1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 }; 266 267 struct btf *btf_vmlinux; 268 269 static DEFINE_MUTEX(bpf_verifier_lock); 270 271 static const struct bpf_line_info * 272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 273 { 274 const struct bpf_line_info *linfo; 275 const struct bpf_prog *prog; 276 u32 i, nr_linfo; 277 278 prog = env->prog; 279 nr_linfo = prog->aux->nr_linfo; 280 281 if (!nr_linfo || insn_off >= prog->len) 282 return NULL; 283 284 linfo = prog->aux->linfo; 285 for (i = 1; i < nr_linfo; i++) 286 if (insn_off < linfo[i].insn_off) 287 break; 288 289 return &linfo[i - 1]; 290 } 291 292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 293 va_list args) 294 { 295 unsigned int n; 296 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 298 299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 300 "verifier log line truncated - local buffer too short\n"); 301 302 n = min(log->len_total - log->len_used - 1, n); 303 log->kbuf[n] = '\0'; 304 305 if (log->level == BPF_LOG_KERNEL) { 306 pr_err("BPF:%s\n", log->kbuf); 307 return; 308 } 309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 310 log->len_used += n; 311 else 312 log->ubuf = NULL; 313 } 314 315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 316 { 317 char zero = 0; 318 319 if (!bpf_verifier_log_needed(log)) 320 return; 321 322 log->len_used = new_pos; 323 if (put_user(zero, log->ubuf + new_pos)) 324 log->ubuf = NULL; 325 } 326 327 /* log_level controls verbosity level of eBPF verifier. 328 * bpf_verifier_log_write() is used to dump the verification trace to the log, 329 * so the user can figure out what's wrong with the program 330 */ 331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 332 const char *fmt, ...) 333 { 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 344 345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 346 { 347 struct bpf_verifier_env *env = private_data; 348 va_list args; 349 350 if (!bpf_verifier_log_needed(&env->log)) 351 return; 352 353 va_start(args, fmt); 354 bpf_verifier_vlog(&env->log, fmt, args); 355 va_end(args); 356 } 357 358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 359 const char *fmt, ...) 360 { 361 va_list args; 362 363 if (!bpf_verifier_log_needed(log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(log, fmt, args); 368 va_end(args); 369 } 370 371 static const char *ltrim(const char *s) 372 { 373 while (isspace(*s)) 374 s++; 375 376 return s; 377 } 378 379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 380 u32 insn_off, 381 const char *prefix_fmt, ...) 382 { 383 const struct bpf_line_info *linfo; 384 385 if (!bpf_verifier_log_needed(&env->log)) 386 return; 387 388 linfo = find_linfo(env, insn_off); 389 if (!linfo || linfo == env->prev_linfo) 390 return; 391 392 if (prefix_fmt) { 393 va_list args; 394 395 va_start(args, prefix_fmt); 396 bpf_verifier_vlog(&env->log, prefix_fmt, args); 397 va_end(args); 398 } 399 400 verbose(env, "%s\n", 401 ltrim(btf_name_by_offset(env->prog->aux->btf, 402 linfo->line_off))); 403 404 env->prev_linfo = linfo; 405 } 406 407 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 408 struct bpf_reg_state *reg, 409 struct tnum *range, const char *ctx, 410 const char *reg_name) 411 { 412 char tn_buf[48]; 413 414 verbose(env, "At %s the register %s ", ctx, reg_name); 415 if (!tnum_is_unknown(reg->var_off)) { 416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 417 verbose(env, "has value %s", tn_buf); 418 } else { 419 verbose(env, "has unknown scalar value"); 420 } 421 tnum_strn(tn_buf, sizeof(tn_buf), *range); 422 verbose(env, " should have been in %s\n", tn_buf); 423 } 424 425 static bool type_is_pkt_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_PACKET || 428 type == PTR_TO_PACKET_META; 429 } 430 431 static bool type_is_sk_pointer(enum bpf_reg_type type) 432 { 433 return type == PTR_TO_SOCKET || 434 type == PTR_TO_SOCK_COMMON || 435 type == PTR_TO_TCP_SOCK || 436 type == PTR_TO_XDP_SOCK; 437 } 438 439 static bool reg_type_not_null(enum bpf_reg_type type) 440 { 441 return type == PTR_TO_SOCKET || 442 type == PTR_TO_TCP_SOCK || 443 type == PTR_TO_MAP_VALUE || 444 type == PTR_TO_MAP_KEY || 445 type == PTR_TO_SOCK_COMMON; 446 } 447 448 static bool reg_type_may_be_null(enum bpf_reg_type type) 449 { 450 return type == PTR_TO_MAP_VALUE_OR_NULL || 451 type == PTR_TO_SOCKET_OR_NULL || 452 type == PTR_TO_SOCK_COMMON_OR_NULL || 453 type == PTR_TO_TCP_SOCK_OR_NULL || 454 type == PTR_TO_BTF_ID_OR_NULL || 455 type == PTR_TO_MEM_OR_NULL || 456 type == PTR_TO_RDONLY_BUF_OR_NULL || 457 type == PTR_TO_RDWR_BUF_OR_NULL; 458 } 459 460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 461 { 462 return reg->type == PTR_TO_MAP_VALUE && 463 map_value_has_spin_lock(reg->map_ptr); 464 } 465 466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 467 { 468 return type == PTR_TO_SOCKET || 469 type == PTR_TO_SOCKET_OR_NULL || 470 type == PTR_TO_TCP_SOCK || 471 type == PTR_TO_TCP_SOCK_OR_NULL || 472 type == PTR_TO_MEM || 473 type == PTR_TO_MEM_OR_NULL; 474 } 475 476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 477 { 478 return type == ARG_PTR_TO_SOCK_COMMON; 479 } 480 481 static bool arg_type_may_be_null(enum bpf_arg_type type) 482 { 483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 484 type == ARG_PTR_TO_MEM_OR_NULL || 485 type == ARG_PTR_TO_CTX_OR_NULL || 486 type == ARG_PTR_TO_SOCKET_OR_NULL || 487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 488 type == ARG_PTR_TO_STACK_OR_NULL; 489 } 490 491 /* Determine whether the function releases some resources allocated by another 492 * function call. The first reference type argument will be assumed to be 493 * released by release_reference(). 494 */ 495 static bool is_release_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_sk_release || 498 func_id == BPF_FUNC_ringbuf_submit || 499 func_id == BPF_FUNC_ringbuf_discard; 500 } 501 502 static bool may_be_acquire_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_map_lookup_elem || 508 func_id == BPF_FUNC_ringbuf_reserve; 509 } 510 511 static bool is_acquire_function(enum bpf_func_id func_id, 512 const struct bpf_map *map) 513 { 514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 515 516 if (func_id == BPF_FUNC_sk_lookup_tcp || 517 func_id == BPF_FUNC_sk_lookup_udp || 518 func_id == BPF_FUNC_skc_lookup_tcp || 519 func_id == BPF_FUNC_ringbuf_reserve) 520 return true; 521 522 if (func_id == BPF_FUNC_map_lookup_elem && 523 (map_type == BPF_MAP_TYPE_SOCKMAP || 524 map_type == BPF_MAP_TYPE_SOCKHASH)) 525 return true; 526 527 return false; 528 } 529 530 static bool is_ptr_cast_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_tcp_sock || 533 func_id == BPF_FUNC_sk_fullsock || 534 func_id == BPF_FUNC_skc_to_tcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp6_sock || 536 func_id == BPF_FUNC_skc_to_udp6_sock || 537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 538 func_id == BPF_FUNC_skc_to_tcp_request_sock; 539 } 540 541 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 542 { 543 return BPF_CLASS(insn->code) == BPF_STX && 544 BPF_MODE(insn->code) == BPF_ATOMIC && 545 insn->imm == BPF_CMPXCHG; 546 } 547 548 /* string representation of 'enum bpf_reg_type' */ 549 static const char * const reg_type_str[] = { 550 [NOT_INIT] = "?", 551 [SCALAR_VALUE] = "inv", 552 [PTR_TO_CTX] = "ctx", 553 [CONST_PTR_TO_MAP] = "map_ptr", 554 [PTR_TO_MAP_VALUE] = "map_value", 555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 556 [PTR_TO_STACK] = "fp", 557 [PTR_TO_PACKET] = "pkt", 558 [PTR_TO_PACKET_META] = "pkt_meta", 559 [PTR_TO_PACKET_END] = "pkt_end", 560 [PTR_TO_FLOW_KEYS] = "flow_keys", 561 [PTR_TO_SOCKET] = "sock", 562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 563 [PTR_TO_SOCK_COMMON] = "sock_common", 564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 565 [PTR_TO_TCP_SOCK] = "tcp_sock", 566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 567 [PTR_TO_TP_BUFFER] = "tp_buffer", 568 [PTR_TO_XDP_SOCK] = "xdp_sock", 569 [PTR_TO_BTF_ID] = "ptr_", 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 572 [PTR_TO_MEM] = "mem", 573 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 574 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 576 [PTR_TO_RDWR_BUF] = "rdwr_buf", 577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 578 [PTR_TO_FUNC] = "func", 579 [PTR_TO_MAP_KEY] = "map_key", 580 }; 581 582 static char slot_type_char[] = { 583 [STACK_INVALID] = '?', 584 [STACK_SPILL] = 'r', 585 [STACK_MISC] = 'm', 586 [STACK_ZERO] = '0', 587 }; 588 589 static void print_liveness(struct bpf_verifier_env *env, 590 enum bpf_reg_liveness live) 591 { 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 593 verbose(env, "_"); 594 if (live & REG_LIVE_READ) 595 verbose(env, "r"); 596 if (live & REG_LIVE_WRITTEN) 597 verbose(env, "w"); 598 if (live & REG_LIVE_DONE) 599 verbose(env, "D"); 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static const char *kernel_type_name(const struct btf* btf, u32 id) 611 { 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 613 } 614 615 /* The reg state of a pointer or a bounded scalar was saved when 616 * it was spilled to the stack. 617 */ 618 static bool is_spilled_reg(const struct bpf_stack_state *stack) 619 { 620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 621 } 622 623 static void scrub_spilled_slot(u8 *stype) 624 { 625 if (*stype != STACK_INVALID) 626 *stype = STACK_MISC; 627 } 628 629 static void print_verifier_state(struct bpf_verifier_env *env, 630 const struct bpf_func_state *state) 631 { 632 const struct bpf_reg_state *reg; 633 enum bpf_reg_type t; 634 int i; 635 636 if (state->frameno) 637 verbose(env, " frame%d:", state->frameno); 638 for (i = 0; i < MAX_BPF_REG; i++) { 639 reg = &state->regs[i]; 640 t = reg->type; 641 if (t == NOT_INIT) 642 continue; 643 verbose(env, " R%d", i); 644 print_liveness(env, reg->live); 645 verbose(env, "=%s", reg_type_str[t]); 646 if (t == SCALAR_VALUE && reg->precise) 647 verbose(env, "P"); 648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 649 tnum_is_const(reg->var_off)) { 650 /* reg->off should be 0 for SCALAR_VALUE */ 651 verbose(env, "%lld", reg->var_off.value + reg->off); 652 } else { 653 if (t == PTR_TO_BTF_ID || 654 t == PTR_TO_BTF_ID_OR_NULL || 655 t == PTR_TO_PERCPU_BTF_ID) 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 657 verbose(env, "(id=%d", reg->id); 658 if (reg_type_may_be_refcounted_or_null(t)) 659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 660 if (t != SCALAR_VALUE) 661 verbose(env, ",off=%d", reg->off); 662 if (type_is_pkt_pointer(t)) 663 verbose(env, ",r=%d", reg->range); 664 else if (t == CONST_PTR_TO_MAP || 665 t == PTR_TO_MAP_KEY || 666 t == PTR_TO_MAP_VALUE || 667 t == PTR_TO_MAP_VALUE_OR_NULL) 668 verbose(env, ",ks=%d,vs=%d", 669 reg->map_ptr->key_size, 670 reg->map_ptr->value_size); 671 if (tnum_is_const(reg->var_off)) { 672 /* Typically an immediate SCALAR_VALUE, but 673 * could be a pointer whose offset is too big 674 * for reg->off 675 */ 676 verbose(env, ",imm=%llx", reg->var_off.value); 677 } else { 678 if (reg->smin_value != reg->umin_value && 679 reg->smin_value != S64_MIN) 680 verbose(env, ",smin_value=%lld", 681 (long long)reg->smin_value); 682 if (reg->smax_value != reg->umax_value && 683 reg->smax_value != S64_MAX) 684 verbose(env, ",smax_value=%lld", 685 (long long)reg->smax_value); 686 if (reg->umin_value != 0) 687 verbose(env, ",umin_value=%llu", 688 (unsigned long long)reg->umin_value); 689 if (reg->umax_value != U64_MAX) 690 verbose(env, ",umax_value=%llu", 691 (unsigned long long)reg->umax_value); 692 if (!tnum_is_unknown(reg->var_off)) { 693 char tn_buf[48]; 694 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 696 verbose(env, ",var_off=%s", tn_buf); 697 } 698 if (reg->s32_min_value != reg->smin_value && 699 reg->s32_min_value != S32_MIN) 700 verbose(env, ",s32_min_value=%d", 701 (int)(reg->s32_min_value)); 702 if (reg->s32_max_value != reg->smax_value && 703 reg->s32_max_value != S32_MAX) 704 verbose(env, ",s32_max_value=%d", 705 (int)(reg->s32_max_value)); 706 if (reg->u32_min_value != reg->umin_value && 707 reg->u32_min_value != U32_MIN) 708 verbose(env, ",u32_min_value=%d", 709 (int)(reg->u32_min_value)); 710 if (reg->u32_max_value != reg->umax_value && 711 reg->u32_max_value != U32_MAX) 712 verbose(env, ",u32_max_value=%d", 713 (int)(reg->u32_max_value)); 714 } 715 verbose(env, ")"); 716 } 717 } 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 719 char types_buf[BPF_REG_SIZE + 1]; 720 bool valid = false; 721 int j; 722 723 for (j = 0; j < BPF_REG_SIZE; j++) { 724 if (state->stack[i].slot_type[j] != STACK_INVALID) 725 valid = true; 726 types_buf[j] = slot_type_char[ 727 state->stack[i].slot_type[j]]; 728 } 729 types_buf[BPF_REG_SIZE] = 0; 730 if (!valid) 731 continue; 732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 733 print_liveness(env, state->stack[i].spilled_ptr.live); 734 if (is_spilled_reg(&state->stack[i])) { 735 reg = &state->stack[i].spilled_ptr; 736 t = reg->type; 737 verbose(env, "=%s", reg_type_str[t]); 738 if (t == SCALAR_VALUE && reg->precise) 739 verbose(env, "P"); 740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 741 verbose(env, "%lld", reg->var_off.value + reg->off); 742 } else { 743 verbose(env, "=%s", types_buf); 744 } 745 } 746 if (state->acquired_refs && state->refs[0].id) { 747 verbose(env, " refs=%d", state->refs[0].id); 748 for (i = 1; i < state->acquired_refs; i++) 749 if (state->refs[i].id) 750 verbose(env, ",%d", state->refs[i].id); 751 } 752 if (state->in_callback_fn) 753 verbose(env, " cb"); 754 if (state->in_async_callback_fn) 755 verbose(env, " async_cb"); 756 verbose(env, "\n"); 757 } 758 759 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 760 * small to hold src. This is different from krealloc since we don't want to preserve 761 * the contents of dst. 762 * 763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 764 * not be allocated. 765 */ 766 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 767 { 768 size_t bytes; 769 770 if (ZERO_OR_NULL_PTR(src)) 771 goto out; 772 773 if (unlikely(check_mul_overflow(n, size, &bytes))) 774 return NULL; 775 776 if (ksize(dst) < bytes) { 777 kfree(dst); 778 dst = kmalloc_track_caller(bytes, flags); 779 if (!dst) 780 return NULL; 781 } 782 783 memcpy(dst, src, bytes); 784 out: 785 return dst ? dst : ZERO_SIZE_PTR; 786 } 787 788 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 789 * small to hold new_n items. new items are zeroed out if the array grows. 790 * 791 * Contrary to krealloc_array, does not free arr if new_n is zero. 792 */ 793 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 794 { 795 if (!new_n || old_n == new_n) 796 goto out; 797 798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 799 if (!arr) 800 return NULL; 801 802 if (new_n > old_n) 803 memset(arr + old_n * size, 0, (new_n - old_n) * size); 804 805 out: 806 return arr ? arr : ZERO_SIZE_PTR; 807 } 808 809 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 810 { 811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 812 sizeof(struct bpf_reference_state), GFP_KERNEL); 813 if (!dst->refs) 814 return -ENOMEM; 815 816 dst->acquired_refs = src->acquired_refs; 817 return 0; 818 } 819 820 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 821 { 822 size_t n = src->allocated_stack / BPF_REG_SIZE; 823 824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 825 GFP_KERNEL); 826 if (!dst->stack) 827 return -ENOMEM; 828 829 dst->allocated_stack = src->allocated_stack; 830 return 0; 831 } 832 833 static int resize_reference_state(struct bpf_func_state *state, size_t n) 834 { 835 state->refs = realloc_array(state->refs, state->acquired_refs, n, 836 sizeof(struct bpf_reference_state)); 837 if (!state->refs) 838 return -ENOMEM; 839 840 state->acquired_refs = n; 841 return 0; 842 } 843 844 static int grow_stack_state(struct bpf_func_state *state, int size) 845 { 846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 847 848 if (old_n >= n) 849 return 0; 850 851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 852 if (!state->stack) 853 return -ENOMEM; 854 855 state->allocated_stack = size; 856 return 0; 857 } 858 859 /* Acquire a pointer id from the env and update the state->refs to include 860 * this new pointer reference. 861 * On success, returns a valid pointer id to associate with the register 862 * On failure, returns a negative errno. 863 */ 864 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 865 { 866 struct bpf_func_state *state = cur_func(env); 867 int new_ofs = state->acquired_refs; 868 int id, err; 869 870 err = resize_reference_state(state, state->acquired_refs + 1); 871 if (err) 872 return err; 873 id = ++env->id_gen; 874 state->refs[new_ofs].id = id; 875 state->refs[new_ofs].insn_idx = insn_idx; 876 877 return id; 878 } 879 880 /* release function corresponding to acquire_reference_state(). Idempotent. */ 881 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 882 { 883 int i, last_idx; 884 885 last_idx = state->acquired_refs - 1; 886 for (i = 0; i < state->acquired_refs; i++) { 887 if (state->refs[i].id == ptr_id) { 888 if (last_idx && i != last_idx) 889 memcpy(&state->refs[i], &state->refs[last_idx], 890 sizeof(*state->refs)); 891 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 892 state->acquired_refs--; 893 return 0; 894 } 895 } 896 return -EINVAL; 897 } 898 899 static void free_func_state(struct bpf_func_state *state) 900 { 901 if (!state) 902 return; 903 kfree(state->refs); 904 kfree(state->stack); 905 kfree(state); 906 } 907 908 static void clear_jmp_history(struct bpf_verifier_state *state) 909 { 910 kfree(state->jmp_history); 911 state->jmp_history = NULL; 912 state->jmp_history_cnt = 0; 913 } 914 915 static void free_verifier_state(struct bpf_verifier_state *state, 916 bool free_self) 917 { 918 int i; 919 920 for (i = 0; i <= state->curframe; i++) { 921 free_func_state(state->frame[i]); 922 state->frame[i] = NULL; 923 } 924 clear_jmp_history(state); 925 if (free_self) 926 kfree(state); 927 } 928 929 /* copy verifier state from src to dst growing dst stack space 930 * when necessary to accommodate larger src stack 931 */ 932 static int copy_func_state(struct bpf_func_state *dst, 933 const struct bpf_func_state *src) 934 { 935 int err; 936 937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 938 err = copy_reference_state(dst, src); 939 if (err) 940 return err; 941 return copy_stack_state(dst, src); 942 } 943 944 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 945 const struct bpf_verifier_state *src) 946 { 947 struct bpf_func_state *dst; 948 int i, err; 949 950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 952 GFP_USER); 953 if (!dst_state->jmp_history) 954 return -ENOMEM; 955 dst_state->jmp_history_cnt = src->jmp_history_cnt; 956 957 /* if dst has more stack frames then src frame, free them */ 958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 959 free_func_state(dst_state->frame[i]); 960 dst_state->frame[i] = NULL; 961 } 962 dst_state->speculative = src->speculative; 963 dst_state->curframe = src->curframe; 964 dst_state->active_spin_lock = src->active_spin_lock; 965 dst_state->branches = src->branches; 966 dst_state->parent = src->parent; 967 dst_state->first_insn_idx = src->first_insn_idx; 968 dst_state->last_insn_idx = src->last_insn_idx; 969 for (i = 0; i <= src->curframe; i++) { 970 dst = dst_state->frame[i]; 971 if (!dst) { 972 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 973 if (!dst) 974 return -ENOMEM; 975 dst_state->frame[i] = dst; 976 } 977 err = copy_func_state(dst, src->frame[i]); 978 if (err) 979 return err; 980 } 981 return 0; 982 } 983 984 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 985 { 986 while (st) { 987 u32 br = --st->branches; 988 989 /* WARN_ON(br > 1) technically makes sense here, 990 * but see comment in push_stack(), hence: 991 */ 992 WARN_ONCE((int)br < 0, 993 "BUG update_branch_counts:branches_to_explore=%d\n", 994 br); 995 if (br) 996 break; 997 st = st->parent; 998 } 999 } 1000 1001 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1002 int *insn_idx, bool pop_log) 1003 { 1004 struct bpf_verifier_state *cur = env->cur_state; 1005 struct bpf_verifier_stack_elem *elem, *head = env->head; 1006 int err; 1007 1008 if (env->head == NULL) 1009 return -ENOENT; 1010 1011 if (cur) { 1012 err = copy_verifier_state(cur, &head->st); 1013 if (err) 1014 return err; 1015 } 1016 if (pop_log) 1017 bpf_vlog_reset(&env->log, head->log_pos); 1018 if (insn_idx) 1019 *insn_idx = head->insn_idx; 1020 if (prev_insn_idx) 1021 *prev_insn_idx = head->prev_insn_idx; 1022 elem = head->next; 1023 free_verifier_state(&head->st, false); 1024 kfree(head); 1025 env->head = elem; 1026 env->stack_size--; 1027 return 0; 1028 } 1029 1030 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1031 int insn_idx, int prev_insn_idx, 1032 bool speculative) 1033 { 1034 struct bpf_verifier_state *cur = env->cur_state; 1035 struct bpf_verifier_stack_elem *elem; 1036 int err; 1037 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1039 if (!elem) 1040 goto err; 1041 1042 elem->insn_idx = insn_idx; 1043 elem->prev_insn_idx = prev_insn_idx; 1044 elem->next = env->head; 1045 elem->log_pos = env->log.len_used; 1046 env->head = elem; 1047 env->stack_size++; 1048 err = copy_verifier_state(&elem->st, cur); 1049 if (err) 1050 goto err; 1051 elem->st.speculative |= speculative; 1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1053 verbose(env, "The sequence of %d jumps is too complex.\n", 1054 env->stack_size); 1055 goto err; 1056 } 1057 if (elem->st.parent) { 1058 ++elem->st.parent->branches; 1059 /* WARN_ON(branches > 2) technically makes sense here, 1060 * but 1061 * 1. speculative states will bump 'branches' for non-branch 1062 * instructions 1063 * 2. is_state_visited() heuristics may decide not to create 1064 * a new state for a sequence of branches and all such current 1065 * and cloned states will be pointing to a single parent state 1066 * which might have large 'branches' count. 1067 */ 1068 } 1069 return &elem->st; 1070 err: 1071 free_verifier_state(env->cur_state, true); 1072 env->cur_state = NULL; 1073 /* pop all elements and return */ 1074 while (!pop_stack(env, NULL, NULL, false)); 1075 return NULL; 1076 } 1077 1078 #define CALLER_SAVED_REGS 6 1079 static const int caller_saved[CALLER_SAVED_REGS] = { 1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1081 }; 1082 1083 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1084 struct bpf_reg_state *reg); 1085 1086 /* This helper doesn't clear reg->id */ 1087 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1088 { 1089 reg->var_off = tnum_const(imm); 1090 reg->smin_value = (s64)imm; 1091 reg->smax_value = (s64)imm; 1092 reg->umin_value = imm; 1093 reg->umax_value = imm; 1094 1095 reg->s32_min_value = (s32)imm; 1096 reg->s32_max_value = (s32)imm; 1097 reg->u32_min_value = (u32)imm; 1098 reg->u32_max_value = (u32)imm; 1099 } 1100 1101 /* Mark the unknown part of a register (variable offset or scalar value) as 1102 * known to have the value @imm. 1103 */ 1104 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1105 { 1106 /* Clear id, off, and union(map_ptr, range) */ 1107 memset(((u8 *)reg) + sizeof(reg->type), 0, 1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1109 ___mark_reg_known(reg, imm); 1110 } 1111 1112 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1113 { 1114 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1115 reg->s32_min_value = (s32)imm; 1116 reg->s32_max_value = (s32)imm; 1117 reg->u32_min_value = (u32)imm; 1118 reg->u32_max_value = (u32)imm; 1119 } 1120 1121 /* Mark the 'variable offset' part of a register as zero. This should be 1122 * used only on registers holding a pointer type. 1123 */ 1124 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1125 { 1126 __mark_reg_known(reg, 0); 1127 } 1128 1129 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1130 { 1131 __mark_reg_known(reg, 0); 1132 reg->type = SCALAR_VALUE; 1133 } 1134 1135 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1136 struct bpf_reg_state *regs, u32 regno) 1137 { 1138 if (WARN_ON(regno >= MAX_BPF_REG)) { 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1140 /* Something bad happened, let's kill all regs */ 1141 for (regno = 0; regno < MAX_BPF_REG; regno++) 1142 __mark_reg_not_init(env, regs + regno); 1143 return; 1144 } 1145 __mark_reg_known_zero(regs + regno); 1146 } 1147 1148 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1149 { 1150 switch (reg->type) { 1151 case PTR_TO_MAP_VALUE_OR_NULL: { 1152 const struct bpf_map *map = reg->map_ptr; 1153 1154 if (map->inner_map_meta) { 1155 reg->type = CONST_PTR_TO_MAP; 1156 reg->map_ptr = map->inner_map_meta; 1157 /* transfer reg's id which is unique for every map_lookup_elem 1158 * as UID of the inner map. 1159 */ 1160 reg->map_uid = reg->id; 1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1162 reg->type = PTR_TO_XDP_SOCK; 1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1165 reg->type = PTR_TO_SOCKET; 1166 } else { 1167 reg->type = PTR_TO_MAP_VALUE; 1168 } 1169 break; 1170 } 1171 case PTR_TO_SOCKET_OR_NULL: 1172 reg->type = PTR_TO_SOCKET; 1173 break; 1174 case PTR_TO_SOCK_COMMON_OR_NULL: 1175 reg->type = PTR_TO_SOCK_COMMON; 1176 break; 1177 case PTR_TO_TCP_SOCK_OR_NULL: 1178 reg->type = PTR_TO_TCP_SOCK; 1179 break; 1180 case PTR_TO_BTF_ID_OR_NULL: 1181 reg->type = PTR_TO_BTF_ID; 1182 break; 1183 case PTR_TO_MEM_OR_NULL: 1184 reg->type = PTR_TO_MEM; 1185 break; 1186 case PTR_TO_RDONLY_BUF_OR_NULL: 1187 reg->type = PTR_TO_RDONLY_BUF; 1188 break; 1189 case PTR_TO_RDWR_BUF_OR_NULL: 1190 reg->type = PTR_TO_RDWR_BUF; 1191 break; 1192 default: 1193 WARN_ONCE(1, "unknown nullable register type"); 1194 } 1195 } 1196 1197 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1198 { 1199 return type_is_pkt_pointer(reg->type); 1200 } 1201 1202 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1203 { 1204 return reg_is_pkt_pointer(reg) || 1205 reg->type == PTR_TO_PACKET_END; 1206 } 1207 1208 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1209 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1210 enum bpf_reg_type which) 1211 { 1212 /* The register can already have a range from prior markings. 1213 * This is fine as long as it hasn't been advanced from its 1214 * origin. 1215 */ 1216 return reg->type == which && 1217 reg->id == 0 && 1218 reg->off == 0 && 1219 tnum_equals_const(reg->var_off, 0); 1220 } 1221 1222 /* Reset the min/max bounds of a register */ 1223 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1224 { 1225 reg->smin_value = S64_MIN; 1226 reg->smax_value = S64_MAX; 1227 reg->umin_value = 0; 1228 reg->umax_value = U64_MAX; 1229 1230 reg->s32_min_value = S32_MIN; 1231 reg->s32_max_value = S32_MAX; 1232 reg->u32_min_value = 0; 1233 reg->u32_max_value = U32_MAX; 1234 } 1235 1236 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1237 { 1238 reg->smin_value = S64_MIN; 1239 reg->smax_value = S64_MAX; 1240 reg->umin_value = 0; 1241 reg->umax_value = U64_MAX; 1242 } 1243 1244 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1245 { 1246 reg->s32_min_value = S32_MIN; 1247 reg->s32_max_value = S32_MAX; 1248 reg->u32_min_value = 0; 1249 reg->u32_max_value = U32_MAX; 1250 } 1251 1252 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1253 { 1254 struct tnum var32_off = tnum_subreg(reg->var_off); 1255 1256 /* min signed is max(sign bit) | min(other bits) */ 1257 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1258 var32_off.value | (var32_off.mask & S32_MIN)); 1259 /* max signed is min(sign bit) | max(other bits) */ 1260 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1261 var32_off.value | (var32_off.mask & S32_MAX)); 1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1263 reg->u32_max_value = min(reg->u32_max_value, 1264 (u32)(var32_off.value | var32_off.mask)); 1265 } 1266 1267 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1268 { 1269 /* min signed is max(sign bit) | min(other bits) */ 1270 reg->smin_value = max_t(s64, reg->smin_value, 1271 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1272 /* max signed is min(sign bit) | max(other bits) */ 1273 reg->smax_value = min_t(s64, reg->smax_value, 1274 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1275 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1276 reg->umax_value = min(reg->umax_value, 1277 reg->var_off.value | reg->var_off.mask); 1278 } 1279 1280 static void __update_reg_bounds(struct bpf_reg_state *reg) 1281 { 1282 __update_reg32_bounds(reg); 1283 __update_reg64_bounds(reg); 1284 } 1285 1286 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1287 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1288 { 1289 /* Learn sign from signed bounds. 1290 * If we cannot cross the sign boundary, then signed and unsigned bounds 1291 * are the same, so combine. This works even in the negative case, e.g. 1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1293 */ 1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1295 reg->s32_min_value = reg->u32_min_value = 1296 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1297 reg->s32_max_value = reg->u32_max_value = 1298 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1299 return; 1300 } 1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1302 * boundary, so we must be careful. 1303 */ 1304 if ((s32)reg->u32_max_value >= 0) { 1305 /* Positive. We can't learn anything from the smin, but smax 1306 * is positive, hence safe. 1307 */ 1308 reg->s32_min_value = reg->u32_min_value; 1309 reg->s32_max_value = reg->u32_max_value = 1310 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1311 } else if ((s32)reg->u32_min_value < 0) { 1312 /* Negative. We can't learn anything from the smax, but smin 1313 * is negative, hence safe. 1314 */ 1315 reg->s32_min_value = reg->u32_min_value = 1316 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1317 reg->s32_max_value = reg->u32_max_value; 1318 } 1319 } 1320 1321 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1322 { 1323 /* Learn sign from signed bounds. 1324 * If we cannot cross the sign boundary, then signed and unsigned bounds 1325 * are the same, so combine. This works even in the negative case, e.g. 1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1327 */ 1328 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1330 reg->umin_value); 1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1332 reg->umax_value); 1333 return; 1334 } 1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1336 * boundary, so we must be careful. 1337 */ 1338 if ((s64)reg->umax_value >= 0) { 1339 /* Positive. We can't learn anything from the smin, but smax 1340 * is positive, hence safe. 1341 */ 1342 reg->smin_value = reg->umin_value; 1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1344 reg->umax_value); 1345 } else if ((s64)reg->umin_value < 0) { 1346 /* Negative. We can't learn anything from the smax, but smin 1347 * is negative, hence safe. 1348 */ 1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1350 reg->umin_value); 1351 reg->smax_value = reg->umax_value; 1352 } 1353 } 1354 1355 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1356 { 1357 __reg32_deduce_bounds(reg); 1358 __reg64_deduce_bounds(reg); 1359 } 1360 1361 /* Attempts to improve var_off based on unsigned min/max information */ 1362 static void __reg_bound_offset(struct bpf_reg_state *reg) 1363 { 1364 struct tnum var64_off = tnum_intersect(reg->var_off, 1365 tnum_range(reg->umin_value, 1366 reg->umax_value)); 1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1368 tnum_range(reg->u32_min_value, 1369 reg->u32_max_value)); 1370 1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1372 } 1373 1374 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1375 { 1376 reg->umin_value = reg->u32_min_value; 1377 reg->umax_value = reg->u32_max_value; 1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1379 * but must be positive otherwise set to worse case bounds 1380 * and refine later from tnum. 1381 */ 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1383 reg->smax_value = reg->s32_max_value; 1384 else 1385 reg->smax_value = U32_MAX; 1386 if (reg->s32_min_value >= 0) 1387 reg->smin_value = reg->s32_min_value; 1388 else 1389 reg->smin_value = 0; 1390 } 1391 1392 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1393 { 1394 /* special case when 64-bit register has upper 32-bit register 1395 * zeroed. Typically happens after zext or <<32, >>32 sequence 1396 * allowing us to use 32-bit bounds directly, 1397 */ 1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1399 __reg_assign_32_into_64(reg); 1400 } else { 1401 /* Otherwise the best we can do is push lower 32bit known and 1402 * unknown bits into register (var_off set from jmp logic) 1403 * then learn as much as possible from the 64-bit tnum 1404 * known and unknown bits. The previous smin/smax bounds are 1405 * invalid here because of jmp32 compare so mark them unknown 1406 * so they do not impact tnum bounds calculation. 1407 */ 1408 __mark_reg64_unbounded(reg); 1409 __update_reg_bounds(reg); 1410 } 1411 1412 /* Intersecting with the old var_off might have improved our bounds 1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1414 * then new var_off is (0; 0x7f...fc) which improves our umax. 1415 */ 1416 __reg_deduce_bounds(reg); 1417 __reg_bound_offset(reg); 1418 __update_reg_bounds(reg); 1419 } 1420 1421 static bool __reg64_bound_s32(s64 a) 1422 { 1423 return a > S32_MIN && a < S32_MAX; 1424 } 1425 1426 static bool __reg64_bound_u32(u64 a) 1427 { 1428 return a > U32_MIN && a < U32_MAX; 1429 } 1430 1431 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1432 { 1433 __mark_reg32_unbounded(reg); 1434 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1436 reg->s32_min_value = (s32)reg->smin_value; 1437 reg->s32_max_value = (s32)reg->smax_value; 1438 } 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1440 reg->u32_min_value = (u32)reg->umin_value; 1441 reg->u32_max_value = (u32)reg->umax_value; 1442 } 1443 1444 /* Intersecting with the old var_off might have improved our bounds 1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1446 * then new var_off is (0; 0x7f...fc) which improves our umax. 1447 */ 1448 __reg_deduce_bounds(reg); 1449 __reg_bound_offset(reg); 1450 __update_reg_bounds(reg); 1451 } 1452 1453 /* Mark a register as having a completely unknown (scalar) value. */ 1454 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1455 struct bpf_reg_state *reg) 1456 { 1457 /* 1458 * Clear type, id, off, and union(map_ptr, range) and 1459 * padding between 'type' and union 1460 */ 1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1462 reg->type = SCALAR_VALUE; 1463 reg->var_off = tnum_unknown; 1464 reg->frameno = 0; 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1466 __mark_reg_unbounded(reg); 1467 } 1468 1469 static void mark_reg_unknown(struct bpf_verifier_env *env, 1470 struct bpf_reg_state *regs, u32 regno) 1471 { 1472 if (WARN_ON(regno >= MAX_BPF_REG)) { 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1474 /* Something bad happened, let's kill all regs except FP */ 1475 for (regno = 0; regno < BPF_REG_FP; regno++) 1476 __mark_reg_not_init(env, regs + regno); 1477 return; 1478 } 1479 __mark_reg_unknown(env, regs + regno); 1480 } 1481 1482 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1483 struct bpf_reg_state *reg) 1484 { 1485 __mark_reg_unknown(env, reg); 1486 reg->type = NOT_INIT; 1487 } 1488 1489 static void mark_reg_not_init(struct bpf_verifier_env *env, 1490 struct bpf_reg_state *regs, u32 regno) 1491 { 1492 if (WARN_ON(regno >= MAX_BPF_REG)) { 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1494 /* Something bad happened, let's kill all regs except FP */ 1495 for (regno = 0; regno < BPF_REG_FP; regno++) 1496 __mark_reg_not_init(env, regs + regno); 1497 return; 1498 } 1499 __mark_reg_not_init(env, regs + regno); 1500 } 1501 1502 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1503 struct bpf_reg_state *regs, u32 regno, 1504 enum bpf_reg_type reg_type, 1505 struct btf *btf, u32 btf_id) 1506 { 1507 if (reg_type == SCALAR_VALUE) { 1508 mark_reg_unknown(env, regs, regno); 1509 return; 1510 } 1511 mark_reg_known_zero(env, regs, regno); 1512 regs[regno].type = PTR_TO_BTF_ID; 1513 regs[regno].btf = btf; 1514 regs[regno].btf_id = btf_id; 1515 } 1516 1517 #define DEF_NOT_SUBREG (0) 1518 static void init_reg_state(struct bpf_verifier_env *env, 1519 struct bpf_func_state *state) 1520 { 1521 struct bpf_reg_state *regs = state->regs; 1522 int i; 1523 1524 for (i = 0; i < MAX_BPF_REG; i++) { 1525 mark_reg_not_init(env, regs, i); 1526 regs[i].live = REG_LIVE_NONE; 1527 regs[i].parent = NULL; 1528 regs[i].subreg_def = DEF_NOT_SUBREG; 1529 } 1530 1531 /* frame pointer */ 1532 regs[BPF_REG_FP].type = PTR_TO_STACK; 1533 mark_reg_known_zero(env, regs, BPF_REG_FP); 1534 regs[BPF_REG_FP].frameno = state->frameno; 1535 } 1536 1537 #define BPF_MAIN_FUNC (-1) 1538 static void init_func_state(struct bpf_verifier_env *env, 1539 struct bpf_func_state *state, 1540 int callsite, int frameno, int subprogno) 1541 { 1542 state->callsite = callsite; 1543 state->frameno = frameno; 1544 state->subprogno = subprogno; 1545 init_reg_state(env, state); 1546 } 1547 1548 /* Similar to push_stack(), but for async callbacks */ 1549 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1550 int insn_idx, int prev_insn_idx, 1551 int subprog) 1552 { 1553 struct bpf_verifier_stack_elem *elem; 1554 struct bpf_func_state *frame; 1555 1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1557 if (!elem) 1558 goto err; 1559 1560 elem->insn_idx = insn_idx; 1561 elem->prev_insn_idx = prev_insn_idx; 1562 elem->next = env->head; 1563 elem->log_pos = env->log.len_used; 1564 env->head = elem; 1565 env->stack_size++; 1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1567 verbose(env, 1568 "The sequence of %d jumps is too complex for async cb.\n", 1569 env->stack_size); 1570 goto err; 1571 } 1572 /* Unlike push_stack() do not copy_verifier_state(). 1573 * The caller state doesn't matter. 1574 * This is async callback. It starts in a fresh stack. 1575 * Initialize it similar to do_check_common(). 1576 */ 1577 elem->st.branches = 1; 1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1579 if (!frame) 1580 goto err; 1581 init_func_state(env, frame, 1582 BPF_MAIN_FUNC /* callsite */, 1583 0 /* frameno within this callchain */, 1584 subprog /* subprog number within this prog */); 1585 elem->st.frame[0] = frame; 1586 return &elem->st; 1587 err: 1588 free_verifier_state(env->cur_state, true); 1589 env->cur_state = NULL; 1590 /* pop all elements and return */ 1591 while (!pop_stack(env, NULL, NULL, false)); 1592 return NULL; 1593 } 1594 1595 1596 enum reg_arg_type { 1597 SRC_OP, /* register is used as source operand */ 1598 DST_OP, /* register is used as destination operand */ 1599 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1600 }; 1601 1602 static int cmp_subprogs(const void *a, const void *b) 1603 { 1604 return ((struct bpf_subprog_info *)a)->start - 1605 ((struct bpf_subprog_info *)b)->start; 1606 } 1607 1608 static int find_subprog(struct bpf_verifier_env *env, int off) 1609 { 1610 struct bpf_subprog_info *p; 1611 1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1613 sizeof(env->subprog_info[0]), cmp_subprogs); 1614 if (!p) 1615 return -ENOENT; 1616 return p - env->subprog_info; 1617 1618 } 1619 1620 static int add_subprog(struct bpf_verifier_env *env, int off) 1621 { 1622 int insn_cnt = env->prog->len; 1623 int ret; 1624 1625 if (off >= insn_cnt || off < 0) { 1626 verbose(env, "call to invalid destination\n"); 1627 return -EINVAL; 1628 } 1629 ret = find_subprog(env, off); 1630 if (ret >= 0) 1631 return ret; 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1633 verbose(env, "too many subprograms\n"); 1634 return -E2BIG; 1635 } 1636 /* determine subprog starts. The end is one before the next starts */ 1637 env->subprog_info[env->subprog_cnt++].start = off; 1638 sort(env->subprog_info, env->subprog_cnt, 1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1640 return env->subprog_cnt - 1; 1641 } 1642 1643 #define MAX_KFUNC_DESCS 256 1644 #define MAX_KFUNC_BTFS 256 1645 1646 struct bpf_kfunc_desc { 1647 struct btf_func_model func_model; 1648 u32 func_id; 1649 s32 imm; 1650 u16 offset; 1651 }; 1652 1653 struct bpf_kfunc_btf { 1654 struct btf *btf; 1655 struct module *module; 1656 u16 offset; 1657 }; 1658 1659 struct bpf_kfunc_desc_tab { 1660 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1661 u32 nr_descs; 1662 }; 1663 1664 struct bpf_kfunc_btf_tab { 1665 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1666 u32 nr_descs; 1667 }; 1668 1669 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1670 { 1671 const struct bpf_kfunc_desc *d0 = a; 1672 const struct bpf_kfunc_desc *d1 = b; 1673 1674 /* func_id is not greater than BTF_MAX_TYPE */ 1675 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1676 } 1677 1678 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1679 { 1680 const struct bpf_kfunc_btf *d0 = a; 1681 const struct bpf_kfunc_btf *d1 = b; 1682 1683 return d0->offset - d1->offset; 1684 } 1685 1686 static const struct bpf_kfunc_desc * 1687 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1688 { 1689 struct bpf_kfunc_desc desc = { 1690 .func_id = func_id, 1691 .offset = offset, 1692 }; 1693 struct bpf_kfunc_desc_tab *tab; 1694 1695 tab = prog->aux->kfunc_tab; 1696 return bsearch(&desc, tab->descs, tab->nr_descs, 1697 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1698 } 1699 1700 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1701 s16 offset, struct module **btf_modp) 1702 { 1703 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1704 struct bpf_kfunc_btf_tab *tab; 1705 struct bpf_kfunc_btf *b; 1706 struct module *mod; 1707 struct btf *btf; 1708 int btf_fd; 1709 1710 tab = env->prog->aux->kfunc_btf_tab; 1711 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1712 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1713 if (!b) { 1714 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1715 verbose(env, "too many different module BTFs\n"); 1716 return ERR_PTR(-E2BIG); 1717 } 1718 1719 if (bpfptr_is_null(env->fd_array)) { 1720 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1721 return ERR_PTR(-EPROTO); 1722 } 1723 1724 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1725 offset * sizeof(btf_fd), 1726 sizeof(btf_fd))) 1727 return ERR_PTR(-EFAULT); 1728 1729 btf = btf_get_by_fd(btf_fd); 1730 if (IS_ERR(btf)) 1731 return btf; 1732 1733 if (!btf_is_module(btf)) { 1734 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1735 btf_put(btf); 1736 return ERR_PTR(-EINVAL); 1737 } 1738 1739 mod = btf_try_get_module(btf); 1740 if (!mod) { 1741 btf_put(btf); 1742 return ERR_PTR(-ENXIO); 1743 } 1744 1745 b = &tab->descs[tab->nr_descs++]; 1746 b->btf = btf; 1747 b->module = mod; 1748 b->offset = offset; 1749 1750 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1751 kfunc_btf_cmp_by_off, NULL); 1752 } 1753 if (btf_modp) 1754 *btf_modp = b->module; 1755 return b->btf; 1756 } 1757 1758 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1759 { 1760 if (!tab) 1761 return; 1762 1763 while (tab->nr_descs--) { 1764 module_put(tab->descs[tab->nr_descs].module); 1765 btf_put(tab->descs[tab->nr_descs].btf); 1766 } 1767 kfree(tab); 1768 } 1769 1770 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1771 u32 func_id, s16 offset, 1772 struct module **btf_modp) 1773 { 1774 struct btf *kfunc_btf; 1775 1776 if (offset) { 1777 if (offset < 0) { 1778 /* In the future, this can be allowed to increase limit 1779 * of fd index into fd_array, interpreted as u16. 1780 */ 1781 verbose(env, "negative offset disallowed for kernel module function call\n"); 1782 return ERR_PTR(-EINVAL); 1783 } 1784 1785 kfunc_btf = __find_kfunc_desc_btf(env, offset, btf_modp); 1786 if (IS_ERR_OR_NULL(kfunc_btf)) { 1787 verbose(env, "cannot find module BTF for func_id %u\n", func_id); 1788 return kfunc_btf ?: ERR_PTR(-ENOENT); 1789 } 1790 return kfunc_btf; 1791 } 1792 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1793 } 1794 1795 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1796 { 1797 const struct btf_type *func, *func_proto; 1798 struct bpf_kfunc_btf_tab *btf_tab; 1799 struct bpf_kfunc_desc_tab *tab; 1800 struct bpf_prog_aux *prog_aux; 1801 struct bpf_kfunc_desc *desc; 1802 const char *func_name; 1803 struct btf *desc_btf; 1804 unsigned long addr; 1805 int err; 1806 1807 prog_aux = env->prog->aux; 1808 tab = prog_aux->kfunc_tab; 1809 btf_tab = prog_aux->kfunc_btf_tab; 1810 if (!tab) { 1811 if (!btf_vmlinux) { 1812 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1813 return -ENOTSUPP; 1814 } 1815 1816 if (!env->prog->jit_requested) { 1817 verbose(env, "JIT is required for calling kernel function\n"); 1818 return -ENOTSUPP; 1819 } 1820 1821 if (!bpf_jit_supports_kfunc_call()) { 1822 verbose(env, "JIT does not support calling kernel function\n"); 1823 return -ENOTSUPP; 1824 } 1825 1826 if (!env->prog->gpl_compatible) { 1827 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1828 return -EINVAL; 1829 } 1830 1831 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1832 if (!tab) 1833 return -ENOMEM; 1834 prog_aux->kfunc_tab = tab; 1835 } 1836 1837 /* func_id == 0 is always invalid, but instead of returning an error, be 1838 * conservative and wait until the code elimination pass before returning 1839 * error, so that invalid calls that get pruned out can be in BPF programs 1840 * loaded from userspace. It is also required that offset be untouched 1841 * for such calls. 1842 */ 1843 if (!func_id && !offset) 1844 return 0; 1845 1846 if (!btf_tab && offset) { 1847 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1848 if (!btf_tab) 1849 return -ENOMEM; 1850 prog_aux->kfunc_btf_tab = btf_tab; 1851 } 1852 1853 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1854 if (IS_ERR(desc_btf)) { 1855 verbose(env, "failed to find BTF for kernel function\n"); 1856 return PTR_ERR(desc_btf); 1857 } 1858 1859 if (find_kfunc_desc(env->prog, func_id, offset)) 1860 return 0; 1861 1862 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1863 verbose(env, "too many different kernel function calls\n"); 1864 return -E2BIG; 1865 } 1866 1867 func = btf_type_by_id(desc_btf, func_id); 1868 if (!func || !btf_type_is_func(func)) { 1869 verbose(env, "kernel btf_id %u is not a function\n", 1870 func_id); 1871 return -EINVAL; 1872 } 1873 func_proto = btf_type_by_id(desc_btf, func->type); 1874 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1875 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1876 func_id); 1877 return -EINVAL; 1878 } 1879 1880 func_name = btf_name_by_offset(desc_btf, func->name_off); 1881 addr = kallsyms_lookup_name(func_name); 1882 if (!addr) { 1883 verbose(env, "cannot find address for kernel function %s\n", 1884 func_name); 1885 return -EINVAL; 1886 } 1887 1888 desc = &tab->descs[tab->nr_descs++]; 1889 desc->func_id = func_id; 1890 desc->imm = BPF_CALL_IMM(addr); 1891 desc->offset = offset; 1892 err = btf_distill_func_proto(&env->log, desc_btf, 1893 func_proto, func_name, 1894 &desc->func_model); 1895 if (!err) 1896 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1897 kfunc_desc_cmp_by_id_off, NULL); 1898 return err; 1899 } 1900 1901 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1902 { 1903 const struct bpf_kfunc_desc *d0 = a; 1904 const struct bpf_kfunc_desc *d1 = b; 1905 1906 if (d0->imm > d1->imm) 1907 return 1; 1908 else if (d0->imm < d1->imm) 1909 return -1; 1910 return 0; 1911 } 1912 1913 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1914 { 1915 struct bpf_kfunc_desc_tab *tab; 1916 1917 tab = prog->aux->kfunc_tab; 1918 if (!tab) 1919 return; 1920 1921 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1922 kfunc_desc_cmp_by_imm, NULL); 1923 } 1924 1925 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1926 { 1927 return !!prog->aux->kfunc_tab; 1928 } 1929 1930 const struct btf_func_model * 1931 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1932 const struct bpf_insn *insn) 1933 { 1934 const struct bpf_kfunc_desc desc = { 1935 .imm = insn->imm, 1936 }; 1937 const struct bpf_kfunc_desc *res; 1938 struct bpf_kfunc_desc_tab *tab; 1939 1940 tab = prog->aux->kfunc_tab; 1941 res = bsearch(&desc, tab->descs, tab->nr_descs, 1942 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1943 1944 return res ? &res->func_model : NULL; 1945 } 1946 1947 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1948 { 1949 struct bpf_subprog_info *subprog = env->subprog_info; 1950 struct bpf_insn *insn = env->prog->insnsi; 1951 int i, ret, insn_cnt = env->prog->len; 1952 1953 /* Add entry function. */ 1954 ret = add_subprog(env, 0); 1955 if (ret) 1956 return ret; 1957 1958 for (i = 0; i < insn_cnt; i++, insn++) { 1959 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1960 !bpf_pseudo_kfunc_call(insn)) 1961 continue; 1962 1963 if (!env->bpf_capable) { 1964 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1965 return -EPERM; 1966 } 1967 1968 if (bpf_pseudo_func(insn)) { 1969 ret = add_subprog(env, i + insn->imm + 1); 1970 if (ret >= 0) 1971 /* remember subprog */ 1972 insn[1].imm = ret; 1973 } else if (bpf_pseudo_call(insn)) { 1974 ret = add_subprog(env, i + insn->imm + 1); 1975 } else { 1976 ret = add_kfunc_call(env, insn->imm, insn->off); 1977 } 1978 1979 if (ret < 0) 1980 return ret; 1981 } 1982 1983 /* Add a fake 'exit' subprog which could simplify subprog iteration 1984 * logic. 'subprog_cnt' should not be increased. 1985 */ 1986 subprog[env->subprog_cnt].start = insn_cnt; 1987 1988 if (env->log.level & BPF_LOG_LEVEL2) 1989 for (i = 0; i < env->subprog_cnt; i++) 1990 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1991 1992 return 0; 1993 } 1994 1995 static int check_subprogs(struct bpf_verifier_env *env) 1996 { 1997 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1998 struct bpf_subprog_info *subprog = env->subprog_info; 1999 struct bpf_insn *insn = env->prog->insnsi; 2000 int insn_cnt = env->prog->len; 2001 2002 /* now check that all jumps are within the same subprog */ 2003 subprog_start = subprog[cur_subprog].start; 2004 subprog_end = subprog[cur_subprog + 1].start; 2005 for (i = 0; i < insn_cnt; i++) { 2006 u8 code = insn[i].code; 2007 2008 if (code == (BPF_JMP | BPF_CALL) && 2009 insn[i].imm == BPF_FUNC_tail_call && 2010 insn[i].src_reg != BPF_PSEUDO_CALL) 2011 subprog[cur_subprog].has_tail_call = true; 2012 if (BPF_CLASS(code) == BPF_LD && 2013 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2014 subprog[cur_subprog].has_ld_abs = true; 2015 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2016 goto next; 2017 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2018 goto next; 2019 off = i + insn[i].off + 1; 2020 if (off < subprog_start || off >= subprog_end) { 2021 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2022 return -EINVAL; 2023 } 2024 next: 2025 if (i == subprog_end - 1) { 2026 /* to avoid fall-through from one subprog into another 2027 * the last insn of the subprog should be either exit 2028 * or unconditional jump back 2029 */ 2030 if (code != (BPF_JMP | BPF_EXIT) && 2031 code != (BPF_JMP | BPF_JA)) { 2032 verbose(env, "last insn is not an exit or jmp\n"); 2033 return -EINVAL; 2034 } 2035 subprog_start = subprog_end; 2036 cur_subprog++; 2037 if (cur_subprog < env->subprog_cnt) 2038 subprog_end = subprog[cur_subprog + 1].start; 2039 } 2040 } 2041 return 0; 2042 } 2043 2044 /* Parentage chain of this register (or stack slot) should take care of all 2045 * issues like callee-saved registers, stack slot allocation time, etc. 2046 */ 2047 static int mark_reg_read(struct bpf_verifier_env *env, 2048 const struct bpf_reg_state *state, 2049 struct bpf_reg_state *parent, u8 flag) 2050 { 2051 bool writes = parent == state->parent; /* Observe write marks */ 2052 int cnt = 0; 2053 2054 while (parent) { 2055 /* if read wasn't screened by an earlier write ... */ 2056 if (writes && state->live & REG_LIVE_WRITTEN) 2057 break; 2058 if (parent->live & REG_LIVE_DONE) { 2059 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2060 reg_type_str[parent->type], 2061 parent->var_off.value, parent->off); 2062 return -EFAULT; 2063 } 2064 /* The first condition is more likely to be true than the 2065 * second, checked it first. 2066 */ 2067 if ((parent->live & REG_LIVE_READ) == flag || 2068 parent->live & REG_LIVE_READ64) 2069 /* The parentage chain never changes and 2070 * this parent was already marked as LIVE_READ. 2071 * There is no need to keep walking the chain again and 2072 * keep re-marking all parents as LIVE_READ. 2073 * This case happens when the same register is read 2074 * multiple times without writes into it in-between. 2075 * Also, if parent has the stronger REG_LIVE_READ64 set, 2076 * then no need to set the weak REG_LIVE_READ32. 2077 */ 2078 break; 2079 /* ... then we depend on parent's value */ 2080 parent->live |= flag; 2081 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2082 if (flag == REG_LIVE_READ64) 2083 parent->live &= ~REG_LIVE_READ32; 2084 state = parent; 2085 parent = state->parent; 2086 writes = true; 2087 cnt++; 2088 } 2089 2090 if (env->longest_mark_read_walk < cnt) 2091 env->longest_mark_read_walk = cnt; 2092 return 0; 2093 } 2094 2095 /* This function is supposed to be used by the following 32-bit optimization 2096 * code only. It returns TRUE if the source or destination register operates 2097 * on 64-bit, otherwise return FALSE. 2098 */ 2099 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2100 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2101 { 2102 u8 code, class, op; 2103 2104 code = insn->code; 2105 class = BPF_CLASS(code); 2106 op = BPF_OP(code); 2107 if (class == BPF_JMP) { 2108 /* BPF_EXIT for "main" will reach here. Return TRUE 2109 * conservatively. 2110 */ 2111 if (op == BPF_EXIT) 2112 return true; 2113 if (op == BPF_CALL) { 2114 /* BPF to BPF call will reach here because of marking 2115 * caller saved clobber with DST_OP_NO_MARK for which we 2116 * don't care the register def because they are anyway 2117 * marked as NOT_INIT already. 2118 */ 2119 if (insn->src_reg == BPF_PSEUDO_CALL) 2120 return false; 2121 /* Helper call will reach here because of arg type 2122 * check, conservatively return TRUE. 2123 */ 2124 if (t == SRC_OP) 2125 return true; 2126 2127 return false; 2128 } 2129 } 2130 2131 if (class == BPF_ALU64 || class == BPF_JMP || 2132 /* BPF_END always use BPF_ALU class. */ 2133 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2134 return true; 2135 2136 if (class == BPF_ALU || class == BPF_JMP32) 2137 return false; 2138 2139 if (class == BPF_LDX) { 2140 if (t != SRC_OP) 2141 return BPF_SIZE(code) == BPF_DW; 2142 /* LDX source must be ptr. */ 2143 return true; 2144 } 2145 2146 if (class == BPF_STX) { 2147 /* BPF_STX (including atomic variants) has multiple source 2148 * operands, one of which is a ptr. Check whether the caller is 2149 * asking about it. 2150 */ 2151 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2152 return true; 2153 return BPF_SIZE(code) == BPF_DW; 2154 } 2155 2156 if (class == BPF_LD) { 2157 u8 mode = BPF_MODE(code); 2158 2159 /* LD_IMM64 */ 2160 if (mode == BPF_IMM) 2161 return true; 2162 2163 /* Both LD_IND and LD_ABS return 32-bit data. */ 2164 if (t != SRC_OP) 2165 return false; 2166 2167 /* Implicit ctx ptr. */ 2168 if (regno == BPF_REG_6) 2169 return true; 2170 2171 /* Explicit source could be any width. */ 2172 return true; 2173 } 2174 2175 if (class == BPF_ST) 2176 /* The only source register for BPF_ST is a ptr. */ 2177 return true; 2178 2179 /* Conservatively return true at default. */ 2180 return true; 2181 } 2182 2183 /* Return the regno defined by the insn, or -1. */ 2184 static int insn_def_regno(const struct bpf_insn *insn) 2185 { 2186 switch (BPF_CLASS(insn->code)) { 2187 case BPF_JMP: 2188 case BPF_JMP32: 2189 case BPF_ST: 2190 return -1; 2191 case BPF_STX: 2192 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2193 (insn->imm & BPF_FETCH)) { 2194 if (insn->imm == BPF_CMPXCHG) 2195 return BPF_REG_0; 2196 else 2197 return insn->src_reg; 2198 } else { 2199 return -1; 2200 } 2201 default: 2202 return insn->dst_reg; 2203 } 2204 } 2205 2206 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2207 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2208 { 2209 int dst_reg = insn_def_regno(insn); 2210 2211 if (dst_reg == -1) 2212 return false; 2213 2214 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2215 } 2216 2217 static void mark_insn_zext(struct bpf_verifier_env *env, 2218 struct bpf_reg_state *reg) 2219 { 2220 s32 def_idx = reg->subreg_def; 2221 2222 if (def_idx == DEF_NOT_SUBREG) 2223 return; 2224 2225 env->insn_aux_data[def_idx - 1].zext_dst = true; 2226 /* The dst will be zero extended, so won't be sub-register anymore. */ 2227 reg->subreg_def = DEF_NOT_SUBREG; 2228 } 2229 2230 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2231 enum reg_arg_type t) 2232 { 2233 struct bpf_verifier_state *vstate = env->cur_state; 2234 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2235 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2236 struct bpf_reg_state *reg, *regs = state->regs; 2237 bool rw64; 2238 2239 if (regno >= MAX_BPF_REG) { 2240 verbose(env, "R%d is invalid\n", regno); 2241 return -EINVAL; 2242 } 2243 2244 reg = ®s[regno]; 2245 rw64 = is_reg64(env, insn, regno, reg, t); 2246 if (t == SRC_OP) { 2247 /* check whether register used as source operand can be read */ 2248 if (reg->type == NOT_INIT) { 2249 verbose(env, "R%d !read_ok\n", regno); 2250 return -EACCES; 2251 } 2252 /* We don't need to worry about FP liveness because it's read-only */ 2253 if (regno == BPF_REG_FP) 2254 return 0; 2255 2256 if (rw64) 2257 mark_insn_zext(env, reg); 2258 2259 return mark_reg_read(env, reg, reg->parent, 2260 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2261 } else { 2262 /* check whether register used as dest operand can be written to */ 2263 if (regno == BPF_REG_FP) { 2264 verbose(env, "frame pointer is read only\n"); 2265 return -EACCES; 2266 } 2267 reg->live |= REG_LIVE_WRITTEN; 2268 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2269 if (t == DST_OP) 2270 mark_reg_unknown(env, regs, regno); 2271 } 2272 return 0; 2273 } 2274 2275 /* for any branch, call, exit record the history of jmps in the given state */ 2276 static int push_jmp_history(struct bpf_verifier_env *env, 2277 struct bpf_verifier_state *cur) 2278 { 2279 u32 cnt = cur->jmp_history_cnt; 2280 struct bpf_idx_pair *p; 2281 2282 cnt++; 2283 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2284 if (!p) 2285 return -ENOMEM; 2286 p[cnt - 1].idx = env->insn_idx; 2287 p[cnt - 1].prev_idx = env->prev_insn_idx; 2288 cur->jmp_history = p; 2289 cur->jmp_history_cnt = cnt; 2290 return 0; 2291 } 2292 2293 /* Backtrack one insn at a time. If idx is not at the top of recorded 2294 * history then previous instruction came from straight line execution. 2295 */ 2296 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2297 u32 *history) 2298 { 2299 u32 cnt = *history; 2300 2301 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2302 i = st->jmp_history[cnt - 1].prev_idx; 2303 (*history)--; 2304 } else { 2305 i--; 2306 } 2307 return i; 2308 } 2309 2310 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2311 { 2312 const struct btf_type *func; 2313 struct btf *desc_btf; 2314 2315 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2316 return NULL; 2317 2318 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2319 if (IS_ERR(desc_btf)) 2320 return "<error>"; 2321 2322 func = btf_type_by_id(desc_btf, insn->imm); 2323 return btf_name_by_offset(desc_btf, func->name_off); 2324 } 2325 2326 /* For given verifier state backtrack_insn() is called from the last insn to 2327 * the first insn. Its purpose is to compute a bitmask of registers and 2328 * stack slots that needs precision in the parent verifier state. 2329 */ 2330 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2331 u32 *reg_mask, u64 *stack_mask) 2332 { 2333 const struct bpf_insn_cbs cbs = { 2334 .cb_call = disasm_kfunc_name, 2335 .cb_print = verbose, 2336 .private_data = env, 2337 }; 2338 struct bpf_insn *insn = env->prog->insnsi + idx; 2339 u8 class = BPF_CLASS(insn->code); 2340 u8 opcode = BPF_OP(insn->code); 2341 u8 mode = BPF_MODE(insn->code); 2342 u32 dreg = 1u << insn->dst_reg; 2343 u32 sreg = 1u << insn->src_reg; 2344 u32 spi; 2345 2346 if (insn->code == 0) 2347 return 0; 2348 if (env->log.level & BPF_LOG_LEVEL) { 2349 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2350 verbose(env, "%d: ", idx); 2351 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2352 } 2353 2354 if (class == BPF_ALU || class == BPF_ALU64) { 2355 if (!(*reg_mask & dreg)) 2356 return 0; 2357 if (opcode == BPF_MOV) { 2358 if (BPF_SRC(insn->code) == BPF_X) { 2359 /* dreg = sreg 2360 * dreg needs precision after this insn 2361 * sreg needs precision before this insn 2362 */ 2363 *reg_mask &= ~dreg; 2364 *reg_mask |= sreg; 2365 } else { 2366 /* dreg = K 2367 * dreg needs precision after this insn. 2368 * Corresponding register is already marked 2369 * as precise=true in this verifier state. 2370 * No further markings in parent are necessary 2371 */ 2372 *reg_mask &= ~dreg; 2373 } 2374 } else { 2375 if (BPF_SRC(insn->code) == BPF_X) { 2376 /* dreg += sreg 2377 * both dreg and sreg need precision 2378 * before this insn 2379 */ 2380 *reg_mask |= sreg; 2381 } /* else dreg += K 2382 * dreg still needs precision before this insn 2383 */ 2384 } 2385 } else if (class == BPF_LDX) { 2386 if (!(*reg_mask & dreg)) 2387 return 0; 2388 *reg_mask &= ~dreg; 2389 2390 /* scalars can only be spilled into stack w/o losing precision. 2391 * Load from any other memory can be zero extended. 2392 * The desire to keep that precision is already indicated 2393 * by 'precise' mark in corresponding register of this state. 2394 * No further tracking necessary. 2395 */ 2396 if (insn->src_reg != BPF_REG_FP) 2397 return 0; 2398 if (BPF_SIZE(insn->code) != BPF_DW) 2399 return 0; 2400 2401 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2402 * that [fp - off] slot contains scalar that needs to be 2403 * tracked with precision 2404 */ 2405 spi = (-insn->off - 1) / BPF_REG_SIZE; 2406 if (spi >= 64) { 2407 verbose(env, "BUG spi %d\n", spi); 2408 WARN_ONCE(1, "verifier backtracking bug"); 2409 return -EFAULT; 2410 } 2411 *stack_mask |= 1ull << spi; 2412 } else if (class == BPF_STX || class == BPF_ST) { 2413 if (*reg_mask & dreg) 2414 /* stx & st shouldn't be using _scalar_ dst_reg 2415 * to access memory. It means backtracking 2416 * encountered a case of pointer subtraction. 2417 */ 2418 return -ENOTSUPP; 2419 /* scalars can only be spilled into stack */ 2420 if (insn->dst_reg != BPF_REG_FP) 2421 return 0; 2422 if (BPF_SIZE(insn->code) != BPF_DW) 2423 return 0; 2424 spi = (-insn->off - 1) / BPF_REG_SIZE; 2425 if (spi >= 64) { 2426 verbose(env, "BUG spi %d\n", spi); 2427 WARN_ONCE(1, "verifier backtracking bug"); 2428 return -EFAULT; 2429 } 2430 if (!(*stack_mask & (1ull << spi))) 2431 return 0; 2432 *stack_mask &= ~(1ull << spi); 2433 if (class == BPF_STX) 2434 *reg_mask |= sreg; 2435 } else if (class == BPF_JMP || class == BPF_JMP32) { 2436 if (opcode == BPF_CALL) { 2437 if (insn->src_reg == BPF_PSEUDO_CALL) 2438 return -ENOTSUPP; 2439 /* regular helper call sets R0 */ 2440 *reg_mask &= ~1; 2441 if (*reg_mask & 0x3f) { 2442 /* if backtracing was looking for registers R1-R5 2443 * they should have been found already. 2444 */ 2445 verbose(env, "BUG regs %x\n", *reg_mask); 2446 WARN_ONCE(1, "verifier backtracking bug"); 2447 return -EFAULT; 2448 } 2449 } else if (opcode == BPF_EXIT) { 2450 return -ENOTSUPP; 2451 } 2452 } else if (class == BPF_LD) { 2453 if (!(*reg_mask & dreg)) 2454 return 0; 2455 *reg_mask &= ~dreg; 2456 /* It's ld_imm64 or ld_abs or ld_ind. 2457 * For ld_imm64 no further tracking of precision 2458 * into parent is necessary 2459 */ 2460 if (mode == BPF_IND || mode == BPF_ABS) 2461 /* to be analyzed */ 2462 return -ENOTSUPP; 2463 } 2464 return 0; 2465 } 2466 2467 /* the scalar precision tracking algorithm: 2468 * . at the start all registers have precise=false. 2469 * . scalar ranges are tracked as normal through alu and jmp insns. 2470 * . once precise value of the scalar register is used in: 2471 * . ptr + scalar alu 2472 * . if (scalar cond K|scalar) 2473 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2474 * backtrack through the verifier states and mark all registers and 2475 * stack slots with spilled constants that these scalar regisers 2476 * should be precise. 2477 * . during state pruning two registers (or spilled stack slots) 2478 * are equivalent if both are not precise. 2479 * 2480 * Note the verifier cannot simply walk register parentage chain, 2481 * since many different registers and stack slots could have been 2482 * used to compute single precise scalar. 2483 * 2484 * The approach of starting with precise=true for all registers and then 2485 * backtrack to mark a register as not precise when the verifier detects 2486 * that program doesn't care about specific value (e.g., when helper 2487 * takes register as ARG_ANYTHING parameter) is not safe. 2488 * 2489 * It's ok to walk single parentage chain of the verifier states. 2490 * It's possible that this backtracking will go all the way till 1st insn. 2491 * All other branches will be explored for needing precision later. 2492 * 2493 * The backtracking needs to deal with cases like: 2494 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2495 * r9 -= r8 2496 * r5 = r9 2497 * if r5 > 0x79f goto pc+7 2498 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2499 * r5 += 1 2500 * ... 2501 * call bpf_perf_event_output#25 2502 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2503 * 2504 * and this case: 2505 * r6 = 1 2506 * call foo // uses callee's r6 inside to compute r0 2507 * r0 += r6 2508 * if r0 == 0 goto 2509 * 2510 * to track above reg_mask/stack_mask needs to be independent for each frame. 2511 * 2512 * Also if parent's curframe > frame where backtracking started, 2513 * the verifier need to mark registers in both frames, otherwise callees 2514 * may incorrectly prune callers. This is similar to 2515 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2516 * 2517 * For now backtracking falls back into conservative marking. 2518 */ 2519 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2520 struct bpf_verifier_state *st) 2521 { 2522 struct bpf_func_state *func; 2523 struct bpf_reg_state *reg; 2524 int i, j; 2525 2526 /* big hammer: mark all scalars precise in this path. 2527 * pop_stack may still get !precise scalars. 2528 */ 2529 for (; st; st = st->parent) 2530 for (i = 0; i <= st->curframe; i++) { 2531 func = st->frame[i]; 2532 for (j = 0; j < BPF_REG_FP; j++) { 2533 reg = &func->regs[j]; 2534 if (reg->type != SCALAR_VALUE) 2535 continue; 2536 reg->precise = true; 2537 } 2538 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2539 if (!is_spilled_reg(&func->stack[j])) 2540 continue; 2541 reg = &func->stack[j].spilled_ptr; 2542 if (reg->type != SCALAR_VALUE) 2543 continue; 2544 reg->precise = true; 2545 } 2546 } 2547 } 2548 2549 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2550 int spi) 2551 { 2552 struct bpf_verifier_state *st = env->cur_state; 2553 int first_idx = st->first_insn_idx; 2554 int last_idx = env->insn_idx; 2555 struct bpf_func_state *func; 2556 struct bpf_reg_state *reg; 2557 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2558 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2559 bool skip_first = true; 2560 bool new_marks = false; 2561 int i, err; 2562 2563 if (!env->bpf_capable) 2564 return 0; 2565 2566 func = st->frame[st->curframe]; 2567 if (regno >= 0) { 2568 reg = &func->regs[regno]; 2569 if (reg->type != SCALAR_VALUE) { 2570 WARN_ONCE(1, "backtracing misuse"); 2571 return -EFAULT; 2572 } 2573 if (!reg->precise) 2574 new_marks = true; 2575 else 2576 reg_mask = 0; 2577 reg->precise = true; 2578 } 2579 2580 while (spi >= 0) { 2581 if (!is_spilled_reg(&func->stack[spi])) { 2582 stack_mask = 0; 2583 break; 2584 } 2585 reg = &func->stack[spi].spilled_ptr; 2586 if (reg->type != SCALAR_VALUE) { 2587 stack_mask = 0; 2588 break; 2589 } 2590 if (!reg->precise) 2591 new_marks = true; 2592 else 2593 stack_mask = 0; 2594 reg->precise = true; 2595 break; 2596 } 2597 2598 if (!new_marks) 2599 return 0; 2600 if (!reg_mask && !stack_mask) 2601 return 0; 2602 for (;;) { 2603 DECLARE_BITMAP(mask, 64); 2604 u32 history = st->jmp_history_cnt; 2605 2606 if (env->log.level & BPF_LOG_LEVEL) 2607 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2608 for (i = last_idx;;) { 2609 if (skip_first) { 2610 err = 0; 2611 skip_first = false; 2612 } else { 2613 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2614 } 2615 if (err == -ENOTSUPP) { 2616 mark_all_scalars_precise(env, st); 2617 return 0; 2618 } else if (err) { 2619 return err; 2620 } 2621 if (!reg_mask && !stack_mask) 2622 /* Found assignment(s) into tracked register in this state. 2623 * Since this state is already marked, just return. 2624 * Nothing to be tracked further in the parent state. 2625 */ 2626 return 0; 2627 if (i == first_idx) 2628 break; 2629 i = get_prev_insn_idx(st, i, &history); 2630 if (i >= env->prog->len) { 2631 /* This can happen if backtracking reached insn 0 2632 * and there are still reg_mask or stack_mask 2633 * to backtrack. 2634 * It means the backtracking missed the spot where 2635 * particular register was initialized with a constant. 2636 */ 2637 verbose(env, "BUG backtracking idx %d\n", i); 2638 WARN_ONCE(1, "verifier backtracking bug"); 2639 return -EFAULT; 2640 } 2641 } 2642 st = st->parent; 2643 if (!st) 2644 break; 2645 2646 new_marks = false; 2647 func = st->frame[st->curframe]; 2648 bitmap_from_u64(mask, reg_mask); 2649 for_each_set_bit(i, mask, 32) { 2650 reg = &func->regs[i]; 2651 if (reg->type != SCALAR_VALUE) { 2652 reg_mask &= ~(1u << i); 2653 continue; 2654 } 2655 if (!reg->precise) 2656 new_marks = true; 2657 reg->precise = true; 2658 } 2659 2660 bitmap_from_u64(mask, stack_mask); 2661 for_each_set_bit(i, mask, 64) { 2662 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2663 /* the sequence of instructions: 2664 * 2: (bf) r3 = r10 2665 * 3: (7b) *(u64 *)(r3 -8) = r0 2666 * 4: (79) r4 = *(u64 *)(r10 -8) 2667 * doesn't contain jmps. It's backtracked 2668 * as a single block. 2669 * During backtracking insn 3 is not recognized as 2670 * stack access, so at the end of backtracking 2671 * stack slot fp-8 is still marked in stack_mask. 2672 * However the parent state may not have accessed 2673 * fp-8 and it's "unallocated" stack space. 2674 * In such case fallback to conservative. 2675 */ 2676 mark_all_scalars_precise(env, st); 2677 return 0; 2678 } 2679 2680 if (!is_spilled_reg(&func->stack[i])) { 2681 stack_mask &= ~(1ull << i); 2682 continue; 2683 } 2684 reg = &func->stack[i].spilled_ptr; 2685 if (reg->type != SCALAR_VALUE) { 2686 stack_mask &= ~(1ull << i); 2687 continue; 2688 } 2689 if (!reg->precise) 2690 new_marks = true; 2691 reg->precise = true; 2692 } 2693 if (env->log.level & BPF_LOG_LEVEL) { 2694 print_verifier_state(env, func); 2695 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2696 new_marks ? "didn't have" : "already had", 2697 reg_mask, stack_mask); 2698 } 2699 2700 if (!reg_mask && !stack_mask) 2701 break; 2702 if (!new_marks) 2703 break; 2704 2705 last_idx = st->last_insn_idx; 2706 first_idx = st->first_insn_idx; 2707 } 2708 return 0; 2709 } 2710 2711 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2712 { 2713 return __mark_chain_precision(env, regno, -1); 2714 } 2715 2716 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2717 { 2718 return __mark_chain_precision(env, -1, spi); 2719 } 2720 2721 static bool is_spillable_regtype(enum bpf_reg_type type) 2722 { 2723 switch (type) { 2724 case PTR_TO_MAP_VALUE: 2725 case PTR_TO_MAP_VALUE_OR_NULL: 2726 case PTR_TO_STACK: 2727 case PTR_TO_CTX: 2728 case PTR_TO_PACKET: 2729 case PTR_TO_PACKET_META: 2730 case PTR_TO_PACKET_END: 2731 case PTR_TO_FLOW_KEYS: 2732 case CONST_PTR_TO_MAP: 2733 case PTR_TO_SOCKET: 2734 case PTR_TO_SOCKET_OR_NULL: 2735 case PTR_TO_SOCK_COMMON: 2736 case PTR_TO_SOCK_COMMON_OR_NULL: 2737 case PTR_TO_TCP_SOCK: 2738 case PTR_TO_TCP_SOCK_OR_NULL: 2739 case PTR_TO_XDP_SOCK: 2740 case PTR_TO_BTF_ID: 2741 case PTR_TO_BTF_ID_OR_NULL: 2742 case PTR_TO_RDONLY_BUF: 2743 case PTR_TO_RDONLY_BUF_OR_NULL: 2744 case PTR_TO_RDWR_BUF: 2745 case PTR_TO_RDWR_BUF_OR_NULL: 2746 case PTR_TO_PERCPU_BTF_ID: 2747 case PTR_TO_MEM: 2748 case PTR_TO_MEM_OR_NULL: 2749 case PTR_TO_FUNC: 2750 case PTR_TO_MAP_KEY: 2751 return true; 2752 default: 2753 return false; 2754 } 2755 } 2756 2757 /* Does this register contain a constant zero? */ 2758 static bool register_is_null(struct bpf_reg_state *reg) 2759 { 2760 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2761 } 2762 2763 static bool register_is_const(struct bpf_reg_state *reg) 2764 { 2765 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2766 } 2767 2768 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2769 { 2770 return tnum_is_unknown(reg->var_off) && 2771 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2772 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2773 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2774 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2775 } 2776 2777 static bool register_is_bounded(struct bpf_reg_state *reg) 2778 { 2779 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2780 } 2781 2782 static bool __is_pointer_value(bool allow_ptr_leaks, 2783 const struct bpf_reg_state *reg) 2784 { 2785 if (allow_ptr_leaks) 2786 return false; 2787 2788 return reg->type != SCALAR_VALUE; 2789 } 2790 2791 static void save_register_state(struct bpf_func_state *state, 2792 int spi, struct bpf_reg_state *reg, 2793 int size) 2794 { 2795 int i; 2796 2797 state->stack[spi].spilled_ptr = *reg; 2798 if (size == BPF_REG_SIZE) 2799 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2800 2801 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2802 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2803 2804 /* size < 8 bytes spill */ 2805 for (; i; i--) 2806 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2807 } 2808 2809 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2810 * stack boundary and alignment are checked in check_mem_access() 2811 */ 2812 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2813 /* stack frame we're writing to */ 2814 struct bpf_func_state *state, 2815 int off, int size, int value_regno, 2816 int insn_idx) 2817 { 2818 struct bpf_func_state *cur; /* state of the current function */ 2819 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2820 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2821 struct bpf_reg_state *reg = NULL; 2822 2823 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2824 if (err) 2825 return err; 2826 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2827 * so it's aligned access and [off, off + size) are within stack limits 2828 */ 2829 if (!env->allow_ptr_leaks && 2830 state->stack[spi].slot_type[0] == STACK_SPILL && 2831 size != BPF_REG_SIZE) { 2832 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2833 return -EACCES; 2834 } 2835 2836 cur = env->cur_state->frame[env->cur_state->curframe]; 2837 if (value_regno >= 0) 2838 reg = &cur->regs[value_regno]; 2839 if (!env->bypass_spec_v4) { 2840 bool sanitize = reg && is_spillable_regtype(reg->type); 2841 2842 for (i = 0; i < size; i++) { 2843 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2844 sanitize = true; 2845 break; 2846 } 2847 } 2848 2849 if (sanitize) 2850 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2851 } 2852 2853 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2854 !register_is_null(reg) && env->bpf_capable) { 2855 if (dst_reg != BPF_REG_FP) { 2856 /* The backtracking logic can only recognize explicit 2857 * stack slot address like [fp - 8]. Other spill of 2858 * scalar via different register has to be conservative. 2859 * Backtrack from here and mark all registers as precise 2860 * that contributed into 'reg' being a constant. 2861 */ 2862 err = mark_chain_precision(env, value_regno); 2863 if (err) 2864 return err; 2865 } 2866 save_register_state(state, spi, reg, size); 2867 } else if (reg && is_spillable_regtype(reg->type)) { 2868 /* register containing pointer is being spilled into stack */ 2869 if (size != BPF_REG_SIZE) { 2870 verbose_linfo(env, insn_idx, "; "); 2871 verbose(env, "invalid size of register spill\n"); 2872 return -EACCES; 2873 } 2874 if (state != cur && reg->type == PTR_TO_STACK) { 2875 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2876 return -EINVAL; 2877 } 2878 save_register_state(state, spi, reg, size); 2879 } else { 2880 u8 type = STACK_MISC; 2881 2882 /* regular write of data into stack destroys any spilled ptr */ 2883 state->stack[spi].spilled_ptr.type = NOT_INIT; 2884 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2885 if (is_spilled_reg(&state->stack[spi])) 2886 for (i = 0; i < BPF_REG_SIZE; i++) 2887 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2888 2889 /* only mark the slot as written if all 8 bytes were written 2890 * otherwise read propagation may incorrectly stop too soon 2891 * when stack slots are partially written. 2892 * This heuristic means that read propagation will be 2893 * conservative, since it will add reg_live_read marks 2894 * to stack slots all the way to first state when programs 2895 * writes+reads less than 8 bytes 2896 */ 2897 if (size == BPF_REG_SIZE) 2898 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2899 2900 /* when we zero initialize stack slots mark them as such */ 2901 if (reg && register_is_null(reg)) { 2902 /* backtracking doesn't work for STACK_ZERO yet. */ 2903 err = mark_chain_precision(env, value_regno); 2904 if (err) 2905 return err; 2906 type = STACK_ZERO; 2907 } 2908 2909 /* Mark slots affected by this stack write. */ 2910 for (i = 0; i < size; i++) 2911 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2912 type; 2913 } 2914 return 0; 2915 } 2916 2917 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2918 * known to contain a variable offset. 2919 * This function checks whether the write is permitted and conservatively 2920 * tracks the effects of the write, considering that each stack slot in the 2921 * dynamic range is potentially written to. 2922 * 2923 * 'off' includes 'regno->off'. 2924 * 'value_regno' can be -1, meaning that an unknown value is being written to 2925 * the stack. 2926 * 2927 * Spilled pointers in range are not marked as written because we don't know 2928 * what's going to be actually written. This means that read propagation for 2929 * future reads cannot be terminated by this write. 2930 * 2931 * For privileged programs, uninitialized stack slots are considered 2932 * initialized by this write (even though we don't know exactly what offsets 2933 * are going to be written to). The idea is that we don't want the verifier to 2934 * reject future reads that access slots written to through variable offsets. 2935 */ 2936 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2937 /* func where register points to */ 2938 struct bpf_func_state *state, 2939 int ptr_regno, int off, int size, 2940 int value_regno, int insn_idx) 2941 { 2942 struct bpf_func_state *cur; /* state of the current function */ 2943 int min_off, max_off; 2944 int i, err; 2945 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2946 bool writing_zero = false; 2947 /* set if the fact that we're writing a zero is used to let any 2948 * stack slots remain STACK_ZERO 2949 */ 2950 bool zero_used = false; 2951 2952 cur = env->cur_state->frame[env->cur_state->curframe]; 2953 ptr_reg = &cur->regs[ptr_regno]; 2954 min_off = ptr_reg->smin_value + off; 2955 max_off = ptr_reg->smax_value + off + size; 2956 if (value_regno >= 0) 2957 value_reg = &cur->regs[value_regno]; 2958 if (value_reg && register_is_null(value_reg)) 2959 writing_zero = true; 2960 2961 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2962 if (err) 2963 return err; 2964 2965 2966 /* Variable offset writes destroy any spilled pointers in range. */ 2967 for (i = min_off; i < max_off; i++) { 2968 u8 new_type, *stype; 2969 int slot, spi; 2970 2971 slot = -i - 1; 2972 spi = slot / BPF_REG_SIZE; 2973 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2974 2975 if (!env->allow_ptr_leaks 2976 && *stype != NOT_INIT 2977 && *stype != SCALAR_VALUE) { 2978 /* Reject the write if there's are spilled pointers in 2979 * range. If we didn't reject here, the ptr status 2980 * would be erased below (even though not all slots are 2981 * actually overwritten), possibly opening the door to 2982 * leaks. 2983 */ 2984 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2985 insn_idx, i); 2986 return -EINVAL; 2987 } 2988 2989 /* Erase all spilled pointers. */ 2990 state->stack[spi].spilled_ptr.type = NOT_INIT; 2991 2992 /* Update the slot type. */ 2993 new_type = STACK_MISC; 2994 if (writing_zero && *stype == STACK_ZERO) { 2995 new_type = STACK_ZERO; 2996 zero_used = true; 2997 } 2998 /* If the slot is STACK_INVALID, we check whether it's OK to 2999 * pretend that it will be initialized by this write. The slot 3000 * might not actually be written to, and so if we mark it as 3001 * initialized future reads might leak uninitialized memory. 3002 * For privileged programs, we will accept such reads to slots 3003 * that may or may not be written because, if we're reject 3004 * them, the error would be too confusing. 3005 */ 3006 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3007 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3008 insn_idx, i); 3009 return -EINVAL; 3010 } 3011 *stype = new_type; 3012 } 3013 if (zero_used) { 3014 /* backtracking doesn't work for STACK_ZERO yet. */ 3015 err = mark_chain_precision(env, value_regno); 3016 if (err) 3017 return err; 3018 } 3019 return 0; 3020 } 3021 3022 /* When register 'dst_regno' is assigned some values from stack[min_off, 3023 * max_off), we set the register's type according to the types of the 3024 * respective stack slots. If all the stack values are known to be zeros, then 3025 * so is the destination reg. Otherwise, the register is considered to be 3026 * SCALAR. This function does not deal with register filling; the caller must 3027 * ensure that all spilled registers in the stack range have been marked as 3028 * read. 3029 */ 3030 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3031 /* func where src register points to */ 3032 struct bpf_func_state *ptr_state, 3033 int min_off, int max_off, int dst_regno) 3034 { 3035 struct bpf_verifier_state *vstate = env->cur_state; 3036 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3037 int i, slot, spi; 3038 u8 *stype; 3039 int zeros = 0; 3040 3041 for (i = min_off; i < max_off; i++) { 3042 slot = -i - 1; 3043 spi = slot / BPF_REG_SIZE; 3044 stype = ptr_state->stack[spi].slot_type; 3045 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3046 break; 3047 zeros++; 3048 } 3049 if (zeros == max_off - min_off) { 3050 /* any access_size read into register is zero extended, 3051 * so the whole register == const_zero 3052 */ 3053 __mark_reg_const_zero(&state->regs[dst_regno]); 3054 /* backtracking doesn't support STACK_ZERO yet, 3055 * so mark it precise here, so that later 3056 * backtracking can stop here. 3057 * Backtracking may not need this if this register 3058 * doesn't participate in pointer adjustment. 3059 * Forward propagation of precise flag is not 3060 * necessary either. This mark is only to stop 3061 * backtracking. Any register that contributed 3062 * to const 0 was marked precise before spill. 3063 */ 3064 state->regs[dst_regno].precise = true; 3065 } else { 3066 /* have read misc data from the stack */ 3067 mark_reg_unknown(env, state->regs, dst_regno); 3068 } 3069 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3070 } 3071 3072 /* Read the stack at 'off' and put the results into the register indicated by 3073 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3074 * spilled reg. 3075 * 3076 * 'dst_regno' can be -1, meaning that the read value is not going to a 3077 * register. 3078 * 3079 * The access is assumed to be within the current stack bounds. 3080 */ 3081 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3082 /* func where src register points to */ 3083 struct bpf_func_state *reg_state, 3084 int off, int size, int dst_regno) 3085 { 3086 struct bpf_verifier_state *vstate = env->cur_state; 3087 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3088 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3089 struct bpf_reg_state *reg; 3090 u8 *stype, type; 3091 3092 stype = reg_state->stack[spi].slot_type; 3093 reg = ®_state->stack[spi].spilled_ptr; 3094 3095 if (is_spilled_reg(®_state->stack[spi])) { 3096 if (size != BPF_REG_SIZE) { 3097 u8 scalar_size = 0; 3098 3099 if (reg->type != SCALAR_VALUE) { 3100 verbose_linfo(env, env->insn_idx, "; "); 3101 verbose(env, "invalid size of register fill\n"); 3102 return -EACCES; 3103 } 3104 3105 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3106 if (dst_regno < 0) 3107 return 0; 3108 3109 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3110 scalar_size++; 3111 3112 if (!(off % BPF_REG_SIZE) && size == scalar_size) { 3113 /* The earlier check_reg_arg() has decided the 3114 * subreg_def for this insn. Save it first. 3115 */ 3116 s32 subreg_def = state->regs[dst_regno].subreg_def; 3117 3118 state->regs[dst_regno] = *reg; 3119 state->regs[dst_regno].subreg_def = subreg_def; 3120 } else { 3121 for (i = 0; i < size; i++) { 3122 type = stype[(slot - i) % BPF_REG_SIZE]; 3123 if (type == STACK_SPILL) 3124 continue; 3125 if (type == STACK_MISC) 3126 continue; 3127 verbose(env, "invalid read from stack off %d+%d size %d\n", 3128 off, i, size); 3129 return -EACCES; 3130 } 3131 mark_reg_unknown(env, state->regs, dst_regno); 3132 } 3133 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3134 return 0; 3135 } 3136 for (i = 1; i < BPF_REG_SIZE; i++) { 3137 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 3138 verbose(env, "corrupted spill memory\n"); 3139 return -EACCES; 3140 } 3141 } 3142 3143 if (dst_regno >= 0) { 3144 /* restore register state from stack */ 3145 state->regs[dst_regno] = *reg; 3146 /* mark reg as written since spilled pointer state likely 3147 * has its liveness marks cleared by is_state_visited() 3148 * which resets stack/reg liveness for state transitions 3149 */ 3150 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3151 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3152 /* If dst_regno==-1, the caller is asking us whether 3153 * it is acceptable to use this value as a SCALAR_VALUE 3154 * (e.g. for XADD). 3155 * We must not allow unprivileged callers to do that 3156 * with spilled pointers. 3157 */ 3158 verbose(env, "leaking pointer from stack off %d\n", 3159 off); 3160 return -EACCES; 3161 } 3162 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3163 } else { 3164 for (i = 0; i < size; i++) { 3165 type = stype[(slot - i) % BPF_REG_SIZE]; 3166 if (type == STACK_MISC) 3167 continue; 3168 if (type == STACK_ZERO) 3169 continue; 3170 verbose(env, "invalid read from stack off %d+%d size %d\n", 3171 off, i, size); 3172 return -EACCES; 3173 } 3174 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3175 if (dst_regno >= 0) 3176 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3177 } 3178 return 0; 3179 } 3180 3181 enum stack_access_src { 3182 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3183 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3184 }; 3185 3186 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3187 int regno, int off, int access_size, 3188 bool zero_size_allowed, 3189 enum stack_access_src type, 3190 struct bpf_call_arg_meta *meta); 3191 3192 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3193 { 3194 return cur_regs(env) + regno; 3195 } 3196 3197 /* Read the stack at 'ptr_regno + off' and put the result into the register 3198 * 'dst_regno'. 3199 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3200 * but not its variable offset. 3201 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3202 * 3203 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3204 * filling registers (i.e. reads of spilled register cannot be detected when 3205 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3206 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3207 * offset; for a fixed offset check_stack_read_fixed_off should be used 3208 * instead. 3209 */ 3210 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3211 int ptr_regno, int off, int size, int dst_regno) 3212 { 3213 /* The state of the source register. */ 3214 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3215 struct bpf_func_state *ptr_state = func(env, reg); 3216 int err; 3217 int min_off, max_off; 3218 3219 /* Note that we pass a NULL meta, so raw access will not be permitted. 3220 */ 3221 err = check_stack_range_initialized(env, ptr_regno, off, size, 3222 false, ACCESS_DIRECT, NULL); 3223 if (err) 3224 return err; 3225 3226 min_off = reg->smin_value + off; 3227 max_off = reg->smax_value + off; 3228 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3229 return 0; 3230 } 3231 3232 /* check_stack_read dispatches to check_stack_read_fixed_off or 3233 * check_stack_read_var_off. 3234 * 3235 * The caller must ensure that the offset falls within the allocated stack 3236 * bounds. 3237 * 3238 * 'dst_regno' is a register which will receive the value from the stack. It 3239 * can be -1, meaning that the read value is not going to a register. 3240 */ 3241 static int check_stack_read(struct bpf_verifier_env *env, 3242 int ptr_regno, int off, int size, 3243 int dst_regno) 3244 { 3245 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3246 struct bpf_func_state *state = func(env, reg); 3247 int err; 3248 /* Some accesses are only permitted with a static offset. */ 3249 bool var_off = !tnum_is_const(reg->var_off); 3250 3251 /* The offset is required to be static when reads don't go to a 3252 * register, in order to not leak pointers (see 3253 * check_stack_read_fixed_off). 3254 */ 3255 if (dst_regno < 0 && var_off) { 3256 char tn_buf[48]; 3257 3258 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3259 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3260 tn_buf, off, size); 3261 return -EACCES; 3262 } 3263 /* Variable offset is prohibited for unprivileged mode for simplicity 3264 * since it requires corresponding support in Spectre masking for stack 3265 * ALU. See also retrieve_ptr_limit(). 3266 */ 3267 if (!env->bypass_spec_v1 && var_off) { 3268 char tn_buf[48]; 3269 3270 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3271 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3272 ptr_regno, tn_buf); 3273 return -EACCES; 3274 } 3275 3276 if (!var_off) { 3277 off += reg->var_off.value; 3278 err = check_stack_read_fixed_off(env, state, off, size, 3279 dst_regno); 3280 } else { 3281 /* Variable offset stack reads need more conservative handling 3282 * than fixed offset ones. Note that dst_regno >= 0 on this 3283 * branch. 3284 */ 3285 err = check_stack_read_var_off(env, ptr_regno, off, size, 3286 dst_regno); 3287 } 3288 return err; 3289 } 3290 3291 3292 /* check_stack_write dispatches to check_stack_write_fixed_off or 3293 * check_stack_write_var_off. 3294 * 3295 * 'ptr_regno' is the register used as a pointer into the stack. 3296 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3297 * 'value_regno' is the register whose value we're writing to the stack. It can 3298 * be -1, meaning that we're not writing from a register. 3299 * 3300 * The caller must ensure that the offset falls within the maximum stack size. 3301 */ 3302 static int check_stack_write(struct bpf_verifier_env *env, 3303 int ptr_regno, int off, int size, 3304 int value_regno, int insn_idx) 3305 { 3306 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3307 struct bpf_func_state *state = func(env, reg); 3308 int err; 3309 3310 if (tnum_is_const(reg->var_off)) { 3311 off += reg->var_off.value; 3312 err = check_stack_write_fixed_off(env, state, off, size, 3313 value_regno, insn_idx); 3314 } else { 3315 /* Variable offset stack reads need more conservative handling 3316 * than fixed offset ones. 3317 */ 3318 err = check_stack_write_var_off(env, state, 3319 ptr_regno, off, size, 3320 value_regno, insn_idx); 3321 } 3322 return err; 3323 } 3324 3325 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3326 int off, int size, enum bpf_access_type type) 3327 { 3328 struct bpf_reg_state *regs = cur_regs(env); 3329 struct bpf_map *map = regs[regno].map_ptr; 3330 u32 cap = bpf_map_flags_to_cap(map); 3331 3332 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3333 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3334 map->value_size, off, size); 3335 return -EACCES; 3336 } 3337 3338 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3339 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3340 map->value_size, off, size); 3341 return -EACCES; 3342 } 3343 3344 return 0; 3345 } 3346 3347 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3348 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3349 int off, int size, u32 mem_size, 3350 bool zero_size_allowed) 3351 { 3352 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3353 struct bpf_reg_state *reg; 3354 3355 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3356 return 0; 3357 3358 reg = &cur_regs(env)[regno]; 3359 switch (reg->type) { 3360 case PTR_TO_MAP_KEY: 3361 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3362 mem_size, off, size); 3363 break; 3364 case PTR_TO_MAP_VALUE: 3365 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3366 mem_size, off, size); 3367 break; 3368 case PTR_TO_PACKET: 3369 case PTR_TO_PACKET_META: 3370 case PTR_TO_PACKET_END: 3371 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3372 off, size, regno, reg->id, off, mem_size); 3373 break; 3374 case PTR_TO_MEM: 3375 default: 3376 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3377 mem_size, off, size); 3378 } 3379 3380 return -EACCES; 3381 } 3382 3383 /* check read/write into a memory region with possible variable offset */ 3384 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3385 int off, int size, u32 mem_size, 3386 bool zero_size_allowed) 3387 { 3388 struct bpf_verifier_state *vstate = env->cur_state; 3389 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3390 struct bpf_reg_state *reg = &state->regs[regno]; 3391 int err; 3392 3393 /* We may have adjusted the register pointing to memory region, so we 3394 * need to try adding each of min_value and max_value to off 3395 * to make sure our theoretical access will be safe. 3396 */ 3397 if (env->log.level & BPF_LOG_LEVEL) 3398 print_verifier_state(env, state); 3399 3400 /* The minimum value is only important with signed 3401 * comparisons where we can't assume the floor of a 3402 * value is 0. If we are using signed variables for our 3403 * index'es we need to make sure that whatever we use 3404 * will have a set floor within our range. 3405 */ 3406 if (reg->smin_value < 0 && 3407 (reg->smin_value == S64_MIN || 3408 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3409 reg->smin_value + off < 0)) { 3410 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3411 regno); 3412 return -EACCES; 3413 } 3414 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3415 mem_size, zero_size_allowed); 3416 if (err) { 3417 verbose(env, "R%d min value is outside of the allowed memory range\n", 3418 regno); 3419 return err; 3420 } 3421 3422 /* If we haven't set a max value then we need to bail since we can't be 3423 * sure we won't do bad things. 3424 * If reg->umax_value + off could overflow, treat that as unbounded too. 3425 */ 3426 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3427 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3428 regno); 3429 return -EACCES; 3430 } 3431 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3432 mem_size, zero_size_allowed); 3433 if (err) { 3434 verbose(env, "R%d max value is outside of the allowed memory range\n", 3435 regno); 3436 return err; 3437 } 3438 3439 return 0; 3440 } 3441 3442 /* check read/write into a map element with possible variable offset */ 3443 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3444 int off, int size, bool zero_size_allowed) 3445 { 3446 struct bpf_verifier_state *vstate = env->cur_state; 3447 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3448 struct bpf_reg_state *reg = &state->regs[regno]; 3449 struct bpf_map *map = reg->map_ptr; 3450 int err; 3451 3452 err = check_mem_region_access(env, regno, off, size, map->value_size, 3453 zero_size_allowed); 3454 if (err) 3455 return err; 3456 3457 if (map_value_has_spin_lock(map)) { 3458 u32 lock = map->spin_lock_off; 3459 3460 /* if any part of struct bpf_spin_lock can be touched by 3461 * load/store reject this program. 3462 * To check that [x1, x2) overlaps with [y1, y2) 3463 * it is sufficient to check x1 < y2 && y1 < x2. 3464 */ 3465 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3466 lock < reg->umax_value + off + size) { 3467 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3468 return -EACCES; 3469 } 3470 } 3471 if (map_value_has_timer(map)) { 3472 u32 t = map->timer_off; 3473 3474 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3475 t < reg->umax_value + off + size) { 3476 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3477 return -EACCES; 3478 } 3479 } 3480 return err; 3481 } 3482 3483 #define MAX_PACKET_OFF 0xffff 3484 3485 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3486 { 3487 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3488 } 3489 3490 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3491 const struct bpf_call_arg_meta *meta, 3492 enum bpf_access_type t) 3493 { 3494 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3495 3496 switch (prog_type) { 3497 /* Program types only with direct read access go here! */ 3498 case BPF_PROG_TYPE_LWT_IN: 3499 case BPF_PROG_TYPE_LWT_OUT: 3500 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3501 case BPF_PROG_TYPE_SK_REUSEPORT: 3502 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3503 case BPF_PROG_TYPE_CGROUP_SKB: 3504 if (t == BPF_WRITE) 3505 return false; 3506 fallthrough; 3507 3508 /* Program types with direct read + write access go here! */ 3509 case BPF_PROG_TYPE_SCHED_CLS: 3510 case BPF_PROG_TYPE_SCHED_ACT: 3511 case BPF_PROG_TYPE_XDP: 3512 case BPF_PROG_TYPE_LWT_XMIT: 3513 case BPF_PROG_TYPE_SK_SKB: 3514 case BPF_PROG_TYPE_SK_MSG: 3515 if (meta) 3516 return meta->pkt_access; 3517 3518 env->seen_direct_write = true; 3519 return true; 3520 3521 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3522 if (t == BPF_WRITE) 3523 env->seen_direct_write = true; 3524 3525 return true; 3526 3527 default: 3528 return false; 3529 } 3530 } 3531 3532 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3533 int size, bool zero_size_allowed) 3534 { 3535 struct bpf_reg_state *regs = cur_regs(env); 3536 struct bpf_reg_state *reg = ®s[regno]; 3537 int err; 3538 3539 /* We may have added a variable offset to the packet pointer; but any 3540 * reg->range we have comes after that. We are only checking the fixed 3541 * offset. 3542 */ 3543 3544 /* We don't allow negative numbers, because we aren't tracking enough 3545 * detail to prove they're safe. 3546 */ 3547 if (reg->smin_value < 0) { 3548 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3549 regno); 3550 return -EACCES; 3551 } 3552 3553 err = reg->range < 0 ? -EINVAL : 3554 __check_mem_access(env, regno, off, size, reg->range, 3555 zero_size_allowed); 3556 if (err) { 3557 verbose(env, "R%d offset is outside of the packet\n", regno); 3558 return err; 3559 } 3560 3561 /* __check_mem_access has made sure "off + size - 1" is within u16. 3562 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3563 * otherwise find_good_pkt_pointers would have refused to set range info 3564 * that __check_mem_access would have rejected this pkt access. 3565 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3566 */ 3567 env->prog->aux->max_pkt_offset = 3568 max_t(u32, env->prog->aux->max_pkt_offset, 3569 off + reg->umax_value + size - 1); 3570 3571 return err; 3572 } 3573 3574 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3575 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3576 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3577 struct btf **btf, u32 *btf_id) 3578 { 3579 struct bpf_insn_access_aux info = { 3580 .reg_type = *reg_type, 3581 .log = &env->log, 3582 }; 3583 3584 if (env->ops->is_valid_access && 3585 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3586 /* A non zero info.ctx_field_size indicates that this field is a 3587 * candidate for later verifier transformation to load the whole 3588 * field and then apply a mask when accessed with a narrower 3589 * access than actual ctx access size. A zero info.ctx_field_size 3590 * will only allow for whole field access and rejects any other 3591 * type of narrower access. 3592 */ 3593 *reg_type = info.reg_type; 3594 3595 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3596 *btf = info.btf; 3597 *btf_id = info.btf_id; 3598 } else { 3599 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3600 } 3601 /* remember the offset of last byte accessed in ctx */ 3602 if (env->prog->aux->max_ctx_offset < off + size) 3603 env->prog->aux->max_ctx_offset = off + size; 3604 return 0; 3605 } 3606 3607 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3608 return -EACCES; 3609 } 3610 3611 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3612 int size) 3613 { 3614 if (size < 0 || off < 0 || 3615 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3616 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3617 off, size); 3618 return -EACCES; 3619 } 3620 return 0; 3621 } 3622 3623 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3624 u32 regno, int off, int size, 3625 enum bpf_access_type t) 3626 { 3627 struct bpf_reg_state *regs = cur_regs(env); 3628 struct bpf_reg_state *reg = ®s[regno]; 3629 struct bpf_insn_access_aux info = {}; 3630 bool valid; 3631 3632 if (reg->smin_value < 0) { 3633 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3634 regno); 3635 return -EACCES; 3636 } 3637 3638 switch (reg->type) { 3639 case PTR_TO_SOCK_COMMON: 3640 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3641 break; 3642 case PTR_TO_SOCKET: 3643 valid = bpf_sock_is_valid_access(off, size, t, &info); 3644 break; 3645 case PTR_TO_TCP_SOCK: 3646 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3647 break; 3648 case PTR_TO_XDP_SOCK: 3649 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3650 break; 3651 default: 3652 valid = false; 3653 } 3654 3655 3656 if (valid) { 3657 env->insn_aux_data[insn_idx].ctx_field_size = 3658 info.ctx_field_size; 3659 return 0; 3660 } 3661 3662 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3663 regno, reg_type_str[reg->type], off, size); 3664 3665 return -EACCES; 3666 } 3667 3668 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3669 { 3670 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3671 } 3672 3673 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3674 { 3675 const struct bpf_reg_state *reg = reg_state(env, regno); 3676 3677 return reg->type == PTR_TO_CTX; 3678 } 3679 3680 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3681 { 3682 const struct bpf_reg_state *reg = reg_state(env, regno); 3683 3684 return type_is_sk_pointer(reg->type); 3685 } 3686 3687 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3688 { 3689 const struct bpf_reg_state *reg = reg_state(env, regno); 3690 3691 return type_is_pkt_pointer(reg->type); 3692 } 3693 3694 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3695 { 3696 const struct bpf_reg_state *reg = reg_state(env, regno); 3697 3698 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3699 return reg->type == PTR_TO_FLOW_KEYS; 3700 } 3701 3702 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3703 const struct bpf_reg_state *reg, 3704 int off, int size, bool strict) 3705 { 3706 struct tnum reg_off; 3707 int ip_align; 3708 3709 /* Byte size accesses are always allowed. */ 3710 if (!strict || size == 1) 3711 return 0; 3712 3713 /* For platforms that do not have a Kconfig enabling 3714 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3715 * NET_IP_ALIGN is universally set to '2'. And on platforms 3716 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3717 * to this code only in strict mode where we want to emulate 3718 * the NET_IP_ALIGN==2 checking. Therefore use an 3719 * unconditional IP align value of '2'. 3720 */ 3721 ip_align = 2; 3722 3723 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3724 if (!tnum_is_aligned(reg_off, size)) { 3725 char tn_buf[48]; 3726 3727 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3728 verbose(env, 3729 "misaligned packet access off %d+%s+%d+%d size %d\n", 3730 ip_align, tn_buf, reg->off, off, size); 3731 return -EACCES; 3732 } 3733 3734 return 0; 3735 } 3736 3737 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3738 const struct bpf_reg_state *reg, 3739 const char *pointer_desc, 3740 int off, int size, bool strict) 3741 { 3742 struct tnum reg_off; 3743 3744 /* Byte size accesses are always allowed. */ 3745 if (!strict || size == 1) 3746 return 0; 3747 3748 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3749 if (!tnum_is_aligned(reg_off, size)) { 3750 char tn_buf[48]; 3751 3752 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3753 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3754 pointer_desc, tn_buf, reg->off, off, size); 3755 return -EACCES; 3756 } 3757 3758 return 0; 3759 } 3760 3761 static int check_ptr_alignment(struct bpf_verifier_env *env, 3762 const struct bpf_reg_state *reg, int off, 3763 int size, bool strict_alignment_once) 3764 { 3765 bool strict = env->strict_alignment || strict_alignment_once; 3766 const char *pointer_desc = ""; 3767 3768 switch (reg->type) { 3769 case PTR_TO_PACKET: 3770 case PTR_TO_PACKET_META: 3771 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3772 * right in front, treat it the very same way. 3773 */ 3774 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3775 case PTR_TO_FLOW_KEYS: 3776 pointer_desc = "flow keys "; 3777 break; 3778 case PTR_TO_MAP_KEY: 3779 pointer_desc = "key "; 3780 break; 3781 case PTR_TO_MAP_VALUE: 3782 pointer_desc = "value "; 3783 break; 3784 case PTR_TO_CTX: 3785 pointer_desc = "context "; 3786 break; 3787 case PTR_TO_STACK: 3788 pointer_desc = "stack "; 3789 /* The stack spill tracking logic in check_stack_write_fixed_off() 3790 * and check_stack_read_fixed_off() relies on stack accesses being 3791 * aligned. 3792 */ 3793 strict = true; 3794 break; 3795 case PTR_TO_SOCKET: 3796 pointer_desc = "sock "; 3797 break; 3798 case PTR_TO_SOCK_COMMON: 3799 pointer_desc = "sock_common "; 3800 break; 3801 case PTR_TO_TCP_SOCK: 3802 pointer_desc = "tcp_sock "; 3803 break; 3804 case PTR_TO_XDP_SOCK: 3805 pointer_desc = "xdp_sock "; 3806 break; 3807 default: 3808 break; 3809 } 3810 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3811 strict); 3812 } 3813 3814 static int update_stack_depth(struct bpf_verifier_env *env, 3815 const struct bpf_func_state *func, 3816 int off) 3817 { 3818 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3819 3820 if (stack >= -off) 3821 return 0; 3822 3823 /* update known max for given subprogram */ 3824 env->subprog_info[func->subprogno].stack_depth = -off; 3825 return 0; 3826 } 3827 3828 /* starting from main bpf function walk all instructions of the function 3829 * and recursively walk all callees that given function can call. 3830 * Ignore jump and exit insns. 3831 * Since recursion is prevented by check_cfg() this algorithm 3832 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3833 */ 3834 static int check_max_stack_depth(struct bpf_verifier_env *env) 3835 { 3836 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3837 struct bpf_subprog_info *subprog = env->subprog_info; 3838 struct bpf_insn *insn = env->prog->insnsi; 3839 bool tail_call_reachable = false; 3840 int ret_insn[MAX_CALL_FRAMES]; 3841 int ret_prog[MAX_CALL_FRAMES]; 3842 int j; 3843 3844 process_func: 3845 /* protect against potential stack overflow that might happen when 3846 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3847 * depth for such case down to 256 so that the worst case scenario 3848 * would result in 8k stack size (32 which is tailcall limit * 256 = 3849 * 8k). 3850 * 3851 * To get the idea what might happen, see an example: 3852 * func1 -> sub rsp, 128 3853 * subfunc1 -> sub rsp, 256 3854 * tailcall1 -> add rsp, 256 3855 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3856 * subfunc2 -> sub rsp, 64 3857 * subfunc22 -> sub rsp, 128 3858 * tailcall2 -> add rsp, 128 3859 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3860 * 3861 * tailcall will unwind the current stack frame but it will not get rid 3862 * of caller's stack as shown on the example above. 3863 */ 3864 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3865 verbose(env, 3866 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3867 depth); 3868 return -EACCES; 3869 } 3870 /* round up to 32-bytes, since this is granularity 3871 * of interpreter stack size 3872 */ 3873 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3874 if (depth > MAX_BPF_STACK) { 3875 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3876 frame + 1, depth); 3877 return -EACCES; 3878 } 3879 continue_func: 3880 subprog_end = subprog[idx + 1].start; 3881 for (; i < subprog_end; i++) { 3882 int next_insn; 3883 3884 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3885 continue; 3886 /* remember insn and function to return to */ 3887 ret_insn[frame] = i + 1; 3888 ret_prog[frame] = idx; 3889 3890 /* find the callee */ 3891 next_insn = i + insn[i].imm + 1; 3892 idx = find_subprog(env, next_insn); 3893 if (idx < 0) { 3894 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3895 next_insn); 3896 return -EFAULT; 3897 } 3898 if (subprog[idx].is_async_cb) { 3899 if (subprog[idx].has_tail_call) { 3900 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3901 return -EFAULT; 3902 } 3903 /* async callbacks don't increase bpf prog stack size */ 3904 continue; 3905 } 3906 i = next_insn; 3907 3908 if (subprog[idx].has_tail_call) 3909 tail_call_reachable = true; 3910 3911 frame++; 3912 if (frame >= MAX_CALL_FRAMES) { 3913 verbose(env, "the call stack of %d frames is too deep !\n", 3914 frame); 3915 return -E2BIG; 3916 } 3917 goto process_func; 3918 } 3919 /* if tail call got detected across bpf2bpf calls then mark each of the 3920 * currently present subprog frames as tail call reachable subprogs; 3921 * this info will be utilized by JIT so that we will be preserving the 3922 * tail call counter throughout bpf2bpf calls combined with tailcalls 3923 */ 3924 if (tail_call_reachable) 3925 for (j = 0; j < frame; j++) 3926 subprog[ret_prog[j]].tail_call_reachable = true; 3927 if (subprog[0].tail_call_reachable) 3928 env->prog->aux->tail_call_reachable = true; 3929 3930 /* end of for() loop means the last insn of the 'subprog' 3931 * was reached. Doesn't matter whether it was JA or EXIT 3932 */ 3933 if (frame == 0) 3934 return 0; 3935 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3936 frame--; 3937 i = ret_insn[frame]; 3938 idx = ret_prog[frame]; 3939 goto continue_func; 3940 } 3941 3942 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3943 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3944 const struct bpf_insn *insn, int idx) 3945 { 3946 int start = idx + insn->imm + 1, subprog; 3947 3948 subprog = find_subprog(env, start); 3949 if (subprog < 0) { 3950 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3951 start); 3952 return -EFAULT; 3953 } 3954 return env->subprog_info[subprog].stack_depth; 3955 } 3956 #endif 3957 3958 int check_ctx_reg(struct bpf_verifier_env *env, 3959 const struct bpf_reg_state *reg, int regno) 3960 { 3961 /* Access to ctx or passing it to a helper is only allowed in 3962 * its original, unmodified form. 3963 */ 3964 3965 if (reg->off) { 3966 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3967 regno, reg->off); 3968 return -EACCES; 3969 } 3970 3971 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3972 char tn_buf[48]; 3973 3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3975 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3976 return -EACCES; 3977 } 3978 3979 return 0; 3980 } 3981 3982 static int __check_buffer_access(struct bpf_verifier_env *env, 3983 const char *buf_info, 3984 const struct bpf_reg_state *reg, 3985 int regno, int off, int size) 3986 { 3987 if (off < 0) { 3988 verbose(env, 3989 "R%d invalid %s buffer access: off=%d, size=%d\n", 3990 regno, buf_info, off, size); 3991 return -EACCES; 3992 } 3993 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3994 char tn_buf[48]; 3995 3996 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3997 verbose(env, 3998 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3999 regno, off, tn_buf); 4000 return -EACCES; 4001 } 4002 4003 return 0; 4004 } 4005 4006 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4007 const struct bpf_reg_state *reg, 4008 int regno, int off, int size) 4009 { 4010 int err; 4011 4012 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4013 if (err) 4014 return err; 4015 4016 if (off + size > env->prog->aux->max_tp_access) 4017 env->prog->aux->max_tp_access = off + size; 4018 4019 return 0; 4020 } 4021 4022 static int check_buffer_access(struct bpf_verifier_env *env, 4023 const struct bpf_reg_state *reg, 4024 int regno, int off, int size, 4025 bool zero_size_allowed, 4026 const char *buf_info, 4027 u32 *max_access) 4028 { 4029 int err; 4030 4031 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4032 if (err) 4033 return err; 4034 4035 if (off + size > *max_access) 4036 *max_access = off + size; 4037 4038 return 0; 4039 } 4040 4041 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4042 static void zext_32_to_64(struct bpf_reg_state *reg) 4043 { 4044 reg->var_off = tnum_subreg(reg->var_off); 4045 __reg_assign_32_into_64(reg); 4046 } 4047 4048 /* truncate register to smaller size (in bytes) 4049 * must be called with size < BPF_REG_SIZE 4050 */ 4051 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4052 { 4053 u64 mask; 4054 4055 /* clear high bits in bit representation */ 4056 reg->var_off = tnum_cast(reg->var_off, size); 4057 4058 /* fix arithmetic bounds */ 4059 mask = ((u64)1 << (size * 8)) - 1; 4060 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4061 reg->umin_value &= mask; 4062 reg->umax_value &= mask; 4063 } else { 4064 reg->umin_value = 0; 4065 reg->umax_value = mask; 4066 } 4067 reg->smin_value = reg->umin_value; 4068 reg->smax_value = reg->umax_value; 4069 4070 /* If size is smaller than 32bit register the 32bit register 4071 * values are also truncated so we push 64-bit bounds into 4072 * 32-bit bounds. Above were truncated < 32-bits already. 4073 */ 4074 if (size >= 4) 4075 return; 4076 __reg_combine_64_into_32(reg); 4077 } 4078 4079 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4080 { 4081 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 4082 } 4083 4084 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4085 { 4086 void *ptr; 4087 u64 addr; 4088 int err; 4089 4090 err = map->ops->map_direct_value_addr(map, &addr, off); 4091 if (err) 4092 return err; 4093 ptr = (void *)(long)addr + off; 4094 4095 switch (size) { 4096 case sizeof(u8): 4097 *val = (u64)*(u8 *)ptr; 4098 break; 4099 case sizeof(u16): 4100 *val = (u64)*(u16 *)ptr; 4101 break; 4102 case sizeof(u32): 4103 *val = (u64)*(u32 *)ptr; 4104 break; 4105 case sizeof(u64): 4106 *val = *(u64 *)ptr; 4107 break; 4108 default: 4109 return -EINVAL; 4110 } 4111 return 0; 4112 } 4113 4114 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4115 struct bpf_reg_state *regs, 4116 int regno, int off, int size, 4117 enum bpf_access_type atype, 4118 int value_regno) 4119 { 4120 struct bpf_reg_state *reg = regs + regno; 4121 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4122 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4123 u32 btf_id; 4124 int ret; 4125 4126 if (off < 0) { 4127 verbose(env, 4128 "R%d is ptr_%s invalid negative access: off=%d\n", 4129 regno, tname, off); 4130 return -EACCES; 4131 } 4132 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4133 char tn_buf[48]; 4134 4135 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4136 verbose(env, 4137 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4138 regno, tname, off, tn_buf); 4139 return -EACCES; 4140 } 4141 4142 if (env->ops->btf_struct_access) { 4143 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4144 off, size, atype, &btf_id); 4145 } else { 4146 if (atype != BPF_READ) { 4147 verbose(env, "only read is supported\n"); 4148 return -EACCES; 4149 } 4150 4151 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4152 atype, &btf_id); 4153 } 4154 4155 if (ret < 0) 4156 return ret; 4157 4158 if (atype == BPF_READ && value_regno >= 0) 4159 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4160 4161 return 0; 4162 } 4163 4164 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4165 struct bpf_reg_state *regs, 4166 int regno, int off, int size, 4167 enum bpf_access_type atype, 4168 int value_regno) 4169 { 4170 struct bpf_reg_state *reg = regs + regno; 4171 struct bpf_map *map = reg->map_ptr; 4172 const struct btf_type *t; 4173 const char *tname; 4174 u32 btf_id; 4175 int ret; 4176 4177 if (!btf_vmlinux) { 4178 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4179 return -ENOTSUPP; 4180 } 4181 4182 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4183 verbose(env, "map_ptr access not supported for map type %d\n", 4184 map->map_type); 4185 return -ENOTSUPP; 4186 } 4187 4188 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4189 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4190 4191 if (!env->allow_ptr_to_map_access) { 4192 verbose(env, 4193 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4194 tname); 4195 return -EPERM; 4196 } 4197 4198 if (off < 0) { 4199 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4200 regno, tname, off); 4201 return -EACCES; 4202 } 4203 4204 if (atype != BPF_READ) { 4205 verbose(env, "only read from %s is supported\n", tname); 4206 return -EACCES; 4207 } 4208 4209 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4210 if (ret < 0) 4211 return ret; 4212 4213 if (value_regno >= 0) 4214 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4215 4216 return 0; 4217 } 4218 4219 /* Check that the stack access at the given offset is within bounds. The 4220 * maximum valid offset is -1. 4221 * 4222 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4223 * -state->allocated_stack for reads. 4224 */ 4225 static int check_stack_slot_within_bounds(int off, 4226 struct bpf_func_state *state, 4227 enum bpf_access_type t) 4228 { 4229 int min_valid_off; 4230 4231 if (t == BPF_WRITE) 4232 min_valid_off = -MAX_BPF_STACK; 4233 else 4234 min_valid_off = -state->allocated_stack; 4235 4236 if (off < min_valid_off || off > -1) 4237 return -EACCES; 4238 return 0; 4239 } 4240 4241 /* Check that the stack access at 'regno + off' falls within the maximum stack 4242 * bounds. 4243 * 4244 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4245 */ 4246 static int check_stack_access_within_bounds( 4247 struct bpf_verifier_env *env, 4248 int regno, int off, int access_size, 4249 enum stack_access_src src, enum bpf_access_type type) 4250 { 4251 struct bpf_reg_state *regs = cur_regs(env); 4252 struct bpf_reg_state *reg = regs + regno; 4253 struct bpf_func_state *state = func(env, reg); 4254 int min_off, max_off; 4255 int err; 4256 char *err_extra; 4257 4258 if (src == ACCESS_HELPER) 4259 /* We don't know if helpers are reading or writing (or both). */ 4260 err_extra = " indirect access to"; 4261 else if (type == BPF_READ) 4262 err_extra = " read from"; 4263 else 4264 err_extra = " write to"; 4265 4266 if (tnum_is_const(reg->var_off)) { 4267 min_off = reg->var_off.value + off; 4268 if (access_size > 0) 4269 max_off = min_off + access_size - 1; 4270 else 4271 max_off = min_off; 4272 } else { 4273 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4274 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4275 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4276 err_extra, regno); 4277 return -EACCES; 4278 } 4279 min_off = reg->smin_value + off; 4280 if (access_size > 0) 4281 max_off = reg->smax_value + off + access_size - 1; 4282 else 4283 max_off = min_off; 4284 } 4285 4286 err = check_stack_slot_within_bounds(min_off, state, type); 4287 if (!err) 4288 err = check_stack_slot_within_bounds(max_off, state, type); 4289 4290 if (err) { 4291 if (tnum_is_const(reg->var_off)) { 4292 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4293 err_extra, regno, off, access_size); 4294 } else { 4295 char tn_buf[48]; 4296 4297 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4298 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4299 err_extra, regno, tn_buf, access_size); 4300 } 4301 } 4302 return err; 4303 } 4304 4305 /* check whether memory at (regno + off) is accessible for t = (read | write) 4306 * if t==write, value_regno is a register which value is stored into memory 4307 * if t==read, value_regno is a register which will receive the value from memory 4308 * if t==write && value_regno==-1, some unknown value is stored into memory 4309 * if t==read && value_regno==-1, don't care what we read from memory 4310 */ 4311 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4312 int off, int bpf_size, enum bpf_access_type t, 4313 int value_regno, bool strict_alignment_once) 4314 { 4315 struct bpf_reg_state *regs = cur_regs(env); 4316 struct bpf_reg_state *reg = regs + regno; 4317 struct bpf_func_state *state; 4318 int size, err = 0; 4319 4320 size = bpf_size_to_bytes(bpf_size); 4321 if (size < 0) 4322 return size; 4323 4324 /* alignment checks will add in reg->off themselves */ 4325 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4326 if (err) 4327 return err; 4328 4329 /* for access checks, reg->off is just part of off */ 4330 off += reg->off; 4331 4332 if (reg->type == PTR_TO_MAP_KEY) { 4333 if (t == BPF_WRITE) { 4334 verbose(env, "write to change key R%d not allowed\n", regno); 4335 return -EACCES; 4336 } 4337 4338 err = check_mem_region_access(env, regno, off, size, 4339 reg->map_ptr->key_size, false); 4340 if (err) 4341 return err; 4342 if (value_regno >= 0) 4343 mark_reg_unknown(env, regs, value_regno); 4344 } else if (reg->type == PTR_TO_MAP_VALUE) { 4345 if (t == BPF_WRITE && value_regno >= 0 && 4346 is_pointer_value(env, value_regno)) { 4347 verbose(env, "R%d leaks addr into map\n", value_regno); 4348 return -EACCES; 4349 } 4350 err = check_map_access_type(env, regno, off, size, t); 4351 if (err) 4352 return err; 4353 err = check_map_access(env, regno, off, size, false); 4354 if (!err && t == BPF_READ && value_regno >= 0) { 4355 struct bpf_map *map = reg->map_ptr; 4356 4357 /* if map is read-only, track its contents as scalars */ 4358 if (tnum_is_const(reg->var_off) && 4359 bpf_map_is_rdonly(map) && 4360 map->ops->map_direct_value_addr) { 4361 int map_off = off + reg->var_off.value; 4362 u64 val = 0; 4363 4364 err = bpf_map_direct_read(map, map_off, size, 4365 &val); 4366 if (err) 4367 return err; 4368 4369 regs[value_regno].type = SCALAR_VALUE; 4370 __mark_reg_known(®s[value_regno], val); 4371 } else { 4372 mark_reg_unknown(env, regs, value_regno); 4373 } 4374 } 4375 } else if (reg->type == PTR_TO_MEM) { 4376 if (t == BPF_WRITE && value_regno >= 0 && 4377 is_pointer_value(env, value_regno)) { 4378 verbose(env, "R%d leaks addr into mem\n", value_regno); 4379 return -EACCES; 4380 } 4381 err = check_mem_region_access(env, regno, off, size, 4382 reg->mem_size, false); 4383 if (!err && t == BPF_READ && value_regno >= 0) 4384 mark_reg_unknown(env, regs, value_regno); 4385 } else if (reg->type == PTR_TO_CTX) { 4386 enum bpf_reg_type reg_type = SCALAR_VALUE; 4387 struct btf *btf = NULL; 4388 u32 btf_id = 0; 4389 4390 if (t == BPF_WRITE && value_regno >= 0 && 4391 is_pointer_value(env, value_regno)) { 4392 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4393 return -EACCES; 4394 } 4395 4396 err = check_ctx_reg(env, reg, regno); 4397 if (err < 0) 4398 return err; 4399 4400 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4401 if (err) 4402 verbose_linfo(env, insn_idx, "; "); 4403 if (!err && t == BPF_READ && value_regno >= 0) { 4404 /* ctx access returns either a scalar, or a 4405 * PTR_TO_PACKET[_META,_END]. In the latter 4406 * case, we know the offset is zero. 4407 */ 4408 if (reg_type == SCALAR_VALUE) { 4409 mark_reg_unknown(env, regs, value_regno); 4410 } else { 4411 mark_reg_known_zero(env, regs, 4412 value_regno); 4413 if (reg_type_may_be_null(reg_type)) 4414 regs[value_regno].id = ++env->id_gen; 4415 /* A load of ctx field could have different 4416 * actual load size with the one encoded in the 4417 * insn. When the dst is PTR, it is for sure not 4418 * a sub-register. 4419 */ 4420 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4421 if (reg_type == PTR_TO_BTF_ID || 4422 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4423 regs[value_regno].btf = btf; 4424 regs[value_regno].btf_id = btf_id; 4425 } 4426 } 4427 regs[value_regno].type = reg_type; 4428 } 4429 4430 } else if (reg->type == PTR_TO_STACK) { 4431 /* Basic bounds checks. */ 4432 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4433 if (err) 4434 return err; 4435 4436 state = func(env, reg); 4437 err = update_stack_depth(env, state, off); 4438 if (err) 4439 return err; 4440 4441 if (t == BPF_READ) 4442 err = check_stack_read(env, regno, off, size, 4443 value_regno); 4444 else 4445 err = check_stack_write(env, regno, off, size, 4446 value_regno, insn_idx); 4447 } else if (reg_is_pkt_pointer(reg)) { 4448 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4449 verbose(env, "cannot write into packet\n"); 4450 return -EACCES; 4451 } 4452 if (t == BPF_WRITE && value_regno >= 0 && 4453 is_pointer_value(env, value_regno)) { 4454 verbose(env, "R%d leaks addr into packet\n", 4455 value_regno); 4456 return -EACCES; 4457 } 4458 err = check_packet_access(env, regno, off, size, false); 4459 if (!err && t == BPF_READ && value_regno >= 0) 4460 mark_reg_unknown(env, regs, value_regno); 4461 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4462 if (t == BPF_WRITE && value_regno >= 0 && 4463 is_pointer_value(env, value_regno)) { 4464 verbose(env, "R%d leaks addr into flow keys\n", 4465 value_regno); 4466 return -EACCES; 4467 } 4468 4469 err = check_flow_keys_access(env, off, size); 4470 if (!err && t == BPF_READ && value_regno >= 0) 4471 mark_reg_unknown(env, regs, value_regno); 4472 } else if (type_is_sk_pointer(reg->type)) { 4473 if (t == BPF_WRITE) { 4474 verbose(env, "R%d cannot write into %s\n", 4475 regno, reg_type_str[reg->type]); 4476 return -EACCES; 4477 } 4478 err = check_sock_access(env, insn_idx, regno, off, size, t); 4479 if (!err && value_regno >= 0) 4480 mark_reg_unknown(env, regs, value_regno); 4481 } else if (reg->type == PTR_TO_TP_BUFFER) { 4482 err = check_tp_buffer_access(env, reg, regno, off, size); 4483 if (!err && t == BPF_READ && value_regno >= 0) 4484 mark_reg_unknown(env, regs, value_regno); 4485 } else if (reg->type == PTR_TO_BTF_ID) { 4486 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4487 value_regno); 4488 } else if (reg->type == CONST_PTR_TO_MAP) { 4489 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4490 value_regno); 4491 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4492 if (t == BPF_WRITE) { 4493 verbose(env, "R%d cannot write into %s\n", 4494 regno, reg_type_str[reg->type]); 4495 return -EACCES; 4496 } 4497 err = check_buffer_access(env, reg, regno, off, size, false, 4498 "rdonly", 4499 &env->prog->aux->max_rdonly_access); 4500 if (!err && value_regno >= 0) 4501 mark_reg_unknown(env, regs, value_regno); 4502 } else if (reg->type == PTR_TO_RDWR_BUF) { 4503 err = check_buffer_access(env, reg, regno, off, size, false, 4504 "rdwr", 4505 &env->prog->aux->max_rdwr_access); 4506 if (!err && t == BPF_READ && value_regno >= 0) 4507 mark_reg_unknown(env, regs, value_regno); 4508 } else { 4509 verbose(env, "R%d invalid mem access '%s'\n", regno, 4510 reg_type_str[reg->type]); 4511 return -EACCES; 4512 } 4513 4514 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4515 regs[value_regno].type == SCALAR_VALUE) { 4516 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4517 coerce_reg_to_size(®s[value_regno], size); 4518 } 4519 return err; 4520 } 4521 4522 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4523 { 4524 int load_reg; 4525 int err; 4526 4527 switch (insn->imm) { 4528 case BPF_ADD: 4529 case BPF_ADD | BPF_FETCH: 4530 case BPF_AND: 4531 case BPF_AND | BPF_FETCH: 4532 case BPF_OR: 4533 case BPF_OR | BPF_FETCH: 4534 case BPF_XOR: 4535 case BPF_XOR | BPF_FETCH: 4536 case BPF_XCHG: 4537 case BPF_CMPXCHG: 4538 break; 4539 default: 4540 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4541 return -EINVAL; 4542 } 4543 4544 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4545 verbose(env, "invalid atomic operand size\n"); 4546 return -EINVAL; 4547 } 4548 4549 /* check src1 operand */ 4550 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4551 if (err) 4552 return err; 4553 4554 /* check src2 operand */ 4555 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4556 if (err) 4557 return err; 4558 4559 if (insn->imm == BPF_CMPXCHG) { 4560 /* Check comparison of R0 with memory location */ 4561 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4562 if (err) 4563 return err; 4564 } 4565 4566 if (is_pointer_value(env, insn->src_reg)) { 4567 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4568 return -EACCES; 4569 } 4570 4571 if (is_ctx_reg(env, insn->dst_reg) || 4572 is_pkt_reg(env, insn->dst_reg) || 4573 is_flow_key_reg(env, insn->dst_reg) || 4574 is_sk_reg(env, insn->dst_reg)) { 4575 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4576 insn->dst_reg, 4577 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4578 return -EACCES; 4579 } 4580 4581 if (insn->imm & BPF_FETCH) { 4582 if (insn->imm == BPF_CMPXCHG) 4583 load_reg = BPF_REG_0; 4584 else 4585 load_reg = insn->src_reg; 4586 4587 /* check and record load of old value */ 4588 err = check_reg_arg(env, load_reg, DST_OP); 4589 if (err) 4590 return err; 4591 } else { 4592 /* This instruction accesses a memory location but doesn't 4593 * actually load it into a register. 4594 */ 4595 load_reg = -1; 4596 } 4597 4598 /* check whether we can read the memory */ 4599 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4600 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4601 if (err) 4602 return err; 4603 4604 /* check whether we can write into the same memory */ 4605 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4606 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4607 if (err) 4608 return err; 4609 4610 return 0; 4611 } 4612 4613 /* When register 'regno' is used to read the stack (either directly or through 4614 * a helper function) make sure that it's within stack boundary and, depending 4615 * on the access type, that all elements of the stack are initialized. 4616 * 4617 * 'off' includes 'regno->off', but not its dynamic part (if any). 4618 * 4619 * All registers that have been spilled on the stack in the slots within the 4620 * read offsets are marked as read. 4621 */ 4622 static int check_stack_range_initialized( 4623 struct bpf_verifier_env *env, int regno, int off, 4624 int access_size, bool zero_size_allowed, 4625 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4626 { 4627 struct bpf_reg_state *reg = reg_state(env, regno); 4628 struct bpf_func_state *state = func(env, reg); 4629 int err, min_off, max_off, i, j, slot, spi; 4630 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4631 enum bpf_access_type bounds_check_type; 4632 /* Some accesses can write anything into the stack, others are 4633 * read-only. 4634 */ 4635 bool clobber = false; 4636 4637 if (access_size == 0 && !zero_size_allowed) { 4638 verbose(env, "invalid zero-sized read\n"); 4639 return -EACCES; 4640 } 4641 4642 if (type == ACCESS_HELPER) { 4643 /* The bounds checks for writes are more permissive than for 4644 * reads. However, if raw_mode is not set, we'll do extra 4645 * checks below. 4646 */ 4647 bounds_check_type = BPF_WRITE; 4648 clobber = true; 4649 } else { 4650 bounds_check_type = BPF_READ; 4651 } 4652 err = check_stack_access_within_bounds(env, regno, off, access_size, 4653 type, bounds_check_type); 4654 if (err) 4655 return err; 4656 4657 4658 if (tnum_is_const(reg->var_off)) { 4659 min_off = max_off = reg->var_off.value + off; 4660 } else { 4661 /* Variable offset is prohibited for unprivileged mode for 4662 * simplicity since it requires corresponding support in 4663 * Spectre masking for stack ALU. 4664 * See also retrieve_ptr_limit(). 4665 */ 4666 if (!env->bypass_spec_v1) { 4667 char tn_buf[48]; 4668 4669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4670 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4671 regno, err_extra, tn_buf); 4672 return -EACCES; 4673 } 4674 /* Only initialized buffer on stack is allowed to be accessed 4675 * with variable offset. With uninitialized buffer it's hard to 4676 * guarantee that whole memory is marked as initialized on 4677 * helper return since specific bounds are unknown what may 4678 * cause uninitialized stack leaking. 4679 */ 4680 if (meta && meta->raw_mode) 4681 meta = NULL; 4682 4683 min_off = reg->smin_value + off; 4684 max_off = reg->smax_value + off; 4685 } 4686 4687 if (meta && meta->raw_mode) { 4688 meta->access_size = access_size; 4689 meta->regno = regno; 4690 return 0; 4691 } 4692 4693 for (i = min_off; i < max_off + access_size; i++) { 4694 u8 *stype; 4695 4696 slot = -i - 1; 4697 spi = slot / BPF_REG_SIZE; 4698 if (state->allocated_stack <= slot) 4699 goto err; 4700 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4701 if (*stype == STACK_MISC) 4702 goto mark; 4703 if (*stype == STACK_ZERO) { 4704 if (clobber) { 4705 /* helper can write anything into the stack */ 4706 *stype = STACK_MISC; 4707 } 4708 goto mark; 4709 } 4710 4711 if (is_spilled_reg(&state->stack[spi]) && 4712 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4713 goto mark; 4714 4715 if (is_spilled_reg(&state->stack[spi]) && 4716 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4717 env->allow_ptr_leaks)) { 4718 if (clobber) { 4719 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4720 for (j = 0; j < BPF_REG_SIZE; j++) 4721 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4722 } 4723 goto mark; 4724 } 4725 4726 err: 4727 if (tnum_is_const(reg->var_off)) { 4728 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4729 err_extra, regno, min_off, i - min_off, access_size); 4730 } else { 4731 char tn_buf[48]; 4732 4733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4734 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4735 err_extra, regno, tn_buf, i - min_off, access_size); 4736 } 4737 return -EACCES; 4738 mark: 4739 /* reading any byte out of 8-byte 'spill_slot' will cause 4740 * the whole slot to be marked as 'read' 4741 */ 4742 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4743 state->stack[spi].spilled_ptr.parent, 4744 REG_LIVE_READ64); 4745 } 4746 return update_stack_depth(env, state, min_off); 4747 } 4748 4749 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4750 int access_size, bool zero_size_allowed, 4751 struct bpf_call_arg_meta *meta) 4752 { 4753 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4754 4755 switch (reg->type) { 4756 case PTR_TO_PACKET: 4757 case PTR_TO_PACKET_META: 4758 return check_packet_access(env, regno, reg->off, access_size, 4759 zero_size_allowed); 4760 case PTR_TO_MAP_KEY: 4761 return check_mem_region_access(env, regno, reg->off, access_size, 4762 reg->map_ptr->key_size, false); 4763 case PTR_TO_MAP_VALUE: 4764 if (check_map_access_type(env, regno, reg->off, access_size, 4765 meta && meta->raw_mode ? BPF_WRITE : 4766 BPF_READ)) 4767 return -EACCES; 4768 return check_map_access(env, regno, reg->off, access_size, 4769 zero_size_allowed); 4770 case PTR_TO_MEM: 4771 return check_mem_region_access(env, regno, reg->off, 4772 access_size, reg->mem_size, 4773 zero_size_allowed); 4774 case PTR_TO_RDONLY_BUF: 4775 if (meta && meta->raw_mode) 4776 return -EACCES; 4777 return check_buffer_access(env, reg, regno, reg->off, 4778 access_size, zero_size_allowed, 4779 "rdonly", 4780 &env->prog->aux->max_rdonly_access); 4781 case PTR_TO_RDWR_BUF: 4782 return check_buffer_access(env, reg, regno, reg->off, 4783 access_size, zero_size_allowed, 4784 "rdwr", 4785 &env->prog->aux->max_rdwr_access); 4786 case PTR_TO_STACK: 4787 return check_stack_range_initialized( 4788 env, 4789 regno, reg->off, access_size, 4790 zero_size_allowed, ACCESS_HELPER, meta); 4791 default: /* scalar_value or invalid ptr */ 4792 /* Allow zero-byte read from NULL, regardless of pointer type */ 4793 if (zero_size_allowed && access_size == 0 && 4794 register_is_null(reg)) 4795 return 0; 4796 4797 verbose(env, "R%d type=%s expected=%s\n", regno, 4798 reg_type_str[reg->type], 4799 reg_type_str[PTR_TO_STACK]); 4800 return -EACCES; 4801 } 4802 } 4803 4804 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4805 u32 regno, u32 mem_size) 4806 { 4807 if (register_is_null(reg)) 4808 return 0; 4809 4810 if (reg_type_may_be_null(reg->type)) { 4811 /* Assuming that the register contains a value check if the memory 4812 * access is safe. Temporarily save and restore the register's state as 4813 * the conversion shouldn't be visible to a caller. 4814 */ 4815 const struct bpf_reg_state saved_reg = *reg; 4816 int rv; 4817 4818 mark_ptr_not_null_reg(reg); 4819 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4820 *reg = saved_reg; 4821 return rv; 4822 } 4823 4824 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4825 } 4826 4827 /* Implementation details: 4828 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4829 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4830 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4831 * value_or_null->value transition, since the verifier only cares about 4832 * the range of access to valid map value pointer and doesn't care about actual 4833 * address of the map element. 4834 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4835 * reg->id > 0 after value_or_null->value transition. By doing so 4836 * two bpf_map_lookups will be considered two different pointers that 4837 * point to different bpf_spin_locks. 4838 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4839 * dead-locks. 4840 * Since only one bpf_spin_lock is allowed the checks are simpler than 4841 * reg_is_refcounted() logic. The verifier needs to remember only 4842 * one spin_lock instead of array of acquired_refs. 4843 * cur_state->active_spin_lock remembers which map value element got locked 4844 * and clears it after bpf_spin_unlock. 4845 */ 4846 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4847 bool is_lock) 4848 { 4849 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4850 struct bpf_verifier_state *cur = env->cur_state; 4851 bool is_const = tnum_is_const(reg->var_off); 4852 struct bpf_map *map = reg->map_ptr; 4853 u64 val = reg->var_off.value; 4854 4855 if (!is_const) { 4856 verbose(env, 4857 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4858 regno); 4859 return -EINVAL; 4860 } 4861 if (!map->btf) { 4862 verbose(env, 4863 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4864 map->name); 4865 return -EINVAL; 4866 } 4867 if (!map_value_has_spin_lock(map)) { 4868 if (map->spin_lock_off == -E2BIG) 4869 verbose(env, 4870 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4871 map->name); 4872 else if (map->spin_lock_off == -ENOENT) 4873 verbose(env, 4874 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4875 map->name); 4876 else 4877 verbose(env, 4878 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4879 map->name); 4880 return -EINVAL; 4881 } 4882 if (map->spin_lock_off != val + reg->off) { 4883 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4884 val + reg->off); 4885 return -EINVAL; 4886 } 4887 if (is_lock) { 4888 if (cur->active_spin_lock) { 4889 verbose(env, 4890 "Locking two bpf_spin_locks are not allowed\n"); 4891 return -EINVAL; 4892 } 4893 cur->active_spin_lock = reg->id; 4894 } else { 4895 if (!cur->active_spin_lock) { 4896 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4897 return -EINVAL; 4898 } 4899 if (cur->active_spin_lock != reg->id) { 4900 verbose(env, "bpf_spin_unlock of different lock\n"); 4901 return -EINVAL; 4902 } 4903 cur->active_spin_lock = 0; 4904 } 4905 return 0; 4906 } 4907 4908 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4909 struct bpf_call_arg_meta *meta) 4910 { 4911 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4912 bool is_const = tnum_is_const(reg->var_off); 4913 struct bpf_map *map = reg->map_ptr; 4914 u64 val = reg->var_off.value; 4915 4916 if (!is_const) { 4917 verbose(env, 4918 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4919 regno); 4920 return -EINVAL; 4921 } 4922 if (!map->btf) { 4923 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4924 map->name); 4925 return -EINVAL; 4926 } 4927 if (!map_value_has_timer(map)) { 4928 if (map->timer_off == -E2BIG) 4929 verbose(env, 4930 "map '%s' has more than one 'struct bpf_timer'\n", 4931 map->name); 4932 else if (map->timer_off == -ENOENT) 4933 verbose(env, 4934 "map '%s' doesn't have 'struct bpf_timer'\n", 4935 map->name); 4936 else 4937 verbose(env, 4938 "map '%s' is not a struct type or bpf_timer is mangled\n", 4939 map->name); 4940 return -EINVAL; 4941 } 4942 if (map->timer_off != val + reg->off) { 4943 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4944 val + reg->off, map->timer_off); 4945 return -EINVAL; 4946 } 4947 if (meta->map_ptr) { 4948 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4949 return -EFAULT; 4950 } 4951 meta->map_uid = reg->map_uid; 4952 meta->map_ptr = map; 4953 return 0; 4954 } 4955 4956 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4957 { 4958 return type == ARG_PTR_TO_MEM || 4959 type == ARG_PTR_TO_MEM_OR_NULL || 4960 type == ARG_PTR_TO_UNINIT_MEM; 4961 } 4962 4963 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4964 { 4965 return type == ARG_CONST_SIZE || 4966 type == ARG_CONST_SIZE_OR_ZERO; 4967 } 4968 4969 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4970 { 4971 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4972 } 4973 4974 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4975 { 4976 return type == ARG_PTR_TO_INT || 4977 type == ARG_PTR_TO_LONG; 4978 } 4979 4980 static int int_ptr_type_to_size(enum bpf_arg_type type) 4981 { 4982 if (type == ARG_PTR_TO_INT) 4983 return sizeof(u32); 4984 else if (type == ARG_PTR_TO_LONG) 4985 return sizeof(u64); 4986 4987 return -EINVAL; 4988 } 4989 4990 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4991 const struct bpf_call_arg_meta *meta, 4992 enum bpf_arg_type *arg_type) 4993 { 4994 if (!meta->map_ptr) { 4995 /* kernel subsystem misconfigured verifier */ 4996 verbose(env, "invalid map_ptr to access map->type\n"); 4997 return -EACCES; 4998 } 4999 5000 switch (meta->map_ptr->map_type) { 5001 case BPF_MAP_TYPE_SOCKMAP: 5002 case BPF_MAP_TYPE_SOCKHASH: 5003 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5004 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5005 } else { 5006 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5007 return -EINVAL; 5008 } 5009 break; 5010 5011 default: 5012 break; 5013 } 5014 return 0; 5015 } 5016 5017 struct bpf_reg_types { 5018 const enum bpf_reg_type types[10]; 5019 u32 *btf_id; 5020 }; 5021 5022 static const struct bpf_reg_types map_key_value_types = { 5023 .types = { 5024 PTR_TO_STACK, 5025 PTR_TO_PACKET, 5026 PTR_TO_PACKET_META, 5027 PTR_TO_MAP_KEY, 5028 PTR_TO_MAP_VALUE, 5029 }, 5030 }; 5031 5032 static const struct bpf_reg_types sock_types = { 5033 .types = { 5034 PTR_TO_SOCK_COMMON, 5035 PTR_TO_SOCKET, 5036 PTR_TO_TCP_SOCK, 5037 PTR_TO_XDP_SOCK, 5038 }, 5039 }; 5040 5041 #ifdef CONFIG_NET 5042 static const struct bpf_reg_types btf_id_sock_common_types = { 5043 .types = { 5044 PTR_TO_SOCK_COMMON, 5045 PTR_TO_SOCKET, 5046 PTR_TO_TCP_SOCK, 5047 PTR_TO_XDP_SOCK, 5048 PTR_TO_BTF_ID, 5049 }, 5050 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5051 }; 5052 #endif 5053 5054 static const struct bpf_reg_types mem_types = { 5055 .types = { 5056 PTR_TO_STACK, 5057 PTR_TO_PACKET, 5058 PTR_TO_PACKET_META, 5059 PTR_TO_MAP_KEY, 5060 PTR_TO_MAP_VALUE, 5061 PTR_TO_MEM, 5062 PTR_TO_RDONLY_BUF, 5063 PTR_TO_RDWR_BUF, 5064 }, 5065 }; 5066 5067 static const struct bpf_reg_types int_ptr_types = { 5068 .types = { 5069 PTR_TO_STACK, 5070 PTR_TO_PACKET, 5071 PTR_TO_PACKET_META, 5072 PTR_TO_MAP_KEY, 5073 PTR_TO_MAP_VALUE, 5074 }, 5075 }; 5076 5077 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5078 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5079 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5080 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5081 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5082 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5083 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5084 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5085 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5086 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5087 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5088 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5089 5090 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5091 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5092 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5093 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5094 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 5095 [ARG_CONST_SIZE] = &scalar_types, 5096 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5097 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5098 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5099 [ARG_PTR_TO_CTX] = &context_types, 5100 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 5101 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5102 #ifdef CONFIG_NET 5103 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5104 #endif 5105 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5106 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 5107 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5108 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5109 [ARG_PTR_TO_MEM] = &mem_types, 5110 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 5111 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5112 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5113 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 5114 [ARG_PTR_TO_INT] = &int_ptr_types, 5115 [ARG_PTR_TO_LONG] = &int_ptr_types, 5116 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5117 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5118 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 5119 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5120 [ARG_PTR_TO_TIMER] = &timer_types, 5121 }; 5122 5123 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5124 enum bpf_arg_type arg_type, 5125 const u32 *arg_btf_id) 5126 { 5127 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5128 enum bpf_reg_type expected, type = reg->type; 5129 const struct bpf_reg_types *compatible; 5130 int i, j; 5131 5132 compatible = compatible_reg_types[arg_type]; 5133 if (!compatible) { 5134 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5135 return -EFAULT; 5136 } 5137 5138 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5139 expected = compatible->types[i]; 5140 if (expected == NOT_INIT) 5141 break; 5142 5143 if (type == expected) 5144 goto found; 5145 } 5146 5147 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 5148 for (j = 0; j + 1 < i; j++) 5149 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5150 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5151 return -EACCES; 5152 5153 found: 5154 if (type == PTR_TO_BTF_ID) { 5155 if (!arg_btf_id) { 5156 if (!compatible->btf_id) { 5157 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5158 return -EFAULT; 5159 } 5160 arg_btf_id = compatible->btf_id; 5161 } 5162 5163 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5164 btf_vmlinux, *arg_btf_id)) { 5165 verbose(env, "R%d is of type %s but %s is expected\n", 5166 regno, kernel_type_name(reg->btf, reg->btf_id), 5167 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5168 return -EACCES; 5169 } 5170 5171 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5172 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5173 regno); 5174 return -EACCES; 5175 } 5176 } 5177 5178 return 0; 5179 } 5180 5181 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5182 struct bpf_call_arg_meta *meta, 5183 const struct bpf_func_proto *fn) 5184 { 5185 u32 regno = BPF_REG_1 + arg; 5186 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5187 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5188 enum bpf_reg_type type = reg->type; 5189 int err = 0; 5190 5191 if (arg_type == ARG_DONTCARE) 5192 return 0; 5193 5194 err = check_reg_arg(env, regno, SRC_OP); 5195 if (err) 5196 return err; 5197 5198 if (arg_type == ARG_ANYTHING) { 5199 if (is_pointer_value(env, regno)) { 5200 verbose(env, "R%d leaks addr into helper function\n", 5201 regno); 5202 return -EACCES; 5203 } 5204 return 0; 5205 } 5206 5207 if (type_is_pkt_pointer(type) && 5208 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5209 verbose(env, "helper access to the packet is not allowed\n"); 5210 return -EACCES; 5211 } 5212 5213 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5214 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5215 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5216 err = resolve_map_arg_type(env, meta, &arg_type); 5217 if (err) 5218 return err; 5219 } 5220 5221 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5222 /* A NULL register has a SCALAR_VALUE type, so skip 5223 * type checking. 5224 */ 5225 goto skip_type_check; 5226 5227 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5228 if (err) 5229 return err; 5230 5231 if (type == PTR_TO_CTX) { 5232 err = check_ctx_reg(env, reg, regno); 5233 if (err < 0) 5234 return err; 5235 } 5236 5237 skip_type_check: 5238 if (reg->ref_obj_id) { 5239 if (meta->ref_obj_id) { 5240 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5241 regno, reg->ref_obj_id, 5242 meta->ref_obj_id); 5243 return -EFAULT; 5244 } 5245 meta->ref_obj_id = reg->ref_obj_id; 5246 } 5247 5248 if (arg_type == ARG_CONST_MAP_PTR) { 5249 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5250 if (meta->map_ptr) { 5251 /* Use map_uid (which is unique id of inner map) to reject: 5252 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5253 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5254 * if (inner_map1 && inner_map2) { 5255 * timer = bpf_map_lookup_elem(inner_map1); 5256 * if (timer) 5257 * // mismatch would have been allowed 5258 * bpf_timer_init(timer, inner_map2); 5259 * } 5260 * 5261 * Comparing map_ptr is enough to distinguish normal and outer maps. 5262 */ 5263 if (meta->map_ptr != reg->map_ptr || 5264 meta->map_uid != reg->map_uid) { 5265 verbose(env, 5266 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5267 meta->map_uid, reg->map_uid); 5268 return -EINVAL; 5269 } 5270 } 5271 meta->map_ptr = reg->map_ptr; 5272 meta->map_uid = reg->map_uid; 5273 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5274 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5275 * check that [key, key + map->key_size) are within 5276 * stack limits and initialized 5277 */ 5278 if (!meta->map_ptr) { 5279 /* in function declaration map_ptr must come before 5280 * map_key, so that it's verified and known before 5281 * we have to check map_key here. Otherwise it means 5282 * that kernel subsystem misconfigured verifier 5283 */ 5284 verbose(env, "invalid map_ptr to access map->key\n"); 5285 return -EACCES; 5286 } 5287 err = check_helper_mem_access(env, regno, 5288 meta->map_ptr->key_size, false, 5289 NULL); 5290 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5291 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5292 !register_is_null(reg)) || 5293 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5294 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5295 * check [value, value + map->value_size) validity 5296 */ 5297 if (!meta->map_ptr) { 5298 /* kernel subsystem misconfigured verifier */ 5299 verbose(env, "invalid map_ptr to access map->value\n"); 5300 return -EACCES; 5301 } 5302 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5303 err = check_helper_mem_access(env, regno, 5304 meta->map_ptr->value_size, false, 5305 meta); 5306 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5307 if (!reg->btf_id) { 5308 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5309 return -EACCES; 5310 } 5311 meta->ret_btf = reg->btf; 5312 meta->ret_btf_id = reg->btf_id; 5313 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5314 if (meta->func_id == BPF_FUNC_spin_lock) { 5315 if (process_spin_lock(env, regno, true)) 5316 return -EACCES; 5317 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5318 if (process_spin_lock(env, regno, false)) 5319 return -EACCES; 5320 } else { 5321 verbose(env, "verifier internal error\n"); 5322 return -EFAULT; 5323 } 5324 } else if (arg_type == ARG_PTR_TO_TIMER) { 5325 if (process_timer_func(env, regno, meta)) 5326 return -EACCES; 5327 } else if (arg_type == ARG_PTR_TO_FUNC) { 5328 meta->subprogno = reg->subprogno; 5329 } else if (arg_type_is_mem_ptr(arg_type)) { 5330 /* The access to this pointer is only checked when we hit the 5331 * next is_mem_size argument below. 5332 */ 5333 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5334 } else if (arg_type_is_mem_size(arg_type)) { 5335 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5336 5337 /* This is used to refine r0 return value bounds for helpers 5338 * that enforce this value as an upper bound on return values. 5339 * See do_refine_retval_range() for helpers that can refine 5340 * the return value. C type of helper is u32 so we pull register 5341 * bound from umax_value however, if negative verifier errors 5342 * out. Only upper bounds can be learned because retval is an 5343 * int type and negative retvals are allowed. 5344 */ 5345 meta->msize_max_value = reg->umax_value; 5346 5347 /* The register is SCALAR_VALUE; the access check 5348 * happens using its boundaries. 5349 */ 5350 if (!tnum_is_const(reg->var_off)) 5351 /* For unprivileged variable accesses, disable raw 5352 * mode so that the program is required to 5353 * initialize all the memory that the helper could 5354 * just partially fill up. 5355 */ 5356 meta = NULL; 5357 5358 if (reg->smin_value < 0) { 5359 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5360 regno); 5361 return -EACCES; 5362 } 5363 5364 if (reg->umin_value == 0) { 5365 err = check_helper_mem_access(env, regno - 1, 0, 5366 zero_size_allowed, 5367 meta); 5368 if (err) 5369 return err; 5370 } 5371 5372 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5373 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5374 regno); 5375 return -EACCES; 5376 } 5377 err = check_helper_mem_access(env, regno - 1, 5378 reg->umax_value, 5379 zero_size_allowed, meta); 5380 if (!err) 5381 err = mark_chain_precision(env, regno); 5382 } else if (arg_type_is_alloc_size(arg_type)) { 5383 if (!tnum_is_const(reg->var_off)) { 5384 verbose(env, "R%d is not a known constant'\n", 5385 regno); 5386 return -EACCES; 5387 } 5388 meta->mem_size = reg->var_off.value; 5389 } else if (arg_type_is_int_ptr(arg_type)) { 5390 int size = int_ptr_type_to_size(arg_type); 5391 5392 err = check_helper_mem_access(env, regno, size, false, meta); 5393 if (err) 5394 return err; 5395 err = check_ptr_alignment(env, reg, 0, size, true); 5396 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5397 struct bpf_map *map = reg->map_ptr; 5398 int map_off; 5399 u64 map_addr; 5400 char *str_ptr; 5401 5402 if (!bpf_map_is_rdonly(map)) { 5403 verbose(env, "R%d does not point to a readonly map'\n", regno); 5404 return -EACCES; 5405 } 5406 5407 if (!tnum_is_const(reg->var_off)) { 5408 verbose(env, "R%d is not a constant address'\n", regno); 5409 return -EACCES; 5410 } 5411 5412 if (!map->ops->map_direct_value_addr) { 5413 verbose(env, "no direct value access support for this map type\n"); 5414 return -EACCES; 5415 } 5416 5417 err = check_map_access(env, regno, reg->off, 5418 map->value_size - reg->off, false); 5419 if (err) 5420 return err; 5421 5422 map_off = reg->off + reg->var_off.value; 5423 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5424 if (err) { 5425 verbose(env, "direct value access on string failed\n"); 5426 return err; 5427 } 5428 5429 str_ptr = (char *)(long)(map_addr); 5430 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5431 verbose(env, "string is not zero-terminated\n"); 5432 return -EINVAL; 5433 } 5434 } 5435 5436 return err; 5437 } 5438 5439 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5440 { 5441 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5442 enum bpf_prog_type type = resolve_prog_type(env->prog); 5443 5444 if (func_id != BPF_FUNC_map_update_elem) 5445 return false; 5446 5447 /* It's not possible to get access to a locked struct sock in these 5448 * contexts, so updating is safe. 5449 */ 5450 switch (type) { 5451 case BPF_PROG_TYPE_TRACING: 5452 if (eatype == BPF_TRACE_ITER) 5453 return true; 5454 break; 5455 case BPF_PROG_TYPE_SOCKET_FILTER: 5456 case BPF_PROG_TYPE_SCHED_CLS: 5457 case BPF_PROG_TYPE_SCHED_ACT: 5458 case BPF_PROG_TYPE_XDP: 5459 case BPF_PROG_TYPE_SK_REUSEPORT: 5460 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5461 case BPF_PROG_TYPE_SK_LOOKUP: 5462 return true; 5463 default: 5464 break; 5465 } 5466 5467 verbose(env, "cannot update sockmap in this context\n"); 5468 return false; 5469 } 5470 5471 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5472 { 5473 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5474 } 5475 5476 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5477 struct bpf_map *map, int func_id) 5478 { 5479 if (!map) 5480 return 0; 5481 5482 /* We need a two way check, first is from map perspective ... */ 5483 switch (map->map_type) { 5484 case BPF_MAP_TYPE_PROG_ARRAY: 5485 if (func_id != BPF_FUNC_tail_call) 5486 goto error; 5487 break; 5488 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5489 if (func_id != BPF_FUNC_perf_event_read && 5490 func_id != BPF_FUNC_perf_event_output && 5491 func_id != BPF_FUNC_skb_output && 5492 func_id != BPF_FUNC_perf_event_read_value && 5493 func_id != BPF_FUNC_xdp_output) 5494 goto error; 5495 break; 5496 case BPF_MAP_TYPE_RINGBUF: 5497 if (func_id != BPF_FUNC_ringbuf_output && 5498 func_id != BPF_FUNC_ringbuf_reserve && 5499 func_id != BPF_FUNC_ringbuf_query) 5500 goto error; 5501 break; 5502 case BPF_MAP_TYPE_STACK_TRACE: 5503 if (func_id != BPF_FUNC_get_stackid) 5504 goto error; 5505 break; 5506 case BPF_MAP_TYPE_CGROUP_ARRAY: 5507 if (func_id != BPF_FUNC_skb_under_cgroup && 5508 func_id != BPF_FUNC_current_task_under_cgroup) 5509 goto error; 5510 break; 5511 case BPF_MAP_TYPE_CGROUP_STORAGE: 5512 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5513 if (func_id != BPF_FUNC_get_local_storage) 5514 goto error; 5515 break; 5516 case BPF_MAP_TYPE_DEVMAP: 5517 case BPF_MAP_TYPE_DEVMAP_HASH: 5518 if (func_id != BPF_FUNC_redirect_map && 5519 func_id != BPF_FUNC_map_lookup_elem) 5520 goto error; 5521 break; 5522 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5523 * appear. 5524 */ 5525 case BPF_MAP_TYPE_CPUMAP: 5526 if (func_id != BPF_FUNC_redirect_map) 5527 goto error; 5528 break; 5529 case BPF_MAP_TYPE_XSKMAP: 5530 if (func_id != BPF_FUNC_redirect_map && 5531 func_id != BPF_FUNC_map_lookup_elem) 5532 goto error; 5533 break; 5534 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5535 case BPF_MAP_TYPE_HASH_OF_MAPS: 5536 if (func_id != BPF_FUNC_map_lookup_elem) 5537 goto error; 5538 break; 5539 case BPF_MAP_TYPE_SOCKMAP: 5540 if (func_id != BPF_FUNC_sk_redirect_map && 5541 func_id != BPF_FUNC_sock_map_update && 5542 func_id != BPF_FUNC_map_delete_elem && 5543 func_id != BPF_FUNC_msg_redirect_map && 5544 func_id != BPF_FUNC_sk_select_reuseport && 5545 func_id != BPF_FUNC_map_lookup_elem && 5546 !may_update_sockmap(env, func_id)) 5547 goto error; 5548 break; 5549 case BPF_MAP_TYPE_SOCKHASH: 5550 if (func_id != BPF_FUNC_sk_redirect_hash && 5551 func_id != BPF_FUNC_sock_hash_update && 5552 func_id != BPF_FUNC_map_delete_elem && 5553 func_id != BPF_FUNC_msg_redirect_hash && 5554 func_id != BPF_FUNC_sk_select_reuseport && 5555 func_id != BPF_FUNC_map_lookup_elem && 5556 !may_update_sockmap(env, func_id)) 5557 goto error; 5558 break; 5559 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5560 if (func_id != BPF_FUNC_sk_select_reuseport) 5561 goto error; 5562 break; 5563 case BPF_MAP_TYPE_QUEUE: 5564 case BPF_MAP_TYPE_STACK: 5565 if (func_id != BPF_FUNC_map_peek_elem && 5566 func_id != BPF_FUNC_map_pop_elem && 5567 func_id != BPF_FUNC_map_push_elem) 5568 goto error; 5569 break; 5570 case BPF_MAP_TYPE_SK_STORAGE: 5571 if (func_id != BPF_FUNC_sk_storage_get && 5572 func_id != BPF_FUNC_sk_storage_delete) 5573 goto error; 5574 break; 5575 case BPF_MAP_TYPE_INODE_STORAGE: 5576 if (func_id != BPF_FUNC_inode_storage_get && 5577 func_id != BPF_FUNC_inode_storage_delete) 5578 goto error; 5579 break; 5580 case BPF_MAP_TYPE_TASK_STORAGE: 5581 if (func_id != BPF_FUNC_task_storage_get && 5582 func_id != BPF_FUNC_task_storage_delete) 5583 goto error; 5584 break; 5585 default: 5586 break; 5587 } 5588 5589 /* ... and second from the function itself. */ 5590 switch (func_id) { 5591 case BPF_FUNC_tail_call: 5592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5593 goto error; 5594 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5595 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5596 return -EINVAL; 5597 } 5598 break; 5599 case BPF_FUNC_perf_event_read: 5600 case BPF_FUNC_perf_event_output: 5601 case BPF_FUNC_perf_event_read_value: 5602 case BPF_FUNC_skb_output: 5603 case BPF_FUNC_xdp_output: 5604 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5605 goto error; 5606 break; 5607 case BPF_FUNC_ringbuf_output: 5608 case BPF_FUNC_ringbuf_reserve: 5609 case BPF_FUNC_ringbuf_query: 5610 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5611 goto error; 5612 break; 5613 case BPF_FUNC_get_stackid: 5614 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5615 goto error; 5616 break; 5617 case BPF_FUNC_current_task_under_cgroup: 5618 case BPF_FUNC_skb_under_cgroup: 5619 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5620 goto error; 5621 break; 5622 case BPF_FUNC_redirect_map: 5623 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5624 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5625 map->map_type != BPF_MAP_TYPE_CPUMAP && 5626 map->map_type != BPF_MAP_TYPE_XSKMAP) 5627 goto error; 5628 break; 5629 case BPF_FUNC_sk_redirect_map: 5630 case BPF_FUNC_msg_redirect_map: 5631 case BPF_FUNC_sock_map_update: 5632 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5633 goto error; 5634 break; 5635 case BPF_FUNC_sk_redirect_hash: 5636 case BPF_FUNC_msg_redirect_hash: 5637 case BPF_FUNC_sock_hash_update: 5638 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5639 goto error; 5640 break; 5641 case BPF_FUNC_get_local_storage: 5642 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5643 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5644 goto error; 5645 break; 5646 case BPF_FUNC_sk_select_reuseport: 5647 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5648 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5649 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5650 goto error; 5651 break; 5652 case BPF_FUNC_map_peek_elem: 5653 case BPF_FUNC_map_pop_elem: 5654 case BPF_FUNC_map_push_elem: 5655 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5656 map->map_type != BPF_MAP_TYPE_STACK) 5657 goto error; 5658 break; 5659 case BPF_FUNC_sk_storage_get: 5660 case BPF_FUNC_sk_storage_delete: 5661 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5662 goto error; 5663 break; 5664 case BPF_FUNC_inode_storage_get: 5665 case BPF_FUNC_inode_storage_delete: 5666 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5667 goto error; 5668 break; 5669 case BPF_FUNC_task_storage_get: 5670 case BPF_FUNC_task_storage_delete: 5671 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5672 goto error; 5673 break; 5674 default: 5675 break; 5676 } 5677 5678 return 0; 5679 error: 5680 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5681 map->map_type, func_id_name(func_id), func_id); 5682 return -EINVAL; 5683 } 5684 5685 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5686 { 5687 int count = 0; 5688 5689 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5690 count++; 5691 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5692 count++; 5693 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5694 count++; 5695 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5696 count++; 5697 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5698 count++; 5699 5700 /* We only support one arg being in raw mode at the moment, 5701 * which is sufficient for the helper functions we have 5702 * right now. 5703 */ 5704 return count <= 1; 5705 } 5706 5707 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5708 enum bpf_arg_type arg_next) 5709 { 5710 return (arg_type_is_mem_ptr(arg_curr) && 5711 !arg_type_is_mem_size(arg_next)) || 5712 (!arg_type_is_mem_ptr(arg_curr) && 5713 arg_type_is_mem_size(arg_next)); 5714 } 5715 5716 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5717 { 5718 /* bpf_xxx(..., buf, len) call will access 'len' 5719 * bytes from memory 'buf'. Both arg types need 5720 * to be paired, so make sure there's no buggy 5721 * helper function specification. 5722 */ 5723 if (arg_type_is_mem_size(fn->arg1_type) || 5724 arg_type_is_mem_ptr(fn->arg5_type) || 5725 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5726 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5727 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5728 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5729 return false; 5730 5731 return true; 5732 } 5733 5734 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5735 { 5736 int count = 0; 5737 5738 if (arg_type_may_be_refcounted(fn->arg1_type)) 5739 count++; 5740 if (arg_type_may_be_refcounted(fn->arg2_type)) 5741 count++; 5742 if (arg_type_may_be_refcounted(fn->arg3_type)) 5743 count++; 5744 if (arg_type_may_be_refcounted(fn->arg4_type)) 5745 count++; 5746 if (arg_type_may_be_refcounted(fn->arg5_type)) 5747 count++; 5748 5749 /* A reference acquiring function cannot acquire 5750 * another refcounted ptr. 5751 */ 5752 if (may_be_acquire_function(func_id) && count) 5753 return false; 5754 5755 /* We only support one arg being unreferenced at the moment, 5756 * which is sufficient for the helper functions we have right now. 5757 */ 5758 return count <= 1; 5759 } 5760 5761 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5762 { 5763 int i; 5764 5765 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5766 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5767 return false; 5768 5769 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5770 return false; 5771 } 5772 5773 return true; 5774 } 5775 5776 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5777 { 5778 return check_raw_mode_ok(fn) && 5779 check_arg_pair_ok(fn) && 5780 check_btf_id_ok(fn) && 5781 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5782 } 5783 5784 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5785 * are now invalid, so turn them into unknown SCALAR_VALUE. 5786 */ 5787 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5788 struct bpf_func_state *state) 5789 { 5790 struct bpf_reg_state *regs = state->regs, *reg; 5791 int i; 5792 5793 for (i = 0; i < MAX_BPF_REG; i++) 5794 if (reg_is_pkt_pointer_any(®s[i])) 5795 mark_reg_unknown(env, regs, i); 5796 5797 bpf_for_each_spilled_reg(i, state, reg) { 5798 if (!reg) 5799 continue; 5800 if (reg_is_pkt_pointer_any(reg)) 5801 __mark_reg_unknown(env, reg); 5802 } 5803 } 5804 5805 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5806 { 5807 struct bpf_verifier_state *vstate = env->cur_state; 5808 int i; 5809 5810 for (i = 0; i <= vstate->curframe; i++) 5811 __clear_all_pkt_pointers(env, vstate->frame[i]); 5812 } 5813 5814 enum { 5815 AT_PKT_END = -1, 5816 BEYOND_PKT_END = -2, 5817 }; 5818 5819 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5820 { 5821 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5822 struct bpf_reg_state *reg = &state->regs[regn]; 5823 5824 if (reg->type != PTR_TO_PACKET) 5825 /* PTR_TO_PACKET_META is not supported yet */ 5826 return; 5827 5828 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5829 * How far beyond pkt_end it goes is unknown. 5830 * if (!range_open) it's the case of pkt >= pkt_end 5831 * if (range_open) it's the case of pkt > pkt_end 5832 * hence this pointer is at least 1 byte bigger than pkt_end 5833 */ 5834 if (range_open) 5835 reg->range = BEYOND_PKT_END; 5836 else 5837 reg->range = AT_PKT_END; 5838 } 5839 5840 static void release_reg_references(struct bpf_verifier_env *env, 5841 struct bpf_func_state *state, 5842 int ref_obj_id) 5843 { 5844 struct bpf_reg_state *regs = state->regs, *reg; 5845 int i; 5846 5847 for (i = 0; i < MAX_BPF_REG; i++) 5848 if (regs[i].ref_obj_id == ref_obj_id) 5849 mark_reg_unknown(env, regs, i); 5850 5851 bpf_for_each_spilled_reg(i, state, reg) { 5852 if (!reg) 5853 continue; 5854 if (reg->ref_obj_id == ref_obj_id) 5855 __mark_reg_unknown(env, reg); 5856 } 5857 } 5858 5859 /* The pointer with the specified id has released its reference to kernel 5860 * resources. Identify all copies of the same pointer and clear the reference. 5861 */ 5862 static int release_reference(struct bpf_verifier_env *env, 5863 int ref_obj_id) 5864 { 5865 struct bpf_verifier_state *vstate = env->cur_state; 5866 int err; 5867 int i; 5868 5869 err = release_reference_state(cur_func(env), ref_obj_id); 5870 if (err) 5871 return err; 5872 5873 for (i = 0; i <= vstate->curframe; i++) 5874 release_reg_references(env, vstate->frame[i], ref_obj_id); 5875 5876 return 0; 5877 } 5878 5879 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5880 struct bpf_reg_state *regs) 5881 { 5882 int i; 5883 5884 /* after the call registers r0 - r5 were scratched */ 5885 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5886 mark_reg_not_init(env, regs, caller_saved[i]); 5887 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5888 } 5889 } 5890 5891 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5892 struct bpf_func_state *caller, 5893 struct bpf_func_state *callee, 5894 int insn_idx); 5895 5896 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5897 int *insn_idx, int subprog, 5898 set_callee_state_fn set_callee_state_cb) 5899 { 5900 struct bpf_verifier_state *state = env->cur_state; 5901 struct bpf_func_info_aux *func_info_aux; 5902 struct bpf_func_state *caller, *callee; 5903 int err; 5904 bool is_global = false; 5905 5906 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5907 verbose(env, "the call stack of %d frames is too deep\n", 5908 state->curframe + 2); 5909 return -E2BIG; 5910 } 5911 5912 caller = state->frame[state->curframe]; 5913 if (state->frame[state->curframe + 1]) { 5914 verbose(env, "verifier bug. Frame %d already allocated\n", 5915 state->curframe + 1); 5916 return -EFAULT; 5917 } 5918 5919 func_info_aux = env->prog->aux->func_info_aux; 5920 if (func_info_aux) 5921 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5922 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5923 if (err == -EFAULT) 5924 return err; 5925 if (is_global) { 5926 if (err) { 5927 verbose(env, "Caller passes invalid args into func#%d\n", 5928 subprog); 5929 return err; 5930 } else { 5931 if (env->log.level & BPF_LOG_LEVEL) 5932 verbose(env, 5933 "Func#%d is global and valid. Skipping.\n", 5934 subprog); 5935 clear_caller_saved_regs(env, caller->regs); 5936 5937 /* All global functions return a 64-bit SCALAR_VALUE */ 5938 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5939 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5940 5941 /* continue with next insn after call */ 5942 return 0; 5943 } 5944 } 5945 5946 if (insn->code == (BPF_JMP | BPF_CALL) && 5947 insn->imm == BPF_FUNC_timer_set_callback) { 5948 struct bpf_verifier_state *async_cb; 5949 5950 /* there is no real recursion here. timer callbacks are async */ 5951 env->subprog_info[subprog].is_async_cb = true; 5952 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5953 *insn_idx, subprog); 5954 if (!async_cb) 5955 return -EFAULT; 5956 callee = async_cb->frame[0]; 5957 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5958 5959 /* Convert bpf_timer_set_callback() args into timer callback args */ 5960 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5961 if (err) 5962 return err; 5963 5964 clear_caller_saved_regs(env, caller->regs); 5965 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5966 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5967 /* continue with next insn after call */ 5968 return 0; 5969 } 5970 5971 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5972 if (!callee) 5973 return -ENOMEM; 5974 state->frame[state->curframe + 1] = callee; 5975 5976 /* callee cannot access r0, r6 - r9 for reading and has to write 5977 * into its own stack before reading from it. 5978 * callee can read/write into caller's stack 5979 */ 5980 init_func_state(env, callee, 5981 /* remember the callsite, it will be used by bpf_exit */ 5982 *insn_idx /* callsite */, 5983 state->curframe + 1 /* frameno within this callchain */, 5984 subprog /* subprog number within this prog */); 5985 5986 /* Transfer references to the callee */ 5987 err = copy_reference_state(callee, caller); 5988 if (err) 5989 return err; 5990 5991 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5992 if (err) 5993 return err; 5994 5995 clear_caller_saved_regs(env, caller->regs); 5996 5997 /* only increment it after check_reg_arg() finished */ 5998 state->curframe++; 5999 6000 /* and go analyze first insn of the callee */ 6001 *insn_idx = env->subprog_info[subprog].start - 1; 6002 6003 if (env->log.level & BPF_LOG_LEVEL) { 6004 verbose(env, "caller:\n"); 6005 print_verifier_state(env, caller); 6006 verbose(env, "callee:\n"); 6007 print_verifier_state(env, callee); 6008 } 6009 return 0; 6010 } 6011 6012 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6013 struct bpf_func_state *caller, 6014 struct bpf_func_state *callee) 6015 { 6016 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6017 * void *callback_ctx, u64 flags); 6018 * callback_fn(struct bpf_map *map, void *key, void *value, 6019 * void *callback_ctx); 6020 */ 6021 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6022 6023 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6024 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6025 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6026 6027 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6028 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6029 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6030 6031 /* pointer to stack or null */ 6032 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6033 6034 /* unused */ 6035 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6036 return 0; 6037 } 6038 6039 static int set_callee_state(struct bpf_verifier_env *env, 6040 struct bpf_func_state *caller, 6041 struct bpf_func_state *callee, int insn_idx) 6042 { 6043 int i; 6044 6045 /* copy r1 - r5 args that callee can access. The copy includes parent 6046 * pointers, which connects us up to the liveness chain 6047 */ 6048 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6049 callee->regs[i] = caller->regs[i]; 6050 return 0; 6051 } 6052 6053 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6054 int *insn_idx) 6055 { 6056 int subprog, target_insn; 6057 6058 target_insn = *insn_idx + insn->imm + 1; 6059 subprog = find_subprog(env, target_insn); 6060 if (subprog < 0) { 6061 verbose(env, "verifier bug. No program starts at insn %d\n", 6062 target_insn); 6063 return -EFAULT; 6064 } 6065 6066 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6067 } 6068 6069 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6070 struct bpf_func_state *caller, 6071 struct bpf_func_state *callee, 6072 int insn_idx) 6073 { 6074 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6075 struct bpf_map *map; 6076 int err; 6077 6078 if (bpf_map_ptr_poisoned(insn_aux)) { 6079 verbose(env, "tail_call abusing map_ptr\n"); 6080 return -EINVAL; 6081 } 6082 6083 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6084 if (!map->ops->map_set_for_each_callback_args || 6085 !map->ops->map_for_each_callback) { 6086 verbose(env, "callback function not allowed for map\n"); 6087 return -ENOTSUPP; 6088 } 6089 6090 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6091 if (err) 6092 return err; 6093 6094 callee->in_callback_fn = true; 6095 return 0; 6096 } 6097 6098 static int set_timer_callback_state(struct bpf_verifier_env *env, 6099 struct bpf_func_state *caller, 6100 struct bpf_func_state *callee, 6101 int insn_idx) 6102 { 6103 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6104 6105 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6106 * callback_fn(struct bpf_map *map, void *key, void *value); 6107 */ 6108 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6109 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6110 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6111 6112 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6113 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6114 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6115 6116 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6117 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6118 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6119 6120 /* unused */ 6121 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6122 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6123 callee->in_async_callback_fn = true; 6124 return 0; 6125 } 6126 6127 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6128 { 6129 struct bpf_verifier_state *state = env->cur_state; 6130 struct bpf_func_state *caller, *callee; 6131 struct bpf_reg_state *r0; 6132 int err; 6133 6134 callee = state->frame[state->curframe]; 6135 r0 = &callee->regs[BPF_REG_0]; 6136 if (r0->type == PTR_TO_STACK) { 6137 /* technically it's ok to return caller's stack pointer 6138 * (or caller's caller's pointer) back to the caller, 6139 * since these pointers are valid. Only current stack 6140 * pointer will be invalid as soon as function exits, 6141 * but let's be conservative 6142 */ 6143 verbose(env, "cannot return stack pointer to the caller\n"); 6144 return -EINVAL; 6145 } 6146 6147 state->curframe--; 6148 caller = state->frame[state->curframe]; 6149 if (callee->in_callback_fn) { 6150 /* enforce R0 return value range [0, 1]. */ 6151 struct tnum range = tnum_range(0, 1); 6152 6153 if (r0->type != SCALAR_VALUE) { 6154 verbose(env, "R0 not a scalar value\n"); 6155 return -EACCES; 6156 } 6157 if (!tnum_in(range, r0->var_off)) { 6158 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6159 return -EINVAL; 6160 } 6161 } else { 6162 /* return to the caller whatever r0 had in the callee */ 6163 caller->regs[BPF_REG_0] = *r0; 6164 } 6165 6166 /* Transfer references to the caller */ 6167 err = copy_reference_state(caller, callee); 6168 if (err) 6169 return err; 6170 6171 *insn_idx = callee->callsite + 1; 6172 if (env->log.level & BPF_LOG_LEVEL) { 6173 verbose(env, "returning from callee:\n"); 6174 print_verifier_state(env, callee); 6175 verbose(env, "to caller at %d:\n", *insn_idx); 6176 print_verifier_state(env, caller); 6177 } 6178 /* clear everything in the callee */ 6179 free_func_state(callee); 6180 state->frame[state->curframe + 1] = NULL; 6181 return 0; 6182 } 6183 6184 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6185 int func_id, 6186 struct bpf_call_arg_meta *meta) 6187 { 6188 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6189 6190 if (ret_type != RET_INTEGER || 6191 (func_id != BPF_FUNC_get_stack && 6192 func_id != BPF_FUNC_get_task_stack && 6193 func_id != BPF_FUNC_probe_read_str && 6194 func_id != BPF_FUNC_probe_read_kernel_str && 6195 func_id != BPF_FUNC_probe_read_user_str)) 6196 return; 6197 6198 ret_reg->smax_value = meta->msize_max_value; 6199 ret_reg->s32_max_value = meta->msize_max_value; 6200 ret_reg->smin_value = -MAX_ERRNO; 6201 ret_reg->s32_min_value = -MAX_ERRNO; 6202 __reg_deduce_bounds(ret_reg); 6203 __reg_bound_offset(ret_reg); 6204 __update_reg_bounds(ret_reg); 6205 } 6206 6207 static int 6208 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6209 int func_id, int insn_idx) 6210 { 6211 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6212 struct bpf_map *map = meta->map_ptr; 6213 6214 if (func_id != BPF_FUNC_tail_call && 6215 func_id != BPF_FUNC_map_lookup_elem && 6216 func_id != BPF_FUNC_map_update_elem && 6217 func_id != BPF_FUNC_map_delete_elem && 6218 func_id != BPF_FUNC_map_push_elem && 6219 func_id != BPF_FUNC_map_pop_elem && 6220 func_id != BPF_FUNC_map_peek_elem && 6221 func_id != BPF_FUNC_for_each_map_elem && 6222 func_id != BPF_FUNC_redirect_map) 6223 return 0; 6224 6225 if (map == NULL) { 6226 verbose(env, "kernel subsystem misconfigured verifier\n"); 6227 return -EINVAL; 6228 } 6229 6230 /* In case of read-only, some additional restrictions 6231 * need to be applied in order to prevent altering the 6232 * state of the map from program side. 6233 */ 6234 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6235 (func_id == BPF_FUNC_map_delete_elem || 6236 func_id == BPF_FUNC_map_update_elem || 6237 func_id == BPF_FUNC_map_push_elem || 6238 func_id == BPF_FUNC_map_pop_elem)) { 6239 verbose(env, "write into map forbidden\n"); 6240 return -EACCES; 6241 } 6242 6243 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6244 bpf_map_ptr_store(aux, meta->map_ptr, 6245 !meta->map_ptr->bypass_spec_v1); 6246 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6247 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6248 !meta->map_ptr->bypass_spec_v1); 6249 return 0; 6250 } 6251 6252 static int 6253 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6254 int func_id, int insn_idx) 6255 { 6256 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6257 struct bpf_reg_state *regs = cur_regs(env), *reg; 6258 struct bpf_map *map = meta->map_ptr; 6259 struct tnum range; 6260 u64 val; 6261 int err; 6262 6263 if (func_id != BPF_FUNC_tail_call) 6264 return 0; 6265 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6266 verbose(env, "kernel subsystem misconfigured verifier\n"); 6267 return -EINVAL; 6268 } 6269 6270 range = tnum_range(0, map->max_entries - 1); 6271 reg = ®s[BPF_REG_3]; 6272 6273 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6274 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6275 return 0; 6276 } 6277 6278 err = mark_chain_precision(env, BPF_REG_3); 6279 if (err) 6280 return err; 6281 6282 val = reg->var_off.value; 6283 if (bpf_map_key_unseen(aux)) 6284 bpf_map_key_store(aux, val); 6285 else if (!bpf_map_key_poisoned(aux) && 6286 bpf_map_key_immediate(aux) != val) 6287 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6288 return 0; 6289 } 6290 6291 static int check_reference_leak(struct bpf_verifier_env *env) 6292 { 6293 struct bpf_func_state *state = cur_func(env); 6294 int i; 6295 6296 for (i = 0; i < state->acquired_refs; i++) { 6297 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6298 state->refs[i].id, state->refs[i].insn_idx); 6299 } 6300 return state->acquired_refs ? -EINVAL : 0; 6301 } 6302 6303 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6304 struct bpf_reg_state *regs) 6305 { 6306 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6307 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6308 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6309 int err, fmt_map_off, num_args; 6310 u64 fmt_addr; 6311 char *fmt; 6312 6313 /* data must be an array of u64 */ 6314 if (data_len_reg->var_off.value % 8) 6315 return -EINVAL; 6316 num_args = data_len_reg->var_off.value / 8; 6317 6318 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6319 * and map_direct_value_addr is set. 6320 */ 6321 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6322 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6323 fmt_map_off); 6324 if (err) { 6325 verbose(env, "verifier bug\n"); 6326 return -EFAULT; 6327 } 6328 fmt = (char *)(long)fmt_addr + fmt_map_off; 6329 6330 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6331 * can focus on validating the format specifiers. 6332 */ 6333 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6334 if (err < 0) 6335 verbose(env, "Invalid format string\n"); 6336 6337 return err; 6338 } 6339 6340 static int check_get_func_ip(struct bpf_verifier_env *env) 6341 { 6342 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6343 enum bpf_prog_type type = resolve_prog_type(env->prog); 6344 int func_id = BPF_FUNC_get_func_ip; 6345 6346 if (type == BPF_PROG_TYPE_TRACING) { 6347 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6348 eatype != BPF_MODIFY_RETURN) { 6349 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6350 func_id_name(func_id), func_id); 6351 return -ENOTSUPP; 6352 } 6353 return 0; 6354 } else if (type == BPF_PROG_TYPE_KPROBE) { 6355 return 0; 6356 } 6357 6358 verbose(env, "func %s#%d not supported for program type %d\n", 6359 func_id_name(func_id), func_id, type); 6360 return -ENOTSUPP; 6361 } 6362 6363 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6364 int *insn_idx_p) 6365 { 6366 const struct bpf_func_proto *fn = NULL; 6367 struct bpf_reg_state *regs; 6368 struct bpf_call_arg_meta meta; 6369 int insn_idx = *insn_idx_p; 6370 bool changes_data; 6371 int i, err, func_id; 6372 6373 /* find function prototype */ 6374 func_id = insn->imm; 6375 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6376 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6377 func_id); 6378 return -EINVAL; 6379 } 6380 6381 if (env->ops->get_func_proto) 6382 fn = env->ops->get_func_proto(func_id, env->prog); 6383 if (!fn) { 6384 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6385 func_id); 6386 return -EINVAL; 6387 } 6388 6389 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6390 if (!env->prog->gpl_compatible && fn->gpl_only) { 6391 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6392 return -EINVAL; 6393 } 6394 6395 if (fn->allowed && !fn->allowed(env->prog)) { 6396 verbose(env, "helper call is not allowed in probe\n"); 6397 return -EINVAL; 6398 } 6399 6400 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6401 changes_data = bpf_helper_changes_pkt_data(fn->func); 6402 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6403 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6404 func_id_name(func_id), func_id); 6405 return -EINVAL; 6406 } 6407 6408 memset(&meta, 0, sizeof(meta)); 6409 meta.pkt_access = fn->pkt_access; 6410 6411 err = check_func_proto(fn, func_id); 6412 if (err) { 6413 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6414 func_id_name(func_id), func_id); 6415 return err; 6416 } 6417 6418 meta.func_id = func_id; 6419 /* check args */ 6420 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6421 err = check_func_arg(env, i, &meta, fn); 6422 if (err) 6423 return err; 6424 } 6425 6426 err = record_func_map(env, &meta, func_id, insn_idx); 6427 if (err) 6428 return err; 6429 6430 err = record_func_key(env, &meta, func_id, insn_idx); 6431 if (err) 6432 return err; 6433 6434 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6435 * is inferred from register state. 6436 */ 6437 for (i = 0; i < meta.access_size; i++) { 6438 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6439 BPF_WRITE, -1, false); 6440 if (err) 6441 return err; 6442 } 6443 6444 if (func_id == BPF_FUNC_tail_call) { 6445 err = check_reference_leak(env); 6446 if (err) { 6447 verbose(env, "tail_call would lead to reference leak\n"); 6448 return err; 6449 } 6450 } else if (is_release_function(func_id)) { 6451 err = release_reference(env, meta.ref_obj_id); 6452 if (err) { 6453 verbose(env, "func %s#%d reference has not been acquired before\n", 6454 func_id_name(func_id), func_id); 6455 return err; 6456 } 6457 } 6458 6459 regs = cur_regs(env); 6460 6461 /* check that flags argument in get_local_storage(map, flags) is 0, 6462 * this is required because get_local_storage() can't return an error. 6463 */ 6464 if (func_id == BPF_FUNC_get_local_storage && 6465 !register_is_null(®s[BPF_REG_2])) { 6466 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6467 return -EINVAL; 6468 } 6469 6470 if (func_id == BPF_FUNC_for_each_map_elem) { 6471 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6472 set_map_elem_callback_state); 6473 if (err < 0) 6474 return -EINVAL; 6475 } 6476 6477 if (func_id == BPF_FUNC_timer_set_callback) { 6478 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6479 set_timer_callback_state); 6480 if (err < 0) 6481 return -EINVAL; 6482 } 6483 6484 if (func_id == BPF_FUNC_snprintf) { 6485 err = check_bpf_snprintf_call(env, regs); 6486 if (err < 0) 6487 return err; 6488 } 6489 6490 /* reset caller saved regs */ 6491 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6492 mark_reg_not_init(env, regs, caller_saved[i]); 6493 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6494 } 6495 6496 /* helper call returns 64-bit value. */ 6497 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6498 6499 /* update return register (already marked as written above) */ 6500 if (fn->ret_type == RET_INTEGER) { 6501 /* sets type to SCALAR_VALUE */ 6502 mark_reg_unknown(env, regs, BPF_REG_0); 6503 } else if (fn->ret_type == RET_VOID) { 6504 regs[BPF_REG_0].type = NOT_INIT; 6505 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6506 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6507 /* There is no offset yet applied, variable or fixed */ 6508 mark_reg_known_zero(env, regs, BPF_REG_0); 6509 /* remember map_ptr, so that check_map_access() 6510 * can check 'value_size' boundary of memory access 6511 * to map element returned from bpf_map_lookup_elem() 6512 */ 6513 if (meta.map_ptr == NULL) { 6514 verbose(env, 6515 "kernel subsystem misconfigured verifier\n"); 6516 return -EINVAL; 6517 } 6518 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6519 regs[BPF_REG_0].map_uid = meta.map_uid; 6520 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6521 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6522 if (map_value_has_spin_lock(meta.map_ptr)) 6523 regs[BPF_REG_0].id = ++env->id_gen; 6524 } else { 6525 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6526 } 6527 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6528 mark_reg_known_zero(env, regs, BPF_REG_0); 6529 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6530 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6531 mark_reg_known_zero(env, regs, BPF_REG_0); 6532 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6533 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6534 mark_reg_known_zero(env, regs, BPF_REG_0); 6535 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6536 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6537 mark_reg_known_zero(env, regs, BPF_REG_0); 6538 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6539 regs[BPF_REG_0].mem_size = meta.mem_size; 6540 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6541 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6542 const struct btf_type *t; 6543 6544 mark_reg_known_zero(env, regs, BPF_REG_0); 6545 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6546 if (!btf_type_is_struct(t)) { 6547 u32 tsize; 6548 const struct btf_type *ret; 6549 const char *tname; 6550 6551 /* resolve the type size of ksym. */ 6552 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6553 if (IS_ERR(ret)) { 6554 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6555 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6556 tname, PTR_ERR(ret)); 6557 return -EINVAL; 6558 } 6559 regs[BPF_REG_0].type = 6560 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6561 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6562 regs[BPF_REG_0].mem_size = tsize; 6563 } else { 6564 regs[BPF_REG_0].type = 6565 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6566 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6567 regs[BPF_REG_0].btf = meta.ret_btf; 6568 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6569 } 6570 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6571 fn->ret_type == RET_PTR_TO_BTF_ID) { 6572 int ret_btf_id; 6573 6574 mark_reg_known_zero(env, regs, BPF_REG_0); 6575 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6576 PTR_TO_BTF_ID : 6577 PTR_TO_BTF_ID_OR_NULL; 6578 ret_btf_id = *fn->ret_btf_id; 6579 if (ret_btf_id == 0) { 6580 verbose(env, "invalid return type %d of func %s#%d\n", 6581 fn->ret_type, func_id_name(func_id), func_id); 6582 return -EINVAL; 6583 } 6584 /* current BPF helper definitions are only coming from 6585 * built-in code with type IDs from vmlinux BTF 6586 */ 6587 regs[BPF_REG_0].btf = btf_vmlinux; 6588 regs[BPF_REG_0].btf_id = ret_btf_id; 6589 } else { 6590 verbose(env, "unknown return type %d of func %s#%d\n", 6591 fn->ret_type, func_id_name(func_id), func_id); 6592 return -EINVAL; 6593 } 6594 6595 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6596 regs[BPF_REG_0].id = ++env->id_gen; 6597 6598 if (is_ptr_cast_function(func_id)) { 6599 /* For release_reference() */ 6600 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6601 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6602 int id = acquire_reference_state(env, insn_idx); 6603 6604 if (id < 0) 6605 return id; 6606 /* For mark_ptr_or_null_reg() */ 6607 regs[BPF_REG_0].id = id; 6608 /* For release_reference() */ 6609 regs[BPF_REG_0].ref_obj_id = id; 6610 } 6611 6612 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6613 6614 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6615 if (err) 6616 return err; 6617 6618 if ((func_id == BPF_FUNC_get_stack || 6619 func_id == BPF_FUNC_get_task_stack) && 6620 !env->prog->has_callchain_buf) { 6621 const char *err_str; 6622 6623 #ifdef CONFIG_PERF_EVENTS 6624 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6625 err_str = "cannot get callchain buffer for func %s#%d\n"; 6626 #else 6627 err = -ENOTSUPP; 6628 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6629 #endif 6630 if (err) { 6631 verbose(env, err_str, func_id_name(func_id), func_id); 6632 return err; 6633 } 6634 6635 env->prog->has_callchain_buf = true; 6636 } 6637 6638 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6639 env->prog->call_get_stack = true; 6640 6641 if (func_id == BPF_FUNC_get_func_ip) { 6642 if (check_get_func_ip(env)) 6643 return -ENOTSUPP; 6644 env->prog->call_get_func_ip = true; 6645 } 6646 6647 if (changes_data) 6648 clear_all_pkt_pointers(env); 6649 return 0; 6650 } 6651 6652 /* mark_btf_func_reg_size() is used when the reg size is determined by 6653 * the BTF func_proto's return value size and argument. 6654 */ 6655 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6656 size_t reg_size) 6657 { 6658 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6659 6660 if (regno == BPF_REG_0) { 6661 /* Function return value */ 6662 reg->live |= REG_LIVE_WRITTEN; 6663 reg->subreg_def = reg_size == sizeof(u64) ? 6664 DEF_NOT_SUBREG : env->insn_idx + 1; 6665 } else { 6666 /* Function argument */ 6667 if (reg_size == sizeof(u64)) { 6668 mark_insn_zext(env, reg); 6669 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6670 } else { 6671 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6672 } 6673 } 6674 } 6675 6676 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6677 { 6678 const struct btf_type *t, *func, *func_proto, *ptr_type; 6679 struct bpf_reg_state *regs = cur_regs(env); 6680 const char *func_name, *ptr_type_name; 6681 u32 i, nargs, func_id, ptr_type_id; 6682 struct module *btf_mod = NULL; 6683 const struct btf_param *args; 6684 struct btf *desc_btf; 6685 int err; 6686 6687 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6688 if (!insn->imm) 6689 return 0; 6690 6691 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6692 if (IS_ERR(desc_btf)) 6693 return PTR_ERR(desc_btf); 6694 6695 func_id = insn->imm; 6696 func = btf_type_by_id(desc_btf, func_id); 6697 func_name = btf_name_by_offset(desc_btf, func->name_off); 6698 func_proto = btf_type_by_id(desc_btf, func->type); 6699 6700 if (!env->ops->check_kfunc_call || 6701 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6702 verbose(env, "calling kernel function %s is not allowed\n", 6703 func_name); 6704 return -EACCES; 6705 } 6706 6707 /* Check the arguments */ 6708 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6709 if (err) 6710 return err; 6711 6712 for (i = 0; i < CALLER_SAVED_REGS; i++) 6713 mark_reg_not_init(env, regs, caller_saved[i]); 6714 6715 /* Check return type */ 6716 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6717 if (btf_type_is_scalar(t)) { 6718 mark_reg_unknown(env, regs, BPF_REG_0); 6719 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6720 } else if (btf_type_is_ptr(t)) { 6721 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6722 &ptr_type_id); 6723 if (!btf_type_is_struct(ptr_type)) { 6724 ptr_type_name = btf_name_by_offset(desc_btf, 6725 ptr_type->name_off); 6726 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6727 func_name, btf_type_str(ptr_type), 6728 ptr_type_name); 6729 return -EINVAL; 6730 } 6731 mark_reg_known_zero(env, regs, BPF_REG_0); 6732 regs[BPF_REG_0].btf = desc_btf; 6733 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6734 regs[BPF_REG_0].btf_id = ptr_type_id; 6735 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6736 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6737 6738 nargs = btf_type_vlen(func_proto); 6739 args = (const struct btf_param *)(func_proto + 1); 6740 for (i = 0; i < nargs; i++) { 6741 u32 regno = i + 1; 6742 6743 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6744 if (btf_type_is_ptr(t)) 6745 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6746 else 6747 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6748 mark_btf_func_reg_size(env, regno, t->size); 6749 } 6750 6751 return 0; 6752 } 6753 6754 static bool signed_add_overflows(s64 a, s64 b) 6755 { 6756 /* Do the add in u64, where overflow is well-defined */ 6757 s64 res = (s64)((u64)a + (u64)b); 6758 6759 if (b < 0) 6760 return res > a; 6761 return res < a; 6762 } 6763 6764 static bool signed_add32_overflows(s32 a, s32 b) 6765 { 6766 /* Do the add in u32, where overflow is well-defined */ 6767 s32 res = (s32)((u32)a + (u32)b); 6768 6769 if (b < 0) 6770 return res > a; 6771 return res < a; 6772 } 6773 6774 static bool signed_sub_overflows(s64 a, s64 b) 6775 { 6776 /* Do the sub in u64, where overflow is well-defined */ 6777 s64 res = (s64)((u64)a - (u64)b); 6778 6779 if (b < 0) 6780 return res < a; 6781 return res > a; 6782 } 6783 6784 static bool signed_sub32_overflows(s32 a, s32 b) 6785 { 6786 /* Do the sub in u32, where overflow is well-defined */ 6787 s32 res = (s32)((u32)a - (u32)b); 6788 6789 if (b < 0) 6790 return res < a; 6791 return res > a; 6792 } 6793 6794 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6795 const struct bpf_reg_state *reg, 6796 enum bpf_reg_type type) 6797 { 6798 bool known = tnum_is_const(reg->var_off); 6799 s64 val = reg->var_off.value; 6800 s64 smin = reg->smin_value; 6801 6802 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6803 verbose(env, "math between %s pointer and %lld is not allowed\n", 6804 reg_type_str[type], val); 6805 return false; 6806 } 6807 6808 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6809 verbose(env, "%s pointer offset %d is not allowed\n", 6810 reg_type_str[type], reg->off); 6811 return false; 6812 } 6813 6814 if (smin == S64_MIN) { 6815 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6816 reg_type_str[type]); 6817 return false; 6818 } 6819 6820 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6821 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6822 smin, reg_type_str[type]); 6823 return false; 6824 } 6825 6826 return true; 6827 } 6828 6829 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6830 { 6831 return &env->insn_aux_data[env->insn_idx]; 6832 } 6833 6834 enum { 6835 REASON_BOUNDS = -1, 6836 REASON_TYPE = -2, 6837 REASON_PATHS = -3, 6838 REASON_LIMIT = -4, 6839 REASON_STACK = -5, 6840 }; 6841 6842 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6843 u32 *alu_limit, bool mask_to_left) 6844 { 6845 u32 max = 0, ptr_limit = 0; 6846 6847 switch (ptr_reg->type) { 6848 case PTR_TO_STACK: 6849 /* Offset 0 is out-of-bounds, but acceptable start for the 6850 * left direction, see BPF_REG_FP. Also, unknown scalar 6851 * offset where we would need to deal with min/max bounds is 6852 * currently prohibited for unprivileged. 6853 */ 6854 max = MAX_BPF_STACK + mask_to_left; 6855 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6856 break; 6857 case PTR_TO_MAP_VALUE: 6858 max = ptr_reg->map_ptr->value_size; 6859 ptr_limit = (mask_to_left ? 6860 ptr_reg->smin_value : 6861 ptr_reg->umax_value) + ptr_reg->off; 6862 break; 6863 default: 6864 return REASON_TYPE; 6865 } 6866 6867 if (ptr_limit >= max) 6868 return REASON_LIMIT; 6869 *alu_limit = ptr_limit; 6870 return 0; 6871 } 6872 6873 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6874 const struct bpf_insn *insn) 6875 { 6876 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6877 } 6878 6879 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6880 u32 alu_state, u32 alu_limit) 6881 { 6882 /* If we arrived here from different branches with different 6883 * state or limits to sanitize, then this won't work. 6884 */ 6885 if (aux->alu_state && 6886 (aux->alu_state != alu_state || 6887 aux->alu_limit != alu_limit)) 6888 return REASON_PATHS; 6889 6890 /* Corresponding fixup done in do_misc_fixups(). */ 6891 aux->alu_state = alu_state; 6892 aux->alu_limit = alu_limit; 6893 return 0; 6894 } 6895 6896 static int sanitize_val_alu(struct bpf_verifier_env *env, 6897 struct bpf_insn *insn) 6898 { 6899 struct bpf_insn_aux_data *aux = cur_aux(env); 6900 6901 if (can_skip_alu_sanitation(env, insn)) 6902 return 0; 6903 6904 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6905 } 6906 6907 static bool sanitize_needed(u8 opcode) 6908 { 6909 return opcode == BPF_ADD || opcode == BPF_SUB; 6910 } 6911 6912 struct bpf_sanitize_info { 6913 struct bpf_insn_aux_data aux; 6914 bool mask_to_left; 6915 }; 6916 6917 static struct bpf_verifier_state * 6918 sanitize_speculative_path(struct bpf_verifier_env *env, 6919 const struct bpf_insn *insn, 6920 u32 next_idx, u32 curr_idx) 6921 { 6922 struct bpf_verifier_state *branch; 6923 struct bpf_reg_state *regs; 6924 6925 branch = push_stack(env, next_idx, curr_idx, true); 6926 if (branch && insn) { 6927 regs = branch->frame[branch->curframe]->regs; 6928 if (BPF_SRC(insn->code) == BPF_K) { 6929 mark_reg_unknown(env, regs, insn->dst_reg); 6930 } else if (BPF_SRC(insn->code) == BPF_X) { 6931 mark_reg_unknown(env, regs, insn->dst_reg); 6932 mark_reg_unknown(env, regs, insn->src_reg); 6933 } 6934 } 6935 return branch; 6936 } 6937 6938 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6939 struct bpf_insn *insn, 6940 const struct bpf_reg_state *ptr_reg, 6941 const struct bpf_reg_state *off_reg, 6942 struct bpf_reg_state *dst_reg, 6943 struct bpf_sanitize_info *info, 6944 const bool commit_window) 6945 { 6946 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6947 struct bpf_verifier_state *vstate = env->cur_state; 6948 bool off_is_imm = tnum_is_const(off_reg->var_off); 6949 bool off_is_neg = off_reg->smin_value < 0; 6950 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6951 u8 opcode = BPF_OP(insn->code); 6952 u32 alu_state, alu_limit; 6953 struct bpf_reg_state tmp; 6954 bool ret; 6955 int err; 6956 6957 if (can_skip_alu_sanitation(env, insn)) 6958 return 0; 6959 6960 /* We already marked aux for masking from non-speculative 6961 * paths, thus we got here in the first place. We only care 6962 * to explore bad access from here. 6963 */ 6964 if (vstate->speculative) 6965 goto do_sim; 6966 6967 if (!commit_window) { 6968 if (!tnum_is_const(off_reg->var_off) && 6969 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6970 return REASON_BOUNDS; 6971 6972 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6973 (opcode == BPF_SUB && !off_is_neg); 6974 } 6975 6976 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6977 if (err < 0) 6978 return err; 6979 6980 if (commit_window) { 6981 /* In commit phase we narrow the masking window based on 6982 * the observed pointer move after the simulated operation. 6983 */ 6984 alu_state = info->aux.alu_state; 6985 alu_limit = abs(info->aux.alu_limit - alu_limit); 6986 } else { 6987 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6988 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6989 alu_state |= ptr_is_dst_reg ? 6990 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6991 6992 /* Limit pruning on unknown scalars to enable deep search for 6993 * potential masking differences from other program paths. 6994 */ 6995 if (!off_is_imm) 6996 env->explore_alu_limits = true; 6997 } 6998 6999 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7000 if (err < 0) 7001 return err; 7002 do_sim: 7003 /* If we're in commit phase, we're done here given we already 7004 * pushed the truncated dst_reg into the speculative verification 7005 * stack. 7006 * 7007 * Also, when register is a known constant, we rewrite register-based 7008 * operation to immediate-based, and thus do not need masking (and as 7009 * a consequence, do not need to simulate the zero-truncation either). 7010 */ 7011 if (commit_window || off_is_imm) 7012 return 0; 7013 7014 /* Simulate and find potential out-of-bounds access under 7015 * speculative execution from truncation as a result of 7016 * masking when off was not within expected range. If off 7017 * sits in dst, then we temporarily need to move ptr there 7018 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7019 * for cases where we use K-based arithmetic in one direction 7020 * and truncated reg-based in the other in order to explore 7021 * bad access. 7022 */ 7023 if (!ptr_is_dst_reg) { 7024 tmp = *dst_reg; 7025 *dst_reg = *ptr_reg; 7026 } 7027 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7028 env->insn_idx); 7029 if (!ptr_is_dst_reg && ret) 7030 *dst_reg = tmp; 7031 return !ret ? REASON_STACK : 0; 7032 } 7033 7034 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7035 { 7036 struct bpf_verifier_state *vstate = env->cur_state; 7037 7038 /* If we simulate paths under speculation, we don't update the 7039 * insn as 'seen' such that when we verify unreachable paths in 7040 * the non-speculative domain, sanitize_dead_code() can still 7041 * rewrite/sanitize them. 7042 */ 7043 if (!vstate->speculative) 7044 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7045 } 7046 7047 static int sanitize_err(struct bpf_verifier_env *env, 7048 const struct bpf_insn *insn, int reason, 7049 const struct bpf_reg_state *off_reg, 7050 const struct bpf_reg_state *dst_reg) 7051 { 7052 static const char *err = "pointer arithmetic with it prohibited for !root"; 7053 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7054 u32 dst = insn->dst_reg, src = insn->src_reg; 7055 7056 switch (reason) { 7057 case REASON_BOUNDS: 7058 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7059 off_reg == dst_reg ? dst : src, err); 7060 break; 7061 case REASON_TYPE: 7062 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7063 off_reg == dst_reg ? src : dst, err); 7064 break; 7065 case REASON_PATHS: 7066 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7067 dst, op, err); 7068 break; 7069 case REASON_LIMIT: 7070 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7071 dst, op, err); 7072 break; 7073 case REASON_STACK: 7074 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7075 dst, err); 7076 break; 7077 default: 7078 verbose(env, "verifier internal error: unknown reason (%d)\n", 7079 reason); 7080 break; 7081 } 7082 7083 return -EACCES; 7084 } 7085 7086 /* check that stack access falls within stack limits and that 'reg' doesn't 7087 * have a variable offset. 7088 * 7089 * Variable offset is prohibited for unprivileged mode for simplicity since it 7090 * requires corresponding support in Spectre masking for stack ALU. See also 7091 * retrieve_ptr_limit(). 7092 * 7093 * 7094 * 'off' includes 'reg->off'. 7095 */ 7096 static int check_stack_access_for_ptr_arithmetic( 7097 struct bpf_verifier_env *env, 7098 int regno, 7099 const struct bpf_reg_state *reg, 7100 int off) 7101 { 7102 if (!tnum_is_const(reg->var_off)) { 7103 char tn_buf[48]; 7104 7105 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7106 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7107 regno, tn_buf, off); 7108 return -EACCES; 7109 } 7110 7111 if (off >= 0 || off < -MAX_BPF_STACK) { 7112 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7113 "prohibited for !root; off=%d\n", regno, off); 7114 return -EACCES; 7115 } 7116 7117 return 0; 7118 } 7119 7120 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7121 const struct bpf_insn *insn, 7122 const struct bpf_reg_state *dst_reg) 7123 { 7124 u32 dst = insn->dst_reg; 7125 7126 /* For unprivileged we require that resulting offset must be in bounds 7127 * in order to be able to sanitize access later on. 7128 */ 7129 if (env->bypass_spec_v1) 7130 return 0; 7131 7132 switch (dst_reg->type) { 7133 case PTR_TO_STACK: 7134 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7135 dst_reg->off + dst_reg->var_off.value)) 7136 return -EACCES; 7137 break; 7138 case PTR_TO_MAP_VALUE: 7139 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7140 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7141 "prohibited for !root\n", dst); 7142 return -EACCES; 7143 } 7144 break; 7145 default: 7146 break; 7147 } 7148 7149 return 0; 7150 } 7151 7152 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7153 * Caller should also handle BPF_MOV case separately. 7154 * If we return -EACCES, caller may want to try again treating pointer as a 7155 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7156 */ 7157 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7158 struct bpf_insn *insn, 7159 const struct bpf_reg_state *ptr_reg, 7160 const struct bpf_reg_state *off_reg) 7161 { 7162 struct bpf_verifier_state *vstate = env->cur_state; 7163 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7164 struct bpf_reg_state *regs = state->regs, *dst_reg; 7165 bool known = tnum_is_const(off_reg->var_off); 7166 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7167 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7168 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7169 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7170 struct bpf_sanitize_info info = {}; 7171 u8 opcode = BPF_OP(insn->code); 7172 u32 dst = insn->dst_reg; 7173 int ret; 7174 7175 dst_reg = ®s[dst]; 7176 7177 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7178 smin_val > smax_val || umin_val > umax_val) { 7179 /* Taint dst register if offset had invalid bounds derived from 7180 * e.g. dead branches. 7181 */ 7182 __mark_reg_unknown(env, dst_reg); 7183 return 0; 7184 } 7185 7186 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7187 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7188 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7189 __mark_reg_unknown(env, dst_reg); 7190 return 0; 7191 } 7192 7193 verbose(env, 7194 "R%d 32-bit pointer arithmetic prohibited\n", 7195 dst); 7196 return -EACCES; 7197 } 7198 7199 switch (ptr_reg->type) { 7200 case PTR_TO_MAP_VALUE_OR_NULL: 7201 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7202 dst, reg_type_str[ptr_reg->type]); 7203 return -EACCES; 7204 case CONST_PTR_TO_MAP: 7205 /* smin_val represents the known value */ 7206 if (known && smin_val == 0 && opcode == BPF_ADD) 7207 break; 7208 fallthrough; 7209 case PTR_TO_PACKET_END: 7210 case PTR_TO_SOCKET: 7211 case PTR_TO_SOCKET_OR_NULL: 7212 case PTR_TO_SOCK_COMMON: 7213 case PTR_TO_SOCK_COMMON_OR_NULL: 7214 case PTR_TO_TCP_SOCK: 7215 case PTR_TO_TCP_SOCK_OR_NULL: 7216 case PTR_TO_XDP_SOCK: 7217 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7218 dst, reg_type_str[ptr_reg->type]); 7219 return -EACCES; 7220 default: 7221 break; 7222 } 7223 7224 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7225 * The id may be overwritten later if we create a new variable offset. 7226 */ 7227 dst_reg->type = ptr_reg->type; 7228 dst_reg->id = ptr_reg->id; 7229 7230 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7231 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7232 return -EINVAL; 7233 7234 /* pointer types do not carry 32-bit bounds at the moment. */ 7235 __mark_reg32_unbounded(dst_reg); 7236 7237 if (sanitize_needed(opcode)) { 7238 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7239 &info, false); 7240 if (ret < 0) 7241 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7242 } 7243 7244 switch (opcode) { 7245 case BPF_ADD: 7246 /* We can take a fixed offset as long as it doesn't overflow 7247 * the s32 'off' field 7248 */ 7249 if (known && (ptr_reg->off + smin_val == 7250 (s64)(s32)(ptr_reg->off + smin_val))) { 7251 /* pointer += K. Accumulate it into fixed offset */ 7252 dst_reg->smin_value = smin_ptr; 7253 dst_reg->smax_value = smax_ptr; 7254 dst_reg->umin_value = umin_ptr; 7255 dst_reg->umax_value = umax_ptr; 7256 dst_reg->var_off = ptr_reg->var_off; 7257 dst_reg->off = ptr_reg->off + smin_val; 7258 dst_reg->raw = ptr_reg->raw; 7259 break; 7260 } 7261 /* A new variable offset is created. Note that off_reg->off 7262 * == 0, since it's a scalar. 7263 * dst_reg gets the pointer type and since some positive 7264 * integer value was added to the pointer, give it a new 'id' 7265 * if it's a PTR_TO_PACKET. 7266 * this creates a new 'base' pointer, off_reg (variable) gets 7267 * added into the variable offset, and we copy the fixed offset 7268 * from ptr_reg. 7269 */ 7270 if (signed_add_overflows(smin_ptr, smin_val) || 7271 signed_add_overflows(smax_ptr, smax_val)) { 7272 dst_reg->smin_value = S64_MIN; 7273 dst_reg->smax_value = S64_MAX; 7274 } else { 7275 dst_reg->smin_value = smin_ptr + smin_val; 7276 dst_reg->smax_value = smax_ptr + smax_val; 7277 } 7278 if (umin_ptr + umin_val < umin_ptr || 7279 umax_ptr + umax_val < umax_ptr) { 7280 dst_reg->umin_value = 0; 7281 dst_reg->umax_value = U64_MAX; 7282 } else { 7283 dst_reg->umin_value = umin_ptr + umin_val; 7284 dst_reg->umax_value = umax_ptr + umax_val; 7285 } 7286 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7287 dst_reg->off = ptr_reg->off; 7288 dst_reg->raw = ptr_reg->raw; 7289 if (reg_is_pkt_pointer(ptr_reg)) { 7290 dst_reg->id = ++env->id_gen; 7291 /* something was added to pkt_ptr, set range to zero */ 7292 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7293 } 7294 break; 7295 case BPF_SUB: 7296 if (dst_reg == off_reg) { 7297 /* scalar -= pointer. Creates an unknown scalar */ 7298 verbose(env, "R%d tried to subtract pointer from scalar\n", 7299 dst); 7300 return -EACCES; 7301 } 7302 /* We don't allow subtraction from FP, because (according to 7303 * test_verifier.c test "invalid fp arithmetic", JITs might not 7304 * be able to deal with it. 7305 */ 7306 if (ptr_reg->type == PTR_TO_STACK) { 7307 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7308 dst); 7309 return -EACCES; 7310 } 7311 if (known && (ptr_reg->off - smin_val == 7312 (s64)(s32)(ptr_reg->off - smin_val))) { 7313 /* pointer -= K. Subtract it from fixed offset */ 7314 dst_reg->smin_value = smin_ptr; 7315 dst_reg->smax_value = smax_ptr; 7316 dst_reg->umin_value = umin_ptr; 7317 dst_reg->umax_value = umax_ptr; 7318 dst_reg->var_off = ptr_reg->var_off; 7319 dst_reg->id = ptr_reg->id; 7320 dst_reg->off = ptr_reg->off - smin_val; 7321 dst_reg->raw = ptr_reg->raw; 7322 break; 7323 } 7324 /* A new variable offset is created. If the subtrahend is known 7325 * nonnegative, then any reg->range we had before is still good. 7326 */ 7327 if (signed_sub_overflows(smin_ptr, smax_val) || 7328 signed_sub_overflows(smax_ptr, smin_val)) { 7329 /* Overflow possible, we know nothing */ 7330 dst_reg->smin_value = S64_MIN; 7331 dst_reg->smax_value = S64_MAX; 7332 } else { 7333 dst_reg->smin_value = smin_ptr - smax_val; 7334 dst_reg->smax_value = smax_ptr - smin_val; 7335 } 7336 if (umin_ptr < umax_val) { 7337 /* Overflow possible, we know nothing */ 7338 dst_reg->umin_value = 0; 7339 dst_reg->umax_value = U64_MAX; 7340 } else { 7341 /* Cannot overflow (as long as bounds are consistent) */ 7342 dst_reg->umin_value = umin_ptr - umax_val; 7343 dst_reg->umax_value = umax_ptr - umin_val; 7344 } 7345 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7346 dst_reg->off = ptr_reg->off; 7347 dst_reg->raw = ptr_reg->raw; 7348 if (reg_is_pkt_pointer(ptr_reg)) { 7349 dst_reg->id = ++env->id_gen; 7350 /* something was added to pkt_ptr, set range to zero */ 7351 if (smin_val < 0) 7352 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7353 } 7354 break; 7355 case BPF_AND: 7356 case BPF_OR: 7357 case BPF_XOR: 7358 /* bitwise ops on pointers are troublesome, prohibit. */ 7359 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7360 dst, bpf_alu_string[opcode >> 4]); 7361 return -EACCES; 7362 default: 7363 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7364 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7365 dst, bpf_alu_string[opcode >> 4]); 7366 return -EACCES; 7367 } 7368 7369 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7370 return -EINVAL; 7371 7372 __update_reg_bounds(dst_reg); 7373 __reg_deduce_bounds(dst_reg); 7374 __reg_bound_offset(dst_reg); 7375 7376 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7377 return -EACCES; 7378 if (sanitize_needed(opcode)) { 7379 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7380 &info, true); 7381 if (ret < 0) 7382 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7383 } 7384 7385 return 0; 7386 } 7387 7388 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7389 struct bpf_reg_state *src_reg) 7390 { 7391 s32 smin_val = src_reg->s32_min_value; 7392 s32 smax_val = src_reg->s32_max_value; 7393 u32 umin_val = src_reg->u32_min_value; 7394 u32 umax_val = src_reg->u32_max_value; 7395 7396 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7397 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7398 dst_reg->s32_min_value = S32_MIN; 7399 dst_reg->s32_max_value = S32_MAX; 7400 } else { 7401 dst_reg->s32_min_value += smin_val; 7402 dst_reg->s32_max_value += smax_val; 7403 } 7404 if (dst_reg->u32_min_value + umin_val < umin_val || 7405 dst_reg->u32_max_value + umax_val < umax_val) { 7406 dst_reg->u32_min_value = 0; 7407 dst_reg->u32_max_value = U32_MAX; 7408 } else { 7409 dst_reg->u32_min_value += umin_val; 7410 dst_reg->u32_max_value += umax_val; 7411 } 7412 } 7413 7414 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7415 struct bpf_reg_state *src_reg) 7416 { 7417 s64 smin_val = src_reg->smin_value; 7418 s64 smax_val = src_reg->smax_value; 7419 u64 umin_val = src_reg->umin_value; 7420 u64 umax_val = src_reg->umax_value; 7421 7422 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7423 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7424 dst_reg->smin_value = S64_MIN; 7425 dst_reg->smax_value = S64_MAX; 7426 } else { 7427 dst_reg->smin_value += smin_val; 7428 dst_reg->smax_value += smax_val; 7429 } 7430 if (dst_reg->umin_value + umin_val < umin_val || 7431 dst_reg->umax_value + umax_val < umax_val) { 7432 dst_reg->umin_value = 0; 7433 dst_reg->umax_value = U64_MAX; 7434 } else { 7435 dst_reg->umin_value += umin_val; 7436 dst_reg->umax_value += umax_val; 7437 } 7438 } 7439 7440 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7441 struct bpf_reg_state *src_reg) 7442 { 7443 s32 smin_val = src_reg->s32_min_value; 7444 s32 smax_val = src_reg->s32_max_value; 7445 u32 umin_val = src_reg->u32_min_value; 7446 u32 umax_val = src_reg->u32_max_value; 7447 7448 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7449 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7450 /* Overflow possible, we know nothing */ 7451 dst_reg->s32_min_value = S32_MIN; 7452 dst_reg->s32_max_value = S32_MAX; 7453 } else { 7454 dst_reg->s32_min_value -= smax_val; 7455 dst_reg->s32_max_value -= smin_val; 7456 } 7457 if (dst_reg->u32_min_value < umax_val) { 7458 /* Overflow possible, we know nothing */ 7459 dst_reg->u32_min_value = 0; 7460 dst_reg->u32_max_value = U32_MAX; 7461 } else { 7462 /* Cannot overflow (as long as bounds are consistent) */ 7463 dst_reg->u32_min_value -= umax_val; 7464 dst_reg->u32_max_value -= umin_val; 7465 } 7466 } 7467 7468 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7469 struct bpf_reg_state *src_reg) 7470 { 7471 s64 smin_val = src_reg->smin_value; 7472 s64 smax_val = src_reg->smax_value; 7473 u64 umin_val = src_reg->umin_value; 7474 u64 umax_val = src_reg->umax_value; 7475 7476 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7477 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7478 /* Overflow possible, we know nothing */ 7479 dst_reg->smin_value = S64_MIN; 7480 dst_reg->smax_value = S64_MAX; 7481 } else { 7482 dst_reg->smin_value -= smax_val; 7483 dst_reg->smax_value -= smin_val; 7484 } 7485 if (dst_reg->umin_value < umax_val) { 7486 /* Overflow possible, we know nothing */ 7487 dst_reg->umin_value = 0; 7488 dst_reg->umax_value = U64_MAX; 7489 } else { 7490 /* Cannot overflow (as long as bounds are consistent) */ 7491 dst_reg->umin_value -= umax_val; 7492 dst_reg->umax_value -= umin_val; 7493 } 7494 } 7495 7496 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7497 struct bpf_reg_state *src_reg) 7498 { 7499 s32 smin_val = src_reg->s32_min_value; 7500 u32 umin_val = src_reg->u32_min_value; 7501 u32 umax_val = src_reg->u32_max_value; 7502 7503 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7504 /* Ain't nobody got time to multiply that sign */ 7505 __mark_reg32_unbounded(dst_reg); 7506 return; 7507 } 7508 /* Both values are positive, so we can work with unsigned and 7509 * copy the result to signed (unless it exceeds S32_MAX). 7510 */ 7511 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7512 /* Potential overflow, we know nothing */ 7513 __mark_reg32_unbounded(dst_reg); 7514 return; 7515 } 7516 dst_reg->u32_min_value *= umin_val; 7517 dst_reg->u32_max_value *= umax_val; 7518 if (dst_reg->u32_max_value > S32_MAX) { 7519 /* Overflow possible, we know nothing */ 7520 dst_reg->s32_min_value = S32_MIN; 7521 dst_reg->s32_max_value = S32_MAX; 7522 } else { 7523 dst_reg->s32_min_value = dst_reg->u32_min_value; 7524 dst_reg->s32_max_value = dst_reg->u32_max_value; 7525 } 7526 } 7527 7528 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7529 struct bpf_reg_state *src_reg) 7530 { 7531 s64 smin_val = src_reg->smin_value; 7532 u64 umin_val = src_reg->umin_value; 7533 u64 umax_val = src_reg->umax_value; 7534 7535 if (smin_val < 0 || dst_reg->smin_value < 0) { 7536 /* Ain't nobody got time to multiply that sign */ 7537 __mark_reg64_unbounded(dst_reg); 7538 return; 7539 } 7540 /* Both values are positive, so we can work with unsigned and 7541 * copy the result to signed (unless it exceeds S64_MAX). 7542 */ 7543 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7544 /* Potential overflow, we know nothing */ 7545 __mark_reg64_unbounded(dst_reg); 7546 return; 7547 } 7548 dst_reg->umin_value *= umin_val; 7549 dst_reg->umax_value *= umax_val; 7550 if (dst_reg->umax_value > S64_MAX) { 7551 /* Overflow possible, we know nothing */ 7552 dst_reg->smin_value = S64_MIN; 7553 dst_reg->smax_value = S64_MAX; 7554 } else { 7555 dst_reg->smin_value = dst_reg->umin_value; 7556 dst_reg->smax_value = dst_reg->umax_value; 7557 } 7558 } 7559 7560 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7561 struct bpf_reg_state *src_reg) 7562 { 7563 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7564 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7565 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7566 s32 smin_val = src_reg->s32_min_value; 7567 u32 umax_val = src_reg->u32_max_value; 7568 7569 if (src_known && dst_known) { 7570 __mark_reg32_known(dst_reg, var32_off.value); 7571 return; 7572 } 7573 7574 /* We get our minimum from the var_off, since that's inherently 7575 * bitwise. Our maximum is the minimum of the operands' maxima. 7576 */ 7577 dst_reg->u32_min_value = var32_off.value; 7578 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7579 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7580 /* Lose signed bounds when ANDing negative numbers, 7581 * ain't nobody got time for that. 7582 */ 7583 dst_reg->s32_min_value = S32_MIN; 7584 dst_reg->s32_max_value = S32_MAX; 7585 } else { 7586 /* ANDing two positives gives a positive, so safe to 7587 * cast result into s64. 7588 */ 7589 dst_reg->s32_min_value = dst_reg->u32_min_value; 7590 dst_reg->s32_max_value = dst_reg->u32_max_value; 7591 } 7592 } 7593 7594 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7595 struct bpf_reg_state *src_reg) 7596 { 7597 bool src_known = tnum_is_const(src_reg->var_off); 7598 bool dst_known = tnum_is_const(dst_reg->var_off); 7599 s64 smin_val = src_reg->smin_value; 7600 u64 umax_val = src_reg->umax_value; 7601 7602 if (src_known && dst_known) { 7603 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7604 return; 7605 } 7606 7607 /* We get our minimum from the var_off, since that's inherently 7608 * bitwise. Our maximum is the minimum of the operands' maxima. 7609 */ 7610 dst_reg->umin_value = dst_reg->var_off.value; 7611 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7612 if (dst_reg->smin_value < 0 || smin_val < 0) { 7613 /* Lose signed bounds when ANDing negative numbers, 7614 * ain't nobody got time for that. 7615 */ 7616 dst_reg->smin_value = S64_MIN; 7617 dst_reg->smax_value = S64_MAX; 7618 } else { 7619 /* ANDing two positives gives a positive, so safe to 7620 * cast result into s64. 7621 */ 7622 dst_reg->smin_value = dst_reg->umin_value; 7623 dst_reg->smax_value = dst_reg->umax_value; 7624 } 7625 /* We may learn something more from the var_off */ 7626 __update_reg_bounds(dst_reg); 7627 } 7628 7629 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7630 struct bpf_reg_state *src_reg) 7631 { 7632 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7633 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7634 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7635 s32 smin_val = src_reg->s32_min_value; 7636 u32 umin_val = src_reg->u32_min_value; 7637 7638 if (src_known && dst_known) { 7639 __mark_reg32_known(dst_reg, var32_off.value); 7640 return; 7641 } 7642 7643 /* We get our maximum from the var_off, and our minimum is the 7644 * maximum of the operands' minima 7645 */ 7646 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7647 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7648 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7649 /* Lose signed bounds when ORing negative numbers, 7650 * ain't nobody got time for that. 7651 */ 7652 dst_reg->s32_min_value = S32_MIN; 7653 dst_reg->s32_max_value = S32_MAX; 7654 } else { 7655 /* ORing two positives gives a positive, so safe to 7656 * cast result into s64. 7657 */ 7658 dst_reg->s32_min_value = dst_reg->u32_min_value; 7659 dst_reg->s32_max_value = dst_reg->u32_max_value; 7660 } 7661 } 7662 7663 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7664 struct bpf_reg_state *src_reg) 7665 { 7666 bool src_known = tnum_is_const(src_reg->var_off); 7667 bool dst_known = tnum_is_const(dst_reg->var_off); 7668 s64 smin_val = src_reg->smin_value; 7669 u64 umin_val = src_reg->umin_value; 7670 7671 if (src_known && dst_known) { 7672 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7673 return; 7674 } 7675 7676 /* We get our maximum from the var_off, and our minimum is the 7677 * maximum of the operands' minima 7678 */ 7679 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7680 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7681 if (dst_reg->smin_value < 0 || smin_val < 0) { 7682 /* Lose signed bounds when ORing negative numbers, 7683 * ain't nobody got time for that. 7684 */ 7685 dst_reg->smin_value = S64_MIN; 7686 dst_reg->smax_value = S64_MAX; 7687 } else { 7688 /* ORing two positives gives a positive, so safe to 7689 * cast result into s64. 7690 */ 7691 dst_reg->smin_value = dst_reg->umin_value; 7692 dst_reg->smax_value = dst_reg->umax_value; 7693 } 7694 /* We may learn something more from the var_off */ 7695 __update_reg_bounds(dst_reg); 7696 } 7697 7698 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7699 struct bpf_reg_state *src_reg) 7700 { 7701 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7702 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7703 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7704 s32 smin_val = src_reg->s32_min_value; 7705 7706 if (src_known && dst_known) { 7707 __mark_reg32_known(dst_reg, var32_off.value); 7708 return; 7709 } 7710 7711 /* We get both minimum and maximum from the var32_off. */ 7712 dst_reg->u32_min_value = var32_off.value; 7713 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7714 7715 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7716 /* XORing two positive sign numbers gives a positive, 7717 * so safe to cast u32 result into s32. 7718 */ 7719 dst_reg->s32_min_value = dst_reg->u32_min_value; 7720 dst_reg->s32_max_value = dst_reg->u32_max_value; 7721 } else { 7722 dst_reg->s32_min_value = S32_MIN; 7723 dst_reg->s32_max_value = S32_MAX; 7724 } 7725 } 7726 7727 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7728 struct bpf_reg_state *src_reg) 7729 { 7730 bool src_known = tnum_is_const(src_reg->var_off); 7731 bool dst_known = tnum_is_const(dst_reg->var_off); 7732 s64 smin_val = src_reg->smin_value; 7733 7734 if (src_known && dst_known) { 7735 /* dst_reg->var_off.value has been updated earlier */ 7736 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7737 return; 7738 } 7739 7740 /* We get both minimum and maximum from the var_off. */ 7741 dst_reg->umin_value = dst_reg->var_off.value; 7742 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7743 7744 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7745 /* XORing two positive sign numbers gives a positive, 7746 * so safe to cast u64 result into s64. 7747 */ 7748 dst_reg->smin_value = dst_reg->umin_value; 7749 dst_reg->smax_value = dst_reg->umax_value; 7750 } else { 7751 dst_reg->smin_value = S64_MIN; 7752 dst_reg->smax_value = S64_MAX; 7753 } 7754 7755 __update_reg_bounds(dst_reg); 7756 } 7757 7758 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7759 u64 umin_val, u64 umax_val) 7760 { 7761 /* We lose all sign bit information (except what we can pick 7762 * up from var_off) 7763 */ 7764 dst_reg->s32_min_value = S32_MIN; 7765 dst_reg->s32_max_value = S32_MAX; 7766 /* If we might shift our top bit out, then we know nothing */ 7767 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7768 dst_reg->u32_min_value = 0; 7769 dst_reg->u32_max_value = U32_MAX; 7770 } else { 7771 dst_reg->u32_min_value <<= umin_val; 7772 dst_reg->u32_max_value <<= umax_val; 7773 } 7774 } 7775 7776 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7777 struct bpf_reg_state *src_reg) 7778 { 7779 u32 umax_val = src_reg->u32_max_value; 7780 u32 umin_val = src_reg->u32_min_value; 7781 /* u32 alu operation will zext upper bits */ 7782 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7783 7784 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7785 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7786 /* Not required but being careful mark reg64 bounds as unknown so 7787 * that we are forced to pick them up from tnum and zext later and 7788 * if some path skips this step we are still safe. 7789 */ 7790 __mark_reg64_unbounded(dst_reg); 7791 __update_reg32_bounds(dst_reg); 7792 } 7793 7794 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7795 u64 umin_val, u64 umax_val) 7796 { 7797 /* Special case <<32 because it is a common compiler pattern to sign 7798 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7799 * positive we know this shift will also be positive so we can track 7800 * bounds correctly. Otherwise we lose all sign bit information except 7801 * what we can pick up from var_off. Perhaps we can generalize this 7802 * later to shifts of any length. 7803 */ 7804 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7805 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7806 else 7807 dst_reg->smax_value = S64_MAX; 7808 7809 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7810 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7811 else 7812 dst_reg->smin_value = S64_MIN; 7813 7814 /* If we might shift our top bit out, then we know nothing */ 7815 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7816 dst_reg->umin_value = 0; 7817 dst_reg->umax_value = U64_MAX; 7818 } else { 7819 dst_reg->umin_value <<= umin_val; 7820 dst_reg->umax_value <<= umax_val; 7821 } 7822 } 7823 7824 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7825 struct bpf_reg_state *src_reg) 7826 { 7827 u64 umax_val = src_reg->umax_value; 7828 u64 umin_val = src_reg->umin_value; 7829 7830 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7831 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7832 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7833 7834 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7835 /* We may learn something more from the var_off */ 7836 __update_reg_bounds(dst_reg); 7837 } 7838 7839 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7840 struct bpf_reg_state *src_reg) 7841 { 7842 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7843 u32 umax_val = src_reg->u32_max_value; 7844 u32 umin_val = src_reg->u32_min_value; 7845 7846 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7847 * be negative, then either: 7848 * 1) src_reg might be zero, so the sign bit of the result is 7849 * unknown, so we lose our signed bounds 7850 * 2) it's known negative, thus the unsigned bounds capture the 7851 * signed bounds 7852 * 3) the signed bounds cross zero, so they tell us nothing 7853 * about the result 7854 * If the value in dst_reg is known nonnegative, then again the 7855 * unsigned bounds capture the signed bounds. 7856 * Thus, in all cases it suffices to blow away our signed bounds 7857 * and rely on inferring new ones from the unsigned bounds and 7858 * var_off of the result. 7859 */ 7860 dst_reg->s32_min_value = S32_MIN; 7861 dst_reg->s32_max_value = S32_MAX; 7862 7863 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7864 dst_reg->u32_min_value >>= umax_val; 7865 dst_reg->u32_max_value >>= umin_val; 7866 7867 __mark_reg64_unbounded(dst_reg); 7868 __update_reg32_bounds(dst_reg); 7869 } 7870 7871 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7872 struct bpf_reg_state *src_reg) 7873 { 7874 u64 umax_val = src_reg->umax_value; 7875 u64 umin_val = src_reg->umin_value; 7876 7877 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7878 * be negative, then either: 7879 * 1) src_reg might be zero, so the sign bit of the result is 7880 * unknown, so we lose our signed bounds 7881 * 2) it's known negative, thus the unsigned bounds capture the 7882 * signed bounds 7883 * 3) the signed bounds cross zero, so they tell us nothing 7884 * about the result 7885 * If the value in dst_reg is known nonnegative, then again the 7886 * unsigned bounds capture the signed bounds. 7887 * Thus, in all cases it suffices to blow away our signed bounds 7888 * and rely on inferring new ones from the unsigned bounds and 7889 * var_off of the result. 7890 */ 7891 dst_reg->smin_value = S64_MIN; 7892 dst_reg->smax_value = S64_MAX; 7893 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7894 dst_reg->umin_value >>= umax_val; 7895 dst_reg->umax_value >>= umin_val; 7896 7897 /* Its not easy to operate on alu32 bounds here because it depends 7898 * on bits being shifted in. Take easy way out and mark unbounded 7899 * so we can recalculate later from tnum. 7900 */ 7901 __mark_reg32_unbounded(dst_reg); 7902 __update_reg_bounds(dst_reg); 7903 } 7904 7905 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7906 struct bpf_reg_state *src_reg) 7907 { 7908 u64 umin_val = src_reg->u32_min_value; 7909 7910 /* Upon reaching here, src_known is true and 7911 * umax_val is equal to umin_val. 7912 */ 7913 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7914 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7915 7916 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7917 7918 /* blow away the dst_reg umin_value/umax_value and rely on 7919 * dst_reg var_off to refine the result. 7920 */ 7921 dst_reg->u32_min_value = 0; 7922 dst_reg->u32_max_value = U32_MAX; 7923 7924 __mark_reg64_unbounded(dst_reg); 7925 __update_reg32_bounds(dst_reg); 7926 } 7927 7928 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7929 struct bpf_reg_state *src_reg) 7930 { 7931 u64 umin_val = src_reg->umin_value; 7932 7933 /* Upon reaching here, src_known is true and umax_val is equal 7934 * to umin_val. 7935 */ 7936 dst_reg->smin_value >>= umin_val; 7937 dst_reg->smax_value >>= umin_val; 7938 7939 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7940 7941 /* blow away the dst_reg umin_value/umax_value and rely on 7942 * dst_reg var_off to refine the result. 7943 */ 7944 dst_reg->umin_value = 0; 7945 dst_reg->umax_value = U64_MAX; 7946 7947 /* Its not easy to operate on alu32 bounds here because it depends 7948 * on bits being shifted in from upper 32-bits. Take easy way out 7949 * and mark unbounded so we can recalculate later from tnum. 7950 */ 7951 __mark_reg32_unbounded(dst_reg); 7952 __update_reg_bounds(dst_reg); 7953 } 7954 7955 /* WARNING: This function does calculations on 64-bit values, but the actual 7956 * execution may occur on 32-bit values. Therefore, things like bitshifts 7957 * need extra checks in the 32-bit case. 7958 */ 7959 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7960 struct bpf_insn *insn, 7961 struct bpf_reg_state *dst_reg, 7962 struct bpf_reg_state src_reg) 7963 { 7964 struct bpf_reg_state *regs = cur_regs(env); 7965 u8 opcode = BPF_OP(insn->code); 7966 bool src_known; 7967 s64 smin_val, smax_val; 7968 u64 umin_val, umax_val; 7969 s32 s32_min_val, s32_max_val; 7970 u32 u32_min_val, u32_max_val; 7971 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7972 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7973 int ret; 7974 7975 smin_val = src_reg.smin_value; 7976 smax_val = src_reg.smax_value; 7977 umin_val = src_reg.umin_value; 7978 umax_val = src_reg.umax_value; 7979 7980 s32_min_val = src_reg.s32_min_value; 7981 s32_max_val = src_reg.s32_max_value; 7982 u32_min_val = src_reg.u32_min_value; 7983 u32_max_val = src_reg.u32_max_value; 7984 7985 if (alu32) { 7986 src_known = tnum_subreg_is_const(src_reg.var_off); 7987 if ((src_known && 7988 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7989 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7990 /* Taint dst register if offset had invalid bounds 7991 * derived from e.g. dead branches. 7992 */ 7993 __mark_reg_unknown(env, dst_reg); 7994 return 0; 7995 } 7996 } else { 7997 src_known = tnum_is_const(src_reg.var_off); 7998 if ((src_known && 7999 (smin_val != smax_val || umin_val != umax_val)) || 8000 smin_val > smax_val || umin_val > umax_val) { 8001 /* Taint dst register if offset had invalid bounds 8002 * derived from e.g. dead branches. 8003 */ 8004 __mark_reg_unknown(env, dst_reg); 8005 return 0; 8006 } 8007 } 8008 8009 if (!src_known && 8010 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8011 __mark_reg_unknown(env, dst_reg); 8012 return 0; 8013 } 8014 8015 if (sanitize_needed(opcode)) { 8016 ret = sanitize_val_alu(env, insn); 8017 if (ret < 0) 8018 return sanitize_err(env, insn, ret, NULL, NULL); 8019 } 8020 8021 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8022 * There are two classes of instructions: The first class we track both 8023 * alu32 and alu64 sign/unsigned bounds independently this provides the 8024 * greatest amount of precision when alu operations are mixed with jmp32 8025 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8026 * and BPF_OR. This is possible because these ops have fairly easy to 8027 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8028 * See alu32 verifier tests for examples. The second class of 8029 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8030 * with regards to tracking sign/unsigned bounds because the bits may 8031 * cross subreg boundaries in the alu64 case. When this happens we mark 8032 * the reg unbounded in the subreg bound space and use the resulting 8033 * tnum to calculate an approximation of the sign/unsigned bounds. 8034 */ 8035 switch (opcode) { 8036 case BPF_ADD: 8037 scalar32_min_max_add(dst_reg, &src_reg); 8038 scalar_min_max_add(dst_reg, &src_reg); 8039 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8040 break; 8041 case BPF_SUB: 8042 scalar32_min_max_sub(dst_reg, &src_reg); 8043 scalar_min_max_sub(dst_reg, &src_reg); 8044 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8045 break; 8046 case BPF_MUL: 8047 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8048 scalar32_min_max_mul(dst_reg, &src_reg); 8049 scalar_min_max_mul(dst_reg, &src_reg); 8050 break; 8051 case BPF_AND: 8052 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8053 scalar32_min_max_and(dst_reg, &src_reg); 8054 scalar_min_max_and(dst_reg, &src_reg); 8055 break; 8056 case BPF_OR: 8057 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8058 scalar32_min_max_or(dst_reg, &src_reg); 8059 scalar_min_max_or(dst_reg, &src_reg); 8060 break; 8061 case BPF_XOR: 8062 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8063 scalar32_min_max_xor(dst_reg, &src_reg); 8064 scalar_min_max_xor(dst_reg, &src_reg); 8065 break; 8066 case BPF_LSH: 8067 if (umax_val >= insn_bitness) { 8068 /* Shifts greater than 31 or 63 are undefined. 8069 * This includes shifts by a negative number. 8070 */ 8071 mark_reg_unknown(env, regs, insn->dst_reg); 8072 break; 8073 } 8074 if (alu32) 8075 scalar32_min_max_lsh(dst_reg, &src_reg); 8076 else 8077 scalar_min_max_lsh(dst_reg, &src_reg); 8078 break; 8079 case BPF_RSH: 8080 if (umax_val >= insn_bitness) { 8081 /* Shifts greater than 31 or 63 are undefined. 8082 * This includes shifts by a negative number. 8083 */ 8084 mark_reg_unknown(env, regs, insn->dst_reg); 8085 break; 8086 } 8087 if (alu32) 8088 scalar32_min_max_rsh(dst_reg, &src_reg); 8089 else 8090 scalar_min_max_rsh(dst_reg, &src_reg); 8091 break; 8092 case BPF_ARSH: 8093 if (umax_val >= insn_bitness) { 8094 /* Shifts greater than 31 or 63 are undefined. 8095 * This includes shifts by a negative number. 8096 */ 8097 mark_reg_unknown(env, regs, insn->dst_reg); 8098 break; 8099 } 8100 if (alu32) 8101 scalar32_min_max_arsh(dst_reg, &src_reg); 8102 else 8103 scalar_min_max_arsh(dst_reg, &src_reg); 8104 break; 8105 default: 8106 mark_reg_unknown(env, regs, insn->dst_reg); 8107 break; 8108 } 8109 8110 /* ALU32 ops are zero extended into 64bit register */ 8111 if (alu32) 8112 zext_32_to_64(dst_reg); 8113 8114 __update_reg_bounds(dst_reg); 8115 __reg_deduce_bounds(dst_reg); 8116 __reg_bound_offset(dst_reg); 8117 return 0; 8118 } 8119 8120 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8121 * and var_off. 8122 */ 8123 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8124 struct bpf_insn *insn) 8125 { 8126 struct bpf_verifier_state *vstate = env->cur_state; 8127 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8128 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8129 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8130 u8 opcode = BPF_OP(insn->code); 8131 int err; 8132 8133 dst_reg = ®s[insn->dst_reg]; 8134 src_reg = NULL; 8135 if (dst_reg->type != SCALAR_VALUE) 8136 ptr_reg = dst_reg; 8137 else 8138 /* Make sure ID is cleared otherwise dst_reg min/max could be 8139 * incorrectly propagated into other registers by find_equal_scalars() 8140 */ 8141 dst_reg->id = 0; 8142 if (BPF_SRC(insn->code) == BPF_X) { 8143 src_reg = ®s[insn->src_reg]; 8144 if (src_reg->type != SCALAR_VALUE) { 8145 if (dst_reg->type != SCALAR_VALUE) { 8146 /* Combining two pointers by any ALU op yields 8147 * an arbitrary scalar. Disallow all math except 8148 * pointer subtraction 8149 */ 8150 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8151 mark_reg_unknown(env, regs, insn->dst_reg); 8152 return 0; 8153 } 8154 verbose(env, "R%d pointer %s pointer prohibited\n", 8155 insn->dst_reg, 8156 bpf_alu_string[opcode >> 4]); 8157 return -EACCES; 8158 } else { 8159 /* scalar += pointer 8160 * This is legal, but we have to reverse our 8161 * src/dest handling in computing the range 8162 */ 8163 err = mark_chain_precision(env, insn->dst_reg); 8164 if (err) 8165 return err; 8166 return adjust_ptr_min_max_vals(env, insn, 8167 src_reg, dst_reg); 8168 } 8169 } else if (ptr_reg) { 8170 /* pointer += scalar */ 8171 err = mark_chain_precision(env, insn->src_reg); 8172 if (err) 8173 return err; 8174 return adjust_ptr_min_max_vals(env, insn, 8175 dst_reg, src_reg); 8176 } 8177 } else { 8178 /* Pretend the src is a reg with a known value, since we only 8179 * need to be able to read from this state. 8180 */ 8181 off_reg.type = SCALAR_VALUE; 8182 __mark_reg_known(&off_reg, insn->imm); 8183 src_reg = &off_reg; 8184 if (ptr_reg) /* pointer += K */ 8185 return adjust_ptr_min_max_vals(env, insn, 8186 ptr_reg, src_reg); 8187 } 8188 8189 /* Got here implies adding two SCALAR_VALUEs */ 8190 if (WARN_ON_ONCE(ptr_reg)) { 8191 print_verifier_state(env, state); 8192 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8193 return -EINVAL; 8194 } 8195 if (WARN_ON(!src_reg)) { 8196 print_verifier_state(env, state); 8197 verbose(env, "verifier internal error: no src_reg\n"); 8198 return -EINVAL; 8199 } 8200 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8201 } 8202 8203 /* check validity of 32-bit and 64-bit arithmetic operations */ 8204 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8205 { 8206 struct bpf_reg_state *regs = cur_regs(env); 8207 u8 opcode = BPF_OP(insn->code); 8208 int err; 8209 8210 if (opcode == BPF_END || opcode == BPF_NEG) { 8211 if (opcode == BPF_NEG) { 8212 if (BPF_SRC(insn->code) != 0 || 8213 insn->src_reg != BPF_REG_0 || 8214 insn->off != 0 || insn->imm != 0) { 8215 verbose(env, "BPF_NEG uses reserved fields\n"); 8216 return -EINVAL; 8217 } 8218 } else { 8219 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8220 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8221 BPF_CLASS(insn->code) == BPF_ALU64) { 8222 verbose(env, "BPF_END uses reserved fields\n"); 8223 return -EINVAL; 8224 } 8225 } 8226 8227 /* check src operand */ 8228 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8229 if (err) 8230 return err; 8231 8232 if (is_pointer_value(env, insn->dst_reg)) { 8233 verbose(env, "R%d pointer arithmetic prohibited\n", 8234 insn->dst_reg); 8235 return -EACCES; 8236 } 8237 8238 /* check dest operand */ 8239 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8240 if (err) 8241 return err; 8242 8243 } else if (opcode == BPF_MOV) { 8244 8245 if (BPF_SRC(insn->code) == BPF_X) { 8246 if (insn->imm != 0 || insn->off != 0) { 8247 verbose(env, "BPF_MOV uses reserved fields\n"); 8248 return -EINVAL; 8249 } 8250 8251 /* check src operand */ 8252 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8253 if (err) 8254 return err; 8255 } else { 8256 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8257 verbose(env, "BPF_MOV uses reserved fields\n"); 8258 return -EINVAL; 8259 } 8260 } 8261 8262 /* check dest operand, mark as required later */ 8263 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8264 if (err) 8265 return err; 8266 8267 if (BPF_SRC(insn->code) == BPF_X) { 8268 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8269 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8270 8271 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8272 /* case: R1 = R2 8273 * copy register state to dest reg 8274 */ 8275 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8276 /* Assign src and dst registers the same ID 8277 * that will be used by find_equal_scalars() 8278 * to propagate min/max range. 8279 */ 8280 src_reg->id = ++env->id_gen; 8281 *dst_reg = *src_reg; 8282 dst_reg->live |= REG_LIVE_WRITTEN; 8283 dst_reg->subreg_def = DEF_NOT_SUBREG; 8284 } else { 8285 /* R1 = (u32) R2 */ 8286 if (is_pointer_value(env, insn->src_reg)) { 8287 verbose(env, 8288 "R%d partial copy of pointer\n", 8289 insn->src_reg); 8290 return -EACCES; 8291 } else if (src_reg->type == SCALAR_VALUE) { 8292 *dst_reg = *src_reg; 8293 /* Make sure ID is cleared otherwise 8294 * dst_reg min/max could be incorrectly 8295 * propagated into src_reg by find_equal_scalars() 8296 */ 8297 dst_reg->id = 0; 8298 dst_reg->live |= REG_LIVE_WRITTEN; 8299 dst_reg->subreg_def = env->insn_idx + 1; 8300 } else { 8301 mark_reg_unknown(env, regs, 8302 insn->dst_reg); 8303 } 8304 zext_32_to_64(dst_reg); 8305 } 8306 } else { 8307 /* case: R = imm 8308 * remember the value we stored into this reg 8309 */ 8310 /* clear any state __mark_reg_known doesn't set */ 8311 mark_reg_unknown(env, regs, insn->dst_reg); 8312 regs[insn->dst_reg].type = SCALAR_VALUE; 8313 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8314 __mark_reg_known(regs + insn->dst_reg, 8315 insn->imm); 8316 } else { 8317 __mark_reg_known(regs + insn->dst_reg, 8318 (u32)insn->imm); 8319 } 8320 } 8321 8322 } else if (opcode > BPF_END) { 8323 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8324 return -EINVAL; 8325 8326 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8327 8328 if (BPF_SRC(insn->code) == BPF_X) { 8329 if (insn->imm != 0 || insn->off != 0) { 8330 verbose(env, "BPF_ALU uses reserved fields\n"); 8331 return -EINVAL; 8332 } 8333 /* check src1 operand */ 8334 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8335 if (err) 8336 return err; 8337 } else { 8338 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8339 verbose(env, "BPF_ALU uses reserved fields\n"); 8340 return -EINVAL; 8341 } 8342 } 8343 8344 /* check src2 operand */ 8345 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8346 if (err) 8347 return err; 8348 8349 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8350 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8351 verbose(env, "div by zero\n"); 8352 return -EINVAL; 8353 } 8354 8355 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8356 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8357 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8358 8359 if (insn->imm < 0 || insn->imm >= size) { 8360 verbose(env, "invalid shift %d\n", insn->imm); 8361 return -EINVAL; 8362 } 8363 } 8364 8365 /* check dest operand */ 8366 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8367 if (err) 8368 return err; 8369 8370 return adjust_reg_min_max_vals(env, insn); 8371 } 8372 8373 return 0; 8374 } 8375 8376 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8377 struct bpf_reg_state *dst_reg, 8378 enum bpf_reg_type type, int new_range) 8379 { 8380 struct bpf_reg_state *reg; 8381 int i; 8382 8383 for (i = 0; i < MAX_BPF_REG; i++) { 8384 reg = &state->regs[i]; 8385 if (reg->type == type && reg->id == dst_reg->id) 8386 /* keep the maximum range already checked */ 8387 reg->range = max(reg->range, new_range); 8388 } 8389 8390 bpf_for_each_spilled_reg(i, state, reg) { 8391 if (!reg) 8392 continue; 8393 if (reg->type == type && reg->id == dst_reg->id) 8394 reg->range = max(reg->range, new_range); 8395 } 8396 } 8397 8398 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8399 struct bpf_reg_state *dst_reg, 8400 enum bpf_reg_type type, 8401 bool range_right_open) 8402 { 8403 int new_range, i; 8404 8405 if (dst_reg->off < 0 || 8406 (dst_reg->off == 0 && range_right_open)) 8407 /* This doesn't give us any range */ 8408 return; 8409 8410 if (dst_reg->umax_value > MAX_PACKET_OFF || 8411 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8412 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8413 * than pkt_end, but that's because it's also less than pkt. 8414 */ 8415 return; 8416 8417 new_range = dst_reg->off; 8418 if (range_right_open) 8419 new_range--; 8420 8421 /* Examples for register markings: 8422 * 8423 * pkt_data in dst register: 8424 * 8425 * r2 = r3; 8426 * r2 += 8; 8427 * if (r2 > pkt_end) goto <handle exception> 8428 * <access okay> 8429 * 8430 * r2 = r3; 8431 * r2 += 8; 8432 * if (r2 < pkt_end) goto <access okay> 8433 * <handle exception> 8434 * 8435 * Where: 8436 * r2 == dst_reg, pkt_end == src_reg 8437 * r2=pkt(id=n,off=8,r=0) 8438 * r3=pkt(id=n,off=0,r=0) 8439 * 8440 * pkt_data in src register: 8441 * 8442 * r2 = r3; 8443 * r2 += 8; 8444 * if (pkt_end >= r2) goto <access okay> 8445 * <handle exception> 8446 * 8447 * r2 = r3; 8448 * r2 += 8; 8449 * if (pkt_end <= r2) goto <handle exception> 8450 * <access okay> 8451 * 8452 * Where: 8453 * pkt_end == dst_reg, r2 == src_reg 8454 * r2=pkt(id=n,off=8,r=0) 8455 * r3=pkt(id=n,off=0,r=0) 8456 * 8457 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8458 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8459 * and [r3, r3 + 8-1) respectively is safe to access depending on 8460 * the check. 8461 */ 8462 8463 /* If our ids match, then we must have the same max_value. And we 8464 * don't care about the other reg's fixed offset, since if it's too big 8465 * the range won't allow anything. 8466 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8467 */ 8468 for (i = 0; i <= vstate->curframe; i++) 8469 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8470 new_range); 8471 } 8472 8473 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8474 { 8475 struct tnum subreg = tnum_subreg(reg->var_off); 8476 s32 sval = (s32)val; 8477 8478 switch (opcode) { 8479 case BPF_JEQ: 8480 if (tnum_is_const(subreg)) 8481 return !!tnum_equals_const(subreg, val); 8482 break; 8483 case BPF_JNE: 8484 if (tnum_is_const(subreg)) 8485 return !tnum_equals_const(subreg, val); 8486 break; 8487 case BPF_JSET: 8488 if ((~subreg.mask & subreg.value) & val) 8489 return 1; 8490 if (!((subreg.mask | subreg.value) & val)) 8491 return 0; 8492 break; 8493 case BPF_JGT: 8494 if (reg->u32_min_value > val) 8495 return 1; 8496 else if (reg->u32_max_value <= val) 8497 return 0; 8498 break; 8499 case BPF_JSGT: 8500 if (reg->s32_min_value > sval) 8501 return 1; 8502 else if (reg->s32_max_value <= sval) 8503 return 0; 8504 break; 8505 case BPF_JLT: 8506 if (reg->u32_max_value < val) 8507 return 1; 8508 else if (reg->u32_min_value >= val) 8509 return 0; 8510 break; 8511 case BPF_JSLT: 8512 if (reg->s32_max_value < sval) 8513 return 1; 8514 else if (reg->s32_min_value >= sval) 8515 return 0; 8516 break; 8517 case BPF_JGE: 8518 if (reg->u32_min_value >= val) 8519 return 1; 8520 else if (reg->u32_max_value < val) 8521 return 0; 8522 break; 8523 case BPF_JSGE: 8524 if (reg->s32_min_value >= sval) 8525 return 1; 8526 else if (reg->s32_max_value < sval) 8527 return 0; 8528 break; 8529 case BPF_JLE: 8530 if (reg->u32_max_value <= val) 8531 return 1; 8532 else if (reg->u32_min_value > val) 8533 return 0; 8534 break; 8535 case BPF_JSLE: 8536 if (reg->s32_max_value <= sval) 8537 return 1; 8538 else if (reg->s32_min_value > sval) 8539 return 0; 8540 break; 8541 } 8542 8543 return -1; 8544 } 8545 8546 8547 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8548 { 8549 s64 sval = (s64)val; 8550 8551 switch (opcode) { 8552 case BPF_JEQ: 8553 if (tnum_is_const(reg->var_off)) 8554 return !!tnum_equals_const(reg->var_off, val); 8555 break; 8556 case BPF_JNE: 8557 if (tnum_is_const(reg->var_off)) 8558 return !tnum_equals_const(reg->var_off, val); 8559 break; 8560 case BPF_JSET: 8561 if ((~reg->var_off.mask & reg->var_off.value) & val) 8562 return 1; 8563 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8564 return 0; 8565 break; 8566 case BPF_JGT: 8567 if (reg->umin_value > val) 8568 return 1; 8569 else if (reg->umax_value <= val) 8570 return 0; 8571 break; 8572 case BPF_JSGT: 8573 if (reg->smin_value > sval) 8574 return 1; 8575 else if (reg->smax_value <= sval) 8576 return 0; 8577 break; 8578 case BPF_JLT: 8579 if (reg->umax_value < val) 8580 return 1; 8581 else if (reg->umin_value >= val) 8582 return 0; 8583 break; 8584 case BPF_JSLT: 8585 if (reg->smax_value < sval) 8586 return 1; 8587 else if (reg->smin_value >= sval) 8588 return 0; 8589 break; 8590 case BPF_JGE: 8591 if (reg->umin_value >= val) 8592 return 1; 8593 else if (reg->umax_value < val) 8594 return 0; 8595 break; 8596 case BPF_JSGE: 8597 if (reg->smin_value >= sval) 8598 return 1; 8599 else if (reg->smax_value < sval) 8600 return 0; 8601 break; 8602 case BPF_JLE: 8603 if (reg->umax_value <= val) 8604 return 1; 8605 else if (reg->umin_value > val) 8606 return 0; 8607 break; 8608 case BPF_JSLE: 8609 if (reg->smax_value <= sval) 8610 return 1; 8611 else if (reg->smin_value > sval) 8612 return 0; 8613 break; 8614 } 8615 8616 return -1; 8617 } 8618 8619 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8620 * and return: 8621 * 1 - branch will be taken and "goto target" will be executed 8622 * 0 - branch will not be taken and fall-through to next insn 8623 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8624 * range [0,10] 8625 */ 8626 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8627 bool is_jmp32) 8628 { 8629 if (__is_pointer_value(false, reg)) { 8630 if (!reg_type_not_null(reg->type)) 8631 return -1; 8632 8633 /* If pointer is valid tests against zero will fail so we can 8634 * use this to direct branch taken. 8635 */ 8636 if (val != 0) 8637 return -1; 8638 8639 switch (opcode) { 8640 case BPF_JEQ: 8641 return 0; 8642 case BPF_JNE: 8643 return 1; 8644 default: 8645 return -1; 8646 } 8647 } 8648 8649 if (is_jmp32) 8650 return is_branch32_taken(reg, val, opcode); 8651 return is_branch64_taken(reg, val, opcode); 8652 } 8653 8654 static int flip_opcode(u32 opcode) 8655 { 8656 /* How can we transform "a <op> b" into "b <op> a"? */ 8657 static const u8 opcode_flip[16] = { 8658 /* these stay the same */ 8659 [BPF_JEQ >> 4] = BPF_JEQ, 8660 [BPF_JNE >> 4] = BPF_JNE, 8661 [BPF_JSET >> 4] = BPF_JSET, 8662 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8663 [BPF_JGE >> 4] = BPF_JLE, 8664 [BPF_JGT >> 4] = BPF_JLT, 8665 [BPF_JLE >> 4] = BPF_JGE, 8666 [BPF_JLT >> 4] = BPF_JGT, 8667 [BPF_JSGE >> 4] = BPF_JSLE, 8668 [BPF_JSGT >> 4] = BPF_JSLT, 8669 [BPF_JSLE >> 4] = BPF_JSGE, 8670 [BPF_JSLT >> 4] = BPF_JSGT 8671 }; 8672 return opcode_flip[opcode >> 4]; 8673 } 8674 8675 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8676 struct bpf_reg_state *src_reg, 8677 u8 opcode) 8678 { 8679 struct bpf_reg_state *pkt; 8680 8681 if (src_reg->type == PTR_TO_PACKET_END) { 8682 pkt = dst_reg; 8683 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8684 pkt = src_reg; 8685 opcode = flip_opcode(opcode); 8686 } else { 8687 return -1; 8688 } 8689 8690 if (pkt->range >= 0) 8691 return -1; 8692 8693 switch (opcode) { 8694 case BPF_JLE: 8695 /* pkt <= pkt_end */ 8696 fallthrough; 8697 case BPF_JGT: 8698 /* pkt > pkt_end */ 8699 if (pkt->range == BEYOND_PKT_END) 8700 /* pkt has at last one extra byte beyond pkt_end */ 8701 return opcode == BPF_JGT; 8702 break; 8703 case BPF_JLT: 8704 /* pkt < pkt_end */ 8705 fallthrough; 8706 case BPF_JGE: 8707 /* pkt >= pkt_end */ 8708 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8709 return opcode == BPF_JGE; 8710 break; 8711 } 8712 return -1; 8713 } 8714 8715 /* Adjusts the register min/max values in the case that the dst_reg is the 8716 * variable register that we are working on, and src_reg is a constant or we're 8717 * simply doing a BPF_K check. 8718 * In JEQ/JNE cases we also adjust the var_off values. 8719 */ 8720 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8721 struct bpf_reg_state *false_reg, 8722 u64 val, u32 val32, 8723 u8 opcode, bool is_jmp32) 8724 { 8725 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8726 struct tnum false_64off = false_reg->var_off; 8727 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8728 struct tnum true_64off = true_reg->var_off; 8729 s64 sval = (s64)val; 8730 s32 sval32 = (s32)val32; 8731 8732 /* If the dst_reg is a pointer, we can't learn anything about its 8733 * variable offset from the compare (unless src_reg were a pointer into 8734 * the same object, but we don't bother with that. 8735 * Since false_reg and true_reg have the same type by construction, we 8736 * only need to check one of them for pointerness. 8737 */ 8738 if (__is_pointer_value(false, false_reg)) 8739 return; 8740 8741 switch (opcode) { 8742 case BPF_JEQ: 8743 case BPF_JNE: 8744 { 8745 struct bpf_reg_state *reg = 8746 opcode == BPF_JEQ ? true_reg : false_reg; 8747 8748 /* JEQ/JNE comparison doesn't change the register equivalence. 8749 * r1 = r2; 8750 * if (r1 == 42) goto label; 8751 * ... 8752 * label: // here both r1 and r2 are known to be 42. 8753 * 8754 * Hence when marking register as known preserve it's ID. 8755 */ 8756 if (is_jmp32) 8757 __mark_reg32_known(reg, val32); 8758 else 8759 ___mark_reg_known(reg, val); 8760 break; 8761 } 8762 case BPF_JSET: 8763 if (is_jmp32) { 8764 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8765 if (is_power_of_2(val32)) 8766 true_32off = tnum_or(true_32off, 8767 tnum_const(val32)); 8768 } else { 8769 false_64off = tnum_and(false_64off, tnum_const(~val)); 8770 if (is_power_of_2(val)) 8771 true_64off = tnum_or(true_64off, 8772 tnum_const(val)); 8773 } 8774 break; 8775 case BPF_JGE: 8776 case BPF_JGT: 8777 { 8778 if (is_jmp32) { 8779 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8780 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8781 8782 false_reg->u32_max_value = min(false_reg->u32_max_value, 8783 false_umax); 8784 true_reg->u32_min_value = max(true_reg->u32_min_value, 8785 true_umin); 8786 } else { 8787 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8788 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8789 8790 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8791 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8792 } 8793 break; 8794 } 8795 case BPF_JSGE: 8796 case BPF_JSGT: 8797 { 8798 if (is_jmp32) { 8799 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8800 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8801 8802 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8803 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8804 } else { 8805 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8806 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8807 8808 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8809 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8810 } 8811 break; 8812 } 8813 case BPF_JLE: 8814 case BPF_JLT: 8815 { 8816 if (is_jmp32) { 8817 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8818 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8819 8820 false_reg->u32_min_value = max(false_reg->u32_min_value, 8821 false_umin); 8822 true_reg->u32_max_value = min(true_reg->u32_max_value, 8823 true_umax); 8824 } else { 8825 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8826 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8827 8828 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8829 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8830 } 8831 break; 8832 } 8833 case BPF_JSLE: 8834 case BPF_JSLT: 8835 { 8836 if (is_jmp32) { 8837 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8838 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8839 8840 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8841 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8842 } else { 8843 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8844 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8845 8846 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8847 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8848 } 8849 break; 8850 } 8851 default: 8852 return; 8853 } 8854 8855 if (is_jmp32) { 8856 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8857 tnum_subreg(false_32off)); 8858 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8859 tnum_subreg(true_32off)); 8860 __reg_combine_32_into_64(false_reg); 8861 __reg_combine_32_into_64(true_reg); 8862 } else { 8863 false_reg->var_off = false_64off; 8864 true_reg->var_off = true_64off; 8865 __reg_combine_64_into_32(false_reg); 8866 __reg_combine_64_into_32(true_reg); 8867 } 8868 } 8869 8870 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8871 * the variable reg. 8872 */ 8873 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8874 struct bpf_reg_state *false_reg, 8875 u64 val, u32 val32, 8876 u8 opcode, bool is_jmp32) 8877 { 8878 opcode = flip_opcode(opcode); 8879 /* This uses zero as "not present in table"; luckily the zero opcode, 8880 * BPF_JA, can't get here. 8881 */ 8882 if (opcode) 8883 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8884 } 8885 8886 /* Regs are known to be equal, so intersect their min/max/var_off */ 8887 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8888 struct bpf_reg_state *dst_reg) 8889 { 8890 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8891 dst_reg->umin_value); 8892 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8893 dst_reg->umax_value); 8894 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8895 dst_reg->smin_value); 8896 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8897 dst_reg->smax_value); 8898 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8899 dst_reg->var_off); 8900 /* We might have learned new bounds from the var_off. */ 8901 __update_reg_bounds(src_reg); 8902 __update_reg_bounds(dst_reg); 8903 /* We might have learned something about the sign bit. */ 8904 __reg_deduce_bounds(src_reg); 8905 __reg_deduce_bounds(dst_reg); 8906 /* We might have learned some bits from the bounds. */ 8907 __reg_bound_offset(src_reg); 8908 __reg_bound_offset(dst_reg); 8909 /* Intersecting with the old var_off might have improved our bounds 8910 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8911 * then new var_off is (0; 0x7f...fc) which improves our umax. 8912 */ 8913 __update_reg_bounds(src_reg); 8914 __update_reg_bounds(dst_reg); 8915 } 8916 8917 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8918 struct bpf_reg_state *true_dst, 8919 struct bpf_reg_state *false_src, 8920 struct bpf_reg_state *false_dst, 8921 u8 opcode) 8922 { 8923 switch (opcode) { 8924 case BPF_JEQ: 8925 __reg_combine_min_max(true_src, true_dst); 8926 break; 8927 case BPF_JNE: 8928 __reg_combine_min_max(false_src, false_dst); 8929 break; 8930 } 8931 } 8932 8933 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8934 struct bpf_reg_state *reg, u32 id, 8935 bool is_null) 8936 { 8937 if (reg_type_may_be_null(reg->type) && reg->id == id && 8938 !WARN_ON_ONCE(!reg->id)) { 8939 /* Old offset (both fixed and variable parts) should 8940 * have been known-zero, because we don't allow pointer 8941 * arithmetic on pointers that might be NULL. 8942 */ 8943 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8944 !tnum_equals_const(reg->var_off, 0) || 8945 reg->off)) { 8946 __mark_reg_known_zero(reg); 8947 reg->off = 0; 8948 } 8949 if (is_null) { 8950 reg->type = SCALAR_VALUE; 8951 /* We don't need id and ref_obj_id from this point 8952 * onwards anymore, thus we should better reset it, 8953 * so that state pruning has chances to take effect. 8954 */ 8955 reg->id = 0; 8956 reg->ref_obj_id = 0; 8957 8958 return; 8959 } 8960 8961 mark_ptr_not_null_reg(reg); 8962 8963 if (!reg_may_point_to_spin_lock(reg)) { 8964 /* For not-NULL ptr, reg->ref_obj_id will be reset 8965 * in release_reg_references(). 8966 * 8967 * reg->id is still used by spin_lock ptr. Other 8968 * than spin_lock ptr type, reg->id can be reset. 8969 */ 8970 reg->id = 0; 8971 } 8972 } 8973 } 8974 8975 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8976 bool is_null) 8977 { 8978 struct bpf_reg_state *reg; 8979 int i; 8980 8981 for (i = 0; i < MAX_BPF_REG; i++) 8982 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8983 8984 bpf_for_each_spilled_reg(i, state, reg) { 8985 if (!reg) 8986 continue; 8987 mark_ptr_or_null_reg(state, reg, id, is_null); 8988 } 8989 } 8990 8991 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8992 * be folded together at some point. 8993 */ 8994 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8995 bool is_null) 8996 { 8997 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8998 struct bpf_reg_state *regs = state->regs; 8999 u32 ref_obj_id = regs[regno].ref_obj_id; 9000 u32 id = regs[regno].id; 9001 int i; 9002 9003 if (ref_obj_id && ref_obj_id == id && is_null) 9004 /* regs[regno] is in the " == NULL" branch. 9005 * No one could have freed the reference state before 9006 * doing the NULL check. 9007 */ 9008 WARN_ON_ONCE(release_reference_state(state, id)); 9009 9010 for (i = 0; i <= vstate->curframe; i++) 9011 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9012 } 9013 9014 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9015 struct bpf_reg_state *dst_reg, 9016 struct bpf_reg_state *src_reg, 9017 struct bpf_verifier_state *this_branch, 9018 struct bpf_verifier_state *other_branch) 9019 { 9020 if (BPF_SRC(insn->code) != BPF_X) 9021 return false; 9022 9023 /* Pointers are always 64-bit. */ 9024 if (BPF_CLASS(insn->code) == BPF_JMP32) 9025 return false; 9026 9027 switch (BPF_OP(insn->code)) { 9028 case BPF_JGT: 9029 if ((dst_reg->type == PTR_TO_PACKET && 9030 src_reg->type == PTR_TO_PACKET_END) || 9031 (dst_reg->type == PTR_TO_PACKET_META && 9032 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9033 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9034 find_good_pkt_pointers(this_branch, dst_reg, 9035 dst_reg->type, false); 9036 mark_pkt_end(other_branch, insn->dst_reg, true); 9037 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9038 src_reg->type == PTR_TO_PACKET) || 9039 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9040 src_reg->type == PTR_TO_PACKET_META)) { 9041 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9042 find_good_pkt_pointers(other_branch, src_reg, 9043 src_reg->type, true); 9044 mark_pkt_end(this_branch, insn->src_reg, false); 9045 } else { 9046 return false; 9047 } 9048 break; 9049 case BPF_JLT: 9050 if ((dst_reg->type == PTR_TO_PACKET && 9051 src_reg->type == PTR_TO_PACKET_END) || 9052 (dst_reg->type == PTR_TO_PACKET_META && 9053 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9054 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9055 find_good_pkt_pointers(other_branch, dst_reg, 9056 dst_reg->type, true); 9057 mark_pkt_end(this_branch, insn->dst_reg, false); 9058 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9059 src_reg->type == PTR_TO_PACKET) || 9060 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9061 src_reg->type == PTR_TO_PACKET_META)) { 9062 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9063 find_good_pkt_pointers(this_branch, src_reg, 9064 src_reg->type, false); 9065 mark_pkt_end(other_branch, insn->src_reg, true); 9066 } else { 9067 return false; 9068 } 9069 break; 9070 case BPF_JGE: 9071 if ((dst_reg->type == PTR_TO_PACKET && 9072 src_reg->type == PTR_TO_PACKET_END) || 9073 (dst_reg->type == PTR_TO_PACKET_META && 9074 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9075 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9076 find_good_pkt_pointers(this_branch, dst_reg, 9077 dst_reg->type, true); 9078 mark_pkt_end(other_branch, insn->dst_reg, false); 9079 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9080 src_reg->type == PTR_TO_PACKET) || 9081 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9082 src_reg->type == PTR_TO_PACKET_META)) { 9083 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9084 find_good_pkt_pointers(other_branch, src_reg, 9085 src_reg->type, false); 9086 mark_pkt_end(this_branch, insn->src_reg, true); 9087 } else { 9088 return false; 9089 } 9090 break; 9091 case BPF_JLE: 9092 if ((dst_reg->type == PTR_TO_PACKET && 9093 src_reg->type == PTR_TO_PACKET_END) || 9094 (dst_reg->type == PTR_TO_PACKET_META && 9095 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9096 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9097 find_good_pkt_pointers(other_branch, dst_reg, 9098 dst_reg->type, false); 9099 mark_pkt_end(this_branch, insn->dst_reg, true); 9100 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9101 src_reg->type == PTR_TO_PACKET) || 9102 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9103 src_reg->type == PTR_TO_PACKET_META)) { 9104 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9105 find_good_pkt_pointers(this_branch, src_reg, 9106 src_reg->type, true); 9107 mark_pkt_end(other_branch, insn->src_reg, false); 9108 } else { 9109 return false; 9110 } 9111 break; 9112 default: 9113 return false; 9114 } 9115 9116 return true; 9117 } 9118 9119 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9120 struct bpf_reg_state *known_reg) 9121 { 9122 struct bpf_func_state *state; 9123 struct bpf_reg_state *reg; 9124 int i, j; 9125 9126 for (i = 0; i <= vstate->curframe; i++) { 9127 state = vstate->frame[i]; 9128 for (j = 0; j < MAX_BPF_REG; j++) { 9129 reg = &state->regs[j]; 9130 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9131 *reg = *known_reg; 9132 } 9133 9134 bpf_for_each_spilled_reg(j, state, reg) { 9135 if (!reg) 9136 continue; 9137 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9138 *reg = *known_reg; 9139 } 9140 } 9141 } 9142 9143 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9144 struct bpf_insn *insn, int *insn_idx) 9145 { 9146 struct bpf_verifier_state *this_branch = env->cur_state; 9147 struct bpf_verifier_state *other_branch; 9148 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9149 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9150 u8 opcode = BPF_OP(insn->code); 9151 bool is_jmp32; 9152 int pred = -1; 9153 int err; 9154 9155 /* Only conditional jumps are expected to reach here. */ 9156 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9157 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9158 return -EINVAL; 9159 } 9160 9161 if (BPF_SRC(insn->code) == BPF_X) { 9162 if (insn->imm != 0) { 9163 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9164 return -EINVAL; 9165 } 9166 9167 /* check src1 operand */ 9168 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9169 if (err) 9170 return err; 9171 9172 if (is_pointer_value(env, insn->src_reg)) { 9173 verbose(env, "R%d pointer comparison prohibited\n", 9174 insn->src_reg); 9175 return -EACCES; 9176 } 9177 src_reg = ®s[insn->src_reg]; 9178 } else { 9179 if (insn->src_reg != BPF_REG_0) { 9180 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9181 return -EINVAL; 9182 } 9183 } 9184 9185 /* check src2 operand */ 9186 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9187 if (err) 9188 return err; 9189 9190 dst_reg = ®s[insn->dst_reg]; 9191 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9192 9193 if (BPF_SRC(insn->code) == BPF_K) { 9194 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9195 } else if (src_reg->type == SCALAR_VALUE && 9196 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9197 pred = is_branch_taken(dst_reg, 9198 tnum_subreg(src_reg->var_off).value, 9199 opcode, 9200 is_jmp32); 9201 } else if (src_reg->type == SCALAR_VALUE && 9202 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9203 pred = is_branch_taken(dst_reg, 9204 src_reg->var_off.value, 9205 opcode, 9206 is_jmp32); 9207 } else if (reg_is_pkt_pointer_any(dst_reg) && 9208 reg_is_pkt_pointer_any(src_reg) && 9209 !is_jmp32) { 9210 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9211 } 9212 9213 if (pred >= 0) { 9214 /* If we get here with a dst_reg pointer type it is because 9215 * above is_branch_taken() special cased the 0 comparison. 9216 */ 9217 if (!__is_pointer_value(false, dst_reg)) 9218 err = mark_chain_precision(env, insn->dst_reg); 9219 if (BPF_SRC(insn->code) == BPF_X && !err && 9220 !__is_pointer_value(false, src_reg)) 9221 err = mark_chain_precision(env, insn->src_reg); 9222 if (err) 9223 return err; 9224 } 9225 9226 if (pred == 1) { 9227 /* Only follow the goto, ignore fall-through. If needed, push 9228 * the fall-through branch for simulation under speculative 9229 * execution. 9230 */ 9231 if (!env->bypass_spec_v1 && 9232 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9233 *insn_idx)) 9234 return -EFAULT; 9235 *insn_idx += insn->off; 9236 return 0; 9237 } else if (pred == 0) { 9238 /* Only follow the fall-through branch, since that's where the 9239 * program will go. If needed, push the goto branch for 9240 * simulation under speculative execution. 9241 */ 9242 if (!env->bypass_spec_v1 && 9243 !sanitize_speculative_path(env, insn, 9244 *insn_idx + insn->off + 1, 9245 *insn_idx)) 9246 return -EFAULT; 9247 return 0; 9248 } 9249 9250 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9251 false); 9252 if (!other_branch) 9253 return -EFAULT; 9254 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9255 9256 /* detect if we are comparing against a constant value so we can adjust 9257 * our min/max values for our dst register. 9258 * this is only legit if both are scalars (or pointers to the same 9259 * object, I suppose, but we don't support that right now), because 9260 * otherwise the different base pointers mean the offsets aren't 9261 * comparable. 9262 */ 9263 if (BPF_SRC(insn->code) == BPF_X) { 9264 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9265 9266 if (dst_reg->type == SCALAR_VALUE && 9267 src_reg->type == SCALAR_VALUE) { 9268 if (tnum_is_const(src_reg->var_off) || 9269 (is_jmp32 && 9270 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9271 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9272 dst_reg, 9273 src_reg->var_off.value, 9274 tnum_subreg(src_reg->var_off).value, 9275 opcode, is_jmp32); 9276 else if (tnum_is_const(dst_reg->var_off) || 9277 (is_jmp32 && 9278 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9279 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9280 src_reg, 9281 dst_reg->var_off.value, 9282 tnum_subreg(dst_reg->var_off).value, 9283 opcode, is_jmp32); 9284 else if (!is_jmp32 && 9285 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9286 /* Comparing for equality, we can combine knowledge */ 9287 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9288 &other_branch_regs[insn->dst_reg], 9289 src_reg, dst_reg, opcode); 9290 if (src_reg->id && 9291 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9292 find_equal_scalars(this_branch, src_reg); 9293 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9294 } 9295 9296 } 9297 } else if (dst_reg->type == SCALAR_VALUE) { 9298 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9299 dst_reg, insn->imm, (u32)insn->imm, 9300 opcode, is_jmp32); 9301 } 9302 9303 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9304 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9305 find_equal_scalars(this_branch, dst_reg); 9306 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9307 } 9308 9309 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9310 * NOTE: these optimizations below are related with pointer comparison 9311 * which will never be JMP32. 9312 */ 9313 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9314 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9315 reg_type_may_be_null(dst_reg->type)) { 9316 /* Mark all identical registers in each branch as either 9317 * safe or unknown depending R == 0 or R != 0 conditional. 9318 */ 9319 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9320 opcode == BPF_JNE); 9321 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9322 opcode == BPF_JEQ); 9323 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9324 this_branch, other_branch) && 9325 is_pointer_value(env, insn->dst_reg)) { 9326 verbose(env, "R%d pointer comparison prohibited\n", 9327 insn->dst_reg); 9328 return -EACCES; 9329 } 9330 if (env->log.level & BPF_LOG_LEVEL) 9331 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9332 return 0; 9333 } 9334 9335 /* verify BPF_LD_IMM64 instruction */ 9336 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9337 { 9338 struct bpf_insn_aux_data *aux = cur_aux(env); 9339 struct bpf_reg_state *regs = cur_regs(env); 9340 struct bpf_reg_state *dst_reg; 9341 struct bpf_map *map; 9342 int err; 9343 9344 if (BPF_SIZE(insn->code) != BPF_DW) { 9345 verbose(env, "invalid BPF_LD_IMM insn\n"); 9346 return -EINVAL; 9347 } 9348 if (insn->off != 0) { 9349 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9350 return -EINVAL; 9351 } 9352 9353 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9354 if (err) 9355 return err; 9356 9357 dst_reg = ®s[insn->dst_reg]; 9358 if (insn->src_reg == 0) { 9359 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9360 9361 dst_reg->type = SCALAR_VALUE; 9362 __mark_reg_known(®s[insn->dst_reg], imm); 9363 return 0; 9364 } 9365 9366 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9367 mark_reg_known_zero(env, regs, insn->dst_reg); 9368 9369 dst_reg->type = aux->btf_var.reg_type; 9370 switch (dst_reg->type) { 9371 case PTR_TO_MEM: 9372 dst_reg->mem_size = aux->btf_var.mem_size; 9373 break; 9374 case PTR_TO_BTF_ID: 9375 case PTR_TO_PERCPU_BTF_ID: 9376 dst_reg->btf = aux->btf_var.btf; 9377 dst_reg->btf_id = aux->btf_var.btf_id; 9378 break; 9379 default: 9380 verbose(env, "bpf verifier is misconfigured\n"); 9381 return -EFAULT; 9382 } 9383 return 0; 9384 } 9385 9386 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9387 struct bpf_prog_aux *aux = env->prog->aux; 9388 u32 subprogno = insn[1].imm; 9389 9390 if (!aux->func_info) { 9391 verbose(env, "missing btf func_info\n"); 9392 return -EINVAL; 9393 } 9394 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9395 verbose(env, "callback function not static\n"); 9396 return -EINVAL; 9397 } 9398 9399 dst_reg->type = PTR_TO_FUNC; 9400 dst_reg->subprogno = subprogno; 9401 return 0; 9402 } 9403 9404 map = env->used_maps[aux->map_index]; 9405 mark_reg_known_zero(env, regs, insn->dst_reg); 9406 dst_reg->map_ptr = map; 9407 9408 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9409 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9410 dst_reg->type = PTR_TO_MAP_VALUE; 9411 dst_reg->off = aux->map_off; 9412 if (map_value_has_spin_lock(map)) 9413 dst_reg->id = ++env->id_gen; 9414 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9415 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9416 dst_reg->type = CONST_PTR_TO_MAP; 9417 } else { 9418 verbose(env, "bpf verifier is misconfigured\n"); 9419 return -EINVAL; 9420 } 9421 9422 return 0; 9423 } 9424 9425 static bool may_access_skb(enum bpf_prog_type type) 9426 { 9427 switch (type) { 9428 case BPF_PROG_TYPE_SOCKET_FILTER: 9429 case BPF_PROG_TYPE_SCHED_CLS: 9430 case BPF_PROG_TYPE_SCHED_ACT: 9431 return true; 9432 default: 9433 return false; 9434 } 9435 } 9436 9437 /* verify safety of LD_ABS|LD_IND instructions: 9438 * - they can only appear in the programs where ctx == skb 9439 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9440 * preserve R6-R9, and store return value into R0 9441 * 9442 * Implicit input: 9443 * ctx == skb == R6 == CTX 9444 * 9445 * Explicit input: 9446 * SRC == any register 9447 * IMM == 32-bit immediate 9448 * 9449 * Output: 9450 * R0 - 8/16/32-bit skb data converted to cpu endianness 9451 */ 9452 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9453 { 9454 struct bpf_reg_state *regs = cur_regs(env); 9455 static const int ctx_reg = BPF_REG_6; 9456 u8 mode = BPF_MODE(insn->code); 9457 int i, err; 9458 9459 if (!may_access_skb(resolve_prog_type(env->prog))) { 9460 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9461 return -EINVAL; 9462 } 9463 9464 if (!env->ops->gen_ld_abs) { 9465 verbose(env, "bpf verifier is misconfigured\n"); 9466 return -EINVAL; 9467 } 9468 9469 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9470 BPF_SIZE(insn->code) == BPF_DW || 9471 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9472 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9473 return -EINVAL; 9474 } 9475 9476 /* check whether implicit source operand (register R6) is readable */ 9477 err = check_reg_arg(env, ctx_reg, SRC_OP); 9478 if (err) 9479 return err; 9480 9481 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9482 * gen_ld_abs() may terminate the program at runtime, leading to 9483 * reference leak. 9484 */ 9485 err = check_reference_leak(env); 9486 if (err) { 9487 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9488 return err; 9489 } 9490 9491 if (env->cur_state->active_spin_lock) { 9492 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9493 return -EINVAL; 9494 } 9495 9496 if (regs[ctx_reg].type != PTR_TO_CTX) { 9497 verbose(env, 9498 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9499 return -EINVAL; 9500 } 9501 9502 if (mode == BPF_IND) { 9503 /* check explicit source operand */ 9504 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9505 if (err) 9506 return err; 9507 } 9508 9509 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9510 if (err < 0) 9511 return err; 9512 9513 /* reset caller saved regs to unreadable */ 9514 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9515 mark_reg_not_init(env, regs, caller_saved[i]); 9516 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9517 } 9518 9519 /* mark destination R0 register as readable, since it contains 9520 * the value fetched from the packet. 9521 * Already marked as written above. 9522 */ 9523 mark_reg_unknown(env, regs, BPF_REG_0); 9524 /* ld_abs load up to 32-bit skb data. */ 9525 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9526 return 0; 9527 } 9528 9529 static int check_return_code(struct bpf_verifier_env *env) 9530 { 9531 struct tnum enforce_attach_type_range = tnum_unknown; 9532 const struct bpf_prog *prog = env->prog; 9533 struct bpf_reg_state *reg; 9534 struct tnum range = tnum_range(0, 1); 9535 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9536 int err; 9537 struct bpf_func_state *frame = env->cur_state->frame[0]; 9538 const bool is_subprog = frame->subprogno; 9539 9540 /* LSM and struct_ops func-ptr's return type could be "void" */ 9541 if (!is_subprog && 9542 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9543 prog_type == BPF_PROG_TYPE_LSM) && 9544 !prog->aux->attach_func_proto->type) 9545 return 0; 9546 9547 /* eBPF calling convention is such that R0 is used 9548 * to return the value from eBPF program. 9549 * Make sure that it's readable at this time 9550 * of bpf_exit, which means that program wrote 9551 * something into it earlier 9552 */ 9553 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9554 if (err) 9555 return err; 9556 9557 if (is_pointer_value(env, BPF_REG_0)) { 9558 verbose(env, "R0 leaks addr as return value\n"); 9559 return -EACCES; 9560 } 9561 9562 reg = cur_regs(env) + BPF_REG_0; 9563 9564 if (frame->in_async_callback_fn) { 9565 /* enforce return zero from async callbacks like timer */ 9566 if (reg->type != SCALAR_VALUE) { 9567 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9568 reg_type_str[reg->type]); 9569 return -EINVAL; 9570 } 9571 9572 if (!tnum_in(tnum_const(0), reg->var_off)) { 9573 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9574 return -EINVAL; 9575 } 9576 return 0; 9577 } 9578 9579 if (is_subprog) { 9580 if (reg->type != SCALAR_VALUE) { 9581 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9582 reg_type_str[reg->type]); 9583 return -EINVAL; 9584 } 9585 return 0; 9586 } 9587 9588 switch (prog_type) { 9589 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9590 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9591 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9592 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9593 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9594 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9595 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9596 range = tnum_range(1, 1); 9597 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9598 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9599 range = tnum_range(0, 3); 9600 break; 9601 case BPF_PROG_TYPE_CGROUP_SKB: 9602 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9603 range = tnum_range(0, 3); 9604 enforce_attach_type_range = tnum_range(2, 3); 9605 } 9606 break; 9607 case BPF_PROG_TYPE_CGROUP_SOCK: 9608 case BPF_PROG_TYPE_SOCK_OPS: 9609 case BPF_PROG_TYPE_CGROUP_DEVICE: 9610 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9611 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9612 break; 9613 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9614 if (!env->prog->aux->attach_btf_id) 9615 return 0; 9616 range = tnum_const(0); 9617 break; 9618 case BPF_PROG_TYPE_TRACING: 9619 switch (env->prog->expected_attach_type) { 9620 case BPF_TRACE_FENTRY: 9621 case BPF_TRACE_FEXIT: 9622 range = tnum_const(0); 9623 break; 9624 case BPF_TRACE_RAW_TP: 9625 case BPF_MODIFY_RETURN: 9626 return 0; 9627 case BPF_TRACE_ITER: 9628 break; 9629 default: 9630 return -ENOTSUPP; 9631 } 9632 break; 9633 case BPF_PROG_TYPE_SK_LOOKUP: 9634 range = tnum_range(SK_DROP, SK_PASS); 9635 break; 9636 case BPF_PROG_TYPE_EXT: 9637 /* freplace program can return anything as its return value 9638 * depends on the to-be-replaced kernel func or bpf program. 9639 */ 9640 default: 9641 return 0; 9642 } 9643 9644 if (reg->type != SCALAR_VALUE) { 9645 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9646 reg_type_str[reg->type]); 9647 return -EINVAL; 9648 } 9649 9650 if (!tnum_in(range, reg->var_off)) { 9651 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9652 return -EINVAL; 9653 } 9654 9655 if (!tnum_is_unknown(enforce_attach_type_range) && 9656 tnum_in(enforce_attach_type_range, reg->var_off)) 9657 env->prog->enforce_expected_attach_type = 1; 9658 return 0; 9659 } 9660 9661 /* non-recursive DFS pseudo code 9662 * 1 procedure DFS-iterative(G,v): 9663 * 2 label v as discovered 9664 * 3 let S be a stack 9665 * 4 S.push(v) 9666 * 5 while S is not empty 9667 * 6 t <- S.pop() 9668 * 7 if t is what we're looking for: 9669 * 8 return t 9670 * 9 for all edges e in G.adjacentEdges(t) do 9671 * 10 if edge e is already labelled 9672 * 11 continue with the next edge 9673 * 12 w <- G.adjacentVertex(t,e) 9674 * 13 if vertex w is not discovered and not explored 9675 * 14 label e as tree-edge 9676 * 15 label w as discovered 9677 * 16 S.push(w) 9678 * 17 continue at 5 9679 * 18 else if vertex w is discovered 9680 * 19 label e as back-edge 9681 * 20 else 9682 * 21 // vertex w is explored 9683 * 22 label e as forward- or cross-edge 9684 * 23 label t as explored 9685 * 24 S.pop() 9686 * 9687 * convention: 9688 * 0x10 - discovered 9689 * 0x11 - discovered and fall-through edge labelled 9690 * 0x12 - discovered and fall-through and branch edges labelled 9691 * 0x20 - explored 9692 */ 9693 9694 enum { 9695 DISCOVERED = 0x10, 9696 EXPLORED = 0x20, 9697 FALLTHROUGH = 1, 9698 BRANCH = 2, 9699 }; 9700 9701 static u32 state_htab_size(struct bpf_verifier_env *env) 9702 { 9703 return env->prog->len; 9704 } 9705 9706 static struct bpf_verifier_state_list **explored_state( 9707 struct bpf_verifier_env *env, 9708 int idx) 9709 { 9710 struct bpf_verifier_state *cur = env->cur_state; 9711 struct bpf_func_state *state = cur->frame[cur->curframe]; 9712 9713 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9714 } 9715 9716 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9717 { 9718 env->insn_aux_data[idx].prune_point = true; 9719 } 9720 9721 enum { 9722 DONE_EXPLORING = 0, 9723 KEEP_EXPLORING = 1, 9724 }; 9725 9726 /* t, w, e - match pseudo-code above: 9727 * t - index of current instruction 9728 * w - next instruction 9729 * e - edge 9730 */ 9731 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9732 bool loop_ok) 9733 { 9734 int *insn_stack = env->cfg.insn_stack; 9735 int *insn_state = env->cfg.insn_state; 9736 9737 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9738 return DONE_EXPLORING; 9739 9740 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9741 return DONE_EXPLORING; 9742 9743 if (w < 0 || w >= env->prog->len) { 9744 verbose_linfo(env, t, "%d: ", t); 9745 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9746 return -EINVAL; 9747 } 9748 9749 if (e == BRANCH) 9750 /* mark branch target for state pruning */ 9751 init_explored_state(env, w); 9752 9753 if (insn_state[w] == 0) { 9754 /* tree-edge */ 9755 insn_state[t] = DISCOVERED | e; 9756 insn_state[w] = DISCOVERED; 9757 if (env->cfg.cur_stack >= env->prog->len) 9758 return -E2BIG; 9759 insn_stack[env->cfg.cur_stack++] = w; 9760 return KEEP_EXPLORING; 9761 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9762 if (loop_ok && env->bpf_capable) 9763 return DONE_EXPLORING; 9764 verbose_linfo(env, t, "%d: ", t); 9765 verbose_linfo(env, w, "%d: ", w); 9766 verbose(env, "back-edge from insn %d to %d\n", t, w); 9767 return -EINVAL; 9768 } else if (insn_state[w] == EXPLORED) { 9769 /* forward- or cross-edge */ 9770 insn_state[t] = DISCOVERED | e; 9771 } else { 9772 verbose(env, "insn state internal bug\n"); 9773 return -EFAULT; 9774 } 9775 return DONE_EXPLORING; 9776 } 9777 9778 static int visit_func_call_insn(int t, int insn_cnt, 9779 struct bpf_insn *insns, 9780 struct bpf_verifier_env *env, 9781 bool visit_callee) 9782 { 9783 int ret; 9784 9785 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9786 if (ret) 9787 return ret; 9788 9789 if (t + 1 < insn_cnt) 9790 init_explored_state(env, t + 1); 9791 if (visit_callee) { 9792 init_explored_state(env, t); 9793 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9794 /* It's ok to allow recursion from CFG point of 9795 * view. __check_func_call() will do the actual 9796 * check. 9797 */ 9798 bpf_pseudo_func(insns + t)); 9799 } 9800 return ret; 9801 } 9802 9803 /* Visits the instruction at index t and returns one of the following: 9804 * < 0 - an error occurred 9805 * DONE_EXPLORING - the instruction was fully explored 9806 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9807 */ 9808 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9809 { 9810 struct bpf_insn *insns = env->prog->insnsi; 9811 int ret; 9812 9813 if (bpf_pseudo_func(insns + t)) 9814 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9815 9816 /* All non-branch instructions have a single fall-through edge. */ 9817 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9818 BPF_CLASS(insns[t].code) != BPF_JMP32) 9819 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9820 9821 switch (BPF_OP(insns[t].code)) { 9822 case BPF_EXIT: 9823 return DONE_EXPLORING; 9824 9825 case BPF_CALL: 9826 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9827 /* Mark this call insn to trigger is_state_visited() check 9828 * before call itself is processed by __check_func_call(). 9829 * Otherwise new async state will be pushed for further 9830 * exploration. 9831 */ 9832 init_explored_state(env, t); 9833 return visit_func_call_insn(t, insn_cnt, insns, env, 9834 insns[t].src_reg == BPF_PSEUDO_CALL); 9835 9836 case BPF_JA: 9837 if (BPF_SRC(insns[t].code) != BPF_K) 9838 return -EINVAL; 9839 9840 /* unconditional jump with single edge */ 9841 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9842 true); 9843 if (ret) 9844 return ret; 9845 9846 /* unconditional jmp is not a good pruning point, 9847 * but it's marked, since backtracking needs 9848 * to record jmp history in is_state_visited(). 9849 */ 9850 init_explored_state(env, t + insns[t].off + 1); 9851 /* tell verifier to check for equivalent states 9852 * after every call and jump 9853 */ 9854 if (t + 1 < insn_cnt) 9855 init_explored_state(env, t + 1); 9856 9857 return ret; 9858 9859 default: 9860 /* conditional jump with two edges */ 9861 init_explored_state(env, t); 9862 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9863 if (ret) 9864 return ret; 9865 9866 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9867 } 9868 } 9869 9870 /* non-recursive depth-first-search to detect loops in BPF program 9871 * loop == back-edge in directed graph 9872 */ 9873 static int check_cfg(struct bpf_verifier_env *env) 9874 { 9875 int insn_cnt = env->prog->len; 9876 int *insn_stack, *insn_state; 9877 int ret = 0; 9878 int i; 9879 9880 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9881 if (!insn_state) 9882 return -ENOMEM; 9883 9884 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9885 if (!insn_stack) { 9886 kvfree(insn_state); 9887 return -ENOMEM; 9888 } 9889 9890 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9891 insn_stack[0] = 0; /* 0 is the first instruction */ 9892 env->cfg.cur_stack = 1; 9893 9894 while (env->cfg.cur_stack > 0) { 9895 int t = insn_stack[env->cfg.cur_stack - 1]; 9896 9897 ret = visit_insn(t, insn_cnt, env); 9898 switch (ret) { 9899 case DONE_EXPLORING: 9900 insn_state[t] = EXPLORED; 9901 env->cfg.cur_stack--; 9902 break; 9903 case KEEP_EXPLORING: 9904 break; 9905 default: 9906 if (ret > 0) { 9907 verbose(env, "visit_insn internal bug\n"); 9908 ret = -EFAULT; 9909 } 9910 goto err_free; 9911 } 9912 } 9913 9914 if (env->cfg.cur_stack < 0) { 9915 verbose(env, "pop stack internal bug\n"); 9916 ret = -EFAULT; 9917 goto err_free; 9918 } 9919 9920 for (i = 0; i < insn_cnt; i++) { 9921 if (insn_state[i] != EXPLORED) { 9922 verbose(env, "unreachable insn %d\n", i); 9923 ret = -EINVAL; 9924 goto err_free; 9925 } 9926 } 9927 ret = 0; /* cfg looks good */ 9928 9929 err_free: 9930 kvfree(insn_state); 9931 kvfree(insn_stack); 9932 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9933 return ret; 9934 } 9935 9936 static int check_abnormal_return(struct bpf_verifier_env *env) 9937 { 9938 int i; 9939 9940 for (i = 1; i < env->subprog_cnt; i++) { 9941 if (env->subprog_info[i].has_ld_abs) { 9942 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9943 return -EINVAL; 9944 } 9945 if (env->subprog_info[i].has_tail_call) { 9946 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9947 return -EINVAL; 9948 } 9949 } 9950 return 0; 9951 } 9952 9953 /* The minimum supported BTF func info size */ 9954 #define MIN_BPF_FUNCINFO_SIZE 8 9955 #define MAX_FUNCINFO_REC_SIZE 252 9956 9957 static int check_btf_func(struct bpf_verifier_env *env, 9958 const union bpf_attr *attr, 9959 bpfptr_t uattr) 9960 { 9961 const struct btf_type *type, *func_proto, *ret_type; 9962 u32 i, nfuncs, urec_size, min_size; 9963 u32 krec_size = sizeof(struct bpf_func_info); 9964 struct bpf_func_info *krecord; 9965 struct bpf_func_info_aux *info_aux = NULL; 9966 struct bpf_prog *prog; 9967 const struct btf *btf; 9968 bpfptr_t urecord; 9969 u32 prev_offset = 0; 9970 bool scalar_return; 9971 int ret = -ENOMEM; 9972 9973 nfuncs = attr->func_info_cnt; 9974 if (!nfuncs) { 9975 if (check_abnormal_return(env)) 9976 return -EINVAL; 9977 return 0; 9978 } 9979 9980 if (nfuncs != env->subprog_cnt) { 9981 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9982 return -EINVAL; 9983 } 9984 9985 urec_size = attr->func_info_rec_size; 9986 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9987 urec_size > MAX_FUNCINFO_REC_SIZE || 9988 urec_size % sizeof(u32)) { 9989 verbose(env, "invalid func info rec size %u\n", urec_size); 9990 return -EINVAL; 9991 } 9992 9993 prog = env->prog; 9994 btf = prog->aux->btf; 9995 9996 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 9997 min_size = min_t(u32, krec_size, urec_size); 9998 9999 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10000 if (!krecord) 10001 return -ENOMEM; 10002 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10003 if (!info_aux) 10004 goto err_free; 10005 10006 for (i = 0; i < nfuncs; i++) { 10007 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10008 if (ret) { 10009 if (ret == -E2BIG) { 10010 verbose(env, "nonzero tailing record in func info"); 10011 /* set the size kernel expects so loader can zero 10012 * out the rest of the record. 10013 */ 10014 if (copy_to_bpfptr_offset(uattr, 10015 offsetof(union bpf_attr, func_info_rec_size), 10016 &min_size, sizeof(min_size))) 10017 ret = -EFAULT; 10018 } 10019 goto err_free; 10020 } 10021 10022 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10023 ret = -EFAULT; 10024 goto err_free; 10025 } 10026 10027 /* check insn_off */ 10028 ret = -EINVAL; 10029 if (i == 0) { 10030 if (krecord[i].insn_off) { 10031 verbose(env, 10032 "nonzero insn_off %u for the first func info record", 10033 krecord[i].insn_off); 10034 goto err_free; 10035 } 10036 } else if (krecord[i].insn_off <= prev_offset) { 10037 verbose(env, 10038 "same or smaller insn offset (%u) than previous func info record (%u)", 10039 krecord[i].insn_off, prev_offset); 10040 goto err_free; 10041 } 10042 10043 if (env->subprog_info[i].start != krecord[i].insn_off) { 10044 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10045 goto err_free; 10046 } 10047 10048 /* check type_id */ 10049 type = btf_type_by_id(btf, krecord[i].type_id); 10050 if (!type || !btf_type_is_func(type)) { 10051 verbose(env, "invalid type id %d in func info", 10052 krecord[i].type_id); 10053 goto err_free; 10054 } 10055 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10056 10057 func_proto = btf_type_by_id(btf, type->type); 10058 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10059 /* btf_func_check() already verified it during BTF load */ 10060 goto err_free; 10061 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10062 scalar_return = 10063 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10064 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10065 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10066 goto err_free; 10067 } 10068 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10069 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10070 goto err_free; 10071 } 10072 10073 prev_offset = krecord[i].insn_off; 10074 bpfptr_add(&urecord, urec_size); 10075 } 10076 10077 prog->aux->func_info = krecord; 10078 prog->aux->func_info_cnt = nfuncs; 10079 prog->aux->func_info_aux = info_aux; 10080 return 0; 10081 10082 err_free: 10083 kvfree(krecord); 10084 kfree(info_aux); 10085 return ret; 10086 } 10087 10088 static void adjust_btf_func(struct bpf_verifier_env *env) 10089 { 10090 struct bpf_prog_aux *aux = env->prog->aux; 10091 int i; 10092 10093 if (!aux->func_info) 10094 return; 10095 10096 for (i = 0; i < env->subprog_cnt; i++) 10097 aux->func_info[i].insn_off = env->subprog_info[i].start; 10098 } 10099 10100 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10101 sizeof(((struct bpf_line_info *)(0))->line_col)) 10102 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10103 10104 static int check_btf_line(struct bpf_verifier_env *env, 10105 const union bpf_attr *attr, 10106 bpfptr_t uattr) 10107 { 10108 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10109 struct bpf_subprog_info *sub; 10110 struct bpf_line_info *linfo; 10111 struct bpf_prog *prog; 10112 const struct btf *btf; 10113 bpfptr_t ulinfo; 10114 int err; 10115 10116 nr_linfo = attr->line_info_cnt; 10117 if (!nr_linfo) 10118 return 0; 10119 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10120 return -EINVAL; 10121 10122 rec_size = attr->line_info_rec_size; 10123 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10124 rec_size > MAX_LINEINFO_REC_SIZE || 10125 rec_size & (sizeof(u32) - 1)) 10126 return -EINVAL; 10127 10128 /* Need to zero it in case the userspace may 10129 * pass in a smaller bpf_line_info object. 10130 */ 10131 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10132 GFP_KERNEL | __GFP_NOWARN); 10133 if (!linfo) 10134 return -ENOMEM; 10135 10136 prog = env->prog; 10137 btf = prog->aux->btf; 10138 10139 s = 0; 10140 sub = env->subprog_info; 10141 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10142 expected_size = sizeof(struct bpf_line_info); 10143 ncopy = min_t(u32, expected_size, rec_size); 10144 for (i = 0; i < nr_linfo; i++) { 10145 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10146 if (err) { 10147 if (err == -E2BIG) { 10148 verbose(env, "nonzero tailing record in line_info"); 10149 if (copy_to_bpfptr_offset(uattr, 10150 offsetof(union bpf_attr, line_info_rec_size), 10151 &expected_size, sizeof(expected_size))) 10152 err = -EFAULT; 10153 } 10154 goto err_free; 10155 } 10156 10157 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10158 err = -EFAULT; 10159 goto err_free; 10160 } 10161 10162 /* 10163 * Check insn_off to ensure 10164 * 1) strictly increasing AND 10165 * 2) bounded by prog->len 10166 * 10167 * The linfo[0].insn_off == 0 check logically falls into 10168 * the later "missing bpf_line_info for func..." case 10169 * because the first linfo[0].insn_off must be the 10170 * first sub also and the first sub must have 10171 * subprog_info[0].start == 0. 10172 */ 10173 if ((i && linfo[i].insn_off <= prev_offset) || 10174 linfo[i].insn_off >= prog->len) { 10175 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10176 i, linfo[i].insn_off, prev_offset, 10177 prog->len); 10178 err = -EINVAL; 10179 goto err_free; 10180 } 10181 10182 if (!prog->insnsi[linfo[i].insn_off].code) { 10183 verbose(env, 10184 "Invalid insn code at line_info[%u].insn_off\n", 10185 i); 10186 err = -EINVAL; 10187 goto err_free; 10188 } 10189 10190 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10191 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10192 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10193 err = -EINVAL; 10194 goto err_free; 10195 } 10196 10197 if (s != env->subprog_cnt) { 10198 if (linfo[i].insn_off == sub[s].start) { 10199 sub[s].linfo_idx = i; 10200 s++; 10201 } else if (sub[s].start < linfo[i].insn_off) { 10202 verbose(env, "missing bpf_line_info for func#%u\n", s); 10203 err = -EINVAL; 10204 goto err_free; 10205 } 10206 } 10207 10208 prev_offset = linfo[i].insn_off; 10209 bpfptr_add(&ulinfo, rec_size); 10210 } 10211 10212 if (s != env->subprog_cnt) { 10213 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10214 env->subprog_cnt - s, s); 10215 err = -EINVAL; 10216 goto err_free; 10217 } 10218 10219 prog->aux->linfo = linfo; 10220 prog->aux->nr_linfo = nr_linfo; 10221 10222 return 0; 10223 10224 err_free: 10225 kvfree(linfo); 10226 return err; 10227 } 10228 10229 static int check_btf_info(struct bpf_verifier_env *env, 10230 const union bpf_attr *attr, 10231 bpfptr_t uattr) 10232 { 10233 struct btf *btf; 10234 int err; 10235 10236 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10237 if (check_abnormal_return(env)) 10238 return -EINVAL; 10239 return 0; 10240 } 10241 10242 btf = btf_get_by_fd(attr->prog_btf_fd); 10243 if (IS_ERR(btf)) 10244 return PTR_ERR(btf); 10245 if (btf_is_kernel(btf)) { 10246 btf_put(btf); 10247 return -EACCES; 10248 } 10249 env->prog->aux->btf = btf; 10250 10251 err = check_btf_func(env, attr, uattr); 10252 if (err) 10253 return err; 10254 10255 err = check_btf_line(env, attr, uattr); 10256 if (err) 10257 return err; 10258 10259 return 0; 10260 } 10261 10262 /* check %cur's range satisfies %old's */ 10263 static bool range_within(struct bpf_reg_state *old, 10264 struct bpf_reg_state *cur) 10265 { 10266 return old->umin_value <= cur->umin_value && 10267 old->umax_value >= cur->umax_value && 10268 old->smin_value <= cur->smin_value && 10269 old->smax_value >= cur->smax_value && 10270 old->u32_min_value <= cur->u32_min_value && 10271 old->u32_max_value >= cur->u32_max_value && 10272 old->s32_min_value <= cur->s32_min_value && 10273 old->s32_max_value >= cur->s32_max_value; 10274 } 10275 10276 /* If in the old state two registers had the same id, then they need to have 10277 * the same id in the new state as well. But that id could be different from 10278 * the old state, so we need to track the mapping from old to new ids. 10279 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10280 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10281 * regs with a different old id could still have new id 9, we don't care about 10282 * that. 10283 * So we look through our idmap to see if this old id has been seen before. If 10284 * so, we require the new id to match; otherwise, we add the id pair to the map. 10285 */ 10286 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10287 { 10288 unsigned int i; 10289 10290 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10291 if (!idmap[i].old) { 10292 /* Reached an empty slot; haven't seen this id before */ 10293 idmap[i].old = old_id; 10294 idmap[i].cur = cur_id; 10295 return true; 10296 } 10297 if (idmap[i].old == old_id) 10298 return idmap[i].cur == cur_id; 10299 } 10300 /* We ran out of idmap slots, which should be impossible */ 10301 WARN_ON_ONCE(1); 10302 return false; 10303 } 10304 10305 static void clean_func_state(struct bpf_verifier_env *env, 10306 struct bpf_func_state *st) 10307 { 10308 enum bpf_reg_liveness live; 10309 int i, j; 10310 10311 for (i = 0; i < BPF_REG_FP; i++) { 10312 live = st->regs[i].live; 10313 /* liveness must not touch this register anymore */ 10314 st->regs[i].live |= REG_LIVE_DONE; 10315 if (!(live & REG_LIVE_READ)) 10316 /* since the register is unused, clear its state 10317 * to make further comparison simpler 10318 */ 10319 __mark_reg_not_init(env, &st->regs[i]); 10320 } 10321 10322 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10323 live = st->stack[i].spilled_ptr.live; 10324 /* liveness must not touch this stack slot anymore */ 10325 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10326 if (!(live & REG_LIVE_READ)) { 10327 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10328 for (j = 0; j < BPF_REG_SIZE; j++) 10329 st->stack[i].slot_type[j] = STACK_INVALID; 10330 } 10331 } 10332 } 10333 10334 static void clean_verifier_state(struct bpf_verifier_env *env, 10335 struct bpf_verifier_state *st) 10336 { 10337 int i; 10338 10339 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10340 /* all regs in this state in all frames were already marked */ 10341 return; 10342 10343 for (i = 0; i <= st->curframe; i++) 10344 clean_func_state(env, st->frame[i]); 10345 } 10346 10347 /* the parentage chains form a tree. 10348 * the verifier states are added to state lists at given insn and 10349 * pushed into state stack for future exploration. 10350 * when the verifier reaches bpf_exit insn some of the verifer states 10351 * stored in the state lists have their final liveness state already, 10352 * but a lot of states will get revised from liveness point of view when 10353 * the verifier explores other branches. 10354 * Example: 10355 * 1: r0 = 1 10356 * 2: if r1 == 100 goto pc+1 10357 * 3: r0 = 2 10358 * 4: exit 10359 * when the verifier reaches exit insn the register r0 in the state list of 10360 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10361 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10362 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10363 * 10364 * Since the verifier pushes the branch states as it sees them while exploring 10365 * the program the condition of walking the branch instruction for the second 10366 * time means that all states below this branch were already explored and 10367 * their final liveness marks are already propagated. 10368 * Hence when the verifier completes the search of state list in is_state_visited() 10369 * we can call this clean_live_states() function to mark all liveness states 10370 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10371 * will not be used. 10372 * This function also clears the registers and stack for states that !READ 10373 * to simplify state merging. 10374 * 10375 * Important note here that walking the same branch instruction in the callee 10376 * doesn't meant that the states are DONE. The verifier has to compare 10377 * the callsites 10378 */ 10379 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10380 struct bpf_verifier_state *cur) 10381 { 10382 struct bpf_verifier_state_list *sl; 10383 int i; 10384 10385 sl = *explored_state(env, insn); 10386 while (sl) { 10387 if (sl->state.branches) 10388 goto next; 10389 if (sl->state.insn_idx != insn || 10390 sl->state.curframe != cur->curframe) 10391 goto next; 10392 for (i = 0; i <= cur->curframe; i++) 10393 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10394 goto next; 10395 clean_verifier_state(env, &sl->state); 10396 next: 10397 sl = sl->next; 10398 } 10399 } 10400 10401 /* Returns true if (rold safe implies rcur safe) */ 10402 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10403 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10404 { 10405 bool equal; 10406 10407 if (!(rold->live & REG_LIVE_READ)) 10408 /* explored state didn't use this */ 10409 return true; 10410 10411 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10412 10413 if (rold->type == PTR_TO_STACK) 10414 /* two stack pointers are equal only if they're pointing to 10415 * the same stack frame, since fp-8 in foo != fp-8 in bar 10416 */ 10417 return equal && rold->frameno == rcur->frameno; 10418 10419 if (equal) 10420 return true; 10421 10422 if (rold->type == NOT_INIT) 10423 /* explored state can't have used this */ 10424 return true; 10425 if (rcur->type == NOT_INIT) 10426 return false; 10427 switch (rold->type) { 10428 case SCALAR_VALUE: 10429 if (env->explore_alu_limits) 10430 return false; 10431 if (rcur->type == SCALAR_VALUE) { 10432 if (!rold->precise && !rcur->precise) 10433 return true; 10434 /* new val must satisfy old val knowledge */ 10435 return range_within(rold, rcur) && 10436 tnum_in(rold->var_off, rcur->var_off); 10437 } else { 10438 /* We're trying to use a pointer in place of a scalar. 10439 * Even if the scalar was unbounded, this could lead to 10440 * pointer leaks because scalars are allowed to leak 10441 * while pointers are not. We could make this safe in 10442 * special cases if root is calling us, but it's 10443 * probably not worth the hassle. 10444 */ 10445 return false; 10446 } 10447 case PTR_TO_MAP_KEY: 10448 case PTR_TO_MAP_VALUE: 10449 /* If the new min/max/var_off satisfy the old ones and 10450 * everything else matches, we are OK. 10451 * 'id' is not compared, since it's only used for maps with 10452 * bpf_spin_lock inside map element and in such cases if 10453 * the rest of the prog is valid for one map element then 10454 * it's valid for all map elements regardless of the key 10455 * used in bpf_map_lookup() 10456 */ 10457 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10458 range_within(rold, rcur) && 10459 tnum_in(rold->var_off, rcur->var_off); 10460 case PTR_TO_MAP_VALUE_OR_NULL: 10461 /* a PTR_TO_MAP_VALUE could be safe to use as a 10462 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10463 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10464 * checked, doing so could have affected others with the same 10465 * id, and we can't check for that because we lost the id when 10466 * we converted to a PTR_TO_MAP_VALUE. 10467 */ 10468 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10469 return false; 10470 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10471 return false; 10472 /* Check our ids match any regs they're supposed to */ 10473 return check_ids(rold->id, rcur->id, idmap); 10474 case PTR_TO_PACKET_META: 10475 case PTR_TO_PACKET: 10476 if (rcur->type != rold->type) 10477 return false; 10478 /* We must have at least as much range as the old ptr 10479 * did, so that any accesses which were safe before are 10480 * still safe. This is true even if old range < old off, 10481 * since someone could have accessed through (ptr - k), or 10482 * even done ptr -= k in a register, to get a safe access. 10483 */ 10484 if (rold->range > rcur->range) 10485 return false; 10486 /* If the offsets don't match, we can't trust our alignment; 10487 * nor can we be sure that we won't fall out of range. 10488 */ 10489 if (rold->off != rcur->off) 10490 return false; 10491 /* id relations must be preserved */ 10492 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10493 return false; 10494 /* new val must satisfy old val knowledge */ 10495 return range_within(rold, rcur) && 10496 tnum_in(rold->var_off, rcur->var_off); 10497 case PTR_TO_CTX: 10498 case CONST_PTR_TO_MAP: 10499 case PTR_TO_PACKET_END: 10500 case PTR_TO_FLOW_KEYS: 10501 case PTR_TO_SOCKET: 10502 case PTR_TO_SOCKET_OR_NULL: 10503 case PTR_TO_SOCK_COMMON: 10504 case PTR_TO_SOCK_COMMON_OR_NULL: 10505 case PTR_TO_TCP_SOCK: 10506 case PTR_TO_TCP_SOCK_OR_NULL: 10507 case PTR_TO_XDP_SOCK: 10508 /* Only valid matches are exact, which memcmp() above 10509 * would have accepted 10510 */ 10511 default: 10512 /* Don't know what's going on, just say it's not safe */ 10513 return false; 10514 } 10515 10516 /* Shouldn't get here; if we do, say it's not safe */ 10517 WARN_ON_ONCE(1); 10518 return false; 10519 } 10520 10521 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10522 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10523 { 10524 int i, spi; 10525 10526 /* walk slots of the explored stack and ignore any additional 10527 * slots in the current stack, since explored(safe) state 10528 * didn't use them 10529 */ 10530 for (i = 0; i < old->allocated_stack; i++) { 10531 spi = i / BPF_REG_SIZE; 10532 10533 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10534 i += BPF_REG_SIZE - 1; 10535 /* explored state didn't use this */ 10536 continue; 10537 } 10538 10539 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10540 continue; 10541 10542 /* explored stack has more populated slots than current stack 10543 * and these slots were used 10544 */ 10545 if (i >= cur->allocated_stack) 10546 return false; 10547 10548 /* if old state was safe with misc data in the stack 10549 * it will be safe with zero-initialized stack. 10550 * The opposite is not true 10551 */ 10552 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10553 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10554 continue; 10555 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10556 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10557 /* Ex: old explored (safe) state has STACK_SPILL in 10558 * this stack slot, but current has STACK_MISC -> 10559 * this verifier states are not equivalent, 10560 * return false to continue verification of this path 10561 */ 10562 return false; 10563 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10564 continue; 10565 if (!is_spilled_reg(&old->stack[spi])) 10566 continue; 10567 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10568 &cur->stack[spi].spilled_ptr, idmap)) 10569 /* when explored and current stack slot are both storing 10570 * spilled registers, check that stored pointers types 10571 * are the same as well. 10572 * Ex: explored safe path could have stored 10573 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10574 * but current path has stored: 10575 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10576 * such verifier states are not equivalent. 10577 * return false to continue verification of this path 10578 */ 10579 return false; 10580 } 10581 return true; 10582 } 10583 10584 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10585 { 10586 if (old->acquired_refs != cur->acquired_refs) 10587 return false; 10588 return !memcmp(old->refs, cur->refs, 10589 sizeof(*old->refs) * old->acquired_refs); 10590 } 10591 10592 /* compare two verifier states 10593 * 10594 * all states stored in state_list are known to be valid, since 10595 * verifier reached 'bpf_exit' instruction through them 10596 * 10597 * this function is called when verifier exploring different branches of 10598 * execution popped from the state stack. If it sees an old state that has 10599 * more strict register state and more strict stack state then this execution 10600 * branch doesn't need to be explored further, since verifier already 10601 * concluded that more strict state leads to valid finish. 10602 * 10603 * Therefore two states are equivalent if register state is more conservative 10604 * and explored stack state is more conservative than the current one. 10605 * Example: 10606 * explored current 10607 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10608 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10609 * 10610 * In other words if current stack state (one being explored) has more 10611 * valid slots than old one that already passed validation, it means 10612 * the verifier can stop exploring and conclude that current state is valid too 10613 * 10614 * Similarly with registers. If explored state has register type as invalid 10615 * whereas register type in current state is meaningful, it means that 10616 * the current state will reach 'bpf_exit' instruction safely 10617 */ 10618 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10619 struct bpf_func_state *cur) 10620 { 10621 int i; 10622 10623 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10624 for (i = 0; i < MAX_BPF_REG; i++) 10625 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10626 env->idmap_scratch)) 10627 return false; 10628 10629 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10630 return false; 10631 10632 if (!refsafe(old, cur)) 10633 return false; 10634 10635 return true; 10636 } 10637 10638 static bool states_equal(struct bpf_verifier_env *env, 10639 struct bpf_verifier_state *old, 10640 struct bpf_verifier_state *cur) 10641 { 10642 int i; 10643 10644 if (old->curframe != cur->curframe) 10645 return false; 10646 10647 /* Verification state from speculative execution simulation 10648 * must never prune a non-speculative execution one. 10649 */ 10650 if (old->speculative && !cur->speculative) 10651 return false; 10652 10653 if (old->active_spin_lock != cur->active_spin_lock) 10654 return false; 10655 10656 /* for states to be equal callsites have to be the same 10657 * and all frame states need to be equivalent 10658 */ 10659 for (i = 0; i <= old->curframe; i++) { 10660 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10661 return false; 10662 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10663 return false; 10664 } 10665 return true; 10666 } 10667 10668 /* Return 0 if no propagation happened. Return negative error code if error 10669 * happened. Otherwise, return the propagated bit. 10670 */ 10671 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10672 struct bpf_reg_state *reg, 10673 struct bpf_reg_state *parent_reg) 10674 { 10675 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10676 u8 flag = reg->live & REG_LIVE_READ; 10677 int err; 10678 10679 /* When comes here, read flags of PARENT_REG or REG could be any of 10680 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10681 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10682 */ 10683 if (parent_flag == REG_LIVE_READ64 || 10684 /* Or if there is no read flag from REG. */ 10685 !flag || 10686 /* Or if the read flag from REG is the same as PARENT_REG. */ 10687 parent_flag == flag) 10688 return 0; 10689 10690 err = mark_reg_read(env, reg, parent_reg, flag); 10691 if (err) 10692 return err; 10693 10694 return flag; 10695 } 10696 10697 /* A write screens off any subsequent reads; but write marks come from the 10698 * straight-line code between a state and its parent. When we arrive at an 10699 * equivalent state (jump target or such) we didn't arrive by the straight-line 10700 * code, so read marks in the state must propagate to the parent regardless 10701 * of the state's write marks. That's what 'parent == state->parent' comparison 10702 * in mark_reg_read() is for. 10703 */ 10704 static int propagate_liveness(struct bpf_verifier_env *env, 10705 const struct bpf_verifier_state *vstate, 10706 struct bpf_verifier_state *vparent) 10707 { 10708 struct bpf_reg_state *state_reg, *parent_reg; 10709 struct bpf_func_state *state, *parent; 10710 int i, frame, err = 0; 10711 10712 if (vparent->curframe != vstate->curframe) { 10713 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10714 vparent->curframe, vstate->curframe); 10715 return -EFAULT; 10716 } 10717 /* Propagate read liveness of registers... */ 10718 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10719 for (frame = 0; frame <= vstate->curframe; frame++) { 10720 parent = vparent->frame[frame]; 10721 state = vstate->frame[frame]; 10722 parent_reg = parent->regs; 10723 state_reg = state->regs; 10724 /* We don't need to worry about FP liveness, it's read-only */ 10725 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10726 err = propagate_liveness_reg(env, &state_reg[i], 10727 &parent_reg[i]); 10728 if (err < 0) 10729 return err; 10730 if (err == REG_LIVE_READ64) 10731 mark_insn_zext(env, &parent_reg[i]); 10732 } 10733 10734 /* Propagate stack slots. */ 10735 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10736 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10737 parent_reg = &parent->stack[i].spilled_ptr; 10738 state_reg = &state->stack[i].spilled_ptr; 10739 err = propagate_liveness_reg(env, state_reg, 10740 parent_reg); 10741 if (err < 0) 10742 return err; 10743 } 10744 } 10745 return 0; 10746 } 10747 10748 /* find precise scalars in the previous equivalent state and 10749 * propagate them into the current state 10750 */ 10751 static int propagate_precision(struct bpf_verifier_env *env, 10752 const struct bpf_verifier_state *old) 10753 { 10754 struct bpf_reg_state *state_reg; 10755 struct bpf_func_state *state; 10756 int i, err = 0; 10757 10758 state = old->frame[old->curframe]; 10759 state_reg = state->regs; 10760 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10761 if (state_reg->type != SCALAR_VALUE || 10762 !state_reg->precise) 10763 continue; 10764 if (env->log.level & BPF_LOG_LEVEL2) 10765 verbose(env, "propagating r%d\n", i); 10766 err = mark_chain_precision(env, i); 10767 if (err < 0) 10768 return err; 10769 } 10770 10771 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10772 if (!is_spilled_reg(&state->stack[i])) 10773 continue; 10774 state_reg = &state->stack[i].spilled_ptr; 10775 if (state_reg->type != SCALAR_VALUE || 10776 !state_reg->precise) 10777 continue; 10778 if (env->log.level & BPF_LOG_LEVEL2) 10779 verbose(env, "propagating fp%d\n", 10780 (-i - 1) * BPF_REG_SIZE); 10781 err = mark_chain_precision_stack(env, i); 10782 if (err < 0) 10783 return err; 10784 } 10785 return 0; 10786 } 10787 10788 static bool states_maybe_looping(struct bpf_verifier_state *old, 10789 struct bpf_verifier_state *cur) 10790 { 10791 struct bpf_func_state *fold, *fcur; 10792 int i, fr = cur->curframe; 10793 10794 if (old->curframe != fr) 10795 return false; 10796 10797 fold = old->frame[fr]; 10798 fcur = cur->frame[fr]; 10799 for (i = 0; i < MAX_BPF_REG; i++) 10800 if (memcmp(&fold->regs[i], &fcur->regs[i], 10801 offsetof(struct bpf_reg_state, parent))) 10802 return false; 10803 return true; 10804 } 10805 10806 10807 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10808 { 10809 struct bpf_verifier_state_list *new_sl; 10810 struct bpf_verifier_state_list *sl, **pprev; 10811 struct bpf_verifier_state *cur = env->cur_state, *new; 10812 int i, j, err, states_cnt = 0; 10813 bool add_new_state = env->test_state_freq ? true : false; 10814 10815 cur->last_insn_idx = env->prev_insn_idx; 10816 if (!env->insn_aux_data[insn_idx].prune_point) 10817 /* this 'insn_idx' instruction wasn't marked, so we will not 10818 * be doing state search here 10819 */ 10820 return 0; 10821 10822 /* bpf progs typically have pruning point every 4 instructions 10823 * http://vger.kernel.org/bpfconf2019.html#session-1 10824 * Do not add new state for future pruning if the verifier hasn't seen 10825 * at least 2 jumps and at least 8 instructions. 10826 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10827 * In tests that amounts to up to 50% reduction into total verifier 10828 * memory consumption and 20% verifier time speedup. 10829 */ 10830 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10831 env->insn_processed - env->prev_insn_processed >= 8) 10832 add_new_state = true; 10833 10834 pprev = explored_state(env, insn_idx); 10835 sl = *pprev; 10836 10837 clean_live_states(env, insn_idx, cur); 10838 10839 while (sl) { 10840 states_cnt++; 10841 if (sl->state.insn_idx != insn_idx) 10842 goto next; 10843 10844 if (sl->state.branches) { 10845 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10846 10847 if (frame->in_async_callback_fn && 10848 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10849 /* Different async_entry_cnt means that the verifier is 10850 * processing another entry into async callback. 10851 * Seeing the same state is not an indication of infinite 10852 * loop or infinite recursion. 10853 * But finding the same state doesn't mean that it's safe 10854 * to stop processing the current state. The previous state 10855 * hasn't yet reached bpf_exit, since state.branches > 0. 10856 * Checking in_async_callback_fn alone is not enough either. 10857 * Since the verifier still needs to catch infinite loops 10858 * inside async callbacks. 10859 */ 10860 } else if (states_maybe_looping(&sl->state, cur) && 10861 states_equal(env, &sl->state, cur)) { 10862 verbose_linfo(env, insn_idx, "; "); 10863 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10864 return -EINVAL; 10865 } 10866 /* if the verifier is processing a loop, avoid adding new state 10867 * too often, since different loop iterations have distinct 10868 * states and may not help future pruning. 10869 * This threshold shouldn't be too low to make sure that 10870 * a loop with large bound will be rejected quickly. 10871 * The most abusive loop will be: 10872 * r1 += 1 10873 * if r1 < 1000000 goto pc-2 10874 * 1M insn_procssed limit / 100 == 10k peak states. 10875 * This threshold shouldn't be too high either, since states 10876 * at the end of the loop are likely to be useful in pruning. 10877 */ 10878 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10879 env->insn_processed - env->prev_insn_processed < 100) 10880 add_new_state = false; 10881 goto miss; 10882 } 10883 if (states_equal(env, &sl->state, cur)) { 10884 sl->hit_cnt++; 10885 /* reached equivalent register/stack state, 10886 * prune the search. 10887 * Registers read by the continuation are read by us. 10888 * If we have any write marks in env->cur_state, they 10889 * will prevent corresponding reads in the continuation 10890 * from reaching our parent (an explored_state). Our 10891 * own state will get the read marks recorded, but 10892 * they'll be immediately forgotten as we're pruning 10893 * this state and will pop a new one. 10894 */ 10895 err = propagate_liveness(env, &sl->state, cur); 10896 10897 /* if previous state reached the exit with precision and 10898 * current state is equivalent to it (except precsion marks) 10899 * the precision needs to be propagated back in 10900 * the current state. 10901 */ 10902 err = err ? : push_jmp_history(env, cur); 10903 err = err ? : propagate_precision(env, &sl->state); 10904 if (err) 10905 return err; 10906 return 1; 10907 } 10908 miss: 10909 /* when new state is not going to be added do not increase miss count. 10910 * Otherwise several loop iterations will remove the state 10911 * recorded earlier. The goal of these heuristics is to have 10912 * states from some iterations of the loop (some in the beginning 10913 * and some at the end) to help pruning. 10914 */ 10915 if (add_new_state) 10916 sl->miss_cnt++; 10917 /* heuristic to determine whether this state is beneficial 10918 * to keep checking from state equivalence point of view. 10919 * Higher numbers increase max_states_per_insn and verification time, 10920 * but do not meaningfully decrease insn_processed. 10921 */ 10922 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10923 /* the state is unlikely to be useful. Remove it to 10924 * speed up verification 10925 */ 10926 *pprev = sl->next; 10927 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10928 u32 br = sl->state.branches; 10929 10930 WARN_ONCE(br, 10931 "BUG live_done but branches_to_explore %d\n", 10932 br); 10933 free_verifier_state(&sl->state, false); 10934 kfree(sl); 10935 env->peak_states--; 10936 } else { 10937 /* cannot free this state, since parentage chain may 10938 * walk it later. Add it for free_list instead to 10939 * be freed at the end of verification 10940 */ 10941 sl->next = env->free_list; 10942 env->free_list = sl; 10943 } 10944 sl = *pprev; 10945 continue; 10946 } 10947 next: 10948 pprev = &sl->next; 10949 sl = *pprev; 10950 } 10951 10952 if (env->max_states_per_insn < states_cnt) 10953 env->max_states_per_insn = states_cnt; 10954 10955 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10956 return push_jmp_history(env, cur); 10957 10958 if (!add_new_state) 10959 return push_jmp_history(env, cur); 10960 10961 /* There were no equivalent states, remember the current one. 10962 * Technically the current state is not proven to be safe yet, 10963 * but it will either reach outer most bpf_exit (which means it's safe) 10964 * or it will be rejected. When there are no loops the verifier won't be 10965 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10966 * again on the way to bpf_exit. 10967 * When looping the sl->state.branches will be > 0 and this state 10968 * will not be considered for equivalence until branches == 0. 10969 */ 10970 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10971 if (!new_sl) 10972 return -ENOMEM; 10973 env->total_states++; 10974 env->peak_states++; 10975 env->prev_jmps_processed = env->jmps_processed; 10976 env->prev_insn_processed = env->insn_processed; 10977 10978 /* add new state to the head of linked list */ 10979 new = &new_sl->state; 10980 err = copy_verifier_state(new, cur); 10981 if (err) { 10982 free_verifier_state(new, false); 10983 kfree(new_sl); 10984 return err; 10985 } 10986 new->insn_idx = insn_idx; 10987 WARN_ONCE(new->branches != 1, 10988 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10989 10990 cur->parent = new; 10991 cur->first_insn_idx = insn_idx; 10992 clear_jmp_history(cur); 10993 new_sl->next = *explored_state(env, insn_idx); 10994 *explored_state(env, insn_idx) = new_sl; 10995 /* connect new state to parentage chain. Current frame needs all 10996 * registers connected. Only r6 - r9 of the callers are alive (pushed 10997 * to the stack implicitly by JITs) so in callers' frames connect just 10998 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10999 * the state of the call instruction (with WRITTEN set), and r0 comes 11000 * from callee with its full parentage chain, anyway. 11001 */ 11002 /* clear write marks in current state: the writes we did are not writes 11003 * our child did, so they don't screen off its reads from us. 11004 * (There are no read marks in current state, because reads always mark 11005 * their parent and current state never has children yet. Only 11006 * explored_states can get read marks.) 11007 */ 11008 for (j = 0; j <= cur->curframe; j++) { 11009 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11010 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11011 for (i = 0; i < BPF_REG_FP; i++) 11012 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11013 } 11014 11015 /* all stack frames are accessible from callee, clear them all */ 11016 for (j = 0; j <= cur->curframe; j++) { 11017 struct bpf_func_state *frame = cur->frame[j]; 11018 struct bpf_func_state *newframe = new->frame[j]; 11019 11020 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11021 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11022 frame->stack[i].spilled_ptr.parent = 11023 &newframe->stack[i].spilled_ptr; 11024 } 11025 } 11026 return 0; 11027 } 11028 11029 /* Return true if it's OK to have the same insn return a different type. */ 11030 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11031 { 11032 switch (type) { 11033 case PTR_TO_CTX: 11034 case PTR_TO_SOCKET: 11035 case PTR_TO_SOCKET_OR_NULL: 11036 case PTR_TO_SOCK_COMMON: 11037 case PTR_TO_SOCK_COMMON_OR_NULL: 11038 case PTR_TO_TCP_SOCK: 11039 case PTR_TO_TCP_SOCK_OR_NULL: 11040 case PTR_TO_XDP_SOCK: 11041 case PTR_TO_BTF_ID: 11042 case PTR_TO_BTF_ID_OR_NULL: 11043 return false; 11044 default: 11045 return true; 11046 } 11047 } 11048 11049 /* If an instruction was previously used with particular pointer types, then we 11050 * need to be careful to avoid cases such as the below, where it may be ok 11051 * for one branch accessing the pointer, but not ok for the other branch: 11052 * 11053 * R1 = sock_ptr 11054 * goto X; 11055 * ... 11056 * R1 = some_other_valid_ptr; 11057 * goto X; 11058 * ... 11059 * R2 = *(u32 *)(R1 + 0); 11060 */ 11061 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11062 { 11063 return src != prev && (!reg_type_mismatch_ok(src) || 11064 !reg_type_mismatch_ok(prev)); 11065 } 11066 11067 static int do_check(struct bpf_verifier_env *env) 11068 { 11069 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11070 struct bpf_verifier_state *state = env->cur_state; 11071 struct bpf_insn *insns = env->prog->insnsi; 11072 struct bpf_reg_state *regs; 11073 int insn_cnt = env->prog->len; 11074 bool do_print_state = false; 11075 int prev_insn_idx = -1; 11076 11077 for (;;) { 11078 struct bpf_insn *insn; 11079 u8 class; 11080 int err; 11081 11082 env->prev_insn_idx = prev_insn_idx; 11083 if (env->insn_idx >= insn_cnt) { 11084 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11085 env->insn_idx, insn_cnt); 11086 return -EFAULT; 11087 } 11088 11089 insn = &insns[env->insn_idx]; 11090 class = BPF_CLASS(insn->code); 11091 11092 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11093 verbose(env, 11094 "BPF program is too large. Processed %d insn\n", 11095 env->insn_processed); 11096 return -E2BIG; 11097 } 11098 11099 err = is_state_visited(env, env->insn_idx); 11100 if (err < 0) 11101 return err; 11102 if (err == 1) { 11103 /* found equivalent state, can prune the search */ 11104 if (env->log.level & BPF_LOG_LEVEL) { 11105 if (do_print_state) 11106 verbose(env, "\nfrom %d to %d%s: safe\n", 11107 env->prev_insn_idx, env->insn_idx, 11108 env->cur_state->speculative ? 11109 " (speculative execution)" : ""); 11110 else 11111 verbose(env, "%d: safe\n", env->insn_idx); 11112 } 11113 goto process_bpf_exit; 11114 } 11115 11116 if (signal_pending(current)) 11117 return -EAGAIN; 11118 11119 if (need_resched()) 11120 cond_resched(); 11121 11122 if (env->log.level & BPF_LOG_LEVEL2 || 11123 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 11124 if (env->log.level & BPF_LOG_LEVEL2) 11125 verbose(env, "%d:", env->insn_idx); 11126 else 11127 verbose(env, "\nfrom %d to %d%s:", 11128 env->prev_insn_idx, env->insn_idx, 11129 env->cur_state->speculative ? 11130 " (speculative execution)" : ""); 11131 print_verifier_state(env, state->frame[state->curframe]); 11132 do_print_state = false; 11133 } 11134 11135 if (env->log.level & BPF_LOG_LEVEL) { 11136 const struct bpf_insn_cbs cbs = { 11137 .cb_call = disasm_kfunc_name, 11138 .cb_print = verbose, 11139 .private_data = env, 11140 }; 11141 11142 verbose_linfo(env, env->insn_idx, "; "); 11143 verbose(env, "%d: ", env->insn_idx); 11144 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11145 } 11146 11147 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11148 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11149 env->prev_insn_idx); 11150 if (err) 11151 return err; 11152 } 11153 11154 regs = cur_regs(env); 11155 sanitize_mark_insn_seen(env); 11156 prev_insn_idx = env->insn_idx; 11157 11158 if (class == BPF_ALU || class == BPF_ALU64) { 11159 err = check_alu_op(env, insn); 11160 if (err) 11161 return err; 11162 11163 } else if (class == BPF_LDX) { 11164 enum bpf_reg_type *prev_src_type, src_reg_type; 11165 11166 /* check for reserved fields is already done */ 11167 11168 /* check src operand */ 11169 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11170 if (err) 11171 return err; 11172 11173 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11174 if (err) 11175 return err; 11176 11177 src_reg_type = regs[insn->src_reg].type; 11178 11179 /* check that memory (src_reg + off) is readable, 11180 * the state of dst_reg will be updated by this func 11181 */ 11182 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11183 insn->off, BPF_SIZE(insn->code), 11184 BPF_READ, insn->dst_reg, false); 11185 if (err) 11186 return err; 11187 11188 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11189 11190 if (*prev_src_type == NOT_INIT) { 11191 /* saw a valid insn 11192 * dst_reg = *(u32 *)(src_reg + off) 11193 * save type to validate intersecting paths 11194 */ 11195 *prev_src_type = src_reg_type; 11196 11197 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11198 /* ABuser program is trying to use the same insn 11199 * dst_reg = *(u32*) (src_reg + off) 11200 * with different pointer types: 11201 * src_reg == ctx in one branch and 11202 * src_reg == stack|map in some other branch. 11203 * Reject it. 11204 */ 11205 verbose(env, "same insn cannot be used with different pointers\n"); 11206 return -EINVAL; 11207 } 11208 11209 } else if (class == BPF_STX) { 11210 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11211 11212 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11213 err = check_atomic(env, env->insn_idx, insn); 11214 if (err) 11215 return err; 11216 env->insn_idx++; 11217 continue; 11218 } 11219 11220 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11221 verbose(env, "BPF_STX uses reserved fields\n"); 11222 return -EINVAL; 11223 } 11224 11225 /* check src1 operand */ 11226 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11227 if (err) 11228 return err; 11229 /* check src2 operand */ 11230 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11231 if (err) 11232 return err; 11233 11234 dst_reg_type = regs[insn->dst_reg].type; 11235 11236 /* check that memory (dst_reg + off) is writeable */ 11237 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11238 insn->off, BPF_SIZE(insn->code), 11239 BPF_WRITE, insn->src_reg, false); 11240 if (err) 11241 return err; 11242 11243 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11244 11245 if (*prev_dst_type == NOT_INIT) { 11246 *prev_dst_type = dst_reg_type; 11247 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11248 verbose(env, "same insn cannot be used with different pointers\n"); 11249 return -EINVAL; 11250 } 11251 11252 } else if (class == BPF_ST) { 11253 if (BPF_MODE(insn->code) != BPF_MEM || 11254 insn->src_reg != BPF_REG_0) { 11255 verbose(env, "BPF_ST uses reserved fields\n"); 11256 return -EINVAL; 11257 } 11258 /* check src operand */ 11259 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11260 if (err) 11261 return err; 11262 11263 if (is_ctx_reg(env, insn->dst_reg)) { 11264 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11265 insn->dst_reg, 11266 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11267 return -EACCES; 11268 } 11269 11270 /* check that memory (dst_reg + off) is writeable */ 11271 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11272 insn->off, BPF_SIZE(insn->code), 11273 BPF_WRITE, -1, false); 11274 if (err) 11275 return err; 11276 11277 } else if (class == BPF_JMP || class == BPF_JMP32) { 11278 u8 opcode = BPF_OP(insn->code); 11279 11280 env->jmps_processed++; 11281 if (opcode == BPF_CALL) { 11282 if (BPF_SRC(insn->code) != BPF_K || 11283 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11284 && insn->off != 0) || 11285 (insn->src_reg != BPF_REG_0 && 11286 insn->src_reg != BPF_PSEUDO_CALL && 11287 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11288 insn->dst_reg != BPF_REG_0 || 11289 class == BPF_JMP32) { 11290 verbose(env, "BPF_CALL uses reserved fields\n"); 11291 return -EINVAL; 11292 } 11293 11294 if (env->cur_state->active_spin_lock && 11295 (insn->src_reg == BPF_PSEUDO_CALL || 11296 insn->imm != BPF_FUNC_spin_unlock)) { 11297 verbose(env, "function calls are not allowed while holding a lock\n"); 11298 return -EINVAL; 11299 } 11300 if (insn->src_reg == BPF_PSEUDO_CALL) 11301 err = check_func_call(env, insn, &env->insn_idx); 11302 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11303 err = check_kfunc_call(env, insn); 11304 else 11305 err = check_helper_call(env, insn, &env->insn_idx); 11306 if (err) 11307 return err; 11308 } else if (opcode == BPF_JA) { 11309 if (BPF_SRC(insn->code) != BPF_K || 11310 insn->imm != 0 || 11311 insn->src_reg != BPF_REG_0 || 11312 insn->dst_reg != BPF_REG_0 || 11313 class == BPF_JMP32) { 11314 verbose(env, "BPF_JA uses reserved fields\n"); 11315 return -EINVAL; 11316 } 11317 11318 env->insn_idx += insn->off + 1; 11319 continue; 11320 11321 } else if (opcode == BPF_EXIT) { 11322 if (BPF_SRC(insn->code) != BPF_K || 11323 insn->imm != 0 || 11324 insn->src_reg != BPF_REG_0 || 11325 insn->dst_reg != BPF_REG_0 || 11326 class == BPF_JMP32) { 11327 verbose(env, "BPF_EXIT uses reserved fields\n"); 11328 return -EINVAL; 11329 } 11330 11331 if (env->cur_state->active_spin_lock) { 11332 verbose(env, "bpf_spin_unlock is missing\n"); 11333 return -EINVAL; 11334 } 11335 11336 if (state->curframe) { 11337 /* exit from nested function */ 11338 err = prepare_func_exit(env, &env->insn_idx); 11339 if (err) 11340 return err; 11341 do_print_state = true; 11342 continue; 11343 } 11344 11345 err = check_reference_leak(env); 11346 if (err) 11347 return err; 11348 11349 err = check_return_code(env); 11350 if (err) 11351 return err; 11352 process_bpf_exit: 11353 update_branch_counts(env, env->cur_state); 11354 err = pop_stack(env, &prev_insn_idx, 11355 &env->insn_idx, pop_log); 11356 if (err < 0) { 11357 if (err != -ENOENT) 11358 return err; 11359 break; 11360 } else { 11361 do_print_state = true; 11362 continue; 11363 } 11364 } else { 11365 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11366 if (err) 11367 return err; 11368 } 11369 } else if (class == BPF_LD) { 11370 u8 mode = BPF_MODE(insn->code); 11371 11372 if (mode == BPF_ABS || mode == BPF_IND) { 11373 err = check_ld_abs(env, insn); 11374 if (err) 11375 return err; 11376 11377 } else if (mode == BPF_IMM) { 11378 err = check_ld_imm(env, insn); 11379 if (err) 11380 return err; 11381 11382 env->insn_idx++; 11383 sanitize_mark_insn_seen(env); 11384 } else { 11385 verbose(env, "invalid BPF_LD mode\n"); 11386 return -EINVAL; 11387 } 11388 } else { 11389 verbose(env, "unknown insn class %d\n", class); 11390 return -EINVAL; 11391 } 11392 11393 env->insn_idx++; 11394 } 11395 11396 return 0; 11397 } 11398 11399 static int find_btf_percpu_datasec(struct btf *btf) 11400 { 11401 const struct btf_type *t; 11402 const char *tname; 11403 int i, n; 11404 11405 /* 11406 * Both vmlinux and module each have their own ".data..percpu" 11407 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11408 * types to look at only module's own BTF types. 11409 */ 11410 n = btf_nr_types(btf); 11411 if (btf_is_module(btf)) 11412 i = btf_nr_types(btf_vmlinux); 11413 else 11414 i = 1; 11415 11416 for(; i < n; i++) { 11417 t = btf_type_by_id(btf, i); 11418 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11419 continue; 11420 11421 tname = btf_name_by_offset(btf, t->name_off); 11422 if (!strcmp(tname, ".data..percpu")) 11423 return i; 11424 } 11425 11426 return -ENOENT; 11427 } 11428 11429 /* replace pseudo btf_id with kernel symbol address */ 11430 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11431 struct bpf_insn *insn, 11432 struct bpf_insn_aux_data *aux) 11433 { 11434 const struct btf_var_secinfo *vsi; 11435 const struct btf_type *datasec; 11436 struct btf_mod_pair *btf_mod; 11437 const struct btf_type *t; 11438 const char *sym_name; 11439 bool percpu = false; 11440 u32 type, id = insn->imm; 11441 struct btf *btf; 11442 s32 datasec_id; 11443 u64 addr; 11444 int i, btf_fd, err; 11445 11446 btf_fd = insn[1].imm; 11447 if (btf_fd) { 11448 btf = btf_get_by_fd(btf_fd); 11449 if (IS_ERR(btf)) { 11450 verbose(env, "invalid module BTF object FD specified.\n"); 11451 return -EINVAL; 11452 } 11453 } else { 11454 if (!btf_vmlinux) { 11455 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11456 return -EINVAL; 11457 } 11458 btf = btf_vmlinux; 11459 btf_get(btf); 11460 } 11461 11462 t = btf_type_by_id(btf, id); 11463 if (!t) { 11464 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11465 err = -ENOENT; 11466 goto err_put; 11467 } 11468 11469 if (!btf_type_is_var(t)) { 11470 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11471 err = -EINVAL; 11472 goto err_put; 11473 } 11474 11475 sym_name = btf_name_by_offset(btf, t->name_off); 11476 addr = kallsyms_lookup_name(sym_name); 11477 if (!addr) { 11478 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11479 sym_name); 11480 err = -ENOENT; 11481 goto err_put; 11482 } 11483 11484 datasec_id = find_btf_percpu_datasec(btf); 11485 if (datasec_id > 0) { 11486 datasec = btf_type_by_id(btf, datasec_id); 11487 for_each_vsi(i, datasec, vsi) { 11488 if (vsi->type == id) { 11489 percpu = true; 11490 break; 11491 } 11492 } 11493 } 11494 11495 insn[0].imm = (u32)addr; 11496 insn[1].imm = addr >> 32; 11497 11498 type = t->type; 11499 t = btf_type_skip_modifiers(btf, type, NULL); 11500 if (percpu) { 11501 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11502 aux->btf_var.btf = btf; 11503 aux->btf_var.btf_id = type; 11504 } else if (!btf_type_is_struct(t)) { 11505 const struct btf_type *ret; 11506 const char *tname; 11507 u32 tsize; 11508 11509 /* resolve the type size of ksym. */ 11510 ret = btf_resolve_size(btf, t, &tsize); 11511 if (IS_ERR(ret)) { 11512 tname = btf_name_by_offset(btf, t->name_off); 11513 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11514 tname, PTR_ERR(ret)); 11515 err = -EINVAL; 11516 goto err_put; 11517 } 11518 aux->btf_var.reg_type = PTR_TO_MEM; 11519 aux->btf_var.mem_size = tsize; 11520 } else { 11521 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11522 aux->btf_var.btf = btf; 11523 aux->btf_var.btf_id = type; 11524 } 11525 11526 /* check whether we recorded this BTF (and maybe module) already */ 11527 for (i = 0; i < env->used_btf_cnt; i++) { 11528 if (env->used_btfs[i].btf == btf) { 11529 btf_put(btf); 11530 return 0; 11531 } 11532 } 11533 11534 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11535 err = -E2BIG; 11536 goto err_put; 11537 } 11538 11539 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11540 btf_mod->btf = btf; 11541 btf_mod->module = NULL; 11542 11543 /* if we reference variables from kernel module, bump its refcount */ 11544 if (btf_is_module(btf)) { 11545 btf_mod->module = btf_try_get_module(btf); 11546 if (!btf_mod->module) { 11547 err = -ENXIO; 11548 goto err_put; 11549 } 11550 } 11551 11552 env->used_btf_cnt++; 11553 11554 return 0; 11555 err_put: 11556 btf_put(btf); 11557 return err; 11558 } 11559 11560 static int check_map_prealloc(struct bpf_map *map) 11561 { 11562 return (map->map_type != BPF_MAP_TYPE_HASH && 11563 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11564 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11565 !(map->map_flags & BPF_F_NO_PREALLOC); 11566 } 11567 11568 static bool is_tracing_prog_type(enum bpf_prog_type type) 11569 { 11570 switch (type) { 11571 case BPF_PROG_TYPE_KPROBE: 11572 case BPF_PROG_TYPE_TRACEPOINT: 11573 case BPF_PROG_TYPE_PERF_EVENT: 11574 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11575 return true; 11576 default: 11577 return false; 11578 } 11579 } 11580 11581 static bool is_preallocated_map(struct bpf_map *map) 11582 { 11583 if (!check_map_prealloc(map)) 11584 return false; 11585 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11586 return false; 11587 return true; 11588 } 11589 11590 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11591 struct bpf_map *map, 11592 struct bpf_prog *prog) 11593 11594 { 11595 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11596 /* 11597 * Validate that trace type programs use preallocated hash maps. 11598 * 11599 * For programs attached to PERF events this is mandatory as the 11600 * perf NMI can hit any arbitrary code sequence. 11601 * 11602 * All other trace types using preallocated hash maps are unsafe as 11603 * well because tracepoint or kprobes can be inside locked regions 11604 * of the memory allocator or at a place where a recursion into the 11605 * memory allocator would see inconsistent state. 11606 * 11607 * On RT enabled kernels run-time allocation of all trace type 11608 * programs is strictly prohibited due to lock type constraints. On 11609 * !RT kernels it is allowed for backwards compatibility reasons for 11610 * now, but warnings are emitted so developers are made aware of 11611 * the unsafety and can fix their programs before this is enforced. 11612 */ 11613 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11614 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11615 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11616 return -EINVAL; 11617 } 11618 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11619 verbose(env, "trace type programs can only use preallocated hash map\n"); 11620 return -EINVAL; 11621 } 11622 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11623 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11624 } 11625 11626 if (map_value_has_spin_lock(map)) { 11627 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11628 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11629 return -EINVAL; 11630 } 11631 11632 if (is_tracing_prog_type(prog_type)) { 11633 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11634 return -EINVAL; 11635 } 11636 11637 if (prog->aux->sleepable) { 11638 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11639 return -EINVAL; 11640 } 11641 } 11642 11643 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11644 !bpf_offload_prog_map_match(prog, map)) { 11645 verbose(env, "offload device mismatch between prog and map\n"); 11646 return -EINVAL; 11647 } 11648 11649 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11650 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11651 return -EINVAL; 11652 } 11653 11654 if (prog->aux->sleepable) 11655 switch (map->map_type) { 11656 case BPF_MAP_TYPE_HASH: 11657 case BPF_MAP_TYPE_LRU_HASH: 11658 case BPF_MAP_TYPE_ARRAY: 11659 case BPF_MAP_TYPE_PERCPU_HASH: 11660 case BPF_MAP_TYPE_PERCPU_ARRAY: 11661 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11662 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11663 case BPF_MAP_TYPE_HASH_OF_MAPS: 11664 if (!is_preallocated_map(map)) { 11665 verbose(env, 11666 "Sleepable programs can only use preallocated maps\n"); 11667 return -EINVAL; 11668 } 11669 break; 11670 case BPF_MAP_TYPE_RINGBUF: 11671 break; 11672 default: 11673 verbose(env, 11674 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11675 return -EINVAL; 11676 } 11677 11678 return 0; 11679 } 11680 11681 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11682 { 11683 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11684 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11685 } 11686 11687 /* find and rewrite pseudo imm in ld_imm64 instructions: 11688 * 11689 * 1. if it accesses map FD, replace it with actual map pointer. 11690 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11691 * 11692 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11693 */ 11694 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11695 { 11696 struct bpf_insn *insn = env->prog->insnsi; 11697 int insn_cnt = env->prog->len; 11698 int i, j, err; 11699 11700 err = bpf_prog_calc_tag(env->prog); 11701 if (err) 11702 return err; 11703 11704 for (i = 0; i < insn_cnt; i++, insn++) { 11705 if (BPF_CLASS(insn->code) == BPF_LDX && 11706 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11707 verbose(env, "BPF_LDX uses reserved fields\n"); 11708 return -EINVAL; 11709 } 11710 11711 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11712 struct bpf_insn_aux_data *aux; 11713 struct bpf_map *map; 11714 struct fd f; 11715 u64 addr; 11716 u32 fd; 11717 11718 if (i == insn_cnt - 1 || insn[1].code != 0 || 11719 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11720 insn[1].off != 0) { 11721 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11722 return -EINVAL; 11723 } 11724 11725 if (insn[0].src_reg == 0) 11726 /* valid generic load 64-bit imm */ 11727 goto next_insn; 11728 11729 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11730 aux = &env->insn_aux_data[i]; 11731 err = check_pseudo_btf_id(env, insn, aux); 11732 if (err) 11733 return err; 11734 goto next_insn; 11735 } 11736 11737 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11738 aux = &env->insn_aux_data[i]; 11739 aux->ptr_type = PTR_TO_FUNC; 11740 goto next_insn; 11741 } 11742 11743 /* In final convert_pseudo_ld_imm64() step, this is 11744 * converted into regular 64-bit imm load insn. 11745 */ 11746 switch (insn[0].src_reg) { 11747 case BPF_PSEUDO_MAP_VALUE: 11748 case BPF_PSEUDO_MAP_IDX_VALUE: 11749 break; 11750 case BPF_PSEUDO_MAP_FD: 11751 case BPF_PSEUDO_MAP_IDX: 11752 if (insn[1].imm == 0) 11753 break; 11754 fallthrough; 11755 default: 11756 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11757 return -EINVAL; 11758 } 11759 11760 switch (insn[0].src_reg) { 11761 case BPF_PSEUDO_MAP_IDX_VALUE: 11762 case BPF_PSEUDO_MAP_IDX: 11763 if (bpfptr_is_null(env->fd_array)) { 11764 verbose(env, "fd_idx without fd_array is invalid\n"); 11765 return -EPROTO; 11766 } 11767 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11768 insn[0].imm * sizeof(fd), 11769 sizeof(fd))) 11770 return -EFAULT; 11771 break; 11772 default: 11773 fd = insn[0].imm; 11774 break; 11775 } 11776 11777 f = fdget(fd); 11778 map = __bpf_map_get(f); 11779 if (IS_ERR(map)) { 11780 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11781 insn[0].imm); 11782 return PTR_ERR(map); 11783 } 11784 11785 err = check_map_prog_compatibility(env, map, env->prog); 11786 if (err) { 11787 fdput(f); 11788 return err; 11789 } 11790 11791 aux = &env->insn_aux_data[i]; 11792 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11793 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11794 addr = (unsigned long)map; 11795 } else { 11796 u32 off = insn[1].imm; 11797 11798 if (off >= BPF_MAX_VAR_OFF) { 11799 verbose(env, "direct value offset of %u is not allowed\n", off); 11800 fdput(f); 11801 return -EINVAL; 11802 } 11803 11804 if (!map->ops->map_direct_value_addr) { 11805 verbose(env, "no direct value access support for this map type\n"); 11806 fdput(f); 11807 return -EINVAL; 11808 } 11809 11810 err = map->ops->map_direct_value_addr(map, &addr, off); 11811 if (err) { 11812 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11813 map->value_size, off); 11814 fdput(f); 11815 return err; 11816 } 11817 11818 aux->map_off = off; 11819 addr += off; 11820 } 11821 11822 insn[0].imm = (u32)addr; 11823 insn[1].imm = addr >> 32; 11824 11825 /* check whether we recorded this map already */ 11826 for (j = 0; j < env->used_map_cnt; j++) { 11827 if (env->used_maps[j] == map) { 11828 aux->map_index = j; 11829 fdput(f); 11830 goto next_insn; 11831 } 11832 } 11833 11834 if (env->used_map_cnt >= MAX_USED_MAPS) { 11835 fdput(f); 11836 return -E2BIG; 11837 } 11838 11839 /* hold the map. If the program is rejected by verifier, 11840 * the map will be released by release_maps() or it 11841 * will be used by the valid program until it's unloaded 11842 * and all maps are released in free_used_maps() 11843 */ 11844 bpf_map_inc(map); 11845 11846 aux->map_index = env->used_map_cnt; 11847 env->used_maps[env->used_map_cnt++] = map; 11848 11849 if (bpf_map_is_cgroup_storage(map) && 11850 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11851 verbose(env, "only one cgroup storage of each type is allowed\n"); 11852 fdput(f); 11853 return -EBUSY; 11854 } 11855 11856 fdput(f); 11857 next_insn: 11858 insn++; 11859 i++; 11860 continue; 11861 } 11862 11863 /* Basic sanity check before we invest more work here. */ 11864 if (!bpf_opcode_in_insntable(insn->code)) { 11865 verbose(env, "unknown opcode %02x\n", insn->code); 11866 return -EINVAL; 11867 } 11868 } 11869 11870 /* now all pseudo BPF_LD_IMM64 instructions load valid 11871 * 'struct bpf_map *' into a register instead of user map_fd. 11872 * These pointers will be used later by verifier to validate map access. 11873 */ 11874 return 0; 11875 } 11876 11877 /* drop refcnt of maps used by the rejected program */ 11878 static void release_maps(struct bpf_verifier_env *env) 11879 { 11880 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11881 env->used_map_cnt); 11882 } 11883 11884 /* drop refcnt of maps used by the rejected program */ 11885 static void release_btfs(struct bpf_verifier_env *env) 11886 { 11887 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11888 env->used_btf_cnt); 11889 } 11890 11891 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11892 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11893 { 11894 struct bpf_insn *insn = env->prog->insnsi; 11895 int insn_cnt = env->prog->len; 11896 int i; 11897 11898 for (i = 0; i < insn_cnt; i++, insn++) { 11899 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11900 continue; 11901 if (insn->src_reg == BPF_PSEUDO_FUNC) 11902 continue; 11903 insn->src_reg = 0; 11904 } 11905 } 11906 11907 /* single env->prog->insni[off] instruction was replaced with the range 11908 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11909 * [0, off) and [off, end) to new locations, so the patched range stays zero 11910 */ 11911 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11912 struct bpf_insn_aux_data *new_data, 11913 struct bpf_prog *new_prog, u32 off, u32 cnt) 11914 { 11915 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11916 struct bpf_insn *insn = new_prog->insnsi; 11917 u32 old_seen = old_data[off].seen; 11918 u32 prog_len; 11919 int i; 11920 11921 /* aux info at OFF always needs adjustment, no matter fast path 11922 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11923 * original insn at old prog. 11924 */ 11925 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11926 11927 if (cnt == 1) 11928 return; 11929 prog_len = new_prog->len; 11930 11931 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11932 memcpy(new_data + off + cnt - 1, old_data + off, 11933 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11934 for (i = off; i < off + cnt - 1; i++) { 11935 /* Expand insni[off]'s seen count to the patched range. */ 11936 new_data[i].seen = old_seen; 11937 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11938 } 11939 env->insn_aux_data = new_data; 11940 vfree(old_data); 11941 } 11942 11943 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11944 { 11945 int i; 11946 11947 if (len == 1) 11948 return; 11949 /* NOTE: fake 'exit' subprog should be updated as well. */ 11950 for (i = 0; i <= env->subprog_cnt; i++) { 11951 if (env->subprog_info[i].start <= off) 11952 continue; 11953 env->subprog_info[i].start += len - 1; 11954 } 11955 } 11956 11957 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11958 { 11959 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11960 int i, sz = prog->aux->size_poke_tab; 11961 struct bpf_jit_poke_descriptor *desc; 11962 11963 for (i = 0; i < sz; i++) { 11964 desc = &tab[i]; 11965 if (desc->insn_idx <= off) 11966 continue; 11967 desc->insn_idx += len - 1; 11968 } 11969 } 11970 11971 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11972 const struct bpf_insn *patch, u32 len) 11973 { 11974 struct bpf_prog *new_prog; 11975 struct bpf_insn_aux_data *new_data = NULL; 11976 11977 if (len > 1) { 11978 new_data = vzalloc(array_size(env->prog->len + len - 1, 11979 sizeof(struct bpf_insn_aux_data))); 11980 if (!new_data) 11981 return NULL; 11982 } 11983 11984 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11985 if (IS_ERR(new_prog)) { 11986 if (PTR_ERR(new_prog) == -ERANGE) 11987 verbose(env, 11988 "insn %d cannot be patched due to 16-bit range\n", 11989 env->insn_aux_data[off].orig_idx); 11990 vfree(new_data); 11991 return NULL; 11992 } 11993 adjust_insn_aux_data(env, new_data, new_prog, off, len); 11994 adjust_subprog_starts(env, off, len); 11995 adjust_poke_descs(new_prog, off, len); 11996 return new_prog; 11997 } 11998 11999 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12000 u32 off, u32 cnt) 12001 { 12002 int i, j; 12003 12004 /* find first prog starting at or after off (first to remove) */ 12005 for (i = 0; i < env->subprog_cnt; i++) 12006 if (env->subprog_info[i].start >= off) 12007 break; 12008 /* find first prog starting at or after off + cnt (first to stay) */ 12009 for (j = i; j < env->subprog_cnt; j++) 12010 if (env->subprog_info[j].start >= off + cnt) 12011 break; 12012 /* if j doesn't start exactly at off + cnt, we are just removing 12013 * the front of previous prog 12014 */ 12015 if (env->subprog_info[j].start != off + cnt) 12016 j--; 12017 12018 if (j > i) { 12019 struct bpf_prog_aux *aux = env->prog->aux; 12020 int move; 12021 12022 /* move fake 'exit' subprog as well */ 12023 move = env->subprog_cnt + 1 - j; 12024 12025 memmove(env->subprog_info + i, 12026 env->subprog_info + j, 12027 sizeof(*env->subprog_info) * move); 12028 env->subprog_cnt -= j - i; 12029 12030 /* remove func_info */ 12031 if (aux->func_info) { 12032 move = aux->func_info_cnt - j; 12033 12034 memmove(aux->func_info + i, 12035 aux->func_info + j, 12036 sizeof(*aux->func_info) * move); 12037 aux->func_info_cnt -= j - i; 12038 /* func_info->insn_off is set after all code rewrites, 12039 * in adjust_btf_func() - no need to adjust 12040 */ 12041 } 12042 } else { 12043 /* convert i from "first prog to remove" to "first to adjust" */ 12044 if (env->subprog_info[i].start == off) 12045 i++; 12046 } 12047 12048 /* update fake 'exit' subprog as well */ 12049 for (; i <= env->subprog_cnt; i++) 12050 env->subprog_info[i].start -= cnt; 12051 12052 return 0; 12053 } 12054 12055 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12056 u32 cnt) 12057 { 12058 struct bpf_prog *prog = env->prog; 12059 u32 i, l_off, l_cnt, nr_linfo; 12060 struct bpf_line_info *linfo; 12061 12062 nr_linfo = prog->aux->nr_linfo; 12063 if (!nr_linfo) 12064 return 0; 12065 12066 linfo = prog->aux->linfo; 12067 12068 /* find first line info to remove, count lines to be removed */ 12069 for (i = 0; i < nr_linfo; i++) 12070 if (linfo[i].insn_off >= off) 12071 break; 12072 12073 l_off = i; 12074 l_cnt = 0; 12075 for (; i < nr_linfo; i++) 12076 if (linfo[i].insn_off < off + cnt) 12077 l_cnt++; 12078 else 12079 break; 12080 12081 /* First live insn doesn't match first live linfo, it needs to "inherit" 12082 * last removed linfo. prog is already modified, so prog->len == off 12083 * means no live instructions after (tail of the program was removed). 12084 */ 12085 if (prog->len != off && l_cnt && 12086 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12087 l_cnt--; 12088 linfo[--i].insn_off = off + cnt; 12089 } 12090 12091 /* remove the line info which refer to the removed instructions */ 12092 if (l_cnt) { 12093 memmove(linfo + l_off, linfo + i, 12094 sizeof(*linfo) * (nr_linfo - i)); 12095 12096 prog->aux->nr_linfo -= l_cnt; 12097 nr_linfo = prog->aux->nr_linfo; 12098 } 12099 12100 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12101 for (i = l_off; i < nr_linfo; i++) 12102 linfo[i].insn_off -= cnt; 12103 12104 /* fix up all subprogs (incl. 'exit') which start >= off */ 12105 for (i = 0; i <= env->subprog_cnt; i++) 12106 if (env->subprog_info[i].linfo_idx > l_off) { 12107 /* program may have started in the removed region but 12108 * may not be fully removed 12109 */ 12110 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12111 env->subprog_info[i].linfo_idx -= l_cnt; 12112 else 12113 env->subprog_info[i].linfo_idx = l_off; 12114 } 12115 12116 return 0; 12117 } 12118 12119 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12120 { 12121 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12122 unsigned int orig_prog_len = env->prog->len; 12123 int err; 12124 12125 if (bpf_prog_is_dev_bound(env->prog->aux)) 12126 bpf_prog_offload_remove_insns(env, off, cnt); 12127 12128 err = bpf_remove_insns(env->prog, off, cnt); 12129 if (err) 12130 return err; 12131 12132 err = adjust_subprog_starts_after_remove(env, off, cnt); 12133 if (err) 12134 return err; 12135 12136 err = bpf_adj_linfo_after_remove(env, off, cnt); 12137 if (err) 12138 return err; 12139 12140 memmove(aux_data + off, aux_data + off + cnt, 12141 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12142 12143 return 0; 12144 } 12145 12146 /* The verifier does more data flow analysis than llvm and will not 12147 * explore branches that are dead at run time. Malicious programs can 12148 * have dead code too. Therefore replace all dead at-run-time code 12149 * with 'ja -1'. 12150 * 12151 * Just nops are not optimal, e.g. if they would sit at the end of the 12152 * program and through another bug we would manage to jump there, then 12153 * we'd execute beyond program memory otherwise. Returning exception 12154 * code also wouldn't work since we can have subprogs where the dead 12155 * code could be located. 12156 */ 12157 static void sanitize_dead_code(struct bpf_verifier_env *env) 12158 { 12159 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12160 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12161 struct bpf_insn *insn = env->prog->insnsi; 12162 const int insn_cnt = env->prog->len; 12163 int i; 12164 12165 for (i = 0; i < insn_cnt; i++) { 12166 if (aux_data[i].seen) 12167 continue; 12168 memcpy(insn + i, &trap, sizeof(trap)); 12169 aux_data[i].zext_dst = false; 12170 } 12171 } 12172 12173 static bool insn_is_cond_jump(u8 code) 12174 { 12175 u8 op; 12176 12177 if (BPF_CLASS(code) == BPF_JMP32) 12178 return true; 12179 12180 if (BPF_CLASS(code) != BPF_JMP) 12181 return false; 12182 12183 op = BPF_OP(code); 12184 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12185 } 12186 12187 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12188 { 12189 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12190 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12191 struct bpf_insn *insn = env->prog->insnsi; 12192 const int insn_cnt = env->prog->len; 12193 int i; 12194 12195 for (i = 0; i < insn_cnt; i++, insn++) { 12196 if (!insn_is_cond_jump(insn->code)) 12197 continue; 12198 12199 if (!aux_data[i + 1].seen) 12200 ja.off = insn->off; 12201 else if (!aux_data[i + 1 + insn->off].seen) 12202 ja.off = 0; 12203 else 12204 continue; 12205 12206 if (bpf_prog_is_dev_bound(env->prog->aux)) 12207 bpf_prog_offload_replace_insn(env, i, &ja); 12208 12209 memcpy(insn, &ja, sizeof(ja)); 12210 } 12211 } 12212 12213 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12214 { 12215 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12216 int insn_cnt = env->prog->len; 12217 int i, err; 12218 12219 for (i = 0; i < insn_cnt; i++) { 12220 int j; 12221 12222 j = 0; 12223 while (i + j < insn_cnt && !aux_data[i + j].seen) 12224 j++; 12225 if (!j) 12226 continue; 12227 12228 err = verifier_remove_insns(env, i, j); 12229 if (err) 12230 return err; 12231 insn_cnt = env->prog->len; 12232 } 12233 12234 return 0; 12235 } 12236 12237 static int opt_remove_nops(struct bpf_verifier_env *env) 12238 { 12239 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12240 struct bpf_insn *insn = env->prog->insnsi; 12241 int insn_cnt = env->prog->len; 12242 int i, err; 12243 12244 for (i = 0; i < insn_cnt; i++) { 12245 if (memcmp(&insn[i], &ja, sizeof(ja))) 12246 continue; 12247 12248 err = verifier_remove_insns(env, i, 1); 12249 if (err) 12250 return err; 12251 insn_cnt--; 12252 i--; 12253 } 12254 12255 return 0; 12256 } 12257 12258 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12259 const union bpf_attr *attr) 12260 { 12261 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12262 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12263 int i, patch_len, delta = 0, len = env->prog->len; 12264 struct bpf_insn *insns = env->prog->insnsi; 12265 struct bpf_prog *new_prog; 12266 bool rnd_hi32; 12267 12268 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12269 zext_patch[1] = BPF_ZEXT_REG(0); 12270 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12271 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12272 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12273 for (i = 0; i < len; i++) { 12274 int adj_idx = i + delta; 12275 struct bpf_insn insn; 12276 int load_reg; 12277 12278 insn = insns[adj_idx]; 12279 load_reg = insn_def_regno(&insn); 12280 if (!aux[adj_idx].zext_dst) { 12281 u8 code, class; 12282 u32 imm_rnd; 12283 12284 if (!rnd_hi32) 12285 continue; 12286 12287 code = insn.code; 12288 class = BPF_CLASS(code); 12289 if (load_reg == -1) 12290 continue; 12291 12292 /* NOTE: arg "reg" (the fourth one) is only used for 12293 * BPF_STX + SRC_OP, so it is safe to pass NULL 12294 * here. 12295 */ 12296 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12297 if (class == BPF_LD && 12298 BPF_MODE(code) == BPF_IMM) 12299 i++; 12300 continue; 12301 } 12302 12303 /* ctx load could be transformed into wider load. */ 12304 if (class == BPF_LDX && 12305 aux[adj_idx].ptr_type == PTR_TO_CTX) 12306 continue; 12307 12308 imm_rnd = get_random_int(); 12309 rnd_hi32_patch[0] = insn; 12310 rnd_hi32_patch[1].imm = imm_rnd; 12311 rnd_hi32_patch[3].dst_reg = load_reg; 12312 patch = rnd_hi32_patch; 12313 patch_len = 4; 12314 goto apply_patch_buffer; 12315 } 12316 12317 /* Add in an zero-extend instruction if a) the JIT has requested 12318 * it or b) it's a CMPXCHG. 12319 * 12320 * The latter is because: BPF_CMPXCHG always loads a value into 12321 * R0, therefore always zero-extends. However some archs' 12322 * equivalent instruction only does this load when the 12323 * comparison is successful. This detail of CMPXCHG is 12324 * orthogonal to the general zero-extension behaviour of the 12325 * CPU, so it's treated independently of bpf_jit_needs_zext. 12326 */ 12327 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12328 continue; 12329 12330 if (WARN_ON(load_reg == -1)) { 12331 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12332 return -EFAULT; 12333 } 12334 12335 zext_patch[0] = insn; 12336 zext_patch[1].dst_reg = load_reg; 12337 zext_patch[1].src_reg = load_reg; 12338 patch = zext_patch; 12339 patch_len = 2; 12340 apply_patch_buffer: 12341 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12342 if (!new_prog) 12343 return -ENOMEM; 12344 env->prog = new_prog; 12345 insns = new_prog->insnsi; 12346 aux = env->insn_aux_data; 12347 delta += patch_len - 1; 12348 } 12349 12350 return 0; 12351 } 12352 12353 /* convert load instructions that access fields of a context type into a 12354 * sequence of instructions that access fields of the underlying structure: 12355 * struct __sk_buff -> struct sk_buff 12356 * struct bpf_sock_ops -> struct sock 12357 */ 12358 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12359 { 12360 const struct bpf_verifier_ops *ops = env->ops; 12361 int i, cnt, size, ctx_field_size, delta = 0; 12362 const int insn_cnt = env->prog->len; 12363 struct bpf_insn insn_buf[16], *insn; 12364 u32 target_size, size_default, off; 12365 struct bpf_prog *new_prog; 12366 enum bpf_access_type type; 12367 bool is_narrower_load; 12368 12369 if (ops->gen_prologue || env->seen_direct_write) { 12370 if (!ops->gen_prologue) { 12371 verbose(env, "bpf verifier is misconfigured\n"); 12372 return -EINVAL; 12373 } 12374 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12375 env->prog); 12376 if (cnt >= ARRAY_SIZE(insn_buf)) { 12377 verbose(env, "bpf verifier is misconfigured\n"); 12378 return -EINVAL; 12379 } else if (cnt) { 12380 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12381 if (!new_prog) 12382 return -ENOMEM; 12383 12384 env->prog = new_prog; 12385 delta += cnt - 1; 12386 } 12387 } 12388 12389 if (bpf_prog_is_dev_bound(env->prog->aux)) 12390 return 0; 12391 12392 insn = env->prog->insnsi + delta; 12393 12394 for (i = 0; i < insn_cnt; i++, insn++) { 12395 bpf_convert_ctx_access_t convert_ctx_access; 12396 bool ctx_access; 12397 12398 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12399 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12400 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12401 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12402 type = BPF_READ; 12403 ctx_access = true; 12404 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12405 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12406 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12407 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12408 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12409 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12410 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12411 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12412 type = BPF_WRITE; 12413 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12414 } else { 12415 continue; 12416 } 12417 12418 if (type == BPF_WRITE && 12419 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12420 struct bpf_insn patch[] = { 12421 *insn, 12422 BPF_ST_NOSPEC(), 12423 }; 12424 12425 cnt = ARRAY_SIZE(patch); 12426 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12427 if (!new_prog) 12428 return -ENOMEM; 12429 12430 delta += cnt - 1; 12431 env->prog = new_prog; 12432 insn = new_prog->insnsi + i + delta; 12433 continue; 12434 } 12435 12436 if (!ctx_access) 12437 continue; 12438 12439 switch (env->insn_aux_data[i + delta].ptr_type) { 12440 case PTR_TO_CTX: 12441 if (!ops->convert_ctx_access) 12442 continue; 12443 convert_ctx_access = ops->convert_ctx_access; 12444 break; 12445 case PTR_TO_SOCKET: 12446 case PTR_TO_SOCK_COMMON: 12447 convert_ctx_access = bpf_sock_convert_ctx_access; 12448 break; 12449 case PTR_TO_TCP_SOCK: 12450 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12451 break; 12452 case PTR_TO_XDP_SOCK: 12453 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12454 break; 12455 case PTR_TO_BTF_ID: 12456 if (type == BPF_READ) { 12457 insn->code = BPF_LDX | BPF_PROBE_MEM | 12458 BPF_SIZE((insn)->code); 12459 env->prog->aux->num_exentries++; 12460 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12461 verbose(env, "Writes through BTF pointers are not allowed\n"); 12462 return -EINVAL; 12463 } 12464 continue; 12465 default: 12466 continue; 12467 } 12468 12469 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12470 size = BPF_LDST_BYTES(insn); 12471 12472 /* If the read access is a narrower load of the field, 12473 * convert to a 4/8-byte load, to minimum program type specific 12474 * convert_ctx_access changes. If conversion is successful, 12475 * we will apply proper mask to the result. 12476 */ 12477 is_narrower_load = size < ctx_field_size; 12478 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12479 off = insn->off; 12480 if (is_narrower_load) { 12481 u8 size_code; 12482 12483 if (type == BPF_WRITE) { 12484 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12485 return -EINVAL; 12486 } 12487 12488 size_code = BPF_H; 12489 if (ctx_field_size == 4) 12490 size_code = BPF_W; 12491 else if (ctx_field_size == 8) 12492 size_code = BPF_DW; 12493 12494 insn->off = off & ~(size_default - 1); 12495 insn->code = BPF_LDX | BPF_MEM | size_code; 12496 } 12497 12498 target_size = 0; 12499 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12500 &target_size); 12501 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12502 (ctx_field_size && !target_size)) { 12503 verbose(env, "bpf verifier is misconfigured\n"); 12504 return -EINVAL; 12505 } 12506 12507 if (is_narrower_load && size < target_size) { 12508 u8 shift = bpf_ctx_narrow_access_offset( 12509 off, size, size_default) * 8; 12510 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12511 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12512 return -EINVAL; 12513 } 12514 if (ctx_field_size <= 4) { 12515 if (shift) 12516 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12517 insn->dst_reg, 12518 shift); 12519 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12520 (1 << size * 8) - 1); 12521 } else { 12522 if (shift) 12523 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12524 insn->dst_reg, 12525 shift); 12526 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12527 (1ULL << size * 8) - 1); 12528 } 12529 } 12530 12531 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12532 if (!new_prog) 12533 return -ENOMEM; 12534 12535 delta += cnt - 1; 12536 12537 /* keep walking new program and skip insns we just inserted */ 12538 env->prog = new_prog; 12539 insn = new_prog->insnsi + i + delta; 12540 } 12541 12542 return 0; 12543 } 12544 12545 static int jit_subprogs(struct bpf_verifier_env *env) 12546 { 12547 struct bpf_prog *prog = env->prog, **func, *tmp; 12548 int i, j, subprog_start, subprog_end = 0, len, subprog; 12549 struct bpf_map *map_ptr; 12550 struct bpf_insn *insn; 12551 void *old_bpf_func; 12552 int err, num_exentries; 12553 12554 if (env->subprog_cnt <= 1) 12555 return 0; 12556 12557 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12558 if (bpf_pseudo_func(insn)) { 12559 env->insn_aux_data[i].call_imm = insn->imm; 12560 /* subprog is encoded in insn[1].imm */ 12561 continue; 12562 } 12563 12564 if (!bpf_pseudo_call(insn)) 12565 continue; 12566 /* Upon error here we cannot fall back to interpreter but 12567 * need a hard reject of the program. Thus -EFAULT is 12568 * propagated in any case. 12569 */ 12570 subprog = find_subprog(env, i + insn->imm + 1); 12571 if (subprog < 0) { 12572 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12573 i + insn->imm + 1); 12574 return -EFAULT; 12575 } 12576 /* temporarily remember subprog id inside insn instead of 12577 * aux_data, since next loop will split up all insns into funcs 12578 */ 12579 insn->off = subprog; 12580 /* remember original imm in case JIT fails and fallback 12581 * to interpreter will be needed 12582 */ 12583 env->insn_aux_data[i].call_imm = insn->imm; 12584 /* point imm to __bpf_call_base+1 from JITs point of view */ 12585 insn->imm = 1; 12586 } 12587 12588 err = bpf_prog_alloc_jited_linfo(prog); 12589 if (err) 12590 goto out_undo_insn; 12591 12592 err = -ENOMEM; 12593 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12594 if (!func) 12595 goto out_undo_insn; 12596 12597 for (i = 0; i < env->subprog_cnt; i++) { 12598 subprog_start = subprog_end; 12599 subprog_end = env->subprog_info[i + 1].start; 12600 12601 len = subprog_end - subprog_start; 12602 /* bpf_prog_run() doesn't call subprogs directly, 12603 * hence main prog stats include the runtime of subprogs. 12604 * subprogs don't have IDs and not reachable via prog_get_next_id 12605 * func[i]->stats will never be accessed and stays NULL 12606 */ 12607 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12608 if (!func[i]) 12609 goto out_free; 12610 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12611 len * sizeof(struct bpf_insn)); 12612 func[i]->type = prog->type; 12613 func[i]->len = len; 12614 if (bpf_prog_calc_tag(func[i])) 12615 goto out_free; 12616 func[i]->is_func = 1; 12617 func[i]->aux->func_idx = i; 12618 /* Below members will be freed only at prog->aux */ 12619 func[i]->aux->btf = prog->aux->btf; 12620 func[i]->aux->func_info = prog->aux->func_info; 12621 func[i]->aux->poke_tab = prog->aux->poke_tab; 12622 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12623 12624 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12625 struct bpf_jit_poke_descriptor *poke; 12626 12627 poke = &prog->aux->poke_tab[j]; 12628 if (poke->insn_idx < subprog_end && 12629 poke->insn_idx >= subprog_start) 12630 poke->aux = func[i]->aux; 12631 } 12632 12633 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12634 * Long term would need debug info to populate names 12635 */ 12636 func[i]->aux->name[0] = 'F'; 12637 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12638 func[i]->jit_requested = 1; 12639 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12640 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12641 func[i]->aux->linfo = prog->aux->linfo; 12642 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12643 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12644 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12645 num_exentries = 0; 12646 insn = func[i]->insnsi; 12647 for (j = 0; j < func[i]->len; j++, insn++) { 12648 if (BPF_CLASS(insn->code) == BPF_LDX && 12649 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12650 num_exentries++; 12651 } 12652 func[i]->aux->num_exentries = num_exentries; 12653 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12654 func[i] = bpf_int_jit_compile(func[i]); 12655 if (!func[i]->jited) { 12656 err = -ENOTSUPP; 12657 goto out_free; 12658 } 12659 cond_resched(); 12660 } 12661 12662 /* at this point all bpf functions were successfully JITed 12663 * now populate all bpf_calls with correct addresses and 12664 * run last pass of JIT 12665 */ 12666 for (i = 0; i < env->subprog_cnt; i++) { 12667 insn = func[i]->insnsi; 12668 for (j = 0; j < func[i]->len; j++, insn++) { 12669 if (bpf_pseudo_func(insn)) { 12670 subprog = insn[1].imm; 12671 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12672 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12673 continue; 12674 } 12675 if (!bpf_pseudo_call(insn)) 12676 continue; 12677 subprog = insn->off; 12678 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12679 } 12680 12681 /* we use the aux data to keep a list of the start addresses 12682 * of the JITed images for each function in the program 12683 * 12684 * for some architectures, such as powerpc64, the imm field 12685 * might not be large enough to hold the offset of the start 12686 * address of the callee's JITed image from __bpf_call_base 12687 * 12688 * in such cases, we can lookup the start address of a callee 12689 * by using its subprog id, available from the off field of 12690 * the call instruction, as an index for this list 12691 */ 12692 func[i]->aux->func = func; 12693 func[i]->aux->func_cnt = env->subprog_cnt; 12694 } 12695 for (i = 0; i < env->subprog_cnt; i++) { 12696 old_bpf_func = func[i]->bpf_func; 12697 tmp = bpf_int_jit_compile(func[i]); 12698 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12699 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12700 err = -ENOTSUPP; 12701 goto out_free; 12702 } 12703 cond_resched(); 12704 } 12705 12706 /* finally lock prog and jit images for all functions and 12707 * populate kallsysm 12708 */ 12709 for (i = 0; i < env->subprog_cnt; i++) { 12710 bpf_prog_lock_ro(func[i]); 12711 bpf_prog_kallsyms_add(func[i]); 12712 } 12713 12714 /* Last step: make now unused interpreter insns from main 12715 * prog consistent for later dump requests, so they can 12716 * later look the same as if they were interpreted only. 12717 */ 12718 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12719 if (bpf_pseudo_func(insn)) { 12720 insn[0].imm = env->insn_aux_data[i].call_imm; 12721 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12722 continue; 12723 } 12724 if (!bpf_pseudo_call(insn)) 12725 continue; 12726 insn->off = env->insn_aux_data[i].call_imm; 12727 subprog = find_subprog(env, i + insn->off + 1); 12728 insn->imm = subprog; 12729 } 12730 12731 prog->jited = 1; 12732 prog->bpf_func = func[0]->bpf_func; 12733 prog->aux->func = func; 12734 prog->aux->func_cnt = env->subprog_cnt; 12735 bpf_prog_jit_attempt_done(prog); 12736 return 0; 12737 out_free: 12738 /* We failed JIT'ing, so at this point we need to unregister poke 12739 * descriptors from subprogs, so that kernel is not attempting to 12740 * patch it anymore as we're freeing the subprog JIT memory. 12741 */ 12742 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12743 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12744 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12745 } 12746 /* At this point we're guaranteed that poke descriptors are not 12747 * live anymore. We can just unlink its descriptor table as it's 12748 * released with the main prog. 12749 */ 12750 for (i = 0; i < env->subprog_cnt; i++) { 12751 if (!func[i]) 12752 continue; 12753 func[i]->aux->poke_tab = NULL; 12754 bpf_jit_free(func[i]); 12755 } 12756 kfree(func); 12757 out_undo_insn: 12758 /* cleanup main prog to be interpreted */ 12759 prog->jit_requested = 0; 12760 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12761 if (!bpf_pseudo_call(insn)) 12762 continue; 12763 insn->off = 0; 12764 insn->imm = env->insn_aux_data[i].call_imm; 12765 } 12766 bpf_prog_jit_attempt_done(prog); 12767 return err; 12768 } 12769 12770 static int fixup_call_args(struct bpf_verifier_env *env) 12771 { 12772 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12773 struct bpf_prog *prog = env->prog; 12774 struct bpf_insn *insn = prog->insnsi; 12775 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12776 int i, depth; 12777 #endif 12778 int err = 0; 12779 12780 if (env->prog->jit_requested && 12781 !bpf_prog_is_dev_bound(env->prog->aux)) { 12782 err = jit_subprogs(env); 12783 if (err == 0) 12784 return 0; 12785 if (err == -EFAULT) 12786 return err; 12787 } 12788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12789 if (has_kfunc_call) { 12790 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12791 return -EINVAL; 12792 } 12793 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12794 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12795 * have to be rejected, since interpreter doesn't support them yet. 12796 */ 12797 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12798 return -EINVAL; 12799 } 12800 for (i = 0; i < prog->len; i++, insn++) { 12801 if (bpf_pseudo_func(insn)) { 12802 /* When JIT fails the progs with callback calls 12803 * have to be rejected, since interpreter doesn't support them yet. 12804 */ 12805 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12806 return -EINVAL; 12807 } 12808 12809 if (!bpf_pseudo_call(insn)) 12810 continue; 12811 depth = get_callee_stack_depth(env, insn, i); 12812 if (depth < 0) 12813 return depth; 12814 bpf_patch_call_args(insn, depth); 12815 } 12816 err = 0; 12817 #endif 12818 return err; 12819 } 12820 12821 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12822 struct bpf_insn *insn) 12823 { 12824 const struct bpf_kfunc_desc *desc; 12825 12826 if (!insn->imm) { 12827 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 12828 return -EINVAL; 12829 } 12830 12831 /* insn->imm has the btf func_id. Replace it with 12832 * an address (relative to __bpf_base_call). 12833 */ 12834 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 12835 if (!desc) { 12836 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12837 insn->imm); 12838 return -EFAULT; 12839 } 12840 12841 insn->imm = desc->imm; 12842 12843 return 0; 12844 } 12845 12846 /* Do various post-verification rewrites in a single program pass. 12847 * These rewrites simplify JIT and interpreter implementations. 12848 */ 12849 static int do_misc_fixups(struct bpf_verifier_env *env) 12850 { 12851 struct bpf_prog *prog = env->prog; 12852 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12853 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12854 struct bpf_insn *insn = prog->insnsi; 12855 const struct bpf_func_proto *fn; 12856 const int insn_cnt = prog->len; 12857 const struct bpf_map_ops *ops; 12858 struct bpf_insn_aux_data *aux; 12859 struct bpf_insn insn_buf[16]; 12860 struct bpf_prog *new_prog; 12861 struct bpf_map *map_ptr; 12862 int i, ret, cnt, delta = 0; 12863 12864 for (i = 0; i < insn_cnt; i++, insn++) { 12865 /* Make divide-by-zero exceptions impossible. */ 12866 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12867 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12868 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12869 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12870 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12871 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12872 struct bpf_insn *patchlet; 12873 struct bpf_insn chk_and_div[] = { 12874 /* [R,W]x div 0 -> 0 */ 12875 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12876 BPF_JNE | BPF_K, insn->src_reg, 12877 0, 2, 0), 12878 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12879 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12880 *insn, 12881 }; 12882 struct bpf_insn chk_and_mod[] = { 12883 /* [R,W]x mod 0 -> [R,W]x */ 12884 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12885 BPF_JEQ | BPF_K, insn->src_reg, 12886 0, 1 + (is64 ? 0 : 1), 0), 12887 *insn, 12888 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12889 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12890 }; 12891 12892 patchlet = isdiv ? chk_and_div : chk_and_mod; 12893 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12894 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12895 12896 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12897 if (!new_prog) 12898 return -ENOMEM; 12899 12900 delta += cnt - 1; 12901 env->prog = prog = new_prog; 12902 insn = new_prog->insnsi + i + delta; 12903 continue; 12904 } 12905 12906 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12907 if (BPF_CLASS(insn->code) == BPF_LD && 12908 (BPF_MODE(insn->code) == BPF_ABS || 12909 BPF_MODE(insn->code) == BPF_IND)) { 12910 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12911 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12912 verbose(env, "bpf verifier is misconfigured\n"); 12913 return -EINVAL; 12914 } 12915 12916 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12917 if (!new_prog) 12918 return -ENOMEM; 12919 12920 delta += cnt - 1; 12921 env->prog = prog = new_prog; 12922 insn = new_prog->insnsi + i + delta; 12923 continue; 12924 } 12925 12926 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12927 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12928 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12929 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12930 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12931 struct bpf_insn *patch = &insn_buf[0]; 12932 bool issrc, isneg, isimm; 12933 u32 off_reg; 12934 12935 aux = &env->insn_aux_data[i + delta]; 12936 if (!aux->alu_state || 12937 aux->alu_state == BPF_ALU_NON_POINTER) 12938 continue; 12939 12940 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12941 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12942 BPF_ALU_SANITIZE_SRC; 12943 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12944 12945 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12946 if (isimm) { 12947 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12948 } else { 12949 if (isneg) 12950 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12951 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12952 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12953 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12954 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12955 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12956 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12957 } 12958 if (!issrc) 12959 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12960 insn->src_reg = BPF_REG_AX; 12961 if (isneg) 12962 insn->code = insn->code == code_add ? 12963 code_sub : code_add; 12964 *patch++ = *insn; 12965 if (issrc && isneg && !isimm) 12966 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12967 cnt = patch - insn_buf; 12968 12969 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12970 if (!new_prog) 12971 return -ENOMEM; 12972 12973 delta += cnt - 1; 12974 env->prog = prog = new_prog; 12975 insn = new_prog->insnsi + i + delta; 12976 continue; 12977 } 12978 12979 if (insn->code != (BPF_JMP | BPF_CALL)) 12980 continue; 12981 if (insn->src_reg == BPF_PSEUDO_CALL) 12982 continue; 12983 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12984 ret = fixup_kfunc_call(env, insn); 12985 if (ret) 12986 return ret; 12987 continue; 12988 } 12989 12990 if (insn->imm == BPF_FUNC_get_route_realm) 12991 prog->dst_needed = 1; 12992 if (insn->imm == BPF_FUNC_get_prandom_u32) 12993 bpf_user_rnd_init_once(); 12994 if (insn->imm == BPF_FUNC_override_return) 12995 prog->kprobe_override = 1; 12996 if (insn->imm == BPF_FUNC_tail_call) { 12997 /* If we tail call into other programs, we 12998 * cannot make any assumptions since they can 12999 * be replaced dynamically during runtime in 13000 * the program array. 13001 */ 13002 prog->cb_access = 1; 13003 if (!allow_tail_call_in_subprogs(env)) 13004 prog->aux->stack_depth = MAX_BPF_STACK; 13005 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13006 13007 /* mark bpf_tail_call as different opcode to avoid 13008 * conditional branch in the interpreter for every normal 13009 * call and to prevent accidental JITing by JIT compiler 13010 * that doesn't support bpf_tail_call yet 13011 */ 13012 insn->imm = 0; 13013 insn->code = BPF_JMP | BPF_TAIL_CALL; 13014 13015 aux = &env->insn_aux_data[i + delta]; 13016 if (env->bpf_capable && !expect_blinding && 13017 prog->jit_requested && 13018 !bpf_map_key_poisoned(aux) && 13019 !bpf_map_ptr_poisoned(aux) && 13020 !bpf_map_ptr_unpriv(aux)) { 13021 struct bpf_jit_poke_descriptor desc = { 13022 .reason = BPF_POKE_REASON_TAIL_CALL, 13023 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13024 .tail_call.key = bpf_map_key_immediate(aux), 13025 .insn_idx = i + delta, 13026 }; 13027 13028 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13029 if (ret < 0) { 13030 verbose(env, "adding tail call poke descriptor failed\n"); 13031 return ret; 13032 } 13033 13034 insn->imm = ret + 1; 13035 continue; 13036 } 13037 13038 if (!bpf_map_ptr_unpriv(aux)) 13039 continue; 13040 13041 /* instead of changing every JIT dealing with tail_call 13042 * emit two extra insns: 13043 * if (index >= max_entries) goto out; 13044 * index &= array->index_mask; 13045 * to avoid out-of-bounds cpu speculation 13046 */ 13047 if (bpf_map_ptr_poisoned(aux)) { 13048 verbose(env, "tail_call abusing map_ptr\n"); 13049 return -EINVAL; 13050 } 13051 13052 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13053 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13054 map_ptr->max_entries, 2); 13055 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13056 container_of(map_ptr, 13057 struct bpf_array, 13058 map)->index_mask); 13059 insn_buf[2] = *insn; 13060 cnt = 3; 13061 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13062 if (!new_prog) 13063 return -ENOMEM; 13064 13065 delta += cnt - 1; 13066 env->prog = prog = new_prog; 13067 insn = new_prog->insnsi + i + delta; 13068 continue; 13069 } 13070 13071 if (insn->imm == BPF_FUNC_timer_set_callback) { 13072 /* The verifier will process callback_fn as many times as necessary 13073 * with different maps and the register states prepared by 13074 * set_timer_callback_state will be accurate. 13075 * 13076 * The following use case is valid: 13077 * map1 is shared by prog1, prog2, prog3. 13078 * prog1 calls bpf_timer_init for some map1 elements 13079 * prog2 calls bpf_timer_set_callback for some map1 elements. 13080 * Those that were not bpf_timer_init-ed will return -EINVAL. 13081 * prog3 calls bpf_timer_start for some map1 elements. 13082 * Those that were not both bpf_timer_init-ed and 13083 * bpf_timer_set_callback-ed will return -EINVAL. 13084 */ 13085 struct bpf_insn ld_addrs[2] = { 13086 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13087 }; 13088 13089 insn_buf[0] = ld_addrs[0]; 13090 insn_buf[1] = ld_addrs[1]; 13091 insn_buf[2] = *insn; 13092 cnt = 3; 13093 13094 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13095 if (!new_prog) 13096 return -ENOMEM; 13097 13098 delta += cnt - 1; 13099 env->prog = prog = new_prog; 13100 insn = new_prog->insnsi + i + delta; 13101 goto patch_call_imm; 13102 } 13103 13104 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13105 * and other inlining handlers are currently limited to 64 bit 13106 * only. 13107 */ 13108 if (prog->jit_requested && BITS_PER_LONG == 64 && 13109 (insn->imm == BPF_FUNC_map_lookup_elem || 13110 insn->imm == BPF_FUNC_map_update_elem || 13111 insn->imm == BPF_FUNC_map_delete_elem || 13112 insn->imm == BPF_FUNC_map_push_elem || 13113 insn->imm == BPF_FUNC_map_pop_elem || 13114 insn->imm == BPF_FUNC_map_peek_elem || 13115 insn->imm == BPF_FUNC_redirect_map || 13116 insn->imm == BPF_FUNC_for_each_map_elem)) { 13117 aux = &env->insn_aux_data[i + delta]; 13118 if (bpf_map_ptr_poisoned(aux)) 13119 goto patch_call_imm; 13120 13121 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13122 ops = map_ptr->ops; 13123 if (insn->imm == BPF_FUNC_map_lookup_elem && 13124 ops->map_gen_lookup) { 13125 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13126 if (cnt == -EOPNOTSUPP) 13127 goto patch_map_ops_generic; 13128 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13129 verbose(env, "bpf verifier is misconfigured\n"); 13130 return -EINVAL; 13131 } 13132 13133 new_prog = bpf_patch_insn_data(env, i + delta, 13134 insn_buf, cnt); 13135 if (!new_prog) 13136 return -ENOMEM; 13137 13138 delta += cnt - 1; 13139 env->prog = prog = new_prog; 13140 insn = new_prog->insnsi + i + delta; 13141 continue; 13142 } 13143 13144 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13145 (void *(*)(struct bpf_map *map, void *key))NULL)); 13146 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13147 (int (*)(struct bpf_map *map, void *key))NULL)); 13148 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13149 (int (*)(struct bpf_map *map, void *key, void *value, 13150 u64 flags))NULL)); 13151 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13152 (int (*)(struct bpf_map *map, void *value, 13153 u64 flags))NULL)); 13154 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13155 (int (*)(struct bpf_map *map, void *value))NULL)); 13156 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13157 (int (*)(struct bpf_map *map, void *value))NULL)); 13158 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13159 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13160 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13161 (int (*)(struct bpf_map *map, 13162 bpf_callback_t callback_fn, 13163 void *callback_ctx, 13164 u64 flags))NULL)); 13165 13166 patch_map_ops_generic: 13167 switch (insn->imm) { 13168 case BPF_FUNC_map_lookup_elem: 13169 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13170 continue; 13171 case BPF_FUNC_map_update_elem: 13172 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13173 continue; 13174 case BPF_FUNC_map_delete_elem: 13175 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13176 continue; 13177 case BPF_FUNC_map_push_elem: 13178 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13179 continue; 13180 case BPF_FUNC_map_pop_elem: 13181 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13182 continue; 13183 case BPF_FUNC_map_peek_elem: 13184 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13185 continue; 13186 case BPF_FUNC_redirect_map: 13187 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13188 continue; 13189 case BPF_FUNC_for_each_map_elem: 13190 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13191 continue; 13192 } 13193 13194 goto patch_call_imm; 13195 } 13196 13197 /* Implement bpf_jiffies64 inline. */ 13198 if (prog->jit_requested && BITS_PER_LONG == 64 && 13199 insn->imm == BPF_FUNC_jiffies64) { 13200 struct bpf_insn ld_jiffies_addr[2] = { 13201 BPF_LD_IMM64(BPF_REG_0, 13202 (unsigned long)&jiffies), 13203 }; 13204 13205 insn_buf[0] = ld_jiffies_addr[0]; 13206 insn_buf[1] = ld_jiffies_addr[1]; 13207 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13208 BPF_REG_0, 0); 13209 cnt = 3; 13210 13211 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13212 cnt); 13213 if (!new_prog) 13214 return -ENOMEM; 13215 13216 delta += cnt - 1; 13217 env->prog = prog = new_prog; 13218 insn = new_prog->insnsi + i + delta; 13219 continue; 13220 } 13221 13222 /* Implement bpf_get_func_ip inline. */ 13223 if (prog_type == BPF_PROG_TYPE_TRACING && 13224 insn->imm == BPF_FUNC_get_func_ip) { 13225 /* Load IP address from ctx - 8 */ 13226 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13227 13228 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13229 if (!new_prog) 13230 return -ENOMEM; 13231 13232 env->prog = prog = new_prog; 13233 insn = new_prog->insnsi + i + delta; 13234 continue; 13235 } 13236 13237 patch_call_imm: 13238 fn = env->ops->get_func_proto(insn->imm, env->prog); 13239 /* all functions that have prototype and verifier allowed 13240 * programs to call them, must be real in-kernel functions 13241 */ 13242 if (!fn->func) { 13243 verbose(env, 13244 "kernel subsystem misconfigured func %s#%d\n", 13245 func_id_name(insn->imm), insn->imm); 13246 return -EFAULT; 13247 } 13248 insn->imm = fn->func - __bpf_call_base; 13249 } 13250 13251 /* Since poke tab is now finalized, publish aux to tracker. */ 13252 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13253 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13254 if (!map_ptr->ops->map_poke_track || 13255 !map_ptr->ops->map_poke_untrack || 13256 !map_ptr->ops->map_poke_run) { 13257 verbose(env, "bpf verifier is misconfigured\n"); 13258 return -EINVAL; 13259 } 13260 13261 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13262 if (ret < 0) { 13263 verbose(env, "tracking tail call prog failed\n"); 13264 return ret; 13265 } 13266 } 13267 13268 sort_kfunc_descs_by_imm(env->prog); 13269 13270 return 0; 13271 } 13272 13273 static void free_states(struct bpf_verifier_env *env) 13274 { 13275 struct bpf_verifier_state_list *sl, *sln; 13276 int i; 13277 13278 sl = env->free_list; 13279 while (sl) { 13280 sln = sl->next; 13281 free_verifier_state(&sl->state, false); 13282 kfree(sl); 13283 sl = sln; 13284 } 13285 env->free_list = NULL; 13286 13287 if (!env->explored_states) 13288 return; 13289 13290 for (i = 0; i < state_htab_size(env); i++) { 13291 sl = env->explored_states[i]; 13292 13293 while (sl) { 13294 sln = sl->next; 13295 free_verifier_state(&sl->state, false); 13296 kfree(sl); 13297 sl = sln; 13298 } 13299 env->explored_states[i] = NULL; 13300 } 13301 } 13302 13303 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13304 { 13305 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13306 struct bpf_verifier_state *state; 13307 struct bpf_reg_state *regs; 13308 int ret, i; 13309 13310 env->prev_linfo = NULL; 13311 env->pass_cnt++; 13312 13313 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13314 if (!state) 13315 return -ENOMEM; 13316 state->curframe = 0; 13317 state->speculative = false; 13318 state->branches = 1; 13319 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13320 if (!state->frame[0]) { 13321 kfree(state); 13322 return -ENOMEM; 13323 } 13324 env->cur_state = state; 13325 init_func_state(env, state->frame[0], 13326 BPF_MAIN_FUNC /* callsite */, 13327 0 /* frameno */, 13328 subprog); 13329 13330 regs = state->frame[state->curframe]->regs; 13331 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13332 ret = btf_prepare_func_args(env, subprog, regs); 13333 if (ret) 13334 goto out; 13335 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13336 if (regs[i].type == PTR_TO_CTX) 13337 mark_reg_known_zero(env, regs, i); 13338 else if (regs[i].type == SCALAR_VALUE) 13339 mark_reg_unknown(env, regs, i); 13340 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13341 const u32 mem_size = regs[i].mem_size; 13342 13343 mark_reg_known_zero(env, regs, i); 13344 regs[i].mem_size = mem_size; 13345 regs[i].id = ++env->id_gen; 13346 } 13347 } 13348 } else { 13349 /* 1st arg to a function */ 13350 regs[BPF_REG_1].type = PTR_TO_CTX; 13351 mark_reg_known_zero(env, regs, BPF_REG_1); 13352 ret = btf_check_subprog_arg_match(env, subprog, regs); 13353 if (ret == -EFAULT) 13354 /* unlikely verifier bug. abort. 13355 * ret == 0 and ret < 0 are sadly acceptable for 13356 * main() function due to backward compatibility. 13357 * Like socket filter program may be written as: 13358 * int bpf_prog(struct pt_regs *ctx) 13359 * and never dereference that ctx in the program. 13360 * 'struct pt_regs' is a type mismatch for socket 13361 * filter that should be using 'struct __sk_buff'. 13362 */ 13363 goto out; 13364 } 13365 13366 ret = do_check(env); 13367 out: 13368 /* check for NULL is necessary, since cur_state can be freed inside 13369 * do_check() under memory pressure. 13370 */ 13371 if (env->cur_state) { 13372 free_verifier_state(env->cur_state, true); 13373 env->cur_state = NULL; 13374 } 13375 while (!pop_stack(env, NULL, NULL, false)); 13376 if (!ret && pop_log) 13377 bpf_vlog_reset(&env->log, 0); 13378 free_states(env); 13379 return ret; 13380 } 13381 13382 /* Verify all global functions in a BPF program one by one based on their BTF. 13383 * All global functions must pass verification. Otherwise the whole program is rejected. 13384 * Consider: 13385 * int bar(int); 13386 * int foo(int f) 13387 * { 13388 * return bar(f); 13389 * } 13390 * int bar(int b) 13391 * { 13392 * ... 13393 * } 13394 * foo() will be verified first for R1=any_scalar_value. During verification it 13395 * will be assumed that bar() already verified successfully and call to bar() 13396 * from foo() will be checked for type match only. Later bar() will be verified 13397 * independently to check that it's safe for R1=any_scalar_value. 13398 */ 13399 static int do_check_subprogs(struct bpf_verifier_env *env) 13400 { 13401 struct bpf_prog_aux *aux = env->prog->aux; 13402 int i, ret; 13403 13404 if (!aux->func_info) 13405 return 0; 13406 13407 for (i = 1; i < env->subprog_cnt; i++) { 13408 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13409 continue; 13410 env->insn_idx = env->subprog_info[i].start; 13411 WARN_ON_ONCE(env->insn_idx == 0); 13412 ret = do_check_common(env, i); 13413 if (ret) { 13414 return ret; 13415 } else if (env->log.level & BPF_LOG_LEVEL) { 13416 verbose(env, 13417 "Func#%d is safe for any args that match its prototype\n", 13418 i); 13419 } 13420 } 13421 return 0; 13422 } 13423 13424 static int do_check_main(struct bpf_verifier_env *env) 13425 { 13426 int ret; 13427 13428 env->insn_idx = 0; 13429 ret = do_check_common(env, 0); 13430 if (!ret) 13431 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13432 return ret; 13433 } 13434 13435 13436 static void print_verification_stats(struct bpf_verifier_env *env) 13437 { 13438 int i; 13439 13440 if (env->log.level & BPF_LOG_STATS) { 13441 verbose(env, "verification time %lld usec\n", 13442 div_u64(env->verification_time, 1000)); 13443 verbose(env, "stack depth "); 13444 for (i = 0; i < env->subprog_cnt; i++) { 13445 u32 depth = env->subprog_info[i].stack_depth; 13446 13447 verbose(env, "%d", depth); 13448 if (i + 1 < env->subprog_cnt) 13449 verbose(env, "+"); 13450 } 13451 verbose(env, "\n"); 13452 } 13453 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13454 "total_states %d peak_states %d mark_read %d\n", 13455 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13456 env->max_states_per_insn, env->total_states, 13457 env->peak_states, env->longest_mark_read_walk); 13458 } 13459 13460 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13461 { 13462 const struct btf_type *t, *func_proto; 13463 const struct bpf_struct_ops *st_ops; 13464 const struct btf_member *member; 13465 struct bpf_prog *prog = env->prog; 13466 u32 btf_id, member_idx; 13467 const char *mname; 13468 13469 if (!prog->gpl_compatible) { 13470 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13471 return -EINVAL; 13472 } 13473 13474 btf_id = prog->aux->attach_btf_id; 13475 st_ops = bpf_struct_ops_find(btf_id); 13476 if (!st_ops) { 13477 verbose(env, "attach_btf_id %u is not a supported struct\n", 13478 btf_id); 13479 return -ENOTSUPP; 13480 } 13481 13482 t = st_ops->type; 13483 member_idx = prog->expected_attach_type; 13484 if (member_idx >= btf_type_vlen(t)) { 13485 verbose(env, "attach to invalid member idx %u of struct %s\n", 13486 member_idx, st_ops->name); 13487 return -EINVAL; 13488 } 13489 13490 member = &btf_type_member(t)[member_idx]; 13491 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13492 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13493 NULL); 13494 if (!func_proto) { 13495 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13496 mname, member_idx, st_ops->name); 13497 return -EINVAL; 13498 } 13499 13500 if (st_ops->check_member) { 13501 int err = st_ops->check_member(t, member); 13502 13503 if (err) { 13504 verbose(env, "attach to unsupported member %s of struct %s\n", 13505 mname, st_ops->name); 13506 return err; 13507 } 13508 } 13509 13510 prog->aux->attach_func_proto = func_proto; 13511 prog->aux->attach_func_name = mname; 13512 env->ops = st_ops->verifier_ops; 13513 13514 return 0; 13515 } 13516 #define SECURITY_PREFIX "security_" 13517 13518 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13519 { 13520 if (within_error_injection_list(addr) || 13521 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13522 return 0; 13523 13524 return -EINVAL; 13525 } 13526 13527 /* list of non-sleepable functions that are otherwise on 13528 * ALLOW_ERROR_INJECTION list 13529 */ 13530 BTF_SET_START(btf_non_sleepable_error_inject) 13531 /* Three functions below can be called from sleepable and non-sleepable context. 13532 * Assume non-sleepable from bpf safety point of view. 13533 */ 13534 BTF_ID(func, __add_to_page_cache_locked) 13535 BTF_ID(func, should_fail_alloc_page) 13536 BTF_ID(func, should_failslab) 13537 BTF_SET_END(btf_non_sleepable_error_inject) 13538 13539 static int check_non_sleepable_error_inject(u32 btf_id) 13540 { 13541 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13542 } 13543 13544 int bpf_check_attach_target(struct bpf_verifier_log *log, 13545 const struct bpf_prog *prog, 13546 const struct bpf_prog *tgt_prog, 13547 u32 btf_id, 13548 struct bpf_attach_target_info *tgt_info) 13549 { 13550 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13551 const char prefix[] = "btf_trace_"; 13552 int ret = 0, subprog = -1, i; 13553 const struct btf_type *t; 13554 bool conservative = true; 13555 const char *tname; 13556 struct btf *btf; 13557 long addr = 0; 13558 13559 if (!btf_id) { 13560 bpf_log(log, "Tracing programs must provide btf_id\n"); 13561 return -EINVAL; 13562 } 13563 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13564 if (!btf) { 13565 bpf_log(log, 13566 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13567 return -EINVAL; 13568 } 13569 t = btf_type_by_id(btf, btf_id); 13570 if (!t) { 13571 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13572 return -EINVAL; 13573 } 13574 tname = btf_name_by_offset(btf, t->name_off); 13575 if (!tname) { 13576 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13577 return -EINVAL; 13578 } 13579 if (tgt_prog) { 13580 struct bpf_prog_aux *aux = tgt_prog->aux; 13581 13582 for (i = 0; i < aux->func_info_cnt; i++) 13583 if (aux->func_info[i].type_id == btf_id) { 13584 subprog = i; 13585 break; 13586 } 13587 if (subprog == -1) { 13588 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13589 return -EINVAL; 13590 } 13591 conservative = aux->func_info_aux[subprog].unreliable; 13592 if (prog_extension) { 13593 if (conservative) { 13594 bpf_log(log, 13595 "Cannot replace static functions\n"); 13596 return -EINVAL; 13597 } 13598 if (!prog->jit_requested) { 13599 bpf_log(log, 13600 "Extension programs should be JITed\n"); 13601 return -EINVAL; 13602 } 13603 } 13604 if (!tgt_prog->jited) { 13605 bpf_log(log, "Can attach to only JITed progs\n"); 13606 return -EINVAL; 13607 } 13608 if (tgt_prog->type == prog->type) { 13609 /* Cannot fentry/fexit another fentry/fexit program. 13610 * Cannot attach program extension to another extension. 13611 * It's ok to attach fentry/fexit to extension program. 13612 */ 13613 bpf_log(log, "Cannot recursively attach\n"); 13614 return -EINVAL; 13615 } 13616 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13617 prog_extension && 13618 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13619 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13620 /* Program extensions can extend all program types 13621 * except fentry/fexit. The reason is the following. 13622 * The fentry/fexit programs are used for performance 13623 * analysis, stats and can be attached to any program 13624 * type except themselves. When extension program is 13625 * replacing XDP function it is necessary to allow 13626 * performance analysis of all functions. Both original 13627 * XDP program and its program extension. Hence 13628 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13629 * allowed. If extending of fentry/fexit was allowed it 13630 * would be possible to create long call chain 13631 * fentry->extension->fentry->extension beyond 13632 * reasonable stack size. Hence extending fentry is not 13633 * allowed. 13634 */ 13635 bpf_log(log, "Cannot extend fentry/fexit\n"); 13636 return -EINVAL; 13637 } 13638 } else { 13639 if (prog_extension) { 13640 bpf_log(log, "Cannot replace kernel functions\n"); 13641 return -EINVAL; 13642 } 13643 } 13644 13645 switch (prog->expected_attach_type) { 13646 case BPF_TRACE_RAW_TP: 13647 if (tgt_prog) { 13648 bpf_log(log, 13649 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13650 return -EINVAL; 13651 } 13652 if (!btf_type_is_typedef(t)) { 13653 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13654 btf_id); 13655 return -EINVAL; 13656 } 13657 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13658 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13659 btf_id, tname); 13660 return -EINVAL; 13661 } 13662 tname += sizeof(prefix) - 1; 13663 t = btf_type_by_id(btf, t->type); 13664 if (!btf_type_is_ptr(t)) 13665 /* should never happen in valid vmlinux build */ 13666 return -EINVAL; 13667 t = btf_type_by_id(btf, t->type); 13668 if (!btf_type_is_func_proto(t)) 13669 /* should never happen in valid vmlinux build */ 13670 return -EINVAL; 13671 13672 break; 13673 case BPF_TRACE_ITER: 13674 if (!btf_type_is_func(t)) { 13675 bpf_log(log, "attach_btf_id %u is not a function\n", 13676 btf_id); 13677 return -EINVAL; 13678 } 13679 t = btf_type_by_id(btf, t->type); 13680 if (!btf_type_is_func_proto(t)) 13681 return -EINVAL; 13682 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13683 if (ret) 13684 return ret; 13685 break; 13686 default: 13687 if (!prog_extension) 13688 return -EINVAL; 13689 fallthrough; 13690 case BPF_MODIFY_RETURN: 13691 case BPF_LSM_MAC: 13692 case BPF_TRACE_FENTRY: 13693 case BPF_TRACE_FEXIT: 13694 if (!btf_type_is_func(t)) { 13695 bpf_log(log, "attach_btf_id %u is not a function\n", 13696 btf_id); 13697 return -EINVAL; 13698 } 13699 if (prog_extension && 13700 btf_check_type_match(log, prog, btf, t)) 13701 return -EINVAL; 13702 t = btf_type_by_id(btf, t->type); 13703 if (!btf_type_is_func_proto(t)) 13704 return -EINVAL; 13705 13706 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13707 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13708 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13709 return -EINVAL; 13710 13711 if (tgt_prog && conservative) 13712 t = NULL; 13713 13714 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13715 if (ret < 0) 13716 return ret; 13717 13718 if (tgt_prog) { 13719 if (subprog == 0) 13720 addr = (long) tgt_prog->bpf_func; 13721 else 13722 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13723 } else { 13724 addr = kallsyms_lookup_name(tname); 13725 if (!addr) { 13726 bpf_log(log, 13727 "The address of function %s cannot be found\n", 13728 tname); 13729 return -ENOENT; 13730 } 13731 } 13732 13733 if (prog->aux->sleepable) { 13734 ret = -EINVAL; 13735 switch (prog->type) { 13736 case BPF_PROG_TYPE_TRACING: 13737 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13738 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13739 */ 13740 if (!check_non_sleepable_error_inject(btf_id) && 13741 within_error_injection_list(addr)) 13742 ret = 0; 13743 break; 13744 case BPF_PROG_TYPE_LSM: 13745 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13746 * Only some of them are sleepable. 13747 */ 13748 if (bpf_lsm_is_sleepable_hook(btf_id)) 13749 ret = 0; 13750 break; 13751 default: 13752 break; 13753 } 13754 if (ret) { 13755 bpf_log(log, "%s is not sleepable\n", tname); 13756 return ret; 13757 } 13758 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13759 if (tgt_prog) { 13760 bpf_log(log, "can't modify return codes of BPF programs\n"); 13761 return -EINVAL; 13762 } 13763 ret = check_attach_modify_return(addr, tname); 13764 if (ret) { 13765 bpf_log(log, "%s() is not modifiable\n", tname); 13766 return ret; 13767 } 13768 } 13769 13770 break; 13771 } 13772 tgt_info->tgt_addr = addr; 13773 tgt_info->tgt_name = tname; 13774 tgt_info->tgt_type = t; 13775 return 0; 13776 } 13777 13778 BTF_SET_START(btf_id_deny) 13779 BTF_ID_UNUSED 13780 #ifdef CONFIG_SMP 13781 BTF_ID(func, migrate_disable) 13782 BTF_ID(func, migrate_enable) 13783 #endif 13784 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13785 BTF_ID(func, rcu_read_unlock_strict) 13786 #endif 13787 BTF_SET_END(btf_id_deny) 13788 13789 static int check_attach_btf_id(struct bpf_verifier_env *env) 13790 { 13791 struct bpf_prog *prog = env->prog; 13792 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13793 struct bpf_attach_target_info tgt_info = {}; 13794 u32 btf_id = prog->aux->attach_btf_id; 13795 struct bpf_trampoline *tr; 13796 int ret; 13797 u64 key; 13798 13799 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13800 if (prog->aux->sleepable) 13801 /* attach_btf_id checked to be zero already */ 13802 return 0; 13803 verbose(env, "Syscall programs can only be sleepable\n"); 13804 return -EINVAL; 13805 } 13806 13807 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13808 prog->type != BPF_PROG_TYPE_LSM) { 13809 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13810 return -EINVAL; 13811 } 13812 13813 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13814 return check_struct_ops_btf_id(env); 13815 13816 if (prog->type != BPF_PROG_TYPE_TRACING && 13817 prog->type != BPF_PROG_TYPE_LSM && 13818 prog->type != BPF_PROG_TYPE_EXT) 13819 return 0; 13820 13821 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13822 if (ret) 13823 return ret; 13824 13825 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13826 /* to make freplace equivalent to their targets, they need to 13827 * inherit env->ops and expected_attach_type for the rest of the 13828 * verification 13829 */ 13830 env->ops = bpf_verifier_ops[tgt_prog->type]; 13831 prog->expected_attach_type = tgt_prog->expected_attach_type; 13832 } 13833 13834 /* store info about the attachment target that will be used later */ 13835 prog->aux->attach_func_proto = tgt_info.tgt_type; 13836 prog->aux->attach_func_name = tgt_info.tgt_name; 13837 13838 if (tgt_prog) { 13839 prog->aux->saved_dst_prog_type = tgt_prog->type; 13840 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13841 } 13842 13843 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13844 prog->aux->attach_btf_trace = true; 13845 return 0; 13846 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13847 if (!bpf_iter_prog_supported(prog)) 13848 return -EINVAL; 13849 return 0; 13850 } 13851 13852 if (prog->type == BPF_PROG_TYPE_LSM) { 13853 ret = bpf_lsm_verify_prog(&env->log, prog); 13854 if (ret < 0) 13855 return ret; 13856 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13857 btf_id_set_contains(&btf_id_deny, btf_id)) { 13858 return -EINVAL; 13859 } 13860 13861 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13862 tr = bpf_trampoline_get(key, &tgt_info); 13863 if (!tr) 13864 return -ENOMEM; 13865 13866 prog->aux->dst_trampoline = tr; 13867 return 0; 13868 } 13869 13870 struct btf *bpf_get_btf_vmlinux(void) 13871 { 13872 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13873 mutex_lock(&bpf_verifier_lock); 13874 if (!btf_vmlinux) 13875 btf_vmlinux = btf_parse_vmlinux(); 13876 mutex_unlock(&bpf_verifier_lock); 13877 } 13878 return btf_vmlinux; 13879 } 13880 13881 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13882 { 13883 u64 start_time = ktime_get_ns(); 13884 struct bpf_verifier_env *env; 13885 struct bpf_verifier_log *log; 13886 int i, len, ret = -EINVAL; 13887 bool is_priv; 13888 13889 /* no program is valid */ 13890 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13891 return -EINVAL; 13892 13893 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13894 * allocate/free it every time bpf_check() is called 13895 */ 13896 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13897 if (!env) 13898 return -ENOMEM; 13899 log = &env->log; 13900 13901 len = (*prog)->len; 13902 env->insn_aux_data = 13903 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13904 ret = -ENOMEM; 13905 if (!env->insn_aux_data) 13906 goto err_free_env; 13907 for (i = 0; i < len; i++) 13908 env->insn_aux_data[i].orig_idx = i; 13909 env->prog = *prog; 13910 env->ops = bpf_verifier_ops[env->prog->type]; 13911 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13912 is_priv = bpf_capable(); 13913 13914 bpf_get_btf_vmlinux(); 13915 13916 /* grab the mutex to protect few globals used by verifier */ 13917 if (!is_priv) 13918 mutex_lock(&bpf_verifier_lock); 13919 13920 if (attr->log_level || attr->log_buf || attr->log_size) { 13921 /* user requested verbose verifier output 13922 * and supplied buffer to store the verification trace 13923 */ 13924 log->level = attr->log_level; 13925 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13926 log->len_total = attr->log_size; 13927 13928 ret = -EINVAL; 13929 /* log attributes have to be sane */ 13930 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13931 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13932 goto err_unlock; 13933 } 13934 13935 if (IS_ERR(btf_vmlinux)) { 13936 /* Either gcc or pahole or kernel are broken. */ 13937 verbose(env, "in-kernel BTF is malformed\n"); 13938 ret = PTR_ERR(btf_vmlinux); 13939 goto skip_full_check; 13940 } 13941 13942 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13943 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13944 env->strict_alignment = true; 13945 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13946 env->strict_alignment = false; 13947 13948 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13949 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13950 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13951 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13952 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13953 env->bpf_capable = bpf_capable(); 13954 13955 if (is_priv) 13956 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13957 13958 env->explored_states = kvcalloc(state_htab_size(env), 13959 sizeof(struct bpf_verifier_state_list *), 13960 GFP_USER); 13961 ret = -ENOMEM; 13962 if (!env->explored_states) 13963 goto skip_full_check; 13964 13965 ret = add_subprog_and_kfunc(env); 13966 if (ret < 0) 13967 goto skip_full_check; 13968 13969 ret = check_subprogs(env); 13970 if (ret < 0) 13971 goto skip_full_check; 13972 13973 ret = check_btf_info(env, attr, uattr); 13974 if (ret < 0) 13975 goto skip_full_check; 13976 13977 ret = check_attach_btf_id(env); 13978 if (ret) 13979 goto skip_full_check; 13980 13981 ret = resolve_pseudo_ldimm64(env); 13982 if (ret < 0) 13983 goto skip_full_check; 13984 13985 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13986 ret = bpf_prog_offload_verifier_prep(env->prog); 13987 if (ret) 13988 goto skip_full_check; 13989 } 13990 13991 ret = check_cfg(env); 13992 if (ret < 0) 13993 goto skip_full_check; 13994 13995 ret = do_check_subprogs(env); 13996 ret = ret ?: do_check_main(env); 13997 13998 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13999 ret = bpf_prog_offload_finalize(env); 14000 14001 skip_full_check: 14002 kvfree(env->explored_states); 14003 14004 if (ret == 0) 14005 ret = check_max_stack_depth(env); 14006 14007 /* instruction rewrites happen after this point */ 14008 if (is_priv) { 14009 if (ret == 0) 14010 opt_hard_wire_dead_code_branches(env); 14011 if (ret == 0) 14012 ret = opt_remove_dead_code(env); 14013 if (ret == 0) 14014 ret = opt_remove_nops(env); 14015 } else { 14016 if (ret == 0) 14017 sanitize_dead_code(env); 14018 } 14019 14020 if (ret == 0) 14021 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14022 ret = convert_ctx_accesses(env); 14023 14024 if (ret == 0) 14025 ret = do_misc_fixups(env); 14026 14027 /* do 32-bit optimization after insn patching has done so those patched 14028 * insns could be handled correctly. 14029 */ 14030 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14031 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14032 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14033 : false; 14034 } 14035 14036 if (ret == 0) 14037 ret = fixup_call_args(env); 14038 14039 env->verification_time = ktime_get_ns() - start_time; 14040 print_verification_stats(env); 14041 14042 if (log->level && bpf_verifier_log_full(log)) 14043 ret = -ENOSPC; 14044 if (log->level && !log->ubuf) { 14045 ret = -EFAULT; 14046 goto err_release_maps; 14047 } 14048 14049 if (ret) 14050 goto err_release_maps; 14051 14052 if (env->used_map_cnt) { 14053 /* if program passed verifier, update used_maps in bpf_prog_info */ 14054 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14055 sizeof(env->used_maps[0]), 14056 GFP_KERNEL); 14057 14058 if (!env->prog->aux->used_maps) { 14059 ret = -ENOMEM; 14060 goto err_release_maps; 14061 } 14062 14063 memcpy(env->prog->aux->used_maps, env->used_maps, 14064 sizeof(env->used_maps[0]) * env->used_map_cnt); 14065 env->prog->aux->used_map_cnt = env->used_map_cnt; 14066 } 14067 if (env->used_btf_cnt) { 14068 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14069 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14070 sizeof(env->used_btfs[0]), 14071 GFP_KERNEL); 14072 if (!env->prog->aux->used_btfs) { 14073 ret = -ENOMEM; 14074 goto err_release_maps; 14075 } 14076 14077 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14078 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14079 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14080 } 14081 if (env->used_map_cnt || env->used_btf_cnt) { 14082 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14083 * bpf_ld_imm64 instructions 14084 */ 14085 convert_pseudo_ld_imm64(env); 14086 } 14087 14088 adjust_btf_func(env); 14089 14090 err_release_maps: 14091 if (!env->prog->aux->used_maps) 14092 /* if we didn't copy map pointers into bpf_prog_info, release 14093 * them now. Otherwise free_used_maps() will release them. 14094 */ 14095 release_maps(env); 14096 if (!env->prog->aux->used_btfs) 14097 release_btfs(env); 14098 14099 /* extension progs temporarily inherit the attach_type of their targets 14100 for verification purposes, so set it back to zero before returning 14101 */ 14102 if (env->prog->type == BPF_PROG_TYPE_EXT) 14103 env->prog->expected_attach_type = 0; 14104 14105 *prog = env->prog; 14106 err_unlock: 14107 if (!is_priv) 14108 mutex_unlock(&bpf_verifier_lock); 14109 vfree(env->insn_aux_data); 14110 err_free_env: 14111 kfree(env); 14112 return ret; 14113 } 14114