1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 }; 266 267 struct btf *btf_vmlinux; 268 269 static DEFINE_MUTEX(bpf_verifier_lock); 270 271 static const struct bpf_line_info * 272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 273 { 274 const struct bpf_line_info *linfo; 275 const struct bpf_prog *prog; 276 u32 i, nr_linfo; 277 278 prog = env->prog; 279 nr_linfo = prog->aux->nr_linfo; 280 281 if (!nr_linfo || insn_off >= prog->len) 282 return NULL; 283 284 linfo = prog->aux->linfo; 285 for (i = 1; i < nr_linfo; i++) 286 if (insn_off < linfo[i].insn_off) 287 break; 288 289 return &linfo[i - 1]; 290 } 291 292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 293 va_list args) 294 { 295 unsigned int n; 296 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 298 299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 300 "verifier log line truncated - local buffer too short\n"); 301 302 n = min(log->len_total - log->len_used - 1, n); 303 log->kbuf[n] = '\0'; 304 305 if (log->level == BPF_LOG_KERNEL) { 306 pr_err("BPF:%s\n", log->kbuf); 307 return; 308 } 309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 310 log->len_used += n; 311 else 312 log->ubuf = NULL; 313 } 314 315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 316 { 317 char zero = 0; 318 319 if (!bpf_verifier_log_needed(log)) 320 return; 321 322 log->len_used = new_pos; 323 if (put_user(zero, log->ubuf + new_pos)) 324 log->ubuf = NULL; 325 } 326 327 /* log_level controls verbosity level of eBPF verifier. 328 * bpf_verifier_log_write() is used to dump the verification trace to the log, 329 * so the user can figure out what's wrong with the program 330 */ 331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 332 const char *fmt, ...) 333 { 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 344 345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 346 { 347 struct bpf_verifier_env *env = private_data; 348 va_list args; 349 350 if (!bpf_verifier_log_needed(&env->log)) 351 return; 352 353 va_start(args, fmt); 354 bpf_verifier_vlog(&env->log, fmt, args); 355 va_end(args); 356 } 357 358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 359 const char *fmt, ...) 360 { 361 va_list args; 362 363 if (!bpf_verifier_log_needed(log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(log, fmt, args); 368 va_end(args); 369 } 370 371 static const char *ltrim(const char *s) 372 { 373 while (isspace(*s)) 374 s++; 375 376 return s; 377 } 378 379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 380 u32 insn_off, 381 const char *prefix_fmt, ...) 382 { 383 const struct bpf_line_info *linfo; 384 385 if (!bpf_verifier_log_needed(&env->log)) 386 return; 387 388 linfo = find_linfo(env, insn_off); 389 if (!linfo || linfo == env->prev_linfo) 390 return; 391 392 if (prefix_fmt) { 393 va_list args; 394 395 va_start(args, prefix_fmt); 396 bpf_verifier_vlog(&env->log, prefix_fmt, args); 397 va_end(args); 398 } 399 400 verbose(env, "%s\n", 401 ltrim(btf_name_by_offset(env->prog->aux->btf, 402 linfo->line_off))); 403 404 env->prev_linfo = linfo; 405 } 406 407 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 408 struct bpf_reg_state *reg, 409 struct tnum *range, const char *ctx, 410 const char *reg_name) 411 { 412 char tn_buf[48]; 413 414 verbose(env, "At %s the register %s ", ctx, reg_name); 415 if (!tnum_is_unknown(reg->var_off)) { 416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 417 verbose(env, "has value %s", tn_buf); 418 } else { 419 verbose(env, "has unknown scalar value"); 420 } 421 tnum_strn(tn_buf, sizeof(tn_buf), *range); 422 verbose(env, " should have been in %s\n", tn_buf); 423 } 424 425 static bool type_is_pkt_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_PACKET || 428 type == PTR_TO_PACKET_META; 429 } 430 431 static bool type_is_sk_pointer(enum bpf_reg_type type) 432 { 433 return type == PTR_TO_SOCKET || 434 type == PTR_TO_SOCK_COMMON || 435 type == PTR_TO_TCP_SOCK || 436 type == PTR_TO_XDP_SOCK; 437 } 438 439 static bool reg_type_not_null(enum bpf_reg_type type) 440 { 441 return type == PTR_TO_SOCKET || 442 type == PTR_TO_TCP_SOCK || 443 type == PTR_TO_MAP_VALUE || 444 type == PTR_TO_MAP_KEY || 445 type == PTR_TO_SOCK_COMMON; 446 } 447 448 static bool reg_type_may_be_null(enum bpf_reg_type type) 449 { 450 return type == PTR_TO_MAP_VALUE_OR_NULL || 451 type == PTR_TO_SOCKET_OR_NULL || 452 type == PTR_TO_SOCK_COMMON_OR_NULL || 453 type == PTR_TO_TCP_SOCK_OR_NULL || 454 type == PTR_TO_BTF_ID_OR_NULL || 455 type == PTR_TO_MEM_OR_NULL || 456 type == PTR_TO_RDONLY_BUF_OR_NULL || 457 type == PTR_TO_RDWR_BUF_OR_NULL; 458 } 459 460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 461 { 462 return reg->type == PTR_TO_MAP_VALUE && 463 map_value_has_spin_lock(reg->map_ptr); 464 } 465 466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 467 { 468 return type == PTR_TO_SOCKET || 469 type == PTR_TO_SOCKET_OR_NULL || 470 type == PTR_TO_TCP_SOCK || 471 type == PTR_TO_TCP_SOCK_OR_NULL || 472 type == PTR_TO_MEM || 473 type == PTR_TO_MEM_OR_NULL; 474 } 475 476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 477 { 478 return type == ARG_PTR_TO_SOCK_COMMON; 479 } 480 481 static bool arg_type_may_be_null(enum bpf_arg_type type) 482 { 483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 484 type == ARG_PTR_TO_MEM_OR_NULL || 485 type == ARG_PTR_TO_CTX_OR_NULL || 486 type == ARG_PTR_TO_SOCKET_OR_NULL || 487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 488 type == ARG_PTR_TO_STACK_OR_NULL; 489 } 490 491 /* Determine whether the function releases some resources allocated by another 492 * function call. The first reference type argument will be assumed to be 493 * released by release_reference(). 494 */ 495 static bool is_release_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_sk_release || 498 func_id == BPF_FUNC_ringbuf_submit || 499 func_id == BPF_FUNC_ringbuf_discard; 500 } 501 502 static bool may_be_acquire_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_map_lookup_elem || 508 func_id == BPF_FUNC_ringbuf_reserve; 509 } 510 511 static bool is_acquire_function(enum bpf_func_id func_id, 512 const struct bpf_map *map) 513 { 514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 515 516 if (func_id == BPF_FUNC_sk_lookup_tcp || 517 func_id == BPF_FUNC_sk_lookup_udp || 518 func_id == BPF_FUNC_skc_lookup_tcp || 519 func_id == BPF_FUNC_ringbuf_reserve) 520 return true; 521 522 if (func_id == BPF_FUNC_map_lookup_elem && 523 (map_type == BPF_MAP_TYPE_SOCKMAP || 524 map_type == BPF_MAP_TYPE_SOCKHASH)) 525 return true; 526 527 return false; 528 } 529 530 static bool is_ptr_cast_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_tcp_sock || 533 func_id == BPF_FUNC_sk_fullsock || 534 func_id == BPF_FUNC_skc_to_tcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp6_sock || 536 func_id == BPF_FUNC_skc_to_udp6_sock || 537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 538 func_id == BPF_FUNC_skc_to_tcp_request_sock; 539 } 540 541 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 542 { 543 return BPF_CLASS(insn->code) == BPF_STX && 544 BPF_MODE(insn->code) == BPF_ATOMIC && 545 insn->imm == BPF_CMPXCHG; 546 } 547 548 /* string representation of 'enum bpf_reg_type' */ 549 static const char * const reg_type_str[] = { 550 [NOT_INIT] = "?", 551 [SCALAR_VALUE] = "inv", 552 [PTR_TO_CTX] = "ctx", 553 [CONST_PTR_TO_MAP] = "map_ptr", 554 [PTR_TO_MAP_VALUE] = "map_value", 555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 556 [PTR_TO_STACK] = "fp", 557 [PTR_TO_PACKET] = "pkt", 558 [PTR_TO_PACKET_META] = "pkt_meta", 559 [PTR_TO_PACKET_END] = "pkt_end", 560 [PTR_TO_FLOW_KEYS] = "flow_keys", 561 [PTR_TO_SOCKET] = "sock", 562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 563 [PTR_TO_SOCK_COMMON] = "sock_common", 564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 565 [PTR_TO_TCP_SOCK] = "tcp_sock", 566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 567 [PTR_TO_TP_BUFFER] = "tp_buffer", 568 [PTR_TO_XDP_SOCK] = "xdp_sock", 569 [PTR_TO_BTF_ID] = "ptr_", 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 572 [PTR_TO_MEM] = "mem", 573 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 574 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 576 [PTR_TO_RDWR_BUF] = "rdwr_buf", 577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 578 [PTR_TO_FUNC] = "func", 579 [PTR_TO_MAP_KEY] = "map_key", 580 }; 581 582 static char slot_type_char[] = { 583 [STACK_INVALID] = '?', 584 [STACK_SPILL] = 'r', 585 [STACK_MISC] = 'm', 586 [STACK_ZERO] = '0', 587 }; 588 589 static void print_liveness(struct bpf_verifier_env *env, 590 enum bpf_reg_liveness live) 591 { 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 593 verbose(env, "_"); 594 if (live & REG_LIVE_READ) 595 verbose(env, "r"); 596 if (live & REG_LIVE_WRITTEN) 597 verbose(env, "w"); 598 if (live & REG_LIVE_DONE) 599 verbose(env, "D"); 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static const char *kernel_type_name(const struct btf* btf, u32 id) 611 { 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 613 } 614 615 /* The reg state of a pointer or a bounded scalar was saved when 616 * it was spilled to the stack. 617 */ 618 static bool is_spilled_reg(const struct bpf_stack_state *stack) 619 { 620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 621 } 622 623 static void scrub_spilled_slot(u8 *stype) 624 { 625 if (*stype != STACK_INVALID) 626 *stype = STACK_MISC; 627 } 628 629 static void print_verifier_state(struct bpf_verifier_env *env, 630 const struct bpf_func_state *state) 631 { 632 const struct bpf_reg_state *reg; 633 enum bpf_reg_type t; 634 int i; 635 636 if (state->frameno) 637 verbose(env, " frame%d:", state->frameno); 638 for (i = 0; i < MAX_BPF_REG; i++) { 639 reg = &state->regs[i]; 640 t = reg->type; 641 if (t == NOT_INIT) 642 continue; 643 verbose(env, " R%d", i); 644 print_liveness(env, reg->live); 645 verbose(env, "=%s", reg_type_str[t]); 646 if (t == SCALAR_VALUE && reg->precise) 647 verbose(env, "P"); 648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 649 tnum_is_const(reg->var_off)) { 650 /* reg->off should be 0 for SCALAR_VALUE */ 651 verbose(env, "%lld", reg->var_off.value + reg->off); 652 } else { 653 if (t == PTR_TO_BTF_ID || 654 t == PTR_TO_BTF_ID_OR_NULL || 655 t == PTR_TO_PERCPU_BTF_ID) 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 657 verbose(env, "(id=%d", reg->id); 658 if (reg_type_may_be_refcounted_or_null(t)) 659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 660 if (t != SCALAR_VALUE) 661 verbose(env, ",off=%d", reg->off); 662 if (type_is_pkt_pointer(t)) 663 verbose(env, ",r=%d", reg->range); 664 else if (t == CONST_PTR_TO_MAP || 665 t == PTR_TO_MAP_KEY || 666 t == PTR_TO_MAP_VALUE || 667 t == PTR_TO_MAP_VALUE_OR_NULL) 668 verbose(env, ",ks=%d,vs=%d", 669 reg->map_ptr->key_size, 670 reg->map_ptr->value_size); 671 if (tnum_is_const(reg->var_off)) { 672 /* Typically an immediate SCALAR_VALUE, but 673 * could be a pointer whose offset is too big 674 * for reg->off 675 */ 676 verbose(env, ",imm=%llx", reg->var_off.value); 677 } else { 678 if (reg->smin_value != reg->umin_value && 679 reg->smin_value != S64_MIN) 680 verbose(env, ",smin_value=%lld", 681 (long long)reg->smin_value); 682 if (reg->smax_value != reg->umax_value && 683 reg->smax_value != S64_MAX) 684 verbose(env, ",smax_value=%lld", 685 (long long)reg->smax_value); 686 if (reg->umin_value != 0) 687 verbose(env, ",umin_value=%llu", 688 (unsigned long long)reg->umin_value); 689 if (reg->umax_value != U64_MAX) 690 verbose(env, ",umax_value=%llu", 691 (unsigned long long)reg->umax_value); 692 if (!tnum_is_unknown(reg->var_off)) { 693 char tn_buf[48]; 694 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 696 verbose(env, ",var_off=%s", tn_buf); 697 } 698 if (reg->s32_min_value != reg->smin_value && 699 reg->s32_min_value != S32_MIN) 700 verbose(env, ",s32_min_value=%d", 701 (int)(reg->s32_min_value)); 702 if (reg->s32_max_value != reg->smax_value && 703 reg->s32_max_value != S32_MAX) 704 verbose(env, ",s32_max_value=%d", 705 (int)(reg->s32_max_value)); 706 if (reg->u32_min_value != reg->umin_value && 707 reg->u32_min_value != U32_MIN) 708 verbose(env, ",u32_min_value=%d", 709 (int)(reg->u32_min_value)); 710 if (reg->u32_max_value != reg->umax_value && 711 reg->u32_max_value != U32_MAX) 712 verbose(env, ",u32_max_value=%d", 713 (int)(reg->u32_max_value)); 714 } 715 verbose(env, ")"); 716 } 717 } 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 719 char types_buf[BPF_REG_SIZE + 1]; 720 bool valid = false; 721 int j; 722 723 for (j = 0; j < BPF_REG_SIZE; j++) { 724 if (state->stack[i].slot_type[j] != STACK_INVALID) 725 valid = true; 726 types_buf[j] = slot_type_char[ 727 state->stack[i].slot_type[j]]; 728 } 729 types_buf[BPF_REG_SIZE] = 0; 730 if (!valid) 731 continue; 732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 733 print_liveness(env, state->stack[i].spilled_ptr.live); 734 if (is_spilled_reg(&state->stack[i])) { 735 reg = &state->stack[i].spilled_ptr; 736 t = reg->type; 737 verbose(env, "=%s", reg_type_str[t]); 738 if (t == SCALAR_VALUE && reg->precise) 739 verbose(env, "P"); 740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 741 verbose(env, "%lld", reg->var_off.value + reg->off); 742 } else { 743 verbose(env, "=%s", types_buf); 744 } 745 } 746 if (state->acquired_refs && state->refs[0].id) { 747 verbose(env, " refs=%d", state->refs[0].id); 748 for (i = 1; i < state->acquired_refs; i++) 749 if (state->refs[i].id) 750 verbose(env, ",%d", state->refs[i].id); 751 } 752 if (state->in_callback_fn) 753 verbose(env, " cb"); 754 if (state->in_async_callback_fn) 755 verbose(env, " async_cb"); 756 verbose(env, "\n"); 757 } 758 759 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 760 * small to hold src. This is different from krealloc since we don't want to preserve 761 * the contents of dst. 762 * 763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 764 * not be allocated. 765 */ 766 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 767 { 768 size_t bytes; 769 770 if (ZERO_OR_NULL_PTR(src)) 771 goto out; 772 773 if (unlikely(check_mul_overflow(n, size, &bytes))) 774 return NULL; 775 776 if (ksize(dst) < bytes) { 777 kfree(dst); 778 dst = kmalloc_track_caller(bytes, flags); 779 if (!dst) 780 return NULL; 781 } 782 783 memcpy(dst, src, bytes); 784 out: 785 return dst ? dst : ZERO_SIZE_PTR; 786 } 787 788 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 789 * small to hold new_n items. new items are zeroed out if the array grows. 790 * 791 * Contrary to krealloc_array, does not free arr if new_n is zero. 792 */ 793 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 794 { 795 if (!new_n || old_n == new_n) 796 goto out; 797 798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 799 if (!arr) 800 return NULL; 801 802 if (new_n > old_n) 803 memset(arr + old_n * size, 0, (new_n - old_n) * size); 804 805 out: 806 return arr ? arr : ZERO_SIZE_PTR; 807 } 808 809 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 810 { 811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 812 sizeof(struct bpf_reference_state), GFP_KERNEL); 813 if (!dst->refs) 814 return -ENOMEM; 815 816 dst->acquired_refs = src->acquired_refs; 817 return 0; 818 } 819 820 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 821 { 822 size_t n = src->allocated_stack / BPF_REG_SIZE; 823 824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 825 GFP_KERNEL); 826 if (!dst->stack) 827 return -ENOMEM; 828 829 dst->allocated_stack = src->allocated_stack; 830 return 0; 831 } 832 833 static int resize_reference_state(struct bpf_func_state *state, size_t n) 834 { 835 state->refs = realloc_array(state->refs, state->acquired_refs, n, 836 sizeof(struct bpf_reference_state)); 837 if (!state->refs) 838 return -ENOMEM; 839 840 state->acquired_refs = n; 841 return 0; 842 } 843 844 static int grow_stack_state(struct bpf_func_state *state, int size) 845 { 846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 847 848 if (old_n >= n) 849 return 0; 850 851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 852 if (!state->stack) 853 return -ENOMEM; 854 855 state->allocated_stack = size; 856 return 0; 857 } 858 859 /* Acquire a pointer id from the env and update the state->refs to include 860 * this new pointer reference. 861 * On success, returns a valid pointer id to associate with the register 862 * On failure, returns a negative errno. 863 */ 864 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 865 { 866 struct bpf_func_state *state = cur_func(env); 867 int new_ofs = state->acquired_refs; 868 int id, err; 869 870 err = resize_reference_state(state, state->acquired_refs + 1); 871 if (err) 872 return err; 873 id = ++env->id_gen; 874 state->refs[new_ofs].id = id; 875 state->refs[new_ofs].insn_idx = insn_idx; 876 877 return id; 878 } 879 880 /* release function corresponding to acquire_reference_state(). Idempotent. */ 881 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 882 { 883 int i, last_idx; 884 885 last_idx = state->acquired_refs - 1; 886 for (i = 0; i < state->acquired_refs; i++) { 887 if (state->refs[i].id == ptr_id) { 888 if (last_idx && i != last_idx) 889 memcpy(&state->refs[i], &state->refs[last_idx], 890 sizeof(*state->refs)); 891 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 892 state->acquired_refs--; 893 return 0; 894 } 895 } 896 return -EINVAL; 897 } 898 899 static void free_func_state(struct bpf_func_state *state) 900 { 901 if (!state) 902 return; 903 kfree(state->refs); 904 kfree(state->stack); 905 kfree(state); 906 } 907 908 static void clear_jmp_history(struct bpf_verifier_state *state) 909 { 910 kfree(state->jmp_history); 911 state->jmp_history = NULL; 912 state->jmp_history_cnt = 0; 913 } 914 915 static void free_verifier_state(struct bpf_verifier_state *state, 916 bool free_self) 917 { 918 int i; 919 920 for (i = 0; i <= state->curframe; i++) { 921 free_func_state(state->frame[i]); 922 state->frame[i] = NULL; 923 } 924 clear_jmp_history(state); 925 if (free_self) 926 kfree(state); 927 } 928 929 /* copy verifier state from src to dst growing dst stack space 930 * when necessary to accommodate larger src stack 931 */ 932 static int copy_func_state(struct bpf_func_state *dst, 933 const struct bpf_func_state *src) 934 { 935 int err; 936 937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 938 err = copy_reference_state(dst, src); 939 if (err) 940 return err; 941 return copy_stack_state(dst, src); 942 } 943 944 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 945 const struct bpf_verifier_state *src) 946 { 947 struct bpf_func_state *dst; 948 int i, err; 949 950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 952 GFP_USER); 953 if (!dst_state->jmp_history) 954 return -ENOMEM; 955 dst_state->jmp_history_cnt = src->jmp_history_cnt; 956 957 /* if dst has more stack frames then src frame, free them */ 958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 959 free_func_state(dst_state->frame[i]); 960 dst_state->frame[i] = NULL; 961 } 962 dst_state->speculative = src->speculative; 963 dst_state->curframe = src->curframe; 964 dst_state->active_spin_lock = src->active_spin_lock; 965 dst_state->branches = src->branches; 966 dst_state->parent = src->parent; 967 dst_state->first_insn_idx = src->first_insn_idx; 968 dst_state->last_insn_idx = src->last_insn_idx; 969 for (i = 0; i <= src->curframe; i++) { 970 dst = dst_state->frame[i]; 971 if (!dst) { 972 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 973 if (!dst) 974 return -ENOMEM; 975 dst_state->frame[i] = dst; 976 } 977 err = copy_func_state(dst, src->frame[i]); 978 if (err) 979 return err; 980 } 981 return 0; 982 } 983 984 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 985 { 986 while (st) { 987 u32 br = --st->branches; 988 989 /* WARN_ON(br > 1) technically makes sense here, 990 * but see comment in push_stack(), hence: 991 */ 992 WARN_ONCE((int)br < 0, 993 "BUG update_branch_counts:branches_to_explore=%d\n", 994 br); 995 if (br) 996 break; 997 st = st->parent; 998 } 999 } 1000 1001 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1002 int *insn_idx, bool pop_log) 1003 { 1004 struct bpf_verifier_state *cur = env->cur_state; 1005 struct bpf_verifier_stack_elem *elem, *head = env->head; 1006 int err; 1007 1008 if (env->head == NULL) 1009 return -ENOENT; 1010 1011 if (cur) { 1012 err = copy_verifier_state(cur, &head->st); 1013 if (err) 1014 return err; 1015 } 1016 if (pop_log) 1017 bpf_vlog_reset(&env->log, head->log_pos); 1018 if (insn_idx) 1019 *insn_idx = head->insn_idx; 1020 if (prev_insn_idx) 1021 *prev_insn_idx = head->prev_insn_idx; 1022 elem = head->next; 1023 free_verifier_state(&head->st, false); 1024 kfree(head); 1025 env->head = elem; 1026 env->stack_size--; 1027 return 0; 1028 } 1029 1030 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1031 int insn_idx, int prev_insn_idx, 1032 bool speculative) 1033 { 1034 struct bpf_verifier_state *cur = env->cur_state; 1035 struct bpf_verifier_stack_elem *elem; 1036 int err; 1037 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1039 if (!elem) 1040 goto err; 1041 1042 elem->insn_idx = insn_idx; 1043 elem->prev_insn_idx = prev_insn_idx; 1044 elem->next = env->head; 1045 elem->log_pos = env->log.len_used; 1046 env->head = elem; 1047 env->stack_size++; 1048 err = copy_verifier_state(&elem->st, cur); 1049 if (err) 1050 goto err; 1051 elem->st.speculative |= speculative; 1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1053 verbose(env, "The sequence of %d jumps is too complex.\n", 1054 env->stack_size); 1055 goto err; 1056 } 1057 if (elem->st.parent) { 1058 ++elem->st.parent->branches; 1059 /* WARN_ON(branches > 2) technically makes sense here, 1060 * but 1061 * 1. speculative states will bump 'branches' for non-branch 1062 * instructions 1063 * 2. is_state_visited() heuristics may decide not to create 1064 * a new state for a sequence of branches and all such current 1065 * and cloned states will be pointing to a single parent state 1066 * which might have large 'branches' count. 1067 */ 1068 } 1069 return &elem->st; 1070 err: 1071 free_verifier_state(env->cur_state, true); 1072 env->cur_state = NULL; 1073 /* pop all elements and return */ 1074 while (!pop_stack(env, NULL, NULL, false)); 1075 return NULL; 1076 } 1077 1078 #define CALLER_SAVED_REGS 6 1079 static const int caller_saved[CALLER_SAVED_REGS] = { 1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1081 }; 1082 1083 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1084 struct bpf_reg_state *reg); 1085 1086 /* This helper doesn't clear reg->id */ 1087 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1088 { 1089 reg->var_off = tnum_const(imm); 1090 reg->smin_value = (s64)imm; 1091 reg->smax_value = (s64)imm; 1092 reg->umin_value = imm; 1093 reg->umax_value = imm; 1094 1095 reg->s32_min_value = (s32)imm; 1096 reg->s32_max_value = (s32)imm; 1097 reg->u32_min_value = (u32)imm; 1098 reg->u32_max_value = (u32)imm; 1099 } 1100 1101 /* Mark the unknown part of a register (variable offset or scalar value) as 1102 * known to have the value @imm. 1103 */ 1104 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1105 { 1106 /* Clear id, off, and union(map_ptr, range) */ 1107 memset(((u8 *)reg) + sizeof(reg->type), 0, 1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1109 ___mark_reg_known(reg, imm); 1110 } 1111 1112 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1113 { 1114 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1115 reg->s32_min_value = (s32)imm; 1116 reg->s32_max_value = (s32)imm; 1117 reg->u32_min_value = (u32)imm; 1118 reg->u32_max_value = (u32)imm; 1119 } 1120 1121 /* Mark the 'variable offset' part of a register as zero. This should be 1122 * used only on registers holding a pointer type. 1123 */ 1124 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1125 { 1126 __mark_reg_known(reg, 0); 1127 } 1128 1129 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1130 { 1131 __mark_reg_known(reg, 0); 1132 reg->type = SCALAR_VALUE; 1133 } 1134 1135 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1136 struct bpf_reg_state *regs, u32 regno) 1137 { 1138 if (WARN_ON(regno >= MAX_BPF_REG)) { 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1140 /* Something bad happened, let's kill all regs */ 1141 for (regno = 0; regno < MAX_BPF_REG; regno++) 1142 __mark_reg_not_init(env, regs + regno); 1143 return; 1144 } 1145 __mark_reg_known_zero(regs + regno); 1146 } 1147 1148 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1149 { 1150 switch (reg->type) { 1151 case PTR_TO_MAP_VALUE_OR_NULL: { 1152 const struct bpf_map *map = reg->map_ptr; 1153 1154 if (map->inner_map_meta) { 1155 reg->type = CONST_PTR_TO_MAP; 1156 reg->map_ptr = map->inner_map_meta; 1157 /* transfer reg's id which is unique for every map_lookup_elem 1158 * as UID of the inner map. 1159 */ 1160 reg->map_uid = reg->id; 1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1162 reg->type = PTR_TO_XDP_SOCK; 1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1165 reg->type = PTR_TO_SOCKET; 1166 } else { 1167 reg->type = PTR_TO_MAP_VALUE; 1168 } 1169 break; 1170 } 1171 case PTR_TO_SOCKET_OR_NULL: 1172 reg->type = PTR_TO_SOCKET; 1173 break; 1174 case PTR_TO_SOCK_COMMON_OR_NULL: 1175 reg->type = PTR_TO_SOCK_COMMON; 1176 break; 1177 case PTR_TO_TCP_SOCK_OR_NULL: 1178 reg->type = PTR_TO_TCP_SOCK; 1179 break; 1180 case PTR_TO_BTF_ID_OR_NULL: 1181 reg->type = PTR_TO_BTF_ID; 1182 break; 1183 case PTR_TO_MEM_OR_NULL: 1184 reg->type = PTR_TO_MEM; 1185 break; 1186 case PTR_TO_RDONLY_BUF_OR_NULL: 1187 reg->type = PTR_TO_RDONLY_BUF; 1188 break; 1189 case PTR_TO_RDWR_BUF_OR_NULL: 1190 reg->type = PTR_TO_RDWR_BUF; 1191 break; 1192 default: 1193 WARN_ONCE(1, "unknown nullable register type"); 1194 } 1195 } 1196 1197 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1198 { 1199 return type_is_pkt_pointer(reg->type); 1200 } 1201 1202 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1203 { 1204 return reg_is_pkt_pointer(reg) || 1205 reg->type == PTR_TO_PACKET_END; 1206 } 1207 1208 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1209 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1210 enum bpf_reg_type which) 1211 { 1212 /* The register can already have a range from prior markings. 1213 * This is fine as long as it hasn't been advanced from its 1214 * origin. 1215 */ 1216 return reg->type == which && 1217 reg->id == 0 && 1218 reg->off == 0 && 1219 tnum_equals_const(reg->var_off, 0); 1220 } 1221 1222 /* Reset the min/max bounds of a register */ 1223 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1224 { 1225 reg->smin_value = S64_MIN; 1226 reg->smax_value = S64_MAX; 1227 reg->umin_value = 0; 1228 reg->umax_value = U64_MAX; 1229 1230 reg->s32_min_value = S32_MIN; 1231 reg->s32_max_value = S32_MAX; 1232 reg->u32_min_value = 0; 1233 reg->u32_max_value = U32_MAX; 1234 } 1235 1236 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1237 { 1238 reg->smin_value = S64_MIN; 1239 reg->smax_value = S64_MAX; 1240 reg->umin_value = 0; 1241 reg->umax_value = U64_MAX; 1242 } 1243 1244 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1245 { 1246 reg->s32_min_value = S32_MIN; 1247 reg->s32_max_value = S32_MAX; 1248 reg->u32_min_value = 0; 1249 reg->u32_max_value = U32_MAX; 1250 } 1251 1252 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1253 { 1254 struct tnum var32_off = tnum_subreg(reg->var_off); 1255 1256 /* min signed is max(sign bit) | min(other bits) */ 1257 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1258 var32_off.value | (var32_off.mask & S32_MIN)); 1259 /* max signed is min(sign bit) | max(other bits) */ 1260 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1261 var32_off.value | (var32_off.mask & S32_MAX)); 1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1263 reg->u32_max_value = min(reg->u32_max_value, 1264 (u32)(var32_off.value | var32_off.mask)); 1265 } 1266 1267 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1268 { 1269 /* min signed is max(sign bit) | min(other bits) */ 1270 reg->smin_value = max_t(s64, reg->smin_value, 1271 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1272 /* max signed is min(sign bit) | max(other bits) */ 1273 reg->smax_value = min_t(s64, reg->smax_value, 1274 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1275 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1276 reg->umax_value = min(reg->umax_value, 1277 reg->var_off.value | reg->var_off.mask); 1278 } 1279 1280 static void __update_reg_bounds(struct bpf_reg_state *reg) 1281 { 1282 __update_reg32_bounds(reg); 1283 __update_reg64_bounds(reg); 1284 } 1285 1286 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1287 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1288 { 1289 /* Learn sign from signed bounds. 1290 * If we cannot cross the sign boundary, then signed and unsigned bounds 1291 * are the same, so combine. This works even in the negative case, e.g. 1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1293 */ 1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1295 reg->s32_min_value = reg->u32_min_value = 1296 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1297 reg->s32_max_value = reg->u32_max_value = 1298 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1299 return; 1300 } 1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1302 * boundary, so we must be careful. 1303 */ 1304 if ((s32)reg->u32_max_value >= 0) { 1305 /* Positive. We can't learn anything from the smin, but smax 1306 * is positive, hence safe. 1307 */ 1308 reg->s32_min_value = reg->u32_min_value; 1309 reg->s32_max_value = reg->u32_max_value = 1310 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1311 } else if ((s32)reg->u32_min_value < 0) { 1312 /* Negative. We can't learn anything from the smax, but smin 1313 * is negative, hence safe. 1314 */ 1315 reg->s32_min_value = reg->u32_min_value = 1316 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1317 reg->s32_max_value = reg->u32_max_value; 1318 } 1319 } 1320 1321 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1322 { 1323 /* Learn sign from signed bounds. 1324 * If we cannot cross the sign boundary, then signed and unsigned bounds 1325 * are the same, so combine. This works even in the negative case, e.g. 1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1327 */ 1328 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1330 reg->umin_value); 1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1332 reg->umax_value); 1333 return; 1334 } 1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1336 * boundary, so we must be careful. 1337 */ 1338 if ((s64)reg->umax_value >= 0) { 1339 /* Positive. We can't learn anything from the smin, but smax 1340 * is positive, hence safe. 1341 */ 1342 reg->smin_value = reg->umin_value; 1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1344 reg->umax_value); 1345 } else if ((s64)reg->umin_value < 0) { 1346 /* Negative. We can't learn anything from the smax, but smin 1347 * is negative, hence safe. 1348 */ 1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1350 reg->umin_value); 1351 reg->smax_value = reg->umax_value; 1352 } 1353 } 1354 1355 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1356 { 1357 __reg32_deduce_bounds(reg); 1358 __reg64_deduce_bounds(reg); 1359 } 1360 1361 /* Attempts to improve var_off based on unsigned min/max information */ 1362 static void __reg_bound_offset(struct bpf_reg_state *reg) 1363 { 1364 struct tnum var64_off = tnum_intersect(reg->var_off, 1365 tnum_range(reg->umin_value, 1366 reg->umax_value)); 1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1368 tnum_range(reg->u32_min_value, 1369 reg->u32_max_value)); 1370 1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1372 } 1373 1374 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1375 { 1376 reg->umin_value = reg->u32_min_value; 1377 reg->umax_value = reg->u32_max_value; 1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1379 * but must be positive otherwise set to worse case bounds 1380 * and refine later from tnum. 1381 */ 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1383 reg->smax_value = reg->s32_max_value; 1384 else 1385 reg->smax_value = U32_MAX; 1386 if (reg->s32_min_value >= 0) 1387 reg->smin_value = reg->s32_min_value; 1388 else 1389 reg->smin_value = 0; 1390 } 1391 1392 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1393 { 1394 /* special case when 64-bit register has upper 32-bit register 1395 * zeroed. Typically happens after zext or <<32, >>32 sequence 1396 * allowing us to use 32-bit bounds directly, 1397 */ 1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1399 __reg_assign_32_into_64(reg); 1400 } else { 1401 /* Otherwise the best we can do is push lower 32bit known and 1402 * unknown bits into register (var_off set from jmp logic) 1403 * then learn as much as possible from the 64-bit tnum 1404 * known and unknown bits. The previous smin/smax bounds are 1405 * invalid here because of jmp32 compare so mark them unknown 1406 * so they do not impact tnum bounds calculation. 1407 */ 1408 __mark_reg64_unbounded(reg); 1409 __update_reg_bounds(reg); 1410 } 1411 1412 /* Intersecting with the old var_off might have improved our bounds 1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1414 * then new var_off is (0; 0x7f...fc) which improves our umax. 1415 */ 1416 __reg_deduce_bounds(reg); 1417 __reg_bound_offset(reg); 1418 __update_reg_bounds(reg); 1419 } 1420 1421 static bool __reg64_bound_s32(s64 a) 1422 { 1423 return a >= S32_MIN && a <= S32_MAX; 1424 } 1425 1426 static bool __reg64_bound_u32(u64 a) 1427 { 1428 return a >= U32_MIN && a <= U32_MAX; 1429 } 1430 1431 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1432 { 1433 __mark_reg32_unbounded(reg); 1434 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1436 reg->s32_min_value = (s32)reg->smin_value; 1437 reg->s32_max_value = (s32)reg->smax_value; 1438 } 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1440 reg->u32_min_value = (u32)reg->umin_value; 1441 reg->u32_max_value = (u32)reg->umax_value; 1442 } 1443 1444 /* Intersecting with the old var_off might have improved our bounds 1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1446 * then new var_off is (0; 0x7f...fc) which improves our umax. 1447 */ 1448 __reg_deduce_bounds(reg); 1449 __reg_bound_offset(reg); 1450 __update_reg_bounds(reg); 1451 } 1452 1453 /* Mark a register as having a completely unknown (scalar) value. */ 1454 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1455 struct bpf_reg_state *reg) 1456 { 1457 /* 1458 * Clear type, id, off, and union(map_ptr, range) and 1459 * padding between 'type' and union 1460 */ 1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1462 reg->type = SCALAR_VALUE; 1463 reg->var_off = tnum_unknown; 1464 reg->frameno = 0; 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1466 __mark_reg_unbounded(reg); 1467 } 1468 1469 static void mark_reg_unknown(struct bpf_verifier_env *env, 1470 struct bpf_reg_state *regs, u32 regno) 1471 { 1472 if (WARN_ON(regno >= MAX_BPF_REG)) { 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1474 /* Something bad happened, let's kill all regs except FP */ 1475 for (regno = 0; regno < BPF_REG_FP; regno++) 1476 __mark_reg_not_init(env, regs + regno); 1477 return; 1478 } 1479 __mark_reg_unknown(env, regs + regno); 1480 } 1481 1482 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1483 struct bpf_reg_state *reg) 1484 { 1485 __mark_reg_unknown(env, reg); 1486 reg->type = NOT_INIT; 1487 } 1488 1489 static void mark_reg_not_init(struct bpf_verifier_env *env, 1490 struct bpf_reg_state *regs, u32 regno) 1491 { 1492 if (WARN_ON(regno >= MAX_BPF_REG)) { 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1494 /* Something bad happened, let's kill all regs except FP */ 1495 for (regno = 0; regno < BPF_REG_FP; regno++) 1496 __mark_reg_not_init(env, regs + regno); 1497 return; 1498 } 1499 __mark_reg_not_init(env, regs + regno); 1500 } 1501 1502 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1503 struct bpf_reg_state *regs, u32 regno, 1504 enum bpf_reg_type reg_type, 1505 struct btf *btf, u32 btf_id) 1506 { 1507 if (reg_type == SCALAR_VALUE) { 1508 mark_reg_unknown(env, regs, regno); 1509 return; 1510 } 1511 mark_reg_known_zero(env, regs, regno); 1512 regs[regno].type = PTR_TO_BTF_ID; 1513 regs[regno].btf = btf; 1514 regs[regno].btf_id = btf_id; 1515 } 1516 1517 #define DEF_NOT_SUBREG (0) 1518 static void init_reg_state(struct bpf_verifier_env *env, 1519 struct bpf_func_state *state) 1520 { 1521 struct bpf_reg_state *regs = state->regs; 1522 int i; 1523 1524 for (i = 0; i < MAX_BPF_REG; i++) { 1525 mark_reg_not_init(env, regs, i); 1526 regs[i].live = REG_LIVE_NONE; 1527 regs[i].parent = NULL; 1528 regs[i].subreg_def = DEF_NOT_SUBREG; 1529 } 1530 1531 /* frame pointer */ 1532 regs[BPF_REG_FP].type = PTR_TO_STACK; 1533 mark_reg_known_zero(env, regs, BPF_REG_FP); 1534 regs[BPF_REG_FP].frameno = state->frameno; 1535 } 1536 1537 #define BPF_MAIN_FUNC (-1) 1538 static void init_func_state(struct bpf_verifier_env *env, 1539 struct bpf_func_state *state, 1540 int callsite, int frameno, int subprogno) 1541 { 1542 state->callsite = callsite; 1543 state->frameno = frameno; 1544 state->subprogno = subprogno; 1545 init_reg_state(env, state); 1546 } 1547 1548 /* Similar to push_stack(), but for async callbacks */ 1549 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1550 int insn_idx, int prev_insn_idx, 1551 int subprog) 1552 { 1553 struct bpf_verifier_stack_elem *elem; 1554 struct bpf_func_state *frame; 1555 1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1557 if (!elem) 1558 goto err; 1559 1560 elem->insn_idx = insn_idx; 1561 elem->prev_insn_idx = prev_insn_idx; 1562 elem->next = env->head; 1563 elem->log_pos = env->log.len_used; 1564 env->head = elem; 1565 env->stack_size++; 1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1567 verbose(env, 1568 "The sequence of %d jumps is too complex for async cb.\n", 1569 env->stack_size); 1570 goto err; 1571 } 1572 /* Unlike push_stack() do not copy_verifier_state(). 1573 * The caller state doesn't matter. 1574 * This is async callback. It starts in a fresh stack. 1575 * Initialize it similar to do_check_common(). 1576 */ 1577 elem->st.branches = 1; 1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1579 if (!frame) 1580 goto err; 1581 init_func_state(env, frame, 1582 BPF_MAIN_FUNC /* callsite */, 1583 0 /* frameno within this callchain */, 1584 subprog /* subprog number within this prog */); 1585 elem->st.frame[0] = frame; 1586 return &elem->st; 1587 err: 1588 free_verifier_state(env->cur_state, true); 1589 env->cur_state = NULL; 1590 /* pop all elements and return */ 1591 while (!pop_stack(env, NULL, NULL, false)); 1592 return NULL; 1593 } 1594 1595 1596 enum reg_arg_type { 1597 SRC_OP, /* register is used as source operand */ 1598 DST_OP, /* register is used as destination operand */ 1599 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1600 }; 1601 1602 static int cmp_subprogs(const void *a, const void *b) 1603 { 1604 return ((struct bpf_subprog_info *)a)->start - 1605 ((struct bpf_subprog_info *)b)->start; 1606 } 1607 1608 static int find_subprog(struct bpf_verifier_env *env, int off) 1609 { 1610 struct bpf_subprog_info *p; 1611 1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1613 sizeof(env->subprog_info[0]), cmp_subprogs); 1614 if (!p) 1615 return -ENOENT; 1616 return p - env->subprog_info; 1617 1618 } 1619 1620 static int add_subprog(struct bpf_verifier_env *env, int off) 1621 { 1622 int insn_cnt = env->prog->len; 1623 int ret; 1624 1625 if (off >= insn_cnt || off < 0) { 1626 verbose(env, "call to invalid destination\n"); 1627 return -EINVAL; 1628 } 1629 ret = find_subprog(env, off); 1630 if (ret >= 0) 1631 return ret; 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1633 verbose(env, "too many subprograms\n"); 1634 return -E2BIG; 1635 } 1636 /* determine subprog starts. The end is one before the next starts */ 1637 env->subprog_info[env->subprog_cnt++].start = off; 1638 sort(env->subprog_info, env->subprog_cnt, 1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1640 return env->subprog_cnt - 1; 1641 } 1642 1643 #define MAX_KFUNC_DESCS 256 1644 #define MAX_KFUNC_BTFS 256 1645 1646 struct bpf_kfunc_desc { 1647 struct btf_func_model func_model; 1648 u32 func_id; 1649 s32 imm; 1650 u16 offset; 1651 }; 1652 1653 struct bpf_kfunc_btf { 1654 struct btf *btf; 1655 struct module *module; 1656 u16 offset; 1657 }; 1658 1659 struct bpf_kfunc_desc_tab { 1660 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1661 u32 nr_descs; 1662 }; 1663 1664 struct bpf_kfunc_btf_tab { 1665 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1666 u32 nr_descs; 1667 }; 1668 1669 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1670 { 1671 const struct bpf_kfunc_desc *d0 = a; 1672 const struct bpf_kfunc_desc *d1 = b; 1673 1674 /* func_id is not greater than BTF_MAX_TYPE */ 1675 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1676 } 1677 1678 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1679 { 1680 const struct bpf_kfunc_btf *d0 = a; 1681 const struct bpf_kfunc_btf *d1 = b; 1682 1683 return d0->offset - d1->offset; 1684 } 1685 1686 static const struct bpf_kfunc_desc * 1687 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1688 { 1689 struct bpf_kfunc_desc desc = { 1690 .func_id = func_id, 1691 .offset = offset, 1692 }; 1693 struct bpf_kfunc_desc_tab *tab; 1694 1695 tab = prog->aux->kfunc_tab; 1696 return bsearch(&desc, tab->descs, tab->nr_descs, 1697 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1698 } 1699 1700 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1701 s16 offset, struct module **btf_modp) 1702 { 1703 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1704 struct bpf_kfunc_btf_tab *tab; 1705 struct bpf_kfunc_btf *b; 1706 struct module *mod; 1707 struct btf *btf; 1708 int btf_fd; 1709 1710 tab = env->prog->aux->kfunc_btf_tab; 1711 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1712 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1713 if (!b) { 1714 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1715 verbose(env, "too many different module BTFs\n"); 1716 return ERR_PTR(-E2BIG); 1717 } 1718 1719 if (bpfptr_is_null(env->fd_array)) { 1720 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1721 return ERR_PTR(-EPROTO); 1722 } 1723 1724 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1725 offset * sizeof(btf_fd), 1726 sizeof(btf_fd))) 1727 return ERR_PTR(-EFAULT); 1728 1729 btf = btf_get_by_fd(btf_fd); 1730 if (IS_ERR(btf)) { 1731 verbose(env, "invalid module BTF fd specified\n"); 1732 return btf; 1733 } 1734 1735 if (!btf_is_module(btf)) { 1736 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1737 btf_put(btf); 1738 return ERR_PTR(-EINVAL); 1739 } 1740 1741 mod = btf_try_get_module(btf); 1742 if (!mod) { 1743 btf_put(btf); 1744 return ERR_PTR(-ENXIO); 1745 } 1746 1747 b = &tab->descs[tab->nr_descs++]; 1748 b->btf = btf; 1749 b->module = mod; 1750 b->offset = offset; 1751 1752 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1753 kfunc_btf_cmp_by_off, NULL); 1754 } 1755 if (btf_modp) 1756 *btf_modp = b->module; 1757 return b->btf; 1758 } 1759 1760 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1761 { 1762 if (!tab) 1763 return; 1764 1765 while (tab->nr_descs--) { 1766 module_put(tab->descs[tab->nr_descs].module); 1767 btf_put(tab->descs[tab->nr_descs].btf); 1768 } 1769 kfree(tab); 1770 } 1771 1772 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1773 u32 func_id, s16 offset, 1774 struct module **btf_modp) 1775 { 1776 if (offset) { 1777 if (offset < 0) { 1778 /* In the future, this can be allowed to increase limit 1779 * of fd index into fd_array, interpreted as u16. 1780 */ 1781 verbose(env, "negative offset disallowed for kernel module function call\n"); 1782 return ERR_PTR(-EINVAL); 1783 } 1784 1785 return __find_kfunc_desc_btf(env, offset, btf_modp); 1786 } 1787 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1788 } 1789 1790 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1791 { 1792 const struct btf_type *func, *func_proto; 1793 struct bpf_kfunc_btf_tab *btf_tab; 1794 struct bpf_kfunc_desc_tab *tab; 1795 struct bpf_prog_aux *prog_aux; 1796 struct bpf_kfunc_desc *desc; 1797 const char *func_name; 1798 struct btf *desc_btf; 1799 unsigned long addr; 1800 int err; 1801 1802 prog_aux = env->prog->aux; 1803 tab = prog_aux->kfunc_tab; 1804 btf_tab = prog_aux->kfunc_btf_tab; 1805 if (!tab) { 1806 if (!btf_vmlinux) { 1807 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1808 return -ENOTSUPP; 1809 } 1810 1811 if (!env->prog->jit_requested) { 1812 verbose(env, "JIT is required for calling kernel function\n"); 1813 return -ENOTSUPP; 1814 } 1815 1816 if (!bpf_jit_supports_kfunc_call()) { 1817 verbose(env, "JIT does not support calling kernel function\n"); 1818 return -ENOTSUPP; 1819 } 1820 1821 if (!env->prog->gpl_compatible) { 1822 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1823 return -EINVAL; 1824 } 1825 1826 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1827 if (!tab) 1828 return -ENOMEM; 1829 prog_aux->kfunc_tab = tab; 1830 } 1831 1832 /* func_id == 0 is always invalid, but instead of returning an error, be 1833 * conservative and wait until the code elimination pass before returning 1834 * error, so that invalid calls that get pruned out can be in BPF programs 1835 * loaded from userspace. It is also required that offset be untouched 1836 * for such calls. 1837 */ 1838 if (!func_id && !offset) 1839 return 0; 1840 1841 if (!btf_tab && offset) { 1842 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1843 if (!btf_tab) 1844 return -ENOMEM; 1845 prog_aux->kfunc_btf_tab = btf_tab; 1846 } 1847 1848 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1849 if (IS_ERR(desc_btf)) { 1850 verbose(env, "failed to find BTF for kernel function\n"); 1851 return PTR_ERR(desc_btf); 1852 } 1853 1854 if (find_kfunc_desc(env->prog, func_id, offset)) 1855 return 0; 1856 1857 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1858 verbose(env, "too many different kernel function calls\n"); 1859 return -E2BIG; 1860 } 1861 1862 func = btf_type_by_id(desc_btf, func_id); 1863 if (!func || !btf_type_is_func(func)) { 1864 verbose(env, "kernel btf_id %u is not a function\n", 1865 func_id); 1866 return -EINVAL; 1867 } 1868 func_proto = btf_type_by_id(desc_btf, func->type); 1869 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1870 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1871 func_id); 1872 return -EINVAL; 1873 } 1874 1875 func_name = btf_name_by_offset(desc_btf, func->name_off); 1876 addr = kallsyms_lookup_name(func_name); 1877 if (!addr) { 1878 verbose(env, "cannot find address for kernel function %s\n", 1879 func_name); 1880 return -EINVAL; 1881 } 1882 1883 desc = &tab->descs[tab->nr_descs++]; 1884 desc->func_id = func_id; 1885 desc->imm = BPF_CALL_IMM(addr); 1886 desc->offset = offset; 1887 err = btf_distill_func_proto(&env->log, desc_btf, 1888 func_proto, func_name, 1889 &desc->func_model); 1890 if (!err) 1891 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1892 kfunc_desc_cmp_by_id_off, NULL); 1893 return err; 1894 } 1895 1896 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1897 { 1898 const struct bpf_kfunc_desc *d0 = a; 1899 const struct bpf_kfunc_desc *d1 = b; 1900 1901 if (d0->imm > d1->imm) 1902 return 1; 1903 else if (d0->imm < d1->imm) 1904 return -1; 1905 return 0; 1906 } 1907 1908 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1909 { 1910 struct bpf_kfunc_desc_tab *tab; 1911 1912 tab = prog->aux->kfunc_tab; 1913 if (!tab) 1914 return; 1915 1916 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1917 kfunc_desc_cmp_by_imm, NULL); 1918 } 1919 1920 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1921 { 1922 return !!prog->aux->kfunc_tab; 1923 } 1924 1925 const struct btf_func_model * 1926 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1927 const struct bpf_insn *insn) 1928 { 1929 const struct bpf_kfunc_desc desc = { 1930 .imm = insn->imm, 1931 }; 1932 const struct bpf_kfunc_desc *res; 1933 struct bpf_kfunc_desc_tab *tab; 1934 1935 tab = prog->aux->kfunc_tab; 1936 res = bsearch(&desc, tab->descs, tab->nr_descs, 1937 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1938 1939 return res ? &res->func_model : NULL; 1940 } 1941 1942 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1943 { 1944 struct bpf_subprog_info *subprog = env->subprog_info; 1945 struct bpf_insn *insn = env->prog->insnsi; 1946 int i, ret, insn_cnt = env->prog->len; 1947 1948 /* Add entry function. */ 1949 ret = add_subprog(env, 0); 1950 if (ret) 1951 return ret; 1952 1953 for (i = 0; i < insn_cnt; i++, insn++) { 1954 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1955 !bpf_pseudo_kfunc_call(insn)) 1956 continue; 1957 1958 if (!env->bpf_capable) { 1959 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1960 return -EPERM; 1961 } 1962 1963 if (bpf_pseudo_func(insn)) { 1964 ret = add_subprog(env, i + insn->imm + 1); 1965 if (ret >= 0) 1966 /* remember subprog */ 1967 insn[1].imm = ret; 1968 } else if (bpf_pseudo_call(insn)) { 1969 ret = add_subprog(env, i + insn->imm + 1); 1970 } else { 1971 ret = add_kfunc_call(env, insn->imm, insn->off); 1972 } 1973 1974 if (ret < 0) 1975 return ret; 1976 } 1977 1978 /* Add a fake 'exit' subprog which could simplify subprog iteration 1979 * logic. 'subprog_cnt' should not be increased. 1980 */ 1981 subprog[env->subprog_cnt].start = insn_cnt; 1982 1983 if (env->log.level & BPF_LOG_LEVEL2) 1984 for (i = 0; i < env->subprog_cnt; i++) 1985 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1986 1987 return 0; 1988 } 1989 1990 static int check_subprogs(struct bpf_verifier_env *env) 1991 { 1992 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1993 struct bpf_subprog_info *subprog = env->subprog_info; 1994 struct bpf_insn *insn = env->prog->insnsi; 1995 int insn_cnt = env->prog->len; 1996 1997 /* now check that all jumps are within the same subprog */ 1998 subprog_start = subprog[cur_subprog].start; 1999 subprog_end = subprog[cur_subprog + 1].start; 2000 for (i = 0; i < insn_cnt; i++) { 2001 u8 code = insn[i].code; 2002 2003 if (code == (BPF_JMP | BPF_CALL) && 2004 insn[i].imm == BPF_FUNC_tail_call && 2005 insn[i].src_reg != BPF_PSEUDO_CALL) 2006 subprog[cur_subprog].has_tail_call = true; 2007 if (BPF_CLASS(code) == BPF_LD && 2008 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2009 subprog[cur_subprog].has_ld_abs = true; 2010 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2011 goto next; 2012 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2013 goto next; 2014 off = i + insn[i].off + 1; 2015 if (off < subprog_start || off >= subprog_end) { 2016 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2017 return -EINVAL; 2018 } 2019 next: 2020 if (i == subprog_end - 1) { 2021 /* to avoid fall-through from one subprog into another 2022 * the last insn of the subprog should be either exit 2023 * or unconditional jump back 2024 */ 2025 if (code != (BPF_JMP | BPF_EXIT) && 2026 code != (BPF_JMP | BPF_JA)) { 2027 verbose(env, "last insn is not an exit or jmp\n"); 2028 return -EINVAL; 2029 } 2030 subprog_start = subprog_end; 2031 cur_subprog++; 2032 if (cur_subprog < env->subprog_cnt) 2033 subprog_end = subprog[cur_subprog + 1].start; 2034 } 2035 } 2036 return 0; 2037 } 2038 2039 /* Parentage chain of this register (or stack slot) should take care of all 2040 * issues like callee-saved registers, stack slot allocation time, etc. 2041 */ 2042 static int mark_reg_read(struct bpf_verifier_env *env, 2043 const struct bpf_reg_state *state, 2044 struct bpf_reg_state *parent, u8 flag) 2045 { 2046 bool writes = parent == state->parent; /* Observe write marks */ 2047 int cnt = 0; 2048 2049 while (parent) { 2050 /* if read wasn't screened by an earlier write ... */ 2051 if (writes && state->live & REG_LIVE_WRITTEN) 2052 break; 2053 if (parent->live & REG_LIVE_DONE) { 2054 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2055 reg_type_str[parent->type], 2056 parent->var_off.value, parent->off); 2057 return -EFAULT; 2058 } 2059 /* The first condition is more likely to be true than the 2060 * second, checked it first. 2061 */ 2062 if ((parent->live & REG_LIVE_READ) == flag || 2063 parent->live & REG_LIVE_READ64) 2064 /* The parentage chain never changes and 2065 * this parent was already marked as LIVE_READ. 2066 * There is no need to keep walking the chain again and 2067 * keep re-marking all parents as LIVE_READ. 2068 * This case happens when the same register is read 2069 * multiple times without writes into it in-between. 2070 * Also, if parent has the stronger REG_LIVE_READ64 set, 2071 * then no need to set the weak REG_LIVE_READ32. 2072 */ 2073 break; 2074 /* ... then we depend on parent's value */ 2075 parent->live |= flag; 2076 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2077 if (flag == REG_LIVE_READ64) 2078 parent->live &= ~REG_LIVE_READ32; 2079 state = parent; 2080 parent = state->parent; 2081 writes = true; 2082 cnt++; 2083 } 2084 2085 if (env->longest_mark_read_walk < cnt) 2086 env->longest_mark_read_walk = cnt; 2087 return 0; 2088 } 2089 2090 /* This function is supposed to be used by the following 32-bit optimization 2091 * code only. It returns TRUE if the source or destination register operates 2092 * on 64-bit, otherwise return FALSE. 2093 */ 2094 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2095 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2096 { 2097 u8 code, class, op; 2098 2099 code = insn->code; 2100 class = BPF_CLASS(code); 2101 op = BPF_OP(code); 2102 if (class == BPF_JMP) { 2103 /* BPF_EXIT for "main" will reach here. Return TRUE 2104 * conservatively. 2105 */ 2106 if (op == BPF_EXIT) 2107 return true; 2108 if (op == BPF_CALL) { 2109 /* BPF to BPF call will reach here because of marking 2110 * caller saved clobber with DST_OP_NO_MARK for which we 2111 * don't care the register def because they are anyway 2112 * marked as NOT_INIT already. 2113 */ 2114 if (insn->src_reg == BPF_PSEUDO_CALL) 2115 return false; 2116 /* Helper call will reach here because of arg type 2117 * check, conservatively return TRUE. 2118 */ 2119 if (t == SRC_OP) 2120 return true; 2121 2122 return false; 2123 } 2124 } 2125 2126 if (class == BPF_ALU64 || class == BPF_JMP || 2127 /* BPF_END always use BPF_ALU class. */ 2128 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2129 return true; 2130 2131 if (class == BPF_ALU || class == BPF_JMP32) 2132 return false; 2133 2134 if (class == BPF_LDX) { 2135 if (t != SRC_OP) 2136 return BPF_SIZE(code) == BPF_DW; 2137 /* LDX source must be ptr. */ 2138 return true; 2139 } 2140 2141 if (class == BPF_STX) { 2142 /* BPF_STX (including atomic variants) has multiple source 2143 * operands, one of which is a ptr. Check whether the caller is 2144 * asking about it. 2145 */ 2146 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2147 return true; 2148 return BPF_SIZE(code) == BPF_DW; 2149 } 2150 2151 if (class == BPF_LD) { 2152 u8 mode = BPF_MODE(code); 2153 2154 /* LD_IMM64 */ 2155 if (mode == BPF_IMM) 2156 return true; 2157 2158 /* Both LD_IND and LD_ABS return 32-bit data. */ 2159 if (t != SRC_OP) 2160 return false; 2161 2162 /* Implicit ctx ptr. */ 2163 if (regno == BPF_REG_6) 2164 return true; 2165 2166 /* Explicit source could be any width. */ 2167 return true; 2168 } 2169 2170 if (class == BPF_ST) 2171 /* The only source register for BPF_ST is a ptr. */ 2172 return true; 2173 2174 /* Conservatively return true at default. */ 2175 return true; 2176 } 2177 2178 /* Return the regno defined by the insn, or -1. */ 2179 static int insn_def_regno(const struct bpf_insn *insn) 2180 { 2181 switch (BPF_CLASS(insn->code)) { 2182 case BPF_JMP: 2183 case BPF_JMP32: 2184 case BPF_ST: 2185 return -1; 2186 case BPF_STX: 2187 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2188 (insn->imm & BPF_FETCH)) { 2189 if (insn->imm == BPF_CMPXCHG) 2190 return BPF_REG_0; 2191 else 2192 return insn->src_reg; 2193 } else { 2194 return -1; 2195 } 2196 default: 2197 return insn->dst_reg; 2198 } 2199 } 2200 2201 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2202 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2203 { 2204 int dst_reg = insn_def_regno(insn); 2205 2206 if (dst_reg == -1) 2207 return false; 2208 2209 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2210 } 2211 2212 static void mark_insn_zext(struct bpf_verifier_env *env, 2213 struct bpf_reg_state *reg) 2214 { 2215 s32 def_idx = reg->subreg_def; 2216 2217 if (def_idx == DEF_NOT_SUBREG) 2218 return; 2219 2220 env->insn_aux_data[def_idx - 1].zext_dst = true; 2221 /* The dst will be zero extended, so won't be sub-register anymore. */ 2222 reg->subreg_def = DEF_NOT_SUBREG; 2223 } 2224 2225 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2226 enum reg_arg_type t) 2227 { 2228 struct bpf_verifier_state *vstate = env->cur_state; 2229 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2230 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2231 struct bpf_reg_state *reg, *regs = state->regs; 2232 bool rw64; 2233 2234 if (regno >= MAX_BPF_REG) { 2235 verbose(env, "R%d is invalid\n", regno); 2236 return -EINVAL; 2237 } 2238 2239 reg = ®s[regno]; 2240 rw64 = is_reg64(env, insn, regno, reg, t); 2241 if (t == SRC_OP) { 2242 /* check whether register used as source operand can be read */ 2243 if (reg->type == NOT_INIT) { 2244 verbose(env, "R%d !read_ok\n", regno); 2245 return -EACCES; 2246 } 2247 /* We don't need to worry about FP liveness because it's read-only */ 2248 if (regno == BPF_REG_FP) 2249 return 0; 2250 2251 if (rw64) 2252 mark_insn_zext(env, reg); 2253 2254 return mark_reg_read(env, reg, reg->parent, 2255 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2256 } else { 2257 /* check whether register used as dest operand can be written to */ 2258 if (regno == BPF_REG_FP) { 2259 verbose(env, "frame pointer is read only\n"); 2260 return -EACCES; 2261 } 2262 reg->live |= REG_LIVE_WRITTEN; 2263 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2264 if (t == DST_OP) 2265 mark_reg_unknown(env, regs, regno); 2266 } 2267 return 0; 2268 } 2269 2270 /* for any branch, call, exit record the history of jmps in the given state */ 2271 static int push_jmp_history(struct bpf_verifier_env *env, 2272 struct bpf_verifier_state *cur) 2273 { 2274 u32 cnt = cur->jmp_history_cnt; 2275 struct bpf_idx_pair *p; 2276 2277 cnt++; 2278 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2279 if (!p) 2280 return -ENOMEM; 2281 p[cnt - 1].idx = env->insn_idx; 2282 p[cnt - 1].prev_idx = env->prev_insn_idx; 2283 cur->jmp_history = p; 2284 cur->jmp_history_cnt = cnt; 2285 return 0; 2286 } 2287 2288 /* Backtrack one insn at a time. If idx is not at the top of recorded 2289 * history then previous instruction came from straight line execution. 2290 */ 2291 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2292 u32 *history) 2293 { 2294 u32 cnt = *history; 2295 2296 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2297 i = st->jmp_history[cnt - 1].prev_idx; 2298 (*history)--; 2299 } else { 2300 i--; 2301 } 2302 return i; 2303 } 2304 2305 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2306 { 2307 const struct btf_type *func; 2308 struct btf *desc_btf; 2309 2310 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2311 return NULL; 2312 2313 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2314 if (IS_ERR(desc_btf)) 2315 return "<error>"; 2316 2317 func = btf_type_by_id(desc_btf, insn->imm); 2318 return btf_name_by_offset(desc_btf, func->name_off); 2319 } 2320 2321 /* For given verifier state backtrack_insn() is called from the last insn to 2322 * the first insn. Its purpose is to compute a bitmask of registers and 2323 * stack slots that needs precision in the parent verifier state. 2324 */ 2325 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2326 u32 *reg_mask, u64 *stack_mask) 2327 { 2328 const struct bpf_insn_cbs cbs = { 2329 .cb_call = disasm_kfunc_name, 2330 .cb_print = verbose, 2331 .private_data = env, 2332 }; 2333 struct bpf_insn *insn = env->prog->insnsi + idx; 2334 u8 class = BPF_CLASS(insn->code); 2335 u8 opcode = BPF_OP(insn->code); 2336 u8 mode = BPF_MODE(insn->code); 2337 u32 dreg = 1u << insn->dst_reg; 2338 u32 sreg = 1u << insn->src_reg; 2339 u32 spi; 2340 2341 if (insn->code == 0) 2342 return 0; 2343 if (env->log.level & BPF_LOG_LEVEL) { 2344 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2345 verbose(env, "%d: ", idx); 2346 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2347 } 2348 2349 if (class == BPF_ALU || class == BPF_ALU64) { 2350 if (!(*reg_mask & dreg)) 2351 return 0; 2352 if (opcode == BPF_MOV) { 2353 if (BPF_SRC(insn->code) == BPF_X) { 2354 /* dreg = sreg 2355 * dreg needs precision after this insn 2356 * sreg needs precision before this insn 2357 */ 2358 *reg_mask &= ~dreg; 2359 *reg_mask |= sreg; 2360 } else { 2361 /* dreg = K 2362 * dreg needs precision after this insn. 2363 * Corresponding register is already marked 2364 * as precise=true in this verifier state. 2365 * No further markings in parent are necessary 2366 */ 2367 *reg_mask &= ~dreg; 2368 } 2369 } else { 2370 if (BPF_SRC(insn->code) == BPF_X) { 2371 /* dreg += sreg 2372 * both dreg and sreg need precision 2373 * before this insn 2374 */ 2375 *reg_mask |= sreg; 2376 } /* else dreg += K 2377 * dreg still needs precision before this insn 2378 */ 2379 } 2380 } else if (class == BPF_LDX) { 2381 if (!(*reg_mask & dreg)) 2382 return 0; 2383 *reg_mask &= ~dreg; 2384 2385 /* scalars can only be spilled into stack w/o losing precision. 2386 * Load from any other memory can be zero extended. 2387 * The desire to keep that precision is already indicated 2388 * by 'precise' mark in corresponding register of this state. 2389 * No further tracking necessary. 2390 */ 2391 if (insn->src_reg != BPF_REG_FP) 2392 return 0; 2393 if (BPF_SIZE(insn->code) != BPF_DW) 2394 return 0; 2395 2396 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2397 * that [fp - off] slot contains scalar that needs to be 2398 * tracked with precision 2399 */ 2400 spi = (-insn->off - 1) / BPF_REG_SIZE; 2401 if (spi >= 64) { 2402 verbose(env, "BUG spi %d\n", spi); 2403 WARN_ONCE(1, "verifier backtracking bug"); 2404 return -EFAULT; 2405 } 2406 *stack_mask |= 1ull << spi; 2407 } else if (class == BPF_STX || class == BPF_ST) { 2408 if (*reg_mask & dreg) 2409 /* stx & st shouldn't be using _scalar_ dst_reg 2410 * to access memory. It means backtracking 2411 * encountered a case of pointer subtraction. 2412 */ 2413 return -ENOTSUPP; 2414 /* scalars can only be spilled into stack */ 2415 if (insn->dst_reg != BPF_REG_FP) 2416 return 0; 2417 if (BPF_SIZE(insn->code) != BPF_DW) 2418 return 0; 2419 spi = (-insn->off - 1) / BPF_REG_SIZE; 2420 if (spi >= 64) { 2421 verbose(env, "BUG spi %d\n", spi); 2422 WARN_ONCE(1, "verifier backtracking bug"); 2423 return -EFAULT; 2424 } 2425 if (!(*stack_mask & (1ull << spi))) 2426 return 0; 2427 *stack_mask &= ~(1ull << spi); 2428 if (class == BPF_STX) 2429 *reg_mask |= sreg; 2430 } else if (class == BPF_JMP || class == BPF_JMP32) { 2431 if (opcode == BPF_CALL) { 2432 if (insn->src_reg == BPF_PSEUDO_CALL) 2433 return -ENOTSUPP; 2434 /* regular helper call sets R0 */ 2435 *reg_mask &= ~1; 2436 if (*reg_mask & 0x3f) { 2437 /* if backtracing was looking for registers R1-R5 2438 * they should have been found already. 2439 */ 2440 verbose(env, "BUG regs %x\n", *reg_mask); 2441 WARN_ONCE(1, "verifier backtracking bug"); 2442 return -EFAULT; 2443 } 2444 } else if (opcode == BPF_EXIT) { 2445 return -ENOTSUPP; 2446 } 2447 } else if (class == BPF_LD) { 2448 if (!(*reg_mask & dreg)) 2449 return 0; 2450 *reg_mask &= ~dreg; 2451 /* It's ld_imm64 or ld_abs or ld_ind. 2452 * For ld_imm64 no further tracking of precision 2453 * into parent is necessary 2454 */ 2455 if (mode == BPF_IND || mode == BPF_ABS) 2456 /* to be analyzed */ 2457 return -ENOTSUPP; 2458 } 2459 return 0; 2460 } 2461 2462 /* the scalar precision tracking algorithm: 2463 * . at the start all registers have precise=false. 2464 * . scalar ranges are tracked as normal through alu and jmp insns. 2465 * . once precise value of the scalar register is used in: 2466 * . ptr + scalar alu 2467 * . if (scalar cond K|scalar) 2468 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2469 * backtrack through the verifier states and mark all registers and 2470 * stack slots with spilled constants that these scalar regisers 2471 * should be precise. 2472 * . during state pruning two registers (or spilled stack slots) 2473 * are equivalent if both are not precise. 2474 * 2475 * Note the verifier cannot simply walk register parentage chain, 2476 * since many different registers and stack slots could have been 2477 * used to compute single precise scalar. 2478 * 2479 * The approach of starting with precise=true for all registers and then 2480 * backtrack to mark a register as not precise when the verifier detects 2481 * that program doesn't care about specific value (e.g., when helper 2482 * takes register as ARG_ANYTHING parameter) is not safe. 2483 * 2484 * It's ok to walk single parentage chain of the verifier states. 2485 * It's possible that this backtracking will go all the way till 1st insn. 2486 * All other branches will be explored for needing precision later. 2487 * 2488 * The backtracking needs to deal with cases like: 2489 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2490 * r9 -= r8 2491 * r5 = r9 2492 * if r5 > 0x79f goto pc+7 2493 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2494 * r5 += 1 2495 * ... 2496 * call bpf_perf_event_output#25 2497 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2498 * 2499 * and this case: 2500 * r6 = 1 2501 * call foo // uses callee's r6 inside to compute r0 2502 * r0 += r6 2503 * if r0 == 0 goto 2504 * 2505 * to track above reg_mask/stack_mask needs to be independent for each frame. 2506 * 2507 * Also if parent's curframe > frame where backtracking started, 2508 * the verifier need to mark registers in both frames, otherwise callees 2509 * may incorrectly prune callers. This is similar to 2510 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2511 * 2512 * For now backtracking falls back into conservative marking. 2513 */ 2514 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2515 struct bpf_verifier_state *st) 2516 { 2517 struct bpf_func_state *func; 2518 struct bpf_reg_state *reg; 2519 int i, j; 2520 2521 /* big hammer: mark all scalars precise in this path. 2522 * pop_stack may still get !precise scalars. 2523 */ 2524 for (; st; st = st->parent) 2525 for (i = 0; i <= st->curframe; i++) { 2526 func = st->frame[i]; 2527 for (j = 0; j < BPF_REG_FP; j++) { 2528 reg = &func->regs[j]; 2529 if (reg->type != SCALAR_VALUE) 2530 continue; 2531 reg->precise = true; 2532 } 2533 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2534 if (!is_spilled_reg(&func->stack[j])) 2535 continue; 2536 reg = &func->stack[j].spilled_ptr; 2537 if (reg->type != SCALAR_VALUE) 2538 continue; 2539 reg->precise = true; 2540 } 2541 } 2542 } 2543 2544 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2545 int spi) 2546 { 2547 struct bpf_verifier_state *st = env->cur_state; 2548 int first_idx = st->first_insn_idx; 2549 int last_idx = env->insn_idx; 2550 struct bpf_func_state *func; 2551 struct bpf_reg_state *reg; 2552 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2553 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2554 bool skip_first = true; 2555 bool new_marks = false; 2556 int i, err; 2557 2558 if (!env->bpf_capable) 2559 return 0; 2560 2561 func = st->frame[st->curframe]; 2562 if (regno >= 0) { 2563 reg = &func->regs[regno]; 2564 if (reg->type != SCALAR_VALUE) { 2565 WARN_ONCE(1, "backtracing misuse"); 2566 return -EFAULT; 2567 } 2568 if (!reg->precise) 2569 new_marks = true; 2570 else 2571 reg_mask = 0; 2572 reg->precise = true; 2573 } 2574 2575 while (spi >= 0) { 2576 if (!is_spilled_reg(&func->stack[spi])) { 2577 stack_mask = 0; 2578 break; 2579 } 2580 reg = &func->stack[spi].spilled_ptr; 2581 if (reg->type != SCALAR_VALUE) { 2582 stack_mask = 0; 2583 break; 2584 } 2585 if (!reg->precise) 2586 new_marks = true; 2587 else 2588 stack_mask = 0; 2589 reg->precise = true; 2590 break; 2591 } 2592 2593 if (!new_marks) 2594 return 0; 2595 if (!reg_mask && !stack_mask) 2596 return 0; 2597 for (;;) { 2598 DECLARE_BITMAP(mask, 64); 2599 u32 history = st->jmp_history_cnt; 2600 2601 if (env->log.level & BPF_LOG_LEVEL) 2602 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2603 for (i = last_idx;;) { 2604 if (skip_first) { 2605 err = 0; 2606 skip_first = false; 2607 } else { 2608 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2609 } 2610 if (err == -ENOTSUPP) { 2611 mark_all_scalars_precise(env, st); 2612 return 0; 2613 } else if (err) { 2614 return err; 2615 } 2616 if (!reg_mask && !stack_mask) 2617 /* Found assignment(s) into tracked register in this state. 2618 * Since this state is already marked, just return. 2619 * Nothing to be tracked further in the parent state. 2620 */ 2621 return 0; 2622 if (i == first_idx) 2623 break; 2624 i = get_prev_insn_idx(st, i, &history); 2625 if (i >= env->prog->len) { 2626 /* This can happen if backtracking reached insn 0 2627 * and there are still reg_mask or stack_mask 2628 * to backtrack. 2629 * It means the backtracking missed the spot where 2630 * particular register was initialized with a constant. 2631 */ 2632 verbose(env, "BUG backtracking idx %d\n", i); 2633 WARN_ONCE(1, "verifier backtracking bug"); 2634 return -EFAULT; 2635 } 2636 } 2637 st = st->parent; 2638 if (!st) 2639 break; 2640 2641 new_marks = false; 2642 func = st->frame[st->curframe]; 2643 bitmap_from_u64(mask, reg_mask); 2644 for_each_set_bit(i, mask, 32) { 2645 reg = &func->regs[i]; 2646 if (reg->type != SCALAR_VALUE) { 2647 reg_mask &= ~(1u << i); 2648 continue; 2649 } 2650 if (!reg->precise) 2651 new_marks = true; 2652 reg->precise = true; 2653 } 2654 2655 bitmap_from_u64(mask, stack_mask); 2656 for_each_set_bit(i, mask, 64) { 2657 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2658 /* the sequence of instructions: 2659 * 2: (bf) r3 = r10 2660 * 3: (7b) *(u64 *)(r3 -8) = r0 2661 * 4: (79) r4 = *(u64 *)(r10 -8) 2662 * doesn't contain jmps. It's backtracked 2663 * as a single block. 2664 * During backtracking insn 3 is not recognized as 2665 * stack access, so at the end of backtracking 2666 * stack slot fp-8 is still marked in stack_mask. 2667 * However the parent state may not have accessed 2668 * fp-8 and it's "unallocated" stack space. 2669 * In such case fallback to conservative. 2670 */ 2671 mark_all_scalars_precise(env, st); 2672 return 0; 2673 } 2674 2675 if (!is_spilled_reg(&func->stack[i])) { 2676 stack_mask &= ~(1ull << i); 2677 continue; 2678 } 2679 reg = &func->stack[i].spilled_ptr; 2680 if (reg->type != SCALAR_VALUE) { 2681 stack_mask &= ~(1ull << i); 2682 continue; 2683 } 2684 if (!reg->precise) 2685 new_marks = true; 2686 reg->precise = true; 2687 } 2688 if (env->log.level & BPF_LOG_LEVEL) { 2689 print_verifier_state(env, func); 2690 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2691 new_marks ? "didn't have" : "already had", 2692 reg_mask, stack_mask); 2693 } 2694 2695 if (!reg_mask && !stack_mask) 2696 break; 2697 if (!new_marks) 2698 break; 2699 2700 last_idx = st->last_insn_idx; 2701 first_idx = st->first_insn_idx; 2702 } 2703 return 0; 2704 } 2705 2706 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2707 { 2708 return __mark_chain_precision(env, regno, -1); 2709 } 2710 2711 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2712 { 2713 return __mark_chain_precision(env, -1, spi); 2714 } 2715 2716 static bool is_spillable_regtype(enum bpf_reg_type type) 2717 { 2718 switch (type) { 2719 case PTR_TO_MAP_VALUE: 2720 case PTR_TO_MAP_VALUE_OR_NULL: 2721 case PTR_TO_STACK: 2722 case PTR_TO_CTX: 2723 case PTR_TO_PACKET: 2724 case PTR_TO_PACKET_META: 2725 case PTR_TO_PACKET_END: 2726 case PTR_TO_FLOW_KEYS: 2727 case CONST_PTR_TO_MAP: 2728 case PTR_TO_SOCKET: 2729 case PTR_TO_SOCKET_OR_NULL: 2730 case PTR_TO_SOCK_COMMON: 2731 case PTR_TO_SOCK_COMMON_OR_NULL: 2732 case PTR_TO_TCP_SOCK: 2733 case PTR_TO_TCP_SOCK_OR_NULL: 2734 case PTR_TO_XDP_SOCK: 2735 case PTR_TO_BTF_ID: 2736 case PTR_TO_BTF_ID_OR_NULL: 2737 case PTR_TO_RDONLY_BUF: 2738 case PTR_TO_RDONLY_BUF_OR_NULL: 2739 case PTR_TO_RDWR_BUF: 2740 case PTR_TO_RDWR_BUF_OR_NULL: 2741 case PTR_TO_PERCPU_BTF_ID: 2742 case PTR_TO_MEM: 2743 case PTR_TO_MEM_OR_NULL: 2744 case PTR_TO_FUNC: 2745 case PTR_TO_MAP_KEY: 2746 return true; 2747 default: 2748 return false; 2749 } 2750 } 2751 2752 /* Does this register contain a constant zero? */ 2753 static bool register_is_null(struct bpf_reg_state *reg) 2754 { 2755 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2756 } 2757 2758 static bool register_is_const(struct bpf_reg_state *reg) 2759 { 2760 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2761 } 2762 2763 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2764 { 2765 return tnum_is_unknown(reg->var_off) && 2766 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2767 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2768 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2769 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2770 } 2771 2772 static bool register_is_bounded(struct bpf_reg_state *reg) 2773 { 2774 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2775 } 2776 2777 static bool __is_pointer_value(bool allow_ptr_leaks, 2778 const struct bpf_reg_state *reg) 2779 { 2780 if (allow_ptr_leaks) 2781 return false; 2782 2783 return reg->type != SCALAR_VALUE; 2784 } 2785 2786 static void save_register_state(struct bpf_func_state *state, 2787 int spi, struct bpf_reg_state *reg, 2788 int size) 2789 { 2790 int i; 2791 2792 state->stack[spi].spilled_ptr = *reg; 2793 if (size == BPF_REG_SIZE) 2794 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2795 2796 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2797 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2798 2799 /* size < 8 bytes spill */ 2800 for (; i; i--) 2801 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2802 } 2803 2804 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2805 * stack boundary and alignment are checked in check_mem_access() 2806 */ 2807 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2808 /* stack frame we're writing to */ 2809 struct bpf_func_state *state, 2810 int off, int size, int value_regno, 2811 int insn_idx) 2812 { 2813 struct bpf_func_state *cur; /* state of the current function */ 2814 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2815 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2816 struct bpf_reg_state *reg = NULL; 2817 2818 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2819 if (err) 2820 return err; 2821 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2822 * so it's aligned access and [off, off + size) are within stack limits 2823 */ 2824 if (!env->allow_ptr_leaks && 2825 state->stack[spi].slot_type[0] == STACK_SPILL && 2826 size != BPF_REG_SIZE) { 2827 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2828 return -EACCES; 2829 } 2830 2831 cur = env->cur_state->frame[env->cur_state->curframe]; 2832 if (value_regno >= 0) 2833 reg = &cur->regs[value_regno]; 2834 if (!env->bypass_spec_v4) { 2835 bool sanitize = reg && is_spillable_regtype(reg->type); 2836 2837 for (i = 0; i < size; i++) { 2838 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2839 sanitize = true; 2840 break; 2841 } 2842 } 2843 2844 if (sanitize) 2845 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2846 } 2847 2848 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2849 !register_is_null(reg) && env->bpf_capable) { 2850 if (dst_reg != BPF_REG_FP) { 2851 /* The backtracking logic can only recognize explicit 2852 * stack slot address like [fp - 8]. Other spill of 2853 * scalar via different register has to be conservative. 2854 * Backtrack from here and mark all registers as precise 2855 * that contributed into 'reg' being a constant. 2856 */ 2857 err = mark_chain_precision(env, value_regno); 2858 if (err) 2859 return err; 2860 } 2861 save_register_state(state, spi, reg, size); 2862 } else if (reg && is_spillable_regtype(reg->type)) { 2863 /* register containing pointer is being spilled into stack */ 2864 if (size != BPF_REG_SIZE) { 2865 verbose_linfo(env, insn_idx, "; "); 2866 verbose(env, "invalid size of register spill\n"); 2867 return -EACCES; 2868 } 2869 if (state != cur && reg->type == PTR_TO_STACK) { 2870 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2871 return -EINVAL; 2872 } 2873 save_register_state(state, spi, reg, size); 2874 } else { 2875 u8 type = STACK_MISC; 2876 2877 /* regular write of data into stack destroys any spilled ptr */ 2878 state->stack[spi].spilled_ptr.type = NOT_INIT; 2879 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2880 if (is_spilled_reg(&state->stack[spi])) 2881 for (i = 0; i < BPF_REG_SIZE; i++) 2882 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2883 2884 /* only mark the slot as written if all 8 bytes were written 2885 * otherwise read propagation may incorrectly stop too soon 2886 * when stack slots are partially written. 2887 * This heuristic means that read propagation will be 2888 * conservative, since it will add reg_live_read marks 2889 * to stack slots all the way to first state when programs 2890 * writes+reads less than 8 bytes 2891 */ 2892 if (size == BPF_REG_SIZE) 2893 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2894 2895 /* when we zero initialize stack slots mark them as such */ 2896 if (reg && register_is_null(reg)) { 2897 /* backtracking doesn't work for STACK_ZERO yet. */ 2898 err = mark_chain_precision(env, value_regno); 2899 if (err) 2900 return err; 2901 type = STACK_ZERO; 2902 } 2903 2904 /* Mark slots affected by this stack write. */ 2905 for (i = 0; i < size; i++) 2906 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2907 type; 2908 } 2909 return 0; 2910 } 2911 2912 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2913 * known to contain a variable offset. 2914 * This function checks whether the write is permitted and conservatively 2915 * tracks the effects of the write, considering that each stack slot in the 2916 * dynamic range is potentially written to. 2917 * 2918 * 'off' includes 'regno->off'. 2919 * 'value_regno' can be -1, meaning that an unknown value is being written to 2920 * the stack. 2921 * 2922 * Spilled pointers in range are not marked as written because we don't know 2923 * what's going to be actually written. This means that read propagation for 2924 * future reads cannot be terminated by this write. 2925 * 2926 * For privileged programs, uninitialized stack slots are considered 2927 * initialized by this write (even though we don't know exactly what offsets 2928 * are going to be written to). The idea is that we don't want the verifier to 2929 * reject future reads that access slots written to through variable offsets. 2930 */ 2931 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2932 /* func where register points to */ 2933 struct bpf_func_state *state, 2934 int ptr_regno, int off, int size, 2935 int value_regno, int insn_idx) 2936 { 2937 struct bpf_func_state *cur; /* state of the current function */ 2938 int min_off, max_off; 2939 int i, err; 2940 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2941 bool writing_zero = false; 2942 /* set if the fact that we're writing a zero is used to let any 2943 * stack slots remain STACK_ZERO 2944 */ 2945 bool zero_used = false; 2946 2947 cur = env->cur_state->frame[env->cur_state->curframe]; 2948 ptr_reg = &cur->regs[ptr_regno]; 2949 min_off = ptr_reg->smin_value + off; 2950 max_off = ptr_reg->smax_value + off + size; 2951 if (value_regno >= 0) 2952 value_reg = &cur->regs[value_regno]; 2953 if (value_reg && register_is_null(value_reg)) 2954 writing_zero = true; 2955 2956 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2957 if (err) 2958 return err; 2959 2960 2961 /* Variable offset writes destroy any spilled pointers in range. */ 2962 for (i = min_off; i < max_off; i++) { 2963 u8 new_type, *stype; 2964 int slot, spi; 2965 2966 slot = -i - 1; 2967 spi = slot / BPF_REG_SIZE; 2968 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2969 2970 if (!env->allow_ptr_leaks 2971 && *stype != NOT_INIT 2972 && *stype != SCALAR_VALUE) { 2973 /* Reject the write if there's are spilled pointers in 2974 * range. If we didn't reject here, the ptr status 2975 * would be erased below (even though not all slots are 2976 * actually overwritten), possibly opening the door to 2977 * leaks. 2978 */ 2979 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2980 insn_idx, i); 2981 return -EINVAL; 2982 } 2983 2984 /* Erase all spilled pointers. */ 2985 state->stack[spi].spilled_ptr.type = NOT_INIT; 2986 2987 /* Update the slot type. */ 2988 new_type = STACK_MISC; 2989 if (writing_zero && *stype == STACK_ZERO) { 2990 new_type = STACK_ZERO; 2991 zero_used = true; 2992 } 2993 /* If the slot is STACK_INVALID, we check whether it's OK to 2994 * pretend that it will be initialized by this write. The slot 2995 * might not actually be written to, and so if we mark it as 2996 * initialized future reads might leak uninitialized memory. 2997 * For privileged programs, we will accept such reads to slots 2998 * that may or may not be written because, if we're reject 2999 * them, the error would be too confusing. 3000 */ 3001 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3002 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3003 insn_idx, i); 3004 return -EINVAL; 3005 } 3006 *stype = new_type; 3007 } 3008 if (zero_used) { 3009 /* backtracking doesn't work for STACK_ZERO yet. */ 3010 err = mark_chain_precision(env, value_regno); 3011 if (err) 3012 return err; 3013 } 3014 return 0; 3015 } 3016 3017 /* When register 'dst_regno' is assigned some values from stack[min_off, 3018 * max_off), we set the register's type according to the types of the 3019 * respective stack slots. If all the stack values are known to be zeros, then 3020 * so is the destination reg. Otherwise, the register is considered to be 3021 * SCALAR. This function does not deal with register filling; the caller must 3022 * ensure that all spilled registers in the stack range have been marked as 3023 * read. 3024 */ 3025 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3026 /* func where src register points to */ 3027 struct bpf_func_state *ptr_state, 3028 int min_off, int max_off, int dst_regno) 3029 { 3030 struct bpf_verifier_state *vstate = env->cur_state; 3031 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3032 int i, slot, spi; 3033 u8 *stype; 3034 int zeros = 0; 3035 3036 for (i = min_off; i < max_off; i++) { 3037 slot = -i - 1; 3038 spi = slot / BPF_REG_SIZE; 3039 stype = ptr_state->stack[spi].slot_type; 3040 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3041 break; 3042 zeros++; 3043 } 3044 if (zeros == max_off - min_off) { 3045 /* any access_size read into register is zero extended, 3046 * so the whole register == const_zero 3047 */ 3048 __mark_reg_const_zero(&state->regs[dst_regno]); 3049 /* backtracking doesn't support STACK_ZERO yet, 3050 * so mark it precise here, so that later 3051 * backtracking can stop here. 3052 * Backtracking may not need this if this register 3053 * doesn't participate in pointer adjustment. 3054 * Forward propagation of precise flag is not 3055 * necessary either. This mark is only to stop 3056 * backtracking. Any register that contributed 3057 * to const 0 was marked precise before spill. 3058 */ 3059 state->regs[dst_regno].precise = true; 3060 } else { 3061 /* have read misc data from the stack */ 3062 mark_reg_unknown(env, state->regs, dst_regno); 3063 } 3064 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3065 } 3066 3067 /* Read the stack at 'off' and put the results into the register indicated by 3068 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3069 * spilled reg. 3070 * 3071 * 'dst_regno' can be -1, meaning that the read value is not going to a 3072 * register. 3073 * 3074 * The access is assumed to be within the current stack bounds. 3075 */ 3076 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3077 /* func where src register points to */ 3078 struct bpf_func_state *reg_state, 3079 int off, int size, int dst_regno) 3080 { 3081 struct bpf_verifier_state *vstate = env->cur_state; 3082 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3083 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3084 struct bpf_reg_state *reg; 3085 u8 *stype, type; 3086 3087 stype = reg_state->stack[spi].slot_type; 3088 reg = ®_state->stack[spi].spilled_ptr; 3089 3090 if (is_spilled_reg(®_state->stack[spi])) { 3091 if (size != BPF_REG_SIZE) { 3092 u8 scalar_size = 0; 3093 3094 if (reg->type != SCALAR_VALUE) { 3095 verbose_linfo(env, env->insn_idx, "; "); 3096 verbose(env, "invalid size of register fill\n"); 3097 return -EACCES; 3098 } 3099 3100 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3101 if (dst_regno < 0) 3102 return 0; 3103 3104 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3105 scalar_size++; 3106 3107 if (!(off % BPF_REG_SIZE) && size == scalar_size) { 3108 /* The earlier check_reg_arg() has decided the 3109 * subreg_def for this insn. Save it first. 3110 */ 3111 s32 subreg_def = state->regs[dst_regno].subreg_def; 3112 3113 state->regs[dst_regno] = *reg; 3114 state->regs[dst_regno].subreg_def = subreg_def; 3115 } else { 3116 for (i = 0; i < size; i++) { 3117 type = stype[(slot - i) % BPF_REG_SIZE]; 3118 if (type == STACK_SPILL) 3119 continue; 3120 if (type == STACK_MISC) 3121 continue; 3122 verbose(env, "invalid read from stack off %d+%d size %d\n", 3123 off, i, size); 3124 return -EACCES; 3125 } 3126 mark_reg_unknown(env, state->regs, dst_regno); 3127 } 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3129 return 0; 3130 } 3131 for (i = 1; i < BPF_REG_SIZE; i++) { 3132 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 3133 verbose(env, "corrupted spill memory\n"); 3134 return -EACCES; 3135 } 3136 } 3137 3138 if (dst_regno >= 0) { 3139 /* restore register state from stack */ 3140 state->regs[dst_regno] = *reg; 3141 /* mark reg as written since spilled pointer state likely 3142 * has its liveness marks cleared by is_state_visited() 3143 * which resets stack/reg liveness for state transitions 3144 */ 3145 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3146 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3147 /* If dst_regno==-1, the caller is asking us whether 3148 * it is acceptable to use this value as a SCALAR_VALUE 3149 * (e.g. for XADD). 3150 * We must not allow unprivileged callers to do that 3151 * with spilled pointers. 3152 */ 3153 verbose(env, "leaking pointer from stack off %d\n", 3154 off); 3155 return -EACCES; 3156 } 3157 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3158 } else { 3159 for (i = 0; i < size; i++) { 3160 type = stype[(slot - i) % BPF_REG_SIZE]; 3161 if (type == STACK_MISC) 3162 continue; 3163 if (type == STACK_ZERO) 3164 continue; 3165 verbose(env, "invalid read from stack off %d+%d size %d\n", 3166 off, i, size); 3167 return -EACCES; 3168 } 3169 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3170 if (dst_regno >= 0) 3171 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3172 } 3173 return 0; 3174 } 3175 3176 enum stack_access_src { 3177 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3178 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3179 }; 3180 3181 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3182 int regno, int off, int access_size, 3183 bool zero_size_allowed, 3184 enum stack_access_src type, 3185 struct bpf_call_arg_meta *meta); 3186 3187 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3188 { 3189 return cur_regs(env) + regno; 3190 } 3191 3192 /* Read the stack at 'ptr_regno + off' and put the result into the register 3193 * 'dst_regno'. 3194 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3195 * but not its variable offset. 3196 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3197 * 3198 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3199 * filling registers (i.e. reads of spilled register cannot be detected when 3200 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3201 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3202 * offset; for a fixed offset check_stack_read_fixed_off should be used 3203 * instead. 3204 */ 3205 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3206 int ptr_regno, int off, int size, int dst_regno) 3207 { 3208 /* The state of the source register. */ 3209 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3210 struct bpf_func_state *ptr_state = func(env, reg); 3211 int err; 3212 int min_off, max_off; 3213 3214 /* Note that we pass a NULL meta, so raw access will not be permitted. 3215 */ 3216 err = check_stack_range_initialized(env, ptr_regno, off, size, 3217 false, ACCESS_DIRECT, NULL); 3218 if (err) 3219 return err; 3220 3221 min_off = reg->smin_value + off; 3222 max_off = reg->smax_value + off; 3223 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3224 return 0; 3225 } 3226 3227 /* check_stack_read dispatches to check_stack_read_fixed_off or 3228 * check_stack_read_var_off. 3229 * 3230 * The caller must ensure that the offset falls within the allocated stack 3231 * bounds. 3232 * 3233 * 'dst_regno' is a register which will receive the value from the stack. It 3234 * can be -1, meaning that the read value is not going to a register. 3235 */ 3236 static int check_stack_read(struct bpf_verifier_env *env, 3237 int ptr_regno, int off, int size, 3238 int dst_regno) 3239 { 3240 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3241 struct bpf_func_state *state = func(env, reg); 3242 int err; 3243 /* Some accesses are only permitted with a static offset. */ 3244 bool var_off = !tnum_is_const(reg->var_off); 3245 3246 /* The offset is required to be static when reads don't go to a 3247 * register, in order to not leak pointers (see 3248 * check_stack_read_fixed_off). 3249 */ 3250 if (dst_regno < 0 && var_off) { 3251 char tn_buf[48]; 3252 3253 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3254 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3255 tn_buf, off, size); 3256 return -EACCES; 3257 } 3258 /* Variable offset is prohibited for unprivileged mode for simplicity 3259 * since it requires corresponding support in Spectre masking for stack 3260 * ALU. See also retrieve_ptr_limit(). 3261 */ 3262 if (!env->bypass_spec_v1 && var_off) { 3263 char tn_buf[48]; 3264 3265 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3266 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3267 ptr_regno, tn_buf); 3268 return -EACCES; 3269 } 3270 3271 if (!var_off) { 3272 off += reg->var_off.value; 3273 err = check_stack_read_fixed_off(env, state, off, size, 3274 dst_regno); 3275 } else { 3276 /* Variable offset stack reads need more conservative handling 3277 * than fixed offset ones. Note that dst_regno >= 0 on this 3278 * branch. 3279 */ 3280 err = check_stack_read_var_off(env, ptr_regno, off, size, 3281 dst_regno); 3282 } 3283 return err; 3284 } 3285 3286 3287 /* check_stack_write dispatches to check_stack_write_fixed_off or 3288 * check_stack_write_var_off. 3289 * 3290 * 'ptr_regno' is the register used as a pointer into the stack. 3291 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3292 * 'value_regno' is the register whose value we're writing to the stack. It can 3293 * be -1, meaning that we're not writing from a register. 3294 * 3295 * The caller must ensure that the offset falls within the maximum stack size. 3296 */ 3297 static int check_stack_write(struct bpf_verifier_env *env, 3298 int ptr_regno, int off, int size, 3299 int value_regno, int insn_idx) 3300 { 3301 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3302 struct bpf_func_state *state = func(env, reg); 3303 int err; 3304 3305 if (tnum_is_const(reg->var_off)) { 3306 off += reg->var_off.value; 3307 err = check_stack_write_fixed_off(env, state, off, size, 3308 value_regno, insn_idx); 3309 } else { 3310 /* Variable offset stack reads need more conservative handling 3311 * than fixed offset ones. 3312 */ 3313 err = check_stack_write_var_off(env, state, 3314 ptr_regno, off, size, 3315 value_regno, insn_idx); 3316 } 3317 return err; 3318 } 3319 3320 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3321 int off, int size, enum bpf_access_type type) 3322 { 3323 struct bpf_reg_state *regs = cur_regs(env); 3324 struct bpf_map *map = regs[regno].map_ptr; 3325 u32 cap = bpf_map_flags_to_cap(map); 3326 3327 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3328 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3329 map->value_size, off, size); 3330 return -EACCES; 3331 } 3332 3333 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3334 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3335 map->value_size, off, size); 3336 return -EACCES; 3337 } 3338 3339 return 0; 3340 } 3341 3342 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3343 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3344 int off, int size, u32 mem_size, 3345 bool zero_size_allowed) 3346 { 3347 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3348 struct bpf_reg_state *reg; 3349 3350 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3351 return 0; 3352 3353 reg = &cur_regs(env)[regno]; 3354 switch (reg->type) { 3355 case PTR_TO_MAP_KEY: 3356 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3357 mem_size, off, size); 3358 break; 3359 case PTR_TO_MAP_VALUE: 3360 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3361 mem_size, off, size); 3362 break; 3363 case PTR_TO_PACKET: 3364 case PTR_TO_PACKET_META: 3365 case PTR_TO_PACKET_END: 3366 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3367 off, size, regno, reg->id, off, mem_size); 3368 break; 3369 case PTR_TO_MEM: 3370 default: 3371 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3372 mem_size, off, size); 3373 } 3374 3375 return -EACCES; 3376 } 3377 3378 /* check read/write into a memory region with possible variable offset */ 3379 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3380 int off, int size, u32 mem_size, 3381 bool zero_size_allowed) 3382 { 3383 struct bpf_verifier_state *vstate = env->cur_state; 3384 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3385 struct bpf_reg_state *reg = &state->regs[regno]; 3386 int err; 3387 3388 /* We may have adjusted the register pointing to memory region, so we 3389 * need to try adding each of min_value and max_value to off 3390 * to make sure our theoretical access will be safe. 3391 */ 3392 if (env->log.level & BPF_LOG_LEVEL) 3393 print_verifier_state(env, state); 3394 3395 /* The minimum value is only important with signed 3396 * comparisons where we can't assume the floor of a 3397 * value is 0. If we are using signed variables for our 3398 * index'es we need to make sure that whatever we use 3399 * will have a set floor within our range. 3400 */ 3401 if (reg->smin_value < 0 && 3402 (reg->smin_value == S64_MIN || 3403 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3404 reg->smin_value + off < 0)) { 3405 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3406 regno); 3407 return -EACCES; 3408 } 3409 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3410 mem_size, zero_size_allowed); 3411 if (err) { 3412 verbose(env, "R%d min value is outside of the allowed memory range\n", 3413 regno); 3414 return err; 3415 } 3416 3417 /* If we haven't set a max value then we need to bail since we can't be 3418 * sure we won't do bad things. 3419 * If reg->umax_value + off could overflow, treat that as unbounded too. 3420 */ 3421 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3422 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3423 regno); 3424 return -EACCES; 3425 } 3426 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3427 mem_size, zero_size_allowed); 3428 if (err) { 3429 verbose(env, "R%d max value is outside of the allowed memory range\n", 3430 regno); 3431 return err; 3432 } 3433 3434 return 0; 3435 } 3436 3437 /* check read/write into a map element with possible variable offset */ 3438 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3439 int off, int size, bool zero_size_allowed) 3440 { 3441 struct bpf_verifier_state *vstate = env->cur_state; 3442 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3443 struct bpf_reg_state *reg = &state->regs[regno]; 3444 struct bpf_map *map = reg->map_ptr; 3445 int err; 3446 3447 err = check_mem_region_access(env, regno, off, size, map->value_size, 3448 zero_size_allowed); 3449 if (err) 3450 return err; 3451 3452 if (map_value_has_spin_lock(map)) { 3453 u32 lock = map->spin_lock_off; 3454 3455 /* if any part of struct bpf_spin_lock can be touched by 3456 * load/store reject this program. 3457 * To check that [x1, x2) overlaps with [y1, y2) 3458 * it is sufficient to check x1 < y2 && y1 < x2. 3459 */ 3460 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3461 lock < reg->umax_value + off + size) { 3462 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3463 return -EACCES; 3464 } 3465 } 3466 if (map_value_has_timer(map)) { 3467 u32 t = map->timer_off; 3468 3469 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3470 t < reg->umax_value + off + size) { 3471 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3472 return -EACCES; 3473 } 3474 } 3475 return err; 3476 } 3477 3478 #define MAX_PACKET_OFF 0xffff 3479 3480 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3481 { 3482 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3483 } 3484 3485 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3486 const struct bpf_call_arg_meta *meta, 3487 enum bpf_access_type t) 3488 { 3489 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3490 3491 switch (prog_type) { 3492 /* Program types only with direct read access go here! */ 3493 case BPF_PROG_TYPE_LWT_IN: 3494 case BPF_PROG_TYPE_LWT_OUT: 3495 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3496 case BPF_PROG_TYPE_SK_REUSEPORT: 3497 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3498 case BPF_PROG_TYPE_CGROUP_SKB: 3499 if (t == BPF_WRITE) 3500 return false; 3501 fallthrough; 3502 3503 /* Program types with direct read + write access go here! */ 3504 case BPF_PROG_TYPE_SCHED_CLS: 3505 case BPF_PROG_TYPE_SCHED_ACT: 3506 case BPF_PROG_TYPE_XDP: 3507 case BPF_PROG_TYPE_LWT_XMIT: 3508 case BPF_PROG_TYPE_SK_SKB: 3509 case BPF_PROG_TYPE_SK_MSG: 3510 if (meta) 3511 return meta->pkt_access; 3512 3513 env->seen_direct_write = true; 3514 return true; 3515 3516 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3517 if (t == BPF_WRITE) 3518 env->seen_direct_write = true; 3519 3520 return true; 3521 3522 default: 3523 return false; 3524 } 3525 } 3526 3527 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3528 int size, bool zero_size_allowed) 3529 { 3530 struct bpf_reg_state *regs = cur_regs(env); 3531 struct bpf_reg_state *reg = ®s[regno]; 3532 int err; 3533 3534 /* We may have added a variable offset to the packet pointer; but any 3535 * reg->range we have comes after that. We are only checking the fixed 3536 * offset. 3537 */ 3538 3539 /* We don't allow negative numbers, because we aren't tracking enough 3540 * detail to prove they're safe. 3541 */ 3542 if (reg->smin_value < 0) { 3543 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3544 regno); 3545 return -EACCES; 3546 } 3547 3548 err = reg->range < 0 ? -EINVAL : 3549 __check_mem_access(env, regno, off, size, reg->range, 3550 zero_size_allowed); 3551 if (err) { 3552 verbose(env, "R%d offset is outside of the packet\n", regno); 3553 return err; 3554 } 3555 3556 /* __check_mem_access has made sure "off + size - 1" is within u16. 3557 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3558 * otherwise find_good_pkt_pointers would have refused to set range info 3559 * that __check_mem_access would have rejected this pkt access. 3560 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3561 */ 3562 env->prog->aux->max_pkt_offset = 3563 max_t(u32, env->prog->aux->max_pkt_offset, 3564 off + reg->umax_value + size - 1); 3565 3566 return err; 3567 } 3568 3569 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3570 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3571 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3572 struct btf **btf, u32 *btf_id) 3573 { 3574 struct bpf_insn_access_aux info = { 3575 .reg_type = *reg_type, 3576 .log = &env->log, 3577 }; 3578 3579 if (env->ops->is_valid_access && 3580 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3581 /* A non zero info.ctx_field_size indicates that this field is a 3582 * candidate for later verifier transformation to load the whole 3583 * field and then apply a mask when accessed with a narrower 3584 * access than actual ctx access size. A zero info.ctx_field_size 3585 * will only allow for whole field access and rejects any other 3586 * type of narrower access. 3587 */ 3588 *reg_type = info.reg_type; 3589 3590 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3591 *btf = info.btf; 3592 *btf_id = info.btf_id; 3593 } else { 3594 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3595 } 3596 /* remember the offset of last byte accessed in ctx */ 3597 if (env->prog->aux->max_ctx_offset < off + size) 3598 env->prog->aux->max_ctx_offset = off + size; 3599 return 0; 3600 } 3601 3602 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3603 return -EACCES; 3604 } 3605 3606 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3607 int size) 3608 { 3609 if (size < 0 || off < 0 || 3610 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3611 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3612 off, size); 3613 return -EACCES; 3614 } 3615 return 0; 3616 } 3617 3618 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3619 u32 regno, int off, int size, 3620 enum bpf_access_type t) 3621 { 3622 struct bpf_reg_state *regs = cur_regs(env); 3623 struct bpf_reg_state *reg = ®s[regno]; 3624 struct bpf_insn_access_aux info = {}; 3625 bool valid; 3626 3627 if (reg->smin_value < 0) { 3628 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3629 regno); 3630 return -EACCES; 3631 } 3632 3633 switch (reg->type) { 3634 case PTR_TO_SOCK_COMMON: 3635 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3636 break; 3637 case PTR_TO_SOCKET: 3638 valid = bpf_sock_is_valid_access(off, size, t, &info); 3639 break; 3640 case PTR_TO_TCP_SOCK: 3641 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3642 break; 3643 case PTR_TO_XDP_SOCK: 3644 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3645 break; 3646 default: 3647 valid = false; 3648 } 3649 3650 3651 if (valid) { 3652 env->insn_aux_data[insn_idx].ctx_field_size = 3653 info.ctx_field_size; 3654 return 0; 3655 } 3656 3657 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3658 regno, reg_type_str[reg->type], off, size); 3659 3660 return -EACCES; 3661 } 3662 3663 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3664 { 3665 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3666 } 3667 3668 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3669 { 3670 const struct bpf_reg_state *reg = reg_state(env, regno); 3671 3672 return reg->type == PTR_TO_CTX; 3673 } 3674 3675 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3676 { 3677 const struct bpf_reg_state *reg = reg_state(env, regno); 3678 3679 return type_is_sk_pointer(reg->type); 3680 } 3681 3682 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3683 { 3684 const struct bpf_reg_state *reg = reg_state(env, regno); 3685 3686 return type_is_pkt_pointer(reg->type); 3687 } 3688 3689 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3690 { 3691 const struct bpf_reg_state *reg = reg_state(env, regno); 3692 3693 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3694 return reg->type == PTR_TO_FLOW_KEYS; 3695 } 3696 3697 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3698 const struct bpf_reg_state *reg, 3699 int off, int size, bool strict) 3700 { 3701 struct tnum reg_off; 3702 int ip_align; 3703 3704 /* Byte size accesses are always allowed. */ 3705 if (!strict || size == 1) 3706 return 0; 3707 3708 /* For platforms that do not have a Kconfig enabling 3709 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3710 * NET_IP_ALIGN is universally set to '2'. And on platforms 3711 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3712 * to this code only in strict mode where we want to emulate 3713 * the NET_IP_ALIGN==2 checking. Therefore use an 3714 * unconditional IP align value of '2'. 3715 */ 3716 ip_align = 2; 3717 3718 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3719 if (!tnum_is_aligned(reg_off, size)) { 3720 char tn_buf[48]; 3721 3722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3723 verbose(env, 3724 "misaligned packet access off %d+%s+%d+%d size %d\n", 3725 ip_align, tn_buf, reg->off, off, size); 3726 return -EACCES; 3727 } 3728 3729 return 0; 3730 } 3731 3732 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3733 const struct bpf_reg_state *reg, 3734 const char *pointer_desc, 3735 int off, int size, bool strict) 3736 { 3737 struct tnum reg_off; 3738 3739 /* Byte size accesses are always allowed. */ 3740 if (!strict || size == 1) 3741 return 0; 3742 3743 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3744 if (!tnum_is_aligned(reg_off, size)) { 3745 char tn_buf[48]; 3746 3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3748 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3749 pointer_desc, tn_buf, reg->off, off, size); 3750 return -EACCES; 3751 } 3752 3753 return 0; 3754 } 3755 3756 static int check_ptr_alignment(struct bpf_verifier_env *env, 3757 const struct bpf_reg_state *reg, int off, 3758 int size, bool strict_alignment_once) 3759 { 3760 bool strict = env->strict_alignment || strict_alignment_once; 3761 const char *pointer_desc = ""; 3762 3763 switch (reg->type) { 3764 case PTR_TO_PACKET: 3765 case PTR_TO_PACKET_META: 3766 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3767 * right in front, treat it the very same way. 3768 */ 3769 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3770 case PTR_TO_FLOW_KEYS: 3771 pointer_desc = "flow keys "; 3772 break; 3773 case PTR_TO_MAP_KEY: 3774 pointer_desc = "key "; 3775 break; 3776 case PTR_TO_MAP_VALUE: 3777 pointer_desc = "value "; 3778 break; 3779 case PTR_TO_CTX: 3780 pointer_desc = "context "; 3781 break; 3782 case PTR_TO_STACK: 3783 pointer_desc = "stack "; 3784 /* The stack spill tracking logic in check_stack_write_fixed_off() 3785 * and check_stack_read_fixed_off() relies on stack accesses being 3786 * aligned. 3787 */ 3788 strict = true; 3789 break; 3790 case PTR_TO_SOCKET: 3791 pointer_desc = "sock "; 3792 break; 3793 case PTR_TO_SOCK_COMMON: 3794 pointer_desc = "sock_common "; 3795 break; 3796 case PTR_TO_TCP_SOCK: 3797 pointer_desc = "tcp_sock "; 3798 break; 3799 case PTR_TO_XDP_SOCK: 3800 pointer_desc = "xdp_sock "; 3801 break; 3802 default: 3803 break; 3804 } 3805 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3806 strict); 3807 } 3808 3809 static int update_stack_depth(struct bpf_verifier_env *env, 3810 const struct bpf_func_state *func, 3811 int off) 3812 { 3813 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3814 3815 if (stack >= -off) 3816 return 0; 3817 3818 /* update known max for given subprogram */ 3819 env->subprog_info[func->subprogno].stack_depth = -off; 3820 return 0; 3821 } 3822 3823 /* starting from main bpf function walk all instructions of the function 3824 * and recursively walk all callees that given function can call. 3825 * Ignore jump and exit insns. 3826 * Since recursion is prevented by check_cfg() this algorithm 3827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3828 */ 3829 static int check_max_stack_depth(struct bpf_verifier_env *env) 3830 { 3831 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3832 struct bpf_subprog_info *subprog = env->subprog_info; 3833 struct bpf_insn *insn = env->prog->insnsi; 3834 bool tail_call_reachable = false; 3835 int ret_insn[MAX_CALL_FRAMES]; 3836 int ret_prog[MAX_CALL_FRAMES]; 3837 int j; 3838 3839 process_func: 3840 /* protect against potential stack overflow that might happen when 3841 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3842 * depth for such case down to 256 so that the worst case scenario 3843 * would result in 8k stack size (32 which is tailcall limit * 256 = 3844 * 8k). 3845 * 3846 * To get the idea what might happen, see an example: 3847 * func1 -> sub rsp, 128 3848 * subfunc1 -> sub rsp, 256 3849 * tailcall1 -> add rsp, 256 3850 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3851 * subfunc2 -> sub rsp, 64 3852 * subfunc22 -> sub rsp, 128 3853 * tailcall2 -> add rsp, 128 3854 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3855 * 3856 * tailcall will unwind the current stack frame but it will not get rid 3857 * of caller's stack as shown on the example above. 3858 */ 3859 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3860 verbose(env, 3861 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3862 depth); 3863 return -EACCES; 3864 } 3865 /* round up to 32-bytes, since this is granularity 3866 * of interpreter stack size 3867 */ 3868 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3869 if (depth > MAX_BPF_STACK) { 3870 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3871 frame + 1, depth); 3872 return -EACCES; 3873 } 3874 continue_func: 3875 subprog_end = subprog[idx + 1].start; 3876 for (; i < subprog_end; i++) { 3877 int next_insn; 3878 3879 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3880 continue; 3881 /* remember insn and function to return to */ 3882 ret_insn[frame] = i + 1; 3883 ret_prog[frame] = idx; 3884 3885 /* find the callee */ 3886 next_insn = i + insn[i].imm + 1; 3887 idx = find_subprog(env, next_insn); 3888 if (idx < 0) { 3889 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3890 next_insn); 3891 return -EFAULT; 3892 } 3893 if (subprog[idx].is_async_cb) { 3894 if (subprog[idx].has_tail_call) { 3895 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3896 return -EFAULT; 3897 } 3898 /* async callbacks don't increase bpf prog stack size */ 3899 continue; 3900 } 3901 i = next_insn; 3902 3903 if (subprog[idx].has_tail_call) 3904 tail_call_reachable = true; 3905 3906 frame++; 3907 if (frame >= MAX_CALL_FRAMES) { 3908 verbose(env, "the call stack of %d frames is too deep !\n", 3909 frame); 3910 return -E2BIG; 3911 } 3912 goto process_func; 3913 } 3914 /* if tail call got detected across bpf2bpf calls then mark each of the 3915 * currently present subprog frames as tail call reachable subprogs; 3916 * this info will be utilized by JIT so that we will be preserving the 3917 * tail call counter throughout bpf2bpf calls combined with tailcalls 3918 */ 3919 if (tail_call_reachable) 3920 for (j = 0; j < frame; j++) 3921 subprog[ret_prog[j]].tail_call_reachable = true; 3922 if (subprog[0].tail_call_reachable) 3923 env->prog->aux->tail_call_reachable = true; 3924 3925 /* end of for() loop means the last insn of the 'subprog' 3926 * was reached. Doesn't matter whether it was JA or EXIT 3927 */ 3928 if (frame == 0) 3929 return 0; 3930 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3931 frame--; 3932 i = ret_insn[frame]; 3933 idx = ret_prog[frame]; 3934 goto continue_func; 3935 } 3936 3937 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3938 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3939 const struct bpf_insn *insn, int idx) 3940 { 3941 int start = idx + insn->imm + 1, subprog; 3942 3943 subprog = find_subprog(env, start); 3944 if (subprog < 0) { 3945 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3946 start); 3947 return -EFAULT; 3948 } 3949 return env->subprog_info[subprog].stack_depth; 3950 } 3951 #endif 3952 3953 int check_ctx_reg(struct bpf_verifier_env *env, 3954 const struct bpf_reg_state *reg, int regno) 3955 { 3956 /* Access to ctx or passing it to a helper is only allowed in 3957 * its original, unmodified form. 3958 */ 3959 3960 if (reg->off) { 3961 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3962 regno, reg->off); 3963 return -EACCES; 3964 } 3965 3966 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3967 char tn_buf[48]; 3968 3969 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3970 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3971 return -EACCES; 3972 } 3973 3974 return 0; 3975 } 3976 3977 static int __check_buffer_access(struct bpf_verifier_env *env, 3978 const char *buf_info, 3979 const struct bpf_reg_state *reg, 3980 int regno, int off, int size) 3981 { 3982 if (off < 0) { 3983 verbose(env, 3984 "R%d invalid %s buffer access: off=%d, size=%d\n", 3985 regno, buf_info, off, size); 3986 return -EACCES; 3987 } 3988 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3989 char tn_buf[48]; 3990 3991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3992 verbose(env, 3993 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3994 regno, off, tn_buf); 3995 return -EACCES; 3996 } 3997 3998 return 0; 3999 } 4000 4001 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4002 const struct bpf_reg_state *reg, 4003 int regno, int off, int size) 4004 { 4005 int err; 4006 4007 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4008 if (err) 4009 return err; 4010 4011 if (off + size > env->prog->aux->max_tp_access) 4012 env->prog->aux->max_tp_access = off + size; 4013 4014 return 0; 4015 } 4016 4017 static int check_buffer_access(struct bpf_verifier_env *env, 4018 const struct bpf_reg_state *reg, 4019 int regno, int off, int size, 4020 bool zero_size_allowed, 4021 const char *buf_info, 4022 u32 *max_access) 4023 { 4024 int err; 4025 4026 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4027 if (err) 4028 return err; 4029 4030 if (off + size > *max_access) 4031 *max_access = off + size; 4032 4033 return 0; 4034 } 4035 4036 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4037 static void zext_32_to_64(struct bpf_reg_state *reg) 4038 { 4039 reg->var_off = tnum_subreg(reg->var_off); 4040 __reg_assign_32_into_64(reg); 4041 } 4042 4043 /* truncate register to smaller size (in bytes) 4044 * must be called with size < BPF_REG_SIZE 4045 */ 4046 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4047 { 4048 u64 mask; 4049 4050 /* clear high bits in bit representation */ 4051 reg->var_off = tnum_cast(reg->var_off, size); 4052 4053 /* fix arithmetic bounds */ 4054 mask = ((u64)1 << (size * 8)) - 1; 4055 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4056 reg->umin_value &= mask; 4057 reg->umax_value &= mask; 4058 } else { 4059 reg->umin_value = 0; 4060 reg->umax_value = mask; 4061 } 4062 reg->smin_value = reg->umin_value; 4063 reg->smax_value = reg->umax_value; 4064 4065 /* If size is smaller than 32bit register the 32bit register 4066 * values are also truncated so we push 64-bit bounds into 4067 * 32-bit bounds. Above were truncated < 32-bits already. 4068 */ 4069 if (size >= 4) 4070 return; 4071 __reg_combine_64_into_32(reg); 4072 } 4073 4074 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4075 { 4076 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 4077 } 4078 4079 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4080 { 4081 void *ptr; 4082 u64 addr; 4083 int err; 4084 4085 err = map->ops->map_direct_value_addr(map, &addr, off); 4086 if (err) 4087 return err; 4088 ptr = (void *)(long)addr + off; 4089 4090 switch (size) { 4091 case sizeof(u8): 4092 *val = (u64)*(u8 *)ptr; 4093 break; 4094 case sizeof(u16): 4095 *val = (u64)*(u16 *)ptr; 4096 break; 4097 case sizeof(u32): 4098 *val = (u64)*(u32 *)ptr; 4099 break; 4100 case sizeof(u64): 4101 *val = *(u64 *)ptr; 4102 break; 4103 default: 4104 return -EINVAL; 4105 } 4106 return 0; 4107 } 4108 4109 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4110 struct bpf_reg_state *regs, 4111 int regno, int off, int size, 4112 enum bpf_access_type atype, 4113 int value_regno) 4114 { 4115 struct bpf_reg_state *reg = regs + regno; 4116 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4117 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4118 u32 btf_id; 4119 int ret; 4120 4121 if (off < 0) { 4122 verbose(env, 4123 "R%d is ptr_%s invalid negative access: off=%d\n", 4124 regno, tname, off); 4125 return -EACCES; 4126 } 4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4128 char tn_buf[48]; 4129 4130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4131 verbose(env, 4132 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4133 regno, tname, off, tn_buf); 4134 return -EACCES; 4135 } 4136 4137 if (env->ops->btf_struct_access) { 4138 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4139 off, size, atype, &btf_id); 4140 } else { 4141 if (atype != BPF_READ) { 4142 verbose(env, "only read is supported\n"); 4143 return -EACCES; 4144 } 4145 4146 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4147 atype, &btf_id); 4148 } 4149 4150 if (ret < 0) 4151 return ret; 4152 4153 if (atype == BPF_READ && value_regno >= 0) 4154 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4155 4156 return 0; 4157 } 4158 4159 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4160 struct bpf_reg_state *regs, 4161 int regno, int off, int size, 4162 enum bpf_access_type atype, 4163 int value_regno) 4164 { 4165 struct bpf_reg_state *reg = regs + regno; 4166 struct bpf_map *map = reg->map_ptr; 4167 const struct btf_type *t; 4168 const char *tname; 4169 u32 btf_id; 4170 int ret; 4171 4172 if (!btf_vmlinux) { 4173 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4174 return -ENOTSUPP; 4175 } 4176 4177 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4178 verbose(env, "map_ptr access not supported for map type %d\n", 4179 map->map_type); 4180 return -ENOTSUPP; 4181 } 4182 4183 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4184 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4185 4186 if (!env->allow_ptr_to_map_access) { 4187 verbose(env, 4188 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4189 tname); 4190 return -EPERM; 4191 } 4192 4193 if (off < 0) { 4194 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4195 regno, tname, off); 4196 return -EACCES; 4197 } 4198 4199 if (atype != BPF_READ) { 4200 verbose(env, "only read from %s is supported\n", tname); 4201 return -EACCES; 4202 } 4203 4204 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4205 if (ret < 0) 4206 return ret; 4207 4208 if (value_regno >= 0) 4209 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4210 4211 return 0; 4212 } 4213 4214 /* Check that the stack access at the given offset is within bounds. The 4215 * maximum valid offset is -1. 4216 * 4217 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4218 * -state->allocated_stack for reads. 4219 */ 4220 static int check_stack_slot_within_bounds(int off, 4221 struct bpf_func_state *state, 4222 enum bpf_access_type t) 4223 { 4224 int min_valid_off; 4225 4226 if (t == BPF_WRITE) 4227 min_valid_off = -MAX_BPF_STACK; 4228 else 4229 min_valid_off = -state->allocated_stack; 4230 4231 if (off < min_valid_off || off > -1) 4232 return -EACCES; 4233 return 0; 4234 } 4235 4236 /* Check that the stack access at 'regno + off' falls within the maximum stack 4237 * bounds. 4238 * 4239 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4240 */ 4241 static int check_stack_access_within_bounds( 4242 struct bpf_verifier_env *env, 4243 int regno, int off, int access_size, 4244 enum stack_access_src src, enum bpf_access_type type) 4245 { 4246 struct bpf_reg_state *regs = cur_regs(env); 4247 struct bpf_reg_state *reg = regs + regno; 4248 struct bpf_func_state *state = func(env, reg); 4249 int min_off, max_off; 4250 int err; 4251 char *err_extra; 4252 4253 if (src == ACCESS_HELPER) 4254 /* We don't know if helpers are reading or writing (or both). */ 4255 err_extra = " indirect access to"; 4256 else if (type == BPF_READ) 4257 err_extra = " read from"; 4258 else 4259 err_extra = " write to"; 4260 4261 if (tnum_is_const(reg->var_off)) { 4262 min_off = reg->var_off.value + off; 4263 if (access_size > 0) 4264 max_off = min_off + access_size - 1; 4265 else 4266 max_off = min_off; 4267 } else { 4268 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4269 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4270 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4271 err_extra, regno); 4272 return -EACCES; 4273 } 4274 min_off = reg->smin_value + off; 4275 if (access_size > 0) 4276 max_off = reg->smax_value + off + access_size - 1; 4277 else 4278 max_off = min_off; 4279 } 4280 4281 err = check_stack_slot_within_bounds(min_off, state, type); 4282 if (!err) 4283 err = check_stack_slot_within_bounds(max_off, state, type); 4284 4285 if (err) { 4286 if (tnum_is_const(reg->var_off)) { 4287 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4288 err_extra, regno, off, access_size); 4289 } else { 4290 char tn_buf[48]; 4291 4292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4293 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4294 err_extra, regno, tn_buf, access_size); 4295 } 4296 } 4297 return err; 4298 } 4299 4300 /* check whether memory at (regno + off) is accessible for t = (read | write) 4301 * if t==write, value_regno is a register which value is stored into memory 4302 * if t==read, value_regno is a register which will receive the value from memory 4303 * if t==write && value_regno==-1, some unknown value is stored into memory 4304 * if t==read && value_regno==-1, don't care what we read from memory 4305 */ 4306 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4307 int off, int bpf_size, enum bpf_access_type t, 4308 int value_regno, bool strict_alignment_once) 4309 { 4310 struct bpf_reg_state *regs = cur_regs(env); 4311 struct bpf_reg_state *reg = regs + regno; 4312 struct bpf_func_state *state; 4313 int size, err = 0; 4314 4315 size = bpf_size_to_bytes(bpf_size); 4316 if (size < 0) 4317 return size; 4318 4319 /* alignment checks will add in reg->off themselves */ 4320 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4321 if (err) 4322 return err; 4323 4324 /* for access checks, reg->off is just part of off */ 4325 off += reg->off; 4326 4327 if (reg->type == PTR_TO_MAP_KEY) { 4328 if (t == BPF_WRITE) { 4329 verbose(env, "write to change key R%d not allowed\n", regno); 4330 return -EACCES; 4331 } 4332 4333 err = check_mem_region_access(env, regno, off, size, 4334 reg->map_ptr->key_size, false); 4335 if (err) 4336 return err; 4337 if (value_regno >= 0) 4338 mark_reg_unknown(env, regs, value_regno); 4339 } else if (reg->type == PTR_TO_MAP_VALUE) { 4340 if (t == BPF_WRITE && value_regno >= 0 && 4341 is_pointer_value(env, value_regno)) { 4342 verbose(env, "R%d leaks addr into map\n", value_regno); 4343 return -EACCES; 4344 } 4345 err = check_map_access_type(env, regno, off, size, t); 4346 if (err) 4347 return err; 4348 err = check_map_access(env, regno, off, size, false); 4349 if (!err && t == BPF_READ && value_regno >= 0) { 4350 struct bpf_map *map = reg->map_ptr; 4351 4352 /* if map is read-only, track its contents as scalars */ 4353 if (tnum_is_const(reg->var_off) && 4354 bpf_map_is_rdonly(map) && 4355 map->ops->map_direct_value_addr) { 4356 int map_off = off + reg->var_off.value; 4357 u64 val = 0; 4358 4359 err = bpf_map_direct_read(map, map_off, size, 4360 &val); 4361 if (err) 4362 return err; 4363 4364 regs[value_regno].type = SCALAR_VALUE; 4365 __mark_reg_known(®s[value_regno], val); 4366 } else { 4367 mark_reg_unknown(env, regs, value_regno); 4368 } 4369 } 4370 } else if (reg->type == PTR_TO_MEM) { 4371 if (t == BPF_WRITE && value_regno >= 0 && 4372 is_pointer_value(env, value_regno)) { 4373 verbose(env, "R%d leaks addr into mem\n", value_regno); 4374 return -EACCES; 4375 } 4376 err = check_mem_region_access(env, regno, off, size, 4377 reg->mem_size, false); 4378 if (!err && t == BPF_READ && value_regno >= 0) 4379 mark_reg_unknown(env, regs, value_regno); 4380 } else if (reg->type == PTR_TO_CTX) { 4381 enum bpf_reg_type reg_type = SCALAR_VALUE; 4382 struct btf *btf = NULL; 4383 u32 btf_id = 0; 4384 4385 if (t == BPF_WRITE && value_regno >= 0 && 4386 is_pointer_value(env, value_regno)) { 4387 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4388 return -EACCES; 4389 } 4390 4391 err = check_ctx_reg(env, reg, regno); 4392 if (err < 0) 4393 return err; 4394 4395 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4396 if (err) 4397 verbose_linfo(env, insn_idx, "; "); 4398 if (!err && t == BPF_READ && value_regno >= 0) { 4399 /* ctx access returns either a scalar, or a 4400 * PTR_TO_PACKET[_META,_END]. In the latter 4401 * case, we know the offset is zero. 4402 */ 4403 if (reg_type == SCALAR_VALUE) { 4404 mark_reg_unknown(env, regs, value_regno); 4405 } else { 4406 mark_reg_known_zero(env, regs, 4407 value_regno); 4408 if (reg_type_may_be_null(reg_type)) 4409 regs[value_regno].id = ++env->id_gen; 4410 /* A load of ctx field could have different 4411 * actual load size with the one encoded in the 4412 * insn. When the dst is PTR, it is for sure not 4413 * a sub-register. 4414 */ 4415 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4416 if (reg_type == PTR_TO_BTF_ID || 4417 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4418 regs[value_regno].btf = btf; 4419 regs[value_regno].btf_id = btf_id; 4420 } 4421 } 4422 regs[value_regno].type = reg_type; 4423 } 4424 4425 } else if (reg->type == PTR_TO_STACK) { 4426 /* Basic bounds checks. */ 4427 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4428 if (err) 4429 return err; 4430 4431 state = func(env, reg); 4432 err = update_stack_depth(env, state, off); 4433 if (err) 4434 return err; 4435 4436 if (t == BPF_READ) 4437 err = check_stack_read(env, regno, off, size, 4438 value_regno); 4439 else 4440 err = check_stack_write(env, regno, off, size, 4441 value_regno, insn_idx); 4442 } else if (reg_is_pkt_pointer(reg)) { 4443 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4444 verbose(env, "cannot write into packet\n"); 4445 return -EACCES; 4446 } 4447 if (t == BPF_WRITE && value_regno >= 0 && 4448 is_pointer_value(env, value_regno)) { 4449 verbose(env, "R%d leaks addr into packet\n", 4450 value_regno); 4451 return -EACCES; 4452 } 4453 err = check_packet_access(env, regno, off, size, false); 4454 if (!err && t == BPF_READ && value_regno >= 0) 4455 mark_reg_unknown(env, regs, value_regno); 4456 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4457 if (t == BPF_WRITE && value_regno >= 0 && 4458 is_pointer_value(env, value_regno)) { 4459 verbose(env, "R%d leaks addr into flow keys\n", 4460 value_regno); 4461 return -EACCES; 4462 } 4463 4464 err = check_flow_keys_access(env, off, size); 4465 if (!err && t == BPF_READ && value_regno >= 0) 4466 mark_reg_unknown(env, regs, value_regno); 4467 } else if (type_is_sk_pointer(reg->type)) { 4468 if (t == BPF_WRITE) { 4469 verbose(env, "R%d cannot write into %s\n", 4470 regno, reg_type_str[reg->type]); 4471 return -EACCES; 4472 } 4473 err = check_sock_access(env, insn_idx, regno, off, size, t); 4474 if (!err && value_regno >= 0) 4475 mark_reg_unknown(env, regs, value_regno); 4476 } else if (reg->type == PTR_TO_TP_BUFFER) { 4477 err = check_tp_buffer_access(env, reg, regno, off, size); 4478 if (!err && t == BPF_READ && value_regno >= 0) 4479 mark_reg_unknown(env, regs, value_regno); 4480 } else if (reg->type == PTR_TO_BTF_ID) { 4481 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4482 value_regno); 4483 } else if (reg->type == CONST_PTR_TO_MAP) { 4484 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4485 value_regno); 4486 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4487 if (t == BPF_WRITE) { 4488 verbose(env, "R%d cannot write into %s\n", 4489 regno, reg_type_str[reg->type]); 4490 return -EACCES; 4491 } 4492 err = check_buffer_access(env, reg, regno, off, size, false, 4493 "rdonly", 4494 &env->prog->aux->max_rdonly_access); 4495 if (!err && value_regno >= 0) 4496 mark_reg_unknown(env, regs, value_regno); 4497 } else if (reg->type == PTR_TO_RDWR_BUF) { 4498 err = check_buffer_access(env, reg, regno, off, size, false, 4499 "rdwr", 4500 &env->prog->aux->max_rdwr_access); 4501 if (!err && t == BPF_READ && value_regno >= 0) 4502 mark_reg_unknown(env, regs, value_regno); 4503 } else { 4504 verbose(env, "R%d invalid mem access '%s'\n", regno, 4505 reg_type_str[reg->type]); 4506 return -EACCES; 4507 } 4508 4509 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4510 regs[value_regno].type == SCALAR_VALUE) { 4511 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4512 coerce_reg_to_size(®s[value_regno], size); 4513 } 4514 return err; 4515 } 4516 4517 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4518 { 4519 int load_reg; 4520 int err; 4521 4522 switch (insn->imm) { 4523 case BPF_ADD: 4524 case BPF_ADD | BPF_FETCH: 4525 case BPF_AND: 4526 case BPF_AND | BPF_FETCH: 4527 case BPF_OR: 4528 case BPF_OR | BPF_FETCH: 4529 case BPF_XOR: 4530 case BPF_XOR | BPF_FETCH: 4531 case BPF_XCHG: 4532 case BPF_CMPXCHG: 4533 break; 4534 default: 4535 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4536 return -EINVAL; 4537 } 4538 4539 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4540 verbose(env, "invalid atomic operand size\n"); 4541 return -EINVAL; 4542 } 4543 4544 /* check src1 operand */ 4545 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4546 if (err) 4547 return err; 4548 4549 /* check src2 operand */ 4550 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4551 if (err) 4552 return err; 4553 4554 if (insn->imm == BPF_CMPXCHG) { 4555 /* Check comparison of R0 with memory location */ 4556 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4557 if (err) 4558 return err; 4559 } 4560 4561 if (is_pointer_value(env, insn->src_reg)) { 4562 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4563 return -EACCES; 4564 } 4565 4566 if (is_ctx_reg(env, insn->dst_reg) || 4567 is_pkt_reg(env, insn->dst_reg) || 4568 is_flow_key_reg(env, insn->dst_reg) || 4569 is_sk_reg(env, insn->dst_reg)) { 4570 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4571 insn->dst_reg, 4572 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4573 return -EACCES; 4574 } 4575 4576 if (insn->imm & BPF_FETCH) { 4577 if (insn->imm == BPF_CMPXCHG) 4578 load_reg = BPF_REG_0; 4579 else 4580 load_reg = insn->src_reg; 4581 4582 /* check and record load of old value */ 4583 err = check_reg_arg(env, load_reg, DST_OP); 4584 if (err) 4585 return err; 4586 } else { 4587 /* This instruction accesses a memory location but doesn't 4588 * actually load it into a register. 4589 */ 4590 load_reg = -1; 4591 } 4592 4593 /* check whether we can read the memory */ 4594 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4595 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4596 if (err) 4597 return err; 4598 4599 /* check whether we can write into the same memory */ 4600 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4601 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4602 if (err) 4603 return err; 4604 4605 return 0; 4606 } 4607 4608 /* When register 'regno' is used to read the stack (either directly or through 4609 * a helper function) make sure that it's within stack boundary and, depending 4610 * on the access type, that all elements of the stack are initialized. 4611 * 4612 * 'off' includes 'regno->off', but not its dynamic part (if any). 4613 * 4614 * All registers that have been spilled on the stack in the slots within the 4615 * read offsets are marked as read. 4616 */ 4617 static int check_stack_range_initialized( 4618 struct bpf_verifier_env *env, int regno, int off, 4619 int access_size, bool zero_size_allowed, 4620 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4621 { 4622 struct bpf_reg_state *reg = reg_state(env, regno); 4623 struct bpf_func_state *state = func(env, reg); 4624 int err, min_off, max_off, i, j, slot, spi; 4625 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4626 enum bpf_access_type bounds_check_type; 4627 /* Some accesses can write anything into the stack, others are 4628 * read-only. 4629 */ 4630 bool clobber = false; 4631 4632 if (access_size == 0 && !zero_size_allowed) { 4633 verbose(env, "invalid zero-sized read\n"); 4634 return -EACCES; 4635 } 4636 4637 if (type == ACCESS_HELPER) { 4638 /* The bounds checks for writes are more permissive than for 4639 * reads. However, if raw_mode is not set, we'll do extra 4640 * checks below. 4641 */ 4642 bounds_check_type = BPF_WRITE; 4643 clobber = true; 4644 } else { 4645 bounds_check_type = BPF_READ; 4646 } 4647 err = check_stack_access_within_bounds(env, regno, off, access_size, 4648 type, bounds_check_type); 4649 if (err) 4650 return err; 4651 4652 4653 if (tnum_is_const(reg->var_off)) { 4654 min_off = max_off = reg->var_off.value + off; 4655 } else { 4656 /* Variable offset is prohibited for unprivileged mode for 4657 * simplicity since it requires corresponding support in 4658 * Spectre masking for stack ALU. 4659 * See also retrieve_ptr_limit(). 4660 */ 4661 if (!env->bypass_spec_v1) { 4662 char tn_buf[48]; 4663 4664 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4665 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4666 regno, err_extra, tn_buf); 4667 return -EACCES; 4668 } 4669 /* Only initialized buffer on stack is allowed to be accessed 4670 * with variable offset. With uninitialized buffer it's hard to 4671 * guarantee that whole memory is marked as initialized on 4672 * helper return since specific bounds are unknown what may 4673 * cause uninitialized stack leaking. 4674 */ 4675 if (meta && meta->raw_mode) 4676 meta = NULL; 4677 4678 min_off = reg->smin_value + off; 4679 max_off = reg->smax_value + off; 4680 } 4681 4682 if (meta && meta->raw_mode) { 4683 meta->access_size = access_size; 4684 meta->regno = regno; 4685 return 0; 4686 } 4687 4688 for (i = min_off; i < max_off + access_size; i++) { 4689 u8 *stype; 4690 4691 slot = -i - 1; 4692 spi = slot / BPF_REG_SIZE; 4693 if (state->allocated_stack <= slot) 4694 goto err; 4695 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4696 if (*stype == STACK_MISC) 4697 goto mark; 4698 if (*stype == STACK_ZERO) { 4699 if (clobber) { 4700 /* helper can write anything into the stack */ 4701 *stype = STACK_MISC; 4702 } 4703 goto mark; 4704 } 4705 4706 if (is_spilled_reg(&state->stack[spi]) && 4707 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4708 goto mark; 4709 4710 if (is_spilled_reg(&state->stack[spi]) && 4711 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4712 env->allow_ptr_leaks)) { 4713 if (clobber) { 4714 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4715 for (j = 0; j < BPF_REG_SIZE; j++) 4716 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4717 } 4718 goto mark; 4719 } 4720 4721 err: 4722 if (tnum_is_const(reg->var_off)) { 4723 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4724 err_extra, regno, min_off, i - min_off, access_size); 4725 } else { 4726 char tn_buf[48]; 4727 4728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4729 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4730 err_extra, regno, tn_buf, i - min_off, access_size); 4731 } 4732 return -EACCES; 4733 mark: 4734 /* reading any byte out of 8-byte 'spill_slot' will cause 4735 * the whole slot to be marked as 'read' 4736 */ 4737 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4738 state->stack[spi].spilled_ptr.parent, 4739 REG_LIVE_READ64); 4740 } 4741 return update_stack_depth(env, state, min_off); 4742 } 4743 4744 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4745 int access_size, bool zero_size_allowed, 4746 struct bpf_call_arg_meta *meta) 4747 { 4748 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4749 4750 switch (reg->type) { 4751 case PTR_TO_PACKET: 4752 case PTR_TO_PACKET_META: 4753 return check_packet_access(env, regno, reg->off, access_size, 4754 zero_size_allowed); 4755 case PTR_TO_MAP_KEY: 4756 return check_mem_region_access(env, regno, reg->off, access_size, 4757 reg->map_ptr->key_size, false); 4758 case PTR_TO_MAP_VALUE: 4759 if (check_map_access_type(env, regno, reg->off, access_size, 4760 meta && meta->raw_mode ? BPF_WRITE : 4761 BPF_READ)) 4762 return -EACCES; 4763 return check_map_access(env, regno, reg->off, access_size, 4764 zero_size_allowed); 4765 case PTR_TO_MEM: 4766 return check_mem_region_access(env, regno, reg->off, 4767 access_size, reg->mem_size, 4768 zero_size_allowed); 4769 case PTR_TO_RDONLY_BUF: 4770 if (meta && meta->raw_mode) 4771 return -EACCES; 4772 return check_buffer_access(env, reg, regno, reg->off, 4773 access_size, zero_size_allowed, 4774 "rdonly", 4775 &env->prog->aux->max_rdonly_access); 4776 case PTR_TO_RDWR_BUF: 4777 return check_buffer_access(env, reg, regno, reg->off, 4778 access_size, zero_size_allowed, 4779 "rdwr", 4780 &env->prog->aux->max_rdwr_access); 4781 case PTR_TO_STACK: 4782 return check_stack_range_initialized( 4783 env, 4784 regno, reg->off, access_size, 4785 zero_size_allowed, ACCESS_HELPER, meta); 4786 default: /* scalar_value or invalid ptr */ 4787 /* Allow zero-byte read from NULL, regardless of pointer type */ 4788 if (zero_size_allowed && access_size == 0 && 4789 register_is_null(reg)) 4790 return 0; 4791 4792 verbose(env, "R%d type=%s expected=%s\n", regno, 4793 reg_type_str[reg->type], 4794 reg_type_str[PTR_TO_STACK]); 4795 return -EACCES; 4796 } 4797 } 4798 4799 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4800 u32 regno, u32 mem_size) 4801 { 4802 if (register_is_null(reg)) 4803 return 0; 4804 4805 if (reg_type_may_be_null(reg->type)) { 4806 /* Assuming that the register contains a value check if the memory 4807 * access is safe. Temporarily save and restore the register's state as 4808 * the conversion shouldn't be visible to a caller. 4809 */ 4810 const struct bpf_reg_state saved_reg = *reg; 4811 int rv; 4812 4813 mark_ptr_not_null_reg(reg); 4814 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4815 *reg = saved_reg; 4816 return rv; 4817 } 4818 4819 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4820 } 4821 4822 /* Implementation details: 4823 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4824 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4825 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4826 * value_or_null->value transition, since the verifier only cares about 4827 * the range of access to valid map value pointer and doesn't care about actual 4828 * address of the map element. 4829 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4830 * reg->id > 0 after value_or_null->value transition. By doing so 4831 * two bpf_map_lookups will be considered two different pointers that 4832 * point to different bpf_spin_locks. 4833 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4834 * dead-locks. 4835 * Since only one bpf_spin_lock is allowed the checks are simpler than 4836 * reg_is_refcounted() logic. The verifier needs to remember only 4837 * one spin_lock instead of array of acquired_refs. 4838 * cur_state->active_spin_lock remembers which map value element got locked 4839 * and clears it after bpf_spin_unlock. 4840 */ 4841 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4842 bool is_lock) 4843 { 4844 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4845 struct bpf_verifier_state *cur = env->cur_state; 4846 bool is_const = tnum_is_const(reg->var_off); 4847 struct bpf_map *map = reg->map_ptr; 4848 u64 val = reg->var_off.value; 4849 4850 if (!is_const) { 4851 verbose(env, 4852 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4853 regno); 4854 return -EINVAL; 4855 } 4856 if (!map->btf) { 4857 verbose(env, 4858 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4859 map->name); 4860 return -EINVAL; 4861 } 4862 if (!map_value_has_spin_lock(map)) { 4863 if (map->spin_lock_off == -E2BIG) 4864 verbose(env, 4865 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4866 map->name); 4867 else if (map->spin_lock_off == -ENOENT) 4868 verbose(env, 4869 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4870 map->name); 4871 else 4872 verbose(env, 4873 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4874 map->name); 4875 return -EINVAL; 4876 } 4877 if (map->spin_lock_off != val + reg->off) { 4878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4879 val + reg->off); 4880 return -EINVAL; 4881 } 4882 if (is_lock) { 4883 if (cur->active_spin_lock) { 4884 verbose(env, 4885 "Locking two bpf_spin_locks are not allowed\n"); 4886 return -EINVAL; 4887 } 4888 cur->active_spin_lock = reg->id; 4889 } else { 4890 if (!cur->active_spin_lock) { 4891 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4892 return -EINVAL; 4893 } 4894 if (cur->active_spin_lock != reg->id) { 4895 verbose(env, "bpf_spin_unlock of different lock\n"); 4896 return -EINVAL; 4897 } 4898 cur->active_spin_lock = 0; 4899 } 4900 return 0; 4901 } 4902 4903 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4904 struct bpf_call_arg_meta *meta) 4905 { 4906 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4907 bool is_const = tnum_is_const(reg->var_off); 4908 struct bpf_map *map = reg->map_ptr; 4909 u64 val = reg->var_off.value; 4910 4911 if (!is_const) { 4912 verbose(env, 4913 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4914 regno); 4915 return -EINVAL; 4916 } 4917 if (!map->btf) { 4918 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4919 map->name); 4920 return -EINVAL; 4921 } 4922 if (!map_value_has_timer(map)) { 4923 if (map->timer_off == -E2BIG) 4924 verbose(env, 4925 "map '%s' has more than one 'struct bpf_timer'\n", 4926 map->name); 4927 else if (map->timer_off == -ENOENT) 4928 verbose(env, 4929 "map '%s' doesn't have 'struct bpf_timer'\n", 4930 map->name); 4931 else 4932 verbose(env, 4933 "map '%s' is not a struct type or bpf_timer is mangled\n", 4934 map->name); 4935 return -EINVAL; 4936 } 4937 if (map->timer_off != val + reg->off) { 4938 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4939 val + reg->off, map->timer_off); 4940 return -EINVAL; 4941 } 4942 if (meta->map_ptr) { 4943 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4944 return -EFAULT; 4945 } 4946 meta->map_uid = reg->map_uid; 4947 meta->map_ptr = map; 4948 return 0; 4949 } 4950 4951 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4952 { 4953 return type == ARG_PTR_TO_MEM || 4954 type == ARG_PTR_TO_MEM_OR_NULL || 4955 type == ARG_PTR_TO_UNINIT_MEM; 4956 } 4957 4958 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4959 { 4960 return type == ARG_CONST_SIZE || 4961 type == ARG_CONST_SIZE_OR_ZERO; 4962 } 4963 4964 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4965 { 4966 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4967 } 4968 4969 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4970 { 4971 return type == ARG_PTR_TO_INT || 4972 type == ARG_PTR_TO_LONG; 4973 } 4974 4975 static int int_ptr_type_to_size(enum bpf_arg_type type) 4976 { 4977 if (type == ARG_PTR_TO_INT) 4978 return sizeof(u32); 4979 else if (type == ARG_PTR_TO_LONG) 4980 return sizeof(u64); 4981 4982 return -EINVAL; 4983 } 4984 4985 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4986 const struct bpf_call_arg_meta *meta, 4987 enum bpf_arg_type *arg_type) 4988 { 4989 if (!meta->map_ptr) { 4990 /* kernel subsystem misconfigured verifier */ 4991 verbose(env, "invalid map_ptr to access map->type\n"); 4992 return -EACCES; 4993 } 4994 4995 switch (meta->map_ptr->map_type) { 4996 case BPF_MAP_TYPE_SOCKMAP: 4997 case BPF_MAP_TYPE_SOCKHASH: 4998 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4999 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5000 } else { 5001 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5002 return -EINVAL; 5003 } 5004 break; 5005 case BPF_MAP_TYPE_BLOOM_FILTER: 5006 if (meta->func_id == BPF_FUNC_map_peek_elem) 5007 *arg_type = ARG_PTR_TO_MAP_VALUE; 5008 break; 5009 default: 5010 break; 5011 } 5012 return 0; 5013 } 5014 5015 struct bpf_reg_types { 5016 const enum bpf_reg_type types[10]; 5017 u32 *btf_id; 5018 }; 5019 5020 static const struct bpf_reg_types map_key_value_types = { 5021 .types = { 5022 PTR_TO_STACK, 5023 PTR_TO_PACKET, 5024 PTR_TO_PACKET_META, 5025 PTR_TO_MAP_KEY, 5026 PTR_TO_MAP_VALUE, 5027 }, 5028 }; 5029 5030 static const struct bpf_reg_types sock_types = { 5031 .types = { 5032 PTR_TO_SOCK_COMMON, 5033 PTR_TO_SOCKET, 5034 PTR_TO_TCP_SOCK, 5035 PTR_TO_XDP_SOCK, 5036 }, 5037 }; 5038 5039 #ifdef CONFIG_NET 5040 static const struct bpf_reg_types btf_id_sock_common_types = { 5041 .types = { 5042 PTR_TO_SOCK_COMMON, 5043 PTR_TO_SOCKET, 5044 PTR_TO_TCP_SOCK, 5045 PTR_TO_XDP_SOCK, 5046 PTR_TO_BTF_ID, 5047 }, 5048 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5049 }; 5050 #endif 5051 5052 static const struct bpf_reg_types mem_types = { 5053 .types = { 5054 PTR_TO_STACK, 5055 PTR_TO_PACKET, 5056 PTR_TO_PACKET_META, 5057 PTR_TO_MAP_KEY, 5058 PTR_TO_MAP_VALUE, 5059 PTR_TO_MEM, 5060 PTR_TO_RDONLY_BUF, 5061 PTR_TO_RDWR_BUF, 5062 }, 5063 }; 5064 5065 static const struct bpf_reg_types int_ptr_types = { 5066 .types = { 5067 PTR_TO_STACK, 5068 PTR_TO_PACKET, 5069 PTR_TO_PACKET_META, 5070 PTR_TO_MAP_KEY, 5071 PTR_TO_MAP_VALUE, 5072 }, 5073 }; 5074 5075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5078 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5080 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5081 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5082 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5083 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5084 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5085 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5086 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5087 5088 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5089 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5090 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5091 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5092 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 5093 [ARG_CONST_SIZE] = &scalar_types, 5094 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5095 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5096 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5097 [ARG_PTR_TO_CTX] = &context_types, 5098 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 5099 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5100 #ifdef CONFIG_NET 5101 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5102 #endif 5103 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5104 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 5105 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5106 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5107 [ARG_PTR_TO_MEM] = &mem_types, 5108 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 5109 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5110 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5111 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 5112 [ARG_PTR_TO_INT] = &int_ptr_types, 5113 [ARG_PTR_TO_LONG] = &int_ptr_types, 5114 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5115 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5116 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 5117 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5118 [ARG_PTR_TO_TIMER] = &timer_types, 5119 }; 5120 5121 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5122 enum bpf_arg_type arg_type, 5123 const u32 *arg_btf_id) 5124 { 5125 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5126 enum bpf_reg_type expected, type = reg->type; 5127 const struct bpf_reg_types *compatible; 5128 int i, j; 5129 5130 compatible = compatible_reg_types[arg_type]; 5131 if (!compatible) { 5132 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5133 return -EFAULT; 5134 } 5135 5136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5137 expected = compatible->types[i]; 5138 if (expected == NOT_INIT) 5139 break; 5140 5141 if (type == expected) 5142 goto found; 5143 } 5144 5145 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 5146 for (j = 0; j + 1 < i; j++) 5147 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5148 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5149 return -EACCES; 5150 5151 found: 5152 if (type == PTR_TO_BTF_ID) { 5153 if (!arg_btf_id) { 5154 if (!compatible->btf_id) { 5155 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5156 return -EFAULT; 5157 } 5158 arg_btf_id = compatible->btf_id; 5159 } 5160 5161 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5162 btf_vmlinux, *arg_btf_id)) { 5163 verbose(env, "R%d is of type %s but %s is expected\n", 5164 regno, kernel_type_name(reg->btf, reg->btf_id), 5165 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5166 return -EACCES; 5167 } 5168 5169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5170 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5171 regno); 5172 return -EACCES; 5173 } 5174 } 5175 5176 return 0; 5177 } 5178 5179 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5180 struct bpf_call_arg_meta *meta, 5181 const struct bpf_func_proto *fn) 5182 { 5183 u32 regno = BPF_REG_1 + arg; 5184 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5185 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5186 enum bpf_reg_type type = reg->type; 5187 int err = 0; 5188 5189 if (arg_type == ARG_DONTCARE) 5190 return 0; 5191 5192 err = check_reg_arg(env, regno, SRC_OP); 5193 if (err) 5194 return err; 5195 5196 if (arg_type == ARG_ANYTHING) { 5197 if (is_pointer_value(env, regno)) { 5198 verbose(env, "R%d leaks addr into helper function\n", 5199 regno); 5200 return -EACCES; 5201 } 5202 return 0; 5203 } 5204 5205 if (type_is_pkt_pointer(type) && 5206 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5207 verbose(env, "helper access to the packet is not allowed\n"); 5208 return -EACCES; 5209 } 5210 5211 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5212 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5214 err = resolve_map_arg_type(env, meta, &arg_type); 5215 if (err) 5216 return err; 5217 } 5218 5219 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5220 /* A NULL register has a SCALAR_VALUE type, so skip 5221 * type checking. 5222 */ 5223 goto skip_type_check; 5224 5225 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5226 if (err) 5227 return err; 5228 5229 if (type == PTR_TO_CTX) { 5230 err = check_ctx_reg(env, reg, regno); 5231 if (err < 0) 5232 return err; 5233 } 5234 5235 skip_type_check: 5236 if (reg->ref_obj_id) { 5237 if (meta->ref_obj_id) { 5238 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5239 regno, reg->ref_obj_id, 5240 meta->ref_obj_id); 5241 return -EFAULT; 5242 } 5243 meta->ref_obj_id = reg->ref_obj_id; 5244 } 5245 5246 if (arg_type == ARG_CONST_MAP_PTR) { 5247 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5248 if (meta->map_ptr) { 5249 /* Use map_uid (which is unique id of inner map) to reject: 5250 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5251 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5252 * if (inner_map1 && inner_map2) { 5253 * timer = bpf_map_lookup_elem(inner_map1); 5254 * if (timer) 5255 * // mismatch would have been allowed 5256 * bpf_timer_init(timer, inner_map2); 5257 * } 5258 * 5259 * Comparing map_ptr is enough to distinguish normal and outer maps. 5260 */ 5261 if (meta->map_ptr != reg->map_ptr || 5262 meta->map_uid != reg->map_uid) { 5263 verbose(env, 5264 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5265 meta->map_uid, reg->map_uid); 5266 return -EINVAL; 5267 } 5268 } 5269 meta->map_ptr = reg->map_ptr; 5270 meta->map_uid = reg->map_uid; 5271 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5272 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5273 * check that [key, key + map->key_size) are within 5274 * stack limits and initialized 5275 */ 5276 if (!meta->map_ptr) { 5277 /* in function declaration map_ptr must come before 5278 * map_key, so that it's verified and known before 5279 * we have to check map_key here. Otherwise it means 5280 * that kernel subsystem misconfigured verifier 5281 */ 5282 verbose(env, "invalid map_ptr to access map->key\n"); 5283 return -EACCES; 5284 } 5285 err = check_helper_mem_access(env, regno, 5286 meta->map_ptr->key_size, false, 5287 NULL); 5288 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5289 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5290 !register_is_null(reg)) || 5291 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5292 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5293 * check [value, value + map->value_size) validity 5294 */ 5295 if (!meta->map_ptr) { 5296 /* kernel subsystem misconfigured verifier */ 5297 verbose(env, "invalid map_ptr to access map->value\n"); 5298 return -EACCES; 5299 } 5300 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5301 err = check_helper_mem_access(env, regno, 5302 meta->map_ptr->value_size, false, 5303 meta); 5304 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5305 if (!reg->btf_id) { 5306 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5307 return -EACCES; 5308 } 5309 meta->ret_btf = reg->btf; 5310 meta->ret_btf_id = reg->btf_id; 5311 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5312 if (meta->func_id == BPF_FUNC_spin_lock) { 5313 if (process_spin_lock(env, regno, true)) 5314 return -EACCES; 5315 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5316 if (process_spin_lock(env, regno, false)) 5317 return -EACCES; 5318 } else { 5319 verbose(env, "verifier internal error\n"); 5320 return -EFAULT; 5321 } 5322 } else if (arg_type == ARG_PTR_TO_TIMER) { 5323 if (process_timer_func(env, regno, meta)) 5324 return -EACCES; 5325 } else if (arg_type == ARG_PTR_TO_FUNC) { 5326 meta->subprogno = reg->subprogno; 5327 } else if (arg_type_is_mem_ptr(arg_type)) { 5328 /* The access to this pointer is only checked when we hit the 5329 * next is_mem_size argument below. 5330 */ 5331 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5332 } else if (arg_type_is_mem_size(arg_type)) { 5333 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5334 5335 /* This is used to refine r0 return value bounds for helpers 5336 * that enforce this value as an upper bound on return values. 5337 * See do_refine_retval_range() for helpers that can refine 5338 * the return value. C type of helper is u32 so we pull register 5339 * bound from umax_value however, if negative verifier errors 5340 * out. Only upper bounds can be learned because retval is an 5341 * int type and negative retvals are allowed. 5342 */ 5343 meta->msize_max_value = reg->umax_value; 5344 5345 /* The register is SCALAR_VALUE; the access check 5346 * happens using its boundaries. 5347 */ 5348 if (!tnum_is_const(reg->var_off)) 5349 /* For unprivileged variable accesses, disable raw 5350 * mode so that the program is required to 5351 * initialize all the memory that the helper could 5352 * just partially fill up. 5353 */ 5354 meta = NULL; 5355 5356 if (reg->smin_value < 0) { 5357 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5358 regno); 5359 return -EACCES; 5360 } 5361 5362 if (reg->umin_value == 0) { 5363 err = check_helper_mem_access(env, regno - 1, 0, 5364 zero_size_allowed, 5365 meta); 5366 if (err) 5367 return err; 5368 } 5369 5370 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5371 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5372 regno); 5373 return -EACCES; 5374 } 5375 err = check_helper_mem_access(env, regno - 1, 5376 reg->umax_value, 5377 zero_size_allowed, meta); 5378 if (!err) 5379 err = mark_chain_precision(env, regno); 5380 } else if (arg_type_is_alloc_size(arg_type)) { 5381 if (!tnum_is_const(reg->var_off)) { 5382 verbose(env, "R%d is not a known constant'\n", 5383 regno); 5384 return -EACCES; 5385 } 5386 meta->mem_size = reg->var_off.value; 5387 } else if (arg_type_is_int_ptr(arg_type)) { 5388 int size = int_ptr_type_to_size(arg_type); 5389 5390 err = check_helper_mem_access(env, regno, size, false, meta); 5391 if (err) 5392 return err; 5393 err = check_ptr_alignment(env, reg, 0, size, true); 5394 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5395 struct bpf_map *map = reg->map_ptr; 5396 int map_off; 5397 u64 map_addr; 5398 char *str_ptr; 5399 5400 if (!bpf_map_is_rdonly(map)) { 5401 verbose(env, "R%d does not point to a readonly map'\n", regno); 5402 return -EACCES; 5403 } 5404 5405 if (!tnum_is_const(reg->var_off)) { 5406 verbose(env, "R%d is not a constant address'\n", regno); 5407 return -EACCES; 5408 } 5409 5410 if (!map->ops->map_direct_value_addr) { 5411 verbose(env, "no direct value access support for this map type\n"); 5412 return -EACCES; 5413 } 5414 5415 err = check_map_access(env, regno, reg->off, 5416 map->value_size - reg->off, false); 5417 if (err) 5418 return err; 5419 5420 map_off = reg->off + reg->var_off.value; 5421 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5422 if (err) { 5423 verbose(env, "direct value access on string failed\n"); 5424 return err; 5425 } 5426 5427 str_ptr = (char *)(long)(map_addr); 5428 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5429 verbose(env, "string is not zero-terminated\n"); 5430 return -EINVAL; 5431 } 5432 } 5433 5434 return err; 5435 } 5436 5437 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5438 { 5439 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5440 enum bpf_prog_type type = resolve_prog_type(env->prog); 5441 5442 if (func_id != BPF_FUNC_map_update_elem) 5443 return false; 5444 5445 /* It's not possible to get access to a locked struct sock in these 5446 * contexts, so updating is safe. 5447 */ 5448 switch (type) { 5449 case BPF_PROG_TYPE_TRACING: 5450 if (eatype == BPF_TRACE_ITER) 5451 return true; 5452 break; 5453 case BPF_PROG_TYPE_SOCKET_FILTER: 5454 case BPF_PROG_TYPE_SCHED_CLS: 5455 case BPF_PROG_TYPE_SCHED_ACT: 5456 case BPF_PROG_TYPE_XDP: 5457 case BPF_PROG_TYPE_SK_REUSEPORT: 5458 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5459 case BPF_PROG_TYPE_SK_LOOKUP: 5460 return true; 5461 default: 5462 break; 5463 } 5464 5465 verbose(env, "cannot update sockmap in this context\n"); 5466 return false; 5467 } 5468 5469 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5470 { 5471 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5472 } 5473 5474 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5475 struct bpf_map *map, int func_id) 5476 { 5477 if (!map) 5478 return 0; 5479 5480 /* We need a two way check, first is from map perspective ... */ 5481 switch (map->map_type) { 5482 case BPF_MAP_TYPE_PROG_ARRAY: 5483 if (func_id != BPF_FUNC_tail_call) 5484 goto error; 5485 break; 5486 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5487 if (func_id != BPF_FUNC_perf_event_read && 5488 func_id != BPF_FUNC_perf_event_output && 5489 func_id != BPF_FUNC_skb_output && 5490 func_id != BPF_FUNC_perf_event_read_value && 5491 func_id != BPF_FUNC_xdp_output) 5492 goto error; 5493 break; 5494 case BPF_MAP_TYPE_RINGBUF: 5495 if (func_id != BPF_FUNC_ringbuf_output && 5496 func_id != BPF_FUNC_ringbuf_reserve && 5497 func_id != BPF_FUNC_ringbuf_query) 5498 goto error; 5499 break; 5500 case BPF_MAP_TYPE_STACK_TRACE: 5501 if (func_id != BPF_FUNC_get_stackid) 5502 goto error; 5503 break; 5504 case BPF_MAP_TYPE_CGROUP_ARRAY: 5505 if (func_id != BPF_FUNC_skb_under_cgroup && 5506 func_id != BPF_FUNC_current_task_under_cgroup) 5507 goto error; 5508 break; 5509 case BPF_MAP_TYPE_CGROUP_STORAGE: 5510 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5511 if (func_id != BPF_FUNC_get_local_storage) 5512 goto error; 5513 break; 5514 case BPF_MAP_TYPE_DEVMAP: 5515 case BPF_MAP_TYPE_DEVMAP_HASH: 5516 if (func_id != BPF_FUNC_redirect_map && 5517 func_id != BPF_FUNC_map_lookup_elem) 5518 goto error; 5519 break; 5520 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5521 * appear. 5522 */ 5523 case BPF_MAP_TYPE_CPUMAP: 5524 if (func_id != BPF_FUNC_redirect_map) 5525 goto error; 5526 break; 5527 case BPF_MAP_TYPE_XSKMAP: 5528 if (func_id != BPF_FUNC_redirect_map && 5529 func_id != BPF_FUNC_map_lookup_elem) 5530 goto error; 5531 break; 5532 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5533 case BPF_MAP_TYPE_HASH_OF_MAPS: 5534 if (func_id != BPF_FUNC_map_lookup_elem) 5535 goto error; 5536 break; 5537 case BPF_MAP_TYPE_SOCKMAP: 5538 if (func_id != BPF_FUNC_sk_redirect_map && 5539 func_id != BPF_FUNC_sock_map_update && 5540 func_id != BPF_FUNC_map_delete_elem && 5541 func_id != BPF_FUNC_msg_redirect_map && 5542 func_id != BPF_FUNC_sk_select_reuseport && 5543 func_id != BPF_FUNC_map_lookup_elem && 5544 !may_update_sockmap(env, func_id)) 5545 goto error; 5546 break; 5547 case BPF_MAP_TYPE_SOCKHASH: 5548 if (func_id != BPF_FUNC_sk_redirect_hash && 5549 func_id != BPF_FUNC_sock_hash_update && 5550 func_id != BPF_FUNC_map_delete_elem && 5551 func_id != BPF_FUNC_msg_redirect_hash && 5552 func_id != BPF_FUNC_sk_select_reuseport && 5553 func_id != BPF_FUNC_map_lookup_elem && 5554 !may_update_sockmap(env, func_id)) 5555 goto error; 5556 break; 5557 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5558 if (func_id != BPF_FUNC_sk_select_reuseport) 5559 goto error; 5560 break; 5561 case BPF_MAP_TYPE_QUEUE: 5562 case BPF_MAP_TYPE_STACK: 5563 if (func_id != BPF_FUNC_map_peek_elem && 5564 func_id != BPF_FUNC_map_pop_elem && 5565 func_id != BPF_FUNC_map_push_elem) 5566 goto error; 5567 break; 5568 case BPF_MAP_TYPE_SK_STORAGE: 5569 if (func_id != BPF_FUNC_sk_storage_get && 5570 func_id != BPF_FUNC_sk_storage_delete) 5571 goto error; 5572 break; 5573 case BPF_MAP_TYPE_INODE_STORAGE: 5574 if (func_id != BPF_FUNC_inode_storage_get && 5575 func_id != BPF_FUNC_inode_storage_delete) 5576 goto error; 5577 break; 5578 case BPF_MAP_TYPE_TASK_STORAGE: 5579 if (func_id != BPF_FUNC_task_storage_get && 5580 func_id != BPF_FUNC_task_storage_delete) 5581 goto error; 5582 break; 5583 case BPF_MAP_TYPE_BLOOM_FILTER: 5584 if (func_id != BPF_FUNC_map_peek_elem && 5585 func_id != BPF_FUNC_map_push_elem) 5586 goto error; 5587 break; 5588 default: 5589 break; 5590 } 5591 5592 /* ... and second from the function itself. */ 5593 switch (func_id) { 5594 case BPF_FUNC_tail_call: 5595 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5596 goto error; 5597 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5598 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5599 return -EINVAL; 5600 } 5601 break; 5602 case BPF_FUNC_perf_event_read: 5603 case BPF_FUNC_perf_event_output: 5604 case BPF_FUNC_perf_event_read_value: 5605 case BPF_FUNC_skb_output: 5606 case BPF_FUNC_xdp_output: 5607 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5608 goto error; 5609 break; 5610 case BPF_FUNC_ringbuf_output: 5611 case BPF_FUNC_ringbuf_reserve: 5612 case BPF_FUNC_ringbuf_query: 5613 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5614 goto error; 5615 break; 5616 case BPF_FUNC_get_stackid: 5617 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5618 goto error; 5619 break; 5620 case BPF_FUNC_current_task_under_cgroup: 5621 case BPF_FUNC_skb_under_cgroup: 5622 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5623 goto error; 5624 break; 5625 case BPF_FUNC_redirect_map: 5626 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5627 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5628 map->map_type != BPF_MAP_TYPE_CPUMAP && 5629 map->map_type != BPF_MAP_TYPE_XSKMAP) 5630 goto error; 5631 break; 5632 case BPF_FUNC_sk_redirect_map: 5633 case BPF_FUNC_msg_redirect_map: 5634 case BPF_FUNC_sock_map_update: 5635 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5636 goto error; 5637 break; 5638 case BPF_FUNC_sk_redirect_hash: 5639 case BPF_FUNC_msg_redirect_hash: 5640 case BPF_FUNC_sock_hash_update: 5641 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5642 goto error; 5643 break; 5644 case BPF_FUNC_get_local_storage: 5645 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5646 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5647 goto error; 5648 break; 5649 case BPF_FUNC_sk_select_reuseport: 5650 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5651 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5652 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5653 goto error; 5654 break; 5655 case BPF_FUNC_map_pop_elem: 5656 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5657 map->map_type != BPF_MAP_TYPE_STACK) 5658 goto error; 5659 break; 5660 case BPF_FUNC_map_peek_elem: 5661 case BPF_FUNC_map_push_elem: 5662 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5663 map->map_type != BPF_MAP_TYPE_STACK && 5664 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5665 goto error; 5666 break; 5667 case BPF_FUNC_sk_storage_get: 5668 case BPF_FUNC_sk_storage_delete: 5669 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5670 goto error; 5671 break; 5672 case BPF_FUNC_inode_storage_get: 5673 case BPF_FUNC_inode_storage_delete: 5674 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5675 goto error; 5676 break; 5677 case BPF_FUNC_task_storage_get: 5678 case BPF_FUNC_task_storage_delete: 5679 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5680 goto error; 5681 break; 5682 default: 5683 break; 5684 } 5685 5686 return 0; 5687 error: 5688 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5689 map->map_type, func_id_name(func_id), func_id); 5690 return -EINVAL; 5691 } 5692 5693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5694 { 5695 int count = 0; 5696 5697 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5698 count++; 5699 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5700 count++; 5701 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5702 count++; 5703 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5704 count++; 5705 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5706 count++; 5707 5708 /* We only support one arg being in raw mode at the moment, 5709 * which is sufficient for the helper functions we have 5710 * right now. 5711 */ 5712 return count <= 1; 5713 } 5714 5715 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5716 enum bpf_arg_type arg_next) 5717 { 5718 return (arg_type_is_mem_ptr(arg_curr) && 5719 !arg_type_is_mem_size(arg_next)) || 5720 (!arg_type_is_mem_ptr(arg_curr) && 5721 arg_type_is_mem_size(arg_next)); 5722 } 5723 5724 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5725 { 5726 /* bpf_xxx(..., buf, len) call will access 'len' 5727 * bytes from memory 'buf'. Both arg types need 5728 * to be paired, so make sure there's no buggy 5729 * helper function specification. 5730 */ 5731 if (arg_type_is_mem_size(fn->arg1_type) || 5732 arg_type_is_mem_ptr(fn->arg5_type) || 5733 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5734 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5735 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5736 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5737 return false; 5738 5739 return true; 5740 } 5741 5742 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5743 { 5744 int count = 0; 5745 5746 if (arg_type_may_be_refcounted(fn->arg1_type)) 5747 count++; 5748 if (arg_type_may_be_refcounted(fn->arg2_type)) 5749 count++; 5750 if (arg_type_may_be_refcounted(fn->arg3_type)) 5751 count++; 5752 if (arg_type_may_be_refcounted(fn->arg4_type)) 5753 count++; 5754 if (arg_type_may_be_refcounted(fn->arg5_type)) 5755 count++; 5756 5757 /* A reference acquiring function cannot acquire 5758 * another refcounted ptr. 5759 */ 5760 if (may_be_acquire_function(func_id) && count) 5761 return false; 5762 5763 /* We only support one arg being unreferenced at the moment, 5764 * which is sufficient for the helper functions we have right now. 5765 */ 5766 return count <= 1; 5767 } 5768 5769 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5770 { 5771 int i; 5772 5773 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5774 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5775 return false; 5776 5777 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5778 return false; 5779 } 5780 5781 return true; 5782 } 5783 5784 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5785 { 5786 return check_raw_mode_ok(fn) && 5787 check_arg_pair_ok(fn) && 5788 check_btf_id_ok(fn) && 5789 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5790 } 5791 5792 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5793 * are now invalid, so turn them into unknown SCALAR_VALUE. 5794 */ 5795 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5796 struct bpf_func_state *state) 5797 { 5798 struct bpf_reg_state *regs = state->regs, *reg; 5799 int i; 5800 5801 for (i = 0; i < MAX_BPF_REG; i++) 5802 if (reg_is_pkt_pointer_any(®s[i])) 5803 mark_reg_unknown(env, regs, i); 5804 5805 bpf_for_each_spilled_reg(i, state, reg) { 5806 if (!reg) 5807 continue; 5808 if (reg_is_pkt_pointer_any(reg)) 5809 __mark_reg_unknown(env, reg); 5810 } 5811 } 5812 5813 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5814 { 5815 struct bpf_verifier_state *vstate = env->cur_state; 5816 int i; 5817 5818 for (i = 0; i <= vstate->curframe; i++) 5819 __clear_all_pkt_pointers(env, vstate->frame[i]); 5820 } 5821 5822 enum { 5823 AT_PKT_END = -1, 5824 BEYOND_PKT_END = -2, 5825 }; 5826 5827 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5828 { 5829 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5830 struct bpf_reg_state *reg = &state->regs[regn]; 5831 5832 if (reg->type != PTR_TO_PACKET) 5833 /* PTR_TO_PACKET_META is not supported yet */ 5834 return; 5835 5836 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5837 * How far beyond pkt_end it goes is unknown. 5838 * if (!range_open) it's the case of pkt >= pkt_end 5839 * if (range_open) it's the case of pkt > pkt_end 5840 * hence this pointer is at least 1 byte bigger than pkt_end 5841 */ 5842 if (range_open) 5843 reg->range = BEYOND_PKT_END; 5844 else 5845 reg->range = AT_PKT_END; 5846 } 5847 5848 static void release_reg_references(struct bpf_verifier_env *env, 5849 struct bpf_func_state *state, 5850 int ref_obj_id) 5851 { 5852 struct bpf_reg_state *regs = state->regs, *reg; 5853 int i; 5854 5855 for (i = 0; i < MAX_BPF_REG; i++) 5856 if (regs[i].ref_obj_id == ref_obj_id) 5857 mark_reg_unknown(env, regs, i); 5858 5859 bpf_for_each_spilled_reg(i, state, reg) { 5860 if (!reg) 5861 continue; 5862 if (reg->ref_obj_id == ref_obj_id) 5863 __mark_reg_unknown(env, reg); 5864 } 5865 } 5866 5867 /* The pointer with the specified id has released its reference to kernel 5868 * resources. Identify all copies of the same pointer and clear the reference. 5869 */ 5870 static int release_reference(struct bpf_verifier_env *env, 5871 int ref_obj_id) 5872 { 5873 struct bpf_verifier_state *vstate = env->cur_state; 5874 int err; 5875 int i; 5876 5877 err = release_reference_state(cur_func(env), ref_obj_id); 5878 if (err) 5879 return err; 5880 5881 for (i = 0; i <= vstate->curframe; i++) 5882 release_reg_references(env, vstate->frame[i], ref_obj_id); 5883 5884 return 0; 5885 } 5886 5887 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5888 struct bpf_reg_state *regs) 5889 { 5890 int i; 5891 5892 /* after the call registers r0 - r5 were scratched */ 5893 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5894 mark_reg_not_init(env, regs, caller_saved[i]); 5895 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5896 } 5897 } 5898 5899 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5900 struct bpf_func_state *caller, 5901 struct bpf_func_state *callee, 5902 int insn_idx); 5903 5904 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5905 int *insn_idx, int subprog, 5906 set_callee_state_fn set_callee_state_cb) 5907 { 5908 struct bpf_verifier_state *state = env->cur_state; 5909 struct bpf_func_info_aux *func_info_aux; 5910 struct bpf_func_state *caller, *callee; 5911 int err; 5912 bool is_global = false; 5913 5914 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5915 verbose(env, "the call stack of %d frames is too deep\n", 5916 state->curframe + 2); 5917 return -E2BIG; 5918 } 5919 5920 caller = state->frame[state->curframe]; 5921 if (state->frame[state->curframe + 1]) { 5922 verbose(env, "verifier bug. Frame %d already allocated\n", 5923 state->curframe + 1); 5924 return -EFAULT; 5925 } 5926 5927 func_info_aux = env->prog->aux->func_info_aux; 5928 if (func_info_aux) 5929 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5930 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5931 if (err == -EFAULT) 5932 return err; 5933 if (is_global) { 5934 if (err) { 5935 verbose(env, "Caller passes invalid args into func#%d\n", 5936 subprog); 5937 return err; 5938 } else { 5939 if (env->log.level & BPF_LOG_LEVEL) 5940 verbose(env, 5941 "Func#%d is global and valid. Skipping.\n", 5942 subprog); 5943 clear_caller_saved_regs(env, caller->regs); 5944 5945 /* All global functions return a 64-bit SCALAR_VALUE */ 5946 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5947 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5948 5949 /* continue with next insn after call */ 5950 return 0; 5951 } 5952 } 5953 5954 if (insn->code == (BPF_JMP | BPF_CALL) && 5955 insn->imm == BPF_FUNC_timer_set_callback) { 5956 struct bpf_verifier_state *async_cb; 5957 5958 /* there is no real recursion here. timer callbacks are async */ 5959 env->subprog_info[subprog].is_async_cb = true; 5960 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5961 *insn_idx, subprog); 5962 if (!async_cb) 5963 return -EFAULT; 5964 callee = async_cb->frame[0]; 5965 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5966 5967 /* Convert bpf_timer_set_callback() args into timer callback args */ 5968 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5969 if (err) 5970 return err; 5971 5972 clear_caller_saved_regs(env, caller->regs); 5973 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5974 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5975 /* continue with next insn after call */ 5976 return 0; 5977 } 5978 5979 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5980 if (!callee) 5981 return -ENOMEM; 5982 state->frame[state->curframe + 1] = callee; 5983 5984 /* callee cannot access r0, r6 - r9 for reading and has to write 5985 * into its own stack before reading from it. 5986 * callee can read/write into caller's stack 5987 */ 5988 init_func_state(env, callee, 5989 /* remember the callsite, it will be used by bpf_exit */ 5990 *insn_idx /* callsite */, 5991 state->curframe + 1 /* frameno within this callchain */, 5992 subprog /* subprog number within this prog */); 5993 5994 /* Transfer references to the callee */ 5995 err = copy_reference_state(callee, caller); 5996 if (err) 5997 return err; 5998 5999 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6000 if (err) 6001 return err; 6002 6003 clear_caller_saved_regs(env, caller->regs); 6004 6005 /* only increment it after check_reg_arg() finished */ 6006 state->curframe++; 6007 6008 /* and go analyze first insn of the callee */ 6009 *insn_idx = env->subprog_info[subprog].start - 1; 6010 6011 if (env->log.level & BPF_LOG_LEVEL) { 6012 verbose(env, "caller:\n"); 6013 print_verifier_state(env, caller); 6014 verbose(env, "callee:\n"); 6015 print_verifier_state(env, callee); 6016 } 6017 return 0; 6018 } 6019 6020 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6021 struct bpf_func_state *caller, 6022 struct bpf_func_state *callee) 6023 { 6024 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6025 * void *callback_ctx, u64 flags); 6026 * callback_fn(struct bpf_map *map, void *key, void *value, 6027 * void *callback_ctx); 6028 */ 6029 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6030 6031 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6032 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6033 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6034 6035 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6036 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6037 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6038 6039 /* pointer to stack or null */ 6040 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6041 6042 /* unused */ 6043 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6044 return 0; 6045 } 6046 6047 static int set_callee_state(struct bpf_verifier_env *env, 6048 struct bpf_func_state *caller, 6049 struct bpf_func_state *callee, int insn_idx) 6050 { 6051 int i; 6052 6053 /* copy r1 - r5 args that callee can access. The copy includes parent 6054 * pointers, which connects us up to the liveness chain 6055 */ 6056 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6057 callee->regs[i] = caller->regs[i]; 6058 return 0; 6059 } 6060 6061 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6062 int *insn_idx) 6063 { 6064 int subprog, target_insn; 6065 6066 target_insn = *insn_idx + insn->imm + 1; 6067 subprog = find_subprog(env, target_insn); 6068 if (subprog < 0) { 6069 verbose(env, "verifier bug. No program starts at insn %d\n", 6070 target_insn); 6071 return -EFAULT; 6072 } 6073 6074 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6075 } 6076 6077 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6078 struct bpf_func_state *caller, 6079 struct bpf_func_state *callee, 6080 int insn_idx) 6081 { 6082 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6083 struct bpf_map *map; 6084 int err; 6085 6086 if (bpf_map_ptr_poisoned(insn_aux)) { 6087 verbose(env, "tail_call abusing map_ptr\n"); 6088 return -EINVAL; 6089 } 6090 6091 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6092 if (!map->ops->map_set_for_each_callback_args || 6093 !map->ops->map_for_each_callback) { 6094 verbose(env, "callback function not allowed for map\n"); 6095 return -ENOTSUPP; 6096 } 6097 6098 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6099 if (err) 6100 return err; 6101 6102 callee->in_callback_fn = true; 6103 return 0; 6104 } 6105 6106 static int set_timer_callback_state(struct bpf_verifier_env *env, 6107 struct bpf_func_state *caller, 6108 struct bpf_func_state *callee, 6109 int insn_idx) 6110 { 6111 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6112 6113 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6114 * callback_fn(struct bpf_map *map, void *key, void *value); 6115 */ 6116 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6117 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6118 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6119 6120 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6121 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6122 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6123 6124 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6125 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6126 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6127 6128 /* unused */ 6129 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6130 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6131 callee->in_async_callback_fn = true; 6132 return 0; 6133 } 6134 6135 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6136 { 6137 struct bpf_verifier_state *state = env->cur_state; 6138 struct bpf_func_state *caller, *callee; 6139 struct bpf_reg_state *r0; 6140 int err; 6141 6142 callee = state->frame[state->curframe]; 6143 r0 = &callee->regs[BPF_REG_0]; 6144 if (r0->type == PTR_TO_STACK) { 6145 /* technically it's ok to return caller's stack pointer 6146 * (or caller's caller's pointer) back to the caller, 6147 * since these pointers are valid. Only current stack 6148 * pointer will be invalid as soon as function exits, 6149 * but let's be conservative 6150 */ 6151 verbose(env, "cannot return stack pointer to the caller\n"); 6152 return -EINVAL; 6153 } 6154 6155 state->curframe--; 6156 caller = state->frame[state->curframe]; 6157 if (callee->in_callback_fn) { 6158 /* enforce R0 return value range [0, 1]. */ 6159 struct tnum range = tnum_range(0, 1); 6160 6161 if (r0->type != SCALAR_VALUE) { 6162 verbose(env, "R0 not a scalar value\n"); 6163 return -EACCES; 6164 } 6165 if (!tnum_in(range, r0->var_off)) { 6166 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6167 return -EINVAL; 6168 } 6169 } else { 6170 /* return to the caller whatever r0 had in the callee */ 6171 caller->regs[BPF_REG_0] = *r0; 6172 } 6173 6174 /* Transfer references to the caller */ 6175 err = copy_reference_state(caller, callee); 6176 if (err) 6177 return err; 6178 6179 *insn_idx = callee->callsite + 1; 6180 if (env->log.level & BPF_LOG_LEVEL) { 6181 verbose(env, "returning from callee:\n"); 6182 print_verifier_state(env, callee); 6183 verbose(env, "to caller at %d:\n", *insn_idx); 6184 print_verifier_state(env, caller); 6185 } 6186 /* clear everything in the callee */ 6187 free_func_state(callee); 6188 state->frame[state->curframe + 1] = NULL; 6189 return 0; 6190 } 6191 6192 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6193 int func_id, 6194 struct bpf_call_arg_meta *meta) 6195 { 6196 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6197 6198 if (ret_type != RET_INTEGER || 6199 (func_id != BPF_FUNC_get_stack && 6200 func_id != BPF_FUNC_get_task_stack && 6201 func_id != BPF_FUNC_probe_read_str && 6202 func_id != BPF_FUNC_probe_read_kernel_str && 6203 func_id != BPF_FUNC_probe_read_user_str)) 6204 return; 6205 6206 ret_reg->smax_value = meta->msize_max_value; 6207 ret_reg->s32_max_value = meta->msize_max_value; 6208 ret_reg->smin_value = -MAX_ERRNO; 6209 ret_reg->s32_min_value = -MAX_ERRNO; 6210 __reg_deduce_bounds(ret_reg); 6211 __reg_bound_offset(ret_reg); 6212 __update_reg_bounds(ret_reg); 6213 } 6214 6215 static int 6216 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6217 int func_id, int insn_idx) 6218 { 6219 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6220 struct bpf_map *map = meta->map_ptr; 6221 6222 if (func_id != BPF_FUNC_tail_call && 6223 func_id != BPF_FUNC_map_lookup_elem && 6224 func_id != BPF_FUNC_map_update_elem && 6225 func_id != BPF_FUNC_map_delete_elem && 6226 func_id != BPF_FUNC_map_push_elem && 6227 func_id != BPF_FUNC_map_pop_elem && 6228 func_id != BPF_FUNC_map_peek_elem && 6229 func_id != BPF_FUNC_for_each_map_elem && 6230 func_id != BPF_FUNC_redirect_map) 6231 return 0; 6232 6233 if (map == NULL) { 6234 verbose(env, "kernel subsystem misconfigured verifier\n"); 6235 return -EINVAL; 6236 } 6237 6238 /* In case of read-only, some additional restrictions 6239 * need to be applied in order to prevent altering the 6240 * state of the map from program side. 6241 */ 6242 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6243 (func_id == BPF_FUNC_map_delete_elem || 6244 func_id == BPF_FUNC_map_update_elem || 6245 func_id == BPF_FUNC_map_push_elem || 6246 func_id == BPF_FUNC_map_pop_elem)) { 6247 verbose(env, "write into map forbidden\n"); 6248 return -EACCES; 6249 } 6250 6251 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6252 bpf_map_ptr_store(aux, meta->map_ptr, 6253 !meta->map_ptr->bypass_spec_v1); 6254 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6255 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6256 !meta->map_ptr->bypass_spec_v1); 6257 return 0; 6258 } 6259 6260 static int 6261 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6262 int func_id, int insn_idx) 6263 { 6264 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6265 struct bpf_reg_state *regs = cur_regs(env), *reg; 6266 struct bpf_map *map = meta->map_ptr; 6267 struct tnum range; 6268 u64 val; 6269 int err; 6270 6271 if (func_id != BPF_FUNC_tail_call) 6272 return 0; 6273 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6274 verbose(env, "kernel subsystem misconfigured verifier\n"); 6275 return -EINVAL; 6276 } 6277 6278 range = tnum_range(0, map->max_entries - 1); 6279 reg = ®s[BPF_REG_3]; 6280 6281 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6282 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6283 return 0; 6284 } 6285 6286 err = mark_chain_precision(env, BPF_REG_3); 6287 if (err) 6288 return err; 6289 6290 val = reg->var_off.value; 6291 if (bpf_map_key_unseen(aux)) 6292 bpf_map_key_store(aux, val); 6293 else if (!bpf_map_key_poisoned(aux) && 6294 bpf_map_key_immediate(aux) != val) 6295 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6296 return 0; 6297 } 6298 6299 static int check_reference_leak(struct bpf_verifier_env *env) 6300 { 6301 struct bpf_func_state *state = cur_func(env); 6302 int i; 6303 6304 for (i = 0; i < state->acquired_refs; i++) { 6305 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6306 state->refs[i].id, state->refs[i].insn_idx); 6307 } 6308 return state->acquired_refs ? -EINVAL : 0; 6309 } 6310 6311 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6312 struct bpf_reg_state *regs) 6313 { 6314 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6315 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6316 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6317 int err, fmt_map_off, num_args; 6318 u64 fmt_addr; 6319 char *fmt; 6320 6321 /* data must be an array of u64 */ 6322 if (data_len_reg->var_off.value % 8) 6323 return -EINVAL; 6324 num_args = data_len_reg->var_off.value / 8; 6325 6326 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6327 * and map_direct_value_addr is set. 6328 */ 6329 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6330 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6331 fmt_map_off); 6332 if (err) { 6333 verbose(env, "verifier bug\n"); 6334 return -EFAULT; 6335 } 6336 fmt = (char *)(long)fmt_addr + fmt_map_off; 6337 6338 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6339 * can focus on validating the format specifiers. 6340 */ 6341 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6342 if (err < 0) 6343 verbose(env, "Invalid format string\n"); 6344 6345 return err; 6346 } 6347 6348 static int check_get_func_ip(struct bpf_verifier_env *env) 6349 { 6350 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6351 enum bpf_prog_type type = resolve_prog_type(env->prog); 6352 int func_id = BPF_FUNC_get_func_ip; 6353 6354 if (type == BPF_PROG_TYPE_TRACING) { 6355 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6356 eatype != BPF_MODIFY_RETURN) { 6357 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6358 func_id_name(func_id), func_id); 6359 return -ENOTSUPP; 6360 } 6361 return 0; 6362 } else if (type == BPF_PROG_TYPE_KPROBE) { 6363 return 0; 6364 } 6365 6366 verbose(env, "func %s#%d not supported for program type %d\n", 6367 func_id_name(func_id), func_id, type); 6368 return -ENOTSUPP; 6369 } 6370 6371 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6372 int *insn_idx_p) 6373 { 6374 const struct bpf_func_proto *fn = NULL; 6375 struct bpf_reg_state *regs; 6376 struct bpf_call_arg_meta meta; 6377 int insn_idx = *insn_idx_p; 6378 bool changes_data; 6379 int i, err, func_id; 6380 6381 /* find function prototype */ 6382 func_id = insn->imm; 6383 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6384 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6385 func_id); 6386 return -EINVAL; 6387 } 6388 6389 if (env->ops->get_func_proto) 6390 fn = env->ops->get_func_proto(func_id, env->prog); 6391 if (!fn) { 6392 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6393 func_id); 6394 return -EINVAL; 6395 } 6396 6397 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6398 if (!env->prog->gpl_compatible && fn->gpl_only) { 6399 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6400 return -EINVAL; 6401 } 6402 6403 if (fn->allowed && !fn->allowed(env->prog)) { 6404 verbose(env, "helper call is not allowed in probe\n"); 6405 return -EINVAL; 6406 } 6407 6408 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6409 changes_data = bpf_helper_changes_pkt_data(fn->func); 6410 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6411 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6412 func_id_name(func_id), func_id); 6413 return -EINVAL; 6414 } 6415 6416 memset(&meta, 0, sizeof(meta)); 6417 meta.pkt_access = fn->pkt_access; 6418 6419 err = check_func_proto(fn, func_id); 6420 if (err) { 6421 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6422 func_id_name(func_id), func_id); 6423 return err; 6424 } 6425 6426 meta.func_id = func_id; 6427 /* check args */ 6428 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6429 err = check_func_arg(env, i, &meta, fn); 6430 if (err) 6431 return err; 6432 } 6433 6434 err = record_func_map(env, &meta, func_id, insn_idx); 6435 if (err) 6436 return err; 6437 6438 err = record_func_key(env, &meta, func_id, insn_idx); 6439 if (err) 6440 return err; 6441 6442 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6443 * is inferred from register state. 6444 */ 6445 for (i = 0; i < meta.access_size; i++) { 6446 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6447 BPF_WRITE, -1, false); 6448 if (err) 6449 return err; 6450 } 6451 6452 if (func_id == BPF_FUNC_tail_call) { 6453 err = check_reference_leak(env); 6454 if (err) { 6455 verbose(env, "tail_call would lead to reference leak\n"); 6456 return err; 6457 } 6458 } else if (is_release_function(func_id)) { 6459 err = release_reference(env, meta.ref_obj_id); 6460 if (err) { 6461 verbose(env, "func %s#%d reference has not been acquired before\n", 6462 func_id_name(func_id), func_id); 6463 return err; 6464 } 6465 } 6466 6467 regs = cur_regs(env); 6468 6469 /* check that flags argument in get_local_storage(map, flags) is 0, 6470 * this is required because get_local_storage() can't return an error. 6471 */ 6472 if (func_id == BPF_FUNC_get_local_storage && 6473 !register_is_null(®s[BPF_REG_2])) { 6474 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6475 return -EINVAL; 6476 } 6477 6478 if (func_id == BPF_FUNC_for_each_map_elem) { 6479 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6480 set_map_elem_callback_state); 6481 if (err < 0) 6482 return -EINVAL; 6483 } 6484 6485 if (func_id == BPF_FUNC_timer_set_callback) { 6486 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6487 set_timer_callback_state); 6488 if (err < 0) 6489 return -EINVAL; 6490 } 6491 6492 if (func_id == BPF_FUNC_snprintf) { 6493 err = check_bpf_snprintf_call(env, regs); 6494 if (err < 0) 6495 return err; 6496 } 6497 6498 /* reset caller saved regs */ 6499 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6500 mark_reg_not_init(env, regs, caller_saved[i]); 6501 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6502 } 6503 6504 /* helper call returns 64-bit value. */ 6505 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6506 6507 /* update return register (already marked as written above) */ 6508 if (fn->ret_type == RET_INTEGER) { 6509 /* sets type to SCALAR_VALUE */ 6510 mark_reg_unknown(env, regs, BPF_REG_0); 6511 } else if (fn->ret_type == RET_VOID) { 6512 regs[BPF_REG_0].type = NOT_INIT; 6513 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6514 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6515 /* There is no offset yet applied, variable or fixed */ 6516 mark_reg_known_zero(env, regs, BPF_REG_0); 6517 /* remember map_ptr, so that check_map_access() 6518 * can check 'value_size' boundary of memory access 6519 * to map element returned from bpf_map_lookup_elem() 6520 */ 6521 if (meta.map_ptr == NULL) { 6522 verbose(env, 6523 "kernel subsystem misconfigured verifier\n"); 6524 return -EINVAL; 6525 } 6526 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6527 regs[BPF_REG_0].map_uid = meta.map_uid; 6528 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6529 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6530 if (map_value_has_spin_lock(meta.map_ptr)) 6531 regs[BPF_REG_0].id = ++env->id_gen; 6532 } else { 6533 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6534 } 6535 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6536 mark_reg_known_zero(env, regs, BPF_REG_0); 6537 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6538 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6539 mark_reg_known_zero(env, regs, BPF_REG_0); 6540 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6541 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6542 mark_reg_known_zero(env, regs, BPF_REG_0); 6543 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6544 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6545 mark_reg_known_zero(env, regs, BPF_REG_0); 6546 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6547 regs[BPF_REG_0].mem_size = meta.mem_size; 6548 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6549 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6550 const struct btf_type *t; 6551 6552 mark_reg_known_zero(env, regs, BPF_REG_0); 6553 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6554 if (!btf_type_is_struct(t)) { 6555 u32 tsize; 6556 const struct btf_type *ret; 6557 const char *tname; 6558 6559 /* resolve the type size of ksym. */ 6560 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6561 if (IS_ERR(ret)) { 6562 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6563 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6564 tname, PTR_ERR(ret)); 6565 return -EINVAL; 6566 } 6567 regs[BPF_REG_0].type = 6568 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6569 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6570 regs[BPF_REG_0].mem_size = tsize; 6571 } else { 6572 regs[BPF_REG_0].type = 6573 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6574 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6575 regs[BPF_REG_0].btf = meta.ret_btf; 6576 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6577 } 6578 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6579 fn->ret_type == RET_PTR_TO_BTF_ID) { 6580 int ret_btf_id; 6581 6582 mark_reg_known_zero(env, regs, BPF_REG_0); 6583 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6584 PTR_TO_BTF_ID : 6585 PTR_TO_BTF_ID_OR_NULL; 6586 ret_btf_id = *fn->ret_btf_id; 6587 if (ret_btf_id == 0) { 6588 verbose(env, "invalid return type %d of func %s#%d\n", 6589 fn->ret_type, func_id_name(func_id), func_id); 6590 return -EINVAL; 6591 } 6592 /* current BPF helper definitions are only coming from 6593 * built-in code with type IDs from vmlinux BTF 6594 */ 6595 regs[BPF_REG_0].btf = btf_vmlinux; 6596 regs[BPF_REG_0].btf_id = ret_btf_id; 6597 } else { 6598 verbose(env, "unknown return type %d of func %s#%d\n", 6599 fn->ret_type, func_id_name(func_id), func_id); 6600 return -EINVAL; 6601 } 6602 6603 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6604 regs[BPF_REG_0].id = ++env->id_gen; 6605 6606 if (is_ptr_cast_function(func_id)) { 6607 /* For release_reference() */ 6608 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6609 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6610 int id = acquire_reference_state(env, insn_idx); 6611 6612 if (id < 0) 6613 return id; 6614 /* For mark_ptr_or_null_reg() */ 6615 regs[BPF_REG_0].id = id; 6616 /* For release_reference() */ 6617 regs[BPF_REG_0].ref_obj_id = id; 6618 } 6619 6620 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6621 6622 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6623 if (err) 6624 return err; 6625 6626 if ((func_id == BPF_FUNC_get_stack || 6627 func_id == BPF_FUNC_get_task_stack) && 6628 !env->prog->has_callchain_buf) { 6629 const char *err_str; 6630 6631 #ifdef CONFIG_PERF_EVENTS 6632 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6633 err_str = "cannot get callchain buffer for func %s#%d\n"; 6634 #else 6635 err = -ENOTSUPP; 6636 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6637 #endif 6638 if (err) { 6639 verbose(env, err_str, func_id_name(func_id), func_id); 6640 return err; 6641 } 6642 6643 env->prog->has_callchain_buf = true; 6644 } 6645 6646 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6647 env->prog->call_get_stack = true; 6648 6649 if (func_id == BPF_FUNC_get_func_ip) { 6650 if (check_get_func_ip(env)) 6651 return -ENOTSUPP; 6652 env->prog->call_get_func_ip = true; 6653 } 6654 6655 if (changes_data) 6656 clear_all_pkt_pointers(env); 6657 return 0; 6658 } 6659 6660 /* mark_btf_func_reg_size() is used when the reg size is determined by 6661 * the BTF func_proto's return value size and argument. 6662 */ 6663 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6664 size_t reg_size) 6665 { 6666 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6667 6668 if (regno == BPF_REG_0) { 6669 /* Function return value */ 6670 reg->live |= REG_LIVE_WRITTEN; 6671 reg->subreg_def = reg_size == sizeof(u64) ? 6672 DEF_NOT_SUBREG : env->insn_idx + 1; 6673 } else { 6674 /* Function argument */ 6675 if (reg_size == sizeof(u64)) { 6676 mark_insn_zext(env, reg); 6677 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6678 } else { 6679 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6680 } 6681 } 6682 } 6683 6684 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6685 { 6686 const struct btf_type *t, *func, *func_proto, *ptr_type; 6687 struct bpf_reg_state *regs = cur_regs(env); 6688 const char *func_name, *ptr_type_name; 6689 u32 i, nargs, func_id, ptr_type_id; 6690 struct module *btf_mod = NULL; 6691 const struct btf_param *args; 6692 struct btf *desc_btf; 6693 int err; 6694 6695 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6696 if (!insn->imm) 6697 return 0; 6698 6699 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6700 if (IS_ERR(desc_btf)) 6701 return PTR_ERR(desc_btf); 6702 6703 func_id = insn->imm; 6704 func = btf_type_by_id(desc_btf, func_id); 6705 func_name = btf_name_by_offset(desc_btf, func->name_off); 6706 func_proto = btf_type_by_id(desc_btf, func->type); 6707 6708 if (!env->ops->check_kfunc_call || 6709 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6710 verbose(env, "calling kernel function %s is not allowed\n", 6711 func_name); 6712 return -EACCES; 6713 } 6714 6715 /* Check the arguments */ 6716 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6717 if (err) 6718 return err; 6719 6720 for (i = 0; i < CALLER_SAVED_REGS; i++) 6721 mark_reg_not_init(env, regs, caller_saved[i]); 6722 6723 /* Check return type */ 6724 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6725 if (btf_type_is_scalar(t)) { 6726 mark_reg_unknown(env, regs, BPF_REG_0); 6727 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6728 } else if (btf_type_is_ptr(t)) { 6729 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6730 &ptr_type_id); 6731 if (!btf_type_is_struct(ptr_type)) { 6732 ptr_type_name = btf_name_by_offset(desc_btf, 6733 ptr_type->name_off); 6734 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6735 func_name, btf_type_str(ptr_type), 6736 ptr_type_name); 6737 return -EINVAL; 6738 } 6739 mark_reg_known_zero(env, regs, BPF_REG_0); 6740 regs[BPF_REG_0].btf = desc_btf; 6741 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6742 regs[BPF_REG_0].btf_id = ptr_type_id; 6743 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6744 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6745 6746 nargs = btf_type_vlen(func_proto); 6747 args = (const struct btf_param *)(func_proto + 1); 6748 for (i = 0; i < nargs; i++) { 6749 u32 regno = i + 1; 6750 6751 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6752 if (btf_type_is_ptr(t)) 6753 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6754 else 6755 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6756 mark_btf_func_reg_size(env, regno, t->size); 6757 } 6758 6759 return 0; 6760 } 6761 6762 static bool signed_add_overflows(s64 a, s64 b) 6763 { 6764 /* Do the add in u64, where overflow is well-defined */ 6765 s64 res = (s64)((u64)a + (u64)b); 6766 6767 if (b < 0) 6768 return res > a; 6769 return res < a; 6770 } 6771 6772 static bool signed_add32_overflows(s32 a, s32 b) 6773 { 6774 /* Do the add in u32, where overflow is well-defined */ 6775 s32 res = (s32)((u32)a + (u32)b); 6776 6777 if (b < 0) 6778 return res > a; 6779 return res < a; 6780 } 6781 6782 static bool signed_sub_overflows(s64 a, s64 b) 6783 { 6784 /* Do the sub in u64, where overflow is well-defined */ 6785 s64 res = (s64)((u64)a - (u64)b); 6786 6787 if (b < 0) 6788 return res < a; 6789 return res > a; 6790 } 6791 6792 static bool signed_sub32_overflows(s32 a, s32 b) 6793 { 6794 /* Do the sub in u32, where overflow is well-defined */ 6795 s32 res = (s32)((u32)a - (u32)b); 6796 6797 if (b < 0) 6798 return res < a; 6799 return res > a; 6800 } 6801 6802 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6803 const struct bpf_reg_state *reg, 6804 enum bpf_reg_type type) 6805 { 6806 bool known = tnum_is_const(reg->var_off); 6807 s64 val = reg->var_off.value; 6808 s64 smin = reg->smin_value; 6809 6810 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6811 verbose(env, "math between %s pointer and %lld is not allowed\n", 6812 reg_type_str[type], val); 6813 return false; 6814 } 6815 6816 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6817 verbose(env, "%s pointer offset %d is not allowed\n", 6818 reg_type_str[type], reg->off); 6819 return false; 6820 } 6821 6822 if (smin == S64_MIN) { 6823 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6824 reg_type_str[type]); 6825 return false; 6826 } 6827 6828 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6829 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6830 smin, reg_type_str[type]); 6831 return false; 6832 } 6833 6834 return true; 6835 } 6836 6837 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6838 { 6839 return &env->insn_aux_data[env->insn_idx]; 6840 } 6841 6842 enum { 6843 REASON_BOUNDS = -1, 6844 REASON_TYPE = -2, 6845 REASON_PATHS = -3, 6846 REASON_LIMIT = -4, 6847 REASON_STACK = -5, 6848 }; 6849 6850 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6851 u32 *alu_limit, bool mask_to_left) 6852 { 6853 u32 max = 0, ptr_limit = 0; 6854 6855 switch (ptr_reg->type) { 6856 case PTR_TO_STACK: 6857 /* Offset 0 is out-of-bounds, but acceptable start for the 6858 * left direction, see BPF_REG_FP. Also, unknown scalar 6859 * offset where we would need to deal with min/max bounds is 6860 * currently prohibited for unprivileged. 6861 */ 6862 max = MAX_BPF_STACK + mask_to_left; 6863 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6864 break; 6865 case PTR_TO_MAP_VALUE: 6866 max = ptr_reg->map_ptr->value_size; 6867 ptr_limit = (mask_to_left ? 6868 ptr_reg->smin_value : 6869 ptr_reg->umax_value) + ptr_reg->off; 6870 break; 6871 default: 6872 return REASON_TYPE; 6873 } 6874 6875 if (ptr_limit >= max) 6876 return REASON_LIMIT; 6877 *alu_limit = ptr_limit; 6878 return 0; 6879 } 6880 6881 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6882 const struct bpf_insn *insn) 6883 { 6884 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6885 } 6886 6887 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6888 u32 alu_state, u32 alu_limit) 6889 { 6890 /* If we arrived here from different branches with different 6891 * state or limits to sanitize, then this won't work. 6892 */ 6893 if (aux->alu_state && 6894 (aux->alu_state != alu_state || 6895 aux->alu_limit != alu_limit)) 6896 return REASON_PATHS; 6897 6898 /* Corresponding fixup done in do_misc_fixups(). */ 6899 aux->alu_state = alu_state; 6900 aux->alu_limit = alu_limit; 6901 return 0; 6902 } 6903 6904 static int sanitize_val_alu(struct bpf_verifier_env *env, 6905 struct bpf_insn *insn) 6906 { 6907 struct bpf_insn_aux_data *aux = cur_aux(env); 6908 6909 if (can_skip_alu_sanitation(env, insn)) 6910 return 0; 6911 6912 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6913 } 6914 6915 static bool sanitize_needed(u8 opcode) 6916 { 6917 return opcode == BPF_ADD || opcode == BPF_SUB; 6918 } 6919 6920 struct bpf_sanitize_info { 6921 struct bpf_insn_aux_data aux; 6922 bool mask_to_left; 6923 }; 6924 6925 static struct bpf_verifier_state * 6926 sanitize_speculative_path(struct bpf_verifier_env *env, 6927 const struct bpf_insn *insn, 6928 u32 next_idx, u32 curr_idx) 6929 { 6930 struct bpf_verifier_state *branch; 6931 struct bpf_reg_state *regs; 6932 6933 branch = push_stack(env, next_idx, curr_idx, true); 6934 if (branch && insn) { 6935 regs = branch->frame[branch->curframe]->regs; 6936 if (BPF_SRC(insn->code) == BPF_K) { 6937 mark_reg_unknown(env, regs, insn->dst_reg); 6938 } else if (BPF_SRC(insn->code) == BPF_X) { 6939 mark_reg_unknown(env, regs, insn->dst_reg); 6940 mark_reg_unknown(env, regs, insn->src_reg); 6941 } 6942 } 6943 return branch; 6944 } 6945 6946 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6947 struct bpf_insn *insn, 6948 const struct bpf_reg_state *ptr_reg, 6949 const struct bpf_reg_state *off_reg, 6950 struct bpf_reg_state *dst_reg, 6951 struct bpf_sanitize_info *info, 6952 const bool commit_window) 6953 { 6954 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6955 struct bpf_verifier_state *vstate = env->cur_state; 6956 bool off_is_imm = tnum_is_const(off_reg->var_off); 6957 bool off_is_neg = off_reg->smin_value < 0; 6958 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6959 u8 opcode = BPF_OP(insn->code); 6960 u32 alu_state, alu_limit; 6961 struct bpf_reg_state tmp; 6962 bool ret; 6963 int err; 6964 6965 if (can_skip_alu_sanitation(env, insn)) 6966 return 0; 6967 6968 /* We already marked aux for masking from non-speculative 6969 * paths, thus we got here in the first place. We only care 6970 * to explore bad access from here. 6971 */ 6972 if (vstate->speculative) 6973 goto do_sim; 6974 6975 if (!commit_window) { 6976 if (!tnum_is_const(off_reg->var_off) && 6977 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6978 return REASON_BOUNDS; 6979 6980 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6981 (opcode == BPF_SUB && !off_is_neg); 6982 } 6983 6984 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6985 if (err < 0) 6986 return err; 6987 6988 if (commit_window) { 6989 /* In commit phase we narrow the masking window based on 6990 * the observed pointer move after the simulated operation. 6991 */ 6992 alu_state = info->aux.alu_state; 6993 alu_limit = abs(info->aux.alu_limit - alu_limit); 6994 } else { 6995 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6996 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6997 alu_state |= ptr_is_dst_reg ? 6998 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6999 7000 /* Limit pruning on unknown scalars to enable deep search for 7001 * potential masking differences from other program paths. 7002 */ 7003 if (!off_is_imm) 7004 env->explore_alu_limits = true; 7005 } 7006 7007 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7008 if (err < 0) 7009 return err; 7010 do_sim: 7011 /* If we're in commit phase, we're done here given we already 7012 * pushed the truncated dst_reg into the speculative verification 7013 * stack. 7014 * 7015 * Also, when register is a known constant, we rewrite register-based 7016 * operation to immediate-based, and thus do not need masking (and as 7017 * a consequence, do not need to simulate the zero-truncation either). 7018 */ 7019 if (commit_window || off_is_imm) 7020 return 0; 7021 7022 /* Simulate and find potential out-of-bounds access under 7023 * speculative execution from truncation as a result of 7024 * masking when off was not within expected range. If off 7025 * sits in dst, then we temporarily need to move ptr there 7026 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7027 * for cases where we use K-based arithmetic in one direction 7028 * and truncated reg-based in the other in order to explore 7029 * bad access. 7030 */ 7031 if (!ptr_is_dst_reg) { 7032 tmp = *dst_reg; 7033 *dst_reg = *ptr_reg; 7034 } 7035 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7036 env->insn_idx); 7037 if (!ptr_is_dst_reg && ret) 7038 *dst_reg = tmp; 7039 return !ret ? REASON_STACK : 0; 7040 } 7041 7042 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7043 { 7044 struct bpf_verifier_state *vstate = env->cur_state; 7045 7046 /* If we simulate paths under speculation, we don't update the 7047 * insn as 'seen' such that when we verify unreachable paths in 7048 * the non-speculative domain, sanitize_dead_code() can still 7049 * rewrite/sanitize them. 7050 */ 7051 if (!vstate->speculative) 7052 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7053 } 7054 7055 static int sanitize_err(struct bpf_verifier_env *env, 7056 const struct bpf_insn *insn, int reason, 7057 const struct bpf_reg_state *off_reg, 7058 const struct bpf_reg_state *dst_reg) 7059 { 7060 static const char *err = "pointer arithmetic with it prohibited for !root"; 7061 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7062 u32 dst = insn->dst_reg, src = insn->src_reg; 7063 7064 switch (reason) { 7065 case REASON_BOUNDS: 7066 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7067 off_reg == dst_reg ? dst : src, err); 7068 break; 7069 case REASON_TYPE: 7070 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7071 off_reg == dst_reg ? src : dst, err); 7072 break; 7073 case REASON_PATHS: 7074 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7075 dst, op, err); 7076 break; 7077 case REASON_LIMIT: 7078 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7079 dst, op, err); 7080 break; 7081 case REASON_STACK: 7082 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7083 dst, err); 7084 break; 7085 default: 7086 verbose(env, "verifier internal error: unknown reason (%d)\n", 7087 reason); 7088 break; 7089 } 7090 7091 return -EACCES; 7092 } 7093 7094 /* check that stack access falls within stack limits and that 'reg' doesn't 7095 * have a variable offset. 7096 * 7097 * Variable offset is prohibited for unprivileged mode for simplicity since it 7098 * requires corresponding support in Spectre masking for stack ALU. See also 7099 * retrieve_ptr_limit(). 7100 * 7101 * 7102 * 'off' includes 'reg->off'. 7103 */ 7104 static int check_stack_access_for_ptr_arithmetic( 7105 struct bpf_verifier_env *env, 7106 int regno, 7107 const struct bpf_reg_state *reg, 7108 int off) 7109 { 7110 if (!tnum_is_const(reg->var_off)) { 7111 char tn_buf[48]; 7112 7113 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7114 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7115 regno, tn_buf, off); 7116 return -EACCES; 7117 } 7118 7119 if (off >= 0 || off < -MAX_BPF_STACK) { 7120 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7121 "prohibited for !root; off=%d\n", regno, off); 7122 return -EACCES; 7123 } 7124 7125 return 0; 7126 } 7127 7128 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7129 const struct bpf_insn *insn, 7130 const struct bpf_reg_state *dst_reg) 7131 { 7132 u32 dst = insn->dst_reg; 7133 7134 /* For unprivileged we require that resulting offset must be in bounds 7135 * in order to be able to sanitize access later on. 7136 */ 7137 if (env->bypass_spec_v1) 7138 return 0; 7139 7140 switch (dst_reg->type) { 7141 case PTR_TO_STACK: 7142 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7143 dst_reg->off + dst_reg->var_off.value)) 7144 return -EACCES; 7145 break; 7146 case PTR_TO_MAP_VALUE: 7147 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7148 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7149 "prohibited for !root\n", dst); 7150 return -EACCES; 7151 } 7152 break; 7153 default: 7154 break; 7155 } 7156 7157 return 0; 7158 } 7159 7160 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7161 * Caller should also handle BPF_MOV case separately. 7162 * If we return -EACCES, caller may want to try again treating pointer as a 7163 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7164 */ 7165 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7166 struct bpf_insn *insn, 7167 const struct bpf_reg_state *ptr_reg, 7168 const struct bpf_reg_state *off_reg) 7169 { 7170 struct bpf_verifier_state *vstate = env->cur_state; 7171 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7172 struct bpf_reg_state *regs = state->regs, *dst_reg; 7173 bool known = tnum_is_const(off_reg->var_off); 7174 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7175 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7176 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7177 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7178 struct bpf_sanitize_info info = {}; 7179 u8 opcode = BPF_OP(insn->code); 7180 u32 dst = insn->dst_reg; 7181 int ret; 7182 7183 dst_reg = ®s[dst]; 7184 7185 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7186 smin_val > smax_val || umin_val > umax_val) { 7187 /* Taint dst register if offset had invalid bounds derived from 7188 * e.g. dead branches. 7189 */ 7190 __mark_reg_unknown(env, dst_reg); 7191 return 0; 7192 } 7193 7194 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7195 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7196 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7197 __mark_reg_unknown(env, dst_reg); 7198 return 0; 7199 } 7200 7201 verbose(env, 7202 "R%d 32-bit pointer arithmetic prohibited\n", 7203 dst); 7204 return -EACCES; 7205 } 7206 7207 switch (ptr_reg->type) { 7208 case PTR_TO_MAP_VALUE_OR_NULL: 7209 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7210 dst, reg_type_str[ptr_reg->type]); 7211 return -EACCES; 7212 case CONST_PTR_TO_MAP: 7213 /* smin_val represents the known value */ 7214 if (known && smin_val == 0 && opcode == BPF_ADD) 7215 break; 7216 fallthrough; 7217 case PTR_TO_PACKET_END: 7218 case PTR_TO_SOCKET: 7219 case PTR_TO_SOCKET_OR_NULL: 7220 case PTR_TO_SOCK_COMMON: 7221 case PTR_TO_SOCK_COMMON_OR_NULL: 7222 case PTR_TO_TCP_SOCK: 7223 case PTR_TO_TCP_SOCK_OR_NULL: 7224 case PTR_TO_XDP_SOCK: 7225 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7226 dst, reg_type_str[ptr_reg->type]); 7227 return -EACCES; 7228 default: 7229 break; 7230 } 7231 7232 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7233 * The id may be overwritten later if we create a new variable offset. 7234 */ 7235 dst_reg->type = ptr_reg->type; 7236 dst_reg->id = ptr_reg->id; 7237 7238 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7239 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7240 return -EINVAL; 7241 7242 /* pointer types do not carry 32-bit bounds at the moment. */ 7243 __mark_reg32_unbounded(dst_reg); 7244 7245 if (sanitize_needed(opcode)) { 7246 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7247 &info, false); 7248 if (ret < 0) 7249 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7250 } 7251 7252 switch (opcode) { 7253 case BPF_ADD: 7254 /* We can take a fixed offset as long as it doesn't overflow 7255 * the s32 'off' field 7256 */ 7257 if (known && (ptr_reg->off + smin_val == 7258 (s64)(s32)(ptr_reg->off + smin_val))) { 7259 /* pointer += K. Accumulate it into fixed offset */ 7260 dst_reg->smin_value = smin_ptr; 7261 dst_reg->smax_value = smax_ptr; 7262 dst_reg->umin_value = umin_ptr; 7263 dst_reg->umax_value = umax_ptr; 7264 dst_reg->var_off = ptr_reg->var_off; 7265 dst_reg->off = ptr_reg->off + smin_val; 7266 dst_reg->raw = ptr_reg->raw; 7267 break; 7268 } 7269 /* A new variable offset is created. Note that off_reg->off 7270 * == 0, since it's a scalar. 7271 * dst_reg gets the pointer type and since some positive 7272 * integer value was added to the pointer, give it a new 'id' 7273 * if it's a PTR_TO_PACKET. 7274 * this creates a new 'base' pointer, off_reg (variable) gets 7275 * added into the variable offset, and we copy the fixed offset 7276 * from ptr_reg. 7277 */ 7278 if (signed_add_overflows(smin_ptr, smin_val) || 7279 signed_add_overflows(smax_ptr, smax_val)) { 7280 dst_reg->smin_value = S64_MIN; 7281 dst_reg->smax_value = S64_MAX; 7282 } else { 7283 dst_reg->smin_value = smin_ptr + smin_val; 7284 dst_reg->smax_value = smax_ptr + smax_val; 7285 } 7286 if (umin_ptr + umin_val < umin_ptr || 7287 umax_ptr + umax_val < umax_ptr) { 7288 dst_reg->umin_value = 0; 7289 dst_reg->umax_value = U64_MAX; 7290 } else { 7291 dst_reg->umin_value = umin_ptr + umin_val; 7292 dst_reg->umax_value = umax_ptr + umax_val; 7293 } 7294 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7295 dst_reg->off = ptr_reg->off; 7296 dst_reg->raw = ptr_reg->raw; 7297 if (reg_is_pkt_pointer(ptr_reg)) { 7298 dst_reg->id = ++env->id_gen; 7299 /* something was added to pkt_ptr, set range to zero */ 7300 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7301 } 7302 break; 7303 case BPF_SUB: 7304 if (dst_reg == off_reg) { 7305 /* scalar -= pointer. Creates an unknown scalar */ 7306 verbose(env, "R%d tried to subtract pointer from scalar\n", 7307 dst); 7308 return -EACCES; 7309 } 7310 /* We don't allow subtraction from FP, because (according to 7311 * test_verifier.c test "invalid fp arithmetic", JITs might not 7312 * be able to deal with it. 7313 */ 7314 if (ptr_reg->type == PTR_TO_STACK) { 7315 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7316 dst); 7317 return -EACCES; 7318 } 7319 if (known && (ptr_reg->off - smin_val == 7320 (s64)(s32)(ptr_reg->off - smin_val))) { 7321 /* pointer -= K. Subtract it from fixed offset */ 7322 dst_reg->smin_value = smin_ptr; 7323 dst_reg->smax_value = smax_ptr; 7324 dst_reg->umin_value = umin_ptr; 7325 dst_reg->umax_value = umax_ptr; 7326 dst_reg->var_off = ptr_reg->var_off; 7327 dst_reg->id = ptr_reg->id; 7328 dst_reg->off = ptr_reg->off - smin_val; 7329 dst_reg->raw = ptr_reg->raw; 7330 break; 7331 } 7332 /* A new variable offset is created. If the subtrahend is known 7333 * nonnegative, then any reg->range we had before is still good. 7334 */ 7335 if (signed_sub_overflows(smin_ptr, smax_val) || 7336 signed_sub_overflows(smax_ptr, smin_val)) { 7337 /* Overflow possible, we know nothing */ 7338 dst_reg->smin_value = S64_MIN; 7339 dst_reg->smax_value = S64_MAX; 7340 } else { 7341 dst_reg->smin_value = smin_ptr - smax_val; 7342 dst_reg->smax_value = smax_ptr - smin_val; 7343 } 7344 if (umin_ptr < umax_val) { 7345 /* Overflow possible, we know nothing */ 7346 dst_reg->umin_value = 0; 7347 dst_reg->umax_value = U64_MAX; 7348 } else { 7349 /* Cannot overflow (as long as bounds are consistent) */ 7350 dst_reg->umin_value = umin_ptr - umax_val; 7351 dst_reg->umax_value = umax_ptr - umin_val; 7352 } 7353 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7354 dst_reg->off = ptr_reg->off; 7355 dst_reg->raw = ptr_reg->raw; 7356 if (reg_is_pkt_pointer(ptr_reg)) { 7357 dst_reg->id = ++env->id_gen; 7358 /* something was added to pkt_ptr, set range to zero */ 7359 if (smin_val < 0) 7360 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7361 } 7362 break; 7363 case BPF_AND: 7364 case BPF_OR: 7365 case BPF_XOR: 7366 /* bitwise ops on pointers are troublesome, prohibit. */ 7367 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7368 dst, bpf_alu_string[opcode >> 4]); 7369 return -EACCES; 7370 default: 7371 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7372 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7373 dst, bpf_alu_string[opcode >> 4]); 7374 return -EACCES; 7375 } 7376 7377 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7378 return -EINVAL; 7379 7380 __update_reg_bounds(dst_reg); 7381 __reg_deduce_bounds(dst_reg); 7382 __reg_bound_offset(dst_reg); 7383 7384 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7385 return -EACCES; 7386 if (sanitize_needed(opcode)) { 7387 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7388 &info, true); 7389 if (ret < 0) 7390 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7391 } 7392 7393 return 0; 7394 } 7395 7396 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7397 struct bpf_reg_state *src_reg) 7398 { 7399 s32 smin_val = src_reg->s32_min_value; 7400 s32 smax_val = src_reg->s32_max_value; 7401 u32 umin_val = src_reg->u32_min_value; 7402 u32 umax_val = src_reg->u32_max_value; 7403 7404 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7405 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7406 dst_reg->s32_min_value = S32_MIN; 7407 dst_reg->s32_max_value = S32_MAX; 7408 } else { 7409 dst_reg->s32_min_value += smin_val; 7410 dst_reg->s32_max_value += smax_val; 7411 } 7412 if (dst_reg->u32_min_value + umin_val < umin_val || 7413 dst_reg->u32_max_value + umax_val < umax_val) { 7414 dst_reg->u32_min_value = 0; 7415 dst_reg->u32_max_value = U32_MAX; 7416 } else { 7417 dst_reg->u32_min_value += umin_val; 7418 dst_reg->u32_max_value += umax_val; 7419 } 7420 } 7421 7422 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7423 struct bpf_reg_state *src_reg) 7424 { 7425 s64 smin_val = src_reg->smin_value; 7426 s64 smax_val = src_reg->smax_value; 7427 u64 umin_val = src_reg->umin_value; 7428 u64 umax_val = src_reg->umax_value; 7429 7430 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7431 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7432 dst_reg->smin_value = S64_MIN; 7433 dst_reg->smax_value = S64_MAX; 7434 } else { 7435 dst_reg->smin_value += smin_val; 7436 dst_reg->smax_value += smax_val; 7437 } 7438 if (dst_reg->umin_value + umin_val < umin_val || 7439 dst_reg->umax_value + umax_val < umax_val) { 7440 dst_reg->umin_value = 0; 7441 dst_reg->umax_value = U64_MAX; 7442 } else { 7443 dst_reg->umin_value += umin_val; 7444 dst_reg->umax_value += umax_val; 7445 } 7446 } 7447 7448 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7449 struct bpf_reg_state *src_reg) 7450 { 7451 s32 smin_val = src_reg->s32_min_value; 7452 s32 smax_val = src_reg->s32_max_value; 7453 u32 umin_val = src_reg->u32_min_value; 7454 u32 umax_val = src_reg->u32_max_value; 7455 7456 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7457 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7458 /* Overflow possible, we know nothing */ 7459 dst_reg->s32_min_value = S32_MIN; 7460 dst_reg->s32_max_value = S32_MAX; 7461 } else { 7462 dst_reg->s32_min_value -= smax_val; 7463 dst_reg->s32_max_value -= smin_val; 7464 } 7465 if (dst_reg->u32_min_value < umax_val) { 7466 /* Overflow possible, we know nothing */ 7467 dst_reg->u32_min_value = 0; 7468 dst_reg->u32_max_value = U32_MAX; 7469 } else { 7470 /* Cannot overflow (as long as bounds are consistent) */ 7471 dst_reg->u32_min_value -= umax_val; 7472 dst_reg->u32_max_value -= umin_val; 7473 } 7474 } 7475 7476 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7477 struct bpf_reg_state *src_reg) 7478 { 7479 s64 smin_val = src_reg->smin_value; 7480 s64 smax_val = src_reg->smax_value; 7481 u64 umin_val = src_reg->umin_value; 7482 u64 umax_val = src_reg->umax_value; 7483 7484 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7485 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7486 /* Overflow possible, we know nothing */ 7487 dst_reg->smin_value = S64_MIN; 7488 dst_reg->smax_value = S64_MAX; 7489 } else { 7490 dst_reg->smin_value -= smax_val; 7491 dst_reg->smax_value -= smin_val; 7492 } 7493 if (dst_reg->umin_value < umax_val) { 7494 /* Overflow possible, we know nothing */ 7495 dst_reg->umin_value = 0; 7496 dst_reg->umax_value = U64_MAX; 7497 } else { 7498 /* Cannot overflow (as long as bounds are consistent) */ 7499 dst_reg->umin_value -= umax_val; 7500 dst_reg->umax_value -= umin_val; 7501 } 7502 } 7503 7504 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7505 struct bpf_reg_state *src_reg) 7506 { 7507 s32 smin_val = src_reg->s32_min_value; 7508 u32 umin_val = src_reg->u32_min_value; 7509 u32 umax_val = src_reg->u32_max_value; 7510 7511 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7512 /* Ain't nobody got time to multiply that sign */ 7513 __mark_reg32_unbounded(dst_reg); 7514 return; 7515 } 7516 /* Both values are positive, so we can work with unsigned and 7517 * copy the result to signed (unless it exceeds S32_MAX). 7518 */ 7519 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7520 /* Potential overflow, we know nothing */ 7521 __mark_reg32_unbounded(dst_reg); 7522 return; 7523 } 7524 dst_reg->u32_min_value *= umin_val; 7525 dst_reg->u32_max_value *= umax_val; 7526 if (dst_reg->u32_max_value > S32_MAX) { 7527 /* Overflow possible, we know nothing */ 7528 dst_reg->s32_min_value = S32_MIN; 7529 dst_reg->s32_max_value = S32_MAX; 7530 } else { 7531 dst_reg->s32_min_value = dst_reg->u32_min_value; 7532 dst_reg->s32_max_value = dst_reg->u32_max_value; 7533 } 7534 } 7535 7536 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7537 struct bpf_reg_state *src_reg) 7538 { 7539 s64 smin_val = src_reg->smin_value; 7540 u64 umin_val = src_reg->umin_value; 7541 u64 umax_val = src_reg->umax_value; 7542 7543 if (smin_val < 0 || dst_reg->smin_value < 0) { 7544 /* Ain't nobody got time to multiply that sign */ 7545 __mark_reg64_unbounded(dst_reg); 7546 return; 7547 } 7548 /* Both values are positive, so we can work with unsigned and 7549 * copy the result to signed (unless it exceeds S64_MAX). 7550 */ 7551 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7552 /* Potential overflow, we know nothing */ 7553 __mark_reg64_unbounded(dst_reg); 7554 return; 7555 } 7556 dst_reg->umin_value *= umin_val; 7557 dst_reg->umax_value *= umax_val; 7558 if (dst_reg->umax_value > S64_MAX) { 7559 /* Overflow possible, we know nothing */ 7560 dst_reg->smin_value = S64_MIN; 7561 dst_reg->smax_value = S64_MAX; 7562 } else { 7563 dst_reg->smin_value = dst_reg->umin_value; 7564 dst_reg->smax_value = dst_reg->umax_value; 7565 } 7566 } 7567 7568 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7569 struct bpf_reg_state *src_reg) 7570 { 7571 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7572 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7573 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7574 s32 smin_val = src_reg->s32_min_value; 7575 u32 umax_val = src_reg->u32_max_value; 7576 7577 if (src_known && dst_known) { 7578 __mark_reg32_known(dst_reg, var32_off.value); 7579 return; 7580 } 7581 7582 /* We get our minimum from the var_off, since that's inherently 7583 * bitwise. Our maximum is the minimum of the operands' maxima. 7584 */ 7585 dst_reg->u32_min_value = var32_off.value; 7586 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7587 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7588 /* Lose signed bounds when ANDing negative numbers, 7589 * ain't nobody got time for that. 7590 */ 7591 dst_reg->s32_min_value = S32_MIN; 7592 dst_reg->s32_max_value = S32_MAX; 7593 } else { 7594 /* ANDing two positives gives a positive, so safe to 7595 * cast result into s64. 7596 */ 7597 dst_reg->s32_min_value = dst_reg->u32_min_value; 7598 dst_reg->s32_max_value = dst_reg->u32_max_value; 7599 } 7600 } 7601 7602 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7603 struct bpf_reg_state *src_reg) 7604 { 7605 bool src_known = tnum_is_const(src_reg->var_off); 7606 bool dst_known = tnum_is_const(dst_reg->var_off); 7607 s64 smin_val = src_reg->smin_value; 7608 u64 umax_val = src_reg->umax_value; 7609 7610 if (src_known && dst_known) { 7611 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7612 return; 7613 } 7614 7615 /* We get our minimum from the var_off, since that's inherently 7616 * bitwise. Our maximum is the minimum of the operands' maxima. 7617 */ 7618 dst_reg->umin_value = dst_reg->var_off.value; 7619 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7620 if (dst_reg->smin_value < 0 || smin_val < 0) { 7621 /* Lose signed bounds when ANDing negative numbers, 7622 * ain't nobody got time for that. 7623 */ 7624 dst_reg->smin_value = S64_MIN; 7625 dst_reg->smax_value = S64_MAX; 7626 } else { 7627 /* ANDing two positives gives a positive, so safe to 7628 * cast result into s64. 7629 */ 7630 dst_reg->smin_value = dst_reg->umin_value; 7631 dst_reg->smax_value = dst_reg->umax_value; 7632 } 7633 /* We may learn something more from the var_off */ 7634 __update_reg_bounds(dst_reg); 7635 } 7636 7637 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7638 struct bpf_reg_state *src_reg) 7639 { 7640 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7641 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7642 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7643 s32 smin_val = src_reg->s32_min_value; 7644 u32 umin_val = src_reg->u32_min_value; 7645 7646 if (src_known && dst_known) { 7647 __mark_reg32_known(dst_reg, var32_off.value); 7648 return; 7649 } 7650 7651 /* We get our maximum from the var_off, and our minimum is the 7652 * maximum of the operands' minima 7653 */ 7654 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7655 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7656 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7657 /* Lose signed bounds when ORing negative numbers, 7658 * ain't nobody got time for that. 7659 */ 7660 dst_reg->s32_min_value = S32_MIN; 7661 dst_reg->s32_max_value = S32_MAX; 7662 } else { 7663 /* ORing two positives gives a positive, so safe to 7664 * cast result into s64. 7665 */ 7666 dst_reg->s32_min_value = dst_reg->u32_min_value; 7667 dst_reg->s32_max_value = dst_reg->u32_max_value; 7668 } 7669 } 7670 7671 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7672 struct bpf_reg_state *src_reg) 7673 { 7674 bool src_known = tnum_is_const(src_reg->var_off); 7675 bool dst_known = tnum_is_const(dst_reg->var_off); 7676 s64 smin_val = src_reg->smin_value; 7677 u64 umin_val = src_reg->umin_value; 7678 7679 if (src_known && dst_known) { 7680 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7681 return; 7682 } 7683 7684 /* We get our maximum from the var_off, and our minimum is the 7685 * maximum of the operands' minima 7686 */ 7687 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7688 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7689 if (dst_reg->smin_value < 0 || smin_val < 0) { 7690 /* Lose signed bounds when ORing negative numbers, 7691 * ain't nobody got time for that. 7692 */ 7693 dst_reg->smin_value = S64_MIN; 7694 dst_reg->smax_value = S64_MAX; 7695 } else { 7696 /* ORing two positives gives a positive, so safe to 7697 * cast result into s64. 7698 */ 7699 dst_reg->smin_value = dst_reg->umin_value; 7700 dst_reg->smax_value = dst_reg->umax_value; 7701 } 7702 /* We may learn something more from the var_off */ 7703 __update_reg_bounds(dst_reg); 7704 } 7705 7706 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7707 struct bpf_reg_state *src_reg) 7708 { 7709 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7710 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7711 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7712 s32 smin_val = src_reg->s32_min_value; 7713 7714 if (src_known && dst_known) { 7715 __mark_reg32_known(dst_reg, var32_off.value); 7716 return; 7717 } 7718 7719 /* We get both minimum and maximum from the var32_off. */ 7720 dst_reg->u32_min_value = var32_off.value; 7721 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7722 7723 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7724 /* XORing two positive sign numbers gives a positive, 7725 * so safe to cast u32 result into s32. 7726 */ 7727 dst_reg->s32_min_value = dst_reg->u32_min_value; 7728 dst_reg->s32_max_value = dst_reg->u32_max_value; 7729 } else { 7730 dst_reg->s32_min_value = S32_MIN; 7731 dst_reg->s32_max_value = S32_MAX; 7732 } 7733 } 7734 7735 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7736 struct bpf_reg_state *src_reg) 7737 { 7738 bool src_known = tnum_is_const(src_reg->var_off); 7739 bool dst_known = tnum_is_const(dst_reg->var_off); 7740 s64 smin_val = src_reg->smin_value; 7741 7742 if (src_known && dst_known) { 7743 /* dst_reg->var_off.value has been updated earlier */ 7744 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7745 return; 7746 } 7747 7748 /* We get both minimum and maximum from the var_off. */ 7749 dst_reg->umin_value = dst_reg->var_off.value; 7750 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7751 7752 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7753 /* XORing two positive sign numbers gives a positive, 7754 * so safe to cast u64 result into s64. 7755 */ 7756 dst_reg->smin_value = dst_reg->umin_value; 7757 dst_reg->smax_value = dst_reg->umax_value; 7758 } else { 7759 dst_reg->smin_value = S64_MIN; 7760 dst_reg->smax_value = S64_MAX; 7761 } 7762 7763 __update_reg_bounds(dst_reg); 7764 } 7765 7766 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7767 u64 umin_val, u64 umax_val) 7768 { 7769 /* We lose all sign bit information (except what we can pick 7770 * up from var_off) 7771 */ 7772 dst_reg->s32_min_value = S32_MIN; 7773 dst_reg->s32_max_value = S32_MAX; 7774 /* If we might shift our top bit out, then we know nothing */ 7775 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7776 dst_reg->u32_min_value = 0; 7777 dst_reg->u32_max_value = U32_MAX; 7778 } else { 7779 dst_reg->u32_min_value <<= umin_val; 7780 dst_reg->u32_max_value <<= umax_val; 7781 } 7782 } 7783 7784 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7785 struct bpf_reg_state *src_reg) 7786 { 7787 u32 umax_val = src_reg->u32_max_value; 7788 u32 umin_val = src_reg->u32_min_value; 7789 /* u32 alu operation will zext upper bits */ 7790 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7791 7792 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7793 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7794 /* Not required but being careful mark reg64 bounds as unknown so 7795 * that we are forced to pick them up from tnum and zext later and 7796 * if some path skips this step we are still safe. 7797 */ 7798 __mark_reg64_unbounded(dst_reg); 7799 __update_reg32_bounds(dst_reg); 7800 } 7801 7802 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7803 u64 umin_val, u64 umax_val) 7804 { 7805 /* Special case <<32 because it is a common compiler pattern to sign 7806 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7807 * positive we know this shift will also be positive so we can track 7808 * bounds correctly. Otherwise we lose all sign bit information except 7809 * what we can pick up from var_off. Perhaps we can generalize this 7810 * later to shifts of any length. 7811 */ 7812 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7813 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7814 else 7815 dst_reg->smax_value = S64_MAX; 7816 7817 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7818 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7819 else 7820 dst_reg->smin_value = S64_MIN; 7821 7822 /* If we might shift our top bit out, then we know nothing */ 7823 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7824 dst_reg->umin_value = 0; 7825 dst_reg->umax_value = U64_MAX; 7826 } else { 7827 dst_reg->umin_value <<= umin_val; 7828 dst_reg->umax_value <<= umax_val; 7829 } 7830 } 7831 7832 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7833 struct bpf_reg_state *src_reg) 7834 { 7835 u64 umax_val = src_reg->umax_value; 7836 u64 umin_val = src_reg->umin_value; 7837 7838 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7839 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7840 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7841 7842 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7843 /* We may learn something more from the var_off */ 7844 __update_reg_bounds(dst_reg); 7845 } 7846 7847 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7848 struct bpf_reg_state *src_reg) 7849 { 7850 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7851 u32 umax_val = src_reg->u32_max_value; 7852 u32 umin_val = src_reg->u32_min_value; 7853 7854 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7855 * be negative, then either: 7856 * 1) src_reg might be zero, so the sign bit of the result is 7857 * unknown, so we lose our signed bounds 7858 * 2) it's known negative, thus the unsigned bounds capture the 7859 * signed bounds 7860 * 3) the signed bounds cross zero, so they tell us nothing 7861 * about the result 7862 * If the value in dst_reg is known nonnegative, then again the 7863 * unsigned bounds capture the signed bounds. 7864 * Thus, in all cases it suffices to blow away our signed bounds 7865 * and rely on inferring new ones from the unsigned bounds and 7866 * var_off of the result. 7867 */ 7868 dst_reg->s32_min_value = S32_MIN; 7869 dst_reg->s32_max_value = S32_MAX; 7870 7871 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7872 dst_reg->u32_min_value >>= umax_val; 7873 dst_reg->u32_max_value >>= umin_val; 7874 7875 __mark_reg64_unbounded(dst_reg); 7876 __update_reg32_bounds(dst_reg); 7877 } 7878 7879 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7880 struct bpf_reg_state *src_reg) 7881 { 7882 u64 umax_val = src_reg->umax_value; 7883 u64 umin_val = src_reg->umin_value; 7884 7885 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7886 * be negative, then either: 7887 * 1) src_reg might be zero, so the sign bit of the result is 7888 * unknown, so we lose our signed bounds 7889 * 2) it's known negative, thus the unsigned bounds capture the 7890 * signed bounds 7891 * 3) the signed bounds cross zero, so they tell us nothing 7892 * about the result 7893 * If the value in dst_reg is known nonnegative, then again the 7894 * unsigned bounds capture the signed bounds. 7895 * Thus, in all cases it suffices to blow away our signed bounds 7896 * and rely on inferring new ones from the unsigned bounds and 7897 * var_off of the result. 7898 */ 7899 dst_reg->smin_value = S64_MIN; 7900 dst_reg->smax_value = S64_MAX; 7901 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7902 dst_reg->umin_value >>= umax_val; 7903 dst_reg->umax_value >>= umin_val; 7904 7905 /* Its not easy to operate on alu32 bounds here because it depends 7906 * on bits being shifted in. Take easy way out and mark unbounded 7907 * so we can recalculate later from tnum. 7908 */ 7909 __mark_reg32_unbounded(dst_reg); 7910 __update_reg_bounds(dst_reg); 7911 } 7912 7913 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7914 struct bpf_reg_state *src_reg) 7915 { 7916 u64 umin_val = src_reg->u32_min_value; 7917 7918 /* Upon reaching here, src_known is true and 7919 * umax_val is equal to umin_val. 7920 */ 7921 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7922 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7923 7924 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7925 7926 /* blow away the dst_reg umin_value/umax_value and rely on 7927 * dst_reg var_off to refine the result. 7928 */ 7929 dst_reg->u32_min_value = 0; 7930 dst_reg->u32_max_value = U32_MAX; 7931 7932 __mark_reg64_unbounded(dst_reg); 7933 __update_reg32_bounds(dst_reg); 7934 } 7935 7936 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7937 struct bpf_reg_state *src_reg) 7938 { 7939 u64 umin_val = src_reg->umin_value; 7940 7941 /* Upon reaching here, src_known is true and umax_val is equal 7942 * to umin_val. 7943 */ 7944 dst_reg->smin_value >>= umin_val; 7945 dst_reg->smax_value >>= umin_val; 7946 7947 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7948 7949 /* blow away the dst_reg umin_value/umax_value and rely on 7950 * dst_reg var_off to refine the result. 7951 */ 7952 dst_reg->umin_value = 0; 7953 dst_reg->umax_value = U64_MAX; 7954 7955 /* Its not easy to operate on alu32 bounds here because it depends 7956 * on bits being shifted in from upper 32-bits. Take easy way out 7957 * and mark unbounded so we can recalculate later from tnum. 7958 */ 7959 __mark_reg32_unbounded(dst_reg); 7960 __update_reg_bounds(dst_reg); 7961 } 7962 7963 /* WARNING: This function does calculations on 64-bit values, but the actual 7964 * execution may occur on 32-bit values. Therefore, things like bitshifts 7965 * need extra checks in the 32-bit case. 7966 */ 7967 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7968 struct bpf_insn *insn, 7969 struct bpf_reg_state *dst_reg, 7970 struct bpf_reg_state src_reg) 7971 { 7972 struct bpf_reg_state *regs = cur_regs(env); 7973 u8 opcode = BPF_OP(insn->code); 7974 bool src_known; 7975 s64 smin_val, smax_val; 7976 u64 umin_val, umax_val; 7977 s32 s32_min_val, s32_max_val; 7978 u32 u32_min_val, u32_max_val; 7979 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7980 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7981 int ret; 7982 7983 smin_val = src_reg.smin_value; 7984 smax_val = src_reg.smax_value; 7985 umin_val = src_reg.umin_value; 7986 umax_val = src_reg.umax_value; 7987 7988 s32_min_val = src_reg.s32_min_value; 7989 s32_max_val = src_reg.s32_max_value; 7990 u32_min_val = src_reg.u32_min_value; 7991 u32_max_val = src_reg.u32_max_value; 7992 7993 if (alu32) { 7994 src_known = tnum_subreg_is_const(src_reg.var_off); 7995 if ((src_known && 7996 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7997 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7998 /* Taint dst register if offset had invalid bounds 7999 * derived from e.g. dead branches. 8000 */ 8001 __mark_reg_unknown(env, dst_reg); 8002 return 0; 8003 } 8004 } else { 8005 src_known = tnum_is_const(src_reg.var_off); 8006 if ((src_known && 8007 (smin_val != smax_val || umin_val != umax_val)) || 8008 smin_val > smax_val || umin_val > umax_val) { 8009 /* Taint dst register if offset had invalid bounds 8010 * derived from e.g. dead branches. 8011 */ 8012 __mark_reg_unknown(env, dst_reg); 8013 return 0; 8014 } 8015 } 8016 8017 if (!src_known && 8018 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8019 __mark_reg_unknown(env, dst_reg); 8020 return 0; 8021 } 8022 8023 if (sanitize_needed(opcode)) { 8024 ret = sanitize_val_alu(env, insn); 8025 if (ret < 0) 8026 return sanitize_err(env, insn, ret, NULL, NULL); 8027 } 8028 8029 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8030 * There are two classes of instructions: The first class we track both 8031 * alu32 and alu64 sign/unsigned bounds independently this provides the 8032 * greatest amount of precision when alu operations are mixed with jmp32 8033 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8034 * and BPF_OR. This is possible because these ops have fairly easy to 8035 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8036 * See alu32 verifier tests for examples. The second class of 8037 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8038 * with regards to tracking sign/unsigned bounds because the bits may 8039 * cross subreg boundaries in the alu64 case. When this happens we mark 8040 * the reg unbounded in the subreg bound space and use the resulting 8041 * tnum to calculate an approximation of the sign/unsigned bounds. 8042 */ 8043 switch (opcode) { 8044 case BPF_ADD: 8045 scalar32_min_max_add(dst_reg, &src_reg); 8046 scalar_min_max_add(dst_reg, &src_reg); 8047 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8048 break; 8049 case BPF_SUB: 8050 scalar32_min_max_sub(dst_reg, &src_reg); 8051 scalar_min_max_sub(dst_reg, &src_reg); 8052 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8053 break; 8054 case BPF_MUL: 8055 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8056 scalar32_min_max_mul(dst_reg, &src_reg); 8057 scalar_min_max_mul(dst_reg, &src_reg); 8058 break; 8059 case BPF_AND: 8060 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8061 scalar32_min_max_and(dst_reg, &src_reg); 8062 scalar_min_max_and(dst_reg, &src_reg); 8063 break; 8064 case BPF_OR: 8065 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8066 scalar32_min_max_or(dst_reg, &src_reg); 8067 scalar_min_max_or(dst_reg, &src_reg); 8068 break; 8069 case BPF_XOR: 8070 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8071 scalar32_min_max_xor(dst_reg, &src_reg); 8072 scalar_min_max_xor(dst_reg, &src_reg); 8073 break; 8074 case BPF_LSH: 8075 if (umax_val >= insn_bitness) { 8076 /* Shifts greater than 31 or 63 are undefined. 8077 * This includes shifts by a negative number. 8078 */ 8079 mark_reg_unknown(env, regs, insn->dst_reg); 8080 break; 8081 } 8082 if (alu32) 8083 scalar32_min_max_lsh(dst_reg, &src_reg); 8084 else 8085 scalar_min_max_lsh(dst_reg, &src_reg); 8086 break; 8087 case BPF_RSH: 8088 if (umax_val >= insn_bitness) { 8089 /* Shifts greater than 31 or 63 are undefined. 8090 * This includes shifts by a negative number. 8091 */ 8092 mark_reg_unknown(env, regs, insn->dst_reg); 8093 break; 8094 } 8095 if (alu32) 8096 scalar32_min_max_rsh(dst_reg, &src_reg); 8097 else 8098 scalar_min_max_rsh(dst_reg, &src_reg); 8099 break; 8100 case BPF_ARSH: 8101 if (umax_val >= insn_bitness) { 8102 /* Shifts greater than 31 or 63 are undefined. 8103 * This includes shifts by a negative number. 8104 */ 8105 mark_reg_unknown(env, regs, insn->dst_reg); 8106 break; 8107 } 8108 if (alu32) 8109 scalar32_min_max_arsh(dst_reg, &src_reg); 8110 else 8111 scalar_min_max_arsh(dst_reg, &src_reg); 8112 break; 8113 default: 8114 mark_reg_unknown(env, regs, insn->dst_reg); 8115 break; 8116 } 8117 8118 /* ALU32 ops are zero extended into 64bit register */ 8119 if (alu32) 8120 zext_32_to_64(dst_reg); 8121 8122 __update_reg_bounds(dst_reg); 8123 __reg_deduce_bounds(dst_reg); 8124 __reg_bound_offset(dst_reg); 8125 return 0; 8126 } 8127 8128 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8129 * and var_off. 8130 */ 8131 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8132 struct bpf_insn *insn) 8133 { 8134 struct bpf_verifier_state *vstate = env->cur_state; 8135 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8136 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8137 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8138 u8 opcode = BPF_OP(insn->code); 8139 int err; 8140 8141 dst_reg = ®s[insn->dst_reg]; 8142 src_reg = NULL; 8143 if (dst_reg->type != SCALAR_VALUE) 8144 ptr_reg = dst_reg; 8145 else 8146 /* Make sure ID is cleared otherwise dst_reg min/max could be 8147 * incorrectly propagated into other registers by find_equal_scalars() 8148 */ 8149 dst_reg->id = 0; 8150 if (BPF_SRC(insn->code) == BPF_X) { 8151 src_reg = ®s[insn->src_reg]; 8152 if (src_reg->type != SCALAR_VALUE) { 8153 if (dst_reg->type != SCALAR_VALUE) { 8154 /* Combining two pointers by any ALU op yields 8155 * an arbitrary scalar. Disallow all math except 8156 * pointer subtraction 8157 */ 8158 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8159 mark_reg_unknown(env, regs, insn->dst_reg); 8160 return 0; 8161 } 8162 verbose(env, "R%d pointer %s pointer prohibited\n", 8163 insn->dst_reg, 8164 bpf_alu_string[opcode >> 4]); 8165 return -EACCES; 8166 } else { 8167 /* scalar += pointer 8168 * This is legal, but we have to reverse our 8169 * src/dest handling in computing the range 8170 */ 8171 err = mark_chain_precision(env, insn->dst_reg); 8172 if (err) 8173 return err; 8174 return adjust_ptr_min_max_vals(env, insn, 8175 src_reg, dst_reg); 8176 } 8177 } else if (ptr_reg) { 8178 /* pointer += scalar */ 8179 err = mark_chain_precision(env, insn->src_reg); 8180 if (err) 8181 return err; 8182 return adjust_ptr_min_max_vals(env, insn, 8183 dst_reg, src_reg); 8184 } 8185 } else { 8186 /* Pretend the src is a reg with a known value, since we only 8187 * need to be able to read from this state. 8188 */ 8189 off_reg.type = SCALAR_VALUE; 8190 __mark_reg_known(&off_reg, insn->imm); 8191 src_reg = &off_reg; 8192 if (ptr_reg) /* pointer += K */ 8193 return adjust_ptr_min_max_vals(env, insn, 8194 ptr_reg, src_reg); 8195 } 8196 8197 /* Got here implies adding two SCALAR_VALUEs */ 8198 if (WARN_ON_ONCE(ptr_reg)) { 8199 print_verifier_state(env, state); 8200 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8201 return -EINVAL; 8202 } 8203 if (WARN_ON(!src_reg)) { 8204 print_verifier_state(env, state); 8205 verbose(env, "verifier internal error: no src_reg\n"); 8206 return -EINVAL; 8207 } 8208 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8209 } 8210 8211 /* check validity of 32-bit and 64-bit arithmetic operations */ 8212 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8213 { 8214 struct bpf_reg_state *regs = cur_regs(env); 8215 u8 opcode = BPF_OP(insn->code); 8216 int err; 8217 8218 if (opcode == BPF_END || opcode == BPF_NEG) { 8219 if (opcode == BPF_NEG) { 8220 if (BPF_SRC(insn->code) != 0 || 8221 insn->src_reg != BPF_REG_0 || 8222 insn->off != 0 || insn->imm != 0) { 8223 verbose(env, "BPF_NEG uses reserved fields\n"); 8224 return -EINVAL; 8225 } 8226 } else { 8227 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8228 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8229 BPF_CLASS(insn->code) == BPF_ALU64) { 8230 verbose(env, "BPF_END uses reserved fields\n"); 8231 return -EINVAL; 8232 } 8233 } 8234 8235 /* check src operand */ 8236 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8237 if (err) 8238 return err; 8239 8240 if (is_pointer_value(env, insn->dst_reg)) { 8241 verbose(env, "R%d pointer arithmetic prohibited\n", 8242 insn->dst_reg); 8243 return -EACCES; 8244 } 8245 8246 /* check dest operand */ 8247 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8248 if (err) 8249 return err; 8250 8251 } else if (opcode == BPF_MOV) { 8252 8253 if (BPF_SRC(insn->code) == BPF_X) { 8254 if (insn->imm != 0 || insn->off != 0) { 8255 verbose(env, "BPF_MOV uses reserved fields\n"); 8256 return -EINVAL; 8257 } 8258 8259 /* check src operand */ 8260 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8261 if (err) 8262 return err; 8263 } else { 8264 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8265 verbose(env, "BPF_MOV uses reserved fields\n"); 8266 return -EINVAL; 8267 } 8268 } 8269 8270 /* check dest operand, mark as required later */ 8271 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8272 if (err) 8273 return err; 8274 8275 if (BPF_SRC(insn->code) == BPF_X) { 8276 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8277 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8278 8279 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8280 /* case: R1 = R2 8281 * copy register state to dest reg 8282 */ 8283 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8284 /* Assign src and dst registers the same ID 8285 * that will be used by find_equal_scalars() 8286 * to propagate min/max range. 8287 */ 8288 src_reg->id = ++env->id_gen; 8289 *dst_reg = *src_reg; 8290 dst_reg->live |= REG_LIVE_WRITTEN; 8291 dst_reg->subreg_def = DEF_NOT_SUBREG; 8292 } else { 8293 /* R1 = (u32) R2 */ 8294 if (is_pointer_value(env, insn->src_reg)) { 8295 verbose(env, 8296 "R%d partial copy of pointer\n", 8297 insn->src_reg); 8298 return -EACCES; 8299 } else if (src_reg->type == SCALAR_VALUE) { 8300 *dst_reg = *src_reg; 8301 /* Make sure ID is cleared otherwise 8302 * dst_reg min/max could be incorrectly 8303 * propagated into src_reg by find_equal_scalars() 8304 */ 8305 dst_reg->id = 0; 8306 dst_reg->live |= REG_LIVE_WRITTEN; 8307 dst_reg->subreg_def = env->insn_idx + 1; 8308 } else { 8309 mark_reg_unknown(env, regs, 8310 insn->dst_reg); 8311 } 8312 zext_32_to_64(dst_reg); 8313 } 8314 } else { 8315 /* case: R = imm 8316 * remember the value we stored into this reg 8317 */ 8318 /* clear any state __mark_reg_known doesn't set */ 8319 mark_reg_unknown(env, regs, insn->dst_reg); 8320 regs[insn->dst_reg].type = SCALAR_VALUE; 8321 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8322 __mark_reg_known(regs + insn->dst_reg, 8323 insn->imm); 8324 } else { 8325 __mark_reg_known(regs + insn->dst_reg, 8326 (u32)insn->imm); 8327 } 8328 } 8329 8330 } else if (opcode > BPF_END) { 8331 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8332 return -EINVAL; 8333 8334 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8335 8336 if (BPF_SRC(insn->code) == BPF_X) { 8337 if (insn->imm != 0 || insn->off != 0) { 8338 verbose(env, "BPF_ALU uses reserved fields\n"); 8339 return -EINVAL; 8340 } 8341 /* check src1 operand */ 8342 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8343 if (err) 8344 return err; 8345 } else { 8346 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8347 verbose(env, "BPF_ALU uses reserved fields\n"); 8348 return -EINVAL; 8349 } 8350 } 8351 8352 /* check src2 operand */ 8353 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8354 if (err) 8355 return err; 8356 8357 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8358 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8359 verbose(env, "div by zero\n"); 8360 return -EINVAL; 8361 } 8362 8363 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8364 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8365 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8366 8367 if (insn->imm < 0 || insn->imm >= size) { 8368 verbose(env, "invalid shift %d\n", insn->imm); 8369 return -EINVAL; 8370 } 8371 } 8372 8373 /* check dest operand */ 8374 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8375 if (err) 8376 return err; 8377 8378 return adjust_reg_min_max_vals(env, insn); 8379 } 8380 8381 return 0; 8382 } 8383 8384 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8385 struct bpf_reg_state *dst_reg, 8386 enum bpf_reg_type type, int new_range) 8387 { 8388 struct bpf_reg_state *reg; 8389 int i; 8390 8391 for (i = 0; i < MAX_BPF_REG; i++) { 8392 reg = &state->regs[i]; 8393 if (reg->type == type && reg->id == dst_reg->id) 8394 /* keep the maximum range already checked */ 8395 reg->range = max(reg->range, new_range); 8396 } 8397 8398 bpf_for_each_spilled_reg(i, state, reg) { 8399 if (!reg) 8400 continue; 8401 if (reg->type == type && reg->id == dst_reg->id) 8402 reg->range = max(reg->range, new_range); 8403 } 8404 } 8405 8406 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8407 struct bpf_reg_state *dst_reg, 8408 enum bpf_reg_type type, 8409 bool range_right_open) 8410 { 8411 int new_range, i; 8412 8413 if (dst_reg->off < 0 || 8414 (dst_reg->off == 0 && range_right_open)) 8415 /* This doesn't give us any range */ 8416 return; 8417 8418 if (dst_reg->umax_value > MAX_PACKET_OFF || 8419 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8420 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8421 * than pkt_end, but that's because it's also less than pkt. 8422 */ 8423 return; 8424 8425 new_range = dst_reg->off; 8426 if (range_right_open) 8427 new_range--; 8428 8429 /* Examples for register markings: 8430 * 8431 * pkt_data in dst register: 8432 * 8433 * r2 = r3; 8434 * r2 += 8; 8435 * if (r2 > pkt_end) goto <handle exception> 8436 * <access okay> 8437 * 8438 * r2 = r3; 8439 * r2 += 8; 8440 * if (r2 < pkt_end) goto <access okay> 8441 * <handle exception> 8442 * 8443 * Where: 8444 * r2 == dst_reg, pkt_end == src_reg 8445 * r2=pkt(id=n,off=8,r=0) 8446 * r3=pkt(id=n,off=0,r=0) 8447 * 8448 * pkt_data in src register: 8449 * 8450 * r2 = r3; 8451 * r2 += 8; 8452 * if (pkt_end >= r2) goto <access okay> 8453 * <handle exception> 8454 * 8455 * r2 = r3; 8456 * r2 += 8; 8457 * if (pkt_end <= r2) goto <handle exception> 8458 * <access okay> 8459 * 8460 * Where: 8461 * pkt_end == dst_reg, r2 == src_reg 8462 * r2=pkt(id=n,off=8,r=0) 8463 * r3=pkt(id=n,off=0,r=0) 8464 * 8465 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8466 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8467 * and [r3, r3 + 8-1) respectively is safe to access depending on 8468 * the check. 8469 */ 8470 8471 /* If our ids match, then we must have the same max_value. And we 8472 * don't care about the other reg's fixed offset, since if it's too big 8473 * the range won't allow anything. 8474 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8475 */ 8476 for (i = 0; i <= vstate->curframe; i++) 8477 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8478 new_range); 8479 } 8480 8481 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8482 { 8483 struct tnum subreg = tnum_subreg(reg->var_off); 8484 s32 sval = (s32)val; 8485 8486 switch (opcode) { 8487 case BPF_JEQ: 8488 if (tnum_is_const(subreg)) 8489 return !!tnum_equals_const(subreg, val); 8490 break; 8491 case BPF_JNE: 8492 if (tnum_is_const(subreg)) 8493 return !tnum_equals_const(subreg, val); 8494 break; 8495 case BPF_JSET: 8496 if ((~subreg.mask & subreg.value) & val) 8497 return 1; 8498 if (!((subreg.mask | subreg.value) & val)) 8499 return 0; 8500 break; 8501 case BPF_JGT: 8502 if (reg->u32_min_value > val) 8503 return 1; 8504 else if (reg->u32_max_value <= val) 8505 return 0; 8506 break; 8507 case BPF_JSGT: 8508 if (reg->s32_min_value > sval) 8509 return 1; 8510 else if (reg->s32_max_value <= sval) 8511 return 0; 8512 break; 8513 case BPF_JLT: 8514 if (reg->u32_max_value < val) 8515 return 1; 8516 else if (reg->u32_min_value >= val) 8517 return 0; 8518 break; 8519 case BPF_JSLT: 8520 if (reg->s32_max_value < sval) 8521 return 1; 8522 else if (reg->s32_min_value >= sval) 8523 return 0; 8524 break; 8525 case BPF_JGE: 8526 if (reg->u32_min_value >= val) 8527 return 1; 8528 else if (reg->u32_max_value < val) 8529 return 0; 8530 break; 8531 case BPF_JSGE: 8532 if (reg->s32_min_value >= sval) 8533 return 1; 8534 else if (reg->s32_max_value < sval) 8535 return 0; 8536 break; 8537 case BPF_JLE: 8538 if (reg->u32_max_value <= val) 8539 return 1; 8540 else if (reg->u32_min_value > val) 8541 return 0; 8542 break; 8543 case BPF_JSLE: 8544 if (reg->s32_max_value <= sval) 8545 return 1; 8546 else if (reg->s32_min_value > sval) 8547 return 0; 8548 break; 8549 } 8550 8551 return -1; 8552 } 8553 8554 8555 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8556 { 8557 s64 sval = (s64)val; 8558 8559 switch (opcode) { 8560 case BPF_JEQ: 8561 if (tnum_is_const(reg->var_off)) 8562 return !!tnum_equals_const(reg->var_off, val); 8563 break; 8564 case BPF_JNE: 8565 if (tnum_is_const(reg->var_off)) 8566 return !tnum_equals_const(reg->var_off, val); 8567 break; 8568 case BPF_JSET: 8569 if ((~reg->var_off.mask & reg->var_off.value) & val) 8570 return 1; 8571 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8572 return 0; 8573 break; 8574 case BPF_JGT: 8575 if (reg->umin_value > val) 8576 return 1; 8577 else if (reg->umax_value <= val) 8578 return 0; 8579 break; 8580 case BPF_JSGT: 8581 if (reg->smin_value > sval) 8582 return 1; 8583 else if (reg->smax_value <= sval) 8584 return 0; 8585 break; 8586 case BPF_JLT: 8587 if (reg->umax_value < val) 8588 return 1; 8589 else if (reg->umin_value >= val) 8590 return 0; 8591 break; 8592 case BPF_JSLT: 8593 if (reg->smax_value < sval) 8594 return 1; 8595 else if (reg->smin_value >= sval) 8596 return 0; 8597 break; 8598 case BPF_JGE: 8599 if (reg->umin_value >= val) 8600 return 1; 8601 else if (reg->umax_value < val) 8602 return 0; 8603 break; 8604 case BPF_JSGE: 8605 if (reg->smin_value >= sval) 8606 return 1; 8607 else if (reg->smax_value < sval) 8608 return 0; 8609 break; 8610 case BPF_JLE: 8611 if (reg->umax_value <= val) 8612 return 1; 8613 else if (reg->umin_value > val) 8614 return 0; 8615 break; 8616 case BPF_JSLE: 8617 if (reg->smax_value <= sval) 8618 return 1; 8619 else if (reg->smin_value > sval) 8620 return 0; 8621 break; 8622 } 8623 8624 return -1; 8625 } 8626 8627 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8628 * and return: 8629 * 1 - branch will be taken and "goto target" will be executed 8630 * 0 - branch will not be taken and fall-through to next insn 8631 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8632 * range [0,10] 8633 */ 8634 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8635 bool is_jmp32) 8636 { 8637 if (__is_pointer_value(false, reg)) { 8638 if (!reg_type_not_null(reg->type)) 8639 return -1; 8640 8641 /* If pointer is valid tests against zero will fail so we can 8642 * use this to direct branch taken. 8643 */ 8644 if (val != 0) 8645 return -1; 8646 8647 switch (opcode) { 8648 case BPF_JEQ: 8649 return 0; 8650 case BPF_JNE: 8651 return 1; 8652 default: 8653 return -1; 8654 } 8655 } 8656 8657 if (is_jmp32) 8658 return is_branch32_taken(reg, val, opcode); 8659 return is_branch64_taken(reg, val, opcode); 8660 } 8661 8662 static int flip_opcode(u32 opcode) 8663 { 8664 /* How can we transform "a <op> b" into "b <op> a"? */ 8665 static const u8 opcode_flip[16] = { 8666 /* these stay the same */ 8667 [BPF_JEQ >> 4] = BPF_JEQ, 8668 [BPF_JNE >> 4] = BPF_JNE, 8669 [BPF_JSET >> 4] = BPF_JSET, 8670 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8671 [BPF_JGE >> 4] = BPF_JLE, 8672 [BPF_JGT >> 4] = BPF_JLT, 8673 [BPF_JLE >> 4] = BPF_JGE, 8674 [BPF_JLT >> 4] = BPF_JGT, 8675 [BPF_JSGE >> 4] = BPF_JSLE, 8676 [BPF_JSGT >> 4] = BPF_JSLT, 8677 [BPF_JSLE >> 4] = BPF_JSGE, 8678 [BPF_JSLT >> 4] = BPF_JSGT 8679 }; 8680 return opcode_flip[opcode >> 4]; 8681 } 8682 8683 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8684 struct bpf_reg_state *src_reg, 8685 u8 opcode) 8686 { 8687 struct bpf_reg_state *pkt; 8688 8689 if (src_reg->type == PTR_TO_PACKET_END) { 8690 pkt = dst_reg; 8691 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8692 pkt = src_reg; 8693 opcode = flip_opcode(opcode); 8694 } else { 8695 return -1; 8696 } 8697 8698 if (pkt->range >= 0) 8699 return -1; 8700 8701 switch (opcode) { 8702 case BPF_JLE: 8703 /* pkt <= pkt_end */ 8704 fallthrough; 8705 case BPF_JGT: 8706 /* pkt > pkt_end */ 8707 if (pkt->range == BEYOND_PKT_END) 8708 /* pkt has at last one extra byte beyond pkt_end */ 8709 return opcode == BPF_JGT; 8710 break; 8711 case BPF_JLT: 8712 /* pkt < pkt_end */ 8713 fallthrough; 8714 case BPF_JGE: 8715 /* pkt >= pkt_end */ 8716 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8717 return opcode == BPF_JGE; 8718 break; 8719 } 8720 return -1; 8721 } 8722 8723 /* Adjusts the register min/max values in the case that the dst_reg is the 8724 * variable register that we are working on, and src_reg is a constant or we're 8725 * simply doing a BPF_K check. 8726 * In JEQ/JNE cases we also adjust the var_off values. 8727 */ 8728 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8729 struct bpf_reg_state *false_reg, 8730 u64 val, u32 val32, 8731 u8 opcode, bool is_jmp32) 8732 { 8733 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8734 struct tnum false_64off = false_reg->var_off; 8735 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8736 struct tnum true_64off = true_reg->var_off; 8737 s64 sval = (s64)val; 8738 s32 sval32 = (s32)val32; 8739 8740 /* If the dst_reg is a pointer, we can't learn anything about its 8741 * variable offset from the compare (unless src_reg were a pointer into 8742 * the same object, but we don't bother with that. 8743 * Since false_reg and true_reg have the same type by construction, we 8744 * only need to check one of them for pointerness. 8745 */ 8746 if (__is_pointer_value(false, false_reg)) 8747 return; 8748 8749 switch (opcode) { 8750 case BPF_JEQ: 8751 case BPF_JNE: 8752 { 8753 struct bpf_reg_state *reg = 8754 opcode == BPF_JEQ ? true_reg : false_reg; 8755 8756 /* JEQ/JNE comparison doesn't change the register equivalence. 8757 * r1 = r2; 8758 * if (r1 == 42) goto label; 8759 * ... 8760 * label: // here both r1 and r2 are known to be 42. 8761 * 8762 * Hence when marking register as known preserve it's ID. 8763 */ 8764 if (is_jmp32) 8765 __mark_reg32_known(reg, val32); 8766 else 8767 ___mark_reg_known(reg, val); 8768 break; 8769 } 8770 case BPF_JSET: 8771 if (is_jmp32) { 8772 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8773 if (is_power_of_2(val32)) 8774 true_32off = tnum_or(true_32off, 8775 tnum_const(val32)); 8776 } else { 8777 false_64off = tnum_and(false_64off, tnum_const(~val)); 8778 if (is_power_of_2(val)) 8779 true_64off = tnum_or(true_64off, 8780 tnum_const(val)); 8781 } 8782 break; 8783 case BPF_JGE: 8784 case BPF_JGT: 8785 { 8786 if (is_jmp32) { 8787 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8788 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8789 8790 false_reg->u32_max_value = min(false_reg->u32_max_value, 8791 false_umax); 8792 true_reg->u32_min_value = max(true_reg->u32_min_value, 8793 true_umin); 8794 } else { 8795 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8796 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8797 8798 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8799 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8800 } 8801 break; 8802 } 8803 case BPF_JSGE: 8804 case BPF_JSGT: 8805 { 8806 if (is_jmp32) { 8807 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8808 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8809 8810 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8811 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8812 } else { 8813 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8814 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8815 8816 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8817 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8818 } 8819 break; 8820 } 8821 case BPF_JLE: 8822 case BPF_JLT: 8823 { 8824 if (is_jmp32) { 8825 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8826 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8827 8828 false_reg->u32_min_value = max(false_reg->u32_min_value, 8829 false_umin); 8830 true_reg->u32_max_value = min(true_reg->u32_max_value, 8831 true_umax); 8832 } else { 8833 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8834 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8835 8836 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8837 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8838 } 8839 break; 8840 } 8841 case BPF_JSLE: 8842 case BPF_JSLT: 8843 { 8844 if (is_jmp32) { 8845 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8846 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8847 8848 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8849 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8850 } else { 8851 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8852 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8853 8854 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8855 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8856 } 8857 break; 8858 } 8859 default: 8860 return; 8861 } 8862 8863 if (is_jmp32) { 8864 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8865 tnum_subreg(false_32off)); 8866 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8867 tnum_subreg(true_32off)); 8868 __reg_combine_32_into_64(false_reg); 8869 __reg_combine_32_into_64(true_reg); 8870 } else { 8871 false_reg->var_off = false_64off; 8872 true_reg->var_off = true_64off; 8873 __reg_combine_64_into_32(false_reg); 8874 __reg_combine_64_into_32(true_reg); 8875 } 8876 } 8877 8878 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8879 * the variable reg. 8880 */ 8881 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8882 struct bpf_reg_state *false_reg, 8883 u64 val, u32 val32, 8884 u8 opcode, bool is_jmp32) 8885 { 8886 opcode = flip_opcode(opcode); 8887 /* This uses zero as "not present in table"; luckily the zero opcode, 8888 * BPF_JA, can't get here. 8889 */ 8890 if (opcode) 8891 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8892 } 8893 8894 /* Regs are known to be equal, so intersect their min/max/var_off */ 8895 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8896 struct bpf_reg_state *dst_reg) 8897 { 8898 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8899 dst_reg->umin_value); 8900 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8901 dst_reg->umax_value); 8902 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8903 dst_reg->smin_value); 8904 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8905 dst_reg->smax_value); 8906 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8907 dst_reg->var_off); 8908 /* We might have learned new bounds from the var_off. */ 8909 __update_reg_bounds(src_reg); 8910 __update_reg_bounds(dst_reg); 8911 /* We might have learned something about the sign bit. */ 8912 __reg_deduce_bounds(src_reg); 8913 __reg_deduce_bounds(dst_reg); 8914 /* We might have learned some bits from the bounds. */ 8915 __reg_bound_offset(src_reg); 8916 __reg_bound_offset(dst_reg); 8917 /* Intersecting with the old var_off might have improved our bounds 8918 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8919 * then new var_off is (0; 0x7f...fc) which improves our umax. 8920 */ 8921 __update_reg_bounds(src_reg); 8922 __update_reg_bounds(dst_reg); 8923 } 8924 8925 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8926 struct bpf_reg_state *true_dst, 8927 struct bpf_reg_state *false_src, 8928 struct bpf_reg_state *false_dst, 8929 u8 opcode) 8930 { 8931 switch (opcode) { 8932 case BPF_JEQ: 8933 __reg_combine_min_max(true_src, true_dst); 8934 break; 8935 case BPF_JNE: 8936 __reg_combine_min_max(false_src, false_dst); 8937 break; 8938 } 8939 } 8940 8941 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8942 struct bpf_reg_state *reg, u32 id, 8943 bool is_null) 8944 { 8945 if (reg_type_may_be_null(reg->type) && reg->id == id && 8946 !WARN_ON_ONCE(!reg->id)) { 8947 /* Old offset (both fixed and variable parts) should 8948 * have been known-zero, because we don't allow pointer 8949 * arithmetic on pointers that might be NULL. 8950 */ 8951 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8952 !tnum_equals_const(reg->var_off, 0) || 8953 reg->off)) { 8954 __mark_reg_known_zero(reg); 8955 reg->off = 0; 8956 } 8957 if (is_null) { 8958 reg->type = SCALAR_VALUE; 8959 /* We don't need id and ref_obj_id from this point 8960 * onwards anymore, thus we should better reset it, 8961 * so that state pruning has chances to take effect. 8962 */ 8963 reg->id = 0; 8964 reg->ref_obj_id = 0; 8965 8966 return; 8967 } 8968 8969 mark_ptr_not_null_reg(reg); 8970 8971 if (!reg_may_point_to_spin_lock(reg)) { 8972 /* For not-NULL ptr, reg->ref_obj_id will be reset 8973 * in release_reg_references(). 8974 * 8975 * reg->id is still used by spin_lock ptr. Other 8976 * than spin_lock ptr type, reg->id can be reset. 8977 */ 8978 reg->id = 0; 8979 } 8980 } 8981 } 8982 8983 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8984 bool is_null) 8985 { 8986 struct bpf_reg_state *reg; 8987 int i; 8988 8989 for (i = 0; i < MAX_BPF_REG; i++) 8990 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8991 8992 bpf_for_each_spilled_reg(i, state, reg) { 8993 if (!reg) 8994 continue; 8995 mark_ptr_or_null_reg(state, reg, id, is_null); 8996 } 8997 } 8998 8999 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9000 * be folded together at some point. 9001 */ 9002 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9003 bool is_null) 9004 { 9005 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9006 struct bpf_reg_state *regs = state->regs; 9007 u32 ref_obj_id = regs[regno].ref_obj_id; 9008 u32 id = regs[regno].id; 9009 int i; 9010 9011 if (ref_obj_id && ref_obj_id == id && is_null) 9012 /* regs[regno] is in the " == NULL" branch. 9013 * No one could have freed the reference state before 9014 * doing the NULL check. 9015 */ 9016 WARN_ON_ONCE(release_reference_state(state, id)); 9017 9018 for (i = 0; i <= vstate->curframe; i++) 9019 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9020 } 9021 9022 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9023 struct bpf_reg_state *dst_reg, 9024 struct bpf_reg_state *src_reg, 9025 struct bpf_verifier_state *this_branch, 9026 struct bpf_verifier_state *other_branch) 9027 { 9028 if (BPF_SRC(insn->code) != BPF_X) 9029 return false; 9030 9031 /* Pointers are always 64-bit. */ 9032 if (BPF_CLASS(insn->code) == BPF_JMP32) 9033 return false; 9034 9035 switch (BPF_OP(insn->code)) { 9036 case BPF_JGT: 9037 if ((dst_reg->type == PTR_TO_PACKET && 9038 src_reg->type == PTR_TO_PACKET_END) || 9039 (dst_reg->type == PTR_TO_PACKET_META && 9040 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9041 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9042 find_good_pkt_pointers(this_branch, dst_reg, 9043 dst_reg->type, false); 9044 mark_pkt_end(other_branch, insn->dst_reg, true); 9045 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9046 src_reg->type == PTR_TO_PACKET) || 9047 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9048 src_reg->type == PTR_TO_PACKET_META)) { 9049 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9050 find_good_pkt_pointers(other_branch, src_reg, 9051 src_reg->type, true); 9052 mark_pkt_end(this_branch, insn->src_reg, false); 9053 } else { 9054 return false; 9055 } 9056 break; 9057 case BPF_JLT: 9058 if ((dst_reg->type == PTR_TO_PACKET && 9059 src_reg->type == PTR_TO_PACKET_END) || 9060 (dst_reg->type == PTR_TO_PACKET_META && 9061 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9062 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9063 find_good_pkt_pointers(other_branch, dst_reg, 9064 dst_reg->type, true); 9065 mark_pkt_end(this_branch, insn->dst_reg, false); 9066 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9067 src_reg->type == PTR_TO_PACKET) || 9068 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9069 src_reg->type == PTR_TO_PACKET_META)) { 9070 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9071 find_good_pkt_pointers(this_branch, src_reg, 9072 src_reg->type, false); 9073 mark_pkt_end(other_branch, insn->src_reg, true); 9074 } else { 9075 return false; 9076 } 9077 break; 9078 case BPF_JGE: 9079 if ((dst_reg->type == PTR_TO_PACKET && 9080 src_reg->type == PTR_TO_PACKET_END) || 9081 (dst_reg->type == PTR_TO_PACKET_META && 9082 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9083 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9084 find_good_pkt_pointers(this_branch, dst_reg, 9085 dst_reg->type, true); 9086 mark_pkt_end(other_branch, insn->dst_reg, false); 9087 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9088 src_reg->type == PTR_TO_PACKET) || 9089 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9090 src_reg->type == PTR_TO_PACKET_META)) { 9091 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9092 find_good_pkt_pointers(other_branch, src_reg, 9093 src_reg->type, false); 9094 mark_pkt_end(this_branch, insn->src_reg, true); 9095 } else { 9096 return false; 9097 } 9098 break; 9099 case BPF_JLE: 9100 if ((dst_reg->type == PTR_TO_PACKET && 9101 src_reg->type == PTR_TO_PACKET_END) || 9102 (dst_reg->type == PTR_TO_PACKET_META && 9103 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9104 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9105 find_good_pkt_pointers(other_branch, dst_reg, 9106 dst_reg->type, false); 9107 mark_pkt_end(this_branch, insn->dst_reg, true); 9108 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9109 src_reg->type == PTR_TO_PACKET) || 9110 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9111 src_reg->type == PTR_TO_PACKET_META)) { 9112 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9113 find_good_pkt_pointers(this_branch, src_reg, 9114 src_reg->type, true); 9115 mark_pkt_end(other_branch, insn->src_reg, false); 9116 } else { 9117 return false; 9118 } 9119 break; 9120 default: 9121 return false; 9122 } 9123 9124 return true; 9125 } 9126 9127 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9128 struct bpf_reg_state *known_reg) 9129 { 9130 struct bpf_func_state *state; 9131 struct bpf_reg_state *reg; 9132 int i, j; 9133 9134 for (i = 0; i <= vstate->curframe; i++) { 9135 state = vstate->frame[i]; 9136 for (j = 0; j < MAX_BPF_REG; j++) { 9137 reg = &state->regs[j]; 9138 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9139 *reg = *known_reg; 9140 } 9141 9142 bpf_for_each_spilled_reg(j, state, reg) { 9143 if (!reg) 9144 continue; 9145 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9146 *reg = *known_reg; 9147 } 9148 } 9149 } 9150 9151 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9152 struct bpf_insn *insn, int *insn_idx) 9153 { 9154 struct bpf_verifier_state *this_branch = env->cur_state; 9155 struct bpf_verifier_state *other_branch; 9156 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9157 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9158 u8 opcode = BPF_OP(insn->code); 9159 bool is_jmp32; 9160 int pred = -1; 9161 int err; 9162 9163 /* Only conditional jumps are expected to reach here. */ 9164 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9165 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9166 return -EINVAL; 9167 } 9168 9169 if (BPF_SRC(insn->code) == BPF_X) { 9170 if (insn->imm != 0) { 9171 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9172 return -EINVAL; 9173 } 9174 9175 /* check src1 operand */ 9176 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9177 if (err) 9178 return err; 9179 9180 if (is_pointer_value(env, insn->src_reg)) { 9181 verbose(env, "R%d pointer comparison prohibited\n", 9182 insn->src_reg); 9183 return -EACCES; 9184 } 9185 src_reg = ®s[insn->src_reg]; 9186 } else { 9187 if (insn->src_reg != BPF_REG_0) { 9188 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9189 return -EINVAL; 9190 } 9191 } 9192 9193 /* check src2 operand */ 9194 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9195 if (err) 9196 return err; 9197 9198 dst_reg = ®s[insn->dst_reg]; 9199 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9200 9201 if (BPF_SRC(insn->code) == BPF_K) { 9202 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9203 } else if (src_reg->type == SCALAR_VALUE && 9204 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9205 pred = is_branch_taken(dst_reg, 9206 tnum_subreg(src_reg->var_off).value, 9207 opcode, 9208 is_jmp32); 9209 } else if (src_reg->type == SCALAR_VALUE && 9210 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9211 pred = is_branch_taken(dst_reg, 9212 src_reg->var_off.value, 9213 opcode, 9214 is_jmp32); 9215 } else if (reg_is_pkt_pointer_any(dst_reg) && 9216 reg_is_pkt_pointer_any(src_reg) && 9217 !is_jmp32) { 9218 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9219 } 9220 9221 if (pred >= 0) { 9222 /* If we get here with a dst_reg pointer type it is because 9223 * above is_branch_taken() special cased the 0 comparison. 9224 */ 9225 if (!__is_pointer_value(false, dst_reg)) 9226 err = mark_chain_precision(env, insn->dst_reg); 9227 if (BPF_SRC(insn->code) == BPF_X && !err && 9228 !__is_pointer_value(false, src_reg)) 9229 err = mark_chain_precision(env, insn->src_reg); 9230 if (err) 9231 return err; 9232 } 9233 9234 if (pred == 1) { 9235 /* Only follow the goto, ignore fall-through. If needed, push 9236 * the fall-through branch for simulation under speculative 9237 * execution. 9238 */ 9239 if (!env->bypass_spec_v1 && 9240 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9241 *insn_idx)) 9242 return -EFAULT; 9243 *insn_idx += insn->off; 9244 return 0; 9245 } else if (pred == 0) { 9246 /* Only follow the fall-through branch, since that's where the 9247 * program will go. If needed, push the goto branch for 9248 * simulation under speculative execution. 9249 */ 9250 if (!env->bypass_spec_v1 && 9251 !sanitize_speculative_path(env, insn, 9252 *insn_idx + insn->off + 1, 9253 *insn_idx)) 9254 return -EFAULT; 9255 return 0; 9256 } 9257 9258 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9259 false); 9260 if (!other_branch) 9261 return -EFAULT; 9262 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9263 9264 /* detect if we are comparing against a constant value so we can adjust 9265 * our min/max values for our dst register. 9266 * this is only legit if both are scalars (or pointers to the same 9267 * object, I suppose, but we don't support that right now), because 9268 * otherwise the different base pointers mean the offsets aren't 9269 * comparable. 9270 */ 9271 if (BPF_SRC(insn->code) == BPF_X) { 9272 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9273 9274 if (dst_reg->type == SCALAR_VALUE && 9275 src_reg->type == SCALAR_VALUE) { 9276 if (tnum_is_const(src_reg->var_off) || 9277 (is_jmp32 && 9278 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9279 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9280 dst_reg, 9281 src_reg->var_off.value, 9282 tnum_subreg(src_reg->var_off).value, 9283 opcode, is_jmp32); 9284 else if (tnum_is_const(dst_reg->var_off) || 9285 (is_jmp32 && 9286 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9287 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9288 src_reg, 9289 dst_reg->var_off.value, 9290 tnum_subreg(dst_reg->var_off).value, 9291 opcode, is_jmp32); 9292 else if (!is_jmp32 && 9293 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9294 /* Comparing for equality, we can combine knowledge */ 9295 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9296 &other_branch_regs[insn->dst_reg], 9297 src_reg, dst_reg, opcode); 9298 if (src_reg->id && 9299 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9300 find_equal_scalars(this_branch, src_reg); 9301 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9302 } 9303 9304 } 9305 } else if (dst_reg->type == SCALAR_VALUE) { 9306 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9307 dst_reg, insn->imm, (u32)insn->imm, 9308 opcode, is_jmp32); 9309 } 9310 9311 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9312 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9313 find_equal_scalars(this_branch, dst_reg); 9314 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9315 } 9316 9317 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9318 * NOTE: these optimizations below are related with pointer comparison 9319 * which will never be JMP32. 9320 */ 9321 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9322 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9323 reg_type_may_be_null(dst_reg->type)) { 9324 /* Mark all identical registers in each branch as either 9325 * safe or unknown depending R == 0 or R != 0 conditional. 9326 */ 9327 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9328 opcode == BPF_JNE); 9329 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9330 opcode == BPF_JEQ); 9331 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9332 this_branch, other_branch) && 9333 is_pointer_value(env, insn->dst_reg)) { 9334 verbose(env, "R%d pointer comparison prohibited\n", 9335 insn->dst_reg); 9336 return -EACCES; 9337 } 9338 if (env->log.level & BPF_LOG_LEVEL) 9339 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9340 return 0; 9341 } 9342 9343 /* verify BPF_LD_IMM64 instruction */ 9344 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9345 { 9346 struct bpf_insn_aux_data *aux = cur_aux(env); 9347 struct bpf_reg_state *regs = cur_regs(env); 9348 struct bpf_reg_state *dst_reg; 9349 struct bpf_map *map; 9350 int err; 9351 9352 if (BPF_SIZE(insn->code) != BPF_DW) { 9353 verbose(env, "invalid BPF_LD_IMM insn\n"); 9354 return -EINVAL; 9355 } 9356 if (insn->off != 0) { 9357 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9358 return -EINVAL; 9359 } 9360 9361 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9362 if (err) 9363 return err; 9364 9365 dst_reg = ®s[insn->dst_reg]; 9366 if (insn->src_reg == 0) { 9367 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9368 9369 dst_reg->type = SCALAR_VALUE; 9370 __mark_reg_known(®s[insn->dst_reg], imm); 9371 return 0; 9372 } 9373 9374 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9375 mark_reg_known_zero(env, regs, insn->dst_reg); 9376 9377 dst_reg->type = aux->btf_var.reg_type; 9378 switch (dst_reg->type) { 9379 case PTR_TO_MEM: 9380 dst_reg->mem_size = aux->btf_var.mem_size; 9381 break; 9382 case PTR_TO_BTF_ID: 9383 case PTR_TO_PERCPU_BTF_ID: 9384 dst_reg->btf = aux->btf_var.btf; 9385 dst_reg->btf_id = aux->btf_var.btf_id; 9386 break; 9387 default: 9388 verbose(env, "bpf verifier is misconfigured\n"); 9389 return -EFAULT; 9390 } 9391 return 0; 9392 } 9393 9394 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9395 struct bpf_prog_aux *aux = env->prog->aux; 9396 u32 subprogno = insn[1].imm; 9397 9398 if (!aux->func_info) { 9399 verbose(env, "missing btf func_info\n"); 9400 return -EINVAL; 9401 } 9402 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9403 verbose(env, "callback function not static\n"); 9404 return -EINVAL; 9405 } 9406 9407 dst_reg->type = PTR_TO_FUNC; 9408 dst_reg->subprogno = subprogno; 9409 return 0; 9410 } 9411 9412 map = env->used_maps[aux->map_index]; 9413 mark_reg_known_zero(env, regs, insn->dst_reg); 9414 dst_reg->map_ptr = map; 9415 9416 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9417 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9418 dst_reg->type = PTR_TO_MAP_VALUE; 9419 dst_reg->off = aux->map_off; 9420 if (map_value_has_spin_lock(map)) 9421 dst_reg->id = ++env->id_gen; 9422 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9423 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9424 dst_reg->type = CONST_PTR_TO_MAP; 9425 } else { 9426 verbose(env, "bpf verifier is misconfigured\n"); 9427 return -EINVAL; 9428 } 9429 9430 return 0; 9431 } 9432 9433 static bool may_access_skb(enum bpf_prog_type type) 9434 { 9435 switch (type) { 9436 case BPF_PROG_TYPE_SOCKET_FILTER: 9437 case BPF_PROG_TYPE_SCHED_CLS: 9438 case BPF_PROG_TYPE_SCHED_ACT: 9439 return true; 9440 default: 9441 return false; 9442 } 9443 } 9444 9445 /* verify safety of LD_ABS|LD_IND instructions: 9446 * - they can only appear in the programs where ctx == skb 9447 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9448 * preserve R6-R9, and store return value into R0 9449 * 9450 * Implicit input: 9451 * ctx == skb == R6 == CTX 9452 * 9453 * Explicit input: 9454 * SRC == any register 9455 * IMM == 32-bit immediate 9456 * 9457 * Output: 9458 * R0 - 8/16/32-bit skb data converted to cpu endianness 9459 */ 9460 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9461 { 9462 struct bpf_reg_state *regs = cur_regs(env); 9463 static const int ctx_reg = BPF_REG_6; 9464 u8 mode = BPF_MODE(insn->code); 9465 int i, err; 9466 9467 if (!may_access_skb(resolve_prog_type(env->prog))) { 9468 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9469 return -EINVAL; 9470 } 9471 9472 if (!env->ops->gen_ld_abs) { 9473 verbose(env, "bpf verifier is misconfigured\n"); 9474 return -EINVAL; 9475 } 9476 9477 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9478 BPF_SIZE(insn->code) == BPF_DW || 9479 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9480 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9481 return -EINVAL; 9482 } 9483 9484 /* check whether implicit source operand (register R6) is readable */ 9485 err = check_reg_arg(env, ctx_reg, SRC_OP); 9486 if (err) 9487 return err; 9488 9489 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9490 * gen_ld_abs() may terminate the program at runtime, leading to 9491 * reference leak. 9492 */ 9493 err = check_reference_leak(env); 9494 if (err) { 9495 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9496 return err; 9497 } 9498 9499 if (env->cur_state->active_spin_lock) { 9500 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9501 return -EINVAL; 9502 } 9503 9504 if (regs[ctx_reg].type != PTR_TO_CTX) { 9505 verbose(env, 9506 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9507 return -EINVAL; 9508 } 9509 9510 if (mode == BPF_IND) { 9511 /* check explicit source operand */ 9512 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9513 if (err) 9514 return err; 9515 } 9516 9517 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9518 if (err < 0) 9519 return err; 9520 9521 /* reset caller saved regs to unreadable */ 9522 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9523 mark_reg_not_init(env, regs, caller_saved[i]); 9524 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9525 } 9526 9527 /* mark destination R0 register as readable, since it contains 9528 * the value fetched from the packet. 9529 * Already marked as written above. 9530 */ 9531 mark_reg_unknown(env, regs, BPF_REG_0); 9532 /* ld_abs load up to 32-bit skb data. */ 9533 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9534 return 0; 9535 } 9536 9537 static int check_return_code(struct bpf_verifier_env *env) 9538 { 9539 struct tnum enforce_attach_type_range = tnum_unknown; 9540 const struct bpf_prog *prog = env->prog; 9541 struct bpf_reg_state *reg; 9542 struct tnum range = tnum_range(0, 1); 9543 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9544 int err; 9545 struct bpf_func_state *frame = env->cur_state->frame[0]; 9546 const bool is_subprog = frame->subprogno; 9547 9548 /* LSM and struct_ops func-ptr's return type could be "void" */ 9549 if (!is_subprog && 9550 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9551 prog_type == BPF_PROG_TYPE_LSM) && 9552 !prog->aux->attach_func_proto->type) 9553 return 0; 9554 9555 /* eBPF calling convention is such that R0 is used 9556 * to return the value from eBPF program. 9557 * Make sure that it's readable at this time 9558 * of bpf_exit, which means that program wrote 9559 * something into it earlier 9560 */ 9561 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9562 if (err) 9563 return err; 9564 9565 if (is_pointer_value(env, BPF_REG_0)) { 9566 verbose(env, "R0 leaks addr as return value\n"); 9567 return -EACCES; 9568 } 9569 9570 reg = cur_regs(env) + BPF_REG_0; 9571 9572 if (frame->in_async_callback_fn) { 9573 /* enforce return zero from async callbacks like timer */ 9574 if (reg->type != SCALAR_VALUE) { 9575 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9576 reg_type_str[reg->type]); 9577 return -EINVAL; 9578 } 9579 9580 if (!tnum_in(tnum_const(0), reg->var_off)) { 9581 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9582 return -EINVAL; 9583 } 9584 return 0; 9585 } 9586 9587 if (is_subprog) { 9588 if (reg->type != SCALAR_VALUE) { 9589 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9590 reg_type_str[reg->type]); 9591 return -EINVAL; 9592 } 9593 return 0; 9594 } 9595 9596 switch (prog_type) { 9597 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9598 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9599 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9600 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9601 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9602 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9603 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9604 range = tnum_range(1, 1); 9605 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9606 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9607 range = tnum_range(0, 3); 9608 break; 9609 case BPF_PROG_TYPE_CGROUP_SKB: 9610 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9611 range = tnum_range(0, 3); 9612 enforce_attach_type_range = tnum_range(2, 3); 9613 } 9614 break; 9615 case BPF_PROG_TYPE_CGROUP_SOCK: 9616 case BPF_PROG_TYPE_SOCK_OPS: 9617 case BPF_PROG_TYPE_CGROUP_DEVICE: 9618 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9619 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9620 break; 9621 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9622 if (!env->prog->aux->attach_btf_id) 9623 return 0; 9624 range = tnum_const(0); 9625 break; 9626 case BPF_PROG_TYPE_TRACING: 9627 switch (env->prog->expected_attach_type) { 9628 case BPF_TRACE_FENTRY: 9629 case BPF_TRACE_FEXIT: 9630 range = tnum_const(0); 9631 break; 9632 case BPF_TRACE_RAW_TP: 9633 case BPF_MODIFY_RETURN: 9634 return 0; 9635 case BPF_TRACE_ITER: 9636 break; 9637 default: 9638 return -ENOTSUPP; 9639 } 9640 break; 9641 case BPF_PROG_TYPE_SK_LOOKUP: 9642 range = tnum_range(SK_DROP, SK_PASS); 9643 break; 9644 case BPF_PROG_TYPE_EXT: 9645 /* freplace program can return anything as its return value 9646 * depends on the to-be-replaced kernel func or bpf program. 9647 */ 9648 default: 9649 return 0; 9650 } 9651 9652 if (reg->type != SCALAR_VALUE) { 9653 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9654 reg_type_str[reg->type]); 9655 return -EINVAL; 9656 } 9657 9658 if (!tnum_in(range, reg->var_off)) { 9659 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9660 return -EINVAL; 9661 } 9662 9663 if (!tnum_is_unknown(enforce_attach_type_range) && 9664 tnum_in(enforce_attach_type_range, reg->var_off)) 9665 env->prog->enforce_expected_attach_type = 1; 9666 return 0; 9667 } 9668 9669 /* non-recursive DFS pseudo code 9670 * 1 procedure DFS-iterative(G,v): 9671 * 2 label v as discovered 9672 * 3 let S be a stack 9673 * 4 S.push(v) 9674 * 5 while S is not empty 9675 * 6 t <- S.pop() 9676 * 7 if t is what we're looking for: 9677 * 8 return t 9678 * 9 for all edges e in G.adjacentEdges(t) do 9679 * 10 if edge e is already labelled 9680 * 11 continue with the next edge 9681 * 12 w <- G.adjacentVertex(t,e) 9682 * 13 if vertex w is not discovered and not explored 9683 * 14 label e as tree-edge 9684 * 15 label w as discovered 9685 * 16 S.push(w) 9686 * 17 continue at 5 9687 * 18 else if vertex w is discovered 9688 * 19 label e as back-edge 9689 * 20 else 9690 * 21 // vertex w is explored 9691 * 22 label e as forward- or cross-edge 9692 * 23 label t as explored 9693 * 24 S.pop() 9694 * 9695 * convention: 9696 * 0x10 - discovered 9697 * 0x11 - discovered and fall-through edge labelled 9698 * 0x12 - discovered and fall-through and branch edges labelled 9699 * 0x20 - explored 9700 */ 9701 9702 enum { 9703 DISCOVERED = 0x10, 9704 EXPLORED = 0x20, 9705 FALLTHROUGH = 1, 9706 BRANCH = 2, 9707 }; 9708 9709 static u32 state_htab_size(struct bpf_verifier_env *env) 9710 { 9711 return env->prog->len; 9712 } 9713 9714 static struct bpf_verifier_state_list **explored_state( 9715 struct bpf_verifier_env *env, 9716 int idx) 9717 { 9718 struct bpf_verifier_state *cur = env->cur_state; 9719 struct bpf_func_state *state = cur->frame[cur->curframe]; 9720 9721 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9722 } 9723 9724 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9725 { 9726 env->insn_aux_data[idx].prune_point = true; 9727 } 9728 9729 enum { 9730 DONE_EXPLORING = 0, 9731 KEEP_EXPLORING = 1, 9732 }; 9733 9734 /* t, w, e - match pseudo-code above: 9735 * t - index of current instruction 9736 * w - next instruction 9737 * e - edge 9738 */ 9739 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9740 bool loop_ok) 9741 { 9742 int *insn_stack = env->cfg.insn_stack; 9743 int *insn_state = env->cfg.insn_state; 9744 9745 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9746 return DONE_EXPLORING; 9747 9748 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9749 return DONE_EXPLORING; 9750 9751 if (w < 0 || w >= env->prog->len) { 9752 verbose_linfo(env, t, "%d: ", t); 9753 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9754 return -EINVAL; 9755 } 9756 9757 if (e == BRANCH) 9758 /* mark branch target for state pruning */ 9759 init_explored_state(env, w); 9760 9761 if (insn_state[w] == 0) { 9762 /* tree-edge */ 9763 insn_state[t] = DISCOVERED | e; 9764 insn_state[w] = DISCOVERED; 9765 if (env->cfg.cur_stack >= env->prog->len) 9766 return -E2BIG; 9767 insn_stack[env->cfg.cur_stack++] = w; 9768 return KEEP_EXPLORING; 9769 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9770 if (loop_ok && env->bpf_capable) 9771 return DONE_EXPLORING; 9772 verbose_linfo(env, t, "%d: ", t); 9773 verbose_linfo(env, w, "%d: ", w); 9774 verbose(env, "back-edge from insn %d to %d\n", t, w); 9775 return -EINVAL; 9776 } else if (insn_state[w] == EXPLORED) { 9777 /* forward- or cross-edge */ 9778 insn_state[t] = DISCOVERED | e; 9779 } else { 9780 verbose(env, "insn state internal bug\n"); 9781 return -EFAULT; 9782 } 9783 return DONE_EXPLORING; 9784 } 9785 9786 static int visit_func_call_insn(int t, int insn_cnt, 9787 struct bpf_insn *insns, 9788 struct bpf_verifier_env *env, 9789 bool visit_callee) 9790 { 9791 int ret; 9792 9793 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9794 if (ret) 9795 return ret; 9796 9797 if (t + 1 < insn_cnt) 9798 init_explored_state(env, t + 1); 9799 if (visit_callee) { 9800 init_explored_state(env, t); 9801 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9802 /* It's ok to allow recursion from CFG point of 9803 * view. __check_func_call() will do the actual 9804 * check. 9805 */ 9806 bpf_pseudo_func(insns + t)); 9807 } 9808 return ret; 9809 } 9810 9811 /* Visits the instruction at index t and returns one of the following: 9812 * < 0 - an error occurred 9813 * DONE_EXPLORING - the instruction was fully explored 9814 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9815 */ 9816 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9817 { 9818 struct bpf_insn *insns = env->prog->insnsi; 9819 int ret; 9820 9821 if (bpf_pseudo_func(insns + t)) 9822 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9823 9824 /* All non-branch instructions have a single fall-through edge. */ 9825 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9826 BPF_CLASS(insns[t].code) != BPF_JMP32) 9827 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9828 9829 switch (BPF_OP(insns[t].code)) { 9830 case BPF_EXIT: 9831 return DONE_EXPLORING; 9832 9833 case BPF_CALL: 9834 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9835 /* Mark this call insn to trigger is_state_visited() check 9836 * before call itself is processed by __check_func_call(). 9837 * Otherwise new async state will be pushed for further 9838 * exploration. 9839 */ 9840 init_explored_state(env, t); 9841 return visit_func_call_insn(t, insn_cnt, insns, env, 9842 insns[t].src_reg == BPF_PSEUDO_CALL); 9843 9844 case BPF_JA: 9845 if (BPF_SRC(insns[t].code) != BPF_K) 9846 return -EINVAL; 9847 9848 /* unconditional jump with single edge */ 9849 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9850 true); 9851 if (ret) 9852 return ret; 9853 9854 /* unconditional jmp is not a good pruning point, 9855 * but it's marked, since backtracking needs 9856 * to record jmp history in is_state_visited(). 9857 */ 9858 init_explored_state(env, t + insns[t].off + 1); 9859 /* tell verifier to check for equivalent states 9860 * after every call and jump 9861 */ 9862 if (t + 1 < insn_cnt) 9863 init_explored_state(env, t + 1); 9864 9865 return ret; 9866 9867 default: 9868 /* conditional jump with two edges */ 9869 init_explored_state(env, t); 9870 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9871 if (ret) 9872 return ret; 9873 9874 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9875 } 9876 } 9877 9878 /* non-recursive depth-first-search to detect loops in BPF program 9879 * loop == back-edge in directed graph 9880 */ 9881 static int check_cfg(struct bpf_verifier_env *env) 9882 { 9883 int insn_cnt = env->prog->len; 9884 int *insn_stack, *insn_state; 9885 int ret = 0; 9886 int i; 9887 9888 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9889 if (!insn_state) 9890 return -ENOMEM; 9891 9892 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9893 if (!insn_stack) { 9894 kvfree(insn_state); 9895 return -ENOMEM; 9896 } 9897 9898 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9899 insn_stack[0] = 0; /* 0 is the first instruction */ 9900 env->cfg.cur_stack = 1; 9901 9902 while (env->cfg.cur_stack > 0) { 9903 int t = insn_stack[env->cfg.cur_stack - 1]; 9904 9905 ret = visit_insn(t, insn_cnt, env); 9906 switch (ret) { 9907 case DONE_EXPLORING: 9908 insn_state[t] = EXPLORED; 9909 env->cfg.cur_stack--; 9910 break; 9911 case KEEP_EXPLORING: 9912 break; 9913 default: 9914 if (ret > 0) { 9915 verbose(env, "visit_insn internal bug\n"); 9916 ret = -EFAULT; 9917 } 9918 goto err_free; 9919 } 9920 } 9921 9922 if (env->cfg.cur_stack < 0) { 9923 verbose(env, "pop stack internal bug\n"); 9924 ret = -EFAULT; 9925 goto err_free; 9926 } 9927 9928 for (i = 0; i < insn_cnt; i++) { 9929 if (insn_state[i] != EXPLORED) { 9930 verbose(env, "unreachable insn %d\n", i); 9931 ret = -EINVAL; 9932 goto err_free; 9933 } 9934 } 9935 ret = 0; /* cfg looks good */ 9936 9937 err_free: 9938 kvfree(insn_state); 9939 kvfree(insn_stack); 9940 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9941 return ret; 9942 } 9943 9944 static int check_abnormal_return(struct bpf_verifier_env *env) 9945 { 9946 int i; 9947 9948 for (i = 1; i < env->subprog_cnt; i++) { 9949 if (env->subprog_info[i].has_ld_abs) { 9950 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9951 return -EINVAL; 9952 } 9953 if (env->subprog_info[i].has_tail_call) { 9954 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9955 return -EINVAL; 9956 } 9957 } 9958 return 0; 9959 } 9960 9961 /* The minimum supported BTF func info size */ 9962 #define MIN_BPF_FUNCINFO_SIZE 8 9963 #define MAX_FUNCINFO_REC_SIZE 252 9964 9965 static int check_btf_func(struct bpf_verifier_env *env, 9966 const union bpf_attr *attr, 9967 bpfptr_t uattr) 9968 { 9969 const struct btf_type *type, *func_proto, *ret_type; 9970 u32 i, nfuncs, urec_size, min_size; 9971 u32 krec_size = sizeof(struct bpf_func_info); 9972 struct bpf_func_info *krecord; 9973 struct bpf_func_info_aux *info_aux = NULL; 9974 struct bpf_prog *prog; 9975 const struct btf *btf; 9976 bpfptr_t urecord; 9977 u32 prev_offset = 0; 9978 bool scalar_return; 9979 int ret = -ENOMEM; 9980 9981 nfuncs = attr->func_info_cnt; 9982 if (!nfuncs) { 9983 if (check_abnormal_return(env)) 9984 return -EINVAL; 9985 return 0; 9986 } 9987 9988 if (nfuncs != env->subprog_cnt) { 9989 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9990 return -EINVAL; 9991 } 9992 9993 urec_size = attr->func_info_rec_size; 9994 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9995 urec_size > MAX_FUNCINFO_REC_SIZE || 9996 urec_size % sizeof(u32)) { 9997 verbose(env, "invalid func info rec size %u\n", urec_size); 9998 return -EINVAL; 9999 } 10000 10001 prog = env->prog; 10002 btf = prog->aux->btf; 10003 10004 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10005 min_size = min_t(u32, krec_size, urec_size); 10006 10007 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10008 if (!krecord) 10009 return -ENOMEM; 10010 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10011 if (!info_aux) 10012 goto err_free; 10013 10014 for (i = 0; i < nfuncs; i++) { 10015 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10016 if (ret) { 10017 if (ret == -E2BIG) { 10018 verbose(env, "nonzero tailing record in func info"); 10019 /* set the size kernel expects so loader can zero 10020 * out the rest of the record. 10021 */ 10022 if (copy_to_bpfptr_offset(uattr, 10023 offsetof(union bpf_attr, func_info_rec_size), 10024 &min_size, sizeof(min_size))) 10025 ret = -EFAULT; 10026 } 10027 goto err_free; 10028 } 10029 10030 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10031 ret = -EFAULT; 10032 goto err_free; 10033 } 10034 10035 /* check insn_off */ 10036 ret = -EINVAL; 10037 if (i == 0) { 10038 if (krecord[i].insn_off) { 10039 verbose(env, 10040 "nonzero insn_off %u for the first func info record", 10041 krecord[i].insn_off); 10042 goto err_free; 10043 } 10044 } else if (krecord[i].insn_off <= prev_offset) { 10045 verbose(env, 10046 "same or smaller insn offset (%u) than previous func info record (%u)", 10047 krecord[i].insn_off, prev_offset); 10048 goto err_free; 10049 } 10050 10051 if (env->subprog_info[i].start != krecord[i].insn_off) { 10052 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10053 goto err_free; 10054 } 10055 10056 /* check type_id */ 10057 type = btf_type_by_id(btf, krecord[i].type_id); 10058 if (!type || !btf_type_is_func(type)) { 10059 verbose(env, "invalid type id %d in func info", 10060 krecord[i].type_id); 10061 goto err_free; 10062 } 10063 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10064 10065 func_proto = btf_type_by_id(btf, type->type); 10066 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10067 /* btf_func_check() already verified it during BTF load */ 10068 goto err_free; 10069 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10070 scalar_return = 10071 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10072 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10073 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10074 goto err_free; 10075 } 10076 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10077 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10078 goto err_free; 10079 } 10080 10081 prev_offset = krecord[i].insn_off; 10082 bpfptr_add(&urecord, urec_size); 10083 } 10084 10085 prog->aux->func_info = krecord; 10086 prog->aux->func_info_cnt = nfuncs; 10087 prog->aux->func_info_aux = info_aux; 10088 return 0; 10089 10090 err_free: 10091 kvfree(krecord); 10092 kfree(info_aux); 10093 return ret; 10094 } 10095 10096 static void adjust_btf_func(struct bpf_verifier_env *env) 10097 { 10098 struct bpf_prog_aux *aux = env->prog->aux; 10099 int i; 10100 10101 if (!aux->func_info) 10102 return; 10103 10104 for (i = 0; i < env->subprog_cnt; i++) 10105 aux->func_info[i].insn_off = env->subprog_info[i].start; 10106 } 10107 10108 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10109 sizeof(((struct bpf_line_info *)(0))->line_col)) 10110 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10111 10112 static int check_btf_line(struct bpf_verifier_env *env, 10113 const union bpf_attr *attr, 10114 bpfptr_t uattr) 10115 { 10116 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10117 struct bpf_subprog_info *sub; 10118 struct bpf_line_info *linfo; 10119 struct bpf_prog *prog; 10120 const struct btf *btf; 10121 bpfptr_t ulinfo; 10122 int err; 10123 10124 nr_linfo = attr->line_info_cnt; 10125 if (!nr_linfo) 10126 return 0; 10127 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10128 return -EINVAL; 10129 10130 rec_size = attr->line_info_rec_size; 10131 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10132 rec_size > MAX_LINEINFO_REC_SIZE || 10133 rec_size & (sizeof(u32) - 1)) 10134 return -EINVAL; 10135 10136 /* Need to zero it in case the userspace may 10137 * pass in a smaller bpf_line_info object. 10138 */ 10139 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10140 GFP_KERNEL | __GFP_NOWARN); 10141 if (!linfo) 10142 return -ENOMEM; 10143 10144 prog = env->prog; 10145 btf = prog->aux->btf; 10146 10147 s = 0; 10148 sub = env->subprog_info; 10149 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10150 expected_size = sizeof(struct bpf_line_info); 10151 ncopy = min_t(u32, expected_size, rec_size); 10152 for (i = 0; i < nr_linfo; i++) { 10153 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10154 if (err) { 10155 if (err == -E2BIG) { 10156 verbose(env, "nonzero tailing record in line_info"); 10157 if (copy_to_bpfptr_offset(uattr, 10158 offsetof(union bpf_attr, line_info_rec_size), 10159 &expected_size, sizeof(expected_size))) 10160 err = -EFAULT; 10161 } 10162 goto err_free; 10163 } 10164 10165 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10166 err = -EFAULT; 10167 goto err_free; 10168 } 10169 10170 /* 10171 * Check insn_off to ensure 10172 * 1) strictly increasing AND 10173 * 2) bounded by prog->len 10174 * 10175 * The linfo[0].insn_off == 0 check logically falls into 10176 * the later "missing bpf_line_info for func..." case 10177 * because the first linfo[0].insn_off must be the 10178 * first sub also and the first sub must have 10179 * subprog_info[0].start == 0. 10180 */ 10181 if ((i && linfo[i].insn_off <= prev_offset) || 10182 linfo[i].insn_off >= prog->len) { 10183 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10184 i, linfo[i].insn_off, prev_offset, 10185 prog->len); 10186 err = -EINVAL; 10187 goto err_free; 10188 } 10189 10190 if (!prog->insnsi[linfo[i].insn_off].code) { 10191 verbose(env, 10192 "Invalid insn code at line_info[%u].insn_off\n", 10193 i); 10194 err = -EINVAL; 10195 goto err_free; 10196 } 10197 10198 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10199 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10200 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10201 err = -EINVAL; 10202 goto err_free; 10203 } 10204 10205 if (s != env->subprog_cnt) { 10206 if (linfo[i].insn_off == sub[s].start) { 10207 sub[s].linfo_idx = i; 10208 s++; 10209 } else if (sub[s].start < linfo[i].insn_off) { 10210 verbose(env, "missing bpf_line_info for func#%u\n", s); 10211 err = -EINVAL; 10212 goto err_free; 10213 } 10214 } 10215 10216 prev_offset = linfo[i].insn_off; 10217 bpfptr_add(&ulinfo, rec_size); 10218 } 10219 10220 if (s != env->subprog_cnt) { 10221 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10222 env->subprog_cnt - s, s); 10223 err = -EINVAL; 10224 goto err_free; 10225 } 10226 10227 prog->aux->linfo = linfo; 10228 prog->aux->nr_linfo = nr_linfo; 10229 10230 return 0; 10231 10232 err_free: 10233 kvfree(linfo); 10234 return err; 10235 } 10236 10237 static int check_btf_info(struct bpf_verifier_env *env, 10238 const union bpf_attr *attr, 10239 bpfptr_t uattr) 10240 { 10241 struct btf *btf; 10242 int err; 10243 10244 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10245 if (check_abnormal_return(env)) 10246 return -EINVAL; 10247 return 0; 10248 } 10249 10250 btf = btf_get_by_fd(attr->prog_btf_fd); 10251 if (IS_ERR(btf)) 10252 return PTR_ERR(btf); 10253 if (btf_is_kernel(btf)) { 10254 btf_put(btf); 10255 return -EACCES; 10256 } 10257 env->prog->aux->btf = btf; 10258 10259 err = check_btf_func(env, attr, uattr); 10260 if (err) 10261 return err; 10262 10263 err = check_btf_line(env, attr, uattr); 10264 if (err) 10265 return err; 10266 10267 return 0; 10268 } 10269 10270 /* check %cur's range satisfies %old's */ 10271 static bool range_within(struct bpf_reg_state *old, 10272 struct bpf_reg_state *cur) 10273 { 10274 return old->umin_value <= cur->umin_value && 10275 old->umax_value >= cur->umax_value && 10276 old->smin_value <= cur->smin_value && 10277 old->smax_value >= cur->smax_value && 10278 old->u32_min_value <= cur->u32_min_value && 10279 old->u32_max_value >= cur->u32_max_value && 10280 old->s32_min_value <= cur->s32_min_value && 10281 old->s32_max_value >= cur->s32_max_value; 10282 } 10283 10284 /* If in the old state two registers had the same id, then they need to have 10285 * the same id in the new state as well. But that id could be different from 10286 * the old state, so we need to track the mapping from old to new ids. 10287 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10288 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10289 * regs with a different old id could still have new id 9, we don't care about 10290 * that. 10291 * So we look through our idmap to see if this old id has been seen before. If 10292 * so, we require the new id to match; otherwise, we add the id pair to the map. 10293 */ 10294 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10295 { 10296 unsigned int i; 10297 10298 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10299 if (!idmap[i].old) { 10300 /* Reached an empty slot; haven't seen this id before */ 10301 idmap[i].old = old_id; 10302 idmap[i].cur = cur_id; 10303 return true; 10304 } 10305 if (idmap[i].old == old_id) 10306 return idmap[i].cur == cur_id; 10307 } 10308 /* We ran out of idmap slots, which should be impossible */ 10309 WARN_ON_ONCE(1); 10310 return false; 10311 } 10312 10313 static void clean_func_state(struct bpf_verifier_env *env, 10314 struct bpf_func_state *st) 10315 { 10316 enum bpf_reg_liveness live; 10317 int i, j; 10318 10319 for (i = 0; i < BPF_REG_FP; i++) { 10320 live = st->regs[i].live; 10321 /* liveness must not touch this register anymore */ 10322 st->regs[i].live |= REG_LIVE_DONE; 10323 if (!(live & REG_LIVE_READ)) 10324 /* since the register is unused, clear its state 10325 * to make further comparison simpler 10326 */ 10327 __mark_reg_not_init(env, &st->regs[i]); 10328 } 10329 10330 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10331 live = st->stack[i].spilled_ptr.live; 10332 /* liveness must not touch this stack slot anymore */ 10333 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10334 if (!(live & REG_LIVE_READ)) { 10335 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10336 for (j = 0; j < BPF_REG_SIZE; j++) 10337 st->stack[i].slot_type[j] = STACK_INVALID; 10338 } 10339 } 10340 } 10341 10342 static void clean_verifier_state(struct bpf_verifier_env *env, 10343 struct bpf_verifier_state *st) 10344 { 10345 int i; 10346 10347 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10348 /* all regs in this state in all frames were already marked */ 10349 return; 10350 10351 for (i = 0; i <= st->curframe; i++) 10352 clean_func_state(env, st->frame[i]); 10353 } 10354 10355 /* the parentage chains form a tree. 10356 * the verifier states are added to state lists at given insn and 10357 * pushed into state stack for future exploration. 10358 * when the verifier reaches bpf_exit insn some of the verifer states 10359 * stored in the state lists have their final liveness state already, 10360 * but a lot of states will get revised from liveness point of view when 10361 * the verifier explores other branches. 10362 * Example: 10363 * 1: r0 = 1 10364 * 2: if r1 == 100 goto pc+1 10365 * 3: r0 = 2 10366 * 4: exit 10367 * when the verifier reaches exit insn the register r0 in the state list of 10368 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10369 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10370 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10371 * 10372 * Since the verifier pushes the branch states as it sees them while exploring 10373 * the program the condition of walking the branch instruction for the second 10374 * time means that all states below this branch were already explored and 10375 * their final liveness marks are already propagated. 10376 * Hence when the verifier completes the search of state list in is_state_visited() 10377 * we can call this clean_live_states() function to mark all liveness states 10378 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10379 * will not be used. 10380 * This function also clears the registers and stack for states that !READ 10381 * to simplify state merging. 10382 * 10383 * Important note here that walking the same branch instruction in the callee 10384 * doesn't meant that the states are DONE. The verifier has to compare 10385 * the callsites 10386 */ 10387 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10388 struct bpf_verifier_state *cur) 10389 { 10390 struct bpf_verifier_state_list *sl; 10391 int i; 10392 10393 sl = *explored_state(env, insn); 10394 while (sl) { 10395 if (sl->state.branches) 10396 goto next; 10397 if (sl->state.insn_idx != insn || 10398 sl->state.curframe != cur->curframe) 10399 goto next; 10400 for (i = 0; i <= cur->curframe; i++) 10401 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10402 goto next; 10403 clean_verifier_state(env, &sl->state); 10404 next: 10405 sl = sl->next; 10406 } 10407 } 10408 10409 /* Returns true if (rold safe implies rcur safe) */ 10410 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10411 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10412 { 10413 bool equal; 10414 10415 if (!(rold->live & REG_LIVE_READ)) 10416 /* explored state didn't use this */ 10417 return true; 10418 10419 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10420 10421 if (rold->type == PTR_TO_STACK) 10422 /* two stack pointers are equal only if they're pointing to 10423 * the same stack frame, since fp-8 in foo != fp-8 in bar 10424 */ 10425 return equal && rold->frameno == rcur->frameno; 10426 10427 if (equal) 10428 return true; 10429 10430 if (rold->type == NOT_INIT) 10431 /* explored state can't have used this */ 10432 return true; 10433 if (rcur->type == NOT_INIT) 10434 return false; 10435 switch (rold->type) { 10436 case SCALAR_VALUE: 10437 if (env->explore_alu_limits) 10438 return false; 10439 if (rcur->type == SCALAR_VALUE) { 10440 if (!rold->precise && !rcur->precise) 10441 return true; 10442 /* new val must satisfy old val knowledge */ 10443 return range_within(rold, rcur) && 10444 tnum_in(rold->var_off, rcur->var_off); 10445 } else { 10446 /* We're trying to use a pointer in place of a scalar. 10447 * Even if the scalar was unbounded, this could lead to 10448 * pointer leaks because scalars are allowed to leak 10449 * while pointers are not. We could make this safe in 10450 * special cases if root is calling us, but it's 10451 * probably not worth the hassle. 10452 */ 10453 return false; 10454 } 10455 case PTR_TO_MAP_KEY: 10456 case PTR_TO_MAP_VALUE: 10457 /* If the new min/max/var_off satisfy the old ones and 10458 * everything else matches, we are OK. 10459 * 'id' is not compared, since it's only used for maps with 10460 * bpf_spin_lock inside map element and in such cases if 10461 * the rest of the prog is valid for one map element then 10462 * it's valid for all map elements regardless of the key 10463 * used in bpf_map_lookup() 10464 */ 10465 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10466 range_within(rold, rcur) && 10467 tnum_in(rold->var_off, rcur->var_off); 10468 case PTR_TO_MAP_VALUE_OR_NULL: 10469 /* a PTR_TO_MAP_VALUE could be safe to use as a 10470 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10471 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10472 * checked, doing so could have affected others with the same 10473 * id, and we can't check for that because we lost the id when 10474 * we converted to a PTR_TO_MAP_VALUE. 10475 */ 10476 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10477 return false; 10478 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10479 return false; 10480 /* Check our ids match any regs they're supposed to */ 10481 return check_ids(rold->id, rcur->id, idmap); 10482 case PTR_TO_PACKET_META: 10483 case PTR_TO_PACKET: 10484 if (rcur->type != rold->type) 10485 return false; 10486 /* We must have at least as much range as the old ptr 10487 * did, so that any accesses which were safe before are 10488 * still safe. This is true even if old range < old off, 10489 * since someone could have accessed through (ptr - k), or 10490 * even done ptr -= k in a register, to get a safe access. 10491 */ 10492 if (rold->range > rcur->range) 10493 return false; 10494 /* If the offsets don't match, we can't trust our alignment; 10495 * nor can we be sure that we won't fall out of range. 10496 */ 10497 if (rold->off != rcur->off) 10498 return false; 10499 /* id relations must be preserved */ 10500 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10501 return false; 10502 /* new val must satisfy old val knowledge */ 10503 return range_within(rold, rcur) && 10504 tnum_in(rold->var_off, rcur->var_off); 10505 case PTR_TO_CTX: 10506 case CONST_PTR_TO_MAP: 10507 case PTR_TO_PACKET_END: 10508 case PTR_TO_FLOW_KEYS: 10509 case PTR_TO_SOCKET: 10510 case PTR_TO_SOCKET_OR_NULL: 10511 case PTR_TO_SOCK_COMMON: 10512 case PTR_TO_SOCK_COMMON_OR_NULL: 10513 case PTR_TO_TCP_SOCK: 10514 case PTR_TO_TCP_SOCK_OR_NULL: 10515 case PTR_TO_XDP_SOCK: 10516 /* Only valid matches are exact, which memcmp() above 10517 * would have accepted 10518 */ 10519 default: 10520 /* Don't know what's going on, just say it's not safe */ 10521 return false; 10522 } 10523 10524 /* Shouldn't get here; if we do, say it's not safe */ 10525 WARN_ON_ONCE(1); 10526 return false; 10527 } 10528 10529 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10530 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10531 { 10532 int i, spi; 10533 10534 /* walk slots of the explored stack and ignore any additional 10535 * slots in the current stack, since explored(safe) state 10536 * didn't use them 10537 */ 10538 for (i = 0; i < old->allocated_stack; i++) { 10539 spi = i / BPF_REG_SIZE; 10540 10541 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10542 i += BPF_REG_SIZE - 1; 10543 /* explored state didn't use this */ 10544 continue; 10545 } 10546 10547 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10548 continue; 10549 10550 /* explored stack has more populated slots than current stack 10551 * and these slots were used 10552 */ 10553 if (i >= cur->allocated_stack) 10554 return false; 10555 10556 /* if old state was safe with misc data in the stack 10557 * it will be safe with zero-initialized stack. 10558 * The opposite is not true 10559 */ 10560 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10561 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10562 continue; 10563 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10564 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10565 /* Ex: old explored (safe) state has STACK_SPILL in 10566 * this stack slot, but current has STACK_MISC -> 10567 * this verifier states are not equivalent, 10568 * return false to continue verification of this path 10569 */ 10570 return false; 10571 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10572 continue; 10573 if (!is_spilled_reg(&old->stack[spi])) 10574 continue; 10575 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10576 &cur->stack[spi].spilled_ptr, idmap)) 10577 /* when explored and current stack slot are both storing 10578 * spilled registers, check that stored pointers types 10579 * are the same as well. 10580 * Ex: explored safe path could have stored 10581 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10582 * but current path has stored: 10583 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10584 * such verifier states are not equivalent. 10585 * return false to continue verification of this path 10586 */ 10587 return false; 10588 } 10589 return true; 10590 } 10591 10592 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10593 { 10594 if (old->acquired_refs != cur->acquired_refs) 10595 return false; 10596 return !memcmp(old->refs, cur->refs, 10597 sizeof(*old->refs) * old->acquired_refs); 10598 } 10599 10600 /* compare two verifier states 10601 * 10602 * all states stored in state_list are known to be valid, since 10603 * verifier reached 'bpf_exit' instruction through them 10604 * 10605 * this function is called when verifier exploring different branches of 10606 * execution popped from the state stack. If it sees an old state that has 10607 * more strict register state and more strict stack state then this execution 10608 * branch doesn't need to be explored further, since verifier already 10609 * concluded that more strict state leads to valid finish. 10610 * 10611 * Therefore two states are equivalent if register state is more conservative 10612 * and explored stack state is more conservative than the current one. 10613 * Example: 10614 * explored current 10615 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10616 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10617 * 10618 * In other words if current stack state (one being explored) has more 10619 * valid slots than old one that already passed validation, it means 10620 * the verifier can stop exploring and conclude that current state is valid too 10621 * 10622 * Similarly with registers. If explored state has register type as invalid 10623 * whereas register type in current state is meaningful, it means that 10624 * the current state will reach 'bpf_exit' instruction safely 10625 */ 10626 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10627 struct bpf_func_state *cur) 10628 { 10629 int i; 10630 10631 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10632 for (i = 0; i < MAX_BPF_REG; i++) 10633 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10634 env->idmap_scratch)) 10635 return false; 10636 10637 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10638 return false; 10639 10640 if (!refsafe(old, cur)) 10641 return false; 10642 10643 return true; 10644 } 10645 10646 static bool states_equal(struct bpf_verifier_env *env, 10647 struct bpf_verifier_state *old, 10648 struct bpf_verifier_state *cur) 10649 { 10650 int i; 10651 10652 if (old->curframe != cur->curframe) 10653 return false; 10654 10655 /* Verification state from speculative execution simulation 10656 * must never prune a non-speculative execution one. 10657 */ 10658 if (old->speculative && !cur->speculative) 10659 return false; 10660 10661 if (old->active_spin_lock != cur->active_spin_lock) 10662 return false; 10663 10664 /* for states to be equal callsites have to be the same 10665 * and all frame states need to be equivalent 10666 */ 10667 for (i = 0; i <= old->curframe; i++) { 10668 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10669 return false; 10670 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10671 return false; 10672 } 10673 return true; 10674 } 10675 10676 /* Return 0 if no propagation happened. Return negative error code if error 10677 * happened. Otherwise, return the propagated bit. 10678 */ 10679 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10680 struct bpf_reg_state *reg, 10681 struct bpf_reg_state *parent_reg) 10682 { 10683 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10684 u8 flag = reg->live & REG_LIVE_READ; 10685 int err; 10686 10687 /* When comes here, read flags of PARENT_REG or REG could be any of 10688 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10689 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10690 */ 10691 if (parent_flag == REG_LIVE_READ64 || 10692 /* Or if there is no read flag from REG. */ 10693 !flag || 10694 /* Or if the read flag from REG is the same as PARENT_REG. */ 10695 parent_flag == flag) 10696 return 0; 10697 10698 err = mark_reg_read(env, reg, parent_reg, flag); 10699 if (err) 10700 return err; 10701 10702 return flag; 10703 } 10704 10705 /* A write screens off any subsequent reads; but write marks come from the 10706 * straight-line code between a state and its parent. When we arrive at an 10707 * equivalent state (jump target or such) we didn't arrive by the straight-line 10708 * code, so read marks in the state must propagate to the parent regardless 10709 * of the state's write marks. That's what 'parent == state->parent' comparison 10710 * in mark_reg_read() is for. 10711 */ 10712 static int propagate_liveness(struct bpf_verifier_env *env, 10713 const struct bpf_verifier_state *vstate, 10714 struct bpf_verifier_state *vparent) 10715 { 10716 struct bpf_reg_state *state_reg, *parent_reg; 10717 struct bpf_func_state *state, *parent; 10718 int i, frame, err = 0; 10719 10720 if (vparent->curframe != vstate->curframe) { 10721 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10722 vparent->curframe, vstate->curframe); 10723 return -EFAULT; 10724 } 10725 /* Propagate read liveness of registers... */ 10726 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10727 for (frame = 0; frame <= vstate->curframe; frame++) { 10728 parent = vparent->frame[frame]; 10729 state = vstate->frame[frame]; 10730 parent_reg = parent->regs; 10731 state_reg = state->regs; 10732 /* We don't need to worry about FP liveness, it's read-only */ 10733 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10734 err = propagate_liveness_reg(env, &state_reg[i], 10735 &parent_reg[i]); 10736 if (err < 0) 10737 return err; 10738 if (err == REG_LIVE_READ64) 10739 mark_insn_zext(env, &parent_reg[i]); 10740 } 10741 10742 /* Propagate stack slots. */ 10743 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10744 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10745 parent_reg = &parent->stack[i].spilled_ptr; 10746 state_reg = &state->stack[i].spilled_ptr; 10747 err = propagate_liveness_reg(env, state_reg, 10748 parent_reg); 10749 if (err < 0) 10750 return err; 10751 } 10752 } 10753 return 0; 10754 } 10755 10756 /* find precise scalars in the previous equivalent state and 10757 * propagate them into the current state 10758 */ 10759 static int propagate_precision(struct bpf_verifier_env *env, 10760 const struct bpf_verifier_state *old) 10761 { 10762 struct bpf_reg_state *state_reg; 10763 struct bpf_func_state *state; 10764 int i, err = 0; 10765 10766 state = old->frame[old->curframe]; 10767 state_reg = state->regs; 10768 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10769 if (state_reg->type != SCALAR_VALUE || 10770 !state_reg->precise) 10771 continue; 10772 if (env->log.level & BPF_LOG_LEVEL2) 10773 verbose(env, "propagating r%d\n", i); 10774 err = mark_chain_precision(env, i); 10775 if (err < 0) 10776 return err; 10777 } 10778 10779 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10780 if (!is_spilled_reg(&state->stack[i])) 10781 continue; 10782 state_reg = &state->stack[i].spilled_ptr; 10783 if (state_reg->type != SCALAR_VALUE || 10784 !state_reg->precise) 10785 continue; 10786 if (env->log.level & BPF_LOG_LEVEL2) 10787 verbose(env, "propagating fp%d\n", 10788 (-i - 1) * BPF_REG_SIZE); 10789 err = mark_chain_precision_stack(env, i); 10790 if (err < 0) 10791 return err; 10792 } 10793 return 0; 10794 } 10795 10796 static bool states_maybe_looping(struct bpf_verifier_state *old, 10797 struct bpf_verifier_state *cur) 10798 { 10799 struct bpf_func_state *fold, *fcur; 10800 int i, fr = cur->curframe; 10801 10802 if (old->curframe != fr) 10803 return false; 10804 10805 fold = old->frame[fr]; 10806 fcur = cur->frame[fr]; 10807 for (i = 0; i < MAX_BPF_REG; i++) 10808 if (memcmp(&fold->regs[i], &fcur->regs[i], 10809 offsetof(struct bpf_reg_state, parent))) 10810 return false; 10811 return true; 10812 } 10813 10814 10815 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10816 { 10817 struct bpf_verifier_state_list *new_sl; 10818 struct bpf_verifier_state_list *sl, **pprev; 10819 struct bpf_verifier_state *cur = env->cur_state, *new; 10820 int i, j, err, states_cnt = 0; 10821 bool add_new_state = env->test_state_freq ? true : false; 10822 10823 cur->last_insn_idx = env->prev_insn_idx; 10824 if (!env->insn_aux_data[insn_idx].prune_point) 10825 /* this 'insn_idx' instruction wasn't marked, so we will not 10826 * be doing state search here 10827 */ 10828 return 0; 10829 10830 /* bpf progs typically have pruning point every 4 instructions 10831 * http://vger.kernel.org/bpfconf2019.html#session-1 10832 * Do not add new state for future pruning if the verifier hasn't seen 10833 * at least 2 jumps and at least 8 instructions. 10834 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10835 * In tests that amounts to up to 50% reduction into total verifier 10836 * memory consumption and 20% verifier time speedup. 10837 */ 10838 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10839 env->insn_processed - env->prev_insn_processed >= 8) 10840 add_new_state = true; 10841 10842 pprev = explored_state(env, insn_idx); 10843 sl = *pprev; 10844 10845 clean_live_states(env, insn_idx, cur); 10846 10847 while (sl) { 10848 states_cnt++; 10849 if (sl->state.insn_idx != insn_idx) 10850 goto next; 10851 10852 if (sl->state.branches) { 10853 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10854 10855 if (frame->in_async_callback_fn && 10856 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10857 /* Different async_entry_cnt means that the verifier is 10858 * processing another entry into async callback. 10859 * Seeing the same state is not an indication of infinite 10860 * loop or infinite recursion. 10861 * But finding the same state doesn't mean that it's safe 10862 * to stop processing the current state. The previous state 10863 * hasn't yet reached bpf_exit, since state.branches > 0. 10864 * Checking in_async_callback_fn alone is not enough either. 10865 * Since the verifier still needs to catch infinite loops 10866 * inside async callbacks. 10867 */ 10868 } else if (states_maybe_looping(&sl->state, cur) && 10869 states_equal(env, &sl->state, cur)) { 10870 verbose_linfo(env, insn_idx, "; "); 10871 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10872 return -EINVAL; 10873 } 10874 /* if the verifier is processing a loop, avoid adding new state 10875 * too often, since different loop iterations have distinct 10876 * states and may not help future pruning. 10877 * This threshold shouldn't be too low to make sure that 10878 * a loop with large bound will be rejected quickly. 10879 * The most abusive loop will be: 10880 * r1 += 1 10881 * if r1 < 1000000 goto pc-2 10882 * 1M insn_procssed limit / 100 == 10k peak states. 10883 * This threshold shouldn't be too high either, since states 10884 * at the end of the loop are likely to be useful in pruning. 10885 */ 10886 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10887 env->insn_processed - env->prev_insn_processed < 100) 10888 add_new_state = false; 10889 goto miss; 10890 } 10891 if (states_equal(env, &sl->state, cur)) { 10892 sl->hit_cnt++; 10893 /* reached equivalent register/stack state, 10894 * prune the search. 10895 * Registers read by the continuation are read by us. 10896 * If we have any write marks in env->cur_state, they 10897 * will prevent corresponding reads in the continuation 10898 * from reaching our parent (an explored_state). Our 10899 * own state will get the read marks recorded, but 10900 * they'll be immediately forgotten as we're pruning 10901 * this state and will pop a new one. 10902 */ 10903 err = propagate_liveness(env, &sl->state, cur); 10904 10905 /* if previous state reached the exit with precision and 10906 * current state is equivalent to it (except precsion marks) 10907 * the precision needs to be propagated back in 10908 * the current state. 10909 */ 10910 err = err ? : push_jmp_history(env, cur); 10911 err = err ? : propagate_precision(env, &sl->state); 10912 if (err) 10913 return err; 10914 return 1; 10915 } 10916 miss: 10917 /* when new state is not going to be added do not increase miss count. 10918 * Otherwise several loop iterations will remove the state 10919 * recorded earlier. The goal of these heuristics is to have 10920 * states from some iterations of the loop (some in the beginning 10921 * and some at the end) to help pruning. 10922 */ 10923 if (add_new_state) 10924 sl->miss_cnt++; 10925 /* heuristic to determine whether this state is beneficial 10926 * to keep checking from state equivalence point of view. 10927 * Higher numbers increase max_states_per_insn and verification time, 10928 * but do not meaningfully decrease insn_processed. 10929 */ 10930 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10931 /* the state is unlikely to be useful. Remove it to 10932 * speed up verification 10933 */ 10934 *pprev = sl->next; 10935 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10936 u32 br = sl->state.branches; 10937 10938 WARN_ONCE(br, 10939 "BUG live_done but branches_to_explore %d\n", 10940 br); 10941 free_verifier_state(&sl->state, false); 10942 kfree(sl); 10943 env->peak_states--; 10944 } else { 10945 /* cannot free this state, since parentage chain may 10946 * walk it later. Add it for free_list instead to 10947 * be freed at the end of verification 10948 */ 10949 sl->next = env->free_list; 10950 env->free_list = sl; 10951 } 10952 sl = *pprev; 10953 continue; 10954 } 10955 next: 10956 pprev = &sl->next; 10957 sl = *pprev; 10958 } 10959 10960 if (env->max_states_per_insn < states_cnt) 10961 env->max_states_per_insn = states_cnt; 10962 10963 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10964 return push_jmp_history(env, cur); 10965 10966 if (!add_new_state) 10967 return push_jmp_history(env, cur); 10968 10969 /* There were no equivalent states, remember the current one. 10970 * Technically the current state is not proven to be safe yet, 10971 * but it will either reach outer most bpf_exit (which means it's safe) 10972 * or it will be rejected. When there are no loops the verifier won't be 10973 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10974 * again on the way to bpf_exit. 10975 * When looping the sl->state.branches will be > 0 and this state 10976 * will not be considered for equivalence until branches == 0. 10977 */ 10978 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10979 if (!new_sl) 10980 return -ENOMEM; 10981 env->total_states++; 10982 env->peak_states++; 10983 env->prev_jmps_processed = env->jmps_processed; 10984 env->prev_insn_processed = env->insn_processed; 10985 10986 /* add new state to the head of linked list */ 10987 new = &new_sl->state; 10988 err = copy_verifier_state(new, cur); 10989 if (err) { 10990 free_verifier_state(new, false); 10991 kfree(new_sl); 10992 return err; 10993 } 10994 new->insn_idx = insn_idx; 10995 WARN_ONCE(new->branches != 1, 10996 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10997 10998 cur->parent = new; 10999 cur->first_insn_idx = insn_idx; 11000 clear_jmp_history(cur); 11001 new_sl->next = *explored_state(env, insn_idx); 11002 *explored_state(env, insn_idx) = new_sl; 11003 /* connect new state to parentage chain. Current frame needs all 11004 * registers connected. Only r6 - r9 of the callers are alive (pushed 11005 * to the stack implicitly by JITs) so in callers' frames connect just 11006 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11007 * the state of the call instruction (with WRITTEN set), and r0 comes 11008 * from callee with its full parentage chain, anyway. 11009 */ 11010 /* clear write marks in current state: the writes we did are not writes 11011 * our child did, so they don't screen off its reads from us. 11012 * (There are no read marks in current state, because reads always mark 11013 * their parent and current state never has children yet. Only 11014 * explored_states can get read marks.) 11015 */ 11016 for (j = 0; j <= cur->curframe; j++) { 11017 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11018 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11019 for (i = 0; i < BPF_REG_FP; i++) 11020 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11021 } 11022 11023 /* all stack frames are accessible from callee, clear them all */ 11024 for (j = 0; j <= cur->curframe; j++) { 11025 struct bpf_func_state *frame = cur->frame[j]; 11026 struct bpf_func_state *newframe = new->frame[j]; 11027 11028 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11029 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11030 frame->stack[i].spilled_ptr.parent = 11031 &newframe->stack[i].spilled_ptr; 11032 } 11033 } 11034 return 0; 11035 } 11036 11037 /* Return true if it's OK to have the same insn return a different type. */ 11038 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11039 { 11040 switch (type) { 11041 case PTR_TO_CTX: 11042 case PTR_TO_SOCKET: 11043 case PTR_TO_SOCKET_OR_NULL: 11044 case PTR_TO_SOCK_COMMON: 11045 case PTR_TO_SOCK_COMMON_OR_NULL: 11046 case PTR_TO_TCP_SOCK: 11047 case PTR_TO_TCP_SOCK_OR_NULL: 11048 case PTR_TO_XDP_SOCK: 11049 case PTR_TO_BTF_ID: 11050 case PTR_TO_BTF_ID_OR_NULL: 11051 return false; 11052 default: 11053 return true; 11054 } 11055 } 11056 11057 /* If an instruction was previously used with particular pointer types, then we 11058 * need to be careful to avoid cases such as the below, where it may be ok 11059 * for one branch accessing the pointer, but not ok for the other branch: 11060 * 11061 * R1 = sock_ptr 11062 * goto X; 11063 * ... 11064 * R1 = some_other_valid_ptr; 11065 * goto X; 11066 * ... 11067 * R2 = *(u32 *)(R1 + 0); 11068 */ 11069 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11070 { 11071 return src != prev && (!reg_type_mismatch_ok(src) || 11072 !reg_type_mismatch_ok(prev)); 11073 } 11074 11075 static int do_check(struct bpf_verifier_env *env) 11076 { 11077 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11078 struct bpf_verifier_state *state = env->cur_state; 11079 struct bpf_insn *insns = env->prog->insnsi; 11080 struct bpf_reg_state *regs; 11081 int insn_cnt = env->prog->len; 11082 bool do_print_state = false; 11083 int prev_insn_idx = -1; 11084 11085 for (;;) { 11086 struct bpf_insn *insn; 11087 u8 class; 11088 int err; 11089 11090 env->prev_insn_idx = prev_insn_idx; 11091 if (env->insn_idx >= insn_cnt) { 11092 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11093 env->insn_idx, insn_cnt); 11094 return -EFAULT; 11095 } 11096 11097 insn = &insns[env->insn_idx]; 11098 class = BPF_CLASS(insn->code); 11099 11100 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11101 verbose(env, 11102 "BPF program is too large. Processed %d insn\n", 11103 env->insn_processed); 11104 return -E2BIG; 11105 } 11106 11107 err = is_state_visited(env, env->insn_idx); 11108 if (err < 0) 11109 return err; 11110 if (err == 1) { 11111 /* found equivalent state, can prune the search */ 11112 if (env->log.level & BPF_LOG_LEVEL) { 11113 if (do_print_state) 11114 verbose(env, "\nfrom %d to %d%s: safe\n", 11115 env->prev_insn_idx, env->insn_idx, 11116 env->cur_state->speculative ? 11117 " (speculative execution)" : ""); 11118 else 11119 verbose(env, "%d: safe\n", env->insn_idx); 11120 } 11121 goto process_bpf_exit; 11122 } 11123 11124 if (signal_pending(current)) 11125 return -EAGAIN; 11126 11127 if (need_resched()) 11128 cond_resched(); 11129 11130 if (env->log.level & BPF_LOG_LEVEL2 || 11131 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 11132 if (env->log.level & BPF_LOG_LEVEL2) 11133 verbose(env, "%d:", env->insn_idx); 11134 else 11135 verbose(env, "\nfrom %d to %d%s:", 11136 env->prev_insn_idx, env->insn_idx, 11137 env->cur_state->speculative ? 11138 " (speculative execution)" : ""); 11139 print_verifier_state(env, state->frame[state->curframe]); 11140 do_print_state = false; 11141 } 11142 11143 if (env->log.level & BPF_LOG_LEVEL) { 11144 const struct bpf_insn_cbs cbs = { 11145 .cb_call = disasm_kfunc_name, 11146 .cb_print = verbose, 11147 .private_data = env, 11148 }; 11149 11150 verbose_linfo(env, env->insn_idx, "; "); 11151 verbose(env, "%d: ", env->insn_idx); 11152 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11153 } 11154 11155 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11156 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11157 env->prev_insn_idx); 11158 if (err) 11159 return err; 11160 } 11161 11162 regs = cur_regs(env); 11163 sanitize_mark_insn_seen(env); 11164 prev_insn_idx = env->insn_idx; 11165 11166 if (class == BPF_ALU || class == BPF_ALU64) { 11167 err = check_alu_op(env, insn); 11168 if (err) 11169 return err; 11170 11171 } else if (class == BPF_LDX) { 11172 enum bpf_reg_type *prev_src_type, src_reg_type; 11173 11174 /* check for reserved fields is already done */ 11175 11176 /* check src operand */ 11177 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11178 if (err) 11179 return err; 11180 11181 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11182 if (err) 11183 return err; 11184 11185 src_reg_type = regs[insn->src_reg].type; 11186 11187 /* check that memory (src_reg + off) is readable, 11188 * the state of dst_reg will be updated by this func 11189 */ 11190 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11191 insn->off, BPF_SIZE(insn->code), 11192 BPF_READ, insn->dst_reg, false); 11193 if (err) 11194 return err; 11195 11196 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11197 11198 if (*prev_src_type == NOT_INIT) { 11199 /* saw a valid insn 11200 * dst_reg = *(u32 *)(src_reg + off) 11201 * save type to validate intersecting paths 11202 */ 11203 *prev_src_type = src_reg_type; 11204 11205 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11206 /* ABuser program is trying to use the same insn 11207 * dst_reg = *(u32*) (src_reg + off) 11208 * with different pointer types: 11209 * src_reg == ctx in one branch and 11210 * src_reg == stack|map in some other branch. 11211 * Reject it. 11212 */ 11213 verbose(env, "same insn cannot be used with different pointers\n"); 11214 return -EINVAL; 11215 } 11216 11217 } else if (class == BPF_STX) { 11218 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11219 11220 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11221 err = check_atomic(env, env->insn_idx, insn); 11222 if (err) 11223 return err; 11224 env->insn_idx++; 11225 continue; 11226 } 11227 11228 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11229 verbose(env, "BPF_STX uses reserved fields\n"); 11230 return -EINVAL; 11231 } 11232 11233 /* check src1 operand */ 11234 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11235 if (err) 11236 return err; 11237 /* check src2 operand */ 11238 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11239 if (err) 11240 return err; 11241 11242 dst_reg_type = regs[insn->dst_reg].type; 11243 11244 /* check that memory (dst_reg + off) is writeable */ 11245 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11246 insn->off, BPF_SIZE(insn->code), 11247 BPF_WRITE, insn->src_reg, false); 11248 if (err) 11249 return err; 11250 11251 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11252 11253 if (*prev_dst_type == NOT_INIT) { 11254 *prev_dst_type = dst_reg_type; 11255 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11256 verbose(env, "same insn cannot be used with different pointers\n"); 11257 return -EINVAL; 11258 } 11259 11260 } else if (class == BPF_ST) { 11261 if (BPF_MODE(insn->code) != BPF_MEM || 11262 insn->src_reg != BPF_REG_0) { 11263 verbose(env, "BPF_ST uses reserved fields\n"); 11264 return -EINVAL; 11265 } 11266 /* check src operand */ 11267 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11268 if (err) 11269 return err; 11270 11271 if (is_ctx_reg(env, insn->dst_reg)) { 11272 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11273 insn->dst_reg, 11274 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11275 return -EACCES; 11276 } 11277 11278 /* check that memory (dst_reg + off) is writeable */ 11279 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11280 insn->off, BPF_SIZE(insn->code), 11281 BPF_WRITE, -1, false); 11282 if (err) 11283 return err; 11284 11285 } else if (class == BPF_JMP || class == BPF_JMP32) { 11286 u8 opcode = BPF_OP(insn->code); 11287 11288 env->jmps_processed++; 11289 if (opcode == BPF_CALL) { 11290 if (BPF_SRC(insn->code) != BPF_K || 11291 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11292 && insn->off != 0) || 11293 (insn->src_reg != BPF_REG_0 && 11294 insn->src_reg != BPF_PSEUDO_CALL && 11295 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11296 insn->dst_reg != BPF_REG_0 || 11297 class == BPF_JMP32) { 11298 verbose(env, "BPF_CALL uses reserved fields\n"); 11299 return -EINVAL; 11300 } 11301 11302 if (env->cur_state->active_spin_lock && 11303 (insn->src_reg == BPF_PSEUDO_CALL || 11304 insn->imm != BPF_FUNC_spin_unlock)) { 11305 verbose(env, "function calls are not allowed while holding a lock\n"); 11306 return -EINVAL; 11307 } 11308 if (insn->src_reg == BPF_PSEUDO_CALL) 11309 err = check_func_call(env, insn, &env->insn_idx); 11310 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11311 err = check_kfunc_call(env, insn); 11312 else 11313 err = check_helper_call(env, insn, &env->insn_idx); 11314 if (err) 11315 return err; 11316 } else if (opcode == BPF_JA) { 11317 if (BPF_SRC(insn->code) != BPF_K || 11318 insn->imm != 0 || 11319 insn->src_reg != BPF_REG_0 || 11320 insn->dst_reg != BPF_REG_0 || 11321 class == BPF_JMP32) { 11322 verbose(env, "BPF_JA uses reserved fields\n"); 11323 return -EINVAL; 11324 } 11325 11326 env->insn_idx += insn->off + 1; 11327 continue; 11328 11329 } else if (opcode == BPF_EXIT) { 11330 if (BPF_SRC(insn->code) != BPF_K || 11331 insn->imm != 0 || 11332 insn->src_reg != BPF_REG_0 || 11333 insn->dst_reg != BPF_REG_0 || 11334 class == BPF_JMP32) { 11335 verbose(env, "BPF_EXIT uses reserved fields\n"); 11336 return -EINVAL; 11337 } 11338 11339 if (env->cur_state->active_spin_lock) { 11340 verbose(env, "bpf_spin_unlock is missing\n"); 11341 return -EINVAL; 11342 } 11343 11344 if (state->curframe) { 11345 /* exit from nested function */ 11346 err = prepare_func_exit(env, &env->insn_idx); 11347 if (err) 11348 return err; 11349 do_print_state = true; 11350 continue; 11351 } 11352 11353 err = check_reference_leak(env); 11354 if (err) 11355 return err; 11356 11357 err = check_return_code(env); 11358 if (err) 11359 return err; 11360 process_bpf_exit: 11361 update_branch_counts(env, env->cur_state); 11362 err = pop_stack(env, &prev_insn_idx, 11363 &env->insn_idx, pop_log); 11364 if (err < 0) { 11365 if (err != -ENOENT) 11366 return err; 11367 break; 11368 } else { 11369 do_print_state = true; 11370 continue; 11371 } 11372 } else { 11373 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11374 if (err) 11375 return err; 11376 } 11377 } else if (class == BPF_LD) { 11378 u8 mode = BPF_MODE(insn->code); 11379 11380 if (mode == BPF_ABS || mode == BPF_IND) { 11381 err = check_ld_abs(env, insn); 11382 if (err) 11383 return err; 11384 11385 } else if (mode == BPF_IMM) { 11386 err = check_ld_imm(env, insn); 11387 if (err) 11388 return err; 11389 11390 env->insn_idx++; 11391 sanitize_mark_insn_seen(env); 11392 } else { 11393 verbose(env, "invalid BPF_LD mode\n"); 11394 return -EINVAL; 11395 } 11396 } else { 11397 verbose(env, "unknown insn class %d\n", class); 11398 return -EINVAL; 11399 } 11400 11401 env->insn_idx++; 11402 } 11403 11404 return 0; 11405 } 11406 11407 static int find_btf_percpu_datasec(struct btf *btf) 11408 { 11409 const struct btf_type *t; 11410 const char *tname; 11411 int i, n; 11412 11413 /* 11414 * Both vmlinux and module each have their own ".data..percpu" 11415 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11416 * types to look at only module's own BTF types. 11417 */ 11418 n = btf_nr_types(btf); 11419 if (btf_is_module(btf)) 11420 i = btf_nr_types(btf_vmlinux); 11421 else 11422 i = 1; 11423 11424 for(; i < n; i++) { 11425 t = btf_type_by_id(btf, i); 11426 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11427 continue; 11428 11429 tname = btf_name_by_offset(btf, t->name_off); 11430 if (!strcmp(tname, ".data..percpu")) 11431 return i; 11432 } 11433 11434 return -ENOENT; 11435 } 11436 11437 /* replace pseudo btf_id with kernel symbol address */ 11438 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11439 struct bpf_insn *insn, 11440 struct bpf_insn_aux_data *aux) 11441 { 11442 const struct btf_var_secinfo *vsi; 11443 const struct btf_type *datasec; 11444 struct btf_mod_pair *btf_mod; 11445 const struct btf_type *t; 11446 const char *sym_name; 11447 bool percpu = false; 11448 u32 type, id = insn->imm; 11449 struct btf *btf; 11450 s32 datasec_id; 11451 u64 addr; 11452 int i, btf_fd, err; 11453 11454 btf_fd = insn[1].imm; 11455 if (btf_fd) { 11456 btf = btf_get_by_fd(btf_fd); 11457 if (IS_ERR(btf)) { 11458 verbose(env, "invalid module BTF object FD specified.\n"); 11459 return -EINVAL; 11460 } 11461 } else { 11462 if (!btf_vmlinux) { 11463 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11464 return -EINVAL; 11465 } 11466 btf = btf_vmlinux; 11467 btf_get(btf); 11468 } 11469 11470 t = btf_type_by_id(btf, id); 11471 if (!t) { 11472 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11473 err = -ENOENT; 11474 goto err_put; 11475 } 11476 11477 if (!btf_type_is_var(t)) { 11478 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11479 err = -EINVAL; 11480 goto err_put; 11481 } 11482 11483 sym_name = btf_name_by_offset(btf, t->name_off); 11484 addr = kallsyms_lookup_name(sym_name); 11485 if (!addr) { 11486 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11487 sym_name); 11488 err = -ENOENT; 11489 goto err_put; 11490 } 11491 11492 datasec_id = find_btf_percpu_datasec(btf); 11493 if (datasec_id > 0) { 11494 datasec = btf_type_by_id(btf, datasec_id); 11495 for_each_vsi(i, datasec, vsi) { 11496 if (vsi->type == id) { 11497 percpu = true; 11498 break; 11499 } 11500 } 11501 } 11502 11503 insn[0].imm = (u32)addr; 11504 insn[1].imm = addr >> 32; 11505 11506 type = t->type; 11507 t = btf_type_skip_modifiers(btf, type, NULL); 11508 if (percpu) { 11509 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11510 aux->btf_var.btf = btf; 11511 aux->btf_var.btf_id = type; 11512 } else if (!btf_type_is_struct(t)) { 11513 const struct btf_type *ret; 11514 const char *tname; 11515 u32 tsize; 11516 11517 /* resolve the type size of ksym. */ 11518 ret = btf_resolve_size(btf, t, &tsize); 11519 if (IS_ERR(ret)) { 11520 tname = btf_name_by_offset(btf, t->name_off); 11521 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11522 tname, PTR_ERR(ret)); 11523 err = -EINVAL; 11524 goto err_put; 11525 } 11526 aux->btf_var.reg_type = PTR_TO_MEM; 11527 aux->btf_var.mem_size = tsize; 11528 } else { 11529 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11530 aux->btf_var.btf = btf; 11531 aux->btf_var.btf_id = type; 11532 } 11533 11534 /* check whether we recorded this BTF (and maybe module) already */ 11535 for (i = 0; i < env->used_btf_cnt; i++) { 11536 if (env->used_btfs[i].btf == btf) { 11537 btf_put(btf); 11538 return 0; 11539 } 11540 } 11541 11542 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11543 err = -E2BIG; 11544 goto err_put; 11545 } 11546 11547 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11548 btf_mod->btf = btf; 11549 btf_mod->module = NULL; 11550 11551 /* if we reference variables from kernel module, bump its refcount */ 11552 if (btf_is_module(btf)) { 11553 btf_mod->module = btf_try_get_module(btf); 11554 if (!btf_mod->module) { 11555 err = -ENXIO; 11556 goto err_put; 11557 } 11558 } 11559 11560 env->used_btf_cnt++; 11561 11562 return 0; 11563 err_put: 11564 btf_put(btf); 11565 return err; 11566 } 11567 11568 static int check_map_prealloc(struct bpf_map *map) 11569 { 11570 return (map->map_type != BPF_MAP_TYPE_HASH && 11571 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11572 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11573 !(map->map_flags & BPF_F_NO_PREALLOC); 11574 } 11575 11576 static bool is_tracing_prog_type(enum bpf_prog_type type) 11577 { 11578 switch (type) { 11579 case BPF_PROG_TYPE_KPROBE: 11580 case BPF_PROG_TYPE_TRACEPOINT: 11581 case BPF_PROG_TYPE_PERF_EVENT: 11582 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11583 return true; 11584 default: 11585 return false; 11586 } 11587 } 11588 11589 static bool is_preallocated_map(struct bpf_map *map) 11590 { 11591 if (!check_map_prealloc(map)) 11592 return false; 11593 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11594 return false; 11595 return true; 11596 } 11597 11598 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11599 struct bpf_map *map, 11600 struct bpf_prog *prog) 11601 11602 { 11603 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11604 /* 11605 * Validate that trace type programs use preallocated hash maps. 11606 * 11607 * For programs attached to PERF events this is mandatory as the 11608 * perf NMI can hit any arbitrary code sequence. 11609 * 11610 * All other trace types using preallocated hash maps are unsafe as 11611 * well because tracepoint or kprobes can be inside locked regions 11612 * of the memory allocator or at a place where a recursion into the 11613 * memory allocator would see inconsistent state. 11614 * 11615 * On RT enabled kernels run-time allocation of all trace type 11616 * programs is strictly prohibited due to lock type constraints. On 11617 * !RT kernels it is allowed for backwards compatibility reasons for 11618 * now, but warnings are emitted so developers are made aware of 11619 * the unsafety and can fix their programs before this is enforced. 11620 */ 11621 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11622 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11623 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11624 return -EINVAL; 11625 } 11626 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11627 verbose(env, "trace type programs can only use preallocated hash map\n"); 11628 return -EINVAL; 11629 } 11630 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11631 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11632 } 11633 11634 if (map_value_has_spin_lock(map)) { 11635 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11636 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11637 return -EINVAL; 11638 } 11639 11640 if (is_tracing_prog_type(prog_type)) { 11641 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11642 return -EINVAL; 11643 } 11644 11645 if (prog->aux->sleepable) { 11646 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11647 return -EINVAL; 11648 } 11649 } 11650 11651 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11652 !bpf_offload_prog_map_match(prog, map)) { 11653 verbose(env, "offload device mismatch between prog and map\n"); 11654 return -EINVAL; 11655 } 11656 11657 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11658 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11659 return -EINVAL; 11660 } 11661 11662 if (prog->aux->sleepable) 11663 switch (map->map_type) { 11664 case BPF_MAP_TYPE_HASH: 11665 case BPF_MAP_TYPE_LRU_HASH: 11666 case BPF_MAP_TYPE_ARRAY: 11667 case BPF_MAP_TYPE_PERCPU_HASH: 11668 case BPF_MAP_TYPE_PERCPU_ARRAY: 11669 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11670 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11671 case BPF_MAP_TYPE_HASH_OF_MAPS: 11672 if (!is_preallocated_map(map)) { 11673 verbose(env, 11674 "Sleepable programs can only use preallocated maps\n"); 11675 return -EINVAL; 11676 } 11677 break; 11678 case BPF_MAP_TYPE_RINGBUF: 11679 break; 11680 default: 11681 verbose(env, 11682 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11683 return -EINVAL; 11684 } 11685 11686 return 0; 11687 } 11688 11689 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11690 { 11691 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11692 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11693 } 11694 11695 /* find and rewrite pseudo imm in ld_imm64 instructions: 11696 * 11697 * 1. if it accesses map FD, replace it with actual map pointer. 11698 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11699 * 11700 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11701 */ 11702 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11703 { 11704 struct bpf_insn *insn = env->prog->insnsi; 11705 int insn_cnt = env->prog->len; 11706 int i, j, err; 11707 11708 err = bpf_prog_calc_tag(env->prog); 11709 if (err) 11710 return err; 11711 11712 for (i = 0; i < insn_cnt; i++, insn++) { 11713 if (BPF_CLASS(insn->code) == BPF_LDX && 11714 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11715 verbose(env, "BPF_LDX uses reserved fields\n"); 11716 return -EINVAL; 11717 } 11718 11719 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11720 struct bpf_insn_aux_data *aux; 11721 struct bpf_map *map; 11722 struct fd f; 11723 u64 addr; 11724 u32 fd; 11725 11726 if (i == insn_cnt - 1 || insn[1].code != 0 || 11727 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11728 insn[1].off != 0) { 11729 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11730 return -EINVAL; 11731 } 11732 11733 if (insn[0].src_reg == 0) 11734 /* valid generic load 64-bit imm */ 11735 goto next_insn; 11736 11737 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11738 aux = &env->insn_aux_data[i]; 11739 err = check_pseudo_btf_id(env, insn, aux); 11740 if (err) 11741 return err; 11742 goto next_insn; 11743 } 11744 11745 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11746 aux = &env->insn_aux_data[i]; 11747 aux->ptr_type = PTR_TO_FUNC; 11748 goto next_insn; 11749 } 11750 11751 /* In final convert_pseudo_ld_imm64() step, this is 11752 * converted into regular 64-bit imm load insn. 11753 */ 11754 switch (insn[0].src_reg) { 11755 case BPF_PSEUDO_MAP_VALUE: 11756 case BPF_PSEUDO_MAP_IDX_VALUE: 11757 break; 11758 case BPF_PSEUDO_MAP_FD: 11759 case BPF_PSEUDO_MAP_IDX: 11760 if (insn[1].imm == 0) 11761 break; 11762 fallthrough; 11763 default: 11764 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11765 return -EINVAL; 11766 } 11767 11768 switch (insn[0].src_reg) { 11769 case BPF_PSEUDO_MAP_IDX_VALUE: 11770 case BPF_PSEUDO_MAP_IDX: 11771 if (bpfptr_is_null(env->fd_array)) { 11772 verbose(env, "fd_idx without fd_array is invalid\n"); 11773 return -EPROTO; 11774 } 11775 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11776 insn[0].imm * sizeof(fd), 11777 sizeof(fd))) 11778 return -EFAULT; 11779 break; 11780 default: 11781 fd = insn[0].imm; 11782 break; 11783 } 11784 11785 f = fdget(fd); 11786 map = __bpf_map_get(f); 11787 if (IS_ERR(map)) { 11788 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11789 insn[0].imm); 11790 return PTR_ERR(map); 11791 } 11792 11793 err = check_map_prog_compatibility(env, map, env->prog); 11794 if (err) { 11795 fdput(f); 11796 return err; 11797 } 11798 11799 aux = &env->insn_aux_data[i]; 11800 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11801 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11802 addr = (unsigned long)map; 11803 } else { 11804 u32 off = insn[1].imm; 11805 11806 if (off >= BPF_MAX_VAR_OFF) { 11807 verbose(env, "direct value offset of %u is not allowed\n", off); 11808 fdput(f); 11809 return -EINVAL; 11810 } 11811 11812 if (!map->ops->map_direct_value_addr) { 11813 verbose(env, "no direct value access support for this map type\n"); 11814 fdput(f); 11815 return -EINVAL; 11816 } 11817 11818 err = map->ops->map_direct_value_addr(map, &addr, off); 11819 if (err) { 11820 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11821 map->value_size, off); 11822 fdput(f); 11823 return err; 11824 } 11825 11826 aux->map_off = off; 11827 addr += off; 11828 } 11829 11830 insn[0].imm = (u32)addr; 11831 insn[1].imm = addr >> 32; 11832 11833 /* check whether we recorded this map already */ 11834 for (j = 0; j < env->used_map_cnt; j++) { 11835 if (env->used_maps[j] == map) { 11836 aux->map_index = j; 11837 fdput(f); 11838 goto next_insn; 11839 } 11840 } 11841 11842 if (env->used_map_cnt >= MAX_USED_MAPS) { 11843 fdput(f); 11844 return -E2BIG; 11845 } 11846 11847 /* hold the map. If the program is rejected by verifier, 11848 * the map will be released by release_maps() or it 11849 * will be used by the valid program until it's unloaded 11850 * and all maps are released in free_used_maps() 11851 */ 11852 bpf_map_inc(map); 11853 11854 aux->map_index = env->used_map_cnt; 11855 env->used_maps[env->used_map_cnt++] = map; 11856 11857 if (bpf_map_is_cgroup_storage(map) && 11858 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11859 verbose(env, "only one cgroup storage of each type is allowed\n"); 11860 fdput(f); 11861 return -EBUSY; 11862 } 11863 11864 fdput(f); 11865 next_insn: 11866 insn++; 11867 i++; 11868 continue; 11869 } 11870 11871 /* Basic sanity check before we invest more work here. */ 11872 if (!bpf_opcode_in_insntable(insn->code)) { 11873 verbose(env, "unknown opcode %02x\n", insn->code); 11874 return -EINVAL; 11875 } 11876 } 11877 11878 /* now all pseudo BPF_LD_IMM64 instructions load valid 11879 * 'struct bpf_map *' into a register instead of user map_fd. 11880 * These pointers will be used later by verifier to validate map access. 11881 */ 11882 return 0; 11883 } 11884 11885 /* drop refcnt of maps used by the rejected program */ 11886 static void release_maps(struct bpf_verifier_env *env) 11887 { 11888 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11889 env->used_map_cnt); 11890 } 11891 11892 /* drop refcnt of maps used by the rejected program */ 11893 static void release_btfs(struct bpf_verifier_env *env) 11894 { 11895 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11896 env->used_btf_cnt); 11897 } 11898 11899 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11900 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11901 { 11902 struct bpf_insn *insn = env->prog->insnsi; 11903 int insn_cnt = env->prog->len; 11904 int i; 11905 11906 for (i = 0; i < insn_cnt; i++, insn++) { 11907 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11908 continue; 11909 if (insn->src_reg == BPF_PSEUDO_FUNC) 11910 continue; 11911 insn->src_reg = 0; 11912 } 11913 } 11914 11915 /* single env->prog->insni[off] instruction was replaced with the range 11916 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11917 * [0, off) and [off, end) to new locations, so the patched range stays zero 11918 */ 11919 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11920 struct bpf_insn_aux_data *new_data, 11921 struct bpf_prog *new_prog, u32 off, u32 cnt) 11922 { 11923 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11924 struct bpf_insn *insn = new_prog->insnsi; 11925 u32 old_seen = old_data[off].seen; 11926 u32 prog_len; 11927 int i; 11928 11929 /* aux info at OFF always needs adjustment, no matter fast path 11930 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11931 * original insn at old prog. 11932 */ 11933 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11934 11935 if (cnt == 1) 11936 return; 11937 prog_len = new_prog->len; 11938 11939 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11940 memcpy(new_data + off + cnt - 1, old_data + off, 11941 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11942 for (i = off; i < off + cnt - 1; i++) { 11943 /* Expand insni[off]'s seen count to the patched range. */ 11944 new_data[i].seen = old_seen; 11945 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11946 } 11947 env->insn_aux_data = new_data; 11948 vfree(old_data); 11949 } 11950 11951 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11952 { 11953 int i; 11954 11955 if (len == 1) 11956 return; 11957 /* NOTE: fake 'exit' subprog should be updated as well. */ 11958 for (i = 0; i <= env->subprog_cnt; i++) { 11959 if (env->subprog_info[i].start <= off) 11960 continue; 11961 env->subprog_info[i].start += len - 1; 11962 } 11963 } 11964 11965 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11966 { 11967 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11968 int i, sz = prog->aux->size_poke_tab; 11969 struct bpf_jit_poke_descriptor *desc; 11970 11971 for (i = 0; i < sz; i++) { 11972 desc = &tab[i]; 11973 if (desc->insn_idx <= off) 11974 continue; 11975 desc->insn_idx += len - 1; 11976 } 11977 } 11978 11979 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11980 const struct bpf_insn *patch, u32 len) 11981 { 11982 struct bpf_prog *new_prog; 11983 struct bpf_insn_aux_data *new_data = NULL; 11984 11985 if (len > 1) { 11986 new_data = vzalloc(array_size(env->prog->len + len - 1, 11987 sizeof(struct bpf_insn_aux_data))); 11988 if (!new_data) 11989 return NULL; 11990 } 11991 11992 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11993 if (IS_ERR(new_prog)) { 11994 if (PTR_ERR(new_prog) == -ERANGE) 11995 verbose(env, 11996 "insn %d cannot be patched due to 16-bit range\n", 11997 env->insn_aux_data[off].orig_idx); 11998 vfree(new_data); 11999 return NULL; 12000 } 12001 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12002 adjust_subprog_starts(env, off, len); 12003 adjust_poke_descs(new_prog, off, len); 12004 return new_prog; 12005 } 12006 12007 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12008 u32 off, u32 cnt) 12009 { 12010 int i, j; 12011 12012 /* find first prog starting at or after off (first to remove) */ 12013 for (i = 0; i < env->subprog_cnt; i++) 12014 if (env->subprog_info[i].start >= off) 12015 break; 12016 /* find first prog starting at or after off + cnt (first to stay) */ 12017 for (j = i; j < env->subprog_cnt; j++) 12018 if (env->subprog_info[j].start >= off + cnt) 12019 break; 12020 /* if j doesn't start exactly at off + cnt, we are just removing 12021 * the front of previous prog 12022 */ 12023 if (env->subprog_info[j].start != off + cnt) 12024 j--; 12025 12026 if (j > i) { 12027 struct bpf_prog_aux *aux = env->prog->aux; 12028 int move; 12029 12030 /* move fake 'exit' subprog as well */ 12031 move = env->subprog_cnt + 1 - j; 12032 12033 memmove(env->subprog_info + i, 12034 env->subprog_info + j, 12035 sizeof(*env->subprog_info) * move); 12036 env->subprog_cnt -= j - i; 12037 12038 /* remove func_info */ 12039 if (aux->func_info) { 12040 move = aux->func_info_cnt - j; 12041 12042 memmove(aux->func_info + i, 12043 aux->func_info + j, 12044 sizeof(*aux->func_info) * move); 12045 aux->func_info_cnt -= j - i; 12046 /* func_info->insn_off is set after all code rewrites, 12047 * in adjust_btf_func() - no need to adjust 12048 */ 12049 } 12050 } else { 12051 /* convert i from "first prog to remove" to "first to adjust" */ 12052 if (env->subprog_info[i].start == off) 12053 i++; 12054 } 12055 12056 /* update fake 'exit' subprog as well */ 12057 for (; i <= env->subprog_cnt; i++) 12058 env->subprog_info[i].start -= cnt; 12059 12060 return 0; 12061 } 12062 12063 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12064 u32 cnt) 12065 { 12066 struct bpf_prog *prog = env->prog; 12067 u32 i, l_off, l_cnt, nr_linfo; 12068 struct bpf_line_info *linfo; 12069 12070 nr_linfo = prog->aux->nr_linfo; 12071 if (!nr_linfo) 12072 return 0; 12073 12074 linfo = prog->aux->linfo; 12075 12076 /* find first line info to remove, count lines to be removed */ 12077 for (i = 0; i < nr_linfo; i++) 12078 if (linfo[i].insn_off >= off) 12079 break; 12080 12081 l_off = i; 12082 l_cnt = 0; 12083 for (; i < nr_linfo; i++) 12084 if (linfo[i].insn_off < off + cnt) 12085 l_cnt++; 12086 else 12087 break; 12088 12089 /* First live insn doesn't match first live linfo, it needs to "inherit" 12090 * last removed linfo. prog is already modified, so prog->len == off 12091 * means no live instructions after (tail of the program was removed). 12092 */ 12093 if (prog->len != off && l_cnt && 12094 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12095 l_cnt--; 12096 linfo[--i].insn_off = off + cnt; 12097 } 12098 12099 /* remove the line info which refer to the removed instructions */ 12100 if (l_cnt) { 12101 memmove(linfo + l_off, linfo + i, 12102 sizeof(*linfo) * (nr_linfo - i)); 12103 12104 prog->aux->nr_linfo -= l_cnt; 12105 nr_linfo = prog->aux->nr_linfo; 12106 } 12107 12108 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12109 for (i = l_off; i < nr_linfo; i++) 12110 linfo[i].insn_off -= cnt; 12111 12112 /* fix up all subprogs (incl. 'exit') which start >= off */ 12113 for (i = 0; i <= env->subprog_cnt; i++) 12114 if (env->subprog_info[i].linfo_idx > l_off) { 12115 /* program may have started in the removed region but 12116 * may not be fully removed 12117 */ 12118 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12119 env->subprog_info[i].linfo_idx -= l_cnt; 12120 else 12121 env->subprog_info[i].linfo_idx = l_off; 12122 } 12123 12124 return 0; 12125 } 12126 12127 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12128 { 12129 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12130 unsigned int orig_prog_len = env->prog->len; 12131 int err; 12132 12133 if (bpf_prog_is_dev_bound(env->prog->aux)) 12134 bpf_prog_offload_remove_insns(env, off, cnt); 12135 12136 err = bpf_remove_insns(env->prog, off, cnt); 12137 if (err) 12138 return err; 12139 12140 err = adjust_subprog_starts_after_remove(env, off, cnt); 12141 if (err) 12142 return err; 12143 12144 err = bpf_adj_linfo_after_remove(env, off, cnt); 12145 if (err) 12146 return err; 12147 12148 memmove(aux_data + off, aux_data + off + cnt, 12149 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12150 12151 return 0; 12152 } 12153 12154 /* The verifier does more data flow analysis than llvm and will not 12155 * explore branches that are dead at run time. Malicious programs can 12156 * have dead code too. Therefore replace all dead at-run-time code 12157 * with 'ja -1'. 12158 * 12159 * Just nops are not optimal, e.g. if they would sit at the end of the 12160 * program and through another bug we would manage to jump there, then 12161 * we'd execute beyond program memory otherwise. Returning exception 12162 * code also wouldn't work since we can have subprogs where the dead 12163 * code could be located. 12164 */ 12165 static void sanitize_dead_code(struct bpf_verifier_env *env) 12166 { 12167 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12168 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12169 struct bpf_insn *insn = env->prog->insnsi; 12170 const int insn_cnt = env->prog->len; 12171 int i; 12172 12173 for (i = 0; i < insn_cnt; i++) { 12174 if (aux_data[i].seen) 12175 continue; 12176 memcpy(insn + i, &trap, sizeof(trap)); 12177 aux_data[i].zext_dst = false; 12178 } 12179 } 12180 12181 static bool insn_is_cond_jump(u8 code) 12182 { 12183 u8 op; 12184 12185 if (BPF_CLASS(code) == BPF_JMP32) 12186 return true; 12187 12188 if (BPF_CLASS(code) != BPF_JMP) 12189 return false; 12190 12191 op = BPF_OP(code); 12192 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12193 } 12194 12195 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12196 { 12197 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12198 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12199 struct bpf_insn *insn = env->prog->insnsi; 12200 const int insn_cnt = env->prog->len; 12201 int i; 12202 12203 for (i = 0; i < insn_cnt; i++, insn++) { 12204 if (!insn_is_cond_jump(insn->code)) 12205 continue; 12206 12207 if (!aux_data[i + 1].seen) 12208 ja.off = insn->off; 12209 else if (!aux_data[i + 1 + insn->off].seen) 12210 ja.off = 0; 12211 else 12212 continue; 12213 12214 if (bpf_prog_is_dev_bound(env->prog->aux)) 12215 bpf_prog_offload_replace_insn(env, i, &ja); 12216 12217 memcpy(insn, &ja, sizeof(ja)); 12218 } 12219 } 12220 12221 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12222 { 12223 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12224 int insn_cnt = env->prog->len; 12225 int i, err; 12226 12227 for (i = 0; i < insn_cnt; i++) { 12228 int j; 12229 12230 j = 0; 12231 while (i + j < insn_cnt && !aux_data[i + j].seen) 12232 j++; 12233 if (!j) 12234 continue; 12235 12236 err = verifier_remove_insns(env, i, j); 12237 if (err) 12238 return err; 12239 insn_cnt = env->prog->len; 12240 } 12241 12242 return 0; 12243 } 12244 12245 static int opt_remove_nops(struct bpf_verifier_env *env) 12246 { 12247 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12248 struct bpf_insn *insn = env->prog->insnsi; 12249 int insn_cnt = env->prog->len; 12250 int i, err; 12251 12252 for (i = 0; i < insn_cnt; i++) { 12253 if (memcmp(&insn[i], &ja, sizeof(ja))) 12254 continue; 12255 12256 err = verifier_remove_insns(env, i, 1); 12257 if (err) 12258 return err; 12259 insn_cnt--; 12260 i--; 12261 } 12262 12263 return 0; 12264 } 12265 12266 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12267 const union bpf_attr *attr) 12268 { 12269 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12270 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12271 int i, patch_len, delta = 0, len = env->prog->len; 12272 struct bpf_insn *insns = env->prog->insnsi; 12273 struct bpf_prog *new_prog; 12274 bool rnd_hi32; 12275 12276 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12277 zext_patch[1] = BPF_ZEXT_REG(0); 12278 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12279 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12280 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12281 for (i = 0; i < len; i++) { 12282 int adj_idx = i + delta; 12283 struct bpf_insn insn; 12284 int load_reg; 12285 12286 insn = insns[adj_idx]; 12287 load_reg = insn_def_regno(&insn); 12288 if (!aux[adj_idx].zext_dst) { 12289 u8 code, class; 12290 u32 imm_rnd; 12291 12292 if (!rnd_hi32) 12293 continue; 12294 12295 code = insn.code; 12296 class = BPF_CLASS(code); 12297 if (load_reg == -1) 12298 continue; 12299 12300 /* NOTE: arg "reg" (the fourth one) is only used for 12301 * BPF_STX + SRC_OP, so it is safe to pass NULL 12302 * here. 12303 */ 12304 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12305 if (class == BPF_LD && 12306 BPF_MODE(code) == BPF_IMM) 12307 i++; 12308 continue; 12309 } 12310 12311 /* ctx load could be transformed into wider load. */ 12312 if (class == BPF_LDX && 12313 aux[adj_idx].ptr_type == PTR_TO_CTX) 12314 continue; 12315 12316 imm_rnd = get_random_int(); 12317 rnd_hi32_patch[0] = insn; 12318 rnd_hi32_patch[1].imm = imm_rnd; 12319 rnd_hi32_patch[3].dst_reg = load_reg; 12320 patch = rnd_hi32_patch; 12321 patch_len = 4; 12322 goto apply_patch_buffer; 12323 } 12324 12325 /* Add in an zero-extend instruction if a) the JIT has requested 12326 * it or b) it's a CMPXCHG. 12327 * 12328 * The latter is because: BPF_CMPXCHG always loads a value into 12329 * R0, therefore always zero-extends. However some archs' 12330 * equivalent instruction only does this load when the 12331 * comparison is successful. This detail of CMPXCHG is 12332 * orthogonal to the general zero-extension behaviour of the 12333 * CPU, so it's treated independently of bpf_jit_needs_zext. 12334 */ 12335 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12336 continue; 12337 12338 if (WARN_ON(load_reg == -1)) { 12339 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12340 return -EFAULT; 12341 } 12342 12343 zext_patch[0] = insn; 12344 zext_patch[1].dst_reg = load_reg; 12345 zext_patch[1].src_reg = load_reg; 12346 patch = zext_patch; 12347 patch_len = 2; 12348 apply_patch_buffer: 12349 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12350 if (!new_prog) 12351 return -ENOMEM; 12352 env->prog = new_prog; 12353 insns = new_prog->insnsi; 12354 aux = env->insn_aux_data; 12355 delta += patch_len - 1; 12356 } 12357 12358 return 0; 12359 } 12360 12361 /* convert load instructions that access fields of a context type into a 12362 * sequence of instructions that access fields of the underlying structure: 12363 * struct __sk_buff -> struct sk_buff 12364 * struct bpf_sock_ops -> struct sock 12365 */ 12366 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12367 { 12368 const struct bpf_verifier_ops *ops = env->ops; 12369 int i, cnt, size, ctx_field_size, delta = 0; 12370 const int insn_cnt = env->prog->len; 12371 struct bpf_insn insn_buf[16], *insn; 12372 u32 target_size, size_default, off; 12373 struct bpf_prog *new_prog; 12374 enum bpf_access_type type; 12375 bool is_narrower_load; 12376 12377 if (ops->gen_prologue || env->seen_direct_write) { 12378 if (!ops->gen_prologue) { 12379 verbose(env, "bpf verifier is misconfigured\n"); 12380 return -EINVAL; 12381 } 12382 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12383 env->prog); 12384 if (cnt >= ARRAY_SIZE(insn_buf)) { 12385 verbose(env, "bpf verifier is misconfigured\n"); 12386 return -EINVAL; 12387 } else if (cnt) { 12388 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12389 if (!new_prog) 12390 return -ENOMEM; 12391 12392 env->prog = new_prog; 12393 delta += cnt - 1; 12394 } 12395 } 12396 12397 if (bpf_prog_is_dev_bound(env->prog->aux)) 12398 return 0; 12399 12400 insn = env->prog->insnsi + delta; 12401 12402 for (i = 0; i < insn_cnt; i++, insn++) { 12403 bpf_convert_ctx_access_t convert_ctx_access; 12404 bool ctx_access; 12405 12406 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12407 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12408 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12409 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12410 type = BPF_READ; 12411 ctx_access = true; 12412 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12413 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12414 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12415 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12416 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12417 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12418 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12419 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12420 type = BPF_WRITE; 12421 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12422 } else { 12423 continue; 12424 } 12425 12426 if (type == BPF_WRITE && 12427 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12428 struct bpf_insn patch[] = { 12429 *insn, 12430 BPF_ST_NOSPEC(), 12431 }; 12432 12433 cnt = ARRAY_SIZE(patch); 12434 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12435 if (!new_prog) 12436 return -ENOMEM; 12437 12438 delta += cnt - 1; 12439 env->prog = new_prog; 12440 insn = new_prog->insnsi + i + delta; 12441 continue; 12442 } 12443 12444 if (!ctx_access) 12445 continue; 12446 12447 switch (env->insn_aux_data[i + delta].ptr_type) { 12448 case PTR_TO_CTX: 12449 if (!ops->convert_ctx_access) 12450 continue; 12451 convert_ctx_access = ops->convert_ctx_access; 12452 break; 12453 case PTR_TO_SOCKET: 12454 case PTR_TO_SOCK_COMMON: 12455 convert_ctx_access = bpf_sock_convert_ctx_access; 12456 break; 12457 case PTR_TO_TCP_SOCK: 12458 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12459 break; 12460 case PTR_TO_XDP_SOCK: 12461 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12462 break; 12463 case PTR_TO_BTF_ID: 12464 if (type == BPF_READ) { 12465 insn->code = BPF_LDX | BPF_PROBE_MEM | 12466 BPF_SIZE((insn)->code); 12467 env->prog->aux->num_exentries++; 12468 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12469 verbose(env, "Writes through BTF pointers are not allowed\n"); 12470 return -EINVAL; 12471 } 12472 continue; 12473 default: 12474 continue; 12475 } 12476 12477 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12478 size = BPF_LDST_BYTES(insn); 12479 12480 /* If the read access is a narrower load of the field, 12481 * convert to a 4/8-byte load, to minimum program type specific 12482 * convert_ctx_access changes. If conversion is successful, 12483 * we will apply proper mask to the result. 12484 */ 12485 is_narrower_load = size < ctx_field_size; 12486 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12487 off = insn->off; 12488 if (is_narrower_load) { 12489 u8 size_code; 12490 12491 if (type == BPF_WRITE) { 12492 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12493 return -EINVAL; 12494 } 12495 12496 size_code = BPF_H; 12497 if (ctx_field_size == 4) 12498 size_code = BPF_W; 12499 else if (ctx_field_size == 8) 12500 size_code = BPF_DW; 12501 12502 insn->off = off & ~(size_default - 1); 12503 insn->code = BPF_LDX | BPF_MEM | size_code; 12504 } 12505 12506 target_size = 0; 12507 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12508 &target_size); 12509 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12510 (ctx_field_size && !target_size)) { 12511 verbose(env, "bpf verifier is misconfigured\n"); 12512 return -EINVAL; 12513 } 12514 12515 if (is_narrower_load && size < target_size) { 12516 u8 shift = bpf_ctx_narrow_access_offset( 12517 off, size, size_default) * 8; 12518 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12519 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12520 return -EINVAL; 12521 } 12522 if (ctx_field_size <= 4) { 12523 if (shift) 12524 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12525 insn->dst_reg, 12526 shift); 12527 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12528 (1 << size * 8) - 1); 12529 } else { 12530 if (shift) 12531 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12532 insn->dst_reg, 12533 shift); 12534 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12535 (1ULL << size * 8) - 1); 12536 } 12537 } 12538 12539 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12540 if (!new_prog) 12541 return -ENOMEM; 12542 12543 delta += cnt - 1; 12544 12545 /* keep walking new program and skip insns we just inserted */ 12546 env->prog = new_prog; 12547 insn = new_prog->insnsi + i + delta; 12548 } 12549 12550 return 0; 12551 } 12552 12553 static int jit_subprogs(struct bpf_verifier_env *env) 12554 { 12555 struct bpf_prog *prog = env->prog, **func, *tmp; 12556 int i, j, subprog_start, subprog_end = 0, len, subprog; 12557 struct bpf_map *map_ptr; 12558 struct bpf_insn *insn; 12559 void *old_bpf_func; 12560 int err, num_exentries; 12561 12562 if (env->subprog_cnt <= 1) 12563 return 0; 12564 12565 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12566 if (bpf_pseudo_func(insn)) { 12567 env->insn_aux_data[i].call_imm = insn->imm; 12568 /* subprog is encoded in insn[1].imm */ 12569 continue; 12570 } 12571 12572 if (!bpf_pseudo_call(insn)) 12573 continue; 12574 /* Upon error here we cannot fall back to interpreter but 12575 * need a hard reject of the program. Thus -EFAULT is 12576 * propagated in any case. 12577 */ 12578 subprog = find_subprog(env, i + insn->imm + 1); 12579 if (subprog < 0) { 12580 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12581 i + insn->imm + 1); 12582 return -EFAULT; 12583 } 12584 /* temporarily remember subprog id inside insn instead of 12585 * aux_data, since next loop will split up all insns into funcs 12586 */ 12587 insn->off = subprog; 12588 /* remember original imm in case JIT fails and fallback 12589 * to interpreter will be needed 12590 */ 12591 env->insn_aux_data[i].call_imm = insn->imm; 12592 /* point imm to __bpf_call_base+1 from JITs point of view */ 12593 insn->imm = 1; 12594 } 12595 12596 err = bpf_prog_alloc_jited_linfo(prog); 12597 if (err) 12598 goto out_undo_insn; 12599 12600 err = -ENOMEM; 12601 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12602 if (!func) 12603 goto out_undo_insn; 12604 12605 for (i = 0; i < env->subprog_cnt; i++) { 12606 subprog_start = subprog_end; 12607 subprog_end = env->subprog_info[i + 1].start; 12608 12609 len = subprog_end - subprog_start; 12610 /* bpf_prog_run() doesn't call subprogs directly, 12611 * hence main prog stats include the runtime of subprogs. 12612 * subprogs don't have IDs and not reachable via prog_get_next_id 12613 * func[i]->stats will never be accessed and stays NULL 12614 */ 12615 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12616 if (!func[i]) 12617 goto out_free; 12618 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12619 len * sizeof(struct bpf_insn)); 12620 func[i]->type = prog->type; 12621 func[i]->len = len; 12622 if (bpf_prog_calc_tag(func[i])) 12623 goto out_free; 12624 func[i]->is_func = 1; 12625 func[i]->aux->func_idx = i; 12626 /* Below members will be freed only at prog->aux */ 12627 func[i]->aux->btf = prog->aux->btf; 12628 func[i]->aux->func_info = prog->aux->func_info; 12629 func[i]->aux->poke_tab = prog->aux->poke_tab; 12630 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12631 12632 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12633 struct bpf_jit_poke_descriptor *poke; 12634 12635 poke = &prog->aux->poke_tab[j]; 12636 if (poke->insn_idx < subprog_end && 12637 poke->insn_idx >= subprog_start) 12638 poke->aux = func[i]->aux; 12639 } 12640 12641 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12642 * Long term would need debug info to populate names 12643 */ 12644 func[i]->aux->name[0] = 'F'; 12645 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12646 func[i]->jit_requested = 1; 12647 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12648 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12649 func[i]->aux->linfo = prog->aux->linfo; 12650 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12651 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12652 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12653 num_exentries = 0; 12654 insn = func[i]->insnsi; 12655 for (j = 0; j < func[i]->len; j++, insn++) { 12656 if (BPF_CLASS(insn->code) == BPF_LDX && 12657 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12658 num_exentries++; 12659 } 12660 func[i]->aux->num_exentries = num_exentries; 12661 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12662 func[i] = bpf_int_jit_compile(func[i]); 12663 if (!func[i]->jited) { 12664 err = -ENOTSUPP; 12665 goto out_free; 12666 } 12667 cond_resched(); 12668 } 12669 12670 /* at this point all bpf functions were successfully JITed 12671 * now populate all bpf_calls with correct addresses and 12672 * run last pass of JIT 12673 */ 12674 for (i = 0; i < env->subprog_cnt; i++) { 12675 insn = func[i]->insnsi; 12676 for (j = 0; j < func[i]->len; j++, insn++) { 12677 if (bpf_pseudo_func(insn)) { 12678 subprog = insn[1].imm; 12679 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12680 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12681 continue; 12682 } 12683 if (!bpf_pseudo_call(insn)) 12684 continue; 12685 subprog = insn->off; 12686 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12687 } 12688 12689 /* we use the aux data to keep a list of the start addresses 12690 * of the JITed images for each function in the program 12691 * 12692 * for some architectures, such as powerpc64, the imm field 12693 * might not be large enough to hold the offset of the start 12694 * address of the callee's JITed image from __bpf_call_base 12695 * 12696 * in such cases, we can lookup the start address of a callee 12697 * by using its subprog id, available from the off field of 12698 * the call instruction, as an index for this list 12699 */ 12700 func[i]->aux->func = func; 12701 func[i]->aux->func_cnt = env->subprog_cnt; 12702 } 12703 for (i = 0; i < env->subprog_cnt; i++) { 12704 old_bpf_func = func[i]->bpf_func; 12705 tmp = bpf_int_jit_compile(func[i]); 12706 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12707 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12708 err = -ENOTSUPP; 12709 goto out_free; 12710 } 12711 cond_resched(); 12712 } 12713 12714 /* finally lock prog and jit images for all functions and 12715 * populate kallsysm 12716 */ 12717 for (i = 0; i < env->subprog_cnt; i++) { 12718 bpf_prog_lock_ro(func[i]); 12719 bpf_prog_kallsyms_add(func[i]); 12720 } 12721 12722 /* Last step: make now unused interpreter insns from main 12723 * prog consistent for later dump requests, so they can 12724 * later look the same as if they were interpreted only. 12725 */ 12726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12727 if (bpf_pseudo_func(insn)) { 12728 insn[0].imm = env->insn_aux_data[i].call_imm; 12729 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12730 continue; 12731 } 12732 if (!bpf_pseudo_call(insn)) 12733 continue; 12734 insn->off = env->insn_aux_data[i].call_imm; 12735 subprog = find_subprog(env, i + insn->off + 1); 12736 insn->imm = subprog; 12737 } 12738 12739 prog->jited = 1; 12740 prog->bpf_func = func[0]->bpf_func; 12741 prog->aux->func = func; 12742 prog->aux->func_cnt = env->subprog_cnt; 12743 bpf_prog_jit_attempt_done(prog); 12744 return 0; 12745 out_free: 12746 /* We failed JIT'ing, so at this point we need to unregister poke 12747 * descriptors from subprogs, so that kernel is not attempting to 12748 * patch it anymore as we're freeing the subprog JIT memory. 12749 */ 12750 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12751 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12752 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12753 } 12754 /* At this point we're guaranteed that poke descriptors are not 12755 * live anymore. We can just unlink its descriptor table as it's 12756 * released with the main prog. 12757 */ 12758 for (i = 0; i < env->subprog_cnt; i++) { 12759 if (!func[i]) 12760 continue; 12761 func[i]->aux->poke_tab = NULL; 12762 bpf_jit_free(func[i]); 12763 } 12764 kfree(func); 12765 out_undo_insn: 12766 /* cleanup main prog to be interpreted */ 12767 prog->jit_requested = 0; 12768 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12769 if (!bpf_pseudo_call(insn)) 12770 continue; 12771 insn->off = 0; 12772 insn->imm = env->insn_aux_data[i].call_imm; 12773 } 12774 bpf_prog_jit_attempt_done(prog); 12775 return err; 12776 } 12777 12778 static int fixup_call_args(struct bpf_verifier_env *env) 12779 { 12780 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12781 struct bpf_prog *prog = env->prog; 12782 struct bpf_insn *insn = prog->insnsi; 12783 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12784 int i, depth; 12785 #endif 12786 int err = 0; 12787 12788 if (env->prog->jit_requested && 12789 !bpf_prog_is_dev_bound(env->prog->aux)) { 12790 err = jit_subprogs(env); 12791 if (err == 0) 12792 return 0; 12793 if (err == -EFAULT) 12794 return err; 12795 } 12796 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12797 if (has_kfunc_call) { 12798 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12799 return -EINVAL; 12800 } 12801 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12802 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12803 * have to be rejected, since interpreter doesn't support them yet. 12804 */ 12805 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12806 return -EINVAL; 12807 } 12808 for (i = 0; i < prog->len; i++, insn++) { 12809 if (bpf_pseudo_func(insn)) { 12810 /* When JIT fails the progs with callback calls 12811 * have to be rejected, since interpreter doesn't support them yet. 12812 */ 12813 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12814 return -EINVAL; 12815 } 12816 12817 if (!bpf_pseudo_call(insn)) 12818 continue; 12819 depth = get_callee_stack_depth(env, insn, i); 12820 if (depth < 0) 12821 return depth; 12822 bpf_patch_call_args(insn, depth); 12823 } 12824 err = 0; 12825 #endif 12826 return err; 12827 } 12828 12829 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12830 struct bpf_insn *insn) 12831 { 12832 const struct bpf_kfunc_desc *desc; 12833 12834 if (!insn->imm) { 12835 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 12836 return -EINVAL; 12837 } 12838 12839 /* insn->imm has the btf func_id. Replace it with 12840 * an address (relative to __bpf_base_call). 12841 */ 12842 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 12843 if (!desc) { 12844 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12845 insn->imm); 12846 return -EFAULT; 12847 } 12848 12849 insn->imm = desc->imm; 12850 12851 return 0; 12852 } 12853 12854 /* Do various post-verification rewrites in a single program pass. 12855 * These rewrites simplify JIT and interpreter implementations. 12856 */ 12857 static int do_misc_fixups(struct bpf_verifier_env *env) 12858 { 12859 struct bpf_prog *prog = env->prog; 12860 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12861 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12862 struct bpf_insn *insn = prog->insnsi; 12863 const struct bpf_func_proto *fn; 12864 const int insn_cnt = prog->len; 12865 const struct bpf_map_ops *ops; 12866 struct bpf_insn_aux_data *aux; 12867 struct bpf_insn insn_buf[16]; 12868 struct bpf_prog *new_prog; 12869 struct bpf_map *map_ptr; 12870 int i, ret, cnt, delta = 0; 12871 12872 for (i = 0; i < insn_cnt; i++, insn++) { 12873 /* Make divide-by-zero exceptions impossible. */ 12874 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12875 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12876 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12877 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12878 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12879 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12880 struct bpf_insn *patchlet; 12881 struct bpf_insn chk_and_div[] = { 12882 /* [R,W]x div 0 -> 0 */ 12883 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12884 BPF_JNE | BPF_K, insn->src_reg, 12885 0, 2, 0), 12886 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12887 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12888 *insn, 12889 }; 12890 struct bpf_insn chk_and_mod[] = { 12891 /* [R,W]x mod 0 -> [R,W]x */ 12892 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12893 BPF_JEQ | BPF_K, insn->src_reg, 12894 0, 1 + (is64 ? 0 : 1), 0), 12895 *insn, 12896 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12897 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12898 }; 12899 12900 patchlet = isdiv ? chk_and_div : chk_and_mod; 12901 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12902 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12903 12904 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12905 if (!new_prog) 12906 return -ENOMEM; 12907 12908 delta += cnt - 1; 12909 env->prog = prog = new_prog; 12910 insn = new_prog->insnsi + i + delta; 12911 continue; 12912 } 12913 12914 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12915 if (BPF_CLASS(insn->code) == BPF_LD && 12916 (BPF_MODE(insn->code) == BPF_ABS || 12917 BPF_MODE(insn->code) == BPF_IND)) { 12918 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12919 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12920 verbose(env, "bpf verifier is misconfigured\n"); 12921 return -EINVAL; 12922 } 12923 12924 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12925 if (!new_prog) 12926 return -ENOMEM; 12927 12928 delta += cnt - 1; 12929 env->prog = prog = new_prog; 12930 insn = new_prog->insnsi + i + delta; 12931 continue; 12932 } 12933 12934 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12935 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12936 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12937 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12938 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12939 struct bpf_insn *patch = &insn_buf[0]; 12940 bool issrc, isneg, isimm; 12941 u32 off_reg; 12942 12943 aux = &env->insn_aux_data[i + delta]; 12944 if (!aux->alu_state || 12945 aux->alu_state == BPF_ALU_NON_POINTER) 12946 continue; 12947 12948 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12949 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12950 BPF_ALU_SANITIZE_SRC; 12951 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12952 12953 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12954 if (isimm) { 12955 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12956 } else { 12957 if (isneg) 12958 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12959 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12960 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12961 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12962 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12963 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12964 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12965 } 12966 if (!issrc) 12967 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12968 insn->src_reg = BPF_REG_AX; 12969 if (isneg) 12970 insn->code = insn->code == code_add ? 12971 code_sub : code_add; 12972 *patch++ = *insn; 12973 if (issrc && isneg && !isimm) 12974 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12975 cnt = patch - insn_buf; 12976 12977 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12978 if (!new_prog) 12979 return -ENOMEM; 12980 12981 delta += cnt - 1; 12982 env->prog = prog = new_prog; 12983 insn = new_prog->insnsi + i + delta; 12984 continue; 12985 } 12986 12987 if (insn->code != (BPF_JMP | BPF_CALL)) 12988 continue; 12989 if (insn->src_reg == BPF_PSEUDO_CALL) 12990 continue; 12991 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12992 ret = fixup_kfunc_call(env, insn); 12993 if (ret) 12994 return ret; 12995 continue; 12996 } 12997 12998 if (insn->imm == BPF_FUNC_get_route_realm) 12999 prog->dst_needed = 1; 13000 if (insn->imm == BPF_FUNC_get_prandom_u32) 13001 bpf_user_rnd_init_once(); 13002 if (insn->imm == BPF_FUNC_override_return) 13003 prog->kprobe_override = 1; 13004 if (insn->imm == BPF_FUNC_tail_call) { 13005 /* If we tail call into other programs, we 13006 * cannot make any assumptions since they can 13007 * be replaced dynamically during runtime in 13008 * the program array. 13009 */ 13010 prog->cb_access = 1; 13011 if (!allow_tail_call_in_subprogs(env)) 13012 prog->aux->stack_depth = MAX_BPF_STACK; 13013 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13014 13015 /* mark bpf_tail_call as different opcode to avoid 13016 * conditional branch in the interpreter for every normal 13017 * call and to prevent accidental JITing by JIT compiler 13018 * that doesn't support bpf_tail_call yet 13019 */ 13020 insn->imm = 0; 13021 insn->code = BPF_JMP | BPF_TAIL_CALL; 13022 13023 aux = &env->insn_aux_data[i + delta]; 13024 if (env->bpf_capable && !expect_blinding && 13025 prog->jit_requested && 13026 !bpf_map_key_poisoned(aux) && 13027 !bpf_map_ptr_poisoned(aux) && 13028 !bpf_map_ptr_unpriv(aux)) { 13029 struct bpf_jit_poke_descriptor desc = { 13030 .reason = BPF_POKE_REASON_TAIL_CALL, 13031 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13032 .tail_call.key = bpf_map_key_immediate(aux), 13033 .insn_idx = i + delta, 13034 }; 13035 13036 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13037 if (ret < 0) { 13038 verbose(env, "adding tail call poke descriptor failed\n"); 13039 return ret; 13040 } 13041 13042 insn->imm = ret + 1; 13043 continue; 13044 } 13045 13046 if (!bpf_map_ptr_unpriv(aux)) 13047 continue; 13048 13049 /* instead of changing every JIT dealing with tail_call 13050 * emit two extra insns: 13051 * if (index >= max_entries) goto out; 13052 * index &= array->index_mask; 13053 * to avoid out-of-bounds cpu speculation 13054 */ 13055 if (bpf_map_ptr_poisoned(aux)) { 13056 verbose(env, "tail_call abusing map_ptr\n"); 13057 return -EINVAL; 13058 } 13059 13060 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13061 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13062 map_ptr->max_entries, 2); 13063 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13064 container_of(map_ptr, 13065 struct bpf_array, 13066 map)->index_mask); 13067 insn_buf[2] = *insn; 13068 cnt = 3; 13069 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13070 if (!new_prog) 13071 return -ENOMEM; 13072 13073 delta += cnt - 1; 13074 env->prog = prog = new_prog; 13075 insn = new_prog->insnsi + i + delta; 13076 continue; 13077 } 13078 13079 if (insn->imm == BPF_FUNC_timer_set_callback) { 13080 /* The verifier will process callback_fn as many times as necessary 13081 * with different maps and the register states prepared by 13082 * set_timer_callback_state will be accurate. 13083 * 13084 * The following use case is valid: 13085 * map1 is shared by prog1, prog2, prog3. 13086 * prog1 calls bpf_timer_init for some map1 elements 13087 * prog2 calls bpf_timer_set_callback for some map1 elements. 13088 * Those that were not bpf_timer_init-ed will return -EINVAL. 13089 * prog3 calls bpf_timer_start for some map1 elements. 13090 * Those that were not both bpf_timer_init-ed and 13091 * bpf_timer_set_callback-ed will return -EINVAL. 13092 */ 13093 struct bpf_insn ld_addrs[2] = { 13094 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13095 }; 13096 13097 insn_buf[0] = ld_addrs[0]; 13098 insn_buf[1] = ld_addrs[1]; 13099 insn_buf[2] = *insn; 13100 cnt = 3; 13101 13102 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13103 if (!new_prog) 13104 return -ENOMEM; 13105 13106 delta += cnt - 1; 13107 env->prog = prog = new_prog; 13108 insn = new_prog->insnsi + i + delta; 13109 goto patch_call_imm; 13110 } 13111 13112 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13113 * and other inlining handlers are currently limited to 64 bit 13114 * only. 13115 */ 13116 if (prog->jit_requested && BITS_PER_LONG == 64 && 13117 (insn->imm == BPF_FUNC_map_lookup_elem || 13118 insn->imm == BPF_FUNC_map_update_elem || 13119 insn->imm == BPF_FUNC_map_delete_elem || 13120 insn->imm == BPF_FUNC_map_push_elem || 13121 insn->imm == BPF_FUNC_map_pop_elem || 13122 insn->imm == BPF_FUNC_map_peek_elem || 13123 insn->imm == BPF_FUNC_redirect_map || 13124 insn->imm == BPF_FUNC_for_each_map_elem)) { 13125 aux = &env->insn_aux_data[i + delta]; 13126 if (bpf_map_ptr_poisoned(aux)) 13127 goto patch_call_imm; 13128 13129 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13130 ops = map_ptr->ops; 13131 if (insn->imm == BPF_FUNC_map_lookup_elem && 13132 ops->map_gen_lookup) { 13133 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13134 if (cnt == -EOPNOTSUPP) 13135 goto patch_map_ops_generic; 13136 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13137 verbose(env, "bpf verifier is misconfigured\n"); 13138 return -EINVAL; 13139 } 13140 13141 new_prog = bpf_patch_insn_data(env, i + delta, 13142 insn_buf, cnt); 13143 if (!new_prog) 13144 return -ENOMEM; 13145 13146 delta += cnt - 1; 13147 env->prog = prog = new_prog; 13148 insn = new_prog->insnsi + i + delta; 13149 continue; 13150 } 13151 13152 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13153 (void *(*)(struct bpf_map *map, void *key))NULL)); 13154 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13155 (int (*)(struct bpf_map *map, void *key))NULL)); 13156 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13157 (int (*)(struct bpf_map *map, void *key, void *value, 13158 u64 flags))NULL)); 13159 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13160 (int (*)(struct bpf_map *map, void *value, 13161 u64 flags))NULL)); 13162 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13163 (int (*)(struct bpf_map *map, void *value))NULL)); 13164 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13165 (int (*)(struct bpf_map *map, void *value))NULL)); 13166 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13167 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13168 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13169 (int (*)(struct bpf_map *map, 13170 bpf_callback_t callback_fn, 13171 void *callback_ctx, 13172 u64 flags))NULL)); 13173 13174 patch_map_ops_generic: 13175 switch (insn->imm) { 13176 case BPF_FUNC_map_lookup_elem: 13177 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13178 continue; 13179 case BPF_FUNC_map_update_elem: 13180 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13181 continue; 13182 case BPF_FUNC_map_delete_elem: 13183 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13184 continue; 13185 case BPF_FUNC_map_push_elem: 13186 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13187 continue; 13188 case BPF_FUNC_map_pop_elem: 13189 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13190 continue; 13191 case BPF_FUNC_map_peek_elem: 13192 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13193 continue; 13194 case BPF_FUNC_redirect_map: 13195 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13196 continue; 13197 case BPF_FUNC_for_each_map_elem: 13198 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13199 continue; 13200 } 13201 13202 goto patch_call_imm; 13203 } 13204 13205 /* Implement bpf_jiffies64 inline. */ 13206 if (prog->jit_requested && BITS_PER_LONG == 64 && 13207 insn->imm == BPF_FUNC_jiffies64) { 13208 struct bpf_insn ld_jiffies_addr[2] = { 13209 BPF_LD_IMM64(BPF_REG_0, 13210 (unsigned long)&jiffies), 13211 }; 13212 13213 insn_buf[0] = ld_jiffies_addr[0]; 13214 insn_buf[1] = ld_jiffies_addr[1]; 13215 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13216 BPF_REG_0, 0); 13217 cnt = 3; 13218 13219 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13220 cnt); 13221 if (!new_prog) 13222 return -ENOMEM; 13223 13224 delta += cnt - 1; 13225 env->prog = prog = new_prog; 13226 insn = new_prog->insnsi + i + delta; 13227 continue; 13228 } 13229 13230 /* Implement bpf_get_func_ip inline. */ 13231 if (prog_type == BPF_PROG_TYPE_TRACING && 13232 insn->imm == BPF_FUNC_get_func_ip) { 13233 /* Load IP address from ctx - 8 */ 13234 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13235 13236 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13237 if (!new_prog) 13238 return -ENOMEM; 13239 13240 env->prog = prog = new_prog; 13241 insn = new_prog->insnsi + i + delta; 13242 continue; 13243 } 13244 13245 patch_call_imm: 13246 fn = env->ops->get_func_proto(insn->imm, env->prog); 13247 /* all functions that have prototype and verifier allowed 13248 * programs to call them, must be real in-kernel functions 13249 */ 13250 if (!fn->func) { 13251 verbose(env, 13252 "kernel subsystem misconfigured func %s#%d\n", 13253 func_id_name(insn->imm), insn->imm); 13254 return -EFAULT; 13255 } 13256 insn->imm = fn->func - __bpf_call_base; 13257 } 13258 13259 /* Since poke tab is now finalized, publish aux to tracker. */ 13260 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13261 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13262 if (!map_ptr->ops->map_poke_track || 13263 !map_ptr->ops->map_poke_untrack || 13264 !map_ptr->ops->map_poke_run) { 13265 verbose(env, "bpf verifier is misconfigured\n"); 13266 return -EINVAL; 13267 } 13268 13269 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13270 if (ret < 0) { 13271 verbose(env, "tracking tail call prog failed\n"); 13272 return ret; 13273 } 13274 } 13275 13276 sort_kfunc_descs_by_imm(env->prog); 13277 13278 return 0; 13279 } 13280 13281 static void free_states(struct bpf_verifier_env *env) 13282 { 13283 struct bpf_verifier_state_list *sl, *sln; 13284 int i; 13285 13286 sl = env->free_list; 13287 while (sl) { 13288 sln = sl->next; 13289 free_verifier_state(&sl->state, false); 13290 kfree(sl); 13291 sl = sln; 13292 } 13293 env->free_list = NULL; 13294 13295 if (!env->explored_states) 13296 return; 13297 13298 for (i = 0; i < state_htab_size(env); i++) { 13299 sl = env->explored_states[i]; 13300 13301 while (sl) { 13302 sln = sl->next; 13303 free_verifier_state(&sl->state, false); 13304 kfree(sl); 13305 sl = sln; 13306 } 13307 env->explored_states[i] = NULL; 13308 } 13309 } 13310 13311 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13312 { 13313 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13314 struct bpf_verifier_state *state; 13315 struct bpf_reg_state *regs; 13316 int ret, i; 13317 13318 env->prev_linfo = NULL; 13319 env->pass_cnt++; 13320 13321 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13322 if (!state) 13323 return -ENOMEM; 13324 state->curframe = 0; 13325 state->speculative = false; 13326 state->branches = 1; 13327 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13328 if (!state->frame[0]) { 13329 kfree(state); 13330 return -ENOMEM; 13331 } 13332 env->cur_state = state; 13333 init_func_state(env, state->frame[0], 13334 BPF_MAIN_FUNC /* callsite */, 13335 0 /* frameno */, 13336 subprog); 13337 13338 regs = state->frame[state->curframe]->regs; 13339 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13340 ret = btf_prepare_func_args(env, subprog, regs); 13341 if (ret) 13342 goto out; 13343 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13344 if (regs[i].type == PTR_TO_CTX) 13345 mark_reg_known_zero(env, regs, i); 13346 else if (regs[i].type == SCALAR_VALUE) 13347 mark_reg_unknown(env, regs, i); 13348 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13349 const u32 mem_size = regs[i].mem_size; 13350 13351 mark_reg_known_zero(env, regs, i); 13352 regs[i].mem_size = mem_size; 13353 regs[i].id = ++env->id_gen; 13354 } 13355 } 13356 } else { 13357 /* 1st arg to a function */ 13358 regs[BPF_REG_1].type = PTR_TO_CTX; 13359 mark_reg_known_zero(env, regs, BPF_REG_1); 13360 ret = btf_check_subprog_arg_match(env, subprog, regs); 13361 if (ret == -EFAULT) 13362 /* unlikely verifier bug. abort. 13363 * ret == 0 and ret < 0 are sadly acceptable for 13364 * main() function due to backward compatibility. 13365 * Like socket filter program may be written as: 13366 * int bpf_prog(struct pt_regs *ctx) 13367 * and never dereference that ctx in the program. 13368 * 'struct pt_regs' is a type mismatch for socket 13369 * filter that should be using 'struct __sk_buff'. 13370 */ 13371 goto out; 13372 } 13373 13374 ret = do_check(env); 13375 out: 13376 /* check for NULL is necessary, since cur_state can be freed inside 13377 * do_check() under memory pressure. 13378 */ 13379 if (env->cur_state) { 13380 free_verifier_state(env->cur_state, true); 13381 env->cur_state = NULL; 13382 } 13383 while (!pop_stack(env, NULL, NULL, false)); 13384 if (!ret && pop_log) 13385 bpf_vlog_reset(&env->log, 0); 13386 free_states(env); 13387 return ret; 13388 } 13389 13390 /* Verify all global functions in a BPF program one by one based on their BTF. 13391 * All global functions must pass verification. Otherwise the whole program is rejected. 13392 * Consider: 13393 * int bar(int); 13394 * int foo(int f) 13395 * { 13396 * return bar(f); 13397 * } 13398 * int bar(int b) 13399 * { 13400 * ... 13401 * } 13402 * foo() will be verified first for R1=any_scalar_value. During verification it 13403 * will be assumed that bar() already verified successfully and call to bar() 13404 * from foo() will be checked for type match only. Later bar() will be verified 13405 * independently to check that it's safe for R1=any_scalar_value. 13406 */ 13407 static int do_check_subprogs(struct bpf_verifier_env *env) 13408 { 13409 struct bpf_prog_aux *aux = env->prog->aux; 13410 int i, ret; 13411 13412 if (!aux->func_info) 13413 return 0; 13414 13415 for (i = 1; i < env->subprog_cnt; i++) { 13416 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13417 continue; 13418 env->insn_idx = env->subprog_info[i].start; 13419 WARN_ON_ONCE(env->insn_idx == 0); 13420 ret = do_check_common(env, i); 13421 if (ret) { 13422 return ret; 13423 } else if (env->log.level & BPF_LOG_LEVEL) { 13424 verbose(env, 13425 "Func#%d is safe for any args that match its prototype\n", 13426 i); 13427 } 13428 } 13429 return 0; 13430 } 13431 13432 static int do_check_main(struct bpf_verifier_env *env) 13433 { 13434 int ret; 13435 13436 env->insn_idx = 0; 13437 ret = do_check_common(env, 0); 13438 if (!ret) 13439 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13440 return ret; 13441 } 13442 13443 13444 static void print_verification_stats(struct bpf_verifier_env *env) 13445 { 13446 int i; 13447 13448 if (env->log.level & BPF_LOG_STATS) { 13449 verbose(env, "verification time %lld usec\n", 13450 div_u64(env->verification_time, 1000)); 13451 verbose(env, "stack depth "); 13452 for (i = 0; i < env->subprog_cnt; i++) { 13453 u32 depth = env->subprog_info[i].stack_depth; 13454 13455 verbose(env, "%d", depth); 13456 if (i + 1 < env->subprog_cnt) 13457 verbose(env, "+"); 13458 } 13459 verbose(env, "\n"); 13460 } 13461 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13462 "total_states %d peak_states %d mark_read %d\n", 13463 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13464 env->max_states_per_insn, env->total_states, 13465 env->peak_states, env->longest_mark_read_walk); 13466 } 13467 13468 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13469 { 13470 const struct btf_type *t, *func_proto; 13471 const struct bpf_struct_ops *st_ops; 13472 const struct btf_member *member; 13473 struct bpf_prog *prog = env->prog; 13474 u32 btf_id, member_idx; 13475 const char *mname; 13476 13477 if (!prog->gpl_compatible) { 13478 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13479 return -EINVAL; 13480 } 13481 13482 btf_id = prog->aux->attach_btf_id; 13483 st_ops = bpf_struct_ops_find(btf_id); 13484 if (!st_ops) { 13485 verbose(env, "attach_btf_id %u is not a supported struct\n", 13486 btf_id); 13487 return -ENOTSUPP; 13488 } 13489 13490 t = st_ops->type; 13491 member_idx = prog->expected_attach_type; 13492 if (member_idx >= btf_type_vlen(t)) { 13493 verbose(env, "attach to invalid member idx %u of struct %s\n", 13494 member_idx, st_ops->name); 13495 return -EINVAL; 13496 } 13497 13498 member = &btf_type_member(t)[member_idx]; 13499 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13500 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13501 NULL); 13502 if (!func_proto) { 13503 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13504 mname, member_idx, st_ops->name); 13505 return -EINVAL; 13506 } 13507 13508 if (st_ops->check_member) { 13509 int err = st_ops->check_member(t, member); 13510 13511 if (err) { 13512 verbose(env, "attach to unsupported member %s of struct %s\n", 13513 mname, st_ops->name); 13514 return err; 13515 } 13516 } 13517 13518 prog->aux->attach_func_proto = func_proto; 13519 prog->aux->attach_func_name = mname; 13520 env->ops = st_ops->verifier_ops; 13521 13522 return 0; 13523 } 13524 #define SECURITY_PREFIX "security_" 13525 13526 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13527 { 13528 if (within_error_injection_list(addr) || 13529 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13530 return 0; 13531 13532 return -EINVAL; 13533 } 13534 13535 /* list of non-sleepable functions that are otherwise on 13536 * ALLOW_ERROR_INJECTION list 13537 */ 13538 BTF_SET_START(btf_non_sleepable_error_inject) 13539 /* Three functions below can be called from sleepable and non-sleepable context. 13540 * Assume non-sleepable from bpf safety point of view. 13541 */ 13542 BTF_ID(func, __filemap_add_folio) 13543 BTF_ID(func, should_fail_alloc_page) 13544 BTF_ID(func, should_failslab) 13545 BTF_SET_END(btf_non_sleepable_error_inject) 13546 13547 static int check_non_sleepable_error_inject(u32 btf_id) 13548 { 13549 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13550 } 13551 13552 int bpf_check_attach_target(struct bpf_verifier_log *log, 13553 const struct bpf_prog *prog, 13554 const struct bpf_prog *tgt_prog, 13555 u32 btf_id, 13556 struct bpf_attach_target_info *tgt_info) 13557 { 13558 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13559 const char prefix[] = "btf_trace_"; 13560 int ret = 0, subprog = -1, i; 13561 const struct btf_type *t; 13562 bool conservative = true; 13563 const char *tname; 13564 struct btf *btf; 13565 long addr = 0; 13566 13567 if (!btf_id) { 13568 bpf_log(log, "Tracing programs must provide btf_id\n"); 13569 return -EINVAL; 13570 } 13571 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13572 if (!btf) { 13573 bpf_log(log, 13574 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13575 return -EINVAL; 13576 } 13577 t = btf_type_by_id(btf, btf_id); 13578 if (!t) { 13579 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13580 return -EINVAL; 13581 } 13582 tname = btf_name_by_offset(btf, t->name_off); 13583 if (!tname) { 13584 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13585 return -EINVAL; 13586 } 13587 if (tgt_prog) { 13588 struct bpf_prog_aux *aux = tgt_prog->aux; 13589 13590 for (i = 0; i < aux->func_info_cnt; i++) 13591 if (aux->func_info[i].type_id == btf_id) { 13592 subprog = i; 13593 break; 13594 } 13595 if (subprog == -1) { 13596 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13597 return -EINVAL; 13598 } 13599 conservative = aux->func_info_aux[subprog].unreliable; 13600 if (prog_extension) { 13601 if (conservative) { 13602 bpf_log(log, 13603 "Cannot replace static functions\n"); 13604 return -EINVAL; 13605 } 13606 if (!prog->jit_requested) { 13607 bpf_log(log, 13608 "Extension programs should be JITed\n"); 13609 return -EINVAL; 13610 } 13611 } 13612 if (!tgt_prog->jited) { 13613 bpf_log(log, "Can attach to only JITed progs\n"); 13614 return -EINVAL; 13615 } 13616 if (tgt_prog->type == prog->type) { 13617 /* Cannot fentry/fexit another fentry/fexit program. 13618 * Cannot attach program extension to another extension. 13619 * It's ok to attach fentry/fexit to extension program. 13620 */ 13621 bpf_log(log, "Cannot recursively attach\n"); 13622 return -EINVAL; 13623 } 13624 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13625 prog_extension && 13626 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13627 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13628 /* Program extensions can extend all program types 13629 * except fentry/fexit. The reason is the following. 13630 * The fentry/fexit programs are used for performance 13631 * analysis, stats and can be attached to any program 13632 * type except themselves. When extension program is 13633 * replacing XDP function it is necessary to allow 13634 * performance analysis of all functions. Both original 13635 * XDP program and its program extension. Hence 13636 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13637 * allowed. If extending of fentry/fexit was allowed it 13638 * would be possible to create long call chain 13639 * fentry->extension->fentry->extension beyond 13640 * reasonable stack size. Hence extending fentry is not 13641 * allowed. 13642 */ 13643 bpf_log(log, "Cannot extend fentry/fexit\n"); 13644 return -EINVAL; 13645 } 13646 } else { 13647 if (prog_extension) { 13648 bpf_log(log, "Cannot replace kernel functions\n"); 13649 return -EINVAL; 13650 } 13651 } 13652 13653 switch (prog->expected_attach_type) { 13654 case BPF_TRACE_RAW_TP: 13655 if (tgt_prog) { 13656 bpf_log(log, 13657 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13658 return -EINVAL; 13659 } 13660 if (!btf_type_is_typedef(t)) { 13661 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13662 btf_id); 13663 return -EINVAL; 13664 } 13665 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13666 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13667 btf_id, tname); 13668 return -EINVAL; 13669 } 13670 tname += sizeof(prefix) - 1; 13671 t = btf_type_by_id(btf, t->type); 13672 if (!btf_type_is_ptr(t)) 13673 /* should never happen in valid vmlinux build */ 13674 return -EINVAL; 13675 t = btf_type_by_id(btf, t->type); 13676 if (!btf_type_is_func_proto(t)) 13677 /* should never happen in valid vmlinux build */ 13678 return -EINVAL; 13679 13680 break; 13681 case BPF_TRACE_ITER: 13682 if (!btf_type_is_func(t)) { 13683 bpf_log(log, "attach_btf_id %u is not a function\n", 13684 btf_id); 13685 return -EINVAL; 13686 } 13687 t = btf_type_by_id(btf, t->type); 13688 if (!btf_type_is_func_proto(t)) 13689 return -EINVAL; 13690 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13691 if (ret) 13692 return ret; 13693 break; 13694 default: 13695 if (!prog_extension) 13696 return -EINVAL; 13697 fallthrough; 13698 case BPF_MODIFY_RETURN: 13699 case BPF_LSM_MAC: 13700 case BPF_TRACE_FENTRY: 13701 case BPF_TRACE_FEXIT: 13702 if (!btf_type_is_func(t)) { 13703 bpf_log(log, "attach_btf_id %u is not a function\n", 13704 btf_id); 13705 return -EINVAL; 13706 } 13707 if (prog_extension && 13708 btf_check_type_match(log, prog, btf, t)) 13709 return -EINVAL; 13710 t = btf_type_by_id(btf, t->type); 13711 if (!btf_type_is_func_proto(t)) 13712 return -EINVAL; 13713 13714 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13715 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13716 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13717 return -EINVAL; 13718 13719 if (tgt_prog && conservative) 13720 t = NULL; 13721 13722 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13723 if (ret < 0) 13724 return ret; 13725 13726 if (tgt_prog) { 13727 if (subprog == 0) 13728 addr = (long) tgt_prog->bpf_func; 13729 else 13730 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13731 } else { 13732 addr = kallsyms_lookup_name(tname); 13733 if (!addr) { 13734 bpf_log(log, 13735 "The address of function %s cannot be found\n", 13736 tname); 13737 return -ENOENT; 13738 } 13739 } 13740 13741 if (prog->aux->sleepable) { 13742 ret = -EINVAL; 13743 switch (prog->type) { 13744 case BPF_PROG_TYPE_TRACING: 13745 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13746 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13747 */ 13748 if (!check_non_sleepable_error_inject(btf_id) && 13749 within_error_injection_list(addr)) 13750 ret = 0; 13751 break; 13752 case BPF_PROG_TYPE_LSM: 13753 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13754 * Only some of them are sleepable. 13755 */ 13756 if (bpf_lsm_is_sleepable_hook(btf_id)) 13757 ret = 0; 13758 break; 13759 default: 13760 break; 13761 } 13762 if (ret) { 13763 bpf_log(log, "%s is not sleepable\n", tname); 13764 return ret; 13765 } 13766 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13767 if (tgt_prog) { 13768 bpf_log(log, "can't modify return codes of BPF programs\n"); 13769 return -EINVAL; 13770 } 13771 ret = check_attach_modify_return(addr, tname); 13772 if (ret) { 13773 bpf_log(log, "%s() is not modifiable\n", tname); 13774 return ret; 13775 } 13776 } 13777 13778 break; 13779 } 13780 tgt_info->tgt_addr = addr; 13781 tgt_info->tgt_name = tname; 13782 tgt_info->tgt_type = t; 13783 return 0; 13784 } 13785 13786 BTF_SET_START(btf_id_deny) 13787 BTF_ID_UNUSED 13788 #ifdef CONFIG_SMP 13789 BTF_ID(func, migrate_disable) 13790 BTF_ID(func, migrate_enable) 13791 #endif 13792 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13793 BTF_ID(func, rcu_read_unlock_strict) 13794 #endif 13795 BTF_SET_END(btf_id_deny) 13796 13797 static int check_attach_btf_id(struct bpf_verifier_env *env) 13798 { 13799 struct bpf_prog *prog = env->prog; 13800 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13801 struct bpf_attach_target_info tgt_info = {}; 13802 u32 btf_id = prog->aux->attach_btf_id; 13803 struct bpf_trampoline *tr; 13804 int ret; 13805 u64 key; 13806 13807 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13808 if (prog->aux->sleepable) 13809 /* attach_btf_id checked to be zero already */ 13810 return 0; 13811 verbose(env, "Syscall programs can only be sleepable\n"); 13812 return -EINVAL; 13813 } 13814 13815 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13816 prog->type != BPF_PROG_TYPE_LSM) { 13817 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13818 return -EINVAL; 13819 } 13820 13821 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13822 return check_struct_ops_btf_id(env); 13823 13824 if (prog->type != BPF_PROG_TYPE_TRACING && 13825 prog->type != BPF_PROG_TYPE_LSM && 13826 prog->type != BPF_PROG_TYPE_EXT) 13827 return 0; 13828 13829 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13830 if (ret) 13831 return ret; 13832 13833 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13834 /* to make freplace equivalent to their targets, they need to 13835 * inherit env->ops and expected_attach_type for the rest of the 13836 * verification 13837 */ 13838 env->ops = bpf_verifier_ops[tgt_prog->type]; 13839 prog->expected_attach_type = tgt_prog->expected_attach_type; 13840 } 13841 13842 /* store info about the attachment target that will be used later */ 13843 prog->aux->attach_func_proto = tgt_info.tgt_type; 13844 prog->aux->attach_func_name = tgt_info.tgt_name; 13845 13846 if (tgt_prog) { 13847 prog->aux->saved_dst_prog_type = tgt_prog->type; 13848 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13849 } 13850 13851 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13852 prog->aux->attach_btf_trace = true; 13853 return 0; 13854 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13855 if (!bpf_iter_prog_supported(prog)) 13856 return -EINVAL; 13857 return 0; 13858 } 13859 13860 if (prog->type == BPF_PROG_TYPE_LSM) { 13861 ret = bpf_lsm_verify_prog(&env->log, prog); 13862 if (ret < 0) 13863 return ret; 13864 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13865 btf_id_set_contains(&btf_id_deny, btf_id)) { 13866 return -EINVAL; 13867 } 13868 13869 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13870 tr = bpf_trampoline_get(key, &tgt_info); 13871 if (!tr) 13872 return -ENOMEM; 13873 13874 prog->aux->dst_trampoline = tr; 13875 return 0; 13876 } 13877 13878 struct btf *bpf_get_btf_vmlinux(void) 13879 { 13880 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13881 mutex_lock(&bpf_verifier_lock); 13882 if (!btf_vmlinux) 13883 btf_vmlinux = btf_parse_vmlinux(); 13884 mutex_unlock(&bpf_verifier_lock); 13885 } 13886 return btf_vmlinux; 13887 } 13888 13889 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13890 { 13891 u64 start_time = ktime_get_ns(); 13892 struct bpf_verifier_env *env; 13893 struct bpf_verifier_log *log; 13894 int i, len, ret = -EINVAL; 13895 bool is_priv; 13896 13897 /* no program is valid */ 13898 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13899 return -EINVAL; 13900 13901 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13902 * allocate/free it every time bpf_check() is called 13903 */ 13904 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13905 if (!env) 13906 return -ENOMEM; 13907 log = &env->log; 13908 13909 len = (*prog)->len; 13910 env->insn_aux_data = 13911 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13912 ret = -ENOMEM; 13913 if (!env->insn_aux_data) 13914 goto err_free_env; 13915 for (i = 0; i < len; i++) 13916 env->insn_aux_data[i].orig_idx = i; 13917 env->prog = *prog; 13918 env->ops = bpf_verifier_ops[env->prog->type]; 13919 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13920 is_priv = bpf_capable(); 13921 13922 bpf_get_btf_vmlinux(); 13923 13924 /* grab the mutex to protect few globals used by verifier */ 13925 if (!is_priv) 13926 mutex_lock(&bpf_verifier_lock); 13927 13928 if (attr->log_level || attr->log_buf || attr->log_size) { 13929 /* user requested verbose verifier output 13930 * and supplied buffer to store the verification trace 13931 */ 13932 log->level = attr->log_level; 13933 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13934 log->len_total = attr->log_size; 13935 13936 ret = -EINVAL; 13937 /* log attributes have to be sane */ 13938 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13939 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13940 goto err_unlock; 13941 } 13942 13943 if (IS_ERR(btf_vmlinux)) { 13944 /* Either gcc or pahole or kernel are broken. */ 13945 verbose(env, "in-kernel BTF is malformed\n"); 13946 ret = PTR_ERR(btf_vmlinux); 13947 goto skip_full_check; 13948 } 13949 13950 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13951 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13952 env->strict_alignment = true; 13953 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13954 env->strict_alignment = false; 13955 13956 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13957 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13958 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13959 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13960 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13961 env->bpf_capable = bpf_capable(); 13962 13963 if (is_priv) 13964 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13965 13966 env->explored_states = kvcalloc(state_htab_size(env), 13967 sizeof(struct bpf_verifier_state_list *), 13968 GFP_USER); 13969 ret = -ENOMEM; 13970 if (!env->explored_states) 13971 goto skip_full_check; 13972 13973 ret = add_subprog_and_kfunc(env); 13974 if (ret < 0) 13975 goto skip_full_check; 13976 13977 ret = check_subprogs(env); 13978 if (ret < 0) 13979 goto skip_full_check; 13980 13981 ret = check_btf_info(env, attr, uattr); 13982 if (ret < 0) 13983 goto skip_full_check; 13984 13985 ret = check_attach_btf_id(env); 13986 if (ret) 13987 goto skip_full_check; 13988 13989 ret = resolve_pseudo_ldimm64(env); 13990 if (ret < 0) 13991 goto skip_full_check; 13992 13993 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13994 ret = bpf_prog_offload_verifier_prep(env->prog); 13995 if (ret) 13996 goto skip_full_check; 13997 } 13998 13999 ret = check_cfg(env); 14000 if (ret < 0) 14001 goto skip_full_check; 14002 14003 ret = do_check_subprogs(env); 14004 ret = ret ?: do_check_main(env); 14005 14006 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14007 ret = bpf_prog_offload_finalize(env); 14008 14009 skip_full_check: 14010 kvfree(env->explored_states); 14011 14012 if (ret == 0) 14013 ret = check_max_stack_depth(env); 14014 14015 /* instruction rewrites happen after this point */ 14016 if (is_priv) { 14017 if (ret == 0) 14018 opt_hard_wire_dead_code_branches(env); 14019 if (ret == 0) 14020 ret = opt_remove_dead_code(env); 14021 if (ret == 0) 14022 ret = opt_remove_nops(env); 14023 } else { 14024 if (ret == 0) 14025 sanitize_dead_code(env); 14026 } 14027 14028 if (ret == 0) 14029 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14030 ret = convert_ctx_accesses(env); 14031 14032 if (ret == 0) 14033 ret = do_misc_fixups(env); 14034 14035 /* do 32-bit optimization after insn patching has done so those patched 14036 * insns could be handled correctly. 14037 */ 14038 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14039 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14040 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14041 : false; 14042 } 14043 14044 if (ret == 0) 14045 ret = fixup_call_args(env); 14046 14047 env->verification_time = ktime_get_ns() - start_time; 14048 print_verification_stats(env); 14049 env->prog->aux->verified_insns = env->insn_processed; 14050 14051 if (log->level && bpf_verifier_log_full(log)) 14052 ret = -ENOSPC; 14053 if (log->level && !log->ubuf) { 14054 ret = -EFAULT; 14055 goto err_release_maps; 14056 } 14057 14058 if (ret) 14059 goto err_release_maps; 14060 14061 if (env->used_map_cnt) { 14062 /* if program passed verifier, update used_maps in bpf_prog_info */ 14063 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14064 sizeof(env->used_maps[0]), 14065 GFP_KERNEL); 14066 14067 if (!env->prog->aux->used_maps) { 14068 ret = -ENOMEM; 14069 goto err_release_maps; 14070 } 14071 14072 memcpy(env->prog->aux->used_maps, env->used_maps, 14073 sizeof(env->used_maps[0]) * env->used_map_cnt); 14074 env->prog->aux->used_map_cnt = env->used_map_cnt; 14075 } 14076 if (env->used_btf_cnt) { 14077 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14078 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14079 sizeof(env->used_btfs[0]), 14080 GFP_KERNEL); 14081 if (!env->prog->aux->used_btfs) { 14082 ret = -ENOMEM; 14083 goto err_release_maps; 14084 } 14085 14086 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14087 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14088 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14089 } 14090 if (env->used_map_cnt || env->used_btf_cnt) { 14091 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14092 * bpf_ld_imm64 instructions 14093 */ 14094 convert_pseudo_ld_imm64(env); 14095 } 14096 14097 adjust_btf_func(env); 14098 14099 err_release_maps: 14100 if (!env->prog->aux->used_maps) 14101 /* if we didn't copy map pointers into bpf_prog_info, release 14102 * them now. Otherwise free_used_maps() will release them. 14103 */ 14104 release_maps(env); 14105 if (!env->prog->aux->used_btfs) 14106 release_btfs(env); 14107 14108 /* extension progs temporarily inherit the attach_type of their targets 14109 for verification purposes, so set it back to zero before returning 14110 */ 14111 if (env->prog->type == BPF_PROG_TYPE_EXT) 14112 env->prog->expected_attach_type = 0; 14113 14114 *prog = env->prog; 14115 err_unlock: 14116 if (!is_priv) 14117 mutex_unlock(&bpf_verifier_lock); 14118 vfree(env->insn_aux_data); 14119 err_free_env: 14120 kfree(env); 14121 return ret; 14122 } 14123