1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return reg->type == PTR_TO_MAP_VALUE && 457 btf_record_has_field(reg->map_ptr->record, BPF_SPIN_LOCK); 458 } 459 460 static bool type_is_rdonly_mem(u32 type) 461 { 462 return type & MEM_RDONLY; 463 } 464 465 static bool type_may_be_null(u32 type) 466 { 467 return type & PTR_MAYBE_NULL; 468 } 469 470 static bool is_acquire_function(enum bpf_func_id func_id, 471 const struct bpf_map *map) 472 { 473 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 474 475 if (func_id == BPF_FUNC_sk_lookup_tcp || 476 func_id == BPF_FUNC_sk_lookup_udp || 477 func_id == BPF_FUNC_skc_lookup_tcp || 478 func_id == BPF_FUNC_ringbuf_reserve || 479 func_id == BPF_FUNC_kptr_xchg) 480 return true; 481 482 if (func_id == BPF_FUNC_map_lookup_elem && 483 (map_type == BPF_MAP_TYPE_SOCKMAP || 484 map_type == BPF_MAP_TYPE_SOCKHASH)) 485 return true; 486 487 return false; 488 } 489 490 static bool is_ptr_cast_function(enum bpf_func_id func_id) 491 { 492 return func_id == BPF_FUNC_tcp_sock || 493 func_id == BPF_FUNC_sk_fullsock || 494 func_id == BPF_FUNC_skc_to_tcp_sock || 495 func_id == BPF_FUNC_skc_to_tcp6_sock || 496 func_id == BPF_FUNC_skc_to_udp6_sock || 497 func_id == BPF_FUNC_skc_to_mptcp_sock || 498 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 499 func_id == BPF_FUNC_skc_to_tcp_request_sock; 500 } 501 502 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_dynptr_data; 505 } 506 507 static bool is_callback_calling_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_for_each_map_elem || 510 func_id == BPF_FUNC_timer_set_callback || 511 func_id == BPF_FUNC_find_vma || 512 func_id == BPF_FUNC_loop || 513 func_id == BPF_FUNC_user_ringbuf_drain; 514 } 515 516 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 517 const struct bpf_map *map) 518 { 519 int ref_obj_uses = 0; 520 521 if (is_ptr_cast_function(func_id)) 522 ref_obj_uses++; 523 if (is_acquire_function(func_id, map)) 524 ref_obj_uses++; 525 if (is_dynptr_ref_function(func_id)) 526 ref_obj_uses++; 527 528 return ref_obj_uses > 1; 529 } 530 531 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 532 { 533 return BPF_CLASS(insn->code) == BPF_STX && 534 BPF_MODE(insn->code) == BPF_ATOMIC && 535 insn->imm == BPF_CMPXCHG; 536 } 537 538 /* string representation of 'enum bpf_reg_type' 539 * 540 * Note that reg_type_str() can not appear more than once in a single verbose() 541 * statement. 542 */ 543 static const char *reg_type_str(struct bpf_verifier_env *env, 544 enum bpf_reg_type type) 545 { 546 char postfix[16] = {0}, prefix[32] = {0}; 547 static const char * const str[] = { 548 [NOT_INIT] = "?", 549 [SCALAR_VALUE] = "scalar", 550 [PTR_TO_CTX] = "ctx", 551 [CONST_PTR_TO_MAP] = "map_ptr", 552 [PTR_TO_MAP_VALUE] = "map_value", 553 [PTR_TO_STACK] = "fp", 554 [PTR_TO_PACKET] = "pkt", 555 [PTR_TO_PACKET_META] = "pkt_meta", 556 [PTR_TO_PACKET_END] = "pkt_end", 557 [PTR_TO_FLOW_KEYS] = "flow_keys", 558 [PTR_TO_SOCKET] = "sock", 559 [PTR_TO_SOCK_COMMON] = "sock_common", 560 [PTR_TO_TCP_SOCK] = "tcp_sock", 561 [PTR_TO_TP_BUFFER] = "tp_buffer", 562 [PTR_TO_XDP_SOCK] = "xdp_sock", 563 [PTR_TO_BTF_ID] = "ptr_", 564 [PTR_TO_MEM] = "mem", 565 [PTR_TO_BUF] = "buf", 566 [PTR_TO_FUNC] = "func", 567 [PTR_TO_MAP_KEY] = "map_key", 568 [PTR_TO_DYNPTR] = "dynptr_ptr", 569 }; 570 571 if (type & PTR_MAYBE_NULL) { 572 if (base_type(type) == PTR_TO_BTF_ID) 573 strncpy(postfix, "or_null_", 16); 574 else 575 strncpy(postfix, "_or_null", 16); 576 } 577 578 if (type & MEM_RDONLY) 579 strncpy(prefix, "rdonly_", 32); 580 if (type & MEM_ALLOC) 581 strncpy(prefix, "alloc_", 32); 582 if (type & MEM_USER) 583 strncpy(prefix, "user_", 32); 584 if (type & MEM_PERCPU) 585 strncpy(prefix, "percpu_", 32); 586 if (type & PTR_UNTRUSTED) 587 strncpy(prefix, "untrusted_", 32); 588 589 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 590 prefix, str[base_type(type)], postfix); 591 return env->type_str_buf; 592 } 593 594 static char slot_type_char[] = { 595 [STACK_INVALID] = '?', 596 [STACK_SPILL] = 'r', 597 [STACK_MISC] = 'm', 598 [STACK_ZERO] = '0', 599 [STACK_DYNPTR] = 'd', 600 }; 601 602 static void print_liveness(struct bpf_verifier_env *env, 603 enum bpf_reg_liveness live) 604 { 605 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 606 verbose(env, "_"); 607 if (live & REG_LIVE_READ) 608 verbose(env, "r"); 609 if (live & REG_LIVE_WRITTEN) 610 verbose(env, "w"); 611 if (live & REG_LIVE_DONE) 612 verbose(env, "D"); 613 } 614 615 static int get_spi(s32 off) 616 { 617 return (-off - 1) / BPF_REG_SIZE; 618 } 619 620 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 621 { 622 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 623 624 /* We need to check that slots between [spi - nr_slots + 1, spi] are 625 * within [0, allocated_stack). 626 * 627 * Please note that the spi grows downwards. For example, a dynptr 628 * takes the size of two stack slots; the first slot will be at 629 * spi and the second slot will be at spi - 1. 630 */ 631 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 632 } 633 634 static struct bpf_func_state *func(struct bpf_verifier_env *env, 635 const struct bpf_reg_state *reg) 636 { 637 struct bpf_verifier_state *cur = env->cur_state; 638 639 return cur->frame[reg->frameno]; 640 } 641 642 static const char *kernel_type_name(const struct btf* btf, u32 id) 643 { 644 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 645 } 646 647 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 648 { 649 env->scratched_regs |= 1U << regno; 650 } 651 652 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 653 { 654 env->scratched_stack_slots |= 1ULL << spi; 655 } 656 657 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 658 { 659 return (env->scratched_regs >> regno) & 1; 660 } 661 662 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 663 { 664 return (env->scratched_stack_slots >> regno) & 1; 665 } 666 667 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 668 { 669 return env->scratched_regs || env->scratched_stack_slots; 670 } 671 672 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 673 { 674 env->scratched_regs = 0U; 675 env->scratched_stack_slots = 0ULL; 676 } 677 678 /* Used for printing the entire verifier state. */ 679 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 680 { 681 env->scratched_regs = ~0U; 682 env->scratched_stack_slots = ~0ULL; 683 } 684 685 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 686 { 687 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 688 case DYNPTR_TYPE_LOCAL: 689 return BPF_DYNPTR_TYPE_LOCAL; 690 case DYNPTR_TYPE_RINGBUF: 691 return BPF_DYNPTR_TYPE_RINGBUF; 692 default: 693 return BPF_DYNPTR_TYPE_INVALID; 694 } 695 } 696 697 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 698 { 699 return type == BPF_DYNPTR_TYPE_RINGBUF; 700 } 701 702 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 703 enum bpf_arg_type arg_type, int insn_idx) 704 { 705 struct bpf_func_state *state = func(env, reg); 706 enum bpf_dynptr_type type; 707 int spi, i, id; 708 709 spi = get_spi(reg->off); 710 711 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 712 return -EINVAL; 713 714 for (i = 0; i < BPF_REG_SIZE; i++) { 715 state->stack[spi].slot_type[i] = STACK_DYNPTR; 716 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 717 } 718 719 type = arg_to_dynptr_type(arg_type); 720 if (type == BPF_DYNPTR_TYPE_INVALID) 721 return -EINVAL; 722 723 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 724 state->stack[spi].spilled_ptr.dynptr.type = type; 725 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 726 727 if (dynptr_type_refcounted(type)) { 728 /* The id is used to track proper releasing */ 729 id = acquire_reference_state(env, insn_idx); 730 if (id < 0) 731 return id; 732 733 state->stack[spi].spilled_ptr.id = id; 734 state->stack[spi - 1].spilled_ptr.id = id; 735 } 736 737 return 0; 738 } 739 740 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 741 { 742 struct bpf_func_state *state = func(env, reg); 743 int spi, i; 744 745 spi = get_spi(reg->off); 746 747 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 748 return -EINVAL; 749 750 for (i = 0; i < BPF_REG_SIZE; i++) { 751 state->stack[spi].slot_type[i] = STACK_INVALID; 752 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 753 } 754 755 /* Invalidate any slices associated with this dynptr */ 756 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 757 release_reference(env, state->stack[spi].spilled_ptr.id); 758 state->stack[spi].spilled_ptr.id = 0; 759 state->stack[spi - 1].spilled_ptr.id = 0; 760 } 761 762 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 763 state->stack[spi].spilled_ptr.dynptr.type = 0; 764 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 765 766 return 0; 767 } 768 769 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 770 { 771 struct bpf_func_state *state = func(env, reg); 772 int spi = get_spi(reg->off); 773 int i; 774 775 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 776 return true; 777 778 for (i = 0; i < BPF_REG_SIZE; i++) { 779 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 780 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 781 return false; 782 } 783 784 return true; 785 } 786 787 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, 788 struct bpf_reg_state *reg) 789 { 790 struct bpf_func_state *state = func(env, reg); 791 int spi = get_spi(reg->off); 792 int i; 793 794 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 795 !state->stack[spi].spilled_ptr.dynptr.first_slot) 796 return false; 797 798 for (i = 0; i < BPF_REG_SIZE; i++) { 799 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 800 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 801 return false; 802 } 803 804 return true; 805 } 806 807 bool is_dynptr_type_expected(struct bpf_verifier_env *env, 808 struct bpf_reg_state *reg, 809 enum bpf_arg_type arg_type) 810 { 811 struct bpf_func_state *state = func(env, reg); 812 enum bpf_dynptr_type dynptr_type; 813 int spi = get_spi(reg->off); 814 815 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 816 if (arg_type == ARG_PTR_TO_DYNPTR) 817 return true; 818 819 dynptr_type = arg_to_dynptr_type(arg_type); 820 821 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 822 } 823 824 /* The reg state of a pointer or a bounded scalar was saved when 825 * it was spilled to the stack. 826 */ 827 static bool is_spilled_reg(const struct bpf_stack_state *stack) 828 { 829 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 830 } 831 832 static void scrub_spilled_slot(u8 *stype) 833 { 834 if (*stype != STACK_INVALID) 835 *stype = STACK_MISC; 836 } 837 838 static void print_verifier_state(struct bpf_verifier_env *env, 839 const struct bpf_func_state *state, 840 bool print_all) 841 { 842 const struct bpf_reg_state *reg; 843 enum bpf_reg_type t; 844 int i; 845 846 if (state->frameno) 847 verbose(env, " frame%d:", state->frameno); 848 for (i = 0; i < MAX_BPF_REG; i++) { 849 reg = &state->regs[i]; 850 t = reg->type; 851 if (t == NOT_INIT) 852 continue; 853 if (!print_all && !reg_scratched(env, i)) 854 continue; 855 verbose(env, " R%d", i); 856 print_liveness(env, reg->live); 857 verbose(env, "="); 858 if (t == SCALAR_VALUE && reg->precise) 859 verbose(env, "P"); 860 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 861 tnum_is_const(reg->var_off)) { 862 /* reg->off should be 0 for SCALAR_VALUE */ 863 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 864 verbose(env, "%lld", reg->var_off.value + reg->off); 865 } else { 866 const char *sep = ""; 867 868 verbose(env, "%s", reg_type_str(env, t)); 869 if (base_type(t) == PTR_TO_BTF_ID) 870 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 871 verbose(env, "("); 872 /* 873 * _a stands for append, was shortened to avoid multiline statements below. 874 * This macro is used to output a comma separated list of attributes. 875 */ 876 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 877 878 if (reg->id) 879 verbose_a("id=%d", reg->id); 880 if (reg->ref_obj_id) 881 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 882 if (t != SCALAR_VALUE) 883 verbose_a("off=%d", reg->off); 884 if (type_is_pkt_pointer(t)) 885 verbose_a("r=%d", reg->range); 886 else if (base_type(t) == CONST_PTR_TO_MAP || 887 base_type(t) == PTR_TO_MAP_KEY || 888 base_type(t) == PTR_TO_MAP_VALUE) 889 verbose_a("ks=%d,vs=%d", 890 reg->map_ptr->key_size, 891 reg->map_ptr->value_size); 892 if (tnum_is_const(reg->var_off)) { 893 /* Typically an immediate SCALAR_VALUE, but 894 * could be a pointer whose offset is too big 895 * for reg->off 896 */ 897 verbose_a("imm=%llx", reg->var_off.value); 898 } else { 899 if (reg->smin_value != reg->umin_value && 900 reg->smin_value != S64_MIN) 901 verbose_a("smin=%lld", (long long)reg->smin_value); 902 if (reg->smax_value != reg->umax_value && 903 reg->smax_value != S64_MAX) 904 verbose_a("smax=%lld", (long long)reg->smax_value); 905 if (reg->umin_value != 0) 906 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 907 if (reg->umax_value != U64_MAX) 908 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 909 if (!tnum_is_unknown(reg->var_off)) { 910 char tn_buf[48]; 911 912 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 913 verbose_a("var_off=%s", tn_buf); 914 } 915 if (reg->s32_min_value != reg->smin_value && 916 reg->s32_min_value != S32_MIN) 917 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 918 if (reg->s32_max_value != reg->smax_value && 919 reg->s32_max_value != S32_MAX) 920 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 921 if (reg->u32_min_value != reg->umin_value && 922 reg->u32_min_value != U32_MIN) 923 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 924 if (reg->u32_max_value != reg->umax_value && 925 reg->u32_max_value != U32_MAX) 926 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 927 } 928 #undef verbose_a 929 930 verbose(env, ")"); 931 } 932 } 933 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 934 char types_buf[BPF_REG_SIZE + 1]; 935 bool valid = false; 936 int j; 937 938 for (j = 0; j < BPF_REG_SIZE; j++) { 939 if (state->stack[i].slot_type[j] != STACK_INVALID) 940 valid = true; 941 types_buf[j] = slot_type_char[ 942 state->stack[i].slot_type[j]]; 943 } 944 types_buf[BPF_REG_SIZE] = 0; 945 if (!valid) 946 continue; 947 if (!print_all && !stack_slot_scratched(env, i)) 948 continue; 949 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 950 print_liveness(env, state->stack[i].spilled_ptr.live); 951 if (is_spilled_reg(&state->stack[i])) { 952 reg = &state->stack[i].spilled_ptr; 953 t = reg->type; 954 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 955 if (t == SCALAR_VALUE && reg->precise) 956 verbose(env, "P"); 957 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 958 verbose(env, "%lld", reg->var_off.value + reg->off); 959 } else { 960 verbose(env, "=%s", types_buf); 961 } 962 } 963 if (state->acquired_refs && state->refs[0].id) { 964 verbose(env, " refs=%d", state->refs[0].id); 965 for (i = 1; i < state->acquired_refs; i++) 966 if (state->refs[i].id) 967 verbose(env, ",%d", state->refs[i].id); 968 } 969 if (state->in_callback_fn) 970 verbose(env, " cb"); 971 if (state->in_async_callback_fn) 972 verbose(env, " async_cb"); 973 verbose(env, "\n"); 974 mark_verifier_state_clean(env); 975 } 976 977 static inline u32 vlog_alignment(u32 pos) 978 { 979 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 980 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 981 } 982 983 static void print_insn_state(struct bpf_verifier_env *env, 984 const struct bpf_func_state *state) 985 { 986 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 987 /* remove new line character */ 988 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 989 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 990 } else { 991 verbose(env, "%d:", env->insn_idx); 992 } 993 print_verifier_state(env, state, false); 994 } 995 996 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 997 * small to hold src. This is different from krealloc since we don't want to preserve 998 * the contents of dst. 999 * 1000 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1001 * not be allocated. 1002 */ 1003 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1004 { 1005 size_t bytes; 1006 1007 if (ZERO_OR_NULL_PTR(src)) 1008 goto out; 1009 1010 if (unlikely(check_mul_overflow(n, size, &bytes))) 1011 return NULL; 1012 1013 if (ksize(dst) < bytes) { 1014 kfree(dst); 1015 dst = kmalloc_track_caller(bytes, flags); 1016 if (!dst) 1017 return NULL; 1018 } 1019 1020 memcpy(dst, src, bytes); 1021 out: 1022 return dst ? dst : ZERO_SIZE_PTR; 1023 } 1024 1025 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1026 * small to hold new_n items. new items are zeroed out if the array grows. 1027 * 1028 * Contrary to krealloc_array, does not free arr if new_n is zero. 1029 */ 1030 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1031 { 1032 void *new_arr; 1033 1034 if (!new_n || old_n == new_n) 1035 goto out; 1036 1037 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1038 if (!new_arr) { 1039 kfree(arr); 1040 return NULL; 1041 } 1042 arr = new_arr; 1043 1044 if (new_n > old_n) 1045 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1046 1047 out: 1048 return arr ? arr : ZERO_SIZE_PTR; 1049 } 1050 1051 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1052 { 1053 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1054 sizeof(struct bpf_reference_state), GFP_KERNEL); 1055 if (!dst->refs) 1056 return -ENOMEM; 1057 1058 dst->acquired_refs = src->acquired_refs; 1059 return 0; 1060 } 1061 1062 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1063 { 1064 size_t n = src->allocated_stack / BPF_REG_SIZE; 1065 1066 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1067 GFP_KERNEL); 1068 if (!dst->stack) 1069 return -ENOMEM; 1070 1071 dst->allocated_stack = src->allocated_stack; 1072 return 0; 1073 } 1074 1075 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1076 { 1077 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1078 sizeof(struct bpf_reference_state)); 1079 if (!state->refs) 1080 return -ENOMEM; 1081 1082 state->acquired_refs = n; 1083 return 0; 1084 } 1085 1086 static int grow_stack_state(struct bpf_func_state *state, int size) 1087 { 1088 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1089 1090 if (old_n >= n) 1091 return 0; 1092 1093 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1094 if (!state->stack) 1095 return -ENOMEM; 1096 1097 state->allocated_stack = size; 1098 return 0; 1099 } 1100 1101 /* Acquire a pointer id from the env and update the state->refs to include 1102 * this new pointer reference. 1103 * On success, returns a valid pointer id to associate with the register 1104 * On failure, returns a negative errno. 1105 */ 1106 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1107 { 1108 struct bpf_func_state *state = cur_func(env); 1109 int new_ofs = state->acquired_refs; 1110 int id, err; 1111 1112 err = resize_reference_state(state, state->acquired_refs + 1); 1113 if (err) 1114 return err; 1115 id = ++env->id_gen; 1116 state->refs[new_ofs].id = id; 1117 state->refs[new_ofs].insn_idx = insn_idx; 1118 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1119 1120 return id; 1121 } 1122 1123 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1124 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1125 { 1126 int i, last_idx; 1127 1128 last_idx = state->acquired_refs - 1; 1129 for (i = 0; i < state->acquired_refs; i++) { 1130 if (state->refs[i].id == ptr_id) { 1131 /* Cannot release caller references in callbacks */ 1132 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1133 return -EINVAL; 1134 if (last_idx && i != last_idx) 1135 memcpy(&state->refs[i], &state->refs[last_idx], 1136 sizeof(*state->refs)); 1137 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1138 state->acquired_refs--; 1139 return 0; 1140 } 1141 } 1142 return -EINVAL; 1143 } 1144 1145 static void free_func_state(struct bpf_func_state *state) 1146 { 1147 if (!state) 1148 return; 1149 kfree(state->refs); 1150 kfree(state->stack); 1151 kfree(state); 1152 } 1153 1154 static void clear_jmp_history(struct bpf_verifier_state *state) 1155 { 1156 kfree(state->jmp_history); 1157 state->jmp_history = NULL; 1158 state->jmp_history_cnt = 0; 1159 } 1160 1161 static void free_verifier_state(struct bpf_verifier_state *state, 1162 bool free_self) 1163 { 1164 int i; 1165 1166 for (i = 0; i <= state->curframe; i++) { 1167 free_func_state(state->frame[i]); 1168 state->frame[i] = NULL; 1169 } 1170 clear_jmp_history(state); 1171 if (free_self) 1172 kfree(state); 1173 } 1174 1175 /* copy verifier state from src to dst growing dst stack space 1176 * when necessary to accommodate larger src stack 1177 */ 1178 static int copy_func_state(struct bpf_func_state *dst, 1179 const struct bpf_func_state *src) 1180 { 1181 int err; 1182 1183 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1184 err = copy_reference_state(dst, src); 1185 if (err) 1186 return err; 1187 return copy_stack_state(dst, src); 1188 } 1189 1190 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1191 const struct bpf_verifier_state *src) 1192 { 1193 struct bpf_func_state *dst; 1194 int i, err; 1195 1196 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1197 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1198 GFP_USER); 1199 if (!dst_state->jmp_history) 1200 return -ENOMEM; 1201 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1202 1203 /* if dst has more stack frames then src frame, free them */ 1204 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1205 free_func_state(dst_state->frame[i]); 1206 dst_state->frame[i] = NULL; 1207 } 1208 dst_state->speculative = src->speculative; 1209 dst_state->curframe = src->curframe; 1210 dst_state->active_spin_lock = src->active_spin_lock; 1211 dst_state->branches = src->branches; 1212 dst_state->parent = src->parent; 1213 dst_state->first_insn_idx = src->first_insn_idx; 1214 dst_state->last_insn_idx = src->last_insn_idx; 1215 for (i = 0; i <= src->curframe; i++) { 1216 dst = dst_state->frame[i]; 1217 if (!dst) { 1218 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1219 if (!dst) 1220 return -ENOMEM; 1221 dst_state->frame[i] = dst; 1222 } 1223 err = copy_func_state(dst, src->frame[i]); 1224 if (err) 1225 return err; 1226 } 1227 return 0; 1228 } 1229 1230 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1231 { 1232 while (st) { 1233 u32 br = --st->branches; 1234 1235 /* WARN_ON(br > 1) technically makes sense here, 1236 * but see comment in push_stack(), hence: 1237 */ 1238 WARN_ONCE((int)br < 0, 1239 "BUG update_branch_counts:branches_to_explore=%d\n", 1240 br); 1241 if (br) 1242 break; 1243 st = st->parent; 1244 } 1245 } 1246 1247 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1248 int *insn_idx, bool pop_log) 1249 { 1250 struct bpf_verifier_state *cur = env->cur_state; 1251 struct bpf_verifier_stack_elem *elem, *head = env->head; 1252 int err; 1253 1254 if (env->head == NULL) 1255 return -ENOENT; 1256 1257 if (cur) { 1258 err = copy_verifier_state(cur, &head->st); 1259 if (err) 1260 return err; 1261 } 1262 if (pop_log) 1263 bpf_vlog_reset(&env->log, head->log_pos); 1264 if (insn_idx) 1265 *insn_idx = head->insn_idx; 1266 if (prev_insn_idx) 1267 *prev_insn_idx = head->prev_insn_idx; 1268 elem = head->next; 1269 free_verifier_state(&head->st, false); 1270 kfree(head); 1271 env->head = elem; 1272 env->stack_size--; 1273 return 0; 1274 } 1275 1276 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1277 int insn_idx, int prev_insn_idx, 1278 bool speculative) 1279 { 1280 struct bpf_verifier_state *cur = env->cur_state; 1281 struct bpf_verifier_stack_elem *elem; 1282 int err; 1283 1284 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1285 if (!elem) 1286 goto err; 1287 1288 elem->insn_idx = insn_idx; 1289 elem->prev_insn_idx = prev_insn_idx; 1290 elem->next = env->head; 1291 elem->log_pos = env->log.len_used; 1292 env->head = elem; 1293 env->stack_size++; 1294 err = copy_verifier_state(&elem->st, cur); 1295 if (err) 1296 goto err; 1297 elem->st.speculative |= speculative; 1298 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1299 verbose(env, "The sequence of %d jumps is too complex.\n", 1300 env->stack_size); 1301 goto err; 1302 } 1303 if (elem->st.parent) { 1304 ++elem->st.parent->branches; 1305 /* WARN_ON(branches > 2) technically makes sense here, 1306 * but 1307 * 1. speculative states will bump 'branches' for non-branch 1308 * instructions 1309 * 2. is_state_visited() heuristics may decide not to create 1310 * a new state for a sequence of branches and all such current 1311 * and cloned states will be pointing to a single parent state 1312 * which might have large 'branches' count. 1313 */ 1314 } 1315 return &elem->st; 1316 err: 1317 free_verifier_state(env->cur_state, true); 1318 env->cur_state = NULL; 1319 /* pop all elements and return */ 1320 while (!pop_stack(env, NULL, NULL, false)); 1321 return NULL; 1322 } 1323 1324 #define CALLER_SAVED_REGS 6 1325 static const int caller_saved[CALLER_SAVED_REGS] = { 1326 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1327 }; 1328 1329 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1330 struct bpf_reg_state *reg); 1331 1332 /* This helper doesn't clear reg->id */ 1333 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1334 { 1335 reg->var_off = tnum_const(imm); 1336 reg->smin_value = (s64)imm; 1337 reg->smax_value = (s64)imm; 1338 reg->umin_value = imm; 1339 reg->umax_value = imm; 1340 1341 reg->s32_min_value = (s32)imm; 1342 reg->s32_max_value = (s32)imm; 1343 reg->u32_min_value = (u32)imm; 1344 reg->u32_max_value = (u32)imm; 1345 } 1346 1347 /* Mark the unknown part of a register (variable offset or scalar value) as 1348 * known to have the value @imm. 1349 */ 1350 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1351 { 1352 /* Clear id, off, and union(map_ptr, range) */ 1353 memset(((u8 *)reg) + sizeof(reg->type), 0, 1354 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1355 ___mark_reg_known(reg, imm); 1356 } 1357 1358 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1359 { 1360 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1361 reg->s32_min_value = (s32)imm; 1362 reg->s32_max_value = (s32)imm; 1363 reg->u32_min_value = (u32)imm; 1364 reg->u32_max_value = (u32)imm; 1365 } 1366 1367 /* Mark the 'variable offset' part of a register as zero. This should be 1368 * used only on registers holding a pointer type. 1369 */ 1370 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1371 { 1372 __mark_reg_known(reg, 0); 1373 } 1374 1375 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1376 { 1377 __mark_reg_known(reg, 0); 1378 reg->type = SCALAR_VALUE; 1379 } 1380 1381 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1382 struct bpf_reg_state *regs, u32 regno) 1383 { 1384 if (WARN_ON(regno >= MAX_BPF_REG)) { 1385 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1386 /* Something bad happened, let's kill all regs */ 1387 for (regno = 0; regno < MAX_BPF_REG; regno++) 1388 __mark_reg_not_init(env, regs + regno); 1389 return; 1390 } 1391 __mark_reg_known_zero(regs + regno); 1392 } 1393 1394 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1395 { 1396 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1397 const struct bpf_map *map = reg->map_ptr; 1398 1399 if (map->inner_map_meta) { 1400 reg->type = CONST_PTR_TO_MAP; 1401 reg->map_ptr = map->inner_map_meta; 1402 /* transfer reg's id which is unique for every map_lookup_elem 1403 * as UID of the inner map. 1404 */ 1405 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1406 reg->map_uid = reg->id; 1407 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1408 reg->type = PTR_TO_XDP_SOCK; 1409 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1410 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1411 reg->type = PTR_TO_SOCKET; 1412 } else { 1413 reg->type = PTR_TO_MAP_VALUE; 1414 } 1415 return; 1416 } 1417 1418 reg->type &= ~PTR_MAYBE_NULL; 1419 } 1420 1421 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1422 { 1423 return type_is_pkt_pointer(reg->type); 1424 } 1425 1426 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1427 { 1428 return reg_is_pkt_pointer(reg) || 1429 reg->type == PTR_TO_PACKET_END; 1430 } 1431 1432 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1433 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1434 enum bpf_reg_type which) 1435 { 1436 /* The register can already have a range from prior markings. 1437 * This is fine as long as it hasn't been advanced from its 1438 * origin. 1439 */ 1440 return reg->type == which && 1441 reg->id == 0 && 1442 reg->off == 0 && 1443 tnum_equals_const(reg->var_off, 0); 1444 } 1445 1446 /* Reset the min/max bounds of a register */ 1447 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1448 { 1449 reg->smin_value = S64_MIN; 1450 reg->smax_value = S64_MAX; 1451 reg->umin_value = 0; 1452 reg->umax_value = U64_MAX; 1453 1454 reg->s32_min_value = S32_MIN; 1455 reg->s32_max_value = S32_MAX; 1456 reg->u32_min_value = 0; 1457 reg->u32_max_value = U32_MAX; 1458 } 1459 1460 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1461 { 1462 reg->smin_value = S64_MIN; 1463 reg->smax_value = S64_MAX; 1464 reg->umin_value = 0; 1465 reg->umax_value = U64_MAX; 1466 } 1467 1468 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1469 { 1470 reg->s32_min_value = S32_MIN; 1471 reg->s32_max_value = S32_MAX; 1472 reg->u32_min_value = 0; 1473 reg->u32_max_value = U32_MAX; 1474 } 1475 1476 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1477 { 1478 struct tnum var32_off = tnum_subreg(reg->var_off); 1479 1480 /* min signed is max(sign bit) | min(other bits) */ 1481 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1482 var32_off.value | (var32_off.mask & S32_MIN)); 1483 /* max signed is min(sign bit) | max(other bits) */ 1484 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1485 var32_off.value | (var32_off.mask & S32_MAX)); 1486 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1487 reg->u32_max_value = min(reg->u32_max_value, 1488 (u32)(var32_off.value | var32_off.mask)); 1489 } 1490 1491 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1492 { 1493 /* min signed is max(sign bit) | min(other bits) */ 1494 reg->smin_value = max_t(s64, reg->smin_value, 1495 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1496 /* max signed is min(sign bit) | max(other bits) */ 1497 reg->smax_value = min_t(s64, reg->smax_value, 1498 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1499 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1500 reg->umax_value = min(reg->umax_value, 1501 reg->var_off.value | reg->var_off.mask); 1502 } 1503 1504 static void __update_reg_bounds(struct bpf_reg_state *reg) 1505 { 1506 __update_reg32_bounds(reg); 1507 __update_reg64_bounds(reg); 1508 } 1509 1510 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1511 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1512 { 1513 /* Learn sign from signed bounds. 1514 * If we cannot cross the sign boundary, then signed and unsigned bounds 1515 * are the same, so combine. This works even in the negative case, e.g. 1516 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1517 */ 1518 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1519 reg->s32_min_value = reg->u32_min_value = 1520 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1521 reg->s32_max_value = reg->u32_max_value = 1522 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1523 return; 1524 } 1525 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1526 * boundary, so we must be careful. 1527 */ 1528 if ((s32)reg->u32_max_value >= 0) { 1529 /* Positive. We can't learn anything from the smin, but smax 1530 * is positive, hence safe. 1531 */ 1532 reg->s32_min_value = reg->u32_min_value; 1533 reg->s32_max_value = reg->u32_max_value = 1534 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1535 } else if ((s32)reg->u32_min_value < 0) { 1536 /* Negative. We can't learn anything from the smax, but smin 1537 * is negative, hence safe. 1538 */ 1539 reg->s32_min_value = reg->u32_min_value = 1540 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1541 reg->s32_max_value = reg->u32_max_value; 1542 } 1543 } 1544 1545 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1546 { 1547 /* Learn sign from signed bounds. 1548 * If we cannot cross the sign boundary, then signed and unsigned bounds 1549 * are the same, so combine. This works even in the negative case, e.g. 1550 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1551 */ 1552 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1553 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1554 reg->umin_value); 1555 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1556 reg->umax_value); 1557 return; 1558 } 1559 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1560 * boundary, so we must be careful. 1561 */ 1562 if ((s64)reg->umax_value >= 0) { 1563 /* Positive. We can't learn anything from the smin, but smax 1564 * is positive, hence safe. 1565 */ 1566 reg->smin_value = reg->umin_value; 1567 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1568 reg->umax_value); 1569 } else if ((s64)reg->umin_value < 0) { 1570 /* Negative. We can't learn anything from the smax, but smin 1571 * is negative, hence safe. 1572 */ 1573 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1574 reg->umin_value); 1575 reg->smax_value = reg->umax_value; 1576 } 1577 } 1578 1579 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1580 { 1581 __reg32_deduce_bounds(reg); 1582 __reg64_deduce_bounds(reg); 1583 } 1584 1585 /* Attempts to improve var_off based on unsigned min/max information */ 1586 static void __reg_bound_offset(struct bpf_reg_state *reg) 1587 { 1588 struct tnum var64_off = tnum_intersect(reg->var_off, 1589 tnum_range(reg->umin_value, 1590 reg->umax_value)); 1591 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1592 tnum_range(reg->u32_min_value, 1593 reg->u32_max_value)); 1594 1595 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1596 } 1597 1598 static void reg_bounds_sync(struct bpf_reg_state *reg) 1599 { 1600 /* We might have learned new bounds from the var_off. */ 1601 __update_reg_bounds(reg); 1602 /* We might have learned something about the sign bit. */ 1603 __reg_deduce_bounds(reg); 1604 /* We might have learned some bits from the bounds. */ 1605 __reg_bound_offset(reg); 1606 /* Intersecting with the old var_off might have improved our bounds 1607 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1608 * then new var_off is (0; 0x7f...fc) which improves our umax. 1609 */ 1610 __update_reg_bounds(reg); 1611 } 1612 1613 static bool __reg32_bound_s64(s32 a) 1614 { 1615 return a >= 0 && a <= S32_MAX; 1616 } 1617 1618 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1619 { 1620 reg->umin_value = reg->u32_min_value; 1621 reg->umax_value = reg->u32_max_value; 1622 1623 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1624 * be positive otherwise set to worse case bounds and refine later 1625 * from tnum. 1626 */ 1627 if (__reg32_bound_s64(reg->s32_min_value) && 1628 __reg32_bound_s64(reg->s32_max_value)) { 1629 reg->smin_value = reg->s32_min_value; 1630 reg->smax_value = reg->s32_max_value; 1631 } else { 1632 reg->smin_value = 0; 1633 reg->smax_value = U32_MAX; 1634 } 1635 } 1636 1637 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1638 { 1639 /* special case when 64-bit register has upper 32-bit register 1640 * zeroed. Typically happens after zext or <<32, >>32 sequence 1641 * allowing us to use 32-bit bounds directly, 1642 */ 1643 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1644 __reg_assign_32_into_64(reg); 1645 } else { 1646 /* Otherwise the best we can do is push lower 32bit known and 1647 * unknown bits into register (var_off set from jmp logic) 1648 * then learn as much as possible from the 64-bit tnum 1649 * known and unknown bits. The previous smin/smax bounds are 1650 * invalid here because of jmp32 compare so mark them unknown 1651 * so they do not impact tnum bounds calculation. 1652 */ 1653 __mark_reg64_unbounded(reg); 1654 } 1655 reg_bounds_sync(reg); 1656 } 1657 1658 static bool __reg64_bound_s32(s64 a) 1659 { 1660 return a >= S32_MIN && a <= S32_MAX; 1661 } 1662 1663 static bool __reg64_bound_u32(u64 a) 1664 { 1665 return a >= U32_MIN && a <= U32_MAX; 1666 } 1667 1668 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1669 { 1670 __mark_reg32_unbounded(reg); 1671 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1672 reg->s32_min_value = (s32)reg->smin_value; 1673 reg->s32_max_value = (s32)reg->smax_value; 1674 } 1675 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1676 reg->u32_min_value = (u32)reg->umin_value; 1677 reg->u32_max_value = (u32)reg->umax_value; 1678 } 1679 reg_bounds_sync(reg); 1680 } 1681 1682 /* Mark a register as having a completely unknown (scalar) value. */ 1683 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1684 struct bpf_reg_state *reg) 1685 { 1686 /* 1687 * Clear type, id, off, and union(map_ptr, range) and 1688 * padding between 'type' and union 1689 */ 1690 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1691 reg->type = SCALAR_VALUE; 1692 reg->var_off = tnum_unknown; 1693 reg->frameno = 0; 1694 reg->precise = !env->bpf_capable; 1695 __mark_reg_unbounded(reg); 1696 } 1697 1698 static void mark_reg_unknown(struct bpf_verifier_env *env, 1699 struct bpf_reg_state *regs, u32 regno) 1700 { 1701 if (WARN_ON(regno >= MAX_BPF_REG)) { 1702 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1703 /* Something bad happened, let's kill all regs except FP */ 1704 for (regno = 0; regno < BPF_REG_FP; regno++) 1705 __mark_reg_not_init(env, regs + regno); 1706 return; 1707 } 1708 __mark_reg_unknown(env, regs + regno); 1709 } 1710 1711 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1712 struct bpf_reg_state *reg) 1713 { 1714 __mark_reg_unknown(env, reg); 1715 reg->type = NOT_INIT; 1716 } 1717 1718 static void mark_reg_not_init(struct bpf_verifier_env *env, 1719 struct bpf_reg_state *regs, u32 regno) 1720 { 1721 if (WARN_ON(regno >= MAX_BPF_REG)) { 1722 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1723 /* Something bad happened, let's kill all regs except FP */ 1724 for (regno = 0; regno < BPF_REG_FP; regno++) 1725 __mark_reg_not_init(env, regs + regno); 1726 return; 1727 } 1728 __mark_reg_not_init(env, regs + regno); 1729 } 1730 1731 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1732 struct bpf_reg_state *regs, u32 regno, 1733 enum bpf_reg_type reg_type, 1734 struct btf *btf, u32 btf_id, 1735 enum bpf_type_flag flag) 1736 { 1737 if (reg_type == SCALAR_VALUE) { 1738 mark_reg_unknown(env, regs, regno); 1739 return; 1740 } 1741 mark_reg_known_zero(env, regs, regno); 1742 regs[regno].type = PTR_TO_BTF_ID | flag; 1743 regs[regno].btf = btf; 1744 regs[regno].btf_id = btf_id; 1745 } 1746 1747 #define DEF_NOT_SUBREG (0) 1748 static void init_reg_state(struct bpf_verifier_env *env, 1749 struct bpf_func_state *state) 1750 { 1751 struct bpf_reg_state *regs = state->regs; 1752 int i; 1753 1754 for (i = 0; i < MAX_BPF_REG; i++) { 1755 mark_reg_not_init(env, regs, i); 1756 regs[i].live = REG_LIVE_NONE; 1757 regs[i].parent = NULL; 1758 regs[i].subreg_def = DEF_NOT_SUBREG; 1759 } 1760 1761 /* frame pointer */ 1762 regs[BPF_REG_FP].type = PTR_TO_STACK; 1763 mark_reg_known_zero(env, regs, BPF_REG_FP); 1764 regs[BPF_REG_FP].frameno = state->frameno; 1765 } 1766 1767 #define BPF_MAIN_FUNC (-1) 1768 static void init_func_state(struct bpf_verifier_env *env, 1769 struct bpf_func_state *state, 1770 int callsite, int frameno, int subprogno) 1771 { 1772 state->callsite = callsite; 1773 state->frameno = frameno; 1774 state->subprogno = subprogno; 1775 state->callback_ret_range = tnum_range(0, 0); 1776 init_reg_state(env, state); 1777 mark_verifier_state_scratched(env); 1778 } 1779 1780 /* Similar to push_stack(), but for async callbacks */ 1781 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1782 int insn_idx, int prev_insn_idx, 1783 int subprog) 1784 { 1785 struct bpf_verifier_stack_elem *elem; 1786 struct bpf_func_state *frame; 1787 1788 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1789 if (!elem) 1790 goto err; 1791 1792 elem->insn_idx = insn_idx; 1793 elem->prev_insn_idx = prev_insn_idx; 1794 elem->next = env->head; 1795 elem->log_pos = env->log.len_used; 1796 env->head = elem; 1797 env->stack_size++; 1798 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1799 verbose(env, 1800 "The sequence of %d jumps is too complex for async cb.\n", 1801 env->stack_size); 1802 goto err; 1803 } 1804 /* Unlike push_stack() do not copy_verifier_state(). 1805 * The caller state doesn't matter. 1806 * This is async callback. It starts in a fresh stack. 1807 * Initialize it similar to do_check_common(). 1808 */ 1809 elem->st.branches = 1; 1810 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1811 if (!frame) 1812 goto err; 1813 init_func_state(env, frame, 1814 BPF_MAIN_FUNC /* callsite */, 1815 0 /* frameno within this callchain */, 1816 subprog /* subprog number within this prog */); 1817 elem->st.frame[0] = frame; 1818 return &elem->st; 1819 err: 1820 free_verifier_state(env->cur_state, true); 1821 env->cur_state = NULL; 1822 /* pop all elements and return */ 1823 while (!pop_stack(env, NULL, NULL, false)); 1824 return NULL; 1825 } 1826 1827 1828 enum reg_arg_type { 1829 SRC_OP, /* register is used as source operand */ 1830 DST_OP, /* register is used as destination operand */ 1831 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1832 }; 1833 1834 static int cmp_subprogs(const void *a, const void *b) 1835 { 1836 return ((struct bpf_subprog_info *)a)->start - 1837 ((struct bpf_subprog_info *)b)->start; 1838 } 1839 1840 static int find_subprog(struct bpf_verifier_env *env, int off) 1841 { 1842 struct bpf_subprog_info *p; 1843 1844 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1845 sizeof(env->subprog_info[0]), cmp_subprogs); 1846 if (!p) 1847 return -ENOENT; 1848 return p - env->subprog_info; 1849 1850 } 1851 1852 static int add_subprog(struct bpf_verifier_env *env, int off) 1853 { 1854 int insn_cnt = env->prog->len; 1855 int ret; 1856 1857 if (off >= insn_cnt || off < 0) { 1858 verbose(env, "call to invalid destination\n"); 1859 return -EINVAL; 1860 } 1861 ret = find_subprog(env, off); 1862 if (ret >= 0) 1863 return ret; 1864 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1865 verbose(env, "too many subprograms\n"); 1866 return -E2BIG; 1867 } 1868 /* determine subprog starts. The end is one before the next starts */ 1869 env->subprog_info[env->subprog_cnt++].start = off; 1870 sort(env->subprog_info, env->subprog_cnt, 1871 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1872 return env->subprog_cnt - 1; 1873 } 1874 1875 #define MAX_KFUNC_DESCS 256 1876 #define MAX_KFUNC_BTFS 256 1877 1878 struct bpf_kfunc_desc { 1879 struct btf_func_model func_model; 1880 u32 func_id; 1881 s32 imm; 1882 u16 offset; 1883 }; 1884 1885 struct bpf_kfunc_btf { 1886 struct btf *btf; 1887 struct module *module; 1888 u16 offset; 1889 }; 1890 1891 struct bpf_kfunc_desc_tab { 1892 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1893 u32 nr_descs; 1894 }; 1895 1896 struct bpf_kfunc_btf_tab { 1897 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1898 u32 nr_descs; 1899 }; 1900 1901 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1902 { 1903 const struct bpf_kfunc_desc *d0 = a; 1904 const struct bpf_kfunc_desc *d1 = b; 1905 1906 /* func_id is not greater than BTF_MAX_TYPE */ 1907 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1908 } 1909 1910 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1911 { 1912 const struct bpf_kfunc_btf *d0 = a; 1913 const struct bpf_kfunc_btf *d1 = b; 1914 1915 return d0->offset - d1->offset; 1916 } 1917 1918 static const struct bpf_kfunc_desc * 1919 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1920 { 1921 struct bpf_kfunc_desc desc = { 1922 .func_id = func_id, 1923 .offset = offset, 1924 }; 1925 struct bpf_kfunc_desc_tab *tab; 1926 1927 tab = prog->aux->kfunc_tab; 1928 return bsearch(&desc, tab->descs, tab->nr_descs, 1929 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1930 } 1931 1932 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1933 s16 offset) 1934 { 1935 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1936 struct bpf_kfunc_btf_tab *tab; 1937 struct bpf_kfunc_btf *b; 1938 struct module *mod; 1939 struct btf *btf; 1940 int btf_fd; 1941 1942 tab = env->prog->aux->kfunc_btf_tab; 1943 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1944 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1945 if (!b) { 1946 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1947 verbose(env, "too many different module BTFs\n"); 1948 return ERR_PTR(-E2BIG); 1949 } 1950 1951 if (bpfptr_is_null(env->fd_array)) { 1952 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1953 return ERR_PTR(-EPROTO); 1954 } 1955 1956 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1957 offset * sizeof(btf_fd), 1958 sizeof(btf_fd))) 1959 return ERR_PTR(-EFAULT); 1960 1961 btf = btf_get_by_fd(btf_fd); 1962 if (IS_ERR(btf)) { 1963 verbose(env, "invalid module BTF fd specified\n"); 1964 return btf; 1965 } 1966 1967 if (!btf_is_module(btf)) { 1968 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1969 btf_put(btf); 1970 return ERR_PTR(-EINVAL); 1971 } 1972 1973 mod = btf_try_get_module(btf); 1974 if (!mod) { 1975 btf_put(btf); 1976 return ERR_PTR(-ENXIO); 1977 } 1978 1979 b = &tab->descs[tab->nr_descs++]; 1980 b->btf = btf; 1981 b->module = mod; 1982 b->offset = offset; 1983 1984 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1985 kfunc_btf_cmp_by_off, NULL); 1986 } 1987 return b->btf; 1988 } 1989 1990 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1991 { 1992 if (!tab) 1993 return; 1994 1995 while (tab->nr_descs--) { 1996 module_put(tab->descs[tab->nr_descs].module); 1997 btf_put(tab->descs[tab->nr_descs].btf); 1998 } 1999 kfree(tab); 2000 } 2001 2002 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2003 { 2004 if (offset) { 2005 if (offset < 0) { 2006 /* In the future, this can be allowed to increase limit 2007 * of fd index into fd_array, interpreted as u16. 2008 */ 2009 verbose(env, "negative offset disallowed for kernel module function call\n"); 2010 return ERR_PTR(-EINVAL); 2011 } 2012 2013 return __find_kfunc_desc_btf(env, offset); 2014 } 2015 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2016 } 2017 2018 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2019 { 2020 const struct btf_type *func, *func_proto; 2021 struct bpf_kfunc_btf_tab *btf_tab; 2022 struct bpf_kfunc_desc_tab *tab; 2023 struct bpf_prog_aux *prog_aux; 2024 struct bpf_kfunc_desc *desc; 2025 const char *func_name; 2026 struct btf *desc_btf; 2027 unsigned long call_imm; 2028 unsigned long addr; 2029 int err; 2030 2031 prog_aux = env->prog->aux; 2032 tab = prog_aux->kfunc_tab; 2033 btf_tab = prog_aux->kfunc_btf_tab; 2034 if (!tab) { 2035 if (!btf_vmlinux) { 2036 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2037 return -ENOTSUPP; 2038 } 2039 2040 if (!env->prog->jit_requested) { 2041 verbose(env, "JIT is required for calling kernel function\n"); 2042 return -ENOTSUPP; 2043 } 2044 2045 if (!bpf_jit_supports_kfunc_call()) { 2046 verbose(env, "JIT does not support calling kernel function\n"); 2047 return -ENOTSUPP; 2048 } 2049 2050 if (!env->prog->gpl_compatible) { 2051 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2052 return -EINVAL; 2053 } 2054 2055 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2056 if (!tab) 2057 return -ENOMEM; 2058 prog_aux->kfunc_tab = tab; 2059 } 2060 2061 /* func_id == 0 is always invalid, but instead of returning an error, be 2062 * conservative and wait until the code elimination pass before returning 2063 * error, so that invalid calls that get pruned out can be in BPF programs 2064 * loaded from userspace. It is also required that offset be untouched 2065 * for such calls. 2066 */ 2067 if (!func_id && !offset) 2068 return 0; 2069 2070 if (!btf_tab && offset) { 2071 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2072 if (!btf_tab) 2073 return -ENOMEM; 2074 prog_aux->kfunc_btf_tab = btf_tab; 2075 } 2076 2077 desc_btf = find_kfunc_desc_btf(env, offset); 2078 if (IS_ERR(desc_btf)) { 2079 verbose(env, "failed to find BTF for kernel function\n"); 2080 return PTR_ERR(desc_btf); 2081 } 2082 2083 if (find_kfunc_desc(env->prog, func_id, offset)) 2084 return 0; 2085 2086 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2087 verbose(env, "too many different kernel function calls\n"); 2088 return -E2BIG; 2089 } 2090 2091 func = btf_type_by_id(desc_btf, func_id); 2092 if (!func || !btf_type_is_func(func)) { 2093 verbose(env, "kernel btf_id %u is not a function\n", 2094 func_id); 2095 return -EINVAL; 2096 } 2097 func_proto = btf_type_by_id(desc_btf, func->type); 2098 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2099 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2100 func_id); 2101 return -EINVAL; 2102 } 2103 2104 func_name = btf_name_by_offset(desc_btf, func->name_off); 2105 addr = kallsyms_lookup_name(func_name); 2106 if (!addr) { 2107 verbose(env, "cannot find address for kernel function %s\n", 2108 func_name); 2109 return -EINVAL; 2110 } 2111 2112 call_imm = BPF_CALL_IMM(addr); 2113 /* Check whether or not the relative offset overflows desc->imm */ 2114 if ((unsigned long)(s32)call_imm != call_imm) { 2115 verbose(env, "address of kernel function %s is out of range\n", 2116 func_name); 2117 return -EINVAL; 2118 } 2119 2120 desc = &tab->descs[tab->nr_descs++]; 2121 desc->func_id = func_id; 2122 desc->imm = call_imm; 2123 desc->offset = offset; 2124 err = btf_distill_func_proto(&env->log, desc_btf, 2125 func_proto, func_name, 2126 &desc->func_model); 2127 if (!err) 2128 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2129 kfunc_desc_cmp_by_id_off, NULL); 2130 return err; 2131 } 2132 2133 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2134 { 2135 const struct bpf_kfunc_desc *d0 = a; 2136 const struct bpf_kfunc_desc *d1 = b; 2137 2138 if (d0->imm > d1->imm) 2139 return 1; 2140 else if (d0->imm < d1->imm) 2141 return -1; 2142 return 0; 2143 } 2144 2145 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2146 { 2147 struct bpf_kfunc_desc_tab *tab; 2148 2149 tab = prog->aux->kfunc_tab; 2150 if (!tab) 2151 return; 2152 2153 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2154 kfunc_desc_cmp_by_imm, NULL); 2155 } 2156 2157 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2158 { 2159 return !!prog->aux->kfunc_tab; 2160 } 2161 2162 const struct btf_func_model * 2163 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2164 const struct bpf_insn *insn) 2165 { 2166 const struct bpf_kfunc_desc desc = { 2167 .imm = insn->imm, 2168 }; 2169 const struct bpf_kfunc_desc *res; 2170 struct bpf_kfunc_desc_tab *tab; 2171 2172 tab = prog->aux->kfunc_tab; 2173 res = bsearch(&desc, tab->descs, tab->nr_descs, 2174 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2175 2176 return res ? &res->func_model : NULL; 2177 } 2178 2179 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2180 { 2181 struct bpf_subprog_info *subprog = env->subprog_info; 2182 struct bpf_insn *insn = env->prog->insnsi; 2183 int i, ret, insn_cnt = env->prog->len; 2184 2185 /* Add entry function. */ 2186 ret = add_subprog(env, 0); 2187 if (ret) 2188 return ret; 2189 2190 for (i = 0; i < insn_cnt; i++, insn++) { 2191 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2192 !bpf_pseudo_kfunc_call(insn)) 2193 continue; 2194 2195 if (!env->bpf_capable) { 2196 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2197 return -EPERM; 2198 } 2199 2200 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2201 ret = add_subprog(env, i + insn->imm + 1); 2202 else 2203 ret = add_kfunc_call(env, insn->imm, insn->off); 2204 2205 if (ret < 0) 2206 return ret; 2207 } 2208 2209 /* Add a fake 'exit' subprog which could simplify subprog iteration 2210 * logic. 'subprog_cnt' should not be increased. 2211 */ 2212 subprog[env->subprog_cnt].start = insn_cnt; 2213 2214 if (env->log.level & BPF_LOG_LEVEL2) 2215 for (i = 0; i < env->subprog_cnt; i++) 2216 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2217 2218 return 0; 2219 } 2220 2221 static int check_subprogs(struct bpf_verifier_env *env) 2222 { 2223 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2224 struct bpf_subprog_info *subprog = env->subprog_info; 2225 struct bpf_insn *insn = env->prog->insnsi; 2226 int insn_cnt = env->prog->len; 2227 2228 /* now check that all jumps are within the same subprog */ 2229 subprog_start = subprog[cur_subprog].start; 2230 subprog_end = subprog[cur_subprog + 1].start; 2231 for (i = 0; i < insn_cnt; i++) { 2232 u8 code = insn[i].code; 2233 2234 if (code == (BPF_JMP | BPF_CALL) && 2235 insn[i].imm == BPF_FUNC_tail_call && 2236 insn[i].src_reg != BPF_PSEUDO_CALL) 2237 subprog[cur_subprog].has_tail_call = true; 2238 if (BPF_CLASS(code) == BPF_LD && 2239 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2240 subprog[cur_subprog].has_ld_abs = true; 2241 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2242 goto next; 2243 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2244 goto next; 2245 off = i + insn[i].off + 1; 2246 if (off < subprog_start || off >= subprog_end) { 2247 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2248 return -EINVAL; 2249 } 2250 next: 2251 if (i == subprog_end - 1) { 2252 /* to avoid fall-through from one subprog into another 2253 * the last insn of the subprog should be either exit 2254 * or unconditional jump back 2255 */ 2256 if (code != (BPF_JMP | BPF_EXIT) && 2257 code != (BPF_JMP | BPF_JA)) { 2258 verbose(env, "last insn is not an exit or jmp\n"); 2259 return -EINVAL; 2260 } 2261 subprog_start = subprog_end; 2262 cur_subprog++; 2263 if (cur_subprog < env->subprog_cnt) 2264 subprog_end = subprog[cur_subprog + 1].start; 2265 } 2266 } 2267 return 0; 2268 } 2269 2270 /* Parentage chain of this register (or stack slot) should take care of all 2271 * issues like callee-saved registers, stack slot allocation time, etc. 2272 */ 2273 static int mark_reg_read(struct bpf_verifier_env *env, 2274 const struct bpf_reg_state *state, 2275 struct bpf_reg_state *parent, u8 flag) 2276 { 2277 bool writes = parent == state->parent; /* Observe write marks */ 2278 int cnt = 0; 2279 2280 while (parent) { 2281 /* if read wasn't screened by an earlier write ... */ 2282 if (writes && state->live & REG_LIVE_WRITTEN) 2283 break; 2284 if (parent->live & REG_LIVE_DONE) { 2285 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2286 reg_type_str(env, parent->type), 2287 parent->var_off.value, parent->off); 2288 return -EFAULT; 2289 } 2290 /* The first condition is more likely to be true than the 2291 * second, checked it first. 2292 */ 2293 if ((parent->live & REG_LIVE_READ) == flag || 2294 parent->live & REG_LIVE_READ64) 2295 /* The parentage chain never changes and 2296 * this parent was already marked as LIVE_READ. 2297 * There is no need to keep walking the chain again and 2298 * keep re-marking all parents as LIVE_READ. 2299 * This case happens when the same register is read 2300 * multiple times without writes into it in-between. 2301 * Also, if parent has the stronger REG_LIVE_READ64 set, 2302 * then no need to set the weak REG_LIVE_READ32. 2303 */ 2304 break; 2305 /* ... then we depend on parent's value */ 2306 parent->live |= flag; 2307 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2308 if (flag == REG_LIVE_READ64) 2309 parent->live &= ~REG_LIVE_READ32; 2310 state = parent; 2311 parent = state->parent; 2312 writes = true; 2313 cnt++; 2314 } 2315 2316 if (env->longest_mark_read_walk < cnt) 2317 env->longest_mark_read_walk = cnt; 2318 return 0; 2319 } 2320 2321 /* This function is supposed to be used by the following 32-bit optimization 2322 * code only. It returns TRUE if the source or destination register operates 2323 * on 64-bit, otherwise return FALSE. 2324 */ 2325 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2326 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2327 { 2328 u8 code, class, op; 2329 2330 code = insn->code; 2331 class = BPF_CLASS(code); 2332 op = BPF_OP(code); 2333 if (class == BPF_JMP) { 2334 /* BPF_EXIT for "main" will reach here. Return TRUE 2335 * conservatively. 2336 */ 2337 if (op == BPF_EXIT) 2338 return true; 2339 if (op == BPF_CALL) { 2340 /* BPF to BPF call will reach here because of marking 2341 * caller saved clobber with DST_OP_NO_MARK for which we 2342 * don't care the register def because they are anyway 2343 * marked as NOT_INIT already. 2344 */ 2345 if (insn->src_reg == BPF_PSEUDO_CALL) 2346 return false; 2347 /* Helper call will reach here because of arg type 2348 * check, conservatively return TRUE. 2349 */ 2350 if (t == SRC_OP) 2351 return true; 2352 2353 return false; 2354 } 2355 } 2356 2357 if (class == BPF_ALU64 || class == BPF_JMP || 2358 /* BPF_END always use BPF_ALU class. */ 2359 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2360 return true; 2361 2362 if (class == BPF_ALU || class == BPF_JMP32) 2363 return false; 2364 2365 if (class == BPF_LDX) { 2366 if (t != SRC_OP) 2367 return BPF_SIZE(code) == BPF_DW; 2368 /* LDX source must be ptr. */ 2369 return true; 2370 } 2371 2372 if (class == BPF_STX) { 2373 /* BPF_STX (including atomic variants) has multiple source 2374 * operands, one of which is a ptr. Check whether the caller is 2375 * asking about it. 2376 */ 2377 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2378 return true; 2379 return BPF_SIZE(code) == BPF_DW; 2380 } 2381 2382 if (class == BPF_LD) { 2383 u8 mode = BPF_MODE(code); 2384 2385 /* LD_IMM64 */ 2386 if (mode == BPF_IMM) 2387 return true; 2388 2389 /* Both LD_IND and LD_ABS return 32-bit data. */ 2390 if (t != SRC_OP) 2391 return false; 2392 2393 /* Implicit ctx ptr. */ 2394 if (regno == BPF_REG_6) 2395 return true; 2396 2397 /* Explicit source could be any width. */ 2398 return true; 2399 } 2400 2401 if (class == BPF_ST) 2402 /* The only source register for BPF_ST is a ptr. */ 2403 return true; 2404 2405 /* Conservatively return true at default. */ 2406 return true; 2407 } 2408 2409 /* Return the regno defined by the insn, or -1. */ 2410 static int insn_def_regno(const struct bpf_insn *insn) 2411 { 2412 switch (BPF_CLASS(insn->code)) { 2413 case BPF_JMP: 2414 case BPF_JMP32: 2415 case BPF_ST: 2416 return -1; 2417 case BPF_STX: 2418 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2419 (insn->imm & BPF_FETCH)) { 2420 if (insn->imm == BPF_CMPXCHG) 2421 return BPF_REG_0; 2422 else 2423 return insn->src_reg; 2424 } else { 2425 return -1; 2426 } 2427 default: 2428 return insn->dst_reg; 2429 } 2430 } 2431 2432 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2433 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2434 { 2435 int dst_reg = insn_def_regno(insn); 2436 2437 if (dst_reg == -1) 2438 return false; 2439 2440 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2441 } 2442 2443 static void mark_insn_zext(struct bpf_verifier_env *env, 2444 struct bpf_reg_state *reg) 2445 { 2446 s32 def_idx = reg->subreg_def; 2447 2448 if (def_idx == DEF_NOT_SUBREG) 2449 return; 2450 2451 env->insn_aux_data[def_idx - 1].zext_dst = true; 2452 /* The dst will be zero extended, so won't be sub-register anymore. */ 2453 reg->subreg_def = DEF_NOT_SUBREG; 2454 } 2455 2456 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2457 enum reg_arg_type t) 2458 { 2459 struct bpf_verifier_state *vstate = env->cur_state; 2460 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2461 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2462 struct bpf_reg_state *reg, *regs = state->regs; 2463 bool rw64; 2464 2465 if (regno >= MAX_BPF_REG) { 2466 verbose(env, "R%d is invalid\n", regno); 2467 return -EINVAL; 2468 } 2469 2470 mark_reg_scratched(env, regno); 2471 2472 reg = ®s[regno]; 2473 rw64 = is_reg64(env, insn, regno, reg, t); 2474 if (t == SRC_OP) { 2475 /* check whether register used as source operand can be read */ 2476 if (reg->type == NOT_INIT) { 2477 verbose(env, "R%d !read_ok\n", regno); 2478 return -EACCES; 2479 } 2480 /* We don't need to worry about FP liveness because it's read-only */ 2481 if (regno == BPF_REG_FP) 2482 return 0; 2483 2484 if (rw64) 2485 mark_insn_zext(env, reg); 2486 2487 return mark_reg_read(env, reg, reg->parent, 2488 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2489 } else { 2490 /* check whether register used as dest operand can be written to */ 2491 if (regno == BPF_REG_FP) { 2492 verbose(env, "frame pointer is read only\n"); 2493 return -EACCES; 2494 } 2495 reg->live |= REG_LIVE_WRITTEN; 2496 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2497 if (t == DST_OP) 2498 mark_reg_unknown(env, regs, regno); 2499 } 2500 return 0; 2501 } 2502 2503 /* for any branch, call, exit record the history of jmps in the given state */ 2504 static int push_jmp_history(struct bpf_verifier_env *env, 2505 struct bpf_verifier_state *cur) 2506 { 2507 u32 cnt = cur->jmp_history_cnt; 2508 struct bpf_idx_pair *p; 2509 2510 cnt++; 2511 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2512 if (!p) 2513 return -ENOMEM; 2514 p[cnt - 1].idx = env->insn_idx; 2515 p[cnt - 1].prev_idx = env->prev_insn_idx; 2516 cur->jmp_history = p; 2517 cur->jmp_history_cnt = cnt; 2518 return 0; 2519 } 2520 2521 /* Backtrack one insn at a time. If idx is not at the top of recorded 2522 * history then previous instruction came from straight line execution. 2523 */ 2524 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2525 u32 *history) 2526 { 2527 u32 cnt = *history; 2528 2529 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2530 i = st->jmp_history[cnt - 1].prev_idx; 2531 (*history)--; 2532 } else { 2533 i--; 2534 } 2535 return i; 2536 } 2537 2538 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2539 { 2540 const struct btf_type *func; 2541 struct btf *desc_btf; 2542 2543 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2544 return NULL; 2545 2546 desc_btf = find_kfunc_desc_btf(data, insn->off); 2547 if (IS_ERR(desc_btf)) 2548 return "<error>"; 2549 2550 func = btf_type_by_id(desc_btf, insn->imm); 2551 return btf_name_by_offset(desc_btf, func->name_off); 2552 } 2553 2554 /* For given verifier state backtrack_insn() is called from the last insn to 2555 * the first insn. Its purpose is to compute a bitmask of registers and 2556 * stack slots that needs precision in the parent verifier state. 2557 */ 2558 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2559 u32 *reg_mask, u64 *stack_mask) 2560 { 2561 const struct bpf_insn_cbs cbs = { 2562 .cb_call = disasm_kfunc_name, 2563 .cb_print = verbose, 2564 .private_data = env, 2565 }; 2566 struct bpf_insn *insn = env->prog->insnsi + idx; 2567 u8 class = BPF_CLASS(insn->code); 2568 u8 opcode = BPF_OP(insn->code); 2569 u8 mode = BPF_MODE(insn->code); 2570 u32 dreg = 1u << insn->dst_reg; 2571 u32 sreg = 1u << insn->src_reg; 2572 u32 spi; 2573 2574 if (insn->code == 0) 2575 return 0; 2576 if (env->log.level & BPF_LOG_LEVEL2) { 2577 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2578 verbose(env, "%d: ", idx); 2579 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2580 } 2581 2582 if (class == BPF_ALU || class == BPF_ALU64) { 2583 if (!(*reg_mask & dreg)) 2584 return 0; 2585 if (opcode == BPF_MOV) { 2586 if (BPF_SRC(insn->code) == BPF_X) { 2587 /* dreg = sreg 2588 * dreg needs precision after this insn 2589 * sreg needs precision before this insn 2590 */ 2591 *reg_mask &= ~dreg; 2592 *reg_mask |= sreg; 2593 } else { 2594 /* dreg = K 2595 * dreg needs precision after this insn. 2596 * Corresponding register is already marked 2597 * as precise=true in this verifier state. 2598 * No further markings in parent are necessary 2599 */ 2600 *reg_mask &= ~dreg; 2601 } 2602 } else { 2603 if (BPF_SRC(insn->code) == BPF_X) { 2604 /* dreg += sreg 2605 * both dreg and sreg need precision 2606 * before this insn 2607 */ 2608 *reg_mask |= sreg; 2609 } /* else dreg += K 2610 * dreg still needs precision before this insn 2611 */ 2612 } 2613 } else if (class == BPF_LDX) { 2614 if (!(*reg_mask & dreg)) 2615 return 0; 2616 *reg_mask &= ~dreg; 2617 2618 /* scalars can only be spilled into stack w/o losing precision. 2619 * Load from any other memory can be zero extended. 2620 * The desire to keep that precision is already indicated 2621 * by 'precise' mark in corresponding register of this state. 2622 * No further tracking necessary. 2623 */ 2624 if (insn->src_reg != BPF_REG_FP) 2625 return 0; 2626 2627 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2628 * that [fp - off] slot contains scalar that needs to be 2629 * tracked with precision 2630 */ 2631 spi = (-insn->off - 1) / BPF_REG_SIZE; 2632 if (spi >= 64) { 2633 verbose(env, "BUG spi %d\n", spi); 2634 WARN_ONCE(1, "verifier backtracking bug"); 2635 return -EFAULT; 2636 } 2637 *stack_mask |= 1ull << spi; 2638 } else if (class == BPF_STX || class == BPF_ST) { 2639 if (*reg_mask & dreg) 2640 /* stx & st shouldn't be using _scalar_ dst_reg 2641 * to access memory. It means backtracking 2642 * encountered a case of pointer subtraction. 2643 */ 2644 return -ENOTSUPP; 2645 /* scalars can only be spilled into stack */ 2646 if (insn->dst_reg != BPF_REG_FP) 2647 return 0; 2648 spi = (-insn->off - 1) / BPF_REG_SIZE; 2649 if (spi >= 64) { 2650 verbose(env, "BUG spi %d\n", spi); 2651 WARN_ONCE(1, "verifier backtracking bug"); 2652 return -EFAULT; 2653 } 2654 if (!(*stack_mask & (1ull << spi))) 2655 return 0; 2656 *stack_mask &= ~(1ull << spi); 2657 if (class == BPF_STX) 2658 *reg_mask |= sreg; 2659 } else if (class == BPF_JMP || class == BPF_JMP32) { 2660 if (opcode == BPF_CALL) { 2661 if (insn->src_reg == BPF_PSEUDO_CALL) 2662 return -ENOTSUPP; 2663 /* BPF helpers that invoke callback subprogs are 2664 * equivalent to BPF_PSEUDO_CALL above 2665 */ 2666 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2667 return -ENOTSUPP; 2668 /* regular helper call sets R0 */ 2669 *reg_mask &= ~1; 2670 if (*reg_mask & 0x3f) { 2671 /* if backtracing was looking for registers R1-R5 2672 * they should have been found already. 2673 */ 2674 verbose(env, "BUG regs %x\n", *reg_mask); 2675 WARN_ONCE(1, "verifier backtracking bug"); 2676 return -EFAULT; 2677 } 2678 } else if (opcode == BPF_EXIT) { 2679 return -ENOTSUPP; 2680 } 2681 } else if (class == BPF_LD) { 2682 if (!(*reg_mask & dreg)) 2683 return 0; 2684 *reg_mask &= ~dreg; 2685 /* It's ld_imm64 or ld_abs or ld_ind. 2686 * For ld_imm64 no further tracking of precision 2687 * into parent is necessary 2688 */ 2689 if (mode == BPF_IND || mode == BPF_ABS) 2690 /* to be analyzed */ 2691 return -ENOTSUPP; 2692 } 2693 return 0; 2694 } 2695 2696 /* the scalar precision tracking algorithm: 2697 * . at the start all registers have precise=false. 2698 * . scalar ranges are tracked as normal through alu and jmp insns. 2699 * . once precise value of the scalar register is used in: 2700 * . ptr + scalar alu 2701 * . if (scalar cond K|scalar) 2702 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2703 * backtrack through the verifier states and mark all registers and 2704 * stack slots with spilled constants that these scalar regisers 2705 * should be precise. 2706 * . during state pruning two registers (or spilled stack slots) 2707 * are equivalent if both are not precise. 2708 * 2709 * Note the verifier cannot simply walk register parentage chain, 2710 * since many different registers and stack slots could have been 2711 * used to compute single precise scalar. 2712 * 2713 * The approach of starting with precise=true for all registers and then 2714 * backtrack to mark a register as not precise when the verifier detects 2715 * that program doesn't care about specific value (e.g., when helper 2716 * takes register as ARG_ANYTHING parameter) is not safe. 2717 * 2718 * It's ok to walk single parentage chain of the verifier states. 2719 * It's possible that this backtracking will go all the way till 1st insn. 2720 * All other branches will be explored for needing precision later. 2721 * 2722 * The backtracking needs to deal with cases like: 2723 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2724 * r9 -= r8 2725 * r5 = r9 2726 * if r5 > 0x79f goto pc+7 2727 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2728 * r5 += 1 2729 * ... 2730 * call bpf_perf_event_output#25 2731 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2732 * 2733 * and this case: 2734 * r6 = 1 2735 * call foo // uses callee's r6 inside to compute r0 2736 * r0 += r6 2737 * if r0 == 0 goto 2738 * 2739 * to track above reg_mask/stack_mask needs to be independent for each frame. 2740 * 2741 * Also if parent's curframe > frame where backtracking started, 2742 * the verifier need to mark registers in both frames, otherwise callees 2743 * may incorrectly prune callers. This is similar to 2744 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2745 * 2746 * For now backtracking falls back into conservative marking. 2747 */ 2748 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2749 struct bpf_verifier_state *st) 2750 { 2751 struct bpf_func_state *func; 2752 struct bpf_reg_state *reg; 2753 int i, j; 2754 2755 /* big hammer: mark all scalars precise in this path. 2756 * pop_stack may still get !precise scalars. 2757 * We also skip current state and go straight to first parent state, 2758 * because precision markings in current non-checkpointed state are 2759 * not needed. See why in the comment in __mark_chain_precision below. 2760 */ 2761 for (st = st->parent; st; st = st->parent) { 2762 for (i = 0; i <= st->curframe; i++) { 2763 func = st->frame[i]; 2764 for (j = 0; j < BPF_REG_FP; j++) { 2765 reg = &func->regs[j]; 2766 if (reg->type != SCALAR_VALUE) 2767 continue; 2768 reg->precise = true; 2769 } 2770 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2771 if (!is_spilled_reg(&func->stack[j])) 2772 continue; 2773 reg = &func->stack[j].spilled_ptr; 2774 if (reg->type != SCALAR_VALUE) 2775 continue; 2776 reg->precise = true; 2777 } 2778 } 2779 } 2780 } 2781 2782 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2783 { 2784 struct bpf_func_state *func; 2785 struct bpf_reg_state *reg; 2786 int i, j; 2787 2788 for (i = 0; i <= st->curframe; i++) { 2789 func = st->frame[i]; 2790 for (j = 0; j < BPF_REG_FP; j++) { 2791 reg = &func->regs[j]; 2792 if (reg->type != SCALAR_VALUE) 2793 continue; 2794 reg->precise = false; 2795 } 2796 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2797 if (!is_spilled_reg(&func->stack[j])) 2798 continue; 2799 reg = &func->stack[j].spilled_ptr; 2800 if (reg->type != SCALAR_VALUE) 2801 continue; 2802 reg->precise = false; 2803 } 2804 } 2805 } 2806 2807 /* 2808 * __mark_chain_precision() backtracks BPF program instruction sequence and 2809 * chain of verifier states making sure that register *regno* (if regno >= 0) 2810 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2811 * SCALARS, as well as any other registers and slots that contribute to 2812 * a tracked state of given registers/stack slots, depending on specific BPF 2813 * assembly instructions (see backtrack_insns() for exact instruction handling 2814 * logic). This backtracking relies on recorded jmp_history and is able to 2815 * traverse entire chain of parent states. This process ends only when all the 2816 * necessary registers/slots and their transitive dependencies are marked as 2817 * precise. 2818 * 2819 * One important and subtle aspect is that precise marks *do not matter* in 2820 * the currently verified state (current state). It is important to understand 2821 * why this is the case. 2822 * 2823 * First, note that current state is the state that is not yet "checkpointed", 2824 * i.e., it is not yet put into env->explored_states, and it has no children 2825 * states as well. It's ephemeral, and can end up either a) being discarded if 2826 * compatible explored state is found at some point or BPF_EXIT instruction is 2827 * reached or b) checkpointed and put into env->explored_states, branching out 2828 * into one or more children states. 2829 * 2830 * In the former case, precise markings in current state are completely 2831 * ignored by state comparison code (see regsafe() for details). Only 2832 * checkpointed ("old") state precise markings are important, and if old 2833 * state's register/slot is precise, regsafe() assumes current state's 2834 * register/slot as precise and checks value ranges exactly and precisely. If 2835 * states turn out to be compatible, current state's necessary precise 2836 * markings and any required parent states' precise markings are enforced 2837 * after the fact with propagate_precision() logic, after the fact. But it's 2838 * important to realize that in this case, even after marking current state 2839 * registers/slots as precise, we immediately discard current state. So what 2840 * actually matters is any of the precise markings propagated into current 2841 * state's parent states, which are always checkpointed (due to b) case above). 2842 * As such, for scenario a) it doesn't matter if current state has precise 2843 * markings set or not. 2844 * 2845 * Now, for the scenario b), checkpointing and forking into child(ren) 2846 * state(s). Note that before current state gets to checkpointing step, any 2847 * processed instruction always assumes precise SCALAR register/slot 2848 * knowledge: if precise value or range is useful to prune jump branch, BPF 2849 * verifier takes this opportunity enthusiastically. Similarly, when 2850 * register's value is used to calculate offset or memory address, exact 2851 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2852 * what we mentioned above about state comparison ignoring precise markings 2853 * during state comparison, BPF verifier ignores and also assumes precise 2854 * markings *at will* during instruction verification process. But as verifier 2855 * assumes precision, it also propagates any precision dependencies across 2856 * parent states, which are not yet finalized, so can be further restricted 2857 * based on new knowledge gained from restrictions enforced by their children 2858 * states. This is so that once those parent states are finalized, i.e., when 2859 * they have no more active children state, state comparison logic in 2860 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2861 * required for correctness. 2862 * 2863 * To build a bit more intuition, note also that once a state is checkpointed, 2864 * the path we took to get to that state is not important. This is crucial 2865 * property for state pruning. When state is checkpointed and finalized at 2866 * some instruction index, it can be correctly and safely used to "short 2867 * circuit" any *compatible* state that reaches exactly the same instruction 2868 * index. I.e., if we jumped to that instruction from a completely different 2869 * code path than original finalized state was derived from, it doesn't 2870 * matter, current state can be discarded because from that instruction 2871 * forward having a compatible state will ensure we will safely reach the 2872 * exit. States describe preconditions for further exploration, but completely 2873 * forget the history of how we got here. 2874 * 2875 * This also means that even if we needed precise SCALAR range to get to 2876 * finalized state, but from that point forward *that same* SCALAR register is 2877 * never used in a precise context (i.e., it's precise value is not needed for 2878 * correctness), it's correct and safe to mark such register as "imprecise" 2879 * (i.e., precise marking set to false). This is what we rely on when we do 2880 * not set precise marking in current state. If no child state requires 2881 * precision for any given SCALAR register, it's safe to dictate that it can 2882 * be imprecise. If any child state does require this register to be precise, 2883 * we'll mark it precise later retroactively during precise markings 2884 * propagation from child state to parent states. 2885 * 2886 * Skipping precise marking setting in current state is a mild version of 2887 * relying on the above observation. But we can utilize this property even 2888 * more aggressively by proactively forgetting any precise marking in the 2889 * current state (which we inherited from the parent state), right before we 2890 * checkpoint it and branch off into new child state. This is done by 2891 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2892 * finalized states which help in short circuiting more future states. 2893 */ 2894 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2895 int spi) 2896 { 2897 struct bpf_verifier_state *st = env->cur_state; 2898 int first_idx = st->first_insn_idx; 2899 int last_idx = env->insn_idx; 2900 struct bpf_func_state *func; 2901 struct bpf_reg_state *reg; 2902 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2903 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2904 bool skip_first = true; 2905 bool new_marks = false; 2906 int i, err; 2907 2908 if (!env->bpf_capable) 2909 return 0; 2910 2911 /* Do sanity checks against current state of register and/or stack 2912 * slot, but don't set precise flag in current state, as precision 2913 * tracking in the current state is unnecessary. 2914 */ 2915 func = st->frame[frame]; 2916 if (regno >= 0) { 2917 reg = &func->regs[regno]; 2918 if (reg->type != SCALAR_VALUE) { 2919 WARN_ONCE(1, "backtracing misuse"); 2920 return -EFAULT; 2921 } 2922 new_marks = true; 2923 } 2924 2925 while (spi >= 0) { 2926 if (!is_spilled_reg(&func->stack[spi])) { 2927 stack_mask = 0; 2928 break; 2929 } 2930 reg = &func->stack[spi].spilled_ptr; 2931 if (reg->type != SCALAR_VALUE) { 2932 stack_mask = 0; 2933 break; 2934 } 2935 new_marks = true; 2936 break; 2937 } 2938 2939 if (!new_marks) 2940 return 0; 2941 if (!reg_mask && !stack_mask) 2942 return 0; 2943 2944 for (;;) { 2945 DECLARE_BITMAP(mask, 64); 2946 u32 history = st->jmp_history_cnt; 2947 2948 if (env->log.level & BPF_LOG_LEVEL2) 2949 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2950 2951 if (last_idx < 0) { 2952 /* we are at the entry into subprog, which 2953 * is expected for global funcs, but only if 2954 * requested precise registers are R1-R5 2955 * (which are global func's input arguments) 2956 */ 2957 if (st->curframe == 0 && 2958 st->frame[0]->subprogno > 0 && 2959 st->frame[0]->callsite == BPF_MAIN_FUNC && 2960 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 2961 bitmap_from_u64(mask, reg_mask); 2962 for_each_set_bit(i, mask, 32) { 2963 reg = &st->frame[0]->regs[i]; 2964 if (reg->type != SCALAR_VALUE) { 2965 reg_mask &= ~(1u << i); 2966 continue; 2967 } 2968 reg->precise = true; 2969 } 2970 return 0; 2971 } 2972 2973 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 2974 st->frame[0]->subprogno, reg_mask, stack_mask); 2975 WARN_ONCE(1, "verifier backtracking bug"); 2976 return -EFAULT; 2977 } 2978 2979 for (i = last_idx;;) { 2980 if (skip_first) { 2981 err = 0; 2982 skip_first = false; 2983 } else { 2984 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2985 } 2986 if (err == -ENOTSUPP) { 2987 mark_all_scalars_precise(env, st); 2988 return 0; 2989 } else if (err) { 2990 return err; 2991 } 2992 if (!reg_mask && !stack_mask) 2993 /* Found assignment(s) into tracked register in this state. 2994 * Since this state is already marked, just return. 2995 * Nothing to be tracked further in the parent state. 2996 */ 2997 return 0; 2998 if (i == first_idx) 2999 break; 3000 i = get_prev_insn_idx(st, i, &history); 3001 if (i >= env->prog->len) { 3002 /* This can happen if backtracking reached insn 0 3003 * and there are still reg_mask or stack_mask 3004 * to backtrack. 3005 * It means the backtracking missed the spot where 3006 * particular register was initialized with a constant. 3007 */ 3008 verbose(env, "BUG backtracking idx %d\n", i); 3009 WARN_ONCE(1, "verifier backtracking bug"); 3010 return -EFAULT; 3011 } 3012 } 3013 st = st->parent; 3014 if (!st) 3015 break; 3016 3017 new_marks = false; 3018 func = st->frame[frame]; 3019 bitmap_from_u64(mask, reg_mask); 3020 for_each_set_bit(i, mask, 32) { 3021 reg = &func->regs[i]; 3022 if (reg->type != SCALAR_VALUE) { 3023 reg_mask &= ~(1u << i); 3024 continue; 3025 } 3026 if (!reg->precise) 3027 new_marks = true; 3028 reg->precise = true; 3029 } 3030 3031 bitmap_from_u64(mask, stack_mask); 3032 for_each_set_bit(i, mask, 64) { 3033 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3034 /* the sequence of instructions: 3035 * 2: (bf) r3 = r10 3036 * 3: (7b) *(u64 *)(r3 -8) = r0 3037 * 4: (79) r4 = *(u64 *)(r10 -8) 3038 * doesn't contain jmps. It's backtracked 3039 * as a single block. 3040 * During backtracking insn 3 is not recognized as 3041 * stack access, so at the end of backtracking 3042 * stack slot fp-8 is still marked in stack_mask. 3043 * However the parent state may not have accessed 3044 * fp-8 and it's "unallocated" stack space. 3045 * In such case fallback to conservative. 3046 */ 3047 mark_all_scalars_precise(env, st); 3048 return 0; 3049 } 3050 3051 if (!is_spilled_reg(&func->stack[i])) { 3052 stack_mask &= ~(1ull << i); 3053 continue; 3054 } 3055 reg = &func->stack[i].spilled_ptr; 3056 if (reg->type != SCALAR_VALUE) { 3057 stack_mask &= ~(1ull << i); 3058 continue; 3059 } 3060 if (!reg->precise) 3061 new_marks = true; 3062 reg->precise = true; 3063 } 3064 if (env->log.level & BPF_LOG_LEVEL2) { 3065 verbose(env, "parent %s regs=%x stack=%llx marks:", 3066 new_marks ? "didn't have" : "already had", 3067 reg_mask, stack_mask); 3068 print_verifier_state(env, func, true); 3069 } 3070 3071 if (!reg_mask && !stack_mask) 3072 break; 3073 if (!new_marks) 3074 break; 3075 3076 last_idx = st->last_insn_idx; 3077 first_idx = st->first_insn_idx; 3078 } 3079 return 0; 3080 } 3081 3082 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3083 { 3084 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3085 } 3086 3087 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3088 { 3089 return __mark_chain_precision(env, frame, regno, -1); 3090 } 3091 3092 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3093 { 3094 return __mark_chain_precision(env, frame, -1, spi); 3095 } 3096 3097 static bool is_spillable_regtype(enum bpf_reg_type type) 3098 { 3099 switch (base_type(type)) { 3100 case PTR_TO_MAP_VALUE: 3101 case PTR_TO_STACK: 3102 case PTR_TO_CTX: 3103 case PTR_TO_PACKET: 3104 case PTR_TO_PACKET_META: 3105 case PTR_TO_PACKET_END: 3106 case PTR_TO_FLOW_KEYS: 3107 case CONST_PTR_TO_MAP: 3108 case PTR_TO_SOCKET: 3109 case PTR_TO_SOCK_COMMON: 3110 case PTR_TO_TCP_SOCK: 3111 case PTR_TO_XDP_SOCK: 3112 case PTR_TO_BTF_ID: 3113 case PTR_TO_BUF: 3114 case PTR_TO_MEM: 3115 case PTR_TO_FUNC: 3116 case PTR_TO_MAP_KEY: 3117 return true; 3118 default: 3119 return false; 3120 } 3121 } 3122 3123 /* Does this register contain a constant zero? */ 3124 static bool register_is_null(struct bpf_reg_state *reg) 3125 { 3126 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3127 } 3128 3129 static bool register_is_const(struct bpf_reg_state *reg) 3130 { 3131 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3132 } 3133 3134 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3135 { 3136 return tnum_is_unknown(reg->var_off) && 3137 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3138 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3139 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3140 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3141 } 3142 3143 static bool register_is_bounded(struct bpf_reg_state *reg) 3144 { 3145 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3146 } 3147 3148 static bool __is_pointer_value(bool allow_ptr_leaks, 3149 const struct bpf_reg_state *reg) 3150 { 3151 if (allow_ptr_leaks) 3152 return false; 3153 3154 return reg->type != SCALAR_VALUE; 3155 } 3156 3157 static void save_register_state(struct bpf_func_state *state, 3158 int spi, struct bpf_reg_state *reg, 3159 int size) 3160 { 3161 int i; 3162 3163 state->stack[spi].spilled_ptr = *reg; 3164 if (size == BPF_REG_SIZE) 3165 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3166 3167 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3168 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3169 3170 /* size < 8 bytes spill */ 3171 for (; i; i--) 3172 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3173 } 3174 3175 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3176 * stack boundary and alignment are checked in check_mem_access() 3177 */ 3178 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3179 /* stack frame we're writing to */ 3180 struct bpf_func_state *state, 3181 int off, int size, int value_regno, 3182 int insn_idx) 3183 { 3184 struct bpf_func_state *cur; /* state of the current function */ 3185 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3186 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3187 struct bpf_reg_state *reg = NULL; 3188 3189 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3190 if (err) 3191 return err; 3192 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3193 * so it's aligned access and [off, off + size) are within stack limits 3194 */ 3195 if (!env->allow_ptr_leaks && 3196 state->stack[spi].slot_type[0] == STACK_SPILL && 3197 size != BPF_REG_SIZE) { 3198 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3199 return -EACCES; 3200 } 3201 3202 cur = env->cur_state->frame[env->cur_state->curframe]; 3203 if (value_regno >= 0) 3204 reg = &cur->regs[value_regno]; 3205 if (!env->bypass_spec_v4) { 3206 bool sanitize = reg && is_spillable_regtype(reg->type); 3207 3208 for (i = 0; i < size; i++) { 3209 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3210 sanitize = true; 3211 break; 3212 } 3213 } 3214 3215 if (sanitize) 3216 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3217 } 3218 3219 mark_stack_slot_scratched(env, spi); 3220 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3221 !register_is_null(reg) && env->bpf_capable) { 3222 if (dst_reg != BPF_REG_FP) { 3223 /* The backtracking logic can only recognize explicit 3224 * stack slot address like [fp - 8]. Other spill of 3225 * scalar via different register has to be conservative. 3226 * Backtrack from here and mark all registers as precise 3227 * that contributed into 'reg' being a constant. 3228 */ 3229 err = mark_chain_precision(env, value_regno); 3230 if (err) 3231 return err; 3232 } 3233 save_register_state(state, spi, reg, size); 3234 } else if (reg && is_spillable_regtype(reg->type)) { 3235 /* register containing pointer is being spilled into stack */ 3236 if (size != BPF_REG_SIZE) { 3237 verbose_linfo(env, insn_idx, "; "); 3238 verbose(env, "invalid size of register spill\n"); 3239 return -EACCES; 3240 } 3241 if (state != cur && reg->type == PTR_TO_STACK) { 3242 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3243 return -EINVAL; 3244 } 3245 save_register_state(state, spi, reg, size); 3246 } else { 3247 u8 type = STACK_MISC; 3248 3249 /* regular write of data into stack destroys any spilled ptr */ 3250 state->stack[spi].spilled_ptr.type = NOT_INIT; 3251 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3252 if (is_spilled_reg(&state->stack[spi])) 3253 for (i = 0; i < BPF_REG_SIZE; i++) 3254 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3255 3256 /* only mark the slot as written if all 8 bytes were written 3257 * otherwise read propagation may incorrectly stop too soon 3258 * when stack slots are partially written. 3259 * This heuristic means that read propagation will be 3260 * conservative, since it will add reg_live_read marks 3261 * to stack slots all the way to first state when programs 3262 * writes+reads less than 8 bytes 3263 */ 3264 if (size == BPF_REG_SIZE) 3265 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3266 3267 /* when we zero initialize stack slots mark them as such */ 3268 if (reg && register_is_null(reg)) { 3269 /* backtracking doesn't work for STACK_ZERO yet. */ 3270 err = mark_chain_precision(env, value_regno); 3271 if (err) 3272 return err; 3273 type = STACK_ZERO; 3274 } 3275 3276 /* Mark slots affected by this stack write. */ 3277 for (i = 0; i < size; i++) 3278 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3279 type; 3280 } 3281 return 0; 3282 } 3283 3284 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3285 * known to contain a variable offset. 3286 * This function checks whether the write is permitted and conservatively 3287 * tracks the effects of the write, considering that each stack slot in the 3288 * dynamic range is potentially written to. 3289 * 3290 * 'off' includes 'regno->off'. 3291 * 'value_regno' can be -1, meaning that an unknown value is being written to 3292 * the stack. 3293 * 3294 * Spilled pointers in range are not marked as written because we don't know 3295 * what's going to be actually written. This means that read propagation for 3296 * future reads cannot be terminated by this write. 3297 * 3298 * For privileged programs, uninitialized stack slots are considered 3299 * initialized by this write (even though we don't know exactly what offsets 3300 * are going to be written to). The idea is that we don't want the verifier to 3301 * reject future reads that access slots written to through variable offsets. 3302 */ 3303 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3304 /* func where register points to */ 3305 struct bpf_func_state *state, 3306 int ptr_regno, int off, int size, 3307 int value_regno, int insn_idx) 3308 { 3309 struct bpf_func_state *cur; /* state of the current function */ 3310 int min_off, max_off; 3311 int i, err; 3312 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3313 bool writing_zero = false; 3314 /* set if the fact that we're writing a zero is used to let any 3315 * stack slots remain STACK_ZERO 3316 */ 3317 bool zero_used = false; 3318 3319 cur = env->cur_state->frame[env->cur_state->curframe]; 3320 ptr_reg = &cur->regs[ptr_regno]; 3321 min_off = ptr_reg->smin_value + off; 3322 max_off = ptr_reg->smax_value + off + size; 3323 if (value_regno >= 0) 3324 value_reg = &cur->regs[value_regno]; 3325 if (value_reg && register_is_null(value_reg)) 3326 writing_zero = true; 3327 3328 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3329 if (err) 3330 return err; 3331 3332 3333 /* Variable offset writes destroy any spilled pointers in range. */ 3334 for (i = min_off; i < max_off; i++) { 3335 u8 new_type, *stype; 3336 int slot, spi; 3337 3338 slot = -i - 1; 3339 spi = slot / BPF_REG_SIZE; 3340 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3341 mark_stack_slot_scratched(env, spi); 3342 3343 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3344 /* Reject the write if range we may write to has not 3345 * been initialized beforehand. If we didn't reject 3346 * here, the ptr status would be erased below (even 3347 * though not all slots are actually overwritten), 3348 * possibly opening the door to leaks. 3349 * 3350 * We do however catch STACK_INVALID case below, and 3351 * only allow reading possibly uninitialized memory 3352 * later for CAP_PERFMON, as the write may not happen to 3353 * that slot. 3354 */ 3355 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3356 insn_idx, i); 3357 return -EINVAL; 3358 } 3359 3360 /* Erase all spilled pointers. */ 3361 state->stack[spi].spilled_ptr.type = NOT_INIT; 3362 3363 /* Update the slot type. */ 3364 new_type = STACK_MISC; 3365 if (writing_zero && *stype == STACK_ZERO) { 3366 new_type = STACK_ZERO; 3367 zero_used = true; 3368 } 3369 /* If the slot is STACK_INVALID, we check whether it's OK to 3370 * pretend that it will be initialized by this write. The slot 3371 * might not actually be written to, and so if we mark it as 3372 * initialized future reads might leak uninitialized memory. 3373 * For privileged programs, we will accept such reads to slots 3374 * that may or may not be written because, if we're reject 3375 * them, the error would be too confusing. 3376 */ 3377 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3378 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3379 insn_idx, i); 3380 return -EINVAL; 3381 } 3382 *stype = new_type; 3383 } 3384 if (zero_used) { 3385 /* backtracking doesn't work for STACK_ZERO yet. */ 3386 err = mark_chain_precision(env, value_regno); 3387 if (err) 3388 return err; 3389 } 3390 return 0; 3391 } 3392 3393 /* When register 'dst_regno' is assigned some values from stack[min_off, 3394 * max_off), we set the register's type according to the types of the 3395 * respective stack slots. If all the stack values are known to be zeros, then 3396 * so is the destination reg. Otherwise, the register is considered to be 3397 * SCALAR. This function does not deal with register filling; the caller must 3398 * ensure that all spilled registers in the stack range have been marked as 3399 * read. 3400 */ 3401 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3402 /* func where src register points to */ 3403 struct bpf_func_state *ptr_state, 3404 int min_off, int max_off, int dst_regno) 3405 { 3406 struct bpf_verifier_state *vstate = env->cur_state; 3407 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3408 int i, slot, spi; 3409 u8 *stype; 3410 int zeros = 0; 3411 3412 for (i = min_off; i < max_off; i++) { 3413 slot = -i - 1; 3414 spi = slot / BPF_REG_SIZE; 3415 stype = ptr_state->stack[spi].slot_type; 3416 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3417 break; 3418 zeros++; 3419 } 3420 if (zeros == max_off - min_off) { 3421 /* any access_size read into register is zero extended, 3422 * so the whole register == const_zero 3423 */ 3424 __mark_reg_const_zero(&state->regs[dst_regno]); 3425 /* backtracking doesn't support STACK_ZERO yet, 3426 * so mark it precise here, so that later 3427 * backtracking can stop here. 3428 * Backtracking may not need this if this register 3429 * doesn't participate in pointer adjustment. 3430 * Forward propagation of precise flag is not 3431 * necessary either. This mark is only to stop 3432 * backtracking. Any register that contributed 3433 * to const 0 was marked precise before spill. 3434 */ 3435 state->regs[dst_regno].precise = true; 3436 } else { 3437 /* have read misc data from the stack */ 3438 mark_reg_unknown(env, state->regs, dst_regno); 3439 } 3440 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3441 } 3442 3443 /* Read the stack at 'off' and put the results into the register indicated by 3444 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3445 * spilled reg. 3446 * 3447 * 'dst_regno' can be -1, meaning that the read value is not going to a 3448 * register. 3449 * 3450 * The access is assumed to be within the current stack bounds. 3451 */ 3452 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3453 /* func where src register points to */ 3454 struct bpf_func_state *reg_state, 3455 int off, int size, int dst_regno) 3456 { 3457 struct bpf_verifier_state *vstate = env->cur_state; 3458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3459 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3460 struct bpf_reg_state *reg; 3461 u8 *stype, type; 3462 3463 stype = reg_state->stack[spi].slot_type; 3464 reg = ®_state->stack[spi].spilled_ptr; 3465 3466 if (is_spilled_reg(®_state->stack[spi])) { 3467 u8 spill_size = 1; 3468 3469 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3470 spill_size++; 3471 3472 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3473 if (reg->type != SCALAR_VALUE) { 3474 verbose_linfo(env, env->insn_idx, "; "); 3475 verbose(env, "invalid size of register fill\n"); 3476 return -EACCES; 3477 } 3478 3479 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3480 if (dst_regno < 0) 3481 return 0; 3482 3483 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3484 /* The earlier check_reg_arg() has decided the 3485 * subreg_def for this insn. Save it first. 3486 */ 3487 s32 subreg_def = state->regs[dst_regno].subreg_def; 3488 3489 state->regs[dst_regno] = *reg; 3490 state->regs[dst_regno].subreg_def = subreg_def; 3491 } else { 3492 for (i = 0; i < size; i++) { 3493 type = stype[(slot - i) % BPF_REG_SIZE]; 3494 if (type == STACK_SPILL) 3495 continue; 3496 if (type == STACK_MISC) 3497 continue; 3498 verbose(env, "invalid read from stack off %d+%d size %d\n", 3499 off, i, size); 3500 return -EACCES; 3501 } 3502 mark_reg_unknown(env, state->regs, dst_regno); 3503 } 3504 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3505 return 0; 3506 } 3507 3508 if (dst_regno >= 0) { 3509 /* restore register state from stack */ 3510 state->regs[dst_regno] = *reg; 3511 /* mark reg as written since spilled pointer state likely 3512 * has its liveness marks cleared by is_state_visited() 3513 * which resets stack/reg liveness for state transitions 3514 */ 3515 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3516 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3517 /* If dst_regno==-1, the caller is asking us whether 3518 * it is acceptable to use this value as a SCALAR_VALUE 3519 * (e.g. for XADD). 3520 * We must not allow unprivileged callers to do that 3521 * with spilled pointers. 3522 */ 3523 verbose(env, "leaking pointer from stack off %d\n", 3524 off); 3525 return -EACCES; 3526 } 3527 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3528 } else { 3529 for (i = 0; i < size; i++) { 3530 type = stype[(slot - i) % BPF_REG_SIZE]; 3531 if (type == STACK_MISC) 3532 continue; 3533 if (type == STACK_ZERO) 3534 continue; 3535 verbose(env, "invalid read from stack off %d+%d size %d\n", 3536 off, i, size); 3537 return -EACCES; 3538 } 3539 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3540 if (dst_regno >= 0) 3541 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3542 } 3543 return 0; 3544 } 3545 3546 enum bpf_access_src { 3547 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3548 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3549 }; 3550 3551 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3552 int regno, int off, int access_size, 3553 bool zero_size_allowed, 3554 enum bpf_access_src type, 3555 struct bpf_call_arg_meta *meta); 3556 3557 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3558 { 3559 return cur_regs(env) + regno; 3560 } 3561 3562 /* Read the stack at 'ptr_regno + off' and put the result into the register 3563 * 'dst_regno'. 3564 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3565 * but not its variable offset. 3566 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3567 * 3568 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3569 * filling registers (i.e. reads of spilled register cannot be detected when 3570 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3571 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3572 * offset; for a fixed offset check_stack_read_fixed_off should be used 3573 * instead. 3574 */ 3575 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3576 int ptr_regno, int off, int size, int dst_regno) 3577 { 3578 /* The state of the source register. */ 3579 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3580 struct bpf_func_state *ptr_state = func(env, reg); 3581 int err; 3582 int min_off, max_off; 3583 3584 /* Note that we pass a NULL meta, so raw access will not be permitted. 3585 */ 3586 err = check_stack_range_initialized(env, ptr_regno, off, size, 3587 false, ACCESS_DIRECT, NULL); 3588 if (err) 3589 return err; 3590 3591 min_off = reg->smin_value + off; 3592 max_off = reg->smax_value + off; 3593 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3594 return 0; 3595 } 3596 3597 /* check_stack_read dispatches to check_stack_read_fixed_off or 3598 * check_stack_read_var_off. 3599 * 3600 * The caller must ensure that the offset falls within the allocated stack 3601 * bounds. 3602 * 3603 * 'dst_regno' is a register which will receive the value from the stack. It 3604 * can be -1, meaning that the read value is not going to a register. 3605 */ 3606 static int check_stack_read(struct bpf_verifier_env *env, 3607 int ptr_regno, int off, int size, 3608 int dst_regno) 3609 { 3610 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3611 struct bpf_func_state *state = func(env, reg); 3612 int err; 3613 /* Some accesses are only permitted with a static offset. */ 3614 bool var_off = !tnum_is_const(reg->var_off); 3615 3616 /* The offset is required to be static when reads don't go to a 3617 * register, in order to not leak pointers (see 3618 * check_stack_read_fixed_off). 3619 */ 3620 if (dst_regno < 0 && var_off) { 3621 char tn_buf[48]; 3622 3623 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3624 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3625 tn_buf, off, size); 3626 return -EACCES; 3627 } 3628 /* Variable offset is prohibited for unprivileged mode for simplicity 3629 * since it requires corresponding support in Spectre masking for stack 3630 * ALU. See also retrieve_ptr_limit(). 3631 */ 3632 if (!env->bypass_spec_v1 && var_off) { 3633 char tn_buf[48]; 3634 3635 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3636 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3637 ptr_regno, tn_buf); 3638 return -EACCES; 3639 } 3640 3641 if (!var_off) { 3642 off += reg->var_off.value; 3643 err = check_stack_read_fixed_off(env, state, off, size, 3644 dst_regno); 3645 } else { 3646 /* Variable offset stack reads need more conservative handling 3647 * than fixed offset ones. Note that dst_regno >= 0 on this 3648 * branch. 3649 */ 3650 err = check_stack_read_var_off(env, ptr_regno, off, size, 3651 dst_regno); 3652 } 3653 return err; 3654 } 3655 3656 3657 /* check_stack_write dispatches to check_stack_write_fixed_off or 3658 * check_stack_write_var_off. 3659 * 3660 * 'ptr_regno' is the register used as a pointer into the stack. 3661 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3662 * 'value_regno' is the register whose value we're writing to the stack. It can 3663 * be -1, meaning that we're not writing from a register. 3664 * 3665 * The caller must ensure that the offset falls within the maximum stack size. 3666 */ 3667 static int check_stack_write(struct bpf_verifier_env *env, 3668 int ptr_regno, int off, int size, 3669 int value_regno, int insn_idx) 3670 { 3671 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3672 struct bpf_func_state *state = func(env, reg); 3673 int err; 3674 3675 if (tnum_is_const(reg->var_off)) { 3676 off += reg->var_off.value; 3677 err = check_stack_write_fixed_off(env, state, off, size, 3678 value_regno, insn_idx); 3679 } else { 3680 /* Variable offset stack reads need more conservative handling 3681 * than fixed offset ones. 3682 */ 3683 err = check_stack_write_var_off(env, state, 3684 ptr_regno, off, size, 3685 value_regno, insn_idx); 3686 } 3687 return err; 3688 } 3689 3690 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3691 int off, int size, enum bpf_access_type type) 3692 { 3693 struct bpf_reg_state *regs = cur_regs(env); 3694 struct bpf_map *map = regs[regno].map_ptr; 3695 u32 cap = bpf_map_flags_to_cap(map); 3696 3697 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3698 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3699 map->value_size, off, size); 3700 return -EACCES; 3701 } 3702 3703 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3704 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3705 map->value_size, off, size); 3706 return -EACCES; 3707 } 3708 3709 return 0; 3710 } 3711 3712 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3713 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3714 int off, int size, u32 mem_size, 3715 bool zero_size_allowed) 3716 { 3717 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3718 struct bpf_reg_state *reg; 3719 3720 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3721 return 0; 3722 3723 reg = &cur_regs(env)[regno]; 3724 switch (reg->type) { 3725 case PTR_TO_MAP_KEY: 3726 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3727 mem_size, off, size); 3728 break; 3729 case PTR_TO_MAP_VALUE: 3730 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3731 mem_size, off, size); 3732 break; 3733 case PTR_TO_PACKET: 3734 case PTR_TO_PACKET_META: 3735 case PTR_TO_PACKET_END: 3736 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3737 off, size, regno, reg->id, off, mem_size); 3738 break; 3739 case PTR_TO_MEM: 3740 default: 3741 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3742 mem_size, off, size); 3743 } 3744 3745 return -EACCES; 3746 } 3747 3748 /* check read/write into a memory region with possible variable offset */ 3749 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3750 int off, int size, u32 mem_size, 3751 bool zero_size_allowed) 3752 { 3753 struct bpf_verifier_state *vstate = env->cur_state; 3754 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3755 struct bpf_reg_state *reg = &state->regs[regno]; 3756 int err; 3757 3758 /* We may have adjusted the register pointing to memory region, so we 3759 * need to try adding each of min_value and max_value to off 3760 * to make sure our theoretical access will be safe. 3761 * 3762 * The minimum value is only important with signed 3763 * comparisons where we can't assume the floor of a 3764 * value is 0. If we are using signed variables for our 3765 * index'es we need to make sure that whatever we use 3766 * will have a set floor within our range. 3767 */ 3768 if (reg->smin_value < 0 && 3769 (reg->smin_value == S64_MIN || 3770 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3771 reg->smin_value + off < 0)) { 3772 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3773 regno); 3774 return -EACCES; 3775 } 3776 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3777 mem_size, zero_size_allowed); 3778 if (err) { 3779 verbose(env, "R%d min value is outside of the allowed memory range\n", 3780 regno); 3781 return err; 3782 } 3783 3784 /* If we haven't set a max value then we need to bail since we can't be 3785 * sure we won't do bad things. 3786 * If reg->umax_value + off could overflow, treat that as unbounded too. 3787 */ 3788 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3789 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3790 regno); 3791 return -EACCES; 3792 } 3793 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3794 mem_size, zero_size_allowed); 3795 if (err) { 3796 verbose(env, "R%d max value is outside of the allowed memory range\n", 3797 regno); 3798 return err; 3799 } 3800 3801 return 0; 3802 } 3803 3804 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3805 const struct bpf_reg_state *reg, int regno, 3806 bool fixed_off_ok) 3807 { 3808 /* Access to this pointer-typed register or passing it to a helper 3809 * is only allowed in its original, unmodified form. 3810 */ 3811 3812 if (reg->off < 0) { 3813 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3814 reg_type_str(env, reg->type), regno, reg->off); 3815 return -EACCES; 3816 } 3817 3818 if (!fixed_off_ok && reg->off) { 3819 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3820 reg_type_str(env, reg->type), regno, reg->off); 3821 return -EACCES; 3822 } 3823 3824 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3825 char tn_buf[48]; 3826 3827 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3828 verbose(env, "variable %s access var_off=%s disallowed\n", 3829 reg_type_str(env, reg->type), tn_buf); 3830 return -EACCES; 3831 } 3832 3833 return 0; 3834 } 3835 3836 int check_ptr_off_reg(struct bpf_verifier_env *env, 3837 const struct bpf_reg_state *reg, int regno) 3838 { 3839 return __check_ptr_off_reg(env, reg, regno, false); 3840 } 3841 3842 static int map_kptr_match_type(struct bpf_verifier_env *env, 3843 struct btf_field *kptr_field, 3844 struct bpf_reg_state *reg, u32 regno) 3845 { 3846 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3847 int perm_flags = PTR_MAYBE_NULL; 3848 const char *reg_name = ""; 3849 3850 /* Only unreferenced case accepts untrusted pointers */ 3851 if (kptr_field->type == BPF_KPTR_UNREF) 3852 perm_flags |= PTR_UNTRUSTED; 3853 3854 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3855 goto bad_type; 3856 3857 if (!btf_is_kernel(reg->btf)) { 3858 verbose(env, "R%d must point to kernel BTF\n", regno); 3859 return -EINVAL; 3860 } 3861 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3862 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3863 3864 /* For ref_ptr case, release function check should ensure we get one 3865 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3866 * normal store of unreferenced kptr, we must ensure var_off is zero. 3867 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3868 * reg->off and reg->ref_obj_id are not needed here. 3869 */ 3870 if (__check_ptr_off_reg(env, reg, regno, true)) 3871 return -EACCES; 3872 3873 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3874 * we also need to take into account the reg->off. 3875 * 3876 * We want to support cases like: 3877 * 3878 * struct foo { 3879 * struct bar br; 3880 * struct baz bz; 3881 * }; 3882 * 3883 * struct foo *v; 3884 * v = func(); // PTR_TO_BTF_ID 3885 * val->foo = v; // reg->off is zero, btf and btf_id match type 3886 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3887 * // first member type of struct after comparison fails 3888 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3889 * // to match type 3890 * 3891 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3892 * is zero. We must also ensure that btf_struct_ids_match does not walk 3893 * the struct to match type against first member of struct, i.e. reject 3894 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3895 * strict mode to true for type match. 3896 */ 3897 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3898 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3899 kptr_field->type == BPF_KPTR_REF)) 3900 goto bad_type; 3901 return 0; 3902 bad_type: 3903 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3904 reg_type_str(env, reg->type), reg_name); 3905 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3906 if (kptr_field->type == BPF_KPTR_UNREF) 3907 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3908 targ_name); 3909 else 3910 verbose(env, "\n"); 3911 return -EINVAL; 3912 } 3913 3914 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3915 int value_regno, int insn_idx, 3916 struct btf_field *kptr_field) 3917 { 3918 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3919 int class = BPF_CLASS(insn->code); 3920 struct bpf_reg_state *val_reg; 3921 3922 /* Things we already checked for in check_map_access and caller: 3923 * - Reject cases where variable offset may touch kptr 3924 * - size of access (must be BPF_DW) 3925 * - tnum_is_const(reg->var_off) 3926 * - kptr_field->offset == off + reg->var_off.value 3927 */ 3928 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3929 if (BPF_MODE(insn->code) != BPF_MEM) { 3930 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3931 return -EACCES; 3932 } 3933 3934 /* We only allow loading referenced kptr, since it will be marked as 3935 * untrusted, similar to unreferenced kptr. 3936 */ 3937 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 3938 verbose(env, "store to referenced kptr disallowed\n"); 3939 return -EACCES; 3940 } 3941 3942 if (class == BPF_LDX) { 3943 val_reg = reg_state(env, value_regno); 3944 /* We can simply mark the value_regno receiving the pointer 3945 * value from map as PTR_TO_BTF_ID, with the correct type. 3946 */ 3947 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 3948 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3949 /* For mark_ptr_or_null_reg */ 3950 val_reg->id = ++env->id_gen; 3951 } else if (class == BPF_STX) { 3952 val_reg = reg_state(env, value_regno); 3953 if (!register_is_null(val_reg) && 3954 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 3955 return -EACCES; 3956 } else if (class == BPF_ST) { 3957 if (insn->imm) { 3958 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3959 kptr_field->offset); 3960 return -EACCES; 3961 } 3962 } else { 3963 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3964 return -EACCES; 3965 } 3966 return 0; 3967 } 3968 3969 /* check read/write into a map element with possible variable offset */ 3970 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3971 int off, int size, bool zero_size_allowed, 3972 enum bpf_access_src src) 3973 { 3974 struct bpf_verifier_state *vstate = env->cur_state; 3975 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3976 struct bpf_reg_state *reg = &state->regs[regno]; 3977 struct bpf_map *map = reg->map_ptr; 3978 struct btf_record *rec; 3979 int err, i; 3980 3981 err = check_mem_region_access(env, regno, off, size, map->value_size, 3982 zero_size_allowed); 3983 if (err) 3984 return err; 3985 3986 if (IS_ERR_OR_NULL(map->record)) 3987 return 0; 3988 rec = map->record; 3989 for (i = 0; i < rec->cnt; i++) { 3990 struct btf_field *field = &rec->fields[i]; 3991 u32 p = field->offset; 3992 3993 /* If any part of a field can be touched by load/store, reject 3994 * this program. To check that [x1, x2) overlaps with [y1, y2), 3995 * it is sufficient to check x1 < y2 && y1 < x2. 3996 */ 3997 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 3998 p < reg->umax_value + off + size) { 3999 switch (field->type) { 4000 case BPF_KPTR_UNREF: 4001 case BPF_KPTR_REF: 4002 if (src != ACCESS_DIRECT) { 4003 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4004 return -EACCES; 4005 } 4006 if (!tnum_is_const(reg->var_off)) { 4007 verbose(env, "kptr access cannot have variable offset\n"); 4008 return -EACCES; 4009 } 4010 if (p != off + reg->var_off.value) { 4011 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4012 p, off + reg->var_off.value); 4013 return -EACCES; 4014 } 4015 if (size != bpf_size_to_bytes(BPF_DW)) { 4016 verbose(env, "kptr access size must be BPF_DW\n"); 4017 return -EACCES; 4018 } 4019 break; 4020 default: 4021 verbose(env, "%s cannot be accessed directly by load/store\n", 4022 btf_field_type_name(field->type)); 4023 return -EACCES; 4024 } 4025 } 4026 } 4027 return 0; 4028 } 4029 4030 #define MAX_PACKET_OFF 0xffff 4031 4032 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4033 const struct bpf_call_arg_meta *meta, 4034 enum bpf_access_type t) 4035 { 4036 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4037 4038 switch (prog_type) { 4039 /* Program types only with direct read access go here! */ 4040 case BPF_PROG_TYPE_LWT_IN: 4041 case BPF_PROG_TYPE_LWT_OUT: 4042 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4043 case BPF_PROG_TYPE_SK_REUSEPORT: 4044 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4045 case BPF_PROG_TYPE_CGROUP_SKB: 4046 if (t == BPF_WRITE) 4047 return false; 4048 fallthrough; 4049 4050 /* Program types with direct read + write access go here! */ 4051 case BPF_PROG_TYPE_SCHED_CLS: 4052 case BPF_PROG_TYPE_SCHED_ACT: 4053 case BPF_PROG_TYPE_XDP: 4054 case BPF_PROG_TYPE_LWT_XMIT: 4055 case BPF_PROG_TYPE_SK_SKB: 4056 case BPF_PROG_TYPE_SK_MSG: 4057 if (meta) 4058 return meta->pkt_access; 4059 4060 env->seen_direct_write = true; 4061 return true; 4062 4063 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4064 if (t == BPF_WRITE) 4065 env->seen_direct_write = true; 4066 4067 return true; 4068 4069 default: 4070 return false; 4071 } 4072 } 4073 4074 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4075 int size, bool zero_size_allowed) 4076 { 4077 struct bpf_reg_state *regs = cur_regs(env); 4078 struct bpf_reg_state *reg = ®s[regno]; 4079 int err; 4080 4081 /* We may have added a variable offset to the packet pointer; but any 4082 * reg->range we have comes after that. We are only checking the fixed 4083 * offset. 4084 */ 4085 4086 /* We don't allow negative numbers, because we aren't tracking enough 4087 * detail to prove they're safe. 4088 */ 4089 if (reg->smin_value < 0) { 4090 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4091 regno); 4092 return -EACCES; 4093 } 4094 4095 err = reg->range < 0 ? -EINVAL : 4096 __check_mem_access(env, regno, off, size, reg->range, 4097 zero_size_allowed); 4098 if (err) { 4099 verbose(env, "R%d offset is outside of the packet\n", regno); 4100 return err; 4101 } 4102 4103 /* __check_mem_access has made sure "off + size - 1" is within u16. 4104 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4105 * otherwise find_good_pkt_pointers would have refused to set range info 4106 * that __check_mem_access would have rejected this pkt access. 4107 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4108 */ 4109 env->prog->aux->max_pkt_offset = 4110 max_t(u32, env->prog->aux->max_pkt_offset, 4111 off + reg->umax_value + size - 1); 4112 4113 return err; 4114 } 4115 4116 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4117 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4118 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4119 struct btf **btf, u32 *btf_id) 4120 { 4121 struct bpf_insn_access_aux info = { 4122 .reg_type = *reg_type, 4123 .log = &env->log, 4124 }; 4125 4126 if (env->ops->is_valid_access && 4127 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4128 /* A non zero info.ctx_field_size indicates that this field is a 4129 * candidate for later verifier transformation to load the whole 4130 * field and then apply a mask when accessed with a narrower 4131 * access than actual ctx access size. A zero info.ctx_field_size 4132 * will only allow for whole field access and rejects any other 4133 * type of narrower access. 4134 */ 4135 *reg_type = info.reg_type; 4136 4137 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4138 *btf = info.btf; 4139 *btf_id = info.btf_id; 4140 } else { 4141 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4142 } 4143 /* remember the offset of last byte accessed in ctx */ 4144 if (env->prog->aux->max_ctx_offset < off + size) 4145 env->prog->aux->max_ctx_offset = off + size; 4146 return 0; 4147 } 4148 4149 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4150 return -EACCES; 4151 } 4152 4153 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4154 int size) 4155 { 4156 if (size < 0 || off < 0 || 4157 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4158 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4159 off, size); 4160 return -EACCES; 4161 } 4162 return 0; 4163 } 4164 4165 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4166 u32 regno, int off, int size, 4167 enum bpf_access_type t) 4168 { 4169 struct bpf_reg_state *regs = cur_regs(env); 4170 struct bpf_reg_state *reg = ®s[regno]; 4171 struct bpf_insn_access_aux info = {}; 4172 bool valid; 4173 4174 if (reg->smin_value < 0) { 4175 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4176 regno); 4177 return -EACCES; 4178 } 4179 4180 switch (reg->type) { 4181 case PTR_TO_SOCK_COMMON: 4182 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4183 break; 4184 case PTR_TO_SOCKET: 4185 valid = bpf_sock_is_valid_access(off, size, t, &info); 4186 break; 4187 case PTR_TO_TCP_SOCK: 4188 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4189 break; 4190 case PTR_TO_XDP_SOCK: 4191 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4192 break; 4193 default: 4194 valid = false; 4195 } 4196 4197 4198 if (valid) { 4199 env->insn_aux_data[insn_idx].ctx_field_size = 4200 info.ctx_field_size; 4201 return 0; 4202 } 4203 4204 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4205 regno, reg_type_str(env, reg->type), off, size); 4206 4207 return -EACCES; 4208 } 4209 4210 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4211 { 4212 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4213 } 4214 4215 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4216 { 4217 const struct bpf_reg_state *reg = reg_state(env, regno); 4218 4219 return reg->type == PTR_TO_CTX; 4220 } 4221 4222 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4223 { 4224 const struct bpf_reg_state *reg = reg_state(env, regno); 4225 4226 return type_is_sk_pointer(reg->type); 4227 } 4228 4229 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4230 { 4231 const struct bpf_reg_state *reg = reg_state(env, regno); 4232 4233 return type_is_pkt_pointer(reg->type); 4234 } 4235 4236 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4237 { 4238 const struct bpf_reg_state *reg = reg_state(env, regno); 4239 4240 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4241 return reg->type == PTR_TO_FLOW_KEYS; 4242 } 4243 4244 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4245 const struct bpf_reg_state *reg, 4246 int off, int size, bool strict) 4247 { 4248 struct tnum reg_off; 4249 int ip_align; 4250 4251 /* Byte size accesses are always allowed. */ 4252 if (!strict || size == 1) 4253 return 0; 4254 4255 /* For platforms that do not have a Kconfig enabling 4256 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4257 * NET_IP_ALIGN is universally set to '2'. And on platforms 4258 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4259 * to this code only in strict mode where we want to emulate 4260 * the NET_IP_ALIGN==2 checking. Therefore use an 4261 * unconditional IP align value of '2'. 4262 */ 4263 ip_align = 2; 4264 4265 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4266 if (!tnum_is_aligned(reg_off, size)) { 4267 char tn_buf[48]; 4268 4269 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4270 verbose(env, 4271 "misaligned packet access off %d+%s+%d+%d size %d\n", 4272 ip_align, tn_buf, reg->off, off, size); 4273 return -EACCES; 4274 } 4275 4276 return 0; 4277 } 4278 4279 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4280 const struct bpf_reg_state *reg, 4281 const char *pointer_desc, 4282 int off, int size, bool strict) 4283 { 4284 struct tnum reg_off; 4285 4286 /* Byte size accesses are always allowed. */ 4287 if (!strict || size == 1) 4288 return 0; 4289 4290 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4291 if (!tnum_is_aligned(reg_off, size)) { 4292 char tn_buf[48]; 4293 4294 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4295 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4296 pointer_desc, tn_buf, reg->off, off, size); 4297 return -EACCES; 4298 } 4299 4300 return 0; 4301 } 4302 4303 static int check_ptr_alignment(struct bpf_verifier_env *env, 4304 const struct bpf_reg_state *reg, int off, 4305 int size, bool strict_alignment_once) 4306 { 4307 bool strict = env->strict_alignment || strict_alignment_once; 4308 const char *pointer_desc = ""; 4309 4310 switch (reg->type) { 4311 case PTR_TO_PACKET: 4312 case PTR_TO_PACKET_META: 4313 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4314 * right in front, treat it the very same way. 4315 */ 4316 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4317 case PTR_TO_FLOW_KEYS: 4318 pointer_desc = "flow keys "; 4319 break; 4320 case PTR_TO_MAP_KEY: 4321 pointer_desc = "key "; 4322 break; 4323 case PTR_TO_MAP_VALUE: 4324 pointer_desc = "value "; 4325 break; 4326 case PTR_TO_CTX: 4327 pointer_desc = "context "; 4328 break; 4329 case PTR_TO_STACK: 4330 pointer_desc = "stack "; 4331 /* The stack spill tracking logic in check_stack_write_fixed_off() 4332 * and check_stack_read_fixed_off() relies on stack accesses being 4333 * aligned. 4334 */ 4335 strict = true; 4336 break; 4337 case PTR_TO_SOCKET: 4338 pointer_desc = "sock "; 4339 break; 4340 case PTR_TO_SOCK_COMMON: 4341 pointer_desc = "sock_common "; 4342 break; 4343 case PTR_TO_TCP_SOCK: 4344 pointer_desc = "tcp_sock "; 4345 break; 4346 case PTR_TO_XDP_SOCK: 4347 pointer_desc = "xdp_sock "; 4348 break; 4349 default: 4350 break; 4351 } 4352 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4353 strict); 4354 } 4355 4356 static int update_stack_depth(struct bpf_verifier_env *env, 4357 const struct bpf_func_state *func, 4358 int off) 4359 { 4360 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4361 4362 if (stack >= -off) 4363 return 0; 4364 4365 /* update known max for given subprogram */ 4366 env->subprog_info[func->subprogno].stack_depth = -off; 4367 return 0; 4368 } 4369 4370 /* starting from main bpf function walk all instructions of the function 4371 * and recursively walk all callees that given function can call. 4372 * Ignore jump and exit insns. 4373 * Since recursion is prevented by check_cfg() this algorithm 4374 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4375 */ 4376 static int check_max_stack_depth(struct bpf_verifier_env *env) 4377 { 4378 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4379 struct bpf_subprog_info *subprog = env->subprog_info; 4380 struct bpf_insn *insn = env->prog->insnsi; 4381 bool tail_call_reachable = false; 4382 int ret_insn[MAX_CALL_FRAMES]; 4383 int ret_prog[MAX_CALL_FRAMES]; 4384 int j; 4385 4386 process_func: 4387 /* protect against potential stack overflow that might happen when 4388 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4389 * depth for such case down to 256 so that the worst case scenario 4390 * would result in 8k stack size (32 which is tailcall limit * 256 = 4391 * 8k). 4392 * 4393 * To get the idea what might happen, see an example: 4394 * func1 -> sub rsp, 128 4395 * subfunc1 -> sub rsp, 256 4396 * tailcall1 -> add rsp, 256 4397 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4398 * subfunc2 -> sub rsp, 64 4399 * subfunc22 -> sub rsp, 128 4400 * tailcall2 -> add rsp, 128 4401 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4402 * 4403 * tailcall will unwind the current stack frame but it will not get rid 4404 * of caller's stack as shown on the example above. 4405 */ 4406 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4407 verbose(env, 4408 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4409 depth); 4410 return -EACCES; 4411 } 4412 /* round up to 32-bytes, since this is granularity 4413 * of interpreter stack size 4414 */ 4415 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4416 if (depth > MAX_BPF_STACK) { 4417 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4418 frame + 1, depth); 4419 return -EACCES; 4420 } 4421 continue_func: 4422 subprog_end = subprog[idx + 1].start; 4423 for (; i < subprog_end; i++) { 4424 int next_insn; 4425 4426 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4427 continue; 4428 /* remember insn and function to return to */ 4429 ret_insn[frame] = i + 1; 4430 ret_prog[frame] = idx; 4431 4432 /* find the callee */ 4433 next_insn = i + insn[i].imm + 1; 4434 idx = find_subprog(env, next_insn); 4435 if (idx < 0) { 4436 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4437 next_insn); 4438 return -EFAULT; 4439 } 4440 if (subprog[idx].is_async_cb) { 4441 if (subprog[idx].has_tail_call) { 4442 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4443 return -EFAULT; 4444 } 4445 /* async callbacks don't increase bpf prog stack size */ 4446 continue; 4447 } 4448 i = next_insn; 4449 4450 if (subprog[idx].has_tail_call) 4451 tail_call_reachable = true; 4452 4453 frame++; 4454 if (frame >= MAX_CALL_FRAMES) { 4455 verbose(env, "the call stack of %d frames is too deep !\n", 4456 frame); 4457 return -E2BIG; 4458 } 4459 goto process_func; 4460 } 4461 /* if tail call got detected across bpf2bpf calls then mark each of the 4462 * currently present subprog frames as tail call reachable subprogs; 4463 * this info will be utilized by JIT so that we will be preserving the 4464 * tail call counter throughout bpf2bpf calls combined with tailcalls 4465 */ 4466 if (tail_call_reachable) 4467 for (j = 0; j < frame; j++) 4468 subprog[ret_prog[j]].tail_call_reachable = true; 4469 if (subprog[0].tail_call_reachable) 4470 env->prog->aux->tail_call_reachable = true; 4471 4472 /* end of for() loop means the last insn of the 'subprog' 4473 * was reached. Doesn't matter whether it was JA or EXIT 4474 */ 4475 if (frame == 0) 4476 return 0; 4477 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4478 frame--; 4479 i = ret_insn[frame]; 4480 idx = ret_prog[frame]; 4481 goto continue_func; 4482 } 4483 4484 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4485 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4486 const struct bpf_insn *insn, int idx) 4487 { 4488 int start = idx + insn->imm + 1, subprog; 4489 4490 subprog = find_subprog(env, start); 4491 if (subprog < 0) { 4492 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4493 start); 4494 return -EFAULT; 4495 } 4496 return env->subprog_info[subprog].stack_depth; 4497 } 4498 #endif 4499 4500 static int __check_buffer_access(struct bpf_verifier_env *env, 4501 const char *buf_info, 4502 const struct bpf_reg_state *reg, 4503 int regno, int off, int size) 4504 { 4505 if (off < 0) { 4506 verbose(env, 4507 "R%d invalid %s buffer access: off=%d, size=%d\n", 4508 regno, buf_info, off, size); 4509 return -EACCES; 4510 } 4511 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4512 char tn_buf[48]; 4513 4514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4515 verbose(env, 4516 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4517 regno, off, tn_buf); 4518 return -EACCES; 4519 } 4520 4521 return 0; 4522 } 4523 4524 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4525 const struct bpf_reg_state *reg, 4526 int regno, int off, int size) 4527 { 4528 int err; 4529 4530 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4531 if (err) 4532 return err; 4533 4534 if (off + size > env->prog->aux->max_tp_access) 4535 env->prog->aux->max_tp_access = off + size; 4536 4537 return 0; 4538 } 4539 4540 static int check_buffer_access(struct bpf_verifier_env *env, 4541 const struct bpf_reg_state *reg, 4542 int regno, int off, int size, 4543 bool zero_size_allowed, 4544 u32 *max_access) 4545 { 4546 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4547 int err; 4548 4549 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4550 if (err) 4551 return err; 4552 4553 if (off + size > *max_access) 4554 *max_access = off + size; 4555 4556 return 0; 4557 } 4558 4559 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4560 static void zext_32_to_64(struct bpf_reg_state *reg) 4561 { 4562 reg->var_off = tnum_subreg(reg->var_off); 4563 __reg_assign_32_into_64(reg); 4564 } 4565 4566 /* truncate register to smaller size (in bytes) 4567 * must be called with size < BPF_REG_SIZE 4568 */ 4569 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4570 { 4571 u64 mask; 4572 4573 /* clear high bits in bit representation */ 4574 reg->var_off = tnum_cast(reg->var_off, size); 4575 4576 /* fix arithmetic bounds */ 4577 mask = ((u64)1 << (size * 8)) - 1; 4578 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4579 reg->umin_value &= mask; 4580 reg->umax_value &= mask; 4581 } else { 4582 reg->umin_value = 0; 4583 reg->umax_value = mask; 4584 } 4585 reg->smin_value = reg->umin_value; 4586 reg->smax_value = reg->umax_value; 4587 4588 /* If size is smaller than 32bit register the 32bit register 4589 * values are also truncated so we push 64-bit bounds into 4590 * 32-bit bounds. Above were truncated < 32-bits already. 4591 */ 4592 if (size >= 4) 4593 return; 4594 __reg_combine_64_into_32(reg); 4595 } 4596 4597 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4598 { 4599 /* A map is considered read-only if the following condition are true: 4600 * 4601 * 1) BPF program side cannot change any of the map content. The 4602 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4603 * and was set at map creation time. 4604 * 2) The map value(s) have been initialized from user space by a 4605 * loader and then "frozen", such that no new map update/delete 4606 * operations from syscall side are possible for the rest of 4607 * the map's lifetime from that point onwards. 4608 * 3) Any parallel/pending map update/delete operations from syscall 4609 * side have been completed. Only after that point, it's safe to 4610 * assume that map value(s) are immutable. 4611 */ 4612 return (map->map_flags & BPF_F_RDONLY_PROG) && 4613 READ_ONCE(map->frozen) && 4614 !bpf_map_write_active(map); 4615 } 4616 4617 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4618 { 4619 void *ptr; 4620 u64 addr; 4621 int err; 4622 4623 err = map->ops->map_direct_value_addr(map, &addr, off); 4624 if (err) 4625 return err; 4626 ptr = (void *)(long)addr + off; 4627 4628 switch (size) { 4629 case sizeof(u8): 4630 *val = (u64)*(u8 *)ptr; 4631 break; 4632 case sizeof(u16): 4633 *val = (u64)*(u16 *)ptr; 4634 break; 4635 case sizeof(u32): 4636 *val = (u64)*(u32 *)ptr; 4637 break; 4638 case sizeof(u64): 4639 *val = *(u64 *)ptr; 4640 break; 4641 default: 4642 return -EINVAL; 4643 } 4644 return 0; 4645 } 4646 4647 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4648 struct bpf_reg_state *regs, 4649 int regno, int off, int size, 4650 enum bpf_access_type atype, 4651 int value_regno) 4652 { 4653 struct bpf_reg_state *reg = regs + regno; 4654 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4655 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4656 enum bpf_type_flag flag = 0; 4657 u32 btf_id; 4658 int ret; 4659 4660 if (off < 0) { 4661 verbose(env, 4662 "R%d is ptr_%s invalid negative access: off=%d\n", 4663 regno, tname, off); 4664 return -EACCES; 4665 } 4666 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4667 char tn_buf[48]; 4668 4669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4670 verbose(env, 4671 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4672 regno, tname, off, tn_buf); 4673 return -EACCES; 4674 } 4675 4676 if (reg->type & MEM_USER) { 4677 verbose(env, 4678 "R%d is ptr_%s access user memory: off=%d\n", 4679 regno, tname, off); 4680 return -EACCES; 4681 } 4682 4683 if (reg->type & MEM_PERCPU) { 4684 verbose(env, 4685 "R%d is ptr_%s access percpu memory: off=%d\n", 4686 regno, tname, off); 4687 return -EACCES; 4688 } 4689 4690 if (env->ops->btf_struct_access) { 4691 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4692 off, size, atype, &btf_id, &flag); 4693 } else { 4694 if (atype != BPF_READ) { 4695 verbose(env, "only read is supported\n"); 4696 return -EACCES; 4697 } 4698 4699 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4700 atype, &btf_id, &flag); 4701 } 4702 4703 if (ret < 0) 4704 return ret; 4705 4706 /* If this is an untrusted pointer, all pointers formed by walking it 4707 * also inherit the untrusted flag. 4708 */ 4709 if (type_flag(reg->type) & PTR_UNTRUSTED) 4710 flag |= PTR_UNTRUSTED; 4711 4712 if (atype == BPF_READ && value_regno >= 0) 4713 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4714 4715 return 0; 4716 } 4717 4718 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4719 struct bpf_reg_state *regs, 4720 int regno, int off, int size, 4721 enum bpf_access_type atype, 4722 int value_regno) 4723 { 4724 struct bpf_reg_state *reg = regs + regno; 4725 struct bpf_map *map = reg->map_ptr; 4726 enum bpf_type_flag flag = 0; 4727 const struct btf_type *t; 4728 const char *tname; 4729 u32 btf_id; 4730 int ret; 4731 4732 if (!btf_vmlinux) { 4733 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4734 return -ENOTSUPP; 4735 } 4736 4737 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4738 verbose(env, "map_ptr access not supported for map type %d\n", 4739 map->map_type); 4740 return -ENOTSUPP; 4741 } 4742 4743 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4744 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4745 4746 if (!env->allow_ptr_to_map_access) { 4747 verbose(env, 4748 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4749 tname); 4750 return -EPERM; 4751 } 4752 4753 if (off < 0) { 4754 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4755 regno, tname, off); 4756 return -EACCES; 4757 } 4758 4759 if (atype != BPF_READ) { 4760 verbose(env, "only read from %s is supported\n", tname); 4761 return -EACCES; 4762 } 4763 4764 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4765 if (ret < 0) 4766 return ret; 4767 4768 if (value_regno >= 0) 4769 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4770 4771 return 0; 4772 } 4773 4774 /* Check that the stack access at the given offset is within bounds. The 4775 * maximum valid offset is -1. 4776 * 4777 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4778 * -state->allocated_stack for reads. 4779 */ 4780 static int check_stack_slot_within_bounds(int off, 4781 struct bpf_func_state *state, 4782 enum bpf_access_type t) 4783 { 4784 int min_valid_off; 4785 4786 if (t == BPF_WRITE) 4787 min_valid_off = -MAX_BPF_STACK; 4788 else 4789 min_valid_off = -state->allocated_stack; 4790 4791 if (off < min_valid_off || off > -1) 4792 return -EACCES; 4793 return 0; 4794 } 4795 4796 /* Check that the stack access at 'regno + off' falls within the maximum stack 4797 * bounds. 4798 * 4799 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4800 */ 4801 static int check_stack_access_within_bounds( 4802 struct bpf_verifier_env *env, 4803 int regno, int off, int access_size, 4804 enum bpf_access_src src, enum bpf_access_type type) 4805 { 4806 struct bpf_reg_state *regs = cur_regs(env); 4807 struct bpf_reg_state *reg = regs + regno; 4808 struct bpf_func_state *state = func(env, reg); 4809 int min_off, max_off; 4810 int err; 4811 char *err_extra; 4812 4813 if (src == ACCESS_HELPER) 4814 /* We don't know if helpers are reading or writing (or both). */ 4815 err_extra = " indirect access to"; 4816 else if (type == BPF_READ) 4817 err_extra = " read from"; 4818 else 4819 err_extra = " write to"; 4820 4821 if (tnum_is_const(reg->var_off)) { 4822 min_off = reg->var_off.value + off; 4823 if (access_size > 0) 4824 max_off = min_off + access_size - 1; 4825 else 4826 max_off = min_off; 4827 } else { 4828 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4829 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4830 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4831 err_extra, regno); 4832 return -EACCES; 4833 } 4834 min_off = reg->smin_value + off; 4835 if (access_size > 0) 4836 max_off = reg->smax_value + off + access_size - 1; 4837 else 4838 max_off = min_off; 4839 } 4840 4841 err = check_stack_slot_within_bounds(min_off, state, type); 4842 if (!err) 4843 err = check_stack_slot_within_bounds(max_off, state, type); 4844 4845 if (err) { 4846 if (tnum_is_const(reg->var_off)) { 4847 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4848 err_extra, regno, off, access_size); 4849 } else { 4850 char tn_buf[48]; 4851 4852 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4853 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4854 err_extra, regno, tn_buf, access_size); 4855 } 4856 } 4857 return err; 4858 } 4859 4860 /* check whether memory at (regno + off) is accessible for t = (read | write) 4861 * if t==write, value_regno is a register which value is stored into memory 4862 * if t==read, value_regno is a register which will receive the value from memory 4863 * if t==write && value_regno==-1, some unknown value is stored into memory 4864 * if t==read && value_regno==-1, don't care what we read from memory 4865 */ 4866 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4867 int off, int bpf_size, enum bpf_access_type t, 4868 int value_regno, bool strict_alignment_once) 4869 { 4870 struct bpf_reg_state *regs = cur_regs(env); 4871 struct bpf_reg_state *reg = regs + regno; 4872 struct bpf_func_state *state; 4873 int size, err = 0; 4874 4875 size = bpf_size_to_bytes(bpf_size); 4876 if (size < 0) 4877 return size; 4878 4879 /* alignment checks will add in reg->off themselves */ 4880 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4881 if (err) 4882 return err; 4883 4884 /* for access checks, reg->off is just part of off */ 4885 off += reg->off; 4886 4887 if (reg->type == PTR_TO_MAP_KEY) { 4888 if (t == BPF_WRITE) { 4889 verbose(env, "write to change key R%d not allowed\n", regno); 4890 return -EACCES; 4891 } 4892 4893 err = check_mem_region_access(env, regno, off, size, 4894 reg->map_ptr->key_size, false); 4895 if (err) 4896 return err; 4897 if (value_regno >= 0) 4898 mark_reg_unknown(env, regs, value_regno); 4899 } else if (reg->type == PTR_TO_MAP_VALUE) { 4900 struct btf_field *kptr_field = NULL; 4901 4902 if (t == BPF_WRITE && value_regno >= 0 && 4903 is_pointer_value(env, value_regno)) { 4904 verbose(env, "R%d leaks addr into map\n", value_regno); 4905 return -EACCES; 4906 } 4907 err = check_map_access_type(env, regno, off, size, t); 4908 if (err) 4909 return err; 4910 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4911 if (err) 4912 return err; 4913 if (tnum_is_const(reg->var_off)) 4914 kptr_field = btf_record_find(reg->map_ptr->record, 4915 off + reg->var_off.value, BPF_KPTR); 4916 if (kptr_field) { 4917 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 4918 } else if (t == BPF_READ && value_regno >= 0) { 4919 struct bpf_map *map = reg->map_ptr; 4920 4921 /* if map is read-only, track its contents as scalars */ 4922 if (tnum_is_const(reg->var_off) && 4923 bpf_map_is_rdonly(map) && 4924 map->ops->map_direct_value_addr) { 4925 int map_off = off + reg->var_off.value; 4926 u64 val = 0; 4927 4928 err = bpf_map_direct_read(map, map_off, size, 4929 &val); 4930 if (err) 4931 return err; 4932 4933 regs[value_regno].type = SCALAR_VALUE; 4934 __mark_reg_known(®s[value_regno], val); 4935 } else { 4936 mark_reg_unknown(env, regs, value_regno); 4937 } 4938 } 4939 } else if (base_type(reg->type) == PTR_TO_MEM) { 4940 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4941 4942 if (type_may_be_null(reg->type)) { 4943 verbose(env, "R%d invalid mem access '%s'\n", regno, 4944 reg_type_str(env, reg->type)); 4945 return -EACCES; 4946 } 4947 4948 if (t == BPF_WRITE && rdonly_mem) { 4949 verbose(env, "R%d cannot write into %s\n", 4950 regno, reg_type_str(env, reg->type)); 4951 return -EACCES; 4952 } 4953 4954 if (t == BPF_WRITE && value_regno >= 0 && 4955 is_pointer_value(env, value_regno)) { 4956 verbose(env, "R%d leaks addr into mem\n", value_regno); 4957 return -EACCES; 4958 } 4959 4960 err = check_mem_region_access(env, regno, off, size, 4961 reg->mem_size, false); 4962 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4963 mark_reg_unknown(env, regs, value_regno); 4964 } else if (reg->type == PTR_TO_CTX) { 4965 enum bpf_reg_type reg_type = SCALAR_VALUE; 4966 struct btf *btf = NULL; 4967 u32 btf_id = 0; 4968 4969 if (t == BPF_WRITE && value_regno >= 0 && 4970 is_pointer_value(env, value_regno)) { 4971 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4972 return -EACCES; 4973 } 4974 4975 err = check_ptr_off_reg(env, reg, regno); 4976 if (err < 0) 4977 return err; 4978 4979 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4980 &btf_id); 4981 if (err) 4982 verbose_linfo(env, insn_idx, "; "); 4983 if (!err && t == BPF_READ && value_regno >= 0) { 4984 /* ctx access returns either a scalar, or a 4985 * PTR_TO_PACKET[_META,_END]. In the latter 4986 * case, we know the offset is zero. 4987 */ 4988 if (reg_type == SCALAR_VALUE) { 4989 mark_reg_unknown(env, regs, value_regno); 4990 } else { 4991 mark_reg_known_zero(env, regs, 4992 value_regno); 4993 if (type_may_be_null(reg_type)) 4994 regs[value_regno].id = ++env->id_gen; 4995 /* A load of ctx field could have different 4996 * actual load size with the one encoded in the 4997 * insn. When the dst is PTR, it is for sure not 4998 * a sub-register. 4999 */ 5000 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5001 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5002 regs[value_regno].btf = btf; 5003 regs[value_regno].btf_id = btf_id; 5004 } 5005 } 5006 regs[value_regno].type = reg_type; 5007 } 5008 5009 } else if (reg->type == PTR_TO_STACK) { 5010 /* Basic bounds checks. */ 5011 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5012 if (err) 5013 return err; 5014 5015 state = func(env, reg); 5016 err = update_stack_depth(env, state, off); 5017 if (err) 5018 return err; 5019 5020 if (t == BPF_READ) 5021 err = check_stack_read(env, regno, off, size, 5022 value_regno); 5023 else 5024 err = check_stack_write(env, regno, off, size, 5025 value_regno, insn_idx); 5026 } else if (reg_is_pkt_pointer(reg)) { 5027 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5028 verbose(env, "cannot write into packet\n"); 5029 return -EACCES; 5030 } 5031 if (t == BPF_WRITE && value_regno >= 0 && 5032 is_pointer_value(env, value_regno)) { 5033 verbose(env, "R%d leaks addr into packet\n", 5034 value_regno); 5035 return -EACCES; 5036 } 5037 err = check_packet_access(env, regno, off, size, false); 5038 if (!err && t == BPF_READ && value_regno >= 0) 5039 mark_reg_unknown(env, regs, value_regno); 5040 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5041 if (t == BPF_WRITE && value_regno >= 0 && 5042 is_pointer_value(env, value_regno)) { 5043 verbose(env, "R%d leaks addr into flow keys\n", 5044 value_regno); 5045 return -EACCES; 5046 } 5047 5048 err = check_flow_keys_access(env, off, size); 5049 if (!err && t == BPF_READ && value_regno >= 0) 5050 mark_reg_unknown(env, regs, value_regno); 5051 } else if (type_is_sk_pointer(reg->type)) { 5052 if (t == BPF_WRITE) { 5053 verbose(env, "R%d cannot write into %s\n", 5054 regno, reg_type_str(env, reg->type)); 5055 return -EACCES; 5056 } 5057 err = check_sock_access(env, insn_idx, regno, off, size, t); 5058 if (!err && value_regno >= 0) 5059 mark_reg_unknown(env, regs, value_regno); 5060 } else if (reg->type == PTR_TO_TP_BUFFER) { 5061 err = check_tp_buffer_access(env, reg, regno, off, size); 5062 if (!err && t == BPF_READ && value_regno >= 0) 5063 mark_reg_unknown(env, regs, value_regno); 5064 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5065 !type_may_be_null(reg->type)) { 5066 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5067 value_regno); 5068 } else if (reg->type == CONST_PTR_TO_MAP) { 5069 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5070 value_regno); 5071 } else if (base_type(reg->type) == PTR_TO_BUF) { 5072 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5073 u32 *max_access; 5074 5075 if (rdonly_mem) { 5076 if (t == BPF_WRITE) { 5077 verbose(env, "R%d cannot write into %s\n", 5078 regno, reg_type_str(env, reg->type)); 5079 return -EACCES; 5080 } 5081 max_access = &env->prog->aux->max_rdonly_access; 5082 } else { 5083 max_access = &env->prog->aux->max_rdwr_access; 5084 } 5085 5086 err = check_buffer_access(env, reg, regno, off, size, false, 5087 max_access); 5088 5089 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5090 mark_reg_unknown(env, regs, value_regno); 5091 } else { 5092 verbose(env, "R%d invalid mem access '%s'\n", regno, 5093 reg_type_str(env, reg->type)); 5094 return -EACCES; 5095 } 5096 5097 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5098 regs[value_regno].type == SCALAR_VALUE) { 5099 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5100 coerce_reg_to_size(®s[value_regno], size); 5101 } 5102 return err; 5103 } 5104 5105 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5106 { 5107 int load_reg; 5108 int err; 5109 5110 switch (insn->imm) { 5111 case BPF_ADD: 5112 case BPF_ADD | BPF_FETCH: 5113 case BPF_AND: 5114 case BPF_AND | BPF_FETCH: 5115 case BPF_OR: 5116 case BPF_OR | BPF_FETCH: 5117 case BPF_XOR: 5118 case BPF_XOR | BPF_FETCH: 5119 case BPF_XCHG: 5120 case BPF_CMPXCHG: 5121 break; 5122 default: 5123 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5124 return -EINVAL; 5125 } 5126 5127 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5128 verbose(env, "invalid atomic operand size\n"); 5129 return -EINVAL; 5130 } 5131 5132 /* check src1 operand */ 5133 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5134 if (err) 5135 return err; 5136 5137 /* check src2 operand */ 5138 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5139 if (err) 5140 return err; 5141 5142 if (insn->imm == BPF_CMPXCHG) { 5143 /* Check comparison of R0 with memory location */ 5144 const u32 aux_reg = BPF_REG_0; 5145 5146 err = check_reg_arg(env, aux_reg, SRC_OP); 5147 if (err) 5148 return err; 5149 5150 if (is_pointer_value(env, aux_reg)) { 5151 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5152 return -EACCES; 5153 } 5154 } 5155 5156 if (is_pointer_value(env, insn->src_reg)) { 5157 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5158 return -EACCES; 5159 } 5160 5161 if (is_ctx_reg(env, insn->dst_reg) || 5162 is_pkt_reg(env, insn->dst_reg) || 5163 is_flow_key_reg(env, insn->dst_reg) || 5164 is_sk_reg(env, insn->dst_reg)) { 5165 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5166 insn->dst_reg, 5167 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5168 return -EACCES; 5169 } 5170 5171 if (insn->imm & BPF_FETCH) { 5172 if (insn->imm == BPF_CMPXCHG) 5173 load_reg = BPF_REG_0; 5174 else 5175 load_reg = insn->src_reg; 5176 5177 /* check and record load of old value */ 5178 err = check_reg_arg(env, load_reg, DST_OP); 5179 if (err) 5180 return err; 5181 } else { 5182 /* This instruction accesses a memory location but doesn't 5183 * actually load it into a register. 5184 */ 5185 load_reg = -1; 5186 } 5187 5188 /* Check whether we can read the memory, with second call for fetch 5189 * case to simulate the register fill. 5190 */ 5191 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5192 BPF_SIZE(insn->code), BPF_READ, -1, true); 5193 if (!err && load_reg >= 0) 5194 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5195 BPF_SIZE(insn->code), BPF_READ, load_reg, 5196 true); 5197 if (err) 5198 return err; 5199 5200 /* Check whether we can write into the same memory. */ 5201 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5202 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5203 if (err) 5204 return err; 5205 5206 return 0; 5207 } 5208 5209 /* When register 'regno' is used to read the stack (either directly or through 5210 * a helper function) make sure that it's within stack boundary and, depending 5211 * on the access type, that all elements of the stack are initialized. 5212 * 5213 * 'off' includes 'regno->off', but not its dynamic part (if any). 5214 * 5215 * All registers that have been spilled on the stack in the slots within the 5216 * read offsets are marked as read. 5217 */ 5218 static int check_stack_range_initialized( 5219 struct bpf_verifier_env *env, int regno, int off, 5220 int access_size, bool zero_size_allowed, 5221 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5222 { 5223 struct bpf_reg_state *reg = reg_state(env, regno); 5224 struct bpf_func_state *state = func(env, reg); 5225 int err, min_off, max_off, i, j, slot, spi; 5226 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5227 enum bpf_access_type bounds_check_type; 5228 /* Some accesses can write anything into the stack, others are 5229 * read-only. 5230 */ 5231 bool clobber = false; 5232 5233 if (access_size == 0 && !zero_size_allowed) { 5234 verbose(env, "invalid zero-sized read\n"); 5235 return -EACCES; 5236 } 5237 5238 if (type == ACCESS_HELPER) { 5239 /* The bounds checks for writes are more permissive than for 5240 * reads. However, if raw_mode is not set, we'll do extra 5241 * checks below. 5242 */ 5243 bounds_check_type = BPF_WRITE; 5244 clobber = true; 5245 } else { 5246 bounds_check_type = BPF_READ; 5247 } 5248 err = check_stack_access_within_bounds(env, regno, off, access_size, 5249 type, bounds_check_type); 5250 if (err) 5251 return err; 5252 5253 5254 if (tnum_is_const(reg->var_off)) { 5255 min_off = max_off = reg->var_off.value + off; 5256 } else { 5257 /* Variable offset is prohibited for unprivileged mode for 5258 * simplicity since it requires corresponding support in 5259 * Spectre masking for stack ALU. 5260 * See also retrieve_ptr_limit(). 5261 */ 5262 if (!env->bypass_spec_v1) { 5263 char tn_buf[48]; 5264 5265 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5266 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5267 regno, err_extra, tn_buf); 5268 return -EACCES; 5269 } 5270 /* Only initialized buffer on stack is allowed to be accessed 5271 * with variable offset. With uninitialized buffer it's hard to 5272 * guarantee that whole memory is marked as initialized on 5273 * helper return since specific bounds are unknown what may 5274 * cause uninitialized stack leaking. 5275 */ 5276 if (meta && meta->raw_mode) 5277 meta = NULL; 5278 5279 min_off = reg->smin_value + off; 5280 max_off = reg->smax_value + off; 5281 } 5282 5283 if (meta && meta->raw_mode) { 5284 meta->access_size = access_size; 5285 meta->regno = regno; 5286 return 0; 5287 } 5288 5289 for (i = min_off; i < max_off + access_size; i++) { 5290 u8 *stype; 5291 5292 slot = -i - 1; 5293 spi = slot / BPF_REG_SIZE; 5294 if (state->allocated_stack <= slot) 5295 goto err; 5296 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5297 if (*stype == STACK_MISC) 5298 goto mark; 5299 if (*stype == STACK_ZERO) { 5300 if (clobber) { 5301 /* helper can write anything into the stack */ 5302 *stype = STACK_MISC; 5303 } 5304 goto mark; 5305 } 5306 5307 if (is_spilled_reg(&state->stack[spi]) && 5308 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5309 env->allow_ptr_leaks)) { 5310 if (clobber) { 5311 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5312 for (j = 0; j < BPF_REG_SIZE; j++) 5313 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5314 } 5315 goto mark; 5316 } 5317 5318 err: 5319 if (tnum_is_const(reg->var_off)) { 5320 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5321 err_extra, regno, min_off, i - min_off, access_size); 5322 } else { 5323 char tn_buf[48]; 5324 5325 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5326 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5327 err_extra, regno, tn_buf, i - min_off, access_size); 5328 } 5329 return -EACCES; 5330 mark: 5331 /* reading any byte out of 8-byte 'spill_slot' will cause 5332 * the whole slot to be marked as 'read' 5333 */ 5334 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5335 state->stack[spi].spilled_ptr.parent, 5336 REG_LIVE_READ64); 5337 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5338 * be sure that whether stack slot is written to or not. Hence, 5339 * we must still conservatively propagate reads upwards even if 5340 * helper may write to the entire memory range. 5341 */ 5342 } 5343 return update_stack_depth(env, state, min_off); 5344 } 5345 5346 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5347 int access_size, bool zero_size_allowed, 5348 struct bpf_call_arg_meta *meta) 5349 { 5350 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5351 u32 *max_access; 5352 5353 switch (base_type(reg->type)) { 5354 case PTR_TO_PACKET: 5355 case PTR_TO_PACKET_META: 5356 return check_packet_access(env, regno, reg->off, access_size, 5357 zero_size_allowed); 5358 case PTR_TO_MAP_KEY: 5359 if (meta && meta->raw_mode) { 5360 verbose(env, "R%d cannot write into %s\n", regno, 5361 reg_type_str(env, reg->type)); 5362 return -EACCES; 5363 } 5364 return check_mem_region_access(env, regno, reg->off, access_size, 5365 reg->map_ptr->key_size, false); 5366 case PTR_TO_MAP_VALUE: 5367 if (check_map_access_type(env, regno, reg->off, access_size, 5368 meta && meta->raw_mode ? BPF_WRITE : 5369 BPF_READ)) 5370 return -EACCES; 5371 return check_map_access(env, regno, reg->off, access_size, 5372 zero_size_allowed, ACCESS_HELPER); 5373 case PTR_TO_MEM: 5374 if (type_is_rdonly_mem(reg->type)) { 5375 if (meta && meta->raw_mode) { 5376 verbose(env, "R%d cannot write into %s\n", regno, 5377 reg_type_str(env, reg->type)); 5378 return -EACCES; 5379 } 5380 } 5381 return check_mem_region_access(env, regno, reg->off, 5382 access_size, reg->mem_size, 5383 zero_size_allowed); 5384 case PTR_TO_BUF: 5385 if (type_is_rdonly_mem(reg->type)) { 5386 if (meta && meta->raw_mode) { 5387 verbose(env, "R%d cannot write into %s\n", regno, 5388 reg_type_str(env, reg->type)); 5389 return -EACCES; 5390 } 5391 5392 max_access = &env->prog->aux->max_rdonly_access; 5393 } else { 5394 max_access = &env->prog->aux->max_rdwr_access; 5395 } 5396 return check_buffer_access(env, reg, regno, reg->off, 5397 access_size, zero_size_allowed, 5398 max_access); 5399 case PTR_TO_STACK: 5400 return check_stack_range_initialized( 5401 env, 5402 regno, reg->off, access_size, 5403 zero_size_allowed, ACCESS_HELPER, meta); 5404 case PTR_TO_CTX: 5405 /* in case the function doesn't know how to access the context, 5406 * (because we are in a program of type SYSCALL for example), we 5407 * can not statically check its size. 5408 * Dynamically check it now. 5409 */ 5410 if (!env->ops->convert_ctx_access) { 5411 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5412 int offset = access_size - 1; 5413 5414 /* Allow zero-byte read from PTR_TO_CTX */ 5415 if (access_size == 0) 5416 return zero_size_allowed ? 0 : -EACCES; 5417 5418 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5419 atype, -1, false); 5420 } 5421 5422 fallthrough; 5423 default: /* scalar_value or invalid ptr */ 5424 /* Allow zero-byte read from NULL, regardless of pointer type */ 5425 if (zero_size_allowed && access_size == 0 && 5426 register_is_null(reg)) 5427 return 0; 5428 5429 verbose(env, "R%d type=%s ", regno, 5430 reg_type_str(env, reg->type)); 5431 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5432 return -EACCES; 5433 } 5434 } 5435 5436 static int check_mem_size_reg(struct bpf_verifier_env *env, 5437 struct bpf_reg_state *reg, u32 regno, 5438 bool zero_size_allowed, 5439 struct bpf_call_arg_meta *meta) 5440 { 5441 int err; 5442 5443 /* This is used to refine r0 return value bounds for helpers 5444 * that enforce this value as an upper bound on return values. 5445 * See do_refine_retval_range() for helpers that can refine 5446 * the return value. C type of helper is u32 so we pull register 5447 * bound from umax_value however, if negative verifier errors 5448 * out. Only upper bounds can be learned because retval is an 5449 * int type and negative retvals are allowed. 5450 */ 5451 meta->msize_max_value = reg->umax_value; 5452 5453 /* The register is SCALAR_VALUE; the access check 5454 * happens using its boundaries. 5455 */ 5456 if (!tnum_is_const(reg->var_off)) 5457 /* For unprivileged variable accesses, disable raw 5458 * mode so that the program is required to 5459 * initialize all the memory that the helper could 5460 * just partially fill up. 5461 */ 5462 meta = NULL; 5463 5464 if (reg->smin_value < 0) { 5465 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5466 regno); 5467 return -EACCES; 5468 } 5469 5470 if (reg->umin_value == 0) { 5471 err = check_helper_mem_access(env, regno - 1, 0, 5472 zero_size_allowed, 5473 meta); 5474 if (err) 5475 return err; 5476 } 5477 5478 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5479 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5480 regno); 5481 return -EACCES; 5482 } 5483 err = check_helper_mem_access(env, regno - 1, 5484 reg->umax_value, 5485 zero_size_allowed, meta); 5486 if (!err) 5487 err = mark_chain_precision(env, regno); 5488 return err; 5489 } 5490 5491 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5492 u32 regno, u32 mem_size) 5493 { 5494 bool may_be_null = type_may_be_null(reg->type); 5495 struct bpf_reg_state saved_reg; 5496 struct bpf_call_arg_meta meta; 5497 int err; 5498 5499 if (register_is_null(reg)) 5500 return 0; 5501 5502 memset(&meta, 0, sizeof(meta)); 5503 /* Assuming that the register contains a value check if the memory 5504 * access is safe. Temporarily save and restore the register's state as 5505 * the conversion shouldn't be visible to a caller. 5506 */ 5507 if (may_be_null) { 5508 saved_reg = *reg; 5509 mark_ptr_not_null_reg(reg); 5510 } 5511 5512 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5513 /* Check access for BPF_WRITE */ 5514 meta.raw_mode = true; 5515 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5516 5517 if (may_be_null) 5518 *reg = saved_reg; 5519 5520 return err; 5521 } 5522 5523 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5524 u32 regno) 5525 { 5526 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5527 bool may_be_null = type_may_be_null(mem_reg->type); 5528 struct bpf_reg_state saved_reg; 5529 struct bpf_call_arg_meta meta; 5530 int err; 5531 5532 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5533 5534 memset(&meta, 0, sizeof(meta)); 5535 5536 if (may_be_null) { 5537 saved_reg = *mem_reg; 5538 mark_ptr_not_null_reg(mem_reg); 5539 } 5540 5541 err = check_mem_size_reg(env, reg, regno, true, &meta); 5542 /* Check access for BPF_WRITE */ 5543 meta.raw_mode = true; 5544 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5545 5546 if (may_be_null) 5547 *mem_reg = saved_reg; 5548 return err; 5549 } 5550 5551 /* Implementation details: 5552 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5553 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5554 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5555 * value_or_null->value transition, since the verifier only cares about 5556 * the range of access to valid map value pointer and doesn't care about actual 5557 * address of the map element. 5558 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5559 * reg->id > 0 after value_or_null->value transition. By doing so 5560 * two bpf_map_lookups will be considered two different pointers that 5561 * point to different bpf_spin_locks. 5562 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5563 * dead-locks. 5564 * Since only one bpf_spin_lock is allowed the checks are simpler than 5565 * reg_is_refcounted() logic. The verifier needs to remember only 5566 * one spin_lock instead of array of acquired_refs. 5567 * cur_state->active_spin_lock remembers which map value element got locked 5568 * and clears it after bpf_spin_unlock. 5569 */ 5570 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5571 bool is_lock) 5572 { 5573 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5574 struct bpf_verifier_state *cur = env->cur_state; 5575 bool is_const = tnum_is_const(reg->var_off); 5576 struct bpf_map *map = reg->map_ptr; 5577 u64 val = reg->var_off.value; 5578 5579 if (!is_const) { 5580 verbose(env, 5581 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5582 regno); 5583 return -EINVAL; 5584 } 5585 if (!map->btf) { 5586 verbose(env, 5587 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5588 map->name); 5589 return -EINVAL; 5590 } 5591 if (!btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 5592 verbose(env, "map '%s' has no valid bpf_spin_lock\n", map->name); 5593 return -EINVAL; 5594 } 5595 if (map->record->spin_lock_off != val + reg->off) { 5596 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5597 val + reg->off, map->record->spin_lock_off); 5598 return -EINVAL; 5599 } 5600 if (is_lock) { 5601 if (cur->active_spin_lock) { 5602 verbose(env, 5603 "Locking two bpf_spin_locks are not allowed\n"); 5604 return -EINVAL; 5605 } 5606 cur->active_spin_lock = reg->id; 5607 } else { 5608 if (!cur->active_spin_lock) { 5609 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5610 return -EINVAL; 5611 } 5612 if (cur->active_spin_lock != reg->id) { 5613 verbose(env, "bpf_spin_unlock of different lock\n"); 5614 return -EINVAL; 5615 } 5616 cur->active_spin_lock = 0; 5617 } 5618 return 0; 5619 } 5620 5621 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5622 struct bpf_call_arg_meta *meta) 5623 { 5624 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5625 bool is_const = tnum_is_const(reg->var_off); 5626 struct bpf_map *map = reg->map_ptr; 5627 u64 val = reg->var_off.value; 5628 5629 if (!is_const) { 5630 verbose(env, 5631 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5632 regno); 5633 return -EINVAL; 5634 } 5635 if (!map->btf) { 5636 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5637 map->name); 5638 return -EINVAL; 5639 } 5640 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5641 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5642 return -EINVAL; 5643 } 5644 if (map->record->timer_off != val + reg->off) { 5645 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5646 val + reg->off, map->record->timer_off); 5647 return -EINVAL; 5648 } 5649 if (meta->map_ptr) { 5650 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5651 return -EFAULT; 5652 } 5653 meta->map_uid = reg->map_uid; 5654 meta->map_ptr = map; 5655 return 0; 5656 } 5657 5658 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5659 struct bpf_call_arg_meta *meta) 5660 { 5661 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5662 struct bpf_map *map_ptr = reg->map_ptr; 5663 struct btf_field *kptr_field; 5664 u32 kptr_off; 5665 5666 if (!tnum_is_const(reg->var_off)) { 5667 verbose(env, 5668 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5669 regno); 5670 return -EINVAL; 5671 } 5672 if (!map_ptr->btf) { 5673 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5674 map_ptr->name); 5675 return -EINVAL; 5676 } 5677 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5678 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5679 return -EINVAL; 5680 } 5681 5682 meta->map_ptr = map_ptr; 5683 kptr_off = reg->off + reg->var_off.value; 5684 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5685 if (!kptr_field) { 5686 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5687 return -EACCES; 5688 } 5689 if (kptr_field->type != BPF_KPTR_REF) { 5690 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5691 return -EACCES; 5692 } 5693 meta->kptr_field = kptr_field; 5694 return 0; 5695 } 5696 5697 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5698 { 5699 return type == ARG_CONST_SIZE || 5700 type == ARG_CONST_SIZE_OR_ZERO; 5701 } 5702 5703 static bool arg_type_is_release(enum bpf_arg_type type) 5704 { 5705 return type & OBJ_RELEASE; 5706 } 5707 5708 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5709 { 5710 return base_type(type) == ARG_PTR_TO_DYNPTR; 5711 } 5712 5713 static int int_ptr_type_to_size(enum bpf_arg_type type) 5714 { 5715 if (type == ARG_PTR_TO_INT) 5716 return sizeof(u32); 5717 else if (type == ARG_PTR_TO_LONG) 5718 return sizeof(u64); 5719 5720 return -EINVAL; 5721 } 5722 5723 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5724 const struct bpf_call_arg_meta *meta, 5725 enum bpf_arg_type *arg_type) 5726 { 5727 if (!meta->map_ptr) { 5728 /* kernel subsystem misconfigured verifier */ 5729 verbose(env, "invalid map_ptr to access map->type\n"); 5730 return -EACCES; 5731 } 5732 5733 switch (meta->map_ptr->map_type) { 5734 case BPF_MAP_TYPE_SOCKMAP: 5735 case BPF_MAP_TYPE_SOCKHASH: 5736 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5737 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5738 } else { 5739 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5740 return -EINVAL; 5741 } 5742 break; 5743 case BPF_MAP_TYPE_BLOOM_FILTER: 5744 if (meta->func_id == BPF_FUNC_map_peek_elem) 5745 *arg_type = ARG_PTR_TO_MAP_VALUE; 5746 break; 5747 default: 5748 break; 5749 } 5750 return 0; 5751 } 5752 5753 struct bpf_reg_types { 5754 const enum bpf_reg_type types[10]; 5755 u32 *btf_id; 5756 }; 5757 5758 static const struct bpf_reg_types sock_types = { 5759 .types = { 5760 PTR_TO_SOCK_COMMON, 5761 PTR_TO_SOCKET, 5762 PTR_TO_TCP_SOCK, 5763 PTR_TO_XDP_SOCK, 5764 }, 5765 }; 5766 5767 #ifdef CONFIG_NET 5768 static const struct bpf_reg_types btf_id_sock_common_types = { 5769 .types = { 5770 PTR_TO_SOCK_COMMON, 5771 PTR_TO_SOCKET, 5772 PTR_TO_TCP_SOCK, 5773 PTR_TO_XDP_SOCK, 5774 PTR_TO_BTF_ID, 5775 }, 5776 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5777 }; 5778 #endif 5779 5780 static const struct bpf_reg_types mem_types = { 5781 .types = { 5782 PTR_TO_STACK, 5783 PTR_TO_PACKET, 5784 PTR_TO_PACKET_META, 5785 PTR_TO_MAP_KEY, 5786 PTR_TO_MAP_VALUE, 5787 PTR_TO_MEM, 5788 PTR_TO_MEM | MEM_ALLOC, 5789 PTR_TO_BUF, 5790 }, 5791 }; 5792 5793 static const struct bpf_reg_types int_ptr_types = { 5794 .types = { 5795 PTR_TO_STACK, 5796 PTR_TO_PACKET, 5797 PTR_TO_PACKET_META, 5798 PTR_TO_MAP_KEY, 5799 PTR_TO_MAP_VALUE, 5800 }, 5801 }; 5802 5803 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5804 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5805 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5806 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5807 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5808 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5809 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5810 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5811 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5812 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5813 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5814 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5815 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5816 static const struct bpf_reg_types dynptr_types = { 5817 .types = { 5818 PTR_TO_STACK, 5819 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL, 5820 } 5821 }; 5822 5823 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5824 [ARG_PTR_TO_MAP_KEY] = &mem_types, 5825 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 5826 [ARG_CONST_SIZE] = &scalar_types, 5827 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5828 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5829 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5830 [ARG_PTR_TO_CTX] = &context_types, 5831 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5832 #ifdef CONFIG_NET 5833 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5834 #endif 5835 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5836 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5837 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5838 [ARG_PTR_TO_MEM] = &mem_types, 5839 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5840 [ARG_PTR_TO_INT] = &int_ptr_types, 5841 [ARG_PTR_TO_LONG] = &int_ptr_types, 5842 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5843 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5844 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5845 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5846 [ARG_PTR_TO_TIMER] = &timer_types, 5847 [ARG_PTR_TO_KPTR] = &kptr_types, 5848 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 5849 }; 5850 5851 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5852 enum bpf_arg_type arg_type, 5853 const u32 *arg_btf_id, 5854 struct bpf_call_arg_meta *meta) 5855 { 5856 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5857 enum bpf_reg_type expected, type = reg->type; 5858 const struct bpf_reg_types *compatible; 5859 int i, j; 5860 5861 compatible = compatible_reg_types[base_type(arg_type)]; 5862 if (!compatible) { 5863 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5864 return -EFAULT; 5865 } 5866 5867 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5868 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5869 * 5870 * Same for MAYBE_NULL: 5871 * 5872 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5873 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5874 * 5875 * Therefore we fold these flags depending on the arg_type before comparison. 5876 */ 5877 if (arg_type & MEM_RDONLY) 5878 type &= ~MEM_RDONLY; 5879 if (arg_type & PTR_MAYBE_NULL) 5880 type &= ~PTR_MAYBE_NULL; 5881 5882 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5883 expected = compatible->types[i]; 5884 if (expected == NOT_INIT) 5885 break; 5886 5887 if (type == expected) 5888 goto found; 5889 } 5890 5891 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5892 for (j = 0; j + 1 < i; j++) 5893 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5894 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5895 return -EACCES; 5896 5897 found: 5898 if (reg->type == PTR_TO_BTF_ID) { 5899 /* For bpf_sk_release, it needs to match against first member 5900 * 'struct sock_common', hence make an exception for it. This 5901 * allows bpf_sk_release to work for multiple socket types. 5902 */ 5903 bool strict_type_match = arg_type_is_release(arg_type) && 5904 meta->func_id != BPF_FUNC_sk_release; 5905 5906 if (!arg_btf_id) { 5907 if (!compatible->btf_id) { 5908 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5909 return -EFAULT; 5910 } 5911 arg_btf_id = compatible->btf_id; 5912 } 5913 5914 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5915 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 5916 return -EACCES; 5917 } else { 5918 if (arg_btf_id == BPF_PTR_POISON) { 5919 verbose(env, "verifier internal error:"); 5920 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 5921 regno); 5922 return -EACCES; 5923 } 5924 5925 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5926 btf_vmlinux, *arg_btf_id, 5927 strict_type_match)) { 5928 verbose(env, "R%d is of type %s but %s is expected\n", 5929 regno, kernel_type_name(reg->btf, reg->btf_id), 5930 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5931 return -EACCES; 5932 } 5933 } 5934 } 5935 5936 return 0; 5937 } 5938 5939 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5940 const struct bpf_reg_state *reg, int regno, 5941 enum bpf_arg_type arg_type) 5942 { 5943 enum bpf_reg_type type = reg->type; 5944 bool fixed_off_ok = false; 5945 5946 switch ((u32)type) { 5947 /* Pointer types where reg offset is explicitly allowed: */ 5948 case PTR_TO_STACK: 5949 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5950 verbose(env, "cannot pass in dynptr at an offset\n"); 5951 return -EINVAL; 5952 } 5953 fallthrough; 5954 case PTR_TO_PACKET: 5955 case PTR_TO_PACKET_META: 5956 case PTR_TO_MAP_KEY: 5957 case PTR_TO_MAP_VALUE: 5958 case PTR_TO_MEM: 5959 case PTR_TO_MEM | MEM_RDONLY: 5960 case PTR_TO_MEM | MEM_ALLOC: 5961 case PTR_TO_BUF: 5962 case PTR_TO_BUF | MEM_RDONLY: 5963 case SCALAR_VALUE: 5964 /* Some of the argument types nevertheless require a 5965 * zero register offset. 5966 */ 5967 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5968 return 0; 5969 break; 5970 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5971 * fixed offset. 5972 */ 5973 case PTR_TO_BTF_ID: 5974 /* When referenced PTR_TO_BTF_ID is passed to release function, 5975 * it's fixed offset must be 0. In the other cases, fixed offset 5976 * can be non-zero. 5977 */ 5978 if (arg_type_is_release(arg_type) && reg->off) { 5979 verbose(env, "R%d must have zero offset when passed to release func\n", 5980 regno); 5981 return -EINVAL; 5982 } 5983 /* For arg is release pointer, fixed_off_ok must be false, but 5984 * we already checked and rejected reg->off != 0 above, so set 5985 * to true to allow fixed offset for all other cases. 5986 */ 5987 fixed_off_ok = true; 5988 break; 5989 default: 5990 break; 5991 } 5992 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5993 } 5994 5995 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5996 { 5997 struct bpf_func_state *state = func(env, reg); 5998 int spi = get_spi(reg->off); 5999 6000 return state->stack[spi].spilled_ptr.id; 6001 } 6002 6003 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6004 struct bpf_call_arg_meta *meta, 6005 const struct bpf_func_proto *fn) 6006 { 6007 u32 regno = BPF_REG_1 + arg; 6008 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6009 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6010 enum bpf_reg_type type = reg->type; 6011 u32 *arg_btf_id = NULL; 6012 int err = 0; 6013 6014 if (arg_type == ARG_DONTCARE) 6015 return 0; 6016 6017 err = check_reg_arg(env, regno, SRC_OP); 6018 if (err) 6019 return err; 6020 6021 if (arg_type == ARG_ANYTHING) { 6022 if (is_pointer_value(env, regno)) { 6023 verbose(env, "R%d leaks addr into helper function\n", 6024 regno); 6025 return -EACCES; 6026 } 6027 return 0; 6028 } 6029 6030 if (type_is_pkt_pointer(type) && 6031 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6032 verbose(env, "helper access to the packet is not allowed\n"); 6033 return -EACCES; 6034 } 6035 6036 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6037 err = resolve_map_arg_type(env, meta, &arg_type); 6038 if (err) 6039 return err; 6040 } 6041 6042 if (register_is_null(reg) && type_may_be_null(arg_type)) 6043 /* A NULL register has a SCALAR_VALUE type, so skip 6044 * type checking. 6045 */ 6046 goto skip_type_check; 6047 6048 /* arg_btf_id and arg_size are in a union. */ 6049 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 6050 arg_btf_id = fn->arg_btf_id[arg]; 6051 6052 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6053 if (err) 6054 return err; 6055 6056 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6057 if (err) 6058 return err; 6059 6060 skip_type_check: 6061 if (arg_type_is_release(arg_type)) { 6062 if (arg_type_is_dynptr(arg_type)) { 6063 struct bpf_func_state *state = func(env, reg); 6064 int spi = get_spi(reg->off); 6065 6066 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6067 !state->stack[spi].spilled_ptr.id) { 6068 verbose(env, "arg %d is an unacquired reference\n", regno); 6069 return -EINVAL; 6070 } 6071 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6072 verbose(env, "R%d must be referenced when passed to release function\n", 6073 regno); 6074 return -EINVAL; 6075 } 6076 if (meta->release_regno) { 6077 verbose(env, "verifier internal error: more than one release argument\n"); 6078 return -EFAULT; 6079 } 6080 meta->release_regno = regno; 6081 } 6082 6083 if (reg->ref_obj_id) { 6084 if (meta->ref_obj_id) { 6085 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6086 regno, reg->ref_obj_id, 6087 meta->ref_obj_id); 6088 return -EFAULT; 6089 } 6090 meta->ref_obj_id = reg->ref_obj_id; 6091 } 6092 6093 switch (base_type(arg_type)) { 6094 case ARG_CONST_MAP_PTR: 6095 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6096 if (meta->map_ptr) { 6097 /* Use map_uid (which is unique id of inner map) to reject: 6098 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6099 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6100 * if (inner_map1 && inner_map2) { 6101 * timer = bpf_map_lookup_elem(inner_map1); 6102 * if (timer) 6103 * // mismatch would have been allowed 6104 * bpf_timer_init(timer, inner_map2); 6105 * } 6106 * 6107 * Comparing map_ptr is enough to distinguish normal and outer maps. 6108 */ 6109 if (meta->map_ptr != reg->map_ptr || 6110 meta->map_uid != reg->map_uid) { 6111 verbose(env, 6112 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6113 meta->map_uid, reg->map_uid); 6114 return -EINVAL; 6115 } 6116 } 6117 meta->map_ptr = reg->map_ptr; 6118 meta->map_uid = reg->map_uid; 6119 break; 6120 case ARG_PTR_TO_MAP_KEY: 6121 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6122 * check that [key, key + map->key_size) are within 6123 * stack limits and initialized 6124 */ 6125 if (!meta->map_ptr) { 6126 /* in function declaration map_ptr must come before 6127 * map_key, so that it's verified and known before 6128 * we have to check map_key here. Otherwise it means 6129 * that kernel subsystem misconfigured verifier 6130 */ 6131 verbose(env, "invalid map_ptr to access map->key\n"); 6132 return -EACCES; 6133 } 6134 err = check_helper_mem_access(env, regno, 6135 meta->map_ptr->key_size, false, 6136 NULL); 6137 break; 6138 case ARG_PTR_TO_MAP_VALUE: 6139 if (type_may_be_null(arg_type) && register_is_null(reg)) 6140 return 0; 6141 6142 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6143 * check [value, value + map->value_size) validity 6144 */ 6145 if (!meta->map_ptr) { 6146 /* kernel subsystem misconfigured verifier */ 6147 verbose(env, "invalid map_ptr to access map->value\n"); 6148 return -EACCES; 6149 } 6150 meta->raw_mode = arg_type & MEM_UNINIT; 6151 err = check_helper_mem_access(env, regno, 6152 meta->map_ptr->value_size, false, 6153 meta); 6154 break; 6155 case ARG_PTR_TO_PERCPU_BTF_ID: 6156 if (!reg->btf_id) { 6157 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6158 return -EACCES; 6159 } 6160 meta->ret_btf = reg->btf; 6161 meta->ret_btf_id = reg->btf_id; 6162 break; 6163 case ARG_PTR_TO_SPIN_LOCK: 6164 if (meta->func_id == BPF_FUNC_spin_lock) { 6165 if (process_spin_lock(env, regno, true)) 6166 return -EACCES; 6167 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6168 if (process_spin_lock(env, regno, false)) 6169 return -EACCES; 6170 } else { 6171 verbose(env, "verifier internal error\n"); 6172 return -EFAULT; 6173 } 6174 break; 6175 case ARG_PTR_TO_TIMER: 6176 if (process_timer_func(env, regno, meta)) 6177 return -EACCES; 6178 break; 6179 case ARG_PTR_TO_FUNC: 6180 meta->subprogno = reg->subprogno; 6181 break; 6182 case ARG_PTR_TO_MEM: 6183 /* The access to this pointer is only checked when we hit the 6184 * next is_mem_size argument below. 6185 */ 6186 meta->raw_mode = arg_type & MEM_UNINIT; 6187 if (arg_type & MEM_FIXED_SIZE) { 6188 err = check_helper_mem_access(env, regno, 6189 fn->arg_size[arg], false, 6190 meta); 6191 } 6192 break; 6193 case ARG_CONST_SIZE: 6194 err = check_mem_size_reg(env, reg, regno, false, meta); 6195 break; 6196 case ARG_CONST_SIZE_OR_ZERO: 6197 err = check_mem_size_reg(env, reg, regno, true, meta); 6198 break; 6199 case ARG_PTR_TO_DYNPTR: 6200 /* We only need to check for initialized / uninitialized helper 6201 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the 6202 * assumption is that if it is, that a helper function 6203 * initialized the dynptr on behalf of the BPF program. 6204 */ 6205 if (base_type(reg->type) == PTR_TO_DYNPTR) 6206 break; 6207 if (arg_type & MEM_UNINIT) { 6208 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6209 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6210 return -EINVAL; 6211 } 6212 6213 /* We only support one dynptr being uninitialized at the moment, 6214 * which is sufficient for the helper functions we have right now. 6215 */ 6216 if (meta->uninit_dynptr_regno) { 6217 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6218 return -EFAULT; 6219 } 6220 6221 meta->uninit_dynptr_regno = regno; 6222 } else if (!is_dynptr_reg_valid_init(env, reg)) { 6223 verbose(env, 6224 "Expected an initialized dynptr as arg #%d\n", 6225 arg + 1); 6226 return -EINVAL; 6227 } else if (!is_dynptr_type_expected(env, reg, arg_type)) { 6228 const char *err_extra = ""; 6229 6230 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6231 case DYNPTR_TYPE_LOCAL: 6232 err_extra = "local"; 6233 break; 6234 case DYNPTR_TYPE_RINGBUF: 6235 err_extra = "ringbuf"; 6236 break; 6237 default: 6238 err_extra = "<unknown>"; 6239 break; 6240 } 6241 verbose(env, 6242 "Expected a dynptr of type %s as arg #%d\n", 6243 err_extra, arg + 1); 6244 return -EINVAL; 6245 } 6246 break; 6247 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6248 if (!tnum_is_const(reg->var_off)) { 6249 verbose(env, "R%d is not a known constant'\n", 6250 regno); 6251 return -EACCES; 6252 } 6253 meta->mem_size = reg->var_off.value; 6254 err = mark_chain_precision(env, regno); 6255 if (err) 6256 return err; 6257 break; 6258 case ARG_PTR_TO_INT: 6259 case ARG_PTR_TO_LONG: 6260 { 6261 int size = int_ptr_type_to_size(arg_type); 6262 6263 err = check_helper_mem_access(env, regno, size, false, meta); 6264 if (err) 6265 return err; 6266 err = check_ptr_alignment(env, reg, 0, size, true); 6267 break; 6268 } 6269 case ARG_PTR_TO_CONST_STR: 6270 { 6271 struct bpf_map *map = reg->map_ptr; 6272 int map_off; 6273 u64 map_addr; 6274 char *str_ptr; 6275 6276 if (!bpf_map_is_rdonly(map)) { 6277 verbose(env, "R%d does not point to a readonly map'\n", regno); 6278 return -EACCES; 6279 } 6280 6281 if (!tnum_is_const(reg->var_off)) { 6282 verbose(env, "R%d is not a constant address'\n", regno); 6283 return -EACCES; 6284 } 6285 6286 if (!map->ops->map_direct_value_addr) { 6287 verbose(env, "no direct value access support for this map type\n"); 6288 return -EACCES; 6289 } 6290 6291 err = check_map_access(env, regno, reg->off, 6292 map->value_size - reg->off, false, 6293 ACCESS_HELPER); 6294 if (err) 6295 return err; 6296 6297 map_off = reg->off + reg->var_off.value; 6298 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6299 if (err) { 6300 verbose(env, "direct value access on string failed\n"); 6301 return err; 6302 } 6303 6304 str_ptr = (char *)(long)(map_addr); 6305 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6306 verbose(env, "string is not zero-terminated\n"); 6307 return -EINVAL; 6308 } 6309 break; 6310 } 6311 case ARG_PTR_TO_KPTR: 6312 if (process_kptr_func(env, regno, meta)) 6313 return -EACCES; 6314 break; 6315 } 6316 6317 return err; 6318 } 6319 6320 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6321 { 6322 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6323 enum bpf_prog_type type = resolve_prog_type(env->prog); 6324 6325 if (func_id != BPF_FUNC_map_update_elem) 6326 return false; 6327 6328 /* It's not possible to get access to a locked struct sock in these 6329 * contexts, so updating is safe. 6330 */ 6331 switch (type) { 6332 case BPF_PROG_TYPE_TRACING: 6333 if (eatype == BPF_TRACE_ITER) 6334 return true; 6335 break; 6336 case BPF_PROG_TYPE_SOCKET_FILTER: 6337 case BPF_PROG_TYPE_SCHED_CLS: 6338 case BPF_PROG_TYPE_SCHED_ACT: 6339 case BPF_PROG_TYPE_XDP: 6340 case BPF_PROG_TYPE_SK_REUSEPORT: 6341 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6342 case BPF_PROG_TYPE_SK_LOOKUP: 6343 return true; 6344 default: 6345 break; 6346 } 6347 6348 verbose(env, "cannot update sockmap in this context\n"); 6349 return false; 6350 } 6351 6352 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6353 { 6354 return env->prog->jit_requested && 6355 bpf_jit_supports_subprog_tailcalls(); 6356 } 6357 6358 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6359 struct bpf_map *map, int func_id) 6360 { 6361 if (!map) 6362 return 0; 6363 6364 /* We need a two way check, first is from map perspective ... */ 6365 switch (map->map_type) { 6366 case BPF_MAP_TYPE_PROG_ARRAY: 6367 if (func_id != BPF_FUNC_tail_call) 6368 goto error; 6369 break; 6370 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6371 if (func_id != BPF_FUNC_perf_event_read && 6372 func_id != BPF_FUNC_perf_event_output && 6373 func_id != BPF_FUNC_skb_output && 6374 func_id != BPF_FUNC_perf_event_read_value && 6375 func_id != BPF_FUNC_xdp_output) 6376 goto error; 6377 break; 6378 case BPF_MAP_TYPE_RINGBUF: 6379 if (func_id != BPF_FUNC_ringbuf_output && 6380 func_id != BPF_FUNC_ringbuf_reserve && 6381 func_id != BPF_FUNC_ringbuf_query && 6382 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6383 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6384 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6385 goto error; 6386 break; 6387 case BPF_MAP_TYPE_USER_RINGBUF: 6388 if (func_id != BPF_FUNC_user_ringbuf_drain) 6389 goto error; 6390 break; 6391 case BPF_MAP_TYPE_STACK_TRACE: 6392 if (func_id != BPF_FUNC_get_stackid) 6393 goto error; 6394 break; 6395 case BPF_MAP_TYPE_CGROUP_ARRAY: 6396 if (func_id != BPF_FUNC_skb_under_cgroup && 6397 func_id != BPF_FUNC_current_task_under_cgroup) 6398 goto error; 6399 break; 6400 case BPF_MAP_TYPE_CGROUP_STORAGE: 6401 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6402 if (func_id != BPF_FUNC_get_local_storage) 6403 goto error; 6404 break; 6405 case BPF_MAP_TYPE_DEVMAP: 6406 case BPF_MAP_TYPE_DEVMAP_HASH: 6407 if (func_id != BPF_FUNC_redirect_map && 6408 func_id != BPF_FUNC_map_lookup_elem) 6409 goto error; 6410 break; 6411 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6412 * appear. 6413 */ 6414 case BPF_MAP_TYPE_CPUMAP: 6415 if (func_id != BPF_FUNC_redirect_map) 6416 goto error; 6417 break; 6418 case BPF_MAP_TYPE_XSKMAP: 6419 if (func_id != BPF_FUNC_redirect_map && 6420 func_id != BPF_FUNC_map_lookup_elem) 6421 goto error; 6422 break; 6423 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6424 case BPF_MAP_TYPE_HASH_OF_MAPS: 6425 if (func_id != BPF_FUNC_map_lookup_elem) 6426 goto error; 6427 break; 6428 case BPF_MAP_TYPE_SOCKMAP: 6429 if (func_id != BPF_FUNC_sk_redirect_map && 6430 func_id != BPF_FUNC_sock_map_update && 6431 func_id != BPF_FUNC_map_delete_elem && 6432 func_id != BPF_FUNC_msg_redirect_map && 6433 func_id != BPF_FUNC_sk_select_reuseport && 6434 func_id != BPF_FUNC_map_lookup_elem && 6435 !may_update_sockmap(env, func_id)) 6436 goto error; 6437 break; 6438 case BPF_MAP_TYPE_SOCKHASH: 6439 if (func_id != BPF_FUNC_sk_redirect_hash && 6440 func_id != BPF_FUNC_sock_hash_update && 6441 func_id != BPF_FUNC_map_delete_elem && 6442 func_id != BPF_FUNC_msg_redirect_hash && 6443 func_id != BPF_FUNC_sk_select_reuseport && 6444 func_id != BPF_FUNC_map_lookup_elem && 6445 !may_update_sockmap(env, func_id)) 6446 goto error; 6447 break; 6448 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6449 if (func_id != BPF_FUNC_sk_select_reuseport) 6450 goto error; 6451 break; 6452 case BPF_MAP_TYPE_QUEUE: 6453 case BPF_MAP_TYPE_STACK: 6454 if (func_id != BPF_FUNC_map_peek_elem && 6455 func_id != BPF_FUNC_map_pop_elem && 6456 func_id != BPF_FUNC_map_push_elem) 6457 goto error; 6458 break; 6459 case BPF_MAP_TYPE_SK_STORAGE: 6460 if (func_id != BPF_FUNC_sk_storage_get && 6461 func_id != BPF_FUNC_sk_storage_delete) 6462 goto error; 6463 break; 6464 case BPF_MAP_TYPE_INODE_STORAGE: 6465 if (func_id != BPF_FUNC_inode_storage_get && 6466 func_id != BPF_FUNC_inode_storage_delete) 6467 goto error; 6468 break; 6469 case BPF_MAP_TYPE_TASK_STORAGE: 6470 if (func_id != BPF_FUNC_task_storage_get && 6471 func_id != BPF_FUNC_task_storage_delete) 6472 goto error; 6473 break; 6474 case BPF_MAP_TYPE_CGRP_STORAGE: 6475 if (func_id != BPF_FUNC_cgrp_storage_get && 6476 func_id != BPF_FUNC_cgrp_storage_delete) 6477 goto error; 6478 break; 6479 case BPF_MAP_TYPE_BLOOM_FILTER: 6480 if (func_id != BPF_FUNC_map_peek_elem && 6481 func_id != BPF_FUNC_map_push_elem) 6482 goto error; 6483 break; 6484 default: 6485 break; 6486 } 6487 6488 /* ... and second from the function itself. */ 6489 switch (func_id) { 6490 case BPF_FUNC_tail_call: 6491 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6492 goto error; 6493 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6494 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6495 return -EINVAL; 6496 } 6497 break; 6498 case BPF_FUNC_perf_event_read: 6499 case BPF_FUNC_perf_event_output: 6500 case BPF_FUNC_perf_event_read_value: 6501 case BPF_FUNC_skb_output: 6502 case BPF_FUNC_xdp_output: 6503 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6504 goto error; 6505 break; 6506 case BPF_FUNC_ringbuf_output: 6507 case BPF_FUNC_ringbuf_reserve: 6508 case BPF_FUNC_ringbuf_query: 6509 case BPF_FUNC_ringbuf_reserve_dynptr: 6510 case BPF_FUNC_ringbuf_submit_dynptr: 6511 case BPF_FUNC_ringbuf_discard_dynptr: 6512 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6513 goto error; 6514 break; 6515 case BPF_FUNC_user_ringbuf_drain: 6516 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6517 goto error; 6518 break; 6519 case BPF_FUNC_get_stackid: 6520 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6521 goto error; 6522 break; 6523 case BPF_FUNC_current_task_under_cgroup: 6524 case BPF_FUNC_skb_under_cgroup: 6525 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6526 goto error; 6527 break; 6528 case BPF_FUNC_redirect_map: 6529 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6530 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6531 map->map_type != BPF_MAP_TYPE_CPUMAP && 6532 map->map_type != BPF_MAP_TYPE_XSKMAP) 6533 goto error; 6534 break; 6535 case BPF_FUNC_sk_redirect_map: 6536 case BPF_FUNC_msg_redirect_map: 6537 case BPF_FUNC_sock_map_update: 6538 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6539 goto error; 6540 break; 6541 case BPF_FUNC_sk_redirect_hash: 6542 case BPF_FUNC_msg_redirect_hash: 6543 case BPF_FUNC_sock_hash_update: 6544 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6545 goto error; 6546 break; 6547 case BPF_FUNC_get_local_storage: 6548 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6549 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6550 goto error; 6551 break; 6552 case BPF_FUNC_sk_select_reuseport: 6553 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6554 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6555 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6556 goto error; 6557 break; 6558 case BPF_FUNC_map_pop_elem: 6559 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6560 map->map_type != BPF_MAP_TYPE_STACK) 6561 goto error; 6562 break; 6563 case BPF_FUNC_map_peek_elem: 6564 case BPF_FUNC_map_push_elem: 6565 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6566 map->map_type != BPF_MAP_TYPE_STACK && 6567 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6568 goto error; 6569 break; 6570 case BPF_FUNC_map_lookup_percpu_elem: 6571 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6572 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6573 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6574 goto error; 6575 break; 6576 case BPF_FUNC_sk_storage_get: 6577 case BPF_FUNC_sk_storage_delete: 6578 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6579 goto error; 6580 break; 6581 case BPF_FUNC_inode_storage_get: 6582 case BPF_FUNC_inode_storage_delete: 6583 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6584 goto error; 6585 break; 6586 case BPF_FUNC_task_storage_get: 6587 case BPF_FUNC_task_storage_delete: 6588 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6589 goto error; 6590 break; 6591 case BPF_FUNC_cgrp_storage_get: 6592 case BPF_FUNC_cgrp_storage_delete: 6593 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6594 goto error; 6595 break; 6596 default: 6597 break; 6598 } 6599 6600 return 0; 6601 error: 6602 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6603 map->map_type, func_id_name(func_id), func_id); 6604 return -EINVAL; 6605 } 6606 6607 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6608 { 6609 int count = 0; 6610 6611 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6612 count++; 6613 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6614 count++; 6615 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6616 count++; 6617 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6618 count++; 6619 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6620 count++; 6621 6622 /* We only support one arg being in raw mode at the moment, 6623 * which is sufficient for the helper functions we have 6624 * right now. 6625 */ 6626 return count <= 1; 6627 } 6628 6629 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6630 { 6631 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6632 bool has_size = fn->arg_size[arg] != 0; 6633 bool is_next_size = false; 6634 6635 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6636 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6637 6638 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6639 return is_next_size; 6640 6641 return has_size == is_next_size || is_next_size == is_fixed; 6642 } 6643 6644 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6645 { 6646 /* bpf_xxx(..., buf, len) call will access 'len' 6647 * bytes from memory 'buf'. Both arg types need 6648 * to be paired, so make sure there's no buggy 6649 * helper function specification. 6650 */ 6651 if (arg_type_is_mem_size(fn->arg1_type) || 6652 check_args_pair_invalid(fn, 0) || 6653 check_args_pair_invalid(fn, 1) || 6654 check_args_pair_invalid(fn, 2) || 6655 check_args_pair_invalid(fn, 3) || 6656 check_args_pair_invalid(fn, 4)) 6657 return false; 6658 6659 return true; 6660 } 6661 6662 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6663 { 6664 int i; 6665 6666 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6667 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6668 return false; 6669 6670 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6671 /* arg_btf_id and arg_size are in a union. */ 6672 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6673 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6674 return false; 6675 } 6676 6677 return true; 6678 } 6679 6680 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6681 { 6682 return check_raw_mode_ok(fn) && 6683 check_arg_pair_ok(fn) && 6684 check_btf_id_ok(fn) ? 0 : -EINVAL; 6685 } 6686 6687 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6688 * are now invalid, so turn them into unknown SCALAR_VALUE. 6689 */ 6690 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6691 { 6692 struct bpf_func_state *state; 6693 struct bpf_reg_state *reg; 6694 6695 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6696 if (reg_is_pkt_pointer_any(reg)) 6697 __mark_reg_unknown(env, reg); 6698 })); 6699 } 6700 6701 enum { 6702 AT_PKT_END = -1, 6703 BEYOND_PKT_END = -2, 6704 }; 6705 6706 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6707 { 6708 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6709 struct bpf_reg_state *reg = &state->regs[regn]; 6710 6711 if (reg->type != PTR_TO_PACKET) 6712 /* PTR_TO_PACKET_META is not supported yet */ 6713 return; 6714 6715 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6716 * How far beyond pkt_end it goes is unknown. 6717 * if (!range_open) it's the case of pkt >= pkt_end 6718 * if (range_open) it's the case of pkt > pkt_end 6719 * hence this pointer is at least 1 byte bigger than pkt_end 6720 */ 6721 if (range_open) 6722 reg->range = BEYOND_PKT_END; 6723 else 6724 reg->range = AT_PKT_END; 6725 } 6726 6727 /* The pointer with the specified id has released its reference to kernel 6728 * resources. Identify all copies of the same pointer and clear the reference. 6729 */ 6730 static int release_reference(struct bpf_verifier_env *env, 6731 int ref_obj_id) 6732 { 6733 struct bpf_func_state *state; 6734 struct bpf_reg_state *reg; 6735 int err; 6736 6737 err = release_reference_state(cur_func(env), ref_obj_id); 6738 if (err) 6739 return err; 6740 6741 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6742 if (reg->ref_obj_id == ref_obj_id) { 6743 if (!env->allow_ptr_leaks) 6744 __mark_reg_not_init(env, reg); 6745 else 6746 __mark_reg_unknown(env, reg); 6747 } 6748 })); 6749 6750 return 0; 6751 } 6752 6753 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6754 struct bpf_reg_state *regs) 6755 { 6756 int i; 6757 6758 /* after the call registers r0 - r5 were scratched */ 6759 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6760 mark_reg_not_init(env, regs, caller_saved[i]); 6761 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6762 } 6763 } 6764 6765 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6766 struct bpf_func_state *caller, 6767 struct bpf_func_state *callee, 6768 int insn_idx); 6769 6770 static int set_callee_state(struct bpf_verifier_env *env, 6771 struct bpf_func_state *caller, 6772 struct bpf_func_state *callee, int insn_idx); 6773 6774 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6775 int *insn_idx, int subprog, 6776 set_callee_state_fn set_callee_state_cb) 6777 { 6778 struct bpf_verifier_state *state = env->cur_state; 6779 struct bpf_func_info_aux *func_info_aux; 6780 struct bpf_func_state *caller, *callee; 6781 int err; 6782 bool is_global = false; 6783 6784 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6785 verbose(env, "the call stack of %d frames is too deep\n", 6786 state->curframe + 2); 6787 return -E2BIG; 6788 } 6789 6790 caller = state->frame[state->curframe]; 6791 if (state->frame[state->curframe + 1]) { 6792 verbose(env, "verifier bug. Frame %d already allocated\n", 6793 state->curframe + 1); 6794 return -EFAULT; 6795 } 6796 6797 func_info_aux = env->prog->aux->func_info_aux; 6798 if (func_info_aux) 6799 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6800 err = btf_check_subprog_call(env, subprog, caller->regs); 6801 if (err == -EFAULT) 6802 return err; 6803 if (is_global) { 6804 if (err) { 6805 verbose(env, "Caller passes invalid args into func#%d\n", 6806 subprog); 6807 return err; 6808 } else { 6809 if (env->log.level & BPF_LOG_LEVEL) 6810 verbose(env, 6811 "Func#%d is global and valid. Skipping.\n", 6812 subprog); 6813 clear_caller_saved_regs(env, caller->regs); 6814 6815 /* All global functions return a 64-bit SCALAR_VALUE */ 6816 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6817 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6818 6819 /* continue with next insn after call */ 6820 return 0; 6821 } 6822 } 6823 6824 /* set_callee_state is used for direct subprog calls, but we are 6825 * interested in validating only BPF helpers that can call subprogs as 6826 * callbacks 6827 */ 6828 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 6829 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 6830 func_id_name(insn->imm), insn->imm); 6831 return -EFAULT; 6832 } 6833 6834 if (insn->code == (BPF_JMP | BPF_CALL) && 6835 insn->src_reg == 0 && 6836 insn->imm == BPF_FUNC_timer_set_callback) { 6837 struct bpf_verifier_state *async_cb; 6838 6839 /* there is no real recursion here. timer callbacks are async */ 6840 env->subprog_info[subprog].is_async_cb = true; 6841 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6842 *insn_idx, subprog); 6843 if (!async_cb) 6844 return -EFAULT; 6845 callee = async_cb->frame[0]; 6846 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6847 6848 /* Convert bpf_timer_set_callback() args into timer callback args */ 6849 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6850 if (err) 6851 return err; 6852 6853 clear_caller_saved_regs(env, caller->regs); 6854 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6855 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6856 /* continue with next insn after call */ 6857 return 0; 6858 } 6859 6860 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6861 if (!callee) 6862 return -ENOMEM; 6863 state->frame[state->curframe + 1] = callee; 6864 6865 /* callee cannot access r0, r6 - r9 for reading and has to write 6866 * into its own stack before reading from it. 6867 * callee can read/write into caller's stack 6868 */ 6869 init_func_state(env, callee, 6870 /* remember the callsite, it will be used by bpf_exit */ 6871 *insn_idx /* callsite */, 6872 state->curframe + 1 /* frameno within this callchain */, 6873 subprog /* subprog number within this prog */); 6874 6875 /* Transfer references to the callee */ 6876 err = copy_reference_state(callee, caller); 6877 if (err) 6878 goto err_out; 6879 6880 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6881 if (err) 6882 goto err_out; 6883 6884 clear_caller_saved_regs(env, caller->regs); 6885 6886 /* only increment it after check_reg_arg() finished */ 6887 state->curframe++; 6888 6889 /* and go analyze first insn of the callee */ 6890 *insn_idx = env->subprog_info[subprog].start - 1; 6891 6892 if (env->log.level & BPF_LOG_LEVEL) { 6893 verbose(env, "caller:\n"); 6894 print_verifier_state(env, caller, true); 6895 verbose(env, "callee:\n"); 6896 print_verifier_state(env, callee, true); 6897 } 6898 return 0; 6899 6900 err_out: 6901 free_func_state(callee); 6902 state->frame[state->curframe + 1] = NULL; 6903 return err; 6904 } 6905 6906 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6907 struct bpf_func_state *caller, 6908 struct bpf_func_state *callee) 6909 { 6910 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6911 * void *callback_ctx, u64 flags); 6912 * callback_fn(struct bpf_map *map, void *key, void *value, 6913 * void *callback_ctx); 6914 */ 6915 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6916 6917 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6918 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6919 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6920 6921 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6922 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6923 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6924 6925 /* pointer to stack or null */ 6926 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6927 6928 /* unused */ 6929 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6930 return 0; 6931 } 6932 6933 static int set_callee_state(struct bpf_verifier_env *env, 6934 struct bpf_func_state *caller, 6935 struct bpf_func_state *callee, int insn_idx) 6936 { 6937 int i; 6938 6939 /* copy r1 - r5 args that callee can access. The copy includes parent 6940 * pointers, which connects us up to the liveness chain 6941 */ 6942 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6943 callee->regs[i] = caller->regs[i]; 6944 return 0; 6945 } 6946 6947 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6948 int *insn_idx) 6949 { 6950 int subprog, target_insn; 6951 6952 target_insn = *insn_idx + insn->imm + 1; 6953 subprog = find_subprog(env, target_insn); 6954 if (subprog < 0) { 6955 verbose(env, "verifier bug. No program starts at insn %d\n", 6956 target_insn); 6957 return -EFAULT; 6958 } 6959 6960 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6961 } 6962 6963 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6964 struct bpf_func_state *caller, 6965 struct bpf_func_state *callee, 6966 int insn_idx) 6967 { 6968 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6969 struct bpf_map *map; 6970 int err; 6971 6972 if (bpf_map_ptr_poisoned(insn_aux)) { 6973 verbose(env, "tail_call abusing map_ptr\n"); 6974 return -EINVAL; 6975 } 6976 6977 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6978 if (!map->ops->map_set_for_each_callback_args || 6979 !map->ops->map_for_each_callback) { 6980 verbose(env, "callback function not allowed for map\n"); 6981 return -ENOTSUPP; 6982 } 6983 6984 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6985 if (err) 6986 return err; 6987 6988 callee->in_callback_fn = true; 6989 callee->callback_ret_range = tnum_range(0, 1); 6990 return 0; 6991 } 6992 6993 static int set_loop_callback_state(struct bpf_verifier_env *env, 6994 struct bpf_func_state *caller, 6995 struct bpf_func_state *callee, 6996 int insn_idx) 6997 { 6998 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6999 * u64 flags); 7000 * callback_fn(u32 index, void *callback_ctx); 7001 */ 7002 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7003 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7004 7005 /* unused */ 7006 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7007 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7008 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7009 7010 callee->in_callback_fn = true; 7011 callee->callback_ret_range = tnum_range(0, 1); 7012 return 0; 7013 } 7014 7015 static int set_timer_callback_state(struct bpf_verifier_env *env, 7016 struct bpf_func_state *caller, 7017 struct bpf_func_state *callee, 7018 int insn_idx) 7019 { 7020 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7021 7022 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7023 * callback_fn(struct bpf_map *map, void *key, void *value); 7024 */ 7025 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7026 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7027 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7028 7029 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7030 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7031 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7032 7033 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7034 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7035 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7036 7037 /* unused */ 7038 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7039 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7040 callee->in_async_callback_fn = true; 7041 callee->callback_ret_range = tnum_range(0, 1); 7042 return 0; 7043 } 7044 7045 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7046 struct bpf_func_state *caller, 7047 struct bpf_func_state *callee, 7048 int insn_idx) 7049 { 7050 /* bpf_find_vma(struct task_struct *task, u64 addr, 7051 * void *callback_fn, void *callback_ctx, u64 flags) 7052 * (callback_fn)(struct task_struct *task, 7053 * struct vm_area_struct *vma, void *callback_ctx); 7054 */ 7055 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7056 7057 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7058 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7059 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7060 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7061 7062 /* pointer to stack or null */ 7063 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7064 7065 /* unused */ 7066 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7067 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7068 callee->in_callback_fn = true; 7069 callee->callback_ret_range = tnum_range(0, 1); 7070 return 0; 7071 } 7072 7073 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7074 struct bpf_func_state *caller, 7075 struct bpf_func_state *callee, 7076 int insn_idx) 7077 { 7078 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7079 * callback_ctx, u64 flags); 7080 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx); 7081 */ 7082 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7083 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL; 7084 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7085 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7086 7087 /* unused */ 7088 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7089 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7090 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7091 7092 callee->in_callback_fn = true; 7093 callee->callback_ret_range = tnum_range(0, 1); 7094 return 0; 7095 } 7096 7097 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7098 { 7099 struct bpf_verifier_state *state = env->cur_state; 7100 struct bpf_func_state *caller, *callee; 7101 struct bpf_reg_state *r0; 7102 int err; 7103 7104 callee = state->frame[state->curframe]; 7105 r0 = &callee->regs[BPF_REG_0]; 7106 if (r0->type == PTR_TO_STACK) { 7107 /* technically it's ok to return caller's stack pointer 7108 * (or caller's caller's pointer) back to the caller, 7109 * since these pointers are valid. Only current stack 7110 * pointer will be invalid as soon as function exits, 7111 * but let's be conservative 7112 */ 7113 verbose(env, "cannot return stack pointer to the caller\n"); 7114 return -EINVAL; 7115 } 7116 7117 caller = state->frame[state->curframe - 1]; 7118 if (callee->in_callback_fn) { 7119 /* enforce R0 return value range [0, 1]. */ 7120 struct tnum range = callee->callback_ret_range; 7121 7122 if (r0->type != SCALAR_VALUE) { 7123 verbose(env, "R0 not a scalar value\n"); 7124 return -EACCES; 7125 } 7126 if (!tnum_in(range, r0->var_off)) { 7127 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7128 return -EINVAL; 7129 } 7130 } else { 7131 /* return to the caller whatever r0 had in the callee */ 7132 caller->regs[BPF_REG_0] = *r0; 7133 } 7134 7135 /* callback_fn frame should have released its own additions to parent's 7136 * reference state at this point, or check_reference_leak would 7137 * complain, hence it must be the same as the caller. There is no need 7138 * to copy it back. 7139 */ 7140 if (!callee->in_callback_fn) { 7141 /* Transfer references to the caller */ 7142 err = copy_reference_state(caller, callee); 7143 if (err) 7144 return err; 7145 } 7146 7147 *insn_idx = callee->callsite + 1; 7148 if (env->log.level & BPF_LOG_LEVEL) { 7149 verbose(env, "returning from callee:\n"); 7150 print_verifier_state(env, callee, true); 7151 verbose(env, "to caller at %d:\n", *insn_idx); 7152 print_verifier_state(env, caller, true); 7153 } 7154 /* clear everything in the callee */ 7155 free_func_state(callee); 7156 state->frame[state->curframe--] = NULL; 7157 return 0; 7158 } 7159 7160 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7161 int func_id, 7162 struct bpf_call_arg_meta *meta) 7163 { 7164 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7165 7166 if (ret_type != RET_INTEGER || 7167 (func_id != BPF_FUNC_get_stack && 7168 func_id != BPF_FUNC_get_task_stack && 7169 func_id != BPF_FUNC_probe_read_str && 7170 func_id != BPF_FUNC_probe_read_kernel_str && 7171 func_id != BPF_FUNC_probe_read_user_str)) 7172 return; 7173 7174 ret_reg->smax_value = meta->msize_max_value; 7175 ret_reg->s32_max_value = meta->msize_max_value; 7176 ret_reg->smin_value = -MAX_ERRNO; 7177 ret_reg->s32_min_value = -MAX_ERRNO; 7178 reg_bounds_sync(ret_reg); 7179 } 7180 7181 static int 7182 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7183 int func_id, int insn_idx) 7184 { 7185 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7186 struct bpf_map *map = meta->map_ptr; 7187 7188 if (func_id != BPF_FUNC_tail_call && 7189 func_id != BPF_FUNC_map_lookup_elem && 7190 func_id != BPF_FUNC_map_update_elem && 7191 func_id != BPF_FUNC_map_delete_elem && 7192 func_id != BPF_FUNC_map_push_elem && 7193 func_id != BPF_FUNC_map_pop_elem && 7194 func_id != BPF_FUNC_map_peek_elem && 7195 func_id != BPF_FUNC_for_each_map_elem && 7196 func_id != BPF_FUNC_redirect_map && 7197 func_id != BPF_FUNC_map_lookup_percpu_elem) 7198 return 0; 7199 7200 if (map == NULL) { 7201 verbose(env, "kernel subsystem misconfigured verifier\n"); 7202 return -EINVAL; 7203 } 7204 7205 /* In case of read-only, some additional restrictions 7206 * need to be applied in order to prevent altering the 7207 * state of the map from program side. 7208 */ 7209 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7210 (func_id == BPF_FUNC_map_delete_elem || 7211 func_id == BPF_FUNC_map_update_elem || 7212 func_id == BPF_FUNC_map_push_elem || 7213 func_id == BPF_FUNC_map_pop_elem)) { 7214 verbose(env, "write into map forbidden\n"); 7215 return -EACCES; 7216 } 7217 7218 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7219 bpf_map_ptr_store(aux, meta->map_ptr, 7220 !meta->map_ptr->bypass_spec_v1); 7221 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7222 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7223 !meta->map_ptr->bypass_spec_v1); 7224 return 0; 7225 } 7226 7227 static int 7228 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7229 int func_id, int insn_idx) 7230 { 7231 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7232 struct bpf_reg_state *regs = cur_regs(env), *reg; 7233 struct bpf_map *map = meta->map_ptr; 7234 u64 val, max; 7235 int err; 7236 7237 if (func_id != BPF_FUNC_tail_call) 7238 return 0; 7239 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7240 verbose(env, "kernel subsystem misconfigured verifier\n"); 7241 return -EINVAL; 7242 } 7243 7244 reg = ®s[BPF_REG_3]; 7245 val = reg->var_off.value; 7246 max = map->max_entries; 7247 7248 if (!(register_is_const(reg) && val < max)) { 7249 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7250 return 0; 7251 } 7252 7253 err = mark_chain_precision(env, BPF_REG_3); 7254 if (err) 7255 return err; 7256 if (bpf_map_key_unseen(aux)) 7257 bpf_map_key_store(aux, val); 7258 else if (!bpf_map_key_poisoned(aux) && 7259 bpf_map_key_immediate(aux) != val) 7260 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7261 return 0; 7262 } 7263 7264 static int check_reference_leak(struct bpf_verifier_env *env) 7265 { 7266 struct bpf_func_state *state = cur_func(env); 7267 bool refs_lingering = false; 7268 int i; 7269 7270 if (state->frameno && !state->in_callback_fn) 7271 return 0; 7272 7273 for (i = 0; i < state->acquired_refs; i++) { 7274 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7275 continue; 7276 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7277 state->refs[i].id, state->refs[i].insn_idx); 7278 refs_lingering = true; 7279 } 7280 return refs_lingering ? -EINVAL : 0; 7281 } 7282 7283 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7284 struct bpf_reg_state *regs) 7285 { 7286 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7287 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7288 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7289 int err, fmt_map_off, num_args; 7290 u64 fmt_addr; 7291 char *fmt; 7292 7293 /* data must be an array of u64 */ 7294 if (data_len_reg->var_off.value % 8) 7295 return -EINVAL; 7296 num_args = data_len_reg->var_off.value / 8; 7297 7298 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7299 * and map_direct_value_addr is set. 7300 */ 7301 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7302 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7303 fmt_map_off); 7304 if (err) { 7305 verbose(env, "verifier bug\n"); 7306 return -EFAULT; 7307 } 7308 fmt = (char *)(long)fmt_addr + fmt_map_off; 7309 7310 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7311 * can focus on validating the format specifiers. 7312 */ 7313 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7314 if (err < 0) 7315 verbose(env, "Invalid format string\n"); 7316 7317 return err; 7318 } 7319 7320 static int check_get_func_ip(struct bpf_verifier_env *env) 7321 { 7322 enum bpf_prog_type type = resolve_prog_type(env->prog); 7323 int func_id = BPF_FUNC_get_func_ip; 7324 7325 if (type == BPF_PROG_TYPE_TRACING) { 7326 if (!bpf_prog_has_trampoline(env->prog)) { 7327 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7328 func_id_name(func_id), func_id); 7329 return -ENOTSUPP; 7330 } 7331 return 0; 7332 } else if (type == BPF_PROG_TYPE_KPROBE) { 7333 return 0; 7334 } 7335 7336 verbose(env, "func %s#%d not supported for program type %d\n", 7337 func_id_name(func_id), func_id, type); 7338 return -ENOTSUPP; 7339 } 7340 7341 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7342 { 7343 return &env->insn_aux_data[env->insn_idx]; 7344 } 7345 7346 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7347 { 7348 struct bpf_reg_state *regs = cur_regs(env); 7349 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7350 bool reg_is_null = register_is_null(reg); 7351 7352 if (reg_is_null) 7353 mark_chain_precision(env, BPF_REG_4); 7354 7355 return reg_is_null; 7356 } 7357 7358 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7359 { 7360 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7361 7362 if (!state->initialized) { 7363 state->initialized = 1; 7364 state->fit_for_inline = loop_flag_is_zero(env); 7365 state->callback_subprogno = subprogno; 7366 return; 7367 } 7368 7369 if (!state->fit_for_inline) 7370 return; 7371 7372 state->fit_for_inline = (loop_flag_is_zero(env) && 7373 state->callback_subprogno == subprogno); 7374 } 7375 7376 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7377 int *insn_idx_p) 7378 { 7379 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7380 const struct bpf_func_proto *fn = NULL; 7381 enum bpf_return_type ret_type; 7382 enum bpf_type_flag ret_flag; 7383 struct bpf_reg_state *regs; 7384 struct bpf_call_arg_meta meta; 7385 int insn_idx = *insn_idx_p; 7386 bool changes_data; 7387 int i, err, func_id; 7388 7389 /* find function prototype */ 7390 func_id = insn->imm; 7391 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7392 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7393 func_id); 7394 return -EINVAL; 7395 } 7396 7397 if (env->ops->get_func_proto) 7398 fn = env->ops->get_func_proto(func_id, env->prog); 7399 if (!fn) { 7400 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7401 func_id); 7402 return -EINVAL; 7403 } 7404 7405 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7406 if (!env->prog->gpl_compatible && fn->gpl_only) { 7407 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7408 return -EINVAL; 7409 } 7410 7411 if (fn->allowed && !fn->allowed(env->prog)) { 7412 verbose(env, "helper call is not allowed in probe\n"); 7413 return -EINVAL; 7414 } 7415 7416 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7417 changes_data = bpf_helper_changes_pkt_data(fn->func); 7418 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7419 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7420 func_id_name(func_id), func_id); 7421 return -EINVAL; 7422 } 7423 7424 memset(&meta, 0, sizeof(meta)); 7425 meta.pkt_access = fn->pkt_access; 7426 7427 err = check_func_proto(fn, func_id); 7428 if (err) { 7429 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7430 func_id_name(func_id), func_id); 7431 return err; 7432 } 7433 7434 meta.func_id = func_id; 7435 /* check args */ 7436 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7437 err = check_func_arg(env, i, &meta, fn); 7438 if (err) 7439 return err; 7440 } 7441 7442 err = record_func_map(env, &meta, func_id, insn_idx); 7443 if (err) 7444 return err; 7445 7446 err = record_func_key(env, &meta, func_id, insn_idx); 7447 if (err) 7448 return err; 7449 7450 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7451 * is inferred from register state. 7452 */ 7453 for (i = 0; i < meta.access_size; i++) { 7454 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7455 BPF_WRITE, -1, false); 7456 if (err) 7457 return err; 7458 } 7459 7460 regs = cur_regs(env); 7461 7462 if (meta.uninit_dynptr_regno) { 7463 /* we write BPF_DW bits (8 bytes) at a time */ 7464 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7465 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7466 i, BPF_DW, BPF_WRITE, -1, false); 7467 if (err) 7468 return err; 7469 } 7470 7471 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7472 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7473 insn_idx); 7474 if (err) 7475 return err; 7476 } 7477 7478 if (meta.release_regno) { 7479 err = -EINVAL; 7480 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7481 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7482 else if (meta.ref_obj_id) 7483 err = release_reference(env, meta.ref_obj_id); 7484 /* meta.ref_obj_id can only be 0 if register that is meant to be 7485 * released is NULL, which must be > R0. 7486 */ 7487 else if (register_is_null(®s[meta.release_regno])) 7488 err = 0; 7489 if (err) { 7490 verbose(env, "func %s#%d reference has not been acquired before\n", 7491 func_id_name(func_id), func_id); 7492 return err; 7493 } 7494 } 7495 7496 switch (func_id) { 7497 case BPF_FUNC_tail_call: 7498 err = check_reference_leak(env); 7499 if (err) { 7500 verbose(env, "tail_call would lead to reference leak\n"); 7501 return err; 7502 } 7503 break; 7504 case BPF_FUNC_get_local_storage: 7505 /* check that flags argument in get_local_storage(map, flags) is 0, 7506 * this is required because get_local_storage() can't return an error. 7507 */ 7508 if (!register_is_null(®s[BPF_REG_2])) { 7509 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7510 return -EINVAL; 7511 } 7512 break; 7513 case BPF_FUNC_for_each_map_elem: 7514 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7515 set_map_elem_callback_state); 7516 break; 7517 case BPF_FUNC_timer_set_callback: 7518 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7519 set_timer_callback_state); 7520 break; 7521 case BPF_FUNC_find_vma: 7522 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7523 set_find_vma_callback_state); 7524 break; 7525 case BPF_FUNC_snprintf: 7526 err = check_bpf_snprintf_call(env, regs); 7527 break; 7528 case BPF_FUNC_loop: 7529 update_loop_inline_state(env, meta.subprogno); 7530 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7531 set_loop_callback_state); 7532 break; 7533 case BPF_FUNC_dynptr_from_mem: 7534 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7535 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7536 reg_type_str(env, regs[BPF_REG_1].type)); 7537 return -EACCES; 7538 } 7539 break; 7540 case BPF_FUNC_set_retval: 7541 if (prog_type == BPF_PROG_TYPE_LSM && 7542 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7543 if (!env->prog->aux->attach_func_proto->type) { 7544 /* Make sure programs that attach to void 7545 * hooks don't try to modify return value. 7546 */ 7547 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7548 return -EINVAL; 7549 } 7550 } 7551 break; 7552 case BPF_FUNC_dynptr_data: 7553 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7554 if (arg_type_is_dynptr(fn->arg_type[i])) { 7555 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7556 7557 if (meta.ref_obj_id) { 7558 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7559 return -EFAULT; 7560 } 7561 7562 if (base_type(reg->type) != PTR_TO_DYNPTR) 7563 /* Find the id of the dynptr we're 7564 * tracking the reference of 7565 */ 7566 meta.ref_obj_id = stack_slot_get_id(env, reg); 7567 break; 7568 } 7569 } 7570 if (i == MAX_BPF_FUNC_REG_ARGS) { 7571 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7572 return -EFAULT; 7573 } 7574 break; 7575 case BPF_FUNC_user_ringbuf_drain: 7576 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7577 set_user_ringbuf_callback_state); 7578 break; 7579 } 7580 7581 if (err) 7582 return err; 7583 7584 /* reset caller saved regs */ 7585 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7586 mark_reg_not_init(env, regs, caller_saved[i]); 7587 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7588 } 7589 7590 /* helper call returns 64-bit value. */ 7591 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7592 7593 /* update return register (already marked as written above) */ 7594 ret_type = fn->ret_type; 7595 ret_flag = type_flag(ret_type); 7596 7597 switch (base_type(ret_type)) { 7598 case RET_INTEGER: 7599 /* sets type to SCALAR_VALUE */ 7600 mark_reg_unknown(env, regs, BPF_REG_0); 7601 break; 7602 case RET_VOID: 7603 regs[BPF_REG_0].type = NOT_INIT; 7604 break; 7605 case RET_PTR_TO_MAP_VALUE: 7606 /* There is no offset yet applied, variable or fixed */ 7607 mark_reg_known_zero(env, regs, BPF_REG_0); 7608 /* remember map_ptr, so that check_map_access() 7609 * can check 'value_size' boundary of memory access 7610 * to map element returned from bpf_map_lookup_elem() 7611 */ 7612 if (meta.map_ptr == NULL) { 7613 verbose(env, 7614 "kernel subsystem misconfigured verifier\n"); 7615 return -EINVAL; 7616 } 7617 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7618 regs[BPF_REG_0].map_uid = meta.map_uid; 7619 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7620 if (!type_may_be_null(ret_type) && 7621 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7622 regs[BPF_REG_0].id = ++env->id_gen; 7623 } 7624 break; 7625 case RET_PTR_TO_SOCKET: 7626 mark_reg_known_zero(env, regs, BPF_REG_0); 7627 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7628 break; 7629 case RET_PTR_TO_SOCK_COMMON: 7630 mark_reg_known_zero(env, regs, BPF_REG_0); 7631 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7632 break; 7633 case RET_PTR_TO_TCP_SOCK: 7634 mark_reg_known_zero(env, regs, BPF_REG_0); 7635 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7636 break; 7637 case RET_PTR_TO_ALLOC_MEM: 7638 mark_reg_known_zero(env, regs, BPF_REG_0); 7639 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7640 regs[BPF_REG_0].mem_size = meta.mem_size; 7641 break; 7642 case RET_PTR_TO_MEM_OR_BTF_ID: 7643 { 7644 const struct btf_type *t; 7645 7646 mark_reg_known_zero(env, regs, BPF_REG_0); 7647 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7648 if (!btf_type_is_struct(t)) { 7649 u32 tsize; 7650 const struct btf_type *ret; 7651 const char *tname; 7652 7653 /* resolve the type size of ksym. */ 7654 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7655 if (IS_ERR(ret)) { 7656 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7657 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7658 tname, PTR_ERR(ret)); 7659 return -EINVAL; 7660 } 7661 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7662 regs[BPF_REG_0].mem_size = tsize; 7663 } else { 7664 /* MEM_RDONLY may be carried from ret_flag, but it 7665 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7666 * it will confuse the check of PTR_TO_BTF_ID in 7667 * check_mem_access(). 7668 */ 7669 ret_flag &= ~MEM_RDONLY; 7670 7671 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7672 regs[BPF_REG_0].btf = meta.ret_btf; 7673 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7674 } 7675 break; 7676 } 7677 case RET_PTR_TO_BTF_ID: 7678 { 7679 struct btf *ret_btf; 7680 int ret_btf_id; 7681 7682 mark_reg_known_zero(env, regs, BPF_REG_0); 7683 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7684 if (func_id == BPF_FUNC_kptr_xchg) { 7685 ret_btf = meta.kptr_field->kptr.btf; 7686 ret_btf_id = meta.kptr_field->kptr.btf_id; 7687 } else { 7688 if (fn->ret_btf_id == BPF_PTR_POISON) { 7689 verbose(env, "verifier internal error:"); 7690 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 7691 func_id_name(func_id)); 7692 return -EINVAL; 7693 } 7694 ret_btf = btf_vmlinux; 7695 ret_btf_id = *fn->ret_btf_id; 7696 } 7697 if (ret_btf_id == 0) { 7698 verbose(env, "invalid return type %u of func %s#%d\n", 7699 base_type(ret_type), func_id_name(func_id), 7700 func_id); 7701 return -EINVAL; 7702 } 7703 regs[BPF_REG_0].btf = ret_btf; 7704 regs[BPF_REG_0].btf_id = ret_btf_id; 7705 break; 7706 } 7707 default: 7708 verbose(env, "unknown return type %u of func %s#%d\n", 7709 base_type(ret_type), func_id_name(func_id), func_id); 7710 return -EINVAL; 7711 } 7712 7713 if (type_may_be_null(regs[BPF_REG_0].type)) 7714 regs[BPF_REG_0].id = ++env->id_gen; 7715 7716 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7717 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7718 func_id_name(func_id), func_id); 7719 return -EFAULT; 7720 } 7721 7722 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7723 /* For release_reference() */ 7724 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7725 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7726 int id = acquire_reference_state(env, insn_idx); 7727 7728 if (id < 0) 7729 return id; 7730 /* For mark_ptr_or_null_reg() */ 7731 regs[BPF_REG_0].id = id; 7732 /* For release_reference() */ 7733 regs[BPF_REG_0].ref_obj_id = id; 7734 } 7735 7736 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7737 7738 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7739 if (err) 7740 return err; 7741 7742 if ((func_id == BPF_FUNC_get_stack || 7743 func_id == BPF_FUNC_get_task_stack) && 7744 !env->prog->has_callchain_buf) { 7745 const char *err_str; 7746 7747 #ifdef CONFIG_PERF_EVENTS 7748 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7749 err_str = "cannot get callchain buffer for func %s#%d\n"; 7750 #else 7751 err = -ENOTSUPP; 7752 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7753 #endif 7754 if (err) { 7755 verbose(env, err_str, func_id_name(func_id), func_id); 7756 return err; 7757 } 7758 7759 env->prog->has_callchain_buf = true; 7760 } 7761 7762 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7763 env->prog->call_get_stack = true; 7764 7765 if (func_id == BPF_FUNC_get_func_ip) { 7766 if (check_get_func_ip(env)) 7767 return -ENOTSUPP; 7768 env->prog->call_get_func_ip = true; 7769 } 7770 7771 if (changes_data) 7772 clear_all_pkt_pointers(env); 7773 return 0; 7774 } 7775 7776 /* mark_btf_func_reg_size() is used when the reg size is determined by 7777 * the BTF func_proto's return value size and argument. 7778 */ 7779 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7780 size_t reg_size) 7781 { 7782 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7783 7784 if (regno == BPF_REG_0) { 7785 /* Function return value */ 7786 reg->live |= REG_LIVE_WRITTEN; 7787 reg->subreg_def = reg_size == sizeof(u64) ? 7788 DEF_NOT_SUBREG : env->insn_idx + 1; 7789 } else { 7790 /* Function argument */ 7791 if (reg_size == sizeof(u64)) { 7792 mark_insn_zext(env, reg); 7793 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7794 } else { 7795 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7796 } 7797 } 7798 } 7799 7800 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7801 int *insn_idx_p) 7802 { 7803 const struct btf_type *t, *func, *func_proto, *ptr_type; 7804 struct bpf_reg_state *regs = cur_regs(env); 7805 struct bpf_kfunc_arg_meta meta = { 0 }; 7806 const char *func_name, *ptr_type_name; 7807 u32 i, nargs, func_id, ptr_type_id; 7808 int err, insn_idx = *insn_idx_p; 7809 const struct btf_param *args; 7810 struct btf *desc_btf; 7811 u32 *kfunc_flags; 7812 bool acq; 7813 7814 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7815 if (!insn->imm) 7816 return 0; 7817 7818 desc_btf = find_kfunc_desc_btf(env, insn->off); 7819 if (IS_ERR(desc_btf)) 7820 return PTR_ERR(desc_btf); 7821 7822 func_id = insn->imm; 7823 func = btf_type_by_id(desc_btf, func_id); 7824 func_name = btf_name_by_offset(desc_btf, func->name_off); 7825 func_proto = btf_type_by_id(desc_btf, func->type); 7826 7827 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7828 if (!kfunc_flags) { 7829 verbose(env, "calling kernel function %s is not allowed\n", 7830 func_name); 7831 return -EACCES; 7832 } 7833 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7834 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7835 return -EACCES; 7836 } 7837 7838 acq = *kfunc_flags & KF_ACQUIRE; 7839 7840 meta.flags = *kfunc_flags; 7841 7842 /* Check the arguments */ 7843 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta); 7844 if (err < 0) 7845 return err; 7846 /* In case of release function, we get register number of refcounted 7847 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7848 */ 7849 if (err) { 7850 err = release_reference(env, regs[err].ref_obj_id); 7851 if (err) { 7852 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7853 func_name, func_id); 7854 return err; 7855 } 7856 } 7857 7858 for (i = 0; i < CALLER_SAVED_REGS; i++) 7859 mark_reg_not_init(env, regs, caller_saved[i]); 7860 7861 /* Check return type */ 7862 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7863 7864 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) { 7865 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7866 return -EINVAL; 7867 } 7868 7869 if (btf_type_is_scalar(t)) { 7870 mark_reg_unknown(env, regs, BPF_REG_0); 7871 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7872 } else if (btf_type_is_ptr(t)) { 7873 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7874 &ptr_type_id); 7875 if (!btf_type_is_struct(ptr_type)) { 7876 if (!meta.r0_size) { 7877 ptr_type_name = btf_name_by_offset(desc_btf, 7878 ptr_type->name_off); 7879 verbose(env, 7880 "kernel function %s returns pointer type %s %s is not supported\n", 7881 func_name, 7882 btf_type_str(ptr_type), 7883 ptr_type_name); 7884 return -EINVAL; 7885 } 7886 7887 mark_reg_known_zero(env, regs, BPF_REG_0); 7888 regs[BPF_REG_0].type = PTR_TO_MEM; 7889 regs[BPF_REG_0].mem_size = meta.r0_size; 7890 7891 if (meta.r0_rdonly) 7892 regs[BPF_REG_0].type |= MEM_RDONLY; 7893 7894 /* Ensures we don't access the memory after a release_reference() */ 7895 if (meta.ref_obj_id) 7896 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7897 } else { 7898 mark_reg_known_zero(env, regs, BPF_REG_0); 7899 regs[BPF_REG_0].btf = desc_btf; 7900 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7901 regs[BPF_REG_0].btf_id = ptr_type_id; 7902 } 7903 if (*kfunc_flags & KF_RET_NULL) { 7904 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7905 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7906 regs[BPF_REG_0].id = ++env->id_gen; 7907 } 7908 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7909 if (acq) { 7910 int id = acquire_reference_state(env, insn_idx); 7911 7912 if (id < 0) 7913 return id; 7914 regs[BPF_REG_0].id = id; 7915 regs[BPF_REG_0].ref_obj_id = id; 7916 } 7917 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7918 7919 nargs = btf_type_vlen(func_proto); 7920 args = (const struct btf_param *)(func_proto + 1); 7921 for (i = 0; i < nargs; i++) { 7922 u32 regno = i + 1; 7923 7924 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7925 if (btf_type_is_ptr(t)) 7926 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7927 else 7928 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7929 mark_btf_func_reg_size(env, regno, t->size); 7930 } 7931 7932 return 0; 7933 } 7934 7935 static bool signed_add_overflows(s64 a, s64 b) 7936 { 7937 /* Do the add in u64, where overflow is well-defined */ 7938 s64 res = (s64)((u64)a + (u64)b); 7939 7940 if (b < 0) 7941 return res > a; 7942 return res < a; 7943 } 7944 7945 static bool signed_add32_overflows(s32 a, s32 b) 7946 { 7947 /* Do the add in u32, where overflow is well-defined */ 7948 s32 res = (s32)((u32)a + (u32)b); 7949 7950 if (b < 0) 7951 return res > a; 7952 return res < a; 7953 } 7954 7955 static bool signed_sub_overflows(s64 a, s64 b) 7956 { 7957 /* Do the sub in u64, where overflow is well-defined */ 7958 s64 res = (s64)((u64)a - (u64)b); 7959 7960 if (b < 0) 7961 return res < a; 7962 return res > a; 7963 } 7964 7965 static bool signed_sub32_overflows(s32 a, s32 b) 7966 { 7967 /* Do the sub in u32, where overflow is well-defined */ 7968 s32 res = (s32)((u32)a - (u32)b); 7969 7970 if (b < 0) 7971 return res < a; 7972 return res > a; 7973 } 7974 7975 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7976 const struct bpf_reg_state *reg, 7977 enum bpf_reg_type type) 7978 { 7979 bool known = tnum_is_const(reg->var_off); 7980 s64 val = reg->var_off.value; 7981 s64 smin = reg->smin_value; 7982 7983 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7984 verbose(env, "math between %s pointer and %lld is not allowed\n", 7985 reg_type_str(env, type), val); 7986 return false; 7987 } 7988 7989 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7990 verbose(env, "%s pointer offset %d is not allowed\n", 7991 reg_type_str(env, type), reg->off); 7992 return false; 7993 } 7994 7995 if (smin == S64_MIN) { 7996 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7997 reg_type_str(env, type)); 7998 return false; 7999 } 8000 8001 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 8002 verbose(env, "value %lld makes %s pointer be out of bounds\n", 8003 smin, reg_type_str(env, type)); 8004 return false; 8005 } 8006 8007 return true; 8008 } 8009 8010 enum { 8011 REASON_BOUNDS = -1, 8012 REASON_TYPE = -2, 8013 REASON_PATHS = -3, 8014 REASON_LIMIT = -4, 8015 REASON_STACK = -5, 8016 }; 8017 8018 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 8019 u32 *alu_limit, bool mask_to_left) 8020 { 8021 u32 max = 0, ptr_limit = 0; 8022 8023 switch (ptr_reg->type) { 8024 case PTR_TO_STACK: 8025 /* Offset 0 is out-of-bounds, but acceptable start for the 8026 * left direction, see BPF_REG_FP. Also, unknown scalar 8027 * offset where we would need to deal with min/max bounds is 8028 * currently prohibited for unprivileged. 8029 */ 8030 max = MAX_BPF_STACK + mask_to_left; 8031 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 8032 break; 8033 case PTR_TO_MAP_VALUE: 8034 max = ptr_reg->map_ptr->value_size; 8035 ptr_limit = (mask_to_left ? 8036 ptr_reg->smin_value : 8037 ptr_reg->umax_value) + ptr_reg->off; 8038 break; 8039 default: 8040 return REASON_TYPE; 8041 } 8042 8043 if (ptr_limit >= max) 8044 return REASON_LIMIT; 8045 *alu_limit = ptr_limit; 8046 return 0; 8047 } 8048 8049 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 8050 const struct bpf_insn *insn) 8051 { 8052 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 8053 } 8054 8055 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 8056 u32 alu_state, u32 alu_limit) 8057 { 8058 /* If we arrived here from different branches with different 8059 * state or limits to sanitize, then this won't work. 8060 */ 8061 if (aux->alu_state && 8062 (aux->alu_state != alu_state || 8063 aux->alu_limit != alu_limit)) 8064 return REASON_PATHS; 8065 8066 /* Corresponding fixup done in do_misc_fixups(). */ 8067 aux->alu_state = alu_state; 8068 aux->alu_limit = alu_limit; 8069 return 0; 8070 } 8071 8072 static int sanitize_val_alu(struct bpf_verifier_env *env, 8073 struct bpf_insn *insn) 8074 { 8075 struct bpf_insn_aux_data *aux = cur_aux(env); 8076 8077 if (can_skip_alu_sanitation(env, insn)) 8078 return 0; 8079 8080 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 8081 } 8082 8083 static bool sanitize_needed(u8 opcode) 8084 { 8085 return opcode == BPF_ADD || opcode == BPF_SUB; 8086 } 8087 8088 struct bpf_sanitize_info { 8089 struct bpf_insn_aux_data aux; 8090 bool mask_to_left; 8091 }; 8092 8093 static struct bpf_verifier_state * 8094 sanitize_speculative_path(struct bpf_verifier_env *env, 8095 const struct bpf_insn *insn, 8096 u32 next_idx, u32 curr_idx) 8097 { 8098 struct bpf_verifier_state *branch; 8099 struct bpf_reg_state *regs; 8100 8101 branch = push_stack(env, next_idx, curr_idx, true); 8102 if (branch && insn) { 8103 regs = branch->frame[branch->curframe]->regs; 8104 if (BPF_SRC(insn->code) == BPF_K) { 8105 mark_reg_unknown(env, regs, insn->dst_reg); 8106 } else if (BPF_SRC(insn->code) == BPF_X) { 8107 mark_reg_unknown(env, regs, insn->dst_reg); 8108 mark_reg_unknown(env, regs, insn->src_reg); 8109 } 8110 } 8111 return branch; 8112 } 8113 8114 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 8115 struct bpf_insn *insn, 8116 const struct bpf_reg_state *ptr_reg, 8117 const struct bpf_reg_state *off_reg, 8118 struct bpf_reg_state *dst_reg, 8119 struct bpf_sanitize_info *info, 8120 const bool commit_window) 8121 { 8122 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 8123 struct bpf_verifier_state *vstate = env->cur_state; 8124 bool off_is_imm = tnum_is_const(off_reg->var_off); 8125 bool off_is_neg = off_reg->smin_value < 0; 8126 bool ptr_is_dst_reg = ptr_reg == dst_reg; 8127 u8 opcode = BPF_OP(insn->code); 8128 u32 alu_state, alu_limit; 8129 struct bpf_reg_state tmp; 8130 bool ret; 8131 int err; 8132 8133 if (can_skip_alu_sanitation(env, insn)) 8134 return 0; 8135 8136 /* We already marked aux for masking from non-speculative 8137 * paths, thus we got here in the first place. We only care 8138 * to explore bad access from here. 8139 */ 8140 if (vstate->speculative) 8141 goto do_sim; 8142 8143 if (!commit_window) { 8144 if (!tnum_is_const(off_reg->var_off) && 8145 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 8146 return REASON_BOUNDS; 8147 8148 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 8149 (opcode == BPF_SUB && !off_is_neg); 8150 } 8151 8152 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 8153 if (err < 0) 8154 return err; 8155 8156 if (commit_window) { 8157 /* In commit phase we narrow the masking window based on 8158 * the observed pointer move after the simulated operation. 8159 */ 8160 alu_state = info->aux.alu_state; 8161 alu_limit = abs(info->aux.alu_limit - alu_limit); 8162 } else { 8163 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 8164 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 8165 alu_state |= ptr_is_dst_reg ? 8166 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 8167 8168 /* Limit pruning on unknown scalars to enable deep search for 8169 * potential masking differences from other program paths. 8170 */ 8171 if (!off_is_imm) 8172 env->explore_alu_limits = true; 8173 } 8174 8175 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 8176 if (err < 0) 8177 return err; 8178 do_sim: 8179 /* If we're in commit phase, we're done here given we already 8180 * pushed the truncated dst_reg into the speculative verification 8181 * stack. 8182 * 8183 * Also, when register is a known constant, we rewrite register-based 8184 * operation to immediate-based, and thus do not need masking (and as 8185 * a consequence, do not need to simulate the zero-truncation either). 8186 */ 8187 if (commit_window || off_is_imm) 8188 return 0; 8189 8190 /* Simulate and find potential out-of-bounds access under 8191 * speculative execution from truncation as a result of 8192 * masking when off was not within expected range. If off 8193 * sits in dst, then we temporarily need to move ptr there 8194 * to simulate dst (== 0) +/-= ptr. Needed, for example, 8195 * for cases where we use K-based arithmetic in one direction 8196 * and truncated reg-based in the other in order to explore 8197 * bad access. 8198 */ 8199 if (!ptr_is_dst_reg) { 8200 tmp = *dst_reg; 8201 *dst_reg = *ptr_reg; 8202 } 8203 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 8204 env->insn_idx); 8205 if (!ptr_is_dst_reg && ret) 8206 *dst_reg = tmp; 8207 return !ret ? REASON_STACK : 0; 8208 } 8209 8210 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 8211 { 8212 struct bpf_verifier_state *vstate = env->cur_state; 8213 8214 /* If we simulate paths under speculation, we don't update the 8215 * insn as 'seen' such that when we verify unreachable paths in 8216 * the non-speculative domain, sanitize_dead_code() can still 8217 * rewrite/sanitize them. 8218 */ 8219 if (!vstate->speculative) 8220 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8221 } 8222 8223 static int sanitize_err(struct bpf_verifier_env *env, 8224 const struct bpf_insn *insn, int reason, 8225 const struct bpf_reg_state *off_reg, 8226 const struct bpf_reg_state *dst_reg) 8227 { 8228 static const char *err = "pointer arithmetic with it prohibited for !root"; 8229 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 8230 u32 dst = insn->dst_reg, src = insn->src_reg; 8231 8232 switch (reason) { 8233 case REASON_BOUNDS: 8234 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 8235 off_reg == dst_reg ? dst : src, err); 8236 break; 8237 case REASON_TYPE: 8238 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 8239 off_reg == dst_reg ? src : dst, err); 8240 break; 8241 case REASON_PATHS: 8242 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 8243 dst, op, err); 8244 break; 8245 case REASON_LIMIT: 8246 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 8247 dst, op, err); 8248 break; 8249 case REASON_STACK: 8250 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 8251 dst, err); 8252 break; 8253 default: 8254 verbose(env, "verifier internal error: unknown reason (%d)\n", 8255 reason); 8256 break; 8257 } 8258 8259 return -EACCES; 8260 } 8261 8262 /* check that stack access falls within stack limits and that 'reg' doesn't 8263 * have a variable offset. 8264 * 8265 * Variable offset is prohibited for unprivileged mode for simplicity since it 8266 * requires corresponding support in Spectre masking for stack ALU. See also 8267 * retrieve_ptr_limit(). 8268 * 8269 * 8270 * 'off' includes 'reg->off'. 8271 */ 8272 static int check_stack_access_for_ptr_arithmetic( 8273 struct bpf_verifier_env *env, 8274 int regno, 8275 const struct bpf_reg_state *reg, 8276 int off) 8277 { 8278 if (!tnum_is_const(reg->var_off)) { 8279 char tn_buf[48]; 8280 8281 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8282 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8283 regno, tn_buf, off); 8284 return -EACCES; 8285 } 8286 8287 if (off >= 0 || off < -MAX_BPF_STACK) { 8288 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8289 "prohibited for !root; off=%d\n", regno, off); 8290 return -EACCES; 8291 } 8292 8293 return 0; 8294 } 8295 8296 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8297 const struct bpf_insn *insn, 8298 const struct bpf_reg_state *dst_reg) 8299 { 8300 u32 dst = insn->dst_reg; 8301 8302 /* For unprivileged we require that resulting offset must be in bounds 8303 * in order to be able to sanitize access later on. 8304 */ 8305 if (env->bypass_spec_v1) 8306 return 0; 8307 8308 switch (dst_reg->type) { 8309 case PTR_TO_STACK: 8310 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8311 dst_reg->off + dst_reg->var_off.value)) 8312 return -EACCES; 8313 break; 8314 case PTR_TO_MAP_VALUE: 8315 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8316 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8317 "prohibited for !root\n", dst); 8318 return -EACCES; 8319 } 8320 break; 8321 default: 8322 break; 8323 } 8324 8325 return 0; 8326 } 8327 8328 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8329 * Caller should also handle BPF_MOV case separately. 8330 * If we return -EACCES, caller may want to try again treating pointer as a 8331 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8332 */ 8333 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8334 struct bpf_insn *insn, 8335 const struct bpf_reg_state *ptr_reg, 8336 const struct bpf_reg_state *off_reg) 8337 { 8338 struct bpf_verifier_state *vstate = env->cur_state; 8339 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8340 struct bpf_reg_state *regs = state->regs, *dst_reg; 8341 bool known = tnum_is_const(off_reg->var_off); 8342 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8343 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8344 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8345 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8346 struct bpf_sanitize_info info = {}; 8347 u8 opcode = BPF_OP(insn->code); 8348 u32 dst = insn->dst_reg; 8349 int ret; 8350 8351 dst_reg = ®s[dst]; 8352 8353 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8354 smin_val > smax_val || umin_val > umax_val) { 8355 /* Taint dst register if offset had invalid bounds derived from 8356 * e.g. dead branches. 8357 */ 8358 __mark_reg_unknown(env, dst_reg); 8359 return 0; 8360 } 8361 8362 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8363 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8364 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8365 __mark_reg_unknown(env, dst_reg); 8366 return 0; 8367 } 8368 8369 verbose(env, 8370 "R%d 32-bit pointer arithmetic prohibited\n", 8371 dst); 8372 return -EACCES; 8373 } 8374 8375 if (ptr_reg->type & PTR_MAYBE_NULL) { 8376 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8377 dst, reg_type_str(env, ptr_reg->type)); 8378 return -EACCES; 8379 } 8380 8381 switch (base_type(ptr_reg->type)) { 8382 case CONST_PTR_TO_MAP: 8383 /* smin_val represents the known value */ 8384 if (known && smin_val == 0 && opcode == BPF_ADD) 8385 break; 8386 fallthrough; 8387 case PTR_TO_PACKET_END: 8388 case PTR_TO_SOCKET: 8389 case PTR_TO_SOCK_COMMON: 8390 case PTR_TO_TCP_SOCK: 8391 case PTR_TO_XDP_SOCK: 8392 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8393 dst, reg_type_str(env, ptr_reg->type)); 8394 return -EACCES; 8395 default: 8396 break; 8397 } 8398 8399 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8400 * The id may be overwritten later if we create a new variable offset. 8401 */ 8402 dst_reg->type = ptr_reg->type; 8403 dst_reg->id = ptr_reg->id; 8404 8405 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8406 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8407 return -EINVAL; 8408 8409 /* pointer types do not carry 32-bit bounds at the moment. */ 8410 __mark_reg32_unbounded(dst_reg); 8411 8412 if (sanitize_needed(opcode)) { 8413 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8414 &info, false); 8415 if (ret < 0) 8416 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8417 } 8418 8419 switch (opcode) { 8420 case BPF_ADD: 8421 /* We can take a fixed offset as long as it doesn't overflow 8422 * the s32 'off' field 8423 */ 8424 if (known && (ptr_reg->off + smin_val == 8425 (s64)(s32)(ptr_reg->off + smin_val))) { 8426 /* pointer += K. Accumulate it into fixed offset */ 8427 dst_reg->smin_value = smin_ptr; 8428 dst_reg->smax_value = smax_ptr; 8429 dst_reg->umin_value = umin_ptr; 8430 dst_reg->umax_value = umax_ptr; 8431 dst_reg->var_off = ptr_reg->var_off; 8432 dst_reg->off = ptr_reg->off + smin_val; 8433 dst_reg->raw = ptr_reg->raw; 8434 break; 8435 } 8436 /* A new variable offset is created. Note that off_reg->off 8437 * == 0, since it's a scalar. 8438 * dst_reg gets the pointer type and since some positive 8439 * integer value was added to the pointer, give it a new 'id' 8440 * if it's a PTR_TO_PACKET. 8441 * this creates a new 'base' pointer, off_reg (variable) gets 8442 * added into the variable offset, and we copy the fixed offset 8443 * from ptr_reg. 8444 */ 8445 if (signed_add_overflows(smin_ptr, smin_val) || 8446 signed_add_overflows(smax_ptr, smax_val)) { 8447 dst_reg->smin_value = S64_MIN; 8448 dst_reg->smax_value = S64_MAX; 8449 } else { 8450 dst_reg->smin_value = smin_ptr + smin_val; 8451 dst_reg->smax_value = smax_ptr + smax_val; 8452 } 8453 if (umin_ptr + umin_val < umin_ptr || 8454 umax_ptr + umax_val < umax_ptr) { 8455 dst_reg->umin_value = 0; 8456 dst_reg->umax_value = U64_MAX; 8457 } else { 8458 dst_reg->umin_value = umin_ptr + umin_val; 8459 dst_reg->umax_value = umax_ptr + umax_val; 8460 } 8461 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8462 dst_reg->off = ptr_reg->off; 8463 dst_reg->raw = ptr_reg->raw; 8464 if (reg_is_pkt_pointer(ptr_reg)) { 8465 dst_reg->id = ++env->id_gen; 8466 /* something was added to pkt_ptr, set range to zero */ 8467 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8468 } 8469 break; 8470 case BPF_SUB: 8471 if (dst_reg == off_reg) { 8472 /* scalar -= pointer. Creates an unknown scalar */ 8473 verbose(env, "R%d tried to subtract pointer from scalar\n", 8474 dst); 8475 return -EACCES; 8476 } 8477 /* We don't allow subtraction from FP, because (according to 8478 * test_verifier.c test "invalid fp arithmetic", JITs might not 8479 * be able to deal with it. 8480 */ 8481 if (ptr_reg->type == PTR_TO_STACK) { 8482 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8483 dst); 8484 return -EACCES; 8485 } 8486 if (known && (ptr_reg->off - smin_val == 8487 (s64)(s32)(ptr_reg->off - smin_val))) { 8488 /* pointer -= K. Subtract it from fixed offset */ 8489 dst_reg->smin_value = smin_ptr; 8490 dst_reg->smax_value = smax_ptr; 8491 dst_reg->umin_value = umin_ptr; 8492 dst_reg->umax_value = umax_ptr; 8493 dst_reg->var_off = ptr_reg->var_off; 8494 dst_reg->id = ptr_reg->id; 8495 dst_reg->off = ptr_reg->off - smin_val; 8496 dst_reg->raw = ptr_reg->raw; 8497 break; 8498 } 8499 /* A new variable offset is created. If the subtrahend is known 8500 * nonnegative, then any reg->range we had before is still good. 8501 */ 8502 if (signed_sub_overflows(smin_ptr, smax_val) || 8503 signed_sub_overflows(smax_ptr, smin_val)) { 8504 /* Overflow possible, we know nothing */ 8505 dst_reg->smin_value = S64_MIN; 8506 dst_reg->smax_value = S64_MAX; 8507 } else { 8508 dst_reg->smin_value = smin_ptr - smax_val; 8509 dst_reg->smax_value = smax_ptr - smin_val; 8510 } 8511 if (umin_ptr < umax_val) { 8512 /* Overflow possible, we know nothing */ 8513 dst_reg->umin_value = 0; 8514 dst_reg->umax_value = U64_MAX; 8515 } else { 8516 /* Cannot overflow (as long as bounds are consistent) */ 8517 dst_reg->umin_value = umin_ptr - umax_val; 8518 dst_reg->umax_value = umax_ptr - umin_val; 8519 } 8520 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8521 dst_reg->off = ptr_reg->off; 8522 dst_reg->raw = ptr_reg->raw; 8523 if (reg_is_pkt_pointer(ptr_reg)) { 8524 dst_reg->id = ++env->id_gen; 8525 /* something was added to pkt_ptr, set range to zero */ 8526 if (smin_val < 0) 8527 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8528 } 8529 break; 8530 case BPF_AND: 8531 case BPF_OR: 8532 case BPF_XOR: 8533 /* bitwise ops on pointers are troublesome, prohibit. */ 8534 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8535 dst, bpf_alu_string[opcode >> 4]); 8536 return -EACCES; 8537 default: 8538 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8539 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8540 dst, bpf_alu_string[opcode >> 4]); 8541 return -EACCES; 8542 } 8543 8544 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8545 return -EINVAL; 8546 reg_bounds_sync(dst_reg); 8547 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8548 return -EACCES; 8549 if (sanitize_needed(opcode)) { 8550 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8551 &info, true); 8552 if (ret < 0) 8553 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8554 } 8555 8556 return 0; 8557 } 8558 8559 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8560 struct bpf_reg_state *src_reg) 8561 { 8562 s32 smin_val = src_reg->s32_min_value; 8563 s32 smax_val = src_reg->s32_max_value; 8564 u32 umin_val = src_reg->u32_min_value; 8565 u32 umax_val = src_reg->u32_max_value; 8566 8567 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8568 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8569 dst_reg->s32_min_value = S32_MIN; 8570 dst_reg->s32_max_value = S32_MAX; 8571 } else { 8572 dst_reg->s32_min_value += smin_val; 8573 dst_reg->s32_max_value += smax_val; 8574 } 8575 if (dst_reg->u32_min_value + umin_val < umin_val || 8576 dst_reg->u32_max_value + umax_val < umax_val) { 8577 dst_reg->u32_min_value = 0; 8578 dst_reg->u32_max_value = U32_MAX; 8579 } else { 8580 dst_reg->u32_min_value += umin_val; 8581 dst_reg->u32_max_value += umax_val; 8582 } 8583 } 8584 8585 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8586 struct bpf_reg_state *src_reg) 8587 { 8588 s64 smin_val = src_reg->smin_value; 8589 s64 smax_val = src_reg->smax_value; 8590 u64 umin_val = src_reg->umin_value; 8591 u64 umax_val = src_reg->umax_value; 8592 8593 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8594 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8595 dst_reg->smin_value = S64_MIN; 8596 dst_reg->smax_value = S64_MAX; 8597 } else { 8598 dst_reg->smin_value += smin_val; 8599 dst_reg->smax_value += smax_val; 8600 } 8601 if (dst_reg->umin_value + umin_val < umin_val || 8602 dst_reg->umax_value + umax_val < umax_val) { 8603 dst_reg->umin_value = 0; 8604 dst_reg->umax_value = U64_MAX; 8605 } else { 8606 dst_reg->umin_value += umin_val; 8607 dst_reg->umax_value += umax_val; 8608 } 8609 } 8610 8611 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8612 struct bpf_reg_state *src_reg) 8613 { 8614 s32 smin_val = src_reg->s32_min_value; 8615 s32 smax_val = src_reg->s32_max_value; 8616 u32 umin_val = src_reg->u32_min_value; 8617 u32 umax_val = src_reg->u32_max_value; 8618 8619 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8620 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8621 /* Overflow possible, we know nothing */ 8622 dst_reg->s32_min_value = S32_MIN; 8623 dst_reg->s32_max_value = S32_MAX; 8624 } else { 8625 dst_reg->s32_min_value -= smax_val; 8626 dst_reg->s32_max_value -= smin_val; 8627 } 8628 if (dst_reg->u32_min_value < umax_val) { 8629 /* Overflow possible, we know nothing */ 8630 dst_reg->u32_min_value = 0; 8631 dst_reg->u32_max_value = U32_MAX; 8632 } else { 8633 /* Cannot overflow (as long as bounds are consistent) */ 8634 dst_reg->u32_min_value -= umax_val; 8635 dst_reg->u32_max_value -= umin_val; 8636 } 8637 } 8638 8639 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8640 struct bpf_reg_state *src_reg) 8641 { 8642 s64 smin_val = src_reg->smin_value; 8643 s64 smax_val = src_reg->smax_value; 8644 u64 umin_val = src_reg->umin_value; 8645 u64 umax_val = src_reg->umax_value; 8646 8647 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8648 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8649 /* Overflow possible, we know nothing */ 8650 dst_reg->smin_value = S64_MIN; 8651 dst_reg->smax_value = S64_MAX; 8652 } else { 8653 dst_reg->smin_value -= smax_val; 8654 dst_reg->smax_value -= smin_val; 8655 } 8656 if (dst_reg->umin_value < umax_val) { 8657 /* Overflow possible, we know nothing */ 8658 dst_reg->umin_value = 0; 8659 dst_reg->umax_value = U64_MAX; 8660 } else { 8661 /* Cannot overflow (as long as bounds are consistent) */ 8662 dst_reg->umin_value -= umax_val; 8663 dst_reg->umax_value -= umin_val; 8664 } 8665 } 8666 8667 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8668 struct bpf_reg_state *src_reg) 8669 { 8670 s32 smin_val = src_reg->s32_min_value; 8671 u32 umin_val = src_reg->u32_min_value; 8672 u32 umax_val = src_reg->u32_max_value; 8673 8674 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8675 /* Ain't nobody got time to multiply that sign */ 8676 __mark_reg32_unbounded(dst_reg); 8677 return; 8678 } 8679 /* Both values are positive, so we can work with unsigned and 8680 * copy the result to signed (unless it exceeds S32_MAX). 8681 */ 8682 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8683 /* Potential overflow, we know nothing */ 8684 __mark_reg32_unbounded(dst_reg); 8685 return; 8686 } 8687 dst_reg->u32_min_value *= umin_val; 8688 dst_reg->u32_max_value *= umax_val; 8689 if (dst_reg->u32_max_value > S32_MAX) { 8690 /* Overflow possible, we know nothing */ 8691 dst_reg->s32_min_value = S32_MIN; 8692 dst_reg->s32_max_value = S32_MAX; 8693 } else { 8694 dst_reg->s32_min_value = dst_reg->u32_min_value; 8695 dst_reg->s32_max_value = dst_reg->u32_max_value; 8696 } 8697 } 8698 8699 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8700 struct bpf_reg_state *src_reg) 8701 { 8702 s64 smin_val = src_reg->smin_value; 8703 u64 umin_val = src_reg->umin_value; 8704 u64 umax_val = src_reg->umax_value; 8705 8706 if (smin_val < 0 || dst_reg->smin_value < 0) { 8707 /* Ain't nobody got time to multiply that sign */ 8708 __mark_reg64_unbounded(dst_reg); 8709 return; 8710 } 8711 /* Both values are positive, so we can work with unsigned and 8712 * copy the result to signed (unless it exceeds S64_MAX). 8713 */ 8714 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8715 /* Potential overflow, we know nothing */ 8716 __mark_reg64_unbounded(dst_reg); 8717 return; 8718 } 8719 dst_reg->umin_value *= umin_val; 8720 dst_reg->umax_value *= umax_val; 8721 if (dst_reg->umax_value > S64_MAX) { 8722 /* Overflow possible, we know nothing */ 8723 dst_reg->smin_value = S64_MIN; 8724 dst_reg->smax_value = S64_MAX; 8725 } else { 8726 dst_reg->smin_value = dst_reg->umin_value; 8727 dst_reg->smax_value = dst_reg->umax_value; 8728 } 8729 } 8730 8731 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8732 struct bpf_reg_state *src_reg) 8733 { 8734 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8735 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8736 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8737 s32 smin_val = src_reg->s32_min_value; 8738 u32 umax_val = src_reg->u32_max_value; 8739 8740 if (src_known && dst_known) { 8741 __mark_reg32_known(dst_reg, var32_off.value); 8742 return; 8743 } 8744 8745 /* We get our minimum from the var_off, since that's inherently 8746 * bitwise. Our maximum is the minimum of the operands' maxima. 8747 */ 8748 dst_reg->u32_min_value = var32_off.value; 8749 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8750 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8751 /* Lose signed bounds when ANDing negative numbers, 8752 * ain't nobody got time for that. 8753 */ 8754 dst_reg->s32_min_value = S32_MIN; 8755 dst_reg->s32_max_value = S32_MAX; 8756 } else { 8757 /* ANDing two positives gives a positive, so safe to 8758 * cast result into s64. 8759 */ 8760 dst_reg->s32_min_value = dst_reg->u32_min_value; 8761 dst_reg->s32_max_value = dst_reg->u32_max_value; 8762 } 8763 } 8764 8765 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8766 struct bpf_reg_state *src_reg) 8767 { 8768 bool src_known = tnum_is_const(src_reg->var_off); 8769 bool dst_known = tnum_is_const(dst_reg->var_off); 8770 s64 smin_val = src_reg->smin_value; 8771 u64 umax_val = src_reg->umax_value; 8772 8773 if (src_known && dst_known) { 8774 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8775 return; 8776 } 8777 8778 /* We get our minimum from the var_off, since that's inherently 8779 * bitwise. Our maximum is the minimum of the operands' maxima. 8780 */ 8781 dst_reg->umin_value = dst_reg->var_off.value; 8782 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8783 if (dst_reg->smin_value < 0 || smin_val < 0) { 8784 /* Lose signed bounds when ANDing negative numbers, 8785 * ain't nobody got time for that. 8786 */ 8787 dst_reg->smin_value = S64_MIN; 8788 dst_reg->smax_value = S64_MAX; 8789 } else { 8790 /* ANDing two positives gives a positive, so safe to 8791 * cast result into s64. 8792 */ 8793 dst_reg->smin_value = dst_reg->umin_value; 8794 dst_reg->smax_value = dst_reg->umax_value; 8795 } 8796 /* We may learn something more from the var_off */ 8797 __update_reg_bounds(dst_reg); 8798 } 8799 8800 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8801 struct bpf_reg_state *src_reg) 8802 { 8803 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8804 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8805 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8806 s32 smin_val = src_reg->s32_min_value; 8807 u32 umin_val = src_reg->u32_min_value; 8808 8809 if (src_known && dst_known) { 8810 __mark_reg32_known(dst_reg, var32_off.value); 8811 return; 8812 } 8813 8814 /* We get our maximum from the var_off, and our minimum is the 8815 * maximum of the operands' minima 8816 */ 8817 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8818 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8819 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8820 /* Lose signed bounds when ORing negative numbers, 8821 * ain't nobody got time for that. 8822 */ 8823 dst_reg->s32_min_value = S32_MIN; 8824 dst_reg->s32_max_value = S32_MAX; 8825 } else { 8826 /* ORing two positives gives a positive, so safe to 8827 * cast result into s64. 8828 */ 8829 dst_reg->s32_min_value = dst_reg->u32_min_value; 8830 dst_reg->s32_max_value = dst_reg->u32_max_value; 8831 } 8832 } 8833 8834 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8835 struct bpf_reg_state *src_reg) 8836 { 8837 bool src_known = tnum_is_const(src_reg->var_off); 8838 bool dst_known = tnum_is_const(dst_reg->var_off); 8839 s64 smin_val = src_reg->smin_value; 8840 u64 umin_val = src_reg->umin_value; 8841 8842 if (src_known && dst_known) { 8843 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8844 return; 8845 } 8846 8847 /* We get our maximum from the var_off, and our minimum is the 8848 * maximum of the operands' minima 8849 */ 8850 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8851 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8852 if (dst_reg->smin_value < 0 || smin_val < 0) { 8853 /* Lose signed bounds when ORing negative numbers, 8854 * ain't nobody got time for that. 8855 */ 8856 dst_reg->smin_value = S64_MIN; 8857 dst_reg->smax_value = S64_MAX; 8858 } else { 8859 /* ORing two positives gives a positive, so safe to 8860 * cast result into s64. 8861 */ 8862 dst_reg->smin_value = dst_reg->umin_value; 8863 dst_reg->smax_value = dst_reg->umax_value; 8864 } 8865 /* We may learn something more from the var_off */ 8866 __update_reg_bounds(dst_reg); 8867 } 8868 8869 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8870 struct bpf_reg_state *src_reg) 8871 { 8872 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8873 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8874 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8875 s32 smin_val = src_reg->s32_min_value; 8876 8877 if (src_known && dst_known) { 8878 __mark_reg32_known(dst_reg, var32_off.value); 8879 return; 8880 } 8881 8882 /* We get both minimum and maximum from the var32_off. */ 8883 dst_reg->u32_min_value = var32_off.value; 8884 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8885 8886 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8887 /* XORing two positive sign numbers gives a positive, 8888 * so safe to cast u32 result into s32. 8889 */ 8890 dst_reg->s32_min_value = dst_reg->u32_min_value; 8891 dst_reg->s32_max_value = dst_reg->u32_max_value; 8892 } else { 8893 dst_reg->s32_min_value = S32_MIN; 8894 dst_reg->s32_max_value = S32_MAX; 8895 } 8896 } 8897 8898 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8899 struct bpf_reg_state *src_reg) 8900 { 8901 bool src_known = tnum_is_const(src_reg->var_off); 8902 bool dst_known = tnum_is_const(dst_reg->var_off); 8903 s64 smin_val = src_reg->smin_value; 8904 8905 if (src_known && dst_known) { 8906 /* dst_reg->var_off.value has been updated earlier */ 8907 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8908 return; 8909 } 8910 8911 /* We get both minimum and maximum from the var_off. */ 8912 dst_reg->umin_value = dst_reg->var_off.value; 8913 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8914 8915 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8916 /* XORing two positive sign numbers gives a positive, 8917 * so safe to cast u64 result into s64. 8918 */ 8919 dst_reg->smin_value = dst_reg->umin_value; 8920 dst_reg->smax_value = dst_reg->umax_value; 8921 } else { 8922 dst_reg->smin_value = S64_MIN; 8923 dst_reg->smax_value = S64_MAX; 8924 } 8925 8926 __update_reg_bounds(dst_reg); 8927 } 8928 8929 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8930 u64 umin_val, u64 umax_val) 8931 { 8932 /* We lose all sign bit information (except what we can pick 8933 * up from var_off) 8934 */ 8935 dst_reg->s32_min_value = S32_MIN; 8936 dst_reg->s32_max_value = S32_MAX; 8937 /* If we might shift our top bit out, then we know nothing */ 8938 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8939 dst_reg->u32_min_value = 0; 8940 dst_reg->u32_max_value = U32_MAX; 8941 } else { 8942 dst_reg->u32_min_value <<= umin_val; 8943 dst_reg->u32_max_value <<= umax_val; 8944 } 8945 } 8946 8947 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8948 struct bpf_reg_state *src_reg) 8949 { 8950 u32 umax_val = src_reg->u32_max_value; 8951 u32 umin_val = src_reg->u32_min_value; 8952 /* u32 alu operation will zext upper bits */ 8953 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8954 8955 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8956 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8957 /* Not required but being careful mark reg64 bounds as unknown so 8958 * that we are forced to pick them up from tnum and zext later and 8959 * if some path skips this step we are still safe. 8960 */ 8961 __mark_reg64_unbounded(dst_reg); 8962 __update_reg32_bounds(dst_reg); 8963 } 8964 8965 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8966 u64 umin_val, u64 umax_val) 8967 { 8968 /* Special case <<32 because it is a common compiler pattern to sign 8969 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8970 * positive we know this shift will also be positive so we can track 8971 * bounds correctly. Otherwise we lose all sign bit information except 8972 * what we can pick up from var_off. Perhaps we can generalize this 8973 * later to shifts of any length. 8974 */ 8975 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8976 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8977 else 8978 dst_reg->smax_value = S64_MAX; 8979 8980 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8981 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8982 else 8983 dst_reg->smin_value = S64_MIN; 8984 8985 /* If we might shift our top bit out, then we know nothing */ 8986 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8987 dst_reg->umin_value = 0; 8988 dst_reg->umax_value = U64_MAX; 8989 } else { 8990 dst_reg->umin_value <<= umin_val; 8991 dst_reg->umax_value <<= umax_val; 8992 } 8993 } 8994 8995 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8996 struct bpf_reg_state *src_reg) 8997 { 8998 u64 umax_val = src_reg->umax_value; 8999 u64 umin_val = src_reg->umin_value; 9000 9001 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 9002 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 9003 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 9004 9005 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 9006 /* We may learn something more from the var_off */ 9007 __update_reg_bounds(dst_reg); 9008 } 9009 9010 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 9011 struct bpf_reg_state *src_reg) 9012 { 9013 struct tnum subreg = tnum_subreg(dst_reg->var_off); 9014 u32 umax_val = src_reg->u32_max_value; 9015 u32 umin_val = src_reg->u32_min_value; 9016 9017 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 9018 * be negative, then either: 9019 * 1) src_reg might be zero, so the sign bit of the result is 9020 * unknown, so we lose our signed bounds 9021 * 2) it's known negative, thus the unsigned bounds capture the 9022 * signed bounds 9023 * 3) the signed bounds cross zero, so they tell us nothing 9024 * about the result 9025 * If the value in dst_reg is known nonnegative, then again the 9026 * unsigned bounds capture the signed bounds. 9027 * Thus, in all cases it suffices to blow away our signed bounds 9028 * and rely on inferring new ones from the unsigned bounds and 9029 * var_off of the result. 9030 */ 9031 dst_reg->s32_min_value = S32_MIN; 9032 dst_reg->s32_max_value = S32_MAX; 9033 9034 dst_reg->var_off = tnum_rshift(subreg, umin_val); 9035 dst_reg->u32_min_value >>= umax_val; 9036 dst_reg->u32_max_value >>= umin_val; 9037 9038 __mark_reg64_unbounded(dst_reg); 9039 __update_reg32_bounds(dst_reg); 9040 } 9041 9042 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 9043 struct bpf_reg_state *src_reg) 9044 { 9045 u64 umax_val = src_reg->umax_value; 9046 u64 umin_val = src_reg->umin_value; 9047 9048 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 9049 * be negative, then either: 9050 * 1) src_reg might be zero, so the sign bit of the result is 9051 * unknown, so we lose our signed bounds 9052 * 2) it's known negative, thus the unsigned bounds capture the 9053 * signed bounds 9054 * 3) the signed bounds cross zero, so they tell us nothing 9055 * about the result 9056 * If the value in dst_reg is known nonnegative, then again the 9057 * unsigned bounds capture the signed bounds. 9058 * Thus, in all cases it suffices to blow away our signed bounds 9059 * and rely on inferring new ones from the unsigned bounds and 9060 * var_off of the result. 9061 */ 9062 dst_reg->smin_value = S64_MIN; 9063 dst_reg->smax_value = S64_MAX; 9064 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 9065 dst_reg->umin_value >>= umax_val; 9066 dst_reg->umax_value >>= umin_val; 9067 9068 /* Its not easy to operate on alu32 bounds here because it depends 9069 * on bits being shifted in. Take easy way out and mark unbounded 9070 * so we can recalculate later from tnum. 9071 */ 9072 __mark_reg32_unbounded(dst_reg); 9073 __update_reg_bounds(dst_reg); 9074 } 9075 9076 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 9077 struct bpf_reg_state *src_reg) 9078 { 9079 u64 umin_val = src_reg->u32_min_value; 9080 9081 /* Upon reaching here, src_known is true and 9082 * umax_val is equal to umin_val. 9083 */ 9084 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 9085 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 9086 9087 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 9088 9089 /* blow away the dst_reg umin_value/umax_value and rely on 9090 * dst_reg var_off to refine the result. 9091 */ 9092 dst_reg->u32_min_value = 0; 9093 dst_reg->u32_max_value = U32_MAX; 9094 9095 __mark_reg64_unbounded(dst_reg); 9096 __update_reg32_bounds(dst_reg); 9097 } 9098 9099 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 9100 struct bpf_reg_state *src_reg) 9101 { 9102 u64 umin_val = src_reg->umin_value; 9103 9104 /* Upon reaching here, src_known is true and umax_val is equal 9105 * to umin_val. 9106 */ 9107 dst_reg->smin_value >>= umin_val; 9108 dst_reg->smax_value >>= umin_val; 9109 9110 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 9111 9112 /* blow away the dst_reg umin_value/umax_value and rely on 9113 * dst_reg var_off to refine the result. 9114 */ 9115 dst_reg->umin_value = 0; 9116 dst_reg->umax_value = U64_MAX; 9117 9118 /* Its not easy to operate on alu32 bounds here because it depends 9119 * on bits being shifted in from upper 32-bits. Take easy way out 9120 * and mark unbounded so we can recalculate later from tnum. 9121 */ 9122 __mark_reg32_unbounded(dst_reg); 9123 __update_reg_bounds(dst_reg); 9124 } 9125 9126 /* WARNING: This function does calculations on 64-bit values, but the actual 9127 * execution may occur on 32-bit values. Therefore, things like bitshifts 9128 * need extra checks in the 32-bit case. 9129 */ 9130 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 9131 struct bpf_insn *insn, 9132 struct bpf_reg_state *dst_reg, 9133 struct bpf_reg_state src_reg) 9134 { 9135 struct bpf_reg_state *regs = cur_regs(env); 9136 u8 opcode = BPF_OP(insn->code); 9137 bool src_known; 9138 s64 smin_val, smax_val; 9139 u64 umin_val, umax_val; 9140 s32 s32_min_val, s32_max_val; 9141 u32 u32_min_val, u32_max_val; 9142 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 9143 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 9144 int ret; 9145 9146 smin_val = src_reg.smin_value; 9147 smax_val = src_reg.smax_value; 9148 umin_val = src_reg.umin_value; 9149 umax_val = src_reg.umax_value; 9150 9151 s32_min_val = src_reg.s32_min_value; 9152 s32_max_val = src_reg.s32_max_value; 9153 u32_min_val = src_reg.u32_min_value; 9154 u32_max_val = src_reg.u32_max_value; 9155 9156 if (alu32) { 9157 src_known = tnum_subreg_is_const(src_reg.var_off); 9158 if ((src_known && 9159 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 9160 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 9161 /* Taint dst register if offset had invalid bounds 9162 * derived from e.g. dead branches. 9163 */ 9164 __mark_reg_unknown(env, dst_reg); 9165 return 0; 9166 } 9167 } else { 9168 src_known = tnum_is_const(src_reg.var_off); 9169 if ((src_known && 9170 (smin_val != smax_val || umin_val != umax_val)) || 9171 smin_val > smax_val || umin_val > umax_val) { 9172 /* Taint dst register if offset had invalid bounds 9173 * derived from e.g. dead branches. 9174 */ 9175 __mark_reg_unknown(env, dst_reg); 9176 return 0; 9177 } 9178 } 9179 9180 if (!src_known && 9181 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 9182 __mark_reg_unknown(env, dst_reg); 9183 return 0; 9184 } 9185 9186 if (sanitize_needed(opcode)) { 9187 ret = sanitize_val_alu(env, insn); 9188 if (ret < 0) 9189 return sanitize_err(env, insn, ret, NULL, NULL); 9190 } 9191 9192 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 9193 * There are two classes of instructions: The first class we track both 9194 * alu32 and alu64 sign/unsigned bounds independently this provides the 9195 * greatest amount of precision when alu operations are mixed with jmp32 9196 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 9197 * and BPF_OR. This is possible because these ops have fairly easy to 9198 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 9199 * See alu32 verifier tests for examples. The second class of 9200 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 9201 * with regards to tracking sign/unsigned bounds because the bits may 9202 * cross subreg boundaries in the alu64 case. When this happens we mark 9203 * the reg unbounded in the subreg bound space and use the resulting 9204 * tnum to calculate an approximation of the sign/unsigned bounds. 9205 */ 9206 switch (opcode) { 9207 case BPF_ADD: 9208 scalar32_min_max_add(dst_reg, &src_reg); 9209 scalar_min_max_add(dst_reg, &src_reg); 9210 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 9211 break; 9212 case BPF_SUB: 9213 scalar32_min_max_sub(dst_reg, &src_reg); 9214 scalar_min_max_sub(dst_reg, &src_reg); 9215 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 9216 break; 9217 case BPF_MUL: 9218 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 9219 scalar32_min_max_mul(dst_reg, &src_reg); 9220 scalar_min_max_mul(dst_reg, &src_reg); 9221 break; 9222 case BPF_AND: 9223 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 9224 scalar32_min_max_and(dst_reg, &src_reg); 9225 scalar_min_max_and(dst_reg, &src_reg); 9226 break; 9227 case BPF_OR: 9228 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 9229 scalar32_min_max_or(dst_reg, &src_reg); 9230 scalar_min_max_or(dst_reg, &src_reg); 9231 break; 9232 case BPF_XOR: 9233 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 9234 scalar32_min_max_xor(dst_reg, &src_reg); 9235 scalar_min_max_xor(dst_reg, &src_reg); 9236 break; 9237 case BPF_LSH: 9238 if (umax_val >= insn_bitness) { 9239 /* Shifts greater than 31 or 63 are undefined. 9240 * This includes shifts by a negative number. 9241 */ 9242 mark_reg_unknown(env, regs, insn->dst_reg); 9243 break; 9244 } 9245 if (alu32) 9246 scalar32_min_max_lsh(dst_reg, &src_reg); 9247 else 9248 scalar_min_max_lsh(dst_reg, &src_reg); 9249 break; 9250 case BPF_RSH: 9251 if (umax_val >= insn_bitness) { 9252 /* Shifts greater than 31 or 63 are undefined. 9253 * This includes shifts by a negative number. 9254 */ 9255 mark_reg_unknown(env, regs, insn->dst_reg); 9256 break; 9257 } 9258 if (alu32) 9259 scalar32_min_max_rsh(dst_reg, &src_reg); 9260 else 9261 scalar_min_max_rsh(dst_reg, &src_reg); 9262 break; 9263 case BPF_ARSH: 9264 if (umax_val >= insn_bitness) { 9265 /* Shifts greater than 31 or 63 are undefined. 9266 * This includes shifts by a negative number. 9267 */ 9268 mark_reg_unknown(env, regs, insn->dst_reg); 9269 break; 9270 } 9271 if (alu32) 9272 scalar32_min_max_arsh(dst_reg, &src_reg); 9273 else 9274 scalar_min_max_arsh(dst_reg, &src_reg); 9275 break; 9276 default: 9277 mark_reg_unknown(env, regs, insn->dst_reg); 9278 break; 9279 } 9280 9281 /* ALU32 ops are zero extended into 64bit register */ 9282 if (alu32) 9283 zext_32_to_64(dst_reg); 9284 reg_bounds_sync(dst_reg); 9285 return 0; 9286 } 9287 9288 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9289 * and var_off. 9290 */ 9291 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9292 struct bpf_insn *insn) 9293 { 9294 struct bpf_verifier_state *vstate = env->cur_state; 9295 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9296 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9297 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9298 u8 opcode = BPF_OP(insn->code); 9299 int err; 9300 9301 dst_reg = ®s[insn->dst_reg]; 9302 src_reg = NULL; 9303 if (dst_reg->type != SCALAR_VALUE) 9304 ptr_reg = dst_reg; 9305 else 9306 /* Make sure ID is cleared otherwise dst_reg min/max could be 9307 * incorrectly propagated into other registers by find_equal_scalars() 9308 */ 9309 dst_reg->id = 0; 9310 if (BPF_SRC(insn->code) == BPF_X) { 9311 src_reg = ®s[insn->src_reg]; 9312 if (src_reg->type != SCALAR_VALUE) { 9313 if (dst_reg->type != SCALAR_VALUE) { 9314 /* Combining two pointers by any ALU op yields 9315 * an arbitrary scalar. Disallow all math except 9316 * pointer subtraction 9317 */ 9318 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9319 mark_reg_unknown(env, regs, insn->dst_reg); 9320 return 0; 9321 } 9322 verbose(env, "R%d pointer %s pointer prohibited\n", 9323 insn->dst_reg, 9324 bpf_alu_string[opcode >> 4]); 9325 return -EACCES; 9326 } else { 9327 /* scalar += pointer 9328 * This is legal, but we have to reverse our 9329 * src/dest handling in computing the range 9330 */ 9331 err = mark_chain_precision(env, insn->dst_reg); 9332 if (err) 9333 return err; 9334 return adjust_ptr_min_max_vals(env, insn, 9335 src_reg, dst_reg); 9336 } 9337 } else if (ptr_reg) { 9338 /* pointer += scalar */ 9339 err = mark_chain_precision(env, insn->src_reg); 9340 if (err) 9341 return err; 9342 return adjust_ptr_min_max_vals(env, insn, 9343 dst_reg, src_reg); 9344 } else if (dst_reg->precise) { 9345 /* if dst_reg is precise, src_reg should be precise as well */ 9346 err = mark_chain_precision(env, insn->src_reg); 9347 if (err) 9348 return err; 9349 } 9350 } else { 9351 /* Pretend the src is a reg with a known value, since we only 9352 * need to be able to read from this state. 9353 */ 9354 off_reg.type = SCALAR_VALUE; 9355 __mark_reg_known(&off_reg, insn->imm); 9356 src_reg = &off_reg; 9357 if (ptr_reg) /* pointer += K */ 9358 return adjust_ptr_min_max_vals(env, insn, 9359 ptr_reg, src_reg); 9360 } 9361 9362 /* Got here implies adding two SCALAR_VALUEs */ 9363 if (WARN_ON_ONCE(ptr_reg)) { 9364 print_verifier_state(env, state, true); 9365 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9366 return -EINVAL; 9367 } 9368 if (WARN_ON(!src_reg)) { 9369 print_verifier_state(env, state, true); 9370 verbose(env, "verifier internal error: no src_reg\n"); 9371 return -EINVAL; 9372 } 9373 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9374 } 9375 9376 /* check validity of 32-bit and 64-bit arithmetic operations */ 9377 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9378 { 9379 struct bpf_reg_state *regs = cur_regs(env); 9380 u8 opcode = BPF_OP(insn->code); 9381 int err; 9382 9383 if (opcode == BPF_END || opcode == BPF_NEG) { 9384 if (opcode == BPF_NEG) { 9385 if (BPF_SRC(insn->code) != BPF_K || 9386 insn->src_reg != BPF_REG_0 || 9387 insn->off != 0 || insn->imm != 0) { 9388 verbose(env, "BPF_NEG uses reserved fields\n"); 9389 return -EINVAL; 9390 } 9391 } else { 9392 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9393 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9394 BPF_CLASS(insn->code) == BPF_ALU64) { 9395 verbose(env, "BPF_END uses reserved fields\n"); 9396 return -EINVAL; 9397 } 9398 } 9399 9400 /* check src operand */ 9401 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9402 if (err) 9403 return err; 9404 9405 if (is_pointer_value(env, insn->dst_reg)) { 9406 verbose(env, "R%d pointer arithmetic prohibited\n", 9407 insn->dst_reg); 9408 return -EACCES; 9409 } 9410 9411 /* check dest operand */ 9412 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9413 if (err) 9414 return err; 9415 9416 } else if (opcode == BPF_MOV) { 9417 9418 if (BPF_SRC(insn->code) == BPF_X) { 9419 if (insn->imm != 0 || insn->off != 0) { 9420 verbose(env, "BPF_MOV uses reserved fields\n"); 9421 return -EINVAL; 9422 } 9423 9424 /* check src operand */ 9425 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9426 if (err) 9427 return err; 9428 } else { 9429 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9430 verbose(env, "BPF_MOV uses reserved fields\n"); 9431 return -EINVAL; 9432 } 9433 } 9434 9435 /* check dest operand, mark as required later */ 9436 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9437 if (err) 9438 return err; 9439 9440 if (BPF_SRC(insn->code) == BPF_X) { 9441 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9442 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9443 9444 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9445 /* case: R1 = R2 9446 * copy register state to dest reg 9447 */ 9448 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9449 /* Assign src and dst registers the same ID 9450 * that will be used by find_equal_scalars() 9451 * to propagate min/max range. 9452 */ 9453 src_reg->id = ++env->id_gen; 9454 *dst_reg = *src_reg; 9455 dst_reg->live |= REG_LIVE_WRITTEN; 9456 dst_reg->subreg_def = DEF_NOT_SUBREG; 9457 } else { 9458 /* R1 = (u32) R2 */ 9459 if (is_pointer_value(env, insn->src_reg)) { 9460 verbose(env, 9461 "R%d partial copy of pointer\n", 9462 insn->src_reg); 9463 return -EACCES; 9464 } else if (src_reg->type == SCALAR_VALUE) { 9465 *dst_reg = *src_reg; 9466 /* Make sure ID is cleared otherwise 9467 * dst_reg min/max could be incorrectly 9468 * propagated into src_reg by find_equal_scalars() 9469 */ 9470 dst_reg->id = 0; 9471 dst_reg->live |= REG_LIVE_WRITTEN; 9472 dst_reg->subreg_def = env->insn_idx + 1; 9473 } else { 9474 mark_reg_unknown(env, regs, 9475 insn->dst_reg); 9476 } 9477 zext_32_to_64(dst_reg); 9478 reg_bounds_sync(dst_reg); 9479 } 9480 } else { 9481 /* case: R = imm 9482 * remember the value we stored into this reg 9483 */ 9484 /* clear any state __mark_reg_known doesn't set */ 9485 mark_reg_unknown(env, regs, insn->dst_reg); 9486 regs[insn->dst_reg].type = SCALAR_VALUE; 9487 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9488 __mark_reg_known(regs + insn->dst_reg, 9489 insn->imm); 9490 } else { 9491 __mark_reg_known(regs + insn->dst_reg, 9492 (u32)insn->imm); 9493 } 9494 } 9495 9496 } else if (opcode > BPF_END) { 9497 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9498 return -EINVAL; 9499 9500 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9501 9502 if (BPF_SRC(insn->code) == BPF_X) { 9503 if (insn->imm != 0 || insn->off != 0) { 9504 verbose(env, "BPF_ALU uses reserved fields\n"); 9505 return -EINVAL; 9506 } 9507 /* check src1 operand */ 9508 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9509 if (err) 9510 return err; 9511 } else { 9512 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9513 verbose(env, "BPF_ALU uses reserved fields\n"); 9514 return -EINVAL; 9515 } 9516 } 9517 9518 /* check src2 operand */ 9519 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9520 if (err) 9521 return err; 9522 9523 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9524 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9525 verbose(env, "div by zero\n"); 9526 return -EINVAL; 9527 } 9528 9529 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9530 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9531 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9532 9533 if (insn->imm < 0 || insn->imm >= size) { 9534 verbose(env, "invalid shift %d\n", insn->imm); 9535 return -EINVAL; 9536 } 9537 } 9538 9539 /* check dest operand */ 9540 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9541 if (err) 9542 return err; 9543 9544 return adjust_reg_min_max_vals(env, insn); 9545 } 9546 9547 return 0; 9548 } 9549 9550 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9551 struct bpf_reg_state *dst_reg, 9552 enum bpf_reg_type type, 9553 bool range_right_open) 9554 { 9555 struct bpf_func_state *state; 9556 struct bpf_reg_state *reg; 9557 int new_range; 9558 9559 if (dst_reg->off < 0 || 9560 (dst_reg->off == 0 && range_right_open)) 9561 /* This doesn't give us any range */ 9562 return; 9563 9564 if (dst_reg->umax_value > MAX_PACKET_OFF || 9565 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9566 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9567 * than pkt_end, but that's because it's also less than pkt. 9568 */ 9569 return; 9570 9571 new_range = dst_reg->off; 9572 if (range_right_open) 9573 new_range++; 9574 9575 /* Examples for register markings: 9576 * 9577 * pkt_data in dst register: 9578 * 9579 * r2 = r3; 9580 * r2 += 8; 9581 * if (r2 > pkt_end) goto <handle exception> 9582 * <access okay> 9583 * 9584 * r2 = r3; 9585 * r2 += 8; 9586 * if (r2 < pkt_end) goto <access okay> 9587 * <handle exception> 9588 * 9589 * Where: 9590 * r2 == dst_reg, pkt_end == src_reg 9591 * r2=pkt(id=n,off=8,r=0) 9592 * r3=pkt(id=n,off=0,r=0) 9593 * 9594 * pkt_data in src register: 9595 * 9596 * r2 = r3; 9597 * r2 += 8; 9598 * if (pkt_end >= r2) goto <access okay> 9599 * <handle exception> 9600 * 9601 * r2 = r3; 9602 * r2 += 8; 9603 * if (pkt_end <= r2) goto <handle exception> 9604 * <access okay> 9605 * 9606 * Where: 9607 * pkt_end == dst_reg, r2 == src_reg 9608 * r2=pkt(id=n,off=8,r=0) 9609 * r3=pkt(id=n,off=0,r=0) 9610 * 9611 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9612 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9613 * and [r3, r3 + 8-1) respectively is safe to access depending on 9614 * the check. 9615 */ 9616 9617 /* If our ids match, then we must have the same max_value. And we 9618 * don't care about the other reg's fixed offset, since if it's too big 9619 * the range won't allow anything. 9620 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9621 */ 9622 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9623 if (reg->type == type && reg->id == dst_reg->id) 9624 /* keep the maximum range already checked */ 9625 reg->range = max(reg->range, new_range); 9626 })); 9627 } 9628 9629 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9630 { 9631 struct tnum subreg = tnum_subreg(reg->var_off); 9632 s32 sval = (s32)val; 9633 9634 switch (opcode) { 9635 case BPF_JEQ: 9636 if (tnum_is_const(subreg)) 9637 return !!tnum_equals_const(subreg, val); 9638 break; 9639 case BPF_JNE: 9640 if (tnum_is_const(subreg)) 9641 return !tnum_equals_const(subreg, val); 9642 break; 9643 case BPF_JSET: 9644 if ((~subreg.mask & subreg.value) & val) 9645 return 1; 9646 if (!((subreg.mask | subreg.value) & val)) 9647 return 0; 9648 break; 9649 case BPF_JGT: 9650 if (reg->u32_min_value > val) 9651 return 1; 9652 else if (reg->u32_max_value <= val) 9653 return 0; 9654 break; 9655 case BPF_JSGT: 9656 if (reg->s32_min_value > sval) 9657 return 1; 9658 else if (reg->s32_max_value <= sval) 9659 return 0; 9660 break; 9661 case BPF_JLT: 9662 if (reg->u32_max_value < val) 9663 return 1; 9664 else if (reg->u32_min_value >= val) 9665 return 0; 9666 break; 9667 case BPF_JSLT: 9668 if (reg->s32_max_value < sval) 9669 return 1; 9670 else if (reg->s32_min_value >= sval) 9671 return 0; 9672 break; 9673 case BPF_JGE: 9674 if (reg->u32_min_value >= val) 9675 return 1; 9676 else if (reg->u32_max_value < val) 9677 return 0; 9678 break; 9679 case BPF_JSGE: 9680 if (reg->s32_min_value >= sval) 9681 return 1; 9682 else if (reg->s32_max_value < sval) 9683 return 0; 9684 break; 9685 case BPF_JLE: 9686 if (reg->u32_max_value <= val) 9687 return 1; 9688 else if (reg->u32_min_value > val) 9689 return 0; 9690 break; 9691 case BPF_JSLE: 9692 if (reg->s32_max_value <= sval) 9693 return 1; 9694 else if (reg->s32_min_value > sval) 9695 return 0; 9696 break; 9697 } 9698 9699 return -1; 9700 } 9701 9702 9703 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9704 { 9705 s64 sval = (s64)val; 9706 9707 switch (opcode) { 9708 case BPF_JEQ: 9709 if (tnum_is_const(reg->var_off)) 9710 return !!tnum_equals_const(reg->var_off, val); 9711 break; 9712 case BPF_JNE: 9713 if (tnum_is_const(reg->var_off)) 9714 return !tnum_equals_const(reg->var_off, val); 9715 break; 9716 case BPF_JSET: 9717 if ((~reg->var_off.mask & reg->var_off.value) & val) 9718 return 1; 9719 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9720 return 0; 9721 break; 9722 case BPF_JGT: 9723 if (reg->umin_value > val) 9724 return 1; 9725 else if (reg->umax_value <= val) 9726 return 0; 9727 break; 9728 case BPF_JSGT: 9729 if (reg->smin_value > sval) 9730 return 1; 9731 else if (reg->smax_value <= sval) 9732 return 0; 9733 break; 9734 case BPF_JLT: 9735 if (reg->umax_value < val) 9736 return 1; 9737 else if (reg->umin_value >= val) 9738 return 0; 9739 break; 9740 case BPF_JSLT: 9741 if (reg->smax_value < sval) 9742 return 1; 9743 else if (reg->smin_value >= sval) 9744 return 0; 9745 break; 9746 case BPF_JGE: 9747 if (reg->umin_value >= val) 9748 return 1; 9749 else if (reg->umax_value < val) 9750 return 0; 9751 break; 9752 case BPF_JSGE: 9753 if (reg->smin_value >= sval) 9754 return 1; 9755 else if (reg->smax_value < sval) 9756 return 0; 9757 break; 9758 case BPF_JLE: 9759 if (reg->umax_value <= val) 9760 return 1; 9761 else if (reg->umin_value > val) 9762 return 0; 9763 break; 9764 case BPF_JSLE: 9765 if (reg->smax_value <= sval) 9766 return 1; 9767 else if (reg->smin_value > sval) 9768 return 0; 9769 break; 9770 } 9771 9772 return -1; 9773 } 9774 9775 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9776 * and return: 9777 * 1 - branch will be taken and "goto target" will be executed 9778 * 0 - branch will not be taken and fall-through to next insn 9779 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9780 * range [0,10] 9781 */ 9782 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9783 bool is_jmp32) 9784 { 9785 if (__is_pointer_value(false, reg)) { 9786 if (!reg_type_not_null(reg->type)) 9787 return -1; 9788 9789 /* If pointer is valid tests against zero will fail so we can 9790 * use this to direct branch taken. 9791 */ 9792 if (val != 0) 9793 return -1; 9794 9795 switch (opcode) { 9796 case BPF_JEQ: 9797 return 0; 9798 case BPF_JNE: 9799 return 1; 9800 default: 9801 return -1; 9802 } 9803 } 9804 9805 if (is_jmp32) 9806 return is_branch32_taken(reg, val, opcode); 9807 return is_branch64_taken(reg, val, opcode); 9808 } 9809 9810 static int flip_opcode(u32 opcode) 9811 { 9812 /* How can we transform "a <op> b" into "b <op> a"? */ 9813 static const u8 opcode_flip[16] = { 9814 /* these stay the same */ 9815 [BPF_JEQ >> 4] = BPF_JEQ, 9816 [BPF_JNE >> 4] = BPF_JNE, 9817 [BPF_JSET >> 4] = BPF_JSET, 9818 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9819 [BPF_JGE >> 4] = BPF_JLE, 9820 [BPF_JGT >> 4] = BPF_JLT, 9821 [BPF_JLE >> 4] = BPF_JGE, 9822 [BPF_JLT >> 4] = BPF_JGT, 9823 [BPF_JSGE >> 4] = BPF_JSLE, 9824 [BPF_JSGT >> 4] = BPF_JSLT, 9825 [BPF_JSLE >> 4] = BPF_JSGE, 9826 [BPF_JSLT >> 4] = BPF_JSGT 9827 }; 9828 return opcode_flip[opcode >> 4]; 9829 } 9830 9831 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9832 struct bpf_reg_state *src_reg, 9833 u8 opcode) 9834 { 9835 struct bpf_reg_state *pkt; 9836 9837 if (src_reg->type == PTR_TO_PACKET_END) { 9838 pkt = dst_reg; 9839 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9840 pkt = src_reg; 9841 opcode = flip_opcode(opcode); 9842 } else { 9843 return -1; 9844 } 9845 9846 if (pkt->range >= 0) 9847 return -1; 9848 9849 switch (opcode) { 9850 case BPF_JLE: 9851 /* pkt <= pkt_end */ 9852 fallthrough; 9853 case BPF_JGT: 9854 /* pkt > pkt_end */ 9855 if (pkt->range == BEYOND_PKT_END) 9856 /* pkt has at last one extra byte beyond pkt_end */ 9857 return opcode == BPF_JGT; 9858 break; 9859 case BPF_JLT: 9860 /* pkt < pkt_end */ 9861 fallthrough; 9862 case BPF_JGE: 9863 /* pkt >= pkt_end */ 9864 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9865 return opcode == BPF_JGE; 9866 break; 9867 } 9868 return -1; 9869 } 9870 9871 /* Adjusts the register min/max values in the case that the dst_reg is the 9872 * variable register that we are working on, and src_reg is a constant or we're 9873 * simply doing a BPF_K check. 9874 * In JEQ/JNE cases we also adjust the var_off values. 9875 */ 9876 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9877 struct bpf_reg_state *false_reg, 9878 u64 val, u32 val32, 9879 u8 opcode, bool is_jmp32) 9880 { 9881 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9882 struct tnum false_64off = false_reg->var_off; 9883 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9884 struct tnum true_64off = true_reg->var_off; 9885 s64 sval = (s64)val; 9886 s32 sval32 = (s32)val32; 9887 9888 /* If the dst_reg is a pointer, we can't learn anything about its 9889 * variable offset from the compare (unless src_reg were a pointer into 9890 * the same object, but we don't bother with that. 9891 * Since false_reg and true_reg have the same type by construction, we 9892 * only need to check one of them for pointerness. 9893 */ 9894 if (__is_pointer_value(false, false_reg)) 9895 return; 9896 9897 switch (opcode) { 9898 /* JEQ/JNE comparison doesn't change the register equivalence. 9899 * 9900 * r1 = r2; 9901 * if (r1 == 42) goto label; 9902 * ... 9903 * label: // here both r1 and r2 are known to be 42. 9904 * 9905 * Hence when marking register as known preserve it's ID. 9906 */ 9907 case BPF_JEQ: 9908 if (is_jmp32) { 9909 __mark_reg32_known(true_reg, val32); 9910 true_32off = tnum_subreg(true_reg->var_off); 9911 } else { 9912 ___mark_reg_known(true_reg, val); 9913 true_64off = true_reg->var_off; 9914 } 9915 break; 9916 case BPF_JNE: 9917 if (is_jmp32) { 9918 __mark_reg32_known(false_reg, val32); 9919 false_32off = tnum_subreg(false_reg->var_off); 9920 } else { 9921 ___mark_reg_known(false_reg, val); 9922 false_64off = false_reg->var_off; 9923 } 9924 break; 9925 case BPF_JSET: 9926 if (is_jmp32) { 9927 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9928 if (is_power_of_2(val32)) 9929 true_32off = tnum_or(true_32off, 9930 tnum_const(val32)); 9931 } else { 9932 false_64off = tnum_and(false_64off, tnum_const(~val)); 9933 if (is_power_of_2(val)) 9934 true_64off = tnum_or(true_64off, 9935 tnum_const(val)); 9936 } 9937 break; 9938 case BPF_JGE: 9939 case BPF_JGT: 9940 { 9941 if (is_jmp32) { 9942 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9943 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9944 9945 false_reg->u32_max_value = min(false_reg->u32_max_value, 9946 false_umax); 9947 true_reg->u32_min_value = max(true_reg->u32_min_value, 9948 true_umin); 9949 } else { 9950 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9951 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9952 9953 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9954 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9955 } 9956 break; 9957 } 9958 case BPF_JSGE: 9959 case BPF_JSGT: 9960 { 9961 if (is_jmp32) { 9962 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9963 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9964 9965 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9966 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9967 } else { 9968 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9969 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9970 9971 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9972 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9973 } 9974 break; 9975 } 9976 case BPF_JLE: 9977 case BPF_JLT: 9978 { 9979 if (is_jmp32) { 9980 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9981 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9982 9983 false_reg->u32_min_value = max(false_reg->u32_min_value, 9984 false_umin); 9985 true_reg->u32_max_value = min(true_reg->u32_max_value, 9986 true_umax); 9987 } else { 9988 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9989 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9990 9991 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9992 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9993 } 9994 break; 9995 } 9996 case BPF_JSLE: 9997 case BPF_JSLT: 9998 { 9999 if (is_jmp32) { 10000 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 10001 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 10002 10003 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 10004 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 10005 } else { 10006 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 10007 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 10008 10009 false_reg->smin_value = max(false_reg->smin_value, false_smin); 10010 true_reg->smax_value = min(true_reg->smax_value, true_smax); 10011 } 10012 break; 10013 } 10014 default: 10015 return; 10016 } 10017 10018 if (is_jmp32) { 10019 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 10020 tnum_subreg(false_32off)); 10021 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 10022 tnum_subreg(true_32off)); 10023 __reg_combine_32_into_64(false_reg); 10024 __reg_combine_32_into_64(true_reg); 10025 } else { 10026 false_reg->var_off = false_64off; 10027 true_reg->var_off = true_64off; 10028 __reg_combine_64_into_32(false_reg); 10029 __reg_combine_64_into_32(true_reg); 10030 } 10031 } 10032 10033 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 10034 * the variable reg. 10035 */ 10036 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 10037 struct bpf_reg_state *false_reg, 10038 u64 val, u32 val32, 10039 u8 opcode, bool is_jmp32) 10040 { 10041 opcode = flip_opcode(opcode); 10042 /* This uses zero as "not present in table"; luckily the zero opcode, 10043 * BPF_JA, can't get here. 10044 */ 10045 if (opcode) 10046 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 10047 } 10048 10049 /* Regs are known to be equal, so intersect their min/max/var_off */ 10050 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 10051 struct bpf_reg_state *dst_reg) 10052 { 10053 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 10054 dst_reg->umin_value); 10055 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 10056 dst_reg->umax_value); 10057 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 10058 dst_reg->smin_value); 10059 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 10060 dst_reg->smax_value); 10061 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 10062 dst_reg->var_off); 10063 reg_bounds_sync(src_reg); 10064 reg_bounds_sync(dst_reg); 10065 } 10066 10067 static void reg_combine_min_max(struct bpf_reg_state *true_src, 10068 struct bpf_reg_state *true_dst, 10069 struct bpf_reg_state *false_src, 10070 struct bpf_reg_state *false_dst, 10071 u8 opcode) 10072 { 10073 switch (opcode) { 10074 case BPF_JEQ: 10075 __reg_combine_min_max(true_src, true_dst); 10076 break; 10077 case BPF_JNE: 10078 __reg_combine_min_max(false_src, false_dst); 10079 break; 10080 } 10081 } 10082 10083 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 10084 struct bpf_reg_state *reg, u32 id, 10085 bool is_null) 10086 { 10087 if (type_may_be_null(reg->type) && reg->id == id && 10088 !WARN_ON_ONCE(!reg->id)) { 10089 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 10090 !tnum_equals_const(reg->var_off, 0) || 10091 reg->off)) { 10092 /* Old offset (both fixed and variable parts) should 10093 * have been known-zero, because we don't allow pointer 10094 * arithmetic on pointers that might be NULL. If we 10095 * see this happening, don't convert the register. 10096 */ 10097 return; 10098 } 10099 if (is_null) { 10100 reg->type = SCALAR_VALUE; 10101 /* We don't need id and ref_obj_id from this point 10102 * onwards anymore, thus we should better reset it, 10103 * so that state pruning has chances to take effect. 10104 */ 10105 reg->id = 0; 10106 reg->ref_obj_id = 0; 10107 10108 return; 10109 } 10110 10111 mark_ptr_not_null_reg(reg); 10112 10113 if (!reg_may_point_to_spin_lock(reg)) { 10114 /* For not-NULL ptr, reg->ref_obj_id will be reset 10115 * in release_reference(). 10116 * 10117 * reg->id is still used by spin_lock ptr. Other 10118 * than spin_lock ptr type, reg->id can be reset. 10119 */ 10120 reg->id = 0; 10121 } 10122 } 10123 } 10124 10125 /* The logic is similar to find_good_pkt_pointers(), both could eventually 10126 * be folded together at some point. 10127 */ 10128 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 10129 bool is_null) 10130 { 10131 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10132 struct bpf_reg_state *regs = state->regs, *reg; 10133 u32 ref_obj_id = regs[regno].ref_obj_id; 10134 u32 id = regs[regno].id; 10135 10136 if (ref_obj_id && ref_obj_id == id && is_null) 10137 /* regs[regno] is in the " == NULL" branch. 10138 * No one could have freed the reference state before 10139 * doing the NULL check. 10140 */ 10141 WARN_ON_ONCE(release_reference_state(state, id)); 10142 10143 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10144 mark_ptr_or_null_reg(state, reg, id, is_null); 10145 })); 10146 } 10147 10148 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 10149 struct bpf_reg_state *dst_reg, 10150 struct bpf_reg_state *src_reg, 10151 struct bpf_verifier_state *this_branch, 10152 struct bpf_verifier_state *other_branch) 10153 { 10154 if (BPF_SRC(insn->code) != BPF_X) 10155 return false; 10156 10157 /* Pointers are always 64-bit. */ 10158 if (BPF_CLASS(insn->code) == BPF_JMP32) 10159 return false; 10160 10161 switch (BPF_OP(insn->code)) { 10162 case BPF_JGT: 10163 if ((dst_reg->type == PTR_TO_PACKET && 10164 src_reg->type == PTR_TO_PACKET_END) || 10165 (dst_reg->type == PTR_TO_PACKET_META && 10166 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10167 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 10168 find_good_pkt_pointers(this_branch, dst_reg, 10169 dst_reg->type, false); 10170 mark_pkt_end(other_branch, insn->dst_reg, true); 10171 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10172 src_reg->type == PTR_TO_PACKET) || 10173 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10174 src_reg->type == PTR_TO_PACKET_META)) { 10175 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 10176 find_good_pkt_pointers(other_branch, src_reg, 10177 src_reg->type, true); 10178 mark_pkt_end(this_branch, insn->src_reg, false); 10179 } else { 10180 return false; 10181 } 10182 break; 10183 case BPF_JLT: 10184 if ((dst_reg->type == PTR_TO_PACKET && 10185 src_reg->type == PTR_TO_PACKET_END) || 10186 (dst_reg->type == PTR_TO_PACKET_META && 10187 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10188 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 10189 find_good_pkt_pointers(other_branch, dst_reg, 10190 dst_reg->type, true); 10191 mark_pkt_end(this_branch, insn->dst_reg, false); 10192 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10193 src_reg->type == PTR_TO_PACKET) || 10194 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10195 src_reg->type == PTR_TO_PACKET_META)) { 10196 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 10197 find_good_pkt_pointers(this_branch, src_reg, 10198 src_reg->type, false); 10199 mark_pkt_end(other_branch, insn->src_reg, true); 10200 } else { 10201 return false; 10202 } 10203 break; 10204 case BPF_JGE: 10205 if ((dst_reg->type == PTR_TO_PACKET && 10206 src_reg->type == PTR_TO_PACKET_END) || 10207 (dst_reg->type == PTR_TO_PACKET_META && 10208 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10209 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 10210 find_good_pkt_pointers(this_branch, dst_reg, 10211 dst_reg->type, true); 10212 mark_pkt_end(other_branch, insn->dst_reg, false); 10213 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10214 src_reg->type == PTR_TO_PACKET) || 10215 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10216 src_reg->type == PTR_TO_PACKET_META)) { 10217 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 10218 find_good_pkt_pointers(other_branch, src_reg, 10219 src_reg->type, false); 10220 mark_pkt_end(this_branch, insn->src_reg, true); 10221 } else { 10222 return false; 10223 } 10224 break; 10225 case BPF_JLE: 10226 if ((dst_reg->type == PTR_TO_PACKET && 10227 src_reg->type == PTR_TO_PACKET_END) || 10228 (dst_reg->type == PTR_TO_PACKET_META && 10229 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10230 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 10231 find_good_pkt_pointers(other_branch, dst_reg, 10232 dst_reg->type, false); 10233 mark_pkt_end(this_branch, insn->dst_reg, true); 10234 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10235 src_reg->type == PTR_TO_PACKET) || 10236 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10237 src_reg->type == PTR_TO_PACKET_META)) { 10238 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10239 find_good_pkt_pointers(this_branch, src_reg, 10240 src_reg->type, true); 10241 mark_pkt_end(other_branch, insn->src_reg, false); 10242 } else { 10243 return false; 10244 } 10245 break; 10246 default: 10247 return false; 10248 } 10249 10250 return true; 10251 } 10252 10253 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10254 struct bpf_reg_state *known_reg) 10255 { 10256 struct bpf_func_state *state; 10257 struct bpf_reg_state *reg; 10258 10259 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10260 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10261 *reg = *known_reg; 10262 })); 10263 } 10264 10265 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10266 struct bpf_insn *insn, int *insn_idx) 10267 { 10268 struct bpf_verifier_state *this_branch = env->cur_state; 10269 struct bpf_verifier_state *other_branch; 10270 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10271 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10272 u8 opcode = BPF_OP(insn->code); 10273 bool is_jmp32; 10274 int pred = -1; 10275 int err; 10276 10277 /* Only conditional jumps are expected to reach here. */ 10278 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10279 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10280 return -EINVAL; 10281 } 10282 10283 if (BPF_SRC(insn->code) == BPF_X) { 10284 if (insn->imm != 0) { 10285 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10286 return -EINVAL; 10287 } 10288 10289 /* check src1 operand */ 10290 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10291 if (err) 10292 return err; 10293 10294 if (is_pointer_value(env, insn->src_reg)) { 10295 verbose(env, "R%d pointer comparison prohibited\n", 10296 insn->src_reg); 10297 return -EACCES; 10298 } 10299 src_reg = ®s[insn->src_reg]; 10300 } else { 10301 if (insn->src_reg != BPF_REG_0) { 10302 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10303 return -EINVAL; 10304 } 10305 } 10306 10307 /* check src2 operand */ 10308 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10309 if (err) 10310 return err; 10311 10312 dst_reg = ®s[insn->dst_reg]; 10313 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10314 10315 if (BPF_SRC(insn->code) == BPF_K) { 10316 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10317 } else if (src_reg->type == SCALAR_VALUE && 10318 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10319 pred = is_branch_taken(dst_reg, 10320 tnum_subreg(src_reg->var_off).value, 10321 opcode, 10322 is_jmp32); 10323 } else if (src_reg->type == SCALAR_VALUE && 10324 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10325 pred = is_branch_taken(dst_reg, 10326 src_reg->var_off.value, 10327 opcode, 10328 is_jmp32); 10329 } else if (reg_is_pkt_pointer_any(dst_reg) && 10330 reg_is_pkt_pointer_any(src_reg) && 10331 !is_jmp32) { 10332 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10333 } 10334 10335 if (pred >= 0) { 10336 /* If we get here with a dst_reg pointer type it is because 10337 * above is_branch_taken() special cased the 0 comparison. 10338 */ 10339 if (!__is_pointer_value(false, dst_reg)) 10340 err = mark_chain_precision(env, insn->dst_reg); 10341 if (BPF_SRC(insn->code) == BPF_X && !err && 10342 !__is_pointer_value(false, src_reg)) 10343 err = mark_chain_precision(env, insn->src_reg); 10344 if (err) 10345 return err; 10346 } 10347 10348 if (pred == 1) { 10349 /* Only follow the goto, ignore fall-through. If needed, push 10350 * the fall-through branch for simulation under speculative 10351 * execution. 10352 */ 10353 if (!env->bypass_spec_v1 && 10354 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10355 *insn_idx)) 10356 return -EFAULT; 10357 *insn_idx += insn->off; 10358 return 0; 10359 } else if (pred == 0) { 10360 /* Only follow the fall-through branch, since that's where the 10361 * program will go. If needed, push the goto branch for 10362 * simulation under speculative execution. 10363 */ 10364 if (!env->bypass_spec_v1 && 10365 !sanitize_speculative_path(env, insn, 10366 *insn_idx + insn->off + 1, 10367 *insn_idx)) 10368 return -EFAULT; 10369 return 0; 10370 } 10371 10372 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10373 false); 10374 if (!other_branch) 10375 return -EFAULT; 10376 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10377 10378 /* detect if we are comparing against a constant value so we can adjust 10379 * our min/max values for our dst register. 10380 * this is only legit if both are scalars (or pointers to the same 10381 * object, I suppose, but we don't support that right now), because 10382 * otherwise the different base pointers mean the offsets aren't 10383 * comparable. 10384 */ 10385 if (BPF_SRC(insn->code) == BPF_X) { 10386 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10387 10388 if (dst_reg->type == SCALAR_VALUE && 10389 src_reg->type == SCALAR_VALUE) { 10390 if (tnum_is_const(src_reg->var_off) || 10391 (is_jmp32 && 10392 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10393 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10394 dst_reg, 10395 src_reg->var_off.value, 10396 tnum_subreg(src_reg->var_off).value, 10397 opcode, is_jmp32); 10398 else if (tnum_is_const(dst_reg->var_off) || 10399 (is_jmp32 && 10400 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10401 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10402 src_reg, 10403 dst_reg->var_off.value, 10404 tnum_subreg(dst_reg->var_off).value, 10405 opcode, is_jmp32); 10406 else if (!is_jmp32 && 10407 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10408 /* Comparing for equality, we can combine knowledge */ 10409 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10410 &other_branch_regs[insn->dst_reg], 10411 src_reg, dst_reg, opcode); 10412 if (src_reg->id && 10413 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10414 find_equal_scalars(this_branch, src_reg); 10415 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10416 } 10417 10418 } 10419 } else if (dst_reg->type == SCALAR_VALUE) { 10420 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10421 dst_reg, insn->imm, (u32)insn->imm, 10422 opcode, is_jmp32); 10423 } 10424 10425 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10426 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10427 find_equal_scalars(this_branch, dst_reg); 10428 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10429 } 10430 10431 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10432 * NOTE: these optimizations below are related with pointer comparison 10433 * which will never be JMP32. 10434 */ 10435 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10436 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10437 type_may_be_null(dst_reg->type)) { 10438 /* Mark all identical registers in each branch as either 10439 * safe or unknown depending R == 0 or R != 0 conditional. 10440 */ 10441 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10442 opcode == BPF_JNE); 10443 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10444 opcode == BPF_JEQ); 10445 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10446 this_branch, other_branch) && 10447 is_pointer_value(env, insn->dst_reg)) { 10448 verbose(env, "R%d pointer comparison prohibited\n", 10449 insn->dst_reg); 10450 return -EACCES; 10451 } 10452 if (env->log.level & BPF_LOG_LEVEL) 10453 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10454 return 0; 10455 } 10456 10457 /* verify BPF_LD_IMM64 instruction */ 10458 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10459 { 10460 struct bpf_insn_aux_data *aux = cur_aux(env); 10461 struct bpf_reg_state *regs = cur_regs(env); 10462 struct bpf_reg_state *dst_reg; 10463 struct bpf_map *map; 10464 int err; 10465 10466 if (BPF_SIZE(insn->code) != BPF_DW) { 10467 verbose(env, "invalid BPF_LD_IMM insn\n"); 10468 return -EINVAL; 10469 } 10470 if (insn->off != 0) { 10471 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10472 return -EINVAL; 10473 } 10474 10475 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10476 if (err) 10477 return err; 10478 10479 dst_reg = ®s[insn->dst_reg]; 10480 if (insn->src_reg == 0) { 10481 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10482 10483 dst_reg->type = SCALAR_VALUE; 10484 __mark_reg_known(®s[insn->dst_reg], imm); 10485 return 0; 10486 } 10487 10488 /* All special src_reg cases are listed below. From this point onwards 10489 * we either succeed and assign a corresponding dst_reg->type after 10490 * zeroing the offset, or fail and reject the program. 10491 */ 10492 mark_reg_known_zero(env, regs, insn->dst_reg); 10493 10494 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10495 dst_reg->type = aux->btf_var.reg_type; 10496 switch (base_type(dst_reg->type)) { 10497 case PTR_TO_MEM: 10498 dst_reg->mem_size = aux->btf_var.mem_size; 10499 break; 10500 case PTR_TO_BTF_ID: 10501 dst_reg->btf = aux->btf_var.btf; 10502 dst_reg->btf_id = aux->btf_var.btf_id; 10503 break; 10504 default: 10505 verbose(env, "bpf verifier is misconfigured\n"); 10506 return -EFAULT; 10507 } 10508 return 0; 10509 } 10510 10511 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10512 struct bpf_prog_aux *aux = env->prog->aux; 10513 u32 subprogno = find_subprog(env, 10514 env->insn_idx + insn->imm + 1); 10515 10516 if (!aux->func_info) { 10517 verbose(env, "missing btf func_info\n"); 10518 return -EINVAL; 10519 } 10520 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10521 verbose(env, "callback function not static\n"); 10522 return -EINVAL; 10523 } 10524 10525 dst_reg->type = PTR_TO_FUNC; 10526 dst_reg->subprogno = subprogno; 10527 return 0; 10528 } 10529 10530 map = env->used_maps[aux->map_index]; 10531 dst_reg->map_ptr = map; 10532 10533 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10534 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10535 dst_reg->type = PTR_TO_MAP_VALUE; 10536 dst_reg->off = aux->map_off; 10537 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) 10538 dst_reg->id = ++env->id_gen; 10539 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10540 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10541 dst_reg->type = CONST_PTR_TO_MAP; 10542 } else { 10543 verbose(env, "bpf verifier is misconfigured\n"); 10544 return -EINVAL; 10545 } 10546 10547 return 0; 10548 } 10549 10550 static bool may_access_skb(enum bpf_prog_type type) 10551 { 10552 switch (type) { 10553 case BPF_PROG_TYPE_SOCKET_FILTER: 10554 case BPF_PROG_TYPE_SCHED_CLS: 10555 case BPF_PROG_TYPE_SCHED_ACT: 10556 return true; 10557 default: 10558 return false; 10559 } 10560 } 10561 10562 /* verify safety of LD_ABS|LD_IND instructions: 10563 * - they can only appear in the programs where ctx == skb 10564 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10565 * preserve R6-R9, and store return value into R0 10566 * 10567 * Implicit input: 10568 * ctx == skb == R6 == CTX 10569 * 10570 * Explicit input: 10571 * SRC == any register 10572 * IMM == 32-bit immediate 10573 * 10574 * Output: 10575 * R0 - 8/16/32-bit skb data converted to cpu endianness 10576 */ 10577 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10578 { 10579 struct bpf_reg_state *regs = cur_regs(env); 10580 static const int ctx_reg = BPF_REG_6; 10581 u8 mode = BPF_MODE(insn->code); 10582 int i, err; 10583 10584 if (!may_access_skb(resolve_prog_type(env->prog))) { 10585 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10586 return -EINVAL; 10587 } 10588 10589 if (!env->ops->gen_ld_abs) { 10590 verbose(env, "bpf verifier is misconfigured\n"); 10591 return -EINVAL; 10592 } 10593 10594 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10595 BPF_SIZE(insn->code) == BPF_DW || 10596 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10597 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10598 return -EINVAL; 10599 } 10600 10601 /* check whether implicit source operand (register R6) is readable */ 10602 err = check_reg_arg(env, ctx_reg, SRC_OP); 10603 if (err) 10604 return err; 10605 10606 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10607 * gen_ld_abs() may terminate the program at runtime, leading to 10608 * reference leak. 10609 */ 10610 err = check_reference_leak(env); 10611 if (err) { 10612 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10613 return err; 10614 } 10615 10616 if (env->cur_state->active_spin_lock) { 10617 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10618 return -EINVAL; 10619 } 10620 10621 if (regs[ctx_reg].type != PTR_TO_CTX) { 10622 verbose(env, 10623 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10624 return -EINVAL; 10625 } 10626 10627 if (mode == BPF_IND) { 10628 /* check explicit source operand */ 10629 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10630 if (err) 10631 return err; 10632 } 10633 10634 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10635 if (err < 0) 10636 return err; 10637 10638 /* reset caller saved regs to unreadable */ 10639 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10640 mark_reg_not_init(env, regs, caller_saved[i]); 10641 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10642 } 10643 10644 /* mark destination R0 register as readable, since it contains 10645 * the value fetched from the packet. 10646 * Already marked as written above. 10647 */ 10648 mark_reg_unknown(env, regs, BPF_REG_0); 10649 /* ld_abs load up to 32-bit skb data. */ 10650 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10651 return 0; 10652 } 10653 10654 static int check_return_code(struct bpf_verifier_env *env) 10655 { 10656 struct tnum enforce_attach_type_range = tnum_unknown; 10657 const struct bpf_prog *prog = env->prog; 10658 struct bpf_reg_state *reg; 10659 struct tnum range = tnum_range(0, 1); 10660 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10661 int err; 10662 struct bpf_func_state *frame = env->cur_state->frame[0]; 10663 const bool is_subprog = frame->subprogno; 10664 10665 /* LSM and struct_ops func-ptr's return type could be "void" */ 10666 if (!is_subprog) { 10667 switch (prog_type) { 10668 case BPF_PROG_TYPE_LSM: 10669 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10670 /* See below, can be 0 or 0-1 depending on hook. */ 10671 break; 10672 fallthrough; 10673 case BPF_PROG_TYPE_STRUCT_OPS: 10674 if (!prog->aux->attach_func_proto->type) 10675 return 0; 10676 break; 10677 default: 10678 break; 10679 } 10680 } 10681 10682 /* eBPF calling convention is such that R0 is used 10683 * to return the value from eBPF program. 10684 * Make sure that it's readable at this time 10685 * of bpf_exit, which means that program wrote 10686 * something into it earlier 10687 */ 10688 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10689 if (err) 10690 return err; 10691 10692 if (is_pointer_value(env, BPF_REG_0)) { 10693 verbose(env, "R0 leaks addr as return value\n"); 10694 return -EACCES; 10695 } 10696 10697 reg = cur_regs(env) + BPF_REG_0; 10698 10699 if (frame->in_async_callback_fn) { 10700 /* enforce return zero from async callbacks like timer */ 10701 if (reg->type != SCALAR_VALUE) { 10702 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10703 reg_type_str(env, reg->type)); 10704 return -EINVAL; 10705 } 10706 10707 if (!tnum_in(tnum_const(0), reg->var_off)) { 10708 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10709 return -EINVAL; 10710 } 10711 return 0; 10712 } 10713 10714 if (is_subprog) { 10715 if (reg->type != SCALAR_VALUE) { 10716 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10717 reg_type_str(env, reg->type)); 10718 return -EINVAL; 10719 } 10720 return 0; 10721 } 10722 10723 switch (prog_type) { 10724 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10725 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10726 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10727 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10728 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10729 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10730 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10731 range = tnum_range(1, 1); 10732 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10733 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10734 range = tnum_range(0, 3); 10735 break; 10736 case BPF_PROG_TYPE_CGROUP_SKB: 10737 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10738 range = tnum_range(0, 3); 10739 enforce_attach_type_range = tnum_range(2, 3); 10740 } 10741 break; 10742 case BPF_PROG_TYPE_CGROUP_SOCK: 10743 case BPF_PROG_TYPE_SOCK_OPS: 10744 case BPF_PROG_TYPE_CGROUP_DEVICE: 10745 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10746 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10747 break; 10748 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10749 if (!env->prog->aux->attach_btf_id) 10750 return 0; 10751 range = tnum_const(0); 10752 break; 10753 case BPF_PROG_TYPE_TRACING: 10754 switch (env->prog->expected_attach_type) { 10755 case BPF_TRACE_FENTRY: 10756 case BPF_TRACE_FEXIT: 10757 range = tnum_const(0); 10758 break; 10759 case BPF_TRACE_RAW_TP: 10760 case BPF_MODIFY_RETURN: 10761 return 0; 10762 case BPF_TRACE_ITER: 10763 break; 10764 default: 10765 return -ENOTSUPP; 10766 } 10767 break; 10768 case BPF_PROG_TYPE_SK_LOOKUP: 10769 range = tnum_range(SK_DROP, SK_PASS); 10770 break; 10771 10772 case BPF_PROG_TYPE_LSM: 10773 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10774 /* Regular BPF_PROG_TYPE_LSM programs can return 10775 * any value. 10776 */ 10777 return 0; 10778 } 10779 if (!env->prog->aux->attach_func_proto->type) { 10780 /* Make sure programs that attach to void 10781 * hooks don't try to modify return value. 10782 */ 10783 range = tnum_range(1, 1); 10784 } 10785 break; 10786 10787 case BPF_PROG_TYPE_EXT: 10788 /* freplace program can return anything as its return value 10789 * depends on the to-be-replaced kernel func or bpf program. 10790 */ 10791 default: 10792 return 0; 10793 } 10794 10795 if (reg->type != SCALAR_VALUE) { 10796 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10797 reg_type_str(env, reg->type)); 10798 return -EINVAL; 10799 } 10800 10801 if (!tnum_in(range, reg->var_off)) { 10802 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10803 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10804 prog_type == BPF_PROG_TYPE_LSM && 10805 !prog->aux->attach_func_proto->type) 10806 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10807 return -EINVAL; 10808 } 10809 10810 if (!tnum_is_unknown(enforce_attach_type_range) && 10811 tnum_in(enforce_attach_type_range, reg->var_off)) 10812 env->prog->enforce_expected_attach_type = 1; 10813 return 0; 10814 } 10815 10816 /* non-recursive DFS pseudo code 10817 * 1 procedure DFS-iterative(G,v): 10818 * 2 label v as discovered 10819 * 3 let S be a stack 10820 * 4 S.push(v) 10821 * 5 while S is not empty 10822 * 6 t <- S.peek() 10823 * 7 if t is what we're looking for: 10824 * 8 return t 10825 * 9 for all edges e in G.adjacentEdges(t) do 10826 * 10 if edge e is already labelled 10827 * 11 continue with the next edge 10828 * 12 w <- G.adjacentVertex(t,e) 10829 * 13 if vertex w is not discovered and not explored 10830 * 14 label e as tree-edge 10831 * 15 label w as discovered 10832 * 16 S.push(w) 10833 * 17 continue at 5 10834 * 18 else if vertex w is discovered 10835 * 19 label e as back-edge 10836 * 20 else 10837 * 21 // vertex w is explored 10838 * 22 label e as forward- or cross-edge 10839 * 23 label t as explored 10840 * 24 S.pop() 10841 * 10842 * convention: 10843 * 0x10 - discovered 10844 * 0x11 - discovered and fall-through edge labelled 10845 * 0x12 - discovered and fall-through and branch edges labelled 10846 * 0x20 - explored 10847 */ 10848 10849 enum { 10850 DISCOVERED = 0x10, 10851 EXPLORED = 0x20, 10852 FALLTHROUGH = 1, 10853 BRANCH = 2, 10854 }; 10855 10856 static u32 state_htab_size(struct bpf_verifier_env *env) 10857 { 10858 return env->prog->len; 10859 } 10860 10861 static struct bpf_verifier_state_list **explored_state( 10862 struct bpf_verifier_env *env, 10863 int idx) 10864 { 10865 struct bpf_verifier_state *cur = env->cur_state; 10866 struct bpf_func_state *state = cur->frame[cur->curframe]; 10867 10868 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10869 } 10870 10871 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10872 { 10873 env->insn_aux_data[idx].prune_point = true; 10874 } 10875 10876 enum { 10877 DONE_EXPLORING = 0, 10878 KEEP_EXPLORING = 1, 10879 }; 10880 10881 /* t, w, e - match pseudo-code above: 10882 * t - index of current instruction 10883 * w - next instruction 10884 * e - edge 10885 */ 10886 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10887 bool loop_ok) 10888 { 10889 int *insn_stack = env->cfg.insn_stack; 10890 int *insn_state = env->cfg.insn_state; 10891 10892 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10893 return DONE_EXPLORING; 10894 10895 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10896 return DONE_EXPLORING; 10897 10898 if (w < 0 || w >= env->prog->len) { 10899 verbose_linfo(env, t, "%d: ", t); 10900 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10901 return -EINVAL; 10902 } 10903 10904 if (e == BRANCH) 10905 /* mark branch target for state pruning */ 10906 init_explored_state(env, w); 10907 10908 if (insn_state[w] == 0) { 10909 /* tree-edge */ 10910 insn_state[t] = DISCOVERED | e; 10911 insn_state[w] = DISCOVERED; 10912 if (env->cfg.cur_stack >= env->prog->len) 10913 return -E2BIG; 10914 insn_stack[env->cfg.cur_stack++] = w; 10915 return KEEP_EXPLORING; 10916 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10917 if (loop_ok && env->bpf_capable) 10918 return DONE_EXPLORING; 10919 verbose_linfo(env, t, "%d: ", t); 10920 verbose_linfo(env, w, "%d: ", w); 10921 verbose(env, "back-edge from insn %d to %d\n", t, w); 10922 return -EINVAL; 10923 } else if (insn_state[w] == EXPLORED) { 10924 /* forward- or cross-edge */ 10925 insn_state[t] = DISCOVERED | e; 10926 } else { 10927 verbose(env, "insn state internal bug\n"); 10928 return -EFAULT; 10929 } 10930 return DONE_EXPLORING; 10931 } 10932 10933 static int visit_func_call_insn(int t, int insn_cnt, 10934 struct bpf_insn *insns, 10935 struct bpf_verifier_env *env, 10936 bool visit_callee) 10937 { 10938 int ret; 10939 10940 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10941 if (ret) 10942 return ret; 10943 10944 if (t + 1 < insn_cnt) 10945 init_explored_state(env, t + 1); 10946 if (visit_callee) { 10947 init_explored_state(env, t); 10948 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10949 /* It's ok to allow recursion from CFG point of 10950 * view. __check_func_call() will do the actual 10951 * check. 10952 */ 10953 bpf_pseudo_func(insns + t)); 10954 } 10955 return ret; 10956 } 10957 10958 /* Visits the instruction at index t and returns one of the following: 10959 * < 0 - an error occurred 10960 * DONE_EXPLORING - the instruction was fully explored 10961 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10962 */ 10963 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10964 { 10965 struct bpf_insn *insns = env->prog->insnsi; 10966 int ret; 10967 10968 if (bpf_pseudo_func(insns + t)) 10969 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10970 10971 /* All non-branch instructions have a single fall-through edge. */ 10972 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10973 BPF_CLASS(insns[t].code) != BPF_JMP32) 10974 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10975 10976 switch (BPF_OP(insns[t].code)) { 10977 case BPF_EXIT: 10978 return DONE_EXPLORING; 10979 10980 case BPF_CALL: 10981 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10982 /* Mark this call insn to trigger is_state_visited() check 10983 * before call itself is processed by __check_func_call(). 10984 * Otherwise new async state will be pushed for further 10985 * exploration. 10986 */ 10987 init_explored_state(env, t); 10988 return visit_func_call_insn(t, insn_cnt, insns, env, 10989 insns[t].src_reg == BPF_PSEUDO_CALL); 10990 10991 case BPF_JA: 10992 if (BPF_SRC(insns[t].code) != BPF_K) 10993 return -EINVAL; 10994 10995 /* unconditional jump with single edge */ 10996 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10997 true); 10998 if (ret) 10999 return ret; 11000 11001 /* unconditional jmp is not a good pruning point, 11002 * but it's marked, since backtracking needs 11003 * to record jmp history in is_state_visited(). 11004 */ 11005 init_explored_state(env, t + insns[t].off + 1); 11006 /* tell verifier to check for equivalent states 11007 * after every call and jump 11008 */ 11009 if (t + 1 < insn_cnt) 11010 init_explored_state(env, t + 1); 11011 11012 return ret; 11013 11014 default: 11015 /* conditional jump with two edges */ 11016 init_explored_state(env, t); 11017 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 11018 if (ret) 11019 return ret; 11020 11021 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 11022 } 11023 } 11024 11025 /* non-recursive depth-first-search to detect loops in BPF program 11026 * loop == back-edge in directed graph 11027 */ 11028 static int check_cfg(struct bpf_verifier_env *env) 11029 { 11030 int insn_cnt = env->prog->len; 11031 int *insn_stack, *insn_state; 11032 int ret = 0; 11033 int i; 11034 11035 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 11036 if (!insn_state) 11037 return -ENOMEM; 11038 11039 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 11040 if (!insn_stack) { 11041 kvfree(insn_state); 11042 return -ENOMEM; 11043 } 11044 11045 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 11046 insn_stack[0] = 0; /* 0 is the first instruction */ 11047 env->cfg.cur_stack = 1; 11048 11049 while (env->cfg.cur_stack > 0) { 11050 int t = insn_stack[env->cfg.cur_stack - 1]; 11051 11052 ret = visit_insn(t, insn_cnt, env); 11053 switch (ret) { 11054 case DONE_EXPLORING: 11055 insn_state[t] = EXPLORED; 11056 env->cfg.cur_stack--; 11057 break; 11058 case KEEP_EXPLORING: 11059 break; 11060 default: 11061 if (ret > 0) { 11062 verbose(env, "visit_insn internal bug\n"); 11063 ret = -EFAULT; 11064 } 11065 goto err_free; 11066 } 11067 } 11068 11069 if (env->cfg.cur_stack < 0) { 11070 verbose(env, "pop stack internal bug\n"); 11071 ret = -EFAULT; 11072 goto err_free; 11073 } 11074 11075 for (i = 0; i < insn_cnt; i++) { 11076 if (insn_state[i] != EXPLORED) { 11077 verbose(env, "unreachable insn %d\n", i); 11078 ret = -EINVAL; 11079 goto err_free; 11080 } 11081 } 11082 ret = 0; /* cfg looks good */ 11083 11084 err_free: 11085 kvfree(insn_state); 11086 kvfree(insn_stack); 11087 env->cfg.insn_state = env->cfg.insn_stack = NULL; 11088 return ret; 11089 } 11090 11091 static int check_abnormal_return(struct bpf_verifier_env *env) 11092 { 11093 int i; 11094 11095 for (i = 1; i < env->subprog_cnt; i++) { 11096 if (env->subprog_info[i].has_ld_abs) { 11097 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 11098 return -EINVAL; 11099 } 11100 if (env->subprog_info[i].has_tail_call) { 11101 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 11102 return -EINVAL; 11103 } 11104 } 11105 return 0; 11106 } 11107 11108 /* The minimum supported BTF func info size */ 11109 #define MIN_BPF_FUNCINFO_SIZE 8 11110 #define MAX_FUNCINFO_REC_SIZE 252 11111 11112 static int check_btf_func(struct bpf_verifier_env *env, 11113 const union bpf_attr *attr, 11114 bpfptr_t uattr) 11115 { 11116 const struct btf_type *type, *func_proto, *ret_type; 11117 u32 i, nfuncs, urec_size, min_size; 11118 u32 krec_size = sizeof(struct bpf_func_info); 11119 struct bpf_func_info *krecord; 11120 struct bpf_func_info_aux *info_aux = NULL; 11121 struct bpf_prog *prog; 11122 const struct btf *btf; 11123 bpfptr_t urecord; 11124 u32 prev_offset = 0; 11125 bool scalar_return; 11126 int ret = -ENOMEM; 11127 11128 nfuncs = attr->func_info_cnt; 11129 if (!nfuncs) { 11130 if (check_abnormal_return(env)) 11131 return -EINVAL; 11132 return 0; 11133 } 11134 11135 if (nfuncs != env->subprog_cnt) { 11136 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 11137 return -EINVAL; 11138 } 11139 11140 urec_size = attr->func_info_rec_size; 11141 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 11142 urec_size > MAX_FUNCINFO_REC_SIZE || 11143 urec_size % sizeof(u32)) { 11144 verbose(env, "invalid func info rec size %u\n", urec_size); 11145 return -EINVAL; 11146 } 11147 11148 prog = env->prog; 11149 btf = prog->aux->btf; 11150 11151 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 11152 min_size = min_t(u32, krec_size, urec_size); 11153 11154 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 11155 if (!krecord) 11156 return -ENOMEM; 11157 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 11158 if (!info_aux) 11159 goto err_free; 11160 11161 for (i = 0; i < nfuncs; i++) { 11162 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 11163 if (ret) { 11164 if (ret == -E2BIG) { 11165 verbose(env, "nonzero tailing record in func info"); 11166 /* set the size kernel expects so loader can zero 11167 * out the rest of the record. 11168 */ 11169 if (copy_to_bpfptr_offset(uattr, 11170 offsetof(union bpf_attr, func_info_rec_size), 11171 &min_size, sizeof(min_size))) 11172 ret = -EFAULT; 11173 } 11174 goto err_free; 11175 } 11176 11177 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 11178 ret = -EFAULT; 11179 goto err_free; 11180 } 11181 11182 /* check insn_off */ 11183 ret = -EINVAL; 11184 if (i == 0) { 11185 if (krecord[i].insn_off) { 11186 verbose(env, 11187 "nonzero insn_off %u for the first func info record", 11188 krecord[i].insn_off); 11189 goto err_free; 11190 } 11191 } else if (krecord[i].insn_off <= prev_offset) { 11192 verbose(env, 11193 "same or smaller insn offset (%u) than previous func info record (%u)", 11194 krecord[i].insn_off, prev_offset); 11195 goto err_free; 11196 } 11197 11198 if (env->subprog_info[i].start != krecord[i].insn_off) { 11199 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 11200 goto err_free; 11201 } 11202 11203 /* check type_id */ 11204 type = btf_type_by_id(btf, krecord[i].type_id); 11205 if (!type || !btf_type_is_func(type)) { 11206 verbose(env, "invalid type id %d in func info", 11207 krecord[i].type_id); 11208 goto err_free; 11209 } 11210 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 11211 11212 func_proto = btf_type_by_id(btf, type->type); 11213 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 11214 /* btf_func_check() already verified it during BTF load */ 11215 goto err_free; 11216 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 11217 scalar_return = 11218 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 11219 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 11220 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 11221 goto err_free; 11222 } 11223 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11224 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11225 goto err_free; 11226 } 11227 11228 prev_offset = krecord[i].insn_off; 11229 bpfptr_add(&urecord, urec_size); 11230 } 11231 11232 prog->aux->func_info = krecord; 11233 prog->aux->func_info_cnt = nfuncs; 11234 prog->aux->func_info_aux = info_aux; 11235 return 0; 11236 11237 err_free: 11238 kvfree(krecord); 11239 kfree(info_aux); 11240 return ret; 11241 } 11242 11243 static void adjust_btf_func(struct bpf_verifier_env *env) 11244 { 11245 struct bpf_prog_aux *aux = env->prog->aux; 11246 int i; 11247 11248 if (!aux->func_info) 11249 return; 11250 11251 for (i = 0; i < env->subprog_cnt; i++) 11252 aux->func_info[i].insn_off = env->subprog_info[i].start; 11253 } 11254 11255 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11256 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11257 11258 static int check_btf_line(struct bpf_verifier_env *env, 11259 const union bpf_attr *attr, 11260 bpfptr_t uattr) 11261 { 11262 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11263 struct bpf_subprog_info *sub; 11264 struct bpf_line_info *linfo; 11265 struct bpf_prog *prog; 11266 const struct btf *btf; 11267 bpfptr_t ulinfo; 11268 int err; 11269 11270 nr_linfo = attr->line_info_cnt; 11271 if (!nr_linfo) 11272 return 0; 11273 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11274 return -EINVAL; 11275 11276 rec_size = attr->line_info_rec_size; 11277 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11278 rec_size > MAX_LINEINFO_REC_SIZE || 11279 rec_size & (sizeof(u32) - 1)) 11280 return -EINVAL; 11281 11282 /* Need to zero it in case the userspace may 11283 * pass in a smaller bpf_line_info object. 11284 */ 11285 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11286 GFP_KERNEL | __GFP_NOWARN); 11287 if (!linfo) 11288 return -ENOMEM; 11289 11290 prog = env->prog; 11291 btf = prog->aux->btf; 11292 11293 s = 0; 11294 sub = env->subprog_info; 11295 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11296 expected_size = sizeof(struct bpf_line_info); 11297 ncopy = min_t(u32, expected_size, rec_size); 11298 for (i = 0; i < nr_linfo; i++) { 11299 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11300 if (err) { 11301 if (err == -E2BIG) { 11302 verbose(env, "nonzero tailing record in line_info"); 11303 if (copy_to_bpfptr_offset(uattr, 11304 offsetof(union bpf_attr, line_info_rec_size), 11305 &expected_size, sizeof(expected_size))) 11306 err = -EFAULT; 11307 } 11308 goto err_free; 11309 } 11310 11311 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11312 err = -EFAULT; 11313 goto err_free; 11314 } 11315 11316 /* 11317 * Check insn_off to ensure 11318 * 1) strictly increasing AND 11319 * 2) bounded by prog->len 11320 * 11321 * The linfo[0].insn_off == 0 check logically falls into 11322 * the later "missing bpf_line_info for func..." case 11323 * because the first linfo[0].insn_off must be the 11324 * first sub also and the first sub must have 11325 * subprog_info[0].start == 0. 11326 */ 11327 if ((i && linfo[i].insn_off <= prev_offset) || 11328 linfo[i].insn_off >= prog->len) { 11329 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11330 i, linfo[i].insn_off, prev_offset, 11331 prog->len); 11332 err = -EINVAL; 11333 goto err_free; 11334 } 11335 11336 if (!prog->insnsi[linfo[i].insn_off].code) { 11337 verbose(env, 11338 "Invalid insn code at line_info[%u].insn_off\n", 11339 i); 11340 err = -EINVAL; 11341 goto err_free; 11342 } 11343 11344 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11345 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11346 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11347 err = -EINVAL; 11348 goto err_free; 11349 } 11350 11351 if (s != env->subprog_cnt) { 11352 if (linfo[i].insn_off == sub[s].start) { 11353 sub[s].linfo_idx = i; 11354 s++; 11355 } else if (sub[s].start < linfo[i].insn_off) { 11356 verbose(env, "missing bpf_line_info for func#%u\n", s); 11357 err = -EINVAL; 11358 goto err_free; 11359 } 11360 } 11361 11362 prev_offset = linfo[i].insn_off; 11363 bpfptr_add(&ulinfo, rec_size); 11364 } 11365 11366 if (s != env->subprog_cnt) { 11367 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11368 env->subprog_cnt - s, s); 11369 err = -EINVAL; 11370 goto err_free; 11371 } 11372 11373 prog->aux->linfo = linfo; 11374 prog->aux->nr_linfo = nr_linfo; 11375 11376 return 0; 11377 11378 err_free: 11379 kvfree(linfo); 11380 return err; 11381 } 11382 11383 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11384 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11385 11386 static int check_core_relo(struct bpf_verifier_env *env, 11387 const union bpf_attr *attr, 11388 bpfptr_t uattr) 11389 { 11390 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11391 struct bpf_core_relo core_relo = {}; 11392 struct bpf_prog *prog = env->prog; 11393 const struct btf *btf = prog->aux->btf; 11394 struct bpf_core_ctx ctx = { 11395 .log = &env->log, 11396 .btf = btf, 11397 }; 11398 bpfptr_t u_core_relo; 11399 int err; 11400 11401 nr_core_relo = attr->core_relo_cnt; 11402 if (!nr_core_relo) 11403 return 0; 11404 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11405 return -EINVAL; 11406 11407 rec_size = attr->core_relo_rec_size; 11408 if (rec_size < MIN_CORE_RELO_SIZE || 11409 rec_size > MAX_CORE_RELO_SIZE || 11410 rec_size % sizeof(u32)) 11411 return -EINVAL; 11412 11413 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11414 expected_size = sizeof(struct bpf_core_relo); 11415 ncopy = min_t(u32, expected_size, rec_size); 11416 11417 /* Unlike func_info and line_info, copy and apply each CO-RE 11418 * relocation record one at a time. 11419 */ 11420 for (i = 0; i < nr_core_relo; i++) { 11421 /* future proofing when sizeof(bpf_core_relo) changes */ 11422 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11423 if (err) { 11424 if (err == -E2BIG) { 11425 verbose(env, "nonzero tailing record in core_relo"); 11426 if (copy_to_bpfptr_offset(uattr, 11427 offsetof(union bpf_attr, core_relo_rec_size), 11428 &expected_size, sizeof(expected_size))) 11429 err = -EFAULT; 11430 } 11431 break; 11432 } 11433 11434 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11435 err = -EFAULT; 11436 break; 11437 } 11438 11439 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11440 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11441 i, core_relo.insn_off, prog->len); 11442 err = -EINVAL; 11443 break; 11444 } 11445 11446 err = bpf_core_apply(&ctx, &core_relo, i, 11447 &prog->insnsi[core_relo.insn_off / 8]); 11448 if (err) 11449 break; 11450 bpfptr_add(&u_core_relo, rec_size); 11451 } 11452 return err; 11453 } 11454 11455 static int check_btf_info(struct bpf_verifier_env *env, 11456 const union bpf_attr *attr, 11457 bpfptr_t uattr) 11458 { 11459 struct btf *btf; 11460 int err; 11461 11462 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11463 if (check_abnormal_return(env)) 11464 return -EINVAL; 11465 return 0; 11466 } 11467 11468 btf = btf_get_by_fd(attr->prog_btf_fd); 11469 if (IS_ERR(btf)) 11470 return PTR_ERR(btf); 11471 if (btf_is_kernel(btf)) { 11472 btf_put(btf); 11473 return -EACCES; 11474 } 11475 env->prog->aux->btf = btf; 11476 11477 err = check_btf_func(env, attr, uattr); 11478 if (err) 11479 return err; 11480 11481 err = check_btf_line(env, attr, uattr); 11482 if (err) 11483 return err; 11484 11485 err = check_core_relo(env, attr, uattr); 11486 if (err) 11487 return err; 11488 11489 return 0; 11490 } 11491 11492 /* check %cur's range satisfies %old's */ 11493 static bool range_within(struct bpf_reg_state *old, 11494 struct bpf_reg_state *cur) 11495 { 11496 return old->umin_value <= cur->umin_value && 11497 old->umax_value >= cur->umax_value && 11498 old->smin_value <= cur->smin_value && 11499 old->smax_value >= cur->smax_value && 11500 old->u32_min_value <= cur->u32_min_value && 11501 old->u32_max_value >= cur->u32_max_value && 11502 old->s32_min_value <= cur->s32_min_value && 11503 old->s32_max_value >= cur->s32_max_value; 11504 } 11505 11506 /* If in the old state two registers had the same id, then they need to have 11507 * the same id in the new state as well. But that id could be different from 11508 * the old state, so we need to track the mapping from old to new ids. 11509 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11510 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11511 * regs with a different old id could still have new id 9, we don't care about 11512 * that. 11513 * So we look through our idmap to see if this old id has been seen before. If 11514 * so, we require the new id to match; otherwise, we add the id pair to the map. 11515 */ 11516 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11517 { 11518 unsigned int i; 11519 11520 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11521 if (!idmap[i].old) { 11522 /* Reached an empty slot; haven't seen this id before */ 11523 idmap[i].old = old_id; 11524 idmap[i].cur = cur_id; 11525 return true; 11526 } 11527 if (idmap[i].old == old_id) 11528 return idmap[i].cur == cur_id; 11529 } 11530 /* We ran out of idmap slots, which should be impossible */ 11531 WARN_ON_ONCE(1); 11532 return false; 11533 } 11534 11535 static void clean_func_state(struct bpf_verifier_env *env, 11536 struct bpf_func_state *st) 11537 { 11538 enum bpf_reg_liveness live; 11539 int i, j; 11540 11541 for (i = 0; i < BPF_REG_FP; i++) { 11542 live = st->regs[i].live; 11543 /* liveness must not touch this register anymore */ 11544 st->regs[i].live |= REG_LIVE_DONE; 11545 if (!(live & REG_LIVE_READ)) 11546 /* since the register is unused, clear its state 11547 * to make further comparison simpler 11548 */ 11549 __mark_reg_not_init(env, &st->regs[i]); 11550 } 11551 11552 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11553 live = st->stack[i].spilled_ptr.live; 11554 /* liveness must not touch this stack slot anymore */ 11555 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11556 if (!(live & REG_LIVE_READ)) { 11557 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11558 for (j = 0; j < BPF_REG_SIZE; j++) 11559 st->stack[i].slot_type[j] = STACK_INVALID; 11560 } 11561 } 11562 } 11563 11564 static void clean_verifier_state(struct bpf_verifier_env *env, 11565 struct bpf_verifier_state *st) 11566 { 11567 int i; 11568 11569 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11570 /* all regs in this state in all frames were already marked */ 11571 return; 11572 11573 for (i = 0; i <= st->curframe; i++) 11574 clean_func_state(env, st->frame[i]); 11575 } 11576 11577 /* the parentage chains form a tree. 11578 * the verifier states are added to state lists at given insn and 11579 * pushed into state stack for future exploration. 11580 * when the verifier reaches bpf_exit insn some of the verifer states 11581 * stored in the state lists have their final liveness state already, 11582 * but a lot of states will get revised from liveness point of view when 11583 * the verifier explores other branches. 11584 * Example: 11585 * 1: r0 = 1 11586 * 2: if r1 == 100 goto pc+1 11587 * 3: r0 = 2 11588 * 4: exit 11589 * when the verifier reaches exit insn the register r0 in the state list of 11590 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11591 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11592 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11593 * 11594 * Since the verifier pushes the branch states as it sees them while exploring 11595 * the program the condition of walking the branch instruction for the second 11596 * time means that all states below this branch were already explored and 11597 * their final liveness marks are already propagated. 11598 * Hence when the verifier completes the search of state list in is_state_visited() 11599 * we can call this clean_live_states() function to mark all liveness states 11600 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11601 * will not be used. 11602 * This function also clears the registers and stack for states that !READ 11603 * to simplify state merging. 11604 * 11605 * Important note here that walking the same branch instruction in the callee 11606 * doesn't meant that the states are DONE. The verifier has to compare 11607 * the callsites 11608 */ 11609 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11610 struct bpf_verifier_state *cur) 11611 { 11612 struct bpf_verifier_state_list *sl; 11613 int i; 11614 11615 sl = *explored_state(env, insn); 11616 while (sl) { 11617 if (sl->state.branches) 11618 goto next; 11619 if (sl->state.insn_idx != insn || 11620 sl->state.curframe != cur->curframe) 11621 goto next; 11622 for (i = 0; i <= cur->curframe; i++) 11623 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11624 goto next; 11625 clean_verifier_state(env, &sl->state); 11626 next: 11627 sl = sl->next; 11628 } 11629 } 11630 11631 /* Returns true if (rold safe implies rcur safe) */ 11632 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11633 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11634 { 11635 bool equal; 11636 11637 if (!(rold->live & REG_LIVE_READ)) 11638 /* explored state didn't use this */ 11639 return true; 11640 11641 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11642 11643 if (rold->type == PTR_TO_STACK) 11644 /* two stack pointers are equal only if they're pointing to 11645 * the same stack frame, since fp-8 in foo != fp-8 in bar 11646 */ 11647 return equal && rold->frameno == rcur->frameno; 11648 11649 if (equal) 11650 return true; 11651 11652 if (rold->type == NOT_INIT) 11653 /* explored state can't have used this */ 11654 return true; 11655 if (rcur->type == NOT_INIT) 11656 return false; 11657 switch (base_type(rold->type)) { 11658 case SCALAR_VALUE: 11659 if (env->explore_alu_limits) 11660 return false; 11661 if (rcur->type == SCALAR_VALUE) { 11662 if (!rold->precise) 11663 return true; 11664 /* new val must satisfy old val knowledge */ 11665 return range_within(rold, rcur) && 11666 tnum_in(rold->var_off, rcur->var_off); 11667 } else { 11668 /* We're trying to use a pointer in place of a scalar. 11669 * Even if the scalar was unbounded, this could lead to 11670 * pointer leaks because scalars are allowed to leak 11671 * while pointers are not. We could make this safe in 11672 * special cases if root is calling us, but it's 11673 * probably not worth the hassle. 11674 */ 11675 return false; 11676 } 11677 case PTR_TO_MAP_KEY: 11678 case PTR_TO_MAP_VALUE: 11679 /* a PTR_TO_MAP_VALUE could be safe to use as a 11680 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11681 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11682 * checked, doing so could have affected others with the same 11683 * id, and we can't check for that because we lost the id when 11684 * we converted to a PTR_TO_MAP_VALUE. 11685 */ 11686 if (type_may_be_null(rold->type)) { 11687 if (!type_may_be_null(rcur->type)) 11688 return false; 11689 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11690 return false; 11691 /* Check our ids match any regs they're supposed to */ 11692 return check_ids(rold->id, rcur->id, idmap); 11693 } 11694 11695 /* If the new min/max/var_off satisfy the old ones and 11696 * everything else matches, we are OK. 11697 * 'id' is not compared, since it's only used for maps with 11698 * bpf_spin_lock inside map element and in such cases if 11699 * the rest of the prog is valid for one map element then 11700 * it's valid for all map elements regardless of the key 11701 * used in bpf_map_lookup() 11702 */ 11703 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11704 range_within(rold, rcur) && 11705 tnum_in(rold->var_off, rcur->var_off); 11706 case PTR_TO_PACKET_META: 11707 case PTR_TO_PACKET: 11708 if (rcur->type != rold->type) 11709 return false; 11710 /* We must have at least as much range as the old ptr 11711 * did, so that any accesses which were safe before are 11712 * still safe. This is true even if old range < old off, 11713 * since someone could have accessed through (ptr - k), or 11714 * even done ptr -= k in a register, to get a safe access. 11715 */ 11716 if (rold->range > rcur->range) 11717 return false; 11718 /* If the offsets don't match, we can't trust our alignment; 11719 * nor can we be sure that we won't fall out of range. 11720 */ 11721 if (rold->off != rcur->off) 11722 return false; 11723 /* id relations must be preserved */ 11724 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11725 return false; 11726 /* new val must satisfy old val knowledge */ 11727 return range_within(rold, rcur) && 11728 tnum_in(rold->var_off, rcur->var_off); 11729 case PTR_TO_CTX: 11730 case CONST_PTR_TO_MAP: 11731 case PTR_TO_PACKET_END: 11732 case PTR_TO_FLOW_KEYS: 11733 case PTR_TO_SOCKET: 11734 case PTR_TO_SOCK_COMMON: 11735 case PTR_TO_TCP_SOCK: 11736 case PTR_TO_XDP_SOCK: 11737 /* Only valid matches are exact, which memcmp() above 11738 * would have accepted 11739 */ 11740 default: 11741 /* Don't know what's going on, just say it's not safe */ 11742 return false; 11743 } 11744 11745 /* Shouldn't get here; if we do, say it's not safe */ 11746 WARN_ON_ONCE(1); 11747 return false; 11748 } 11749 11750 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11751 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11752 { 11753 int i, spi; 11754 11755 /* walk slots of the explored stack and ignore any additional 11756 * slots in the current stack, since explored(safe) state 11757 * didn't use them 11758 */ 11759 for (i = 0; i < old->allocated_stack; i++) { 11760 spi = i / BPF_REG_SIZE; 11761 11762 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11763 i += BPF_REG_SIZE - 1; 11764 /* explored state didn't use this */ 11765 continue; 11766 } 11767 11768 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11769 continue; 11770 11771 /* explored stack has more populated slots than current stack 11772 * and these slots were used 11773 */ 11774 if (i >= cur->allocated_stack) 11775 return false; 11776 11777 /* if old state was safe with misc data in the stack 11778 * it will be safe with zero-initialized stack. 11779 * The opposite is not true 11780 */ 11781 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11782 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11783 continue; 11784 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11785 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11786 /* Ex: old explored (safe) state has STACK_SPILL in 11787 * this stack slot, but current has STACK_MISC -> 11788 * this verifier states are not equivalent, 11789 * return false to continue verification of this path 11790 */ 11791 return false; 11792 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11793 continue; 11794 if (!is_spilled_reg(&old->stack[spi])) 11795 continue; 11796 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11797 &cur->stack[spi].spilled_ptr, idmap)) 11798 /* when explored and current stack slot are both storing 11799 * spilled registers, check that stored pointers types 11800 * are the same as well. 11801 * Ex: explored safe path could have stored 11802 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11803 * but current path has stored: 11804 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11805 * such verifier states are not equivalent. 11806 * return false to continue verification of this path 11807 */ 11808 return false; 11809 } 11810 return true; 11811 } 11812 11813 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11814 { 11815 if (old->acquired_refs != cur->acquired_refs) 11816 return false; 11817 return !memcmp(old->refs, cur->refs, 11818 sizeof(*old->refs) * old->acquired_refs); 11819 } 11820 11821 /* compare two verifier states 11822 * 11823 * all states stored in state_list are known to be valid, since 11824 * verifier reached 'bpf_exit' instruction through them 11825 * 11826 * this function is called when verifier exploring different branches of 11827 * execution popped from the state stack. If it sees an old state that has 11828 * more strict register state and more strict stack state then this execution 11829 * branch doesn't need to be explored further, since verifier already 11830 * concluded that more strict state leads to valid finish. 11831 * 11832 * Therefore two states are equivalent if register state is more conservative 11833 * and explored stack state is more conservative than the current one. 11834 * Example: 11835 * explored current 11836 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11837 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11838 * 11839 * In other words if current stack state (one being explored) has more 11840 * valid slots than old one that already passed validation, it means 11841 * the verifier can stop exploring and conclude that current state is valid too 11842 * 11843 * Similarly with registers. If explored state has register type as invalid 11844 * whereas register type in current state is meaningful, it means that 11845 * the current state will reach 'bpf_exit' instruction safely 11846 */ 11847 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11848 struct bpf_func_state *cur) 11849 { 11850 int i; 11851 11852 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11853 for (i = 0; i < MAX_BPF_REG; i++) 11854 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11855 env->idmap_scratch)) 11856 return false; 11857 11858 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11859 return false; 11860 11861 if (!refsafe(old, cur)) 11862 return false; 11863 11864 return true; 11865 } 11866 11867 static bool states_equal(struct bpf_verifier_env *env, 11868 struct bpf_verifier_state *old, 11869 struct bpf_verifier_state *cur) 11870 { 11871 int i; 11872 11873 if (old->curframe != cur->curframe) 11874 return false; 11875 11876 /* Verification state from speculative execution simulation 11877 * must never prune a non-speculative execution one. 11878 */ 11879 if (old->speculative && !cur->speculative) 11880 return false; 11881 11882 if (old->active_spin_lock != cur->active_spin_lock) 11883 return false; 11884 11885 /* for states to be equal callsites have to be the same 11886 * and all frame states need to be equivalent 11887 */ 11888 for (i = 0; i <= old->curframe; i++) { 11889 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11890 return false; 11891 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11892 return false; 11893 } 11894 return true; 11895 } 11896 11897 /* Return 0 if no propagation happened. Return negative error code if error 11898 * happened. Otherwise, return the propagated bit. 11899 */ 11900 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11901 struct bpf_reg_state *reg, 11902 struct bpf_reg_state *parent_reg) 11903 { 11904 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11905 u8 flag = reg->live & REG_LIVE_READ; 11906 int err; 11907 11908 /* When comes here, read flags of PARENT_REG or REG could be any of 11909 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11910 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11911 */ 11912 if (parent_flag == REG_LIVE_READ64 || 11913 /* Or if there is no read flag from REG. */ 11914 !flag || 11915 /* Or if the read flag from REG is the same as PARENT_REG. */ 11916 parent_flag == flag) 11917 return 0; 11918 11919 err = mark_reg_read(env, reg, parent_reg, flag); 11920 if (err) 11921 return err; 11922 11923 return flag; 11924 } 11925 11926 /* A write screens off any subsequent reads; but write marks come from the 11927 * straight-line code between a state and its parent. When we arrive at an 11928 * equivalent state (jump target or such) we didn't arrive by the straight-line 11929 * code, so read marks in the state must propagate to the parent regardless 11930 * of the state's write marks. That's what 'parent == state->parent' comparison 11931 * in mark_reg_read() is for. 11932 */ 11933 static int propagate_liveness(struct bpf_verifier_env *env, 11934 const struct bpf_verifier_state *vstate, 11935 struct bpf_verifier_state *vparent) 11936 { 11937 struct bpf_reg_state *state_reg, *parent_reg; 11938 struct bpf_func_state *state, *parent; 11939 int i, frame, err = 0; 11940 11941 if (vparent->curframe != vstate->curframe) { 11942 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11943 vparent->curframe, vstate->curframe); 11944 return -EFAULT; 11945 } 11946 /* Propagate read liveness of registers... */ 11947 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11948 for (frame = 0; frame <= vstate->curframe; frame++) { 11949 parent = vparent->frame[frame]; 11950 state = vstate->frame[frame]; 11951 parent_reg = parent->regs; 11952 state_reg = state->regs; 11953 /* We don't need to worry about FP liveness, it's read-only */ 11954 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11955 err = propagate_liveness_reg(env, &state_reg[i], 11956 &parent_reg[i]); 11957 if (err < 0) 11958 return err; 11959 if (err == REG_LIVE_READ64) 11960 mark_insn_zext(env, &parent_reg[i]); 11961 } 11962 11963 /* Propagate stack slots. */ 11964 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11965 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11966 parent_reg = &parent->stack[i].spilled_ptr; 11967 state_reg = &state->stack[i].spilled_ptr; 11968 err = propagate_liveness_reg(env, state_reg, 11969 parent_reg); 11970 if (err < 0) 11971 return err; 11972 } 11973 } 11974 return 0; 11975 } 11976 11977 /* find precise scalars in the previous equivalent state and 11978 * propagate them into the current state 11979 */ 11980 static int propagate_precision(struct bpf_verifier_env *env, 11981 const struct bpf_verifier_state *old) 11982 { 11983 struct bpf_reg_state *state_reg; 11984 struct bpf_func_state *state; 11985 int i, err = 0, fr; 11986 11987 for (fr = old->curframe; fr >= 0; fr--) { 11988 state = old->frame[fr]; 11989 state_reg = state->regs; 11990 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11991 if (state_reg->type != SCALAR_VALUE || 11992 !state_reg->precise) 11993 continue; 11994 if (env->log.level & BPF_LOG_LEVEL2) 11995 verbose(env, "frame %d: propagating r%d\n", i, fr); 11996 err = mark_chain_precision_frame(env, fr, i); 11997 if (err < 0) 11998 return err; 11999 } 12000 12001 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 12002 if (!is_spilled_reg(&state->stack[i])) 12003 continue; 12004 state_reg = &state->stack[i].spilled_ptr; 12005 if (state_reg->type != SCALAR_VALUE || 12006 !state_reg->precise) 12007 continue; 12008 if (env->log.level & BPF_LOG_LEVEL2) 12009 verbose(env, "frame %d: propagating fp%d\n", 12010 (-i - 1) * BPF_REG_SIZE, fr); 12011 err = mark_chain_precision_stack_frame(env, fr, i); 12012 if (err < 0) 12013 return err; 12014 } 12015 } 12016 return 0; 12017 } 12018 12019 static bool states_maybe_looping(struct bpf_verifier_state *old, 12020 struct bpf_verifier_state *cur) 12021 { 12022 struct bpf_func_state *fold, *fcur; 12023 int i, fr = cur->curframe; 12024 12025 if (old->curframe != fr) 12026 return false; 12027 12028 fold = old->frame[fr]; 12029 fcur = cur->frame[fr]; 12030 for (i = 0; i < MAX_BPF_REG; i++) 12031 if (memcmp(&fold->regs[i], &fcur->regs[i], 12032 offsetof(struct bpf_reg_state, parent))) 12033 return false; 12034 return true; 12035 } 12036 12037 12038 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 12039 { 12040 struct bpf_verifier_state_list *new_sl; 12041 struct bpf_verifier_state_list *sl, **pprev; 12042 struct bpf_verifier_state *cur = env->cur_state, *new; 12043 int i, j, err, states_cnt = 0; 12044 bool add_new_state = env->test_state_freq ? true : false; 12045 12046 cur->last_insn_idx = env->prev_insn_idx; 12047 if (!env->insn_aux_data[insn_idx].prune_point) 12048 /* this 'insn_idx' instruction wasn't marked, so we will not 12049 * be doing state search here 12050 */ 12051 return 0; 12052 12053 /* bpf progs typically have pruning point every 4 instructions 12054 * http://vger.kernel.org/bpfconf2019.html#session-1 12055 * Do not add new state for future pruning if the verifier hasn't seen 12056 * at least 2 jumps and at least 8 instructions. 12057 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 12058 * In tests that amounts to up to 50% reduction into total verifier 12059 * memory consumption and 20% verifier time speedup. 12060 */ 12061 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 12062 env->insn_processed - env->prev_insn_processed >= 8) 12063 add_new_state = true; 12064 12065 pprev = explored_state(env, insn_idx); 12066 sl = *pprev; 12067 12068 clean_live_states(env, insn_idx, cur); 12069 12070 while (sl) { 12071 states_cnt++; 12072 if (sl->state.insn_idx != insn_idx) 12073 goto next; 12074 12075 if (sl->state.branches) { 12076 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 12077 12078 if (frame->in_async_callback_fn && 12079 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 12080 /* Different async_entry_cnt means that the verifier is 12081 * processing another entry into async callback. 12082 * Seeing the same state is not an indication of infinite 12083 * loop or infinite recursion. 12084 * But finding the same state doesn't mean that it's safe 12085 * to stop processing the current state. The previous state 12086 * hasn't yet reached bpf_exit, since state.branches > 0. 12087 * Checking in_async_callback_fn alone is not enough either. 12088 * Since the verifier still needs to catch infinite loops 12089 * inside async callbacks. 12090 */ 12091 } else if (states_maybe_looping(&sl->state, cur) && 12092 states_equal(env, &sl->state, cur)) { 12093 verbose_linfo(env, insn_idx, "; "); 12094 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 12095 return -EINVAL; 12096 } 12097 /* if the verifier is processing a loop, avoid adding new state 12098 * too often, since different loop iterations have distinct 12099 * states and may not help future pruning. 12100 * This threshold shouldn't be too low to make sure that 12101 * a loop with large bound will be rejected quickly. 12102 * The most abusive loop will be: 12103 * r1 += 1 12104 * if r1 < 1000000 goto pc-2 12105 * 1M insn_procssed limit / 100 == 10k peak states. 12106 * This threshold shouldn't be too high either, since states 12107 * at the end of the loop are likely to be useful in pruning. 12108 */ 12109 if (env->jmps_processed - env->prev_jmps_processed < 20 && 12110 env->insn_processed - env->prev_insn_processed < 100) 12111 add_new_state = false; 12112 goto miss; 12113 } 12114 if (states_equal(env, &sl->state, cur)) { 12115 sl->hit_cnt++; 12116 /* reached equivalent register/stack state, 12117 * prune the search. 12118 * Registers read by the continuation are read by us. 12119 * If we have any write marks in env->cur_state, they 12120 * will prevent corresponding reads in the continuation 12121 * from reaching our parent (an explored_state). Our 12122 * own state will get the read marks recorded, but 12123 * they'll be immediately forgotten as we're pruning 12124 * this state and will pop a new one. 12125 */ 12126 err = propagate_liveness(env, &sl->state, cur); 12127 12128 /* if previous state reached the exit with precision and 12129 * current state is equivalent to it (except precsion marks) 12130 * the precision needs to be propagated back in 12131 * the current state. 12132 */ 12133 err = err ? : push_jmp_history(env, cur); 12134 err = err ? : propagate_precision(env, &sl->state); 12135 if (err) 12136 return err; 12137 return 1; 12138 } 12139 miss: 12140 /* when new state is not going to be added do not increase miss count. 12141 * Otherwise several loop iterations will remove the state 12142 * recorded earlier. The goal of these heuristics is to have 12143 * states from some iterations of the loop (some in the beginning 12144 * and some at the end) to help pruning. 12145 */ 12146 if (add_new_state) 12147 sl->miss_cnt++; 12148 /* heuristic to determine whether this state is beneficial 12149 * to keep checking from state equivalence point of view. 12150 * Higher numbers increase max_states_per_insn and verification time, 12151 * but do not meaningfully decrease insn_processed. 12152 */ 12153 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 12154 /* the state is unlikely to be useful. Remove it to 12155 * speed up verification 12156 */ 12157 *pprev = sl->next; 12158 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 12159 u32 br = sl->state.branches; 12160 12161 WARN_ONCE(br, 12162 "BUG live_done but branches_to_explore %d\n", 12163 br); 12164 free_verifier_state(&sl->state, false); 12165 kfree(sl); 12166 env->peak_states--; 12167 } else { 12168 /* cannot free this state, since parentage chain may 12169 * walk it later. Add it for free_list instead to 12170 * be freed at the end of verification 12171 */ 12172 sl->next = env->free_list; 12173 env->free_list = sl; 12174 } 12175 sl = *pprev; 12176 continue; 12177 } 12178 next: 12179 pprev = &sl->next; 12180 sl = *pprev; 12181 } 12182 12183 if (env->max_states_per_insn < states_cnt) 12184 env->max_states_per_insn = states_cnt; 12185 12186 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 12187 return push_jmp_history(env, cur); 12188 12189 if (!add_new_state) 12190 return push_jmp_history(env, cur); 12191 12192 /* There were no equivalent states, remember the current one. 12193 * Technically the current state is not proven to be safe yet, 12194 * but it will either reach outer most bpf_exit (which means it's safe) 12195 * or it will be rejected. When there are no loops the verifier won't be 12196 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 12197 * again on the way to bpf_exit. 12198 * When looping the sl->state.branches will be > 0 and this state 12199 * will not be considered for equivalence until branches == 0. 12200 */ 12201 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 12202 if (!new_sl) 12203 return -ENOMEM; 12204 env->total_states++; 12205 env->peak_states++; 12206 env->prev_jmps_processed = env->jmps_processed; 12207 env->prev_insn_processed = env->insn_processed; 12208 12209 /* forget precise markings we inherited, see __mark_chain_precision */ 12210 if (env->bpf_capable) 12211 mark_all_scalars_imprecise(env, cur); 12212 12213 /* add new state to the head of linked list */ 12214 new = &new_sl->state; 12215 err = copy_verifier_state(new, cur); 12216 if (err) { 12217 free_verifier_state(new, false); 12218 kfree(new_sl); 12219 return err; 12220 } 12221 new->insn_idx = insn_idx; 12222 WARN_ONCE(new->branches != 1, 12223 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 12224 12225 cur->parent = new; 12226 cur->first_insn_idx = insn_idx; 12227 clear_jmp_history(cur); 12228 new_sl->next = *explored_state(env, insn_idx); 12229 *explored_state(env, insn_idx) = new_sl; 12230 /* connect new state to parentage chain. Current frame needs all 12231 * registers connected. Only r6 - r9 of the callers are alive (pushed 12232 * to the stack implicitly by JITs) so in callers' frames connect just 12233 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12234 * the state of the call instruction (with WRITTEN set), and r0 comes 12235 * from callee with its full parentage chain, anyway. 12236 */ 12237 /* clear write marks in current state: the writes we did are not writes 12238 * our child did, so they don't screen off its reads from us. 12239 * (There are no read marks in current state, because reads always mark 12240 * their parent and current state never has children yet. Only 12241 * explored_states can get read marks.) 12242 */ 12243 for (j = 0; j <= cur->curframe; j++) { 12244 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12245 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12246 for (i = 0; i < BPF_REG_FP; i++) 12247 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12248 } 12249 12250 /* all stack frames are accessible from callee, clear them all */ 12251 for (j = 0; j <= cur->curframe; j++) { 12252 struct bpf_func_state *frame = cur->frame[j]; 12253 struct bpf_func_state *newframe = new->frame[j]; 12254 12255 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12256 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12257 frame->stack[i].spilled_ptr.parent = 12258 &newframe->stack[i].spilled_ptr; 12259 } 12260 } 12261 return 0; 12262 } 12263 12264 /* Return true if it's OK to have the same insn return a different type. */ 12265 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12266 { 12267 switch (base_type(type)) { 12268 case PTR_TO_CTX: 12269 case PTR_TO_SOCKET: 12270 case PTR_TO_SOCK_COMMON: 12271 case PTR_TO_TCP_SOCK: 12272 case PTR_TO_XDP_SOCK: 12273 case PTR_TO_BTF_ID: 12274 return false; 12275 default: 12276 return true; 12277 } 12278 } 12279 12280 /* If an instruction was previously used with particular pointer types, then we 12281 * need to be careful to avoid cases such as the below, where it may be ok 12282 * for one branch accessing the pointer, but not ok for the other branch: 12283 * 12284 * R1 = sock_ptr 12285 * goto X; 12286 * ... 12287 * R1 = some_other_valid_ptr; 12288 * goto X; 12289 * ... 12290 * R2 = *(u32 *)(R1 + 0); 12291 */ 12292 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12293 { 12294 return src != prev && (!reg_type_mismatch_ok(src) || 12295 !reg_type_mismatch_ok(prev)); 12296 } 12297 12298 static int do_check(struct bpf_verifier_env *env) 12299 { 12300 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12301 struct bpf_verifier_state *state = env->cur_state; 12302 struct bpf_insn *insns = env->prog->insnsi; 12303 struct bpf_reg_state *regs; 12304 int insn_cnt = env->prog->len; 12305 bool do_print_state = false; 12306 int prev_insn_idx = -1; 12307 12308 for (;;) { 12309 struct bpf_insn *insn; 12310 u8 class; 12311 int err; 12312 12313 env->prev_insn_idx = prev_insn_idx; 12314 if (env->insn_idx >= insn_cnt) { 12315 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12316 env->insn_idx, insn_cnt); 12317 return -EFAULT; 12318 } 12319 12320 insn = &insns[env->insn_idx]; 12321 class = BPF_CLASS(insn->code); 12322 12323 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12324 verbose(env, 12325 "BPF program is too large. Processed %d insn\n", 12326 env->insn_processed); 12327 return -E2BIG; 12328 } 12329 12330 err = is_state_visited(env, env->insn_idx); 12331 if (err < 0) 12332 return err; 12333 if (err == 1) { 12334 /* found equivalent state, can prune the search */ 12335 if (env->log.level & BPF_LOG_LEVEL) { 12336 if (do_print_state) 12337 verbose(env, "\nfrom %d to %d%s: safe\n", 12338 env->prev_insn_idx, env->insn_idx, 12339 env->cur_state->speculative ? 12340 " (speculative execution)" : ""); 12341 else 12342 verbose(env, "%d: safe\n", env->insn_idx); 12343 } 12344 goto process_bpf_exit; 12345 } 12346 12347 if (signal_pending(current)) 12348 return -EAGAIN; 12349 12350 if (need_resched()) 12351 cond_resched(); 12352 12353 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12354 verbose(env, "\nfrom %d to %d%s:", 12355 env->prev_insn_idx, env->insn_idx, 12356 env->cur_state->speculative ? 12357 " (speculative execution)" : ""); 12358 print_verifier_state(env, state->frame[state->curframe], true); 12359 do_print_state = false; 12360 } 12361 12362 if (env->log.level & BPF_LOG_LEVEL) { 12363 const struct bpf_insn_cbs cbs = { 12364 .cb_call = disasm_kfunc_name, 12365 .cb_print = verbose, 12366 .private_data = env, 12367 }; 12368 12369 if (verifier_state_scratched(env)) 12370 print_insn_state(env, state->frame[state->curframe]); 12371 12372 verbose_linfo(env, env->insn_idx, "; "); 12373 env->prev_log_len = env->log.len_used; 12374 verbose(env, "%d: ", env->insn_idx); 12375 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12376 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12377 env->prev_log_len = env->log.len_used; 12378 } 12379 12380 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12381 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12382 env->prev_insn_idx); 12383 if (err) 12384 return err; 12385 } 12386 12387 regs = cur_regs(env); 12388 sanitize_mark_insn_seen(env); 12389 prev_insn_idx = env->insn_idx; 12390 12391 if (class == BPF_ALU || class == BPF_ALU64) { 12392 err = check_alu_op(env, insn); 12393 if (err) 12394 return err; 12395 12396 } else if (class == BPF_LDX) { 12397 enum bpf_reg_type *prev_src_type, src_reg_type; 12398 12399 /* check for reserved fields is already done */ 12400 12401 /* check src operand */ 12402 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12403 if (err) 12404 return err; 12405 12406 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12407 if (err) 12408 return err; 12409 12410 src_reg_type = regs[insn->src_reg].type; 12411 12412 /* check that memory (src_reg + off) is readable, 12413 * the state of dst_reg will be updated by this func 12414 */ 12415 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12416 insn->off, BPF_SIZE(insn->code), 12417 BPF_READ, insn->dst_reg, false); 12418 if (err) 12419 return err; 12420 12421 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12422 12423 if (*prev_src_type == NOT_INIT) { 12424 /* saw a valid insn 12425 * dst_reg = *(u32 *)(src_reg + off) 12426 * save type to validate intersecting paths 12427 */ 12428 *prev_src_type = src_reg_type; 12429 12430 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12431 /* ABuser program is trying to use the same insn 12432 * dst_reg = *(u32*) (src_reg + off) 12433 * with different pointer types: 12434 * src_reg == ctx in one branch and 12435 * src_reg == stack|map in some other branch. 12436 * Reject it. 12437 */ 12438 verbose(env, "same insn cannot be used with different pointers\n"); 12439 return -EINVAL; 12440 } 12441 12442 } else if (class == BPF_STX) { 12443 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12444 12445 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12446 err = check_atomic(env, env->insn_idx, insn); 12447 if (err) 12448 return err; 12449 env->insn_idx++; 12450 continue; 12451 } 12452 12453 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12454 verbose(env, "BPF_STX uses reserved fields\n"); 12455 return -EINVAL; 12456 } 12457 12458 /* check src1 operand */ 12459 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12460 if (err) 12461 return err; 12462 /* check src2 operand */ 12463 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12464 if (err) 12465 return err; 12466 12467 dst_reg_type = regs[insn->dst_reg].type; 12468 12469 /* check that memory (dst_reg + off) is writeable */ 12470 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12471 insn->off, BPF_SIZE(insn->code), 12472 BPF_WRITE, insn->src_reg, false); 12473 if (err) 12474 return err; 12475 12476 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12477 12478 if (*prev_dst_type == NOT_INIT) { 12479 *prev_dst_type = dst_reg_type; 12480 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12481 verbose(env, "same insn cannot be used with different pointers\n"); 12482 return -EINVAL; 12483 } 12484 12485 } else if (class == BPF_ST) { 12486 if (BPF_MODE(insn->code) != BPF_MEM || 12487 insn->src_reg != BPF_REG_0) { 12488 verbose(env, "BPF_ST uses reserved fields\n"); 12489 return -EINVAL; 12490 } 12491 /* check src operand */ 12492 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12493 if (err) 12494 return err; 12495 12496 if (is_ctx_reg(env, insn->dst_reg)) { 12497 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12498 insn->dst_reg, 12499 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12500 return -EACCES; 12501 } 12502 12503 /* check that memory (dst_reg + off) is writeable */ 12504 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12505 insn->off, BPF_SIZE(insn->code), 12506 BPF_WRITE, -1, false); 12507 if (err) 12508 return err; 12509 12510 } else if (class == BPF_JMP || class == BPF_JMP32) { 12511 u8 opcode = BPF_OP(insn->code); 12512 12513 env->jmps_processed++; 12514 if (opcode == BPF_CALL) { 12515 if (BPF_SRC(insn->code) != BPF_K || 12516 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12517 && insn->off != 0) || 12518 (insn->src_reg != BPF_REG_0 && 12519 insn->src_reg != BPF_PSEUDO_CALL && 12520 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12521 insn->dst_reg != BPF_REG_0 || 12522 class == BPF_JMP32) { 12523 verbose(env, "BPF_CALL uses reserved fields\n"); 12524 return -EINVAL; 12525 } 12526 12527 if (env->cur_state->active_spin_lock && 12528 (insn->src_reg == BPF_PSEUDO_CALL || 12529 insn->imm != BPF_FUNC_spin_unlock)) { 12530 verbose(env, "function calls are not allowed while holding a lock\n"); 12531 return -EINVAL; 12532 } 12533 if (insn->src_reg == BPF_PSEUDO_CALL) 12534 err = check_func_call(env, insn, &env->insn_idx); 12535 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12536 err = check_kfunc_call(env, insn, &env->insn_idx); 12537 else 12538 err = check_helper_call(env, insn, &env->insn_idx); 12539 if (err) 12540 return err; 12541 } else if (opcode == BPF_JA) { 12542 if (BPF_SRC(insn->code) != BPF_K || 12543 insn->imm != 0 || 12544 insn->src_reg != BPF_REG_0 || 12545 insn->dst_reg != BPF_REG_0 || 12546 class == BPF_JMP32) { 12547 verbose(env, "BPF_JA uses reserved fields\n"); 12548 return -EINVAL; 12549 } 12550 12551 env->insn_idx += insn->off + 1; 12552 continue; 12553 12554 } else if (opcode == BPF_EXIT) { 12555 if (BPF_SRC(insn->code) != BPF_K || 12556 insn->imm != 0 || 12557 insn->src_reg != BPF_REG_0 || 12558 insn->dst_reg != BPF_REG_0 || 12559 class == BPF_JMP32) { 12560 verbose(env, "BPF_EXIT uses reserved fields\n"); 12561 return -EINVAL; 12562 } 12563 12564 if (env->cur_state->active_spin_lock) { 12565 verbose(env, "bpf_spin_unlock is missing\n"); 12566 return -EINVAL; 12567 } 12568 12569 /* We must do check_reference_leak here before 12570 * prepare_func_exit to handle the case when 12571 * state->curframe > 0, it may be a callback 12572 * function, for which reference_state must 12573 * match caller reference state when it exits. 12574 */ 12575 err = check_reference_leak(env); 12576 if (err) 12577 return err; 12578 12579 if (state->curframe) { 12580 /* exit from nested function */ 12581 err = prepare_func_exit(env, &env->insn_idx); 12582 if (err) 12583 return err; 12584 do_print_state = true; 12585 continue; 12586 } 12587 12588 err = check_return_code(env); 12589 if (err) 12590 return err; 12591 process_bpf_exit: 12592 mark_verifier_state_scratched(env); 12593 update_branch_counts(env, env->cur_state); 12594 err = pop_stack(env, &prev_insn_idx, 12595 &env->insn_idx, pop_log); 12596 if (err < 0) { 12597 if (err != -ENOENT) 12598 return err; 12599 break; 12600 } else { 12601 do_print_state = true; 12602 continue; 12603 } 12604 } else { 12605 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12606 if (err) 12607 return err; 12608 } 12609 } else if (class == BPF_LD) { 12610 u8 mode = BPF_MODE(insn->code); 12611 12612 if (mode == BPF_ABS || mode == BPF_IND) { 12613 err = check_ld_abs(env, insn); 12614 if (err) 12615 return err; 12616 12617 } else if (mode == BPF_IMM) { 12618 err = check_ld_imm(env, insn); 12619 if (err) 12620 return err; 12621 12622 env->insn_idx++; 12623 sanitize_mark_insn_seen(env); 12624 } else { 12625 verbose(env, "invalid BPF_LD mode\n"); 12626 return -EINVAL; 12627 } 12628 } else { 12629 verbose(env, "unknown insn class %d\n", class); 12630 return -EINVAL; 12631 } 12632 12633 env->insn_idx++; 12634 } 12635 12636 return 0; 12637 } 12638 12639 static int find_btf_percpu_datasec(struct btf *btf) 12640 { 12641 const struct btf_type *t; 12642 const char *tname; 12643 int i, n; 12644 12645 /* 12646 * Both vmlinux and module each have their own ".data..percpu" 12647 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12648 * types to look at only module's own BTF types. 12649 */ 12650 n = btf_nr_types(btf); 12651 if (btf_is_module(btf)) 12652 i = btf_nr_types(btf_vmlinux); 12653 else 12654 i = 1; 12655 12656 for(; i < n; i++) { 12657 t = btf_type_by_id(btf, i); 12658 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12659 continue; 12660 12661 tname = btf_name_by_offset(btf, t->name_off); 12662 if (!strcmp(tname, ".data..percpu")) 12663 return i; 12664 } 12665 12666 return -ENOENT; 12667 } 12668 12669 /* replace pseudo btf_id with kernel symbol address */ 12670 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12671 struct bpf_insn *insn, 12672 struct bpf_insn_aux_data *aux) 12673 { 12674 const struct btf_var_secinfo *vsi; 12675 const struct btf_type *datasec; 12676 struct btf_mod_pair *btf_mod; 12677 const struct btf_type *t; 12678 const char *sym_name; 12679 bool percpu = false; 12680 u32 type, id = insn->imm; 12681 struct btf *btf; 12682 s32 datasec_id; 12683 u64 addr; 12684 int i, btf_fd, err; 12685 12686 btf_fd = insn[1].imm; 12687 if (btf_fd) { 12688 btf = btf_get_by_fd(btf_fd); 12689 if (IS_ERR(btf)) { 12690 verbose(env, "invalid module BTF object FD specified.\n"); 12691 return -EINVAL; 12692 } 12693 } else { 12694 if (!btf_vmlinux) { 12695 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12696 return -EINVAL; 12697 } 12698 btf = btf_vmlinux; 12699 btf_get(btf); 12700 } 12701 12702 t = btf_type_by_id(btf, id); 12703 if (!t) { 12704 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12705 err = -ENOENT; 12706 goto err_put; 12707 } 12708 12709 if (!btf_type_is_var(t)) { 12710 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12711 err = -EINVAL; 12712 goto err_put; 12713 } 12714 12715 sym_name = btf_name_by_offset(btf, t->name_off); 12716 addr = kallsyms_lookup_name(sym_name); 12717 if (!addr) { 12718 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12719 sym_name); 12720 err = -ENOENT; 12721 goto err_put; 12722 } 12723 12724 datasec_id = find_btf_percpu_datasec(btf); 12725 if (datasec_id > 0) { 12726 datasec = btf_type_by_id(btf, datasec_id); 12727 for_each_vsi(i, datasec, vsi) { 12728 if (vsi->type == id) { 12729 percpu = true; 12730 break; 12731 } 12732 } 12733 } 12734 12735 insn[0].imm = (u32)addr; 12736 insn[1].imm = addr >> 32; 12737 12738 type = t->type; 12739 t = btf_type_skip_modifiers(btf, type, NULL); 12740 if (percpu) { 12741 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12742 aux->btf_var.btf = btf; 12743 aux->btf_var.btf_id = type; 12744 } else if (!btf_type_is_struct(t)) { 12745 const struct btf_type *ret; 12746 const char *tname; 12747 u32 tsize; 12748 12749 /* resolve the type size of ksym. */ 12750 ret = btf_resolve_size(btf, t, &tsize); 12751 if (IS_ERR(ret)) { 12752 tname = btf_name_by_offset(btf, t->name_off); 12753 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12754 tname, PTR_ERR(ret)); 12755 err = -EINVAL; 12756 goto err_put; 12757 } 12758 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12759 aux->btf_var.mem_size = tsize; 12760 } else { 12761 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12762 aux->btf_var.btf = btf; 12763 aux->btf_var.btf_id = type; 12764 } 12765 12766 /* check whether we recorded this BTF (and maybe module) already */ 12767 for (i = 0; i < env->used_btf_cnt; i++) { 12768 if (env->used_btfs[i].btf == btf) { 12769 btf_put(btf); 12770 return 0; 12771 } 12772 } 12773 12774 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12775 err = -E2BIG; 12776 goto err_put; 12777 } 12778 12779 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12780 btf_mod->btf = btf; 12781 btf_mod->module = NULL; 12782 12783 /* if we reference variables from kernel module, bump its refcount */ 12784 if (btf_is_module(btf)) { 12785 btf_mod->module = btf_try_get_module(btf); 12786 if (!btf_mod->module) { 12787 err = -ENXIO; 12788 goto err_put; 12789 } 12790 } 12791 12792 env->used_btf_cnt++; 12793 12794 return 0; 12795 err_put: 12796 btf_put(btf); 12797 return err; 12798 } 12799 12800 static bool is_tracing_prog_type(enum bpf_prog_type type) 12801 { 12802 switch (type) { 12803 case BPF_PROG_TYPE_KPROBE: 12804 case BPF_PROG_TYPE_TRACEPOINT: 12805 case BPF_PROG_TYPE_PERF_EVENT: 12806 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12807 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12808 return true; 12809 default: 12810 return false; 12811 } 12812 } 12813 12814 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12815 struct bpf_map *map, 12816 struct bpf_prog *prog) 12817 12818 { 12819 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12820 12821 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 12822 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12823 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12824 return -EINVAL; 12825 } 12826 12827 if (is_tracing_prog_type(prog_type)) { 12828 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12829 return -EINVAL; 12830 } 12831 12832 if (prog->aux->sleepable) { 12833 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12834 return -EINVAL; 12835 } 12836 } 12837 12838 if (btf_record_has_field(map->record, BPF_TIMER)) { 12839 if (is_tracing_prog_type(prog_type)) { 12840 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12841 return -EINVAL; 12842 } 12843 } 12844 12845 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12846 !bpf_offload_prog_map_match(prog, map)) { 12847 verbose(env, "offload device mismatch between prog and map\n"); 12848 return -EINVAL; 12849 } 12850 12851 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12852 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12853 return -EINVAL; 12854 } 12855 12856 if (prog->aux->sleepable) 12857 switch (map->map_type) { 12858 case BPF_MAP_TYPE_HASH: 12859 case BPF_MAP_TYPE_LRU_HASH: 12860 case BPF_MAP_TYPE_ARRAY: 12861 case BPF_MAP_TYPE_PERCPU_HASH: 12862 case BPF_MAP_TYPE_PERCPU_ARRAY: 12863 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12864 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12865 case BPF_MAP_TYPE_HASH_OF_MAPS: 12866 case BPF_MAP_TYPE_RINGBUF: 12867 case BPF_MAP_TYPE_USER_RINGBUF: 12868 case BPF_MAP_TYPE_INODE_STORAGE: 12869 case BPF_MAP_TYPE_SK_STORAGE: 12870 case BPF_MAP_TYPE_TASK_STORAGE: 12871 break; 12872 default: 12873 verbose(env, 12874 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12875 return -EINVAL; 12876 } 12877 12878 return 0; 12879 } 12880 12881 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12882 { 12883 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12884 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12885 } 12886 12887 /* find and rewrite pseudo imm in ld_imm64 instructions: 12888 * 12889 * 1. if it accesses map FD, replace it with actual map pointer. 12890 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12891 * 12892 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12893 */ 12894 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12895 { 12896 struct bpf_insn *insn = env->prog->insnsi; 12897 int insn_cnt = env->prog->len; 12898 int i, j, err; 12899 12900 err = bpf_prog_calc_tag(env->prog); 12901 if (err) 12902 return err; 12903 12904 for (i = 0; i < insn_cnt; i++, insn++) { 12905 if (BPF_CLASS(insn->code) == BPF_LDX && 12906 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12907 verbose(env, "BPF_LDX uses reserved fields\n"); 12908 return -EINVAL; 12909 } 12910 12911 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12912 struct bpf_insn_aux_data *aux; 12913 struct bpf_map *map; 12914 struct fd f; 12915 u64 addr; 12916 u32 fd; 12917 12918 if (i == insn_cnt - 1 || insn[1].code != 0 || 12919 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12920 insn[1].off != 0) { 12921 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12922 return -EINVAL; 12923 } 12924 12925 if (insn[0].src_reg == 0) 12926 /* valid generic load 64-bit imm */ 12927 goto next_insn; 12928 12929 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12930 aux = &env->insn_aux_data[i]; 12931 err = check_pseudo_btf_id(env, insn, aux); 12932 if (err) 12933 return err; 12934 goto next_insn; 12935 } 12936 12937 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12938 aux = &env->insn_aux_data[i]; 12939 aux->ptr_type = PTR_TO_FUNC; 12940 goto next_insn; 12941 } 12942 12943 /* In final convert_pseudo_ld_imm64() step, this is 12944 * converted into regular 64-bit imm load insn. 12945 */ 12946 switch (insn[0].src_reg) { 12947 case BPF_PSEUDO_MAP_VALUE: 12948 case BPF_PSEUDO_MAP_IDX_VALUE: 12949 break; 12950 case BPF_PSEUDO_MAP_FD: 12951 case BPF_PSEUDO_MAP_IDX: 12952 if (insn[1].imm == 0) 12953 break; 12954 fallthrough; 12955 default: 12956 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12957 return -EINVAL; 12958 } 12959 12960 switch (insn[0].src_reg) { 12961 case BPF_PSEUDO_MAP_IDX_VALUE: 12962 case BPF_PSEUDO_MAP_IDX: 12963 if (bpfptr_is_null(env->fd_array)) { 12964 verbose(env, "fd_idx without fd_array is invalid\n"); 12965 return -EPROTO; 12966 } 12967 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12968 insn[0].imm * sizeof(fd), 12969 sizeof(fd))) 12970 return -EFAULT; 12971 break; 12972 default: 12973 fd = insn[0].imm; 12974 break; 12975 } 12976 12977 f = fdget(fd); 12978 map = __bpf_map_get(f); 12979 if (IS_ERR(map)) { 12980 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12981 insn[0].imm); 12982 return PTR_ERR(map); 12983 } 12984 12985 err = check_map_prog_compatibility(env, map, env->prog); 12986 if (err) { 12987 fdput(f); 12988 return err; 12989 } 12990 12991 aux = &env->insn_aux_data[i]; 12992 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12993 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12994 addr = (unsigned long)map; 12995 } else { 12996 u32 off = insn[1].imm; 12997 12998 if (off >= BPF_MAX_VAR_OFF) { 12999 verbose(env, "direct value offset of %u is not allowed\n", off); 13000 fdput(f); 13001 return -EINVAL; 13002 } 13003 13004 if (!map->ops->map_direct_value_addr) { 13005 verbose(env, "no direct value access support for this map type\n"); 13006 fdput(f); 13007 return -EINVAL; 13008 } 13009 13010 err = map->ops->map_direct_value_addr(map, &addr, off); 13011 if (err) { 13012 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 13013 map->value_size, off); 13014 fdput(f); 13015 return err; 13016 } 13017 13018 aux->map_off = off; 13019 addr += off; 13020 } 13021 13022 insn[0].imm = (u32)addr; 13023 insn[1].imm = addr >> 32; 13024 13025 /* check whether we recorded this map already */ 13026 for (j = 0; j < env->used_map_cnt; j++) { 13027 if (env->used_maps[j] == map) { 13028 aux->map_index = j; 13029 fdput(f); 13030 goto next_insn; 13031 } 13032 } 13033 13034 if (env->used_map_cnt >= MAX_USED_MAPS) { 13035 fdput(f); 13036 return -E2BIG; 13037 } 13038 13039 /* hold the map. If the program is rejected by verifier, 13040 * the map will be released by release_maps() or it 13041 * will be used by the valid program until it's unloaded 13042 * and all maps are released in free_used_maps() 13043 */ 13044 bpf_map_inc(map); 13045 13046 aux->map_index = env->used_map_cnt; 13047 env->used_maps[env->used_map_cnt++] = map; 13048 13049 if (bpf_map_is_cgroup_storage(map) && 13050 bpf_cgroup_storage_assign(env->prog->aux, map)) { 13051 verbose(env, "only one cgroup storage of each type is allowed\n"); 13052 fdput(f); 13053 return -EBUSY; 13054 } 13055 13056 fdput(f); 13057 next_insn: 13058 insn++; 13059 i++; 13060 continue; 13061 } 13062 13063 /* Basic sanity check before we invest more work here. */ 13064 if (!bpf_opcode_in_insntable(insn->code)) { 13065 verbose(env, "unknown opcode %02x\n", insn->code); 13066 return -EINVAL; 13067 } 13068 } 13069 13070 /* now all pseudo BPF_LD_IMM64 instructions load valid 13071 * 'struct bpf_map *' into a register instead of user map_fd. 13072 * These pointers will be used later by verifier to validate map access. 13073 */ 13074 return 0; 13075 } 13076 13077 /* drop refcnt of maps used by the rejected program */ 13078 static void release_maps(struct bpf_verifier_env *env) 13079 { 13080 __bpf_free_used_maps(env->prog->aux, env->used_maps, 13081 env->used_map_cnt); 13082 } 13083 13084 /* drop refcnt of maps used by the rejected program */ 13085 static void release_btfs(struct bpf_verifier_env *env) 13086 { 13087 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 13088 env->used_btf_cnt); 13089 } 13090 13091 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 13092 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 13093 { 13094 struct bpf_insn *insn = env->prog->insnsi; 13095 int insn_cnt = env->prog->len; 13096 int i; 13097 13098 for (i = 0; i < insn_cnt; i++, insn++) { 13099 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 13100 continue; 13101 if (insn->src_reg == BPF_PSEUDO_FUNC) 13102 continue; 13103 insn->src_reg = 0; 13104 } 13105 } 13106 13107 /* single env->prog->insni[off] instruction was replaced with the range 13108 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 13109 * [0, off) and [off, end) to new locations, so the patched range stays zero 13110 */ 13111 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 13112 struct bpf_insn_aux_data *new_data, 13113 struct bpf_prog *new_prog, u32 off, u32 cnt) 13114 { 13115 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 13116 struct bpf_insn *insn = new_prog->insnsi; 13117 u32 old_seen = old_data[off].seen; 13118 u32 prog_len; 13119 int i; 13120 13121 /* aux info at OFF always needs adjustment, no matter fast path 13122 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 13123 * original insn at old prog. 13124 */ 13125 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 13126 13127 if (cnt == 1) 13128 return; 13129 prog_len = new_prog->len; 13130 13131 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 13132 memcpy(new_data + off + cnt - 1, old_data + off, 13133 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 13134 for (i = off; i < off + cnt - 1; i++) { 13135 /* Expand insni[off]'s seen count to the patched range. */ 13136 new_data[i].seen = old_seen; 13137 new_data[i].zext_dst = insn_has_def32(env, insn + i); 13138 } 13139 env->insn_aux_data = new_data; 13140 vfree(old_data); 13141 } 13142 13143 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 13144 { 13145 int i; 13146 13147 if (len == 1) 13148 return; 13149 /* NOTE: fake 'exit' subprog should be updated as well. */ 13150 for (i = 0; i <= env->subprog_cnt; i++) { 13151 if (env->subprog_info[i].start <= off) 13152 continue; 13153 env->subprog_info[i].start += len - 1; 13154 } 13155 } 13156 13157 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 13158 { 13159 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 13160 int i, sz = prog->aux->size_poke_tab; 13161 struct bpf_jit_poke_descriptor *desc; 13162 13163 for (i = 0; i < sz; i++) { 13164 desc = &tab[i]; 13165 if (desc->insn_idx <= off) 13166 continue; 13167 desc->insn_idx += len - 1; 13168 } 13169 } 13170 13171 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 13172 const struct bpf_insn *patch, u32 len) 13173 { 13174 struct bpf_prog *new_prog; 13175 struct bpf_insn_aux_data *new_data = NULL; 13176 13177 if (len > 1) { 13178 new_data = vzalloc(array_size(env->prog->len + len - 1, 13179 sizeof(struct bpf_insn_aux_data))); 13180 if (!new_data) 13181 return NULL; 13182 } 13183 13184 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 13185 if (IS_ERR(new_prog)) { 13186 if (PTR_ERR(new_prog) == -ERANGE) 13187 verbose(env, 13188 "insn %d cannot be patched due to 16-bit range\n", 13189 env->insn_aux_data[off].orig_idx); 13190 vfree(new_data); 13191 return NULL; 13192 } 13193 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13194 adjust_subprog_starts(env, off, len); 13195 adjust_poke_descs(new_prog, off, len); 13196 return new_prog; 13197 } 13198 13199 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13200 u32 off, u32 cnt) 13201 { 13202 int i, j; 13203 13204 /* find first prog starting at or after off (first to remove) */ 13205 for (i = 0; i < env->subprog_cnt; i++) 13206 if (env->subprog_info[i].start >= off) 13207 break; 13208 /* find first prog starting at or after off + cnt (first to stay) */ 13209 for (j = i; j < env->subprog_cnt; j++) 13210 if (env->subprog_info[j].start >= off + cnt) 13211 break; 13212 /* if j doesn't start exactly at off + cnt, we are just removing 13213 * the front of previous prog 13214 */ 13215 if (env->subprog_info[j].start != off + cnt) 13216 j--; 13217 13218 if (j > i) { 13219 struct bpf_prog_aux *aux = env->prog->aux; 13220 int move; 13221 13222 /* move fake 'exit' subprog as well */ 13223 move = env->subprog_cnt + 1 - j; 13224 13225 memmove(env->subprog_info + i, 13226 env->subprog_info + j, 13227 sizeof(*env->subprog_info) * move); 13228 env->subprog_cnt -= j - i; 13229 13230 /* remove func_info */ 13231 if (aux->func_info) { 13232 move = aux->func_info_cnt - j; 13233 13234 memmove(aux->func_info + i, 13235 aux->func_info + j, 13236 sizeof(*aux->func_info) * move); 13237 aux->func_info_cnt -= j - i; 13238 /* func_info->insn_off is set after all code rewrites, 13239 * in adjust_btf_func() - no need to adjust 13240 */ 13241 } 13242 } else { 13243 /* convert i from "first prog to remove" to "first to adjust" */ 13244 if (env->subprog_info[i].start == off) 13245 i++; 13246 } 13247 13248 /* update fake 'exit' subprog as well */ 13249 for (; i <= env->subprog_cnt; i++) 13250 env->subprog_info[i].start -= cnt; 13251 13252 return 0; 13253 } 13254 13255 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13256 u32 cnt) 13257 { 13258 struct bpf_prog *prog = env->prog; 13259 u32 i, l_off, l_cnt, nr_linfo; 13260 struct bpf_line_info *linfo; 13261 13262 nr_linfo = prog->aux->nr_linfo; 13263 if (!nr_linfo) 13264 return 0; 13265 13266 linfo = prog->aux->linfo; 13267 13268 /* find first line info to remove, count lines to be removed */ 13269 for (i = 0; i < nr_linfo; i++) 13270 if (linfo[i].insn_off >= off) 13271 break; 13272 13273 l_off = i; 13274 l_cnt = 0; 13275 for (; i < nr_linfo; i++) 13276 if (linfo[i].insn_off < off + cnt) 13277 l_cnt++; 13278 else 13279 break; 13280 13281 /* First live insn doesn't match first live linfo, it needs to "inherit" 13282 * last removed linfo. prog is already modified, so prog->len == off 13283 * means no live instructions after (tail of the program was removed). 13284 */ 13285 if (prog->len != off && l_cnt && 13286 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13287 l_cnt--; 13288 linfo[--i].insn_off = off + cnt; 13289 } 13290 13291 /* remove the line info which refer to the removed instructions */ 13292 if (l_cnt) { 13293 memmove(linfo + l_off, linfo + i, 13294 sizeof(*linfo) * (nr_linfo - i)); 13295 13296 prog->aux->nr_linfo -= l_cnt; 13297 nr_linfo = prog->aux->nr_linfo; 13298 } 13299 13300 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13301 for (i = l_off; i < nr_linfo; i++) 13302 linfo[i].insn_off -= cnt; 13303 13304 /* fix up all subprogs (incl. 'exit') which start >= off */ 13305 for (i = 0; i <= env->subprog_cnt; i++) 13306 if (env->subprog_info[i].linfo_idx > l_off) { 13307 /* program may have started in the removed region but 13308 * may not be fully removed 13309 */ 13310 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13311 env->subprog_info[i].linfo_idx -= l_cnt; 13312 else 13313 env->subprog_info[i].linfo_idx = l_off; 13314 } 13315 13316 return 0; 13317 } 13318 13319 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13320 { 13321 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13322 unsigned int orig_prog_len = env->prog->len; 13323 int err; 13324 13325 if (bpf_prog_is_dev_bound(env->prog->aux)) 13326 bpf_prog_offload_remove_insns(env, off, cnt); 13327 13328 err = bpf_remove_insns(env->prog, off, cnt); 13329 if (err) 13330 return err; 13331 13332 err = adjust_subprog_starts_after_remove(env, off, cnt); 13333 if (err) 13334 return err; 13335 13336 err = bpf_adj_linfo_after_remove(env, off, cnt); 13337 if (err) 13338 return err; 13339 13340 memmove(aux_data + off, aux_data + off + cnt, 13341 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13342 13343 return 0; 13344 } 13345 13346 /* The verifier does more data flow analysis than llvm and will not 13347 * explore branches that are dead at run time. Malicious programs can 13348 * have dead code too. Therefore replace all dead at-run-time code 13349 * with 'ja -1'. 13350 * 13351 * Just nops are not optimal, e.g. if they would sit at the end of the 13352 * program and through another bug we would manage to jump there, then 13353 * we'd execute beyond program memory otherwise. Returning exception 13354 * code also wouldn't work since we can have subprogs where the dead 13355 * code could be located. 13356 */ 13357 static void sanitize_dead_code(struct bpf_verifier_env *env) 13358 { 13359 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13360 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13361 struct bpf_insn *insn = env->prog->insnsi; 13362 const int insn_cnt = env->prog->len; 13363 int i; 13364 13365 for (i = 0; i < insn_cnt; i++) { 13366 if (aux_data[i].seen) 13367 continue; 13368 memcpy(insn + i, &trap, sizeof(trap)); 13369 aux_data[i].zext_dst = false; 13370 } 13371 } 13372 13373 static bool insn_is_cond_jump(u8 code) 13374 { 13375 u8 op; 13376 13377 if (BPF_CLASS(code) == BPF_JMP32) 13378 return true; 13379 13380 if (BPF_CLASS(code) != BPF_JMP) 13381 return false; 13382 13383 op = BPF_OP(code); 13384 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13385 } 13386 13387 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13388 { 13389 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13390 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13391 struct bpf_insn *insn = env->prog->insnsi; 13392 const int insn_cnt = env->prog->len; 13393 int i; 13394 13395 for (i = 0; i < insn_cnt; i++, insn++) { 13396 if (!insn_is_cond_jump(insn->code)) 13397 continue; 13398 13399 if (!aux_data[i + 1].seen) 13400 ja.off = insn->off; 13401 else if (!aux_data[i + 1 + insn->off].seen) 13402 ja.off = 0; 13403 else 13404 continue; 13405 13406 if (bpf_prog_is_dev_bound(env->prog->aux)) 13407 bpf_prog_offload_replace_insn(env, i, &ja); 13408 13409 memcpy(insn, &ja, sizeof(ja)); 13410 } 13411 } 13412 13413 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13414 { 13415 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13416 int insn_cnt = env->prog->len; 13417 int i, err; 13418 13419 for (i = 0; i < insn_cnt; i++) { 13420 int j; 13421 13422 j = 0; 13423 while (i + j < insn_cnt && !aux_data[i + j].seen) 13424 j++; 13425 if (!j) 13426 continue; 13427 13428 err = verifier_remove_insns(env, i, j); 13429 if (err) 13430 return err; 13431 insn_cnt = env->prog->len; 13432 } 13433 13434 return 0; 13435 } 13436 13437 static int opt_remove_nops(struct bpf_verifier_env *env) 13438 { 13439 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13440 struct bpf_insn *insn = env->prog->insnsi; 13441 int insn_cnt = env->prog->len; 13442 int i, err; 13443 13444 for (i = 0; i < insn_cnt; i++) { 13445 if (memcmp(&insn[i], &ja, sizeof(ja))) 13446 continue; 13447 13448 err = verifier_remove_insns(env, i, 1); 13449 if (err) 13450 return err; 13451 insn_cnt--; 13452 i--; 13453 } 13454 13455 return 0; 13456 } 13457 13458 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13459 const union bpf_attr *attr) 13460 { 13461 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13462 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13463 int i, patch_len, delta = 0, len = env->prog->len; 13464 struct bpf_insn *insns = env->prog->insnsi; 13465 struct bpf_prog *new_prog; 13466 bool rnd_hi32; 13467 13468 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13469 zext_patch[1] = BPF_ZEXT_REG(0); 13470 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13471 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13472 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13473 for (i = 0; i < len; i++) { 13474 int adj_idx = i + delta; 13475 struct bpf_insn insn; 13476 int load_reg; 13477 13478 insn = insns[adj_idx]; 13479 load_reg = insn_def_regno(&insn); 13480 if (!aux[adj_idx].zext_dst) { 13481 u8 code, class; 13482 u32 imm_rnd; 13483 13484 if (!rnd_hi32) 13485 continue; 13486 13487 code = insn.code; 13488 class = BPF_CLASS(code); 13489 if (load_reg == -1) 13490 continue; 13491 13492 /* NOTE: arg "reg" (the fourth one) is only used for 13493 * BPF_STX + SRC_OP, so it is safe to pass NULL 13494 * here. 13495 */ 13496 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13497 if (class == BPF_LD && 13498 BPF_MODE(code) == BPF_IMM) 13499 i++; 13500 continue; 13501 } 13502 13503 /* ctx load could be transformed into wider load. */ 13504 if (class == BPF_LDX && 13505 aux[adj_idx].ptr_type == PTR_TO_CTX) 13506 continue; 13507 13508 imm_rnd = get_random_u32(); 13509 rnd_hi32_patch[0] = insn; 13510 rnd_hi32_patch[1].imm = imm_rnd; 13511 rnd_hi32_patch[3].dst_reg = load_reg; 13512 patch = rnd_hi32_patch; 13513 patch_len = 4; 13514 goto apply_patch_buffer; 13515 } 13516 13517 /* Add in an zero-extend instruction if a) the JIT has requested 13518 * it or b) it's a CMPXCHG. 13519 * 13520 * The latter is because: BPF_CMPXCHG always loads a value into 13521 * R0, therefore always zero-extends. However some archs' 13522 * equivalent instruction only does this load when the 13523 * comparison is successful. This detail of CMPXCHG is 13524 * orthogonal to the general zero-extension behaviour of the 13525 * CPU, so it's treated independently of bpf_jit_needs_zext. 13526 */ 13527 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13528 continue; 13529 13530 if (WARN_ON(load_reg == -1)) { 13531 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13532 return -EFAULT; 13533 } 13534 13535 zext_patch[0] = insn; 13536 zext_patch[1].dst_reg = load_reg; 13537 zext_patch[1].src_reg = load_reg; 13538 patch = zext_patch; 13539 patch_len = 2; 13540 apply_patch_buffer: 13541 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13542 if (!new_prog) 13543 return -ENOMEM; 13544 env->prog = new_prog; 13545 insns = new_prog->insnsi; 13546 aux = env->insn_aux_data; 13547 delta += patch_len - 1; 13548 } 13549 13550 return 0; 13551 } 13552 13553 /* convert load instructions that access fields of a context type into a 13554 * sequence of instructions that access fields of the underlying structure: 13555 * struct __sk_buff -> struct sk_buff 13556 * struct bpf_sock_ops -> struct sock 13557 */ 13558 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13559 { 13560 const struct bpf_verifier_ops *ops = env->ops; 13561 int i, cnt, size, ctx_field_size, delta = 0; 13562 const int insn_cnt = env->prog->len; 13563 struct bpf_insn insn_buf[16], *insn; 13564 u32 target_size, size_default, off; 13565 struct bpf_prog *new_prog; 13566 enum bpf_access_type type; 13567 bool is_narrower_load; 13568 13569 if (ops->gen_prologue || env->seen_direct_write) { 13570 if (!ops->gen_prologue) { 13571 verbose(env, "bpf verifier is misconfigured\n"); 13572 return -EINVAL; 13573 } 13574 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13575 env->prog); 13576 if (cnt >= ARRAY_SIZE(insn_buf)) { 13577 verbose(env, "bpf verifier is misconfigured\n"); 13578 return -EINVAL; 13579 } else if (cnt) { 13580 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13581 if (!new_prog) 13582 return -ENOMEM; 13583 13584 env->prog = new_prog; 13585 delta += cnt - 1; 13586 } 13587 } 13588 13589 if (bpf_prog_is_dev_bound(env->prog->aux)) 13590 return 0; 13591 13592 insn = env->prog->insnsi + delta; 13593 13594 for (i = 0; i < insn_cnt; i++, insn++) { 13595 bpf_convert_ctx_access_t convert_ctx_access; 13596 bool ctx_access; 13597 13598 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13599 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13600 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13601 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13602 type = BPF_READ; 13603 ctx_access = true; 13604 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13605 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13606 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13607 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13608 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13609 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13610 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13611 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13612 type = BPF_WRITE; 13613 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13614 } else { 13615 continue; 13616 } 13617 13618 if (type == BPF_WRITE && 13619 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13620 struct bpf_insn patch[] = { 13621 *insn, 13622 BPF_ST_NOSPEC(), 13623 }; 13624 13625 cnt = ARRAY_SIZE(patch); 13626 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13627 if (!new_prog) 13628 return -ENOMEM; 13629 13630 delta += cnt - 1; 13631 env->prog = new_prog; 13632 insn = new_prog->insnsi + i + delta; 13633 continue; 13634 } 13635 13636 if (!ctx_access) 13637 continue; 13638 13639 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13640 case PTR_TO_CTX: 13641 if (!ops->convert_ctx_access) 13642 continue; 13643 convert_ctx_access = ops->convert_ctx_access; 13644 break; 13645 case PTR_TO_SOCKET: 13646 case PTR_TO_SOCK_COMMON: 13647 convert_ctx_access = bpf_sock_convert_ctx_access; 13648 break; 13649 case PTR_TO_TCP_SOCK: 13650 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13651 break; 13652 case PTR_TO_XDP_SOCK: 13653 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13654 break; 13655 case PTR_TO_BTF_ID: 13656 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13657 if (type == BPF_READ) { 13658 insn->code = BPF_LDX | BPF_PROBE_MEM | 13659 BPF_SIZE((insn)->code); 13660 env->prog->aux->num_exentries++; 13661 } 13662 continue; 13663 default: 13664 continue; 13665 } 13666 13667 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13668 size = BPF_LDST_BYTES(insn); 13669 13670 /* If the read access is a narrower load of the field, 13671 * convert to a 4/8-byte load, to minimum program type specific 13672 * convert_ctx_access changes. If conversion is successful, 13673 * we will apply proper mask to the result. 13674 */ 13675 is_narrower_load = size < ctx_field_size; 13676 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13677 off = insn->off; 13678 if (is_narrower_load) { 13679 u8 size_code; 13680 13681 if (type == BPF_WRITE) { 13682 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13683 return -EINVAL; 13684 } 13685 13686 size_code = BPF_H; 13687 if (ctx_field_size == 4) 13688 size_code = BPF_W; 13689 else if (ctx_field_size == 8) 13690 size_code = BPF_DW; 13691 13692 insn->off = off & ~(size_default - 1); 13693 insn->code = BPF_LDX | BPF_MEM | size_code; 13694 } 13695 13696 target_size = 0; 13697 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13698 &target_size); 13699 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13700 (ctx_field_size && !target_size)) { 13701 verbose(env, "bpf verifier is misconfigured\n"); 13702 return -EINVAL; 13703 } 13704 13705 if (is_narrower_load && size < target_size) { 13706 u8 shift = bpf_ctx_narrow_access_offset( 13707 off, size, size_default) * 8; 13708 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13709 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13710 return -EINVAL; 13711 } 13712 if (ctx_field_size <= 4) { 13713 if (shift) 13714 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13715 insn->dst_reg, 13716 shift); 13717 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13718 (1 << size * 8) - 1); 13719 } else { 13720 if (shift) 13721 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13722 insn->dst_reg, 13723 shift); 13724 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13725 (1ULL << size * 8) - 1); 13726 } 13727 } 13728 13729 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13730 if (!new_prog) 13731 return -ENOMEM; 13732 13733 delta += cnt - 1; 13734 13735 /* keep walking new program and skip insns we just inserted */ 13736 env->prog = new_prog; 13737 insn = new_prog->insnsi + i + delta; 13738 } 13739 13740 return 0; 13741 } 13742 13743 static int jit_subprogs(struct bpf_verifier_env *env) 13744 { 13745 struct bpf_prog *prog = env->prog, **func, *tmp; 13746 int i, j, subprog_start, subprog_end = 0, len, subprog; 13747 struct bpf_map *map_ptr; 13748 struct bpf_insn *insn; 13749 void *old_bpf_func; 13750 int err, num_exentries; 13751 13752 if (env->subprog_cnt <= 1) 13753 return 0; 13754 13755 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13756 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13757 continue; 13758 13759 /* Upon error here we cannot fall back to interpreter but 13760 * need a hard reject of the program. Thus -EFAULT is 13761 * propagated in any case. 13762 */ 13763 subprog = find_subprog(env, i + insn->imm + 1); 13764 if (subprog < 0) { 13765 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13766 i + insn->imm + 1); 13767 return -EFAULT; 13768 } 13769 /* temporarily remember subprog id inside insn instead of 13770 * aux_data, since next loop will split up all insns into funcs 13771 */ 13772 insn->off = subprog; 13773 /* remember original imm in case JIT fails and fallback 13774 * to interpreter will be needed 13775 */ 13776 env->insn_aux_data[i].call_imm = insn->imm; 13777 /* point imm to __bpf_call_base+1 from JITs point of view */ 13778 insn->imm = 1; 13779 if (bpf_pseudo_func(insn)) 13780 /* jit (e.g. x86_64) may emit fewer instructions 13781 * if it learns a u32 imm is the same as a u64 imm. 13782 * Force a non zero here. 13783 */ 13784 insn[1].imm = 1; 13785 } 13786 13787 err = bpf_prog_alloc_jited_linfo(prog); 13788 if (err) 13789 goto out_undo_insn; 13790 13791 err = -ENOMEM; 13792 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13793 if (!func) 13794 goto out_undo_insn; 13795 13796 for (i = 0; i < env->subprog_cnt; i++) { 13797 subprog_start = subprog_end; 13798 subprog_end = env->subprog_info[i + 1].start; 13799 13800 len = subprog_end - subprog_start; 13801 /* bpf_prog_run() doesn't call subprogs directly, 13802 * hence main prog stats include the runtime of subprogs. 13803 * subprogs don't have IDs and not reachable via prog_get_next_id 13804 * func[i]->stats will never be accessed and stays NULL 13805 */ 13806 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13807 if (!func[i]) 13808 goto out_free; 13809 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13810 len * sizeof(struct bpf_insn)); 13811 func[i]->type = prog->type; 13812 func[i]->len = len; 13813 if (bpf_prog_calc_tag(func[i])) 13814 goto out_free; 13815 func[i]->is_func = 1; 13816 func[i]->aux->func_idx = i; 13817 /* Below members will be freed only at prog->aux */ 13818 func[i]->aux->btf = prog->aux->btf; 13819 func[i]->aux->func_info = prog->aux->func_info; 13820 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13821 func[i]->aux->poke_tab = prog->aux->poke_tab; 13822 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13823 13824 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13825 struct bpf_jit_poke_descriptor *poke; 13826 13827 poke = &prog->aux->poke_tab[j]; 13828 if (poke->insn_idx < subprog_end && 13829 poke->insn_idx >= subprog_start) 13830 poke->aux = func[i]->aux; 13831 } 13832 13833 func[i]->aux->name[0] = 'F'; 13834 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13835 func[i]->jit_requested = 1; 13836 func[i]->blinding_requested = prog->blinding_requested; 13837 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13838 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13839 func[i]->aux->linfo = prog->aux->linfo; 13840 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13841 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13842 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13843 num_exentries = 0; 13844 insn = func[i]->insnsi; 13845 for (j = 0; j < func[i]->len; j++, insn++) { 13846 if (BPF_CLASS(insn->code) == BPF_LDX && 13847 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13848 num_exentries++; 13849 } 13850 func[i]->aux->num_exentries = num_exentries; 13851 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13852 func[i] = bpf_int_jit_compile(func[i]); 13853 if (!func[i]->jited) { 13854 err = -ENOTSUPP; 13855 goto out_free; 13856 } 13857 cond_resched(); 13858 } 13859 13860 /* at this point all bpf functions were successfully JITed 13861 * now populate all bpf_calls with correct addresses and 13862 * run last pass of JIT 13863 */ 13864 for (i = 0; i < env->subprog_cnt; i++) { 13865 insn = func[i]->insnsi; 13866 for (j = 0; j < func[i]->len; j++, insn++) { 13867 if (bpf_pseudo_func(insn)) { 13868 subprog = insn->off; 13869 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13870 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13871 continue; 13872 } 13873 if (!bpf_pseudo_call(insn)) 13874 continue; 13875 subprog = insn->off; 13876 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13877 } 13878 13879 /* we use the aux data to keep a list of the start addresses 13880 * of the JITed images for each function in the program 13881 * 13882 * for some architectures, such as powerpc64, the imm field 13883 * might not be large enough to hold the offset of the start 13884 * address of the callee's JITed image from __bpf_call_base 13885 * 13886 * in such cases, we can lookup the start address of a callee 13887 * by using its subprog id, available from the off field of 13888 * the call instruction, as an index for this list 13889 */ 13890 func[i]->aux->func = func; 13891 func[i]->aux->func_cnt = env->subprog_cnt; 13892 } 13893 for (i = 0; i < env->subprog_cnt; i++) { 13894 old_bpf_func = func[i]->bpf_func; 13895 tmp = bpf_int_jit_compile(func[i]); 13896 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13897 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13898 err = -ENOTSUPP; 13899 goto out_free; 13900 } 13901 cond_resched(); 13902 } 13903 13904 /* finally lock prog and jit images for all functions and 13905 * populate kallsysm 13906 */ 13907 for (i = 0; i < env->subprog_cnt; i++) { 13908 bpf_prog_lock_ro(func[i]); 13909 bpf_prog_kallsyms_add(func[i]); 13910 } 13911 13912 /* Last step: make now unused interpreter insns from main 13913 * prog consistent for later dump requests, so they can 13914 * later look the same as if they were interpreted only. 13915 */ 13916 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13917 if (bpf_pseudo_func(insn)) { 13918 insn[0].imm = env->insn_aux_data[i].call_imm; 13919 insn[1].imm = insn->off; 13920 insn->off = 0; 13921 continue; 13922 } 13923 if (!bpf_pseudo_call(insn)) 13924 continue; 13925 insn->off = env->insn_aux_data[i].call_imm; 13926 subprog = find_subprog(env, i + insn->off + 1); 13927 insn->imm = subprog; 13928 } 13929 13930 prog->jited = 1; 13931 prog->bpf_func = func[0]->bpf_func; 13932 prog->jited_len = func[0]->jited_len; 13933 prog->aux->func = func; 13934 prog->aux->func_cnt = env->subprog_cnt; 13935 bpf_prog_jit_attempt_done(prog); 13936 return 0; 13937 out_free: 13938 /* We failed JIT'ing, so at this point we need to unregister poke 13939 * descriptors from subprogs, so that kernel is not attempting to 13940 * patch it anymore as we're freeing the subprog JIT memory. 13941 */ 13942 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13943 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13944 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13945 } 13946 /* At this point we're guaranteed that poke descriptors are not 13947 * live anymore. We can just unlink its descriptor table as it's 13948 * released with the main prog. 13949 */ 13950 for (i = 0; i < env->subprog_cnt; i++) { 13951 if (!func[i]) 13952 continue; 13953 func[i]->aux->poke_tab = NULL; 13954 bpf_jit_free(func[i]); 13955 } 13956 kfree(func); 13957 out_undo_insn: 13958 /* cleanup main prog to be interpreted */ 13959 prog->jit_requested = 0; 13960 prog->blinding_requested = 0; 13961 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13962 if (!bpf_pseudo_call(insn)) 13963 continue; 13964 insn->off = 0; 13965 insn->imm = env->insn_aux_data[i].call_imm; 13966 } 13967 bpf_prog_jit_attempt_done(prog); 13968 return err; 13969 } 13970 13971 static int fixup_call_args(struct bpf_verifier_env *env) 13972 { 13973 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13974 struct bpf_prog *prog = env->prog; 13975 struct bpf_insn *insn = prog->insnsi; 13976 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13977 int i, depth; 13978 #endif 13979 int err = 0; 13980 13981 if (env->prog->jit_requested && 13982 !bpf_prog_is_dev_bound(env->prog->aux)) { 13983 err = jit_subprogs(env); 13984 if (err == 0) 13985 return 0; 13986 if (err == -EFAULT) 13987 return err; 13988 } 13989 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13990 if (has_kfunc_call) { 13991 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13992 return -EINVAL; 13993 } 13994 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13995 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13996 * have to be rejected, since interpreter doesn't support them yet. 13997 */ 13998 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13999 return -EINVAL; 14000 } 14001 for (i = 0; i < prog->len; i++, insn++) { 14002 if (bpf_pseudo_func(insn)) { 14003 /* When JIT fails the progs with callback calls 14004 * have to be rejected, since interpreter doesn't support them yet. 14005 */ 14006 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 14007 return -EINVAL; 14008 } 14009 14010 if (!bpf_pseudo_call(insn)) 14011 continue; 14012 depth = get_callee_stack_depth(env, insn, i); 14013 if (depth < 0) 14014 return depth; 14015 bpf_patch_call_args(insn, depth); 14016 } 14017 err = 0; 14018 #endif 14019 return err; 14020 } 14021 14022 static int fixup_kfunc_call(struct bpf_verifier_env *env, 14023 struct bpf_insn *insn) 14024 { 14025 const struct bpf_kfunc_desc *desc; 14026 14027 if (!insn->imm) { 14028 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 14029 return -EINVAL; 14030 } 14031 14032 /* insn->imm has the btf func_id. Replace it with 14033 * an address (relative to __bpf_base_call). 14034 */ 14035 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 14036 if (!desc) { 14037 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 14038 insn->imm); 14039 return -EFAULT; 14040 } 14041 14042 insn->imm = desc->imm; 14043 14044 return 0; 14045 } 14046 14047 /* Do various post-verification rewrites in a single program pass. 14048 * These rewrites simplify JIT and interpreter implementations. 14049 */ 14050 static int do_misc_fixups(struct bpf_verifier_env *env) 14051 { 14052 struct bpf_prog *prog = env->prog; 14053 enum bpf_attach_type eatype = prog->expected_attach_type; 14054 enum bpf_prog_type prog_type = resolve_prog_type(prog); 14055 struct bpf_insn *insn = prog->insnsi; 14056 const struct bpf_func_proto *fn; 14057 const int insn_cnt = prog->len; 14058 const struct bpf_map_ops *ops; 14059 struct bpf_insn_aux_data *aux; 14060 struct bpf_insn insn_buf[16]; 14061 struct bpf_prog *new_prog; 14062 struct bpf_map *map_ptr; 14063 int i, ret, cnt, delta = 0; 14064 14065 for (i = 0; i < insn_cnt; i++, insn++) { 14066 /* Make divide-by-zero exceptions impossible. */ 14067 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 14068 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 14069 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 14070 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 14071 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 14072 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 14073 struct bpf_insn *patchlet; 14074 struct bpf_insn chk_and_div[] = { 14075 /* [R,W]x div 0 -> 0 */ 14076 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 14077 BPF_JNE | BPF_K, insn->src_reg, 14078 0, 2, 0), 14079 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 14080 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 14081 *insn, 14082 }; 14083 struct bpf_insn chk_and_mod[] = { 14084 /* [R,W]x mod 0 -> [R,W]x */ 14085 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 14086 BPF_JEQ | BPF_K, insn->src_reg, 14087 0, 1 + (is64 ? 0 : 1), 0), 14088 *insn, 14089 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 14090 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 14091 }; 14092 14093 patchlet = isdiv ? chk_and_div : chk_and_mod; 14094 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 14095 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 14096 14097 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 14098 if (!new_prog) 14099 return -ENOMEM; 14100 14101 delta += cnt - 1; 14102 env->prog = prog = new_prog; 14103 insn = new_prog->insnsi + i + delta; 14104 continue; 14105 } 14106 14107 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 14108 if (BPF_CLASS(insn->code) == BPF_LD && 14109 (BPF_MODE(insn->code) == BPF_ABS || 14110 BPF_MODE(insn->code) == BPF_IND)) { 14111 cnt = env->ops->gen_ld_abs(insn, insn_buf); 14112 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14113 verbose(env, "bpf verifier is misconfigured\n"); 14114 return -EINVAL; 14115 } 14116 14117 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14118 if (!new_prog) 14119 return -ENOMEM; 14120 14121 delta += cnt - 1; 14122 env->prog = prog = new_prog; 14123 insn = new_prog->insnsi + i + delta; 14124 continue; 14125 } 14126 14127 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 14128 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 14129 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 14130 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 14131 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 14132 struct bpf_insn *patch = &insn_buf[0]; 14133 bool issrc, isneg, isimm; 14134 u32 off_reg; 14135 14136 aux = &env->insn_aux_data[i + delta]; 14137 if (!aux->alu_state || 14138 aux->alu_state == BPF_ALU_NON_POINTER) 14139 continue; 14140 14141 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 14142 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 14143 BPF_ALU_SANITIZE_SRC; 14144 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 14145 14146 off_reg = issrc ? insn->src_reg : insn->dst_reg; 14147 if (isimm) { 14148 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 14149 } else { 14150 if (isneg) 14151 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14152 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 14153 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 14154 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 14155 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 14156 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 14157 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 14158 } 14159 if (!issrc) 14160 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 14161 insn->src_reg = BPF_REG_AX; 14162 if (isneg) 14163 insn->code = insn->code == code_add ? 14164 code_sub : code_add; 14165 *patch++ = *insn; 14166 if (issrc && isneg && !isimm) 14167 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14168 cnt = patch - insn_buf; 14169 14170 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14171 if (!new_prog) 14172 return -ENOMEM; 14173 14174 delta += cnt - 1; 14175 env->prog = prog = new_prog; 14176 insn = new_prog->insnsi + i + delta; 14177 continue; 14178 } 14179 14180 if (insn->code != (BPF_JMP | BPF_CALL)) 14181 continue; 14182 if (insn->src_reg == BPF_PSEUDO_CALL) 14183 continue; 14184 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14185 ret = fixup_kfunc_call(env, insn); 14186 if (ret) 14187 return ret; 14188 continue; 14189 } 14190 14191 if (insn->imm == BPF_FUNC_get_route_realm) 14192 prog->dst_needed = 1; 14193 if (insn->imm == BPF_FUNC_get_prandom_u32) 14194 bpf_user_rnd_init_once(); 14195 if (insn->imm == BPF_FUNC_override_return) 14196 prog->kprobe_override = 1; 14197 if (insn->imm == BPF_FUNC_tail_call) { 14198 /* If we tail call into other programs, we 14199 * cannot make any assumptions since they can 14200 * be replaced dynamically during runtime in 14201 * the program array. 14202 */ 14203 prog->cb_access = 1; 14204 if (!allow_tail_call_in_subprogs(env)) 14205 prog->aux->stack_depth = MAX_BPF_STACK; 14206 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14207 14208 /* mark bpf_tail_call as different opcode to avoid 14209 * conditional branch in the interpreter for every normal 14210 * call and to prevent accidental JITing by JIT compiler 14211 * that doesn't support bpf_tail_call yet 14212 */ 14213 insn->imm = 0; 14214 insn->code = BPF_JMP | BPF_TAIL_CALL; 14215 14216 aux = &env->insn_aux_data[i + delta]; 14217 if (env->bpf_capable && !prog->blinding_requested && 14218 prog->jit_requested && 14219 !bpf_map_key_poisoned(aux) && 14220 !bpf_map_ptr_poisoned(aux) && 14221 !bpf_map_ptr_unpriv(aux)) { 14222 struct bpf_jit_poke_descriptor desc = { 14223 .reason = BPF_POKE_REASON_TAIL_CALL, 14224 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14225 .tail_call.key = bpf_map_key_immediate(aux), 14226 .insn_idx = i + delta, 14227 }; 14228 14229 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14230 if (ret < 0) { 14231 verbose(env, "adding tail call poke descriptor failed\n"); 14232 return ret; 14233 } 14234 14235 insn->imm = ret + 1; 14236 continue; 14237 } 14238 14239 if (!bpf_map_ptr_unpriv(aux)) 14240 continue; 14241 14242 /* instead of changing every JIT dealing with tail_call 14243 * emit two extra insns: 14244 * if (index >= max_entries) goto out; 14245 * index &= array->index_mask; 14246 * to avoid out-of-bounds cpu speculation 14247 */ 14248 if (bpf_map_ptr_poisoned(aux)) { 14249 verbose(env, "tail_call abusing map_ptr\n"); 14250 return -EINVAL; 14251 } 14252 14253 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14254 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14255 map_ptr->max_entries, 2); 14256 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14257 container_of(map_ptr, 14258 struct bpf_array, 14259 map)->index_mask); 14260 insn_buf[2] = *insn; 14261 cnt = 3; 14262 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14263 if (!new_prog) 14264 return -ENOMEM; 14265 14266 delta += cnt - 1; 14267 env->prog = prog = new_prog; 14268 insn = new_prog->insnsi + i + delta; 14269 continue; 14270 } 14271 14272 if (insn->imm == BPF_FUNC_timer_set_callback) { 14273 /* The verifier will process callback_fn as many times as necessary 14274 * with different maps and the register states prepared by 14275 * set_timer_callback_state will be accurate. 14276 * 14277 * The following use case is valid: 14278 * map1 is shared by prog1, prog2, prog3. 14279 * prog1 calls bpf_timer_init for some map1 elements 14280 * prog2 calls bpf_timer_set_callback for some map1 elements. 14281 * Those that were not bpf_timer_init-ed will return -EINVAL. 14282 * prog3 calls bpf_timer_start for some map1 elements. 14283 * Those that were not both bpf_timer_init-ed and 14284 * bpf_timer_set_callback-ed will return -EINVAL. 14285 */ 14286 struct bpf_insn ld_addrs[2] = { 14287 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14288 }; 14289 14290 insn_buf[0] = ld_addrs[0]; 14291 insn_buf[1] = ld_addrs[1]; 14292 insn_buf[2] = *insn; 14293 cnt = 3; 14294 14295 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14296 if (!new_prog) 14297 return -ENOMEM; 14298 14299 delta += cnt - 1; 14300 env->prog = prog = new_prog; 14301 insn = new_prog->insnsi + i + delta; 14302 goto patch_call_imm; 14303 } 14304 14305 if (insn->imm == BPF_FUNC_task_storage_get || 14306 insn->imm == BPF_FUNC_sk_storage_get || 14307 insn->imm == BPF_FUNC_inode_storage_get || 14308 insn->imm == BPF_FUNC_cgrp_storage_get) { 14309 if (env->prog->aux->sleepable) 14310 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14311 else 14312 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14313 insn_buf[1] = *insn; 14314 cnt = 2; 14315 14316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14317 if (!new_prog) 14318 return -ENOMEM; 14319 14320 delta += cnt - 1; 14321 env->prog = prog = new_prog; 14322 insn = new_prog->insnsi + i + delta; 14323 goto patch_call_imm; 14324 } 14325 14326 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14327 * and other inlining handlers are currently limited to 64 bit 14328 * only. 14329 */ 14330 if (prog->jit_requested && BITS_PER_LONG == 64 && 14331 (insn->imm == BPF_FUNC_map_lookup_elem || 14332 insn->imm == BPF_FUNC_map_update_elem || 14333 insn->imm == BPF_FUNC_map_delete_elem || 14334 insn->imm == BPF_FUNC_map_push_elem || 14335 insn->imm == BPF_FUNC_map_pop_elem || 14336 insn->imm == BPF_FUNC_map_peek_elem || 14337 insn->imm == BPF_FUNC_redirect_map || 14338 insn->imm == BPF_FUNC_for_each_map_elem || 14339 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14340 aux = &env->insn_aux_data[i + delta]; 14341 if (bpf_map_ptr_poisoned(aux)) 14342 goto patch_call_imm; 14343 14344 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14345 ops = map_ptr->ops; 14346 if (insn->imm == BPF_FUNC_map_lookup_elem && 14347 ops->map_gen_lookup) { 14348 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14349 if (cnt == -EOPNOTSUPP) 14350 goto patch_map_ops_generic; 14351 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14352 verbose(env, "bpf verifier is misconfigured\n"); 14353 return -EINVAL; 14354 } 14355 14356 new_prog = bpf_patch_insn_data(env, i + delta, 14357 insn_buf, cnt); 14358 if (!new_prog) 14359 return -ENOMEM; 14360 14361 delta += cnt - 1; 14362 env->prog = prog = new_prog; 14363 insn = new_prog->insnsi + i + delta; 14364 continue; 14365 } 14366 14367 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14368 (void *(*)(struct bpf_map *map, void *key))NULL)); 14369 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14370 (int (*)(struct bpf_map *map, void *key))NULL)); 14371 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14372 (int (*)(struct bpf_map *map, void *key, void *value, 14373 u64 flags))NULL)); 14374 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14375 (int (*)(struct bpf_map *map, void *value, 14376 u64 flags))NULL)); 14377 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14378 (int (*)(struct bpf_map *map, void *value))NULL)); 14379 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14380 (int (*)(struct bpf_map *map, void *value))NULL)); 14381 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14382 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14383 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14384 (int (*)(struct bpf_map *map, 14385 bpf_callback_t callback_fn, 14386 void *callback_ctx, 14387 u64 flags))NULL)); 14388 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14389 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14390 14391 patch_map_ops_generic: 14392 switch (insn->imm) { 14393 case BPF_FUNC_map_lookup_elem: 14394 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14395 continue; 14396 case BPF_FUNC_map_update_elem: 14397 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14398 continue; 14399 case BPF_FUNC_map_delete_elem: 14400 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14401 continue; 14402 case BPF_FUNC_map_push_elem: 14403 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14404 continue; 14405 case BPF_FUNC_map_pop_elem: 14406 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14407 continue; 14408 case BPF_FUNC_map_peek_elem: 14409 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14410 continue; 14411 case BPF_FUNC_redirect_map: 14412 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14413 continue; 14414 case BPF_FUNC_for_each_map_elem: 14415 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14416 continue; 14417 case BPF_FUNC_map_lookup_percpu_elem: 14418 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14419 continue; 14420 } 14421 14422 goto patch_call_imm; 14423 } 14424 14425 /* Implement bpf_jiffies64 inline. */ 14426 if (prog->jit_requested && BITS_PER_LONG == 64 && 14427 insn->imm == BPF_FUNC_jiffies64) { 14428 struct bpf_insn ld_jiffies_addr[2] = { 14429 BPF_LD_IMM64(BPF_REG_0, 14430 (unsigned long)&jiffies), 14431 }; 14432 14433 insn_buf[0] = ld_jiffies_addr[0]; 14434 insn_buf[1] = ld_jiffies_addr[1]; 14435 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14436 BPF_REG_0, 0); 14437 cnt = 3; 14438 14439 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14440 cnt); 14441 if (!new_prog) 14442 return -ENOMEM; 14443 14444 delta += cnt - 1; 14445 env->prog = prog = new_prog; 14446 insn = new_prog->insnsi + i + delta; 14447 continue; 14448 } 14449 14450 /* Implement bpf_get_func_arg inline. */ 14451 if (prog_type == BPF_PROG_TYPE_TRACING && 14452 insn->imm == BPF_FUNC_get_func_arg) { 14453 /* Load nr_args from ctx - 8 */ 14454 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14455 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14456 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14457 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14458 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14459 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14460 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14461 insn_buf[7] = BPF_JMP_A(1); 14462 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14463 cnt = 9; 14464 14465 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14466 if (!new_prog) 14467 return -ENOMEM; 14468 14469 delta += cnt - 1; 14470 env->prog = prog = new_prog; 14471 insn = new_prog->insnsi + i + delta; 14472 continue; 14473 } 14474 14475 /* Implement bpf_get_func_ret inline. */ 14476 if (prog_type == BPF_PROG_TYPE_TRACING && 14477 insn->imm == BPF_FUNC_get_func_ret) { 14478 if (eatype == BPF_TRACE_FEXIT || 14479 eatype == BPF_MODIFY_RETURN) { 14480 /* Load nr_args from ctx - 8 */ 14481 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14482 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14483 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14484 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14485 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14486 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14487 cnt = 6; 14488 } else { 14489 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14490 cnt = 1; 14491 } 14492 14493 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14494 if (!new_prog) 14495 return -ENOMEM; 14496 14497 delta += cnt - 1; 14498 env->prog = prog = new_prog; 14499 insn = new_prog->insnsi + i + delta; 14500 continue; 14501 } 14502 14503 /* Implement get_func_arg_cnt inline. */ 14504 if (prog_type == BPF_PROG_TYPE_TRACING && 14505 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14506 /* Load nr_args from ctx - 8 */ 14507 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14508 14509 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14510 if (!new_prog) 14511 return -ENOMEM; 14512 14513 env->prog = prog = new_prog; 14514 insn = new_prog->insnsi + i + delta; 14515 continue; 14516 } 14517 14518 /* Implement bpf_get_func_ip inline. */ 14519 if (prog_type == BPF_PROG_TYPE_TRACING && 14520 insn->imm == BPF_FUNC_get_func_ip) { 14521 /* Load IP address from ctx - 16 */ 14522 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14523 14524 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14525 if (!new_prog) 14526 return -ENOMEM; 14527 14528 env->prog = prog = new_prog; 14529 insn = new_prog->insnsi + i + delta; 14530 continue; 14531 } 14532 14533 patch_call_imm: 14534 fn = env->ops->get_func_proto(insn->imm, env->prog); 14535 /* all functions that have prototype and verifier allowed 14536 * programs to call them, must be real in-kernel functions 14537 */ 14538 if (!fn->func) { 14539 verbose(env, 14540 "kernel subsystem misconfigured func %s#%d\n", 14541 func_id_name(insn->imm), insn->imm); 14542 return -EFAULT; 14543 } 14544 insn->imm = fn->func - __bpf_call_base; 14545 } 14546 14547 /* Since poke tab is now finalized, publish aux to tracker. */ 14548 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14549 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14550 if (!map_ptr->ops->map_poke_track || 14551 !map_ptr->ops->map_poke_untrack || 14552 !map_ptr->ops->map_poke_run) { 14553 verbose(env, "bpf verifier is misconfigured\n"); 14554 return -EINVAL; 14555 } 14556 14557 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14558 if (ret < 0) { 14559 verbose(env, "tracking tail call prog failed\n"); 14560 return ret; 14561 } 14562 } 14563 14564 sort_kfunc_descs_by_imm(env->prog); 14565 14566 return 0; 14567 } 14568 14569 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14570 int position, 14571 s32 stack_base, 14572 u32 callback_subprogno, 14573 u32 *cnt) 14574 { 14575 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14576 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14577 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14578 int reg_loop_max = BPF_REG_6; 14579 int reg_loop_cnt = BPF_REG_7; 14580 int reg_loop_ctx = BPF_REG_8; 14581 14582 struct bpf_prog *new_prog; 14583 u32 callback_start; 14584 u32 call_insn_offset; 14585 s32 callback_offset; 14586 14587 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14588 * be careful to modify this code in sync. 14589 */ 14590 struct bpf_insn insn_buf[] = { 14591 /* Return error and jump to the end of the patch if 14592 * expected number of iterations is too big. 14593 */ 14594 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14595 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14596 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14597 /* spill R6, R7, R8 to use these as loop vars */ 14598 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14599 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14600 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14601 /* initialize loop vars */ 14602 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14603 BPF_MOV32_IMM(reg_loop_cnt, 0), 14604 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14605 /* loop header, 14606 * if reg_loop_cnt >= reg_loop_max skip the loop body 14607 */ 14608 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14609 /* callback call, 14610 * correct callback offset would be set after patching 14611 */ 14612 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14613 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14614 BPF_CALL_REL(0), 14615 /* increment loop counter */ 14616 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14617 /* jump to loop header if callback returned 0 */ 14618 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14619 /* return value of bpf_loop, 14620 * set R0 to the number of iterations 14621 */ 14622 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14623 /* restore original values of R6, R7, R8 */ 14624 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14625 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14626 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14627 }; 14628 14629 *cnt = ARRAY_SIZE(insn_buf); 14630 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14631 if (!new_prog) 14632 return new_prog; 14633 14634 /* callback start is known only after patching */ 14635 callback_start = env->subprog_info[callback_subprogno].start; 14636 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14637 call_insn_offset = position + 12; 14638 callback_offset = callback_start - call_insn_offset - 1; 14639 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14640 14641 return new_prog; 14642 } 14643 14644 static bool is_bpf_loop_call(struct bpf_insn *insn) 14645 { 14646 return insn->code == (BPF_JMP | BPF_CALL) && 14647 insn->src_reg == 0 && 14648 insn->imm == BPF_FUNC_loop; 14649 } 14650 14651 /* For all sub-programs in the program (including main) check 14652 * insn_aux_data to see if there are bpf_loop calls that require 14653 * inlining. If such calls are found the calls are replaced with a 14654 * sequence of instructions produced by `inline_bpf_loop` function and 14655 * subprog stack_depth is increased by the size of 3 registers. 14656 * This stack space is used to spill values of the R6, R7, R8. These 14657 * registers are used to store the loop bound, counter and context 14658 * variables. 14659 */ 14660 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14661 { 14662 struct bpf_subprog_info *subprogs = env->subprog_info; 14663 int i, cur_subprog = 0, cnt, delta = 0; 14664 struct bpf_insn *insn = env->prog->insnsi; 14665 int insn_cnt = env->prog->len; 14666 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14667 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14668 u16 stack_depth_extra = 0; 14669 14670 for (i = 0; i < insn_cnt; i++, insn++) { 14671 struct bpf_loop_inline_state *inline_state = 14672 &env->insn_aux_data[i + delta].loop_inline_state; 14673 14674 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14675 struct bpf_prog *new_prog; 14676 14677 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14678 new_prog = inline_bpf_loop(env, 14679 i + delta, 14680 -(stack_depth + stack_depth_extra), 14681 inline_state->callback_subprogno, 14682 &cnt); 14683 if (!new_prog) 14684 return -ENOMEM; 14685 14686 delta += cnt - 1; 14687 env->prog = new_prog; 14688 insn = new_prog->insnsi + i + delta; 14689 } 14690 14691 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14692 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14693 cur_subprog++; 14694 stack_depth = subprogs[cur_subprog].stack_depth; 14695 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14696 stack_depth_extra = 0; 14697 } 14698 } 14699 14700 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14701 14702 return 0; 14703 } 14704 14705 static void free_states(struct bpf_verifier_env *env) 14706 { 14707 struct bpf_verifier_state_list *sl, *sln; 14708 int i; 14709 14710 sl = env->free_list; 14711 while (sl) { 14712 sln = sl->next; 14713 free_verifier_state(&sl->state, false); 14714 kfree(sl); 14715 sl = sln; 14716 } 14717 env->free_list = NULL; 14718 14719 if (!env->explored_states) 14720 return; 14721 14722 for (i = 0; i < state_htab_size(env); i++) { 14723 sl = env->explored_states[i]; 14724 14725 while (sl) { 14726 sln = sl->next; 14727 free_verifier_state(&sl->state, false); 14728 kfree(sl); 14729 sl = sln; 14730 } 14731 env->explored_states[i] = NULL; 14732 } 14733 } 14734 14735 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14736 { 14737 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14738 struct bpf_verifier_state *state; 14739 struct bpf_reg_state *regs; 14740 int ret, i; 14741 14742 env->prev_linfo = NULL; 14743 env->pass_cnt++; 14744 14745 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14746 if (!state) 14747 return -ENOMEM; 14748 state->curframe = 0; 14749 state->speculative = false; 14750 state->branches = 1; 14751 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14752 if (!state->frame[0]) { 14753 kfree(state); 14754 return -ENOMEM; 14755 } 14756 env->cur_state = state; 14757 init_func_state(env, state->frame[0], 14758 BPF_MAIN_FUNC /* callsite */, 14759 0 /* frameno */, 14760 subprog); 14761 state->first_insn_idx = env->subprog_info[subprog].start; 14762 state->last_insn_idx = -1; 14763 14764 regs = state->frame[state->curframe]->regs; 14765 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14766 ret = btf_prepare_func_args(env, subprog, regs); 14767 if (ret) 14768 goto out; 14769 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14770 if (regs[i].type == PTR_TO_CTX) 14771 mark_reg_known_zero(env, regs, i); 14772 else if (regs[i].type == SCALAR_VALUE) 14773 mark_reg_unknown(env, regs, i); 14774 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14775 const u32 mem_size = regs[i].mem_size; 14776 14777 mark_reg_known_zero(env, regs, i); 14778 regs[i].mem_size = mem_size; 14779 regs[i].id = ++env->id_gen; 14780 } 14781 } 14782 } else { 14783 /* 1st arg to a function */ 14784 regs[BPF_REG_1].type = PTR_TO_CTX; 14785 mark_reg_known_zero(env, regs, BPF_REG_1); 14786 ret = btf_check_subprog_arg_match(env, subprog, regs); 14787 if (ret == -EFAULT) 14788 /* unlikely verifier bug. abort. 14789 * ret == 0 and ret < 0 are sadly acceptable for 14790 * main() function due to backward compatibility. 14791 * Like socket filter program may be written as: 14792 * int bpf_prog(struct pt_regs *ctx) 14793 * and never dereference that ctx in the program. 14794 * 'struct pt_regs' is a type mismatch for socket 14795 * filter that should be using 'struct __sk_buff'. 14796 */ 14797 goto out; 14798 } 14799 14800 ret = do_check(env); 14801 out: 14802 /* check for NULL is necessary, since cur_state can be freed inside 14803 * do_check() under memory pressure. 14804 */ 14805 if (env->cur_state) { 14806 free_verifier_state(env->cur_state, true); 14807 env->cur_state = NULL; 14808 } 14809 while (!pop_stack(env, NULL, NULL, false)); 14810 if (!ret && pop_log) 14811 bpf_vlog_reset(&env->log, 0); 14812 free_states(env); 14813 return ret; 14814 } 14815 14816 /* Verify all global functions in a BPF program one by one based on their BTF. 14817 * All global functions must pass verification. Otherwise the whole program is rejected. 14818 * Consider: 14819 * int bar(int); 14820 * int foo(int f) 14821 * { 14822 * return bar(f); 14823 * } 14824 * int bar(int b) 14825 * { 14826 * ... 14827 * } 14828 * foo() will be verified first for R1=any_scalar_value. During verification it 14829 * will be assumed that bar() already verified successfully and call to bar() 14830 * from foo() will be checked for type match only. Later bar() will be verified 14831 * independently to check that it's safe for R1=any_scalar_value. 14832 */ 14833 static int do_check_subprogs(struct bpf_verifier_env *env) 14834 { 14835 struct bpf_prog_aux *aux = env->prog->aux; 14836 int i, ret; 14837 14838 if (!aux->func_info) 14839 return 0; 14840 14841 for (i = 1; i < env->subprog_cnt; i++) { 14842 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14843 continue; 14844 env->insn_idx = env->subprog_info[i].start; 14845 WARN_ON_ONCE(env->insn_idx == 0); 14846 ret = do_check_common(env, i); 14847 if (ret) { 14848 return ret; 14849 } else if (env->log.level & BPF_LOG_LEVEL) { 14850 verbose(env, 14851 "Func#%d is safe for any args that match its prototype\n", 14852 i); 14853 } 14854 } 14855 return 0; 14856 } 14857 14858 static int do_check_main(struct bpf_verifier_env *env) 14859 { 14860 int ret; 14861 14862 env->insn_idx = 0; 14863 ret = do_check_common(env, 0); 14864 if (!ret) 14865 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14866 return ret; 14867 } 14868 14869 14870 static void print_verification_stats(struct bpf_verifier_env *env) 14871 { 14872 int i; 14873 14874 if (env->log.level & BPF_LOG_STATS) { 14875 verbose(env, "verification time %lld usec\n", 14876 div_u64(env->verification_time, 1000)); 14877 verbose(env, "stack depth "); 14878 for (i = 0; i < env->subprog_cnt; i++) { 14879 u32 depth = env->subprog_info[i].stack_depth; 14880 14881 verbose(env, "%d", depth); 14882 if (i + 1 < env->subprog_cnt) 14883 verbose(env, "+"); 14884 } 14885 verbose(env, "\n"); 14886 } 14887 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14888 "total_states %d peak_states %d mark_read %d\n", 14889 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14890 env->max_states_per_insn, env->total_states, 14891 env->peak_states, env->longest_mark_read_walk); 14892 } 14893 14894 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14895 { 14896 const struct btf_type *t, *func_proto; 14897 const struct bpf_struct_ops *st_ops; 14898 const struct btf_member *member; 14899 struct bpf_prog *prog = env->prog; 14900 u32 btf_id, member_idx; 14901 const char *mname; 14902 14903 if (!prog->gpl_compatible) { 14904 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14905 return -EINVAL; 14906 } 14907 14908 btf_id = prog->aux->attach_btf_id; 14909 st_ops = bpf_struct_ops_find(btf_id); 14910 if (!st_ops) { 14911 verbose(env, "attach_btf_id %u is not a supported struct\n", 14912 btf_id); 14913 return -ENOTSUPP; 14914 } 14915 14916 t = st_ops->type; 14917 member_idx = prog->expected_attach_type; 14918 if (member_idx >= btf_type_vlen(t)) { 14919 verbose(env, "attach to invalid member idx %u of struct %s\n", 14920 member_idx, st_ops->name); 14921 return -EINVAL; 14922 } 14923 14924 member = &btf_type_member(t)[member_idx]; 14925 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14926 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14927 NULL); 14928 if (!func_proto) { 14929 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14930 mname, member_idx, st_ops->name); 14931 return -EINVAL; 14932 } 14933 14934 if (st_ops->check_member) { 14935 int err = st_ops->check_member(t, member); 14936 14937 if (err) { 14938 verbose(env, "attach to unsupported member %s of struct %s\n", 14939 mname, st_ops->name); 14940 return err; 14941 } 14942 } 14943 14944 prog->aux->attach_func_proto = func_proto; 14945 prog->aux->attach_func_name = mname; 14946 env->ops = st_ops->verifier_ops; 14947 14948 return 0; 14949 } 14950 #define SECURITY_PREFIX "security_" 14951 14952 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14953 { 14954 if (within_error_injection_list(addr) || 14955 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14956 return 0; 14957 14958 return -EINVAL; 14959 } 14960 14961 /* list of non-sleepable functions that are otherwise on 14962 * ALLOW_ERROR_INJECTION list 14963 */ 14964 BTF_SET_START(btf_non_sleepable_error_inject) 14965 /* Three functions below can be called from sleepable and non-sleepable context. 14966 * Assume non-sleepable from bpf safety point of view. 14967 */ 14968 BTF_ID(func, __filemap_add_folio) 14969 BTF_ID(func, should_fail_alloc_page) 14970 BTF_ID(func, should_failslab) 14971 BTF_SET_END(btf_non_sleepable_error_inject) 14972 14973 static int check_non_sleepable_error_inject(u32 btf_id) 14974 { 14975 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14976 } 14977 14978 int bpf_check_attach_target(struct bpf_verifier_log *log, 14979 const struct bpf_prog *prog, 14980 const struct bpf_prog *tgt_prog, 14981 u32 btf_id, 14982 struct bpf_attach_target_info *tgt_info) 14983 { 14984 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14985 const char prefix[] = "btf_trace_"; 14986 int ret = 0, subprog = -1, i; 14987 const struct btf_type *t; 14988 bool conservative = true; 14989 const char *tname; 14990 struct btf *btf; 14991 long addr = 0; 14992 14993 if (!btf_id) { 14994 bpf_log(log, "Tracing programs must provide btf_id\n"); 14995 return -EINVAL; 14996 } 14997 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14998 if (!btf) { 14999 bpf_log(log, 15000 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 15001 return -EINVAL; 15002 } 15003 t = btf_type_by_id(btf, btf_id); 15004 if (!t) { 15005 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 15006 return -EINVAL; 15007 } 15008 tname = btf_name_by_offset(btf, t->name_off); 15009 if (!tname) { 15010 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 15011 return -EINVAL; 15012 } 15013 if (tgt_prog) { 15014 struct bpf_prog_aux *aux = tgt_prog->aux; 15015 15016 for (i = 0; i < aux->func_info_cnt; i++) 15017 if (aux->func_info[i].type_id == btf_id) { 15018 subprog = i; 15019 break; 15020 } 15021 if (subprog == -1) { 15022 bpf_log(log, "Subprog %s doesn't exist\n", tname); 15023 return -EINVAL; 15024 } 15025 conservative = aux->func_info_aux[subprog].unreliable; 15026 if (prog_extension) { 15027 if (conservative) { 15028 bpf_log(log, 15029 "Cannot replace static functions\n"); 15030 return -EINVAL; 15031 } 15032 if (!prog->jit_requested) { 15033 bpf_log(log, 15034 "Extension programs should be JITed\n"); 15035 return -EINVAL; 15036 } 15037 } 15038 if (!tgt_prog->jited) { 15039 bpf_log(log, "Can attach to only JITed progs\n"); 15040 return -EINVAL; 15041 } 15042 if (tgt_prog->type == prog->type) { 15043 /* Cannot fentry/fexit another fentry/fexit program. 15044 * Cannot attach program extension to another extension. 15045 * It's ok to attach fentry/fexit to extension program. 15046 */ 15047 bpf_log(log, "Cannot recursively attach\n"); 15048 return -EINVAL; 15049 } 15050 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 15051 prog_extension && 15052 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 15053 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 15054 /* Program extensions can extend all program types 15055 * except fentry/fexit. The reason is the following. 15056 * The fentry/fexit programs are used for performance 15057 * analysis, stats and can be attached to any program 15058 * type except themselves. When extension program is 15059 * replacing XDP function it is necessary to allow 15060 * performance analysis of all functions. Both original 15061 * XDP program and its program extension. Hence 15062 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 15063 * allowed. If extending of fentry/fexit was allowed it 15064 * would be possible to create long call chain 15065 * fentry->extension->fentry->extension beyond 15066 * reasonable stack size. Hence extending fentry is not 15067 * allowed. 15068 */ 15069 bpf_log(log, "Cannot extend fentry/fexit\n"); 15070 return -EINVAL; 15071 } 15072 } else { 15073 if (prog_extension) { 15074 bpf_log(log, "Cannot replace kernel functions\n"); 15075 return -EINVAL; 15076 } 15077 } 15078 15079 switch (prog->expected_attach_type) { 15080 case BPF_TRACE_RAW_TP: 15081 if (tgt_prog) { 15082 bpf_log(log, 15083 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 15084 return -EINVAL; 15085 } 15086 if (!btf_type_is_typedef(t)) { 15087 bpf_log(log, "attach_btf_id %u is not a typedef\n", 15088 btf_id); 15089 return -EINVAL; 15090 } 15091 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 15092 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 15093 btf_id, tname); 15094 return -EINVAL; 15095 } 15096 tname += sizeof(prefix) - 1; 15097 t = btf_type_by_id(btf, t->type); 15098 if (!btf_type_is_ptr(t)) 15099 /* should never happen in valid vmlinux build */ 15100 return -EINVAL; 15101 t = btf_type_by_id(btf, t->type); 15102 if (!btf_type_is_func_proto(t)) 15103 /* should never happen in valid vmlinux build */ 15104 return -EINVAL; 15105 15106 break; 15107 case BPF_TRACE_ITER: 15108 if (!btf_type_is_func(t)) { 15109 bpf_log(log, "attach_btf_id %u is not a function\n", 15110 btf_id); 15111 return -EINVAL; 15112 } 15113 t = btf_type_by_id(btf, t->type); 15114 if (!btf_type_is_func_proto(t)) 15115 return -EINVAL; 15116 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 15117 if (ret) 15118 return ret; 15119 break; 15120 default: 15121 if (!prog_extension) 15122 return -EINVAL; 15123 fallthrough; 15124 case BPF_MODIFY_RETURN: 15125 case BPF_LSM_MAC: 15126 case BPF_LSM_CGROUP: 15127 case BPF_TRACE_FENTRY: 15128 case BPF_TRACE_FEXIT: 15129 if (!btf_type_is_func(t)) { 15130 bpf_log(log, "attach_btf_id %u is not a function\n", 15131 btf_id); 15132 return -EINVAL; 15133 } 15134 if (prog_extension && 15135 btf_check_type_match(log, prog, btf, t)) 15136 return -EINVAL; 15137 t = btf_type_by_id(btf, t->type); 15138 if (!btf_type_is_func_proto(t)) 15139 return -EINVAL; 15140 15141 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 15142 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 15143 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 15144 return -EINVAL; 15145 15146 if (tgt_prog && conservative) 15147 t = NULL; 15148 15149 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 15150 if (ret < 0) 15151 return ret; 15152 15153 if (tgt_prog) { 15154 if (subprog == 0) 15155 addr = (long) tgt_prog->bpf_func; 15156 else 15157 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 15158 } else { 15159 addr = kallsyms_lookup_name(tname); 15160 if (!addr) { 15161 bpf_log(log, 15162 "The address of function %s cannot be found\n", 15163 tname); 15164 return -ENOENT; 15165 } 15166 } 15167 15168 if (prog->aux->sleepable) { 15169 ret = -EINVAL; 15170 switch (prog->type) { 15171 case BPF_PROG_TYPE_TRACING: 15172 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 15173 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 15174 */ 15175 if (!check_non_sleepable_error_inject(btf_id) && 15176 within_error_injection_list(addr)) 15177 ret = 0; 15178 break; 15179 case BPF_PROG_TYPE_LSM: 15180 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 15181 * Only some of them are sleepable. 15182 */ 15183 if (bpf_lsm_is_sleepable_hook(btf_id)) 15184 ret = 0; 15185 break; 15186 default: 15187 break; 15188 } 15189 if (ret) { 15190 bpf_log(log, "%s is not sleepable\n", tname); 15191 return ret; 15192 } 15193 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15194 if (tgt_prog) { 15195 bpf_log(log, "can't modify return codes of BPF programs\n"); 15196 return -EINVAL; 15197 } 15198 ret = check_attach_modify_return(addr, tname); 15199 if (ret) { 15200 bpf_log(log, "%s() is not modifiable\n", tname); 15201 return ret; 15202 } 15203 } 15204 15205 break; 15206 } 15207 tgt_info->tgt_addr = addr; 15208 tgt_info->tgt_name = tname; 15209 tgt_info->tgt_type = t; 15210 return 0; 15211 } 15212 15213 BTF_SET_START(btf_id_deny) 15214 BTF_ID_UNUSED 15215 #ifdef CONFIG_SMP 15216 BTF_ID(func, migrate_disable) 15217 BTF_ID(func, migrate_enable) 15218 #endif 15219 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15220 BTF_ID(func, rcu_read_unlock_strict) 15221 #endif 15222 BTF_SET_END(btf_id_deny) 15223 15224 static int check_attach_btf_id(struct bpf_verifier_env *env) 15225 { 15226 struct bpf_prog *prog = env->prog; 15227 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15228 struct bpf_attach_target_info tgt_info = {}; 15229 u32 btf_id = prog->aux->attach_btf_id; 15230 struct bpf_trampoline *tr; 15231 int ret; 15232 u64 key; 15233 15234 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15235 if (prog->aux->sleepable) 15236 /* attach_btf_id checked to be zero already */ 15237 return 0; 15238 verbose(env, "Syscall programs can only be sleepable\n"); 15239 return -EINVAL; 15240 } 15241 15242 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15243 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15244 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15245 return -EINVAL; 15246 } 15247 15248 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15249 return check_struct_ops_btf_id(env); 15250 15251 if (prog->type != BPF_PROG_TYPE_TRACING && 15252 prog->type != BPF_PROG_TYPE_LSM && 15253 prog->type != BPF_PROG_TYPE_EXT) 15254 return 0; 15255 15256 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15257 if (ret) 15258 return ret; 15259 15260 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15261 /* to make freplace equivalent to their targets, they need to 15262 * inherit env->ops and expected_attach_type for the rest of the 15263 * verification 15264 */ 15265 env->ops = bpf_verifier_ops[tgt_prog->type]; 15266 prog->expected_attach_type = tgt_prog->expected_attach_type; 15267 } 15268 15269 /* store info about the attachment target that will be used later */ 15270 prog->aux->attach_func_proto = tgt_info.tgt_type; 15271 prog->aux->attach_func_name = tgt_info.tgt_name; 15272 15273 if (tgt_prog) { 15274 prog->aux->saved_dst_prog_type = tgt_prog->type; 15275 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15276 } 15277 15278 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15279 prog->aux->attach_btf_trace = true; 15280 return 0; 15281 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15282 if (!bpf_iter_prog_supported(prog)) 15283 return -EINVAL; 15284 return 0; 15285 } 15286 15287 if (prog->type == BPF_PROG_TYPE_LSM) { 15288 ret = bpf_lsm_verify_prog(&env->log, prog); 15289 if (ret < 0) 15290 return ret; 15291 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15292 btf_id_set_contains(&btf_id_deny, btf_id)) { 15293 return -EINVAL; 15294 } 15295 15296 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15297 tr = bpf_trampoline_get(key, &tgt_info); 15298 if (!tr) 15299 return -ENOMEM; 15300 15301 prog->aux->dst_trampoline = tr; 15302 return 0; 15303 } 15304 15305 struct btf *bpf_get_btf_vmlinux(void) 15306 { 15307 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15308 mutex_lock(&bpf_verifier_lock); 15309 if (!btf_vmlinux) 15310 btf_vmlinux = btf_parse_vmlinux(); 15311 mutex_unlock(&bpf_verifier_lock); 15312 } 15313 return btf_vmlinux; 15314 } 15315 15316 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15317 { 15318 u64 start_time = ktime_get_ns(); 15319 struct bpf_verifier_env *env; 15320 struct bpf_verifier_log *log; 15321 int i, len, ret = -EINVAL; 15322 bool is_priv; 15323 15324 /* no program is valid */ 15325 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15326 return -EINVAL; 15327 15328 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15329 * allocate/free it every time bpf_check() is called 15330 */ 15331 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15332 if (!env) 15333 return -ENOMEM; 15334 log = &env->log; 15335 15336 len = (*prog)->len; 15337 env->insn_aux_data = 15338 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15339 ret = -ENOMEM; 15340 if (!env->insn_aux_data) 15341 goto err_free_env; 15342 for (i = 0; i < len; i++) 15343 env->insn_aux_data[i].orig_idx = i; 15344 env->prog = *prog; 15345 env->ops = bpf_verifier_ops[env->prog->type]; 15346 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15347 is_priv = bpf_capable(); 15348 15349 bpf_get_btf_vmlinux(); 15350 15351 /* grab the mutex to protect few globals used by verifier */ 15352 if (!is_priv) 15353 mutex_lock(&bpf_verifier_lock); 15354 15355 if (attr->log_level || attr->log_buf || attr->log_size) { 15356 /* user requested verbose verifier output 15357 * and supplied buffer to store the verification trace 15358 */ 15359 log->level = attr->log_level; 15360 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15361 log->len_total = attr->log_size; 15362 15363 /* log attributes have to be sane */ 15364 if (!bpf_verifier_log_attr_valid(log)) { 15365 ret = -EINVAL; 15366 goto err_unlock; 15367 } 15368 } 15369 15370 mark_verifier_state_clean(env); 15371 15372 if (IS_ERR(btf_vmlinux)) { 15373 /* Either gcc or pahole or kernel are broken. */ 15374 verbose(env, "in-kernel BTF is malformed\n"); 15375 ret = PTR_ERR(btf_vmlinux); 15376 goto skip_full_check; 15377 } 15378 15379 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15380 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15381 env->strict_alignment = true; 15382 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15383 env->strict_alignment = false; 15384 15385 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15386 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15387 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15388 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15389 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15390 env->bpf_capable = bpf_capable(); 15391 15392 if (is_priv) 15393 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15394 15395 env->explored_states = kvcalloc(state_htab_size(env), 15396 sizeof(struct bpf_verifier_state_list *), 15397 GFP_USER); 15398 ret = -ENOMEM; 15399 if (!env->explored_states) 15400 goto skip_full_check; 15401 15402 ret = add_subprog_and_kfunc(env); 15403 if (ret < 0) 15404 goto skip_full_check; 15405 15406 ret = check_subprogs(env); 15407 if (ret < 0) 15408 goto skip_full_check; 15409 15410 ret = check_btf_info(env, attr, uattr); 15411 if (ret < 0) 15412 goto skip_full_check; 15413 15414 ret = check_attach_btf_id(env); 15415 if (ret) 15416 goto skip_full_check; 15417 15418 ret = resolve_pseudo_ldimm64(env); 15419 if (ret < 0) 15420 goto skip_full_check; 15421 15422 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15423 ret = bpf_prog_offload_verifier_prep(env->prog); 15424 if (ret) 15425 goto skip_full_check; 15426 } 15427 15428 ret = check_cfg(env); 15429 if (ret < 0) 15430 goto skip_full_check; 15431 15432 ret = do_check_subprogs(env); 15433 ret = ret ?: do_check_main(env); 15434 15435 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15436 ret = bpf_prog_offload_finalize(env); 15437 15438 skip_full_check: 15439 kvfree(env->explored_states); 15440 15441 if (ret == 0) 15442 ret = check_max_stack_depth(env); 15443 15444 /* instruction rewrites happen after this point */ 15445 if (ret == 0) 15446 ret = optimize_bpf_loop(env); 15447 15448 if (is_priv) { 15449 if (ret == 0) 15450 opt_hard_wire_dead_code_branches(env); 15451 if (ret == 0) 15452 ret = opt_remove_dead_code(env); 15453 if (ret == 0) 15454 ret = opt_remove_nops(env); 15455 } else { 15456 if (ret == 0) 15457 sanitize_dead_code(env); 15458 } 15459 15460 if (ret == 0) 15461 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15462 ret = convert_ctx_accesses(env); 15463 15464 if (ret == 0) 15465 ret = do_misc_fixups(env); 15466 15467 /* do 32-bit optimization after insn patching has done so those patched 15468 * insns could be handled correctly. 15469 */ 15470 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15471 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15472 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15473 : false; 15474 } 15475 15476 if (ret == 0) 15477 ret = fixup_call_args(env); 15478 15479 env->verification_time = ktime_get_ns() - start_time; 15480 print_verification_stats(env); 15481 env->prog->aux->verified_insns = env->insn_processed; 15482 15483 if (log->level && bpf_verifier_log_full(log)) 15484 ret = -ENOSPC; 15485 if (log->level && !log->ubuf) { 15486 ret = -EFAULT; 15487 goto err_release_maps; 15488 } 15489 15490 if (ret) 15491 goto err_release_maps; 15492 15493 if (env->used_map_cnt) { 15494 /* if program passed verifier, update used_maps in bpf_prog_info */ 15495 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15496 sizeof(env->used_maps[0]), 15497 GFP_KERNEL); 15498 15499 if (!env->prog->aux->used_maps) { 15500 ret = -ENOMEM; 15501 goto err_release_maps; 15502 } 15503 15504 memcpy(env->prog->aux->used_maps, env->used_maps, 15505 sizeof(env->used_maps[0]) * env->used_map_cnt); 15506 env->prog->aux->used_map_cnt = env->used_map_cnt; 15507 } 15508 if (env->used_btf_cnt) { 15509 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15510 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15511 sizeof(env->used_btfs[0]), 15512 GFP_KERNEL); 15513 if (!env->prog->aux->used_btfs) { 15514 ret = -ENOMEM; 15515 goto err_release_maps; 15516 } 15517 15518 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15519 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15520 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15521 } 15522 if (env->used_map_cnt || env->used_btf_cnt) { 15523 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15524 * bpf_ld_imm64 instructions 15525 */ 15526 convert_pseudo_ld_imm64(env); 15527 } 15528 15529 adjust_btf_func(env); 15530 15531 err_release_maps: 15532 if (!env->prog->aux->used_maps) 15533 /* if we didn't copy map pointers into bpf_prog_info, release 15534 * them now. Otherwise free_used_maps() will release them. 15535 */ 15536 release_maps(env); 15537 if (!env->prog->aux->used_btfs) 15538 release_btfs(env); 15539 15540 /* extension progs temporarily inherit the attach_type of their targets 15541 for verification purposes, so set it back to zero before returning 15542 */ 15543 if (env->prog->type == BPF_PROG_TYPE_EXT) 15544 env->prog->expected_attach_type = 0; 15545 15546 *prog = env->prog; 15547 err_unlock: 15548 if (!is_priv) 15549 mutex_unlock(&bpf_verifier_lock); 15550 vfree(env->insn_aux_data); 15551 err_free_env: 15552 kfree(env); 15553 return ret; 15554 } 15555