;
1120 	reg->umax_value = U64_MAX;
1121 }
1122 
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 	reg->s32_min_value = S32_MIN;
1126 	reg->s32_max_value = S32_MAX;
1127 	reg->u32_min_value = 0;
1128 	reg->u32_max_value = U32_MAX;
1129 }
1130 
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 	struct tnum var32_off = tnum_subreg(reg->var_off);
1134 
1135 	/* min signed is max(sign bit) | min(other bits) */
1136 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 			var32_off.value | (var32_off.mask & S32_MIN));
1138 	/* max signed is min(sign bit) | max(other bits) */
1139 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 			var32_off.value | (var32_off.mask & S32_MAX));
1141 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 	reg->u32_max_value = min(reg->u32_max_value,
1143 				 (u32)(var32_off.value | var32_off.mask));
1144 }
1145 
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 	/* min signed is max(sign bit) | min(other bits) */
1149 	reg->smin_value = max_t(s64, reg->smin_value,
1150 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 	/* max signed is min(sign bit) | max(other bits) */
1152 	reg->smax_value = min_t(s64, reg->smax_value,
1153 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 	reg->umax_value = min(reg->umax_value,
1156 			      reg->var_off.value | reg->var_off.mask);
1157 }
1158 
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 	__update_reg32_bounds(reg);
1162 	__update_reg64_bounds(reg);
1163 }
1164 
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 	/* Learn sign from signed bounds.
1169 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 	 * are the same, so combine.  This works even in the negative case, e.g.
1171 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 	 */
1173 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 		reg->s32_min_value = reg->u32_min_value =
1175 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 		reg->s32_max_value = reg->u32_max_value =
1177 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 		return;
1179 	}
1180 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1181 	 * boundary, so we must be careful.
1182 	 */
1183 	if ((s32)reg->u32_max_value >= 0) {
1184 		/* Positive.  We can't learn anything from the smin, but smax
1185 		 * is positive, hence safe.
1186 		 */
1187 		reg->s32_min_value = reg->u32_min_value;
1188 		reg->s32_max_value = reg->u32_max_value =
1189 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 	} else if ((s32)reg->u32_min_value < 0) {
1191 		/* Negative.  We can't learn anything from the smax, but smin
1192 		 * is negative, hence safe.
1193 		 */
1194 		reg->s32_min_value = reg->u32_min_value =
1195 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 		reg->s32_max_value = reg->u32_max_value;
1197 	}
1198 }
1199 
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 	/* Learn sign from signed bounds.
1203 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 	 * are the same, so combine.  This works even in the negative case, e.g.
1205 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 	 */
1207 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 							  reg->umin_value);
1210 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 							  reg->umax_value);
1212 		return;
1213 	}
1214 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1215 	 * boundary, so we must be careful.
1216 	 */
1217 	if ((s64)reg->umax_value >= 0) {
1218 		/* Positive.  We can't learn anything from the smin, but smax
1219 		 * is positive, hence safe.
1220 		 */
1221 		reg->smin_value = reg->umin_value;
1222 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 							  reg->umax_value);
1224 	} else if ((s64)reg->umin_value < 0) {
1225 		/* Negative.  We can't learn anything from the smax, but smin
1226 		 * is negative, hence safe.
1227 		 */
1228 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 							  reg->umin_value);
1230 		reg->smax_value = reg->umax_value;
1231 	}
1232 }
1233 
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 	__reg32_deduce_bounds(reg);
1237 	__reg64_deduce_bounds(reg);
1238 }
1239 
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 	struct tnum var64_off = tnum_intersect(reg->var_off,
1244 					       tnum_range(reg->umin_value,
1245 							  reg->umax_value));
1246 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 						tnum_range(reg->u32_min_value,
1248 							   reg->u32_max_value));
1249 
1250 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252 
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1254 {
1255 	reg->umin_value = reg->u32_min_value;
1256 	reg->umax_value = reg->u32_max_value;
1257 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 	 * but must be positive otherwise set to worse case bounds
1259 	 * and refine later from tnum.
1260 	 */
1261 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 		reg->smax_value = reg->s32_max_value;
1263 	else
1264 		reg->smax_value = U32_MAX;
1265 	if (reg->s32_min_value >= 0)
1266 		reg->smin_value = reg->s32_min_value;
1267 	else
1268 		reg->smin_value = 0;
1269 }
1270 
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272 {
1273 	/* special case when 64-bit register has upper 32-bit register
1274 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 	 * allowing us to use 32-bit bounds directly,
1276 	 */
1277 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 		__reg_assign_32_into_64(reg);
1279 	} else {
1280 		/* Otherwise the best we can do is push lower 32bit known and
1281 		 * unknown bits into register (var_off set from jmp logic)
1282 		 * then learn as much as possible from the 64-bit tnum
1283 		 * known and unknown bits. The previous smin/smax bounds are
1284 		 * invalid here because of jmp32 compare so mark them unknown
1285 		 * so they do not impact tnum bounds calculation.
1286 		 */
1287 		__mark_reg64_unbounded(reg);
1288 		__update_reg_bounds(reg);
1289 	}
1290 
1291 	/* Intersecting with the old var_off might have improved our bounds
1292 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 	 */
1295 	__reg_deduce_bounds(reg);
1296 	__reg_bound_offset(reg);
1297 	__update_reg_bounds(reg);
1298 }
1299 
1300 static bool __reg64_bound_s32(s64 a)
1301 {
1302 	return a > S32_MIN && a < S32_MAX;
1303 }
1304 
1305 static bool __reg64_bound_u32(u64 a)
1306 {
1307 	if (a > U32_MIN && a < U32_MAX)
1308 		return true;
1309 	return false;
1310 }
1311 
1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313 {
1314 	__mark_reg32_unbounded(reg);
1315 
1316 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1317 		reg->s32_min_value = (s32)reg->smin_value;
1318 		reg->s32_max_value = (s32)reg->smax_value;
1319 	}
1320 	if (__reg64_bound_u32(reg->umin_value))
1321 		reg->u32_min_value = (u32)reg->umin_value;
1322 	if (__reg64_bound_u32(reg->umax_value))
1323 		reg->u32_max_value = (u32)reg->umax_value;
1324 
1325 	/* Intersecting with the old var_off might have improved our bounds
1326 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 	 */
1329 	__reg_deduce_bounds(reg);
1330 	__reg_bound_offset(reg);
1331 	__update_reg_bounds(reg);
1332 }
1333 
1334 /* Mark a register as having a completely unknown (scalar) value. */
1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 			       struct bpf_reg_state *reg)
1337 {
1338 	/*
1339 	 * Clear type, id, off, and union(map_ptr, range) and
1340 	 * padding between 'type' and union
1341 	 */
1342 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1343 	reg->type = SCALAR_VALUE;
1344 	reg->var_off = tnum_unknown;
1345 	reg->frameno = 0;
1346 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1347 	__mark_reg_unbounded(reg);
1348 }
1349 
1350 static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 			     struct bpf_reg_state *regs, u32 regno)
1352 {
1353 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1354 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1355 		/* Something bad happened, let's kill all regs except FP */
1356 		for (regno = 0; regno < BPF_REG_FP; regno++)
1357 			__mark_reg_not_init(env, regs + regno);
1358 		return;
1359 	}
1360 	__mark_reg_unknown(env, regs + regno);
1361 }
1362 
1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 				struct bpf_reg_state *reg)
1365 {
1366 	__mark_reg_unknown(env, reg);
1367 	reg->type = NOT_INIT;
1368 }
1369 
1370 static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 			      struct bpf_reg_state *regs, u32 regno)
1372 {
1373 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1374 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1375 		/* Something bad happened, let's kill all regs except FP */
1376 		for (regno = 0; regno < BPF_REG_FP; regno++)
1377 			__mark_reg_not_init(env, regs + regno);
1378 		return;
1379 	}
1380 	__mark_reg_not_init(env, regs + regno);
1381 }
1382 
1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 			    struct bpf_reg_state *regs, u32 regno,
1385 			    enum bpf_reg_type reg_type,
1386 			    struct btf *btf, u32 btf_id)
1387 {
1388 	if (reg_type == SCALAR_VALUE) {
1389 		mark_reg_unknown(env, regs, regno);
1390 		return;
1391 	}
1392 	mark_reg_known_zero(env, regs, regno);
1393 	regs[regno].type = PTR_TO_BTF_ID;
1394 	regs[regno].btf = btf;
1395 	regs[regno].btf_id = btf_id;
1396 }
1397 
1398 #define DEF_NOT_SUBREG	(0)
1399 static void init_reg_state(struct bpf_verifier_env *env,
1400 			   struct bpf_func_state *state)
1401 {
1402 	struct bpf_reg_state *regs = state->regs;
1403 	int i;
1404 
1405 	for (i = 0; i < MAX_BPF_REG; i++) {
1406 		mark_reg_not_init(env, regs, i);
1407 		regs[i].live = REG_LIVE_NONE;
1408 		regs[i].parent = NULL;
1409 		regs[i].subreg_def = DEF_NOT_SUBREG;
1410 	}
1411 
1412 	/* frame pointer */
1413 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1414 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1415 	regs[BPF_REG_FP].frameno = state->frameno;
1416 }
1417 
1418 #define BPF_MAIN_FUNC (-1)
1419 static void init_func_state(struct bpf_verifier_env *env,
1420 			    struct bpf_func_state *state,
1421 			    int callsite, int frameno, int subprogno)
1422 {
1423 	state->callsite = callsite;
1424 	state->frameno = frameno;
1425 	state->subprogno = subprogno;
1426 	init_reg_state(env, state);
1427 }
1428 
1429 enum reg_arg_type {
1430 	SRC_OP,		/* register is used as source operand */
1431 	DST_OP,		/* register is used as destination operand */
1432 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1433 };
1434 
1435 static int cmp_subprogs(const void *a, const void *b)
1436 {
1437 	return ((struct bpf_subprog_info *)a)->start -
1438 	       ((struct bpf_subprog_info *)b)->start;
1439 }
1440 
1441 static int find_subprog(struct bpf_verifier_env *env, int off)
1442 {
1443 	struct bpf_subprog_info *p;
1444 
1445 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1447 	if (!p)
1448 		return -ENOENT;
1449 	return p - env->subprog_info;
1450 
1451 }
1452 
1453 static int add_subprog(struct bpf_verifier_env *env, int off)
1454 {
1455 	int insn_cnt = env->prog->len;
1456 	int ret;
1457 
1458 	if (off >= insn_cnt || off < 0) {
1459 		verbose(env, "call to invalid destination\n");
1460 		return -EINVAL;
1461 	}
1462 	ret = find_subprog(env, off);
1463 	if (ret >= 0)
1464 		return 0;
1465 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1466 		verbose(env, "too many subprograms\n");
1467 		return -E2BIG;
1468 	}
1469 	env->subprog_info[env->subprog_cnt++].start = off;
1470 	sort(env->subprog_info, env->subprog_cnt,
1471 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1472 	return 0;
1473 }
1474 
1475 static int check_subprogs(struct bpf_verifier_env *env)
1476 {
1477 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1478 	struct bpf_subprog_info *subprog = env->subprog_info;
1479 	struct bpf_insn *insn = env->prog->insnsi;
1480 	int insn_cnt = env->prog->len;
1481 
1482 	/* Add entry function. */
1483 	ret = add_subprog(env, 0);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	/* determine subprog starts. The end is one before the next starts */
1488 	for (i = 0; i < insn_cnt; i++) {
1489 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 			continue;
1491 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 			continue;
1493 		if (!env->bpf_capable) {
1494 			verbose(env,
1495 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1496 			return -EPERM;
1497 		}
1498 		ret = add_subprog(env, i + insn[i].imm + 1);
1499 		if (ret < 0)
1500 			return ret;
1501 	}
1502 
1503 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1504 	 * logic. 'subprog_cnt' should not be increased.
1505 	 */
1506 	subprog[env->subprog_cnt].start = insn_cnt;
1507 
1508 	if (env->log.level & BPF_LOG_LEVEL2)
1509 		for (i = 0; i < env->subprog_cnt; i++)
1510 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1511 
1512 	/* now check that all jumps are within the same subprog */
1513 	subprog_start = subprog[cur_subprog].start;
1514 	subprog_end = subprog[cur_subprog + 1].start;
1515 	for (i = 0; i < insn_cnt; i++) {
1516 		u8 code = insn[i].code;
1517 
1518 		if (code == (BPF_JMP | BPF_CALL) &&
1519 		    insn[i].imm == BPF_FUNC_tail_call &&
1520 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1521 			subprog[cur_subprog].has_tail_call = true;
1522 		if (BPF_CLASS(code) == BPF_LD &&
1523 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 			subprog[cur_subprog].has_ld_abs = true;
1525 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1526 			goto next;
1527 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 			goto next;
1529 		off = i + insn[i].off + 1;
1530 		if (off < subprog_start || off >= subprog_end) {
1531 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 			return -EINVAL;
1533 		}
1534 next:
1535 		if (i == subprog_end - 1) {
1536 			/* to avoid fall-through from one subprog into another
1537 			 * the last insn of the subprog should be either exit
1538 			 * or unconditional jump back
1539 			 */
1540 			if (code != (BPF_JMP | BPF_EXIT) &&
1541 			    code != (BPF_JMP | BPF_JA)) {
1542 				verbose(env, "last insn is not an exit or jmp\n");
1543 				return -EINVAL;
1544 			}
1545 			subprog_start = subprog_end;
1546 			cur_subprog++;
1547 			if (cur_subprog < env->subprog_cnt)
1548 				subprog_end = subprog[cur_subprog + 1].start;
1549 		}
1550 	}
1551 	return 0;
1552 }
1553 
1554 /* Parentage chain of this register (or stack slot) should take care of all
1555  * issues like callee-saved registers, stack slot allocation time, etc.
1556  */
1557 static int mark_reg_read(struct bpf_verifier_env *env,
1558 			 const struct bpf_reg_state *state,
1559 			 struct bpf_reg_state *parent, u8 flag)
1560 {
1561 	bool writes = parent == state->parent; /* Observe write marks */
1562 	int cnt = 0;
1563 
1564 	while (parent) {
1565 		/* if read wasn't screened by an earlier write ... */
1566 		if (writes && state->live & REG_LIVE_WRITTEN)
1567 			break;
1568 		if (parent->live & REG_LIVE_DONE) {
1569 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 				reg_type_str[parent->type],
1571 				parent->var_off.value, parent->off);
1572 			return -EFAULT;
1573 		}
1574 		/* The first condition is more likely to be true than the
1575 		 * second, checked it first.
1576 		 */
1577 		if ((parent->live & REG_LIVE_READ) == flag ||
1578 		    parent->live & REG_LIVE_READ64)
1579 			/* The parentage chain never changes and
1580 			 * this parent was already marked as LIVE_READ.
1581 			 * There is no need to keep walking the chain again and
1582 			 * keep re-marking all parents as LIVE_READ.
1583 			 * This case happens when the same register is read
1584 			 * multiple times without writes into it in-between.
1585 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 			 * then no need to set the weak REG_LIVE_READ32.
1587 			 */
1588 			break;
1589 		/* ... then we depend on parent's value */
1590 		parent->live |= flag;
1591 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 		if (flag == REG_LIVE_READ64)
1593 			parent->live &= ~REG_LIVE_READ32;
1594 		state = parent;
1595 		parent = state->parent;
1596 		writes = true;
1597 		cnt++;
1598 	}
1599 
1600 	if (env->longest_mark_read_walk < cnt)
1601 		env->longest_mark_read_walk = cnt;
1602 	return 0;
1603 }
1604 
1605 /* This function is supposed to be used by the following 32-bit optimization
1606  * code only. It returns TRUE if the source or destination register operates
1607  * on 64-bit, otherwise return FALSE.
1608  */
1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611 {
1612 	u8 code, class, op;
1613 
1614 	code = insn->code;
1615 	class = BPF_CLASS(code);
1616 	op = BPF_OP(code);
1617 	if (class == BPF_JMP) {
1618 		/* BPF_EXIT for "main" will reach here. Return TRUE
1619 		 * conservatively.
1620 		 */
1621 		if (op == BPF_EXIT)
1622 			return true;
1623 		if (op == BPF_CALL) {
1624 			/* BPF to BPF call will reach here because of marking
1625 			 * caller saved clobber with DST_OP_NO_MARK for which we
1626 			 * don't care the register def because they are anyway
1627 			 * marked as NOT_INIT already.
1628 			 */
1629 			if (insn->src_reg == BPF_PSEUDO_CALL)
1630 				return false;
1631 			/* Helper call will reach here because of arg type
1632 			 * check, conservatively return TRUE.
1633 			 */
1634 			if (t == SRC_OP)
1635 				return true;
1636 
1637 			return false;
1638 		}
1639 	}
1640 
1641 	if (class == BPF_ALU64 || class == BPF_JMP ||
1642 	    /* BPF_END always use BPF_ALU class. */
1643 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 		return true;
1645 
1646 	if (class == BPF_ALU || class == BPF_JMP32)
1647 		return false;
1648 
1649 	if (class == BPF_LDX) {
1650 		if (t != SRC_OP)
1651 			return BPF_SIZE(code) == BPF_DW;
1652 		/* LDX source must be ptr. */
1653 		return true;
1654 	}
1655 
1656 	if (class == BPF_STX) {
1657 		if (reg->type != SCALAR_VALUE)
1658 			return true;
1659 		return BPF_SIZE(code) == BPF_DW;
1660 	}
1661 
1662 	if (class == BPF_LD) {
1663 		u8 mode = BPF_MODE(code);
1664 
1665 		/* LD_IMM64 */
1666 		if (mode == BPF_IMM)
1667 			return true;
1668 
1669 		/* Both LD_IND and LD_ABS return 32-bit data. */
1670 		if (t != SRC_OP)
1671 			return  false;
1672 
1673 		/* Implicit ctx ptr. */
1674 		if (regno == BPF_REG_6)
1675 			return true;
1676 
1677 		/* Explicit source could be any width. */
1678 		return true;
1679 	}
1680 
1681 	if (class == BPF_ST)
1682 		/* The only source register for BPF_ST is a ptr. */
1683 		return true;
1684 
1685 	/* Conservatively return true at default. */
1686 	return true;
1687 }
1688 
1689 /* Return TRUE if INSN doesn't have explicit value define. */
1690 static bool insn_no_def(struct bpf_insn *insn)
1691 {
1692 	u8 class = BPF_CLASS(insn->code);
1693 
1694 	return (class == BPF_JMP || class == BPF_JMP32 ||
1695 		class == BPF_STX || class == BPF_ST);
1696 }
1697 
1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700 {
1701 	if (insn_no_def(insn))
1702 		return false;
1703 
1704 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705 }
1706 
1707 static void mark_insn_zext(struct bpf_verifier_env *env,
1708 			   struct bpf_reg_state *reg)
1709 {
1710 	s32 def_idx = reg->subreg_def;
1711 
1712 	if (def_idx == DEF_NOT_SUBREG)
1713 		return;
1714 
1715 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 	/* The dst will be zero extended, so won't be sub-register anymore. */
1717 	reg->subreg_def = DEF_NOT_SUBREG;
1718 }
1719 
1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1721 			 enum reg_arg_type t)
1722 {
1723 	struct bpf_verifier_state *vstate = env->cur_state;
1724 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1725 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1726 	struct bpf_reg_state *reg, *regs = state->regs;
1727 	bool rw64;
1728 
1729 	if (regno >= MAX_BPF_REG) {
1730 		verbose(env, "R%d is invalid\n", regno);
1731 		return -EINVAL;
1732 	}
1733 
1734 	reg = &regs[regno];
1735 	rw64 = is_reg64(env, insn, regno, reg, t);
1736 	if (t == SRC_OP) {
1737 		/* check whether register used as source operand can be read */
1738 		if (reg->type == NOT_INIT) {
1739 			verbose(env, "R%d !read_ok\n", regno);
1740 			return -EACCES;
1741 		}
1742 		/* We don't need to worry about FP liveness because it's read-only */
1743 		if (regno == BPF_REG_FP)
1744 			return 0;
1745 
1746 		if (rw64)
1747 			mark_insn_zext(env, reg);
1748 
1749 		return mark_reg_read(env, reg, reg->parent,
1750 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1751 	} else {
1752 		/* check whether register used as dest operand can be written to */
1753 		if (regno == BPF_REG_FP) {
1754 			verbose(env, "frame pointer is read only\n");
1755 			return -EACCES;
1756 		}
1757 		reg->live |= REG_LIVE_WRITTEN;
1758 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1759 		if (t == DST_OP)
1760 			mark_reg_unknown(env, regs, regno);
1761 	}
1762 	return 0;
1763 }
1764 
1765 /* for any branch, call, exit record the history of jmps in the given state */
1766 static int push_jmp_history(struct bpf_verifier_env *env,
1767 			    struct bpf_verifier_state *cur)
1768 {
1769 	u32 cnt = cur->jmp_history_cnt;
1770 	struct bpf_idx_pair *p;
1771 
1772 	cnt++;
1773 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 	if (!p)
1775 		return -ENOMEM;
1776 	p[cnt - 1].idx = env->insn_idx;
1777 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 	cur->jmp_history = p;
1779 	cur->jmp_history_cnt = cnt;
1780 	return 0;
1781 }
1782 
1783 /* Backtrack one insn at a time. If idx is not at the top of recorded
1784  * history then previous instruction came from straight line execution.
1785  */
1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 			     u32 *history)
1788 {
1789 	u32 cnt = *history;
1790 
1791 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 		i = st->jmp_history[cnt - 1].prev_idx;
1793 		(*history)--;
1794 	} else {
1795 		i--;
1796 	}
1797 	return i;
1798 }
1799 
1800 /* For given verifier state backtrack_insn() is called from the last insn to
1801  * the first insn. Its purpose is to compute a bitmask of registers and
1802  * stack slots that needs precision in the parent verifier state.
1803  */
1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 			  u32 *reg_mask, u64 *stack_mask)
1806 {
1807 	const struct bpf_insn_cbs cbs = {
1808 		.cb_print	= verbose,
1809 		.private_data	= env,
1810 	};
1811 	struct bpf_insn *insn = env->prog->insnsi + idx;
1812 	u8 class = BPF_CLASS(insn->code);
1813 	u8 opcode = BPF_OP(insn->code);
1814 	u8 mode = BPF_MODE(insn->code);
1815 	u32 dreg = 1u << insn->dst_reg;
1816 	u32 sreg = 1u << insn->src_reg;
1817 	u32 spi;
1818 
1819 	if (insn->code == 0)
1820 		return 0;
1821 	if (env->log.level & BPF_LOG_LEVEL) {
1822 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 		verbose(env, "%d: ", idx);
1824 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 	}
1826 
1827 	if (class == BPF_ALU || class == BPF_ALU64) {
1828 		if (!(*reg_mask & dreg))
1829 			return 0;
1830 		if (opcode == BPF_MOV) {
1831 			if (BPF_SRC(insn->code) == BPF_X) {
1832 				/* dreg = sreg
1833 				 * dreg needs precision after this insn
1834 				 * sreg needs precision before this insn
1835 				 */
1836 				*reg_mask &= ~dreg;
1837 				*reg_mask |= sreg;
1838 			} else {
1839 				/* dreg = K
1840 				 * dreg needs precision after this insn.
1841 				 * Corresponding register is already marked
1842 				 * as precise=true in this verifier state.
1843 				 * No further markings in parent are necessary
1844 				 */
1845 				*reg_mask &= ~dreg;
1846 			}
1847 		} else {
1848 			if (BPF_SRC(insn->code) == BPF_X) {
1849 				/* dreg += sreg
1850 				 * both dreg and sreg need precision
1851 				 * before this insn
1852 				 */
1853 				*reg_mask |= sreg;
1854 			} /* else dreg += K
1855 			   * dreg still needs precision before this insn
1856 			   */
1857 		}
1858 	} else if (class == BPF_LDX) {
1859 		if (!(*reg_mask & dreg))
1860 			return 0;
1861 		*reg_mask &= ~dreg;
1862 
1863 		/* scalars can only be spilled into stack w/o losing precision.
1864 		 * Load from any other memory can be zero extended.
1865 		 * The desire to keep that precision is already indicated
1866 		 * by 'precise' mark in corresponding register of this state.
1867 		 * No further tracking necessary.
1868 		 */
1869 		if (insn->src_reg != BPF_REG_FP)
1870 			return 0;
1871 		if (BPF_SIZE(insn->code) != BPF_DW)
1872 			return 0;
1873 
1874 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 		 * that [fp - off] slot contains scalar that needs to be
1876 		 * tracked with precision
1877 		 */
1878 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 		if (spi >= 64) {
1880 			verbose(env, "BUG spi %d\n", spi);
1881 			WARN_ONCE(1, "verifier backtracking bug");
1882 			return -EFAULT;
1883 		}
1884 		*stack_mask |= 1ull << spi;
1885 	} else if (class == BPF_STX || class == BPF_ST) {
1886 		if (*reg_mask & dreg)
1887 			/* stx & st shouldn't be using _scalar_ dst_reg
1888 			 * to access memory. It means backtracking
1889 			 * encountered a case of pointer subtraction.
1890 			 */
1891 			return -ENOTSUPP;
1892 		/* scalars can only be spilled into stack */
1893 		if (insn->dst_reg != BPF_REG_FP)
1894 			return 0;
1895 		if (BPF_SIZE(insn->code) != BPF_DW)
1896 			return 0;
1897 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 		if (spi >= 64) {
1899 			verbose(env, "BUG spi %d\n", spi);
1900 			WARN_ONCE(1, "verifier backtracking bug");
1901 			return -EFAULT;
1902 		}
1903 		if (!(*stack_mask & (1ull << spi)))
1904 			return 0;
1905 		*stack_mask &= ~(1ull << spi);
1906 		if (class == BPF_STX)
1907 			*reg_mask |= sreg;
1908 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1909 		if (opcode == BPF_CALL) {
1910 			if (insn->src_reg == BPF_PSEUDO_CALL)
1911 				return -ENOTSUPP;
1912 			/* regular helper call sets R0 */
1913 			*reg_mask &= ~1;
1914 			if (*reg_mask & 0x3f) {
1915 				/* if backtracing was looking for registers R1-R5
1916 				 * they should have been found already.
1917 				 */
1918 				verbose(env, "BUG regs %x\n", *reg_mask);
1919 				WARN_ONCE(1, "verifier backtracking bug");
1920 				return -EFAULT;
1921 			}
1922 		} else if (opcode == BPF_EXIT) {
1923 			return -ENOTSUPP;
1924 		}
1925 	} else if (class == BPF_LD) {
1926 		if (!(*reg_mask & dreg))
1927 			return 0;
1928 		*reg_mask &= ~dreg;
1929 		/* It's ld_imm64 or ld_abs or ld_ind.
1930 		 * For ld_imm64 no further tracking of precision
1931 		 * into parent is necessary
1932 		 */
1933 		if (mode == BPF_IND || mode == BPF_ABS)
1934 			/* to be analyzed */
1935 			return -ENOTSUPP;
1936 	}
1937 	return 0;
1938 }
1939 
1940 /* the scalar precision tracking algorithm:
1941  * . at the start all registers have precise=false.
1942  * . scalar ranges are tracked as normal through alu and jmp insns.
1943  * . once precise value of the scalar register is used in:
1944  *   .  ptr + scalar alu
1945  *   . if (scalar cond K|scalar)
1946  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1947  *   backtrack through the verifier states and mark all registers and
1948  *   stack slots with spilled constants that these scalar regisers
1949  *   should be precise.
1950  * . during state pruning two registers (or spilled stack slots)
1951  *   are equivalent if both are not precise.
1952  *
1953  * Note the verifier cannot simply walk register parentage chain,
1954  * since many different registers and stack slots could have been
1955  * used to compute single precise scalar.
1956  *
1957  * The approach of starting with precise=true for all registers and then
1958  * backtrack to mark a register as not precise when the verifier detects
1959  * that program doesn't care about specific value (e.g., when helper
1960  * takes register as ARG_ANYTHING parameter) is not safe.
1961  *
1962  * It's ok to walk single parentage chain of the verifier states.
1963  * It's possible that this backtracking will go all the way till 1st insn.
1964  * All other branches will be explored for needing precision later.
1965  *
1966  * The backtracking needs to deal with cases like:
1967  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968  * r9 -= r8
1969  * r5 = r9
1970  * if r5 > 0x79f goto pc+7
1971  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972  * r5 += 1
1973  * ...
1974  * call bpf_perf_event_output#25
1975  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976  *
1977  * and this case:
1978  * r6 = 1
1979  * call foo // uses callee's r6 inside to compute r0
1980  * r0 += r6
1981  * if r0 == 0 goto
1982  *
1983  * to track above reg_mask/stack_mask needs to be independent for each frame.
1984  *
1985  * Also if parent's curframe > frame where backtracking started,
1986  * the verifier need to mark registers in both frames, otherwise callees
1987  * may incorrectly prune callers. This is similar to
1988  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989  *
1990  * For now backtracking falls back into conservative marking.
1991  */
1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 				     struct bpf_verifier_state *st)
1994 {
1995 	struct bpf_func_state *func;
1996 	struct bpf_reg_state *reg;
1997 	int i, j;
1998 
1999 	/* big hammer: mark all scalars precise in this path.
2000 	 * pop_stack may still get !precise scalars.
2001 	 */
2002 	for (; st; st = st->parent)
2003 		for (i = 0; i <= st->curframe; i++) {
2004 			func = st->frame[i];
2005 			for (j = 0; j < BPF_REG_FP; j++) {
2006 				reg = &func->regs[j];
2007 				if (reg->type != SCALAR_VALUE)
2008 					continue;
2009 				reg->precise = true;
2010 			}
2011 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 					continue;
2014 				reg = &func->stack[j].spilled_ptr;
2015 				if (reg->type != SCALAR_VALUE)
2016 					continue;
2017 				reg->precise = true;
2018 			}
2019 		}
2020 }
2021 
2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 				  int spi)
2024 {
2025 	struct bpf_verifier_state *st = env->cur_state;
2026 	int first_idx = st->first_insn_idx;
2027 	int last_idx = env->insn_idx;
2028 	struct bpf_func_state *func;
2029 	struct bpf_reg_state *reg;
2030 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2032 	bool skip_first = true;
2033 	bool new_marks = false;
2034 	int i, err;
2035 
2036 	if (!env->bpf_capable)
2037 		return 0;
2038 
2039 	func = st->frame[st->curframe];
2040 	if (regno >= 0) {
2041 		reg = &func->regs[regno];
2042 		if (reg->type != SCALAR_VALUE) {
2043 			WARN_ONCE(1, "backtracing misuse");
2044 			return -EFAULT;
2045 		}
2046 		if (!reg->precise)
2047 			new_marks = true;
2048 		else
2049 			reg_mask = 0;
2050 		reg->precise = true;
2051 	}
2052 
2053 	while (spi >= 0) {
2054 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 			stack_mask = 0;
2056 			break;
2057 		}
2058 		reg = &func->stack[spi].spilled_ptr;
2059 		if (reg->type != SCALAR_VALUE) {
2060 			stack_mask = 0;
2061 			break;
2062 		}
2063 		if (!reg->precise)
2064 			new_marks = true;
2065 		else
2066 			stack_mask = 0;
2067 		reg->precise = true;
2068 		break;
2069 	}
2070 
2071 	if (!new_marks)
2072 		return 0;
2073 	if (!reg_mask && !stack_mask)
2074 		return 0;
2075 	for (;;) {
2076 		DECLARE_BITMAP(mask, 64);
2077 		u32 history = st->jmp_history_cnt;
2078 
2079 		if (env->log.level & BPF_LOG_LEVEL)
2080 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 		for (i = last_idx;;) {
2082 			if (skip_first) {
2083 				err = 0;
2084 				skip_first = false;
2085 			} else {
2086 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 			}
2088 			if (err == -ENOTSUPP) {
2089 				mark_all_scalars_precise(env, st);
2090 				return 0;
2091 			} else if (err) {
2092 				return err;
2093 			}
2094 			if (!reg_mask && !stack_mask)
2095 				/* Found assignment(s) into tracked register in this state.
2096 				 * Since this state is already marked, just return.
2097 				 * Nothing to be tracked further in the parent state.
2098 				 */
2099 				return 0;
2100 			if (i == first_idx)
2101 				break;
2102 			i = get_prev_insn_idx(st, i, &history);
2103 			if (i >= env->prog->len) {
2104 				/* This can happen if backtracking reached insn 0
2105 				 * and there are still reg_mask or stack_mask
2106 				 * to backtrack.
2107 				 * It means the backtracking missed the spot where
2108 				 * particular register was initialized with a constant.
2109 				 */
2110 				verbose(env, "BUG backtracking idx %d\n", i);
2111 				WARN_ONCE(1, "verifier backtracking bug");
2112 				return -EFAULT;
2113 			}
2114 		}
2115 		st = st->parent;
2116 		if (!st)
2117 			break;
2118 
2119 		new_marks = false;
2120 		func = st->frame[st->curframe];
2121 		bitmap_from_u64(mask, reg_mask);
2122 		for_each_set_bit(i, mask, 32) {
2123 			reg = &func->regs[i];
2124 			if (reg->type != SCALAR_VALUE) {
2125 				reg_mask &= ~(1u << i);
2126 				continue;
2127 			}
2128 			if (!reg->precise)
2129 				new_marks = true;
2130 			reg->precise = true;
2131 		}
2132 
2133 		bitmap_from_u64(mask, stack_mask);
2134 		for_each_set_bit(i, mask, 64) {
2135 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2136 				/* the sequence of instructions:
2137 				 * 2: (bf) r3 = r10
2138 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 				 * doesn't contain jmps. It's backtracked
2141 				 * as a single block.
2142 				 * During backtracking insn 3 is not recognized as
2143 				 * stack access, so at the end of backtracking
2144 				 * stack slot fp-8 is still marked in stack_mask.
2145 				 * However the parent state may not have accessed
2146 				 * fp-8 and it's "unallocated" stack space.
2147 				 * In such case fallback to conservative.
2148 				 */
2149 				mark_all_scalars_precise(env, st);
2150 				return 0;
2151 			}
2152 
2153 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 				stack_mask &= ~(1ull << i);
2155 				continue;
2156 			}
2157 			reg = &func->stack[i].spilled_ptr;
2158 			if (reg->type != SCALAR_VALUE) {
2159 				stack_mask &= ~(1ull << i);
2160 				continue;
2161 			}
2162 			if (!reg->precise)
2163 				new_marks = true;
2164 			reg->precise = true;
2165 		}
2166 		if (env->log.level & BPF_LOG_LEVEL) {
2167 			print_verifier_state(env, func);
2168 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 				new_marks ? "didn't have" : "already had",
2170 				reg_mask, stack_mask);
2171 		}
2172 
2173 		if (!reg_mask && !stack_mask)
2174 			break;
2175 		if (!new_marks)
2176 			break;
2177 
2178 		last_idx = st->last_insn_idx;
2179 		first_idx = st->first_insn_idx;
2180 	}
2181 	return 0;
2182 }
2183 
2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185 {
2186 	return __mark_chain_precision(env, regno, -1);
2187 }
2188 
2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190 {
2191 	return __mark_chain_precision(env, -1, spi);
2192 }
2193 
2194 static bool is_spillable_regtype(enum bpf_reg_type type)
2195 {
2196 	switch (type) {
2197 	case PTR_TO_MAP_VALUE:
2198 	case PTR_TO_MAP_VALUE_OR_NULL:
2199 	case PTR_TO_STACK:
2200 	case PTR_TO_CTX:
2201 	case PTR_TO_PACKET:
2202 	case PTR_TO_PACKET_META:
2203 	case PTR_TO_PACKET_END:
2204 	case PTR_TO_FLOW_KEYS:
2205 	case CONST_PTR_TO_MAP:
2206 	case PTR_TO_SOCKET:
2207 	case PTR_TO_SOCKET_OR_NULL:
2208 	case PTR_TO_SOCK_COMMON:
2209 	case PTR_TO_SOCK_COMMON_OR_NULL:
2210 	case PTR_TO_TCP_SOCK:
2211 	case PTR_TO_TCP_SOCK_OR_NULL:
2212 	case PTR_TO_XDP_SOCK:
2213 	case PTR_TO_BTF_ID:
2214 	case PTR_TO_BTF_ID_OR_NULL:
2215 	case PTR_TO_RDONLY_BUF:
2216 	case PTR_TO_RDONLY_BUF_OR_NULL:
2217 	case PTR_TO_RDWR_BUF:
2218 	case PTR_TO_RDWR_BUF_OR_NULL:
2219 	case PTR_TO_PERCPU_BTF_ID:
2220 	case PTR_TO_MEM:
2221 	case PTR_TO_MEM_OR_NULL:
2222 		return true;
2223 	default:
2224 		return false;
2225 	}
2226 }
2227 
2228 /* Does this register contain a constant zero? */
2229 static bool register_is_null(struct bpf_reg_state *reg)
2230 {
2231 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2232 }
2233 
2234 static bool register_is_const(struct bpf_reg_state *reg)
2235 {
2236 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2237 }
2238 
2239 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2240 {
2241 	return tnum_is_unknown(reg->var_off) &&
2242 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2243 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2244 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2245 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2246 }
2247 
2248 static bool register_is_bounded(struct bpf_reg_state *reg)
2249 {
2250 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2251 }
2252 
2253 static bool __is_pointer_value(bool allow_ptr_leaks,
2254 			       const struct bpf_reg_state *reg)
2255 {
2256 	if (allow_ptr_leaks)
2257 		return false;
2258 
2259 	return reg->type != SCALAR_VALUE;
2260 }
2261 
2262 static void save_register_state(struct bpf_func_state *state,
2263 				int spi, struct bpf_reg_state *reg)
2264 {
2265 	int i;
2266 
2267 	state->stack[spi].spilled_ptr = *reg;
2268 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2269 
2270 	for (i = 0; i < BPF_REG_SIZE; i++)
2271 		state->stack[spi].slot_type[i] = STACK_SPILL;
2272 }
2273 
2274 /* check_stack_read/write functions track spill/fill of registers,
2275  * stack boundary and alignment are checked in check_mem_access()
2276  */
2277 static int check_stack_write(struct bpf_verifier_env *env,
2278 			     struct bpf_func_state *state, /* func where register points to */
2279 			     int off, int size, int value_regno, int insn_idx)
2280 {
2281 	struct bpf_func_state *cur; /* state of the current function */
2282 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2283 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2284 	struct bpf_reg_state *reg = NULL;
2285 
2286 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2287 				 state->acquired_refs, true);
2288 	if (err)
2289 		return err;
2290 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2291 	 * so it's aligned access and [off, off + size) are within stack limits
2292 	 */
2293 	if (!env->allow_ptr_leaks &&
2294 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2295 	    size != BPF_REG_SIZE) {
2296 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2297 		return -EACCES;
2298 	}
2299 
2300 	cur = env->cur_state->frame[env->cur_state->curframe];
2301 	if (value_regno >= 0)
2302 		reg = &cur->regs[value_regno];
2303 
2304 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2305 	    !register_is_null(reg) && env->bpf_capable) {
2306 		if (dst_reg != BPF_REG_FP) {
2307 			/* The backtracking logic can only recognize explicit
2308 			 * stack slot address like [fp - 8]. Other spill of
2309 			 * scalar via different register has to be conervative.
2310 			 * Backtrack from here and mark all registers as precise
2311 			 * that contributed into 'reg' being a constant.
2312 			 */
2313 			err = mark_chain_precision(env, value_regno);
2314 			if (err)
2315 				return err;
2316 		}
2317 		save_register_state(state, spi, reg);
2318 	} else if (reg && is_spillable_regtype(reg->type)) {
2319 		/* register containing pointer is being spilled into stack */
2320 		if (size != BPF_REG_SIZE) {
2321 			verbose_linfo(env, insn_idx, "; ");
2322 			verbose(env, "invalid size of register spill\n");
2323 			return -EACCES;
2324 		}
2325 
2326 		if (state != cur && reg->type == PTR_TO_STACK) {
2327 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2328 			return -EINVAL;
2329 		}
2330 
2331 		if (!env->bypass_spec_v4) {
2332 			bool sanitize = false;
2333 
2334 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2335 			    register_is_const(&state->stack[spi].spilled_ptr))
2336 				sanitize = true;
2337 			for (i = 0; i < BPF_REG_SIZE; i++)
2338 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2339 					sanitize = true;
2340 					break;
2341 				}
2342 			if (sanitize) {
2343 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2344 				int soff = (-spi - 1) * BPF_REG_SIZE;
2345 
2346 				/* detected reuse of integer stack slot with a pointer
2347 				 * which means either llvm is reusing stack slot or
2348 				 * an attacker is trying to exploit CVE-2018-3639
2349 				 * (speculative store bypass)
2350 				 * Have to sanitize that slot with preemptive
2351 				 * store of zero.
2352 				 */
2353 				if (*poff && *poff != soff) {
2354 					/* disallow programs where single insn stores
2355 					 * into two different stack slots, since verifier
2356 					 * cannot sanitize them
2357 					 */
2358 					verbose(env,
2359 						"insn %d cannot access two stack slots fp%d and fp%d",
2360 						insn_idx, *poff, soff);
2361 					return -EINVAL;
2362 				}
2363 				*poff = soff;
2364 			}
2365 		}
2366 		save_register_state(state, spi, reg);
2367 	} else {
2368 		u8 type = STACK_MISC;
2369 
2370 		/* regular write of data into stack destroys any spilled ptr */
2371 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2372 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2373 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2374 			for (i = 0; i < BPF_REG_SIZE; i++)
2375 				state->stack[spi].slot_type[i] = STACK_MISC;
2376 
2377 		/* only mark the slot as written if all 8 bytes were written
2378 		 * otherwise read propagation may incorrectly stop too soon
2379 		 * when stack slots are partially written.
2380 		 * This heuristic means that read propagation will be
2381 		 * conservative, since it will add reg_live_read marks
2382 		 * to stack slots all the way to first state when programs
2383 		 * writes+reads less than 8 bytes
2384 		 */
2385 		if (size == BPF_REG_SIZE)
2386 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2387 
2388 		/* when we zero initialize stack slots mark them as such */
2389 		if (reg && register_is_null(reg)) {
2390 			/* backtracking doesn't work for STACK_ZERO yet. */
2391 			err = mark_chain_precision(env, value_regno);
2392 			if (err)
2393 				return err;
2394 			type = STACK_ZERO;
2395 		}
2396 
2397 		/* Mark slots affected by this stack write. */
2398 		for (i = 0; i < size; i++)
2399 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2400 				type;
2401 	}
2402 	return 0;
2403 }
2404 
2405 static int check_stack_read(struct bpf_verifier_env *env,
2406 			    struct bpf_func_state *reg_state /* func where register points to */,
2407 			    int off, int size, int value_regno)
2408 {
2409 	struct bpf_verifier_state *vstate = env->cur_state;
2410 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2411 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2412 	struct bpf_reg_state *reg;
2413 	u8 *stype;
2414 
2415 	if (reg_state->allocated_stack <= slot) {
2416 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2417 			off, size);
2418 		return -EACCES;
2419 	}
2420 	stype = reg_state->stack[spi].slot_type;
2421 	reg = &reg_state->stack[spi].spilled_ptr;
2422 
2423 	if (stype[0] == STACK_SPILL) {
2424 		if (size != BPF_REG_SIZE) {
2425 			if (reg->type != SCALAR_VALUE) {
2426 				verbose_linfo(env, env->insn_idx, "; ");
2427 				verbose(env, "invalid size of register fill\n");
2428 				return -EACCES;
2429 			}
2430 			if (value_regno >= 0) {
2431 				mark_reg_unknown(env, state->regs, value_regno);
2432 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2433 			}
2434 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2435 			return 0;
2436 		}
2437 		for (i = 1; i < BPF_REG_SIZE; i++) {
2438 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2439 				verbose(env, "corrupted spill memory\n");
2440 				return -EACCES;
2441 			}
2442 		}
2443 
2444 		if (value_regno >= 0) {
2445 			/* restore register state from stack */
2446 			state->regs[value_regno] = *reg;
2447 			/* mark reg as written since spilled pointer state likely
2448 			 * has its liveness marks cleared by is_state_visited()
2449 			 * which resets stack/reg liveness for state transitions
2450 			 */
2451 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2452 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2453 			/* If value_regno==-1, the caller is asking us whether
2454 			 * it is acceptable to use this value as a SCALAR_VALUE
2455 			 * (e.g. for XADD).
2456 			 * We must not allow unprivileged callers to do that
2457 			 * with spilled pointers.
2458 			 */
2459 			verbose(env, "leaking pointer from stack off %d\n",
2460 				off);
2461 			return -EACCES;
2462 		}
2463 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2464 	} else {
2465 		int zeros = 0;
2466 
2467 		for (i = 0; i < size; i++) {
2468 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2469 				continue;
2470 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2471 				zeros++;
2472 				continue;
2473 			}
2474 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2475 				off, i, size);
2476 			return -EACCES;
2477 		}
2478 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2479 		if (value_regno >= 0) {
2480 			if (zeros == size) {
2481 				/* any size read into register is zero extended,
2482 				 * so the whole register == const_zero
2483 				 */
2484 				__mark_reg_const_zero(&state->regs[value_regno]);
2485 				/* backtracking doesn't support STACK_ZERO yet,
2486 				 * so mark it precise here, so that later
2487 				 * backtracking can stop here.
2488 				 * Backtracking may not need this if this register
2489 				 * doesn't participate in pointer adjustment.
2490 				 * Forward propagation of precise flag is not
2491 				 * necessary either. This mark is only to stop
2492 				 * backtracking. Any register that contributed
2493 				 * to const 0 was marked precise before spill.
2494 				 */
2495 				state->regs[value_regno].precise = true;
2496 			} else {
2497 				/* have read misc data from the stack */
2498 				mark_reg_unknown(env, state->regs, value_regno);
2499 			}
2500 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2501 		}
2502 	}
2503 	return 0;
2504 }
2505 
2506 static int check_stack_access(struct bpf_verifier_env *env,
2507 			      const struct bpf_reg_state *reg,
2508 			      int off, int size)
2509 {
2510 	/* Stack accesses must be at a fixed offset, so that we
2511 	 * can determine what type of data were returned. See
2512 	 * check_stack_read().
2513 	 */
2514 	if (!tnum_is_const(reg->var_off)) {
2515 		char tn_buf[48];
2516 
2517 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2518 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2519 			tn_buf, off, size);
2520 		return -EACCES;
2521 	}
2522 
2523 	if (off >= 0 || off < -MAX_BPF_STACK) {
2524 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2525 		return -EACCES;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2532 				 int off, int size, enum bpf_access_type type)
2533 {
2534 	struct bpf_reg_state *regs = cur_regs(env);
2535 	struct bpf_map *map = regs[regno].map_ptr;
2536 	u32 cap = bpf_map_flags_to_cap(map);
2537 
2538 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2539 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2540 			map->value_size, off, size);
2541 		return -EACCES;
2542 	}
2543 
2544 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2545 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2546 			map->value_size, off, size);
2547 		return -EACCES;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2554 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2555 			      int off, int size, u32 mem_size,
2556 			      bool zero_size_allowed)
2557 {
2558 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2559 	struct bpf_reg_state *reg;
2560 
2561 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2562 		return 0;
2563 
2564 	reg = &cur_regs(env)[regno];
2565 	switch (reg->type) {
2566 	case PTR_TO_MAP_VALUE:
2567 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2568 			mem_size, off, size);
2569 		break;
2570 	case PTR_TO_PACKET:
2571 	case PTR_TO_PACKET_META:
2572 	case PTR_TO_PACKET_END:
2573 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2574 			off, size, regno, reg->id, off, mem_size);
2575 		break;
2576 	case PTR_TO_MEM:
2577 	default:
2578 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2579 			mem_size, off, size);
2580 	}
2581 
2582 	return -EACCES;
2583 }
2584 
2585 /* check read/write into a memory region with possible variable offset */
2586 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2587 				   int off, int size, u32 mem_size,
2588 				   bool zero_size_allowed)
2589 {
2590 	struct bpf_verifier_state *vstate = env->cur_state;
2591 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2592 	struct bpf_reg_state *reg = &state->regs[regno];
2593 	int err;
2594 
2595 	/* We may have adjusted the register pointing to memory region, so we
2596 	 * need to try adding each of min_value and max_value to off
2597 	 * to make sure our theoretical access will be safe.
2598 	 */
2599 	if (env->log.level & BPF_LOG_LEVEL)
2600 		print_verifier_state(env, state);
2601 
2602 	/* The minimum value is only important with signed
2603 	 * comparisons where we can't assume the floor of a
2604 	 * value is 0.  If we are using signed variables for our
2605 	 * index'es we need to make sure that whatever we use
2606 	 * will have a set floor within our range.
2607 	 */
2608 	if (reg->smin_value < 0 &&
2609 	    (reg->smin_value == S64_MIN ||
2610 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2611 	      reg->smin_value + off < 0)) {
2612 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2613 			regno);
2614 		return -EACCES;
2615 	}
2616 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2617 				 mem_size, zero_size_allowed);
2618 	if (err) {
2619 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2620 			regno);
2621 		return err;
2622 	}
2623 
2624 	/* If we haven't set a max value then we need to bail since we can't be
2625 	 * sure we won't do bad things.
2626 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2627 	 */
2628 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2629 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2630 			regno);
2631 		return -EACCES;
2632 	}
2633 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2634 				 mem_size, zero_size_allowed);
2635 	if (err) {
2636 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2637 			regno);
2638 		return err;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 /* check read/write into a map element with possible variable offset */
2645 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2646 			    int off, int size, bool zero_size_allowed)
2647 {
2648 	struct bpf_verifier_state *vstate = env->cur_state;
2649 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2650 	struct bpf_reg_state *reg = &state->regs[regno];
2651 	struct bpf_map *map = reg->map_ptr;
2652 	int err;
2653 
2654 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2655 				      zero_size_allowed);
2656 	if (err)
2657 		return err;
2658 
2659 	if (map_value_has_spin_lock(map)) {
2660 		u32 lock = map->spin_lock_off;
2661 
2662 		/* if any part of struct bpf_spin_lock can be touched by
2663 		 * load/store reject this program.
2664 		 * To check that [x1, x2) overlaps with [y1, y2)
2665 		 * it is sufficient to check x1 < y2 && y1 < x2.
2666 		 */
2667 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2668 		     lock < reg->umax_value + off + size) {
2669 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2670 			return -EACCES;
2671 		}
2672 	}
2673 	return err;
2674 }
2675 
2676 #define MAX_PACKET_OFF 0xffff
2677 
2678 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2679 {
2680 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2681 }
2682 
2683 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2684 				       const struct bpf_call_arg_meta *meta,
2685 				       enum bpf_access_type t)
2686 {
2687 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2688 
2689 	switch (prog_type) {
2690 	/* Program types only with direct read access go here! */
2691 	case BPF_PROG_TYPE_LWT_IN:
2692 	case BPF_PROG_TYPE_LWT_OUT:
2693 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2694 	case BPF_PROG_TYPE_SK_REUSEPORT:
2695 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2696 	case BPF_PROG_TYPE_CGROUP_SKB:
2697 		if (t == BPF_WRITE)
2698 			return false;
2699 		fallthrough;
2700 
2701 	/* Program types with direct read + write access go here! */
2702 	case BPF_PROG_TYPE_SCHED_CLS:
2703 	case BPF_PROG_TYPE_SCHED_ACT:
2704 	case BPF_PROG_TYPE_XDP:
2705 	case BPF_PROG_TYPE_LWT_XMIT:
2706 	case BPF_PROG_TYPE_SK_SKB:
2707 	case BPF_PROG_TYPE_SK_MSG:
2708 		if (meta)
2709 			return meta->pkt_access;
2710 
2711 		env->seen_direct_write = true;
2712 		return true;
2713 
2714 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2715 		if (t == BPF_WRITE)
2716 			env->seen_direct_write = true;
2717 
2718 		return true;
2719 
2720 	default:
2721 		return false;
2722 	}
2723 }
2724 
2725 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2726 			       int size, bool zero_size_allowed)
2727 {
2728 	struct bpf_reg_state *regs = cur_regs(env);
2729 	struct bpf_reg_state *reg = &regs[regno];
2730 	int err;
2731 
2732 	/* We may have added a variable offset to the packet pointer; but any
2733 	 * reg->range we have comes after that.  We are only checking the fixed
2734 	 * offset.
2735 	 */
2736 
2737 	/* We don't allow negative numbers, because we aren't tracking enough
2738 	 * detail to prove they're safe.
2739 	 */
2740 	if (reg->smin_value < 0) {
2741 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2742 			regno);
2743 		return -EACCES;
2744 	}
2745 
2746 	err = reg->range < 0 ? -EINVAL :
2747 	      __check_mem_access(env, regno, off, size, reg->range,
2748 				 zero_size_allowed);
2749 	if (err) {
2750 		verbose(env, "R%d offset is outside of the packet\n", regno);
2751 		return err;
2752 	}
2753 
2754 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2755 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2756 	 * otherwise find_good_pkt_pointers would have refused to set range info
2757 	 * that __check_mem_access would have rejected this pkt access.
2758 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2759 	 */
2760 	env->prog->aux->max_pkt_offset =
2761 		max_t(u32, env->prog->aux->max_pkt_offset,
2762 		      off + reg->umax_value + size - 1);
2763 
2764 	return err;
2765 }
2766 
2767 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2768 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2769 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2770 			    struct btf **btf, u32 *btf_id)
2771 {
2772 	struct bpf_insn_access_aux info = {
2773 		.reg_type = *reg_type,
2774 		.log = &env->log,
2775 	};
2776 
2777 	if (env->ops->is_valid_access &&
2778 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2779 		/* A non zero info.ctx_field_size indicates that this field is a
2780 		 * candidate for later verifier transformation to load the whole
2781 		 * field and then apply a mask when accessed with a narrower
2782 		 * access than actual ctx access size. A zero info.ctx_field_size
2783 		 * will only allow for whole field access and rejects any other
2784 		 * type of narrower access.
2785 		 */
2786 		*reg_type = info.reg_type;
2787 
2788 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2789 			*btf = info.btf;
2790 			*btf_id = info.btf_id;
2791 		} else {
2792 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2793 		}
2794 		/* remember the offset of last byte accessed in ctx */
2795 		if (env->prog->aux->max_ctx_offset < off + size)
2796 			env->prog->aux->max_ctx_offset = off + size;
2797 		return 0;
2798 	}
2799 
2800 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2801 	return -EACCES;
2802 }
2803 
2804 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2805 				  int size)
2806 {
2807 	if (size < 0 || off < 0 ||
2808 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2809 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2810 			off, size);
2811 		return -EACCES;
2812 	}
2813 	return 0;
2814 }
2815 
2816 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2817 			     u32 regno, int off, int size,
2818 			     enum bpf_access_type t)
2819 {
2820 	struct bpf_reg_state *regs = cur_regs(env);
2821 	struct bpf_reg_state *reg = &regs[regno];
2822 	struct bpf_insn_access_aux info = {};
2823 	bool valid;
2824 
2825 	if (reg->smin_value < 0) {
2826 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2827 			regno);
2828 		return -EACCES;
2829 	}
2830 
2831 	switch (reg->type) {
2832 	case PTR_TO_SOCK_COMMON:
2833 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2834 		break;
2835 	case PTR_TO_SOCKET:
2836 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2837 		break;
2838 	case PTR_TO_TCP_SOCK:
2839 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2840 		break;
2841 	case PTR_TO_XDP_SOCK:
2842 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2843 		break;
2844 	default:
2845 		valid = false;
2846 	}
2847 
2848 
2849 	if (valid) {
2850 		env->insn_aux_data[insn_idx].ctx_field_size =
2851 			info.ctx_field_size;
2852 		return 0;
2853 	}
2854 
2855 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2856 		regno, reg_type_str[reg->type], off, size);
2857 
2858 	return -EACCES;
2859 }
2860 
2861 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2862 {
2863 	return cur_regs(env) + regno;
2864 }
2865 
2866 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2867 {
2868 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2869 }
2870 
2871 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2872 {
2873 	const struct bpf_reg_state *reg = reg_state(env, regno);
2874 
2875 	return reg->type == PTR_TO_CTX;
2876 }
2877 
2878 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2879 {
2880 	const struct bpf_reg_state *reg = reg_state(env, regno);
2881 
2882 	return type_is_sk_pointer(reg->type);
2883 }
2884 
2885 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2886 {
2887 	const struct bpf_reg_state *reg = reg_state(env, regno);
2888 
2889 	return type_is_pkt_pointer(reg->type);
2890 }
2891 
2892 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2893 {
2894 	const struct bpf_reg_state *reg = reg_state(env, regno);
2895 
2896 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2897 	return reg->type == PTR_TO_FLOW_KEYS;
2898 }
2899 
2900 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2901 				   const struct bpf_reg_state *reg,
2902 				   int off, int size, bool strict)
2903 {
2904 	struct tnum reg_off;
2905 	int ip_align;
2906 
2907 	/* Byte size accesses are always allowed. */
2908 	if (!strict || size == 1)
2909 		return 0;
2910 
2911 	/* For platforms that do not have a Kconfig enabling
2912 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2913 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2914 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2915 	 * to this code only in strict mode where we want to emulate
2916 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2917 	 * unconditional IP align value of '2'.
2918 	 */
2919 	ip_align = 2;
2920 
2921 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2922 	if (!tnum_is_aligned(reg_off, size)) {
2923 		char tn_buf[48];
2924 
2925 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2926 		verbose(env,
2927 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2928 			ip_align, tn_buf, reg->off, off, size);
2929 		return -EACCES;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2936 				       const struct bpf_reg_state *reg,
2937 				       const char *pointer_desc,
2938 				       int off, int size, bool strict)
2939 {
2940 	struct tnum reg_off;
2941 
2942 	/* Byte size accesses are always allowed. */
2943 	if (!strict || size == 1)
2944 		return 0;
2945 
2946 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2947 	if (!tnum_is_aligned(reg_off, size)) {
2948 		char tn_buf[48];
2949 
2950 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2951 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2952 			pointer_desc, tn_buf, reg->off, off, size);
2953 		return -EACCES;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static int check_ptr_alignment(struct bpf_verifier_env *env,
2960 			       const struct bpf_reg_state *reg, int off,
2961 			       int size, bool strict_alignment_once)
2962 {
2963 	bool strict = env->strict_alignment || strict_alignment_once;
2964 	const char *pointer_desc = "";
2965 
2966 	switch (reg->type) {
2967 	case PTR_TO_PACKET:
2968 	case PTR_TO_PACKET_META:
2969 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2970 		 * right in front, treat it the very same way.
2971 		 */
2972 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2973 	case PTR_TO_FLOW_KEYS:
2974 		pointer_desc = "flow keys ";
2975 		break;
2976 	case PTR_TO_MAP_VALUE:
2977 		pointer_desc = "value ";
2978 		break;
2979 	case PTR_TO_CTX:
2980 		pointer_desc = "context ";
2981 		break;
2982 	case PTR_TO_STACK:
2983 		pointer_desc = "stack ";
2984 		/* The stack spill tracking logic in check_stack_write()
2985 		 * and check_stack_read() relies on stack accesses being
2986 		 * aligned.
2987 		 */
2988 		strict = true;
2989 		break;
2990 	case PTR_TO_SOCKET:
2991 		pointer_desc = "sock ";
2992 		break;
2993 	case PTR_TO_SOCK_COMMON:
2994 		pointer_desc = "sock_common ";
2995 		break;
2996 	case PTR_TO_TCP_SOCK:
2997 		pointer_desc = "tcp_sock ";
2998 		break;
2999 	case PTR_TO_XDP_SOCK:
3000 		pointer_desc = "xdp_sock ";
3001 		break;
3002 	default:
3003 		break;
3004 	}
3005 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3006 					   strict);
3007 }
3008 
3009 static int update_stack_depth(struct bpf_verifier_env *env,
3010 			      const struct bpf_func_state *func,
3011 			      int off)
3012 {
3013 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3014 
3015 	if (stack >= -off)
3016 		return 0;
3017 
3018 	/* update known max for given subprogram */
3019 	env->subprog_info[func->subprogno].stack_depth = -off;
3020 	return 0;
3021 }
3022 
3023 /* starting from main bpf function walk all instructions of the function
3024  * and recursively walk all callees that given function can call.
3025  * Ignore jump and exit insns.
3026  * Since recursion is prevented by check_cfg() this algorithm
3027  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3028  */
3029 static int check_max_stack_depth(struct bpf_verifier_env *env)
3030 {
3031 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3032 	struct bpf_subprog_info *subprog = env->subprog_info;
3033 	struct bpf_insn *insn = env->prog->insnsi;
3034 	bool tail_call_reachable = false;
3035 	int ret_insn[MAX_CALL_FRAMES];
3036 	int ret_prog[MAX_CALL_FRAMES];
3037 	int j;
3038 
3039 process_func:
3040 	/* protect against potential stack overflow that might happen when
3041 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3042 	 * depth for such case down to 256 so that the worst case scenario
3043 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3044 	 * 8k).
3045 	 *
3046 	 * To get the idea what might happen, see an example:
3047 	 * func1 -> sub rsp, 128
3048 	 *  subfunc1 -> sub rsp, 256
3049 	 *  tailcall1 -> add rsp, 256
3050 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3051 	 *   subfunc2 -> sub rsp, 64
3052 	 *   subfunc22 -> sub rsp, 128
3053 	 *   tailcall2 -> add rsp, 128
3054 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3055 	 *
3056 	 * tailcall will unwind the current stack frame but it will not get rid
3057 	 * of caller's stack as shown on the example above.
3058 	 */
3059 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3060 		verbose(env,
3061 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3062 			depth);
3063 		return -EACCES;
3064 	}
3065 	/* round up to 32-bytes, since this is granularity
3066 	 * of interpreter stack size
3067 	 */
3068 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3069 	if (depth > MAX_BPF_STACK) {
3070 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3071 			frame + 1, depth);
3072 		return -EACCES;
3073 	}
3074 continue_func:
3075 	subprog_end = subprog[idx + 1].start;
3076 	for (; i < subprog_end; i++) {
3077 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3078 			continue;
3079 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3080 			continue;
3081 		/* remember insn and function to return to */
3082 		ret_insn[frame] = i + 1;
3083 		ret_prog[frame] = idx;
3084 
3085 		/* find the callee */
3086 		i = i + insn[i].imm + 1;
3087 		idx = find_subprog(env, i);
3088 		if (idx < 0) {
3089 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3090 				  i);
3091 			return -EFAULT;
3092 		}
3093 
3094 		if (subprog[idx].has_tail_call)
3095 			tail_call_reachable = true;
3096 
3097 		frame++;
3098 		if (frame >= MAX_CALL_FRAMES) {
3099 			verbose(env, "the call stack of %d frames is too deep !\n",
3100 				frame);
3101 			return -E2BIG;
3102 		}
3103 		goto process_func;
3104 	}
3105 	/* if tail call got detected across bpf2bpf calls then mark each of the
3106 	 * currently present subprog frames as tail call reachable subprogs;
3107 	 * this info will be utilized by JIT so that we will be preserving the
3108 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3109 	 */
3110 	if (tail_call_reachable)
3111 		for (j = 0; j < frame; j++)
3112 			subprog[ret_prog[j]].tail_call_reachable = true;
3113 
3114 	/* end of for() loop means the last insn of the 'subprog'
3115 	 * was reached. Doesn't matter whether it was JA or EXIT
3116 	 */
3117 	if (frame == 0)
3118 		return 0;
3119 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3120 	frame--;
3121 	i = ret_insn[frame];
3122 	idx = ret_prog[frame];
3123 	goto continue_func;
3124 }
3125 
3126 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3127 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3128 				  const struct bpf_insn *insn, int idx)
3129 {
3130 	int start = idx + insn->imm + 1, subprog;
3131 
3132 	subprog = find_subprog(env, start);
3133 	if (subprog < 0) {
3134 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3135 			  start);
3136 		return -EFAULT;
3137 	}
3138 	return env->subprog_info[subprog].stack_depth;
3139 }
3140 #endif
3141 
3142 int check_ctx_reg(struct bpf_verifier_env *env,
3143 		  const struct bpf_reg_state *reg, int regno)
3144 {
3145 	/* Access to ctx or passing it to a helper is only allowed in
3146 	 * its original, unmodified form.
3147 	 */
3148 
3149 	if (reg->off) {
3150 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3151 			regno, reg->off);
3152 		return -EACCES;
3153 	}
3154 
3155 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3156 		char tn_buf[48];
3157 
3158 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3159 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3160 		return -EACCES;
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static int __check_buffer_access(struct bpf_verifier_env *env,
3167 				 const char *buf_info,
3168 				 const struct bpf_reg_state *reg,
3169 				 int regno, int off, int size)
3170 {
3171 	if (off < 0) {
3172 		verbose(env,
3173 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3174 			regno, buf_info, off, size);
3175 		return -EACCES;
3176 	}
3177 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3178 		char tn_buf[48];
3179 
3180 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3181 		verbose(env,
3182 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3183 			regno, off, tn_buf);
3184 		return -EACCES;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3191 				  const struct bpf_reg_state *reg,
3192 				  int regno, int off, int size)
3193 {
3194 	int err;
3195 
3196 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3197 	if (err)
3198 		return err;
3199 
3200 	if (off + size > env->prog->aux->max_tp_access)
3201 		env->prog->aux->max_tp_access = off + size;
3202 
3203 	return 0;
3204 }
3205 
3206 static int check_buffer_access(struct bpf_verifier_env *env,
3207 			       const struct bpf_reg_state *reg,
3208 			       int regno, int off, int size,
3209 			       bool zero_size_allowed,
3210 			       const char *buf_info,
3211 			       u32 *max_access)
3212 {
3213 	int err;
3214 
3215 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3216 	if (err)
3217 		return err;
3218 
3219 	if (off + size > *max_access)
3220 		*max_access = off + size;
3221 
3222 	return 0;
3223 }
3224 
3225 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3226 static void zext_32_to_64(struct bpf_reg_state *reg)
3227 {
3228 	reg->var_off = tnum_subreg(reg->var_off);
3229 	__reg_assign_32_into_64(reg);
3230 }
3231 
3232 /* truncate register to smaller size (in bytes)
3233  * must be called with size < BPF_REG_SIZE
3234  */
3235 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3236 {
3237 	u64 mask;
3238 
3239 	/* clear high bits in bit representation */
3240 	reg->var_off = tnum_cast(reg->var_off, size);
3241 
3242 	/* fix arithmetic bounds */
3243 	mask = ((u64)1 << (size * 8)) - 1;
3244 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3245 		reg->umin_value &= mask;
3246 		reg->umax_value &= mask;
3247 	} else {
3248 		reg->umin_value = 0;
3249 		reg->umax_value = mask;
3250 	}
3251 	reg->smin_value = reg->umin_value;
3252 	reg->smax_value = reg->umax_value;
3253 
3254 	/* If size is smaller than 32bit register the 32bit register
3255 	 * values are also truncated so we push 64-bit bounds into
3256 	 * 32-bit bounds. Above were truncated < 32-bits already.
3257 	 */
3258 	if (size >= 4)
3259 		return;
3260 	__reg_combine_64_into_32(reg);
3261 }
3262 
3263 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3264 {
3265 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3266 }
3267 
3268 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3269 {
3270 	void *ptr;
3271 	u64 addr;
3272 	int err;
3273 
3274 	err = map->ops->map_direct_value_addr(map, &addr, off);
3275 	if (err)
3276 		return err;
3277 	ptr = (void *)(long)addr + off;
3278 
3279 	switch (size) {
3280 	case sizeof(u8):
3281 		*val = (u64)*(u8 *)ptr;
3282 		break;
3283 	case sizeof(u16):
3284 		*val = (u64)*(u16 *)ptr;
3285 		break;
3286 	case sizeof(u32):
3287 		*val = (u64)*(u32 *)ptr;
3288 		break;
3289 	case sizeof(u64):
3290 		*val = *(u64 *)ptr;
3291 		break;
3292 	default:
3293 		return -EINVAL;
3294 	}
3295 	return 0;
3296 }
3297 
3298 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3299 				   struct bpf_reg_state *regs,
3300 				   int regno, int off, int size,
3301 				   enum bpf_access_type atype,
3302 				   int value_regno)
3303 {
3304 	struct bpf_reg_state *reg = regs + regno;
3305 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3306 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3307 	u32 btf_id;
3308 	int ret;
3309 
3310 	if (off < 0) {
3311 		verbose(env,
3312 			"R%d is ptr_%s invalid negative access: off=%d\n",
3313 			regno, tname, off);
3314 		return -EACCES;
3315 	}
3316 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3317 		char tn_buf[48];
3318 
3319 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3320 		verbose(env,
3321 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3322 			regno, tname, off, tn_buf);
3323 		return -EACCES;
3324 	}
3325 
3326 	if (env->ops->btf_struct_access) {
3327 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3328 						  off, size, atype, &btf_id);
3329 	} else {
3330 		if (atype != BPF_READ) {
3331 			verbose(env, "only read is supported\n");
3332 			return -EACCES;
3333 		}
3334 
3335 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3336 					atype, &btf_id);
3337 	}
3338 
3339 	if (ret < 0)
3340 		return ret;
3341 
3342 	if (atype == BPF_READ && value_regno >= 0)
3343 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3344 
3345 	return 0;
3346 }
3347 
3348 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3349 				   struct bpf_reg_state *regs,
3350 				   int regno, int off, int size,
3351 				   enum bpf_access_type atype,
3352 				   int value_regno)
3353 {
3354 	struct bpf_reg_state *reg = regs + regno;
3355 	struct bpf_map *map = reg->map_ptr;
3356 	const struct btf_type *t;
3357 	const char *tname;
3358 	u32 btf_id;
3359 	int ret;
3360 
3361 	if (!btf_vmlinux) {
3362 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3363 		return -ENOTSUPP;
3364 	}
3365 
3366 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3367 		verbose(env, "map_ptr access not supported for map type %d\n",
3368 			map->map_type);
3369 		return -ENOTSUPP;
3370 	}
3371 
3372 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3373 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3374 
3375 	if (!env->allow_ptr_to_map_access) {
3376 		verbose(env,
3377 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3378 			tname);
3379 		return -EPERM;
3380 	}
3381 
3382 	if (off < 0) {
3383 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3384 			regno, tname, off);
3385 		return -EACCES;
3386 	}
3387 
3388 	if (atype != BPF_READ) {
3389 		verbose(env, "only read from %s is supported\n", tname);
3390 		return -EACCES;
3391 	}
3392 
3393 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3394 	if (ret < 0)
3395 		return ret;
3396 
3397 	if (value_regno >= 0)
3398 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3399 
3400 	return 0;
3401 }
3402 
3403 
3404 /* check whether memory at (regno + off) is accessible for t = (read | write)
3405  * if t==write, value_regno is a register which value is stored into memory
3406  * if t==read, value_regno is a register which will receive the value from memory
3407  * if t==write && value_regno==-1, some unknown value is stored into memory
3408  * if t==read && value_regno==-1, don't care what we read from memory
3409  */
3410 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3411 			    int off, int bpf_size, enum bpf_access_type t,
3412 			    int value_regno, bool strict_alignment_once)
3413 {
3414 	struct bpf_reg_state *regs = cur_regs(env);
3415 	struct bpf_reg_state *reg = regs + regno;
3416 	struct bpf_func_state *state;
3417 	int size, err = 0;
3418 
3419 	size = bpf_size_to_bytes(bpf_size);
3420 	if (size < 0)
3421 		return size;
3422 
3423 	/* alignment checks will add in reg->off themselves */
3424 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3425 	if (err)
3426 		return err;
3427 
3428 	/* for access checks, reg->off is just part of off */
3429 	off += reg->off;
3430 
3431 	if (reg->type == PTR_TO_MAP_VALUE) {
3432 		if (t == BPF_WRITE && value_regno >= 0 &&
3433 		    is_pointer_value(env, value_regno)) {
3434 			verbose(env, "R%d leaks addr into map\n", value_regno);
3435 			return -EACCES;
3436 		}
3437 		err = check_map_access_type(env, regno, off, size, t);
3438 		if (err)
3439 			return err;
3440 		err = check_map_access(env, regno, off, size, false);
3441 		if (!err && t == BPF_READ && value_regno >= 0) {
3442 			struct bpf_map *map = reg->map_ptr;
3443 
3444 			/* if map is read-only, track its contents as scalars */
3445 			if (tnum_is_const(reg->var_off) &&
3446 			    bpf_map_is_rdonly(map) &&
3447 			    map->ops->map_direct_value_addr) {
3448 				int map_off = off + reg->var_off.value;
3449 				u64 val = 0;
3450 
3451 				err = bpf_map_direct_read(map, map_off, size,
3452 							  &val);
3453 				if (err)
3454 					return err;
3455 
3456 				regs[value_regno].type = SCALAR_VALUE;
3457 				__mark_reg_known(&regs[value_regno], val);
3458 			} else {
3459 				mark_reg_unknown(env, regs, value_regno);
3460 			}
3461 		}
3462 	} else if (reg->type == PTR_TO_MEM) {
3463 		if (t == BPF_WRITE && value_regno >= 0 &&
3464 		    is_pointer_value(env, value_regno)) {
3465 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3466 			return -EACCES;
3467 		}
3468 		err = check_mem_region_access(env, regno, off, size,
3469 					      reg->mem_size, false);
3470 		if (!err && t == BPF_READ && value_regno >= 0)
3471 			mark_reg_unknown(env, regs, value_regno);
3472 	} else if (reg->type == PTR_TO_CTX) {
3473 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3474 		struct btf *btf = NULL;
3475 		u32 btf_id = 0;
3476 
3477 		if (t == BPF_WRITE && value_regno >= 0 &&
3478 		    is_pointer_value(env, value_regno)) {
3479 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3480 			return -EACCES;
3481 		}
3482 
3483 		err = check_ctx_reg(env, reg, regno);
3484 		if (err < 0)
3485 			return err;
3486 
3487 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3488 		if (err)
3489 			verbose_linfo(env, insn_idx, "; ");
3490 		if (!err && t == BPF_READ && value_regno >= 0) {
3491 			/* ctx access returns either a scalar, or a
3492 			 * PTR_TO_PACKET[_META,_END]. In the latter
3493 			 * case, we know the offset is zero.
3494 			 */
3495 			if (reg_type == SCALAR_VALUE) {
3496 				mark_reg_unknown(env, regs, value_regno);
3497 			} else {
3498 				mark_reg_known_zero(env, regs,
3499 						    value_regno);
3500 				if (reg_type_may_be_null(reg_type))
3501 					regs[value_regno].id = ++env->id_gen;
3502 				/* A load of ctx field could have different
3503 				 * actual load size with the one encoded in the
3504 				 * insn. When the dst is PTR, it is for sure not
3505 				 * a sub-register.
3506 				 */
3507 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3508 				if (reg_type == PTR_TO_BTF_ID ||
3509 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3510 					regs[value_regno].btf = btf;
3511 					regs[value_regno].btf_id = btf_id;
3512 				}
3513 			}
3514 			regs[value_regno].type = reg_type;
3515 		}
3516 
3517 	} else if (reg->type == PTR_TO_STACK) {
3518 		off += reg->var_off.value;
3519 		err = check_stack_access(env, reg, off, size);
3520 		if (err)
3521 			return err;
3522 
3523 		state = func(env, reg);
3524 		err = update_stack_depth(env, state, off);
3525 		if (err)
3526 			return err;
3527 
3528 		if (t == BPF_WRITE)
3529 			err = check_stack_write(env, state, off, size,
3530 						value_regno, insn_idx);
3531 		else
3532 			err = check_stack_read(env, state, off, size,
3533 					       value_regno);
3534 	} else if (reg_is_pkt_pointer(reg)) {
3535 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3536 			verbose(env, "cannot write into packet\n");
3537 			return -EACCES;
3538 		}
3539 		if (t == BPF_WRITE && value_regno >= 0 &&
3540 		    is_pointer_value(env, value_regno)) {
3541 			verbose(env, "R%d leaks addr into packet\n",
3542 				value_regno);
3543 			return -EACCES;
3544 		}
3545 		err = check_packet_access(env, regno, off, size, false);
3546 		if (!err && t == BPF_READ && value_regno >= 0)
3547 			mark_reg_unknown(env, regs, value_regno);
3548 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3549 		if (t == BPF_WRITE && value_regno >= 0 &&
3550 		    is_pointer_value(env, value_regno)) {
3551 			verbose(env, "R%d leaks addr into flow keys\n",
3552 				value_regno);
3553 			return -EACCES;
3554 		}
3555 
3556 		err = check_flow_keys_access(env, off, size);
3557 		if (!err && t == BPF_READ && value_regno >= 0)
3558 			mark_reg_unknown(env, regs, value_regno);
3559 	} else if (type_is_sk_pointer(reg->type)) {
3560 		if (t == BPF_WRITE) {
3561 			verbose(env, "R%d cannot write into %s\n",
3562 				regno, reg_type_str[reg->type]);
3563 			return -EACCES;
3564 		}
3565 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3566 		if (!err && value_regno >= 0)
3567 			mark_reg_unknown(env, regs, value_regno);
3568 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3569 		err = check_tp_buffer_access(env, reg, regno, off, size);
3570 		if (!err && t == BPF_READ && value_regno >= 0)
3571 			mark_reg_unknown(env, regs, value_regno);
3572 	} else if (reg->type == PTR_TO_BTF_ID) {
3573 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3574 					      value_regno);
3575 	} else if (reg->type == CONST_PTR_TO_MAP) {
3576 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3577 					      value_regno);
3578 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3579 		if (t == BPF_WRITE) {
3580 			verbose(env, "R%d cannot write into %s\n",
3581 				regno, reg_type_str[reg->type]);
3582 			return -EACCES;
3583 		}
3584 		err = check_buffer_access(env, reg, regno, off, size, false,
3585 					  "rdonly",
3586 					  &env->prog->aux->max_rdonly_access);
3587 		if (!err && value_regno >= 0)
3588 			mark_reg_unknown(env, regs, value_regno);
3589 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3590 		err = check_buffer_access(env, reg, regno, off, size, false,
3591 					  "rdwr",
3592 					  &env->prog->aux->max_rdwr_access);
3593 		if (!err && t == BPF_READ && value_regno >= 0)
3594 			mark_reg_unknown(env, regs, value_regno);
3595 	} else {
3596 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3597 			reg_type_str[reg->type]);
3598 		return -EACCES;
3599 	}
3600 
3601 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3602 	    regs[value_regno].type == SCALAR_VALUE) {
3603 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3604 		coerce_reg_to_size(&regs[value_regno], size);
3605 	}
3606 	return err;
3607 }
3608 
3609 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3610 {
3611 	int load_reg;
3612 	int err;
3613 
3614 	switch (insn->imm) {
3615 	case BPF_ADD:
3616 	case BPF_ADD | BPF_FETCH:
3617 	case BPF_AND:
3618 	case BPF_AND | BPF_FETCH:
3619 	case BPF_OR:
3620 	case BPF_OR | BPF_FETCH:
3621 	case BPF_XOR:
3622 	case BPF_XOR | BPF_FETCH:
3623 	case BPF_XCHG:
3624 	case BPF_CMPXCHG:
3625 		break;
3626 	default:
3627 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
3628 		return -EINVAL;
3629 	}
3630 
3631 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
3632 		verbose(env, "invalid atomic operand size\n");
3633 		return -EINVAL;
3634 	}
3635 
3636 	/* check src1 operand */
3637 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3638 	if (err)
3639 		return err;
3640 
3641 	/* check src2 operand */
3642 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3643 	if (err)
3644 		return err;
3645 
3646 	if (insn->imm == BPF_CMPXCHG) {
3647 		/* Check comparison of R0 with memory location */
3648 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3649 		if (err)
3650 			return err;
3651 	}
3652 
3653 	if (is_pointer_value(env, insn->src_reg)) {
3654 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3655 		return -EACCES;
3656 	}
3657 
3658 	if (is_ctx_reg(env, insn->dst_reg) ||
3659 	    is_pkt_reg(env, insn->dst_reg) ||
3660 	    is_flow_key_reg(env, insn->dst_reg) ||
3661 	    is_sk_reg(env, insn->dst_reg)) {
3662 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
3663 			insn->dst_reg,
3664 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3665 		return -EACCES;
3666 	}
3667 
3668 	/* check whether we can read the memory */
3669 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3670 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3671 	if (err)
3672 		return err;
3673 
3674 	/* check whether we can write into the same memory */
3675 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3676 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3677 	if (err)
3678 		return err;
3679 
3680 	if (!(insn->imm & BPF_FETCH))
3681 		return 0;
3682 
3683 	if (insn->imm == BPF_CMPXCHG)
3684 		load_reg = BPF_REG_0;
3685 	else
3686 		load_reg = insn->src_reg;
3687 
3688 	/* check and record load of old value */
3689 	err = check_reg_arg(env, load_reg, DST_OP);
3690 	if (err)
3691 		return err;
3692 
3693 	return 0;
3694 }
3695 
3696 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3697 				  int off, int access_size,
3698 				  bool zero_size_allowed)
3699 {
3700 	struct bpf_reg_state *reg = reg_state(env, regno);
3701 
3702 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3703 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3704 		if (tnum_is_const(reg->var_off)) {
3705 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3706 				regno, off, access_size);
3707 		} else {
3708 			char tn_buf[48];
3709 
3710 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3711 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3712 				regno, tn_buf, access_size);
3713 		}
3714 		return -EACCES;
3715 	}
3716 	return 0;
3717 }
3718 
3719 /* when register 'regno' is passed into function that will read 'access_size'
3720  * bytes from that pointer, make sure that it's within stack boundary
3721  * and all elements of stack are initialized.
3722  * Unlike most pointer bounds-checking functions, this one doesn't take an
3723  * 'off' argument, so it has to add in reg->off itself.
3724  */
3725 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3726 				int access_size, bool zero_size_allowed,
3727 				struct bpf_call_arg_meta *meta)
3728 {
3729 	struct bpf_reg_state *reg = reg_state(env, regno);
3730 	struct bpf_func_state *state = func(env, reg);
3731 	int err, min_off, max_off, i, j, slot, spi;
3732 
3733 	if (tnum_is_const(reg->var_off)) {
3734 		min_off = max_off = reg->var_off.value + reg->off;
3735 		err = __check_stack_boundary(env, regno, min_off, access_size,
3736 					     zero_size_allowed);
3737 		if (err)
3738 			return err;
3739 	} else {
3740 		/* Variable offset is prohibited for unprivileged mode for
3741 		 * simplicity since it requires corresponding support in
3742 		 * Spectre masking for stack ALU.
3743 		 * See also retrieve_ptr_limit().
3744 		 */
3745 		if (!env->bypass_spec_v1) {
3746 			char tn_buf[48];
3747 
3748 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3749 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3750 				regno, tn_buf);
3751 			return -EACCES;
3752 		}
3753 		/* Only initialized buffer on stack is allowed to be accessed
3754 		 * with variable offset. With uninitialized buffer it's hard to
3755 		 * guarantee that whole memory is marked as initialized on
3756 		 * helper return since specific bounds are unknown what may
3757 		 * cause uninitialized stack leaking.
3758 		 */
3759 		if (meta && meta->raw_mode)
3760 			meta = NULL;
3761 
3762 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3763 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3764 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3765 				regno);
3766 			return -EACCES;
3767 		}
3768 		min_off = reg->smin_value + reg->off;
3769 		max_off = reg->smax_value + reg->off;
3770 		err = __check_stack_boundary(env, regno, min_off, access_size,
3771 					     zero_size_allowed);
3772 		if (err) {
3773 			verbose(env, "R%d min value is outside of stack bound\n",
3774 				regno);
3775 			return err;
3776 		}
3777 		err = __check_stack_boundary(env, regno, max_off, access_size,
3778 					     zero_size_allowed);
3779 		if (err) {
3780 			verbose(env, "R%d max value is outside of stack bound\n",
3781 				regno);
3782 			return err;
3783 		}
3784 	}
3785 
3786 	if (meta && meta->raw_mode) {
3787 		meta->access_size = access_size;
3788 		meta->regno = regno;
3789 		return 0;
3790 	}
3791 
3792 	for (i = min_off; i < max_off + access_size; i++) {
3793 		u8 *stype;
3794 
3795 		slot = -i - 1;
3796 		spi = slot / BPF_REG_SIZE;
3797 		if (state->allocated_stack <= slot)
3798 			goto err;
3799 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3800 		if (*stype == STACK_MISC)
3801 			goto mark;
3802 		if (*stype == STACK_ZERO) {
3803 			/* helper can write anything into the stack */
3804 			*stype = STACK_MISC;
3805 			goto mark;
3806 		}
3807 
3808 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3809 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3810 			goto mark;
3811 
3812 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3813 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3814 		     env->allow_ptr_leaks)) {
3815 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3816 			for (j = 0; j < BPF_REG_SIZE; j++)
3817 				state->stack[spi].slot_type[j] = STACK_MISC;
3818 			goto mark;
3819 		}
3820 
3821 err:
3822 		if (tnum_is_const(reg->var_off)) {
3823 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3824 				min_off, i - min_off, access_size);
3825 		} else {
3826 			char tn_buf[48];
3827 
3828 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3829 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3830 				tn_buf, i - min_off, access_size);
3831 		}
3832 		return -EACCES;
3833 mark:
3834 		/* reading any byte out of 8-byte 'spill_slot' will cause
3835 		 * the whole slot to be marked as 'read'
3836 		 */
3837 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3838 			      state->stack[spi].spilled_ptr.parent,
3839 			      REG_LIVE_READ64);
3840 	}
3841 	return update_stack_depth(env, state, min_off);
3842 }
3843 
3844 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3845 				   int access_size, bool zero_size_allowed,
3846 				   struct bpf_call_arg_meta *meta)
3847 {
3848 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3849 
3850 	switch (reg->type) {
3851 	case PTR_TO_PACKET:
3852 	case PTR_TO_PACKET_META:
3853 		return check_packet_access(env, regno, reg->off, access_size,
3854 					   zero_size_allowed);
3855 	case PTR_TO_MAP_VALUE:
3856 		if (check_map_access_type(env, regno, reg->off, access_size,
3857 					  meta && meta->raw_mode ? BPF_WRITE :
3858 					  BPF_READ))
3859 			return -EACCES;
3860 		return check_map_access(env, regno, reg->off, access_size,
3861 					zero_size_allowed);
3862 	case PTR_TO_MEM:
3863 		return check_mem_region_access(env, regno, reg->off,
3864 					       access_size, reg->mem_size,
3865 					       zero_size_allowed);
3866 	case PTR_TO_RDONLY_BUF:
3867 		if (meta && meta->raw_mode)
3868 			return -EACCES;
3869 		return check_buffer_access(env, reg, regno, reg->off,
3870 					   access_size, zero_size_allowed,
3871 					   "rdonly",
3872 					   &env->prog->aux->max_rdonly_access);
3873 	case PTR_TO_RDWR_BUF:
3874 		return check_buffer_access(env, reg, regno, reg->off,
3875 					   access_size, zero_size_allowed,
3876 					   "rdwr",
3877 					   &env->prog->aux->max_rdwr_access);
3878 	case PTR_TO_STACK:
3879 		return check_stack_boundary(env, regno, access_size,
3880 					    zero_size_allowed, meta);
3881 	default: /* scalar_value or invalid ptr */
3882 		/* Allow zero-byte read from NULL, regardless of pointer type */
3883 		if (zero_size_allowed && access_size == 0 &&
3884 		    register_is_null(reg))
3885 			return 0;
3886 
3887 		verbose(env, "R%d type=%s expected=%s\n", regno,
3888 			reg_type_str[reg->type],
3889 			reg_type_str[PTR_TO_STACK]);
3890 		return -EACCES;
3891 	}
3892 }
3893 
3894 /* Implementation details:
3895  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3896  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3897  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3898  * value_or_null->value transition, since the verifier only cares about
3899  * the range of access to valid map value pointer and doesn't care about actual
3900  * address of the map element.
3901  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3902  * reg->id > 0 after value_or_null->value transition. By doing so
3903  * two bpf_map_lookups will be considered two different pointers that
3904  * point to different bpf_spin_locks.
3905  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3906  * dead-locks.
3907  * Since only one bpf_spin_lock is allowed the checks are simpler than
3908  * reg_is_refcounted() logic. The verifier needs to remember only
3909  * one spin_lock instead of array of acquired_refs.
3910  * cur_state->active_spin_lock remembers which map value element got locked
3911  * and clears it after bpf_spin_unlock.
3912  */
3913 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3914 			     bool is_lock)
3915 {
3916 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3917 	struct bpf_verifier_state *cur = env->cur_state;
3918 	bool is_const = tnum_is_const(reg->var_off);
3919 	struct bpf_map *map = reg->map_ptr;
3920 	u64 val = reg->var_off.value;
3921 
3922 	if (!is_const) {
3923 		verbose(env,
3924 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3925 			regno);
3926 		return -EINVAL;
3927 	}
3928 	if (!map->btf) {
3929 		verbose(env,
3930 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3931 			map->name);
3932 		return -EINVAL;
3933 	}
3934 	if (!map_value_has_spin_lock(map)) {
3935 		if (map->spin_lock_off == -E2BIG)
3936 			verbose(env,
3937 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3938 				map->name);
3939 		else if (map->spin_lock_off == -ENOENT)
3940 			verbose(env,
3941 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3942 				map->name);
3943 		else
3944 			verbose(env,
3945 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3946 				map->name);
3947 		return -EINVAL;
3948 	}
3949 	if (map->spin_lock_off != val + reg->off) {
3950 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3951 			val + reg->off);
3952 		return -EINVAL;
3953 	}
3954 	if (is_lock) {
3955 		if (cur->active_spin_lock) {
3956 			verbose(env,
3957 				"Locking two bpf_spin_locks are not allowed\n");
3958 			return -EINVAL;
3959 		}
3960 		cur->active_spin_lock = reg->id;
3961 	} else {
3962 		if (!cur->active_spin_lock) {
3963 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3964 			return -EINVAL;
3965 		}
3966 		if (cur->active_spin_lock != reg->id) {
3967 			verbose(env, "bpf_spin_unlock of different lock\n");
3968 			return -EINVAL;
3969 		}
3970 		cur->active_spin_lock = 0;
3971 	}
3972 	return 0;
3973 }
3974 
3975 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3976 {
3977 	return type == ARG_PTR_TO_MEM ||
3978 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3979 	       type == ARG_PTR_TO_UNINIT_MEM;
3980 }
3981 
3982 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3983 {
3984 	return type == ARG_CONST_SIZE ||
3985 	       type == ARG_CONST_SIZE_OR_ZERO;
3986 }
3987 
3988 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3989 {
3990 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3991 }
3992 
3993 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3994 {
3995 	return type == ARG_PTR_TO_INT ||
3996 	       type == ARG_PTR_TO_LONG;
3997 }
3998 
3999 static int int_ptr_type_to_size(enum bpf_arg_type type)
4000 {
4001 	if (type == ARG_PTR_TO_INT)
4002 		return sizeof(u32);
4003 	else if (type == ARG_PTR_TO_LONG)
4004 		return sizeof(u64);
4005 
4006 	return -EINVAL;
4007 }
4008 
4009 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4010 				 const struct bpf_call_arg_meta *meta,
4011 				 enum bpf_arg_type *arg_type)
4012 {
4013 	if (!meta->map_ptr) {
4014 		/* kernel subsystem misconfigured verifier */
4015 		verbose(env, "invalid map_ptr to access map->type\n");
4016 		return -EACCES;
4017 	}
4018 
4019 	switch (meta->map_ptr->map_type) {
4020 	case BPF_MAP_TYPE_SOCKMAP:
4021 	case BPF_MAP_TYPE_SOCKHASH:
4022 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4023 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4024 		} else {
4025 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4026 			return -EINVAL;
4027 		}
4028 		break;
4029 
4030 	default:
4031 		break;
4032 	}
4033 	return 0;
4034 }
4035 
4036 struct bpf_reg_types {
4037 	const enum bpf_reg_type types[10];
4038 	u32 *btf_id;
4039 };
4040 
4041 static const struct bpf_reg_types map_key_value_types = {
4042 	.types = {
4043 		PTR_TO_STACK,
4044 		PTR_TO_PACKET,
4045 		PTR_TO_PACKET_META,
4046 		PTR_TO_MAP_VALUE,
4047 	},
4048 };
4049 
4050 static const struct bpf_reg_types sock_types = {
4051 	.types = {
4052 		PTR_TO_SOCK_COMMON,
4053 		PTR_TO_SOCKET,
4054 		PTR_TO_TCP_SOCK,
4055 		PTR_TO_XDP_SOCK,
4056 	},
4057 };
4058 
4059 #ifdef CONFIG_NET
4060 static const struct bpf_reg_types btf_id_sock_common_types = {
4061 	.types = {
4062 		PTR_TO_SOCK_COMMON,
4063 		PTR_TO_SOCKET,
4064 		PTR_TO_TCP_SOCK,
4065 		PTR_TO_XDP_SOCK,
4066 		PTR_TO_BTF_ID,
4067 	},
4068 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4069 };
4070 #endif
4071 
4072 static const struct bpf_reg_types mem_types = {
4073 	.types = {
4074 		PTR_TO_STACK,
4075 		PTR_TO_PACKET,
4076 		PTR_TO_PACKET_META,
4077 		PTR_TO_MAP_VALUE,
4078 		PTR_TO_MEM,
4079 		PTR_TO_RDONLY_BUF,
4080 		PTR_TO_RDWR_BUF,
4081 	},
4082 };
4083 
4084 static const struct bpf_reg_types int_ptr_types = {
4085 	.types = {
4086 		PTR_TO_STACK,
4087 		PTR_TO_PACKET,
4088 		PTR_TO_PACKET_META,
4089 		PTR_TO_MAP_VALUE,
4090 	},
4091 };
4092 
4093 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4094 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4095 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4096 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4097 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4098 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4099 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4100 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4101 
4102 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4103 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4104 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4105 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4106 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4107 	[ARG_CONST_SIZE]		= &scalar_types,
4108 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4109 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4110 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4111 	[ARG_PTR_TO_CTX]		= &context_types,
4112 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4113 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4114 #ifdef CONFIG_NET
4115 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4116 #endif
4117 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4118 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4119 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4120 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4121 	[ARG_PTR_TO_MEM]		= &mem_types,
4122 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4123 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4124 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4125 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4126 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4127 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4128 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4129 };
4130 
4131 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4132 			  enum bpf_arg_type arg_type,
4133 			  const u32 *arg_btf_id)
4134 {
4135 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4136 	enum bpf_reg_type expected, type = reg->type;
4137 	const struct bpf_reg_types *compatible;
4138 	int i, j;
4139 
4140 	compatible = compatible_reg_types[arg_type];
4141 	if (!compatible) {
4142 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4143 		return -EFAULT;
4144 	}
4145 
4146 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4147 		expected = compatible->types[i];
4148 		if (expected == NOT_INIT)
4149 			break;
4150 
4151 		if (type == expected)
4152 			goto found;
4153 	}
4154 
4155 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4156 	for (j = 0; j + 1 < i; j++)
4157 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4158 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4159 	return -EACCES;
4160 
4161 found:
4162 	if (type == PTR_TO_BTF_ID) {
4163 		if (!arg_btf_id) {
4164 			if (!compatible->btf_id) {
4165 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4166 				return -EFAULT;
4167 			}
4168 			arg_btf_id = compatible->btf_id;
4169 		}
4170 
4171 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4172 					  btf_vmlinux, *arg_btf_id)) {
4173 			verbose(env, "R%d is of type %s but %s is expected\n",
4174 				regno, kernel_type_name(reg->btf, reg->btf_id),
4175 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4176 			return -EACCES;
4177 		}
4178 
4179 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4180 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4181 				regno);
4182 			return -EACCES;
4183 		}
4184 	}
4185 
4186 	return 0;
4187 }
4188 
4189 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4190 			  struct bpf_call_arg_meta *meta,
4191 			  const struct bpf_func_proto *fn)
4192 {
4193 	u32 regno = BPF_REG_1 + arg;
4194 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4195 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4196 	enum bpf_reg_type type = reg->type;
4197 	int err = 0;
4198 
4199 	if (arg_type == ARG_DONTCARE)
4200 		return 0;
4201 
4202 	err = check_reg_arg(env, regno, SRC_OP);
4203 	if (err)
4204 		return err;
4205 
4206 	if (arg_type == ARG_ANYTHING) {
4207 		if (is_pointer_value(env, regno)) {
4208 			verbose(env, "R%d leaks addr into helper function\n",
4209 				regno);
4210 			return -EACCES;
4211 		}
4212 		return 0;
4213 	}
4214 
4215 	if (type_is_pkt_pointer(type) &&
4216 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4217 		verbose(env, "helper access to the packet is not allowed\n");
4218 		return -EACCES;
4219 	}
4220 
4221 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4222 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4223 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4224 		err = resolve_map_arg_type(env, meta, &arg_type);
4225 		if (err)
4226 			return err;
4227 	}
4228 
4229 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4230 		/* A NULL register has a SCALAR_VALUE type, so skip
4231 		 * type checking.
4232 		 */
4233 		goto skip_type_check;
4234 
4235 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4236 	if (err)
4237 		return err;
4238 
4239 	if (type == PTR_TO_CTX) {
4240 		err = check_ctx_reg(env, reg, regno);
4241 		if (err < 0)
4242 			return err;
4243 	}
4244 
4245 skip_type_check:
4246 	if (reg->ref_obj_id) {
4247 		if (meta->ref_obj_id) {
4248 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4249 				regno, reg->ref_obj_id,
4250 				meta->ref_obj_id);
4251 			return -EFAULT;
4252 		}
4253 		meta->ref_obj_id = reg->ref_obj_id;
4254 	}
4255 
4256 	if (arg_type == ARG_CONST_MAP_PTR) {
4257 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4258 		meta->map_ptr = reg->map_ptr;
4259 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4260 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4261 		 * check that [key, key + map->key_size) are within
4262 		 * stack limits and initialized
4263 		 */
4264 		if (!meta->map_ptr) {
4265 			/* in function declaration map_ptr must come before
4266 			 * map_key, so that it's verified and known before
4267 			 * we have to check map_key here. Otherwise it means
4268 			 * that kernel subsystem misconfigured verifier
4269 			 */
4270 			verbose(env, "invalid map_ptr to access map->key\n");
4271 			return -EACCES;
4272 		}
4273 		err = check_helper_mem_access(env, regno,
4274 					      meta->map_ptr->key_size, false,
4275 					      NULL);
4276 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4277 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4278 		    !register_is_null(reg)) ||
4279 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4280 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4281 		 * check [value, value + map->value_size) validity
4282 		 */
4283 		if (!meta->map_ptr) {
4284 			/* kernel subsystem misconfigured verifier */
4285 			verbose(env, "invalid map_ptr to access map->value\n");
4286 			return -EACCES;
4287 		}
4288 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4289 		err = check_helper_mem_access(env, regno,
4290 					      meta->map_ptr->value_size, false,
4291 					      meta);
4292 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4293 		if (!reg->btf_id) {
4294 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4295 			return -EACCES;
4296 		}
4297 		meta->ret_btf = reg->btf;
4298 		meta->ret_btf_id = reg->btf_id;
4299 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4300 		if (meta->func_id == BPF_FUNC_spin_lock) {
4301 			if (process_spin_lock(env, regno, true))
4302 				return -EACCES;
4303 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4304 			if (process_spin_lock(env, regno, false))
4305 				return -EACCES;
4306 		} else {
4307 			verbose(env, "verifier internal error\n");
4308 			return -EFAULT;
4309 		}
4310 	} else if (arg_type_is_mem_ptr(arg_type)) {
4311 		/* The access to this pointer is only checked when we hit the
4312 		 * next is_mem_size argument below.
4313 		 */
4314 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4315 	} else if (arg_type_is_mem_size(arg_type)) {
4316 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4317 
4318 		/* This is used to refine r0 return value bounds for helpers
4319 		 * that enforce this value as an upper bound on return values.
4320 		 * See do_refine_retval_range() for helpers that can refine
4321 		 * the return value. C type of helper is u32 so we pull register
4322 		 * bound from umax_value however, if negative verifier errors
4323 		 * out. Only upper bounds can be learned because retval is an
4324 		 * int type and negative retvals are allowed.
4325 		 */
4326 		meta->msize_max_value = reg->umax_value;
4327 
4328 		/* The register is SCALAR_VALUE; the access check
4329 		 * happens using its boundaries.
4330 		 */
4331 		if (!tnum_is_const(reg->var_off))
4332 			/* For unprivileged variable accesses, disable raw
4333 			 * mode so that the program is required to
4334 			 * initialize all the memory that the helper could
4335 			 * just partially fill up.
4336 			 */
4337 			meta = NULL;
4338 
4339 		if (reg->smin_value < 0) {
4340 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4341 				regno);
4342 			return -EACCES;
4343 		}
4344 
4345 		if (reg->umin_value == 0) {
4346 			err = check_helper_mem_access(env, regno - 1, 0,
4347 						      zero_size_allowed,
4348 						      meta);
4349 			if (err)
4350 				return err;
4351 		}
4352 
4353 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4354 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4355 				regno);
4356 			return -EACCES;
4357 		}
4358 		err = check_helper_mem_access(env, regno - 1,
4359 					      reg->umax_value,
4360 					      zero_size_allowed, meta);
4361 		if (!err)
4362 			err = mark_chain_precision(env, regno);
4363 	} else if (arg_type_is_alloc_size(arg_type)) {
4364 		if (!tnum_is_const(reg->var_off)) {
4365 			verbose(env, "R%d is not a known constant'\n",
4366 				regno);
4367 			return -EACCES;
4368 		}
4369 		meta->mem_size = reg->var_off.value;
4370 	} else if (arg_type_is_int_ptr(arg_type)) {
4371 		int size = int_ptr_type_to_size(arg_type);
4372 
4373 		err = check_helper_mem_access(env, regno, size, false, meta);
4374 		if (err)
4375 			return err;
4376 		err = check_ptr_alignment(env, reg, 0, size, true);
4377 	}
4378 
4379 	return err;
4380 }
4381 
4382 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4383 {
4384 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4385 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4386 
4387 	if (func_id != BPF_FUNC_map_update_elem)
4388 		return false;
4389 
4390 	/* It's not possible to get access to a locked struct sock in these
4391 	 * contexts, so updating is safe.
4392 	 */
4393 	switch (type) {
4394 	case BPF_PROG_TYPE_TRACING:
4395 		if (eatype == BPF_TRACE_ITER)
4396 			return true;
4397 		break;
4398 	case BPF_PROG_TYPE_SOCKET_FILTER:
4399 	case BPF_PROG_TYPE_SCHED_CLS:
4400 	case BPF_PROG_TYPE_SCHED_ACT:
4401 	case BPF_PROG_TYPE_XDP:
4402 	case BPF_PROG_TYPE_SK_REUSEPORT:
4403 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4404 	case BPF_PROG_TYPE_SK_LOOKUP:
4405 		return true;
4406 	default:
4407 		break;
4408 	}
4409 
4410 	verbose(env, "cannot update sockmap in this context\n");
4411 	return false;
4412 }
4413 
4414 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4415 {
4416 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4417 }
4418 
4419 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4420 					struct bpf_map *map, int func_id)
4421 {
4422 	if (!map)
4423 		return 0;
4424 
4425 	/* We need a two way check, first is from map perspective ... */
4426 	switch (map->map_type) {
4427 	case BPF_MAP_TYPE_PROG_ARRAY:
4428 		if (func_id != BPF_FUNC_tail_call)
4429 			goto error;
4430 		break;
4431 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4432 		if (func_id != BPF_FUNC_perf_event_read &&
4433 		    func_id != BPF_FUNC_perf_event_output &&
4434 		    func_id != BPF_FUNC_skb_output &&
4435 		    func_id != BPF_FUNC_perf_event_read_value &&
4436 		    func_id != BPF_FUNC_xdp_output)
4437 			goto error;
4438 		break;
4439 	case BPF_MAP_TYPE_RINGBUF:
4440 		if (func_id != BPF_FUNC_ringbuf_output &&
4441 		    func_id != BPF_FUNC_ringbuf_reserve &&
4442 		    func_id != BPF_FUNC_ringbuf_submit &&
4443 		    func_id != BPF_FUNC_ringbuf_discard &&
4444 		    func_id != BPF_FUNC_ringbuf_query)
4445 			goto error;
4446 		break;
4447 	case BPF_MAP_TYPE_STACK_TRACE:
4448 		if (func_id != BPF_FUNC_get_stackid)
4449 			goto error;
4450 		break;
4451 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4452 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4453 		    func_id != BPF_FUNC_current_task_under_cgroup)
4454 			goto error;
4455 		break;
4456 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4457 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4458 		if (func_id != BPF_FUNC_get_local_storage)
4459 			goto error;
4460 		break;
4461 	case BPF_MAP_TYPE_DEVMAP:
4462 	case BPF_MAP_TYPE_DEVMAP_HASH:
4463 		if (func_id != BPF_FUNC_redirect_map &&
4464 		    func_id != BPF_FUNC_map_lookup_elem)
4465 			goto error;
4466 		break;
4467 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4468 	 * appear.
4469 	 */
4470 	case BPF_MAP_TYPE_CPUMAP:
4471 		if (func_id != BPF_FUNC_redirect_map)
4472 			goto error;
4473 		break;
4474 	case BPF_MAP_TYPE_XSKMAP:
4475 		if (func_id != BPF_FUNC_redirect_map &&
4476 		    func_id != BPF_FUNC_map_lookup_elem)
4477 			goto error;
4478 		break;
4479 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4480 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4481 		if (func_id != BPF_FUNC_map_lookup_elem)
4482 			goto error;
4483 		break;
4484 	case BPF_MAP_TYPE_SOCKMAP:
4485 		if (func_id != BPF_FUNC_sk_redirect_map &&
4486 		    func_id != BPF_FUNC_sock_map_update &&
4487 		    func_id != BPF_FUNC_map_delete_elem &&
4488 		    func_id != BPF_FUNC_msg_redirect_map &&
4489 		    func_id != BPF_FUNC_sk_select_reuseport &&
4490 		    func_id != BPF_FUNC_map_lookup_elem &&
4491 		    !may_update_sockmap(env, func_id))
4492 			goto error;
4493 		break;
4494 	case BPF_MAP_TYPE_SOCKHASH:
4495 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4496 		    func_id != BPF_FUNC_sock_hash_update &&
4497 		    func_id != BPF_FUNC_map_delete_elem &&
4498 		    func_id != BPF_FUNC_msg_redirect_hash &&
4499 		    func_id != BPF_FUNC_sk_select_reuseport &&
4500 		    func_id != BPF_FUNC_map_lookup_elem &&
4501 		    !may_update_sockmap(env, func_id))
4502 			goto error;
4503 		break;
4504 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4505 		if (func_id != BPF_FUNC_sk_select_reuseport)
4506 			goto error;
4507 		break;
4508 	case BPF_MAP_TYPE_QUEUE:
4509 	case BPF_MAP_TYPE_STACK:
4510 		if (func_id != BPF_FUNC_map_peek_elem &&
4511 		    func_id != BPF_FUNC_map_pop_elem &&
4512 		    func_id != BPF_FUNC_map_push_elem)
4513 			goto error;
4514 		break;
4515 	case BPF_MAP_TYPE_SK_STORAGE:
4516 		if (func_id != BPF_FUNC_sk_storage_get &&
4517 		    func_id != BPF_FUNC_sk_storage_delete)
4518 			goto error;
4519 		break;
4520 	case BPF_MAP_TYPE_INODE_STORAGE:
4521 		if (func_id != BPF_FUNC_inode_storage_get &&
4522 		    func_id != BPF_FUNC_inode_storage_delete)
4523 			goto error;
4524 		break;
4525 	case BPF_MAP_TYPE_TASK_STORAGE:
4526 		if (func_id != BPF_FUNC_task_storage_get &&
4527 		    func_id != BPF_FUNC_task_storage_delete)
4528 			goto error;
4529 		break;
4530 	default:
4531 		break;
4532 	}
4533 
4534 	/* ... and second from the function itself. */
4535 	switch (func_id) {
4536 	case BPF_FUNC_tail_call:
4537 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4538 			goto error;
4539 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4540 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4541 			return -EINVAL;
4542 		}
4543 		break;
4544 	case BPF_FUNC_perf_event_read:
4545 	case BPF_FUNC_perf_event_output:
4546 	case BPF_FUNC_perf_event_read_value:
4547 	case BPF_FUNC_skb_output:
4548 	case BPF_FUNC_xdp_output:
4549 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4550 			goto error;
4551 		break;
4552 	case BPF_FUNC_get_stackid:
4553 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4554 			goto error;
4555 		break;
4556 	case BPF_FUNC_current_task_under_cgroup:
4557 	case BPF_FUNC_skb_under_cgroup:
4558 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4559 			goto error;
4560 		break;
4561 	case BPF_FUNC_redirect_map:
4562 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4563 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4564 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4565 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4566 			goto error;
4567 		break;
4568 	case BPF_FUNC_sk_redirect_map:
4569 	case BPF_FUNC_msg_redirect_map:
4570 	case BPF_FUNC_sock_map_update:
4571 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4572 			goto error;
4573 		break;
4574 	case BPF_FUNC_sk_redirect_hash:
4575 	case BPF_FUNC_msg_redirect_hash:
4576 	case BPF_FUNC_sock_hash_update:
4577 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4578 			goto error;
4579 		break;
4580 	case BPF_FUNC_get_local_storage:
4581 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4582 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4583 			goto error;
4584 		break;
4585 	case BPF_FUNC_sk_select_reuseport:
4586 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4587 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4588 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4589 			goto error;
4590 		break;
4591 	case BPF_FUNC_map_peek_elem:
4592 	case BPF_FUNC_map_pop_elem:
4593 	case BPF_FUNC_map_push_elem:
4594 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4595 		    map->map_type != BPF_MAP_TYPE_STACK)
4596 			goto error;
4597 		break;
4598 	case BPF_FUNC_sk_storage_get:
4599 	case BPF_FUNC_sk_storage_delete:
4600 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4601 			goto error;
4602 		break;
4603 	case BPF_FUNC_inode_storage_get:
4604 	case BPF_FUNC_inode_storage_delete:
4605 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4606 			goto error;
4607 		break;
4608 	case BPF_FUNC_task_storage_get:
4609 	case BPF_FUNC_task_storage_delete:
4610 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4611 			goto error;
4612 		break;
4613 	default:
4614 		break;
4615 	}
4616 
4617 	return 0;
4618 error:
4619 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4620 		map->map_type, func_id_name(func_id), func_id);
4621 	return -EINVAL;
4622 }
4623 
4624 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4625 {
4626 	int count = 0;
4627 
4628 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4629 		count++;
4630 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4631 		count++;
4632 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4633 		count++;
4634 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4635 		count++;
4636 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4637 		count++;
4638 
4639 	/* We only support one arg being in raw mode at the moment,
4640 	 * which is sufficient for the helper functions we have
4641 	 * right now.
4642 	 */
4643 	return count <= 1;
4644 }
4645 
4646 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4647 				    enum bpf_arg_type arg_next)
4648 {
4649 	return (arg_type_is_mem_ptr(arg_curr) &&
4650 	        !arg_type_is_mem_size(arg_next)) ||
4651 	       (!arg_type_is_mem_ptr(arg_curr) &&
4652 		arg_type_is_mem_size(arg_next));
4653 }
4654 
4655 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4656 {
4657 	/* bpf_xxx(..., buf, len) call will access 'len'
4658 	 * bytes from memory 'buf'. Both arg types need
4659 	 * to be paired, so make sure there's no buggy
4660 	 * helper function specification.
4661 	 */
4662 	if (arg_type_is_mem_size(fn->arg1_type) ||
4663 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4664 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4665 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4666 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4667 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4668 		return false;
4669 
4670 	return true;
4671 }
4672 
4673 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4674 {
4675 	int count = 0;
4676 
4677 	if (arg_type_may_be_refcounted(fn->arg1_type))
4678 		count++;
4679 	if (arg_type_may_be_refcounted(fn->arg2_type))
4680 		count++;
4681 	if (arg_type_may_be_refcounted(fn->arg3_type))
4682 		count++;
4683 	if (arg_type_may_be_refcounted(fn->arg4_type))
4684 		count++;
4685 	if (arg_type_may_be_refcounted(fn->arg5_type))
4686 		count++;
4687 
4688 	/* A reference acquiring function cannot acquire
4689 	 * another refcounted ptr.
4690 	 */
4691 	if (may_be_acquire_function(func_id) && count)
4692 		return false;
4693 
4694 	/* We only support one arg being unreferenced at the moment,
4695 	 * which is sufficient for the helper functions we have right now.
4696 	 */
4697 	return count <= 1;
4698 }
4699 
4700 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4701 {
4702 	int i;
4703 
4704 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4705 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4706 			return false;
4707 
4708 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4709 			return false;
4710 	}
4711 
4712 	return true;
4713 }
4714 
4715 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4716 {
4717 	return check_raw_mode_ok(fn) &&
4718 	       check_arg_pair_ok(fn) &&
4719 	       check_btf_id_ok(fn) &&
4720 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4721 }
4722 
4723 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4724  * are now invalid, so turn them into unknown SCALAR_VALUE.
4725  */
4726 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4727 				     struct bpf_func_state *state)
4728 {
4729 	struct bpf_reg_state *regs = state->regs, *reg;
4730 	int i;
4731 
4732 	for (i = 0; i < MAX_BPF_REG; i++)
4733 		if (reg_is_pkt_pointer_any(&regs[i]))
4734 			mark_reg_unknown(env, regs, i);
4735 
4736 	bpf_for_each_spilled_reg(i, state, reg) {
4737 		if (!reg)
4738 			continue;
4739 		if (reg_is_pkt_pointer_any(reg))
4740 			__mark_reg_unknown(env, reg);
4741 	}
4742 }
4743 
4744 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4745 {
4746 	struct bpf_verifier_state *vstate = env->cur_state;
4747 	int i;
4748 
4749 	for (i = 0; i <= vstate->curframe; i++)
4750 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4751 }
4752 
4753 enum {
4754 	AT_PKT_END = -1,
4755 	BEYOND_PKT_END = -2,
4756 };
4757 
4758 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4759 {
4760 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4761 	struct bpf_reg_state *reg = &state->regs[regn];
4762 
4763 	if (reg->type != PTR_TO_PACKET)
4764 		/* PTR_TO_PACKET_META is not supported yet */
4765 		return;
4766 
4767 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4768 	 * How far beyond pkt_end it goes is unknown.
4769 	 * if (!range_open) it's the case of pkt >= pkt_end
4770 	 * if (range_open) it's the case of pkt > pkt_end
4771 	 * hence this pointer is at least 1 byte bigger than pkt_end
4772 	 */
4773 	if (range_open)
4774 		reg->range = BEYOND_PKT_END;
4775 	else
4776 		reg->range = AT_PKT_END;
4777 }
4778 
4779 static void release_reg_references(struct bpf_verifier_env *env,
4780 				   struct bpf_func_state *state,
4781 				   int ref_obj_id)
4782 {
4783 	struct bpf_reg_state *regs = state->regs, *reg;
4784 	int i;
4785 
4786 	for (i = 0; i < MAX_BPF_REG; i++)
4787 		if (regs[i].ref_obj_id == ref_obj_id)
4788 			mark_reg_unknown(env, regs, i);
4789 
4790 	bpf_for_each_spilled_reg(i, state, reg) {
4791 		if (!reg)
4792 			continue;
4793 		if (reg->ref_obj_id == ref_obj_id)
4794 			__mark_reg_unknown(env, reg);
4795 	}
4796 }
4797 
4798 /* The pointer with the specified id has released its reference to kernel
4799  * resources. Identify all copies of the same pointer and clear the reference.
4800  */
4801 static int release_reference(struct bpf_verifier_env *env,
4802 			     int ref_obj_id)
4803 {
4804 	struct bpf_verifier_state *vstate = env->cur_state;
4805 	int err;
4806 	int i;
4807 
4808 	err = release_reference_state(cur_func(env), ref_obj_id);
4809 	if (err)
4810 		return err;
4811 
4812 	for (i = 0; i <= vstate->curframe; i++)
4813 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4814 
4815 	return 0;
4816 }
4817 
4818 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4819 				    struct bpf_reg_state *regs)
4820 {
4821 	int i;
4822 
4823 	/* after the call registers r0 - r5 were scratched */
4824 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4825 		mark_reg_not_init(env, regs, caller_saved[i]);
4826 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4827 	}
4828 }
4829 
4830 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4831 			   int *insn_idx)
4832 {
4833 	struct bpf_verifier_state *state = env->cur_state;
4834 	struct bpf_func_info_aux *func_info_aux;
4835 	struct bpf_func_state *caller, *callee;
4836 	int i, err, subprog, target_insn;
4837 	bool is_global = false;
4838 
4839 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4840 		verbose(env, "the call stack of %d frames is too deep\n",
4841 			state->curframe + 2);
4842 		return -E2BIG;
4843 	}
4844 
4845 	target_insn = *insn_idx + insn->imm;
4846 	subprog = find_subprog(env, target_insn + 1);
4847 	if (subprog < 0) {
4848 		verbose(env, "verifier bug. No program starts at insn %d\n",
4849 			target_insn + 1);
4850 		return -EFAULT;
4851 	}
4852 
4853 	caller = state->frame[state->curframe];
4854 	if (state->frame[state->curframe + 1]) {
4855 		verbose(env, "verifier bug. Frame %d already allocated\n",
4856 			state->curframe + 1);
4857 		return -EFAULT;
4858 	}
4859 
4860 	func_info_aux = env->prog->aux->func_info_aux;
4861 	if (func_info_aux)
4862 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4863 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4864 	if (err == -EFAULT)
4865 		return err;
4866 	if (is_global) {
4867 		if (err) {
4868 			verbose(env, "Caller passes invalid args into func#%d\n",
4869 				subprog);
4870 			return err;
4871 		} else {
4872 			if (env->log.level & BPF_LOG_LEVEL)
4873 				verbose(env,
4874 					"Func#%d is global and valid. Skipping.\n",
4875 					subprog);
4876 			clear_caller_saved_regs(env, caller->regs);
4877 
4878 			/* All global functions return SCALAR_VALUE */
4879 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4880 
4881 			/* continue with next insn after call */
4882 			return 0;
4883 		}
4884 	}
4885 
4886 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4887 	if (!callee)
4888 		return -ENOMEM;
4889 	state->frame[state->curframe + 1] = callee;
4890 
4891 	/* callee cannot access r0, r6 - r9 for reading and has to write
4892 	 * into its own stack before reading from it.
4893 	 * callee can read/write into caller's stack
4894 	 */
4895 	init_func_state(env, callee,
4896 			/* remember the callsite, it will be used by bpf_exit */
4897 			*insn_idx /* callsite */,
4898 			state->curframe + 1 /* frameno within this callchain */,
4899 			subprog /* subprog number within this prog */);
4900 
4901 	/* Transfer references to the callee */
4902 	err = transfer_reference_state(callee, caller);
4903 	if (err)
4904 		return err;
4905 
4906 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4907 	 * pointers, which connects us up to the liveness chain
4908 	 */
4909 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4910 		callee->regs[i] = caller->regs[i];
4911 
4912 	clear_caller_saved_regs(env, caller->regs);
4913 
4914 	/* only increment it after check_reg_arg() finished */
4915 	state->curframe++;
4916 
4917 	/* and go analyze first insn of the callee */
4918 	*insn_idx = target_insn;
4919 
4920 	if (env->log.level & BPF_LOG_LEVEL) {
4921 		verbose(env, "caller:\n");
4922 		print_verifier_state(env, caller);
4923 		verbose(env, "callee:\n");
4924 		print_verifier_state(env, callee);
4925 	}
4926 	return 0;
4927 }
4928 
4929 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4930 {
4931 	struct bpf_verifier_state *state = env->cur_state;
4932 	struct bpf_func_state *caller, *callee;
4933 	struct bpf_reg_state *r0;
4934 	int err;
4935 
4936 	callee = state->frame[state->curframe];
4937 	r0 = &callee->regs[BPF_REG_0];
4938 	if (r0->type == PTR_TO_STACK) {
4939 		/* technically it's ok to return caller's stack pointer
4940 		 * (or caller's caller's pointer) back to the caller,
4941 		 * since these pointers are valid. Only current stack
4942 		 * pointer will be invalid as soon as function exits,
4943 		 * but let's be conservative
4944 		 */
4945 		verbose(env, "cannot return stack pointer to the caller\n");
4946 		return -EINVAL;
4947 	}
4948 
4949 	state->curframe--;
4950 	caller = state->frame[state->curframe];
4951 	/* return to the caller whatever r0 had in the callee */
4952 	caller->regs[BPF_REG_0] = *r0;
4953 
4954 	/* Transfer references to the caller */
4955 	err = transfer_reference_state(caller, callee);
4956 	if (err)
4957 		return err;
4958 
4959 	*insn_idx = callee->callsite + 1;
4960 	if (env->log.level & BPF_LOG_LEVEL) {
4961 		verbose(env, "returning from callee:\n");
4962 		print_verifier_state(env, callee);
4963 		verbose(env, "to caller at %d:\n", *insn_idx);
4964 		print_verifier_state(env, caller);
4965 	}
4966 	/* clear everything in the callee */
4967 	free_func_state(callee);
4968 	state->frame[state->curframe + 1] = NULL;
4969 	return 0;
4970 }
4971 
4972 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4973 				   int func_id,
4974 				   struct bpf_call_arg_meta *meta)
4975 {
4976 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4977 
4978 	if (ret_type != RET_INTEGER ||
4979 	    (func_id != BPF_FUNC_get_stack &&
4980 	     func_id != BPF_FUNC_probe_read_str &&
4981 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4982 	     func_id != BPF_FUNC_probe_read_user_str))
4983 		return;
4984 
4985 	ret_reg->smax_value = meta->msize_max_value;
4986 	ret_reg->s32_max_value = meta->msize_max_value;
4987 	ret_reg->smin_value = -MAX_ERRNO;
4988 	ret_reg->s32_min_value = -MAX_ERRNO;
4989 	__reg_deduce_bounds(ret_reg);
4990 	__reg_bound_offset(ret_reg);
4991 	__update_reg_bounds(ret_reg);
4992 }
4993 
4994 static int
4995 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4996 		int func_id, int insn_idx)
4997 {
4998 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4999 	struct bpf_map *map = meta->map_ptr;
5000 
5001 	if (func_id != BPF_FUNC_tail_call &&
5002 	    func_id != BPF_FUNC_map_lookup_elem &&
5003 	    func_id != BPF_FUNC_map_update_elem &&
5004 	    func_id != BPF_FUNC_map_delete_elem &&
5005 	    func_id != BPF_FUNC_map_push_elem &&
5006 	    func_id != BPF_FUNC_map_pop_elem &&
5007 	    func_id != BPF_FUNC_map_peek_elem)
5008 		return 0;
5009 
5010 	if (map == NULL) {
5011 		verbose(env, "kernel subsystem misconfigured verifier\n");
5012 		return -EINVAL;
5013 	}
5014 
5015 	/* In case of read-only, some additional restrictions
5016 	 * need to be applied in order to prevent altering the
5017 	 * state of the map from program side.
5018 	 */
5019 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5020 	    (func_id == BPF_FUNC_map_delete_elem ||
5021 	     func_id == BPF_FUNC_map_update_elem ||
5022 	     func_id == BPF_FUNC_map_push_elem ||
5023 	     func_id == BPF_FUNC_map_pop_elem)) {
5024 		verbose(env, "write into map forbidden\n");
5025 		return -EACCES;
5026 	}
5027 
5028 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5029 		bpf_map_ptr_store(aux, meta->map_ptr,
5030 				  !meta->map_ptr->bypass_spec_v1);
5031 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5032 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5033 				  !meta->map_ptr->bypass_spec_v1);
5034 	return 0;
5035 }
5036 
5037 static int
5038 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5039 		int func_id, int insn_idx)
5040 {
5041 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5042 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5043 	struct bpf_map *map = meta->map_ptr;
5044 	struct tnum range;
5045 	u64 val;
5046 	int err;
5047 
5048 	if (func_id != BPF_FUNC_tail_call)
5049 		return 0;
5050 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5051 		verbose(env, "kernel subsystem misconfigured verifier\n");
5052 		return -EINVAL;
5053 	}
5054 
5055 	range = tnum_range(0, map->max_entries - 1);
5056 	reg = &regs[BPF_REG_3];
5057 
5058 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5059 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5060 		return 0;
5061 	}
5062 
5063 	err = mark_chain_precision(env, BPF_REG_3);
5064 	if (err)
5065 		return err;
5066 
5067 	val = reg->var_off.value;
5068 	if (bpf_map_key_unseen(aux))
5069 		bpf_map_key_store(aux, val);
5070 	else if (!bpf_map_key_poisoned(aux) &&
5071 		  bpf_map_key_immediate(aux) != val)
5072 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5073 	return 0;
5074 }
5075 
5076 static int check_reference_leak(struct bpf_verifier_env *env)
5077 {
5078 	struct bpf_func_state *state = cur_func(env);
5079 	int i;
5080 
5081 	for (i = 0; i < state->acquired_refs; i++) {
5082 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5083 			state->refs[i].id, state->refs[i].insn_idx);
5084 	}
5085 	return state->acquired_refs ? -EINVAL : 0;
5086 }
5087 
5088 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5089 {
5090 	const struct bpf_func_proto *fn = NULL;
5091 	struct bpf_reg_state *regs;
5092 	struct bpf_call_arg_meta meta;
5093 	bool changes_data;
5094 	int i, err;
5095 
5096 	/* find function prototype */
5097 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5098 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5099 			func_id);
5100 		return -EINVAL;
5101 	}
5102 
5103 	if (env->ops->get_func_proto)
5104 		fn = env->ops->get_func_proto(func_id, env->prog);
5105 	if (!fn) {
5106 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5107 			func_id);
5108 		return -EINVAL;
5109 	}
5110 
5111 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5112 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5113 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5114 		return -EINVAL;
5115 	}
5116 
5117 	if (fn->allowed && !fn->allowed(env->prog)) {
5118 		verbose(env, "helper call is not allowed in probe\n");
5119 		return -EINVAL;
5120 	}
5121 
5122 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5123 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5124 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5125 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5126 			func_id_name(func_id), func_id);
5127 		return -EINVAL;
5128 	}
5129 
5130 	memset(&meta, 0, sizeof(meta));
5131 	meta.pkt_access = fn->pkt_access;
5132 
5133 	err = check_func_proto(fn, func_id);
5134 	if (err) {
5135 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5136 			func_id_name(func_id), func_id);
5137 		return err;
5138 	}
5139 
5140 	meta.func_id = func_id;
5141 	/* check args */
5142 	for (i = 0; i < 5; i++) {
5143 		err = check_func_arg(env, i, &meta, fn);
5144 		if (err)
5145 			return err;
5146 	}
5147 
5148 	err = record_func_map(env, &meta, func_id, insn_idx);
5149 	if (err)
5150 		return err;
5151 
5152 	err = record_func_key(env, &meta, func_id, insn_idx);
5153 	if (err)
5154 		return err;
5155 
5156 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5157 	 * is inferred from register state.
5158 	 */
5159 	for (i = 0; i < meta.access_size; i++) {
5160 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5161 				       BPF_WRITE, -1, false);
5162 		if (err)
5163 			return err;
5164 	}
5165 
5166 	if (func_id == BPF_FUNC_tail_call) {
5167 		err = check_reference_leak(env);
5168 		if (err) {
5169 			verbose(env, "tail_call would lead to reference leak\n");
5170 			return err;
5171 		}
5172 	} else if (is_release_function(func_id)) {
5173 		err = release_reference(env, meta.ref_obj_id);
5174 		if (err) {
5175 			verbose(env, "func %s#%d reference has not been acquired before\n",
5176 				func_id_name(func_id), func_id);
5177 			return err;
5178 		}
5179 	}
5180 
5181 	regs = cur_regs(env);
5182 
5183 	/* check that flags argument in get_local_storage(map, flags) is 0,
5184 	 * this is required because get_local_storage() can't return an error.
5185 	 */
5186 	if (func_id == BPF_FUNC_get_local_storage &&
5187 	    !register_is_null(&regs[BPF_REG_2])) {
5188 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5189 		return -EINVAL;
5190 	}
5191 
5192 	/* reset caller saved regs */
5193 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5194 		mark_reg_not_init(env, regs, caller_saved[i]);
5195 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5196 	}
5197 
5198 	/* helper call returns 64-bit value. */
5199 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5200 
5201 	/* update return register (already marked as written above) */
5202 	if (fn->ret_type == RET_INTEGER) {
5203 		/* sets type to SCALAR_VALUE */
5204 		mark_reg_unknown(env, regs, BPF_REG_0);
5205 	} else if (fn->ret_type == RET_VOID) {
5206 		regs[BPF_REG_0].type = NOT_INIT;
5207 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5208 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5209 		/* There is no offset yet applied, variable or fixed */
5210 		mark_reg_known_zero(env, regs, BPF_REG_0);
5211 		/* remember map_ptr, so that check_map_access()
5212 		 * can check 'value_size' boundary of memory access
5213 		 * to map element returned from bpf_map_lookup_elem()
5214 		 */
5215 		if (meta.map_ptr == NULL) {
5216 			verbose(env,
5217 				"kernel subsystem misconfigured verifier\n");
5218 			return -EINVAL;
5219 		}
5220 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5221 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5222 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5223 			if (map_value_has_spin_lock(meta.map_ptr))
5224 				regs[BPF_REG_0].id = ++env->id_gen;
5225 		} else {
5226 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5227 		}
5228 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5229 		mark_reg_known_zero(env, regs, BPF_REG_0);
5230 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5231 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5232 		mark_reg_known_zero(env, regs, BPF_REG_0);
5233 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5234 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5235 		mark_reg_known_zero(env, regs, BPF_REG_0);
5236 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5237 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5238 		mark_reg_known_zero(env, regs, BPF_REG_0);
5239 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5240 		regs[BPF_REG_0].mem_size = meta.mem_size;
5241 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5242 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5243 		const struct btf_type *t;
5244 
5245 		mark_reg_known_zero(env, regs, BPF_REG_0);
5246 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5247 		if (!btf_type_is_struct(t)) {
5248 			u32 tsize;
5249 			const struct btf_type *ret;
5250 			const char *tname;
5251 
5252 			/* resolve the type size of ksym. */
5253 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5254 			if (IS_ERR(ret)) {
5255 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5256 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5257 					tname, PTR_ERR(ret));
5258 				return -EINVAL;
5259 			}
5260 			regs[BPF_REG_0].type =
5261 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5262 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5263 			regs[BPF_REG_0].mem_size = tsize;
5264 		} else {
5265 			regs[BPF_REG_0].type =
5266 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5267 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5268 			regs[BPF_REG_0].btf = meta.ret_btf;
5269 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5270 		}
5271 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5272 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5273 		int ret_btf_id;
5274 
5275 		mark_reg_known_zero(env, regs, BPF_REG_0);
5276 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5277 						     PTR_TO_BTF_ID :
5278 						     PTR_TO_BTF_ID_OR_NULL;
5279 		ret_btf_id = *fn->ret_btf_id;
5280 		if (ret_btf_id == 0) {
5281 			verbose(env, "invalid return type %d of func %s#%d\n",
5282 				fn->ret_type, func_id_name(func_id), func_id);
5283 			return -EINVAL;
5284 		}
5285 		/* current BPF helper definitions are only coming from
5286 		 * built-in code with type IDs from  vmlinux BTF
5287 		 */
5288 		regs[BPF_REG_0].btf = btf_vmlinux;
5289 		regs[BPF_REG_0].btf_id = ret_btf_id;
5290 	} else {
5291 		verbose(env, "unknown return type %d of func %s#%d\n",
5292 			fn->ret_type, func_id_name(func_id), func_id);
5293 		return -EINVAL;
5294 	}
5295 
5296 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5297 		regs[BPF_REG_0].id = ++env->id_gen;
5298 
5299 	if (is_ptr_cast_function(func_id)) {
5300 		/* For release_reference() */
5301 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5302 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5303 		int id = acquire_reference_state(env, insn_idx);
5304 
5305 		if (id < 0)
5306 			return id;
5307 		/* For mark_ptr_or_null_reg() */
5308 		regs[BPF_REG_0].id = id;
5309 		/* For release_reference() */
5310 		regs[BPF_REG_0].ref_obj_id = id;
5311 	}
5312 
5313 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5314 
5315 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5316 	if (err)
5317 		return err;
5318 
5319 	if ((func_id == BPF_FUNC_get_stack ||
5320 	     func_id == BPF_FUNC_get_task_stack) &&
5321 	    !env->prog->has_callchain_buf) {
5322 		const char *err_str;
5323 
5324 #ifdef CONFIG_PERF_EVENTS
5325 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5326 		err_str = "cannot get callchain buffer for func %s#%d\n";
5327 #else
5328 		err = -ENOTSUPP;
5329 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5330 #endif
5331 		if (err) {
5332 			verbose(env, err_str, func_id_name(func_id), func_id);
5333 			return err;
5334 		}
5335 
5336 		env->prog->has_callchain_buf = true;
5337 	}
5338 
5339 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5340 		env->prog->call_get_stack = true;
5341 
5342 	if (changes_data)
5343 		clear_all_pkt_pointers(env);
5344 	return 0;
5345 }
5346 
5347 static bool signed_add_overflows(s64 a, s64 b)
5348 {
5349 	/* Do the add in u64, where overflow is well-defined */
5350 	s64 res = (s64)((u64)a + (u64)b);
5351 
5352 	if (b < 0)
5353 		return res > a;
5354 	return res < a;
5355 }
5356 
5357 static bool signed_add32_overflows(s32 a, s32 b)
5358 {
5359 	/* Do the add in u32, where overflow is well-defined */
5360 	s32 res = (s32)((u32)a + (u32)b);
5361 
5362 	if (b < 0)
5363 		return res > a;
5364 	return res < a;
5365 }
5366 
5367 static bool signed_sub_overflows(s64 a, s64 b)
5368 {
5369 	/* Do the sub in u64, where overflow is well-defined */
5370 	s64 res = (s64)((u64)a - (u64)b);
5371 
5372 	if (b < 0)
5373 		return res < a;
5374 	return res > a;
5375 }
5376 
5377 static bool signed_sub32_overflows(s32 a, s32 b)
5378 {
5379 	/* Do the sub in u32, where overflow is well-defined */
5380 	s32 res = (s32)((u32)a - (u32)b);
5381 
5382 	if (b < 0)
5383 		return res < a;
5384 	return res > a;
5385 }
5386 
5387 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5388 				  const struct bpf_reg_state *reg,
5389 				  enum bpf_reg_type type)
5390 {
5391 	bool known = tnum_is_const(reg->var_off);
5392 	s64 val = reg->var_off.value;
5393 	s64 smin = reg->smin_value;
5394 
5395 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5396 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5397 			reg_type_str[type], val);
5398 		return false;
5399 	}
5400 
5401 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5402 		verbose(env, "%s pointer offset %d is not allowed\n",
5403 			reg_type_str[type], reg->off);
5404 		return false;
5405 	}
5406 
5407 	if (smin == S64_MIN) {
5408 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5409 			reg_type_str[type]);
5410 		return false;
5411 	}
5412 
5413 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5414 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5415 			smin, reg_type_str[type]);
5416 		return false;
5417 	}
5418 
5419 	return true;
5420 }
5421 
5422 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5423 {
5424 	return &env->insn_aux_data[env->insn_idx];
5425 }
5426 
5427 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5428 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5429 {
5430 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5431 			    (opcode == BPF_SUB && !off_is_neg);
5432 	u32 off;
5433 
5434 	switch (ptr_reg->type) {
5435 	case PTR_TO_STACK:
5436 		/* Indirect variable offset stack access is prohibited in
5437 		 * unprivileged mode so it's not handled here.
5438 		 */
5439 		off = ptr_reg->off + ptr_reg->var_off.value;
5440 		if (mask_to_left)
5441 			*ptr_limit = MAX_BPF_STACK + off;
5442 		else
5443 			*ptr_limit = -off;
5444 		return 0;
5445 	case PTR_TO_MAP_VALUE:
5446 		if (mask_to_left) {
5447 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5448 		} else {
5449 			off = ptr_reg->smin_value + ptr_reg->off;
5450 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5451 		}
5452 		return 0;
5453 	default:
5454 		return -EINVAL;
5455 	}
5456 }
5457 
5458 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5459 				    const struct bpf_insn *insn)
5460 {
5461 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5462 }
5463 
5464 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5465 				       u32 alu_state, u32 alu_limit)
5466 {
5467 	/* If we arrived here from different branches with different
5468 	 * state or limits to sanitize, then this won't work.
5469 	 */
5470 	if (aux->alu_state &&
5471 	    (aux->alu_state != alu_state ||
5472 	     aux->alu_limit != alu_limit))
5473 		return -EACCES;
5474 
5475 	/* Corresponding fixup done in fixup_bpf_calls(). */
5476 	aux->alu_state = alu_state;
5477 	aux->alu_limit = alu_limit;
5478 	return 0;
5479 }
5480 
5481 static int sanitize_val_alu(struct bpf_verifier_env *env,
5482 			    struct bpf_insn *insn)
5483 {
5484 	struct bpf_insn_aux_data *aux = cur_aux(env);
5485 
5486 	if (can_skip_alu_sanitation(env, insn))
5487 		return 0;
5488 
5489 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5490 }
5491 
5492 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5493 			    struct bpf_insn *insn,
5494 			    const struct bpf_reg_state *ptr_reg,
5495 			    struct bpf_reg_state *dst_reg,
5496 			    bool off_is_neg)
5497 {
5498 	struct bpf_verifier_state *vstate = env->cur_state;
5499 	struct bpf_insn_aux_data *aux = cur_aux(env);
5500 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5501 	u8 opcode = BPF_OP(insn->code);
5502 	u32 alu_state, alu_limit;
5503 	struct bpf_reg_state tmp;
5504 	bool ret;
5505 
5506 	if (can_skip_alu_sanitation(env, insn))
5507 		return 0;
5508 
5509 	/* We already marked aux for masking from non-speculative
5510 	 * paths, thus we got here in the first place. We only care
5511 	 * to explore bad access from here.
5512 	 */
5513 	if (vstate->speculative)
5514 		goto do_sim;
5515 
5516 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5517 	alu_state |= ptr_is_dst_reg ?
5518 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5519 
5520 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5521 		return 0;
5522 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5523 		return -EACCES;
5524 do_sim:
5525 	/* Simulate and find potential out-of-bounds access under
5526 	 * speculative execution from truncation as a result of
5527 	 * masking when off was not within expected range. If off
5528 	 * sits in dst, then we temporarily need to move ptr there
5529 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5530 	 * for cases where we use K-based arithmetic in one direction
5531 	 * and truncated reg-based in the other in order to explore
5532 	 * bad access.
5533 	 */
5534 	if (!ptr_is_dst_reg) {
5535 		tmp = *dst_reg;
5536 		*dst_reg = *ptr_reg;
5537 	}
5538 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5539 	if (!ptr_is_dst_reg && ret)
5540 		*dst_reg = tmp;
5541 	return !ret ? -EFAULT : 0;
5542 }
5543 
5544 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5545  * Caller should also handle BPF_MOV case separately.
5546  * If we return -EACCES, caller may want to try again treating pointer as a
5547  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5548  */
5549 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5550 				   struct bpf_insn *insn,
5551 				   const struct bpf_reg_state *ptr_reg,
5552 				   const struct bpf_reg_state *off_reg)
5553 {
5554 	struct bpf_verifier_state *vstate = env->cur_state;
5555 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5556 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5557 	bool known = tnum_is_const(off_reg->var_off);
5558 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5559 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5560 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5561 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5562 	u32 dst = insn->dst_reg, src = insn->src_reg;
5563 	u8 opcode = BPF_OP(insn->code);
5564 	int ret;
5565 
5566 	dst_reg = &regs[dst];
5567 
5568 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5569 	    smin_val > smax_val || umin_val > umax_val) {
5570 		/* Taint dst register if offset had invalid bounds derived from
5571 		 * e.g. dead branches.
5572 		 */
5573 		__mark_reg_unknown(env, dst_reg);
5574 		return 0;
5575 	}
5576 
5577 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5578 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5579 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5580 			__mark_reg_unknown(env, dst_reg);
5581 			return 0;
5582 		}
5583 
5584 		verbose(env,
5585 			"R%d 32-bit pointer arithmetic prohibited\n",
5586 			dst);
5587 		return -EACCES;
5588 	}
5589 
5590 	switch (ptr_reg->type) {
5591 	case PTR_TO_MAP_VALUE_OR_NULL:
5592 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5593 			dst, reg_type_str[ptr_reg->type]);
5594 		return -EACCES;
5595 	case CONST_PTR_TO_MAP:
5596 		/* smin_val represents the known value */
5597 		if (known && smin_val == 0 && opcode == BPF_ADD)
5598 			break;
5599 		fallthrough;
5600 	case PTR_TO_PACKET_END:
5601 	case PTR_TO_SOCKET:
5602 	case PTR_TO_SOCKET_OR_NULL:
5603 	case PTR_TO_SOCK_COMMON:
5604 	case PTR_TO_SOCK_COMMON_OR_NULL:
5605 	case PTR_TO_TCP_SOCK:
5606 	case PTR_TO_TCP_SOCK_OR_NULL:
5607 	case PTR_TO_XDP_SOCK:
5608 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5609 			dst, reg_type_str[ptr_reg->type]);
5610 		return -EACCES;
5611 	case PTR_TO_MAP_VALUE:
5612 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5613 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5614 				off_reg == dst_reg ? dst : src);
5615 			return -EACCES;
5616 		}
5617 		fallthrough;
5618 	default:
5619 		break;
5620 	}
5621 
5622 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5623 	 * The id may be overwritten later if we create a new variable offset.
5624 	 */
5625 	dst_reg->type = ptr_reg->type;
5626 	dst_reg->id = ptr_reg->id;
5627 
5628 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5629 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5630 		return -EINVAL;
5631 
5632 	/* pointer types do not carry 32-bit bounds at the moment. */
5633 	__mark_reg32_unbounded(dst_reg);
5634 
5635 	switch (opcode) {
5636 	case BPF_ADD:
5637 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5638 		if (ret < 0) {
5639 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5640 			return ret;
5641 		}
5642 		/* We can take a fixed offset as long as it doesn't overflow
5643 		 * the s32 'off' field
5644 		 */
5645 		if (known && (ptr_reg->off + smin_val ==
5646 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5647 			/* pointer += K.  Accumulate it into fixed offset */
5648 			dst_reg->smin_value = smin_ptr;
5649 			dst_reg->smax_value = smax_ptr;
5650 			dst_reg->umin_value = umin_ptr;
5651 			dst_reg->umax_value = umax_ptr;
5652 			dst_reg->var_off = ptr_reg->var_off;
5653 			dst_reg->off = ptr_reg->off + smin_val;
5654 			dst_reg->raw = ptr_reg->raw;
5655 			break;
5656 		}
5657 		/* A new variable offset is created.  Note that off_reg->off
5658 		 * == 0, since it's a scalar.
5659 		 * dst_reg gets the pointer type and since some positive
5660 		 * integer value was added to the pointer, give it a new 'id'
5661 		 * if it's a PTR_TO_PACKET.
5662 		 * this creates a new 'base' pointer, off_reg (variable) gets
5663 		 * added into the variable offset, and we copy the fixed offset
5664 		 * from ptr_reg.
5665 		 */
5666 		if (signed_add_overflows(smin_ptr, smin_val) ||
5667 		    signed_add_overflows(smax_ptr, smax_val)) {
5668 			dst_reg->smin_value = S64_MIN;
5669 			dst_reg->smax_value = S64_MAX;
5670 		} else {
5671 			dst_reg->smin_value = smin_ptr + smin_val;
5672 			dst_reg->smax_value = smax_ptr + smax_val;
5673 		}
5674 		if (umin_ptr + umin_val < umin_ptr ||
5675 		    umax_ptr + umax_val < umax_ptr) {
5676 			dst_reg->umin_value = 0;
5677 			dst_reg->umax_value = U64_MAX;
5678 		} else {
5679 			dst_reg->umin_value = umin_ptr + umin_val;
5680 			dst_reg->umax_value = umax_ptr + umax_val;
5681 		}
5682 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5683 		dst_reg->off = ptr_reg->off;
5684 		dst_reg->raw = ptr_reg->raw;
5685 		if (reg_is_pkt_pointer(ptr_reg)) {
5686 			dst_reg->id = ++env->id_gen;
5687 			/* something was added to pkt_ptr, set range to zero */
5688 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5689 		}
5690 		break;
5691 	case BPF_SUB:
5692 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5693 		if (ret < 0) {
5694 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5695 			return ret;
5696 		}
5697 		if (dst_reg == off_reg) {
5698 			/* scalar -= pointer.  Creates an unknown scalar */
5699 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5700 				dst);
5701 			return -EACCES;
5702 		}
5703 		/* We don't allow subtraction from FP, because (according to
5704 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5705 		 * be able to deal with it.
5706 		 */
5707 		if (ptr_reg->type == PTR_TO_STACK) {
5708 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5709 				dst);
5710 			return -EACCES;
5711 		}
5712 		if (known && (ptr_reg->off - smin_val ==
5713 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5714 			/* pointer -= K.  Subtract it from fixed offset */
5715 			dst_reg->smin_value = smin_ptr;
5716 			dst_reg->smax_value = smax_ptr;
5717 			dst_reg->umin_value = umin_ptr;
5718 			dst_reg->umax_value = umax_ptr;
5719 			dst_reg->var_off = ptr_reg->var_off;
5720 			dst_reg->id = ptr_reg->id;
5721 			dst_reg->off = ptr_reg->off - smin_val;
5722 			dst_reg->raw = ptr_reg->raw;
5723 			break;
5724 		}
5725 		/* A new variable offset is created.  If the subtrahend is known
5726 		 * nonnegative, then any reg->range we had before is still good.
5727 		 */
5728 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5729 		    signed_sub_overflows(smax_ptr, smin_val)) {
5730 			/* Overflow possible, we know nothing */
5731 			dst_reg->smin_value = S64_MIN;
5732 			dst_reg->smax_value = S64_MAX;
5733 		} else {
5734 			dst_reg->smin_value = smin_ptr - smax_val;
5735 			dst_reg->smax_value = smax_ptr - smin_val;
5736 		}
5737 		if (umin_ptr < umax_val) {
5738 			/* Overflow possible, we know nothing */
5739 			dst_reg->umin_value = 0;
5740 			dst_reg->umax_value = U64_MAX;
5741 		} else {
5742 			/* Cannot overflow (as long as bounds are consistent) */
5743 			dst_reg->umin_value = umin_ptr - umax_val;
5744 			dst_reg->umax_value = umax_ptr - umin_val;
5745 		}
5746 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5747 		dst_reg->off = ptr_reg->off;
5748 		dst_reg->raw = ptr_reg->raw;
5749 		if (reg_is_pkt_pointer(ptr_reg)) {
5750 			dst_reg->id = ++env->id_gen;
5751 			/* something was added to pkt_ptr, set range to zero */
5752 			if (smin_val < 0)
5753 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5754 		}
5755 		break;
5756 	case BPF_AND:
5757 	case BPF_OR:
5758 	case BPF_XOR:
5759 		/* bitwise ops on pointers are troublesome, prohibit. */
5760 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5761 			dst, bpf_alu_string[opcode >> 4]);
5762 		return -EACCES;
5763 	default:
5764 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5765 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5766 			dst, bpf_alu_string[opcode >> 4]);
5767 		return -EACCES;
5768 	}
5769 
5770 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5771 		return -EINVAL;
5772 
5773 	__update_reg_bounds(dst_reg);
5774 	__reg_deduce_bounds(dst_reg);
5775 	__reg_bound_offset(dst_reg);
5776 
5777 	/* For unprivileged we require that resulting offset must be in bounds
5778 	 * in order to be able to sanitize access later on.
5779 	 */
5780 	if (!env->bypass_spec_v1) {
5781 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5782 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5783 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5784 				"prohibited for !root\n", dst);
5785 			return -EACCES;
5786 		} else if (dst_reg->type == PTR_TO_STACK &&
5787 			   check_stack_access(env, dst_reg, dst_reg->off +
5788 					      dst_reg->var_off.value, 1)) {
5789 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5790 				"prohibited for !root\n", dst);
5791 			return -EACCES;
5792 		}
5793 	}
5794 
5795 	return 0;
5796 }
5797 
5798 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5799 				 struct bpf_reg_state *src_reg)
5800 {
5801 	s32 smin_val = src_reg->s32_min_value;
5802 	s32 smax_val = src_reg->s32_max_value;
5803 	u32 umin_val = src_reg->u32_min_value;
5804 	u32 umax_val = src_reg->u32_max_value;
5805 
5806 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5807 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5808 		dst_reg->s32_min_value = S32_MIN;
5809 		dst_reg->s32_max_value = S32_MAX;
5810 	} else {
5811 		dst_reg->s32_min_value += smin_val;
5812 		dst_reg->s32_max_value += smax_val;
5813 	}
5814 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5815 	    dst_reg->u32_max_value + umax_val < umax_val) {
5816 		dst_reg->u32_min_value = 0;
5817 		dst_reg->u32_max_value = U32_MAX;
5818 	} else {
5819 		dst_reg->u32_min_value += umin_val;
5820 		dst_reg->u32_max_value += umax_val;
5821 	}
5822 }
5823 
5824 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5825 			       struct bpf_reg_state *src_reg)
5826 {
5827 	s64 smin_val = src_reg->smin_value;
5828 	s64 smax_val = src_reg->smax_value;
5829 	u64 umin_val = src_reg->umin_value;
5830 	u64 umax_val = src_reg->umax_value;
5831 
5832 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5833 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5834 		dst_reg->smin_value = S64_MIN;
5835 		dst_reg->smax_value = S64_MAX;
5836 	} else {
5837 		dst_reg->smin_value += smin_val;
5838 		dst_reg->smax_value += smax_val;
5839 	}
5840 	if (dst_reg->umin_value + umin_val < umin_val ||
5841 	    dst_reg->umax_value + umax_val < umax_val) {
5842 		dst_reg->umin_value = 0;
5843 		dst_reg->umax_value = U64_MAX;
5844 	} else {
5845 		dst_reg->umin_value += umin_val;
5846 		dst_reg->umax_value += umax_val;
5847 	}
5848 }
5849 
5850 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5851 				 struct bpf_reg_state *src_reg)
5852 {
5853 	s32 smin_val = src_reg->s32_min_value;
5854 	s32 smax_val = src_reg->s32_max_value;
5855 	u32 umin_val = src_reg->u32_min_value;
5856 	u32 umax_val = src_reg->u32_max_value;
5857 
5858 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5859 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5860 		/* Overflow possible, we know nothing */
5861 		dst_reg->s32_min_value = S32_MIN;
5862 		dst_reg->s32_max_value = S32_MAX;
5863 	} else {
5864 		dst_reg->s32_min_value -= smax_val;
5865 		dst_reg->s32_max_value -= smin_val;
5866 	}
5867 	if (dst_reg->u32_min_value < umax_val) {
5868 		/* Overflow possible, we know nothing */
5869 		dst_reg->u32_min_value = 0;
5870 		dst_reg->u32_max_value = U32_MAX;
5871 	} else {
5872 		/* Cannot overflow (as long as bounds are consistent) */
5873 		dst_reg->u32_min_value -= umax_val;
5874 		dst_reg->u32_max_value -= umin_val;
5875 	}
5876 }
5877 
5878 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5879 			       struct bpf_reg_state *src_reg)
5880 {
5881 	s64 smin_val = src_reg->smin_value;
5882 	s64 smax_val = src_reg->smax_value;
5883 	u64 umin_val = src_reg->umin_value;
5884 	u64 umax_val = src_reg->umax_value;
5885 
5886 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5887 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5888 		/* Overflow possible, we know nothing */
5889 		dst_reg->smin_value = S64_MIN;
5890 		dst_reg->smax_value = S64_MAX;
5891 	} else {
5892 		dst_reg->smin_value -= smax_val;
5893 		dst_reg->smax_value -= smin_val;
5894 	}
5895 	if (dst_reg->umin_value < umax_val) {
5896 		/* Overflow possible, we know nothing */
5897 		dst_reg->umin_value = 0;
5898 		dst_reg->umax_value = U64_MAX;
5899 	} else {
5900 		/* Cannot overflow (as long as bounds are consistent) */
5901 		dst_reg->umin_value -= umax_val;
5902 		dst_reg->umax_value -= umin_val;
5903 	}
5904 }
5905 
5906 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5907 				 struct bpf_reg_state *src_reg)
5908 {
5909 	s32 smin_val = src_reg->s32_min_value;
5910 	u32 umin_val = src_reg->u32_min_value;
5911 	u32 umax_val = src_reg->u32_max_value;
5912 
5913 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5914 		/* Ain't nobody got time to multiply that sign */
5915 		__mark_reg32_unbounded(dst_reg);
5916 		return;
5917 	}
5918 	/* Both values are positive, so we can work with unsigned and
5919 	 * copy the result to signed (unless it exceeds S32_MAX).
5920 	 */
5921 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5922 		/* Potential overflow, we know nothing */
5923 		__mark_reg32_unbounded(dst_reg);
5924 		return;
5925 	}
5926 	dst_reg->u32_min_value *= umin_val;
5927 	dst_reg->u32_max_value *= umax_val;
5928 	if (dst_reg->u32_max_value > S32_MAX) {
5929 		/* Overflow possible, we know nothing */
5930 		dst_reg->s32_min_value = S32_MIN;
5931 		dst_reg->s32_max_value = S32_MAX;
5932 	} else {
5933 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5934 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5935 	}
5936 }
5937 
5938 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5939 			       struct bpf_reg_state *src_reg)
5940 {
5941 	s64 smin_val = src_reg->smin_value;
5942 	u64 umin_val = src_reg->umin_value;
5943 	u64 umax_val = src_reg->umax_value;
5944 
5945 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5946 		/* Ain't nobody got time to multiply that sign */
5947 		__mark_reg64_unbounded(dst_reg);
5948 		return;
5949 	}
5950 	/* Both values are positive, so we can work with unsigned and
5951 	 * copy the result to signed (unless it exceeds S64_MAX).
5952 	 */
5953 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5954 		/* Potential overflow, we know nothing */
5955 		__mark_reg64_unbounded(dst_reg);
5956 		return;
5957 	}
5958 	dst_reg->umin_value *= umin_val;
5959 	dst_reg->umax_value *= umax_val;
5960 	if (dst_reg->umax_value > S64_MAX) {
5961 		/* Overflow possible, we know nothing */
5962 		dst_reg->smin_value = S64_MIN;
5963 		dst_reg->smax_value = S64_MAX;
5964 	} else {
5965 		dst_reg->smin_value = dst_reg->umin_value;
5966 		dst_reg->smax_value = dst_reg->umax_value;
5967 	}
5968 }
5969 
5970 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5971 				 struct bpf_reg_state *src_reg)
5972 {
5973 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5974 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5975 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5976 	s32 smin_val = src_reg->s32_min_value;
5977 	u32 umax_val = src_reg->u32_max_value;
5978 
5979 	/* Assuming scalar64_min_max_and will be called so its safe
5980 	 * to skip updating register for known 32-bit case.
5981 	 */
5982 	if (src_known && dst_known)
5983 		return;
5984 
5985 	/* We get our minimum from the var_off, since that's inherently
5986 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5987 	 */
5988 	dst_reg->u32_min_value = var32_off.value;
5989 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5990 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5991 		/* Lose signed bounds when ANDing negative numbers,
5992 		 * ain't nobody got time for that.
5993 		 */
5994 		dst_reg->s32_min_value = S32_MIN;
5995 		dst_reg->s32_max_value = S32_MAX;
5996 	} else {
5997 		/* ANDing two positives gives a positive, so safe to
5998 		 * cast result into s64.
5999 		 */
6000 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6001 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6002 	}
6003 
6004 }
6005 
6006 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6007 			       struct bpf_reg_state *src_reg)
6008 {
6009 	bool src_known = tnum_is_const(src_reg->var_off);
6010 	bool dst_known = tnum_is_const(dst_reg->var_off);
6011 	s64 smin_val = src_reg->smin_value;
6012 	u64 umax_val = src_reg->umax_value;
6013 
6014 	if (src_known && dst_known) {
6015 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6016 		return;
6017 	}
6018 
6019 	/* We get our minimum from the var_off, since that's inherently
6020 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6021 	 */
6022 	dst_reg->umin_value = dst_reg->var_off.value;
6023 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6024 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6025 		/* Lose signed bounds when ANDing negative numbers,
6026 		 * ain't nobody got time for that.
6027 		 */
6028 		dst_reg->smin_value = S64_MIN;
6029 		dst_reg->smax_value = S64_MAX;
6030 	} else {
6031 		/* ANDing two positives gives a positive, so safe to
6032 		 * cast result into s64.
6033 		 */
6034 		dst_reg->smin_value = dst_reg->umin_value;
6035 		dst_reg->smax_value = dst_reg->umax_value;
6036 	}
6037 	/* We may learn something more from the var_off */
6038 	__update_reg_bounds(dst_reg);
6039 }
6040 
6041 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6042 				struct bpf_reg_state *src_reg)
6043 {
6044 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6045 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6046 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6047 	s32 smin_val = src_reg->s32_min_value;
6048 	u32 umin_val = src_reg->u32_min_value;
6049 
6050 	/* Assuming scalar64_min_max_or will be called so it is safe
6051 	 * to skip updating register for known case.
6052 	 */
6053 	if (src_known && dst_known)
6054 		return;
6055 
6056 	/* We get our maximum from the var_off, and our minimum is the
6057 	 * maximum of the operands' minima
6058 	 */
6059 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6060 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6061 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6062 		/* Lose signed bounds when ORing negative numbers,
6063 		 * ain't nobody got time for that.
6064 		 */
6065 		dst_reg->s32_min_value = S32_MIN;
6066 		dst_reg->s32_max_value = S32_MAX;
6067 	} else {
6068 		/* ORing two positives gives a positive, so safe to
6069 		 * cast result into s64.
6070 		 */
6071 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6072 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6073 	}
6074 }
6075 
6076 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6077 			      struct bpf_reg_state *src_reg)
6078 {
6079 	bool src_known = tnum_is_const(src_reg->var_off);
6080 	bool dst_known = tnum_is_const(dst_reg->var_off);
6081 	s64 smin_val = src_reg->smin_value;
6082 	u64 umin_val = src_reg->umin_value;
6083 
6084 	if (src_known && dst_known) {
6085 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6086 		return;
6087 	}
6088 
6089 	/* We get our maximum from the var_off, and our minimum is the
6090 	 * maximum of the operands' minima
6091 	 */
6092 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6093 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6094 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6095 		/* Lose signed bounds when ORing negative numbers,
6096 		 * ain't nobody got time for that.
6097 		 */
6098 		dst_reg->smin_value = S64_MIN;
6099 		dst_reg->smax_value = S64_MAX;
6100 	} else {
6101 		/* ORing two positives gives a positive, so safe to
6102 		 * cast result into s64.
6103 		 */
6104 		dst_reg->smin_value = dst_reg->umin_value;
6105 		dst_reg->smax_value = dst_reg->umax_value;
6106 	}
6107 	/* We may learn something more from the var_off */
6108 	__update_reg_bounds(dst_reg);
6109 }
6110 
6111 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6112 				 struct bpf_reg_state *src_reg)
6113 {
6114 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6115 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6116 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6117 	s32 smin_val = src_reg->s32_min_value;
6118 
6119 	/* Assuming scalar64_min_max_xor will be called so it is safe
6120 	 * to skip updating register for known case.
6121 	 */
6122 	if (src_known && dst_known)
6123 		return;
6124 
6125 	/* We get both minimum and maximum from the var32_off. */
6126 	dst_reg->u32_min_value = var32_off.value;
6127 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6128 
6129 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6130 		/* XORing two positive sign numbers gives a positive,
6131 		 * so safe to cast u32 result into s32.
6132 		 */
6133 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6134 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6135 	} else {
6136 		dst_reg->s32_min_value = S32_MIN;
6137 		dst_reg->s32_max_value = S32_MAX;
6138 	}
6139 }
6140 
6141 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6142 			       struct bpf_reg_state *src_reg)
6143 {
6144 	bool src_known = tnum_is_const(src_reg->var_off);
6145 	bool dst_known = tnum_is_const(dst_reg->var_off);
6146 	s64 smin_val = src_reg->smin_value;
6147 
6148 	if (src_known && dst_known) {
6149 		/* dst_reg->var_off.value has been updated earlier */
6150 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6151 		return;
6152 	}
6153 
6154 	/* We get both minimum and maximum from the var_off. */
6155 	dst_reg->umin_value = dst_reg->var_off.value;
6156 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6157 
6158 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6159 		/* XORing two positive sign numbers gives a positive,
6160 		 * so safe to cast u64 result into s64.
6161 		 */
6162 		dst_reg->smin_value = dst_reg->umin_value;
6163 		dst_reg->smax_value = dst_reg->umax_value;
6164 	} else {
6165 		dst_reg->smin_value = S64_MIN;
6166 		dst_reg->smax_value = S64_MAX;
6167 	}
6168 
6169 	__update_reg_bounds(dst_reg);
6170 }
6171 
6172 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6173 				   u64 umin_val, u64 umax_val)
6174 {
6175 	/* We lose all sign bit information (except what we can pick
6176 	 * up from var_off)
6177 	 */
6178 	dst_reg->s32_min_value = S32_MIN;
6179 	dst_reg->s32_max_value = S32_MAX;
6180 	/* If we might shift our top bit out, then we know nothing */
6181 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6182 		dst_reg->u32_min_value = 0;
6183 		dst_reg->u32_max_value = U32_MAX;
6184 	} else {
6185 		dst_reg->u32_min_value <<= umin_val;
6186 		dst_reg->u32_max_value <<= umax_val;
6187 	}
6188 }
6189 
6190 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6191 				 struct bpf_reg_state *src_reg)
6192 {
6193 	u32 umax_val = src_reg->u32_max_value;
6194 	u32 umin_val = src_reg->u32_min_value;
6195 	/* u32 alu operation will zext upper bits */
6196 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6197 
6198 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6199 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6200 	/* Not required but being careful mark reg64 bounds as unknown so
6201 	 * that we are forced to pick them up from tnum and zext later and
6202 	 * if some path skips this step we are still safe.
6203 	 */
6204 	__mark_reg64_unbounded(dst_reg);
6205 	__update_reg32_bounds(dst_reg);
6206 }
6207 
6208 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6209 				   u64 umin_val, u64 umax_val)
6210 {
6211 	/* Special case <<32 because it is a common compiler pattern to sign
6212 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6213 	 * positive we know this shift will also be positive so we can track
6214 	 * bounds correctly. Otherwise we lose all sign bit information except
6215 	 * what we can pick up from var_off. Perhaps we can generalize this
6216 	 * later to shifts of any length.
6217 	 */
6218 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6219 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6220 	else
6221 		dst_reg->smax_value = S64_MAX;
6222 
6223 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6224 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6225 	else
6226 		dst_reg->smin_value = S64_MIN;
6227 
6228 	/* If we might shift our top bit out, then we know nothing */
6229 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6230 		dst_reg->umin_value = 0;
6231 		dst_reg->umax_value = U64_MAX;
6232 	} else {
6233 		dst_reg->umin_value <<= umin_val;
6234 		dst_reg->umax_value <<= umax_val;
6235 	}
6236 }
6237 
6238 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6239 			       struct bpf_reg_state *src_reg)
6240 {
6241 	u64 umax_val = src_reg->umax_value;
6242 	u64 umin_val = src_reg->umin_value;
6243 
6244 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6245 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6246 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6247 
6248 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6249 	/* We may learn something more from the var_off */
6250 	__update_reg_bounds(dst_reg);
6251 }
6252 
6253 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6254 				 struct bpf_reg_state *src_reg)
6255 {
6256 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6257 	u32 umax_val = src_reg->u32_max_value;
6258 	u32 umin_val = src_reg->u32_min_value;
6259 
6260 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6261 	 * be negative, then either:
6262 	 * 1) src_reg might be zero, so the sign bit of the result is
6263 	 *    unknown, so we lose our signed bounds
6264 	 * 2) it's known negative, thus the unsigned bounds capture the
6265 	 *    signed bounds
6266 	 * 3) the signed bounds cross zero, so they tell us nothing
6267 	 *    about the result
6268 	 * If the value in dst_reg is known nonnegative, then again the
6269 	 * unsigned bounts capture the signed bounds.
6270 	 * Thus, in all cases it suffices to blow away our signed bounds
6271 	 * and rely on inferring new ones from the unsigned bounds and
6272 	 * var_off of the result.
6273 	 */
6274 	dst_reg->s32_min_value = S32_MIN;
6275 	dst_reg->s32_max_value = S32_MAX;
6276 
6277 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6278 	dst_reg->u32_min_value >>= umax_val;
6279 	dst_reg->u32_max_value >>= umin_val;
6280 
6281 	__mark_reg64_unbounded(dst_reg);
6282 	__update_reg32_bounds(dst_reg);
6283 }
6284 
6285 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6286 			       struct bpf_reg_state *src_reg)
6287 {
6288 	u64 umax_val = src_reg->umax_value;
6289 	u64 umin_val = src_reg->umin_value;
6290 
6291 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6292 	 * be negative, then either:
6293 	 * 1) src_reg might be zero, so the sign bit of the result is
6294 	 *    unknown, so we lose our signed bounds
6295 	 * 2) it's known negative, thus the unsigned bounds capture the
6296 	 *    signed bounds
6297 	 * 3) the signed bounds cross zero, so they tell us nothing
6298 	 *    about the result
6299 	 * If the value in dst_reg is known nonnegative, then again the
6300 	 * unsigned bounts capture the signed bounds.
6301 	 * Thus, in all cases it suffices to blow away our signed bounds
6302 	 * and rely on inferring new ones from the unsigned bounds and
6303 	 * var_off of the result.
6304 	 */
6305 	dst_reg->smin_value = S64_MIN;
6306 	dst_reg->smax_value = S64_MAX;
6307 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6308 	dst_reg->umin_value >>= umax_val;
6309 	dst_reg->umax_value >>= umin_val;
6310 
6311 	/* Its not easy to operate on alu32 bounds here because it depends
6312 	 * on bits being shifted in. Take easy way out and mark unbounded
6313 	 * so we can recalculate later from tnum.
6314 	 */
6315 	__mark_reg32_unbounded(dst_reg);
6316 	__update_reg_bounds(dst_reg);
6317 }
6318 
6319 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6320 				  struct bpf_reg_state *src_reg)
6321 {
6322 	u64 umin_val = src_reg->u32_min_value;
6323 
6324 	/* Upon reaching here, src_known is true and
6325 	 * umax_val is equal to umin_val.
6326 	 */
6327 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6328 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6329 
6330 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6331 
6332 	/* blow away the dst_reg umin_value/umax_value and rely on
6333 	 * dst_reg var_off to refine the result.
6334 	 */
6335 	dst_reg->u32_min_value = 0;
6336 	dst_reg->u32_max_value = U32_MAX;
6337 
6338 	__mark_reg64_unbounded(dst_reg);
6339 	__update_reg32_bounds(dst_reg);
6340 }
6341 
6342 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6343 				struct bpf_reg_state *src_reg)
6344 {
6345 	u64 umin_val = src_reg->umin_value;
6346 
6347 	/* Upon reaching here, src_known is true and umax_val is equal
6348 	 * to umin_val.
6349 	 */
6350 	dst_reg->smin_value >>= umin_val;
6351 	dst_reg->smax_value >>= umin_val;
6352 
6353 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6354 
6355 	/* blow away the dst_reg umin_value/umax_value and rely on
6356 	 * dst_reg var_off to refine the result.
6357 	 */
6358 	dst_reg->umin_value = 0;
6359 	dst_reg->umax_value = U64_MAX;
6360 
6361 	/* Its not easy to operate on alu32 bounds here because it depends
6362 	 * on bits being shifted in from upper 32-bits. Take easy way out
6363 	 * and mark unbounded so we can recalculate later from tnum.
6364 	 */
6365 	__mark_reg32_unbounded(dst_reg);
6366 	__update_reg_bounds(dst_reg);
6367 }
6368 
6369 /* WARNING: This function does calculations on 64-bit values, but the actual
6370  * execution may occur on 32-bit values. Therefore, things like bitshifts
6371  * need extra checks in the 32-bit case.
6372  */
6373 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6374 				      struct bpf_insn *insn,
6375 				      struct bpf_reg_state *dst_reg,
6376 				      struct bpf_reg_state src_reg)
6377 {
6378 	struct bpf_reg_state *regs = cur_regs(env);
6379 	u8 opcode = BPF_OP(insn->code);
6380 	bool src_known;
6381 	s64 smin_val, smax_val;
6382 	u64 umin_val, umax_val;
6383 	s32 s32_min_val, s32_max_val;
6384 	u32 u32_min_val, u32_max_val;
6385 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6386 	u32 dst = insn->dst_reg;
6387 	int ret;
6388 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6389 
6390 	smin_val = src_reg.smin_value;
6391 	smax_val = src_reg.smax_value;
6392 	umin_val = src_reg.umin_value;
6393 	umax_val = src_reg.umax_value;
6394 
6395 	s32_min_val = src_reg.s32_min_value;
6396 	s32_max_val = src_reg.s32_max_value;
6397 	u32_min_val = src_reg.u32_min_value;
6398 	u32_max_val = src_reg.u32_max_value;
6399 
6400 	if (alu32) {
6401 		src_known = tnum_subreg_is_const(src_reg.var_off);
6402 		if ((src_known &&
6403 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6404 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6405 			/* Taint dst register if offset had invalid bounds
6406 			 * derived from e.g. dead branches.
6407 			 */
6408 			__mark_reg_unknown(env, dst_reg);
6409 			return 0;
6410 		}
6411 	} else {
6412 		src_known = tnum_is_const(src_reg.var_off);
6413 		if ((src_known &&
6414 		     (smin_val != smax_val || umin_val != umax_val)) ||
6415 		    smin_val > smax_val || umin_val > umax_val) {
6416 			/* Taint dst register if offset had invalid bounds
6417 			 * derived from e.g. dead branches.
6418 			 */
6419 			__mark_reg_unknown(env, dst_reg);
6420 			return 0;
6421 		}
6422 	}
6423 
6424 	if (!src_known &&
6425 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6426 		__mark_reg_unknown(env, dst_reg);
6427 		return 0;
6428 	}
6429 
6430 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6431 	 * There are two classes of instructions: The first class we track both
6432 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6433 	 * greatest amount of precision when alu operations are mixed with jmp32
6434 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6435 	 * and BPF_OR. This is possible because these ops have fairly easy to
6436 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6437 	 * See alu32 verifier tests for examples. The second class of
6438 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6439 	 * with regards to tracking sign/unsigned bounds because the bits may
6440 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6441 	 * the reg unbounded in the subreg bound space and use the resulting
6442 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6443 	 */
6444 	switch (opcode) {
6445 	case BPF_ADD:
6446 		ret = sanitize_val_alu(env, insn);
6447 		if (ret < 0) {
6448 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6449 			return ret;
6450 		}
6451 		scalar32_min_max_add(dst_reg, &src_reg);
6452 		scalar_min_max_add(dst_reg, &src_reg);
6453 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6454 		break;
6455 	case BPF_SUB:
6456 		ret = sanitize_val_alu(env, insn);
6457 		if (ret < 0) {
6458 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6459 			return ret;
6460 		}
6461 		scalar32_min_max_sub(dst_reg, &src_reg);
6462 		scalar_min_max_sub(dst_reg, &src_reg);
6463 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6464 		break;
6465 	case BPF_MUL:
6466 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6467 		scalar32_min_max_mul(dst_reg, &src_reg);
6468 		scalar_min_max_mul(dst_reg, &src_reg);
6469 		break;
6470 	case BPF_AND:
6471 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6472 		scalar32_min_max_and(dst_reg, &src_reg);
6473 		scalar_min_max_and(dst_reg, &src_reg);
6474 		break;
6475 	case BPF_OR:
6476 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6477 		scalar32_min_max_or(dst_reg, &src_reg);
6478 		scalar_min_max_or(dst_reg, &src_reg);
6479 		break;
6480 	case BPF_XOR:
6481 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6482 		scalar32_min_max_xor(dst_reg, &src_reg);
6483 		scalar_min_max_xor(dst_reg, &src_reg);
6484 		break;
6485 	case BPF_LSH:
6486 		if (umax_val >= insn_bitness) {
6487 			/* Shifts greater than 31 or 63 are undefined.
6488 			 * This includes shifts by a negative number.
6489 			 */
6490 			mark_reg_unknown(env, regs, insn->dst_reg);
6491 			break;
6492 		}
6493 		if (alu32)
6494 			scalar32_min_max_lsh(dst_reg, &src_reg);
6495 		else
6496 			scalar_min_max_lsh(dst_reg, &src_reg);
6497 		break;
6498 	case BPF_RSH:
6499 		if (umax_val >= insn_bitness) {
6500 			/* Shifts greater than 31 or 63 are undefined.
6501 			 * This includes shifts by a negative number.
6502 			 */
6503 			mark_reg_unknown(env, regs, insn->dst_reg);
6504 			break;
6505 		}
6506 		if (alu32)
6507 			scalar32_min_max_rsh(dst_reg, &src_reg);
6508 		else
6509 			scalar_min_max_rsh(dst_reg, &src_reg);
6510 		break;
6511 	case BPF_ARSH:
6512 		if (umax_val >= insn_bitness) {
6513 			/* Shifts greater than 31 or 63 are undefined.
6514 			 * This includes shifts by a negative number.
6515 			 */
6516 			mark_reg_unknown(env, regs, insn->dst_reg);
6517 			break;
6518 		}
6519 		if (alu32)
6520 			scalar32_min_max_arsh(dst_reg, &src_reg);
6521 		else
6522 			scalar_min_max_arsh(dst_reg, &src_reg);
6523 		break;
6524 	default:
6525 		mark_reg_unknown(env, regs, insn->dst_reg);
6526 		break;
6527 	}
6528 
6529 	/* ALU32 ops are zero extended into 64bit register */
6530 	if (alu32)
6531 		zext_32_to_64(dst_reg);
6532 
6533 	__update_reg_bounds(dst_reg);
6534 	__reg_deduce_bounds(dst_reg);
6535 	__reg_bound_offset(dst_reg);
6536 	return 0;
6537 }
6538 
6539 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6540  * and var_off.
6541  */
6542 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6543 				   struct bpf_insn *insn)
6544 {
6545 	struct bpf_verifier_state *vstate = env->cur_state;
6546 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6547 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6548 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6549 	u8 opcode = BPF_OP(insn->code);
6550 	int err;
6551 
6552 	dst_reg = &regs[insn->dst_reg];
6553 	src_reg = NULL;
6554 	if (dst_reg->type != SCALAR_VALUE)
6555 		ptr_reg = dst_reg;
6556 	else
6557 		/* Make sure ID is cleared otherwise dst_reg min/max could be
6558 		 * incorrectly propagated into other registers by find_equal_scalars()
6559 		 */
6560 		dst_reg->id = 0;
6561 	if (BPF_SRC(insn->code) == BPF_X) {
6562 		src_reg = &regs[insn->src_reg];
6563 		if (src_reg->type != SCALAR_VALUE) {
6564 			if (dst_reg->type != SCALAR_VALUE) {
6565 				/* Combining two pointers by any ALU op yields
6566 				 * an arbitrary scalar. Disallow all math except
6567 				 * pointer subtraction
6568 				 */
6569 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6570 					mark_reg_unknown(env, regs, insn->dst_reg);
6571 					return 0;
6572 				}
6573 				verbose(env, "R%d pointer %s pointer prohibited\n",
6574 					insn->dst_reg,
6575 					bpf_alu_string[opcode >> 4]);
6576 				return -EACCES;
6577 			} else {
6578 				/* scalar += pointer
6579 				 * This is legal, but we have to reverse our
6580 				 * src/dest handling in computing the range
6581 				 */
6582 				err = mark_chain_precision(env, insn->dst_reg);
6583 				if (err)
6584 					return err;
6585 				return adjust_ptr_min_max_vals(env, insn,
6586 							       src_reg, dst_reg);
6587 			}
6588 		} else if (ptr_reg) {
6589 			/* pointer += scalar */
6590 			err = mark_chain_precision(env, insn->src_reg);
6591 			if (err)
6592 				return err;
6593 			return adjust_ptr_min_max_vals(env, insn,
6594 						       dst_reg, src_reg);
6595 		}
6596 	} else {
6597 		/* Pretend the src is a reg with a known value, since we only
6598 		 * need to be able to read from this state.
6599 		 */
6600 		off_reg.type = SCALAR_VALUE;
6601 		__mark_reg_known(&off_reg, insn->imm);
6602 		src_reg = &off_reg;
6603 		if (ptr_reg) /* pointer += K */
6604 			return adjust_ptr_min_max_vals(env, insn,
6605 						       ptr_reg, src_reg);
6606 	}
6607 
6608 	/* Got here implies adding two SCALAR_VALUEs */
6609 	if (WARN_ON_ONCE(ptr_reg)) {
6610 		print_verifier_state(env, state);
6611 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6612 		return -EINVAL;
6613 	}
6614 	if (WARN_ON(!src_reg)) {
6615 		print_verifier_state(env, state);
6616 		verbose(env, "verifier internal error: no src_reg\n");
6617 		return -EINVAL;
6618 	}
6619 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6620 }
6621 
6622 /* check validity of 32-bit and 64-bit arithmetic operations */
6623 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6624 {
6625 	struct bpf_reg_state *regs = cur_regs(env);
6626 	u8 opcode = BPF_OP(insn->code);
6627 	int err;
6628 
6629 	if (opcode == BPF_END || opcode == BPF_NEG) {
6630 		if (opcode == BPF_NEG) {
6631 			if (BPF_SRC(insn->code) != 0 ||
6632 			    insn->src_reg != BPF_REG_0 ||
6633 			    insn->off != 0 || insn->imm != 0) {
6634 				verbose(env, "BPF_NEG uses reserved fields\n");
6635 				return -EINVAL;
6636 			}
6637 		} else {
6638 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6639 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6640 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6641 				verbose(env, "BPF_END uses reserved fields\n");
6642 				return -EINVAL;
6643 			}
6644 		}
6645 
6646 		/* check src operand */
6647 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6648 		if (err)
6649 			return err;
6650 
6651 		if (is_pointer_value(env, insn->dst_reg)) {
6652 			verbose(env, "R%d pointer arithmetic prohibited\n",
6653 				insn->dst_reg);
6654 			return -EACCES;
6655 		}
6656 
6657 		/* check dest operand */
6658 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6659 		if (err)
6660 			return err;
6661 
6662 	} else if (opcode == BPF_MOV) {
6663 
6664 		if (BPF_SRC(insn->code) == BPF_X) {
6665 			if (insn->imm != 0 || insn->off != 0) {
6666 				verbose(env, "BPF_MOV uses reserved fields\n");
6667 				return -EINVAL;
6668 			}
6669 
6670 			/* check src operand */
6671 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6672 			if (err)
6673 				return err;
6674 		} else {
6675 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6676 				verbose(env, "BPF_MOV uses reserved fields\n");
6677 				return -EINVAL;
6678 			}
6679 		}
6680 
6681 		/* check dest operand, mark as required later */
6682 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6683 		if (err)
6684 			return err;
6685 
6686 		if (BPF_SRC(insn->code) == BPF_X) {
6687 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6688 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6689 
6690 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6691 				/* case: R1 = R2
6692 				 * copy register state to dest reg
6693 				 */
6694 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6695 					/* Assign src and dst registers the same ID
6696 					 * that will be used by find_equal_scalars()
6697 					 * to propagate min/max range.
6698 					 */
6699 					src_reg->id = ++env->id_gen;
6700 				*dst_reg = *src_reg;
6701 				dst_reg->live |= REG_LIVE_WRITTEN;
6702 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6703 			} else {
6704 				/* R1 = (u32) R2 */
6705 				if (is_pointer_value(env, insn->src_reg)) {
6706 					verbose(env,
6707 						"R%d partial copy of pointer\n",
6708 						insn->src_reg);
6709 					return -EACCES;
6710 				} else if (src_reg->type == SCALAR_VALUE) {
6711 					*dst_reg = *src_reg;
6712 					/* Make sure ID is cleared otherwise
6713 					 * dst_reg min/max could be incorrectly
6714 					 * propagated into src_reg by find_equal_scalars()
6715 					 */
6716 					dst_reg->id = 0;
6717 					dst_reg->live |= REG_LIVE_WRITTEN;
6718 					dst_reg->subreg_def = env->insn_idx + 1;
6719 				} else {
6720 					mark_reg_unknown(env, regs,
6721 							 insn->dst_reg);
6722 				}
6723 				zext_32_to_64(dst_reg);
6724 			}
6725 		} else {
6726 			/* case: R = imm
6727 			 * remember the value we stored into this reg
6728 			 */
6729 			/* clear any state __mark_reg_known doesn't set */
6730 			mark_reg_unknown(env, regs, insn->dst_reg);
6731 			regs[insn->dst_reg].type = SCALAR_VALUE;
6732 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6733 				__mark_reg_known(regs + insn->dst_reg,
6734 						 insn->imm);
6735 			} else {
6736 				__mark_reg_known(regs + insn->dst_reg,
6737 						 (u32)insn->imm);
6738 			}
6739 		}
6740 
6741 	} else if (opcode > BPF_END) {
6742 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6743 		return -EINVAL;
6744 
6745 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6746 
6747 		if (BPF_SRC(insn->code) == BPF_X) {
6748 			if (insn->imm != 0 || insn->off != 0) {
6749 				verbose(env, "BPF_ALU uses reserved fields\n");
6750 				return -EINVAL;
6751 			}
6752 			/* check src1 operand */
6753 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6754 			if (err)
6755 				return err;
6756 		} else {
6757 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6758 				verbose(env, "BPF_ALU uses reserved fields\n");
6759 				return -EINVAL;
6760 			}
6761 		}
6762 
6763 		/* check src2 operand */
6764 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6765 		if (err)
6766 			return err;
6767 
6768 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6769 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6770 			verbose(env, "div by zero\n");
6771 			return -EINVAL;
6772 		}
6773 
6774 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6775 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6776 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6777 
6778 			if (insn->imm < 0 || insn->imm >= size) {
6779 				verbose(env, "invalid shift %d\n", insn->imm);
6780 				return -EINVAL;
6781 			}
6782 		}
6783 
6784 		/* check dest operand */
6785 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6786 		if (err)
6787 			return err;
6788 
6789 		return adjust_reg_min_max_vals(env, insn);
6790 	}
6791 
6792 	return 0;
6793 }
6794 
6795 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6796 				     struct bpf_reg_state *dst_reg,
6797 				     enum bpf_reg_type type, int new_range)
6798 {
6799 	struct bpf_reg_state *reg;
6800 	int i;
6801 
6802 	for (i = 0; i < MAX_BPF_REG; i++) {
6803 		reg = &state->regs[i];
6804 		if (reg->type == type && reg->id == dst_reg->id)
6805 			/* keep the maximum range already checked */
6806 			reg->range = max(reg->range, new_range);
6807 	}
6808 
6809 	bpf_for_each_spilled_reg(i, state, reg) {
6810 		if (!reg)
6811 			continue;
6812 		if (reg->type == type && reg->id == dst_reg->id)
6813 			reg->range = max(reg->range, new_range);
6814 	}
6815 }
6816 
6817 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6818 				   struct bpf_reg_state *dst_reg,
6819 				   enum bpf_reg_type type,
6820 				   bool range_right_open)
6821 {
6822 	int new_range, i;
6823 
6824 	if (dst_reg->off < 0 ||
6825 	    (dst_reg->off == 0 && range_right_open))
6826 		/* This doesn't give us any range */
6827 		return;
6828 
6829 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6830 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6831 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6832 		 * than pkt_end, but that's because it's also less than pkt.
6833 		 */
6834 		return;
6835 
6836 	new_range = dst_reg->off;
6837 	if (range_right_open)
6838 		new_range--;
6839 
6840 	/* Examples for register markings:
6841 	 *
6842 	 * pkt_data in dst register:
6843 	 *
6844 	 *   r2 = r3;
6845 	 *   r2 += 8;
6846 	 *   if (r2 > pkt_end) goto <handle exception>
6847 	 *   <access okay>
6848 	 *
6849 	 *   r2 = r3;
6850 	 *   r2 += 8;
6851 	 *   if (r2 < pkt_end) goto <access okay>
6852 	 *   <handle exception>
6853 	 *
6854 	 *   Where:
6855 	 *     r2 == dst_reg, pkt_end == src_reg
6856 	 *     r2=pkt(id=n,off=8,r=0)
6857 	 *     r3=pkt(id=n,off=0,r=0)
6858 	 *
6859 	 * pkt_data in src register:
6860 	 *
6861 	 *   r2 = r3;
6862 	 *   r2 += 8;
6863 	 *   if (pkt_end >= r2) goto <access okay>
6864 	 *   <handle exception>
6865 	 *
6866 	 *   r2 = r3;
6867 	 *   r2 += 8;
6868 	 *   if (pkt_end <= r2) goto <handle exception>
6869 	 *   <access okay>
6870 	 *
6871 	 *   Where:
6872 	 *     pkt_end == dst_reg, r2 == src_reg
6873 	 *     r2=pkt(id=n,off=8,r=0)
6874 	 *     r3=pkt(id=n,off=0,r=0)
6875 	 *
6876 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6877 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6878 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6879 	 * the check.
6880 	 */
6881 
6882 	/* If our ids match, then we must have the same max_value.  And we
6883 	 * don't care about the other reg's fixed offset, since if it's too big
6884 	 * the range won't allow anything.
6885 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6886 	 */
6887 	for (i = 0; i <= vstate->curframe; i++)
6888 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6889 					 new_range);
6890 }
6891 
6892 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6893 {
6894 	struct tnum subreg = tnum_subreg(reg->var_off);
6895 	s32 sval = (s32)val;
6896 
6897 	switch (opcode) {
6898 	case BPF_JEQ:
6899 		if (tnum_is_const(subreg))
6900 			return !!tnum_equals_const(subreg, val);
6901 		break;
6902 	case BPF_JNE:
6903 		if (tnum_is_const(subreg))
6904 			return !tnum_equals_const(subreg, val);
6905 		break;
6906 	case BPF_JSET:
6907 		if ((~subreg.mask & subreg.value) & val)
6908 			return 1;
6909 		if (!((subreg.mask | subreg.value) & val))
6910 			return 0;
6911 		break;
6912 	case BPF_JGT:
6913 		if (reg->u32_min_value > val)
6914 			return 1;
6915 		else if (reg->u32_max_value <= val)
6916 			return 0;
6917 		break;
6918 	case BPF_JSGT:
6919 		if (reg->s32_min_value > sval)
6920 			return 1;
6921 		else if (reg->s32_max_value <= sval)
6922 			return 0;
6923 		break;
6924 	case BPF_JLT:
6925 		if (reg->u32_max_value < val)
6926 			return 1;
6927 		else if (reg->u32_min_value >= val)
6928 			return 0;
6929 		break;
6930 	case BPF_JSLT:
6931 		if (reg->s32_max_value < sval)
6932 			return 1;
6933 		else if (reg->s32_min_value >= sval)
6934 			return 0;
6935 		break;
6936 	case BPF_JGE:
6937 		if (reg->u32_min_value >= val)
6938 			return 1;
6939 		else if (reg->u32_max_value < val)
6940 			return 0;
6941 		break;
6942 	case BPF_JSGE:
6943 		if (reg->s32_min_value >= sval)
6944 			return 1;
6945 		else if (reg->s32_max_value < sval)
6946 			return 0;
6947 		break;
6948 	case BPF_JLE:
6949 		if (reg->u32_max_value <= val)
6950 			return 1;
6951 		else if (reg->u32_min_value > val)
6952 			return 0;
6953 		break;
6954 	case BPF_JSLE:
6955 		if (reg->s32_max_value <= sval)
6956 			return 1;
6957 		else if (reg->s32_min_value > sval)
6958 			return 0;
6959 		break;
6960 	}
6961 
6962 	return -1;
6963 }
6964 
6965 
6966 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6967 {
6968 	s64 sval = (s64)val;
6969 
6970 	switch (opcode) {
6971 	case BPF_JEQ:
6972 		if (tnum_is_const(reg->var_off))
6973 			return !!tnum_equals_const(reg->var_off, val);
6974 		break;
6975 	case BPF_JNE:
6976 		if (tnum_is_const(reg->var_off))
6977 			return !tnum_equals_const(reg->var_off, val);
6978 		break;
6979 	case BPF_JSET:
6980 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6981 			return 1;
6982 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6983 			return 0;
6984 		break;
6985 	case BPF_JGT:
6986 		if (reg->umin_value > val)
6987 			return 1;
6988 		else if (reg->umax_value <= val)
6989 			return 0;
6990 		break;
6991 	case BPF_JSGT:
6992 		if (reg->smin_value > sval)
6993 			return 1;
6994 		else if (reg->smax_value <= sval)
6995 			return 0;
6996 		break;
6997 	case BPF_JLT:
6998 		if (reg->umax_value < val)
6999 			return 1;
7000 		else if (reg->umin_value >= val)
7001 			return 0;
7002 		break;
7003 	case BPF_JSLT:
7004 		if (reg->smax_value < sval)
7005 			return 1;
7006 		else if (reg->smin_value >= sval)
7007 			return 0;
7008 		break;
7009 	case BPF_JGE:
7010 		if (reg->umin_value >= val)
7011 			return 1;
7012 		else if (reg->umax_value < val)
7013 			return 0;
7014 		break;
7015 	case BPF_JSGE:
7016 		if (reg->smin_value >= sval)
7017 			return 1;
7018 		else if (reg->smax_value < sval)
7019 			return 0;
7020 		break;
7021 	case BPF_JLE:
7022 		if (reg->umax_value <= val)
7023 			return 1;
7024 		else if (reg->umin_value > val)
7025 			return 0;
7026 		break;
7027 	case BPF_JSLE:
7028 		if (reg->smax_value <= sval)
7029 			return 1;
7030 		else if (reg->smin_value > sval)
7031 			return 0;
7032 		break;
7033 	}
7034 
7035 	return -1;
7036 }
7037 
7038 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7039  * and return:
7040  *  1 - branch will be taken and "goto target" will be executed
7041  *  0 - branch will not be taken and fall-through to next insn
7042  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7043  *      range [0,10]
7044  */
7045 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7046 			   bool is_jmp32)
7047 {
7048 	if (__is_pointer_value(false, reg)) {
7049 		if (!reg_type_not_null(reg->type))
7050 			return -1;
7051 
7052 		/* If pointer is valid tests against zero will fail so we can
7053 		 * use this to direct branch taken.
7054 		 */
7055 		if (val != 0)
7056 			return -1;
7057 
7058 		switch (opcode) {
7059 		case BPF_JEQ:
7060 			return 0;
7061 		case BPF_JNE:
7062 			return 1;
7063 		default:
7064 			return -1;
7065 		}
7066 	}
7067 
7068 	if (is_jmp32)
7069 		return is_branch32_taken(reg, val, opcode);
7070 	return is_branch64_taken(reg, val, opcode);
7071 }
7072 
7073 static int flip_opcode(u32 opcode)
7074 {
7075 	/* How can we transform "a <op> b" into "b <op> a"? */
7076 	static const u8 opcode_flip[16] = {
7077 		/* these stay the same */
7078 		[BPF_JEQ  >> 4] = BPF_JEQ,
7079 		[BPF_JNE  >> 4] = BPF_JNE,
7080 		[BPF_JSET >> 4] = BPF_JSET,
7081 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7082 		[BPF_JGE  >> 4] = BPF_JLE,
7083 		[BPF_JGT  >> 4] = BPF_JLT,
7084 		[BPF_JLE  >> 4] = BPF_JGE,
7085 		[BPF_JLT  >> 4] = BPF_JGT,
7086 		[BPF_JSGE >> 4] = BPF_JSLE,
7087 		[BPF_JSGT >> 4] = BPF_JSLT,
7088 		[BPF_JSLE >> 4] = BPF_JSGE,
7089 		[BPF_JSLT >> 4] = BPF_JSGT
7090 	};
7091 	return opcode_flip[opcode >> 4];
7092 }
7093 
7094 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7095 				   struct bpf_reg_state *src_reg,
7096 				   u8 opcode)
7097 {
7098 	struct bpf_reg_state *pkt;
7099 
7100 	if (src_reg->type == PTR_TO_PACKET_END) {
7101 		pkt = dst_reg;
7102 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7103 		pkt = src_reg;
7104 		opcode = flip_opcode(opcode);
7105 	} else {
7106 		return -1;
7107 	}
7108 
7109 	if (pkt->range >= 0)
7110 		return -1;
7111 
7112 	switch (opcode) {
7113 	case BPF_JLE:
7114 		/* pkt <= pkt_end */
7115 		fallthrough;
7116 	case BPF_JGT:
7117 		/* pkt > pkt_end */
7118 		if (pkt->range == BEYOND_PKT_END)
7119 			/* pkt has at last one extra byte beyond pkt_end */
7120 			return opcode == BPF_JGT;
7121 		break;
7122 	case BPF_JLT:
7123 		/* pkt < pkt_end */
7124 		fallthrough;
7125 	case BPF_JGE:
7126 		/* pkt >= pkt_end */
7127 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7128 			return opcode == BPF_JGE;
7129 		break;
7130 	}
7131 	return -1;
7132 }
7133 
7134 /* Adjusts the register min/max values in the case that the dst_reg is the
7135  * variable register that we are working on, and src_reg is a constant or we're
7136  * simply doing a BPF_K check.
7137  * In JEQ/JNE cases we also adjust the var_off values.
7138  */
7139 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7140 			    struct bpf_reg_state *false_reg,
7141 			    u64 val, u32 val32,
7142 			    u8 opcode, bool is_jmp32)
7143 {
7144 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7145 	struct tnum false_64off = false_reg->var_off;
7146 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7147 	struct tnum true_64off = true_reg->var_off;
7148 	s64 sval = (s64)val;
7149 	s32 sval32 = (s32)val32;
7150 
7151 	/* If the dst_reg is a pointer, we can't learn anything about its
7152 	 * variable offset from the compare (unless src_reg were a pointer into
7153 	 * the same object, but we don't bother with that.
7154 	 * Since false_reg and true_reg have the same type by construction, we
7155 	 * only need to check one of them for pointerness.
7156 	 */
7157 	if (__is_pointer_value(false, false_reg))
7158 		return;
7159 
7160 	switch (opcode) {
7161 	case BPF_JEQ:
7162 	case BPF_JNE:
7163 	{
7164 		struct bpf_reg_state *reg =
7165 			opcode == BPF_JEQ ? true_reg : false_reg;
7166 
7167 		/* JEQ/JNE comparison doesn't change the register equivalence.
7168 		 * r1 = r2;
7169 		 * if (r1 == 42) goto label;
7170 		 * ...
7171 		 * label: // here both r1 and r2 are known to be 42.
7172 		 *
7173 		 * Hence when marking register as known preserve it's ID.
7174 		 */
7175 		if (is_jmp32)
7176 			__mark_reg32_known(reg, val32);
7177 		else
7178 			___mark_reg_known(reg, val);
7179 		break;
7180 	}
7181 	case BPF_JSET:
7182 		if (is_jmp32) {
7183 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7184 			if (is_power_of_2(val32))
7185 				true_32off = tnum_or(true_32off,
7186 						     tnum_const(val32));
7187 		} else {
7188 			false_64off = tnum_and(false_64off, tnum_const(~val));
7189 			if (is_power_of_2(val))
7190 				true_64off = tnum_or(true_64off,
7191 						     tnum_const(val));
7192 		}
7193 		break;
7194 	case BPF_JGE:
7195 	case BPF_JGT:
7196 	{
7197 		if (is_jmp32) {
7198 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7199 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7200 
7201 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7202 						       false_umax);
7203 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7204 						      true_umin);
7205 		} else {
7206 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7207 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7208 
7209 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7210 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7211 		}
7212 		break;
7213 	}
7214 	case BPF_JSGE:
7215 	case BPF_JSGT:
7216 	{
7217 		if (is_jmp32) {
7218 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7219 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7220 
7221 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7222 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7223 		} else {
7224 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7225 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7226 
7227 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7228 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7229 		}
7230 		break;
7231 	}
7232 	case BPF_JLE:
7233 	case BPF_JLT:
7234 	{
7235 		if (is_jmp32) {
7236 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7237 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7238 
7239 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7240 						       false_umin);
7241 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7242 						      true_umax);
7243 		} else {
7244 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7245 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7246 
7247 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7248 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7249 		}
7250 		break;
7251 	}
7252 	case BPF_JSLE:
7253 	case BPF_JSLT:
7254 	{
7255 		if (is_jmp32) {
7256 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7257 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7258 
7259 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7260 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7261 		} else {
7262 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7263 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7264 
7265 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7266 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7267 		}
7268 		break;
7269 	}
7270 	default:
7271 		return;
7272 	}
7273 
7274 	if (is_jmp32) {
7275 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7276 					     tnum_subreg(false_32off));
7277 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7278 					    tnum_subreg(true_32off));
7279 		__reg_combine_32_into_64(false_reg);
7280 		__reg_combine_32_into_64(true_reg);
7281 	} else {
7282 		false_reg->var_off = false_64off;
7283 		true_reg->var_off = true_64off;
7284 		__reg_combine_64_into_32(false_reg);
7285 		__reg_combine_64_into_32(true_reg);
7286 	}
7287 }
7288 
7289 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7290  * the variable reg.
7291  */
7292 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7293 				struct bpf_reg_state *false_reg,
7294 				u64 val, u32 val32,
7295 				u8 opcode, bool is_jmp32)
7296 {
7297 	opcode = flip_opcode(opcode);
7298 	/* This uses zero as "not present in table"; luckily the zero opcode,
7299 	 * BPF_JA, can't get here.
7300 	 */
7301 	if (opcode)
7302 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7303 }
7304 
7305 /* Regs are known to be equal, so intersect their min/max/var_off */
7306 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7307 				  struct bpf_reg_state *dst_reg)
7308 {
7309 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7310 							dst_reg->umin_value);
7311 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7312 							dst_reg->umax_value);
7313 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7314 							dst_reg->smin_value);
7315 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7316 							dst_reg->smax_value);
7317 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7318 							     dst_reg->var_off);
7319 	/* We might have learned new bounds from the var_off. */
7320 	__update_reg_bounds(src_reg);
7321 	__update_reg_bounds(dst_reg);
7322 	/* We might have learned something about the sign bit. */
7323 	__reg_deduce_bounds(src_reg);
7324 	__reg_deduce_bounds(dst_reg);
7325 	/* We might have learned some bits from the bounds. */
7326 	__reg_bound_offset(src_reg);
7327 	__reg_bound_offset(dst_reg);
7328 	/* Intersecting with the old var_off might have improved our bounds
7329 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7330 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7331 	 */
7332 	__update_reg_bounds(src_reg);
7333 	__update_reg_bounds(dst_reg);
7334 }
7335 
7336 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7337 				struct bpf_reg_state *true_dst,
7338 				struct bpf_reg_state *false_src,
7339 				struct bpf_reg_state *false_dst,
7340 				u8 opcode)
7341 {
7342 	switch (opcode) {
7343 	case BPF_JEQ:
7344 		__reg_combine_min_max(true_src, true_dst);
7345 		break;
7346 	case BPF_JNE:
7347 		__reg_combine_min_max(false_src, false_dst);
7348 		break;
7349 	}
7350 }
7351 
7352 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7353 				 struct bpf_reg_state *reg, u32 id,
7354 				 bool is_null)
7355 {
7356 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7357 	    !WARN_ON_ONCE(!reg->id)) {
7358 		/* Old offset (both fixed and variable parts) should
7359 		 * have been known-zero, because we don't allow pointer
7360 		 * arithmetic on pointers that might be NULL.
7361 		 */
7362 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7363 				 !tnum_equals_const(reg->var_off, 0) ||
7364 				 reg->off)) {
7365 			__mark_reg_known_zero(reg);
7366 			reg->off = 0;
7367 		}
7368 		if (is_null) {
7369 			reg->type = SCALAR_VALUE;
7370 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7371 			const struct bpf_map *map = reg->map_ptr;
7372 
7373 			if (map->inner_map_meta) {
7374 				reg->type = CONST_PTR_TO_MAP;
7375 				reg->map_ptr = map->inner_map_meta;
7376 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7377 				reg->type = PTR_TO_XDP_SOCK;
7378 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7379 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7380 				reg->type = PTR_TO_SOCKET;
7381 			} else {
7382 				reg->type = PTR_TO_MAP_VALUE;
7383 			}
7384 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7385 			reg->type = PTR_TO_SOCKET;
7386 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7387 			reg->type = PTR_TO_SOCK_COMMON;
7388 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7389 			reg->type = PTR_TO_TCP_SOCK;
7390 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7391 			reg->type = PTR_TO_BTF_ID;
7392 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7393 			reg->type = PTR_TO_MEM;
7394 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7395 			reg->type = PTR_TO_RDONLY_BUF;
7396 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7397 			reg->type = PTR_TO_RDWR_BUF;
7398 		}
7399 		if (is_null) {
7400 			/* We don't need id and ref_obj_id from this point
7401 			 * onwards anymore, thus we should better reset it,
7402 			 * so that state pruning has chances to take effect.
7403 			 */
7404 			reg->id = 0;
7405 			reg->ref_obj_id = 0;
7406 		} else if (!reg_may_point_to_spin_lock(reg)) {
7407 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7408 			 * in release_reg_references().
7409 			 *
7410 			 * reg->id is still used by spin_lock ptr. Other
7411 			 * than spin_lock ptr type, reg->id can be reset.
7412 			 */
7413 			reg->id = 0;
7414 		}
7415 	}
7416 }
7417 
7418 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7419 				    bool is_null)
7420 {
7421 	struct bpf_reg_state *reg;
7422 	int i;
7423 
7424 	for (i = 0; i < MAX_BPF_REG; i++)
7425 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7426 
7427 	bpf_for_each_spilled_reg(i, state, reg) {
7428 		if (!reg)
7429 			continue;
7430 		mark_ptr_or_null_reg(state, reg, id, is_null);
7431 	}
7432 }
7433 
7434 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7435  * be folded together at some point.
7436  */
7437 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7438 				  bool is_null)
7439 {
7440 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7441 	struct bpf_reg_state *regs = state->regs;
7442 	u32 ref_obj_id = regs[regno].ref_obj_id;
7443 	u32 id = regs[regno].id;
7444 	int i;
7445 
7446 	if (ref_obj_id && ref_obj_id == id && is_null)
7447 		/* regs[regno] is in the " == NULL" branch.
7448 		 * No one could have freed the reference state before
7449 		 * doing the NULL check.
7450 		 */
7451 		WARN_ON_ONCE(release_reference_state(state, id));
7452 
7453 	for (i = 0; i <= vstate->curframe; i++)
7454 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7455 }
7456 
7457 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7458 				   struct bpf_reg_state *dst_reg,
7459 				   struct bpf_reg_state *src_reg,
7460 				   struct bpf_verifier_state *this_branch,
7461 				   struct bpf_verifier_state *other_branch)
7462 {
7463 	if (BPF_SRC(insn->code) != BPF_X)
7464 		return false;
7465 
7466 	/* Pointers are always 64-bit. */
7467 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7468 		return false;
7469 
7470 	switch (BPF_OP(insn->code)) {
7471 	case BPF_JGT:
7472 		if ((dst_reg->type == PTR_TO_PACKET &&
7473 		     src_reg->type == PTR_TO_PACKET_END) ||
7474 		    (dst_reg->type == PTR_TO_PACKET_META &&
7475 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7476 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7477 			find_good_pkt_pointers(this_branch, dst_reg,
7478 					       dst_reg->type, false);
7479 			mark_pkt_end(other_branch, insn->dst_reg, true);
7480 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7481 			    src_reg->type == PTR_TO_PACKET) ||
7482 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7483 			    src_reg->type == PTR_TO_PACKET_META)) {
7484 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7485 			find_good_pkt_pointers(other_branch, src_reg,
7486 					       src_reg->type, true);
7487 			mark_pkt_end(this_branch, insn->src_reg, false);
7488 		} else {
7489 			return false;
7490 		}
7491 		break;
7492 	case BPF_JLT:
7493 		if ((dst_reg->type == PTR_TO_PACKET &&
7494 		     src_reg->type == PTR_TO_PACKET_END) ||
7495 		    (dst_reg->type == PTR_TO_PACKET_META &&
7496 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7497 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7498 			find_good_pkt_pointers(other_branch, dst_reg,
7499 					       dst_reg->type, true);
7500 			mark_pkt_end(this_branch, insn->dst_reg, false);
7501 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7502 			    src_reg->type == PTR_TO_PACKET) ||
7503 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7504 			    src_reg->type == PTR_TO_PACKET_META)) {
7505 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7506 			find_good_pkt_pointers(this_branch, src_reg,
7507 					       src_reg->type, false);
7508 			mark_pkt_end(other_branch, insn->src_reg, true);
7509 		} else {
7510 			return false;
7511 		}
7512 		break;
7513 	case BPF_JGE:
7514 		if ((dst_reg->type == PTR_TO_PACKET &&
7515 		     src_reg->type == PTR_TO_PACKET_END) ||
7516 		    (dst_reg->type == PTR_TO_PACKET_META &&
7517 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7518 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7519 			find_good_pkt_pointers(this_branch, dst_reg,
7520 					       dst_reg->type, true);
7521 			mark_pkt_end(other_branch, insn->dst_reg, false);
7522 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7523 			    src_reg->type == PTR_TO_PACKET) ||
7524 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7525 			    src_reg->type == PTR_TO_PACKET_META)) {
7526 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7527 			find_good_pkt_pointers(other_branch, src_reg,
7528 					       src_reg->type, false);
7529 			mark_pkt_end(this_branch, insn->src_reg, true);
7530 		} else {
7531 			return false;
7532 		}
7533 		break;
7534 	case BPF_JLE:
7535 		if ((dst_reg->type == PTR_TO_PACKET &&
7536 		     src_reg->type == PTR_TO_PACKET_END) ||
7537 		    (dst_reg->type == PTR_TO_PACKET_META &&
7538 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7539 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7540 			find_good_pkt_pointers(other_branch, dst_reg,
7541 					       dst_reg->type, false);
7542 			mark_pkt_end(this_branch, insn->dst_reg, true);
7543 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7544 			    src_reg->type == PTR_TO_PACKET) ||
7545 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7546 			    src_reg->type == PTR_TO_PACKET_META)) {
7547 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7548 			find_good_pkt_pointers(this_branch, src_reg,
7549 					       src_reg->type, true);
7550 			mark_pkt_end(other_branch, insn->src_reg, false);
7551 		} else {
7552 			return false;
7553 		}
7554 		break;
7555 	default:
7556 		return false;
7557 	}
7558 
7559 	return true;
7560 }
7561 
7562 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7563 			       struct bpf_reg_state *known_reg)
7564 {
7565 	struct bpf_func_state *state;
7566 	struct bpf_reg_state *reg;
7567 	int i, j;
7568 
7569 	for (i = 0; i <= vstate->curframe; i++) {
7570 		state = vstate->frame[i];
7571 		for (j = 0; j < MAX_BPF_REG; j++) {
7572 			reg = &state->regs[j];
7573 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7574 				*reg = *known_reg;
7575 		}
7576 
7577 		bpf_for_each_spilled_reg(j, state, reg) {
7578 			if (!reg)
7579 				continue;
7580 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7581 				*reg = *known_reg;
7582 		}
7583 	}
7584 }
7585 
7586 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7587 			     struct bpf_insn *insn, int *insn_idx)
7588 {
7589 	struct bpf_verifier_state *this_branch = env->cur_state;
7590 	struct bpf_verifier_state *other_branch;
7591 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7592 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7593 	u8 opcode = BPF_OP(insn->code);
7594 	bool is_jmp32;
7595 	int pred = -1;
7596 	int err;
7597 
7598 	/* Only conditional jumps are expected to reach here. */
7599 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7600 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7601 		return -EINVAL;
7602 	}
7603 
7604 	if (BPF_SRC(insn->code) == BPF_X) {
7605 		if (insn->imm != 0) {
7606 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7607 			return -EINVAL;
7608 		}
7609 
7610 		/* check src1 operand */
7611 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7612 		if (err)
7613 			return err;
7614 
7615 		if (is_pointer_value(env, insn->src_reg)) {
7616 			verbose(env, "R%d pointer comparison prohibited\n",
7617 				insn->src_reg);
7618 			return -EACCES;
7619 		}
7620 		src_reg = &regs[insn->src_reg];
7621 	} else {
7622 		if (insn->src_reg != BPF_REG_0) {
7623 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7624 			return -EINVAL;
7625 		}
7626 	}
7627 
7628 	/* check src2 operand */
7629 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7630 	if (err)
7631 		return err;
7632 
7633 	dst_reg = &regs[insn->dst_reg];
7634 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7635 
7636 	if (BPF_SRC(insn->code) == BPF_K) {
7637 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7638 	} else if (src_reg->type == SCALAR_VALUE &&
7639 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7640 		pred = is_branch_taken(dst_reg,
7641 				       tnum_subreg(src_reg->var_off).value,
7642 				       opcode,
7643 				       is_jmp32);
7644 	} else if (src_reg->type == SCALAR_VALUE &&
7645 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7646 		pred = is_branch_taken(dst_reg,
7647 				       src_reg->var_off.value,
7648 				       opcode,
7649 				       is_jmp32);
7650 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
7651 		   reg_is_pkt_pointer_any(src_reg) &&
7652 		   !is_jmp32) {
7653 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
7654 	}
7655 
7656 	if (pred >= 0) {
7657 		/* If we get here with a dst_reg pointer type it is because
7658 		 * above is_branch_taken() special cased the 0 comparison.
7659 		 */
7660 		if (!__is_pointer_value(false, dst_reg))
7661 			err = mark_chain_precision(env, insn->dst_reg);
7662 		if (BPF_SRC(insn->code) == BPF_X && !err &&
7663 		    !__is_pointer_value(false, src_reg))
7664 			err = mark_chain_precision(env, insn->src_reg);
7665 		if (err)
7666 			return err;
7667 	}
7668 	if (pred == 1) {
7669 		/* only follow the goto, ignore fall-through */
7670 		*insn_idx += insn->off;
7671 		return 0;
7672 	} else if (pred == 0) {
7673 		/* only follow fall-through branch, since
7674 		 * that's where the program will go
7675 		 */
7676 		return 0;
7677 	}
7678 
7679 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7680 				  false);
7681 	if (!other_branch)
7682 		return -EFAULT;
7683 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7684 
7685 	/* detect if we are comparing against a constant value so we can adjust
7686 	 * our min/max values for our dst register.
7687 	 * this is only legit if both are scalars (or pointers to the same
7688 	 * object, I suppose, but we don't support that right now), because
7689 	 * otherwise the different base pointers mean the offsets aren't
7690 	 * comparable.
7691 	 */
7692 	if (BPF_SRC(insn->code) == BPF_X) {
7693 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7694 
7695 		if (dst_reg->type == SCALAR_VALUE &&
7696 		    src_reg->type == SCALAR_VALUE) {
7697 			if (tnum_is_const(src_reg->var_off) ||
7698 			    (is_jmp32 &&
7699 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7700 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7701 						dst_reg,
7702 						src_reg->var_off.value,
7703 						tnum_subreg(src_reg->var_off).value,
7704 						opcode, is_jmp32);
7705 			else if (tnum_is_const(dst_reg->var_off) ||
7706 				 (is_jmp32 &&
7707 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7708 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7709 						    src_reg,
7710 						    dst_reg->var_off.value,
7711 						    tnum_subreg(dst_reg->var_off).value,
7712 						    opcode, is_jmp32);
7713 			else if (!is_jmp32 &&
7714 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7715 				/* Comparing for equality, we can combine knowledge */
7716 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7717 						    &other_branch_regs[insn->dst_reg],
7718 						    src_reg, dst_reg, opcode);
7719 			if (src_reg->id &&
7720 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7721 				find_equal_scalars(this_branch, src_reg);
7722 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7723 			}
7724 
7725 		}
7726 	} else if (dst_reg->type == SCALAR_VALUE) {
7727 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7728 					dst_reg, insn->imm, (u32)insn->imm,
7729 					opcode, is_jmp32);
7730 	}
7731 
7732 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7733 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7734 		find_equal_scalars(this_branch, dst_reg);
7735 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7736 	}
7737 
7738 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7739 	 * NOTE: these optimizations below are related with pointer comparison
7740 	 *       which will never be JMP32.
7741 	 */
7742 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7743 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7744 	    reg_type_may_be_null(dst_reg->type)) {
7745 		/* Mark all identical registers in each branch as either
7746 		 * safe or unknown depending R == 0 or R != 0 conditional.
7747 		 */
7748 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7749 				      opcode == BPF_JNE);
7750 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7751 				      opcode == BPF_JEQ);
7752 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7753 					   this_branch, other_branch) &&
7754 		   is_pointer_value(env, insn->dst_reg)) {
7755 		verbose(env, "R%d pointer comparison prohibited\n",
7756 			insn->dst_reg);
7757 		return -EACCES;
7758 	}
7759 	if (env->log.level & BPF_LOG_LEVEL)
7760 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7761 	return 0;
7762 }
7763 
7764 /* verify BPF_LD_IMM64 instruction */
7765 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7766 {
7767 	struct bpf_insn_aux_data *aux = cur_aux(env);
7768 	struct bpf_reg_state *regs = cur_regs(env);
7769 	struct bpf_reg_state *dst_reg;
7770 	struct bpf_map *map;
7771 	int err;
7772 
7773 	if (BPF_SIZE(insn->code) != BPF_DW) {
7774 		verbose(env, "invalid BPF_LD_IMM insn\n");
7775 		return -EINVAL;
7776 	}
7777 	if (insn->off != 0) {
7778 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7779 		return -EINVAL;
7780 	}
7781 
7782 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7783 	if (err)
7784 		return err;
7785 
7786 	dst_reg = &regs[insn->dst_reg];
7787 	if (insn->src_reg == 0) {
7788 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7789 
7790 		dst_reg->type = SCALAR_VALUE;
7791 		__mark_reg_known(&regs[insn->dst_reg], imm);
7792 		return 0;
7793 	}
7794 
7795 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7796 		mark_reg_known_zero(env, regs, insn->dst_reg);
7797 
7798 		dst_reg->type = aux->btf_var.reg_type;
7799 		switch (dst_reg->type) {
7800 		case PTR_TO_MEM:
7801 			dst_reg->mem_size = aux->btf_var.mem_size;
7802 			break;
7803 		case PTR_TO_BTF_ID:
7804 		case PTR_TO_PERCPU_BTF_ID:
7805 			dst_reg->btf = aux->btf_var.btf;
7806 			dst_reg->btf_id = aux->btf_var.btf_id;
7807 			break;
7808 		default:
7809 			verbose(env, "bpf verifier is misconfigured\n");
7810 			return -EFAULT;
7811 		}
7812 		return 0;
7813 	}
7814 
7815 	map = env->used_maps[aux->map_index];
7816 	mark_reg_known_zero(env, regs, insn->dst_reg);
7817 	dst_reg->map_ptr = map;
7818 
7819 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7820 		dst_reg->type = PTR_TO_MAP_VALUE;
7821 		dst_reg->off = aux->map_off;
7822 		if (map_value_has_spin_lock(map))
7823 			dst_reg->id = ++env->id_gen;
7824 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7825 		dst_reg->type = CONST_PTR_TO_MAP;
7826 	} else {
7827 		verbose(env, "bpf verifier is misconfigured\n");
7828 		return -EINVAL;
7829 	}
7830 
7831 	return 0;
7832 }
7833 
7834 static bool may_access_skb(enum bpf_prog_type type)
7835 {
7836 	switch (type) {
7837 	case BPF_PROG_TYPE_SOCKET_FILTER:
7838 	case BPF_PROG_TYPE_SCHED_CLS:
7839 	case BPF_PROG_TYPE_SCHED_ACT:
7840 		return true;
7841 	default:
7842 		return false;
7843 	}
7844 }
7845 
7846 /* verify safety of LD_ABS|LD_IND instructions:
7847  * - they can only appear in the programs where ctx == skb
7848  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7849  *   preserve R6-R9, and store return value into R0
7850  *
7851  * Implicit input:
7852  *   ctx == skb == R6 == CTX
7853  *
7854  * Explicit input:
7855  *   SRC == any register
7856  *   IMM == 32-bit immediate
7857  *
7858  * Output:
7859  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7860  */
7861 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7862 {
7863 	struct bpf_reg_state *regs = cur_regs(env);
7864 	static const int ctx_reg = BPF_REG_6;
7865 	u8 mode = BPF_MODE(insn->code);
7866 	int i, err;
7867 
7868 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7869 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7870 		return -EINVAL;
7871 	}
7872 
7873 	if (!env->ops->gen_ld_abs) {
7874 		verbose(env, "bpf verifier is misconfigured\n");
7875 		return -EINVAL;
7876 	}
7877 
7878 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7879 	    BPF_SIZE(insn->code) == BPF_DW ||
7880 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7881 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7882 		return -EINVAL;
7883 	}
7884 
7885 	/* check whether implicit source operand (register R6) is readable */
7886 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7887 	if (err)
7888 		return err;
7889 
7890 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7891 	 * gen_ld_abs() may terminate the program at runtime, leading to
7892 	 * reference leak.
7893 	 */
7894 	err = check_reference_leak(env);
7895 	if (err) {
7896 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7897 		return err;
7898 	}
7899 
7900 	if (env->cur_state->active_spin_lock) {
7901 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7902 		return -EINVAL;
7903 	}
7904 
7905 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7906 		verbose(env,
7907 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7908 		return -EINVAL;
7909 	}
7910 
7911 	if (mode == BPF_IND) {
7912 		/* check explicit source operand */
7913 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7914 		if (err)
7915 			return err;
7916 	}
7917 
7918 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7919 	if (err < 0)
7920 		return err;
7921 
7922 	/* reset caller saved regs to unreadable */
7923 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7924 		mark_reg_not_init(env, regs, caller_saved[i]);
7925 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7926 	}
7927 
7928 	/* mark destination R0 register as readable, since it contains
7929 	 * the value fetched from the packet.
7930 	 * Already marked as written above.
7931 	 */
7932 	mark_reg_unknown(env, regs, BPF_REG_0);
7933 	/* ld_abs load up to 32-bit skb data. */
7934 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7935 	return 0;
7936 }
7937 
7938 static int check_return_code(struct bpf_verifier_env *env)
7939 {
7940 	struct tnum enforce_attach_type_range = tnum_unknown;
7941 	const struct bpf_prog *prog = env->prog;
7942 	struct bpf_reg_state *reg;
7943 	struct tnum range = tnum_range(0, 1);
7944 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7945 	int err;
7946 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
7947 
7948 	/* LSM and struct_ops func-ptr's return type could be "void" */
7949 	if (!is_subprog &&
7950 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7951 	     prog_type == BPF_PROG_TYPE_LSM) &&
7952 	    !prog->aux->attach_func_proto->type)
7953 		return 0;
7954 
7955 	/* eBPF calling convetion is such that R0 is used
7956 	 * to return the value from eBPF program.
7957 	 * Make sure that it's readable at this time
7958 	 * of bpf_exit, which means that program wrote
7959 	 * something into it earlier
7960 	 */
7961 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7962 	if (err)
7963 		return err;
7964 
7965 	if (is_pointer_value(env, BPF_REG_0)) {
7966 		verbose(env, "R0 leaks addr as return value\n");
7967 		return -EACCES;
7968 	}
7969 
7970 	reg = cur_regs(env) + BPF_REG_0;
7971 	if (is_subprog) {
7972 		if (reg->type != SCALAR_VALUE) {
7973 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7974 				reg_type_str[reg->type]);
7975 			return -EINVAL;
7976 		}
7977 		return 0;
7978 	}
7979 
7980 	switch (prog_type) {
7981 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7982 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7983 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7984 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7985 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7986 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7987 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7988 			range = tnum_range(1, 1);
7989 		break;
7990 	case BPF_PROG_TYPE_CGROUP_SKB:
7991 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7992 			range = tnum_range(0, 3);
7993 			enforce_attach_type_range = tnum_range(2, 3);
7994 		}
7995 		break;
7996 	case BPF_PROG_TYPE_CGROUP_SOCK:
7997 	case BPF_PROG_TYPE_SOCK_OPS:
7998 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7999 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8000 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8001 		break;
8002 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8003 		if (!env->prog->aux->attach_btf_id)
8004 			return 0;
8005 		range = tnum_const(0);
8006 		break;
8007 	case BPF_PROG_TYPE_TRACING:
8008 		switch (env->prog->expected_attach_type) {
8009 		case BPF_TRACE_FENTRY:
8010 		case BPF_TRACE_FEXIT:
8011 			range = tnum_const(0);
8012 			break;
8013 		case BPF_TRACE_RAW_TP:
8014 		case BPF_MODIFY_RETURN:
8015 			return 0;
8016 		case BPF_TRACE_ITER:
8017 			break;
8018 		default:
8019 			return -ENOTSUPP;
8020 		}
8021 		break;
8022 	case BPF_PROG_TYPE_SK_LOOKUP:
8023 		range = tnum_range(SK_DROP, SK_PASS);
8024 		break;
8025 	case BPF_PROG_TYPE_EXT:
8026 		/* freplace program can return anything as its return value
8027 		 * depends on the to-be-replaced kernel func or bpf program.
8028 		 */
8029 	default:
8030 		return 0;
8031 	}
8032 
8033 	if (reg->type != SCALAR_VALUE) {
8034 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8035 			reg_type_str[reg->type]);
8036 		return -EINVAL;
8037 	}
8038 
8039 	if (!tnum_in(range, reg->var_off)) {
8040 		char tn_buf[48];
8041 
8042 		verbose(env, "At program exit the register R0 ");
8043 		if (!tnum_is_unknown(reg->var_off)) {
8044 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8045 			verbose(env, "has value %s", tn_buf);
8046 		} else {
8047 			verbose(env, "has unknown scalar value");
8048 		}
8049 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8050 		verbose(env, " should have been in %s\n", tn_buf);
8051 		return -EINVAL;
8052 	}
8053 
8054 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8055 	    tnum_in(enforce_attach_type_range, reg->var_off))
8056 		env->prog->enforce_expected_attach_type = 1;
8057 	return 0;
8058 }
8059 
8060 /* non-recursive DFS pseudo code
8061  * 1  procedure DFS-iterative(G,v):
8062  * 2      label v as discovered
8063  * 3      let S be a stack
8064  * 4      S.push(v)
8065  * 5      while S is not empty
8066  * 6            t <- S.pop()
8067  * 7            if t is what we're looking for:
8068  * 8                return t
8069  * 9            for all edges e in G.adjacentEdges(t) do
8070  * 10               if edge e is already labelled
8071  * 11                   continue with the next edge
8072  * 12               w <- G.adjacentVertex(t,e)
8073  * 13               if vertex w is not discovered and not explored
8074  * 14                   label e as tree-edge
8075  * 15                   label w as discovered
8076  * 16                   S.push(w)
8077  * 17                   continue at 5
8078  * 18               else if vertex w is discovered
8079  * 19                   label e as back-edge
8080  * 20               else
8081  * 21                   // vertex w is explored
8082  * 22                   label e as forward- or cross-edge
8083  * 23           label t as explored
8084  * 24           S.pop()
8085  *
8086  * convention:
8087  * 0x10 - discovered
8088  * 0x11 - discovered and fall-through edge labelled
8089  * 0x12 - discovered and fall-through and branch edges labelled
8090  * 0x20 - explored
8091  */
8092 
8093 enum {
8094 	DISCOVERED = 0x10,
8095 	EXPLORED = 0x20,
8096 	FALLTHROUGH = 1,
8097 	BRANCH = 2,
8098 };
8099 
8100 static u32 state_htab_size(struct bpf_verifier_env *env)
8101 {
8102 	return env->prog->len;
8103 }
8104 
8105 static struct bpf_verifier_state_list **explored_state(
8106 					struct bpf_verifier_env *env,
8107 					int idx)
8108 {
8109 	struct bpf_verifier_state *cur = env->cur_state;
8110 	struct bpf_func_state *state = cur->frame[cur->curframe];
8111 
8112 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8113 }
8114 
8115 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8116 {
8117 	env->insn_aux_data[idx].prune_point = true;
8118 }
8119 
8120 enum {
8121 	DONE_EXPLORING = 0,
8122 	KEEP_EXPLORING = 1,
8123 };
8124 
8125 /* t, w, e - match pseudo-code above:
8126  * t - index of current instruction
8127  * w - next instruction
8128  * e - edge
8129  */
8130 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8131 		     bool loop_ok)
8132 {
8133 	int *insn_stack = env->cfg.insn_stack;
8134 	int *insn_state = env->cfg.insn_state;
8135 
8136 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8137 		return DONE_EXPLORING;
8138 
8139 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8140 		return DONE_EXPLORING;
8141 
8142 	if (w < 0 || w >= env->prog->len) {
8143 		verbose_linfo(env, t, "%d: ", t);
8144 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8145 		return -EINVAL;
8146 	}
8147 
8148 	if (e == BRANCH)
8149 		/* mark branch target for state pruning */
8150 		init_explored_state(env, w);
8151 
8152 	if (insn_state[w] == 0) {
8153 		/* tree-edge */
8154 		insn_state[t] = DISCOVERED | e;
8155 		insn_state[w] = DISCOVERED;
8156 		if (env->cfg.cur_stack >= env->prog->len)
8157 			return -E2BIG;
8158 		insn_stack[env->cfg.cur_stack++] = w;
8159 		return KEEP_EXPLORING;
8160 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8161 		if (loop_ok && env->bpf_capable)
8162 			return DONE_EXPLORING;
8163 		verbose_linfo(env, t, "%d: ", t);
8164 		verbose_linfo(env, w, "%d: ", w);
8165 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8166 		return -EINVAL;
8167 	} else if (insn_state[w] == EXPLORED) {
8168 		/* forward- or cross-edge */
8169 		insn_state[t] = DISCOVERED | e;
8170 	} else {
8171 		verbose(env, "insn state internal bug\n");
8172 		return -EFAULT;
8173 	}
8174 	return DONE_EXPLORING;
8175 }
8176 
8177 /* Visits the instruction at index t and returns one of the following:
8178  *  < 0 - an error occurred
8179  *  DONE_EXPLORING - the instruction was fully explored
8180  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8181  */
8182 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8183 {
8184 	struct bpf_insn *insns = env->prog->insnsi;
8185 	int ret;
8186 
8187 	/* All non-branch instructions have a single fall-through edge. */
8188 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8189 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8190 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8191 
8192 	switch (BPF_OP(insns[t].code)) {
8193 	case BPF_EXIT:
8194 		return DONE_EXPLORING;
8195 
8196 	case BPF_CALL:
8197 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8198 		if (ret)
8199 			return ret;
8200 
8201 		if (t + 1 < insn_cnt)
8202 			init_explored_state(env, t + 1);
8203 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8204 			init_explored_state(env, t);
8205 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8206 					env, false);
8207 		}
8208 		return ret;
8209 
8210 	case BPF_JA:
8211 		if (BPF_SRC(insns[t].code) != BPF_K)
8212 			return -EINVAL;
8213 
8214 		/* unconditional jump with single edge */
8215 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8216 				true);
8217 		if (ret)
8218 			return ret;
8219 
8220 		/* unconditional jmp is not a good pruning point,
8221 		 * but it's marked, since backtracking needs
8222 		 * to record jmp history in is_state_visited().
8223 		 */
8224 		init_explored_state(env, t + insns[t].off + 1);
8225 		/* tell verifier to check for equivalent states
8226 		 * after every call and jump
8227 		 */
8228 		if (t + 1 < insn_cnt)
8229 			init_explored_state(env, t + 1);
8230 
8231 		return ret;
8232 
8233 	default:
8234 		/* conditional jump with two edges */
8235 		init_explored_state(env, t);
8236 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8237 		if (ret)
8238 			return ret;
8239 
8240 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8241 	}
8242 }
8243 
8244 /* non-recursive depth-first-search to detect loops in BPF program
8245  * loop == back-edge in directed graph
8246  */
8247 static int check_cfg(struct bpf_verifier_env *env)
8248 {
8249 	int insn_cnt = env->prog->len;
8250 	int *insn_stack, *insn_state;
8251 	int ret = 0;
8252 	int i;
8253 
8254 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8255 	if (!insn_state)
8256 		return -ENOMEM;
8257 
8258 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8259 	if (!insn_stack) {
8260 		kvfree(insn_state);
8261 		return -ENOMEM;
8262 	}
8263 
8264 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8265 	insn_stack[0] = 0; /* 0 is the first instruction */
8266 	env->cfg.cur_stack = 1;
8267 
8268 	while (env->cfg.cur_stack > 0) {
8269 		int t = insn_stack[env->cfg.cur_stack - 1];
8270 
8271 		ret = visit_insn(t, insn_cnt, env);
8272 		switch (ret) {
8273 		case DONE_EXPLORING:
8274 			insn_state[t] = EXPLORED;
8275 			env->cfg.cur_stack--;
8276 			break;
8277 		case KEEP_EXPLORING:
8278 			break;
8279 		default:
8280 			if (ret > 0) {
8281 				verbose(env, "visit_insn internal bug\n");
8282 				ret = -EFAULT;
8283 			}
8284 			goto err_free;
8285 		}
8286 	}
8287 
8288 	if (env->cfg.cur_stack < 0) {
8289 		verbose(env, "pop stack internal bug\n");
8290 		ret = -EFAULT;
8291 		goto err_free;
8292 	}
8293 
8294 	for (i = 0; i < insn_cnt; i++) {
8295 		if (insn_state[i] != EXPLORED) {
8296 			verbose(env, "unreachable insn %d\n", i);
8297 			ret = -EINVAL;
8298 			goto err_free;
8299 		}
8300 	}
8301 	ret = 0; /* cfg looks good */
8302 
8303 err_free:
8304 	kvfree(insn_state);
8305 	kvfree(insn_stack);
8306 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8307 	return ret;
8308 }
8309 
8310 static int check_abnormal_return(struct bpf_verifier_env *env)
8311 {
8312 	int i;
8313 
8314 	for (i = 1; i < env->subprog_cnt; i++) {
8315 		if (env->subprog_info[i].has_ld_abs) {
8316 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8317 			return -EINVAL;
8318 		}
8319 		if (env->subprog_info[i].has_tail_call) {
8320 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8321 			return -EINVAL;
8322 		}
8323 	}
8324 	return 0;
8325 }
8326 
8327 /* The minimum supported BTF func info size */
8328 #define MIN_BPF_FUNCINFO_SIZE	8
8329 #define MAX_FUNCINFO_REC_SIZE	252
8330 
8331 static int check_btf_func(struct bpf_verifier_env *env,
8332 			  const union bpf_attr *attr,
8333 			  union bpf_attr __user *uattr)
8334 {
8335 	const struct btf_type *type, *func_proto, *ret_type;
8336 	u32 i, nfuncs, urec_size, min_size;
8337 	u32 krec_size = sizeof(struct bpf_func_info);
8338 	struct bpf_func_info *krecord;
8339 	struct bpf_func_info_aux *info_aux = NULL;
8340 	struct bpf_prog *prog;
8341 	const struct btf *btf;
8342 	void __user *urecord;
8343 	u32 prev_offset = 0;
8344 	bool scalar_return;
8345 	int ret = -ENOMEM;
8346 
8347 	nfuncs = attr->func_info_cnt;
8348 	if (!nfuncs) {
8349 		if (check_abnormal_return(env))
8350 			return -EINVAL;
8351 		return 0;
8352 	}
8353 
8354 	if (nfuncs != env->subprog_cnt) {
8355 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8356 		return -EINVAL;
8357 	}
8358 
8359 	urec_size = attr->func_info_rec_size;
8360 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8361 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8362 	    urec_size % sizeof(u32)) {
8363 		verbose(env, "invalid func info rec size %u\n", urec_size);
8364 		return -EINVAL;
8365 	}
8366 
8367 	prog = env->prog;
8368 	btf = prog->aux->btf;
8369 
8370 	urecord = u64_to_user_ptr(attr->func_info);
8371 	min_size = min_t(u32, krec_size, urec_size);
8372 
8373 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8374 	if (!krecord)
8375 		return -ENOMEM;
8376 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8377 	if (!info_aux)
8378 		goto err_free;
8379 
8380 	for (i = 0; i < nfuncs; i++) {
8381 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8382 		if (ret) {
8383 			if (ret == -E2BIG) {
8384 				verbose(env, "nonzero tailing record in func info");
8385 				/* set the size kernel expects so loader can zero
8386 				 * out the rest of the record.
8387 				 */
8388 				if (put_user(min_size, &uattr->func_info_rec_size))
8389 					ret = -EFAULT;
8390 			}
8391 			goto err_free;
8392 		}
8393 
8394 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8395 			ret = -EFAULT;
8396 			goto err_free;
8397 		}
8398 
8399 		/* check insn_off */
8400 		ret = -EINVAL;
8401 		if (i == 0) {
8402 			if (krecord[i].insn_off) {
8403 				verbose(env,
8404 					"nonzero insn_off %u for the first func info record",
8405 					krecord[i].insn_off);
8406 				goto err_free;
8407 			}
8408 		} else if (krecord[i].insn_off <= prev_offset) {
8409 			verbose(env,
8410 				"same or smaller insn offset (%u) than previous func info record (%u)",
8411 				krecord[i].insn_off, prev_offset);
8412 			goto err_free;
8413 		}
8414 
8415 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8416 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8417 			goto err_free;
8418 		}
8419 
8420 		/* check type_id */
8421 		type = btf_type_by_id(btf, krecord[i].type_id);
8422 		if (!type || !btf_type_is_func(type)) {
8423 			verbose(env, "invalid type id %d in func info",
8424 				krecord[i].type_id);
8425 			goto err_free;
8426 		}
8427 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8428 
8429 		func_proto = btf_type_by_id(btf, type->type);
8430 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8431 			/* btf_func_check() already verified it during BTF load */
8432 			goto err_free;
8433 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8434 		scalar_return =
8435 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8436 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8437 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8438 			goto err_free;
8439 		}
8440 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8441 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8442 			goto err_free;
8443 		}
8444 
8445 		prev_offset = krecord[i].insn_off;
8446 		urecord += urec_size;
8447 	}
8448 
8449 	prog->aux->func_info = krecord;
8450 	prog->aux->func_info_cnt = nfuncs;
8451 	prog->aux->func_info_aux = info_aux;
8452 	return 0;
8453 
8454 err_free:
8455 	kvfree(krecord);
8456 	kfree(info_aux);
8457 	return ret;
8458 }
8459 
8460 static void adjust_btf_func(struct bpf_verifier_env *env)
8461 {
8462 	struct bpf_prog_aux *aux = env->prog->aux;
8463 	int i;
8464 
8465 	if (!aux->func_info)
8466 		return;
8467 
8468 	for (i = 0; i < env->subprog_cnt; i++)
8469 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8470 }
8471 
8472 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8473 		sizeof(((struct bpf_line_info *)(0))->line_col))
8474 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8475 
8476 static int check_btf_line(struct bpf_verifier_env *env,
8477 			  const union bpf_attr *attr,
8478 			  union bpf_attr __user *uattr)
8479 {
8480 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8481 	struct bpf_subprog_info *sub;
8482 	struct bpf_line_info *linfo;
8483 	struct bpf_prog *prog;
8484 	const struct btf *btf;
8485 	void __user *ulinfo;
8486 	int err;
8487 
8488 	nr_linfo = attr->line_info_cnt;
8489 	if (!nr_linfo)
8490 		return 0;
8491 
8492 	rec_size = attr->line_info_rec_size;
8493 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8494 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8495 	    rec_size & (sizeof(u32) - 1))
8496 		return -EINVAL;
8497 
8498 	/* Need to zero it in case the userspace may
8499 	 * pass in a smaller bpf_line_info object.
8500 	 */
8501 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8502 			 GFP_KERNEL | __GFP_NOWARN);
8503 	if (!linfo)
8504 		return -ENOMEM;
8505 
8506 	prog = env->prog;
8507 	btf = prog->aux->btf;
8508 
8509 	s = 0;
8510 	sub = env->subprog_info;
8511 	ulinfo = u64_to_user_ptr(attr->line_info);
8512 	expected_size = sizeof(struct bpf_line_info);
8513 	ncopy = min_t(u32, expected_size, rec_size);
8514 	for (i = 0; i < nr_linfo; i++) {
8515 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8516 		if (err) {
8517 			if (err == -E2BIG) {
8518 				verbose(env, "nonzero tailing record in line_info");
8519 				if (put_user(expected_size,
8520 					     &uattr->line_info_rec_size))
8521 					err = -EFAULT;
8522 			}
8523 			goto err_free;
8524 		}
8525 
8526 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8527 			err = -EFAULT;
8528 			goto err_free;
8529 		}
8530 
8531 		/*
8532 		 * Check insn_off to ensure
8533 		 * 1) strictly increasing AND
8534 		 * 2) bounded by prog->len
8535 		 *
8536 		 * The linfo[0].insn_off == 0 check logically falls into
8537 		 * the later "missing bpf_line_info for func..." case
8538 		 * because the first linfo[0].insn_off must be the
8539 		 * first sub also and the first sub must have
8540 		 * subprog_info[0].start == 0.
8541 		 */
8542 		if ((i && linfo[i].insn_off <= prev_offset) ||
8543 		    linfo[i].insn_off >= prog->len) {
8544 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8545 				i, linfo[i].insn_off, prev_offset,
8546 				prog->len);
8547 			err = -EINVAL;
8548 			goto err_free;
8549 		}
8550 
8551 		if (!prog->insnsi[linfo[i].insn_off].code) {
8552 			verbose(env,
8553 				"Invalid insn code at line_info[%u].insn_off\n",
8554 				i);
8555 			err = -EINVAL;
8556 			goto err_free;
8557 		}
8558 
8559 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8560 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8561 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8562 			err = -EINVAL;
8563 			goto err_free;
8564 		}
8565 
8566 		if (s != env->subprog_cnt) {
8567 			if (linfo[i].insn_off == sub[s].start) {
8568 				sub[s].linfo_idx = i;
8569 				s++;
8570 			} else if (sub[s].start < linfo[i].insn_off) {
8571 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8572 				err = -EINVAL;
8573 				goto err_free;
8574 			}
8575 		}
8576 
8577 		prev_offset = linfo[i].insn_off;
8578 		ulinfo += rec_size;
8579 	}
8580 
8581 	if (s != env->subprog_cnt) {
8582 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8583 			env->subprog_cnt - s, s);
8584 		err = -EINVAL;
8585 		goto err_free;
8586 	}
8587 
8588 	prog->aux->linfo = linfo;
8589 	prog->aux->nr_linfo = nr_linfo;
8590 
8591 	return 0;
8592 
8593 err_free:
8594 	kvfree(linfo);
8595 	return err;
8596 }
8597 
8598 static int check_btf_info(struct bpf_verifier_env *env,
8599 			  const union bpf_attr *attr,
8600 			  union bpf_attr __user *uattr)
8601 {
8602 	struct btf *btf;
8603 	int err;
8604 
8605 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8606 		if (check_abnormal_return(env))
8607 			return -EINVAL;
8608 		return 0;
8609 	}
8610 
8611 	btf = btf_get_by_fd(attr->prog_btf_fd);
8612 	if (IS_ERR(btf))
8613 		return PTR_ERR(btf);
8614 	env->prog->aux->btf = btf;
8615 
8616 	err = check_btf_func(env, attr, uattr);
8617 	if (err)
8618 		return err;
8619 
8620 	err = check_btf_line(env, attr, uattr);
8621 	if (err)
8622 		return err;
8623 
8624 	return 0;
8625 }
8626 
8627 /* check %cur's range satisfies %old's */
8628 static bool range_within(struct bpf_reg_state *old,
8629 			 struct bpf_reg_state *cur)
8630 {
8631 	return old->umin_value <= cur->umin_value &&
8632 	       old->umax_value >= cur->umax_value &&
8633 	       old->smin_value <= cur->smin_value &&
8634 	       old->smax_value >= cur->smax_value &&
8635 	       old->u32_min_value <= cur->u32_min_value &&
8636 	       old->u32_max_value >= cur->u32_max_value &&
8637 	       old->s32_min_value <= cur->s32_min_value &&
8638 	       old->s32_max_value >= cur->s32_max_value;
8639 }
8640 
8641 /* Maximum number of register states that can exist at once */
8642 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8643 struct idpair {
8644 	u32 old;
8645 	u32 cur;
8646 };
8647 
8648 /* If in the old state two registers had the same id, then they need to have
8649  * the same id in the new state as well.  But that id could be different from
8650  * the old state, so we need to track the mapping from old to new ids.
8651  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8652  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8653  * regs with a different old id could still have new id 9, we don't care about
8654  * that.
8655  * So we look through our idmap to see if this old id has been seen before.  If
8656  * so, we require the new id to match; otherwise, we add the id pair to the map.
8657  */
8658 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8659 {
8660 	unsigned int i;
8661 
8662 	for (i = 0; i < ID_MAP_SIZE; i++) {
8663 		if (!idmap[i].old) {
8664 			/* Reached an empty slot; haven't seen this id before */
8665 			idmap[i].old = old_id;
8666 			idmap[i].cur = cur_id;
8667 			return true;
8668 		}
8669 		if (idmap[i].old == old_id)
8670 			return idmap[i].cur == cur_id;
8671 	}
8672 	/* We ran out of idmap slots, which should be impossible */
8673 	WARN_ON_ONCE(1);
8674 	return false;
8675 }
8676 
8677 static void clean_func_state(struct bpf_verifier_env *env,
8678 			     struct bpf_func_state *st)
8679 {
8680 	enum bpf_reg_liveness live;
8681 	int i, j;
8682 
8683 	for (i = 0; i < BPF_REG_FP; i++) {
8684 		live = st->regs[i].live;
8685 		/* liveness must not touch this register anymore */
8686 		st->regs[i].live |= REG_LIVE_DONE;
8687 		if (!(live & REG_LIVE_READ))
8688 			/* since the register is unused, clear its state
8689 			 * to make further comparison simpler
8690 			 */
8691 			__mark_reg_not_init(env, &st->regs[i]);
8692 	}
8693 
8694 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8695 		live = st->stack[i].spilled_ptr.live;
8696 		/* liveness must not touch this stack slot anymore */
8697 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8698 		if (!(live & REG_LIVE_READ)) {
8699 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8700 			for (j = 0; j < BPF_REG_SIZE; j++)
8701 				st->stack[i].slot_type[j] = STACK_INVALID;
8702 		}
8703 	}
8704 }
8705 
8706 static void clean_verifier_state(struct bpf_verifier_env *env,
8707 				 struct bpf_verifier_state *st)
8708 {
8709 	int i;
8710 
8711 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8712 		/* all regs in this state in all frames were already marked */
8713 		return;
8714 
8715 	for (i = 0; i <= st->curframe; i++)
8716 		clean_func_state(env, st->frame[i]);
8717 }
8718 
8719 /* the parentage chains form a tree.
8720  * the verifier states are added to state lists at given insn and
8721  * pushed into state stack for future exploration.
8722  * when the verifier reaches bpf_exit insn some of the verifer states
8723  * stored in the state lists have their final liveness state already,
8724  * but a lot of states will get revised from liveness point of view when
8725  * the verifier explores other branches.
8726  * Example:
8727  * 1: r0 = 1
8728  * 2: if r1 == 100 goto pc+1
8729  * 3: r0 = 2
8730  * 4: exit
8731  * when the verifier reaches exit insn the register r0 in the state list of
8732  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8733  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8734  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8735  *
8736  * Since the verifier pushes the branch states as it sees them while exploring
8737  * the program the condition of walking the branch instruction for the second
8738  * time means that all states below this branch were already explored and
8739  * their final liveness markes are already propagated.
8740  * Hence when the verifier completes the search of state list in is_state_visited()
8741  * we can call this clean_live_states() function to mark all liveness states
8742  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8743  * will not be used.
8744  * This function also clears the registers and stack for states that !READ
8745  * to simplify state merging.
8746  *
8747  * Important note here that walking the same branch instruction in the callee
8748  * doesn't meant that the states are DONE. The verifier has to compare
8749  * the callsites
8750  */
8751 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8752 			      struct bpf_verifier_state *cur)
8753 {
8754 	struct bpf_verifier_state_list *sl;
8755 	int i;
8756 
8757 	sl = *explored_state(env, insn);
8758 	while (sl) {
8759 		if (sl->state.branches)
8760 			goto next;
8761 		if (sl->state.insn_idx != insn ||
8762 		    sl->state.curframe != cur->curframe)
8763 			goto next;
8764 		for (i = 0; i <= cur->curframe; i++)
8765 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8766 				goto next;
8767 		clean_verifier_state(env, &sl->state);
8768 next:
8769 		sl = sl->next;
8770 	}
8771 }
8772 
8773 /* Returns true if (rold safe implies rcur safe) */
8774 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8775 		    struct idpair *idmap)
8776 {
8777 	bool equal;
8778 
8779 	if (!(rold->live & REG_LIVE_READ))
8780 		/* explored state didn't use this */
8781 		return true;
8782 
8783 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8784 
8785 	if (rold->type == PTR_TO_STACK)
8786 		/* two stack pointers are equal only if they're pointing to
8787 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8788 		 */
8789 		return equal && rold->frameno == rcur->frameno;
8790 
8791 	if (equal)
8792 		return true;
8793 
8794 	if (rold->type == NOT_INIT)
8795 		/* explored state can't have used this */
8796 		return true;
8797 	if (rcur->type == NOT_INIT)
8798 		return false;
8799 	switch (rold->type) {
8800 	case SCALAR_VALUE:
8801 		if (rcur->type == SCALAR_VALUE) {
8802 			if (!rold->precise && !rcur->precise)
8803 				return true;
8804 			/* new val must satisfy old val knowledge */
8805 			return range_within(rold, rcur) &&
8806 			       tnum_in(rold->var_off, rcur->var_off);
8807 		} else {
8808 			/* We're trying to use a pointer in place of a scalar.
8809 			 * Even if the scalar was unbounded, this could lead to
8810 			 * pointer leaks because scalars are allowed to leak
8811 			 * while pointers are not. We could make this safe in
8812 			 * special cases if root is calling us, but it's
8813 			 * probably not worth the hassle.
8814 			 */
8815 			return false;
8816 		}
8817 	case PTR_TO_MAP_VALUE:
8818 		/* If the new min/max/var_off satisfy the old ones and
8819 		 * everything else matches, we are OK.
8820 		 * 'id' is not compared, since it's only used for maps with
8821 		 * bpf_spin_lock inside map element and in such cases if
8822 		 * the rest of the prog is valid for one map element then
8823 		 * it's valid for all map elements regardless of the key
8824 		 * used in bpf_map_lookup()
8825 		 */
8826 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8827 		       range_within(rold, rcur) &&
8828 		       tnum_in(rold->var_off, rcur->var_off);
8829 	case PTR_TO_MAP_VALUE_OR_NULL:
8830 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8831 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8832 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8833 		 * checked, doing so could have affected others with the same
8834 		 * id, and we can't check for that because we lost the id when
8835 		 * we converted to a PTR_TO_MAP_VALUE.
8836 		 */
8837 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8838 			return false;
8839 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8840 			return false;
8841 		/* Check our ids match any regs they're supposed to */
8842 		return check_ids(rold->id, rcur->id, idmap);
8843 	case PTR_TO_PACKET_META:
8844 	case PTR_TO_PACKET:
8845 		if (rcur->type != rold->type)
8846 			return false;
8847 		/* We must have at least as much range as the old ptr
8848 		 * did, so that any accesses which were safe before are
8849 		 * still safe.  This is true even if old range < old off,
8850 		 * since someone could have accessed through (ptr - k), or
8851 		 * even done ptr -= k in a register, to get a safe access.
8852 		 */
8853 		if (rold->range > rcur->range)
8854 			return false;
8855 		/* If the offsets don't match, we can't trust our alignment;
8856 		 * nor can we be sure that we won't fall out of range.
8857 		 */
8858 		if (rold->off != rcur->off)
8859 			return false;
8860 		/* id relations must be preserved */
8861 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8862 			return false;
8863 		/* new val must satisfy old val knowledge */
8864 		return range_within(rold, rcur) &&
8865 		       tnum_in(rold->var_off, rcur->var_off);
8866 	case PTR_TO_CTX:
8867 	case CONST_PTR_TO_MAP:
8868 	case PTR_TO_PACKET_END:
8869 	case PTR_TO_FLOW_KEYS:
8870 	case PTR_TO_SOCKET:
8871 	case PTR_TO_SOCKET_OR_NULL:
8872 	case PTR_TO_SOCK_COMMON:
8873 	case PTR_TO_SOCK_COMMON_OR_NULL:
8874 	case PTR_TO_TCP_SOCK:
8875 	case PTR_TO_TCP_SOCK_OR_NULL:
8876 	case PTR_TO_XDP_SOCK:
8877 		/* Only valid matches are exact, which memcmp() above
8878 		 * would have accepted
8879 		 */
8880 	default:
8881 		/* Don't know what's going on, just say it's not safe */
8882 		return false;
8883 	}
8884 
8885 	/* Shouldn't get here; if we do, say it's not safe */
8886 	WARN_ON_ONCE(1);
8887 	return false;
8888 }
8889 
8890 static bool stacksafe(struct bpf_func_state *old,
8891 		      struct bpf_func_state *cur,
8892 		      struct idpair *idmap)
8893 {
8894 	int i, spi;
8895 
8896 	/* walk slots of the explored stack and ignore any additional
8897 	 * slots in the current stack, since explored(safe) state
8898 	 * didn't use them
8899 	 */
8900 	for (i = 0; i < old->allocated_stack; i++) {
8901 		spi = i / BPF_REG_SIZE;
8902 
8903 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8904 			i += BPF_REG_SIZE - 1;
8905 			/* explored state didn't use this */
8906 			continue;
8907 		}
8908 
8909 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8910 			continue;
8911 
8912 		/* explored stack has more populated slots than current stack
8913 		 * and these slots were used
8914 		 */
8915 		if (i >= cur->allocated_stack)
8916 			return false;
8917 
8918 		/* if old state was safe with misc data in the stack
8919 		 * it will be safe with zero-initialized stack.
8920 		 * The opposite is not true
8921 		 */
8922 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8923 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8924 			continue;
8925 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8926 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8927 			/* Ex: old explored (safe) state has STACK_SPILL in
8928 			 * this stack slot, but current has STACK_MISC ->
8929 			 * this verifier states are not equivalent,
8930 			 * return false to continue verification of this path
8931 			 */
8932 			return false;
8933 		if (i % BPF_REG_SIZE)
8934 			continue;
8935 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8936 			continue;
8937 		if (!regsafe(&old->stack[spi].spilled_ptr,
8938 			     &cur->stack[spi].spilled_ptr,
8939 			     idmap))
8940 			/* when explored and current stack slot are both storing
8941 			 * spilled registers, check that stored pointers types
8942 			 * are the same as well.
8943 			 * Ex: explored safe path could have stored
8944 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8945 			 * but current path has stored:
8946 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8947 			 * such verifier states are not equivalent.
8948 			 * return false to continue verification of this path
8949 			 */
8950 			return false;
8951 	}
8952 	return true;
8953 }
8954 
8955 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8956 {
8957 	if (old->acquired_refs != cur->acquired_refs)
8958 		return false;
8959 	return !memcmp(old->refs, cur->refs,
8960 		       sizeof(*old->refs) * old->acquired_refs);
8961 }
8962 
8963 /* compare two verifier states
8964  *
8965  * all states stored in state_list are known to be valid, since
8966  * verifier reached 'bpf_exit' instruction through them
8967  *
8968  * this function is called when verifier exploring different branches of
8969  * execution popped from the state stack. If it sees an old state that has
8970  * more strict register state and more strict stack state then this execution
8971  * branch doesn't need to be explored further, since verifier already
8972  * concluded that more strict state leads to valid finish.
8973  *
8974  * Therefore two states are equivalent if register state is more conservative
8975  * and explored stack state is more conservative than the current one.
8976  * Example:
8977  *       explored                   current
8978  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8979  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8980  *
8981  * In other words if current stack state (one being explored) has more
8982  * valid slots than old one that already passed validation, it means
8983  * the verifier can stop exploring and conclude that current state is valid too
8984  *
8985  * Similarly with registers. If explored state has register type as invalid
8986  * whereas register type in current state is meaningful, it means that
8987  * the current state will reach 'bpf_exit' instruction safely
8988  */
8989 static bool func_states_equal(struct bpf_func_state *old,
8990 			      struct bpf_func_state *cur)
8991 {
8992 	struct idpair *idmap;
8993 	bool ret = false;
8994 	int i;
8995 
8996 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8997 	/* If we failed to allocate the idmap, just say it's not safe */
8998 	if (!idmap)
8999 		return false;
9000 
9001 	for (i = 0; i < MAX_BPF_REG; i++) {
9002 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9003 			goto out_free;
9004 	}
9005 
9006 	if (!stacksafe(old, cur, idmap))
9007 		goto out_free;
9008 
9009 	if (!refsafe(old, cur))
9010 		goto out_free;
9011 	ret = true;
9012 out_free:
9013 	kfree(idmap);
9014 	return ret;
9015 }
9016 
9017 static bool states_equal(struct bpf_verifier_env *env,
9018 			 struct bpf_verifier_state *old,
9019 			 struct bpf_verifier_state *cur)
9020 {
9021 	int i;
9022 
9023 	if (old->curframe != cur->curframe)
9024 		return false;
9025 
9026 	/* Verification state from speculative execution simulation
9027 	 * must never prune a non-speculative execution one.
9028 	 */
9029 	if (old->speculative && !cur->speculative)
9030 		return false;
9031 
9032 	if (old->active_spin_lock != cur->active_spin_lock)
9033 		return false;
9034 
9035 	/* for states to be equal callsites have to be the same
9036 	 * and all frame states need to be equivalent
9037 	 */
9038 	for (i = 0; i <= old->curframe; i++) {
9039 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9040 			return false;
9041 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9042 			return false;
9043 	}
9044 	return true;
9045 }
9046 
9047 /* Return 0 if no propagation happened. Return negative error code if error
9048  * happened. Otherwise, return the propagated bit.
9049  */
9050 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9051 				  struct bpf_reg_state *reg,
9052 				  struct bpf_reg_state *parent_reg)
9053 {
9054 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9055 	u8 flag = reg->live & REG_LIVE_READ;
9056 	int err;
9057 
9058 	/* When comes here, read flags of PARENT_REG or REG could be any of
9059 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9060 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9061 	 */
9062 	if (parent_flag == REG_LIVE_READ64 ||
9063 	    /* Or if there is no read flag from REG. */
9064 	    !flag ||
9065 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9066 	    parent_flag == flag)
9067 		return 0;
9068 
9069 	err = mark_reg_read(env, reg, parent_reg, flag);
9070 	if (err)
9071 		return err;
9072 
9073 	return flag;
9074 }
9075 
9076 /* A write screens off any subsequent reads; but write marks come from the
9077  * straight-line code between a state and its parent.  When we arrive at an
9078  * equivalent state (jump target or such) we didn't arrive by the straight-line
9079  * code, so read marks in the state must propagate to the parent regardless
9080  * of the state's write marks. That's what 'parent == state->parent' comparison
9081  * in mark_reg_read() is for.
9082  */
9083 static int propagate_liveness(struct bpf_verifier_env *env,
9084 			      const struct bpf_verifier_state *vstate,
9085 			      struct bpf_verifier_state *vparent)
9086 {
9087 	struct bpf_reg_state *state_reg, *parent_reg;
9088 	struct bpf_func_state *state, *parent;
9089 	int i, frame, err = 0;
9090 
9091 	if (vparent->curframe != vstate->curframe) {
9092 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9093 		     vparent->curframe, vstate->curframe);
9094 		return -EFAULT;
9095 	}
9096 	/* Propagate read liveness of registers... */
9097 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9098 	for (frame = 0; frame <= vstate->curframe; frame++) {
9099 		parent = vparent->frame[frame];
9100 		state = vstate->frame[frame];
9101 		parent_reg = parent->regs;
9102 		state_reg = state->regs;
9103 		/* We don't need to worry about FP liveness, it's read-only */
9104 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9105 			err = propagate_liveness_reg(env, &state_reg[i],
9106 						     &parent_reg[i]);
9107 			if (err < 0)
9108 				return err;
9109 			if (err == REG_LIVE_READ64)
9110 				mark_insn_zext(env, &parent_reg[i]);
9111 		}
9112 
9113 		/* Propagate stack slots. */
9114 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9115 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9116 			parent_reg = &parent->stack[i].spilled_ptr;
9117 			state_reg = &state->stack[i].spilled_ptr;
9118 			err = propagate_liveness_reg(env, state_reg,
9119 						     parent_reg);
9120 			if (err < 0)
9121 				return err;
9122 		}
9123 	}
9124 	return 0;
9125 }
9126 
9127 /* find precise scalars in the previous equivalent state and
9128  * propagate them into the current state
9129  */
9130 static int propagate_precision(struct bpf_verifier_env *env,
9131 			       const struct bpf_verifier_state *old)
9132 {
9133 	struct bpf_reg_state *state_reg;
9134 	struct bpf_func_state *state;
9135 	int i, err = 0;
9136 
9137 	state = old->frame[old->curframe];
9138 	state_reg = state->regs;
9139 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9140 		if (state_reg->type != SCALAR_VALUE ||
9141 		    !state_reg->precise)
9142 			continue;
9143 		if (env->log.level & BPF_LOG_LEVEL2)
9144 			verbose(env, "propagating r%d\n", i);
9145 		err = mark_chain_precision(env, i);
9146 		if (err < 0)
9147 			return err;
9148 	}
9149 
9150 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9151 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9152 			continue;
9153 		state_reg = &state->stack[i].spilled_ptr;
9154 		if (state_reg->type != SCALAR_VALUE ||
9155 		    !state_reg->precise)
9156 			continue;
9157 		if (env->log.level & BPF_LOG_LEVEL2)
9158 			verbose(env, "propagating fp%d\n",
9159 				(-i - 1) * BPF_REG_SIZE);
9160 		err = mark_chain_precision_stack(env, i);
9161 		if (err < 0)
9162 			return err;
9163 	}
9164 	return 0;
9165 }
9166 
9167 static bool states_maybe_looping(struct bpf_verifier_state *old,
9168 				 struct bpf_verifier_state *cur)
9169 {
9170 	struct bpf_func_state *fold, *fcur;
9171 	int i, fr = cur->curframe;
9172 
9173 	if (old->curframe != fr)
9174 		return false;
9175 
9176 	fold = old->frame[fr];
9177 	fcur = cur->frame[fr];
9178 	for (i = 0; i < MAX_BPF_REG; i++)
9179 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9180 			   offsetof(struct bpf_reg_state, parent)))
9181 			return false;
9182 	return true;
9183 }
9184 
9185 
9186 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9187 {
9188 	struct bpf_verifier_state_list *new_sl;
9189 	struct bpf_verifier_state_list *sl, **pprev;
9190 	struct bpf_verifier_state *cur = env->cur_state, *new;
9191 	int i, j, err, states_cnt = 0;
9192 	bool add_new_state = env->test_state_freq ? true : false;
9193 
9194 	cur->last_insn_idx = env->prev_insn_idx;
9195 	if (!env->insn_aux_data[insn_idx].prune_point)
9196 		/* this 'insn_idx' instruction wasn't marked, so we will not
9197 		 * be doing state search here
9198 		 */
9199 		return 0;
9200 
9201 	/* bpf progs typically have pruning point every 4 instructions
9202 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9203 	 * Do not add new state for future pruning if the verifier hasn't seen
9204 	 * at least 2 jumps and at least 8 instructions.
9205 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9206 	 * In tests that amounts to up to 50% reduction into total verifier
9207 	 * memory consumption and 20% verifier time speedup.
9208 	 */
9209 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9210 	    env->insn_processed - env->prev_insn_processed >= 8)
9211 		add_new_state = true;
9212 
9213 	pprev = explored_state(env, insn_idx);
9214 	sl = *pprev;
9215 
9216 	clean_live_states(env, insn_idx, cur);
9217 
9218 	while (sl) {
9219 		states_cnt++;
9220 		if (sl->state.insn_idx != insn_idx)
9221 			goto next;
9222 		if (sl->state.branches) {
9223 			if (states_maybe_looping(&sl->state, cur) &&
9224 			    states_equal(env, &sl->state, cur)) {
9225 				verbose_linfo(env, insn_idx, "; ");
9226 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9227 				return -EINVAL;
9228 			}
9229 			/* if the verifier is processing a loop, avoid adding new state
9230 			 * too often, since different loop iterations have distinct
9231 			 * states and may not help future pruning.
9232 			 * This threshold shouldn't be too low to make sure that
9233 			 * a loop with large bound will be rejected quickly.
9234 			 * The most abusive loop will be:
9235 			 * r1 += 1
9236 			 * if r1 < 1000000 goto pc-2
9237 			 * 1M insn_procssed limit / 100 == 10k peak states.
9238 			 * This threshold shouldn't be too high either, since states
9239 			 * at the end of the loop are likely to be useful in pruning.
9240 			 */
9241 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9242 			    env->insn_processed - env->prev_insn_processed < 100)
9243 				add_new_state = false;
9244 			goto miss;
9245 		}
9246 		if (states_equal(env, &sl->state, cur)) {
9247 			sl->hit_cnt++;
9248 			/* reached equivalent register/stack state,
9249 			 * prune the search.
9250 			 * Registers read by the continuation are read by us.
9251 			 * If we have any write marks in env->cur_state, they
9252 			 * will prevent corresponding reads in the continuation
9253 			 * from reaching our parent (an explored_state).  Our
9254 			 * own state will get the read marks recorded, but
9255 			 * they'll be immediately forgotten as we're pruning
9256 			 * this state and will pop a new one.
9257 			 */
9258 			err = propagate_liveness(env, &sl->state, cur);
9259 
9260 			/* if previous state reached the exit with precision and
9261 			 * current state is equivalent to it (except precsion marks)
9262 			 * the precision needs to be propagated back in
9263 			 * the current state.
9264 			 */
9265 			err = err ? : push_jmp_history(env, cur);
9266 			err = err ? : propagate_precision(env, &sl->state);
9267 			if (err)
9268 				return err;
9269 			return 1;
9270 		}
9271 miss:
9272 		/* when new state is not going to be added do not increase miss count.
9273 		 * Otherwise several loop iterations will remove the state
9274 		 * recorded earlier. The goal of these heuristics is to have
9275 		 * states from some iterations of the loop (some in the beginning
9276 		 * and some at the end) to help pruning.
9277 		 */
9278 		if (add_new_state)
9279 			sl->miss_cnt++;
9280 		/* heuristic to determine whether this state is beneficial
9281 		 * to keep checking from state equivalence point of view.
9282 		 * Higher numbers increase max_states_per_insn and verification time,
9283 		 * but do not meaningfully decrease insn_processed.
9284 		 */
9285 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9286 			/* the state is unlikely to be useful. Remove it to
9287 			 * speed up verification
9288 			 */
9289 			*pprev = sl->next;
9290 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9291 				u32 br = sl->state.branches;
9292 
9293 				WARN_ONCE(br,
9294 					  "BUG live_done but branches_to_explore %d\n",
9295 					  br);
9296 				free_verifier_state(&sl->state, false);
9297 				kfree(sl);
9298 				env->peak_states--;
9299 			} else {
9300 				/* cannot free this state, since parentage chain may
9301 				 * walk it later. Add it for free_list instead to
9302 				 * be freed at the end of verification
9303 				 */
9304 				sl->next = env->free_list;
9305 				env->free_list = sl;
9306 			}
9307 			sl = *pprev;
9308 			continue;
9309 		}
9310 next:
9311 		pprev = &sl->next;
9312 		sl = *pprev;
9313 	}
9314 
9315 	if (env->max_states_per_insn < states_cnt)
9316 		env->max_states_per_insn = states_cnt;
9317 
9318 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9319 		return push_jmp_history(env, cur);
9320 
9321 	if (!add_new_state)
9322 		return push_jmp_history(env, cur);
9323 
9324 	/* There were no equivalent states, remember the current one.
9325 	 * Technically the current state is not proven to be safe yet,
9326 	 * but it will either reach outer most bpf_exit (which means it's safe)
9327 	 * or it will be rejected. When there are no loops the verifier won't be
9328 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9329 	 * again on the way to bpf_exit.
9330 	 * When looping the sl->state.branches will be > 0 and this state
9331 	 * will not be considered for equivalence until branches == 0.
9332 	 */
9333 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9334 	if (!new_sl)
9335 		return -ENOMEM;
9336 	env->total_states++;
9337 	env->peak_states++;
9338 	env->prev_jmps_processed = env->jmps_processed;
9339 	env->prev_insn_processed = env->insn_processed;
9340 
9341 	/* add new state to the head of linked list */
9342 	new = &new_sl->state;
9343 	err = copy_verifier_state(new, cur);
9344 	if (err) {
9345 		free_verifier_state(new, false);
9346 		kfree(new_sl);
9347 		return err;
9348 	}
9349 	new->insn_idx = insn_idx;
9350 	WARN_ONCE(new->branches != 1,
9351 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9352 
9353 	cur->parent = new;
9354 	cur->first_insn_idx = insn_idx;
9355 	clear_jmp_history(cur);
9356 	new_sl->next = *explored_state(env, insn_idx);
9357 	*explored_state(env, insn_idx) = new_sl;
9358 	/* connect new state to parentage chain. Current frame needs all
9359 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9360 	 * to the stack implicitly by JITs) so in callers' frames connect just
9361 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9362 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9363 	 * from callee with its full parentage chain, anyway.
9364 	 */
9365 	/* clear write marks in current state: the writes we did are not writes
9366 	 * our child did, so they don't screen off its reads from us.
9367 	 * (There are no read marks in current state, because reads always mark
9368 	 * their parent and current state never has children yet.  Only
9369 	 * explored_states can get read marks.)
9370 	 */
9371 	for (j = 0; j <= cur->curframe; j++) {
9372 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9373 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9374 		for (i = 0; i < BPF_REG_FP; i++)
9375 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9376 	}
9377 
9378 	/* all stack frames are accessible from callee, clear them all */
9379 	for (j = 0; j <= cur->curframe; j++) {
9380 		struct bpf_func_state *frame = cur->frame[j];
9381 		struct bpf_func_state *newframe = new->frame[j];
9382 
9383 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9384 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9385 			frame->stack[i].spilled_ptr.parent =
9386 						&newframe->stack[i].spilled_ptr;
9387 		}
9388 	}
9389 	return 0;
9390 }
9391 
9392 /* Return true if it's OK to have the same insn return a different type. */
9393 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9394 {
9395 	switch (type) {
9396 	case PTR_TO_CTX:
9397 	case PTR_TO_SOCKET:
9398 	case PTR_TO_SOCKET_OR_NULL:
9399 	case PTR_TO_SOCK_COMMON:
9400 	case PTR_TO_SOCK_COMMON_OR_NULL:
9401 	case PTR_TO_TCP_SOCK:
9402 	case PTR_TO_TCP_SOCK_OR_NULL:
9403 	case PTR_TO_XDP_SOCK:
9404 	case PTR_TO_BTF_ID:
9405 	case PTR_TO_BTF_ID_OR_NULL:
9406 		return false;
9407 	default:
9408 		return true;
9409 	}
9410 }
9411 
9412 /* If an instruction was previously used with particular pointer types, then we
9413  * need to be careful to avoid cases such as the below, where it may be ok
9414  * for one branch accessing the pointer, but not ok for the other branch:
9415  *
9416  * R1 = sock_ptr
9417  * goto X;
9418  * ...
9419  * R1 = some_other_valid_ptr;
9420  * goto X;
9421  * ...
9422  * R2 = *(u32 *)(R1 + 0);
9423  */
9424 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9425 {
9426 	return src != prev && (!reg_type_mismatch_ok(src) ||
9427 			       !reg_type_mismatch_ok(prev));
9428 }
9429 
9430 static int do_check(struct bpf_verifier_env *env)
9431 {
9432 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9433 	struct bpf_verifier_state *state = env->cur_state;
9434 	struct bpf_insn *insns = env->prog->insnsi;
9435 	struct bpf_reg_state *regs;
9436 	int insn_cnt = env->prog->len;
9437 	bool do_print_state = false;
9438 	int prev_insn_idx = -1;
9439 
9440 	for (;;) {
9441 		struct bpf_insn *insn;
9442 		u8 class;
9443 		int err;
9444 
9445 		env->prev_insn_idx = prev_insn_idx;
9446 		if (env->insn_idx >= insn_cnt) {
9447 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9448 				env->insn_idx, insn_cnt);
9449 			return -EFAULT;
9450 		}
9451 
9452 		insn = &insns[env->insn_idx];
9453 		class = BPF_CLASS(insn->code);
9454 
9455 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9456 			verbose(env,
9457 				"BPF program is too large. Processed %d insn\n",
9458 				env->insn_processed);
9459 			return -E2BIG;
9460 		}
9461 
9462 		err = is_state_visited(env, env->insn_idx);
9463 		if (err < 0)
9464 			return err;
9465 		if (err == 1) {
9466 			/* found equivalent state, can prune the search */
9467 			if (env->log.level & BPF_LOG_LEVEL) {
9468 				if (do_print_state)
9469 					verbose(env, "\nfrom %d to %d%s: safe\n",
9470 						env->prev_insn_idx, env->insn_idx,
9471 						env->cur_state->speculative ?
9472 						" (speculative execution)" : "");
9473 				else
9474 					verbose(env, "%d: safe\n", env->insn_idx);
9475 			}
9476 			goto process_bpf_exit;
9477 		}
9478 
9479 		if (signal_pending(current))
9480 			return -EAGAIN;
9481 
9482 		if (need_resched())
9483 			cond_resched();
9484 
9485 		if (env->log.level & BPF_LOG_LEVEL2 ||
9486 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9487 			if (env->log.level & BPF_LOG_LEVEL2)
9488 				verbose(env, "%d:", env->insn_idx);
9489 			else
9490 				verbose(env, "\nfrom %d to %d%s:",
9491 					env->prev_insn_idx, env->insn_idx,
9492 					env->cur_state->speculative ?
9493 					" (speculative execution)" : "");
9494 			print_verifier_state(env, state->frame[state->curframe]);
9495 			do_print_state = false;
9496 		}
9497 
9498 		if (env->log.level & BPF_LOG_LEVEL) {
9499 			const struct bpf_insn_cbs cbs = {
9500 				.cb_print	= verbose,
9501 				.private_data	= env,
9502 			};
9503 
9504 			verbose_linfo(env, env->insn_idx, "; ");
9505 			verbose(env, "%d: ", env->insn_idx);
9506 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9507 		}
9508 
9509 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9510 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9511 							   env->prev_insn_idx);
9512 			if (err)
9513 				return err;
9514 		}
9515 
9516 		regs = cur_regs(env);
9517 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9518 		prev_insn_idx = env->insn_idx;
9519 
9520 		if (class == BPF_ALU || class == BPF_ALU64) {
9521 			err = check_alu_op(env, insn);
9522 			if (err)
9523 				return err;
9524 
9525 		} else if (class == BPF_LDX) {
9526 			enum bpf_reg_type *prev_src_type, src_reg_type;
9527 
9528 			/* check for reserved fields is already done */
9529 
9530 			/* check src operand */
9531 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9532 			if (err)
9533 				return err;
9534 
9535 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9536 			if (err)
9537 				return err;
9538 
9539 			src_reg_type = regs[insn->src_reg].type;
9540 
9541 			/* check that memory (src_reg + off) is readable,
9542 			 * the state of dst_reg will be updated by this func
9543 			 */
9544 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9545 					       insn->off, BPF_SIZE(insn->code),
9546 					       BPF_READ, insn->dst_reg, false);
9547 			if (err)
9548 				return err;
9549 
9550 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9551 
9552 			if (*prev_src_type == NOT_INIT) {
9553 				/* saw a valid insn
9554 				 * dst_reg = *(u32 *)(src_reg + off)
9555 				 * save type to validate intersecting paths
9556 				 */
9557 				*prev_src_type = src_reg_type;
9558 
9559 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9560 				/* ABuser program is trying to use the same insn
9561 				 * dst_reg = *(u32*) (src_reg + off)
9562 				 * with different pointer types:
9563 				 * src_reg == ctx in one branch and
9564 				 * src_reg == stack|map in some other branch.
9565 				 * Reject it.
9566 				 */
9567 				verbose(env, "same insn cannot be used with different pointers\n");
9568 				return -EINVAL;
9569 			}
9570 
9571 		} else if (class == BPF_STX) {
9572 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9573 
9574 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
9575 				err = check_atomic(env, env->insn_idx, insn);
9576 				if (err)
9577 					return err;
9578 				env->insn_idx++;
9579 				continue;
9580 			}
9581 
9582 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
9583 				verbose(env, "BPF_STX uses reserved fields\n");
9584 				return -EINVAL;
9585 			}
9586 
9587 			/* check src1 operand */
9588 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9589 			if (err)
9590 				return err;
9591 			/* check src2 operand */
9592 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9593 			if (err)
9594 				return err;
9595 
9596 			dst_reg_type = regs[insn->dst_reg].type;
9597 
9598 			/* check that memory (dst_reg + off) is writeable */
9599 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9600 					       insn->off, BPF_SIZE(insn->code),
9601 					       BPF_WRITE, insn->src_reg, false);
9602 			if (err)
9603 				return err;
9604 
9605 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9606 
9607 			if (*prev_dst_type == NOT_INIT) {
9608 				*prev_dst_type = dst_reg_type;
9609 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9610 				verbose(env, "same insn cannot be used with different pointers\n");
9611 				return -EINVAL;
9612 			}
9613 
9614 		} else if (class == BPF_ST) {
9615 			if (BPF_MODE(insn->code) != BPF_MEM ||
9616 			    insn->src_reg != BPF_REG_0) {
9617 				verbose(env, "BPF_ST uses reserved fields\n");
9618 				return -EINVAL;
9619 			}
9620 			/* check src operand */
9621 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9622 			if (err)
9623 				return err;
9624 
9625 			if (is_ctx_reg(env, insn->dst_reg)) {
9626 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9627 					insn->dst_reg,
9628 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9629 				return -EACCES;
9630 			}
9631 
9632 			/* check that memory (dst_reg + off) is writeable */
9633 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9634 					       insn->off, BPF_SIZE(insn->code),
9635 					       BPF_WRITE, -1, false);
9636 			if (err)
9637 				return err;
9638 
9639 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9640 			u8 opcode = BPF_OP(insn->code);
9641 
9642 			env->jmps_processed++;
9643 			if (opcode == BPF_CALL) {
9644 				if (BPF_SRC(insn->code) != BPF_K ||
9645 				    insn->off != 0 ||
9646 				    (insn->src_reg != BPF_REG_0 &&
9647 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9648 				    insn->dst_reg != BPF_REG_0 ||
9649 				    class == BPF_JMP32) {
9650 					verbose(env, "BPF_CALL uses reserved fields\n");
9651 					return -EINVAL;
9652 				}
9653 
9654 				if (env->cur_state->active_spin_lock &&
9655 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9656 				     insn->imm != BPF_FUNC_spin_unlock)) {
9657 					verbose(env, "function calls are not allowed while holding a lock\n");
9658 					return -EINVAL;
9659 				}
9660 				if (insn->src_reg == BPF_PSEUDO_CALL)
9661 					err = check_func_call(env, insn, &env->insn_idx);
9662 				else
9663 					err = check_helper_call(env, insn->imm, env->insn_idx);
9664 				if (err)
9665 					return err;
9666 
9667 			} else if (opcode == BPF_JA) {
9668 				if (BPF_SRC(insn->code) != BPF_K ||
9669 				    insn->imm != 0 ||
9670 				    insn->src_reg != BPF_REG_0 ||
9671 				    insn->dst_reg != BPF_REG_0 ||
9672 				    class == BPF_JMP32) {
9673 					verbose(env, "BPF_JA uses reserved fields\n");
9674 					return -EINVAL;
9675 				}
9676 
9677 				env->insn_idx += insn->off + 1;
9678 				continue;
9679 
9680 			} else if (opcode == BPF_EXIT) {
9681 				if (BPF_SRC(insn->code) != BPF_K ||
9682 				    insn->imm != 0 ||
9683 				    insn->src_reg != BPF_REG_0 ||
9684 				    insn->dst_reg != BPF_REG_0 ||
9685 				    class == BPF_JMP32) {
9686 					verbose(env, "BPF_EXIT uses reserved fields\n");
9687 					return -EINVAL;
9688 				}
9689 
9690 				if (env->cur_state->active_spin_lock) {
9691 					verbose(env, "bpf_spin_unlock is missing\n");
9692 					return -EINVAL;
9693 				}
9694 
9695 				if (state->curframe) {
9696 					/* exit from nested function */
9697 					err = prepare_func_exit(env, &env->insn_idx);
9698 					if (err)
9699 						return err;
9700 					do_print_state = true;
9701 					continue;
9702 				}
9703 
9704 				err = check_reference_leak(env);
9705 				if (err)
9706 					return err;
9707 
9708 				err = check_return_code(env);
9709 				if (err)
9710 					return err;
9711 process_bpf_exit:
9712 				update_branch_counts(env, env->cur_state);
9713 				err = pop_stack(env, &prev_insn_idx,
9714 						&env->insn_idx, pop_log);
9715 				if (err < 0) {
9716 					if (err != -ENOENT)
9717 						return err;
9718 					break;
9719 				} else {
9720 					do_print_state = true;
9721 					continue;
9722 				}
9723 			} else {
9724 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9725 				if (err)
9726 					return err;
9727 			}
9728 		} else if (class == BPF_LD) {
9729 			u8 mode = BPF_MODE(insn->code);
9730 
9731 			if (mode == BPF_ABS || mode == BPF_IND) {
9732 				err = check_ld_abs(env, insn);
9733 				if (err)
9734 					return err;
9735 
9736 			} else if (mode == BPF_IMM) {
9737 				err = check_ld_imm(env, insn);
9738 				if (err)
9739 					return err;
9740 
9741 				env->insn_idx++;
9742 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9743 			} else {
9744 				verbose(env, "invalid BPF_LD mode\n");
9745 				return -EINVAL;
9746 			}
9747 		} else {
9748 			verbose(env, "unknown insn class %d\n", class);
9749 			return -EINVAL;
9750 		}
9751 
9752 		env->insn_idx++;
9753 	}
9754 
9755 	return 0;
9756 }
9757 
9758 static int find_btf_percpu_datasec(struct btf *btf)
9759 {
9760 	const struct btf_type *t;
9761 	const char *tname;
9762 	int i, n;
9763 
9764 	/*
9765 	 * Both vmlinux and module each have their own ".data..percpu"
9766 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
9767 	 * types to look at only module's own BTF types.
9768 	 */
9769 	n = btf_nr_types(btf);
9770 	if (btf_is_module(btf))
9771 		i = btf_nr_types(btf_vmlinux);
9772 	else
9773 		i = 1;
9774 
9775 	for(; i < n; i++) {
9776 		t = btf_type_by_id(btf, i);
9777 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
9778 			continue;
9779 
9780 		tname = btf_name_by_offset(btf, t->name_off);
9781 		if (!strcmp(tname, ".data..percpu"))
9782 			return i;
9783 	}
9784 
9785 	return -ENOENT;
9786 }
9787 
9788 /* replace pseudo btf_id with kernel symbol address */
9789 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9790 			       struct bpf_insn *insn,
9791 			       struct bpf_insn_aux_data *aux)
9792 {
9793 	const struct btf_var_secinfo *vsi;
9794 	const struct btf_type *datasec;
9795 	struct btf_mod_pair *btf_mod;
9796 	const struct btf_type *t;
9797 	const char *sym_name;
9798 	bool percpu = false;
9799 	u32 type, id = insn->imm;
9800 	struct btf *btf;
9801 	s32 datasec_id;
9802 	u64 addr;
9803 	int i, btf_fd, err;
9804 
9805 	btf_fd = insn[1].imm;
9806 	if (btf_fd) {
9807 		btf = btf_get_by_fd(btf_fd);
9808 		if (IS_ERR(btf)) {
9809 			verbose(env, "invalid module BTF object FD specified.\n");
9810 			return -EINVAL;
9811 		}
9812 	} else {
9813 		if (!btf_vmlinux) {
9814 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9815 			return -EINVAL;
9816 		}
9817 		btf = btf_vmlinux;
9818 		btf_get(btf);
9819 	}
9820 
9821 	t = btf_type_by_id(btf, id);
9822 	if (!t) {
9823 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9824 		err = -ENOENT;
9825 		goto err_put;
9826 	}
9827 
9828 	if (!btf_type_is_var(t)) {
9829 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
9830 		err = -EINVAL;
9831 		goto err_put;
9832 	}
9833 
9834 	sym_name = btf_name_by_offset(btf, t->name_off);
9835 	addr = kallsyms_lookup_name(sym_name);
9836 	if (!addr) {
9837 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9838 			sym_name);
9839 		err = -ENOENT;
9840 		goto err_put;
9841 	}
9842 
9843 	datasec_id = find_btf_percpu_datasec(btf);
9844 	if (datasec_id > 0) {
9845 		datasec = btf_type_by_id(btf, datasec_id);
9846 		for_each_vsi(i, datasec, vsi) {
9847 			if (vsi->type == id) {
9848 				percpu = true;
9849 				break;
9850 			}
9851 		}
9852 	}
9853 
9854 	insn[0].imm = (u32)addr;
9855 	insn[1].imm = addr >> 32;
9856 
9857 	type = t->type;
9858 	t = btf_type_skip_modifiers(btf, type, NULL);
9859 	if (percpu) {
9860 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9861 		aux->btf_var.btf = btf;
9862 		aux->btf_var.btf_id = type;
9863 	} else if (!btf_type_is_struct(t)) {
9864 		const struct btf_type *ret;
9865 		const char *tname;
9866 		u32 tsize;
9867 
9868 		/* resolve the type size of ksym. */
9869 		ret = btf_resolve_size(btf, t, &tsize);
9870 		if (IS_ERR(ret)) {
9871 			tname = btf_name_by_offset(btf, t->name_off);
9872 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9873 				tname, PTR_ERR(ret));
9874 			err = -EINVAL;
9875 			goto err_put;
9876 		}
9877 		aux->btf_var.reg_type = PTR_TO_MEM;
9878 		aux->btf_var.mem_size = tsize;
9879 	} else {
9880 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
9881 		aux->btf_var.btf = btf;
9882 		aux->btf_var.btf_id = type;
9883 	}
9884 
9885 	/* check whether we recorded this BTF (and maybe module) already */
9886 	for (i = 0; i < env->used_btf_cnt; i++) {
9887 		if (env->used_btfs[i].btf == btf) {
9888 			btf_put(btf);
9889 			return 0;
9890 		}
9891 	}
9892 
9893 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
9894 		err = -E2BIG;
9895 		goto err_put;
9896 	}
9897 
9898 	btf_mod = &env->used_btfs[env->used_btf_cnt];
9899 	btf_mod->btf = btf;
9900 	btf_mod->module = NULL;
9901 
9902 	/* if we reference variables from kernel module, bump its refcount */
9903 	if (btf_is_module(btf)) {
9904 		btf_mod->module = btf_try_get_module(btf);
9905 		if (!btf_mod->module) {
9906 			err = -ENXIO;
9907 			goto err_put;
9908 		}
9909 	}
9910 
9911 	env->used_btf_cnt++;
9912 
9913 	return 0;
9914 err_put:
9915 	btf_put(btf);
9916 	return err;
9917 }
9918 
9919 static int check_map_prealloc(struct bpf_map *map)
9920 {
9921 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9922 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9923 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9924 		!(map->map_flags & BPF_F_NO_PREALLOC);
9925 }
9926 
9927 static bool is_tracing_prog_type(enum bpf_prog_type type)
9928 {
9929 	switch (type) {
9930 	case BPF_PROG_TYPE_KPROBE:
9931 	case BPF_PROG_TYPE_TRACEPOINT:
9932 	case BPF_PROG_TYPE_PERF_EVENT:
9933 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9934 		return true;
9935 	default:
9936 		return false;
9937 	}
9938 }
9939 
9940 static bool is_preallocated_map(struct bpf_map *map)
9941 {
9942 	if (!check_map_prealloc(map))
9943 		return false;
9944 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9945 		return false;
9946 	return true;
9947 }
9948 
9949 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9950 					struct bpf_map *map,
9951 					struct bpf_prog *prog)
9952 
9953 {
9954 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9955 	/*
9956 	 * Validate that trace type programs use preallocated hash maps.
9957 	 *
9958 	 * For programs attached to PERF events this is mandatory as the
9959 	 * perf NMI can hit any arbitrary code sequence.
9960 	 *
9961 	 * All other trace types using preallocated hash maps are unsafe as
9962 	 * well because tracepoint or kprobes can be inside locked regions
9963 	 * of the memory allocator or at a place where a recursion into the
9964 	 * memory allocator would see inconsistent state.
9965 	 *
9966 	 * On RT enabled kernels run-time allocation of all trace type
9967 	 * programs is strictly prohibited due to lock type constraints. On
9968 	 * !RT kernels it is allowed for backwards compatibility reasons for
9969 	 * now, but warnings are emitted so developers are made aware of
9970 	 * the unsafety and can fix their programs before this is enforced.
9971 	 */
9972 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9973 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9974 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9975 			return -EINVAL;
9976 		}
9977 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9978 			verbose(env, "trace type programs can only use preallocated hash map\n");
9979 			return -EINVAL;
9980 		}
9981 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9982 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9983 	}
9984 
9985 	if (map_value_has_spin_lock(map)) {
9986 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9987 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9988 			return -EINVAL;
9989 		}
9990 
9991 		if (is_tracing_prog_type(prog_type)) {
9992 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9993 			return -EINVAL;
9994 		}
9995 
9996 		if (prog->aux->sleepable) {
9997 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9998 			return -EINVAL;
9999 		}
10000 	}
10001 
10002 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10003 	    !bpf_offload_prog_map_match(prog, map)) {
10004 		verbose(env, "offload device mismatch between prog and map\n");
10005 		return -EINVAL;
10006 	}
10007 
10008 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10009 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10010 		return -EINVAL;
10011 	}
10012 
10013 	if (prog->aux->sleepable)
10014 		switch (map->map_type) {
10015 		case BPF_MAP_TYPE_HASH:
10016 		case BPF_MAP_TYPE_LRU_HASH:
10017 		case BPF_MAP_TYPE_ARRAY:
10018 			if (!is_preallocated_map(map)) {
10019 				verbose(env,
10020 					"Sleepable programs can only use preallocated hash maps\n");
10021 				return -EINVAL;
10022 			}
10023 			break;
10024 		default:
10025 			verbose(env,
10026 				"Sleepable programs can only use array and hash maps\n");
10027 			return -EINVAL;
10028 		}
10029 
10030 	return 0;
10031 }
10032 
10033 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10034 {
10035 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10036 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10037 }
10038 
10039 /* find and rewrite pseudo imm in ld_imm64 instructions:
10040  *
10041  * 1. if it accesses map FD, replace it with actual map pointer.
10042  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10043  *
10044  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10045  */
10046 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10047 {
10048 	struct bpf_insn *insn = env->prog->insnsi;
10049 	int insn_cnt = env->prog->len;
10050 	int i, j, err;
10051 
10052 	err = bpf_prog_calc_tag(env->prog);
10053 	if (err)
10054 		return err;
10055 
10056 	for (i = 0; i < insn_cnt; i++, insn++) {
10057 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10058 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10059 			verbose(env, "BPF_LDX uses reserved fields\n");
10060 			return -EINVAL;
10061 		}
10062 
10063 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10064 			struct bpf_insn_aux_data *aux;
10065 			struct bpf_map *map;
10066 			struct fd f;
10067 			u64 addr;
10068 
10069 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10070 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10071 			    insn[1].off != 0) {
10072 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10073 				return -EINVAL;
10074 			}
10075 
10076 			if (insn[0].src_reg == 0)
10077 				/* valid generic load 64-bit imm */
10078 				goto next_insn;
10079 
10080 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10081 				aux = &env->insn_aux_data[i];
10082 				err = check_pseudo_btf_id(env, insn, aux);
10083 				if (err)
10084 					return err;
10085 				goto next_insn;
10086 			}
10087 
10088 			/* In final convert_pseudo_ld_imm64() step, this is
10089 			 * converted into regular 64-bit imm load insn.
10090 			 */
10091 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10092 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10093 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10094 			     insn[1].imm != 0)) {
10095 				verbose(env,
10096 					"unrecognized bpf_ld_imm64 insn\n");
10097 				return -EINVAL;
10098 			}
10099 
10100 			f = fdget(insn[0].imm);
10101 			map = __bpf_map_get(f);
10102 			if (IS_ERR(map)) {
10103 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10104 					insn[0].imm);
10105 				return PTR_ERR(map);
10106 			}
10107 
10108 			err = check_map_prog_compatibility(env, map, env->prog);
10109 			if (err) {
10110 				fdput(f);
10111 				return err;
10112 			}
10113 
10114 			aux = &env->insn_aux_data[i];
10115 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10116 				addr = (unsigned long)map;
10117 			} else {
10118 				u32 off = insn[1].imm;
10119 
10120 				if (off >= BPF_MAX_VAR_OFF) {
10121 					verbose(env, "direct value offset of %u is not allowed\n", off);
10122 					fdput(f);
10123 					return -EINVAL;
10124 				}
10125 
10126 				if (!map->ops->map_direct_value_addr) {
10127 					verbose(env, "no direct value access support for this map type\n");
10128 					fdput(f);
10129 					return -EINVAL;
10130 				}
10131 
10132 				err = map->ops->map_direct_value_addr(map, &addr, off);
10133 				if (err) {
10134 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10135 						map->value_size, off);
10136 					fdput(f);
10137 					return err;
10138 				}
10139 
10140 				aux->map_off = off;
10141 				addr += off;
10142 			}
10143 
10144 			insn[0].imm = (u32)addr;
10145 			insn[1].imm = addr >> 32;
10146 
10147 			/* check whether we recorded this map already */
10148 			for (j = 0; j < env->used_map_cnt; j++) {
10149 				if (env->used_maps[j] == map) {
10150 					aux->map_index = j;
10151 					fdput(f);
10152 					goto next_insn;
10153 				}
10154 			}
10155 
10156 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10157 				fdput(f);
10158 				return -E2BIG;
10159 			}
10160 
10161 			/* hold the map. If the program is rejected by verifier,
10162 			 * the map will be released by release_maps() or it
10163 			 * will be used by the valid program until it's unloaded
10164 			 * and all maps are released in free_used_maps()
10165 			 */
10166 			bpf_map_inc(map);
10167 
10168 			aux->map_index = env->used_map_cnt;
10169 			env->used_maps[env->used_map_cnt++] = map;
10170 
10171 			if (bpf_map_is_cgroup_storage(map) &&
10172 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10173 				verbose(env, "only one cgroup storage of each type is allowed\n");
10174 				fdput(f);
10175 				return -EBUSY;
10176 			}
10177 
10178 			fdput(f);
10179 next_insn:
10180 			insn++;
10181 			i++;
10182 			continue;
10183 		}
10184 
10185 		/* Basic sanity check before we invest more work here. */
10186 		if (!bpf_opcode_in_insntable(insn->code)) {
10187 			verbose(env, "unknown opcode %02x\n", insn->code);
10188 			return -EINVAL;
10189 		}
10190 	}
10191 
10192 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10193 	 * 'struct bpf_map *' into a register instead of user map_fd.
10194 	 * These pointers will be used later by verifier to validate map access.
10195 	 */
10196 	return 0;
10197 }
10198 
10199 /* drop refcnt of maps used by the rejected program */
10200 static void release_maps(struct bpf_verifier_env *env)
10201 {
10202 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10203 			     env->used_map_cnt);
10204 }
10205 
10206 /* drop refcnt of maps used by the rejected program */
10207 static void release_btfs(struct bpf_verifier_env *env)
10208 {
10209 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10210 			     env->used_btf_cnt);
10211 }
10212 
10213 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10214 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10215 {
10216 	struct bpf_insn *insn = env->prog->insnsi;
10217 	int insn_cnt = env->prog->len;
10218 	int i;
10219 
10220 	for (i = 0; i < insn_cnt; i++, insn++)
10221 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10222 			insn->src_reg = 0;
10223 }
10224 
10225 /* single env->prog->insni[off] instruction was replaced with the range
10226  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10227  * [0, off) and [off, end) to new locations, so the patched range stays zero
10228  */
10229 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10230 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10231 {
10232 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10233 	struct bpf_insn *insn = new_prog->insnsi;
10234 	u32 prog_len;
10235 	int i;
10236 
10237 	/* aux info at OFF always needs adjustment, no matter fast path
10238 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10239 	 * original insn at old prog.
10240 	 */
10241 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10242 
10243 	if (cnt == 1)
10244 		return 0;
10245 	prog_len = new_prog->len;
10246 	new_data = vzalloc(array_size(prog_len,
10247 				      sizeof(struct bpf_insn_aux_data)));
10248 	if (!new_data)
10249 		return -ENOMEM;
10250 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10251 	memcpy(new_data + off + cnt - 1, old_data + off,
10252 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10253 	for (i = off; i < off + cnt - 1; i++) {
10254 		new_data[i].seen = env->pass_cnt;
10255 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10256 	}
10257 	env->insn_aux_data = new_data;
10258 	vfree(old_data);
10259 	return 0;
10260 }
10261 
10262 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10263 {
10264 	int i;
10265 
10266 	if (len == 1)
10267 		return;
10268 	/* NOTE: fake 'exit' subprog should be updated as well. */
10269 	for (i = 0; i <= env->subprog_cnt; i++) {
10270 		if (env->subprog_info[i].start <= off)
10271 			continue;
10272 		env->subprog_info[i].start += len - 1;
10273 	}
10274 }
10275 
10276 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10277 {
10278 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10279 	int i, sz = prog->aux->size_poke_tab;
10280 	struct bpf_jit_poke_descriptor *desc;
10281 
10282 	for (i = 0; i < sz; i++) {
10283 		desc = &tab[i];
10284 		desc->insn_idx += len - 1;
10285 	}
10286 }
10287 
10288 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10289 					    const struct bpf_insn *patch, u32 len)
10290 {
10291 	struct bpf_prog *new_prog;
10292 
10293 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10294 	if (IS_ERR(new_prog)) {
10295 		if (PTR_ERR(new_prog) == -ERANGE)
10296 			verbose(env,
10297 				"insn %d cannot be patched due to 16-bit range\n",
10298 				env->insn_aux_data[off].orig_idx);
10299 		return NULL;
10300 	}
10301 	if (adjust_insn_aux_data(env, new_prog, off, len))
10302 		return NULL;
10303 	adjust_subprog_starts(env, off, len);
10304 	adjust_poke_descs(new_prog, len);
10305 	return new_prog;
10306 }
10307 
10308 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10309 					      u32 off, u32 cnt)
10310 {
10311 	int i, j;
10312 
10313 	/* find first prog starting at or after off (first to remove) */
10314 	for (i = 0; i < env->subprog_cnt; i++)
10315 		if (env->subprog_info[i].start >= off)
10316 			break;
10317 	/* find first prog starting at or after off + cnt (first to stay) */
10318 	for (j = i; j < env->subprog_cnt; j++)
10319 		if (env->subprog_info[j].start >= off + cnt)
10320 			break;
10321 	/* if j doesn't start exactly at off + cnt, we are just removing
10322 	 * the front of previous prog
10323 	 */
10324 	if (env->subprog_info[j].start != off + cnt)
10325 		j--;
10326 
10327 	if (j > i) {
10328 		struct bpf_prog_aux *aux = env->prog->aux;
10329 		int move;
10330 
10331 		/* move fake 'exit' subprog as well */
10332 		move = env->subprog_cnt + 1 - j;
10333 
10334 		memmove(env->subprog_info + i,
10335 			env->subprog_info + j,
10336 			sizeof(*env->subprog_info) * move);
10337 		env->subprog_cnt -= j - i;
10338 
10339 		/* remove func_info */
10340 		if (aux->func_info) {
10341 			move = aux->func_info_cnt - j;
10342 
10343 			memmove(aux->func_info + i,
10344 				aux->func_info + j,
10345 				sizeof(*aux->func_info) * move);
10346 			aux->func_info_cnt -= j - i;
10347 			/* func_info->insn_off is set after all code rewrites,
10348 			 * in adjust_btf_func() - no need to adjust
10349 			 */
10350 		}
10351 	} else {
10352 		/* convert i from "first prog to remove" to "first to adjust" */
10353 		if (env->subprog_info[i].start == off)
10354 			i++;
10355 	}
10356 
10357 	/* update fake 'exit' subprog as well */
10358 	for (; i <= env->subprog_cnt; i++)
10359 		env->subprog_info[i].start -= cnt;
10360 
10361 	return 0;
10362 }
10363 
10364 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10365 				      u32 cnt)
10366 {
10367 	struct bpf_prog *prog = env->prog;
10368 	u32 i, l_off, l_cnt, nr_linfo;
10369 	struct bpf_line_info *linfo;
10370 
10371 	nr_linfo = prog->aux->nr_linfo;
10372 	if (!nr_linfo)
10373 		return 0;
10374 
10375 	linfo = prog->aux->linfo;
10376 
10377 	/* find first line info to remove, count lines to be removed */
10378 	for (i = 0; i < nr_linfo; i++)
10379 		if (linfo[i].insn_off >= off)
10380 			break;
10381 
10382 	l_off = i;
10383 	l_cnt = 0;
10384 	for (; i < nr_linfo; i++)
10385 		if (linfo[i].insn_off < off + cnt)
10386 			l_cnt++;
10387 		else
10388 			break;
10389 
10390 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10391 	 * last removed linfo.  prog is already modified, so prog->len == off
10392 	 * means no live instructions after (tail of the program was removed).
10393 	 */
10394 	if (prog->len != off && l_cnt &&
10395 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10396 		l_cnt--;
10397 		linfo[--i].insn_off = off + cnt;
10398 	}
10399 
10400 	/* remove the line info which refer to the removed instructions */
10401 	if (l_cnt) {
10402 		memmove(linfo + l_off, linfo + i,
10403 			sizeof(*linfo) * (nr_linfo - i));
10404 
10405 		prog->aux->nr_linfo -= l_cnt;
10406 		nr_linfo = prog->aux->nr_linfo;
10407 	}
10408 
10409 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10410 	for (i = l_off; i < nr_linfo; i++)
10411 		linfo[i].insn_off -= cnt;
10412 
10413 	/* fix up all subprogs (incl. 'exit') which start >= off */
10414 	for (i = 0; i <= env->subprog_cnt; i++)
10415 		if (env->subprog_info[i].linfo_idx > l_off) {
10416 			/* program may have started in the removed region but
10417 			 * may not be fully removed
10418 			 */
10419 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10420 				env->subprog_info[i].linfo_idx -= l_cnt;
10421 			else
10422 				env->subprog_info[i].linfo_idx = l_off;
10423 		}
10424 
10425 	return 0;
10426 }
10427 
10428 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10429 {
10430 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10431 	unsigned int orig_prog_len = env->prog->len;
10432 	int err;
10433 
10434 	if (bpf_prog_is_dev_bound(env->prog->aux))
10435 		bpf_prog_offload_remove_insns(env, off, cnt);
10436 
10437 	err = bpf_remove_insns(env->prog, off, cnt);
10438 	if (err)
10439 		return err;
10440 
10441 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10442 	if (err)
10443 		return err;
10444 
10445 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10446 	if (err)
10447 		return err;
10448 
10449 	memmove(aux_data + off,	aux_data + off + cnt,
10450 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10451 
10452 	return 0;
10453 }
10454 
10455 /* The verifier does more data flow analysis than llvm and will not
10456  * explore branches that are dead at run time. Malicious programs can
10457  * have dead code too. Therefore replace all dead at-run-time code
10458  * with 'ja -1'.
10459  *
10460  * Just nops are not optimal, e.g. if they would sit at the end of the
10461  * program and through another bug we would manage to jump there, then
10462  * we'd execute beyond program memory otherwise. Returning exception
10463  * code also wouldn't work since we can have subprogs where the dead
10464  * code could be located.
10465  */
10466 static void sanitize_dead_code(struct bpf_verifier_env *env)
10467 {
10468 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10469 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10470 	struct bpf_insn *insn = env->prog->insnsi;
10471 	const int insn_cnt = env->prog->len;
10472 	int i;
10473 
10474 	for (i = 0; i < insn_cnt; i++) {
10475 		if (aux_data[i].seen)
10476 			continue;
10477 		memcpy(insn + i, &trap, sizeof(trap));
10478 	}
10479 }
10480 
10481 static bool insn_is_cond_jump(u8 code)
10482 {
10483 	u8 op;
10484 
10485 	if (BPF_CLASS(code) == BPF_JMP32)
10486 		return true;
10487 
10488 	if (BPF_CLASS(code) != BPF_JMP)
10489 		return false;
10490 
10491 	op = BPF_OP(code);
10492 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10493 }
10494 
10495 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10496 {
10497 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10498 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10499 	struct bpf_insn *insn = env->prog->insnsi;
10500 	const int insn_cnt = env->prog->len;
10501 	int i;
10502 
10503 	for (i = 0; i < insn_cnt; i++, insn++) {
10504 		if (!insn_is_cond_jump(insn->code))
10505 			continue;
10506 
10507 		if (!aux_data[i + 1].seen)
10508 			ja.off = insn->off;
10509 		else if (!aux_data[i + 1 + insn->off].seen)
10510 			ja.off = 0;
10511 		else
10512 			continue;
10513 
10514 		if (bpf_prog_is_dev_bound(env->prog->aux))
10515 			bpf_prog_offload_replace_insn(env, i, &ja);
10516 
10517 		memcpy(insn, &ja, sizeof(ja));
10518 	}
10519 }
10520 
10521 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10522 {
10523 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10524 	int insn_cnt = env->prog->len;
10525 	int i, err;
10526 
10527 	for (i = 0; i < insn_cnt; i++) {
10528 		int j;
10529 
10530 		j = 0;
10531 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10532 			j++;
10533 		if (!j)
10534 			continue;
10535 
10536 		err = verifier_remove_insns(env, i, j);
10537 		if (err)
10538 			return err;
10539 		insn_cnt = env->prog->len;
10540 	}
10541 
10542 	return 0;
10543 }
10544 
10545 static int opt_remove_nops(struct bpf_verifier_env *env)
10546 {
10547 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10548 	struct bpf_insn *insn = env->prog->insnsi;
10549 	int insn_cnt = env->prog->len;
10550 	int i, err;
10551 
10552 	for (i = 0; i < insn_cnt; i++) {
10553 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10554 			continue;
10555 
10556 		err = verifier_remove_insns(env, i, 1);
10557 		if (err)
10558 			return err;
10559 		insn_cnt--;
10560 		i--;
10561 	}
10562 
10563 	return 0;
10564 }
10565 
10566 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10567 					 const union bpf_attr *attr)
10568 {
10569 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10570 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10571 	int i, patch_len, delta = 0, len = env->prog->len;
10572 	struct bpf_insn *insns = env->prog->insnsi;
10573 	struct bpf_prog *new_prog;
10574 	bool rnd_hi32;
10575 
10576 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10577 	zext_patch[1] = BPF_ZEXT_REG(0);
10578 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10579 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10580 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10581 	for (i = 0; i < len; i++) {
10582 		int adj_idx = i + delta;
10583 		struct bpf_insn insn;
10584 
10585 		insn = insns[adj_idx];
10586 		if (!aux[adj_idx].zext_dst) {
10587 			u8 code, class;
10588 			u32 imm_rnd;
10589 
10590 			if (!rnd_hi32)
10591 				continue;
10592 
10593 			code = insn.code;
10594 			class = BPF_CLASS(code);
10595 			if (insn_no_def(&insn))
10596 				continue;
10597 
10598 			/* NOTE: arg "reg" (the fourth one) is only used for
10599 			 *       BPF_STX which has been ruled out in above
10600 			 *       check, it is safe to pass NULL here.
10601 			 */
10602 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10603 				if (class == BPF_LD &&
10604 				    BPF_MODE(code) == BPF_IMM)
10605 					i++;
10606 				continue;
10607 			}
10608 
10609 			/* ctx load could be transformed into wider load. */
10610 			if (class == BPF_LDX &&
10611 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10612 				continue;
10613 
10614 			imm_rnd = get_random_int();
10615 			rnd_hi32_patch[0] = insn;
10616 			rnd_hi32_patch[1].imm = imm_rnd;
10617 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10618 			patch = rnd_hi32_patch;
10619 			patch_len = 4;
10620 			goto apply_patch_buffer;
10621 		}
10622 
10623 		if (!bpf_jit_needs_zext())
10624 			continue;
10625 
10626 		zext_patch[0] = insn;
10627 		zext_patch[1].dst_reg = insn.dst_reg;
10628 		zext_patch[1].src_reg = insn.dst_reg;
10629 		patch = zext_patch;
10630 		patch_len = 2;
10631 apply_patch_buffer:
10632 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10633 		if (!new_prog)
10634 			return -ENOMEM;
10635 		env->prog = new_prog;
10636 		insns = new_prog->insnsi;
10637 		aux = env->insn_aux_data;
10638 		delta += patch_len - 1;
10639 	}
10640 
10641 	return 0;
10642 }
10643 
10644 /* convert load instructions that access fields of a context type into a
10645  * sequence of instructions that access fields of the underlying structure:
10646  *     struct __sk_buff    -> struct sk_buff
10647  *     struct bpf_sock_ops -> struct sock
10648  */
10649 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10650 {
10651 	const struct bpf_verifier_ops *ops = env->ops;
10652 	int i, cnt, size, ctx_field_size, delta = 0;
10653 	const int insn_cnt = env->prog->len;
10654 	struct bpf_insn insn_buf[16], *insn;
10655 	u32 target_size, size_default, off;
10656 	struct bpf_prog *new_prog;
10657 	enum bpf_access_type type;
10658 	bool is_narrower_load;
10659 
10660 	if (ops->gen_prologue || env->seen_direct_write) {
10661 		if (!ops->gen_prologue) {
10662 			verbose(env, "bpf verifier is misconfigured\n");
10663 			return -EINVAL;
10664 		}
10665 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10666 					env->prog);
10667 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10668 			verbose(env, "bpf verifier is misconfigured\n");
10669 			return -EINVAL;
10670 		} else if (cnt) {
10671 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10672 			if (!new_prog)
10673 				return -ENOMEM;
10674 
10675 			env->prog = new_prog;
10676 			delta += cnt - 1;
10677 		}
10678 	}
10679 
10680 	if (bpf_prog_is_dev_bound(env->prog->aux))
10681 		return 0;
10682 
10683 	insn = env->prog->insnsi + delta;
10684 
10685 	for (i = 0; i < insn_cnt; i++, insn++) {
10686 		bpf_convert_ctx_access_t convert_ctx_access;
10687 
10688 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10689 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10690 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10691 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10692 			type = BPF_READ;
10693 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10694 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10695 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10696 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10697 			type = BPF_WRITE;
10698 		else
10699 			continue;
10700 
10701 		if (type == BPF_WRITE &&
10702 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10703 			struct bpf_insn patch[] = {
10704 				/* Sanitize suspicious stack slot with zero.
10705 				 * There are no memory dependencies for this store,
10706 				 * since it's only using frame pointer and immediate
10707 				 * constant of zero
10708 				 */
10709 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10710 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10711 					   0),
10712 				/* the original STX instruction will immediately
10713 				 * overwrite the same stack slot with appropriate value
10714 				 */
10715 				*insn,
10716 			};
10717 
10718 			cnt = ARRAY_SIZE(patch);
10719 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10720 			if (!new_prog)
10721 				return -ENOMEM;
10722 
10723 			delta    += cnt - 1;
10724 			env->prog = new_prog;
10725 			insn      = new_prog->insnsi + i + delta;
10726 			continue;
10727 		}
10728 
10729 		switch (env->insn_aux_data[i + delta].ptr_type) {
10730 		case PTR_TO_CTX:
10731 			if (!ops->convert_ctx_access)
10732 				continue;
10733 			convert_ctx_access = ops->convert_ctx_access;
10734 			break;
10735 		case PTR_TO_SOCKET:
10736 		case PTR_TO_SOCK_COMMON:
10737 			convert_ctx_access = bpf_sock_convert_ctx_access;
10738 			break;
10739 		case PTR_TO_TCP_SOCK:
10740 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10741 			break;
10742 		case PTR_TO_XDP_SOCK:
10743 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10744 			break;
10745 		case PTR_TO_BTF_ID:
10746 			if (type == BPF_READ) {
10747 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10748 					BPF_SIZE((insn)->code);
10749 				env->prog->aux->num_exentries++;
10750 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10751 				verbose(env, "Writes through BTF pointers are not allowed\n");
10752 				return -EINVAL;
10753 			}
10754 			continue;
10755 		default:
10756 			continue;
10757 		}
10758 
10759 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10760 		size = BPF_LDST_BYTES(insn);
10761 
10762 		/* If the read access is a narrower load of the field,
10763 		 * convert to a 4/8-byte load, to minimum program type specific
10764 		 * convert_ctx_access changes. If conversion is successful,
10765 		 * we will apply proper mask to the result.
10766 		 */
10767 		is_narrower_load = size < ctx_field_size;
10768 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10769 		off = insn->off;
10770 		if (is_narrower_load) {
10771 			u8 size_code;
10772 
10773 			if (type == BPF_WRITE) {
10774 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10775 				return -EINVAL;
10776 			}
10777 
10778 			size_code = BPF_H;
10779 			if (ctx_field_size == 4)
10780 				size_code = BPF_W;
10781 			else if (ctx_field_size == 8)
10782 				size_code = BPF_DW;
10783 
10784 			insn->off = off & ~(size_default - 1);
10785 			insn->code = BPF_LDX | BPF_MEM | size_code;
10786 		}
10787 
10788 		target_size = 0;
10789 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10790 					 &target_size);
10791 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10792 		    (ctx_field_size && !target_size)) {
10793 			verbose(env, "bpf verifier is misconfigured\n");
10794 			return -EINVAL;
10795 		}
10796 
10797 		if (is_narrower_load && size < target_size) {
10798 			u8 shift = bpf_ctx_narrow_access_offset(
10799 				off, size, size_default) * 8;
10800 			if (ctx_field_size <= 4) {
10801 				if (shift)
10802 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10803 									insn->dst_reg,
10804 									shift);
10805 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10806 								(1 << size * 8) - 1);
10807 			} else {
10808 				if (shift)
10809 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10810 									insn->dst_reg,
10811 									shift);
10812 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10813 								(1ULL << size * 8) - 1);
10814 			}
10815 		}
10816 
10817 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10818 		if (!new_prog)
10819 			return -ENOMEM;
10820 
10821 		delta += cnt - 1;
10822 
10823 		/* keep walking new program and skip insns we just inserted */
10824 		env->prog = new_prog;
10825 		insn      = new_prog->insnsi + i + delta;
10826 	}
10827 
10828 	return 0;
10829 }
10830 
10831 static int jit_subprogs(struct bpf_verifier_env *env)
10832 {
10833 	struct bpf_prog *prog = env->prog, **func, *tmp;
10834 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10835 	struct bpf_map *map_ptr;
10836 	struct bpf_insn *insn;
10837 	void *old_bpf_func;
10838 	int err, num_exentries;
10839 
10840 	if (env->subprog_cnt <= 1)
10841 		return 0;
10842 
10843 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10844 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10845 		    insn->src_reg != BPF_PSEUDO_CALL)
10846 			continue;
10847 		/* Upon error here we cannot fall back to interpreter but
10848 		 * need a hard reject of the program. Thus -EFAULT is
10849 		 * propagated in any case.
10850 		 */
10851 		subprog = find_subprog(env, i + insn->imm + 1);
10852 		if (subprog < 0) {
10853 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10854 				  i + insn->imm + 1);
10855 			return -EFAULT;
10856 		}
10857 		/* temporarily remember subprog id inside insn instead of
10858 		 * aux_data, since next loop will split up all insns into funcs
10859 		 */
10860 		insn->off = subprog;
10861 		/* remember original imm in case JIT fails and fallback
10862 		 * to interpreter will be needed
10863 		 */
10864 		env->insn_aux_data[i].call_imm = insn->imm;
10865 		/* point imm to __bpf_call_base+1 from JITs point of view */
10866 		insn->imm = 1;
10867 	}
10868 
10869 	err = bpf_prog_alloc_jited_linfo(prog);
10870 	if (err)
10871 		goto out_undo_insn;
10872 
10873 	err = -ENOMEM;
10874 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10875 	if (!func)
10876 		goto out_undo_insn;
10877 
10878 	for (i = 0; i < env->subprog_cnt; i++) {
10879 		subprog_start = subprog_end;
10880 		subprog_end = env->subprog_info[i + 1].start;
10881 
10882 		len = subprog_end - subprog_start;
10883 		/* BPF_PROG_RUN doesn't call subprogs directly,
10884 		 * hence main prog stats include the runtime of subprogs.
10885 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10886 		 * func[i]->aux->stats will never be accessed and stays NULL
10887 		 */
10888 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10889 		if (!func[i])
10890 			goto out_free;
10891 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10892 		       len * sizeof(struct bpf_insn));
10893 		func[i]->type = prog->type;
10894 		func[i]->len = len;
10895 		if (bpf_prog_calc_tag(func[i]))
10896 			goto out_free;
10897 		func[i]->is_func = 1;
10898 		func[i]->aux->func_idx = i;
10899 		/* the btf and func_info will be freed only at prog->aux */
10900 		func[i]->aux->btf = prog->aux->btf;
10901 		func[i]->aux->func_info = prog->aux->func_info;
10902 
10903 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10904 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10905 			int ret;
10906 
10907 			if (!(insn_idx >= subprog_start &&
10908 			      insn_idx <= subprog_end))
10909 				continue;
10910 
10911 			ret = bpf_jit_add_poke_descriptor(func[i],
10912 							  &prog->aux->poke_tab[j]);
10913 			if (ret < 0) {
10914 				verbose(env, "adding tail call poke descriptor failed\n");
10915 				goto out_free;
10916 			}
10917 
10918 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10919 
10920 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10921 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10922 			if (ret < 0) {
10923 				verbose(env, "tracking tail call prog failed\n");
10924 				goto out_free;
10925 			}
10926 		}
10927 
10928 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10929 		 * Long term would need debug info to populate names
10930 		 */
10931 		func[i]->aux->name[0] = 'F';
10932 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10933 		func[i]->jit_requested = 1;
10934 		func[i]->aux->linfo = prog->aux->linfo;
10935 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10936 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10937 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10938 		num_exentries = 0;
10939 		insn = func[i]->insnsi;
10940 		for (j = 0; j < func[i]->len; j++, insn++) {
10941 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10942 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10943 				num_exentries++;
10944 		}
10945 		func[i]->aux->num_exentries = num_exentries;
10946 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10947 		func[i] = bpf_int_jit_compile(func[i]);
10948 		if (!func[i]->jited) {
10949 			err = -ENOTSUPP;
10950 			goto out_free;
10951 		}
10952 		cond_resched();
10953 	}
10954 
10955 	/* Untrack main program's aux structs so that during map_poke_run()
10956 	 * we will not stumble upon the unfilled poke descriptors; each
10957 	 * of the main program's poke descs got distributed across subprogs
10958 	 * and got tracked onto map, so we are sure that none of them will
10959 	 * be missed after the operation below
10960 	 */
10961 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10962 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10963 
10964 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10965 	}
10966 
10967 	/* at this point all bpf functions were successfully JITed
10968 	 * now populate all bpf_calls with correct addresses and
10969 	 * run last pass of JIT
10970 	 */
10971 	for (i = 0; i < env->subprog_cnt; i++) {
10972 		insn = func[i]->insnsi;
10973 		for (j = 0; j < func[i]->len; j++, insn++) {
10974 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10975 			    insn->src_reg != BPF_PSEUDO_CALL)
10976 				continue;
10977 			subprog = insn->off;
10978 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10979 				    __bpf_call_base;
10980 		}
10981 
10982 		/* we use the aux data to keep a list of the start addresses
10983 		 * of the JITed images for each function in the program
10984 		 *
10985 		 * for some architectures, such as powerpc64, the imm field
10986 		 * might not be large enough to hold the offset of the start
10987 		 * address of the callee's JITed image from __bpf_call_base
10988 		 *
10989 		 * in such cases, we can lookup the start address of a callee
10990 		 * by using its subprog id, available from the off field of
10991 		 * the call instruction, as an index for this list
10992 		 */
10993 		func[i]->aux->func = func;
10994 		func[i]->aux->func_cnt = env->subprog_cnt;
10995 	}
10996 	for (i = 0; i < env->subprog_cnt; i++) {
10997 		old_bpf_func = func[i]->bpf_func;
10998 		tmp = bpf_int_jit_compile(func[i]);
10999 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11000 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11001 			err = -ENOTSUPP;
11002 			goto out_free;
11003 		}
11004 		cond_resched();
11005 	}
11006 
11007 	/* finally lock prog and jit images for all functions and
11008 	 * populate kallsysm
11009 	 */
11010 	for (i = 0; i < env->subprog_cnt; i++) {
11011 		bpf_prog_lock_ro(func[i]);
11012 		bpf_prog_kallsyms_add(func[i]);
11013 	}
11014 
11015 	/* Last step: make now unused interpreter insns from main
11016 	 * prog consistent for later dump requests, so they can
11017 	 * later look the same as if they were interpreted only.
11018 	 */
11019 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11020 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11021 		    insn->src_reg != BPF_PSEUDO_CALL)
11022 			continue;
11023 		insn->off = env->insn_aux_data[i].call_imm;
11024 		subprog = find_subprog(env, i + insn->off + 1);
11025 		insn->imm = subprog;
11026 	}
11027 
11028 	prog->jited = 1;
11029 	prog->bpf_func = func[0]->bpf_func;
11030 	prog->aux->func = func;
11031 	prog->aux->func_cnt = env->subprog_cnt;
11032 	bpf_prog_free_unused_jited_linfo(prog);
11033 	return 0;
11034 out_free:
11035 	for (i = 0; i < env->subprog_cnt; i++) {
11036 		if (!func[i])
11037 			continue;
11038 
11039 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11040 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11041 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11042 		}
11043 		bpf_jit_free(func[i]);
11044 	}
11045 	kfree(func);
11046 out_undo_insn:
11047 	/* cleanup main prog to be interpreted */
11048 	prog->jit_requested = 0;
11049 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11050 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11051 		    insn->src_reg != BPF_PSEUDO_CALL)
11052 			continue;
11053 		insn->off = 0;
11054 		insn->imm = env->insn_aux_data[i].call_imm;
11055 	}
11056 	bpf_prog_free_jited_linfo(prog);
11057 	return err;
11058 }
11059 
11060 static int fixup_call_args(struct bpf_verifier_env *env)
11061 {
11062 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11063 	struct bpf_prog *prog = env->prog;
11064 	struct bpf_insn *insn = prog->insnsi;
11065 	int i, depth;
11066 #endif
11067 	int err = 0;
11068 
11069 	if (env->prog->jit_requested &&
11070 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11071 		err = jit_subprogs(env);
11072 		if (err == 0)
11073 			return 0;
11074 		if (err == -EFAULT)
11075 			return err;
11076 	}
11077 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11078 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11079 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11080 		 * have to be rejected, since interpreter doesn't support them yet.
11081 		 */
11082 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11083 		return -EINVAL;
11084 	}
11085 	for (i = 0; i < prog->len; i++, insn++) {
11086 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11087 		    insn->src_reg != BPF_PSEUDO_CALL)
11088 			continue;
11089 		depth = get_callee_stack_depth(env, insn, i);
11090 		if (depth < 0)
11091 			return depth;
11092 		bpf_patch_call_args(insn, depth);
11093 	}
11094 	err = 0;
11095 #endif
11096 	return err;
11097 }
11098 
11099 /* fixup insn->imm field of bpf_call instructions
11100  * and inline eligible helpers as explicit sequence of BPF instructions
11101  *
11102  * this function is called after eBPF program passed verification
11103  */
11104 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11105 {
11106 	struct bpf_prog *prog = env->prog;
11107 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11108 	struct bpf_insn *insn = prog->insnsi;
11109 	const struct bpf_func_proto *fn;
11110 	const int insn_cnt = prog->len;
11111 	const struct bpf_map_ops *ops;
11112 	struct bpf_insn_aux_data *aux;
11113 	struct bpf_insn insn_buf[16];
11114 	struct bpf_prog *new_prog;
11115 	struct bpf_map *map_ptr;
11116 	int i, ret, cnt, delta = 0;
11117 
11118 	for (i = 0; i < insn_cnt; i++, insn++) {
11119 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11120 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11121 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11122 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11123 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11124 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11125 			struct bpf_insn *patchlet;
11126 			struct bpf_insn chk_and_div[] = {
11127 				/* Rx div 0 -> 0 */
11128 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11129 					     BPF_JNE | BPF_K, insn->src_reg,
11130 					     0, 2, 0),
11131 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11132 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11133 				*insn,
11134 			};
11135 			struct bpf_insn chk_and_mod[] = {
11136 				/* Rx mod 0 -> Rx */
11137 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11138 					     BPF_JEQ | BPF_K, insn->src_reg,
11139 					     0, 1, 0),
11140 				*insn,
11141 			};
11142 
11143 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11144 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11145 				      ARRAY_SIZE(chk_and_mod);
11146 
11147 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11148 			if (!new_prog)
11149 				return -ENOMEM;
11150 
11151 			delta    += cnt - 1;
11152 			env->prog = prog = new_prog;
11153 			insn      = new_prog->insnsi + i + delta;
11154 			continue;
11155 		}
11156 
11157 		if (BPF_CLASS(insn->code) == BPF_LD &&
11158 		    (BPF_MODE(insn->code) == BPF_ABS ||
11159 		     BPF_MODE(insn->code) == BPF_IND)) {
11160 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11161 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11162 				verbose(env, "bpf verifier is misconfigured\n");
11163 				return -EINVAL;
11164 			}
11165 
11166 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11167 			if (!new_prog)
11168 				return -ENOMEM;
11169 
11170 			delta    += cnt - 1;
11171 			env->prog = prog = new_prog;
11172 			insn      = new_prog->insnsi + i + delta;
11173 			continue;
11174 		}
11175 
11176 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11177 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11178 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11179 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11180 			struct bpf_insn insn_buf[16];
11181 			struct bpf_insn *patch = &insn_buf[0];
11182 			bool issrc, isneg;
11183 			u32 off_reg;
11184 
11185 			aux = &env->insn_aux_data[i + delta];
11186 			if (!aux->alu_state ||
11187 			    aux->alu_state == BPF_ALU_NON_POINTER)
11188 				continue;
11189 
11190 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11191 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11192 				BPF_ALU_SANITIZE_SRC;
11193 
11194 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11195 			if (isneg)
11196 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11197 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11198 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11199 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11200 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11201 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11202 			if (issrc) {
11203 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11204 							 off_reg);
11205 				insn->src_reg = BPF_REG_AX;
11206 			} else {
11207 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11208 							 BPF_REG_AX);
11209 			}
11210 			if (isneg)
11211 				insn->code = insn->code == code_add ?
11212 					     code_sub : code_add;
11213 			*patch++ = *insn;
11214 			if (issrc && isneg)
11215 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11216 			cnt = patch - insn_buf;
11217 
11218 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11219 			if (!new_prog)
11220 				return -ENOMEM;
11221 
11222 			delta    += cnt - 1;
11223 			env->prog = prog = new_prog;
11224 			insn      = new_prog->insnsi + i + delta;
11225 			continue;
11226 		}
11227 
11228 		if (insn->code != (BPF_JMP | BPF_CALL))
11229 			continue;
11230 		if (insn->src_reg == BPF_PSEUDO_CALL)
11231 			continue;
11232 
11233 		if (insn->imm == BPF_FUNC_get_route_realm)
11234 			prog->dst_needed = 1;
11235 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11236 			bpf_user_rnd_init_once();
11237 		if (insn->imm == BPF_FUNC_override_return)
11238 			prog->kprobe_override = 1;
11239 		if (insn->imm == BPF_FUNC_tail_call) {
11240 			/* If we tail call into other programs, we
11241 			 * cannot make any assumptions since they can
11242 			 * be replaced dynamically during runtime in
11243 			 * the program array.
11244 			 */
11245 			prog->cb_access = 1;
11246 			if (!allow_tail_call_in_subprogs(env))
11247 				prog->aux->stack_depth = MAX_BPF_STACK;
11248 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11249 
11250 			/* mark bpf_tail_call as different opcode to avoid
11251 			 * conditional branch in the interpeter for every normal
11252 			 * call and to prevent accidental JITing by JIT compiler
11253 			 * that doesn't support bpf_tail_call yet
11254 			 */
11255 			insn->imm = 0;
11256 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11257 
11258 			aux = &env->insn_aux_data[i + delta];
11259 			if (env->bpf_capable && !expect_blinding &&
11260 			    prog->jit_requested &&
11261 			    !bpf_map_key_poisoned(aux) &&
11262 			    !bpf_map_ptr_poisoned(aux) &&
11263 			    !bpf_map_ptr_unpriv(aux)) {
11264 				struct bpf_jit_poke_descriptor desc = {
11265 					.reason = BPF_POKE_REASON_TAIL_CALL,
11266 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11267 					.tail_call.key = bpf_map_key_immediate(aux),
11268 					.insn_idx = i + delta,
11269 				};
11270 
11271 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11272 				if (ret < 0) {
11273 					verbose(env, "adding tail call poke descriptor failed\n");
11274 					return ret;
11275 				}
11276 
11277 				insn->imm = ret + 1;
11278 				continue;
11279 			}
11280 
11281 			if (!bpf_map_ptr_unpriv(aux))
11282 				continue;
11283 
11284 			/* instead of changing every JIT dealing with tail_call
11285 			 * emit two extra insns:
11286 			 * if (index >= max_entries) goto out;
11287 			 * index &= array->index_mask;
11288 			 * to avoid out-of-bounds cpu speculation
11289 			 */
11290 			if (bpf_map_ptr_poisoned(aux)) {
11291 				verbose(env, "tail_call abusing map_ptr\n");
11292 				return -EINVAL;
11293 			}
11294 
11295 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11296 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11297 						  map_ptr->max_entries, 2);
11298 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11299 						    container_of(map_ptr,
11300 								 struct bpf_array,
11301 								 map)->index_mask);
11302 			insn_buf[2] = *insn;
11303 			cnt = 3;
11304 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11305 			if (!new_prog)
11306 				return -ENOMEM;
11307 
11308 			delta    += cnt - 1;
11309 			env->prog = prog = new_prog;
11310 			insn      = new_prog->insnsi + i + delta;
11311 			continue;
11312 		}
11313 
11314 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11315 		 * and other inlining handlers are currently limited to 64 bit
11316 		 * only.
11317 		 */
11318 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11319 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11320 		     insn->imm == BPF_FUNC_map_update_elem ||
11321 		     insn->imm == BPF_FUNC_map_delete_elem ||
11322 		     insn->imm == BPF_FUNC_map_push_elem   ||
11323 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11324 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11325 			aux = &env->insn_aux_data[i + delta];
11326 			if (bpf_map_ptr_poisoned(aux))
11327 				goto patch_call_imm;
11328 
11329 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11330 			ops = map_ptr->ops;
11331 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11332 			    ops->map_gen_lookup) {
11333 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11334 				if (cnt == -EOPNOTSUPP)
11335 					goto patch_map_ops_generic;
11336 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11337 					verbose(env, "bpf verifier is misconfigured\n");
11338 					return -EINVAL;
11339 				}
11340 
11341 				new_prog = bpf_patch_insn_data(env, i + delta,
11342 							       insn_buf, cnt);
11343 				if (!new_prog)
11344 					return -ENOMEM;
11345 
11346 				delta    += cnt - 1;
11347 				env->prog = prog = new_prog;
11348 				insn      = new_prog->insnsi + i + delta;
11349 				continue;
11350 			}
11351 
11352 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11353 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11354 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11355 				     (int (*)(struct bpf_map *map, void *key))NULL));
11356 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11357 				     (int (*)(struct bpf_map *map, void *key, void *value,
11358 					      u64 flags))NULL));
11359 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11360 				     (int (*)(struct bpf_map *map, void *value,
11361 					      u64 flags))NULL));
11362 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11363 				     (int (*)(struct bpf_map *map, void *value))NULL));
11364 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11365 				     (int (*)(struct bpf_map *map, void *value))NULL));
11366 patch_map_ops_generic:
11367 			switch (insn->imm) {
11368 			case BPF_FUNC_map_lookup_elem:
11369 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11370 					    __bpf_call_base;
11371 				continue;
11372 			case BPF_FUNC_map_update_elem:
11373 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11374 					    __bpf_call_base;
11375 				continue;
11376 			case BPF_FUNC_map_delete_elem:
11377 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11378 					    __bpf_call_base;
11379 				continue;
11380 			case BPF_FUNC_map_push_elem:
11381 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11382 					    __bpf_call_base;
11383 				continue;
11384 			case BPF_FUNC_map_pop_elem:
11385 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11386 					    __bpf_call_base;
11387 				continue;
11388 			case BPF_FUNC_map_peek_elem:
11389 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11390 					    __bpf_call_base;
11391 				continue;
11392 			}
11393 
11394 			goto patch_call_imm;
11395 		}
11396 
11397 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11398 		    insn->imm == BPF_FUNC_jiffies64) {
11399 			struct bpf_insn ld_jiffies_addr[2] = {
11400 				BPF_LD_IMM64(BPF_REG_0,
11401 					     (unsigned long)&jiffies),
11402 			};
11403 
11404 			insn_buf[0] = ld_jiffies_addr[0];
11405 			insn_buf[1] = ld_jiffies_addr[1];
11406 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11407 						  BPF_REG_0, 0);
11408 			cnt = 3;
11409 
11410 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11411 						       cnt);
11412 			if (!new_prog)
11413 				return -ENOMEM;
11414 
11415 			delta    += cnt - 1;
11416 			env->prog = prog = new_prog;
11417 			insn      = new_prog->insnsi + i + delta;
11418 			continue;
11419 		}
11420 
11421 patch_call_imm:
11422 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11423 		/* all functions that have prototype and verifier allowed
11424 		 * programs to call them, must be real in-kernel functions
11425 		 */
11426 		if (!fn->func) {
11427 			verbose(env,
11428 				"kernel subsystem misconfigured func %s#%d\n",
11429 				func_id_name(insn->imm), insn->imm);
11430 			return -EFAULT;
11431 		}
11432 		insn->imm = fn->func - __bpf_call_base;
11433 	}
11434 
11435 	/* Since poke tab is now finalized, publish aux to tracker. */
11436 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11437 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11438 		if (!map_ptr->ops->map_poke_track ||
11439 		    !map_ptr->ops->map_poke_untrack ||
11440 		    !map_ptr->ops->map_poke_run) {
11441 			verbose(env, "bpf verifier is misconfigured\n");
11442 			return -EINVAL;
11443 		}
11444 
11445 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11446 		if (ret < 0) {
11447 			verbose(env, "tracking tail call prog failed\n");
11448 			return ret;
11449 		}
11450 	}
11451 
11452 	return 0;
11453 }
11454 
11455 static void free_states(struct bpf_verifier_env *env)
11456 {
11457 	struct bpf_verifier_state_list *sl, *sln;
11458 	int i;
11459 
11460 	sl = env->free_list;
11461 	while (sl) {
11462 		sln = sl->next;
11463 		free_verifier_state(&sl->state, false);
11464 		kfree(sl);
11465 		sl = sln;
11466 	}
11467 	env->free_list = NULL;
11468 
11469 	if (!env->explored_states)
11470 		return;
11471 
11472 	for (i = 0; i < state_htab_size(env); i++) {
11473 		sl = env->explored_states[i];
11474 
11475 		while (sl) {
11476 			sln = sl->next;
11477 			free_verifier_state(&sl->state, false);
11478 			kfree(sl);
11479 			sl = sln;
11480 		}
11481 		env->explored_states[i] = NULL;
11482 	}
11483 }
11484 
11485 /* The verifier is using insn_aux_data[] to store temporary data during
11486  * verification and to store information for passes that run after the
11487  * verification like dead code sanitization. do_check_common() for subprogram N
11488  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11489  * temporary data after do_check_common() finds that subprogram N cannot be
11490  * verified independently. pass_cnt counts the number of times
11491  * do_check_common() was run and insn->aux->seen tells the pass number
11492  * insn_aux_data was touched. These variables are compared to clear temporary
11493  * data from failed pass. For testing and experiments do_check_common() can be
11494  * run multiple times even when prior attempt to verify is unsuccessful.
11495  */
11496 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11497 {
11498 	struct bpf_insn *insn = env->prog->insnsi;
11499 	struct bpf_insn_aux_data *aux;
11500 	int i, class;
11501 
11502 	for (i = 0; i < env->prog->len; i++) {
11503 		class = BPF_CLASS(insn[i].code);
11504 		if (class != BPF_LDX && class != BPF_STX)
11505 			continue;
11506 		aux = &env->insn_aux_data[i];
11507 		if (aux->seen != env->pass_cnt)
11508 			continue;
11509 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11510 	}
11511 }
11512 
11513 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11514 {
11515 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11516 	struct bpf_verifier_state *state;
11517 	struct bpf_reg_state *regs;
11518 	int ret, i;
11519 
11520 	env->prev_linfo = NULL;
11521 	env->pass_cnt++;
11522 
11523 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11524 	if (!state)
11525 		return -ENOMEM;
11526 	state->curframe = 0;
11527 	state->speculative = false;
11528 	state->branches = 1;
11529 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11530 	if (!state->frame[0]) {
11531 		kfree(state);
11532 		return -ENOMEM;
11533 	}
11534 	env->cur_state = state;
11535 	init_func_state(env, state->frame[0],
11536 			BPF_MAIN_FUNC /* callsite */,
11537 			0 /* frameno */,
11538 			subprog);
11539 
11540 	regs = state->frame[state->curframe]->regs;
11541 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11542 		ret = btf_prepare_func_args(env, subprog, regs);
11543 		if (ret)
11544 			goto out;
11545 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11546 			if (regs[i].type == PTR_TO_CTX)
11547 				mark_reg_known_zero(env, regs, i);
11548 			else if (regs[i].type == SCALAR_VALUE)
11549 				mark_reg_unknown(env, regs, i);
11550 		}
11551 	} else {
11552 		/* 1st arg to a function */
11553 		regs[BPF_REG_1].type = PTR_TO_CTX;
11554 		mark_reg_known_zero(env, regs, BPF_REG_1);
11555 		ret = btf_check_func_arg_match(env, subprog, regs);
11556 		if (ret == -EFAULT)
11557 			/* unlikely verifier bug. abort.
11558 			 * ret == 0 and ret < 0 are sadly acceptable for
11559 			 * main() function due to backward compatibility.
11560 			 * Like socket filter program may be written as:
11561 			 * int bpf_prog(struct pt_regs *ctx)
11562 			 * and never dereference that ctx in the program.
11563 			 * 'struct pt_regs' is a type mismatch for socket
11564 			 * filter that should be using 'struct __sk_buff'.
11565 			 */
11566 			goto out;
11567 	}
11568 
11569 	ret = do_check(env);
11570 out:
11571 	/* check for NULL is necessary, since cur_state can be freed inside
11572 	 * do_check() under memory pressure.
11573 	 */
11574 	if (env->cur_state) {
11575 		free_verifier_state(env->cur_state, true);
11576 		env->cur_state = NULL;
11577 	}
11578 	while (!pop_stack(env, NULL, NULL, false));
11579 	if (!ret && pop_log)
11580 		bpf_vlog_reset(&env->log, 0);
11581 	free_states(env);
11582 	if (ret)
11583 		/* clean aux data in case subprog was rejected */
11584 		sanitize_insn_aux_data(env);
11585 	return ret;
11586 }
11587 
11588 /* Verify all global functions in a BPF program one by one based on their BTF.
11589  * All global functions must pass verification. Otherwise the whole program is rejected.
11590  * Consider:
11591  * int bar(int);
11592  * int foo(int f)
11593  * {
11594  *    return bar(f);
11595  * }
11596  * int bar(int b)
11597  * {
11598  *    ...
11599  * }
11600  * foo() will be verified first for R1=any_scalar_value. During verification it
11601  * will be assumed that bar() already verified successfully and call to bar()
11602  * from foo() will be checked for type match only. Later bar() will be verified
11603  * independently to check that it's safe for R1=any_scalar_value.
11604  */
11605 static int do_check_subprogs(struct bpf_verifier_env *env)
11606 {
11607 	struct bpf_prog_aux *aux = env->prog->aux;
11608 	int i, ret;
11609 
11610 	if (!aux->func_info)
11611 		return 0;
11612 
11613 	for (i = 1; i < env->subprog_cnt; i++) {
11614 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11615 			continue;
11616 		env->insn_idx = env->subprog_info[i].start;
11617 		WARN_ON_ONCE(env->insn_idx == 0);
11618 		ret = do_check_common(env, i);
11619 		if (ret) {
11620 			return ret;
11621 		} else if (env->log.level & BPF_LOG_LEVEL) {
11622 			verbose(env,
11623 				"Func#%d is safe for any args that match its prototype\n",
11624 				i);
11625 		}
11626 	}
11627 	return 0;
11628 }
11629 
11630 static int do_check_main(struct bpf_verifier_env *env)
11631 {
11632 	int ret;
11633 
11634 	env->insn_idx = 0;
11635 	ret = do_check_common(env, 0);
11636 	if (!ret)
11637 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11638 	return ret;
11639 }
11640 
11641 
11642 static void print_verification_stats(struct bpf_verifier_env *env)
11643 {
11644 	int i;
11645 
11646 	if (env->log.level & BPF_LOG_STATS) {
11647 		verbose(env, "verification time %lld usec\n",
11648 			div_u64(env->verification_time, 1000));
11649 		verbose(env, "stack depth ");
11650 		for (i = 0; i < env->subprog_cnt; i++) {
11651 			u32 depth = env->subprog_info[i].stack_depth;
11652 
11653 			verbose(env, "%d", depth);
11654 			if (i + 1 < env->subprog_cnt)
11655 				verbose(env, "+");
11656 		}
11657 		verbose(env, "\n");
11658 	}
11659 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11660 		"total_states %d peak_states %d mark_read %d\n",
11661 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11662 		env->max_states_per_insn, env->total_states,
11663 		env->peak_states, env->longest_mark_read_walk);
11664 }
11665 
11666 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11667 {
11668 	const struct btf_type *t, *func_proto;
11669 	const struct bpf_struct_ops *st_ops;
11670 	const struct btf_member *member;
11671 	struct bpf_prog *prog = env->prog;
11672 	u32 btf_id, member_idx;
11673 	const char *mname;
11674 
11675 	btf_id = prog->aux->attach_btf_id;
11676 	st_ops = bpf_struct_ops_find(btf_id);
11677 	if (!st_ops) {
11678 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11679 			btf_id);
11680 		return -ENOTSUPP;
11681 	}
11682 
11683 	t = st_ops->type;
11684 	member_idx = prog->expected_attach_type;
11685 	if (member_idx >= btf_type_vlen(t)) {
11686 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11687 			member_idx, st_ops->name);
11688 		return -EINVAL;
11689 	}
11690 
11691 	member = &btf_type_member(t)[member_idx];
11692 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11693 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11694 					       NULL);
11695 	if (!func_proto) {
11696 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11697 			mname, member_idx, st_ops->name);
11698 		return -EINVAL;
11699 	}
11700 
11701 	if (st_ops->check_member) {
11702 		int err = st_ops->check_member(t, member);
11703 
11704 		if (err) {
11705 			verbose(env, "attach to unsupported member %s of struct %s\n",
11706 				mname, st_ops->name);
11707 			return err;
11708 		}
11709 	}
11710 
11711 	prog->aux->attach_func_proto = func_proto;
11712 	prog->aux->attach_func_name = mname;
11713 	env->ops = st_ops->verifier_ops;
11714 
11715 	return 0;
11716 }
11717 #define SECURITY_PREFIX "security_"
11718 
11719 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11720 {
11721 	if (within_error_injection_list(addr) ||
11722 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11723 		return 0;
11724 
11725 	return -EINVAL;
11726 }
11727 
11728 /* list of non-sleepable functions that are otherwise on
11729  * ALLOW_ERROR_INJECTION list
11730  */
11731 BTF_SET_START(btf_non_sleepable_error_inject)
11732 /* Three functions below can be called from sleepable and non-sleepable context.
11733  * Assume non-sleepable from bpf safety point of view.
11734  */
11735 BTF_ID(func, __add_to_page_cache_locked)
11736 BTF_ID(func, should_fail_alloc_page)
11737 BTF_ID(func, should_failslab)
11738 BTF_SET_END(btf_non_sleepable_error_inject)
11739 
11740 static int check_non_sleepable_error_inject(u32 btf_id)
11741 {
11742 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11743 }
11744 
11745 int bpf_check_attach_target(struct bpf_verifier_log *log,
11746 			    const struct bpf_prog *prog,
11747 			    const struct bpf_prog *tgt_prog,
11748 			    u32 btf_id,
11749 			    struct bpf_attach_target_info *tgt_info)
11750 {
11751 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11752 	const char prefix[] = "btf_trace_";
11753 	int ret = 0, subprog = -1, i;
11754 	const struct btf_type *t;
11755 	bool conservative = true;
11756 	const char *tname;
11757 	struct btf *btf;
11758 	long addr = 0;
11759 
11760 	if (!btf_id) {
11761 		bpf_log(log, "Tracing programs must provide btf_id\n");
11762 		return -EINVAL;
11763 	}
11764 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
11765 	if (!btf) {
11766 		bpf_log(log,
11767 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11768 		return -EINVAL;
11769 	}
11770 	t = btf_type_by_id(btf, btf_id);
11771 	if (!t) {
11772 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11773 		return -EINVAL;
11774 	}
11775 	tname = btf_name_by_offset(btf, t->name_off);
11776 	if (!tname) {
11777 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11778 		return -EINVAL;
11779 	}
11780 	if (tgt_prog) {
11781 		struct bpf_prog_aux *aux = tgt_prog->aux;
11782 
11783 		for (i = 0; i < aux->func_info_cnt; i++)
11784 			if (aux->func_info[i].type_id == btf_id) {
11785 				subprog = i;
11786 				break;
11787 			}
11788 		if (subprog == -1) {
11789 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
11790 			return -EINVAL;
11791 		}
11792 		conservative = aux->func_info_aux[subprog].unreliable;
11793 		if (prog_extension) {
11794 			if (conservative) {
11795 				bpf_log(log,
11796 					"Cannot replace static functions\n");
11797 				return -EINVAL;
11798 			}
11799 			if (!prog->jit_requested) {
11800 				bpf_log(log,
11801 					"Extension programs should be JITed\n");
11802 				return -EINVAL;
11803 			}
11804 		}
11805 		if (!tgt_prog->jited) {
11806 			bpf_log(log, "Can attach to only JITed progs\n");
11807 			return -EINVAL;
11808 		}
11809 		if (tgt_prog->type == prog->type) {
11810 			/* Cannot fentry/fexit another fentry/fexit program.
11811 			 * Cannot attach program extension to another extension.
11812 			 * It's ok to attach fentry/fexit to extension program.
11813 			 */
11814 			bpf_log(log, "Cannot recursively attach\n");
11815 			return -EINVAL;
11816 		}
11817 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11818 		    prog_extension &&
11819 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11820 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11821 			/* Program extensions can extend all program types
11822 			 * except fentry/fexit. The reason is the following.
11823 			 * The fentry/fexit programs are used for performance
11824 			 * analysis, stats and can be attached to any program
11825 			 * type except themselves. When extension program is
11826 			 * replacing XDP function it is necessary to allow
11827 			 * performance analysis of all functions. Both original
11828 			 * XDP program and its program extension. Hence
11829 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11830 			 * allowed. If extending of fentry/fexit was allowed it
11831 			 * would be possible to create long call chain
11832 			 * fentry->extension->fentry->extension beyond
11833 			 * reasonable stack size. Hence extending fentry is not
11834 			 * allowed.
11835 			 */
11836 			bpf_log(log, "Cannot extend fentry/fexit\n");
11837 			return -EINVAL;
11838 		}
11839 	} else {
11840 		if (prog_extension) {
11841 			bpf_log(log, "Cannot replace kernel functions\n");
11842 			return -EINVAL;
11843 		}
11844 	}
11845 
11846 	switch (prog->expected_attach_type) {
11847 	case BPF_TRACE_RAW_TP:
11848 		if (tgt_prog) {
11849 			bpf_log(log,
11850 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11851 			return -EINVAL;
11852 		}
11853 		if (!btf_type_is_typedef(t)) {
11854 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
11855 				btf_id);
11856 			return -EINVAL;
11857 		}
11858 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11859 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11860 				btf_id, tname);
11861 			return -EINVAL;
11862 		}
11863 		tname += sizeof(prefix) - 1;
11864 		t = btf_type_by_id(btf, t->type);
11865 		if (!btf_type_is_ptr(t))
11866 			/* should never happen in valid vmlinux build */
11867 			return -EINVAL;
11868 		t = btf_type_by_id(btf, t->type);
11869 		if (!btf_type_is_func_proto(t))
11870 			/* should never happen in valid vmlinux build */
11871 			return -EINVAL;
11872 
11873 		break;
11874 	case BPF_TRACE_ITER:
11875 		if (!btf_type_is_func(t)) {
11876 			bpf_log(log, "attach_btf_id %u is not a function\n",
11877 				btf_id);
11878 			return -EINVAL;
11879 		}
11880 		t = btf_type_by_id(btf, t->type);
11881 		if (!btf_type_is_func_proto(t))
11882 			return -EINVAL;
11883 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11884 		if (ret)
11885 			return ret;
11886 		break;
11887 	default:
11888 		if (!prog_extension)
11889 			return -EINVAL;
11890 		fallthrough;
11891 	case BPF_MODIFY_RETURN:
11892 	case BPF_LSM_MAC:
11893 	case BPF_TRACE_FENTRY:
11894 	case BPF_TRACE_FEXIT:
11895 		if (!btf_type_is_func(t)) {
11896 			bpf_log(log, "attach_btf_id %u is not a function\n",
11897 				btf_id);
11898 			return -EINVAL;
11899 		}
11900 		if (prog_extension &&
11901 		    btf_check_type_match(log, prog, btf, t))
11902 			return -EINVAL;
11903 		t = btf_type_by_id(btf, t->type);
11904 		if (!btf_type_is_func_proto(t))
11905 			return -EINVAL;
11906 
11907 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11908 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11909 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11910 			return -EINVAL;
11911 
11912 		if (tgt_prog && conservative)
11913 			t = NULL;
11914 
11915 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11916 		if (ret < 0)
11917 			return ret;
11918 
11919 		if (tgt_prog) {
11920 			if (subprog == 0)
11921 				addr = (long) tgt_prog->bpf_func;
11922 			else
11923 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11924 		} else {
11925 			addr = kallsyms_lookup_name(tname);
11926 			if (!addr) {
11927 				bpf_log(log,
11928 					"The address of function %s cannot be found\n",
11929 					tname);
11930 				return -ENOENT;
11931 			}
11932 		}
11933 
11934 		if (prog->aux->sleepable) {
11935 			ret = -EINVAL;
11936 			switch (prog->type) {
11937 			case BPF_PROG_TYPE_TRACING:
11938 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11939 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11940 				 */
11941 				if (!check_non_sleepable_error_inject(btf_id) &&
11942 				    within_error_injection_list(addr))
11943 					ret = 0;
11944 				break;
11945 			case BPF_PROG_TYPE_LSM:
11946 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11947 				 * Only some of them are sleepable.
11948 				 */
11949 				if (bpf_lsm_is_sleepable_hook(btf_id))
11950 					ret = 0;
11951 				break;
11952 			default:
11953 				break;
11954 			}
11955 			if (ret) {
11956 				bpf_log(log, "%s is not sleepable\n", tname);
11957 				return ret;
11958 			}
11959 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11960 			if (tgt_prog) {
11961 				bpf_log(log, "can't modify return codes of BPF programs\n");
11962 				return -EINVAL;
11963 			}
11964 			ret = check_attach_modify_return(addr, tname);
11965 			if (ret) {
11966 				bpf_log(log, "%s() is not modifiable\n", tname);
11967 				return ret;
11968 			}
11969 		}
11970 
11971 		break;
11972 	}
11973 	tgt_info->tgt_addr = addr;
11974 	tgt_info->tgt_name = tname;
11975 	tgt_info->tgt_type = t;
11976 	return 0;
11977 }
11978 
11979 static int check_attach_btf_id(struct bpf_verifier_env *env)
11980 {
11981 	struct bpf_prog *prog = env->prog;
11982 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11983 	struct bpf_attach_target_info tgt_info = {};
11984 	u32 btf_id = prog->aux->attach_btf_id;
11985 	struct bpf_trampoline *tr;
11986 	int ret;
11987 	u64 key;
11988 
11989 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11990 	    prog->type != BPF_PROG_TYPE_LSM) {
11991 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11992 		return -EINVAL;
11993 	}
11994 
11995 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11996 		return check_struct_ops_btf_id(env);
11997 
11998 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11999 	    prog->type != BPF_PROG_TYPE_LSM &&
12000 	    prog->type != BPF_PROG_TYPE_EXT)
12001 		return 0;
12002 
12003 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12004 	if (ret)
12005 		return ret;
12006 
12007 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12008 		/* to make freplace equivalent to their targets, they need to
12009 		 * inherit env->ops and expected_attach_type for the rest of the
12010 		 * verification
12011 		 */
12012 		env->ops = bpf_verifier_ops[tgt_prog->type];
12013 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12014 	}
12015 
12016 	/* store info about the attachment target that will be used later */
12017 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12018 	prog->aux->attach_func_name = tgt_info.tgt_name;
12019 
12020 	if (tgt_prog) {
12021 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12022 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12023 	}
12024 
12025 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12026 		prog->aux->attach_btf_trace = true;
12027 		return 0;
12028 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12029 		if (!bpf_iter_prog_supported(prog))
12030 			return -EINVAL;
12031 		return 0;
12032 	}
12033 
12034 	if (prog->type == BPF_PROG_TYPE_LSM) {
12035 		ret = bpf_lsm_verify_prog(&env->log, prog);
12036 		if (ret < 0)
12037 			return ret;
12038 	}
12039 
12040 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12041 	tr = bpf_trampoline_get(key, &tgt_info);
12042 	if (!tr)
12043 		return -ENOMEM;
12044 
12045 	prog->aux->dst_trampoline = tr;
12046 	return 0;
12047 }
12048 
12049 struct btf *bpf_get_btf_vmlinux(void)
12050 {
12051 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12052 		mutex_lock(&bpf_verifier_lock);
12053 		if (!btf_vmlinux)
12054 			btf_vmlinux = btf_parse_vmlinux();
12055 		mutex_unlock(&bpf_verifier_lock);
12056 	}
12057 	return btf_vmlinux;
12058 }
12059 
12060 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12061 	      union bpf_attr __user *uattr)
12062 {
12063 	u64 start_time = ktime_get_ns();
12064 	struct bpf_verifier_env *env;
12065 	struct bpf_verifier_log *log;
12066 	int i, len, ret = -EINVAL;
12067 	bool is_priv;
12068 
12069 	/* no program is valid */
12070 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12071 		return -EINVAL;
12072 
12073 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12074 	 * allocate/free it every time bpf_check() is called
12075 	 */
12076 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12077 	if (!env)
12078 		return -ENOMEM;
12079 	log = &env->log;
12080 
12081 	len = (*prog)->len;
12082 	env->insn_aux_data =
12083 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12084 	ret = -ENOMEM;
12085 	if (!env->insn_aux_data)
12086 		goto err_free_env;
12087 	for (i = 0; i < len; i++)
12088 		env->insn_aux_data[i].orig_idx = i;
12089 	env->prog = *prog;
12090 	env->ops = bpf_verifier_ops[env->prog->type];
12091 	is_priv = bpf_capable();
12092 
12093 	bpf_get_btf_vmlinux();
12094 
12095 	/* grab the mutex to protect few globals used by verifier */
12096 	if (!is_priv)
12097 		mutex_lock(&bpf_verifier_lock);
12098 
12099 	if (attr->log_level || attr->log_buf || attr->log_size) {
12100 		/* user requested verbose verifier output
12101 		 * and supplied buffer to store the verification trace
12102 		 */
12103 		log->level = attr->log_level;
12104 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12105 		log->len_total = attr->log_size;
12106 
12107 		ret = -EINVAL;
12108 		/* log attributes have to be sane */
12109 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12110 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12111 			goto err_unlock;
12112 	}
12113 
12114 	if (IS_ERR(btf_vmlinux)) {
12115 		/* Either gcc or pahole or kernel are broken. */
12116 		verbose(env, "in-kernel BTF is malformed\n");
12117 		ret = PTR_ERR(btf_vmlinux);
12118 		goto skip_full_check;
12119 	}
12120 
12121 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12122 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12123 		env->strict_alignment = true;
12124 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12125 		env->strict_alignment = false;
12126 
12127 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12128 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12129 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12130 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12131 	env->bpf_capable = bpf_capable();
12132 
12133 	if (is_priv)
12134 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12135 
12136 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12137 		ret = bpf_prog_offload_verifier_prep(env->prog);
12138 		if (ret)
12139 			goto skip_full_check;
12140 	}
12141 
12142 	env->explored_states = kvcalloc(state_htab_size(env),
12143 				       sizeof(struct bpf_verifier_state_list *),
12144 				       GFP_USER);
12145 	ret = -ENOMEM;
12146 	if (!env->explored_states)
12147 		goto skip_full_check;
12148 
12149 	ret = check_subprogs(env);
12150 	if (ret < 0)
12151 		goto skip_full_check;
12152 
12153 	ret = check_btf_info(env, attr, uattr);
12154 	if (ret < 0)
12155 		goto skip_full_check;
12156 
12157 	ret = check_attach_btf_id(env);
12158 	if (ret)
12159 		goto skip_full_check;
12160 
12161 	ret = resolve_pseudo_ldimm64(env);
12162 	if (ret < 0)
12163 		goto skip_full_check;
12164 
12165 	ret = check_cfg(env);
12166 	if (ret < 0)
12167 		goto skip_full_check;
12168 
12169 	ret = do_check_subprogs(env);
12170 	ret = ret ?: do_check_main(env);
12171 
12172 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12173 		ret = bpf_prog_offload_finalize(env);
12174 
12175 skip_full_check:
12176 	kvfree(env->explored_states);
12177 
12178 	if (ret == 0)
12179 		ret = check_max_stack_depth(env);
12180 
12181 	/* instruction rewrites happen after this point */
12182 	if (is_priv) {
12183 		if (ret == 0)
12184 			opt_hard_wire_dead_code_branches(env);
12185 		if (ret == 0)
12186 			ret = opt_remove_dead_code(env);
12187 		if (ret == 0)
12188 			ret = opt_remove_nops(env);
12189 	} else {
12190 		if (ret == 0)
12191 			sanitize_dead_code(env);
12192 	}
12193 
12194 	if (ret == 0)
12195 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12196 		ret = convert_ctx_accesses(env);
12197 
12198 	if (ret == 0)
12199 		ret = fixup_bpf_calls(env);
12200 
12201 	/* do 32-bit optimization after insn patching has done so those patched
12202 	 * insns could be handled correctly.
12203 	 */
12204 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12205 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12206 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12207 								     : false;
12208 	}
12209 
12210 	if (ret == 0)
12211 		ret = fixup_call_args(env);
12212 
12213 	env->verification_time = ktime_get_ns() - start_time;
12214 	print_verification_stats(env);
12215 
12216 	if (log->level && bpf_verifier_log_full(log))
12217 		ret = -ENOSPC;
12218 	if (log->level && !log->ubuf) {
12219 		ret = -EFAULT;
12220 		goto err_release_maps;
12221 	}
12222 
12223 	if (ret)
12224 		goto err_release_maps;
12225 
12226 	if (env->used_map_cnt) {
12227 		/* if program passed verifier, update used_maps in bpf_prog_info */
12228 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12229 							  sizeof(env->used_maps[0]),
12230 							  GFP_KERNEL);
12231 
12232 		if (!env->prog->aux->used_maps) {
12233 			ret = -ENOMEM;
12234 			goto err_release_maps;
12235 		}
12236 
12237 		memcpy(env->prog->aux->used_maps, env->used_maps,
12238 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12239 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12240 	}
12241 	if (env->used_btf_cnt) {
12242 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12243 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12244 							  sizeof(env->used_btfs[0]),
12245 							  GFP_KERNEL);
12246 		if (!env->prog->aux->used_btfs) {
12247 			ret = -ENOMEM;
12248 			goto err_release_maps;
12249 		}
12250 
12251 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12252 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12253 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12254 	}
12255 	if (env->used_map_cnt || env->used_btf_cnt) {
12256 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12257 		 * bpf_ld_imm64 instructions
12258 		 */
12259 		convert_pseudo_ld_imm64(env);
12260 	}
12261 
12262 	adjust_btf_func(env);
12263 
12264 err_release_maps:
12265 	if (!env->prog->aux->used_maps)
12266 		/* if we didn't copy map pointers into bpf_prog_info, release
12267 		 * them now. Otherwise free_used_maps() will release them.
12268 		 */
12269 		release_maps(env);
12270 	if (!env->prog->aux->used_btfs)
12271 		release_btfs(env);
12272 
12273 	/* extension progs temporarily inherit the attach_type of their targets
12274 	   for verification purposes, so set it back to zero before returning
12275 	 */
12276 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12277 		env->prog->expected_attach_type = 0;
12278 
12279 	*prog = env->prog;
12280 err_unlock:
12281 	if (!is_priv)
12282 		mutex_unlock(&bpf_verifier_lock);
12283 	vfree(env->insn_aux_data);
12284 err_free_env:
12285 	kfree(env);
12286 	return ret;
12287 }
12288