1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 }; 265 266 struct btf *btf_vmlinux; 267 268 static DEFINE_MUTEX(bpf_verifier_lock); 269 270 static const struct bpf_line_info * 271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 272 { 273 const struct bpf_line_info *linfo; 274 const struct bpf_prog *prog; 275 u32 i, nr_linfo; 276 277 prog = env->prog; 278 nr_linfo = prog->aux->nr_linfo; 279 280 if (!nr_linfo || insn_off >= prog->len) 281 return NULL; 282 283 linfo = prog->aux->linfo; 284 for (i = 1; i < nr_linfo; i++) 285 if (insn_off < linfo[i].insn_off) 286 break; 287 288 return &linfo[i - 1]; 289 } 290 291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 292 va_list args) 293 { 294 unsigned int n; 295 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 297 298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 299 "verifier log line truncated - local buffer too short\n"); 300 301 n = min(log->len_total - log->len_used - 1, n); 302 log->kbuf[n] = '\0'; 303 304 if (log->level == BPF_LOG_KERNEL) { 305 pr_err("BPF:%s\n", log->kbuf); 306 return; 307 } 308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 309 log->len_used += n; 310 else 311 log->ubuf = NULL; 312 } 313 314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 315 { 316 char zero = 0; 317 318 if (!bpf_verifier_log_needed(log)) 319 return; 320 321 log->len_used = new_pos; 322 if (put_user(zero, log->ubuf + new_pos)) 323 log->ubuf = NULL; 324 } 325 326 /* log_level controls verbosity level of eBPF verifier. 327 * bpf_verifier_log_write() is used to dump the verification trace to the log, 328 * so the user can figure out what's wrong with the program 329 */ 330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 331 const char *fmt, ...) 332 { 333 va_list args; 334 335 if (!bpf_verifier_log_needed(&env->log)) 336 return; 337 338 va_start(args, fmt); 339 bpf_verifier_vlog(&env->log, fmt, args); 340 va_end(args); 341 } 342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 343 344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 345 { 346 struct bpf_verifier_env *env = private_data; 347 va_list args; 348 349 if (!bpf_verifier_log_needed(&env->log)) 350 return; 351 352 va_start(args, fmt); 353 bpf_verifier_vlog(&env->log, fmt, args); 354 va_end(args); 355 } 356 357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 358 const char *fmt, ...) 359 { 360 va_list args; 361 362 if (!bpf_verifier_log_needed(log)) 363 return; 364 365 va_start(args, fmt); 366 bpf_verifier_vlog(log, fmt, args); 367 va_end(args); 368 } 369 370 static const char *ltrim(const char *s) 371 { 372 while (isspace(*s)) 373 s++; 374 375 return s; 376 } 377 378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 379 u32 insn_off, 380 const char *prefix_fmt, ...) 381 { 382 const struct bpf_line_info *linfo; 383 384 if (!bpf_verifier_log_needed(&env->log)) 385 return; 386 387 linfo = find_linfo(env, insn_off); 388 if (!linfo || linfo == env->prev_linfo) 389 return; 390 391 if (prefix_fmt) { 392 va_list args; 393 394 va_start(args, prefix_fmt); 395 bpf_verifier_vlog(&env->log, prefix_fmt, args); 396 va_end(args); 397 } 398 399 verbose(env, "%s\n", 400 ltrim(btf_name_by_offset(env->prog->aux->btf, 401 linfo->line_off))); 402 403 env->prev_linfo = linfo; 404 } 405 406 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 407 struct bpf_reg_state *reg, 408 struct tnum *range, const char *ctx, 409 const char *reg_name) 410 { 411 char tn_buf[48]; 412 413 verbose(env, "At %s the register %s ", ctx, reg_name); 414 if (!tnum_is_unknown(reg->var_off)) { 415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 416 verbose(env, "has value %s", tn_buf); 417 } else { 418 verbose(env, "has unknown scalar value"); 419 } 420 tnum_strn(tn_buf, sizeof(tn_buf), *range); 421 verbose(env, " should have been in %s\n", tn_buf); 422 } 423 424 static bool type_is_pkt_pointer(enum bpf_reg_type type) 425 { 426 return type == PTR_TO_PACKET || 427 type == PTR_TO_PACKET_META; 428 } 429 430 static bool type_is_sk_pointer(enum bpf_reg_type type) 431 { 432 return type == PTR_TO_SOCKET || 433 type == PTR_TO_SOCK_COMMON || 434 type == PTR_TO_TCP_SOCK || 435 type == PTR_TO_XDP_SOCK; 436 } 437 438 static bool reg_type_not_null(enum bpf_reg_type type) 439 { 440 return type == PTR_TO_SOCKET || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_MAP_VALUE || 443 type == PTR_TO_MAP_KEY || 444 type == PTR_TO_SOCK_COMMON; 445 } 446 447 static bool reg_type_may_be_null(enum bpf_reg_type type) 448 { 449 return type == PTR_TO_MAP_VALUE_OR_NULL || 450 type == PTR_TO_SOCKET_OR_NULL || 451 type == PTR_TO_SOCK_COMMON_OR_NULL || 452 type == PTR_TO_TCP_SOCK_OR_NULL || 453 type == PTR_TO_BTF_ID_OR_NULL || 454 type == PTR_TO_MEM_OR_NULL || 455 type == PTR_TO_RDONLY_BUF_OR_NULL || 456 type == PTR_TO_RDWR_BUF_OR_NULL; 457 } 458 459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 460 { 461 return reg->type == PTR_TO_MAP_VALUE && 462 map_value_has_spin_lock(reg->map_ptr); 463 } 464 465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 466 { 467 return type == PTR_TO_SOCKET || 468 type == PTR_TO_SOCKET_OR_NULL || 469 type == PTR_TO_TCP_SOCK || 470 type == PTR_TO_TCP_SOCK_OR_NULL || 471 type == PTR_TO_MEM || 472 type == PTR_TO_MEM_OR_NULL; 473 } 474 475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 476 { 477 return type == ARG_PTR_TO_SOCK_COMMON; 478 } 479 480 static bool arg_type_may_be_null(enum bpf_arg_type type) 481 { 482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 483 type == ARG_PTR_TO_MEM_OR_NULL || 484 type == ARG_PTR_TO_CTX_OR_NULL || 485 type == ARG_PTR_TO_SOCKET_OR_NULL || 486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 487 type == ARG_PTR_TO_STACK_OR_NULL; 488 } 489 490 /* Determine whether the function releases some resources allocated by another 491 * function call. The first reference type argument will be assumed to be 492 * released by release_reference(). 493 */ 494 static bool is_release_function(enum bpf_func_id func_id) 495 { 496 return func_id == BPF_FUNC_sk_release || 497 func_id == BPF_FUNC_ringbuf_submit || 498 func_id == BPF_FUNC_ringbuf_discard; 499 } 500 501 static bool may_be_acquire_function(enum bpf_func_id func_id) 502 { 503 return func_id == BPF_FUNC_sk_lookup_tcp || 504 func_id == BPF_FUNC_sk_lookup_udp || 505 func_id == BPF_FUNC_skc_lookup_tcp || 506 func_id == BPF_FUNC_map_lookup_elem || 507 func_id == BPF_FUNC_ringbuf_reserve; 508 } 509 510 static bool is_acquire_function(enum bpf_func_id func_id, 511 const struct bpf_map *map) 512 { 513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 514 515 if (func_id == BPF_FUNC_sk_lookup_tcp || 516 func_id == BPF_FUNC_sk_lookup_udp || 517 func_id == BPF_FUNC_skc_lookup_tcp || 518 func_id == BPF_FUNC_ringbuf_reserve) 519 return true; 520 521 if (func_id == BPF_FUNC_map_lookup_elem && 522 (map_type == BPF_MAP_TYPE_SOCKMAP || 523 map_type == BPF_MAP_TYPE_SOCKHASH)) 524 return true; 525 526 return false; 527 } 528 529 static bool is_ptr_cast_function(enum bpf_func_id func_id) 530 { 531 return func_id == BPF_FUNC_tcp_sock || 532 func_id == BPF_FUNC_sk_fullsock || 533 func_id == BPF_FUNC_skc_to_tcp_sock || 534 func_id == BPF_FUNC_skc_to_tcp6_sock || 535 func_id == BPF_FUNC_skc_to_udp6_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 541 { 542 return BPF_CLASS(insn->code) == BPF_STX && 543 BPF_MODE(insn->code) == BPF_ATOMIC && 544 insn->imm == BPF_CMPXCHG; 545 } 546 547 /* string representation of 'enum bpf_reg_type' */ 548 static const char * const reg_type_str[] = { 549 [NOT_INIT] = "?", 550 [SCALAR_VALUE] = "inv", 551 [PTR_TO_CTX] = "ctx", 552 [CONST_PTR_TO_MAP] = "map_ptr", 553 [PTR_TO_MAP_VALUE] = "map_value", 554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 555 [PTR_TO_STACK] = "fp", 556 [PTR_TO_PACKET] = "pkt", 557 [PTR_TO_PACKET_META] = "pkt_meta", 558 [PTR_TO_PACKET_END] = "pkt_end", 559 [PTR_TO_FLOW_KEYS] = "flow_keys", 560 [PTR_TO_SOCKET] = "sock", 561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 562 [PTR_TO_SOCK_COMMON] = "sock_common", 563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 564 [PTR_TO_TCP_SOCK] = "tcp_sock", 565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 566 [PTR_TO_TP_BUFFER] = "tp_buffer", 567 [PTR_TO_XDP_SOCK] = "xdp_sock", 568 [PTR_TO_BTF_ID] = "ptr_", 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 571 [PTR_TO_MEM] = "mem", 572 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 573 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 575 [PTR_TO_RDWR_BUF] = "rdwr_buf", 576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 577 [PTR_TO_FUNC] = "func", 578 [PTR_TO_MAP_KEY] = "map_key", 579 }; 580 581 static char slot_type_char[] = { 582 [STACK_INVALID] = '?', 583 [STACK_SPILL] = 'r', 584 [STACK_MISC] = 'm', 585 [STACK_ZERO] = '0', 586 }; 587 588 static void print_liveness(struct bpf_verifier_env *env, 589 enum bpf_reg_liveness live) 590 { 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 592 verbose(env, "_"); 593 if (live & REG_LIVE_READ) 594 verbose(env, "r"); 595 if (live & REG_LIVE_WRITTEN) 596 verbose(env, "w"); 597 if (live & REG_LIVE_DONE) 598 verbose(env, "D"); 599 } 600 601 static struct bpf_func_state *func(struct bpf_verifier_env *env, 602 const struct bpf_reg_state *reg) 603 { 604 struct bpf_verifier_state *cur = env->cur_state; 605 606 return cur->frame[reg->frameno]; 607 } 608 609 static const char *kernel_type_name(const struct btf* btf, u32 id) 610 { 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 612 } 613 614 static void print_verifier_state(struct bpf_verifier_env *env, 615 const struct bpf_func_state *state) 616 { 617 const struct bpf_reg_state *reg; 618 enum bpf_reg_type t; 619 int i; 620 621 if (state->frameno) 622 verbose(env, " frame%d:", state->frameno); 623 for (i = 0; i < MAX_BPF_REG; i++) { 624 reg = &state->regs[i]; 625 t = reg->type; 626 if (t == NOT_INIT) 627 continue; 628 verbose(env, " R%d", i); 629 print_liveness(env, reg->live); 630 verbose(env, "=%s", reg_type_str[t]); 631 if (t == SCALAR_VALUE && reg->precise) 632 verbose(env, "P"); 633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 634 tnum_is_const(reg->var_off)) { 635 /* reg->off should be 0 for SCALAR_VALUE */ 636 verbose(env, "%lld", reg->var_off.value + reg->off); 637 } else { 638 if (t == PTR_TO_BTF_ID || 639 t == PTR_TO_BTF_ID_OR_NULL || 640 t == PTR_TO_PERCPU_BTF_ID) 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 642 verbose(env, "(id=%d", reg->id); 643 if (reg_type_may_be_refcounted_or_null(t)) 644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 645 if (t != SCALAR_VALUE) 646 verbose(env, ",off=%d", reg->off); 647 if (type_is_pkt_pointer(t)) 648 verbose(env, ",r=%d", reg->range); 649 else if (t == CONST_PTR_TO_MAP || 650 t == PTR_TO_MAP_KEY || 651 t == PTR_TO_MAP_VALUE || 652 t == PTR_TO_MAP_VALUE_OR_NULL) 653 verbose(env, ",ks=%d,vs=%d", 654 reg->map_ptr->key_size, 655 reg->map_ptr->value_size); 656 if (tnum_is_const(reg->var_off)) { 657 /* Typically an immediate SCALAR_VALUE, but 658 * could be a pointer whose offset is too big 659 * for reg->off 660 */ 661 verbose(env, ",imm=%llx", reg->var_off.value); 662 } else { 663 if (reg->smin_value != reg->umin_value && 664 reg->smin_value != S64_MIN) 665 verbose(env, ",smin_value=%lld", 666 (long long)reg->smin_value); 667 if (reg->smax_value != reg->umax_value && 668 reg->smax_value != S64_MAX) 669 verbose(env, ",smax_value=%lld", 670 (long long)reg->smax_value); 671 if (reg->umin_value != 0) 672 verbose(env, ",umin_value=%llu", 673 (unsigned long long)reg->umin_value); 674 if (reg->umax_value != U64_MAX) 675 verbose(env, ",umax_value=%llu", 676 (unsigned long long)reg->umax_value); 677 if (!tnum_is_unknown(reg->var_off)) { 678 char tn_buf[48]; 679 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 681 verbose(env, ",var_off=%s", tn_buf); 682 } 683 if (reg->s32_min_value != reg->smin_value && 684 reg->s32_min_value != S32_MIN) 685 verbose(env, ",s32_min_value=%d", 686 (int)(reg->s32_min_value)); 687 if (reg->s32_max_value != reg->smax_value && 688 reg->s32_max_value != S32_MAX) 689 verbose(env, ",s32_max_value=%d", 690 (int)(reg->s32_max_value)); 691 if (reg->u32_min_value != reg->umin_value && 692 reg->u32_min_value != U32_MIN) 693 verbose(env, ",u32_min_value=%d", 694 (int)(reg->u32_min_value)); 695 if (reg->u32_max_value != reg->umax_value && 696 reg->u32_max_value != U32_MAX) 697 verbose(env, ",u32_max_value=%d", 698 (int)(reg->u32_max_value)); 699 } 700 verbose(env, ")"); 701 } 702 } 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 704 char types_buf[BPF_REG_SIZE + 1]; 705 bool valid = false; 706 int j; 707 708 for (j = 0; j < BPF_REG_SIZE; j++) { 709 if (state->stack[i].slot_type[j] != STACK_INVALID) 710 valid = true; 711 types_buf[j] = slot_type_char[ 712 state->stack[i].slot_type[j]]; 713 } 714 types_buf[BPF_REG_SIZE] = 0; 715 if (!valid) 716 continue; 717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 718 print_liveness(env, state->stack[i].spilled_ptr.live); 719 if (state->stack[i].slot_type[0] == STACK_SPILL) { 720 reg = &state->stack[i].spilled_ptr; 721 t = reg->type; 722 verbose(env, "=%s", reg_type_str[t]); 723 if (t == SCALAR_VALUE && reg->precise) 724 verbose(env, "P"); 725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 726 verbose(env, "%lld", reg->var_off.value + reg->off); 727 } else { 728 verbose(env, "=%s", types_buf); 729 } 730 } 731 if (state->acquired_refs && state->refs[0].id) { 732 verbose(env, " refs=%d", state->refs[0].id); 733 for (i = 1; i < state->acquired_refs; i++) 734 if (state->refs[i].id) 735 verbose(env, ",%d", state->refs[i].id); 736 } 737 verbose(env, "\n"); 738 } 739 740 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 741 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 742 const struct bpf_func_state *src) \ 743 { \ 744 if (!src->FIELD) \ 745 return 0; \ 746 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 747 /* internal bug, make state invalid to reject the program */ \ 748 memset(dst, 0, sizeof(*dst)); \ 749 return -EFAULT; \ 750 } \ 751 memcpy(dst->FIELD, src->FIELD, \ 752 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 753 return 0; \ 754 } 755 /* copy_reference_state() */ 756 COPY_STATE_FN(reference, acquired_refs, refs, 1) 757 /* copy_stack_state() */ 758 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 759 #undef COPY_STATE_FN 760 761 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 762 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 763 bool copy_old) \ 764 { \ 765 u32 old_size = state->COUNT; \ 766 struct bpf_##NAME##_state *new_##FIELD; \ 767 int slot = size / SIZE; \ 768 \ 769 if (size <= old_size || !size) { \ 770 if (copy_old) \ 771 return 0; \ 772 state->COUNT = slot * SIZE; \ 773 if (!size && old_size) { \ 774 kfree(state->FIELD); \ 775 state->FIELD = NULL; \ 776 } \ 777 return 0; \ 778 } \ 779 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 780 GFP_KERNEL); \ 781 if (!new_##FIELD) \ 782 return -ENOMEM; \ 783 if (copy_old) { \ 784 if (state->FIELD) \ 785 memcpy(new_##FIELD, state->FIELD, \ 786 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 787 memset(new_##FIELD + old_size / SIZE, 0, \ 788 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 789 } \ 790 state->COUNT = slot * SIZE; \ 791 kfree(state->FIELD); \ 792 state->FIELD = new_##FIELD; \ 793 return 0; \ 794 } 795 /* realloc_reference_state() */ 796 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 797 /* realloc_stack_state() */ 798 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 799 #undef REALLOC_STATE_FN 800 801 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 802 * make it consume minimal amount of memory. check_stack_write() access from 803 * the program calls into realloc_func_state() to grow the stack size. 804 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 805 * which realloc_stack_state() copies over. It points to previous 806 * bpf_verifier_state which is never reallocated. 807 */ 808 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 809 int refs_size, bool copy_old) 810 { 811 int err = realloc_reference_state(state, refs_size, copy_old); 812 if (err) 813 return err; 814 return realloc_stack_state(state, stack_size, copy_old); 815 } 816 817 /* Acquire a pointer id from the env and update the state->refs to include 818 * this new pointer reference. 819 * On success, returns a valid pointer id to associate with the register 820 * On failure, returns a negative errno. 821 */ 822 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 823 { 824 struct bpf_func_state *state = cur_func(env); 825 int new_ofs = state->acquired_refs; 826 int id, err; 827 828 err = realloc_reference_state(state, state->acquired_refs + 1, true); 829 if (err) 830 return err; 831 id = ++env->id_gen; 832 state->refs[new_ofs].id = id; 833 state->refs[new_ofs].insn_idx = insn_idx; 834 835 return id; 836 } 837 838 /* release function corresponding to acquire_reference_state(). Idempotent. */ 839 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 840 { 841 int i, last_idx; 842 843 last_idx = state->acquired_refs - 1; 844 for (i = 0; i < state->acquired_refs; i++) { 845 if (state->refs[i].id == ptr_id) { 846 if (last_idx && i != last_idx) 847 memcpy(&state->refs[i], &state->refs[last_idx], 848 sizeof(*state->refs)); 849 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 850 state->acquired_refs--; 851 return 0; 852 } 853 } 854 return -EINVAL; 855 } 856 857 static int transfer_reference_state(struct bpf_func_state *dst, 858 struct bpf_func_state *src) 859 { 860 int err = realloc_reference_state(dst, src->acquired_refs, false); 861 if (err) 862 return err; 863 err = copy_reference_state(dst, src); 864 if (err) 865 return err; 866 return 0; 867 } 868 869 static void free_func_state(struct bpf_func_state *state) 870 { 871 if (!state) 872 return; 873 kfree(state->refs); 874 kfree(state->stack); 875 kfree(state); 876 } 877 878 static void clear_jmp_history(struct bpf_verifier_state *state) 879 { 880 kfree(state->jmp_history); 881 state->jmp_history = NULL; 882 state->jmp_history_cnt = 0; 883 } 884 885 static void free_verifier_state(struct bpf_verifier_state *state, 886 bool free_self) 887 { 888 int i; 889 890 for (i = 0; i <= state->curframe; i++) { 891 free_func_state(state->frame[i]); 892 state->frame[i] = NULL; 893 } 894 clear_jmp_history(state); 895 if (free_self) 896 kfree(state); 897 } 898 899 /* copy verifier state from src to dst growing dst stack space 900 * when necessary to accommodate larger src stack 901 */ 902 static int copy_func_state(struct bpf_func_state *dst, 903 const struct bpf_func_state *src) 904 { 905 int err; 906 907 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 908 false); 909 if (err) 910 return err; 911 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 912 err = copy_reference_state(dst, src); 913 if (err) 914 return err; 915 return copy_stack_state(dst, src); 916 } 917 918 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 919 const struct bpf_verifier_state *src) 920 { 921 struct bpf_func_state *dst; 922 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 923 int i, err; 924 925 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 926 kfree(dst_state->jmp_history); 927 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 928 if (!dst_state->jmp_history) 929 return -ENOMEM; 930 } 931 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 932 dst_state->jmp_history_cnt = src->jmp_history_cnt; 933 934 /* if dst has more stack frames then src frame, free them */ 935 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 936 free_func_state(dst_state->frame[i]); 937 dst_state->frame[i] = NULL; 938 } 939 dst_state->speculative = src->speculative; 940 dst_state->curframe = src->curframe; 941 dst_state->active_spin_lock = src->active_spin_lock; 942 dst_state->branches = src->branches; 943 dst_state->parent = src->parent; 944 dst_state->first_insn_idx = src->first_insn_idx; 945 dst_state->last_insn_idx = src->last_insn_idx; 946 for (i = 0; i <= src->curframe; i++) { 947 dst = dst_state->frame[i]; 948 if (!dst) { 949 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 950 if (!dst) 951 return -ENOMEM; 952 dst_state->frame[i] = dst; 953 } 954 err = copy_func_state(dst, src->frame[i]); 955 if (err) 956 return err; 957 } 958 return 0; 959 } 960 961 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 962 { 963 while (st) { 964 u32 br = --st->branches; 965 966 /* WARN_ON(br > 1) technically makes sense here, 967 * but see comment in push_stack(), hence: 968 */ 969 WARN_ONCE((int)br < 0, 970 "BUG update_branch_counts:branches_to_explore=%d\n", 971 br); 972 if (br) 973 break; 974 st = st->parent; 975 } 976 } 977 978 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 979 int *insn_idx, bool pop_log) 980 { 981 struct bpf_verifier_state *cur = env->cur_state; 982 struct bpf_verifier_stack_elem *elem, *head = env->head; 983 int err; 984 985 if (env->head == NULL) 986 return -ENOENT; 987 988 if (cur) { 989 err = copy_verifier_state(cur, &head->st); 990 if (err) 991 return err; 992 } 993 if (pop_log) 994 bpf_vlog_reset(&env->log, head->log_pos); 995 if (insn_idx) 996 *insn_idx = head->insn_idx; 997 if (prev_insn_idx) 998 *prev_insn_idx = head->prev_insn_idx; 999 elem = head->next; 1000 free_verifier_state(&head->st, false); 1001 kfree(head); 1002 env->head = elem; 1003 env->stack_size--; 1004 return 0; 1005 } 1006 1007 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1008 int insn_idx, int prev_insn_idx, 1009 bool speculative) 1010 { 1011 struct bpf_verifier_state *cur = env->cur_state; 1012 struct bpf_verifier_stack_elem *elem; 1013 int err; 1014 1015 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1016 if (!elem) 1017 goto err; 1018 1019 elem->insn_idx = insn_idx; 1020 elem->prev_insn_idx = prev_insn_idx; 1021 elem->next = env->head; 1022 elem->log_pos = env->log.len_used; 1023 env->head = elem; 1024 env->stack_size++; 1025 err = copy_verifier_state(&elem->st, cur); 1026 if (err) 1027 goto err; 1028 elem->st.speculative |= speculative; 1029 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1030 verbose(env, "The sequence of %d jumps is too complex.\n", 1031 env->stack_size); 1032 goto err; 1033 } 1034 if (elem->st.parent) { 1035 ++elem->st.parent->branches; 1036 /* WARN_ON(branches > 2) technically makes sense here, 1037 * but 1038 * 1. speculative states will bump 'branches' for non-branch 1039 * instructions 1040 * 2. is_state_visited() heuristics may decide not to create 1041 * a new state for a sequence of branches and all such current 1042 * and cloned states will be pointing to a single parent state 1043 * which might have large 'branches' count. 1044 */ 1045 } 1046 return &elem->st; 1047 err: 1048 free_verifier_state(env->cur_state, true); 1049 env->cur_state = NULL; 1050 /* pop all elements and return */ 1051 while (!pop_stack(env, NULL, NULL, false)); 1052 return NULL; 1053 } 1054 1055 #define CALLER_SAVED_REGS 6 1056 static const int caller_saved[CALLER_SAVED_REGS] = { 1057 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1058 }; 1059 1060 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1061 struct bpf_reg_state *reg); 1062 1063 /* This helper doesn't clear reg->id */ 1064 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1065 { 1066 reg->var_off = tnum_const(imm); 1067 reg->smin_value = (s64)imm; 1068 reg->smax_value = (s64)imm; 1069 reg->umin_value = imm; 1070 reg->umax_value = imm; 1071 1072 reg->s32_min_value = (s32)imm; 1073 reg->s32_max_value = (s32)imm; 1074 reg->u32_min_value = (u32)imm; 1075 reg->u32_max_value = (u32)imm; 1076 } 1077 1078 /* Mark the unknown part of a register (variable offset or scalar value) as 1079 * known to have the value @imm. 1080 */ 1081 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1082 { 1083 /* Clear id, off, and union(map_ptr, range) */ 1084 memset(((u8 *)reg) + sizeof(reg->type), 0, 1085 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1086 ___mark_reg_known(reg, imm); 1087 } 1088 1089 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1090 { 1091 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1092 reg->s32_min_value = (s32)imm; 1093 reg->s32_max_value = (s32)imm; 1094 reg->u32_min_value = (u32)imm; 1095 reg->u32_max_value = (u32)imm; 1096 } 1097 1098 /* Mark the 'variable offset' part of a register as zero. This should be 1099 * used only on registers holding a pointer type. 1100 */ 1101 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1102 { 1103 __mark_reg_known(reg, 0); 1104 } 1105 1106 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1107 { 1108 __mark_reg_known(reg, 0); 1109 reg->type = SCALAR_VALUE; 1110 } 1111 1112 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1113 struct bpf_reg_state *regs, u32 regno) 1114 { 1115 if (WARN_ON(regno >= MAX_BPF_REG)) { 1116 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1117 /* Something bad happened, let's kill all regs */ 1118 for (regno = 0; regno < MAX_BPF_REG; regno++) 1119 __mark_reg_not_init(env, regs + regno); 1120 return; 1121 } 1122 __mark_reg_known_zero(regs + regno); 1123 } 1124 1125 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1126 { 1127 switch (reg->type) { 1128 case PTR_TO_MAP_VALUE_OR_NULL: { 1129 const struct bpf_map *map = reg->map_ptr; 1130 1131 if (map->inner_map_meta) { 1132 reg->type = CONST_PTR_TO_MAP; 1133 reg->map_ptr = map->inner_map_meta; 1134 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1135 reg->type = PTR_TO_XDP_SOCK; 1136 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1137 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1138 reg->type = PTR_TO_SOCKET; 1139 } else { 1140 reg->type = PTR_TO_MAP_VALUE; 1141 } 1142 break; 1143 } 1144 case PTR_TO_SOCKET_OR_NULL: 1145 reg->type = PTR_TO_SOCKET; 1146 break; 1147 case PTR_TO_SOCK_COMMON_OR_NULL: 1148 reg->type = PTR_TO_SOCK_COMMON; 1149 break; 1150 case PTR_TO_TCP_SOCK_OR_NULL: 1151 reg->type = PTR_TO_TCP_SOCK; 1152 break; 1153 case PTR_TO_BTF_ID_OR_NULL: 1154 reg->type = PTR_TO_BTF_ID; 1155 break; 1156 case PTR_TO_MEM_OR_NULL: 1157 reg->type = PTR_TO_MEM; 1158 break; 1159 case PTR_TO_RDONLY_BUF_OR_NULL: 1160 reg->type = PTR_TO_RDONLY_BUF; 1161 break; 1162 case PTR_TO_RDWR_BUF_OR_NULL: 1163 reg->type = PTR_TO_RDWR_BUF; 1164 break; 1165 default: 1166 WARN_ONCE(1, "unknown nullable register type"); 1167 } 1168 } 1169 1170 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1171 { 1172 return type_is_pkt_pointer(reg->type); 1173 } 1174 1175 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1176 { 1177 return reg_is_pkt_pointer(reg) || 1178 reg->type == PTR_TO_PACKET_END; 1179 } 1180 1181 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1182 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1183 enum bpf_reg_type which) 1184 { 1185 /* The register can already have a range from prior markings. 1186 * This is fine as long as it hasn't been advanced from its 1187 * origin. 1188 */ 1189 return reg->type == which && 1190 reg->id == 0 && 1191 reg->off == 0 && 1192 tnum_equals_const(reg->var_off, 0); 1193 } 1194 1195 /* Reset the min/max bounds of a register */ 1196 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1197 { 1198 reg->smin_value = S64_MIN; 1199 reg->smax_value = S64_MAX; 1200 reg->umin_value = 0; 1201 reg->umax_value = U64_MAX; 1202 1203 reg->s32_min_value = S32_MIN; 1204 reg->s32_max_value = S32_MAX; 1205 reg->u32_min_value = 0; 1206 reg->u32_max_value = U32_MAX; 1207 } 1208 1209 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1210 { 1211 reg->smin_value = S64_MIN; 1212 reg->smax_value = S64_MAX; 1213 reg->umin_value = 0; 1214 reg->umax_value = U64_MAX; 1215 } 1216 1217 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1218 { 1219 reg->s32_min_value = S32_MIN; 1220 reg->s32_max_value = S32_MAX; 1221 reg->u32_min_value = 0; 1222 reg->u32_max_value = U32_MAX; 1223 } 1224 1225 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1226 { 1227 struct tnum var32_off = tnum_subreg(reg->var_off); 1228 1229 /* min signed is max(sign bit) | min(other bits) */ 1230 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1231 var32_off.value | (var32_off.mask & S32_MIN)); 1232 /* max signed is min(sign bit) | max(other bits) */ 1233 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1234 var32_off.value | (var32_off.mask & S32_MAX)); 1235 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1236 reg->u32_max_value = min(reg->u32_max_value, 1237 (u32)(var32_off.value | var32_off.mask)); 1238 } 1239 1240 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1241 { 1242 /* min signed is max(sign bit) | min(other bits) */ 1243 reg->smin_value = max_t(s64, reg->smin_value, 1244 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1245 /* max signed is min(sign bit) | max(other bits) */ 1246 reg->smax_value = min_t(s64, reg->smax_value, 1247 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1248 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1249 reg->umax_value = min(reg->umax_value, 1250 reg->var_off.value | reg->var_off.mask); 1251 } 1252 1253 static void __update_reg_bounds(struct bpf_reg_state *reg) 1254 { 1255 __update_reg32_bounds(reg); 1256 __update_reg64_bounds(reg); 1257 } 1258 1259 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1260 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1261 { 1262 /* Learn sign from signed bounds. 1263 * If we cannot cross the sign boundary, then signed and unsigned bounds 1264 * are the same, so combine. This works even in the negative case, e.g. 1265 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1266 */ 1267 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1268 reg->s32_min_value = reg->u32_min_value = 1269 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1270 reg->s32_max_value = reg->u32_max_value = 1271 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1272 return; 1273 } 1274 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1275 * boundary, so we must be careful. 1276 */ 1277 if ((s32)reg->u32_max_value >= 0) { 1278 /* Positive. We can't learn anything from the smin, but smax 1279 * is positive, hence safe. 1280 */ 1281 reg->s32_min_value = reg->u32_min_value; 1282 reg->s32_max_value = reg->u32_max_value = 1283 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1284 } else if ((s32)reg->u32_min_value < 0) { 1285 /* Negative. We can't learn anything from the smax, but smin 1286 * is negative, hence safe. 1287 */ 1288 reg->s32_min_value = reg->u32_min_value = 1289 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1290 reg->s32_max_value = reg->u32_max_value; 1291 } 1292 } 1293 1294 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1295 { 1296 /* Learn sign from signed bounds. 1297 * If we cannot cross the sign boundary, then signed and unsigned bounds 1298 * are the same, so combine. This works even in the negative case, e.g. 1299 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1300 */ 1301 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1302 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1303 reg->umin_value); 1304 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1305 reg->umax_value); 1306 return; 1307 } 1308 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1309 * boundary, so we must be careful. 1310 */ 1311 if ((s64)reg->umax_value >= 0) { 1312 /* Positive. We can't learn anything from the smin, but smax 1313 * is positive, hence safe. 1314 */ 1315 reg->smin_value = reg->umin_value; 1316 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1317 reg->umax_value); 1318 } else if ((s64)reg->umin_value < 0) { 1319 /* Negative. We can't learn anything from the smax, but smin 1320 * is negative, hence safe. 1321 */ 1322 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1323 reg->umin_value); 1324 reg->smax_value = reg->umax_value; 1325 } 1326 } 1327 1328 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1329 { 1330 __reg32_deduce_bounds(reg); 1331 __reg64_deduce_bounds(reg); 1332 } 1333 1334 /* Attempts to improve var_off based on unsigned min/max information */ 1335 static void __reg_bound_offset(struct bpf_reg_state *reg) 1336 { 1337 struct tnum var64_off = tnum_intersect(reg->var_off, 1338 tnum_range(reg->umin_value, 1339 reg->umax_value)); 1340 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1341 tnum_range(reg->u32_min_value, 1342 reg->u32_max_value)); 1343 1344 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1345 } 1346 1347 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1348 { 1349 reg->umin_value = reg->u32_min_value; 1350 reg->umax_value = reg->u32_max_value; 1351 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1352 * but must be positive otherwise set to worse case bounds 1353 * and refine later from tnum. 1354 */ 1355 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1356 reg->smax_value = reg->s32_max_value; 1357 else 1358 reg->smax_value = U32_MAX; 1359 if (reg->s32_min_value >= 0) 1360 reg->smin_value = reg->s32_min_value; 1361 else 1362 reg->smin_value = 0; 1363 } 1364 1365 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1366 { 1367 /* special case when 64-bit register has upper 32-bit register 1368 * zeroed. Typically happens after zext or <<32, >>32 sequence 1369 * allowing us to use 32-bit bounds directly, 1370 */ 1371 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1372 __reg_assign_32_into_64(reg); 1373 } else { 1374 /* Otherwise the best we can do is push lower 32bit known and 1375 * unknown bits into register (var_off set from jmp logic) 1376 * then learn as much as possible from the 64-bit tnum 1377 * known and unknown bits. The previous smin/smax bounds are 1378 * invalid here because of jmp32 compare so mark them unknown 1379 * so they do not impact tnum bounds calculation. 1380 */ 1381 __mark_reg64_unbounded(reg); 1382 __update_reg_bounds(reg); 1383 } 1384 1385 /* Intersecting with the old var_off might have improved our bounds 1386 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1387 * then new var_off is (0; 0x7f...fc) which improves our umax. 1388 */ 1389 __reg_deduce_bounds(reg); 1390 __reg_bound_offset(reg); 1391 __update_reg_bounds(reg); 1392 } 1393 1394 static bool __reg64_bound_s32(s64 a) 1395 { 1396 return a > S32_MIN && a < S32_MAX; 1397 } 1398 1399 static bool __reg64_bound_u32(u64 a) 1400 { 1401 if (a > U32_MIN && a < U32_MAX) 1402 return true; 1403 return false; 1404 } 1405 1406 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1407 { 1408 __mark_reg32_unbounded(reg); 1409 1410 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1411 reg->s32_min_value = (s32)reg->smin_value; 1412 reg->s32_max_value = (s32)reg->smax_value; 1413 } 1414 if (__reg64_bound_u32(reg->umin_value)) 1415 reg->u32_min_value = (u32)reg->umin_value; 1416 if (__reg64_bound_u32(reg->umax_value)) 1417 reg->u32_max_value = (u32)reg->umax_value; 1418 1419 /* Intersecting with the old var_off might have improved our bounds 1420 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1421 * then new var_off is (0; 0x7f...fc) which improves our umax. 1422 */ 1423 __reg_deduce_bounds(reg); 1424 __reg_bound_offset(reg); 1425 __update_reg_bounds(reg); 1426 } 1427 1428 /* Mark a register as having a completely unknown (scalar) value. */ 1429 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1430 struct bpf_reg_state *reg) 1431 { 1432 /* 1433 * Clear type, id, off, and union(map_ptr, range) and 1434 * padding between 'type' and union 1435 */ 1436 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1437 reg->type = SCALAR_VALUE; 1438 reg->var_off = tnum_unknown; 1439 reg->frameno = 0; 1440 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1441 __mark_reg_unbounded(reg); 1442 } 1443 1444 static void mark_reg_unknown(struct bpf_verifier_env *env, 1445 struct bpf_reg_state *regs, u32 regno) 1446 { 1447 if (WARN_ON(regno >= MAX_BPF_REG)) { 1448 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1449 /* Something bad happened, let's kill all regs except FP */ 1450 for (regno = 0; regno < BPF_REG_FP; regno++) 1451 __mark_reg_not_init(env, regs + regno); 1452 return; 1453 } 1454 __mark_reg_unknown(env, regs + regno); 1455 } 1456 1457 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1458 struct bpf_reg_state *reg) 1459 { 1460 __mark_reg_unknown(env, reg); 1461 reg->type = NOT_INIT; 1462 } 1463 1464 static void mark_reg_not_init(struct bpf_verifier_env *env, 1465 struct bpf_reg_state *regs, u32 regno) 1466 { 1467 if (WARN_ON(regno >= MAX_BPF_REG)) { 1468 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1469 /* Something bad happened, let's kill all regs except FP */ 1470 for (regno = 0; regno < BPF_REG_FP; regno++) 1471 __mark_reg_not_init(env, regs + regno); 1472 return; 1473 } 1474 __mark_reg_not_init(env, regs + regno); 1475 } 1476 1477 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1478 struct bpf_reg_state *regs, u32 regno, 1479 enum bpf_reg_type reg_type, 1480 struct btf *btf, u32 btf_id) 1481 { 1482 if (reg_type == SCALAR_VALUE) { 1483 mark_reg_unknown(env, regs, regno); 1484 return; 1485 } 1486 mark_reg_known_zero(env, regs, regno); 1487 regs[regno].type = PTR_TO_BTF_ID; 1488 regs[regno].btf = btf; 1489 regs[regno].btf_id = btf_id; 1490 } 1491 1492 #define DEF_NOT_SUBREG (0) 1493 static void init_reg_state(struct bpf_verifier_env *env, 1494 struct bpf_func_state *state) 1495 { 1496 struct bpf_reg_state *regs = state->regs; 1497 int i; 1498 1499 for (i = 0; i < MAX_BPF_REG; i++) { 1500 mark_reg_not_init(env, regs, i); 1501 regs[i].live = REG_LIVE_NONE; 1502 regs[i].parent = NULL; 1503 regs[i].subreg_def = DEF_NOT_SUBREG; 1504 } 1505 1506 /* frame pointer */ 1507 regs[BPF_REG_FP].type = PTR_TO_STACK; 1508 mark_reg_known_zero(env, regs, BPF_REG_FP); 1509 regs[BPF_REG_FP].frameno = state->frameno; 1510 } 1511 1512 #define BPF_MAIN_FUNC (-1) 1513 static void init_func_state(struct bpf_verifier_env *env, 1514 struct bpf_func_state *state, 1515 int callsite, int frameno, int subprogno) 1516 { 1517 state->callsite = callsite; 1518 state->frameno = frameno; 1519 state->subprogno = subprogno; 1520 init_reg_state(env, state); 1521 } 1522 1523 enum reg_arg_type { 1524 SRC_OP, /* register is used as source operand */ 1525 DST_OP, /* register is used as destination operand */ 1526 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1527 }; 1528 1529 static int cmp_subprogs(const void *a, const void *b) 1530 { 1531 return ((struct bpf_subprog_info *)a)->start - 1532 ((struct bpf_subprog_info *)b)->start; 1533 } 1534 1535 static int find_subprog(struct bpf_verifier_env *env, int off) 1536 { 1537 struct bpf_subprog_info *p; 1538 1539 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1540 sizeof(env->subprog_info[0]), cmp_subprogs); 1541 if (!p) 1542 return -ENOENT; 1543 return p - env->subprog_info; 1544 1545 } 1546 1547 static int add_subprog(struct bpf_verifier_env *env, int off) 1548 { 1549 int insn_cnt = env->prog->len; 1550 int ret; 1551 1552 if (off >= insn_cnt || off < 0) { 1553 verbose(env, "call to invalid destination\n"); 1554 return -EINVAL; 1555 } 1556 ret = find_subprog(env, off); 1557 if (ret >= 0) 1558 return ret; 1559 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1560 verbose(env, "too many subprograms\n"); 1561 return -E2BIG; 1562 } 1563 /* determine subprog starts. The end is one before the next starts */ 1564 env->subprog_info[env->subprog_cnt++].start = off; 1565 sort(env->subprog_info, env->subprog_cnt, 1566 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1567 return env->subprog_cnt - 1; 1568 } 1569 1570 struct bpf_kfunc_desc { 1571 struct btf_func_model func_model; 1572 u32 func_id; 1573 s32 imm; 1574 }; 1575 1576 #define MAX_KFUNC_DESCS 256 1577 struct bpf_kfunc_desc_tab { 1578 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1579 u32 nr_descs; 1580 }; 1581 1582 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1583 { 1584 const struct bpf_kfunc_desc *d0 = a; 1585 const struct bpf_kfunc_desc *d1 = b; 1586 1587 /* func_id is not greater than BTF_MAX_TYPE */ 1588 return d0->func_id - d1->func_id; 1589 } 1590 1591 static const struct bpf_kfunc_desc * 1592 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1593 { 1594 struct bpf_kfunc_desc desc = { 1595 .func_id = func_id, 1596 }; 1597 struct bpf_kfunc_desc_tab *tab; 1598 1599 tab = prog->aux->kfunc_tab; 1600 return bsearch(&desc, tab->descs, tab->nr_descs, 1601 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1602 } 1603 1604 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1605 { 1606 const struct btf_type *func, *func_proto; 1607 struct bpf_kfunc_desc_tab *tab; 1608 struct bpf_prog_aux *prog_aux; 1609 struct bpf_kfunc_desc *desc; 1610 const char *func_name; 1611 unsigned long addr; 1612 int err; 1613 1614 prog_aux = env->prog->aux; 1615 tab = prog_aux->kfunc_tab; 1616 if (!tab) { 1617 if (!btf_vmlinux) { 1618 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1619 return -ENOTSUPP; 1620 } 1621 1622 if (!env->prog->jit_requested) { 1623 verbose(env, "JIT is required for calling kernel function\n"); 1624 return -ENOTSUPP; 1625 } 1626 1627 if (!bpf_jit_supports_kfunc_call()) { 1628 verbose(env, "JIT does not support calling kernel function\n"); 1629 return -ENOTSUPP; 1630 } 1631 1632 if (!env->prog->gpl_compatible) { 1633 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1634 return -EINVAL; 1635 } 1636 1637 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1638 if (!tab) 1639 return -ENOMEM; 1640 prog_aux->kfunc_tab = tab; 1641 } 1642 1643 if (find_kfunc_desc(env->prog, func_id)) 1644 return 0; 1645 1646 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1647 verbose(env, "too many different kernel function calls\n"); 1648 return -E2BIG; 1649 } 1650 1651 func = btf_type_by_id(btf_vmlinux, func_id); 1652 if (!func || !btf_type_is_func(func)) { 1653 verbose(env, "kernel btf_id %u is not a function\n", 1654 func_id); 1655 return -EINVAL; 1656 } 1657 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1658 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1659 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1660 func_id); 1661 return -EINVAL; 1662 } 1663 1664 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1665 addr = kallsyms_lookup_name(func_name); 1666 if (!addr) { 1667 verbose(env, "cannot find address for kernel function %s\n", 1668 func_name); 1669 return -EINVAL; 1670 } 1671 1672 desc = &tab->descs[tab->nr_descs++]; 1673 desc->func_id = func_id; 1674 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base; 1675 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1676 func_proto, func_name, 1677 &desc->func_model); 1678 if (!err) 1679 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1680 kfunc_desc_cmp_by_id, NULL); 1681 return err; 1682 } 1683 1684 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1685 { 1686 const struct bpf_kfunc_desc *d0 = a; 1687 const struct bpf_kfunc_desc *d1 = b; 1688 1689 if (d0->imm > d1->imm) 1690 return 1; 1691 else if (d0->imm < d1->imm) 1692 return -1; 1693 return 0; 1694 } 1695 1696 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1697 { 1698 struct bpf_kfunc_desc_tab *tab; 1699 1700 tab = prog->aux->kfunc_tab; 1701 if (!tab) 1702 return; 1703 1704 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1705 kfunc_desc_cmp_by_imm, NULL); 1706 } 1707 1708 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1709 { 1710 return !!prog->aux->kfunc_tab; 1711 } 1712 1713 const struct btf_func_model * 1714 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1715 const struct bpf_insn *insn) 1716 { 1717 const struct bpf_kfunc_desc desc = { 1718 .imm = insn->imm, 1719 }; 1720 const struct bpf_kfunc_desc *res; 1721 struct bpf_kfunc_desc_tab *tab; 1722 1723 tab = prog->aux->kfunc_tab; 1724 res = bsearch(&desc, tab->descs, tab->nr_descs, 1725 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1726 1727 return res ? &res->func_model : NULL; 1728 } 1729 1730 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1731 { 1732 struct bpf_subprog_info *subprog = env->subprog_info; 1733 struct bpf_insn *insn = env->prog->insnsi; 1734 int i, ret, insn_cnt = env->prog->len; 1735 1736 /* Add entry function. */ 1737 ret = add_subprog(env, 0); 1738 if (ret) 1739 return ret; 1740 1741 for (i = 0; i < insn_cnt; i++, insn++) { 1742 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1743 !bpf_pseudo_kfunc_call(insn)) 1744 continue; 1745 1746 if (!env->bpf_capable) { 1747 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1748 return -EPERM; 1749 } 1750 1751 if (bpf_pseudo_func(insn)) { 1752 ret = add_subprog(env, i + insn->imm + 1); 1753 if (ret >= 0) 1754 /* remember subprog */ 1755 insn[1].imm = ret; 1756 } else if (bpf_pseudo_call(insn)) { 1757 ret = add_subprog(env, i + insn->imm + 1); 1758 } else { 1759 ret = add_kfunc_call(env, insn->imm); 1760 } 1761 1762 if (ret < 0) 1763 return ret; 1764 } 1765 1766 /* Add a fake 'exit' subprog which could simplify subprog iteration 1767 * logic. 'subprog_cnt' should not be increased. 1768 */ 1769 subprog[env->subprog_cnt].start = insn_cnt; 1770 1771 if (env->log.level & BPF_LOG_LEVEL2) 1772 for (i = 0; i < env->subprog_cnt; i++) 1773 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1774 1775 return 0; 1776 } 1777 1778 static int check_subprogs(struct bpf_verifier_env *env) 1779 { 1780 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1781 struct bpf_subprog_info *subprog = env->subprog_info; 1782 struct bpf_insn *insn = env->prog->insnsi; 1783 int insn_cnt = env->prog->len; 1784 1785 /* now check that all jumps are within the same subprog */ 1786 subprog_start = subprog[cur_subprog].start; 1787 subprog_end = subprog[cur_subprog + 1].start; 1788 for (i = 0; i < insn_cnt; i++) { 1789 u8 code = insn[i].code; 1790 1791 if (code == (BPF_JMP | BPF_CALL) && 1792 insn[i].imm == BPF_FUNC_tail_call && 1793 insn[i].src_reg != BPF_PSEUDO_CALL) 1794 subprog[cur_subprog].has_tail_call = true; 1795 if (BPF_CLASS(code) == BPF_LD && 1796 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1797 subprog[cur_subprog].has_ld_abs = true; 1798 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1799 goto next; 1800 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1801 goto next; 1802 off = i + insn[i].off + 1; 1803 if (off < subprog_start || off >= subprog_end) { 1804 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1805 return -EINVAL; 1806 } 1807 next: 1808 if (i == subprog_end - 1) { 1809 /* to avoid fall-through from one subprog into another 1810 * the last insn of the subprog should be either exit 1811 * or unconditional jump back 1812 */ 1813 if (code != (BPF_JMP | BPF_EXIT) && 1814 code != (BPF_JMP | BPF_JA)) { 1815 verbose(env, "last insn is not an exit or jmp\n"); 1816 return -EINVAL; 1817 } 1818 subprog_start = subprog_end; 1819 cur_subprog++; 1820 if (cur_subprog < env->subprog_cnt) 1821 subprog_end = subprog[cur_subprog + 1].start; 1822 } 1823 } 1824 return 0; 1825 } 1826 1827 /* Parentage chain of this register (or stack slot) should take care of all 1828 * issues like callee-saved registers, stack slot allocation time, etc. 1829 */ 1830 static int mark_reg_read(struct bpf_verifier_env *env, 1831 const struct bpf_reg_state *state, 1832 struct bpf_reg_state *parent, u8 flag) 1833 { 1834 bool writes = parent == state->parent; /* Observe write marks */ 1835 int cnt = 0; 1836 1837 while (parent) { 1838 /* if read wasn't screened by an earlier write ... */ 1839 if (writes && state->live & REG_LIVE_WRITTEN) 1840 break; 1841 if (parent->live & REG_LIVE_DONE) { 1842 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1843 reg_type_str[parent->type], 1844 parent->var_off.value, parent->off); 1845 return -EFAULT; 1846 } 1847 /* The first condition is more likely to be true than the 1848 * second, checked it first. 1849 */ 1850 if ((parent->live & REG_LIVE_READ) == flag || 1851 parent->live & REG_LIVE_READ64) 1852 /* The parentage chain never changes and 1853 * this parent was already marked as LIVE_READ. 1854 * There is no need to keep walking the chain again and 1855 * keep re-marking all parents as LIVE_READ. 1856 * This case happens when the same register is read 1857 * multiple times without writes into it in-between. 1858 * Also, if parent has the stronger REG_LIVE_READ64 set, 1859 * then no need to set the weak REG_LIVE_READ32. 1860 */ 1861 break; 1862 /* ... then we depend on parent's value */ 1863 parent->live |= flag; 1864 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1865 if (flag == REG_LIVE_READ64) 1866 parent->live &= ~REG_LIVE_READ32; 1867 state = parent; 1868 parent = state->parent; 1869 writes = true; 1870 cnt++; 1871 } 1872 1873 if (env->longest_mark_read_walk < cnt) 1874 env->longest_mark_read_walk = cnt; 1875 return 0; 1876 } 1877 1878 /* This function is supposed to be used by the following 32-bit optimization 1879 * code only. It returns TRUE if the source or destination register operates 1880 * on 64-bit, otherwise return FALSE. 1881 */ 1882 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1883 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1884 { 1885 u8 code, class, op; 1886 1887 code = insn->code; 1888 class = BPF_CLASS(code); 1889 op = BPF_OP(code); 1890 if (class == BPF_JMP) { 1891 /* BPF_EXIT for "main" will reach here. Return TRUE 1892 * conservatively. 1893 */ 1894 if (op == BPF_EXIT) 1895 return true; 1896 if (op == BPF_CALL) { 1897 /* BPF to BPF call will reach here because of marking 1898 * caller saved clobber with DST_OP_NO_MARK for which we 1899 * don't care the register def because they are anyway 1900 * marked as NOT_INIT already. 1901 */ 1902 if (insn->src_reg == BPF_PSEUDO_CALL) 1903 return false; 1904 /* Helper call will reach here because of arg type 1905 * check, conservatively return TRUE. 1906 */ 1907 if (t == SRC_OP) 1908 return true; 1909 1910 return false; 1911 } 1912 } 1913 1914 if (class == BPF_ALU64 || class == BPF_JMP || 1915 /* BPF_END always use BPF_ALU class. */ 1916 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1917 return true; 1918 1919 if (class == BPF_ALU || class == BPF_JMP32) 1920 return false; 1921 1922 if (class == BPF_LDX) { 1923 if (t != SRC_OP) 1924 return BPF_SIZE(code) == BPF_DW; 1925 /* LDX source must be ptr. */ 1926 return true; 1927 } 1928 1929 if (class == BPF_STX) { 1930 /* BPF_STX (including atomic variants) has multiple source 1931 * operands, one of which is a ptr. Check whether the caller is 1932 * asking about it. 1933 */ 1934 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1935 return true; 1936 return BPF_SIZE(code) == BPF_DW; 1937 } 1938 1939 if (class == BPF_LD) { 1940 u8 mode = BPF_MODE(code); 1941 1942 /* LD_IMM64 */ 1943 if (mode == BPF_IMM) 1944 return true; 1945 1946 /* Both LD_IND and LD_ABS return 32-bit data. */ 1947 if (t != SRC_OP) 1948 return false; 1949 1950 /* Implicit ctx ptr. */ 1951 if (regno == BPF_REG_6) 1952 return true; 1953 1954 /* Explicit source could be any width. */ 1955 return true; 1956 } 1957 1958 if (class == BPF_ST) 1959 /* The only source register for BPF_ST is a ptr. */ 1960 return true; 1961 1962 /* Conservatively return true at default. */ 1963 return true; 1964 } 1965 1966 /* Return the regno defined by the insn, or -1. */ 1967 static int insn_def_regno(const struct bpf_insn *insn) 1968 { 1969 switch (BPF_CLASS(insn->code)) { 1970 case BPF_JMP: 1971 case BPF_JMP32: 1972 case BPF_ST: 1973 return -1; 1974 case BPF_STX: 1975 if (BPF_MODE(insn->code) == BPF_ATOMIC && 1976 (insn->imm & BPF_FETCH)) { 1977 if (insn->imm == BPF_CMPXCHG) 1978 return BPF_REG_0; 1979 else 1980 return insn->src_reg; 1981 } else { 1982 return -1; 1983 } 1984 default: 1985 return insn->dst_reg; 1986 } 1987 } 1988 1989 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1990 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1991 { 1992 int dst_reg = insn_def_regno(insn); 1993 1994 if (dst_reg == -1) 1995 return false; 1996 1997 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 1998 } 1999 2000 static void mark_insn_zext(struct bpf_verifier_env *env, 2001 struct bpf_reg_state *reg) 2002 { 2003 s32 def_idx = reg->subreg_def; 2004 2005 if (def_idx == DEF_NOT_SUBREG) 2006 return; 2007 2008 env->insn_aux_data[def_idx - 1].zext_dst = true; 2009 /* The dst will be zero extended, so won't be sub-register anymore. */ 2010 reg->subreg_def = DEF_NOT_SUBREG; 2011 } 2012 2013 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2014 enum reg_arg_type t) 2015 { 2016 struct bpf_verifier_state *vstate = env->cur_state; 2017 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2018 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2019 struct bpf_reg_state *reg, *regs = state->regs; 2020 bool rw64; 2021 2022 if (regno >= MAX_BPF_REG) { 2023 verbose(env, "R%d is invalid\n", regno); 2024 return -EINVAL; 2025 } 2026 2027 reg = ®s[regno]; 2028 rw64 = is_reg64(env, insn, regno, reg, t); 2029 if (t == SRC_OP) { 2030 /* check whether register used as source operand can be read */ 2031 if (reg->type == NOT_INIT) { 2032 verbose(env, "R%d !read_ok\n", regno); 2033 return -EACCES; 2034 } 2035 /* We don't need to worry about FP liveness because it's read-only */ 2036 if (regno == BPF_REG_FP) 2037 return 0; 2038 2039 if (rw64) 2040 mark_insn_zext(env, reg); 2041 2042 return mark_reg_read(env, reg, reg->parent, 2043 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2044 } else { 2045 /* check whether register used as dest operand can be written to */ 2046 if (regno == BPF_REG_FP) { 2047 verbose(env, "frame pointer is read only\n"); 2048 return -EACCES; 2049 } 2050 reg->live |= REG_LIVE_WRITTEN; 2051 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2052 if (t == DST_OP) 2053 mark_reg_unknown(env, regs, regno); 2054 } 2055 return 0; 2056 } 2057 2058 /* for any branch, call, exit record the history of jmps in the given state */ 2059 static int push_jmp_history(struct bpf_verifier_env *env, 2060 struct bpf_verifier_state *cur) 2061 { 2062 u32 cnt = cur->jmp_history_cnt; 2063 struct bpf_idx_pair *p; 2064 2065 cnt++; 2066 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2067 if (!p) 2068 return -ENOMEM; 2069 p[cnt - 1].idx = env->insn_idx; 2070 p[cnt - 1].prev_idx = env->prev_insn_idx; 2071 cur->jmp_history = p; 2072 cur->jmp_history_cnt = cnt; 2073 return 0; 2074 } 2075 2076 /* Backtrack one insn at a time. If idx is not at the top of recorded 2077 * history then previous instruction came from straight line execution. 2078 */ 2079 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2080 u32 *history) 2081 { 2082 u32 cnt = *history; 2083 2084 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2085 i = st->jmp_history[cnt - 1].prev_idx; 2086 (*history)--; 2087 } else { 2088 i--; 2089 } 2090 return i; 2091 } 2092 2093 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2094 { 2095 const struct btf_type *func; 2096 2097 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2098 return NULL; 2099 2100 func = btf_type_by_id(btf_vmlinux, insn->imm); 2101 return btf_name_by_offset(btf_vmlinux, func->name_off); 2102 } 2103 2104 /* For given verifier state backtrack_insn() is called from the last insn to 2105 * the first insn. Its purpose is to compute a bitmask of registers and 2106 * stack slots that needs precision in the parent verifier state. 2107 */ 2108 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2109 u32 *reg_mask, u64 *stack_mask) 2110 { 2111 const struct bpf_insn_cbs cbs = { 2112 .cb_call = disasm_kfunc_name, 2113 .cb_print = verbose, 2114 .private_data = env, 2115 }; 2116 struct bpf_insn *insn = env->prog->insnsi + idx; 2117 u8 class = BPF_CLASS(insn->code); 2118 u8 opcode = BPF_OP(insn->code); 2119 u8 mode = BPF_MODE(insn->code); 2120 u32 dreg = 1u << insn->dst_reg; 2121 u32 sreg = 1u << insn->src_reg; 2122 u32 spi; 2123 2124 if (insn->code == 0) 2125 return 0; 2126 if (env->log.level & BPF_LOG_LEVEL) { 2127 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2128 verbose(env, "%d: ", idx); 2129 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2130 } 2131 2132 if (class == BPF_ALU || class == BPF_ALU64) { 2133 if (!(*reg_mask & dreg)) 2134 return 0; 2135 if (opcode == BPF_MOV) { 2136 if (BPF_SRC(insn->code) == BPF_X) { 2137 /* dreg = sreg 2138 * dreg needs precision after this insn 2139 * sreg needs precision before this insn 2140 */ 2141 *reg_mask &= ~dreg; 2142 *reg_mask |= sreg; 2143 } else { 2144 /* dreg = K 2145 * dreg needs precision after this insn. 2146 * Corresponding register is already marked 2147 * as precise=true in this verifier state. 2148 * No further markings in parent are necessary 2149 */ 2150 *reg_mask &= ~dreg; 2151 } 2152 } else { 2153 if (BPF_SRC(insn->code) == BPF_X) { 2154 /* dreg += sreg 2155 * both dreg and sreg need precision 2156 * before this insn 2157 */ 2158 *reg_mask |= sreg; 2159 } /* else dreg += K 2160 * dreg still needs precision before this insn 2161 */ 2162 } 2163 } else if (class == BPF_LDX) { 2164 if (!(*reg_mask & dreg)) 2165 return 0; 2166 *reg_mask &= ~dreg; 2167 2168 /* scalars can only be spilled into stack w/o losing precision. 2169 * Load from any other memory can be zero extended. 2170 * The desire to keep that precision is already indicated 2171 * by 'precise' mark in corresponding register of this state. 2172 * No further tracking necessary. 2173 */ 2174 if (insn->src_reg != BPF_REG_FP) 2175 return 0; 2176 if (BPF_SIZE(insn->code) != BPF_DW) 2177 return 0; 2178 2179 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2180 * that [fp - off] slot contains scalar that needs to be 2181 * tracked with precision 2182 */ 2183 spi = (-insn->off - 1) / BPF_REG_SIZE; 2184 if (spi >= 64) { 2185 verbose(env, "BUG spi %d\n", spi); 2186 WARN_ONCE(1, "verifier backtracking bug"); 2187 return -EFAULT; 2188 } 2189 *stack_mask |= 1ull << spi; 2190 } else if (class == BPF_STX || class == BPF_ST) { 2191 if (*reg_mask & dreg) 2192 /* stx & st shouldn't be using _scalar_ dst_reg 2193 * to access memory. It means backtracking 2194 * encountered a case of pointer subtraction. 2195 */ 2196 return -ENOTSUPP; 2197 /* scalars can only be spilled into stack */ 2198 if (insn->dst_reg != BPF_REG_FP) 2199 return 0; 2200 if (BPF_SIZE(insn->code) != BPF_DW) 2201 return 0; 2202 spi = (-insn->off - 1) / BPF_REG_SIZE; 2203 if (spi >= 64) { 2204 verbose(env, "BUG spi %d\n", spi); 2205 WARN_ONCE(1, "verifier backtracking bug"); 2206 return -EFAULT; 2207 } 2208 if (!(*stack_mask & (1ull << spi))) 2209 return 0; 2210 *stack_mask &= ~(1ull << spi); 2211 if (class == BPF_STX) 2212 *reg_mask |= sreg; 2213 } else if (class == BPF_JMP || class == BPF_JMP32) { 2214 if (opcode == BPF_CALL) { 2215 if (insn->src_reg == BPF_PSEUDO_CALL) 2216 return -ENOTSUPP; 2217 /* regular helper call sets R0 */ 2218 *reg_mask &= ~1; 2219 if (*reg_mask & 0x3f) { 2220 /* if backtracing was looking for registers R1-R5 2221 * they should have been found already. 2222 */ 2223 verbose(env, "BUG regs %x\n", *reg_mask); 2224 WARN_ONCE(1, "verifier backtracking bug"); 2225 return -EFAULT; 2226 } 2227 } else if (opcode == BPF_EXIT) { 2228 return -ENOTSUPP; 2229 } 2230 } else if (class == BPF_LD) { 2231 if (!(*reg_mask & dreg)) 2232 return 0; 2233 *reg_mask &= ~dreg; 2234 /* It's ld_imm64 or ld_abs or ld_ind. 2235 * For ld_imm64 no further tracking of precision 2236 * into parent is necessary 2237 */ 2238 if (mode == BPF_IND || mode == BPF_ABS) 2239 /* to be analyzed */ 2240 return -ENOTSUPP; 2241 } 2242 return 0; 2243 } 2244 2245 /* the scalar precision tracking algorithm: 2246 * . at the start all registers have precise=false. 2247 * . scalar ranges are tracked as normal through alu and jmp insns. 2248 * . once precise value of the scalar register is used in: 2249 * . ptr + scalar alu 2250 * . if (scalar cond K|scalar) 2251 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2252 * backtrack through the verifier states and mark all registers and 2253 * stack slots with spilled constants that these scalar regisers 2254 * should be precise. 2255 * . during state pruning two registers (or spilled stack slots) 2256 * are equivalent if both are not precise. 2257 * 2258 * Note the verifier cannot simply walk register parentage chain, 2259 * since many different registers and stack slots could have been 2260 * used to compute single precise scalar. 2261 * 2262 * The approach of starting with precise=true for all registers and then 2263 * backtrack to mark a register as not precise when the verifier detects 2264 * that program doesn't care about specific value (e.g., when helper 2265 * takes register as ARG_ANYTHING parameter) is not safe. 2266 * 2267 * It's ok to walk single parentage chain of the verifier states. 2268 * It's possible that this backtracking will go all the way till 1st insn. 2269 * All other branches will be explored for needing precision later. 2270 * 2271 * The backtracking needs to deal with cases like: 2272 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2273 * r9 -= r8 2274 * r5 = r9 2275 * if r5 > 0x79f goto pc+7 2276 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2277 * r5 += 1 2278 * ... 2279 * call bpf_perf_event_output#25 2280 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2281 * 2282 * and this case: 2283 * r6 = 1 2284 * call foo // uses callee's r6 inside to compute r0 2285 * r0 += r6 2286 * if r0 == 0 goto 2287 * 2288 * to track above reg_mask/stack_mask needs to be independent for each frame. 2289 * 2290 * Also if parent's curframe > frame where backtracking started, 2291 * the verifier need to mark registers in both frames, otherwise callees 2292 * may incorrectly prune callers. This is similar to 2293 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2294 * 2295 * For now backtracking falls back into conservative marking. 2296 */ 2297 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2298 struct bpf_verifier_state *st) 2299 { 2300 struct bpf_func_state *func; 2301 struct bpf_reg_state *reg; 2302 int i, j; 2303 2304 /* big hammer: mark all scalars precise in this path. 2305 * pop_stack may still get !precise scalars. 2306 */ 2307 for (; st; st = st->parent) 2308 for (i = 0; i <= st->curframe; i++) { 2309 func = st->frame[i]; 2310 for (j = 0; j < BPF_REG_FP; j++) { 2311 reg = &func->regs[j]; 2312 if (reg->type != SCALAR_VALUE) 2313 continue; 2314 reg->precise = true; 2315 } 2316 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2317 if (func->stack[j].slot_type[0] != STACK_SPILL) 2318 continue; 2319 reg = &func->stack[j].spilled_ptr; 2320 if (reg->type != SCALAR_VALUE) 2321 continue; 2322 reg->precise = true; 2323 } 2324 } 2325 } 2326 2327 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2328 int spi) 2329 { 2330 struct bpf_verifier_state *st = env->cur_state; 2331 int first_idx = st->first_insn_idx; 2332 int last_idx = env->insn_idx; 2333 struct bpf_func_state *func; 2334 struct bpf_reg_state *reg; 2335 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2336 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2337 bool skip_first = true; 2338 bool new_marks = false; 2339 int i, err; 2340 2341 if (!env->bpf_capable) 2342 return 0; 2343 2344 func = st->frame[st->curframe]; 2345 if (regno >= 0) { 2346 reg = &func->regs[regno]; 2347 if (reg->type != SCALAR_VALUE) { 2348 WARN_ONCE(1, "backtracing misuse"); 2349 return -EFAULT; 2350 } 2351 if (!reg->precise) 2352 new_marks = true; 2353 else 2354 reg_mask = 0; 2355 reg->precise = true; 2356 } 2357 2358 while (spi >= 0) { 2359 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2360 stack_mask = 0; 2361 break; 2362 } 2363 reg = &func->stack[spi].spilled_ptr; 2364 if (reg->type != SCALAR_VALUE) { 2365 stack_mask = 0; 2366 break; 2367 } 2368 if (!reg->precise) 2369 new_marks = true; 2370 else 2371 stack_mask = 0; 2372 reg->precise = true; 2373 break; 2374 } 2375 2376 if (!new_marks) 2377 return 0; 2378 if (!reg_mask && !stack_mask) 2379 return 0; 2380 for (;;) { 2381 DECLARE_BITMAP(mask, 64); 2382 u32 history = st->jmp_history_cnt; 2383 2384 if (env->log.level & BPF_LOG_LEVEL) 2385 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2386 for (i = last_idx;;) { 2387 if (skip_first) { 2388 err = 0; 2389 skip_first = false; 2390 } else { 2391 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2392 } 2393 if (err == -ENOTSUPP) { 2394 mark_all_scalars_precise(env, st); 2395 return 0; 2396 } else if (err) { 2397 return err; 2398 } 2399 if (!reg_mask && !stack_mask) 2400 /* Found assignment(s) into tracked register in this state. 2401 * Since this state is already marked, just return. 2402 * Nothing to be tracked further in the parent state. 2403 */ 2404 return 0; 2405 if (i == first_idx) 2406 break; 2407 i = get_prev_insn_idx(st, i, &history); 2408 if (i >= env->prog->len) { 2409 /* This can happen if backtracking reached insn 0 2410 * and there are still reg_mask or stack_mask 2411 * to backtrack. 2412 * It means the backtracking missed the spot where 2413 * particular register was initialized with a constant. 2414 */ 2415 verbose(env, "BUG backtracking idx %d\n", i); 2416 WARN_ONCE(1, "verifier backtracking bug"); 2417 return -EFAULT; 2418 } 2419 } 2420 st = st->parent; 2421 if (!st) 2422 break; 2423 2424 new_marks = false; 2425 func = st->frame[st->curframe]; 2426 bitmap_from_u64(mask, reg_mask); 2427 for_each_set_bit(i, mask, 32) { 2428 reg = &func->regs[i]; 2429 if (reg->type != SCALAR_VALUE) { 2430 reg_mask &= ~(1u << i); 2431 continue; 2432 } 2433 if (!reg->precise) 2434 new_marks = true; 2435 reg->precise = true; 2436 } 2437 2438 bitmap_from_u64(mask, stack_mask); 2439 for_each_set_bit(i, mask, 64) { 2440 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2441 /* the sequence of instructions: 2442 * 2: (bf) r3 = r10 2443 * 3: (7b) *(u64 *)(r3 -8) = r0 2444 * 4: (79) r4 = *(u64 *)(r10 -8) 2445 * doesn't contain jmps. It's backtracked 2446 * as a single block. 2447 * During backtracking insn 3 is not recognized as 2448 * stack access, so at the end of backtracking 2449 * stack slot fp-8 is still marked in stack_mask. 2450 * However the parent state may not have accessed 2451 * fp-8 and it's "unallocated" stack space. 2452 * In such case fallback to conservative. 2453 */ 2454 mark_all_scalars_precise(env, st); 2455 return 0; 2456 } 2457 2458 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2459 stack_mask &= ~(1ull << i); 2460 continue; 2461 } 2462 reg = &func->stack[i].spilled_ptr; 2463 if (reg->type != SCALAR_VALUE) { 2464 stack_mask &= ~(1ull << i); 2465 continue; 2466 } 2467 if (!reg->precise) 2468 new_marks = true; 2469 reg->precise = true; 2470 } 2471 if (env->log.level & BPF_LOG_LEVEL) { 2472 print_verifier_state(env, func); 2473 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2474 new_marks ? "didn't have" : "already had", 2475 reg_mask, stack_mask); 2476 } 2477 2478 if (!reg_mask && !stack_mask) 2479 break; 2480 if (!new_marks) 2481 break; 2482 2483 last_idx = st->last_insn_idx; 2484 first_idx = st->first_insn_idx; 2485 } 2486 return 0; 2487 } 2488 2489 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2490 { 2491 return __mark_chain_precision(env, regno, -1); 2492 } 2493 2494 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2495 { 2496 return __mark_chain_precision(env, -1, spi); 2497 } 2498 2499 static bool is_spillable_regtype(enum bpf_reg_type type) 2500 { 2501 switch (type) { 2502 case PTR_TO_MAP_VALUE: 2503 case PTR_TO_MAP_VALUE_OR_NULL: 2504 case PTR_TO_STACK: 2505 case PTR_TO_CTX: 2506 case PTR_TO_PACKET: 2507 case PTR_TO_PACKET_META: 2508 case PTR_TO_PACKET_END: 2509 case PTR_TO_FLOW_KEYS: 2510 case CONST_PTR_TO_MAP: 2511 case PTR_TO_SOCKET: 2512 case PTR_TO_SOCKET_OR_NULL: 2513 case PTR_TO_SOCK_COMMON: 2514 case PTR_TO_SOCK_COMMON_OR_NULL: 2515 case PTR_TO_TCP_SOCK: 2516 case PTR_TO_TCP_SOCK_OR_NULL: 2517 case PTR_TO_XDP_SOCK: 2518 case PTR_TO_BTF_ID: 2519 case PTR_TO_BTF_ID_OR_NULL: 2520 case PTR_TO_RDONLY_BUF: 2521 case PTR_TO_RDONLY_BUF_OR_NULL: 2522 case PTR_TO_RDWR_BUF: 2523 case PTR_TO_RDWR_BUF_OR_NULL: 2524 case PTR_TO_PERCPU_BTF_ID: 2525 case PTR_TO_MEM: 2526 case PTR_TO_MEM_OR_NULL: 2527 case PTR_TO_FUNC: 2528 case PTR_TO_MAP_KEY: 2529 return true; 2530 default: 2531 return false; 2532 } 2533 } 2534 2535 /* Does this register contain a constant zero? */ 2536 static bool register_is_null(struct bpf_reg_state *reg) 2537 { 2538 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2539 } 2540 2541 static bool register_is_const(struct bpf_reg_state *reg) 2542 { 2543 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2544 } 2545 2546 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2547 { 2548 return tnum_is_unknown(reg->var_off) && 2549 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2550 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2551 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2552 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2553 } 2554 2555 static bool register_is_bounded(struct bpf_reg_state *reg) 2556 { 2557 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2558 } 2559 2560 static bool __is_pointer_value(bool allow_ptr_leaks, 2561 const struct bpf_reg_state *reg) 2562 { 2563 if (allow_ptr_leaks) 2564 return false; 2565 2566 return reg->type != SCALAR_VALUE; 2567 } 2568 2569 static void save_register_state(struct bpf_func_state *state, 2570 int spi, struct bpf_reg_state *reg) 2571 { 2572 int i; 2573 2574 state->stack[spi].spilled_ptr = *reg; 2575 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2576 2577 for (i = 0; i < BPF_REG_SIZE; i++) 2578 state->stack[spi].slot_type[i] = STACK_SPILL; 2579 } 2580 2581 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2582 * stack boundary and alignment are checked in check_mem_access() 2583 */ 2584 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2585 /* stack frame we're writing to */ 2586 struct bpf_func_state *state, 2587 int off, int size, int value_regno, 2588 int insn_idx) 2589 { 2590 struct bpf_func_state *cur; /* state of the current function */ 2591 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2592 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2593 struct bpf_reg_state *reg = NULL; 2594 2595 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2596 state->acquired_refs, true); 2597 if (err) 2598 return err; 2599 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2600 * so it's aligned access and [off, off + size) are within stack limits 2601 */ 2602 if (!env->allow_ptr_leaks && 2603 state->stack[spi].slot_type[0] == STACK_SPILL && 2604 size != BPF_REG_SIZE) { 2605 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2606 return -EACCES; 2607 } 2608 2609 cur = env->cur_state->frame[env->cur_state->curframe]; 2610 if (value_regno >= 0) 2611 reg = &cur->regs[value_regno]; 2612 2613 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2614 !register_is_null(reg) && env->bpf_capable) { 2615 if (dst_reg != BPF_REG_FP) { 2616 /* The backtracking logic can only recognize explicit 2617 * stack slot address like [fp - 8]. Other spill of 2618 * scalar via different register has to be conervative. 2619 * Backtrack from here and mark all registers as precise 2620 * that contributed into 'reg' being a constant. 2621 */ 2622 err = mark_chain_precision(env, value_regno); 2623 if (err) 2624 return err; 2625 } 2626 save_register_state(state, spi, reg); 2627 } else if (reg && is_spillable_regtype(reg->type)) { 2628 /* register containing pointer is being spilled into stack */ 2629 if (size != BPF_REG_SIZE) { 2630 verbose_linfo(env, insn_idx, "; "); 2631 verbose(env, "invalid size of register spill\n"); 2632 return -EACCES; 2633 } 2634 2635 if (state != cur && reg->type == PTR_TO_STACK) { 2636 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2637 return -EINVAL; 2638 } 2639 2640 if (!env->bypass_spec_v4) { 2641 bool sanitize = false; 2642 2643 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2644 register_is_const(&state->stack[spi].spilled_ptr)) 2645 sanitize = true; 2646 for (i = 0; i < BPF_REG_SIZE; i++) 2647 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2648 sanitize = true; 2649 break; 2650 } 2651 if (sanitize) { 2652 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2653 int soff = (-spi - 1) * BPF_REG_SIZE; 2654 2655 /* detected reuse of integer stack slot with a pointer 2656 * which means either llvm is reusing stack slot or 2657 * an attacker is trying to exploit CVE-2018-3639 2658 * (speculative store bypass) 2659 * Have to sanitize that slot with preemptive 2660 * store of zero. 2661 */ 2662 if (*poff && *poff != soff) { 2663 /* disallow programs where single insn stores 2664 * into two different stack slots, since verifier 2665 * cannot sanitize them 2666 */ 2667 verbose(env, 2668 "insn %d cannot access two stack slots fp%d and fp%d", 2669 insn_idx, *poff, soff); 2670 return -EINVAL; 2671 } 2672 *poff = soff; 2673 } 2674 } 2675 save_register_state(state, spi, reg); 2676 } else { 2677 u8 type = STACK_MISC; 2678 2679 /* regular write of data into stack destroys any spilled ptr */ 2680 state->stack[spi].spilled_ptr.type = NOT_INIT; 2681 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2682 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2683 for (i = 0; i < BPF_REG_SIZE; i++) 2684 state->stack[spi].slot_type[i] = STACK_MISC; 2685 2686 /* only mark the slot as written if all 8 bytes were written 2687 * otherwise read propagation may incorrectly stop too soon 2688 * when stack slots are partially written. 2689 * This heuristic means that read propagation will be 2690 * conservative, since it will add reg_live_read marks 2691 * to stack slots all the way to first state when programs 2692 * writes+reads less than 8 bytes 2693 */ 2694 if (size == BPF_REG_SIZE) 2695 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2696 2697 /* when we zero initialize stack slots mark them as such */ 2698 if (reg && register_is_null(reg)) { 2699 /* backtracking doesn't work for STACK_ZERO yet. */ 2700 err = mark_chain_precision(env, value_regno); 2701 if (err) 2702 return err; 2703 type = STACK_ZERO; 2704 } 2705 2706 /* Mark slots affected by this stack write. */ 2707 for (i = 0; i < size; i++) 2708 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2709 type; 2710 } 2711 return 0; 2712 } 2713 2714 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2715 * known to contain a variable offset. 2716 * This function checks whether the write is permitted and conservatively 2717 * tracks the effects of the write, considering that each stack slot in the 2718 * dynamic range is potentially written to. 2719 * 2720 * 'off' includes 'regno->off'. 2721 * 'value_regno' can be -1, meaning that an unknown value is being written to 2722 * the stack. 2723 * 2724 * Spilled pointers in range are not marked as written because we don't know 2725 * what's going to be actually written. This means that read propagation for 2726 * future reads cannot be terminated by this write. 2727 * 2728 * For privileged programs, uninitialized stack slots are considered 2729 * initialized by this write (even though we don't know exactly what offsets 2730 * are going to be written to). The idea is that we don't want the verifier to 2731 * reject future reads that access slots written to through variable offsets. 2732 */ 2733 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2734 /* func where register points to */ 2735 struct bpf_func_state *state, 2736 int ptr_regno, int off, int size, 2737 int value_regno, int insn_idx) 2738 { 2739 struct bpf_func_state *cur; /* state of the current function */ 2740 int min_off, max_off; 2741 int i, err; 2742 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2743 bool writing_zero = false; 2744 /* set if the fact that we're writing a zero is used to let any 2745 * stack slots remain STACK_ZERO 2746 */ 2747 bool zero_used = false; 2748 2749 cur = env->cur_state->frame[env->cur_state->curframe]; 2750 ptr_reg = &cur->regs[ptr_regno]; 2751 min_off = ptr_reg->smin_value + off; 2752 max_off = ptr_reg->smax_value + off + size; 2753 if (value_regno >= 0) 2754 value_reg = &cur->regs[value_regno]; 2755 if (value_reg && register_is_null(value_reg)) 2756 writing_zero = true; 2757 2758 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE), 2759 state->acquired_refs, true); 2760 if (err) 2761 return err; 2762 2763 2764 /* Variable offset writes destroy any spilled pointers in range. */ 2765 for (i = min_off; i < max_off; i++) { 2766 u8 new_type, *stype; 2767 int slot, spi; 2768 2769 slot = -i - 1; 2770 spi = slot / BPF_REG_SIZE; 2771 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2772 2773 if (!env->allow_ptr_leaks 2774 && *stype != NOT_INIT 2775 && *stype != SCALAR_VALUE) { 2776 /* Reject the write if there's are spilled pointers in 2777 * range. If we didn't reject here, the ptr status 2778 * would be erased below (even though not all slots are 2779 * actually overwritten), possibly opening the door to 2780 * leaks. 2781 */ 2782 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2783 insn_idx, i); 2784 return -EINVAL; 2785 } 2786 2787 /* Erase all spilled pointers. */ 2788 state->stack[spi].spilled_ptr.type = NOT_INIT; 2789 2790 /* Update the slot type. */ 2791 new_type = STACK_MISC; 2792 if (writing_zero && *stype == STACK_ZERO) { 2793 new_type = STACK_ZERO; 2794 zero_used = true; 2795 } 2796 /* If the slot is STACK_INVALID, we check whether it's OK to 2797 * pretend that it will be initialized by this write. The slot 2798 * might not actually be written to, and so if we mark it as 2799 * initialized future reads might leak uninitialized memory. 2800 * For privileged programs, we will accept such reads to slots 2801 * that may or may not be written because, if we're reject 2802 * them, the error would be too confusing. 2803 */ 2804 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2805 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2806 insn_idx, i); 2807 return -EINVAL; 2808 } 2809 *stype = new_type; 2810 } 2811 if (zero_used) { 2812 /* backtracking doesn't work for STACK_ZERO yet. */ 2813 err = mark_chain_precision(env, value_regno); 2814 if (err) 2815 return err; 2816 } 2817 return 0; 2818 } 2819 2820 /* When register 'dst_regno' is assigned some values from stack[min_off, 2821 * max_off), we set the register's type according to the types of the 2822 * respective stack slots. If all the stack values are known to be zeros, then 2823 * so is the destination reg. Otherwise, the register is considered to be 2824 * SCALAR. This function does not deal with register filling; the caller must 2825 * ensure that all spilled registers in the stack range have been marked as 2826 * read. 2827 */ 2828 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2829 /* func where src register points to */ 2830 struct bpf_func_state *ptr_state, 2831 int min_off, int max_off, int dst_regno) 2832 { 2833 struct bpf_verifier_state *vstate = env->cur_state; 2834 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2835 int i, slot, spi; 2836 u8 *stype; 2837 int zeros = 0; 2838 2839 for (i = min_off; i < max_off; i++) { 2840 slot = -i - 1; 2841 spi = slot / BPF_REG_SIZE; 2842 stype = ptr_state->stack[spi].slot_type; 2843 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2844 break; 2845 zeros++; 2846 } 2847 if (zeros == max_off - min_off) { 2848 /* any access_size read into register is zero extended, 2849 * so the whole register == const_zero 2850 */ 2851 __mark_reg_const_zero(&state->regs[dst_regno]); 2852 /* backtracking doesn't support STACK_ZERO yet, 2853 * so mark it precise here, so that later 2854 * backtracking can stop here. 2855 * Backtracking may not need this if this register 2856 * doesn't participate in pointer adjustment. 2857 * Forward propagation of precise flag is not 2858 * necessary either. This mark is only to stop 2859 * backtracking. Any register that contributed 2860 * to const 0 was marked precise before spill. 2861 */ 2862 state->regs[dst_regno].precise = true; 2863 } else { 2864 /* have read misc data from the stack */ 2865 mark_reg_unknown(env, state->regs, dst_regno); 2866 } 2867 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2868 } 2869 2870 /* Read the stack at 'off' and put the results into the register indicated by 2871 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2872 * spilled reg. 2873 * 2874 * 'dst_regno' can be -1, meaning that the read value is not going to a 2875 * register. 2876 * 2877 * The access is assumed to be within the current stack bounds. 2878 */ 2879 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2880 /* func where src register points to */ 2881 struct bpf_func_state *reg_state, 2882 int off, int size, int dst_regno) 2883 { 2884 struct bpf_verifier_state *vstate = env->cur_state; 2885 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2886 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2887 struct bpf_reg_state *reg; 2888 u8 *stype; 2889 2890 stype = reg_state->stack[spi].slot_type; 2891 reg = ®_state->stack[spi].spilled_ptr; 2892 2893 if (stype[0] == STACK_SPILL) { 2894 if (size != BPF_REG_SIZE) { 2895 if (reg->type != SCALAR_VALUE) { 2896 verbose_linfo(env, env->insn_idx, "; "); 2897 verbose(env, "invalid size of register fill\n"); 2898 return -EACCES; 2899 } 2900 if (dst_regno >= 0) { 2901 mark_reg_unknown(env, state->regs, dst_regno); 2902 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2903 } 2904 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2905 return 0; 2906 } 2907 for (i = 1; i < BPF_REG_SIZE; i++) { 2908 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2909 verbose(env, "corrupted spill memory\n"); 2910 return -EACCES; 2911 } 2912 } 2913 2914 if (dst_regno >= 0) { 2915 /* restore register state from stack */ 2916 state->regs[dst_regno] = *reg; 2917 /* mark reg as written since spilled pointer state likely 2918 * has its liveness marks cleared by is_state_visited() 2919 * which resets stack/reg liveness for state transitions 2920 */ 2921 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2922 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2923 /* If dst_regno==-1, the caller is asking us whether 2924 * it is acceptable to use this value as a SCALAR_VALUE 2925 * (e.g. for XADD). 2926 * We must not allow unprivileged callers to do that 2927 * with spilled pointers. 2928 */ 2929 verbose(env, "leaking pointer from stack off %d\n", 2930 off); 2931 return -EACCES; 2932 } 2933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2934 } else { 2935 u8 type; 2936 2937 for (i = 0; i < size; i++) { 2938 type = stype[(slot - i) % BPF_REG_SIZE]; 2939 if (type == STACK_MISC) 2940 continue; 2941 if (type == STACK_ZERO) 2942 continue; 2943 verbose(env, "invalid read from stack off %d+%d size %d\n", 2944 off, i, size); 2945 return -EACCES; 2946 } 2947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2948 if (dst_regno >= 0) 2949 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2950 } 2951 return 0; 2952 } 2953 2954 enum stack_access_src { 2955 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2956 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2957 }; 2958 2959 static int check_stack_range_initialized(struct bpf_verifier_env *env, 2960 int regno, int off, int access_size, 2961 bool zero_size_allowed, 2962 enum stack_access_src type, 2963 struct bpf_call_arg_meta *meta); 2964 2965 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2966 { 2967 return cur_regs(env) + regno; 2968 } 2969 2970 /* Read the stack at 'ptr_regno + off' and put the result into the register 2971 * 'dst_regno'. 2972 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2973 * but not its variable offset. 2974 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2975 * 2976 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2977 * filling registers (i.e. reads of spilled register cannot be detected when 2978 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2979 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2980 * offset; for a fixed offset check_stack_read_fixed_off should be used 2981 * instead. 2982 */ 2983 static int check_stack_read_var_off(struct bpf_verifier_env *env, 2984 int ptr_regno, int off, int size, int dst_regno) 2985 { 2986 /* The state of the source register. */ 2987 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2988 struct bpf_func_state *ptr_state = func(env, reg); 2989 int err; 2990 int min_off, max_off; 2991 2992 /* Note that we pass a NULL meta, so raw access will not be permitted. 2993 */ 2994 err = check_stack_range_initialized(env, ptr_regno, off, size, 2995 false, ACCESS_DIRECT, NULL); 2996 if (err) 2997 return err; 2998 2999 min_off = reg->smin_value + off; 3000 max_off = reg->smax_value + off; 3001 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3002 return 0; 3003 } 3004 3005 /* check_stack_read dispatches to check_stack_read_fixed_off or 3006 * check_stack_read_var_off. 3007 * 3008 * The caller must ensure that the offset falls within the allocated stack 3009 * bounds. 3010 * 3011 * 'dst_regno' is a register which will receive the value from the stack. It 3012 * can be -1, meaning that the read value is not going to a register. 3013 */ 3014 static int check_stack_read(struct bpf_verifier_env *env, 3015 int ptr_regno, int off, int size, 3016 int dst_regno) 3017 { 3018 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3019 struct bpf_func_state *state = func(env, reg); 3020 int err; 3021 /* Some accesses are only permitted with a static offset. */ 3022 bool var_off = !tnum_is_const(reg->var_off); 3023 3024 /* The offset is required to be static when reads don't go to a 3025 * register, in order to not leak pointers (see 3026 * check_stack_read_fixed_off). 3027 */ 3028 if (dst_regno < 0 && var_off) { 3029 char tn_buf[48]; 3030 3031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3032 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3033 tn_buf, off, size); 3034 return -EACCES; 3035 } 3036 /* Variable offset is prohibited for unprivileged mode for simplicity 3037 * since it requires corresponding support in Spectre masking for stack 3038 * ALU. See also retrieve_ptr_limit(). 3039 */ 3040 if (!env->bypass_spec_v1 && var_off) { 3041 char tn_buf[48]; 3042 3043 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3044 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3045 ptr_regno, tn_buf); 3046 return -EACCES; 3047 } 3048 3049 if (!var_off) { 3050 off += reg->var_off.value; 3051 err = check_stack_read_fixed_off(env, state, off, size, 3052 dst_regno); 3053 } else { 3054 /* Variable offset stack reads need more conservative handling 3055 * than fixed offset ones. Note that dst_regno >= 0 on this 3056 * branch. 3057 */ 3058 err = check_stack_read_var_off(env, ptr_regno, off, size, 3059 dst_regno); 3060 } 3061 return err; 3062 } 3063 3064 3065 /* check_stack_write dispatches to check_stack_write_fixed_off or 3066 * check_stack_write_var_off. 3067 * 3068 * 'ptr_regno' is the register used as a pointer into the stack. 3069 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3070 * 'value_regno' is the register whose value we're writing to the stack. It can 3071 * be -1, meaning that we're not writing from a register. 3072 * 3073 * The caller must ensure that the offset falls within the maximum stack size. 3074 */ 3075 static int check_stack_write(struct bpf_verifier_env *env, 3076 int ptr_regno, int off, int size, 3077 int value_regno, int insn_idx) 3078 { 3079 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3080 struct bpf_func_state *state = func(env, reg); 3081 int err; 3082 3083 if (tnum_is_const(reg->var_off)) { 3084 off += reg->var_off.value; 3085 err = check_stack_write_fixed_off(env, state, off, size, 3086 value_regno, insn_idx); 3087 } else { 3088 /* Variable offset stack reads need more conservative handling 3089 * than fixed offset ones. 3090 */ 3091 err = check_stack_write_var_off(env, state, 3092 ptr_regno, off, size, 3093 value_regno, insn_idx); 3094 } 3095 return err; 3096 } 3097 3098 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3099 int off, int size, enum bpf_access_type type) 3100 { 3101 struct bpf_reg_state *regs = cur_regs(env); 3102 struct bpf_map *map = regs[regno].map_ptr; 3103 u32 cap = bpf_map_flags_to_cap(map); 3104 3105 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3106 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3107 map->value_size, off, size); 3108 return -EACCES; 3109 } 3110 3111 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3112 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3113 map->value_size, off, size); 3114 return -EACCES; 3115 } 3116 3117 return 0; 3118 } 3119 3120 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3121 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3122 int off, int size, u32 mem_size, 3123 bool zero_size_allowed) 3124 { 3125 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3126 struct bpf_reg_state *reg; 3127 3128 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3129 return 0; 3130 3131 reg = &cur_regs(env)[regno]; 3132 switch (reg->type) { 3133 case PTR_TO_MAP_KEY: 3134 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3135 mem_size, off, size); 3136 break; 3137 case PTR_TO_MAP_VALUE: 3138 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3139 mem_size, off, size); 3140 break; 3141 case PTR_TO_PACKET: 3142 case PTR_TO_PACKET_META: 3143 case PTR_TO_PACKET_END: 3144 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3145 off, size, regno, reg->id, off, mem_size); 3146 break; 3147 case PTR_TO_MEM: 3148 default: 3149 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3150 mem_size, off, size); 3151 } 3152 3153 return -EACCES; 3154 } 3155 3156 /* check read/write into a memory region with possible variable offset */ 3157 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3158 int off, int size, u32 mem_size, 3159 bool zero_size_allowed) 3160 { 3161 struct bpf_verifier_state *vstate = env->cur_state; 3162 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3163 struct bpf_reg_state *reg = &state->regs[regno]; 3164 int err; 3165 3166 /* We may have adjusted the register pointing to memory region, so we 3167 * need to try adding each of min_value and max_value to off 3168 * to make sure our theoretical access will be safe. 3169 */ 3170 if (env->log.level & BPF_LOG_LEVEL) 3171 print_verifier_state(env, state); 3172 3173 /* The minimum value is only important with signed 3174 * comparisons where we can't assume the floor of a 3175 * value is 0. If we are using signed variables for our 3176 * index'es we need to make sure that whatever we use 3177 * will have a set floor within our range. 3178 */ 3179 if (reg->smin_value < 0 && 3180 (reg->smin_value == S64_MIN || 3181 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3182 reg->smin_value + off < 0)) { 3183 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3184 regno); 3185 return -EACCES; 3186 } 3187 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3188 mem_size, zero_size_allowed); 3189 if (err) { 3190 verbose(env, "R%d min value is outside of the allowed memory range\n", 3191 regno); 3192 return err; 3193 } 3194 3195 /* If we haven't set a max value then we need to bail since we can't be 3196 * sure we won't do bad things. 3197 * If reg->umax_value + off could overflow, treat that as unbounded too. 3198 */ 3199 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3200 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3201 regno); 3202 return -EACCES; 3203 } 3204 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3205 mem_size, zero_size_allowed); 3206 if (err) { 3207 verbose(env, "R%d max value is outside of the allowed memory range\n", 3208 regno); 3209 return err; 3210 } 3211 3212 return 0; 3213 } 3214 3215 /* check read/write into a map element with possible variable offset */ 3216 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3217 int off, int size, bool zero_size_allowed) 3218 { 3219 struct bpf_verifier_state *vstate = env->cur_state; 3220 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3221 struct bpf_reg_state *reg = &state->regs[regno]; 3222 struct bpf_map *map = reg->map_ptr; 3223 int err; 3224 3225 err = check_mem_region_access(env, regno, off, size, map->value_size, 3226 zero_size_allowed); 3227 if (err) 3228 return err; 3229 3230 if (map_value_has_spin_lock(map)) { 3231 u32 lock = map->spin_lock_off; 3232 3233 /* if any part of struct bpf_spin_lock can be touched by 3234 * load/store reject this program. 3235 * To check that [x1, x2) overlaps with [y1, y2) 3236 * it is sufficient to check x1 < y2 && y1 < x2. 3237 */ 3238 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3239 lock < reg->umax_value + off + size) { 3240 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3241 return -EACCES; 3242 } 3243 } 3244 return err; 3245 } 3246 3247 #define MAX_PACKET_OFF 0xffff 3248 3249 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3250 { 3251 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3252 } 3253 3254 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3255 const struct bpf_call_arg_meta *meta, 3256 enum bpf_access_type t) 3257 { 3258 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3259 3260 switch (prog_type) { 3261 /* Program types only with direct read access go here! */ 3262 case BPF_PROG_TYPE_LWT_IN: 3263 case BPF_PROG_TYPE_LWT_OUT: 3264 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3265 case BPF_PROG_TYPE_SK_REUSEPORT: 3266 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3267 case BPF_PROG_TYPE_CGROUP_SKB: 3268 if (t == BPF_WRITE) 3269 return false; 3270 fallthrough; 3271 3272 /* Program types with direct read + write access go here! */ 3273 case BPF_PROG_TYPE_SCHED_CLS: 3274 case BPF_PROG_TYPE_SCHED_ACT: 3275 case BPF_PROG_TYPE_XDP: 3276 case BPF_PROG_TYPE_LWT_XMIT: 3277 case BPF_PROG_TYPE_SK_SKB: 3278 case BPF_PROG_TYPE_SK_MSG: 3279 if (meta) 3280 return meta->pkt_access; 3281 3282 env->seen_direct_write = true; 3283 return true; 3284 3285 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3286 if (t == BPF_WRITE) 3287 env->seen_direct_write = true; 3288 3289 return true; 3290 3291 default: 3292 return false; 3293 } 3294 } 3295 3296 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3297 int size, bool zero_size_allowed) 3298 { 3299 struct bpf_reg_state *regs = cur_regs(env); 3300 struct bpf_reg_state *reg = ®s[regno]; 3301 int err; 3302 3303 /* We may have added a variable offset to the packet pointer; but any 3304 * reg->range we have comes after that. We are only checking the fixed 3305 * offset. 3306 */ 3307 3308 /* We don't allow negative numbers, because we aren't tracking enough 3309 * detail to prove they're safe. 3310 */ 3311 if (reg->smin_value < 0) { 3312 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3313 regno); 3314 return -EACCES; 3315 } 3316 3317 err = reg->range < 0 ? -EINVAL : 3318 __check_mem_access(env, regno, off, size, reg->range, 3319 zero_size_allowed); 3320 if (err) { 3321 verbose(env, "R%d offset is outside of the packet\n", regno); 3322 return err; 3323 } 3324 3325 /* __check_mem_access has made sure "off + size - 1" is within u16. 3326 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3327 * otherwise find_good_pkt_pointers would have refused to set range info 3328 * that __check_mem_access would have rejected this pkt access. 3329 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3330 */ 3331 env->prog->aux->max_pkt_offset = 3332 max_t(u32, env->prog->aux->max_pkt_offset, 3333 off + reg->umax_value + size - 1); 3334 3335 return err; 3336 } 3337 3338 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3339 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3340 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3341 struct btf **btf, u32 *btf_id) 3342 { 3343 struct bpf_insn_access_aux info = { 3344 .reg_type = *reg_type, 3345 .log = &env->log, 3346 }; 3347 3348 if (env->ops->is_valid_access && 3349 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3350 /* A non zero info.ctx_field_size indicates that this field is a 3351 * candidate for later verifier transformation to load the whole 3352 * field and then apply a mask when accessed with a narrower 3353 * access than actual ctx access size. A zero info.ctx_field_size 3354 * will only allow for whole field access and rejects any other 3355 * type of narrower access. 3356 */ 3357 *reg_type = info.reg_type; 3358 3359 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3360 *btf = info.btf; 3361 *btf_id = info.btf_id; 3362 } else { 3363 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3364 } 3365 /* remember the offset of last byte accessed in ctx */ 3366 if (env->prog->aux->max_ctx_offset < off + size) 3367 env->prog->aux->max_ctx_offset = off + size; 3368 return 0; 3369 } 3370 3371 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3372 return -EACCES; 3373 } 3374 3375 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3376 int size) 3377 { 3378 if (size < 0 || off < 0 || 3379 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3380 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3381 off, size); 3382 return -EACCES; 3383 } 3384 return 0; 3385 } 3386 3387 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3388 u32 regno, int off, int size, 3389 enum bpf_access_type t) 3390 { 3391 struct bpf_reg_state *regs = cur_regs(env); 3392 struct bpf_reg_state *reg = ®s[regno]; 3393 struct bpf_insn_access_aux info = {}; 3394 bool valid; 3395 3396 if (reg->smin_value < 0) { 3397 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3398 regno); 3399 return -EACCES; 3400 } 3401 3402 switch (reg->type) { 3403 case PTR_TO_SOCK_COMMON: 3404 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3405 break; 3406 case PTR_TO_SOCKET: 3407 valid = bpf_sock_is_valid_access(off, size, t, &info); 3408 break; 3409 case PTR_TO_TCP_SOCK: 3410 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3411 break; 3412 case PTR_TO_XDP_SOCK: 3413 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3414 break; 3415 default: 3416 valid = false; 3417 } 3418 3419 3420 if (valid) { 3421 env->insn_aux_data[insn_idx].ctx_field_size = 3422 info.ctx_field_size; 3423 return 0; 3424 } 3425 3426 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3427 regno, reg_type_str[reg->type], off, size); 3428 3429 return -EACCES; 3430 } 3431 3432 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3433 { 3434 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3435 } 3436 3437 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3438 { 3439 const struct bpf_reg_state *reg = reg_state(env, regno); 3440 3441 return reg->type == PTR_TO_CTX; 3442 } 3443 3444 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3445 { 3446 const struct bpf_reg_state *reg = reg_state(env, regno); 3447 3448 return type_is_sk_pointer(reg->type); 3449 } 3450 3451 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3452 { 3453 const struct bpf_reg_state *reg = reg_state(env, regno); 3454 3455 return type_is_pkt_pointer(reg->type); 3456 } 3457 3458 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3459 { 3460 const struct bpf_reg_state *reg = reg_state(env, regno); 3461 3462 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3463 return reg->type == PTR_TO_FLOW_KEYS; 3464 } 3465 3466 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3467 const struct bpf_reg_state *reg, 3468 int off, int size, bool strict) 3469 { 3470 struct tnum reg_off; 3471 int ip_align; 3472 3473 /* Byte size accesses are always allowed. */ 3474 if (!strict || size == 1) 3475 return 0; 3476 3477 /* For platforms that do not have a Kconfig enabling 3478 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3479 * NET_IP_ALIGN is universally set to '2'. And on platforms 3480 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3481 * to this code only in strict mode where we want to emulate 3482 * the NET_IP_ALIGN==2 checking. Therefore use an 3483 * unconditional IP align value of '2'. 3484 */ 3485 ip_align = 2; 3486 3487 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3488 if (!tnum_is_aligned(reg_off, size)) { 3489 char tn_buf[48]; 3490 3491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3492 verbose(env, 3493 "misaligned packet access off %d+%s+%d+%d size %d\n", 3494 ip_align, tn_buf, reg->off, off, size); 3495 return -EACCES; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3502 const struct bpf_reg_state *reg, 3503 const char *pointer_desc, 3504 int off, int size, bool strict) 3505 { 3506 struct tnum reg_off; 3507 3508 /* Byte size accesses are always allowed. */ 3509 if (!strict || size == 1) 3510 return 0; 3511 3512 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3513 if (!tnum_is_aligned(reg_off, size)) { 3514 char tn_buf[48]; 3515 3516 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3517 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3518 pointer_desc, tn_buf, reg->off, off, size); 3519 return -EACCES; 3520 } 3521 3522 return 0; 3523 } 3524 3525 static int check_ptr_alignment(struct bpf_verifier_env *env, 3526 const struct bpf_reg_state *reg, int off, 3527 int size, bool strict_alignment_once) 3528 { 3529 bool strict = env->strict_alignment || strict_alignment_once; 3530 const char *pointer_desc = ""; 3531 3532 switch (reg->type) { 3533 case PTR_TO_PACKET: 3534 case PTR_TO_PACKET_META: 3535 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3536 * right in front, treat it the very same way. 3537 */ 3538 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3539 case PTR_TO_FLOW_KEYS: 3540 pointer_desc = "flow keys "; 3541 break; 3542 case PTR_TO_MAP_KEY: 3543 pointer_desc = "key "; 3544 break; 3545 case PTR_TO_MAP_VALUE: 3546 pointer_desc = "value "; 3547 break; 3548 case PTR_TO_CTX: 3549 pointer_desc = "context "; 3550 break; 3551 case PTR_TO_STACK: 3552 pointer_desc = "stack "; 3553 /* The stack spill tracking logic in check_stack_write_fixed_off() 3554 * and check_stack_read_fixed_off() relies on stack accesses being 3555 * aligned. 3556 */ 3557 strict = true; 3558 break; 3559 case PTR_TO_SOCKET: 3560 pointer_desc = "sock "; 3561 break; 3562 case PTR_TO_SOCK_COMMON: 3563 pointer_desc = "sock_common "; 3564 break; 3565 case PTR_TO_TCP_SOCK: 3566 pointer_desc = "tcp_sock "; 3567 break; 3568 case PTR_TO_XDP_SOCK: 3569 pointer_desc = "xdp_sock "; 3570 break; 3571 default: 3572 break; 3573 } 3574 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3575 strict); 3576 } 3577 3578 static int update_stack_depth(struct bpf_verifier_env *env, 3579 const struct bpf_func_state *func, 3580 int off) 3581 { 3582 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3583 3584 if (stack >= -off) 3585 return 0; 3586 3587 /* update known max for given subprogram */ 3588 env->subprog_info[func->subprogno].stack_depth = -off; 3589 return 0; 3590 } 3591 3592 /* starting from main bpf function walk all instructions of the function 3593 * and recursively walk all callees that given function can call. 3594 * Ignore jump and exit insns. 3595 * Since recursion is prevented by check_cfg() this algorithm 3596 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3597 */ 3598 static int check_max_stack_depth(struct bpf_verifier_env *env) 3599 { 3600 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3601 struct bpf_subprog_info *subprog = env->subprog_info; 3602 struct bpf_insn *insn = env->prog->insnsi; 3603 bool tail_call_reachable = false; 3604 int ret_insn[MAX_CALL_FRAMES]; 3605 int ret_prog[MAX_CALL_FRAMES]; 3606 int j; 3607 3608 process_func: 3609 /* protect against potential stack overflow that might happen when 3610 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3611 * depth for such case down to 256 so that the worst case scenario 3612 * would result in 8k stack size (32 which is tailcall limit * 256 = 3613 * 8k). 3614 * 3615 * To get the idea what might happen, see an example: 3616 * func1 -> sub rsp, 128 3617 * subfunc1 -> sub rsp, 256 3618 * tailcall1 -> add rsp, 256 3619 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3620 * subfunc2 -> sub rsp, 64 3621 * subfunc22 -> sub rsp, 128 3622 * tailcall2 -> add rsp, 128 3623 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3624 * 3625 * tailcall will unwind the current stack frame but it will not get rid 3626 * of caller's stack as shown on the example above. 3627 */ 3628 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3629 verbose(env, 3630 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3631 depth); 3632 return -EACCES; 3633 } 3634 /* round up to 32-bytes, since this is granularity 3635 * of interpreter stack size 3636 */ 3637 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3638 if (depth > MAX_BPF_STACK) { 3639 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3640 frame + 1, depth); 3641 return -EACCES; 3642 } 3643 continue_func: 3644 subprog_end = subprog[idx + 1].start; 3645 for (; i < subprog_end; i++) { 3646 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3647 continue; 3648 /* remember insn and function to return to */ 3649 ret_insn[frame] = i + 1; 3650 ret_prog[frame] = idx; 3651 3652 /* find the callee */ 3653 i = i + insn[i].imm + 1; 3654 idx = find_subprog(env, i); 3655 if (idx < 0) { 3656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3657 i); 3658 return -EFAULT; 3659 } 3660 3661 if (subprog[idx].has_tail_call) 3662 tail_call_reachable = true; 3663 3664 frame++; 3665 if (frame >= MAX_CALL_FRAMES) { 3666 verbose(env, "the call stack of %d frames is too deep !\n", 3667 frame); 3668 return -E2BIG; 3669 } 3670 goto process_func; 3671 } 3672 /* if tail call got detected across bpf2bpf calls then mark each of the 3673 * currently present subprog frames as tail call reachable subprogs; 3674 * this info will be utilized by JIT so that we will be preserving the 3675 * tail call counter throughout bpf2bpf calls combined with tailcalls 3676 */ 3677 if (tail_call_reachable) 3678 for (j = 0; j < frame; j++) 3679 subprog[ret_prog[j]].tail_call_reachable = true; 3680 3681 /* end of for() loop means the last insn of the 'subprog' 3682 * was reached. Doesn't matter whether it was JA or EXIT 3683 */ 3684 if (frame == 0) 3685 return 0; 3686 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3687 frame--; 3688 i = ret_insn[frame]; 3689 idx = ret_prog[frame]; 3690 goto continue_func; 3691 } 3692 3693 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3694 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3695 const struct bpf_insn *insn, int idx) 3696 { 3697 int start = idx + insn->imm + 1, subprog; 3698 3699 subprog = find_subprog(env, start); 3700 if (subprog < 0) { 3701 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3702 start); 3703 return -EFAULT; 3704 } 3705 return env->subprog_info[subprog].stack_depth; 3706 } 3707 #endif 3708 3709 int check_ctx_reg(struct bpf_verifier_env *env, 3710 const struct bpf_reg_state *reg, int regno) 3711 { 3712 /* Access to ctx or passing it to a helper is only allowed in 3713 * its original, unmodified form. 3714 */ 3715 3716 if (reg->off) { 3717 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3718 regno, reg->off); 3719 return -EACCES; 3720 } 3721 3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3723 char tn_buf[48]; 3724 3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3726 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3727 return -EACCES; 3728 } 3729 3730 return 0; 3731 } 3732 3733 static int __check_buffer_access(struct bpf_verifier_env *env, 3734 const char *buf_info, 3735 const struct bpf_reg_state *reg, 3736 int regno, int off, int size) 3737 { 3738 if (off < 0) { 3739 verbose(env, 3740 "R%d invalid %s buffer access: off=%d, size=%d\n", 3741 regno, buf_info, off, size); 3742 return -EACCES; 3743 } 3744 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3745 char tn_buf[48]; 3746 3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3748 verbose(env, 3749 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3750 regno, off, tn_buf); 3751 return -EACCES; 3752 } 3753 3754 return 0; 3755 } 3756 3757 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3758 const struct bpf_reg_state *reg, 3759 int regno, int off, int size) 3760 { 3761 int err; 3762 3763 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3764 if (err) 3765 return err; 3766 3767 if (off + size > env->prog->aux->max_tp_access) 3768 env->prog->aux->max_tp_access = off + size; 3769 3770 return 0; 3771 } 3772 3773 static int check_buffer_access(struct bpf_verifier_env *env, 3774 const struct bpf_reg_state *reg, 3775 int regno, int off, int size, 3776 bool zero_size_allowed, 3777 const char *buf_info, 3778 u32 *max_access) 3779 { 3780 int err; 3781 3782 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3783 if (err) 3784 return err; 3785 3786 if (off + size > *max_access) 3787 *max_access = off + size; 3788 3789 return 0; 3790 } 3791 3792 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3793 static void zext_32_to_64(struct bpf_reg_state *reg) 3794 { 3795 reg->var_off = tnum_subreg(reg->var_off); 3796 __reg_assign_32_into_64(reg); 3797 } 3798 3799 /* truncate register to smaller size (in bytes) 3800 * must be called with size < BPF_REG_SIZE 3801 */ 3802 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3803 { 3804 u64 mask; 3805 3806 /* clear high bits in bit representation */ 3807 reg->var_off = tnum_cast(reg->var_off, size); 3808 3809 /* fix arithmetic bounds */ 3810 mask = ((u64)1 << (size * 8)) - 1; 3811 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3812 reg->umin_value &= mask; 3813 reg->umax_value &= mask; 3814 } else { 3815 reg->umin_value = 0; 3816 reg->umax_value = mask; 3817 } 3818 reg->smin_value = reg->umin_value; 3819 reg->smax_value = reg->umax_value; 3820 3821 /* If size is smaller than 32bit register the 32bit register 3822 * values are also truncated so we push 64-bit bounds into 3823 * 32-bit bounds. Above were truncated < 32-bits already. 3824 */ 3825 if (size >= 4) 3826 return; 3827 __reg_combine_64_into_32(reg); 3828 } 3829 3830 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3831 { 3832 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3833 } 3834 3835 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3836 { 3837 void *ptr; 3838 u64 addr; 3839 int err; 3840 3841 err = map->ops->map_direct_value_addr(map, &addr, off); 3842 if (err) 3843 return err; 3844 ptr = (void *)(long)addr + off; 3845 3846 switch (size) { 3847 case sizeof(u8): 3848 *val = (u64)*(u8 *)ptr; 3849 break; 3850 case sizeof(u16): 3851 *val = (u64)*(u16 *)ptr; 3852 break; 3853 case sizeof(u32): 3854 *val = (u64)*(u32 *)ptr; 3855 break; 3856 case sizeof(u64): 3857 *val = *(u64 *)ptr; 3858 break; 3859 default: 3860 return -EINVAL; 3861 } 3862 return 0; 3863 } 3864 3865 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3866 struct bpf_reg_state *regs, 3867 int regno, int off, int size, 3868 enum bpf_access_type atype, 3869 int value_regno) 3870 { 3871 struct bpf_reg_state *reg = regs + regno; 3872 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3873 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3874 u32 btf_id; 3875 int ret; 3876 3877 if (off < 0) { 3878 verbose(env, 3879 "R%d is ptr_%s invalid negative access: off=%d\n", 3880 regno, tname, off); 3881 return -EACCES; 3882 } 3883 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3884 char tn_buf[48]; 3885 3886 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3887 verbose(env, 3888 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3889 regno, tname, off, tn_buf); 3890 return -EACCES; 3891 } 3892 3893 if (env->ops->btf_struct_access) { 3894 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3895 off, size, atype, &btf_id); 3896 } else { 3897 if (atype != BPF_READ) { 3898 verbose(env, "only read is supported\n"); 3899 return -EACCES; 3900 } 3901 3902 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3903 atype, &btf_id); 3904 } 3905 3906 if (ret < 0) 3907 return ret; 3908 3909 if (atype == BPF_READ && value_regno >= 0) 3910 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3911 3912 return 0; 3913 } 3914 3915 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3916 struct bpf_reg_state *regs, 3917 int regno, int off, int size, 3918 enum bpf_access_type atype, 3919 int value_regno) 3920 { 3921 struct bpf_reg_state *reg = regs + regno; 3922 struct bpf_map *map = reg->map_ptr; 3923 const struct btf_type *t; 3924 const char *tname; 3925 u32 btf_id; 3926 int ret; 3927 3928 if (!btf_vmlinux) { 3929 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3930 return -ENOTSUPP; 3931 } 3932 3933 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3934 verbose(env, "map_ptr access not supported for map type %d\n", 3935 map->map_type); 3936 return -ENOTSUPP; 3937 } 3938 3939 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3940 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3941 3942 if (!env->allow_ptr_to_map_access) { 3943 verbose(env, 3944 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3945 tname); 3946 return -EPERM; 3947 } 3948 3949 if (off < 0) { 3950 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3951 regno, tname, off); 3952 return -EACCES; 3953 } 3954 3955 if (atype != BPF_READ) { 3956 verbose(env, "only read from %s is supported\n", tname); 3957 return -EACCES; 3958 } 3959 3960 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3961 if (ret < 0) 3962 return ret; 3963 3964 if (value_regno >= 0) 3965 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3966 3967 return 0; 3968 } 3969 3970 /* Check that the stack access at the given offset is within bounds. The 3971 * maximum valid offset is -1. 3972 * 3973 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3974 * -state->allocated_stack for reads. 3975 */ 3976 static int check_stack_slot_within_bounds(int off, 3977 struct bpf_func_state *state, 3978 enum bpf_access_type t) 3979 { 3980 int min_valid_off; 3981 3982 if (t == BPF_WRITE) 3983 min_valid_off = -MAX_BPF_STACK; 3984 else 3985 min_valid_off = -state->allocated_stack; 3986 3987 if (off < min_valid_off || off > -1) 3988 return -EACCES; 3989 return 0; 3990 } 3991 3992 /* Check that the stack access at 'regno + off' falls within the maximum stack 3993 * bounds. 3994 * 3995 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3996 */ 3997 static int check_stack_access_within_bounds( 3998 struct bpf_verifier_env *env, 3999 int regno, int off, int access_size, 4000 enum stack_access_src src, enum bpf_access_type type) 4001 { 4002 struct bpf_reg_state *regs = cur_regs(env); 4003 struct bpf_reg_state *reg = regs + regno; 4004 struct bpf_func_state *state = func(env, reg); 4005 int min_off, max_off; 4006 int err; 4007 char *err_extra; 4008 4009 if (src == ACCESS_HELPER) 4010 /* We don't know if helpers are reading or writing (or both). */ 4011 err_extra = " indirect access to"; 4012 else if (type == BPF_READ) 4013 err_extra = " read from"; 4014 else 4015 err_extra = " write to"; 4016 4017 if (tnum_is_const(reg->var_off)) { 4018 min_off = reg->var_off.value + off; 4019 if (access_size > 0) 4020 max_off = min_off + access_size - 1; 4021 else 4022 max_off = min_off; 4023 } else { 4024 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4025 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4026 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4027 err_extra, regno); 4028 return -EACCES; 4029 } 4030 min_off = reg->smin_value + off; 4031 if (access_size > 0) 4032 max_off = reg->smax_value + off + access_size - 1; 4033 else 4034 max_off = min_off; 4035 } 4036 4037 err = check_stack_slot_within_bounds(min_off, state, type); 4038 if (!err) 4039 err = check_stack_slot_within_bounds(max_off, state, type); 4040 4041 if (err) { 4042 if (tnum_is_const(reg->var_off)) { 4043 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4044 err_extra, regno, off, access_size); 4045 } else { 4046 char tn_buf[48]; 4047 4048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4049 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4050 err_extra, regno, tn_buf, access_size); 4051 } 4052 } 4053 return err; 4054 } 4055 4056 /* check whether memory at (regno + off) is accessible for t = (read | write) 4057 * if t==write, value_regno is a register which value is stored into memory 4058 * if t==read, value_regno is a register which will receive the value from memory 4059 * if t==write && value_regno==-1, some unknown value is stored into memory 4060 * if t==read && value_regno==-1, don't care what we read from memory 4061 */ 4062 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4063 int off, int bpf_size, enum bpf_access_type t, 4064 int value_regno, bool strict_alignment_once) 4065 { 4066 struct bpf_reg_state *regs = cur_regs(env); 4067 struct bpf_reg_state *reg = regs + regno; 4068 struct bpf_func_state *state; 4069 int size, err = 0; 4070 4071 size = bpf_size_to_bytes(bpf_size); 4072 if (size < 0) 4073 return size; 4074 4075 /* alignment checks will add in reg->off themselves */ 4076 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4077 if (err) 4078 return err; 4079 4080 /* for access checks, reg->off is just part of off */ 4081 off += reg->off; 4082 4083 if (reg->type == PTR_TO_MAP_KEY) { 4084 if (t == BPF_WRITE) { 4085 verbose(env, "write to change key R%d not allowed\n", regno); 4086 return -EACCES; 4087 } 4088 4089 err = check_mem_region_access(env, regno, off, size, 4090 reg->map_ptr->key_size, false); 4091 if (err) 4092 return err; 4093 if (value_regno >= 0) 4094 mark_reg_unknown(env, regs, value_regno); 4095 } else if (reg->type == PTR_TO_MAP_VALUE) { 4096 if (t == BPF_WRITE && value_regno >= 0 && 4097 is_pointer_value(env, value_regno)) { 4098 verbose(env, "R%d leaks addr into map\n", value_regno); 4099 return -EACCES; 4100 } 4101 err = check_map_access_type(env, regno, off, size, t); 4102 if (err) 4103 return err; 4104 err = check_map_access(env, regno, off, size, false); 4105 if (!err && t == BPF_READ && value_regno >= 0) { 4106 struct bpf_map *map = reg->map_ptr; 4107 4108 /* if map is read-only, track its contents as scalars */ 4109 if (tnum_is_const(reg->var_off) && 4110 bpf_map_is_rdonly(map) && 4111 map->ops->map_direct_value_addr) { 4112 int map_off = off + reg->var_off.value; 4113 u64 val = 0; 4114 4115 err = bpf_map_direct_read(map, map_off, size, 4116 &val); 4117 if (err) 4118 return err; 4119 4120 regs[value_regno].type = SCALAR_VALUE; 4121 __mark_reg_known(®s[value_regno], val); 4122 } else { 4123 mark_reg_unknown(env, regs, value_regno); 4124 } 4125 } 4126 } else if (reg->type == PTR_TO_MEM) { 4127 if (t == BPF_WRITE && value_regno >= 0 && 4128 is_pointer_value(env, value_regno)) { 4129 verbose(env, "R%d leaks addr into mem\n", value_regno); 4130 return -EACCES; 4131 } 4132 err = check_mem_region_access(env, regno, off, size, 4133 reg->mem_size, false); 4134 if (!err && t == BPF_READ && value_regno >= 0) 4135 mark_reg_unknown(env, regs, value_regno); 4136 } else if (reg->type == PTR_TO_CTX) { 4137 enum bpf_reg_type reg_type = SCALAR_VALUE; 4138 struct btf *btf = NULL; 4139 u32 btf_id = 0; 4140 4141 if (t == BPF_WRITE && value_regno >= 0 && 4142 is_pointer_value(env, value_regno)) { 4143 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4144 return -EACCES; 4145 } 4146 4147 err = check_ctx_reg(env, reg, regno); 4148 if (err < 0) 4149 return err; 4150 4151 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4152 if (err) 4153 verbose_linfo(env, insn_idx, "; "); 4154 if (!err && t == BPF_READ && value_regno >= 0) { 4155 /* ctx access returns either a scalar, or a 4156 * PTR_TO_PACKET[_META,_END]. In the latter 4157 * case, we know the offset is zero. 4158 */ 4159 if (reg_type == SCALAR_VALUE) { 4160 mark_reg_unknown(env, regs, value_regno); 4161 } else { 4162 mark_reg_known_zero(env, regs, 4163 value_regno); 4164 if (reg_type_may_be_null(reg_type)) 4165 regs[value_regno].id = ++env->id_gen; 4166 /* A load of ctx field could have different 4167 * actual load size with the one encoded in the 4168 * insn. When the dst is PTR, it is for sure not 4169 * a sub-register. 4170 */ 4171 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4172 if (reg_type == PTR_TO_BTF_ID || 4173 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4174 regs[value_regno].btf = btf; 4175 regs[value_regno].btf_id = btf_id; 4176 } 4177 } 4178 regs[value_regno].type = reg_type; 4179 } 4180 4181 } else if (reg->type == PTR_TO_STACK) { 4182 /* Basic bounds checks. */ 4183 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4184 if (err) 4185 return err; 4186 4187 state = func(env, reg); 4188 err = update_stack_depth(env, state, off); 4189 if (err) 4190 return err; 4191 4192 if (t == BPF_READ) 4193 err = check_stack_read(env, regno, off, size, 4194 value_regno); 4195 else 4196 err = check_stack_write(env, regno, off, size, 4197 value_regno, insn_idx); 4198 } else if (reg_is_pkt_pointer(reg)) { 4199 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4200 verbose(env, "cannot write into packet\n"); 4201 return -EACCES; 4202 } 4203 if (t == BPF_WRITE && value_regno >= 0 && 4204 is_pointer_value(env, value_regno)) { 4205 verbose(env, "R%d leaks addr into packet\n", 4206 value_regno); 4207 return -EACCES; 4208 } 4209 err = check_packet_access(env, regno, off, size, false); 4210 if (!err && t == BPF_READ && value_regno >= 0) 4211 mark_reg_unknown(env, regs, value_regno); 4212 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4213 if (t == BPF_WRITE && value_regno >= 0 && 4214 is_pointer_value(env, value_regno)) { 4215 verbose(env, "R%d leaks addr into flow keys\n", 4216 value_regno); 4217 return -EACCES; 4218 } 4219 4220 err = check_flow_keys_access(env, off, size); 4221 if (!err && t == BPF_READ && value_regno >= 0) 4222 mark_reg_unknown(env, regs, value_regno); 4223 } else if (type_is_sk_pointer(reg->type)) { 4224 if (t == BPF_WRITE) { 4225 verbose(env, "R%d cannot write into %s\n", 4226 regno, reg_type_str[reg->type]); 4227 return -EACCES; 4228 } 4229 err = check_sock_access(env, insn_idx, regno, off, size, t); 4230 if (!err && value_regno >= 0) 4231 mark_reg_unknown(env, regs, value_regno); 4232 } else if (reg->type == PTR_TO_TP_BUFFER) { 4233 err = check_tp_buffer_access(env, reg, regno, off, size); 4234 if (!err && t == BPF_READ && value_regno >= 0) 4235 mark_reg_unknown(env, regs, value_regno); 4236 } else if (reg->type == PTR_TO_BTF_ID) { 4237 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4238 value_regno); 4239 } else if (reg->type == CONST_PTR_TO_MAP) { 4240 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4241 value_regno); 4242 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4243 if (t == BPF_WRITE) { 4244 verbose(env, "R%d cannot write into %s\n", 4245 regno, reg_type_str[reg->type]); 4246 return -EACCES; 4247 } 4248 err = check_buffer_access(env, reg, regno, off, size, false, 4249 "rdonly", 4250 &env->prog->aux->max_rdonly_access); 4251 if (!err && value_regno >= 0) 4252 mark_reg_unknown(env, regs, value_regno); 4253 } else if (reg->type == PTR_TO_RDWR_BUF) { 4254 err = check_buffer_access(env, reg, regno, off, size, false, 4255 "rdwr", 4256 &env->prog->aux->max_rdwr_access); 4257 if (!err && t == BPF_READ && value_regno >= 0) 4258 mark_reg_unknown(env, regs, value_regno); 4259 } else { 4260 verbose(env, "R%d invalid mem access '%s'\n", regno, 4261 reg_type_str[reg->type]); 4262 return -EACCES; 4263 } 4264 4265 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4266 regs[value_regno].type == SCALAR_VALUE) { 4267 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4268 coerce_reg_to_size(®s[value_regno], size); 4269 } 4270 return err; 4271 } 4272 4273 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4274 { 4275 int load_reg; 4276 int err; 4277 4278 switch (insn->imm) { 4279 case BPF_ADD: 4280 case BPF_ADD | BPF_FETCH: 4281 case BPF_AND: 4282 case BPF_AND | BPF_FETCH: 4283 case BPF_OR: 4284 case BPF_OR | BPF_FETCH: 4285 case BPF_XOR: 4286 case BPF_XOR | BPF_FETCH: 4287 case BPF_XCHG: 4288 case BPF_CMPXCHG: 4289 break; 4290 default: 4291 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4292 return -EINVAL; 4293 } 4294 4295 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4296 verbose(env, "invalid atomic operand size\n"); 4297 return -EINVAL; 4298 } 4299 4300 /* check src1 operand */ 4301 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4302 if (err) 4303 return err; 4304 4305 /* check src2 operand */ 4306 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4307 if (err) 4308 return err; 4309 4310 if (insn->imm == BPF_CMPXCHG) { 4311 /* Check comparison of R0 with memory location */ 4312 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4313 if (err) 4314 return err; 4315 } 4316 4317 if (is_pointer_value(env, insn->src_reg)) { 4318 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4319 return -EACCES; 4320 } 4321 4322 if (is_ctx_reg(env, insn->dst_reg) || 4323 is_pkt_reg(env, insn->dst_reg) || 4324 is_flow_key_reg(env, insn->dst_reg) || 4325 is_sk_reg(env, insn->dst_reg)) { 4326 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4327 insn->dst_reg, 4328 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4329 return -EACCES; 4330 } 4331 4332 if (insn->imm & BPF_FETCH) { 4333 if (insn->imm == BPF_CMPXCHG) 4334 load_reg = BPF_REG_0; 4335 else 4336 load_reg = insn->src_reg; 4337 4338 /* check and record load of old value */ 4339 err = check_reg_arg(env, load_reg, DST_OP); 4340 if (err) 4341 return err; 4342 } else { 4343 /* This instruction accesses a memory location but doesn't 4344 * actually load it into a register. 4345 */ 4346 load_reg = -1; 4347 } 4348 4349 /* check whether we can read the memory */ 4350 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4351 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4352 if (err) 4353 return err; 4354 4355 /* check whether we can write into the same memory */ 4356 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4357 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4358 if (err) 4359 return err; 4360 4361 return 0; 4362 } 4363 4364 /* When register 'regno' is used to read the stack (either directly or through 4365 * a helper function) make sure that it's within stack boundary and, depending 4366 * on the access type, that all elements of the stack are initialized. 4367 * 4368 * 'off' includes 'regno->off', but not its dynamic part (if any). 4369 * 4370 * All registers that have been spilled on the stack in the slots within the 4371 * read offsets are marked as read. 4372 */ 4373 static int check_stack_range_initialized( 4374 struct bpf_verifier_env *env, int regno, int off, 4375 int access_size, bool zero_size_allowed, 4376 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4377 { 4378 struct bpf_reg_state *reg = reg_state(env, regno); 4379 struct bpf_func_state *state = func(env, reg); 4380 int err, min_off, max_off, i, j, slot, spi; 4381 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4382 enum bpf_access_type bounds_check_type; 4383 /* Some accesses can write anything into the stack, others are 4384 * read-only. 4385 */ 4386 bool clobber = false; 4387 4388 if (access_size == 0 && !zero_size_allowed) { 4389 verbose(env, "invalid zero-sized read\n"); 4390 return -EACCES; 4391 } 4392 4393 if (type == ACCESS_HELPER) { 4394 /* The bounds checks for writes are more permissive than for 4395 * reads. However, if raw_mode is not set, we'll do extra 4396 * checks below. 4397 */ 4398 bounds_check_type = BPF_WRITE; 4399 clobber = true; 4400 } else { 4401 bounds_check_type = BPF_READ; 4402 } 4403 err = check_stack_access_within_bounds(env, regno, off, access_size, 4404 type, bounds_check_type); 4405 if (err) 4406 return err; 4407 4408 4409 if (tnum_is_const(reg->var_off)) { 4410 min_off = max_off = reg->var_off.value + off; 4411 } else { 4412 /* Variable offset is prohibited for unprivileged mode for 4413 * simplicity since it requires corresponding support in 4414 * Spectre masking for stack ALU. 4415 * See also retrieve_ptr_limit(). 4416 */ 4417 if (!env->bypass_spec_v1) { 4418 char tn_buf[48]; 4419 4420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4421 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4422 regno, err_extra, tn_buf); 4423 return -EACCES; 4424 } 4425 /* Only initialized buffer on stack is allowed to be accessed 4426 * with variable offset. With uninitialized buffer it's hard to 4427 * guarantee that whole memory is marked as initialized on 4428 * helper return since specific bounds are unknown what may 4429 * cause uninitialized stack leaking. 4430 */ 4431 if (meta && meta->raw_mode) 4432 meta = NULL; 4433 4434 min_off = reg->smin_value + off; 4435 max_off = reg->smax_value + off; 4436 } 4437 4438 if (meta && meta->raw_mode) { 4439 meta->access_size = access_size; 4440 meta->regno = regno; 4441 return 0; 4442 } 4443 4444 for (i = min_off; i < max_off + access_size; i++) { 4445 u8 *stype; 4446 4447 slot = -i - 1; 4448 spi = slot / BPF_REG_SIZE; 4449 if (state->allocated_stack <= slot) 4450 goto err; 4451 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4452 if (*stype == STACK_MISC) 4453 goto mark; 4454 if (*stype == STACK_ZERO) { 4455 if (clobber) { 4456 /* helper can write anything into the stack */ 4457 *stype = STACK_MISC; 4458 } 4459 goto mark; 4460 } 4461 4462 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4463 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4464 goto mark; 4465 4466 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4467 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4468 env->allow_ptr_leaks)) { 4469 if (clobber) { 4470 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4471 for (j = 0; j < BPF_REG_SIZE; j++) 4472 state->stack[spi].slot_type[j] = STACK_MISC; 4473 } 4474 goto mark; 4475 } 4476 4477 err: 4478 if (tnum_is_const(reg->var_off)) { 4479 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4480 err_extra, regno, min_off, i - min_off, access_size); 4481 } else { 4482 char tn_buf[48]; 4483 4484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4485 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4486 err_extra, regno, tn_buf, i - min_off, access_size); 4487 } 4488 return -EACCES; 4489 mark: 4490 /* reading any byte out of 8-byte 'spill_slot' will cause 4491 * the whole slot to be marked as 'read' 4492 */ 4493 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4494 state->stack[spi].spilled_ptr.parent, 4495 REG_LIVE_READ64); 4496 } 4497 return update_stack_depth(env, state, min_off); 4498 } 4499 4500 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4501 int access_size, bool zero_size_allowed, 4502 struct bpf_call_arg_meta *meta) 4503 { 4504 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4505 4506 switch (reg->type) { 4507 case PTR_TO_PACKET: 4508 case PTR_TO_PACKET_META: 4509 return check_packet_access(env, regno, reg->off, access_size, 4510 zero_size_allowed); 4511 case PTR_TO_MAP_KEY: 4512 return check_mem_region_access(env, regno, reg->off, access_size, 4513 reg->map_ptr->key_size, false); 4514 case PTR_TO_MAP_VALUE: 4515 if (check_map_access_type(env, regno, reg->off, access_size, 4516 meta && meta->raw_mode ? BPF_WRITE : 4517 BPF_READ)) 4518 return -EACCES; 4519 return check_map_access(env, regno, reg->off, access_size, 4520 zero_size_allowed); 4521 case PTR_TO_MEM: 4522 return check_mem_region_access(env, regno, reg->off, 4523 access_size, reg->mem_size, 4524 zero_size_allowed); 4525 case PTR_TO_RDONLY_BUF: 4526 if (meta && meta->raw_mode) 4527 return -EACCES; 4528 return check_buffer_access(env, reg, regno, reg->off, 4529 access_size, zero_size_allowed, 4530 "rdonly", 4531 &env->prog->aux->max_rdonly_access); 4532 case PTR_TO_RDWR_BUF: 4533 return check_buffer_access(env, reg, regno, reg->off, 4534 access_size, zero_size_allowed, 4535 "rdwr", 4536 &env->prog->aux->max_rdwr_access); 4537 case PTR_TO_STACK: 4538 return check_stack_range_initialized( 4539 env, 4540 regno, reg->off, access_size, 4541 zero_size_allowed, ACCESS_HELPER, meta); 4542 default: /* scalar_value or invalid ptr */ 4543 /* Allow zero-byte read from NULL, regardless of pointer type */ 4544 if (zero_size_allowed && access_size == 0 && 4545 register_is_null(reg)) 4546 return 0; 4547 4548 verbose(env, "R%d type=%s expected=%s\n", regno, 4549 reg_type_str[reg->type], 4550 reg_type_str[PTR_TO_STACK]); 4551 return -EACCES; 4552 } 4553 } 4554 4555 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4556 u32 regno, u32 mem_size) 4557 { 4558 if (register_is_null(reg)) 4559 return 0; 4560 4561 if (reg_type_may_be_null(reg->type)) { 4562 /* Assuming that the register contains a value check if the memory 4563 * access is safe. Temporarily save and restore the register's state as 4564 * the conversion shouldn't be visible to a caller. 4565 */ 4566 const struct bpf_reg_state saved_reg = *reg; 4567 int rv; 4568 4569 mark_ptr_not_null_reg(reg); 4570 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4571 *reg = saved_reg; 4572 return rv; 4573 } 4574 4575 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4576 } 4577 4578 /* Implementation details: 4579 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4580 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4581 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4582 * value_or_null->value transition, since the verifier only cares about 4583 * the range of access to valid map value pointer and doesn't care about actual 4584 * address of the map element. 4585 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4586 * reg->id > 0 after value_or_null->value transition. By doing so 4587 * two bpf_map_lookups will be considered two different pointers that 4588 * point to different bpf_spin_locks. 4589 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4590 * dead-locks. 4591 * Since only one bpf_spin_lock is allowed the checks are simpler than 4592 * reg_is_refcounted() logic. The verifier needs to remember only 4593 * one spin_lock instead of array of acquired_refs. 4594 * cur_state->active_spin_lock remembers which map value element got locked 4595 * and clears it after bpf_spin_unlock. 4596 */ 4597 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4598 bool is_lock) 4599 { 4600 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4601 struct bpf_verifier_state *cur = env->cur_state; 4602 bool is_const = tnum_is_const(reg->var_off); 4603 struct bpf_map *map = reg->map_ptr; 4604 u64 val = reg->var_off.value; 4605 4606 if (!is_const) { 4607 verbose(env, 4608 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4609 regno); 4610 return -EINVAL; 4611 } 4612 if (!map->btf) { 4613 verbose(env, 4614 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4615 map->name); 4616 return -EINVAL; 4617 } 4618 if (!map_value_has_spin_lock(map)) { 4619 if (map->spin_lock_off == -E2BIG) 4620 verbose(env, 4621 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4622 map->name); 4623 else if (map->spin_lock_off == -ENOENT) 4624 verbose(env, 4625 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4626 map->name); 4627 else 4628 verbose(env, 4629 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4630 map->name); 4631 return -EINVAL; 4632 } 4633 if (map->spin_lock_off != val + reg->off) { 4634 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4635 val + reg->off); 4636 return -EINVAL; 4637 } 4638 if (is_lock) { 4639 if (cur->active_spin_lock) { 4640 verbose(env, 4641 "Locking two bpf_spin_locks are not allowed\n"); 4642 return -EINVAL; 4643 } 4644 cur->active_spin_lock = reg->id; 4645 } else { 4646 if (!cur->active_spin_lock) { 4647 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4648 return -EINVAL; 4649 } 4650 if (cur->active_spin_lock != reg->id) { 4651 verbose(env, "bpf_spin_unlock of different lock\n"); 4652 return -EINVAL; 4653 } 4654 cur->active_spin_lock = 0; 4655 } 4656 return 0; 4657 } 4658 4659 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4660 { 4661 return type == ARG_PTR_TO_MEM || 4662 type == ARG_PTR_TO_MEM_OR_NULL || 4663 type == ARG_PTR_TO_UNINIT_MEM; 4664 } 4665 4666 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4667 { 4668 return type == ARG_CONST_SIZE || 4669 type == ARG_CONST_SIZE_OR_ZERO; 4670 } 4671 4672 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4673 { 4674 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4675 } 4676 4677 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4678 { 4679 return type == ARG_PTR_TO_INT || 4680 type == ARG_PTR_TO_LONG; 4681 } 4682 4683 static int int_ptr_type_to_size(enum bpf_arg_type type) 4684 { 4685 if (type == ARG_PTR_TO_INT) 4686 return sizeof(u32); 4687 else if (type == ARG_PTR_TO_LONG) 4688 return sizeof(u64); 4689 4690 return -EINVAL; 4691 } 4692 4693 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4694 const struct bpf_call_arg_meta *meta, 4695 enum bpf_arg_type *arg_type) 4696 { 4697 if (!meta->map_ptr) { 4698 /* kernel subsystem misconfigured verifier */ 4699 verbose(env, "invalid map_ptr to access map->type\n"); 4700 return -EACCES; 4701 } 4702 4703 switch (meta->map_ptr->map_type) { 4704 case BPF_MAP_TYPE_SOCKMAP: 4705 case BPF_MAP_TYPE_SOCKHASH: 4706 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4707 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4708 } else { 4709 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4710 return -EINVAL; 4711 } 4712 break; 4713 4714 default: 4715 break; 4716 } 4717 return 0; 4718 } 4719 4720 struct bpf_reg_types { 4721 const enum bpf_reg_type types[10]; 4722 u32 *btf_id; 4723 }; 4724 4725 static const struct bpf_reg_types map_key_value_types = { 4726 .types = { 4727 PTR_TO_STACK, 4728 PTR_TO_PACKET, 4729 PTR_TO_PACKET_META, 4730 PTR_TO_MAP_KEY, 4731 PTR_TO_MAP_VALUE, 4732 }, 4733 }; 4734 4735 static const struct bpf_reg_types sock_types = { 4736 .types = { 4737 PTR_TO_SOCK_COMMON, 4738 PTR_TO_SOCKET, 4739 PTR_TO_TCP_SOCK, 4740 PTR_TO_XDP_SOCK, 4741 }, 4742 }; 4743 4744 #ifdef CONFIG_NET 4745 static const struct bpf_reg_types btf_id_sock_common_types = { 4746 .types = { 4747 PTR_TO_SOCK_COMMON, 4748 PTR_TO_SOCKET, 4749 PTR_TO_TCP_SOCK, 4750 PTR_TO_XDP_SOCK, 4751 PTR_TO_BTF_ID, 4752 }, 4753 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4754 }; 4755 #endif 4756 4757 static const struct bpf_reg_types mem_types = { 4758 .types = { 4759 PTR_TO_STACK, 4760 PTR_TO_PACKET, 4761 PTR_TO_PACKET_META, 4762 PTR_TO_MAP_KEY, 4763 PTR_TO_MAP_VALUE, 4764 PTR_TO_MEM, 4765 PTR_TO_RDONLY_BUF, 4766 PTR_TO_RDWR_BUF, 4767 }, 4768 }; 4769 4770 static const struct bpf_reg_types int_ptr_types = { 4771 .types = { 4772 PTR_TO_STACK, 4773 PTR_TO_PACKET, 4774 PTR_TO_PACKET_META, 4775 PTR_TO_MAP_KEY, 4776 PTR_TO_MAP_VALUE, 4777 }, 4778 }; 4779 4780 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4781 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4782 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4783 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4784 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4785 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4786 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4787 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4788 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4789 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4790 4791 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4792 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4793 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4794 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4795 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4796 [ARG_CONST_SIZE] = &scalar_types, 4797 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4798 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4799 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4800 [ARG_PTR_TO_CTX] = &context_types, 4801 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4802 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4803 #ifdef CONFIG_NET 4804 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4805 #endif 4806 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4807 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4808 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4809 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4810 [ARG_PTR_TO_MEM] = &mem_types, 4811 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4812 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4813 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4814 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4815 [ARG_PTR_TO_INT] = &int_ptr_types, 4816 [ARG_PTR_TO_LONG] = &int_ptr_types, 4817 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4818 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4819 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4820 }; 4821 4822 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4823 enum bpf_arg_type arg_type, 4824 const u32 *arg_btf_id) 4825 { 4826 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4827 enum bpf_reg_type expected, type = reg->type; 4828 const struct bpf_reg_types *compatible; 4829 int i, j; 4830 4831 compatible = compatible_reg_types[arg_type]; 4832 if (!compatible) { 4833 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4834 return -EFAULT; 4835 } 4836 4837 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4838 expected = compatible->types[i]; 4839 if (expected == NOT_INIT) 4840 break; 4841 4842 if (type == expected) 4843 goto found; 4844 } 4845 4846 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4847 for (j = 0; j + 1 < i; j++) 4848 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4849 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4850 return -EACCES; 4851 4852 found: 4853 if (type == PTR_TO_BTF_ID) { 4854 if (!arg_btf_id) { 4855 if (!compatible->btf_id) { 4856 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4857 return -EFAULT; 4858 } 4859 arg_btf_id = compatible->btf_id; 4860 } 4861 4862 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4863 btf_vmlinux, *arg_btf_id)) { 4864 verbose(env, "R%d is of type %s but %s is expected\n", 4865 regno, kernel_type_name(reg->btf, reg->btf_id), 4866 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4867 return -EACCES; 4868 } 4869 4870 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4871 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4872 regno); 4873 return -EACCES; 4874 } 4875 } 4876 4877 return 0; 4878 } 4879 4880 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4881 struct bpf_call_arg_meta *meta, 4882 const struct bpf_func_proto *fn) 4883 { 4884 u32 regno = BPF_REG_1 + arg; 4885 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4886 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4887 enum bpf_reg_type type = reg->type; 4888 int err = 0; 4889 4890 if (arg_type == ARG_DONTCARE) 4891 return 0; 4892 4893 err = check_reg_arg(env, regno, SRC_OP); 4894 if (err) 4895 return err; 4896 4897 if (arg_type == ARG_ANYTHING) { 4898 if (is_pointer_value(env, regno)) { 4899 verbose(env, "R%d leaks addr into helper function\n", 4900 regno); 4901 return -EACCES; 4902 } 4903 return 0; 4904 } 4905 4906 if (type_is_pkt_pointer(type) && 4907 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4908 verbose(env, "helper access to the packet is not allowed\n"); 4909 return -EACCES; 4910 } 4911 4912 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4913 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4914 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4915 err = resolve_map_arg_type(env, meta, &arg_type); 4916 if (err) 4917 return err; 4918 } 4919 4920 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4921 /* A NULL register has a SCALAR_VALUE type, so skip 4922 * type checking. 4923 */ 4924 goto skip_type_check; 4925 4926 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4927 if (err) 4928 return err; 4929 4930 if (type == PTR_TO_CTX) { 4931 err = check_ctx_reg(env, reg, regno); 4932 if (err < 0) 4933 return err; 4934 } 4935 4936 skip_type_check: 4937 if (reg->ref_obj_id) { 4938 if (meta->ref_obj_id) { 4939 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4940 regno, reg->ref_obj_id, 4941 meta->ref_obj_id); 4942 return -EFAULT; 4943 } 4944 meta->ref_obj_id = reg->ref_obj_id; 4945 } 4946 4947 if (arg_type == ARG_CONST_MAP_PTR) { 4948 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4949 meta->map_ptr = reg->map_ptr; 4950 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4951 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4952 * check that [key, key + map->key_size) are within 4953 * stack limits and initialized 4954 */ 4955 if (!meta->map_ptr) { 4956 /* in function declaration map_ptr must come before 4957 * map_key, so that it's verified and known before 4958 * we have to check map_key here. Otherwise it means 4959 * that kernel subsystem misconfigured verifier 4960 */ 4961 verbose(env, "invalid map_ptr to access map->key\n"); 4962 return -EACCES; 4963 } 4964 err = check_helper_mem_access(env, regno, 4965 meta->map_ptr->key_size, false, 4966 NULL); 4967 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4968 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4969 !register_is_null(reg)) || 4970 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4971 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4972 * check [value, value + map->value_size) validity 4973 */ 4974 if (!meta->map_ptr) { 4975 /* kernel subsystem misconfigured verifier */ 4976 verbose(env, "invalid map_ptr to access map->value\n"); 4977 return -EACCES; 4978 } 4979 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4980 err = check_helper_mem_access(env, regno, 4981 meta->map_ptr->value_size, false, 4982 meta); 4983 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4984 if (!reg->btf_id) { 4985 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4986 return -EACCES; 4987 } 4988 meta->ret_btf = reg->btf; 4989 meta->ret_btf_id = reg->btf_id; 4990 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4991 if (meta->func_id == BPF_FUNC_spin_lock) { 4992 if (process_spin_lock(env, regno, true)) 4993 return -EACCES; 4994 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4995 if (process_spin_lock(env, regno, false)) 4996 return -EACCES; 4997 } else { 4998 verbose(env, "verifier internal error\n"); 4999 return -EFAULT; 5000 } 5001 } else if (arg_type == ARG_PTR_TO_FUNC) { 5002 meta->subprogno = reg->subprogno; 5003 } else if (arg_type_is_mem_ptr(arg_type)) { 5004 /* The access to this pointer is only checked when we hit the 5005 * next is_mem_size argument below. 5006 */ 5007 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5008 } else if (arg_type_is_mem_size(arg_type)) { 5009 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5010 5011 /* This is used to refine r0 return value bounds for helpers 5012 * that enforce this value as an upper bound on return values. 5013 * See do_refine_retval_range() for helpers that can refine 5014 * the return value. C type of helper is u32 so we pull register 5015 * bound from umax_value however, if negative verifier errors 5016 * out. Only upper bounds can be learned because retval is an 5017 * int type and negative retvals are allowed. 5018 */ 5019 meta->msize_max_value = reg->umax_value; 5020 5021 /* The register is SCALAR_VALUE; the access check 5022 * happens using its boundaries. 5023 */ 5024 if (!tnum_is_const(reg->var_off)) 5025 /* For unprivileged variable accesses, disable raw 5026 * mode so that the program is required to 5027 * initialize all the memory that the helper could 5028 * just partially fill up. 5029 */ 5030 meta = NULL; 5031 5032 if (reg->smin_value < 0) { 5033 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5034 regno); 5035 return -EACCES; 5036 } 5037 5038 if (reg->umin_value == 0) { 5039 err = check_helper_mem_access(env, regno - 1, 0, 5040 zero_size_allowed, 5041 meta); 5042 if (err) 5043 return err; 5044 } 5045 5046 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5047 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5048 regno); 5049 return -EACCES; 5050 } 5051 err = check_helper_mem_access(env, regno - 1, 5052 reg->umax_value, 5053 zero_size_allowed, meta); 5054 if (!err) 5055 err = mark_chain_precision(env, regno); 5056 } else if (arg_type_is_alloc_size(arg_type)) { 5057 if (!tnum_is_const(reg->var_off)) { 5058 verbose(env, "R%d is not a known constant'\n", 5059 regno); 5060 return -EACCES; 5061 } 5062 meta->mem_size = reg->var_off.value; 5063 } else if (arg_type_is_int_ptr(arg_type)) { 5064 int size = int_ptr_type_to_size(arg_type); 5065 5066 err = check_helper_mem_access(env, regno, size, false, meta); 5067 if (err) 5068 return err; 5069 err = check_ptr_alignment(env, reg, 0, size, true); 5070 } 5071 5072 return err; 5073 } 5074 5075 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5076 { 5077 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5078 enum bpf_prog_type type = resolve_prog_type(env->prog); 5079 5080 if (func_id != BPF_FUNC_map_update_elem) 5081 return false; 5082 5083 /* It's not possible to get access to a locked struct sock in these 5084 * contexts, so updating is safe. 5085 */ 5086 switch (type) { 5087 case BPF_PROG_TYPE_TRACING: 5088 if (eatype == BPF_TRACE_ITER) 5089 return true; 5090 break; 5091 case BPF_PROG_TYPE_SOCKET_FILTER: 5092 case BPF_PROG_TYPE_SCHED_CLS: 5093 case BPF_PROG_TYPE_SCHED_ACT: 5094 case BPF_PROG_TYPE_XDP: 5095 case BPF_PROG_TYPE_SK_REUSEPORT: 5096 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5097 case BPF_PROG_TYPE_SK_LOOKUP: 5098 return true; 5099 default: 5100 break; 5101 } 5102 5103 verbose(env, "cannot update sockmap in this context\n"); 5104 return false; 5105 } 5106 5107 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5108 { 5109 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5110 } 5111 5112 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5113 struct bpf_map *map, int func_id) 5114 { 5115 if (!map) 5116 return 0; 5117 5118 /* We need a two way check, first is from map perspective ... */ 5119 switch (map->map_type) { 5120 case BPF_MAP_TYPE_PROG_ARRAY: 5121 if (func_id != BPF_FUNC_tail_call) 5122 goto error; 5123 break; 5124 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5125 if (func_id != BPF_FUNC_perf_event_read && 5126 func_id != BPF_FUNC_perf_event_output && 5127 func_id != BPF_FUNC_skb_output && 5128 func_id != BPF_FUNC_perf_event_read_value && 5129 func_id != BPF_FUNC_xdp_output) 5130 goto error; 5131 break; 5132 case BPF_MAP_TYPE_RINGBUF: 5133 if (func_id != BPF_FUNC_ringbuf_output && 5134 func_id != BPF_FUNC_ringbuf_reserve && 5135 func_id != BPF_FUNC_ringbuf_submit && 5136 func_id != BPF_FUNC_ringbuf_discard && 5137 func_id != BPF_FUNC_ringbuf_query) 5138 goto error; 5139 break; 5140 case BPF_MAP_TYPE_STACK_TRACE: 5141 if (func_id != BPF_FUNC_get_stackid) 5142 goto error; 5143 break; 5144 case BPF_MAP_TYPE_CGROUP_ARRAY: 5145 if (func_id != BPF_FUNC_skb_under_cgroup && 5146 func_id != BPF_FUNC_current_task_under_cgroup) 5147 goto error; 5148 break; 5149 case BPF_MAP_TYPE_CGROUP_STORAGE: 5150 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5151 if (func_id != BPF_FUNC_get_local_storage) 5152 goto error; 5153 break; 5154 case BPF_MAP_TYPE_DEVMAP: 5155 case BPF_MAP_TYPE_DEVMAP_HASH: 5156 if (func_id != BPF_FUNC_redirect_map && 5157 func_id != BPF_FUNC_map_lookup_elem) 5158 goto error; 5159 break; 5160 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5161 * appear. 5162 */ 5163 case BPF_MAP_TYPE_CPUMAP: 5164 if (func_id != BPF_FUNC_redirect_map) 5165 goto error; 5166 break; 5167 case BPF_MAP_TYPE_XSKMAP: 5168 if (func_id != BPF_FUNC_redirect_map && 5169 func_id != BPF_FUNC_map_lookup_elem) 5170 goto error; 5171 break; 5172 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5173 case BPF_MAP_TYPE_HASH_OF_MAPS: 5174 if (func_id != BPF_FUNC_map_lookup_elem) 5175 goto error; 5176 break; 5177 case BPF_MAP_TYPE_SOCKMAP: 5178 if (func_id != BPF_FUNC_sk_redirect_map && 5179 func_id != BPF_FUNC_sock_map_update && 5180 func_id != BPF_FUNC_map_delete_elem && 5181 func_id != BPF_FUNC_msg_redirect_map && 5182 func_id != BPF_FUNC_sk_select_reuseport && 5183 func_id != BPF_FUNC_map_lookup_elem && 5184 !may_update_sockmap(env, func_id)) 5185 goto error; 5186 break; 5187 case BPF_MAP_TYPE_SOCKHASH: 5188 if (func_id != BPF_FUNC_sk_redirect_hash && 5189 func_id != BPF_FUNC_sock_hash_update && 5190 func_id != BPF_FUNC_map_delete_elem && 5191 func_id != BPF_FUNC_msg_redirect_hash && 5192 func_id != BPF_FUNC_sk_select_reuseport && 5193 func_id != BPF_FUNC_map_lookup_elem && 5194 !may_update_sockmap(env, func_id)) 5195 goto error; 5196 break; 5197 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5198 if (func_id != BPF_FUNC_sk_select_reuseport) 5199 goto error; 5200 break; 5201 case BPF_MAP_TYPE_QUEUE: 5202 case BPF_MAP_TYPE_STACK: 5203 if (func_id != BPF_FUNC_map_peek_elem && 5204 func_id != BPF_FUNC_map_pop_elem && 5205 func_id != BPF_FUNC_map_push_elem) 5206 goto error; 5207 break; 5208 case BPF_MAP_TYPE_SK_STORAGE: 5209 if (func_id != BPF_FUNC_sk_storage_get && 5210 func_id != BPF_FUNC_sk_storage_delete) 5211 goto error; 5212 break; 5213 case BPF_MAP_TYPE_INODE_STORAGE: 5214 if (func_id != BPF_FUNC_inode_storage_get && 5215 func_id != BPF_FUNC_inode_storage_delete) 5216 goto error; 5217 break; 5218 case BPF_MAP_TYPE_TASK_STORAGE: 5219 if (func_id != BPF_FUNC_task_storage_get && 5220 func_id != BPF_FUNC_task_storage_delete) 5221 goto error; 5222 break; 5223 default: 5224 break; 5225 } 5226 5227 /* ... and second from the function itself. */ 5228 switch (func_id) { 5229 case BPF_FUNC_tail_call: 5230 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5231 goto error; 5232 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5233 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5234 return -EINVAL; 5235 } 5236 break; 5237 case BPF_FUNC_perf_event_read: 5238 case BPF_FUNC_perf_event_output: 5239 case BPF_FUNC_perf_event_read_value: 5240 case BPF_FUNC_skb_output: 5241 case BPF_FUNC_xdp_output: 5242 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5243 goto error; 5244 break; 5245 case BPF_FUNC_get_stackid: 5246 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5247 goto error; 5248 break; 5249 case BPF_FUNC_current_task_under_cgroup: 5250 case BPF_FUNC_skb_under_cgroup: 5251 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5252 goto error; 5253 break; 5254 case BPF_FUNC_redirect_map: 5255 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5256 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5257 map->map_type != BPF_MAP_TYPE_CPUMAP && 5258 map->map_type != BPF_MAP_TYPE_XSKMAP) 5259 goto error; 5260 break; 5261 case BPF_FUNC_sk_redirect_map: 5262 case BPF_FUNC_msg_redirect_map: 5263 case BPF_FUNC_sock_map_update: 5264 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5265 goto error; 5266 break; 5267 case BPF_FUNC_sk_redirect_hash: 5268 case BPF_FUNC_msg_redirect_hash: 5269 case BPF_FUNC_sock_hash_update: 5270 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5271 goto error; 5272 break; 5273 case BPF_FUNC_get_local_storage: 5274 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5275 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5276 goto error; 5277 break; 5278 case BPF_FUNC_sk_select_reuseport: 5279 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5280 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5281 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5282 goto error; 5283 break; 5284 case BPF_FUNC_map_peek_elem: 5285 case BPF_FUNC_map_pop_elem: 5286 case BPF_FUNC_map_push_elem: 5287 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5288 map->map_type != BPF_MAP_TYPE_STACK) 5289 goto error; 5290 break; 5291 case BPF_FUNC_sk_storage_get: 5292 case BPF_FUNC_sk_storage_delete: 5293 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5294 goto error; 5295 break; 5296 case BPF_FUNC_inode_storage_get: 5297 case BPF_FUNC_inode_storage_delete: 5298 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5299 goto error; 5300 break; 5301 case BPF_FUNC_task_storage_get: 5302 case BPF_FUNC_task_storage_delete: 5303 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5304 goto error; 5305 break; 5306 default: 5307 break; 5308 } 5309 5310 return 0; 5311 error: 5312 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5313 map->map_type, func_id_name(func_id), func_id); 5314 return -EINVAL; 5315 } 5316 5317 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5318 { 5319 int count = 0; 5320 5321 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5322 count++; 5323 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5324 count++; 5325 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5326 count++; 5327 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5328 count++; 5329 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5330 count++; 5331 5332 /* We only support one arg being in raw mode at the moment, 5333 * which is sufficient for the helper functions we have 5334 * right now. 5335 */ 5336 return count <= 1; 5337 } 5338 5339 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5340 enum bpf_arg_type arg_next) 5341 { 5342 return (arg_type_is_mem_ptr(arg_curr) && 5343 !arg_type_is_mem_size(arg_next)) || 5344 (!arg_type_is_mem_ptr(arg_curr) && 5345 arg_type_is_mem_size(arg_next)); 5346 } 5347 5348 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5349 { 5350 /* bpf_xxx(..., buf, len) call will access 'len' 5351 * bytes from memory 'buf'. Both arg types need 5352 * to be paired, so make sure there's no buggy 5353 * helper function specification. 5354 */ 5355 if (arg_type_is_mem_size(fn->arg1_type) || 5356 arg_type_is_mem_ptr(fn->arg5_type) || 5357 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5358 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5359 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5360 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5361 return false; 5362 5363 return true; 5364 } 5365 5366 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5367 { 5368 int count = 0; 5369 5370 if (arg_type_may_be_refcounted(fn->arg1_type)) 5371 count++; 5372 if (arg_type_may_be_refcounted(fn->arg2_type)) 5373 count++; 5374 if (arg_type_may_be_refcounted(fn->arg3_type)) 5375 count++; 5376 if (arg_type_may_be_refcounted(fn->arg4_type)) 5377 count++; 5378 if (arg_type_may_be_refcounted(fn->arg5_type)) 5379 count++; 5380 5381 /* A reference acquiring function cannot acquire 5382 * another refcounted ptr. 5383 */ 5384 if (may_be_acquire_function(func_id) && count) 5385 return false; 5386 5387 /* We only support one arg being unreferenced at the moment, 5388 * which is sufficient for the helper functions we have right now. 5389 */ 5390 return count <= 1; 5391 } 5392 5393 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5394 { 5395 int i; 5396 5397 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5398 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5399 return false; 5400 5401 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5402 return false; 5403 } 5404 5405 return true; 5406 } 5407 5408 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5409 { 5410 return check_raw_mode_ok(fn) && 5411 check_arg_pair_ok(fn) && 5412 check_btf_id_ok(fn) && 5413 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5414 } 5415 5416 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5417 * are now invalid, so turn them into unknown SCALAR_VALUE. 5418 */ 5419 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5420 struct bpf_func_state *state) 5421 { 5422 struct bpf_reg_state *regs = state->regs, *reg; 5423 int i; 5424 5425 for (i = 0; i < MAX_BPF_REG; i++) 5426 if (reg_is_pkt_pointer_any(®s[i])) 5427 mark_reg_unknown(env, regs, i); 5428 5429 bpf_for_each_spilled_reg(i, state, reg) { 5430 if (!reg) 5431 continue; 5432 if (reg_is_pkt_pointer_any(reg)) 5433 __mark_reg_unknown(env, reg); 5434 } 5435 } 5436 5437 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5438 { 5439 struct bpf_verifier_state *vstate = env->cur_state; 5440 int i; 5441 5442 for (i = 0; i <= vstate->curframe; i++) 5443 __clear_all_pkt_pointers(env, vstate->frame[i]); 5444 } 5445 5446 enum { 5447 AT_PKT_END = -1, 5448 BEYOND_PKT_END = -2, 5449 }; 5450 5451 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5452 { 5453 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5454 struct bpf_reg_state *reg = &state->regs[regn]; 5455 5456 if (reg->type != PTR_TO_PACKET) 5457 /* PTR_TO_PACKET_META is not supported yet */ 5458 return; 5459 5460 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5461 * How far beyond pkt_end it goes is unknown. 5462 * if (!range_open) it's the case of pkt >= pkt_end 5463 * if (range_open) it's the case of pkt > pkt_end 5464 * hence this pointer is at least 1 byte bigger than pkt_end 5465 */ 5466 if (range_open) 5467 reg->range = BEYOND_PKT_END; 5468 else 5469 reg->range = AT_PKT_END; 5470 } 5471 5472 static void release_reg_references(struct bpf_verifier_env *env, 5473 struct bpf_func_state *state, 5474 int ref_obj_id) 5475 { 5476 struct bpf_reg_state *regs = state->regs, *reg; 5477 int i; 5478 5479 for (i = 0; i < MAX_BPF_REG; i++) 5480 if (regs[i].ref_obj_id == ref_obj_id) 5481 mark_reg_unknown(env, regs, i); 5482 5483 bpf_for_each_spilled_reg(i, state, reg) { 5484 if (!reg) 5485 continue; 5486 if (reg->ref_obj_id == ref_obj_id) 5487 __mark_reg_unknown(env, reg); 5488 } 5489 } 5490 5491 /* The pointer with the specified id has released its reference to kernel 5492 * resources. Identify all copies of the same pointer and clear the reference. 5493 */ 5494 static int release_reference(struct bpf_verifier_env *env, 5495 int ref_obj_id) 5496 { 5497 struct bpf_verifier_state *vstate = env->cur_state; 5498 int err; 5499 int i; 5500 5501 err = release_reference_state(cur_func(env), ref_obj_id); 5502 if (err) 5503 return err; 5504 5505 for (i = 0; i <= vstate->curframe; i++) 5506 release_reg_references(env, vstate->frame[i], ref_obj_id); 5507 5508 return 0; 5509 } 5510 5511 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5512 struct bpf_reg_state *regs) 5513 { 5514 int i; 5515 5516 /* after the call registers r0 - r5 were scratched */ 5517 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5518 mark_reg_not_init(env, regs, caller_saved[i]); 5519 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5520 } 5521 } 5522 5523 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5524 struct bpf_func_state *caller, 5525 struct bpf_func_state *callee, 5526 int insn_idx); 5527 5528 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5529 int *insn_idx, int subprog, 5530 set_callee_state_fn set_callee_state_cb) 5531 { 5532 struct bpf_verifier_state *state = env->cur_state; 5533 struct bpf_func_info_aux *func_info_aux; 5534 struct bpf_func_state *caller, *callee; 5535 int err; 5536 bool is_global = false; 5537 5538 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5539 verbose(env, "the call stack of %d frames is too deep\n", 5540 state->curframe + 2); 5541 return -E2BIG; 5542 } 5543 5544 caller = state->frame[state->curframe]; 5545 if (state->frame[state->curframe + 1]) { 5546 verbose(env, "verifier bug. Frame %d already allocated\n", 5547 state->curframe + 1); 5548 return -EFAULT; 5549 } 5550 5551 func_info_aux = env->prog->aux->func_info_aux; 5552 if (func_info_aux) 5553 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5554 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5555 if (err == -EFAULT) 5556 return err; 5557 if (is_global) { 5558 if (err) { 5559 verbose(env, "Caller passes invalid args into func#%d\n", 5560 subprog); 5561 return err; 5562 } else { 5563 if (env->log.level & BPF_LOG_LEVEL) 5564 verbose(env, 5565 "Func#%d is global and valid. Skipping.\n", 5566 subprog); 5567 clear_caller_saved_regs(env, caller->regs); 5568 5569 /* All global functions return a 64-bit SCALAR_VALUE */ 5570 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5571 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5572 5573 /* continue with next insn after call */ 5574 return 0; 5575 } 5576 } 5577 5578 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5579 if (!callee) 5580 return -ENOMEM; 5581 state->frame[state->curframe + 1] = callee; 5582 5583 /* callee cannot access r0, r6 - r9 for reading and has to write 5584 * into its own stack before reading from it. 5585 * callee can read/write into caller's stack 5586 */ 5587 init_func_state(env, callee, 5588 /* remember the callsite, it will be used by bpf_exit */ 5589 *insn_idx /* callsite */, 5590 state->curframe + 1 /* frameno within this callchain */, 5591 subprog /* subprog number within this prog */); 5592 5593 /* Transfer references to the callee */ 5594 err = transfer_reference_state(callee, caller); 5595 if (err) 5596 return err; 5597 5598 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5599 if (err) 5600 return err; 5601 5602 clear_caller_saved_regs(env, caller->regs); 5603 5604 /* only increment it after check_reg_arg() finished */ 5605 state->curframe++; 5606 5607 /* and go analyze first insn of the callee */ 5608 *insn_idx = env->subprog_info[subprog].start - 1; 5609 5610 if (env->log.level & BPF_LOG_LEVEL) { 5611 verbose(env, "caller:\n"); 5612 print_verifier_state(env, caller); 5613 verbose(env, "callee:\n"); 5614 print_verifier_state(env, callee); 5615 } 5616 return 0; 5617 } 5618 5619 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5620 struct bpf_func_state *caller, 5621 struct bpf_func_state *callee) 5622 { 5623 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5624 * void *callback_ctx, u64 flags); 5625 * callback_fn(struct bpf_map *map, void *key, void *value, 5626 * void *callback_ctx); 5627 */ 5628 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5629 5630 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5631 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5632 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5633 5634 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5635 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5636 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5637 5638 /* pointer to stack or null */ 5639 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5640 5641 /* unused */ 5642 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5643 return 0; 5644 } 5645 5646 static int set_callee_state(struct bpf_verifier_env *env, 5647 struct bpf_func_state *caller, 5648 struct bpf_func_state *callee, int insn_idx) 5649 { 5650 int i; 5651 5652 /* copy r1 - r5 args that callee can access. The copy includes parent 5653 * pointers, which connects us up to the liveness chain 5654 */ 5655 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5656 callee->regs[i] = caller->regs[i]; 5657 return 0; 5658 } 5659 5660 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5661 int *insn_idx) 5662 { 5663 int subprog, target_insn; 5664 5665 target_insn = *insn_idx + insn->imm + 1; 5666 subprog = find_subprog(env, target_insn); 5667 if (subprog < 0) { 5668 verbose(env, "verifier bug. No program starts at insn %d\n", 5669 target_insn); 5670 return -EFAULT; 5671 } 5672 5673 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5674 } 5675 5676 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5677 struct bpf_func_state *caller, 5678 struct bpf_func_state *callee, 5679 int insn_idx) 5680 { 5681 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5682 struct bpf_map *map; 5683 int err; 5684 5685 if (bpf_map_ptr_poisoned(insn_aux)) { 5686 verbose(env, "tail_call abusing map_ptr\n"); 5687 return -EINVAL; 5688 } 5689 5690 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5691 if (!map->ops->map_set_for_each_callback_args || 5692 !map->ops->map_for_each_callback) { 5693 verbose(env, "callback function not allowed for map\n"); 5694 return -ENOTSUPP; 5695 } 5696 5697 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5698 if (err) 5699 return err; 5700 5701 callee->in_callback_fn = true; 5702 return 0; 5703 } 5704 5705 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5706 { 5707 struct bpf_verifier_state *state = env->cur_state; 5708 struct bpf_func_state *caller, *callee; 5709 struct bpf_reg_state *r0; 5710 int err; 5711 5712 callee = state->frame[state->curframe]; 5713 r0 = &callee->regs[BPF_REG_0]; 5714 if (r0->type == PTR_TO_STACK) { 5715 /* technically it's ok to return caller's stack pointer 5716 * (or caller's caller's pointer) back to the caller, 5717 * since these pointers are valid. Only current stack 5718 * pointer will be invalid as soon as function exits, 5719 * but let's be conservative 5720 */ 5721 verbose(env, "cannot return stack pointer to the caller\n"); 5722 return -EINVAL; 5723 } 5724 5725 state->curframe--; 5726 caller = state->frame[state->curframe]; 5727 if (callee->in_callback_fn) { 5728 /* enforce R0 return value range [0, 1]. */ 5729 struct tnum range = tnum_range(0, 1); 5730 5731 if (r0->type != SCALAR_VALUE) { 5732 verbose(env, "R0 not a scalar value\n"); 5733 return -EACCES; 5734 } 5735 if (!tnum_in(range, r0->var_off)) { 5736 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 5737 return -EINVAL; 5738 } 5739 } else { 5740 /* return to the caller whatever r0 had in the callee */ 5741 caller->regs[BPF_REG_0] = *r0; 5742 } 5743 5744 /* Transfer references to the caller */ 5745 err = transfer_reference_state(caller, callee); 5746 if (err) 5747 return err; 5748 5749 *insn_idx = callee->callsite + 1; 5750 if (env->log.level & BPF_LOG_LEVEL) { 5751 verbose(env, "returning from callee:\n"); 5752 print_verifier_state(env, callee); 5753 verbose(env, "to caller at %d:\n", *insn_idx); 5754 print_verifier_state(env, caller); 5755 } 5756 /* clear everything in the callee */ 5757 free_func_state(callee); 5758 state->frame[state->curframe + 1] = NULL; 5759 return 0; 5760 } 5761 5762 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 5763 int func_id, 5764 struct bpf_call_arg_meta *meta) 5765 { 5766 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5767 5768 if (ret_type != RET_INTEGER || 5769 (func_id != BPF_FUNC_get_stack && 5770 func_id != BPF_FUNC_probe_read_str && 5771 func_id != BPF_FUNC_probe_read_kernel_str && 5772 func_id != BPF_FUNC_probe_read_user_str)) 5773 return; 5774 5775 ret_reg->smax_value = meta->msize_max_value; 5776 ret_reg->s32_max_value = meta->msize_max_value; 5777 ret_reg->smin_value = -MAX_ERRNO; 5778 ret_reg->s32_min_value = -MAX_ERRNO; 5779 __reg_deduce_bounds(ret_reg); 5780 __reg_bound_offset(ret_reg); 5781 __update_reg_bounds(ret_reg); 5782 } 5783 5784 static int 5785 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5786 int func_id, int insn_idx) 5787 { 5788 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5789 struct bpf_map *map = meta->map_ptr; 5790 5791 if (func_id != BPF_FUNC_tail_call && 5792 func_id != BPF_FUNC_map_lookup_elem && 5793 func_id != BPF_FUNC_map_update_elem && 5794 func_id != BPF_FUNC_map_delete_elem && 5795 func_id != BPF_FUNC_map_push_elem && 5796 func_id != BPF_FUNC_map_pop_elem && 5797 func_id != BPF_FUNC_map_peek_elem && 5798 func_id != BPF_FUNC_for_each_map_elem && 5799 func_id != BPF_FUNC_redirect_map) 5800 return 0; 5801 5802 if (map == NULL) { 5803 verbose(env, "kernel subsystem misconfigured verifier\n"); 5804 return -EINVAL; 5805 } 5806 5807 /* In case of read-only, some additional restrictions 5808 * need to be applied in order to prevent altering the 5809 * state of the map from program side. 5810 */ 5811 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5812 (func_id == BPF_FUNC_map_delete_elem || 5813 func_id == BPF_FUNC_map_update_elem || 5814 func_id == BPF_FUNC_map_push_elem || 5815 func_id == BPF_FUNC_map_pop_elem)) { 5816 verbose(env, "write into map forbidden\n"); 5817 return -EACCES; 5818 } 5819 5820 if (!BPF_MAP_PTR(aux->map_ptr_state)) 5821 bpf_map_ptr_store(aux, meta->map_ptr, 5822 !meta->map_ptr->bypass_spec_v1); 5823 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 5824 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 5825 !meta->map_ptr->bypass_spec_v1); 5826 return 0; 5827 } 5828 5829 static int 5830 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 5831 int func_id, int insn_idx) 5832 { 5833 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5834 struct bpf_reg_state *regs = cur_regs(env), *reg; 5835 struct bpf_map *map = meta->map_ptr; 5836 struct tnum range; 5837 u64 val; 5838 int err; 5839 5840 if (func_id != BPF_FUNC_tail_call) 5841 return 0; 5842 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5843 verbose(env, "kernel subsystem misconfigured verifier\n"); 5844 return -EINVAL; 5845 } 5846 5847 range = tnum_range(0, map->max_entries - 1); 5848 reg = ®s[BPF_REG_3]; 5849 5850 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5851 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5852 return 0; 5853 } 5854 5855 err = mark_chain_precision(env, BPF_REG_3); 5856 if (err) 5857 return err; 5858 5859 val = reg->var_off.value; 5860 if (bpf_map_key_unseen(aux)) 5861 bpf_map_key_store(aux, val); 5862 else if (!bpf_map_key_poisoned(aux) && 5863 bpf_map_key_immediate(aux) != val) 5864 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5865 return 0; 5866 } 5867 5868 static int check_reference_leak(struct bpf_verifier_env *env) 5869 { 5870 struct bpf_func_state *state = cur_func(env); 5871 int i; 5872 5873 for (i = 0; i < state->acquired_refs; i++) { 5874 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5875 state->refs[i].id, state->refs[i].insn_idx); 5876 } 5877 return state->acquired_refs ? -EINVAL : 0; 5878 } 5879 5880 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5881 int *insn_idx_p) 5882 { 5883 const struct bpf_func_proto *fn = NULL; 5884 struct bpf_reg_state *regs; 5885 struct bpf_call_arg_meta meta; 5886 int insn_idx = *insn_idx_p; 5887 bool changes_data; 5888 int i, err, func_id; 5889 5890 /* find function prototype */ 5891 func_id = insn->imm; 5892 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5893 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5894 func_id); 5895 return -EINVAL; 5896 } 5897 5898 if (env->ops->get_func_proto) 5899 fn = env->ops->get_func_proto(func_id, env->prog); 5900 if (!fn) { 5901 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5902 func_id); 5903 return -EINVAL; 5904 } 5905 5906 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5907 if (!env->prog->gpl_compatible && fn->gpl_only) { 5908 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5909 return -EINVAL; 5910 } 5911 5912 if (fn->allowed && !fn->allowed(env->prog)) { 5913 verbose(env, "helper call is not allowed in probe\n"); 5914 return -EINVAL; 5915 } 5916 5917 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5918 changes_data = bpf_helper_changes_pkt_data(fn->func); 5919 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5920 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5921 func_id_name(func_id), func_id); 5922 return -EINVAL; 5923 } 5924 5925 memset(&meta, 0, sizeof(meta)); 5926 meta.pkt_access = fn->pkt_access; 5927 5928 err = check_func_proto(fn, func_id); 5929 if (err) { 5930 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5931 func_id_name(func_id), func_id); 5932 return err; 5933 } 5934 5935 meta.func_id = func_id; 5936 /* check args */ 5937 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 5938 err = check_func_arg(env, i, &meta, fn); 5939 if (err) 5940 return err; 5941 } 5942 5943 err = record_func_map(env, &meta, func_id, insn_idx); 5944 if (err) 5945 return err; 5946 5947 err = record_func_key(env, &meta, func_id, insn_idx); 5948 if (err) 5949 return err; 5950 5951 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5952 * is inferred from register state. 5953 */ 5954 for (i = 0; i < meta.access_size; i++) { 5955 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5956 BPF_WRITE, -1, false); 5957 if (err) 5958 return err; 5959 } 5960 5961 if (func_id == BPF_FUNC_tail_call) { 5962 err = check_reference_leak(env); 5963 if (err) { 5964 verbose(env, "tail_call would lead to reference leak\n"); 5965 return err; 5966 } 5967 } else if (is_release_function(func_id)) { 5968 err = release_reference(env, meta.ref_obj_id); 5969 if (err) { 5970 verbose(env, "func %s#%d reference has not been acquired before\n", 5971 func_id_name(func_id), func_id); 5972 return err; 5973 } 5974 } 5975 5976 regs = cur_regs(env); 5977 5978 /* check that flags argument in get_local_storage(map, flags) is 0, 5979 * this is required because get_local_storage() can't return an error. 5980 */ 5981 if (func_id == BPF_FUNC_get_local_storage && 5982 !register_is_null(®s[BPF_REG_2])) { 5983 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5984 return -EINVAL; 5985 } 5986 5987 if (func_id == BPF_FUNC_for_each_map_elem) { 5988 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 5989 set_map_elem_callback_state); 5990 if (err < 0) 5991 return -EINVAL; 5992 } 5993 5994 /* reset caller saved regs */ 5995 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5996 mark_reg_not_init(env, regs, caller_saved[i]); 5997 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5998 } 5999 6000 /* helper call returns 64-bit value. */ 6001 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6002 6003 /* update return register (already marked as written above) */ 6004 if (fn->ret_type == RET_INTEGER) { 6005 /* sets type to SCALAR_VALUE */ 6006 mark_reg_unknown(env, regs, BPF_REG_0); 6007 } else if (fn->ret_type == RET_VOID) { 6008 regs[BPF_REG_0].type = NOT_INIT; 6009 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6010 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6011 /* There is no offset yet applied, variable or fixed */ 6012 mark_reg_known_zero(env, regs, BPF_REG_0); 6013 /* remember map_ptr, so that check_map_access() 6014 * can check 'value_size' boundary of memory access 6015 * to map element returned from bpf_map_lookup_elem() 6016 */ 6017 if (meta.map_ptr == NULL) { 6018 verbose(env, 6019 "kernel subsystem misconfigured verifier\n"); 6020 return -EINVAL; 6021 } 6022 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6023 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6024 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6025 if (map_value_has_spin_lock(meta.map_ptr)) 6026 regs[BPF_REG_0].id = ++env->id_gen; 6027 } else { 6028 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6029 } 6030 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6031 mark_reg_known_zero(env, regs, BPF_REG_0); 6032 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6033 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6034 mark_reg_known_zero(env, regs, BPF_REG_0); 6035 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6036 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6037 mark_reg_known_zero(env, regs, BPF_REG_0); 6038 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6039 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6040 mark_reg_known_zero(env, regs, BPF_REG_0); 6041 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6042 regs[BPF_REG_0].mem_size = meta.mem_size; 6043 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6044 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6045 const struct btf_type *t; 6046 6047 mark_reg_known_zero(env, regs, BPF_REG_0); 6048 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6049 if (!btf_type_is_struct(t)) { 6050 u32 tsize; 6051 const struct btf_type *ret; 6052 const char *tname; 6053 6054 /* resolve the type size of ksym. */ 6055 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6056 if (IS_ERR(ret)) { 6057 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6058 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6059 tname, PTR_ERR(ret)); 6060 return -EINVAL; 6061 } 6062 regs[BPF_REG_0].type = 6063 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6064 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6065 regs[BPF_REG_0].mem_size = tsize; 6066 } else { 6067 regs[BPF_REG_0].type = 6068 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6069 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6070 regs[BPF_REG_0].btf = meta.ret_btf; 6071 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6072 } 6073 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6074 fn->ret_type == RET_PTR_TO_BTF_ID) { 6075 int ret_btf_id; 6076 6077 mark_reg_known_zero(env, regs, BPF_REG_0); 6078 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6079 PTR_TO_BTF_ID : 6080 PTR_TO_BTF_ID_OR_NULL; 6081 ret_btf_id = *fn->ret_btf_id; 6082 if (ret_btf_id == 0) { 6083 verbose(env, "invalid return type %d of func %s#%d\n", 6084 fn->ret_type, func_id_name(func_id), func_id); 6085 return -EINVAL; 6086 } 6087 /* current BPF helper definitions are only coming from 6088 * built-in code with type IDs from vmlinux BTF 6089 */ 6090 regs[BPF_REG_0].btf = btf_vmlinux; 6091 regs[BPF_REG_0].btf_id = ret_btf_id; 6092 } else { 6093 verbose(env, "unknown return type %d of func %s#%d\n", 6094 fn->ret_type, func_id_name(func_id), func_id); 6095 return -EINVAL; 6096 } 6097 6098 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6099 regs[BPF_REG_0].id = ++env->id_gen; 6100 6101 if (is_ptr_cast_function(func_id)) { 6102 /* For release_reference() */ 6103 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6104 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6105 int id = acquire_reference_state(env, insn_idx); 6106 6107 if (id < 0) 6108 return id; 6109 /* For mark_ptr_or_null_reg() */ 6110 regs[BPF_REG_0].id = id; 6111 /* For release_reference() */ 6112 regs[BPF_REG_0].ref_obj_id = id; 6113 } 6114 6115 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6116 6117 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6118 if (err) 6119 return err; 6120 6121 if ((func_id == BPF_FUNC_get_stack || 6122 func_id == BPF_FUNC_get_task_stack) && 6123 !env->prog->has_callchain_buf) { 6124 const char *err_str; 6125 6126 #ifdef CONFIG_PERF_EVENTS 6127 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6128 err_str = "cannot get callchain buffer for func %s#%d\n"; 6129 #else 6130 err = -ENOTSUPP; 6131 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6132 #endif 6133 if (err) { 6134 verbose(env, err_str, func_id_name(func_id), func_id); 6135 return err; 6136 } 6137 6138 env->prog->has_callchain_buf = true; 6139 } 6140 6141 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6142 env->prog->call_get_stack = true; 6143 6144 if (changes_data) 6145 clear_all_pkt_pointers(env); 6146 return 0; 6147 } 6148 6149 /* mark_btf_func_reg_size() is used when the reg size is determined by 6150 * the BTF func_proto's return value size and argument. 6151 */ 6152 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6153 size_t reg_size) 6154 { 6155 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6156 6157 if (regno == BPF_REG_0) { 6158 /* Function return value */ 6159 reg->live |= REG_LIVE_WRITTEN; 6160 reg->subreg_def = reg_size == sizeof(u64) ? 6161 DEF_NOT_SUBREG : env->insn_idx + 1; 6162 } else { 6163 /* Function argument */ 6164 if (reg_size == sizeof(u64)) { 6165 mark_insn_zext(env, reg); 6166 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6167 } else { 6168 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6169 } 6170 } 6171 } 6172 6173 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6174 { 6175 const struct btf_type *t, *func, *func_proto, *ptr_type; 6176 struct bpf_reg_state *regs = cur_regs(env); 6177 const char *func_name, *ptr_type_name; 6178 u32 i, nargs, func_id, ptr_type_id; 6179 const struct btf_param *args; 6180 int err; 6181 6182 func_id = insn->imm; 6183 func = btf_type_by_id(btf_vmlinux, func_id); 6184 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6185 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6186 6187 if (!env->ops->check_kfunc_call || 6188 !env->ops->check_kfunc_call(func_id)) { 6189 verbose(env, "calling kernel function %s is not allowed\n", 6190 func_name); 6191 return -EACCES; 6192 } 6193 6194 /* Check the arguments */ 6195 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6196 if (err) 6197 return err; 6198 6199 for (i = 0; i < CALLER_SAVED_REGS; i++) 6200 mark_reg_not_init(env, regs, caller_saved[i]); 6201 6202 /* Check return type */ 6203 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6204 if (btf_type_is_scalar(t)) { 6205 mark_reg_unknown(env, regs, BPF_REG_0); 6206 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6207 } else if (btf_type_is_ptr(t)) { 6208 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6209 &ptr_type_id); 6210 if (!btf_type_is_struct(ptr_type)) { 6211 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6212 ptr_type->name_off); 6213 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6214 func_name, btf_type_str(ptr_type), 6215 ptr_type_name); 6216 return -EINVAL; 6217 } 6218 mark_reg_known_zero(env, regs, BPF_REG_0); 6219 regs[BPF_REG_0].btf = btf_vmlinux; 6220 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6221 regs[BPF_REG_0].btf_id = ptr_type_id; 6222 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6223 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6224 6225 nargs = btf_type_vlen(func_proto); 6226 args = (const struct btf_param *)(func_proto + 1); 6227 for (i = 0; i < nargs; i++) { 6228 u32 regno = i + 1; 6229 6230 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6231 if (btf_type_is_ptr(t)) 6232 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6233 else 6234 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6235 mark_btf_func_reg_size(env, regno, t->size); 6236 } 6237 6238 return 0; 6239 } 6240 6241 static bool signed_add_overflows(s64 a, s64 b) 6242 { 6243 /* Do the add in u64, where overflow is well-defined */ 6244 s64 res = (s64)((u64)a + (u64)b); 6245 6246 if (b < 0) 6247 return res > a; 6248 return res < a; 6249 } 6250 6251 static bool signed_add32_overflows(s32 a, s32 b) 6252 { 6253 /* Do the add in u32, where overflow is well-defined */ 6254 s32 res = (s32)((u32)a + (u32)b); 6255 6256 if (b < 0) 6257 return res > a; 6258 return res < a; 6259 } 6260 6261 static bool signed_sub_overflows(s64 a, s64 b) 6262 { 6263 /* Do the sub in u64, where overflow is well-defined */ 6264 s64 res = (s64)((u64)a - (u64)b); 6265 6266 if (b < 0) 6267 return res < a; 6268 return res > a; 6269 } 6270 6271 static bool signed_sub32_overflows(s32 a, s32 b) 6272 { 6273 /* Do the sub in u32, where overflow is well-defined */ 6274 s32 res = (s32)((u32)a - (u32)b); 6275 6276 if (b < 0) 6277 return res < a; 6278 return res > a; 6279 } 6280 6281 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6282 const struct bpf_reg_state *reg, 6283 enum bpf_reg_type type) 6284 { 6285 bool known = tnum_is_const(reg->var_off); 6286 s64 val = reg->var_off.value; 6287 s64 smin = reg->smin_value; 6288 6289 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6290 verbose(env, "math between %s pointer and %lld is not allowed\n", 6291 reg_type_str[type], val); 6292 return false; 6293 } 6294 6295 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6296 verbose(env, "%s pointer offset %d is not allowed\n", 6297 reg_type_str[type], reg->off); 6298 return false; 6299 } 6300 6301 if (smin == S64_MIN) { 6302 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6303 reg_type_str[type]); 6304 return false; 6305 } 6306 6307 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6308 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6309 smin, reg_type_str[type]); 6310 return false; 6311 } 6312 6313 return true; 6314 } 6315 6316 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6317 { 6318 return &env->insn_aux_data[env->insn_idx]; 6319 } 6320 6321 enum { 6322 REASON_BOUNDS = -1, 6323 REASON_TYPE = -2, 6324 REASON_PATHS = -3, 6325 REASON_LIMIT = -4, 6326 REASON_STACK = -5, 6327 }; 6328 6329 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6330 const struct bpf_reg_state *off_reg, 6331 u32 *alu_limit, u8 opcode) 6332 { 6333 bool off_is_neg = off_reg->smin_value < 0; 6334 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6335 (opcode == BPF_SUB && !off_is_neg); 6336 u32 max = 0, ptr_limit = 0; 6337 6338 if (!tnum_is_const(off_reg->var_off) && 6339 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6340 return REASON_BOUNDS; 6341 6342 switch (ptr_reg->type) { 6343 case PTR_TO_STACK: 6344 /* Offset 0 is out-of-bounds, but acceptable start for the 6345 * left direction, see BPF_REG_FP. Also, unknown scalar 6346 * offset where we would need to deal with min/max bounds is 6347 * currently prohibited for unprivileged. 6348 */ 6349 max = MAX_BPF_STACK + mask_to_left; 6350 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6351 break; 6352 case PTR_TO_MAP_VALUE: 6353 max = ptr_reg->map_ptr->value_size; 6354 ptr_limit = (mask_to_left ? 6355 ptr_reg->smin_value : 6356 ptr_reg->umax_value) + ptr_reg->off; 6357 break; 6358 default: 6359 return REASON_TYPE; 6360 } 6361 6362 if (ptr_limit >= max) 6363 return REASON_LIMIT; 6364 *alu_limit = ptr_limit; 6365 return 0; 6366 } 6367 6368 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6369 const struct bpf_insn *insn) 6370 { 6371 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6372 } 6373 6374 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6375 u32 alu_state, u32 alu_limit) 6376 { 6377 /* If we arrived here from different branches with different 6378 * state or limits to sanitize, then this won't work. 6379 */ 6380 if (aux->alu_state && 6381 (aux->alu_state != alu_state || 6382 aux->alu_limit != alu_limit)) 6383 return REASON_PATHS; 6384 6385 /* Corresponding fixup done in do_misc_fixups(). */ 6386 aux->alu_state = alu_state; 6387 aux->alu_limit = alu_limit; 6388 return 0; 6389 } 6390 6391 static int sanitize_val_alu(struct bpf_verifier_env *env, 6392 struct bpf_insn *insn) 6393 { 6394 struct bpf_insn_aux_data *aux = cur_aux(env); 6395 6396 if (can_skip_alu_sanitation(env, insn)) 6397 return 0; 6398 6399 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6400 } 6401 6402 static bool sanitize_needed(u8 opcode) 6403 { 6404 return opcode == BPF_ADD || opcode == BPF_SUB; 6405 } 6406 6407 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6408 struct bpf_insn *insn, 6409 const struct bpf_reg_state *ptr_reg, 6410 const struct bpf_reg_state *off_reg, 6411 struct bpf_reg_state *dst_reg, 6412 struct bpf_insn_aux_data *tmp_aux, 6413 const bool commit_window) 6414 { 6415 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux; 6416 struct bpf_verifier_state *vstate = env->cur_state; 6417 bool off_is_neg = off_reg->smin_value < 0; 6418 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6419 u8 opcode = BPF_OP(insn->code); 6420 u32 alu_state, alu_limit; 6421 struct bpf_reg_state tmp; 6422 bool ret; 6423 int err; 6424 6425 if (can_skip_alu_sanitation(env, insn)) 6426 return 0; 6427 6428 /* We already marked aux for masking from non-speculative 6429 * paths, thus we got here in the first place. We only care 6430 * to explore bad access from here. 6431 */ 6432 if (vstate->speculative) 6433 goto do_sim; 6434 6435 err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode); 6436 if (err < 0) 6437 return err; 6438 6439 if (commit_window) { 6440 /* In commit phase we narrow the masking window based on 6441 * the observed pointer move after the simulated operation. 6442 */ 6443 alu_state = tmp_aux->alu_state; 6444 alu_limit = abs(tmp_aux->alu_limit - alu_limit); 6445 } else { 6446 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6447 alu_state |= ptr_is_dst_reg ? 6448 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6449 } 6450 6451 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6452 if (err < 0) 6453 return err; 6454 do_sim: 6455 /* If we're in commit phase, we're done here given we already 6456 * pushed the truncated dst_reg into the speculative verification 6457 * stack. 6458 */ 6459 if (commit_window) 6460 return 0; 6461 6462 /* Simulate and find potential out-of-bounds access under 6463 * speculative execution from truncation as a result of 6464 * masking when off was not within expected range. If off 6465 * sits in dst, then we temporarily need to move ptr there 6466 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6467 * for cases where we use K-based arithmetic in one direction 6468 * and truncated reg-based in the other in order to explore 6469 * bad access. 6470 */ 6471 if (!ptr_is_dst_reg) { 6472 tmp = *dst_reg; 6473 *dst_reg = *ptr_reg; 6474 } 6475 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 6476 if (!ptr_is_dst_reg && ret) 6477 *dst_reg = tmp; 6478 return !ret ? REASON_STACK : 0; 6479 } 6480 6481 static int sanitize_err(struct bpf_verifier_env *env, 6482 const struct bpf_insn *insn, int reason, 6483 const struct bpf_reg_state *off_reg, 6484 const struct bpf_reg_state *dst_reg) 6485 { 6486 static const char *err = "pointer arithmetic with it prohibited for !root"; 6487 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6488 u32 dst = insn->dst_reg, src = insn->src_reg; 6489 6490 switch (reason) { 6491 case REASON_BOUNDS: 6492 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6493 off_reg == dst_reg ? dst : src, err); 6494 break; 6495 case REASON_TYPE: 6496 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6497 off_reg == dst_reg ? src : dst, err); 6498 break; 6499 case REASON_PATHS: 6500 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6501 dst, op, err); 6502 break; 6503 case REASON_LIMIT: 6504 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6505 dst, op, err); 6506 break; 6507 case REASON_STACK: 6508 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6509 dst, err); 6510 break; 6511 default: 6512 verbose(env, "verifier internal error: unknown reason (%d)\n", 6513 reason); 6514 break; 6515 } 6516 6517 return -EACCES; 6518 } 6519 6520 /* check that stack access falls within stack limits and that 'reg' doesn't 6521 * have a variable offset. 6522 * 6523 * Variable offset is prohibited for unprivileged mode for simplicity since it 6524 * requires corresponding support in Spectre masking for stack ALU. See also 6525 * retrieve_ptr_limit(). 6526 * 6527 * 6528 * 'off' includes 'reg->off'. 6529 */ 6530 static int check_stack_access_for_ptr_arithmetic( 6531 struct bpf_verifier_env *env, 6532 int regno, 6533 const struct bpf_reg_state *reg, 6534 int off) 6535 { 6536 if (!tnum_is_const(reg->var_off)) { 6537 char tn_buf[48]; 6538 6539 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6540 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6541 regno, tn_buf, off); 6542 return -EACCES; 6543 } 6544 6545 if (off >= 0 || off < -MAX_BPF_STACK) { 6546 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6547 "prohibited for !root; off=%d\n", regno, off); 6548 return -EACCES; 6549 } 6550 6551 return 0; 6552 } 6553 6554 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6555 const struct bpf_insn *insn, 6556 const struct bpf_reg_state *dst_reg) 6557 { 6558 u32 dst = insn->dst_reg; 6559 6560 /* For unprivileged we require that resulting offset must be in bounds 6561 * in order to be able to sanitize access later on. 6562 */ 6563 if (env->bypass_spec_v1) 6564 return 0; 6565 6566 switch (dst_reg->type) { 6567 case PTR_TO_STACK: 6568 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6569 dst_reg->off + dst_reg->var_off.value)) 6570 return -EACCES; 6571 break; 6572 case PTR_TO_MAP_VALUE: 6573 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6574 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6575 "prohibited for !root\n", dst); 6576 return -EACCES; 6577 } 6578 break; 6579 default: 6580 break; 6581 } 6582 6583 return 0; 6584 } 6585 6586 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6587 * Caller should also handle BPF_MOV case separately. 6588 * If we return -EACCES, caller may want to try again treating pointer as a 6589 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6590 */ 6591 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6592 struct bpf_insn *insn, 6593 const struct bpf_reg_state *ptr_reg, 6594 const struct bpf_reg_state *off_reg) 6595 { 6596 struct bpf_verifier_state *vstate = env->cur_state; 6597 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6598 struct bpf_reg_state *regs = state->regs, *dst_reg; 6599 bool known = tnum_is_const(off_reg->var_off); 6600 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6601 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6602 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6603 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6604 struct bpf_insn_aux_data tmp_aux = {}; 6605 u8 opcode = BPF_OP(insn->code); 6606 u32 dst = insn->dst_reg; 6607 int ret; 6608 6609 dst_reg = ®s[dst]; 6610 6611 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6612 smin_val > smax_val || umin_val > umax_val) { 6613 /* Taint dst register if offset had invalid bounds derived from 6614 * e.g. dead branches. 6615 */ 6616 __mark_reg_unknown(env, dst_reg); 6617 return 0; 6618 } 6619 6620 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6621 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6622 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6623 __mark_reg_unknown(env, dst_reg); 6624 return 0; 6625 } 6626 6627 verbose(env, 6628 "R%d 32-bit pointer arithmetic prohibited\n", 6629 dst); 6630 return -EACCES; 6631 } 6632 6633 switch (ptr_reg->type) { 6634 case PTR_TO_MAP_VALUE_OR_NULL: 6635 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 6636 dst, reg_type_str[ptr_reg->type]); 6637 return -EACCES; 6638 case CONST_PTR_TO_MAP: 6639 /* smin_val represents the known value */ 6640 if (known && smin_val == 0 && opcode == BPF_ADD) 6641 break; 6642 fallthrough; 6643 case PTR_TO_PACKET_END: 6644 case PTR_TO_SOCKET: 6645 case PTR_TO_SOCKET_OR_NULL: 6646 case PTR_TO_SOCK_COMMON: 6647 case PTR_TO_SOCK_COMMON_OR_NULL: 6648 case PTR_TO_TCP_SOCK: 6649 case PTR_TO_TCP_SOCK_OR_NULL: 6650 case PTR_TO_XDP_SOCK: 6651 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 6652 dst, reg_type_str[ptr_reg->type]); 6653 return -EACCES; 6654 default: 6655 break; 6656 } 6657 6658 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6659 * The id may be overwritten later if we create a new variable offset. 6660 */ 6661 dst_reg->type = ptr_reg->type; 6662 dst_reg->id = ptr_reg->id; 6663 6664 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 6665 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 6666 return -EINVAL; 6667 6668 /* pointer types do not carry 32-bit bounds at the moment. */ 6669 __mark_reg32_unbounded(dst_reg); 6670 6671 if (sanitize_needed(opcode)) { 6672 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 6673 &tmp_aux, false); 6674 if (ret < 0) 6675 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6676 } 6677 6678 switch (opcode) { 6679 case BPF_ADD: 6680 /* We can take a fixed offset as long as it doesn't overflow 6681 * the s32 'off' field 6682 */ 6683 if (known && (ptr_reg->off + smin_val == 6684 (s64)(s32)(ptr_reg->off + smin_val))) { 6685 /* pointer += K. Accumulate it into fixed offset */ 6686 dst_reg->smin_value = smin_ptr; 6687 dst_reg->smax_value = smax_ptr; 6688 dst_reg->umin_value = umin_ptr; 6689 dst_reg->umax_value = umax_ptr; 6690 dst_reg->var_off = ptr_reg->var_off; 6691 dst_reg->off = ptr_reg->off + smin_val; 6692 dst_reg->raw = ptr_reg->raw; 6693 break; 6694 } 6695 /* A new variable offset is created. Note that off_reg->off 6696 * == 0, since it's a scalar. 6697 * dst_reg gets the pointer type and since some positive 6698 * integer value was added to the pointer, give it a new 'id' 6699 * if it's a PTR_TO_PACKET. 6700 * this creates a new 'base' pointer, off_reg (variable) gets 6701 * added into the variable offset, and we copy the fixed offset 6702 * from ptr_reg. 6703 */ 6704 if (signed_add_overflows(smin_ptr, smin_val) || 6705 signed_add_overflows(smax_ptr, smax_val)) { 6706 dst_reg->smin_value = S64_MIN; 6707 dst_reg->smax_value = S64_MAX; 6708 } else { 6709 dst_reg->smin_value = smin_ptr + smin_val; 6710 dst_reg->smax_value = smax_ptr + smax_val; 6711 } 6712 if (umin_ptr + umin_val < umin_ptr || 6713 umax_ptr + umax_val < umax_ptr) { 6714 dst_reg->umin_value = 0; 6715 dst_reg->umax_value = U64_MAX; 6716 } else { 6717 dst_reg->umin_value = umin_ptr + umin_val; 6718 dst_reg->umax_value = umax_ptr + umax_val; 6719 } 6720 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6721 dst_reg->off = ptr_reg->off; 6722 dst_reg->raw = ptr_reg->raw; 6723 if (reg_is_pkt_pointer(ptr_reg)) { 6724 dst_reg->id = ++env->id_gen; 6725 /* something was added to pkt_ptr, set range to zero */ 6726 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6727 } 6728 break; 6729 case BPF_SUB: 6730 if (dst_reg == off_reg) { 6731 /* scalar -= pointer. Creates an unknown scalar */ 6732 verbose(env, "R%d tried to subtract pointer from scalar\n", 6733 dst); 6734 return -EACCES; 6735 } 6736 /* We don't allow subtraction from FP, because (according to 6737 * test_verifier.c test "invalid fp arithmetic", JITs might not 6738 * be able to deal with it. 6739 */ 6740 if (ptr_reg->type == PTR_TO_STACK) { 6741 verbose(env, "R%d subtraction from stack pointer prohibited\n", 6742 dst); 6743 return -EACCES; 6744 } 6745 if (known && (ptr_reg->off - smin_val == 6746 (s64)(s32)(ptr_reg->off - smin_val))) { 6747 /* pointer -= K. Subtract it from fixed offset */ 6748 dst_reg->smin_value = smin_ptr; 6749 dst_reg->smax_value = smax_ptr; 6750 dst_reg->umin_value = umin_ptr; 6751 dst_reg->umax_value = umax_ptr; 6752 dst_reg->var_off = ptr_reg->var_off; 6753 dst_reg->id = ptr_reg->id; 6754 dst_reg->off = ptr_reg->off - smin_val; 6755 dst_reg->raw = ptr_reg->raw; 6756 break; 6757 } 6758 /* A new variable offset is created. If the subtrahend is known 6759 * nonnegative, then any reg->range we had before is still good. 6760 */ 6761 if (signed_sub_overflows(smin_ptr, smax_val) || 6762 signed_sub_overflows(smax_ptr, smin_val)) { 6763 /* Overflow possible, we know nothing */ 6764 dst_reg->smin_value = S64_MIN; 6765 dst_reg->smax_value = S64_MAX; 6766 } else { 6767 dst_reg->smin_value = smin_ptr - smax_val; 6768 dst_reg->smax_value = smax_ptr - smin_val; 6769 } 6770 if (umin_ptr < umax_val) { 6771 /* Overflow possible, we know nothing */ 6772 dst_reg->umin_value = 0; 6773 dst_reg->umax_value = U64_MAX; 6774 } else { 6775 /* Cannot overflow (as long as bounds are consistent) */ 6776 dst_reg->umin_value = umin_ptr - umax_val; 6777 dst_reg->umax_value = umax_ptr - umin_val; 6778 } 6779 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6780 dst_reg->off = ptr_reg->off; 6781 dst_reg->raw = ptr_reg->raw; 6782 if (reg_is_pkt_pointer(ptr_reg)) { 6783 dst_reg->id = ++env->id_gen; 6784 /* something was added to pkt_ptr, set range to zero */ 6785 if (smin_val < 0) 6786 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 6787 } 6788 break; 6789 case BPF_AND: 6790 case BPF_OR: 6791 case BPF_XOR: 6792 /* bitwise ops on pointers are troublesome, prohibit. */ 6793 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 6794 dst, bpf_alu_string[opcode >> 4]); 6795 return -EACCES; 6796 default: 6797 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6798 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 6799 dst, bpf_alu_string[opcode >> 4]); 6800 return -EACCES; 6801 } 6802 6803 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 6804 return -EINVAL; 6805 6806 __update_reg_bounds(dst_reg); 6807 __reg_deduce_bounds(dst_reg); 6808 __reg_bound_offset(dst_reg); 6809 6810 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 6811 return -EACCES; 6812 if (sanitize_needed(opcode)) { 6813 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 6814 &tmp_aux, true); 6815 if (ret < 0) 6816 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6817 } 6818 6819 return 0; 6820 } 6821 6822 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 6823 struct bpf_reg_state *src_reg) 6824 { 6825 s32 smin_val = src_reg->s32_min_value; 6826 s32 smax_val = src_reg->s32_max_value; 6827 u32 umin_val = src_reg->u32_min_value; 6828 u32 umax_val = src_reg->u32_max_value; 6829 6830 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6831 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6832 dst_reg->s32_min_value = S32_MIN; 6833 dst_reg->s32_max_value = S32_MAX; 6834 } else { 6835 dst_reg->s32_min_value += smin_val; 6836 dst_reg->s32_max_value += smax_val; 6837 } 6838 if (dst_reg->u32_min_value + umin_val < umin_val || 6839 dst_reg->u32_max_value + umax_val < umax_val) { 6840 dst_reg->u32_min_value = 0; 6841 dst_reg->u32_max_value = U32_MAX; 6842 } else { 6843 dst_reg->u32_min_value += umin_val; 6844 dst_reg->u32_max_value += umax_val; 6845 } 6846 } 6847 6848 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 6849 struct bpf_reg_state *src_reg) 6850 { 6851 s64 smin_val = src_reg->smin_value; 6852 s64 smax_val = src_reg->smax_value; 6853 u64 umin_val = src_reg->umin_value; 6854 u64 umax_val = src_reg->umax_value; 6855 6856 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 6857 signed_add_overflows(dst_reg->smax_value, smax_val)) { 6858 dst_reg->smin_value = S64_MIN; 6859 dst_reg->smax_value = S64_MAX; 6860 } else { 6861 dst_reg->smin_value += smin_val; 6862 dst_reg->smax_value += smax_val; 6863 } 6864 if (dst_reg->umin_value + umin_val < umin_val || 6865 dst_reg->umax_value + umax_val < umax_val) { 6866 dst_reg->umin_value = 0; 6867 dst_reg->umax_value = U64_MAX; 6868 } else { 6869 dst_reg->umin_value += umin_val; 6870 dst_reg->umax_value += umax_val; 6871 } 6872 } 6873 6874 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 6875 struct bpf_reg_state *src_reg) 6876 { 6877 s32 smin_val = src_reg->s32_min_value; 6878 s32 smax_val = src_reg->s32_max_value; 6879 u32 umin_val = src_reg->u32_min_value; 6880 u32 umax_val = src_reg->u32_max_value; 6881 6882 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6883 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6884 /* Overflow possible, we know nothing */ 6885 dst_reg->s32_min_value = S32_MIN; 6886 dst_reg->s32_max_value = S32_MAX; 6887 } else { 6888 dst_reg->s32_min_value -= smax_val; 6889 dst_reg->s32_max_value -= smin_val; 6890 } 6891 if (dst_reg->u32_min_value < umax_val) { 6892 /* Overflow possible, we know nothing */ 6893 dst_reg->u32_min_value = 0; 6894 dst_reg->u32_max_value = U32_MAX; 6895 } else { 6896 /* Cannot overflow (as long as bounds are consistent) */ 6897 dst_reg->u32_min_value -= umax_val; 6898 dst_reg->u32_max_value -= umin_val; 6899 } 6900 } 6901 6902 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 6903 struct bpf_reg_state *src_reg) 6904 { 6905 s64 smin_val = src_reg->smin_value; 6906 s64 smax_val = src_reg->smax_value; 6907 u64 umin_val = src_reg->umin_value; 6908 u64 umax_val = src_reg->umax_value; 6909 6910 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 6911 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 6912 /* Overflow possible, we know nothing */ 6913 dst_reg->smin_value = S64_MIN; 6914 dst_reg->smax_value = S64_MAX; 6915 } else { 6916 dst_reg->smin_value -= smax_val; 6917 dst_reg->smax_value -= smin_val; 6918 } 6919 if (dst_reg->umin_value < umax_val) { 6920 /* Overflow possible, we know nothing */ 6921 dst_reg->umin_value = 0; 6922 dst_reg->umax_value = U64_MAX; 6923 } else { 6924 /* Cannot overflow (as long as bounds are consistent) */ 6925 dst_reg->umin_value -= umax_val; 6926 dst_reg->umax_value -= umin_val; 6927 } 6928 } 6929 6930 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 6931 struct bpf_reg_state *src_reg) 6932 { 6933 s32 smin_val = src_reg->s32_min_value; 6934 u32 umin_val = src_reg->u32_min_value; 6935 u32 umax_val = src_reg->u32_max_value; 6936 6937 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 6938 /* Ain't nobody got time to multiply that sign */ 6939 __mark_reg32_unbounded(dst_reg); 6940 return; 6941 } 6942 /* Both values are positive, so we can work with unsigned and 6943 * copy the result to signed (unless it exceeds S32_MAX). 6944 */ 6945 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 6946 /* Potential overflow, we know nothing */ 6947 __mark_reg32_unbounded(dst_reg); 6948 return; 6949 } 6950 dst_reg->u32_min_value *= umin_val; 6951 dst_reg->u32_max_value *= umax_val; 6952 if (dst_reg->u32_max_value > S32_MAX) { 6953 /* Overflow possible, we know nothing */ 6954 dst_reg->s32_min_value = S32_MIN; 6955 dst_reg->s32_max_value = S32_MAX; 6956 } else { 6957 dst_reg->s32_min_value = dst_reg->u32_min_value; 6958 dst_reg->s32_max_value = dst_reg->u32_max_value; 6959 } 6960 } 6961 6962 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 6963 struct bpf_reg_state *src_reg) 6964 { 6965 s64 smin_val = src_reg->smin_value; 6966 u64 umin_val = src_reg->umin_value; 6967 u64 umax_val = src_reg->umax_value; 6968 6969 if (smin_val < 0 || dst_reg->smin_value < 0) { 6970 /* Ain't nobody got time to multiply that sign */ 6971 __mark_reg64_unbounded(dst_reg); 6972 return; 6973 } 6974 /* Both values are positive, so we can work with unsigned and 6975 * copy the result to signed (unless it exceeds S64_MAX). 6976 */ 6977 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 6978 /* Potential overflow, we know nothing */ 6979 __mark_reg64_unbounded(dst_reg); 6980 return; 6981 } 6982 dst_reg->umin_value *= umin_val; 6983 dst_reg->umax_value *= umax_val; 6984 if (dst_reg->umax_value > S64_MAX) { 6985 /* Overflow possible, we know nothing */ 6986 dst_reg->smin_value = S64_MIN; 6987 dst_reg->smax_value = S64_MAX; 6988 } else { 6989 dst_reg->smin_value = dst_reg->umin_value; 6990 dst_reg->smax_value = dst_reg->umax_value; 6991 } 6992 } 6993 6994 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 6995 struct bpf_reg_state *src_reg) 6996 { 6997 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6998 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6999 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7000 s32 smin_val = src_reg->s32_min_value; 7001 u32 umax_val = src_reg->u32_max_value; 7002 7003 /* Assuming scalar64_min_max_and will be called so its safe 7004 * to skip updating register for known 32-bit case. 7005 */ 7006 if (src_known && dst_known) 7007 return; 7008 7009 /* We get our minimum from the var_off, since that's inherently 7010 * bitwise. Our maximum is the minimum of the operands' maxima. 7011 */ 7012 dst_reg->u32_min_value = var32_off.value; 7013 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7014 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7015 /* Lose signed bounds when ANDing negative numbers, 7016 * ain't nobody got time for that. 7017 */ 7018 dst_reg->s32_min_value = S32_MIN; 7019 dst_reg->s32_max_value = S32_MAX; 7020 } else { 7021 /* ANDing two positives gives a positive, so safe to 7022 * cast result into s64. 7023 */ 7024 dst_reg->s32_min_value = dst_reg->u32_min_value; 7025 dst_reg->s32_max_value = dst_reg->u32_max_value; 7026 } 7027 7028 } 7029 7030 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7031 struct bpf_reg_state *src_reg) 7032 { 7033 bool src_known = tnum_is_const(src_reg->var_off); 7034 bool dst_known = tnum_is_const(dst_reg->var_off); 7035 s64 smin_val = src_reg->smin_value; 7036 u64 umax_val = src_reg->umax_value; 7037 7038 if (src_known && dst_known) { 7039 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7040 return; 7041 } 7042 7043 /* We get our minimum from the var_off, since that's inherently 7044 * bitwise. Our maximum is the minimum of the operands' maxima. 7045 */ 7046 dst_reg->umin_value = dst_reg->var_off.value; 7047 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7048 if (dst_reg->smin_value < 0 || smin_val < 0) { 7049 /* Lose signed bounds when ANDing negative numbers, 7050 * ain't nobody got time for that. 7051 */ 7052 dst_reg->smin_value = S64_MIN; 7053 dst_reg->smax_value = S64_MAX; 7054 } else { 7055 /* ANDing two positives gives a positive, so safe to 7056 * cast result into s64. 7057 */ 7058 dst_reg->smin_value = dst_reg->umin_value; 7059 dst_reg->smax_value = dst_reg->umax_value; 7060 } 7061 /* We may learn something more from the var_off */ 7062 __update_reg_bounds(dst_reg); 7063 } 7064 7065 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7066 struct bpf_reg_state *src_reg) 7067 { 7068 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7069 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7070 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7071 s32 smin_val = src_reg->s32_min_value; 7072 u32 umin_val = src_reg->u32_min_value; 7073 7074 /* Assuming scalar64_min_max_or will be called so it is safe 7075 * to skip updating register for known case. 7076 */ 7077 if (src_known && dst_known) 7078 return; 7079 7080 /* We get our maximum from the var_off, and our minimum is the 7081 * maximum of the operands' minima 7082 */ 7083 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7084 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7085 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7086 /* Lose signed bounds when ORing negative numbers, 7087 * ain't nobody got time for that. 7088 */ 7089 dst_reg->s32_min_value = S32_MIN; 7090 dst_reg->s32_max_value = S32_MAX; 7091 } else { 7092 /* ORing two positives gives a positive, so safe to 7093 * cast result into s64. 7094 */ 7095 dst_reg->s32_min_value = dst_reg->u32_min_value; 7096 dst_reg->s32_max_value = dst_reg->u32_max_value; 7097 } 7098 } 7099 7100 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7101 struct bpf_reg_state *src_reg) 7102 { 7103 bool src_known = tnum_is_const(src_reg->var_off); 7104 bool dst_known = tnum_is_const(dst_reg->var_off); 7105 s64 smin_val = src_reg->smin_value; 7106 u64 umin_val = src_reg->umin_value; 7107 7108 if (src_known && dst_known) { 7109 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7110 return; 7111 } 7112 7113 /* We get our maximum from the var_off, and our minimum is the 7114 * maximum of the operands' minima 7115 */ 7116 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7117 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7118 if (dst_reg->smin_value < 0 || smin_val < 0) { 7119 /* Lose signed bounds when ORing negative numbers, 7120 * ain't nobody got time for that. 7121 */ 7122 dst_reg->smin_value = S64_MIN; 7123 dst_reg->smax_value = S64_MAX; 7124 } else { 7125 /* ORing two positives gives a positive, so safe to 7126 * cast result into s64. 7127 */ 7128 dst_reg->smin_value = dst_reg->umin_value; 7129 dst_reg->smax_value = dst_reg->umax_value; 7130 } 7131 /* We may learn something more from the var_off */ 7132 __update_reg_bounds(dst_reg); 7133 } 7134 7135 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7136 struct bpf_reg_state *src_reg) 7137 { 7138 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7139 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7140 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7141 s32 smin_val = src_reg->s32_min_value; 7142 7143 /* Assuming scalar64_min_max_xor will be called so it is safe 7144 * to skip updating register for known case. 7145 */ 7146 if (src_known && dst_known) 7147 return; 7148 7149 /* We get both minimum and maximum from the var32_off. */ 7150 dst_reg->u32_min_value = var32_off.value; 7151 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7152 7153 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7154 /* XORing two positive sign numbers gives a positive, 7155 * so safe to cast u32 result into s32. 7156 */ 7157 dst_reg->s32_min_value = dst_reg->u32_min_value; 7158 dst_reg->s32_max_value = dst_reg->u32_max_value; 7159 } else { 7160 dst_reg->s32_min_value = S32_MIN; 7161 dst_reg->s32_max_value = S32_MAX; 7162 } 7163 } 7164 7165 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7166 struct bpf_reg_state *src_reg) 7167 { 7168 bool src_known = tnum_is_const(src_reg->var_off); 7169 bool dst_known = tnum_is_const(dst_reg->var_off); 7170 s64 smin_val = src_reg->smin_value; 7171 7172 if (src_known && dst_known) { 7173 /* dst_reg->var_off.value has been updated earlier */ 7174 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7175 return; 7176 } 7177 7178 /* We get both minimum and maximum from the var_off. */ 7179 dst_reg->umin_value = dst_reg->var_off.value; 7180 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7181 7182 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7183 /* XORing two positive sign numbers gives a positive, 7184 * so safe to cast u64 result into s64. 7185 */ 7186 dst_reg->smin_value = dst_reg->umin_value; 7187 dst_reg->smax_value = dst_reg->umax_value; 7188 } else { 7189 dst_reg->smin_value = S64_MIN; 7190 dst_reg->smax_value = S64_MAX; 7191 } 7192 7193 __update_reg_bounds(dst_reg); 7194 } 7195 7196 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7197 u64 umin_val, u64 umax_val) 7198 { 7199 /* We lose all sign bit information (except what we can pick 7200 * up from var_off) 7201 */ 7202 dst_reg->s32_min_value = S32_MIN; 7203 dst_reg->s32_max_value = S32_MAX; 7204 /* If we might shift our top bit out, then we know nothing */ 7205 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7206 dst_reg->u32_min_value = 0; 7207 dst_reg->u32_max_value = U32_MAX; 7208 } else { 7209 dst_reg->u32_min_value <<= umin_val; 7210 dst_reg->u32_max_value <<= umax_val; 7211 } 7212 } 7213 7214 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7215 struct bpf_reg_state *src_reg) 7216 { 7217 u32 umax_val = src_reg->u32_max_value; 7218 u32 umin_val = src_reg->u32_min_value; 7219 /* u32 alu operation will zext upper bits */ 7220 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7221 7222 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7223 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7224 /* Not required but being careful mark reg64 bounds as unknown so 7225 * that we are forced to pick them up from tnum and zext later and 7226 * if some path skips this step we are still safe. 7227 */ 7228 __mark_reg64_unbounded(dst_reg); 7229 __update_reg32_bounds(dst_reg); 7230 } 7231 7232 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7233 u64 umin_val, u64 umax_val) 7234 { 7235 /* Special case <<32 because it is a common compiler pattern to sign 7236 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7237 * positive we know this shift will also be positive so we can track 7238 * bounds correctly. Otherwise we lose all sign bit information except 7239 * what we can pick up from var_off. Perhaps we can generalize this 7240 * later to shifts of any length. 7241 */ 7242 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7243 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7244 else 7245 dst_reg->smax_value = S64_MAX; 7246 7247 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7248 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7249 else 7250 dst_reg->smin_value = S64_MIN; 7251 7252 /* If we might shift our top bit out, then we know nothing */ 7253 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7254 dst_reg->umin_value = 0; 7255 dst_reg->umax_value = U64_MAX; 7256 } else { 7257 dst_reg->umin_value <<= umin_val; 7258 dst_reg->umax_value <<= umax_val; 7259 } 7260 } 7261 7262 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7263 struct bpf_reg_state *src_reg) 7264 { 7265 u64 umax_val = src_reg->umax_value; 7266 u64 umin_val = src_reg->umin_value; 7267 7268 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7269 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7270 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7271 7272 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7273 /* We may learn something more from the var_off */ 7274 __update_reg_bounds(dst_reg); 7275 } 7276 7277 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7278 struct bpf_reg_state *src_reg) 7279 { 7280 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7281 u32 umax_val = src_reg->u32_max_value; 7282 u32 umin_val = src_reg->u32_min_value; 7283 7284 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7285 * be negative, then either: 7286 * 1) src_reg might be zero, so the sign bit of the result is 7287 * unknown, so we lose our signed bounds 7288 * 2) it's known negative, thus the unsigned bounds capture the 7289 * signed bounds 7290 * 3) the signed bounds cross zero, so they tell us nothing 7291 * about the result 7292 * If the value in dst_reg is known nonnegative, then again the 7293 * unsigned bounds capture the signed bounds. 7294 * Thus, in all cases it suffices to blow away our signed bounds 7295 * and rely on inferring new ones from the unsigned bounds and 7296 * var_off of the result. 7297 */ 7298 dst_reg->s32_min_value = S32_MIN; 7299 dst_reg->s32_max_value = S32_MAX; 7300 7301 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7302 dst_reg->u32_min_value >>= umax_val; 7303 dst_reg->u32_max_value >>= umin_val; 7304 7305 __mark_reg64_unbounded(dst_reg); 7306 __update_reg32_bounds(dst_reg); 7307 } 7308 7309 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7310 struct bpf_reg_state *src_reg) 7311 { 7312 u64 umax_val = src_reg->umax_value; 7313 u64 umin_val = src_reg->umin_value; 7314 7315 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7316 * be negative, then either: 7317 * 1) src_reg might be zero, so the sign bit of the result is 7318 * unknown, so we lose our signed bounds 7319 * 2) it's known negative, thus the unsigned bounds capture the 7320 * signed bounds 7321 * 3) the signed bounds cross zero, so they tell us nothing 7322 * about the result 7323 * If the value in dst_reg is known nonnegative, then again the 7324 * unsigned bounds capture the signed bounds. 7325 * Thus, in all cases it suffices to blow away our signed bounds 7326 * and rely on inferring new ones from the unsigned bounds and 7327 * var_off of the result. 7328 */ 7329 dst_reg->smin_value = S64_MIN; 7330 dst_reg->smax_value = S64_MAX; 7331 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7332 dst_reg->umin_value >>= umax_val; 7333 dst_reg->umax_value >>= umin_val; 7334 7335 /* Its not easy to operate on alu32 bounds here because it depends 7336 * on bits being shifted in. Take easy way out and mark unbounded 7337 * so we can recalculate later from tnum. 7338 */ 7339 __mark_reg32_unbounded(dst_reg); 7340 __update_reg_bounds(dst_reg); 7341 } 7342 7343 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7344 struct bpf_reg_state *src_reg) 7345 { 7346 u64 umin_val = src_reg->u32_min_value; 7347 7348 /* Upon reaching here, src_known is true and 7349 * umax_val is equal to umin_val. 7350 */ 7351 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7352 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7353 7354 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7355 7356 /* blow away the dst_reg umin_value/umax_value and rely on 7357 * dst_reg var_off to refine the result. 7358 */ 7359 dst_reg->u32_min_value = 0; 7360 dst_reg->u32_max_value = U32_MAX; 7361 7362 __mark_reg64_unbounded(dst_reg); 7363 __update_reg32_bounds(dst_reg); 7364 } 7365 7366 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7367 struct bpf_reg_state *src_reg) 7368 { 7369 u64 umin_val = src_reg->umin_value; 7370 7371 /* Upon reaching here, src_known is true and umax_val is equal 7372 * to umin_val. 7373 */ 7374 dst_reg->smin_value >>= umin_val; 7375 dst_reg->smax_value >>= umin_val; 7376 7377 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7378 7379 /* blow away the dst_reg umin_value/umax_value and rely on 7380 * dst_reg var_off to refine the result. 7381 */ 7382 dst_reg->umin_value = 0; 7383 dst_reg->umax_value = U64_MAX; 7384 7385 /* Its not easy to operate on alu32 bounds here because it depends 7386 * on bits being shifted in from upper 32-bits. Take easy way out 7387 * and mark unbounded so we can recalculate later from tnum. 7388 */ 7389 __mark_reg32_unbounded(dst_reg); 7390 __update_reg_bounds(dst_reg); 7391 } 7392 7393 /* WARNING: This function does calculations on 64-bit values, but the actual 7394 * execution may occur on 32-bit values. Therefore, things like bitshifts 7395 * need extra checks in the 32-bit case. 7396 */ 7397 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7398 struct bpf_insn *insn, 7399 struct bpf_reg_state *dst_reg, 7400 struct bpf_reg_state src_reg) 7401 { 7402 struct bpf_reg_state *regs = cur_regs(env); 7403 u8 opcode = BPF_OP(insn->code); 7404 bool src_known; 7405 s64 smin_val, smax_val; 7406 u64 umin_val, umax_val; 7407 s32 s32_min_val, s32_max_val; 7408 u32 u32_min_val, u32_max_val; 7409 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7410 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7411 int ret; 7412 7413 smin_val = src_reg.smin_value; 7414 smax_val = src_reg.smax_value; 7415 umin_val = src_reg.umin_value; 7416 umax_val = src_reg.umax_value; 7417 7418 s32_min_val = src_reg.s32_min_value; 7419 s32_max_val = src_reg.s32_max_value; 7420 u32_min_val = src_reg.u32_min_value; 7421 u32_max_val = src_reg.u32_max_value; 7422 7423 if (alu32) { 7424 src_known = tnum_subreg_is_const(src_reg.var_off); 7425 if ((src_known && 7426 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7427 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7428 /* Taint dst register if offset had invalid bounds 7429 * derived from e.g. dead branches. 7430 */ 7431 __mark_reg_unknown(env, dst_reg); 7432 return 0; 7433 } 7434 } else { 7435 src_known = tnum_is_const(src_reg.var_off); 7436 if ((src_known && 7437 (smin_val != smax_val || umin_val != umax_val)) || 7438 smin_val > smax_val || umin_val > umax_val) { 7439 /* Taint dst register if offset had invalid bounds 7440 * derived from e.g. dead branches. 7441 */ 7442 __mark_reg_unknown(env, dst_reg); 7443 return 0; 7444 } 7445 } 7446 7447 if (!src_known && 7448 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7449 __mark_reg_unknown(env, dst_reg); 7450 return 0; 7451 } 7452 7453 if (sanitize_needed(opcode)) { 7454 ret = sanitize_val_alu(env, insn); 7455 if (ret < 0) 7456 return sanitize_err(env, insn, ret, NULL, NULL); 7457 } 7458 7459 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7460 * There are two classes of instructions: The first class we track both 7461 * alu32 and alu64 sign/unsigned bounds independently this provides the 7462 * greatest amount of precision when alu operations are mixed with jmp32 7463 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7464 * and BPF_OR. This is possible because these ops have fairly easy to 7465 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7466 * See alu32 verifier tests for examples. The second class of 7467 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7468 * with regards to tracking sign/unsigned bounds because the bits may 7469 * cross subreg boundaries in the alu64 case. When this happens we mark 7470 * the reg unbounded in the subreg bound space and use the resulting 7471 * tnum to calculate an approximation of the sign/unsigned bounds. 7472 */ 7473 switch (opcode) { 7474 case BPF_ADD: 7475 scalar32_min_max_add(dst_reg, &src_reg); 7476 scalar_min_max_add(dst_reg, &src_reg); 7477 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7478 break; 7479 case BPF_SUB: 7480 scalar32_min_max_sub(dst_reg, &src_reg); 7481 scalar_min_max_sub(dst_reg, &src_reg); 7482 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7483 break; 7484 case BPF_MUL: 7485 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7486 scalar32_min_max_mul(dst_reg, &src_reg); 7487 scalar_min_max_mul(dst_reg, &src_reg); 7488 break; 7489 case BPF_AND: 7490 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7491 scalar32_min_max_and(dst_reg, &src_reg); 7492 scalar_min_max_and(dst_reg, &src_reg); 7493 break; 7494 case BPF_OR: 7495 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7496 scalar32_min_max_or(dst_reg, &src_reg); 7497 scalar_min_max_or(dst_reg, &src_reg); 7498 break; 7499 case BPF_XOR: 7500 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7501 scalar32_min_max_xor(dst_reg, &src_reg); 7502 scalar_min_max_xor(dst_reg, &src_reg); 7503 break; 7504 case BPF_LSH: 7505 if (umax_val >= insn_bitness) { 7506 /* Shifts greater than 31 or 63 are undefined. 7507 * This includes shifts by a negative number. 7508 */ 7509 mark_reg_unknown(env, regs, insn->dst_reg); 7510 break; 7511 } 7512 if (alu32) 7513 scalar32_min_max_lsh(dst_reg, &src_reg); 7514 else 7515 scalar_min_max_lsh(dst_reg, &src_reg); 7516 break; 7517 case BPF_RSH: 7518 if (umax_val >= insn_bitness) { 7519 /* Shifts greater than 31 or 63 are undefined. 7520 * This includes shifts by a negative number. 7521 */ 7522 mark_reg_unknown(env, regs, insn->dst_reg); 7523 break; 7524 } 7525 if (alu32) 7526 scalar32_min_max_rsh(dst_reg, &src_reg); 7527 else 7528 scalar_min_max_rsh(dst_reg, &src_reg); 7529 break; 7530 case BPF_ARSH: 7531 if (umax_val >= insn_bitness) { 7532 /* Shifts greater than 31 or 63 are undefined. 7533 * This includes shifts by a negative number. 7534 */ 7535 mark_reg_unknown(env, regs, insn->dst_reg); 7536 break; 7537 } 7538 if (alu32) 7539 scalar32_min_max_arsh(dst_reg, &src_reg); 7540 else 7541 scalar_min_max_arsh(dst_reg, &src_reg); 7542 break; 7543 default: 7544 mark_reg_unknown(env, regs, insn->dst_reg); 7545 break; 7546 } 7547 7548 /* ALU32 ops are zero extended into 64bit register */ 7549 if (alu32) 7550 zext_32_to_64(dst_reg); 7551 7552 __update_reg_bounds(dst_reg); 7553 __reg_deduce_bounds(dst_reg); 7554 __reg_bound_offset(dst_reg); 7555 return 0; 7556 } 7557 7558 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7559 * and var_off. 7560 */ 7561 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7562 struct bpf_insn *insn) 7563 { 7564 struct bpf_verifier_state *vstate = env->cur_state; 7565 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7566 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7567 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7568 u8 opcode = BPF_OP(insn->code); 7569 int err; 7570 7571 dst_reg = ®s[insn->dst_reg]; 7572 src_reg = NULL; 7573 if (dst_reg->type != SCALAR_VALUE) 7574 ptr_reg = dst_reg; 7575 else 7576 /* Make sure ID is cleared otherwise dst_reg min/max could be 7577 * incorrectly propagated into other registers by find_equal_scalars() 7578 */ 7579 dst_reg->id = 0; 7580 if (BPF_SRC(insn->code) == BPF_X) { 7581 src_reg = ®s[insn->src_reg]; 7582 if (src_reg->type != SCALAR_VALUE) { 7583 if (dst_reg->type != SCALAR_VALUE) { 7584 /* Combining two pointers by any ALU op yields 7585 * an arbitrary scalar. Disallow all math except 7586 * pointer subtraction 7587 */ 7588 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7589 mark_reg_unknown(env, regs, insn->dst_reg); 7590 return 0; 7591 } 7592 verbose(env, "R%d pointer %s pointer prohibited\n", 7593 insn->dst_reg, 7594 bpf_alu_string[opcode >> 4]); 7595 return -EACCES; 7596 } else { 7597 /* scalar += pointer 7598 * This is legal, but we have to reverse our 7599 * src/dest handling in computing the range 7600 */ 7601 err = mark_chain_precision(env, insn->dst_reg); 7602 if (err) 7603 return err; 7604 return adjust_ptr_min_max_vals(env, insn, 7605 src_reg, dst_reg); 7606 } 7607 } else if (ptr_reg) { 7608 /* pointer += scalar */ 7609 err = mark_chain_precision(env, insn->src_reg); 7610 if (err) 7611 return err; 7612 return adjust_ptr_min_max_vals(env, insn, 7613 dst_reg, src_reg); 7614 } 7615 } else { 7616 /* Pretend the src is a reg with a known value, since we only 7617 * need to be able to read from this state. 7618 */ 7619 off_reg.type = SCALAR_VALUE; 7620 __mark_reg_known(&off_reg, insn->imm); 7621 src_reg = &off_reg; 7622 if (ptr_reg) /* pointer += K */ 7623 return adjust_ptr_min_max_vals(env, insn, 7624 ptr_reg, src_reg); 7625 } 7626 7627 /* Got here implies adding two SCALAR_VALUEs */ 7628 if (WARN_ON_ONCE(ptr_reg)) { 7629 print_verifier_state(env, state); 7630 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 7631 return -EINVAL; 7632 } 7633 if (WARN_ON(!src_reg)) { 7634 print_verifier_state(env, state); 7635 verbose(env, "verifier internal error: no src_reg\n"); 7636 return -EINVAL; 7637 } 7638 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 7639 } 7640 7641 /* check validity of 32-bit and 64-bit arithmetic operations */ 7642 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 7643 { 7644 struct bpf_reg_state *regs = cur_regs(env); 7645 u8 opcode = BPF_OP(insn->code); 7646 int err; 7647 7648 if (opcode == BPF_END || opcode == BPF_NEG) { 7649 if (opcode == BPF_NEG) { 7650 if (BPF_SRC(insn->code) != 0 || 7651 insn->src_reg != BPF_REG_0 || 7652 insn->off != 0 || insn->imm != 0) { 7653 verbose(env, "BPF_NEG uses reserved fields\n"); 7654 return -EINVAL; 7655 } 7656 } else { 7657 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 7658 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 7659 BPF_CLASS(insn->code) == BPF_ALU64) { 7660 verbose(env, "BPF_END uses reserved fields\n"); 7661 return -EINVAL; 7662 } 7663 } 7664 7665 /* check src operand */ 7666 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7667 if (err) 7668 return err; 7669 7670 if (is_pointer_value(env, insn->dst_reg)) { 7671 verbose(env, "R%d pointer arithmetic prohibited\n", 7672 insn->dst_reg); 7673 return -EACCES; 7674 } 7675 7676 /* check dest operand */ 7677 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7678 if (err) 7679 return err; 7680 7681 } else if (opcode == BPF_MOV) { 7682 7683 if (BPF_SRC(insn->code) == BPF_X) { 7684 if (insn->imm != 0 || insn->off != 0) { 7685 verbose(env, "BPF_MOV uses reserved fields\n"); 7686 return -EINVAL; 7687 } 7688 7689 /* check src operand */ 7690 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7691 if (err) 7692 return err; 7693 } else { 7694 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7695 verbose(env, "BPF_MOV uses reserved fields\n"); 7696 return -EINVAL; 7697 } 7698 } 7699 7700 /* check dest operand, mark as required later */ 7701 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7702 if (err) 7703 return err; 7704 7705 if (BPF_SRC(insn->code) == BPF_X) { 7706 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7707 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7708 7709 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7710 /* case: R1 = R2 7711 * copy register state to dest reg 7712 */ 7713 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 7714 /* Assign src and dst registers the same ID 7715 * that will be used by find_equal_scalars() 7716 * to propagate min/max range. 7717 */ 7718 src_reg->id = ++env->id_gen; 7719 *dst_reg = *src_reg; 7720 dst_reg->live |= REG_LIVE_WRITTEN; 7721 dst_reg->subreg_def = DEF_NOT_SUBREG; 7722 } else { 7723 /* R1 = (u32) R2 */ 7724 if (is_pointer_value(env, insn->src_reg)) { 7725 verbose(env, 7726 "R%d partial copy of pointer\n", 7727 insn->src_reg); 7728 return -EACCES; 7729 } else if (src_reg->type == SCALAR_VALUE) { 7730 *dst_reg = *src_reg; 7731 /* Make sure ID is cleared otherwise 7732 * dst_reg min/max could be incorrectly 7733 * propagated into src_reg by find_equal_scalars() 7734 */ 7735 dst_reg->id = 0; 7736 dst_reg->live |= REG_LIVE_WRITTEN; 7737 dst_reg->subreg_def = env->insn_idx + 1; 7738 } else { 7739 mark_reg_unknown(env, regs, 7740 insn->dst_reg); 7741 } 7742 zext_32_to_64(dst_reg); 7743 } 7744 } else { 7745 /* case: R = imm 7746 * remember the value we stored into this reg 7747 */ 7748 /* clear any state __mark_reg_known doesn't set */ 7749 mark_reg_unknown(env, regs, insn->dst_reg); 7750 regs[insn->dst_reg].type = SCALAR_VALUE; 7751 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7752 __mark_reg_known(regs + insn->dst_reg, 7753 insn->imm); 7754 } else { 7755 __mark_reg_known(regs + insn->dst_reg, 7756 (u32)insn->imm); 7757 } 7758 } 7759 7760 } else if (opcode > BPF_END) { 7761 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7762 return -EINVAL; 7763 7764 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7765 7766 if (BPF_SRC(insn->code) == BPF_X) { 7767 if (insn->imm != 0 || insn->off != 0) { 7768 verbose(env, "BPF_ALU uses reserved fields\n"); 7769 return -EINVAL; 7770 } 7771 /* check src1 operand */ 7772 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7773 if (err) 7774 return err; 7775 } else { 7776 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7777 verbose(env, "BPF_ALU uses reserved fields\n"); 7778 return -EINVAL; 7779 } 7780 } 7781 7782 /* check src2 operand */ 7783 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7784 if (err) 7785 return err; 7786 7787 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 7788 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7789 verbose(env, "div by zero\n"); 7790 return -EINVAL; 7791 } 7792 7793 if ((opcode == BPF_LSH || opcode == BPF_RSH || 7794 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7795 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 7796 7797 if (insn->imm < 0 || insn->imm >= size) { 7798 verbose(env, "invalid shift %d\n", insn->imm); 7799 return -EINVAL; 7800 } 7801 } 7802 7803 /* check dest operand */ 7804 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7805 if (err) 7806 return err; 7807 7808 return adjust_reg_min_max_vals(env, insn); 7809 } 7810 7811 return 0; 7812 } 7813 7814 static void __find_good_pkt_pointers(struct bpf_func_state *state, 7815 struct bpf_reg_state *dst_reg, 7816 enum bpf_reg_type type, int new_range) 7817 { 7818 struct bpf_reg_state *reg; 7819 int i; 7820 7821 for (i = 0; i < MAX_BPF_REG; i++) { 7822 reg = &state->regs[i]; 7823 if (reg->type == type && reg->id == dst_reg->id) 7824 /* keep the maximum range already checked */ 7825 reg->range = max(reg->range, new_range); 7826 } 7827 7828 bpf_for_each_spilled_reg(i, state, reg) { 7829 if (!reg) 7830 continue; 7831 if (reg->type == type && reg->id == dst_reg->id) 7832 reg->range = max(reg->range, new_range); 7833 } 7834 } 7835 7836 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 7837 struct bpf_reg_state *dst_reg, 7838 enum bpf_reg_type type, 7839 bool range_right_open) 7840 { 7841 int new_range, i; 7842 7843 if (dst_reg->off < 0 || 7844 (dst_reg->off == 0 && range_right_open)) 7845 /* This doesn't give us any range */ 7846 return; 7847 7848 if (dst_reg->umax_value > MAX_PACKET_OFF || 7849 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 7850 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7851 * than pkt_end, but that's because it's also less than pkt. 7852 */ 7853 return; 7854 7855 new_range = dst_reg->off; 7856 if (range_right_open) 7857 new_range--; 7858 7859 /* Examples for register markings: 7860 * 7861 * pkt_data in dst register: 7862 * 7863 * r2 = r3; 7864 * r2 += 8; 7865 * if (r2 > pkt_end) goto <handle exception> 7866 * <access okay> 7867 * 7868 * r2 = r3; 7869 * r2 += 8; 7870 * if (r2 < pkt_end) goto <access okay> 7871 * <handle exception> 7872 * 7873 * Where: 7874 * r2 == dst_reg, pkt_end == src_reg 7875 * r2=pkt(id=n,off=8,r=0) 7876 * r3=pkt(id=n,off=0,r=0) 7877 * 7878 * pkt_data in src register: 7879 * 7880 * r2 = r3; 7881 * r2 += 8; 7882 * if (pkt_end >= r2) goto <access okay> 7883 * <handle exception> 7884 * 7885 * r2 = r3; 7886 * r2 += 8; 7887 * if (pkt_end <= r2) goto <handle exception> 7888 * <access okay> 7889 * 7890 * Where: 7891 * pkt_end == dst_reg, r2 == src_reg 7892 * r2=pkt(id=n,off=8,r=0) 7893 * r3=pkt(id=n,off=0,r=0) 7894 * 7895 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 7896 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 7897 * and [r3, r3 + 8-1) respectively is safe to access depending on 7898 * the check. 7899 */ 7900 7901 /* If our ids match, then we must have the same max_value. And we 7902 * don't care about the other reg's fixed offset, since if it's too big 7903 * the range won't allow anything. 7904 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 7905 */ 7906 for (i = 0; i <= vstate->curframe; i++) 7907 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 7908 new_range); 7909 } 7910 7911 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 7912 { 7913 struct tnum subreg = tnum_subreg(reg->var_off); 7914 s32 sval = (s32)val; 7915 7916 switch (opcode) { 7917 case BPF_JEQ: 7918 if (tnum_is_const(subreg)) 7919 return !!tnum_equals_const(subreg, val); 7920 break; 7921 case BPF_JNE: 7922 if (tnum_is_const(subreg)) 7923 return !tnum_equals_const(subreg, val); 7924 break; 7925 case BPF_JSET: 7926 if ((~subreg.mask & subreg.value) & val) 7927 return 1; 7928 if (!((subreg.mask | subreg.value) & val)) 7929 return 0; 7930 break; 7931 case BPF_JGT: 7932 if (reg->u32_min_value > val) 7933 return 1; 7934 else if (reg->u32_max_value <= val) 7935 return 0; 7936 break; 7937 case BPF_JSGT: 7938 if (reg->s32_min_value > sval) 7939 return 1; 7940 else if (reg->s32_max_value <= sval) 7941 return 0; 7942 break; 7943 case BPF_JLT: 7944 if (reg->u32_max_value < val) 7945 return 1; 7946 else if (reg->u32_min_value >= val) 7947 return 0; 7948 break; 7949 case BPF_JSLT: 7950 if (reg->s32_max_value < sval) 7951 return 1; 7952 else if (reg->s32_min_value >= sval) 7953 return 0; 7954 break; 7955 case BPF_JGE: 7956 if (reg->u32_min_value >= val) 7957 return 1; 7958 else if (reg->u32_max_value < val) 7959 return 0; 7960 break; 7961 case BPF_JSGE: 7962 if (reg->s32_min_value >= sval) 7963 return 1; 7964 else if (reg->s32_max_value < sval) 7965 return 0; 7966 break; 7967 case BPF_JLE: 7968 if (reg->u32_max_value <= val) 7969 return 1; 7970 else if (reg->u32_min_value > val) 7971 return 0; 7972 break; 7973 case BPF_JSLE: 7974 if (reg->s32_max_value <= sval) 7975 return 1; 7976 else if (reg->s32_min_value > sval) 7977 return 0; 7978 break; 7979 } 7980 7981 return -1; 7982 } 7983 7984 7985 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 7986 { 7987 s64 sval = (s64)val; 7988 7989 switch (opcode) { 7990 case BPF_JEQ: 7991 if (tnum_is_const(reg->var_off)) 7992 return !!tnum_equals_const(reg->var_off, val); 7993 break; 7994 case BPF_JNE: 7995 if (tnum_is_const(reg->var_off)) 7996 return !tnum_equals_const(reg->var_off, val); 7997 break; 7998 case BPF_JSET: 7999 if ((~reg->var_off.mask & reg->var_off.value) & val) 8000 return 1; 8001 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8002 return 0; 8003 break; 8004 case BPF_JGT: 8005 if (reg->umin_value > val) 8006 return 1; 8007 else if (reg->umax_value <= val) 8008 return 0; 8009 break; 8010 case BPF_JSGT: 8011 if (reg->smin_value > sval) 8012 return 1; 8013 else if (reg->smax_value <= sval) 8014 return 0; 8015 break; 8016 case BPF_JLT: 8017 if (reg->umax_value < val) 8018 return 1; 8019 else if (reg->umin_value >= val) 8020 return 0; 8021 break; 8022 case BPF_JSLT: 8023 if (reg->smax_value < sval) 8024 return 1; 8025 else if (reg->smin_value >= sval) 8026 return 0; 8027 break; 8028 case BPF_JGE: 8029 if (reg->umin_value >= val) 8030 return 1; 8031 else if (reg->umax_value < val) 8032 return 0; 8033 break; 8034 case BPF_JSGE: 8035 if (reg->smin_value >= sval) 8036 return 1; 8037 else if (reg->smax_value < sval) 8038 return 0; 8039 break; 8040 case BPF_JLE: 8041 if (reg->umax_value <= val) 8042 return 1; 8043 else if (reg->umin_value > val) 8044 return 0; 8045 break; 8046 case BPF_JSLE: 8047 if (reg->smax_value <= sval) 8048 return 1; 8049 else if (reg->smin_value > sval) 8050 return 0; 8051 break; 8052 } 8053 8054 return -1; 8055 } 8056 8057 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8058 * and return: 8059 * 1 - branch will be taken and "goto target" will be executed 8060 * 0 - branch will not be taken and fall-through to next insn 8061 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8062 * range [0,10] 8063 */ 8064 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8065 bool is_jmp32) 8066 { 8067 if (__is_pointer_value(false, reg)) { 8068 if (!reg_type_not_null(reg->type)) 8069 return -1; 8070 8071 /* If pointer is valid tests against zero will fail so we can 8072 * use this to direct branch taken. 8073 */ 8074 if (val != 0) 8075 return -1; 8076 8077 switch (opcode) { 8078 case BPF_JEQ: 8079 return 0; 8080 case BPF_JNE: 8081 return 1; 8082 default: 8083 return -1; 8084 } 8085 } 8086 8087 if (is_jmp32) 8088 return is_branch32_taken(reg, val, opcode); 8089 return is_branch64_taken(reg, val, opcode); 8090 } 8091 8092 static int flip_opcode(u32 opcode) 8093 { 8094 /* How can we transform "a <op> b" into "b <op> a"? */ 8095 static const u8 opcode_flip[16] = { 8096 /* these stay the same */ 8097 [BPF_JEQ >> 4] = BPF_JEQ, 8098 [BPF_JNE >> 4] = BPF_JNE, 8099 [BPF_JSET >> 4] = BPF_JSET, 8100 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8101 [BPF_JGE >> 4] = BPF_JLE, 8102 [BPF_JGT >> 4] = BPF_JLT, 8103 [BPF_JLE >> 4] = BPF_JGE, 8104 [BPF_JLT >> 4] = BPF_JGT, 8105 [BPF_JSGE >> 4] = BPF_JSLE, 8106 [BPF_JSGT >> 4] = BPF_JSLT, 8107 [BPF_JSLE >> 4] = BPF_JSGE, 8108 [BPF_JSLT >> 4] = BPF_JSGT 8109 }; 8110 return opcode_flip[opcode >> 4]; 8111 } 8112 8113 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8114 struct bpf_reg_state *src_reg, 8115 u8 opcode) 8116 { 8117 struct bpf_reg_state *pkt; 8118 8119 if (src_reg->type == PTR_TO_PACKET_END) { 8120 pkt = dst_reg; 8121 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8122 pkt = src_reg; 8123 opcode = flip_opcode(opcode); 8124 } else { 8125 return -1; 8126 } 8127 8128 if (pkt->range >= 0) 8129 return -1; 8130 8131 switch (opcode) { 8132 case BPF_JLE: 8133 /* pkt <= pkt_end */ 8134 fallthrough; 8135 case BPF_JGT: 8136 /* pkt > pkt_end */ 8137 if (pkt->range == BEYOND_PKT_END) 8138 /* pkt has at last one extra byte beyond pkt_end */ 8139 return opcode == BPF_JGT; 8140 break; 8141 case BPF_JLT: 8142 /* pkt < pkt_end */ 8143 fallthrough; 8144 case BPF_JGE: 8145 /* pkt >= pkt_end */ 8146 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8147 return opcode == BPF_JGE; 8148 break; 8149 } 8150 return -1; 8151 } 8152 8153 /* Adjusts the register min/max values in the case that the dst_reg is the 8154 * variable register that we are working on, and src_reg is a constant or we're 8155 * simply doing a BPF_K check. 8156 * In JEQ/JNE cases we also adjust the var_off values. 8157 */ 8158 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8159 struct bpf_reg_state *false_reg, 8160 u64 val, u32 val32, 8161 u8 opcode, bool is_jmp32) 8162 { 8163 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8164 struct tnum false_64off = false_reg->var_off; 8165 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8166 struct tnum true_64off = true_reg->var_off; 8167 s64 sval = (s64)val; 8168 s32 sval32 = (s32)val32; 8169 8170 /* If the dst_reg is a pointer, we can't learn anything about its 8171 * variable offset from the compare (unless src_reg were a pointer into 8172 * the same object, but we don't bother with that. 8173 * Since false_reg and true_reg have the same type by construction, we 8174 * only need to check one of them for pointerness. 8175 */ 8176 if (__is_pointer_value(false, false_reg)) 8177 return; 8178 8179 switch (opcode) { 8180 case BPF_JEQ: 8181 case BPF_JNE: 8182 { 8183 struct bpf_reg_state *reg = 8184 opcode == BPF_JEQ ? true_reg : false_reg; 8185 8186 /* JEQ/JNE comparison doesn't change the register equivalence. 8187 * r1 = r2; 8188 * if (r1 == 42) goto label; 8189 * ... 8190 * label: // here both r1 and r2 are known to be 42. 8191 * 8192 * Hence when marking register as known preserve it's ID. 8193 */ 8194 if (is_jmp32) 8195 __mark_reg32_known(reg, val32); 8196 else 8197 ___mark_reg_known(reg, val); 8198 break; 8199 } 8200 case BPF_JSET: 8201 if (is_jmp32) { 8202 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8203 if (is_power_of_2(val32)) 8204 true_32off = tnum_or(true_32off, 8205 tnum_const(val32)); 8206 } else { 8207 false_64off = tnum_and(false_64off, tnum_const(~val)); 8208 if (is_power_of_2(val)) 8209 true_64off = tnum_or(true_64off, 8210 tnum_const(val)); 8211 } 8212 break; 8213 case BPF_JGE: 8214 case BPF_JGT: 8215 { 8216 if (is_jmp32) { 8217 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8218 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8219 8220 false_reg->u32_max_value = min(false_reg->u32_max_value, 8221 false_umax); 8222 true_reg->u32_min_value = max(true_reg->u32_min_value, 8223 true_umin); 8224 } else { 8225 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8226 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8227 8228 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8229 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8230 } 8231 break; 8232 } 8233 case BPF_JSGE: 8234 case BPF_JSGT: 8235 { 8236 if (is_jmp32) { 8237 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8238 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8239 8240 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8241 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8242 } else { 8243 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8244 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8245 8246 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8247 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8248 } 8249 break; 8250 } 8251 case BPF_JLE: 8252 case BPF_JLT: 8253 { 8254 if (is_jmp32) { 8255 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8256 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8257 8258 false_reg->u32_min_value = max(false_reg->u32_min_value, 8259 false_umin); 8260 true_reg->u32_max_value = min(true_reg->u32_max_value, 8261 true_umax); 8262 } else { 8263 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8264 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8265 8266 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8267 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8268 } 8269 break; 8270 } 8271 case BPF_JSLE: 8272 case BPF_JSLT: 8273 { 8274 if (is_jmp32) { 8275 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8276 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8277 8278 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8279 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8280 } else { 8281 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8282 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8283 8284 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8285 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8286 } 8287 break; 8288 } 8289 default: 8290 return; 8291 } 8292 8293 if (is_jmp32) { 8294 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8295 tnum_subreg(false_32off)); 8296 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8297 tnum_subreg(true_32off)); 8298 __reg_combine_32_into_64(false_reg); 8299 __reg_combine_32_into_64(true_reg); 8300 } else { 8301 false_reg->var_off = false_64off; 8302 true_reg->var_off = true_64off; 8303 __reg_combine_64_into_32(false_reg); 8304 __reg_combine_64_into_32(true_reg); 8305 } 8306 } 8307 8308 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8309 * the variable reg. 8310 */ 8311 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8312 struct bpf_reg_state *false_reg, 8313 u64 val, u32 val32, 8314 u8 opcode, bool is_jmp32) 8315 { 8316 opcode = flip_opcode(opcode); 8317 /* This uses zero as "not present in table"; luckily the zero opcode, 8318 * BPF_JA, can't get here. 8319 */ 8320 if (opcode) 8321 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8322 } 8323 8324 /* Regs are known to be equal, so intersect their min/max/var_off */ 8325 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8326 struct bpf_reg_state *dst_reg) 8327 { 8328 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8329 dst_reg->umin_value); 8330 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8331 dst_reg->umax_value); 8332 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8333 dst_reg->smin_value); 8334 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8335 dst_reg->smax_value); 8336 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8337 dst_reg->var_off); 8338 /* We might have learned new bounds from the var_off. */ 8339 __update_reg_bounds(src_reg); 8340 __update_reg_bounds(dst_reg); 8341 /* We might have learned something about the sign bit. */ 8342 __reg_deduce_bounds(src_reg); 8343 __reg_deduce_bounds(dst_reg); 8344 /* We might have learned some bits from the bounds. */ 8345 __reg_bound_offset(src_reg); 8346 __reg_bound_offset(dst_reg); 8347 /* Intersecting with the old var_off might have improved our bounds 8348 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8349 * then new var_off is (0; 0x7f...fc) which improves our umax. 8350 */ 8351 __update_reg_bounds(src_reg); 8352 __update_reg_bounds(dst_reg); 8353 } 8354 8355 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8356 struct bpf_reg_state *true_dst, 8357 struct bpf_reg_state *false_src, 8358 struct bpf_reg_state *false_dst, 8359 u8 opcode) 8360 { 8361 switch (opcode) { 8362 case BPF_JEQ: 8363 __reg_combine_min_max(true_src, true_dst); 8364 break; 8365 case BPF_JNE: 8366 __reg_combine_min_max(false_src, false_dst); 8367 break; 8368 } 8369 } 8370 8371 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8372 struct bpf_reg_state *reg, u32 id, 8373 bool is_null) 8374 { 8375 if (reg_type_may_be_null(reg->type) && reg->id == id && 8376 !WARN_ON_ONCE(!reg->id)) { 8377 /* Old offset (both fixed and variable parts) should 8378 * have been known-zero, because we don't allow pointer 8379 * arithmetic on pointers that might be NULL. 8380 */ 8381 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8382 !tnum_equals_const(reg->var_off, 0) || 8383 reg->off)) { 8384 __mark_reg_known_zero(reg); 8385 reg->off = 0; 8386 } 8387 if (is_null) { 8388 reg->type = SCALAR_VALUE; 8389 /* We don't need id and ref_obj_id from this point 8390 * onwards anymore, thus we should better reset it, 8391 * so that state pruning has chances to take effect. 8392 */ 8393 reg->id = 0; 8394 reg->ref_obj_id = 0; 8395 8396 return; 8397 } 8398 8399 mark_ptr_not_null_reg(reg); 8400 8401 if (!reg_may_point_to_spin_lock(reg)) { 8402 /* For not-NULL ptr, reg->ref_obj_id will be reset 8403 * in release_reg_references(). 8404 * 8405 * reg->id is still used by spin_lock ptr. Other 8406 * than spin_lock ptr type, reg->id can be reset. 8407 */ 8408 reg->id = 0; 8409 } 8410 } 8411 } 8412 8413 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8414 bool is_null) 8415 { 8416 struct bpf_reg_state *reg; 8417 int i; 8418 8419 for (i = 0; i < MAX_BPF_REG; i++) 8420 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8421 8422 bpf_for_each_spilled_reg(i, state, reg) { 8423 if (!reg) 8424 continue; 8425 mark_ptr_or_null_reg(state, reg, id, is_null); 8426 } 8427 } 8428 8429 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8430 * be folded together at some point. 8431 */ 8432 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8433 bool is_null) 8434 { 8435 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8436 struct bpf_reg_state *regs = state->regs; 8437 u32 ref_obj_id = regs[regno].ref_obj_id; 8438 u32 id = regs[regno].id; 8439 int i; 8440 8441 if (ref_obj_id && ref_obj_id == id && is_null) 8442 /* regs[regno] is in the " == NULL" branch. 8443 * No one could have freed the reference state before 8444 * doing the NULL check. 8445 */ 8446 WARN_ON_ONCE(release_reference_state(state, id)); 8447 8448 for (i = 0; i <= vstate->curframe; i++) 8449 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8450 } 8451 8452 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8453 struct bpf_reg_state *dst_reg, 8454 struct bpf_reg_state *src_reg, 8455 struct bpf_verifier_state *this_branch, 8456 struct bpf_verifier_state *other_branch) 8457 { 8458 if (BPF_SRC(insn->code) != BPF_X) 8459 return false; 8460 8461 /* Pointers are always 64-bit. */ 8462 if (BPF_CLASS(insn->code) == BPF_JMP32) 8463 return false; 8464 8465 switch (BPF_OP(insn->code)) { 8466 case BPF_JGT: 8467 if ((dst_reg->type == PTR_TO_PACKET && 8468 src_reg->type == PTR_TO_PACKET_END) || 8469 (dst_reg->type == PTR_TO_PACKET_META && 8470 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8471 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8472 find_good_pkt_pointers(this_branch, dst_reg, 8473 dst_reg->type, false); 8474 mark_pkt_end(other_branch, insn->dst_reg, true); 8475 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8476 src_reg->type == PTR_TO_PACKET) || 8477 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8478 src_reg->type == PTR_TO_PACKET_META)) { 8479 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8480 find_good_pkt_pointers(other_branch, src_reg, 8481 src_reg->type, true); 8482 mark_pkt_end(this_branch, insn->src_reg, false); 8483 } else { 8484 return false; 8485 } 8486 break; 8487 case BPF_JLT: 8488 if ((dst_reg->type == PTR_TO_PACKET && 8489 src_reg->type == PTR_TO_PACKET_END) || 8490 (dst_reg->type == PTR_TO_PACKET_META && 8491 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8492 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8493 find_good_pkt_pointers(other_branch, dst_reg, 8494 dst_reg->type, true); 8495 mark_pkt_end(this_branch, insn->dst_reg, false); 8496 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8497 src_reg->type == PTR_TO_PACKET) || 8498 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8499 src_reg->type == PTR_TO_PACKET_META)) { 8500 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8501 find_good_pkt_pointers(this_branch, src_reg, 8502 src_reg->type, false); 8503 mark_pkt_end(other_branch, insn->src_reg, true); 8504 } else { 8505 return false; 8506 } 8507 break; 8508 case BPF_JGE: 8509 if ((dst_reg->type == PTR_TO_PACKET && 8510 src_reg->type == PTR_TO_PACKET_END) || 8511 (dst_reg->type == PTR_TO_PACKET_META && 8512 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8513 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8514 find_good_pkt_pointers(this_branch, dst_reg, 8515 dst_reg->type, true); 8516 mark_pkt_end(other_branch, insn->dst_reg, false); 8517 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8518 src_reg->type == PTR_TO_PACKET) || 8519 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8520 src_reg->type == PTR_TO_PACKET_META)) { 8521 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8522 find_good_pkt_pointers(other_branch, src_reg, 8523 src_reg->type, false); 8524 mark_pkt_end(this_branch, insn->src_reg, true); 8525 } else { 8526 return false; 8527 } 8528 break; 8529 case BPF_JLE: 8530 if ((dst_reg->type == PTR_TO_PACKET && 8531 src_reg->type == PTR_TO_PACKET_END) || 8532 (dst_reg->type == PTR_TO_PACKET_META && 8533 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8534 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8535 find_good_pkt_pointers(other_branch, dst_reg, 8536 dst_reg->type, false); 8537 mark_pkt_end(this_branch, insn->dst_reg, true); 8538 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8539 src_reg->type == PTR_TO_PACKET) || 8540 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8541 src_reg->type == PTR_TO_PACKET_META)) { 8542 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8543 find_good_pkt_pointers(this_branch, src_reg, 8544 src_reg->type, true); 8545 mark_pkt_end(other_branch, insn->src_reg, false); 8546 } else { 8547 return false; 8548 } 8549 break; 8550 default: 8551 return false; 8552 } 8553 8554 return true; 8555 } 8556 8557 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8558 struct bpf_reg_state *known_reg) 8559 { 8560 struct bpf_func_state *state; 8561 struct bpf_reg_state *reg; 8562 int i, j; 8563 8564 for (i = 0; i <= vstate->curframe; i++) { 8565 state = vstate->frame[i]; 8566 for (j = 0; j < MAX_BPF_REG; j++) { 8567 reg = &state->regs[j]; 8568 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8569 *reg = *known_reg; 8570 } 8571 8572 bpf_for_each_spilled_reg(j, state, reg) { 8573 if (!reg) 8574 continue; 8575 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8576 *reg = *known_reg; 8577 } 8578 } 8579 } 8580 8581 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8582 struct bpf_insn *insn, int *insn_idx) 8583 { 8584 struct bpf_verifier_state *this_branch = env->cur_state; 8585 struct bpf_verifier_state *other_branch; 8586 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8587 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8588 u8 opcode = BPF_OP(insn->code); 8589 bool is_jmp32; 8590 int pred = -1; 8591 int err; 8592 8593 /* Only conditional jumps are expected to reach here. */ 8594 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8595 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8596 return -EINVAL; 8597 } 8598 8599 if (BPF_SRC(insn->code) == BPF_X) { 8600 if (insn->imm != 0) { 8601 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8602 return -EINVAL; 8603 } 8604 8605 /* check src1 operand */ 8606 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8607 if (err) 8608 return err; 8609 8610 if (is_pointer_value(env, insn->src_reg)) { 8611 verbose(env, "R%d pointer comparison prohibited\n", 8612 insn->src_reg); 8613 return -EACCES; 8614 } 8615 src_reg = ®s[insn->src_reg]; 8616 } else { 8617 if (insn->src_reg != BPF_REG_0) { 8618 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8619 return -EINVAL; 8620 } 8621 } 8622 8623 /* check src2 operand */ 8624 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8625 if (err) 8626 return err; 8627 8628 dst_reg = ®s[insn->dst_reg]; 8629 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 8630 8631 if (BPF_SRC(insn->code) == BPF_K) { 8632 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 8633 } else if (src_reg->type == SCALAR_VALUE && 8634 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 8635 pred = is_branch_taken(dst_reg, 8636 tnum_subreg(src_reg->var_off).value, 8637 opcode, 8638 is_jmp32); 8639 } else if (src_reg->type == SCALAR_VALUE && 8640 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 8641 pred = is_branch_taken(dst_reg, 8642 src_reg->var_off.value, 8643 opcode, 8644 is_jmp32); 8645 } else if (reg_is_pkt_pointer_any(dst_reg) && 8646 reg_is_pkt_pointer_any(src_reg) && 8647 !is_jmp32) { 8648 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 8649 } 8650 8651 if (pred >= 0) { 8652 /* If we get here with a dst_reg pointer type it is because 8653 * above is_branch_taken() special cased the 0 comparison. 8654 */ 8655 if (!__is_pointer_value(false, dst_reg)) 8656 err = mark_chain_precision(env, insn->dst_reg); 8657 if (BPF_SRC(insn->code) == BPF_X && !err && 8658 !__is_pointer_value(false, src_reg)) 8659 err = mark_chain_precision(env, insn->src_reg); 8660 if (err) 8661 return err; 8662 } 8663 if (pred == 1) { 8664 /* only follow the goto, ignore fall-through */ 8665 *insn_idx += insn->off; 8666 return 0; 8667 } else if (pred == 0) { 8668 /* only follow fall-through branch, since 8669 * that's where the program will go 8670 */ 8671 return 0; 8672 } 8673 8674 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 8675 false); 8676 if (!other_branch) 8677 return -EFAULT; 8678 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 8679 8680 /* detect if we are comparing against a constant value so we can adjust 8681 * our min/max values for our dst register. 8682 * this is only legit if both are scalars (or pointers to the same 8683 * object, I suppose, but we don't support that right now), because 8684 * otherwise the different base pointers mean the offsets aren't 8685 * comparable. 8686 */ 8687 if (BPF_SRC(insn->code) == BPF_X) { 8688 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 8689 8690 if (dst_reg->type == SCALAR_VALUE && 8691 src_reg->type == SCALAR_VALUE) { 8692 if (tnum_is_const(src_reg->var_off) || 8693 (is_jmp32 && 8694 tnum_is_const(tnum_subreg(src_reg->var_off)))) 8695 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8696 dst_reg, 8697 src_reg->var_off.value, 8698 tnum_subreg(src_reg->var_off).value, 8699 opcode, is_jmp32); 8700 else if (tnum_is_const(dst_reg->var_off) || 8701 (is_jmp32 && 8702 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 8703 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 8704 src_reg, 8705 dst_reg->var_off.value, 8706 tnum_subreg(dst_reg->var_off).value, 8707 opcode, is_jmp32); 8708 else if (!is_jmp32 && 8709 (opcode == BPF_JEQ || opcode == BPF_JNE)) 8710 /* Comparing for equality, we can combine knowledge */ 8711 reg_combine_min_max(&other_branch_regs[insn->src_reg], 8712 &other_branch_regs[insn->dst_reg], 8713 src_reg, dst_reg, opcode); 8714 if (src_reg->id && 8715 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 8716 find_equal_scalars(this_branch, src_reg); 8717 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 8718 } 8719 8720 } 8721 } else if (dst_reg->type == SCALAR_VALUE) { 8722 reg_set_min_max(&other_branch_regs[insn->dst_reg], 8723 dst_reg, insn->imm, (u32)insn->imm, 8724 opcode, is_jmp32); 8725 } 8726 8727 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 8728 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 8729 find_equal_scalars(this_branch, dst_reg); 8730 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 8731 } 8732 8733 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 8734 * NOTE: these optimizations below are related with pointer comparison 8735 * which will never be JMP32. 8736 */ 8737 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 8738 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 8739 reg_type_may_be_null(dst_reg->type)) { 8740 /* Mark all identical registers in each branch as either 8741 * safe or unknown depending R == 0 or R != 0 conditional. 8742 */ 8743 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 8744 opcode == BPF_JNE); 8745 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 8746 opcode == BPF_JEQ); 8747 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 8748 this_branch, other_branch) && 8749 is_pointer_value(env, insn->dst_reg)) { 8750 verbose(env, "R%d pointer comparison prohibited\n", 8751 insn->dst_reg); 8752 return -EACCES; 8753 } 8754 if (env->log.level & BPF_LOG_LEVEL) 8755 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 8756 return 0; 8757 } 8758 8759 /* verify BPF_LD_IMM64 instruction */ 8760 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 8761 { 8762 struct bpf_insn_aux_data *aux = cur_aux(env); 8763 struct bpf_reg_state *regs = cur_regs(env); 8764 struct bpf_reg_state *dst_reg; 8765 struct bpf_map *map; 8766 int err; 8767 8768 if (BPF_SIZE(insn->code) != BPF_DW) { 8769 verbose(env, "invalid BPF_LD_IMM insn\n"); 8770 return -EINVAL; 8771 } 8772 if (insn->off != 0) { 8773 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 8774 return -EINVAL; 8775 } 8776 8777 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8778 if (err) 8779 return err; 8780 8781 dst_reg = ®s[insn->dst_reg]; 8782 if (insn->src_reg == 0) { 8783 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 8784 8785 dst_reg->type = SCALAR_VALUE; 8786 __mark_reg_known(®s[insn->dst_reg], imm); 8787 return 0; 8788 } 8789 8790 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8791 mark_reg_known_zero(env, regs, insn->dst_reg); 8792 8793 dst_reg->type = aux->btf_var.reg_type; 8794 switch (dst_reg->type) { 8795 case PTR_TO_MEM: 8796 dst_reg->mem_size = aux->btf_var.mem_size; 8797 break; 8798 case PTR_TO_BTF_ID: 8799 case PTR_TO_PERCPU_BTF_ID: 8800 dst_reg->btf = aux->btf_var.btf; 8801 dst_reg->btf_id = aux->btf_var.btf_id; 8802 break; 8803 default: 8804 verbose(env, "bpf verifier is misconfigured\n"); 8805 return -EFAULT; 8806 } 8807 return 0; 8808 } 8809 8810 if (insn->src_reg == BPF_PSEUDO_FUNC) { 8811 struct bpf_prog_aux *aux = env->prog->aux; 8812 u32 subprogno = insn[1].imm; 8813 8814 if (!aux->func_info) { 8815 verbose(env, "missing btf func_info\n"); 8816 return -EINVAL; 8817 } 8818 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 8819 verbose(env, "callback function not static\n"); 8820 return -EINVAL; 8821 } 8822 8823 dst_reg->type = PTR_TO_FUNC; 8824 dst_reg->subprogno = subprogno; 8825 return 0; 8826 } 8827 8828 map = env->used_maps[aux->map_index]; 8829 mark_reg_known_zero(env, regs, insn->dst_reg); 8830 dst_reg->map_ptr = map; 8831 8832 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 8833 dst_reg->type = PTR_TO_MAP_VALUE; 8834 dst_reg->off = aux->map_off; 8835 if (map_value_has_spin_lock(map)) 8836 dst_reg->id = ++env->id_gen; 8837 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8838 dst_reg->type = CONST_PTR_TO_MAP; 8839 } else { 8840 verbose(env, "bpf verifier is misconfigured\n"); 8841 return -EINVAL; 8842 } 8843 8844 return 0; 8845 } 8846 8847 static bool may_access_skb(enum bpf_prog_type type) 8848 { 8849 switch (type) { 8850 case BPF_PROG_TYPE_SOCKET_FILTER: 8851 case BPF_PROG_TYPE_SCHED_CLS: 8852 case BPF_PROG_TYPE_SCHED_ACT: 8853 return true; 8854 default: 8855 return false; 8856 } 8857 } 8858 8859 /* verify safety of LD_ABS|LD_IND instructions: 8860 * - they can only appear in the programs where ctx == skb 8861 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8862 * preserve R6-R9, and store return value into R0 8863 * 8864 * Implicit input: 8865 * ctx == skb == R6 == CTX 8866 * 8867 * Explicit input: 8868 * SRC == any register 8869 * IMM == 32-bit immediate 8870 * 8871 * Output: 8872 * R0 - 8/16/32-bit skb data converted to cpu endianness 8873 */ 8874 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 8875 { 8876 struct bpf_reg_state *regs = cur_regs(env); 8877 static const int ctx_reg = BPF_REG_6; 8878 u8 mode = BPF_MODE(insn->code); 8879 int i, err; 8880 8881 if (!may_access_skb(resolve_prog_type(env->prog))) { 8882 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 8883 return -EINVAL; 8884 } 8885 8886 if (!env->ops->gen_ld_abs) { 8887 verbose(env, "bpf verifier is misconfigured\n"); 8888 return -EINVAL; 8889 } 8890 8891 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 8892 BPF_SIZE(insn->code) == BPF_DW || 8893 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 8894 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 8895 return -EINVAL; 8896 } 8897 8898 /* check whether implicit source operand (register R6) is readable */ 8899 err = check_reg_arg(env, ctx_reg, SRC_OP); 8900 if (err) 8901 return err; 8902 8903 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 8904 * gen_ld_abs() may terminate the program at runtime, leading to 8905 * reference leak. 8906 */ 8907 err = check_reference_leak(env); 8908 if (err) { 8909 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 8910 return err; 8911 } 8912 8913 if (env->cur_state->active_spin_lock) { 8914 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 8915 return -EINVAL; 8916 } 8917 8918 if (regs[ctx_reg].type != PTR_TO_CTX) { 8919 verbose(env, 8920 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 8921 return -EINVAL; 8922 } 8923 8924 if (mode == BPF_IND) { 8925 /* check explicit source operand */ 8926 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8927 if (err) 8928 return err; 8929 } 8930 8931 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 8932 if (err < 0) 8933 return err; 8934 8935 /* reset caller saved regs to unreadable */ 8936 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8937 mark_reg_not_init(env, regs, caller_saved[i]); 8938 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8939 } 8940 8941 /* mark destination R0 register as readable, since it contains 8942 * the value fetched from the packet. 8943 * Already marked as written above. 8944 */ 8945 mark_reg_unknown(env, regs, BPF_REG_0); 8946 /* ld_abs load up to 32-bit skb data. */ 8947 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 8948 return 0; 8949 } 8950 8951 static int check_return_code(struct bpf_verifier_env *env) 8952 { 8953 struct tnum enforce_attach_type_range = tnum_unknown; 8954 const struct bpf_prog *prog = env->prog; 8955 struct bpf_reg_state *reg; 8956 struct tnum range = tnum_range(0, 1); 8957 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8958 int err; 8959 const bool is_subprog = env->cur_state->frame[0]->subprogno; 8960 8961 /* LSM and struct_ops func-ptr's return type could be "void" */ 8962 if (!is_subprog && 8963 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 8964 prog_type == BPF_PROG_TYPE_LSM) && 8965 !prog->aux->attach_func_proto->type) 8966 return 0; 8967 8968 /* eBPF calling convetion is such that R0 is used 8969 * to return the value from eBPF program. 8970 * Make sure that it's readable at this time 8971 * of bpf_exit, which means that program wrote 8972 * something into it earlier 8973 */ 8974 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8975 if (err) 8976 return err; 8977 8978 if (is_pointer_value(env, BPF_REG_0)) { 8979 verbose(env, "R0 leaks addr as return value\n"); 8980 return -EACCES; 8981 } 8982 8983 reg = cur_regs(env) + BPF_REG_0; 8984 if (is_subprog) { 8985 if (reg->type != SCALAR_VALUE) { 8986 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 8987 reg_type_str[reg->type]); 8988 return -EINVAL; 8989 } 8990 return 0; 8991 } 8992 8993 switch (prog_type) { 8994 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8995 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 8996 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 8997 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 8998 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 8999 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9000 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9001 range = tnum_range(1, 1); 9002 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9003 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9004 range = tnum_range(0, 3); 9005 break; 9006 case BPF_PROG_TYPE_CGROUP_SKB: 9007 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9008 range = tnum_range(0, 3); 9009 enforce_attach_type_range = tnum_range(2, 3); 9010 } 9011 break; 9012 case BPF_PROG_TYPE_CGROUP_SOCK: 9013 case BPF_PROG_TYPE_SOCK_OPS: 9014 case BPF_PROG_TYPE_CGROUP_DEVICE: 9015 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9016 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9017 break; 9018 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9019 if (!env->prog->aux->attach_btf_id) 9020 return 0; 9021 range = tnum_const(0); 9022 break; 9023 case BPF_PROG_TYPE_TRACING: 9024 switch (env->prog->expected_attach_type) { 9025 case BPF_TRACE_FENTRY: 9026 case BPF_TRACE_FEXIT: 9027 range = tnum_const(0); 9028 break; 9029 case BPF_TRACE_RAW_TP: 9030 case BPF_MODIFY_RETURN: 9031 return 0; 9032 case BPF_TRACE_ITER: 9033 break; 9034 default: 9035 return -ENOTSUPP; 9036 } 9037 break; 9038 case BPF_PROG_TYPE_SK_LOOKUP: 9039 range = tnum_range(SK_DROP, SK_PASS); 9040 break; 9041 case BPF_PROG_TYPE_EXT: 9042 /* freplace program can return anything as its return value 9043 * depends on the to-be-replaced kernel func or bpf program. 9044 */ 9045 default: 9046 return 0; 9047 } 9048 9049 if (reg->type != SCALAR_VALUE) { 9050 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9051 reg_type_str[reg->type]); 9052 return -EINVAL; 9053 } 9054 9055 if (!tnum_in(range, reg->var_off)) { 9056 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9057 return -EINVAL; 9058 } 9059 9060 if (!tnum_is_unknown(enforce_attach_type_range) && 9061 tnum_in(enforce_attach_type_range, reg->var_off)) 9062 env->prog->enforce_expected_attach_type = 1; 9063 return 0; 9064 } 9065 9066 /* non-recursive DFS pseudo code 9067 * 1 procedure DFS-iterative(G,v): 9068 * 2 label v as discovered 9069 * 3 let S be a stack 9070 * 4 S.push(v) 9071 * 5 while S is not empty 9072 * 6 t <- S.pop() 9073 * 7 if t is what we're looking for: 9074 * 8 return t 9075 * 9 for all edges e in G.adjacentEdges(t) do 9076 * 10 if edge e is already labelled 9077 * 11 continue with the next edge 9078 * 12 w <- G.adjacentVertex(t,e) 9079 * 13 if vertex w is not discovered and not explored 9080 * 14 label e as tree-edge 9081 * 15 label w as discovered 9082 * 16 S.push(w) 9083 * 17 continue at 5 9084 * 18 else if vertex w is discovered 9085 * 19 label e as back-edge 9086 * 20 else 9087 * 21 // vertex w is explored 9088 * 22 label e as forward- or cross-edge 9089 * 23 label t as explored 9090 * 24 S.pop() 9091 * 9092 * convention: 9093 * 0x10 - discovered 9094 * 0x11 - discovered and fall-through edge labelled 9095 * 0x12 - discovered and fall-through and branch edges labelled 9096 * 0x20 - explored 9097 */ 9098 9099 enum { 9100 DISCOVERED = 0x10, 9101 EXPLORED = 0x20, 9102 FALLTHROUGH = 1, 9103 BRANCH = 2, 9104 }; 9105 9106 static u32 state_htab_size(struct bpf_verifier_env *env) 9107 { 9108 return env->prog->len; 9109 } 9110 9111 static struct bpf_verifier_state_list **explored_state( 9112 struct bpf_verifier_env *env, 9113 int idx) 9114 { 9115 struct bpf_verifier_state *cur = env->cur_state; 9116 struct bpf_func_state *state = cur->frame[cur->curframe]; 9117 9118 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9119 } 9120 9121 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9122 { 9123 env->insn_aux_data[idx].prune_point = true; 9124 } 9125 9126 enum { 9127 DONE_EXPLORING = 0, 9128 KEEP_EXPLORING = 1, 9129 }; 9130 9131 /* t, w, e - match pseudo-code above: 9132 * t - index of current instruction 9133 * w - next instruction 9134 * e - edge 9135 */ 9136 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9137 bool loop_ok) 9138 { 9139 int *insn_stack = env->cfg.insn_stack; 9140 int *insn_state = env->cfg.insn_state; 9141 9142 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9143 return DONE_EXPLORING; 9144 9145 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9146 return DONE_EXPLORING; 9147 9148 if (w < 0 || w >= env->prog->len) { 9149 verbose_linfo(env, t, "%d: ", t); 9150 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9151 return -EINVAL; 9152 } 9153 9154 if (e == BRANCH) 9155 /* mark branch target for state pruning */ 9156 init_explored_state(env, w); 9157 9158 if (insn_state[w] == 0) { 9159 /* tree-edge */ 9160 insn_state[t] = DISCOVERED | e; 9161 insn_state[w] = DISCOVERED; 9162 if (env->cfg.cur_stack >= env->prog->len) 9163 return -E2BIG; 9164 insn_stack[env->cfg.cur_stack++] = w; 9165 return KEEP_EXPLORING; 9166 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9167 if (loop_ok && env->bpf_capable) 9168 return DONE_EXPLORING; 9169 verbose_linfo(env, t, "%d: ", t); 9170 verbose_linfo(env, w, "%d: ", w); 9171 verbose(env, "back-edge from insn %d to %d\n", t, w); 9172 return -EINVAL; 9173 } else if (insn_state[w] == EXPLORED) { 9174 /* forward- or cross-edge */ 9175 insn_state[t] = DISCOVERED | e; 9176 } else { 9177 verbose(env, "insn state internal bug\n"); 9178 return -EFAULT; 9179 } 9180 return DONE_EXPLORING; 9181 } 9182 9183 static int visit_func_call_insn(int t, int insn_cnt, 9184 struct bpf_insn *insns, 9185 struct bpf_verifier_env *env, 9186 bool visit_callee) 9187 { 9188 int ret; 9189 9190 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9191 if (ret) 9192 return ret; 9193 9194 if (t + 1 < insn_cnt) 9195 init_explored_state(env, t + 1); 9196 if (visit_callee) { 9197 init_explored_state(env, t); 9198 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 9199 env, false); 9200 } 9201 return ret; 9202 } 9203 9204 /* Visits the instruction at index t and returns one of the following: 9205 * < 0 - an error occurred 9206 * DONE_EXPLORING - the instruction was fully explored 9207 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9208 */ 9209 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9210 { 9211 struct bpf_insn *insns = env->prog->insnsi; 9212 int ret; 9213 9214 if (bpf_pseudo_func(insns + t)) 9215 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9216 9217 /* All non-branch instructions have a single fall-through edge. */ 9218 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9219 BPF_CLASS(insns[t].code) != BPF_JMP32) 9220 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9221 9222 switch (BPF_OP(insns[t].code)) { 9223 case BPF_EXIT: 9224 return DONE_EXPLORING; 9225 9226 case BPF_CALL: 9227 return visit_func_call_insn(t, insn_cnt, insns, env, 9228 insns[t].src_reg == BPF_PSEUDO_CALL); 9229 9230 case BPF_JA: 9231 if (BPF_SRC(insns[t].code) != BPF_K) 9232 return -EINVAL; 9233 9234 /* unconditional jump with single edge */ 9235 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9236 true); 9237 if (ret) 9238 return ret; 9239 9240 /* unconditional jmp is not a good pruning point, 9241 * but it's marked, since backtracking needs 9242 * to record jmp history in is_state_visited(). 9243 */ 9244 init_explored_state(env, t + insns[t].off + 1); 9245 /* tell verifier to check for equivalent states 9246 * after every call and jump 9247 */ 9248 if (t + 1 < insn_cnt) 9249 init_explored_state(env, t + 1); 9250 9251 return ret; 9252 9253 default: 9254 /* conditional jump with two edges */ 9255 init_explored_state(env, t); 9256 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9257 if (ret) 9258 return ret; 9259 9260 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9261 } 9262 } 9263 9264 /* non-recursive depth-first-search to detect loops in BPF program 9265 * loop == back-edge in directed graph 9266 */ 9267 static int check_cfg(struct bpf_verifier_env *env) 9268 { 9269 int insn_cnt = env->prog->len; 9270 int *insn_stack, *insn_state; 9271 int ret = 0; 9272 int i; 9273 9274 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9275 if (!insn_state) 9276 return -ENOMEM; 9277 9278 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9279 if (!insn_stack) { 9280 kvfree(insn_state); 9281 return -ENOMEM; 9282 } 9283 9284 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9285 insn_stack[0] = 0; /* 0 is the first instruction */ 9286 env->cfg.cur_stack = 1; 9287 9288 while (env->cfg.cur_stack > 0) { 9289 int t = insn_stack[env->cfg.cur_stack - 1]; 9290 9291 ret = visit_insn(t, insn_cnt, env); 9292 switch (ret) { 9293 case DONE_EXPLORING: 9294 insn_state[t] = EXPLORED; 9295 env->cfg.cur_stack--; 9296 break; 9297 case KEEP_EXPLORING: 9298 break; 9299 default: 9300 if (ret > 0) { 9301 verbose(env, "visit_insn internal bug\n"); 9302 ret = -EFAULT; 9303 } 9304 goto err_free; 9305 } 9306 } 9307 9308 if (env->cfg.cur_stack < 0) { 9309 verbose(env, "pop stack internal bug\n"); 9310 ret = -EFAULT; 9311 goto err_free; 9312 } 9313 9314 for (i = 0; i < insn_cnt; i++) { 9315 if (insn_state[i] != EXPLORED) { 9316 verbose(env, "unreachable insn %d\n", i); 9317 ret = -EINVAL; 9318 goto err_free; 9319 } 9320 } 9321 ret = 0; /* cfg looks good */ 9322 9323 err_free: 9324 kvfree(insn_state); 9325 kvfree(insn_stack); 9326 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9327 return ret; 9328 } 9329 9330 static int check_abnormal_return(struct bpf_verifier_env *env) 9331 { 9332 int i; 9333 9334 for (i = 1; i < env->subprog_cnt; i++) { 9335 if (env->subprog_info[i].has_ld_abs) { 9336 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9337 return -EINVAL; 9338 } 9339 if (env->subprog_info[i].has_tail_call) { 9340 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9341 return -EINVAL; 9342 } 9343 } 9344 return 0; 9345 } 9346 9347 /* The minimum supported BTF func info size */ 9348 #define MIN_BPF_FUNCINFO_SIZE 8 9349 #define MAX_FUNCINFO_REC_SIZE 252 9350 9351 static int check_btf_func(struct bpf_verifier_env *env, 9352 const union bpf_attr *attr, 9353 union bpf_attr __user *uattr) 9354 { 9355 const struct btf_type *type, *func_proto, *ret_type; 9356 u32 i, nfuncs, urec_size, min_size; 9357 u32 krec_size = sizeof(struct bpf_func_info); 9358 struct bpf_func_info *krecord; 9359 struct bpf_func_info_aux *info_aux = NULL; 9360 struct bpf_prog *prog; 9361 const struct btf *btf; 9362 void __user *urecord; 9363 u32 prev_offset = 0; 9364 bool scalar_return; 9365 int ret = -ENOMEM; 9366 9367 nfuncs = attr->func_info_cnt; 9368 if (!nfuncs) { 9369 if (check_abnormal_return(env)) 9370 return -EINVAL; 9371 return 0; 9372 } 9373 9374 if (nfuncs != env->subprog_cnt) { 9375 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9376 return -EINVAL; 9377 } 9378 9379 urec_size = attr->func_info_rec_size; 9380 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9381 urec_size > MAX_FUNCINFO_REC_SIZE || 9382 urec_size % sizeof(u32)) { 9383 verbose(env, "invalid func info rec size %u\n", urec_size); 9384 return -EINVAL; 9385 } 9386 9387 prog = env->prog; 9388 btf = prog->aux->btf; 9389 9390 urecord = u64_to_user_ptr(attr->func_info); 9391 min_size = min_t(u32, krec_size, urec_size); 9392 9393 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9394 if (!krecord) 9395 return -ENOMEM; 9396 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9397 if (!info_aux) 9398 goto err_free; 9399 9400 for (i = 0; i < nfuncs; i++) { 9401 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9402 if (ret) { 9403 if (ret == -E2BIG) { 9404 verbose(env, "nonzero tailing record in func info"); 9405 /* set the size kernel expects so loader can zero 9406 * out the rest of the record. 9407 */ 9408 if (put_user(min_size, &uattr->func_info_rec_size)) 9409 ret = -EFAULT; 9410 } 9411 goto err_free; 9412 } 9413 9414 if (copy_from_user(&krecord[i], urecord, min_size)) { 9415 ret = -EFAULT; 9416 goto err_free; 9417 } 9418 9419 /* check insn_off */ 9420 ret = -EINVAL; 9421 if (i == 0) { 9422 if (krecord[i].insn_off) { 9423 verbose(env, 9424 "nonzero insn_off %u for the first func info record", 9425 krecord[i].insn_off); 9426 goto err_free; 9427 } 9428 } else if (krecord[i].insn_off <= prev_offset) { 9429 verbose(env, 9430 "same or smaller insn offset (%u) than previous func info record (%u)", 9431 krecord[i].insn_off, prev_offset); 9432 goto err_free; 9433 } 9434 9435 if (env->subprog_info[i].start != krecord[i].insn_off) { 9436 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9437 goto err_free; 9438 } 9439 9440 /* check type_id */ 9441 type = btf_type_by_id(btf, krecord[i].type_id); 9442 if (!type || !btf_type_is_func(type)) { 9443 verbose(env, "invalid type id %d in func info", 9444 krecord[i].type_id); 9445 goto err_free; 9446 } 9447 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9448 9449 func_proto = btf_type_by_id(btf, type->type); 9450 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9451 /* btf_func_check() already verified it during BTF load */ 9452 goto err_free; 9453 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9454 scalar_return = 9455 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9456 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9457 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9458 goto err_free; 9459 } 9460 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9461 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9462 goto err_free; 9463 } 9464 9465 prev_offset = krecord[i].insn_off; 9466 urecord += urec_size; 9467 } 9468 9469 prog->aux->func_info = krecord; 9470 prog->aux->func_info_cnt = nfuncs; 9471 prog->aux->func_info_aux = info_aux; 9472 return 0; 9473 9474 err_free: 9475 kvfree(krecord); 9476 kfree(info_aux); 9477 return ret; 9478 } 9479 9480 static void adjust_btf_func(struct bpf_verifier_env *env) 9481 { 9482 struct bpf_prog_aux *aux = env->prog->aux; 9483 int i; 9484 9485 if (!aux->func_info) 9486 return; 9487 9488 for (i = 0; i < env->subprog_cnt; i++) 9489 aux->func_info[i].insn_off = env->subprog_info[i].start; 9490 } 9491 9492 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9493 sizeof(((struct bpf_line_info *)(0))->line_col)) 9494 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9495 9496 static int check_btf_line(struct bpf_verifier_env *env, 9497 const union bpf_attr *attr, 9498 union bpf_attr __user *uattr) 9499 { 9500 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9501 struct bpf_subprog_info *sub; 9502 struct bpf_line_info *linfo; 9503 struct bpf_prog *prog; 9504 const struct btf *btf; 9505 void __user *ulinfo; 9506 int err; 9507 9508 nr_linfo = attr->line_info_cnt; 9509 if (!nr_linfo) 9510 return 0; 9511 9512 rec_size = attr->line_info_rec_size; 9513 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9514 rec_size > MAX_LINEINFO_REC_SIZE || 9515 rec_size & (sizeof(u32) - 1)) 9516 return -EINVAL; 9517 9518 /* Need to zero it in case the userspace may 9519 * pass in a smaller bpf_line_info object. 9520 */ 9521 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9522 GFP_KERNEL | __GFP_NOWARN); 9523 if (!linfo) 9524 return -ENOMEM; 9525 9526 prog = env->prog; 9527 btf = prog->aux->btf; 9528 9529 s = 0; 9530 sub = env->subprog_info; 9531 ulinfo = u64_to_user_ptr(attr->line_info); 9532 expected_size = sizeof(struct bpf_line_info); 9533 ncopy = min_t(u32, expected_size, rec_size); 9534 for (i = 0; i < nr_linfo; i++) { 9535 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9536 if (err) { 9537 if (err == -E2BIG) { 9538 verbose(env, "nonzero tailing record in line_info"); 9539 if (put_user(expected_size, 9540 &uattr->line_info_rec_size)) 9541 err = -EFAULT; 9542 } 9543 goto err_free; 9544 } 9545 9546 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 9547 err = -EFAULT; 9548 goto err_free; 9549 } 9550 9551 /* 9552 * Check insn_off to ensure 9553 * 1) strictly increasing AND 9554 * 2) bounded by prog->len 9555 * 9556 * The linfo[0].insn_off == 0 check logically falls into 9557 * the later "missing bpf_line_info for func..." case 9558 * because the first linfo[0].insn_off must be the 9559 * first sub also and the first sub must have 9560 * subprog_info[0].start == 0. 9561 */ 9562 if ((i && linfo[i].insn_off <= prev_offset) || 9563 linfo[i].insn_off >= prog->len) { 9564 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9565 i, linfo[i].insn_off, prev_offset, 9566 prog->len); 9567 err = -EINVAL; 9568 goto err_free; 9569 } 9570 9571 if (!prog->insnsi[linfo[i].insn_off].code) { 9572 verbose(env, 9573 "Invalid insn code at line_info[%u].insn_off\n", 9574 i); 9575 err = -EINVAL; 9576 goto err_free; 9577 } 9578 9579 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9580 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 9581 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 9582 err = -EINVAL; 9583 goto err_free; 9584 } 9585 9586 if (s != env->subprog_cnt) { 9587 if (linfo[i].insn_off == sub[s].start) { 9588 sub[s].linfo_idx = i; 9589 s++; 9590 } else if (sub[s].start < linfo[i].insn_off) { 9591 verbose(env, "missing bpf_line_info for func#%u\n", s); 9592 err = -EINVAL; 9593 goto err_free; 9594 } 9595 } 9596 9597 prev_offset = linfo[i].insn_off; 9598 ulinfo += rec_size; 9599 } 9600 9601 if (s != env->subprog_cnt) { 9602 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 9603 env->subprog_cnt - s, s); 9604 err = -EINVAL; 9605 goto err_free; 9606 } 9607 9608 prog->aux->linfo = linfo; 9609 prog->aux->nr_linfo = nr_linfo; 9610 9611 return 0; 9612 9613 err_free: 9614 kvfree(linfo); 9615 return err; 9616 } 9617 9618 static int check_btf_info(struct bpf_verifier_env *env, 9619 const union bpf_attr *attr, 9620 union bpf_attr __user *uattr) 9621 { 9622 struct btf *btf; 9623 int err; 9624 9625 if (!attr->func_info_cnt && !attr->line_info_cnt) { 9626 if (check_abnormal_return(env)) 9627 return -EINVAL; 9628 return 0; 9629 } 9630 9631 btf = btf_get_by_fd(attr->prog_btf_fd); 9632 if (IS_ERR(btf)) 9633 return PTR_ERR(btf); 9634 if (btf_is_kernel(btf)) { 9635 btf_put(btf); 9636 return -EACCES; 9637 } 9638 env->prog->aux->btf = btf; 9639 9640 err = check_btf_func(env, attr, uattr); 9641 if (err) 9642 return err; 9643 9644 err = check_btf_line(env, attr, uattr); 9645 if (err) 9646 return err; 9647 9648 return 0; 9649 } 9650 9651 /* check %cur's range satisfies %old's */ 9652 static bool range_within(struct bpf_reg_state *old, 9653 struct bpf_reg_state *cur) 9654 { 9655 return old->umin_value <= cur->umin_value && 9656 old->umax_value >= cur->umax_value && 9657 old->smin_value <= cur->smin_value && 9658 old->smax_value >= cur->smax_value && 9659 old->u32_min_value <= cur->u32_min_value && 9660 old->u32_max_value >= cur->u32_max_value && 9661 old->s32_min_value <= cur->s32_min_value && 9662 old->s32_max_value >= cur->s32_max_value; 9663 } 9664 9665 /* Maximum number of register states that can exist at once */ 9666 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 9667 struct idpair { 9668 u32 old; 9669 u32 cur; 9670 }; 9671 9672 /* If in the old state two registers had the same id, then they need to have 9673 * the same id in the new state as well. But that id could be different from 9674 * the old state, so we need to track the mapping from old to new ids. 9675 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 9676 * regs with old id 5 must also have new id 9 for the new state to be safe. But 9677 * regs with a different old id could still have new id 9, we don't care about 9678 * that. 9679 * So we look through our idmap to see if this old id has been seen before. If 9680 * so, we require the new id to match; otherwise, we add the id pair to the map. 9681 */ 9682 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 9683 { 9684 unsigned int i; 9685 9686 for (i = 0; i < ID_MAP_SIZE; i++) { 9687 if (!idmap[i].old) { 9688 /* Reached an empty slot; haven't seen this id before */ 9689 idmap[i].old = old_id; 9690 idmap[i].cur = cur_id; 9691 return true; 9692 } 9693 if (idmap[i].old == old_id) 9694 return idmap[i].cur == cur_id; 9695 } 9696 /* We ran out of idmap slots, which should be impossible */ 9697 WARN_ON_ONCE(1); 9698 return false; 9699 } 9700 9701 static void clean_func_state(struct bpf_verifier_env *env, 9702 struct bpf_func_state *st) 9703 { 9704 enum bpf_reg_liveness live; 9705 int i, j; 9706 9707 for (i = 0; i < BPF_REG_FP; i++) { 9708 live = st->regs[i].live; 9709 /* liveness must not touch this register anymore */ 9710 st->regs[i].live |= REG_LIVE_DONE; 9711 if (!(live & REG_LIVE_READ)) 9712 /* since the register is unused, clear its state 9713 * to make further comparison simpler 9714 */ 9715 __mark_reg_not_init(env, &st->regs[i]); 9716 } 9717 9718 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 9719 live = st->stack[i].spilled_ptr.live; 9720 /* liveness must not touch this stack slot anymore */ 9721 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 9722 if (!(live & REG_LIVE_READ)) { 9723 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 9724 for (j = 0; j < BPF_REG_SIZE; j++) 9725 st->stack[i].slot_type[j] = STACK_INVALID; 9726 } 9727 } 9728 } 9729 9730 static void clean_verifier_state(struct bpf_verifier_env *env, 9731 struct bpf_verifier_state *st) 9732 { 9733 int i; 9734 9735 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 9736 /* all regs in this state in all frames were already marked */ 9737 return; 9738 9739 for (i = 0; i <= st->curframe; i++) 9740 clean_func_state(env, st->frame[i]); 9741 } 9742 9743 /* the parentage chains form a tree. 9744 * the verifier states are added to state lists at given insn and 9745 * pushed into state stack for future exploration. 9746 * when the verifier reaches bpf_exit insn some of the verifer states 9747 * stored in the state lists have their final liveness state already, 9748 * but a lot of states will get revised from liveness point of view when 9749 * the verifier explores other branches. 9750 * Example: 9751 * 1: r0 = 1 9752 * 2: if r1 == 100 goto pc+1 9753 * 3: r0 = 2 9754 * 4: exit 9755 * when the verifier reaches exit insn the register r0 in the state list of 9756 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 9757 * of insn 2 and goes exploring further. At the insn 4 it will walk the 9758 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 9759 * 9760 * Since the verifier pushes the branch states as it sees them while exploring 9761 * the program the condition of walking the branch instruction for the second 9762 * time means that all states below this branch were already explored and 9763 * their final liveness markes are already propagated. 9764 * Hence when the verifier completes the search of state list in is_state_visited() 9765 * we can call this clean_live_states() function to mark all liveness states 9766 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 9767 * will not be used. 9768 * This function also clears the registers and stack for states that !READ 9769 * to simplify state merging. 9770 * 9771 * Important note here that walking the same branch instruction in the callee 9772 * doesn't meant that the states are DONE. The verifier has to compare 9773 * the callsites 9774 */ 9775 static void clean_live_states(struct bpf_verifier_env *env, int insn, 9776 struct bpf_verifier_state *cur) 9777 { 9778 struct bpf_verifier_state_list *sl; 9779 int i; 9780 9781 sl = *explored_state(env, insn); 9782 while (sl) { 9783 if (sl->state.branches) 9784 goto next; 9785 if (sl->state.insn_idx != insn || 9786 sl->state.curframe != cur->curframe) 9787 goto next; 9788 for (i = 0; i <= cur->curframe; i++) 9789 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 9790 goto next; 9791 clean_verifier_state(env, &sl->state); 9792 next: 9793 sl = sl->next; 9794 } 9795 } 9796 9797 /* Returns true if (rold safe implies rcur safe) */ 9798 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 9799 struct idpair *idmap) 9800 { 9801 bool equal; 9802 9803 if (!(rold->live & REG_LIVE_READ)) 9804 /* explored state didn't use this */ 9805 return true; 9806 9807 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 9808 9809 if (rold->type == PTR_TO_STACK) 9810 /* two stack pointers are equal only if they're pointing to 9811 * the same stack frame, since fp-8 in foo != fp-8 in bar 9812 */ 9813 return equal && rold->frameno == rcur->frameno; 9814 9815 if (equal) 9816 return true; 9817 9818 if (rold->type == NOT_INIT) 9819 /* explored state can't have used this */ 9820 return true; 9821 if (rcur->type == NOT_INIT) 9822 return false; 9823 switch (rold->type) { 9824 case SCALAR_VALUE: 9825 if (rcur->type == SCALAR_VALUE) { 9826 if (!rold->precise && !rcur->precise) 9827 return true; 9828 /* new val must satisfy old val knowledge */ 9829 return range_within(rold, rcur) && 9830 tnum_in(rold->var_off, rcur->var_off); 9831 } else { 9832 /* We're trying to use a pointer in place of a scalar. 9833 * Even if the scalar was unbounded, this could lead to 9834 * pointer leaks because scalars are allowed to leak 9835 * while pointers are not. We could make this safe in 9836 * special cases if root is calling us, but it's 9837 * probably not worth the hassle. 9838 */ 9839 return false; 9840 } 9841 case PTR_TO_MAP_KEY: 9842 case PTR_TO_MAP_VALUE: 9843 /* If the new min/max/var_off satisfy the old ones and 9844 * everything else matches, we are OK. 9845 * 'id' is not compared, since it's only used for maps with 9846 * bpf_spin_lock inside map element and in such cases if 9847 * the rest of the prog is valid for one map element then 9848 * it's valid for all map elements regardless of the key 9849 * used in bpf_map_lookup() 9850 */ 9851 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 9852 range_within(rold, rcur) && 9853 tnum_in(rold->var_off, rcur->var_off); 9854 case PTR_TO_MAP_VALUE_OR_NULL: 9855 /* a PTR_TO_MAP_VALUE could be safe to use as a 9856 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9857 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9858 * checked, doing so could have affected others with the same 9859 * id, and we can't check for that because we lost the id when 9860 * we converted to a PTR_TO_MAP_VALUE. 9861 */ 9862 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 9863 return false; 9864 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 9865 return false; 9866 /* Check our ids match any regs they're supposed to */ 9867 return check_ids(rold->id, rcur->id, idmap); 9868 case PTR_TO_PACKET_META: 9869 case PTR_TO_PACKET: 9870 if (rcur->type != rold->type) 9871 return false; 9872 /* We must have at least as much range as the old ptr 9873 * did, so that any accesses which were safe before are 9874 * still safe. This is true even if old range < old off, 9875 * since someone could have accessed through (ptr - k), or 9876 * even done ptr -= k in a register, to get a safe access. 9877 */ 9878 if (rold->range > rcur->range) 9879 return false; 9880 /* If the offsets don't match, we can't trust our alignment; 9881 * nor can we be sure that we won't fall out of range. 9882 */ 9883 if (rold->off != rcur->off) 9884 return false; 9885 /* id relations must be preserved */ 9886 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 9887 return false; 9888 /* new val must satisfy old val knowledge */ 9889 return range_within(rold, rcur) && 9890 tnum_in(rold->var_off, rcur->var_off); 9891 case PTR_TO_CTX: 9892 case CONST_PTR_TO_MAP: 9893 case PTR_TO_PACKET_END: 9894 case PTR_TO_FLOW_KEYS: 9895 case PTR_TO_SOCKET: 9896 case PTR_TO_SOCKET_OR_NULL: 9897 case PTR_TO_SOCK_COMMON: 9898 case PTR_TO_SOCK_COMMON_OR_NULL: 9899 case PTR_TO_TCP_SOCK: 9900 case PTR_TO_TCP_SOCK_OR_NULL: 9901 case PTR_TO_XDP_SOCK: 9902 /* Only valid matches are exact, which memcmp() above 9903 * would have accepted 9904 */ 9905 default: 9906 /* Don't know what's going on, just say it's not safe */ 9907 return false; 9908 } 9909 9910 /* Shouldn't get here; if we do, say it's not safe */ 9911 WARN_ON_ONCE(1); 9912 return false; 9913 } 9914 9915 static bool stacksafe(struct bpf_func_state *old, 9916 struct bpf_func_state *cur, 9917 struct idpair *idmap) 9918 { 9919 int i, spi; 9920 9921 /* walk slots of the explored stack and ignore any additional 9922 * slots in the current stack, since explored(safe) state 9923 * didn't use them 9924 */ 9925 for (i = 0; i < old->allocated_stack; i++) { 9926 spi = i / BPF_REG_SIZE; 9927 9928 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 9929 i += BPF_REG_SIZE - 1; 9930 /* explored state didn't use this */ 9931 continue; 9932 } 9933 9934 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 9935 continue; 9936 9937 /* explored stack has more populated slots than current stack 9938 * and these slots were used 9939 */ 9940 if (i >= cur->allocated_stack) 9941 return false; 9942 9943 /* if old state was safe with misc data in the stack 9944 * it will be safe with zero-initialized stack. 9945 * The opposite is not true 9946 */ 9947 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 9948 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 9949 continue; 9950 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 9951 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 9952 /* Ex: old explored (safe) state has STACK_SPILL in 9953 * this stack slot, but current has STACK_MISC -> 9954 * this verifier states are not equivalent, 9955 * return false to continue verification of this path 9956 */ 9957 return false; 9958 if (i % BPF_REG_SIZE) 9959 continue; 9960 if (old->stack[spi].slot_type[0] != STACK_SPILL) 9961 continue; 9962 if (!regsafe(&old->stack[spi].spilled_ptr, 9963 &cur->stack[spi].spilled_ptr, 9964 idmap)) 9965 /* when explored and current stack slot are both storing 9966 * spilled registers, check that stored pointers types 9967 * are the same as well. 9968 * Ex: explored safe path could have stored 9969 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 9970 * but current path has stored: 9971 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 9972 * such verifier states are not equivalent. 9973 * return false to continue verification of this path 9974 */ 9975 return false; 9976 } 9977 return true; 9978 } 9979 9980 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 9981 { 9982 if (old->acquired_refs != cur->acquired_refs) 9983 return false; 9984 return !memcmp(old->refs, cur->refs, 9985 sizeof(*old->refs) * old->acquired_refs); 9986 } 9987 9988 /* compare two verifier states 9989 * 9990 * all states stored in state_list are known to be valid, since 9991 * verifier reached 'bpf_exit' instruction through them 9992 * 9993 * this function is called when verifier exploring different branches of 9994 * execution popped from the state stack. If it sees an old state that has 9995 * more strict register state and more strict stack state then this execution 9996 * branch doesn't need to be explored further, since verifier already 9997 * concluded that more strict state leads to valid finish. 9998 * 9999 * Therefore two states are equivalent if register state is more conservative 10000 * and explored stack state is more conservative than the current one. 10001 * Example: 10002 * explored current 10003 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10004 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10005 * 10006 * In other words if current stack state (one being explored) has more 10007 * valid slots than old one that already passed validation, it means 10008 * the verifier can stop exploring and conclude that current state is valid too 10009 * 10010 * Similarly with registers. If explored state has register type as invalid 10011 * whereas register type in current state is meaningful, it means that 10012 * the current state will reach 'bpf_exit' instruction safely 10013 */ 10014 static bool func_states_equal(struct bpf_func_state *old, 10015 struct bpf_func_state *cur) 10016 { 10017 struct idpair *idmap; 10018 bool ret = false; 10019 int i; 10020 10021 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 10022 /* If we failed to allocate the idmap, just say it's not safe */ 10023 if (!idmap) 10024 return false; 10025 10026 for (i = 0; i < MAX_BPF_REG; i++) { 10027 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 10028 goto out_free; 10029 } 10030 10031 if (!stacksafe(old, cur, idmap)) 10032 goto out_free; 10033 10034 if (!refsafe(old, cur)) 10035 goto out_free; 10036 ret = true; 10037 out_free: 10038 kfree(idmap); 10039 return ret; 10040 } 10041 10042 static bool states_equal(struct bpf_verifier_env *env, 10043 struct bpf_verifier_state *old, 10044 struct bpf_verifier_state *cur) 10045 { 10046 int i; 10047 10048 if (old->curframe != cur->curframe) 10049 return false; 10050 10051 /* Verification state from speculative execution simulation 10052 * must never prune a non-speculative execution one. 10053 */ 10054 if (old->speculative && !cur->speculative) 10055 return false; 10056 10057 if (old->active_spin_lock != cur->active_spin_lock) 10058 return false; 10059 10060 /* for states to be equal callsites have to be the same 10061 * and all frame states need to be equivalent 10062 */ 10063 for (i = 0; i <= old->curframe; i++) { 10064 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10065 return false; 10066 if (!func_states_equal(old->frame[i], cur->frame[i])) 10067 return false; 10068 } 10069 return true; 10070 } 10071 10072 /* Return 0 if no propagation happened. Return negative error code if error 10073 * happened. Otherwise, return the propagated bit. 10074 */ 10075 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10076 struct bpf_reg_state *reg, 10077 struct bpf_reg_state *parent_reg) 10078 { 10079 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10080 u8 flag = reg->live & REG_LIVE_READ; 10081 int err; 10082 10083 /* When comes here, read flags of PARENT_REG or REG could be any of 10084 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10085 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10086 */ 10087 if (parent_flag == REG_LIVE_READ64 || 10088 /* Or if there is no read flag from REG. */ 10089 !flag || 10090 /* Or if the read flag from REG is the same as PARENT_REG. */ 10091 parent_flag == flag) 10092 return 0; 10093 10094 err = mark_reg_read(env, reg, parent_reg, flag); 10095 if (err) 10096 return err; 10097 10098 return flag; 10099 } 10100 10101 /* A write screens off any subsequent reads; but write marks come from the 10102 * straight-line code between a state and its parent. When we arrive at an 10103 * equivalent state (jump target or such) we didn't arrive by the straight-line 10104 * code, so read marks in the state must propagate to the parent regardless 10105 * of the state's write marks. That's what 'parent == state->parent' comparison 10106 * in mark_reg_read() is for. 10107 */ 10108 static int propagate_liveness(struct bpf_verifier_env *env, 10109 const struct bpf_verifier_state *vstate, 10110 struct bpf_verifier_state *vparent) 10111 { 10112 struct bpf_reg_state *state_reg, *parent_reg; 10113 struct bpf_func_state *state, *parent; 10114 int i, frame, err = 0; 10115 10116 if (vparent->curframe != vstate->curframe) { 10117 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10118 vparent->curframe, vstate->curframe); 10119 return -EFAULT; 10120 } 10121 /* Propagate read liveness of registers... */ 10122 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10123 for (frame = 0; frame <= vstate->curframe; frame++) { 10124 parent = vparent->frame[frame]; 10125 state = vstate->frame[frame]; 10126 parent_reg = parent->regs; 10127 state_reg = state->regs; 10128 /* We don't need to worry about FP liveness, it's read-only */ 10129 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10130 err = propagate_liveness_reg(env, &state_reg[i], 10131 &parent_reg[i]); 10132 if (err < 0) 10133 return err; 10134 if (err == REG_LIVE_READ64) 10135 mark_insn_zext(env, &parent_reg[i]); 10136 } 10137 10138 /* Propagate stack slots. */ 10139 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10140 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10141 parent_reg = &parent->stack[i].spilled_ptr; 10142 state_reg = &state->stack[i].spilled_ptr; 10143 err = propagate_liveness_reg(env, state_reg, 10144 parent_reg); 10145 if (err < 0) 10146 return err; 10147 } 10148 } 10149 return 0; 10150 } 10151 10152 /* find precise scalars in the previous equivalent state and 10153 * propagate them into the current state 10154 */ 10155 static int propagate_precision(struct bpf_verifier_env *env, 10156 const struct bpf_verifier_state *old) 10157 { 10158 struct bpf_reg_state *state_reg; 10159 struct bpf_func_state *state; 10160 int i, err = 0; 10161 10162 state = old->frame[old->curframe]; 10163 state_reg = state->regs; 10164 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10165 if (state_reg->type != SCALAR_VALUE || 10166 !state_reg->precise) 10167 continue; 10168 if (env->log.level & BPF_LOG_LEVEL2) 10169 verbose(env, "propagating r%d\n", i); 10170 err = mark_chain_precision(env, i); 10171 if (err < 0) 10172 return err; 10173 } 10174 10175 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10176 if (state->stack[i].slot_type[0] != STACK_SPILL) 10177 continue; 10178 state_reg = &state->stack[i].spilled_ptr; 10179 if (state_reg->type != SCALAR_VALUE || 10180 !state_reg->precise) 10181 continue; 10182 if (env->log.level & BPF_LOG_LEVEL2) 10183 verbose(env, "propagating fp%d\n", 10184 (-i - 1) * BPF_REG_SIZE); 10185 err = mark_chain_precision_stack(env, i); 10186 if (err < 0) 10187 return err; 10188 } 10189 return 0; 10190 } 10191 10192 static bool states_maybe_looping(struct bpf_verifier_state *old, 10193 struct bpf_verifier_state *cur) 10194 { 10195 struct bpf_func_state *fold, *fcur; 10196 int i, fr = cur->curframe; 10197 10198 if (old->curframe != fr) 10199 return false; 10200 10201 fold = old->frame[fr]; 10202 fcur = cur->frame[fr]; 10203 for (i = 0; i < MAX_BPF_REG; i++) 10204 if (memcmp(&fold->regs[i], &fcur->regs[i], 10205 offsetof(struct bpf_reg_state, parent))) 10206 return false; 10207 return true; 10208 } 10209 10210 10211 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10212 { 10213 struct bpf_verifier_state_list *new_sl; 10214 struct bpf_verifier_state_list *sl, **pprev; 10215 struct bpf_verifier_state *cur = env->cur_state, *new; 10216 int i, j, err, states_cnt = 0; 10217 bool add_new_state = env->test_state_freq ? true : false; 10218 10219 cur->last_insn_idx = env->prev_insn_idx; 10220 if (!env->insn_aux_data[insn_idx].prune_point) 10221 /* this 'insn_idx' instruction wasn't marked, so we will not 10222 * be doing state search here 10223 */ 10224 return 0; 10225 10226 /* bpf progs typically have pruning point every 4 instructions 10227 * http://vger.kernel.org/bpfconf2019.html#session-1 10228 * Do not add new state for future pruning if the verifier hasn't seen 10229 * at least 2 jumps and at least 8 instructions. 10230 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10231 * In tests that amounts to up to 50% reduction into total verifier 10232 * memory consumption and 20% verifier time speedup. 10233 */ 10234 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10235 env->insn_processed - env->prev_insn_processed >= 8) 10236 add_new_state = true; 10237 10238 pprev = explored_state(env, insn_idx); 10239 sl = *pprev; 10240 10241 clean_live_states(env, insn_idx, cur); 10242 10243 while (sl) { 10244 states_cnt++; 10245 if (sl->state.insn_idx != insn_idx) 10246 goto next; 10247 if (sl->state.branches) { 10248 if (states_maybe_looping(&sl->state, cur) && 10249 states_equal(env, &sl->state, cur)) { 10250 verbose_linfo(env, insn_idx, "; "); 10251 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10252 return -EINVAL; 10253 } 10254 /* if the verifier is processing a loop, avoid adding new state 10255 * too often, since different loop iterations have distinct 10256 * states and may not help future pruning. 10257 * This threshold shouldn't be too low to make sure that 10258 * a loop with large bound will be rejected quickly. 10259 * The most abusive loop will be: 10260 * r1 += 1 10261 * if r1 < 1000000 goto pc-2 10262 * 1M insn_procssed limit / 100 == 10k peak states. 10263 * This threshold shouldn't be too high either, since states 10264 * at the end of the loop are likely to be useful in pruning. 10265 */ 10266 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10267 env->insn_processed - env->prev_insn_processed < 100) 10268 add_new_state = false; 10269 goto miss; 10270 } 10271 if (states_equal(env, &sl->state, cur)) { 10272 sl->hit_cnt++; 10273 /* reached equivalent register/stack state, 10274 * prune the search. 10275 * Registers read by the continuation are read by us. 10276 * If we have any write marks in env->cur_state, they 10277 * will prevent corresponding reads in the continuation 10278 * from reaching our parent (an explored_state). Our 10279 * own state will get the read marks recorded, but 10280 * they'll be immediately forgotten as we're pruning 10281 * this state and will pop a new one. 10282 */ 10283 err = propagate_liveness(env, &sl->state, cur); 10284 10285 /* if previous state reached the exit with precision and 10286 * current state is equivalent to it (except precsion marks) 10287 * the precision needs to be propagated back in 10288 * the current state. 10289 */ 10290 err = err ? : push_jmp_history(env, cur); 10291 err = err ? : propagate_precision(env, &sl->state); 10292 if (err) 10293 return err; 10294 return 1; 10295 } 10296 miss: 10297 /* when new state is not going to be added do not increase miss count. 10298 * Otherwise several loop iterations will remove the state 10299 * recorded earlier. The goal of these heuristics is to have 10300 * states from some iterations of the loop (some in the beginning 10301 * and some at the end) to help pruning. 10302 */ 10303 if (add_new_state) 10304 sl->miss_cnt++; 10305 /* heuristic to determine whether this state is beneficial 10306 * to keep checking from state equivalence point of view. 10307 * Higher numbers increase max_states_per_insn and verification time, 10308 * but do not meaningfully decrease insn_processed. 10309 */ 10310 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10311 /* the state is unlikely to be useful. Remove it to 10312 * speed up verification 10313 */ 10314 *pprev = sl->next; 10315 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10316 u32 br = sl->state.branches; 10317 10318 WARN_ONCE(br, 10319 "BUG live_done but branches_to_explore %d\n", 10320 br); 10321 free_verifier_state(&sl->state, false); 10322 kfree(sl); 10323 env->peak_states--; 10324 } else { 10325 /* cannot free this state, since parentage chain may 10326 * walk it later. Add it for free_list instead to 10327 * be freed at the end of verification 10328 */ 10329 sl->next = env->free_list; 10330 env->free_list = sl; 10331 } 10332 sl = *pprev; 10333 continue; 10334 } 10335 next: 10336 pprev = &sl->next; 10337 sl = *pprev; 10338 } 10339 10340 if (env->max_states_per_insn < states_cnt) 10341 env->max_states_per_insn = states_cnt; 10342 10343 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10344 return push_jmp_history(env, cur); 10345 10346 if (!add_new_state) 10347 return push_jmp_history(env, cur); 10348 10349 /* There were no equivalent states, remember the current one. 10350 * Technically the current state is not proven to be safe yet, 10351 * but it will either reach outer most bpf_exit (which means it's safe) 10352 * or it will be rejected. When there are no loops the verifier won't be 10353 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10354 * again on the way to bpf_exit. 10355 * When looping the sl->state.branches will be > 0 and this state 10356 * will not be considered for equivalence until branches == 0. 10357 */ 10358 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10359 if (!new_sl) 10360 return -ENOMEM; 10361 env->total_states++; 10362 env->peak_states++; 10363 env->prev_jmps_processed = env->jmps_processed; 10364 env->prev_insn_processed = env->insn_processed; 10365 10366 /* add new state to the head of linked list */ 10367 new = &new_sl->state; 10368 err = copy_verifier_state(new, cur); 10369 if (err) { 10370 free_verifier_state(new, false); 10371 kfree(new_sl); 10372 return err; 10373 } 10374 new->insn_idx = insn_idx; 10375 WARN_ONCE(new->branches != 1, 10376 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10377 10378 cur->parent = new; 10379 cur->first_insn_idx = insn_idx; 10380 clear_jmp_history(cur); 10381 new_sl->next = *explored_state(env, insn_idx); 10382 *explored_state(env, insn_idx) = new_sl; 10383 /* connect new state to parentage chain. Current frame needs all 10384 * registers connected. Only r6 - r9 of the callers are alive (pushed 10385 * to the stack implicitly by JITs) so in callers' frames connect just 10386 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10387 * the state of the call instruction (with WRITTEN set), and r0 comes 10388 * from callee with its full parentage chain, anyway. 10389 */ 10390 /* clear write marks in current state: the writes we did are not writes 10391 * our child did, so they don't screen off its reads from us. 10392 * (There are no read marks in current state, because reads always mark 10393 * their parent and current state never has children yet. Only 10394 * explored_states can get read marks.) 10395 */ 10396 for (j = 0; j <= cur->curframe; j++) { 10397 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10398 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10399 for (i = 0; i < BPF_REG_FP; i++) 10400 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10401 } 10402 10403 /* all stack frames are accessible from callee, clear them all */ 10404 for (j = 0; j <= cur->curframe; j++) { 10405 struct bpf_func_state *frame = cur->frame[j]; 10406 struct bpf_func_state *newframe = new->frame[j]; 10407 10408 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10409 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10410 frame->stack[i].spilled_ptr.parent = 10411 &newframe->stack[i].spilled_ptr; 10412 } 10413 } 10414 return 0; 10415 } 10416 10417 /* Return true if it's OK to have the same insn return a different type. */ 10418 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10419 { 10420 switch (type) { 10421 case PTR_TO_CTX: 10422 case PTR_TO_SOCKET: 10423 case PTR_TO_SOCKET_OR_NULL: 10424 case PTR_TO_SOCK_COMMON: 10425 case PTR_TO_SOCK_COMMON_OR_NULL: 10426 case PTR_TO_TCP_SOCK: 10427 case PTR_TO_TCP_SOCK_OR_NULL: 10428 case PTR_TO_XDP_SOCK: 10429 case PTR_TO_BTF_ID: 10430 case PTR_TO_BTF_ID_OR_NULL: 10431 return false; 10432 default: 10433 return true; 10434 } 10435 } 10436 10437 /* If an instruction was previously used with particular pointer types, then we 10438 * need to be careful to avoid cases such as the below, where it may be ok 10439 * for one branch accessing the pointer, but not ok for the other branch: 10440 * 10441 * R1 = sock_ptr 10442 * goto X; 10443 * ... 10444 * R1 = some_other_valid_ptr; 10445 * goto X; 10446 * ... 10447 * R2 = *(u32 *)(R1 + 0); 10448 */ 10449 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10450 { 10451 return src != prev && (!reg_type_mismatch_ok(src) || 10452 !reg_type_mismatch_ok(prev)); 10453 } 10454 10455 static int do_check(struct bpf_verifier_env *env) 10456 { 10457 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10458 struct bpf_verifier_state *state = env->cur_state; 10459 struct bpf_insn *insns = env->prog->insnsi; 10460 struct bpf_reg_state *regs; 10461 int insn_cnt = env->prog->len; 10462 bool do_print_state = false; 10463 int prev_insn_idx = -1; 10464 10465 for (;;) { 10466 struct bpf_insn *insn; 10467 u8 class; 10468 int err; 10469 10470 env->prev_insn_idx = prev_insn_idx; 10471 if (env->insn_idx >= insn_cnt) { 10472 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10473 env->insn_idx, insn_cnt); 10474 return -EFAULT; 10475 } 10476 10477 insn = &insns[env->insn_idx]; 10478 class = BPF_CLASS(insn->code); 10479 10480 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10481 verbose(env, 10482 "BPF program is too large. Processed %d insn\n", 10483 env->insn_processed); 10484 return -E2BIG; 10485 } 10486 10487 err = is_state_visited(env, env->insn_idx); 10488 if (err < 0) 10489 return err; 10490 if (err == 1) { 10491 /* found equivalent state, can prune the search */ 10492 if (env->log.level & BPF_LOG_LEVEL) { 10493 if (do_print_state) 10494 verbose(env, "\nfrom %d to %d%s: safe\n", 10495 env->prev_insn_idx, env->insn_idx, 10496 env->cur_state->speculative ? 10497 " (speculative execution)" : ""); 10498 else 10499 verbose(env, "%d: safe\n", env->insn_idx); 10500 } 10501 goto process_bpf_exit; 10502 } 10503 10504 if (signal_pending(current)) 10505 return -EAGAIN; 10506 10507 if (need_resched()) 10508 cond_resched(); 10509 10510 if (env->log.level & BPF_LOG_LEVEL2 || 10511 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10512 if (env->log.level & BPF_LOG_LEVEL2) 10513 verbose(env, "%d:", env->insn_idx); 10514 else 10515 verbose(env, "\nfrom %d to %d%s:", 10516 env->prev_insn_idx, env->insn_idx, 10517 env->cur_state->speculative ? 10518 " (speculative execution)" : ""); 10519 print_verifier_state(env, state->frame[state->curframe]); 10520 do_print_state = false; 10521 } 10522 10523 if (env->log.level & BPF_LOG_LEVEL) { 10524 const struct bpf_insn_cbs cbs = { 10525 .cb_call = disasm_kfunc_name, 10526 .cb_print = verbose, 10527 .private_data = env, 10528 }; 10529 10530 verbose_linfo(env, env->insn_idx, "; "); 10531 verbose(env, "%d: ", env->insn_idx); 10532 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10533 } 10534 10535 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10536 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10537 env->prev_insn_idx); 10538 if (err) 10539 return err; 10540 } 10541 10542 regs = cur_regs(env); 10543 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10544 prev_insn_idx = env->insn_idx; 10545 10546 if (class == BPF_ALU || class == BPF_ALU64) { 10547 err = check_alu_op(env, insn); 10548 if (err) 10549 return err; 10550 10551 } else if (class == BPF_LDX) { 10552 enum bpf_reg_type *prev_src_type, src_reg_type; 10553 10554 /* check for reserved fields is already done */ 10555 10556 /* check src operand */ 10557 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10558 if (err) 10559 return err; 10560 10561 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10562 if (err) 10563 return err; 10564 10565 src_reg_type = regs[insn->src_reg].type; 10566 10567 /* check that memory (src_reg + off) is readable, 10568 * the state of dst_reg will be updated by this func 10569 */ 10570 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10571 insn->off, BPF_SIZE(insn->code), 10572 BPF_READ, insn->dst_reg, false); 10573 if (err) 10574 return err; 10575 10576 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10577 10578 if (*prev_src_type == NOT_INIT) { 10579 /* saw a valid insn 10580 * dst_reg = *(u32 *)(src_reg + off) 10581 * save type to validate intersecting paths 10582 */ 10583 *prev_src_type = src_reg_type; 10584 10585 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 10586 /* ABuser program is trying to use the same insn 10587 * dst_reg = *(u32*) (src_reg + off) 10588 * with different pointer types: 10589 * src_reg == ctx in one branch and 10590 * src_reg == stack|map in some other branch. 10591 * Reject it. 10592 */ 10593 verbose(env, "same insn cannot be used with different pointers\n"); 10594 return -EINVAL; 10595 } 10596 10597 } else if (class == BPF_STX) { 10598 enum bpf_reg_type *prev_dst_type, dst_reg_type; 10599 10600 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 10601 err = check_atomic(env, env->insn_idx, insn); 10602 if (err) 10603 return err; 10604 env->insn_idx++; 10605 continue; 10606 } 10607 10608 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 10609 verbose(env, "BPF_STX uses reserved fields\n"); 10610 return -EINVAL; 10611 } 10612 10613 /* check src1 operand */ 10614 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10615 if (err) 10616 return err; 10617 /* check src2 operand */ 10618 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10619 if (err) 10620 return err; 10621 10622 dst_reg_type = regs[insn->dst_reg].type; 10623 10624 /* check that memory (dst_reg + off) is writeable */ 10625 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10626 insn->off, BPF_SIZE(insn->code), 10627 BPF_WRITE, insn->src_reg, false); 10628 if (err) 10629 return err; 10630 10631 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10632 10633 if (*prev_dst_type == NOT_INIT) { 10634 *prev_dst_type = dst_reg_type; 10635 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 10636 verbose(env, "same insn cannot be used with different pointers\n"); 10637 return -EINVAL; 10638 } 10639 10640 } else if (class == BPF_ST) { 10641 if (BPF_MODE(insn->code) != BPF_MEM || 10642 insn->src_reg != BPF_REG_0) { 10643 verbose(env, "BPF_ST uses reserved fields\n"); 10644 return -EINVAL; 10645 } 10646 /* check src operand */ 10647 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10648 if (err) 10649 return err; 10650 10651 if (is_ctx_reg(env, insn->dst_reg)) { 10652 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 10653 insn->dst_reg, 10654 reg_type_str[reg_state(env, insn->dst_reg)->type]); 10655 return -EACCES; 10656 } 10657 10658 /* check that memory (dst_reg + off) is writeable */ 10659 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 10660 insn->off, BPF_SIZE(insn->code), 10661 BPF_WRITE, -1, false); 10662 if (err) 10663 return err; 10664 10665 } else if (class == BPF_JMP || class == BPF_JMP32) { 10666 u8 opcode = BPF_OP(insn->code); 10667 10668 env->jmps_processed++; 10669 if (opcode == BPF_CALL) { 10670 if (BPF_SRC(insn->code) != BPF_K || 10671 insn->off != 0 || 10672 (insn->src_reg != BPF_REG_0 && 10673 insn->src_reg != BPF_PSEUDO_CALL && 10674 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 10675 insn->dst_reg != BPF_REG_0 || 10676 class == BPF_JMP32) { 10677 verbose(env, "BPF_CALL uses reserved fields\n"); 10678 return -EINVAL; 10679 } 10680 10681 if (env->cur_state->active_spin_lock && 10682 (insn->src_reg == BPF_PSEUDO_CALL || 10683 insn->imm != BPF_FUNC_spin_unlock)) { 10684 verbose(env, "function calls are not allowed while holding a lock\n"); 10685 return -EINVAL; 10686 } 10687 if (insn->src_reg == BPF_PSEUDO_CALL) 10688 err = check_func_call(env, insn, &env->insn_idx); 10689 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 10690 err = check_kfunc_call(env, insn); 10691 else 10692 err = check_helper_call(env, insn, &env->insn_idx); 10693 if (err) 10694 return err; 10695 } else if (opcode == BPF_JA) { 10696 if (BPF_SRC(insn->code) != BPF_K || 10697 insn->imm != 0 || 10698 insn->src_reg != BPF_REG_0 || 10699 insn->dst_reg != BPF_REG_0 || 10700 class == BPF_JMP32) { 10701 verbose(env, "BPF_JA uses reserved fields\n"); 10702 return -EINVAL; 10703 } 10704 10705 env->insn_idx += insn->off + 1; 10706 continue; 10707 10708 } else if (opcode == BPF_EXIT) { 10709 if (BPF_SRC(insn->code) != BPF_K || 10710 insn->imm != 0 || 10711 insn->src_reg != BPF_REG_0 || 10712 insn->dst_reg != BPF_REG_0 || 10713 class == BPF_JMP32) { 10714 verbose(env, "BPF_EXIT uses reserved fields\n"); 10715 return -EINVAL; 10716 } 10717 10718 if (env->cur_state->active_spin_lock) { 10719 verbose(env, "bpf_spin_unlock is missing\n"); 10720 return -EINVAL; 10721 } 10722 10723 if (state->curframe) { 10724 /* exit from nested function */ 10725 err = prepare_func_exit(env, &env->insn_idx); 10726 if (err) 10727 return err; 10728 do_print_state = true; 10729 continue; 10730 } 10731 10732 err = check_reference_leak(env); 10733 if (err) 10734 return err; 10735 10736 err = check_return_code(env); 10737 if (err) 10738 return err; 10739 process_bpf_exit: 10740 update_branch_counts(env, env->cur_state); 10741 err = pop_stack(env, &prev_insn_idx, 10742 &env->insn_idx, pop_log); 10743 if (err < 0) { 10744 if (err != -ENOENT) 10745 return err; 10746 break; 10747 } else { 10748 do_print_state = true; 10749 continue; 10750 } 10751 } else { 10752 err = check_cond_jmp_op(env, insn, &env->insn_idx); 10753 if (err) 10754 return err; 10755 } 10756 } else if (class == BPF_LD) { 10757 u8 mode = BPF_MODE(insn->code); 10758 10759 if (mode == BPF_ABS || mode == BPF_IND) { 10760 err = check_ld_abs(env, insn); 10761 if (err) 10762 return err; 10763 10764 } else if (mode == BPF_IMM) { 10765 err = check_ld_imm(env, insn); 10766 if (err) 10767 return err; 10768 10769 env->insn_idx++; 10770 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10771 } else { 10772 verbose(env, "invalid BPF_LD mode\n"); 10773 return -EINVAL; 10774 } 10775 } else { 10776 verbose(env, "unknown insn class %d\n", class); 10777 return -EINVAL; 10778 } 10779 10780 env->insn_idx++; 10781 } 10782 10783 return 0; 10784 } 10785 10786 static int find_btf_percpu_datasec(struct btf *btf) 10787 { 10788 const struct btf_type *t; 10789 const char *tname; 10790 int i, n; 10791 10792 /* 10793 * Both vmlinux and module each have their own ".data..percpu" 10794 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 10795 * types to look at only module's own BTF types. 10796 */ 10797 n = btf_nr_types(btf); 10798 if (btf_is_module(btf)) 10799 i = btf_nr_types(btf_vmlinux); 10800 else 10801 i = 1; 10802 10803 for(; i < n; i++) { 10804 t = btf_type_by_id(btf, i); 10805 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 10806 continue; 10807 10808 tname = btf_name_by_offset(btf, t->name_off); 10809 if (!strcmp(tname, ".data..percpu")) 10810 return i; 10811 } 10812 10813 return -ENOENT; 10814 } 10815 10816 /* replace pseudo btf_id with kernel symbol address */ 10817 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 10818 struct bpf_insn *insn, 10819 struct bpf_insn_aux_data *aux) 10820 { 10821 const struct btf_var_secinfo *vsi; 10822 const struct btf_type *datasec; 10823 struct btf_mod_pair *btf_mod; 10824 const struct btf_type *t; 10825 const char *sym_name; 10826 bool percpu = false; 10827 u32 type, id = insn->imm; 10828 struct btf *btf; 10829 s32 datasec_id; 10830 u64 addr; 10831 int i, btf_fd, err; 10832 10833 btf_fd = insn[1].imm; 10834 if (btf_fd) { 10835 btf = btf_get_by_fd(btf_fd); 10836 if (IS_ERR(btf)) { 10837 verbose(env, "invalid module BTF object FD specified.\n"); 10838 return -EINVAL; 10839 } 10840 } else { 10841 if (!btf_vmlinux) { 10842 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 10843 return -EINVAL; 10844 } 10845 btf = btf_vmlinux; 10846 btf_get(btf); 10847 } 10848 10849 t = btf_type_by_id(btf, id); 10850 if (!t) { 10851 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 10852 err = -ENOENT; 10853 goto err_put; 10854 } 10855 10856 if (!btf_type_is_var(t)) { 10857 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 10858 err = -EINVAL; 10859 goto err_put; 10860 } 10861 10862 sym_name = btf_name_by_offset(btf, t->name_off); 10863 addr = kallsyms_lookup_name(sym_name); 10864 if (!addr) { 10865 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 10866 sym_name); 10867 err = -ENOENT; 10868 goto err_put; 10869 } 10870 10871 datasec_id = find_btf_percpu_datasec(btf); 10872 if (datasec_id > 0) { 10873 datasec = btf_type_by_id(btf, datasec_id); 10874 for_each_vsi(i, datasec, vsi) { 10875 if (vsi->type == id) { 10876 percpu = true; 10877 break; 10878 } 10879 } 10880 } 10881 10882 insn[0].imm = (u32)addr; 10883 insn[1].imm = addr >> 32; 10884 10885 type = t->type; 10886 t = btf_type_skip_modifiers(btf, type, NULL); 10887 if (percpu) { 10888 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 10889 aux->btf_var.btf = btf; 10890 aux->btf_var.btf_id = type; 10891 } else if (!btf_type_is_struct(t)) { 10892 const struct btf_type *ret; 10893 const char *tname; 10894 u32 tsize; 10895 10896 /* resolve the type size of ksym. */ 10897 ret = btf_resolve_size(btf, t, &tsize); 10898 if (IS_ERR(ret)) { 10899 tname = btf_name_by_offset(btf, t->name_off); 10900 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 10901 tname, PTR_ERR(ret)); 10902 err = -EINVAL; 10903 goto err_put; 10904 } 10905 aux->btf_var.reg_type = PTR_TO_MEM; 10906 aux->btf_var.mem_size = tsize; 10907 } else { 10908 aux->btf_var.reg_type = PTR_TO_BTF_ID; 10909 aux->btf_var.btf = btf; 10910 aux->btf_var.btf_id = type; 10911 } 10912 10913 /* check whether we recorded this BTF (and maybe module) already */ 10914 for (i = 0; i < env->used_btf_cnt; i++) { 10915 if (env->used_btfs[i].btf == btf) { 10916 btf_put(btf); 10917 return 0; 10918 } 10919 } 10920 10921 if (env->used_btf_cnt >= MAX_USED_BTFS) { 10922 err = -E2BIG; 10923 goto err_put; 10924 } 10925 10926 btf_mod = &env->used_btfs[env->used_btf_cnt]; 10927 btf_mod->btf = btf; 10928 btf_mod->module = NULL; 10929 10930 /* if we reference variables from kernel module, bump its refcount */ 10931 if (btf_is_module(btf)) { 10932 btf_mod->module = btf_try_get_module(btf); 10933 if (!btf_mod->module) { 10934 err = -ENXIO; 10935 goto err_put; 10936 } 10937 } 10938 10939 env->used_btf_cnt++; 10940 10941 return 0; 10942 err_put: 10943 btf_put(btf); 10944 return err; 10945 } 10946 10947 static int check_map_prealloc(struct bpf_map *map) 10948 { 10949 return (map->map_type != BPF_MAP_TYPE_HASH && 10950 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10951 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 10952 !(map->map_flags & BPF_F_NO_PREALLOC); 10953 } 10954 10955 static bool is_tracing_prog_type(enum bpf_prog_type type) 10956 { 10957 switch (type) { 10958 case BPF_PROG_TYPE_KPROBE: 10959 case BPF_PROG_TYPE_TRACEPOINT: 10960 case BPF_PROG_TYPE_PERF_EVENT: 10961 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10962 return true; 10963 default: 10964 return false; 10965 } 10966 } 10967 10968 static bool is_preallocated_map(struct bpf_map *map) 10969 { 10970 if (!check_map_prealloc(map)) 10971 return false; 10972 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 10973 return false; 10974 return true; 10975 } 10976 10977 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 10978 struct bpf_map *map, 10979 struct bpf_prog *prog) 10980 10981 { 10982 enum bpf_prog_type prog_type = resolve_prog_type(prog); 10983 /* 10984 * Validate that trace type programs use preallocated hash maps. 10985 * 10986 * For programs attached to PERF events this is mandatory as the 10987 * perf NMI can hit any arbitrary code sequence. 10988 * 10989 * All other trace types using preallocated hash maps are unsafe as 10990 * well because tracepoint or kprobes can be inside locked regions 10991 * of the memory allocator or at a place where a recursion into the 10992 * memory allocator would see inconsistent state. 10993 * 10994 * On RT enabled kernels run-time allocation of all trace type 10995 * programs is strictly prohibited due to lock type constraints. On 10996 * !RT kernels it is allowed for backwards compatibility reasons for 10997 * now, but warnings are emitted so developers are made aware of 10998 * the unsafety and can fix their programs before this is enforced. 10999 */ 11000 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11001 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11002 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11003 return -EINVAL; 11004 } 11005 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11006 verbose(env, "trace type programs can only use preallocated hash map\n"); 11007 return -EINVAL; 11008 } 11009 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11010 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11011 } 11012 11013 if (map_value_has_spin_lock(map)) { 11014 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11015 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11016 return -EINVAL; 11017 } 11018 11019 if (is_tracing_prog_type(prog_type)) { 11020 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11021 return -EINVAL; 11022 } 11023 11024 if (prog->aux->sleepable) { 11025 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11026 return -EINVAL; 11027 } 11028 } 11029 11030 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11031 !bpf_offload_prog_map_match(prog, map)) { 11032 verbose(env, "offload device mismatch between prog and map\n"); 11033 return -EINVAL; 11034 } 11035 11036 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11037 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11038 return -EINVAL; 11039 } 11040 11041 if (prog->aux->sleepable) 11042 switch (map->map_type) { 11043 case BPF_MAP_TYPE_HASH: 11044 case BPF_MAP_TYPE_LRU_HASH: 11045 case BPF_MAP_TYPE_ARRAY: 11046 case BPF_MAP_TYPE_PERCPU_HASH: 11047 case BPF_MAP_TYPE_PERCPU_ARRAY: 11048 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11049 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11050 case BPF_MAP_TYPE_HASH_OF_MAPS: 11051 if (!is_preallocated_map(map)) { 11052 verbose(env, 11053 "Sleepable programs can only use preallocated maps\n"); 11054 return -EINVAL; 11055 } 11056 break; 11057 case BPF_MAP_TYPE_RINGBUF: 11058 break; 11059 default: 11060 verbose(env, 11061 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11062 return -EINVAL; 11063 } 11064 11065 return 0; 11066 } 11067 11068 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11069 { 11070 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11071 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11072 } 11073 11074 /* find and rewrite pseudo imm in ld_imm64 instructions: 11075 * 11076 * 1. if it accesses map FD, replace it with actual map pointer. 11077 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11078 * 11079 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11080 */ 11081 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11082 { 11083 struct bpf_insn *insn = env->prog->insnsi; 11084 int insn_cnt = env->prog->len; 11085 int i, j, err; 11086 11087 err = bpf_prog_calc_tag(env->prog); 11088 if (err) 11089 return err; 11090 11091 for (i = 0; i < insn_cnt; i++, insn++) { 11092 if (BPF_CLASS(insn->code) == BPF_LDX && 11093 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11094 verbose(env, "BPF_LDX uses reserved fields\n"); 11095 return -EINVAL; 11096 } 11097 11098 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11099 struct bpf_insn_aux_data *aux; 11100 struct bpf_map *map; 11101 struct fd f; 11102 u64 addr; 11103 11104 if (i == insn_cnt - 1 || insn[1].code != 0 || 11105 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11106 insn[1].off != 0) { 11107 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11108 return -EINVAL; 11109 } 11110 11111 if (insn[0].src_reg == 0) 11112 /* valid generic load 64-bit imm */ 11113 goto next_insn; 11114 11115 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11116 aux = &env->insn_aux_data[i]; 11117 err = check_pseudo_btf_id(env, insn, aux); 11118 if (err) 11119 return err; 11120 goto next_insn; 11121 } 11122 11123 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11124 aux = &env->insn_aux_data[i]; 11125 aux->ptr_type = PTR_TO_FUNC; 11126 goto next_insn; 11127 } 11128 11129 /* In final convert_pseudo_ld_imm64() step, this is 11130 * converted into regular 64-bit imm load insn. 11131 */ 11132 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 11133 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 11134 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 11135 insn[1].imm != 0)) { 11136 verbose(env, 11137 "unrecognized bpf_ld_imm64 insn\n"); 11138 return -EINVAL; 11139 } 11140 11141 f = fdget(insn[0].imm); 11142 map = __bpf_map_get(f); 11143 if (IS_ERR(map)) { 11144 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11145 insn[0].imm); 11146 return PTR_ERR(map); 11147 } 11148 11149 err = check_map_prog_compatibility(env, map, env->prog); 11150 if (err) { 11151 fdput(f); 11152 return err; 11153 } 11154 11155 aux = &env->insn_aux_data[i]; 11156 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 11157 addr = (unsigned long)map; 11158 } else { 11159 u32 off = insn[1].imm; 11160 11161 if (off >= BPF_MAX_VAR_OFF) { 11162 verbose(env, "direct value offset of %u is not allowed\n", off); 11163 fdput(f); 11164 return -EINVAL; 11165 } 11166 11167 if (!map->ops->map_direct_value_addr) { 11168 verbose(env, "no direct value access support for this map type\n"); 11169 fdput(f); 11170 return -EINVAL; 11171 } 11172 11173 err = map->ops->map_direct_value_addr(map, &addr, off); 11174 if (err) { 11175 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11176 map->value_size, off); 11177 fdput(f); 11178 return err; 11179 } 11180 11181 aux->map_off = off; 11182 addr += off; 11183 } 11184 11185 insn[0].imm = (u32)addr; 11186 insn[1].imm = addr >> 32; 11187 11188 /* check whether we recorded this map already */ 11189 for (j = 0; j < env->used_map_cnt; j++) { 11190 if (env->used_maps[j] == map) { 11191 aux->map_index = j; 11192 fdput(f); 11193 goto next_insn; 11194 } 11195 } 11196 11197 if (env->used_map_cnt >= MAX_USED_MAPS) { 11198 fdput(f); 11199 return -E2BIG; 11200 } 11201 11202 /* hold the map. If the program is rejected by verifier, 11203 * the map will be released by release_maps() or it 11204 * will be used by the valid program until it's unloaded 11205 * and all maps are released in free_used_maps() 11206 */ 11207 bpf_map_inc(map); 11208 11209 aux->map_index = env->used_map_cnt; 11210 env->used_maps[env->used_map_cnt++] = map; 11211 11212 if (bpf_map_is_cgroup_storage(map) && 11213 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11214 verbose(env, "only one cgroup storage of each type is allowed\n"); 11215 fdput(f); 11216 return -EBUSY; 11217 } 11218 11219 fdput(f); 11220 next_insn: 11221 insn++; 11222 i++; 11223 continue; 11224 } 11225 11226 /* Basic sanity check before we invest more work here. */ 11227 if (!bpf_opcode_in_insntable(insn->code)) { 11228 verbose(env, "unknown opcode %02x\n", insn->code); 11229 return -EINVAL; 11230 } 11231 } 11232 11233 /* now all pseudo BPF_LD_IMM64 instructions load valid 11234 * 'struct bpf_map *' into a register instead of user map_fd. 11235 * These pointers will be used later by verifier to validate map access. 11236 */ 11237 return 0; 11238 } 11239 11240 /* drop refcnt of maps used by the rejected program */ 11241 static void release_maps(struct bpf_verifier_env *env) 11242 { 11243 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11244 env->used_map_cnt); 11245 } 11246 11247 /* drop refcnt of maps used by the rejected program */ 11248 static void release_btfs(struct bpf_verifier_env *env) 11249 { 11250 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11251 env->used_btf_cnt); 11252 } 11253 11254 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11255 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11256 { 11257 struct bpf_insn *insn = env->prog->insnsi; 11258 int insn_cnt = env->prog->len; 11259 int i; 11260 11261 for (i = 0; i < insn_cnt; i++, insn++) { 11262 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11263 continue; 11264 if (insn->src_reg == BPF_PSEUDO_FUNC) 11265 continue; 11266 insn->src_reg = 0; 11267 } 11268 } 11269 11270 /* single env->prog->insni[off] instruction was replaced with the range 11271 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11272 * [0, off) and [off, end) to new locations, so the patched range stays zero 11273 */ 11274 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 11275 struct bpf_prog *new_prog, u32 off, u32 cnt) 11276 { 11277 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 11278 struct bpf_insn *insn = new_prog->insnsi; 11279 u32 prog_len; 11280 int i; 11281 11282 /* aux info at OFF always needs adjustment, no matter fast path 11283 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11284 * original insn at old prog. 11285 */ 11286 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11287 11288 if (cnt == 1) 11289 return 0; 11290 prog_len = new_prog->len; 11291 new_data = vzalloc(array_size(prog_len, 11292 sizeof(struct bpf_insn_aux_data))); 11293 if (!new_data) 11294 return -ENOMEM; 11295 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11296 memcpy(new_data + off + cnt - 1, old_data + off, 11297 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11298 for (i = off; i < off + cnt - 1; i++) { 11299 new_data[i].seen = env->pass_cnt; 11300 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11301 } 11302 env->insn_aux_data = new_data; 11303 vfree(old_data); 11304 return 0; 11305 } 11306 11307 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11308 { 11309 int i; 11310 11311 if (len == 1) 11312 return; 11313 /* NOTE: fake 'exit' subprog should be updated as well. */ 11314 for (i = 0; i <= env->subprog_cnt; i++) { 11315 if (env->subprog_info[i].start <= off) 11316 continue; 11317 env->subprog_info[i].start += len - 1; 11318 } 11319 } 11320 11321 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 11322 { 11323 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11324 int i, sz = prog->aux->size_poke_tab; 11325 struct bpf_jit_poke_descriptor *desc; 11326 11327 for (i = 0; i < sz; i++) { 11328 desc = &tab[i]; 11329 desc->insn_idx += len - 1; 11330 } 11331 } 11332 11333 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11334 const struct bpf_insn *patch, u32 len) 11335 { 11336 struct bpf_prog *new_prog; 11337 11338 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11339 if (IS_ERR(new_prog)) { 11340 if (PTR_ERR(new_prog) == -ERANGE) 11341 verbose(env, 11342 "insn %d cannot be patched due to 16-bit range\n", 11343 env->insn_aux_data[off].orig_idx); 11344 return NULL; 11345 } 11346 if (adjust_insn_aux_data(env, new_prog, off, len)) 11347 return NULL; 11348 adjust_subprog_starts(env, off, len); 11349 adjust_poke_descs(new_prog, len); 11350 return new_prog; 11351 } 11352 11353 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11354 u32 off, u32 cnt) 11355 { 11356 int i, j; 11357 11358 /* find first prog starting at or after off (first to remove) */ 11359 for (i = 0; i < env->subprog_cnt; i++) 11360 if (env->subprog_info[i].start >= off) 11361 break; 11362 /* find first prog starting at or after off + cnt (first to stay) */ 11363 for (j = i; j < env->subprog_cnt; j++) 11364 if (env->subprog_info[j].start >= off + cnt) 11365 break; 11366 /* if j doesn't start exactly at off + cnt, we are just removing 11367 * the front of previous prog 11368 */ 11369 if (env->subprog_info[j].start != off + cnt) 11370 j--; 11371 11372 if (j > i) { 11373 struct bpf_prog_aux *aux = env->prog->aux; 11374 int move; 11375 11376 /* move fake 'exit' subprog as well */ 11377 move = env->subprog_cnt + 1 - j; 11378 11379 memmove(env->subprog_info + i, 11380 env->subprog_info + j, 11381 sizeof(*env->subprog_info) * move); 11382 env->subprog_cnt -= j - i; 11383 11384 /* remove func_info */ 11385 if (aux->func_info) { 11386 move = aux->func_info_cnt - j; 11387 11388 memmove(aux->func_info + i, 11389 aux->func_info + j, 11390 sizeof(*aux->func_info) * move); 11391 aux->func_info_cnt -= j - i; 11392 /* func_info->insn_off is set after all code rewrites, 11393 * in adjust_btf_func() - no need to adjust 11394 */ 11395 } 11396 } else { 11397 /* convert i from "first prog to remove" to "first to adjust" */ 11398 if (env->subprog_info[i].start == off) 11399 i++; 11400 } 11401 11402 /* update fake 'exit' subprog as well */ 11403 for (; i <= env->subprog_cnt; i++) 11404 env->subprog_info[i].start -= cnt; 11405 11406 return 0; 11407 } 11408 11409 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11410 u32 cnt) 11411 { 11412 struct bpf_prog *prog = env->prog; 11413 u32 i, l_off, l_cnt, nr_linfo; 11414 struct bpf_line_info *linfo; 11415 11416 nr_linfo = prog->aux->nr_linfo; 11417 if (!nr_linfo) 11418 return 0; 11419 11420 linfo = prog->aux->linfo; 11421 11422 /* find first line info to remove, count lines to be removed */ 11423 for (i = 0; i < nr_linfo; i++) 11424 if (linfo[i].insn_off >= off) 11425 break; 11426 11427 l_off = i; 11428 l_cnt = 0; 11429 for (; i < nr_linfo; i++) 11430 if (linfo[i].insn_off < off + cnt) 11431 l_cnt++; 11432 else 11433 break; 11434 11435 /* First live insn doesn't match first live linfo, it needs to "inherit" 11436 * last removed linfo. prog is already modified, so prog->len == off 11437 * means no live instructions after (tail of the program was removed). 11438 */ 11439 if (prog->len != off && l_cnt && 11440 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11441 l_cnt--; 11442 linfo[--i].insn_off = off + cnt; 11443 } 11444 11445 /* remove the line info which refer to the removed instructions */ 11446 if (l_cnt) { 11447 memmove(linfo + l_off, linfo + i, 11448 sizeof(*linfo) * (nr_linfo - i)); 11449 11450 prog->aux->nr_linfo -= l_cnt; 11451 nr_linfo = prog->aux->nr_linfo; 11452 } 11453 11454 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11455 for (i = l_off; i < nr_linfo; i++) 11456 linfo[i].insn_off -= cnt; 11457 11458 /* fix up all subprogs (incl. 'exit') which start >= off */ 11459 for (i = 0; i <= env->subprog_cnt; i++) 11460 if (env->subprog_info[i].linfo_idx > l_off) { 11461 /* program may have started in the removed region but 11462 * may not be fully removed 11463 */ 11464 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11465 env->subprog_info[i].linfo_idx -= l_cnt; 11466 else 11467 env->subprog_info[i].linfo_idx = l_off; 11468 } 11469 11470 return 0; 11471 } 11472 11473 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11474 { 11475 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11476 unsigned int orig_prog_len = env->prog->len; 11477 int err; 11478 11479 if (bpf_prog_is_dev_bound(env->prog->aux)) 11480 bpf_prog_offload_remove_insns(env, off, cnt); 11481 11482 err = bpf_remove_insns(env->prog, off, cnt); 11483 if (err) 11484 return err; 11485 11486 err = adjust_subprog_starts_after_remove(env, off, cnt); 11487 if (err) 11488 return err; 11489 11490 err = bpf_adj_linfo_after_remove(env, off, cnt); 11491 if (err) 11492 return err; 11493 11494 memmove(aux_data + off, aux_data + off + cnt, 11495 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11496 11497 return 0; 11498 } 11499 11500 /* The verifier does more data flow analysis than llvm and will not 11501 * explore branches that are dead at run time. Malicious programs can 11502 * have dead code too. Therefore replace all dead at-run-time code 11503 * with 'ja -1'. 11504 * 11505 * Just nops are not optimal, e.g. if they would sit at the end of the 11506 * program and through another bug we would manage to jump there, then 11507 * we'd execute beyond program memory otherwise. Returning exception 11508 * code also wouldn't work since we can have subprogs where the dead 11509 * code could be located. 11510 */ 11511 static void sanitize_dead_code(struct bpf_verifier_env *env) 11512 { 11513 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11514 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11515 struct bpf_insn *insn = env->prog->insnsi; 11516 const int insn_cnt = env->prog->len; 11517 int i; 11518 11519 for (i = 0; i < insn_cnt; i++) { 11520 if (aux_data[i].seen) 11521 continue; 11522 memcpy(insn + i, &trap, sizeof(trap)); 11523 } 11524 } 11525 11526 static bool insn_is_cond_jump(u8 code) 11527 { 11528 u8 op; 11529 11530 if (BPF_CLASS(code) == BPF_JMP32) 11531 return true; 11532 11533 if (BPF_CLASS(code) != BPF_JMP) 11534 return false; 11535 11536 op = BPF_OP(code); 11537 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11538 } 11539 11540 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11541 { 11542 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11543 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11544 struct bpf_insn *insn = env->prog->insnsi; 11545 const int insn_cnt = env->prog->len; 11546 int i; 11547 11548 for (i = 0; i < insn_cnt; i++, insn++) { 11549 if (!insn_is_cond_jump(insn->code)) 11550 continue; 11551 11552 if (!aux_data[i + 1].seen) 11553 ja.off = insn->off; 11554 else if (!aux_data[i + 1 + insn->off].seen) 11555 ja.off = 0; 11556 else 11557 continue; 11558 11559 if (bpf_prog_is_dev_bound(env->prog->aux)) 11560 bpf_prog_offload_replace_insn(env, i, &ja); 11561 11562 memcpy(insn, &ja, sizeof(ja)); 11563 } 11564 } 11565 11566 static int opt_remove_dead_code(struct bpf_verifier_env *env) 11567 { 11568 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11569 int insn_cnt = env->prog->len; 11570 int i, err; 11571 11572 for (i = 0; i < insn_cnt; i++) { 11573 int j; 11574 11575 j = 0; 11576 while (i + j < insn_cnt && !aux_data[i + j].seen) 11577 j++; 11578 if (!j) 11579 continue; 11580 11581 err = verifier_remove_insns(env, i, j); 11582 if (err) 11583 return err; 11584 insn_cnt = env->prog->len; 11585 } 11586 11587 return 0; 11588 } 11589 11590 static int opt_remove_nops(struct bpf_verifier_env *env) 11591 { 11592 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11593 struct bpf_insn *insn = env->prog->insnsi; 11594 int insn_cnt = env->prog->len; 11595 int i, err; 11596 11597 for (i = 0; i < insn_cnt; i++) { 11598 if (memcmp(&insn[i], &ja, sizeof(ja))) 11599 continue; 11600 11601 err = verifier_remove_insns(env, i, 1); 11602 if (err) 11603 return err; 11604 insn_cnt--; 11605 i--; 11606 } 11607 11608 return 0; 11609 } 11610 11611 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 11612 const union bpf_attr *attr) 11613 { 11614 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 11615 struct bpf_insn_aux_data *aux = env->insn_aux_data; 11616 int i, patch_len, delta = 0, len = env->prog->len; 11617 struct bpf_insn *insns = env->prog->insnsi; 11618 struct bpf_prog *new_prog; 11619 bool rnd_hi32; 11620 11621 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 11622 zext_patch[1] = BPF_ZEXT_REG(0); 11623 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 11624 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 11625 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 11626 for (i = 0; i < len; i++) { 11627 int adj_idx = i + delta; 11628 struct bpf_insn insn; 11629 int load_reg; 11630 11631 insn = insns[adj_idx]; 11632 load_reg = insn_def_regno(&insn); 11633 if (!aux[adj_idx].zext_dst) { 11634 u8 code, class; 11635 u32 imm_rnd; 11636 11637 if (!rnd_hi32) 11638 continue; 11639 11640 code = insn.code; 11641 class = BPF_CLASS(code); 11642 if (load_reg == -1) 11643 continue; 11644 11645 /* NOTE: arg "reg" (the fourth one) is only used for 11646 * BPF_STX + SRC_OP, so it is safe to pass NULL 11647 * here. 11648 */ 11649 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 11650 if (class == BPF_LD && 11651 BPF_MODE(code) == BPF_IMM) 11652 i++; 11653 continue; 11654 } 11655 11656 /* ctx load could be transformed into wider load. */ 11657 if (class == BPF_LDX && 11658 aux[adj_idx].ptr_type == PTR_TO_CTX) 11659 continue; 11660 11661 imm_rnd = get_random_int(); 11662 rnd_hi32_patch[0] = insn; 11663 rnd_hi32_patch[1].imm = imm_rnd; 11664 rnd_hi32_patch[3].dst_reg = load_reg; 11665 patch = rnd_hi32_patch; 11666 patch_len = 4; 11667 goto apply_patch_buffer; 11668 } 11669 11670 /* Add in an zero-extend instruction if a) the JIT has requested 11671 * it or b) it's a CMPXCHG. 11672 * 11673 * The latter is because: BPF_CMPXCHG always loads a value into 11674 * R0, therefore always zero-extends. However some archs' 11675 * equivalent instruction only does this load when the 11676 * comparison is successful. This detail of CMPXCHG is 11677 * orthogonal to the general zero-extension behaviour of the 11678 * CPU, so it's treated independently of bpf_jit_needs_zext. 11679 */ 11680 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 11681 continue; 11682 11683 if (WARN_ON(load_reg == -1)) { 11684 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 11685 return -EFAULT; 11686 } 11687 11688 zext_patch[0] = insn; 11689 zext_patch[1].dst_reg = load_reg; 11690 zext_patch[1].src_reg = load_reg; 11691 patch = zext_patch; 11692 patch_len = 2; 11693 apply_patch_buffer: 11694 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 11695 if (!new_prog) 11696 return -ENOMEM; 11697 env->prog = new_prog; 11698 insns = new_prog->insnsi; 11699 aux = env->insn_aux_data; 11700 delta += patch_len - 1; 11701 } 11702 11703 return 0; 11704 } 11705 11706 /* convert load instructions that access fields of a context type into a 11707 * sequence of instructions that access fields of the underlying structure: 11708 * struct __sk_buff -> struct sk_buff 11709 * struct bpf_sock_ops -> struct sock 11710 */ 11711 static int convert_ctx_accesses(struct bpf_verifier_env *env) 11712 { 11713 const struct bpf_verifier_ops *ops = env->ops; 11714 int i, cnt, size, ctx_field_size, delta = 0; 11715 const int insn_cnt = env->prog->len; 11716 struct bpf_insn insn_buf[16], *insn; 11717 u32 target_size, size_default, off; 11718 struct bpf_prog *new_prog; 11719 enum bpf_access_type type; 11720 bool is_narrower_load; 11721 11722 if (ops->gen_prologue || env->seen_direct_write) { 11723 if (!ops->gen_prologue) { 11724 verbose(env, "bpf verifier is misconfigured\n"); 11725 return -EINVAL; 11726 } 11727 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 11728 env->prog); 11729 if (cnt >= ARRAY_SIZE(insn_buf)) { 11730 verbose(env, "bpf verifier is misconfigured\n"); 11731 return -EINVAL; 11732 } else if (cnt) { 11733 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 11734 if (!new_prog) 11735 return -ENOMEM; 11736 11737 env->prog = new_prog; 11738 delta += cnt - 1; 11739 } 11740 } 11741 11742 if (bpf_prog_is_dev_bound(env->prog->aux)) 11743 return 0; 11744 11745 insn = env->prog->insnsi + delta; 11746 11747 for (i = 0; i < insn_cnt; i++, insn++) { 11748 bpf_convert_ctx_access_t convert_ctx_access; 11749 11750 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 11751 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 11752 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 11753 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 11754 type = BPF_READ; 11755 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 11756 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 11757 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 11758 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 11759 type = BPF_WRITE; 11760 else 11761 continue; 11762 11763 if (type == BPF_WRITE && 11764 env->insn_aux_data[i + delta].sanitize_stack_off) { 11765 struct bpf_insn patch[] = { 11766 /* Sanitize suspicious stack slot with zero. 11767 * There are no memory dependencies for this store, 11768 * since it's only using frame pointer and immediate 11769 * constant of zero 11770 */ 11771 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 11772 env->insn_aux_data[i + delta].sanitize_stack_off, 11773 0), 11774 /* the original STX instruction will immediately 11775 * overwrite the same stack slot with appropriate value 11776 */ 11777 *insn, 11778 }; 11779 11780 cnt = ARRAY_SIZE(patch); 11781 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 11782 if (!new_prog) 11783 return -ENOMEM; 11784 11785 delta += cnt - 1; 11786 env->prog = new_prog; 11787 insn = new_prog->insnsi + i + delta; 11788 continue; 11789 } 11790 11791 switch (env->insn_aux_data[i + delta].ptr_type) { 11792 case PTR_TO_CTX: 11793 if (!ops->convert_ctx_access) 11794 continue; 11795 convert_ctx_access = ops->convert_ctx_access; 11796 break; 11797 case PTR_TO_SOCKET: 11798 case PTR_TO_SOCK_COMMON: 11799 convert_ctx_access = bpf_sock_convert_ctx_access; 11800 break; 11801 case PTR_TO_TCP_SOCK: 11802 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 11803 break; 11804 case PTR_TO_XDP_SOCK: 11805 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 11806 break; 11807 case PTR_TO_BTF_ID: 11808 if (type == BPF_READ) { 11809 insn->code = BPF_LDX | BPF_PROBE_MEM | 11810 BPF_SIZE((insn)->code); 11811 env->prog->aux->num_exentries++; 11812 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 11813 verbose(env, "Writes through BTF pointers are not allowed\n"); 11814 return -EINVAL; 11815 } 11816 continue; 11817 default: 11818 continue; 11819 } 11820 11821 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 11822 size = BPF_LDST_BYTES(insn); 11823 11824 /* If the read access is a narrower load of the field, 11825 * convert to a 4/8-byte load, to minimum program type specific 11826 * convert_ctx_access changes. If conversion is successful, 11827 * we will apply proper mask to the result. 11828 */ 11829 is_narrower_load = size < ctx_field_size; 11830 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 11831 off = insn->off; 11832 if (is_narrower_load) { 11833 u8 size_code; 11834 11835 if (type == BPF_WRITE) { 11836 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 11837 return -EINVAL; 11838 } 11839 11840 size_code = BPF_H; 11841 if (ctx_field_size == 4) 11842 size_code = BPF_W; 11843 else if (ctx_field_size == 8) 11844 size_code = BPF_DW; 11845 11846 insn->off = off & ~(size_default - 1); 11847 insn->code = BPF_LDX | BPF_MEM | size_code; 11848 } 11849 11850 target_size = 0; 11851 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 11852 &target_size); 11853 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 11854 (ctx_field_size && !target_size)) { 11855 verbose(env, "bpf verifier is misconfigured\n"); 11856 return -EINVAL; 11857 } 11858 11859 if (is_narrower_load && size < target_size) { 11860 u8 shift = bpf_ctx_narrow_access_offset( 11861 off, size, size_default) * 8; 11862 if (ctx_field_size <= 4) { 11863 if (shift) 11864 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 11865 insn->dst_reg, 11866 shift); 11867 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 11868 (1 << size * 8) - 1); 11869 } else { 11870 if (shift) 11871 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 11872 insn->dst_reg, 11873 shift); 11874 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 11875 (1ULL << size * 8) - 1); 11876 } 11877 } 11878 11879 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11880 if (!new_prog) 11881 return -ENOMEM; 11882 11883 delta += cnt - 1; 11884 11885 /* keep walking new program and skip insns we just inserted */ 11886 env->prog = new_prog; 11887 insn = new_prog->insnsi + i + delta; 11888 } 11889 11890 return 0; 11891 } 11892 11893 static int jit_subprogs(struct bpf_verifier_env *env) 11894 { 11895 struct bpf_prog *prog = env->prog, **func, *tmp; 11896 int i, j, subprog_start, subprog_end = 0, len, subprog; 11897 struct bpf_map *map_ptr; 11898 struct bpf_insn *insn; 11899 void *old_bpf_func; 11900 int err, num_exentries; 11901 11902 if (env->subprog_cnt <= 1) 11903 return 0; 11904 11905 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11906 if (bpf_pseudo_func(insn)) { 11907 env->insn_aux_data[i].call_imm = insn->imm; 11908 /* subprog is encoded in insn[1].imm */ 11909 continue; 11910 } 11911 11912 if (!bpf_pseudo_call(insn)) 11913 continue; 11914 /* Upon error here we cannot fall back to interpreter but 11915 * need a hard reject of the program. Thus -EFAULT is 11916 * propagated in any case. 11917 */ 11918 subprog = find_subprog(env, i + insn->imm + 1); 11919 if (subprog < 0) { 11920 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 11921 i + insn->imm + 1); 11922 return -EFAULT; 11923 } 11924 /* temporarily remember subprog id inside insn instead of 11925 * aux_data, since next loop will split up all insns into funcs 11926 */ 11927 insn->off = subprog; 11928 /* remember original imm in case JIT fails and fallback 11929 * to interpreter will be needed 11930 */ 11931 env->insn_aux_data[i].call_imm = insn->imm; 11932 /* point imm to __bpf_call_base+1 from JITs point of view */ 11933 insn->imm = 1; 11934 } 11935 11936 err = bpf_prog_alloc_jited_linfo(prog); 11937 if (err) 11938 goto out_undo_insn; 11939 11940 err = -ENOMEM; 11941 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 11942 if (!func) 11943 goto out_undo_insn; 11944 11945 for (i = 0; i < env->subprog_cnt; i++) { 11946 subprog_start = subprog_end; 11947 subprog_end = env->subprog_info[i + 1].start; 11948 11949 len = subprog_end - subprog_start; 11950 /* BPF_PROG_RUN doesn't call subprogs directly, 11951 * hence main prog stats include the runtime of subprogs. 11952 * subprogs don't have IDs and not reachable via prog_get_next_id 11953 * func[i]->stats will never be accessed and stays NULL 11954 */ 11955 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 11956 if (!func[i]) 11957 goto out_free; 11958 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 11959 len * sizeof(struct bpf_insn)); 11960 func[i]->type = prog->type; 11961 func[i]->len = len; 11962 if (bpf_prog_calc_tag(func[i])) 11963 goto out_free; 11964 func[i]->is_func = 1; 11965 func[i]->aux->func_idx = i; 11966 /* the btf and func_info will be freed only at prog->aux */ 11967 func[i]->aux->btf = prog->aux->btf; 11968 func[i]->aux->func_info = prog->aux->func_info; 11969 11970 for (j = 0; j < prog->aux->size_poke_tab; j++) { 11971 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 11972 int ret; 11973 11974 if (!(insn_idx >= subprog_start && 11975 insn_idx <= subprog_end)) 11976 continue; 11977 11978 ret = bpf_jit_add_poke_descriptor(func[i], 11979 &prog->aux->poke_tab[j]); 11980 if (ret < 0) { 11981 verbose(env, "adding tail call poke descriptor failed\n"); 11982 goto out_free; 11983 } 11984 11985 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 11986 11987 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 11988 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 11989 if (ret < 0) { 11990 verbose(env, "tracking tail call prog failed\n"); 11991 goto out_free; 11992 } 11993 } 11994 11995 /* Use bpf_prog_F_tag to indicate functions in stack traces. 11996 * Long term would need debug info to populate names 11997 */ 11998 func[i]->aux->name[0] = 'F'; 11999 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12000 func[i]->jit_requested = 1; 12001 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12002 func[i]->aux->linfo = prog->aux->linfo; 12003 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12004 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12005 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12006 num_exentries = 0; 12007 insn = func[i]->insnsi; 12008 for (j = 0; j < func[i]->len; j++, insn++) { 12009 if (BPF_CLASS(insn->code) == BPF_LDX && 12010 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12011 num_exentries++; 12012 } 12013 func[i]->aux->num_exentries = num_exentries; 12014 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12015 func[i] = bpf_int_jit_compile(func[i]); 12016 if (!func[i]->jited) { 12017 err = -ENOTSUPP; 12018 goto out_free; 12019 } 12020 cond_resched(); 12021 } 12022 12023 /* Untrack main program's aux structs so that during map_poke_run() 12024 * we will not stumble upon the unfilled poke descriptors; each 12025 * of the main program's poke descs got distributed across subprogs 12026 * and got tracked onto map, so we are sure that none of them will 12027 * be missed after the operation below 12028 */ 12029 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12030 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12031 12032 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12033 } 12034 12035 /* at this point all bpf functions were successfully JITed 12036 * now populate all bpf_calls with correct addresses and 12037 * run last pass of JIT 12038 */ 12039 for (i = 0; i < env->subprog_cnt; i++) { 12040 insn = func[i]->insnsi; 12041 for (j = 0; j < func[i]->len; j++, insn++) { 12042 if (bpf_pseudo_func(insn)) { 12043 subprog = insn[1].imm; 12044 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12045 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12046 continue; 12047 } 12048 if (!bpf_pseudo_call(insn)) 12049 continue; 12050 subprog = insn->off; 12051 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 12052 __bpf_call_base; 12053 } 12054 12055 /* we use the aux data to keep a list of the start addresses 12056 * of the JITed images for each function in the program 12057 * 12058 * for some architectures, such as powerpc64, the imm field 12059 * might not be large enough to hold the offset of the start 12060 * address of the callee's JITed image from __bpf_call_base 12061 * 12062 * in such cases, we can lookup the start address of a callee 12063 * by using its subprog id, available from the off field of 12064 * the call instruction, as an index for this list 12065 */ 12066 func[i]->aux->func = func; 12067 func[i]->aux->func_cnt = env->subprog_cnt; 12068 } 12069 for (i = 0; i < env->subprog_cnt; i++) { 12070 old_bpf_func = func[i]->bpf_func; 12071 tmp = bpf_int_jit_compile(func[i]); 12072 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12073 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12074 err = -ENOTSUPP; 12075 goto out_free; 12076 } 12077 cond_resched(); 12078 } 12079 12080 /* finally lock prog and jit images for all functions and 12081 * populate kallsysm 12082 */ 12083 for (i = 0; i < env->subprog_cnt; i++) { 12084 bpf_prog_lock_ro(func[i]); 12085 bpf_prog_kallsyms_add(func[i]); 12086 } 12087 12088 /* Last step: make now unused interpreter insns from main 12089 * prog consistent for later dump requests, so they can 12090 * later look the same as if they were interpreted only. 12091 */ 12092 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12093 if (bpf_pseudo_func(insn)) { 12094 insn[0].imm = env->insn_aux_data[i].call_imm; 12095 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12096 continue; 12097 } 12098 if (!bpf_pseudo_call(insn)) 12099 continue; 12100 insn->off = env->insn_aux_data[i].call_imm; 12101 subprog = find_subprog(env, i + insn->off + 1); 12102 insn->imm = subprog; 12103 } 12104 12105 prog->jited = 1; 12106 prog->bpf_func = func[0]->bpf_func; 12107 prog->aux->func = func; 12108 prog->aux->func_cnt = env->subprog_cnt; 12109 bpf_prog_jit_attempt_done(prog); 12110 return 0; 12111 out_free: 12112 for (i = 0; i < env->subprog_cnt; i++) { 12113 if (!func[i]) 12114 continue; 12115 12116 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 12117 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 12118 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 12119 } 12120 bpf_jit_free(func[i]); 12121 } 12122 kfree(func); 12123 out_undo_insn: 12124 /* cleanup main prog to be interpreted */ 12125 prog->jit_requested = 0; 12126 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12127 if (!bpf_pseudo_call(insn)) 12128 continue; 12129 insn->off = 0; 12130 insn->imm = env->insn_aux_data[i].call_imm; 12131 } 12132 bpf_prog_jit_attempt_done(prog); 12133 return err; 12134 } 12135 12136 static int fixup_call_args(struct bpf_verifier_env *env) 12137 { 12138 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12139 struct bpf_prog *prog = env->prog; 12140 struct bpf_insn *insn = prog->insnsi; 12141 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12142 int i, depth; 12143 #endif 12144 int err = 0; 12145 12146 if (env->prog->jit_requested && 12147 !bpf_prog_is_dev_bound(env->prog->aux)) { 12148 err = jit_subprogs(env); 12149 if (err == 0) 12150 return 0; 12151 if (err == -EFAULT) 12152 return err; 12153 } 12154 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12155 if (has_kfunc_call) { 12156 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12157 return -EINVAL; 12158 } 12159 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12160 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12161 * have to be rejected, since interpreter doesn't support them yet. 12162 */ 12163 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12164 return -EINVAL; 12165 } 12166 for (i = 0; i < prog->len; i++, insn++) { 12167 if (bpf_pseudo_func(insn)) { 12168 /* When JIT fails the progs with callback calls 12169 * have to be rejected, since interpreter doesn't support them yet. 12170 */ 12171 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12172 return -EINVAL; 12173 } 12174 12175 if (!bpf_pseudo_call(insn)) 12176 continue; 12177 depth = get_callee_stack_depth(env, insn, i); 12178 if (depth < 0) 12179 return depth; 12180 bpf_patch_call_args(insn, depth); 12181 } 12182 err = 0; 12183 #endif 12184 return err; 12185 } 12186 12187 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12188 struct bpf_insn *insn) 12189 { 12190 const struct bpf_kfunc_desc *desc; 12191 12192 /* insn->imm has the btf func_id. Replace it with 12193 * an address (relative to __bpf_base_call). 12194 */ 12195 desc = find_kfunc_desc(env->prog, insn->imm); 12196 if (!desc) { 12197 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12198 insn->imm); 12199 return -EFAULT; 12200 } 12201 12202 insn->imm = desc->imm; 12203 12204 return 0; 12205 } 12206 12207 /* Do various post-verification rewrites in a single program pass. 12208 * These rewrites simplify JIT and interpreter implementations. 12209 */ 12210 static int do_misc_fixups(struct bpf_verifier_env *env) 12211 { 12212 struct bpf_prog *prog = env->prog; 12213 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12214 struct bpf_insn *insn = prog->insnsi; 12215 const struct bpf_func_proto *fn; 12216 const int insn_cnt = prog->len; 12217 const struct bpf_map_ops *ops; 12218 struct bpf_insn_aux_data *aux; 12219 struct bpf_insn insn_buf[16]; 12220 struct bpf_prog *new_prog; 12221 struct bpf_map *map_ptr; 12222 int i, ret, cnt, delta = 0; 12223 12224 for (i = 0; i < insn_cnt; i++, insn++) { 12225 /* Make divide-by-zero exceptions impossible. */ 12226 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12227 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12228 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12229 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12230 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12231 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12232 struct bpf_insn *patchlet; 12233 struct bpf_insn chk_and_div[] = { 12234 /* [R,W]x div 0 -> 0 */ 12235 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12236 BPF_JNE | BPF_K, insn->src_reg, 12237 0, 2, 0), 12238 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12239 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12240 *insn, 12241 }; 12242 struct bpf_insn chk_and_mod[] = { 12243 /* [R,W]x mod 0 -> [R,W]x */ 12244 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12245 BPF_JEQ | BPF_K, insn->src_reg, 12246 0, 1 + (is64 ? 0 : 1), 0), 12247 *insn, 12248 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12249 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12250 }; 12251 12252 patchlet = isdiv ? chk_and_div : chk_and_mod; 12253 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12254 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12255 12256 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12257 if (!new_prog) 12258 return -ENOMEM; 12259 12260 delta += cnt - 1; 12261 env->prog = prog = new_prog; 12262 insn = new_prog->insnsi + i + delta; 12263 continue; 12264 } 12265 12266 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12267 if (BPF_CLASS(insn->code) == BPF_LD && 12268 (BPF_MODE(insn->code) == BPF_ABS || 12269 BPF_MODE(insn->code) == BPF_IND)) { 12270 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12271 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12272 verbose(env, "bpf verifier is misconfigured\n"); 12273 return -EINVAL; 12274 } 12275 12276 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12277 if (!new_prog) 12278 return -ENOMEM; 12279 12280 delta += cnt - 1; 12281 env->prog = prog = new_prog; 12282 insn = new_prog->insnsi + i + delta; 12283 continue; 12284 } 12285 12286 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12287 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12288 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12289 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12290 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12291 struct bpf_insn *patch = &insn_buf[0]; 12292 bool issrc, isneg; 12293 u32 off_reg; 12294 12295 aux = &env->insn_aux_data[i + delta]; 12296 if (!aux->alu_state || 12297 aux->alu_state == BPF_ALU_NON_POINTER) 12298 continue; 12299 12300 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12301 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12302 BPF_ALU_SANITIZE_SRC; 12303 12304 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12305 if (isneg) 12306 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12307 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12308 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12309 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12310 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12311 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12312 if (issrc) { 12313 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 12314 off_reg); 12315 insn->src_reg = BPF_REG_AX; 12316 } else { 12317 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 12318 BPF_REG_AX); 12319 } 12320 if (isneg) 12321 insn->code = insn->code == code_add ? 12322 code_sub : code_add; 12323 *patch++ = *insn; 12324 if (issrc && isneg) 12325 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12326 cnt = patch - insn_buf; 12327 12328 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12329 if (!new_prog) 12330 return -ENOMEM; 12331 12332 delta += cnt - 1; 12333 env->prog = prog = new_prog; 12334 insn = new_prog->insnsi + i + delta; 12335 continue; 12336 } 12337 12338 if (insn->code != (BPF_JMP | BPF_CALL)) 12339 continue; 12340 if (insn->src_reg == BPF_PSEUDO_CALL) 12341 continue; 12342 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12343 ret = fixup_kfunc_call(env, insn); 12344 if (ret) 12345 return ret; 12346 continue; 12347 } 12348 12349 if (insn->imm == BPF_FUNC_get_route_realm) 12350 prog->dst_needed = 1; 12351 if (insn->imm == BPF_FUNC_get_prandom_u32) 12352 bpf_user_rnd_init_once(); 12353 if (insn->imm == BPF_FUNC_override_return) 12354 prog->kprobe_override = 1; 12355 if (insn->imm == BPF_FUNC_tail_call) { 12356 /* If we tail call into other programs, we 12357 * cannot make any assumptions since they can 12358 * be replaced dynamically during runtime in 12359 * the program array. 12360 */ 12361 prog->cb_access = 1; 12362 if (!allow_tail_call_in_subprogs(env)) 12363 prog->aux->stack_depth = MAX_BPF_STACK; 12364 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12365 12366 /* mark bpf_tail_call as different opcode to avoid 12367 * conditional branch in the interpeter for every normal 12368 * call and to prevent accidental JITing by JIT compiler 12369 * that doesn't support bpf_tail_call yet 12370 */ 12371 insn->imm = 0; 12372 insn->code = BPF_JMP | BPF_TAIL_CALL; 12373 12374 aux = &env->insn_aux_data[i + delta]; 12375 if (env->bpf_capable && !expect_blinding && 12376 prog->jit_requested && 12377 !bpf_map_key_poisoned(aux) && 12378 !bpf_map_ptr_poisoned(aux) && 12379 !bpf_map_ptr_unpriv(aux)) { 12380 struct bpf_jit_poke_descriptor desc = { 12381 .reason = BPF_POKE_REASON_TAIL_CALL, 12382 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12383 .tail_call.key = bpf_map_key_immediate(aux), 12384 .insn_idx = i + delta, 12385 }; 12386 12387 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12388 if (ret < 0) { 12389 verbose(env, "adding tail call poke descriptor failed\n"); 12390 return ret; 12391 } 12392 12393 insn->imm = ret + 1; 12394 continue; 12395 } 12396 12397 if (!bpf_map_ptr_unpriv(aux)) 12398 continue; 12399 12400 /* instead of changing every JIT dealing with tail_call 12401 * emit two extra insns: 12402 * if (index >= max_entries) goto out; 12403 * index &= array->index_mask; 12404 * to avoid out-of-bounds cpu speculation 12405 */ 12406 if (bpf_map_ptr_poisoned(aux)) { 12407 verbose(env, "tail_call abusing map_ptr\n"); 12408 return -EINVAL; 12409 } 12410 12411 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12412 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12413 map_ptr->max_entries, 2); 12414 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12415 container_of(map_ptr, 12416 struct bpf_array, 12417 map)->index_mask); 12418 insn_buf[2] = *insn; 12419 cnt = 3; 12420 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12421 if (!new_prog) 12422 return -ENOMEM; 12423 12424 delta += cnt - 1; 12425 env->prog = prog = new_prog; 12426 insn = new_prog->insnsi + i + delta; 12427 continue; 12428 } 12429 12430 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12431 * and other inlining handlers are currently limited to 64 bit 12432 * only. 12433 */ 12434 if (prog->jit_requested && BITS_PER_LONG == 64 && 12435 (insn->imm == BPF_FUNC_map_lookup_elem || 12436 insn->imm == BPF_FUNC_map_update_elem || 12437 insn->imm == BPF_FUNC_map_delete_elem || 12438 insn->imm == BPF_FUNC_map_push_elem || 12439 insn->imm == BPF_FUNC_map_pop_elem || 12440 insn->imm == BPF_FUNC_map_peek_elem || 12441 insn->imm == BPF_FUNC_redirect_map)) { 12442 aux = &env->insn_aux_data[i + delta]; 12443 if (bpf_map_ptr_poisoned(aux)) 12444 goto patch_call_imm; 12445 12446 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12447 ops = map_ptr->ops; 12448 if (insn->imm == BPF_FUNC_map_lookup_elem && 12449 ops->map_gen_lookup) { 12450 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12451 if (cnt == -EOPNOTSUPP) 12452 goto patch_map_ops_generic; 12453 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12454 verbose(env, "bpf verifier is misconfigured\n"); 12455 return -EINVAL; 12456 } 12457 12458 new_prog = bpf_patch_insn_data(env, i + delta, 12459 insn_buf, cnt); 12460 if (!new_prog) 12461 return -ENOMEM; 12462 12463 delta += cnt - 1; 12464 env->prog = prog = new_prog; 12465 insn = new_prog->insnsi + i + delta; 12466 continue; 12467 } 12468 12469 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12470 (void *(*)(struct bpf_map *map, void *key))NULL)); 12471 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12472 (int (*)(struct bpf_map *map, void *key))NULL)); 12473 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12474 (int (*)(struct bpf_map *map, void *key, void *value, 12475 u64 flags))NULL)); 12476 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12477 (int (*)(struct bpf_map *map, void *value, 12478 u64 flags))NULL)); 12479 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12480 (int (*)(struct bpf_map *map, void *value))NULL)); 12481 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12482 (int (*)(struct bpf_map *map, void *value))NULL)); 12483 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12484 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12485 12486 patch_map_ops_generic: 12487 switch (insn->imm) { 12488 case BPF_FUNC_map_lookup_elem: 12489 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 12490 __bpf_call_base; 12491 continue; 12492 case BPF_FUNC_map_update_elem: 12493 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 12494 __bpf_call_base; 12495 continue; 12496 case BPF_FUNC_map_delete_elem: 12497 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 12498 __bpf_call_base; 12499 continue; 12500 case BPF_FUNC_map_push_elem: 12501 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 12502 __bpf_call_base; 12503 continue; 12504 case BPF_FUNC_map_pop_elem: 12505 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 12506 __bpf_call_base; 12507 continue; 12508 case BPF_FUNC_map_peek_elem: 12509 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 12510 __bpf_call_base; 12511 continue; 12512 case BPF_FUNC_redirect_map: 12513 insn->imm = BPF_CAST_CALL(ops->map_redirect) - 12514 __bpf_call_base; 12515 continue; 12516 } 12517 12518 goto patch_call_imm; 12519 } 12520 12521 /* Implement bpf_jiffies64 inline. */ 12522 if (prog->jit_requested && BITS_PER_LONG == 64 && 12523 insn->imm == BPF_FUNC_jiffies64) { 12524 struct bpf_insn ld_jiffies_addr[2] = { 12525 BPF_LD_IMM64(BPF_REG_0, 12526 (unsigned long)&jiffies), 12527 }; 12528 12529 insn_buf[0] = ld_jiffies_addr[0]; 12530 insn_buf[1] = ld_jiffies_addr[1]; 12531 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 12532 BPF_REG_0, 0); 12533 cnt = 3; 12534 12535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 12536 cnt); 12537 if (!new_prog) 12538 return -ENOMEM; 12539 12540 delta += cnt - 1; 12541 env->prog = prog = new_prog; 12542 insn = new_prog->insnsi + i + delta; 12543 continue; 12544 } 12545 12546 patch_call_imm: 12547 fn = env->ops->get_func_proto(insn->imm, env->prog); 12548 /* all functions that have prototype and verifier allowed 12549 * programs to call them, must be real in-kernel functions 12550 */ 12551 if (!fn->func) { 12552 verbose(env, 12553 "kernel subsystem misconfigured func %s#%d\n", 12554 func_id_name(insn->imm), insn->imm); 12555 return -EFAULT; 12556 } 12557 insn->imm = fn->func - __bpf_call_base; 12558 } 12559 12560 /* Since poke tab is now finalized, publish aux to tracker. */ 12561 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12562 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12563 if (!map_ptr->ops->map_poke_track || 12564 !map_ptr->ops->map_poke_untrack || 12565 !map_ptr->ops->map_poke_run) { 12566 verbose(env, "bpf verifier is misconfigured\n"); 12567 return -EINVAL; 12568 } 12569 12570 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 12571 if (ret < 0) { 12572 verbose(env, "tracking tail call prog failed\n"); 12573 return ret; 12574 } 12575 } 12576 12577 sort_kfunc_descs_by_imm(env->prog); 12578 12579 return 0; 12580 } 12581 12582 static void free_states(struct bpf_verifier_env *env) 12583 { 12584 struct bpf_verifier_state_list *sl, *sln; 12585 int i; 12586 12587 sl = env->free_list; 12588 while (sl) { 12589 sln = sl->next; 12590 free_verifier_state(&sl->state, false); 12591 kfree(sl); 12592 sl = sln; 12593 } 12594 env->free_list = NULL; 12595 12596 if (!env->explored_states) 12597 return; 12598 12599 for (i = 0; i < state_htab_size(env); i++) { 12600 sl = env->explored_states[i]; 12601 12602 while (sl) { 12603 sln = sl->next; 12604 free_verifier_state(&sl->state, false); 12605 kfree(sl); 12606 sl = sln; 12607 } 12608 env->explored_states[i] = NULL; 12609 } 12610 } 12611 12612 /* The verifier is using insn_aux_data[] to store temporary data during 12613 * verification and to store information for passes that run after the 12614 * verification like dead code sanitization. do_check_common() for subprogram N 12615 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 12616 * temporary data after do_check_common() finds that subprogram N cannot be 12617 * verified independently. pass_cnt counts the number of times 12618 * do_check_common() was run and insn->aux->seen tells the pass number 12619 * insn_aux_data was touched. These variables are compared to clear temporary 12620 * data from failed pass. For testing and experiments do_check_common() can be 12621 * run multiple times even when prior attempt to verify is unsuccessful. 12622 */ 12623 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 12624 { 12625 struct bpf_insn *insn = env->prog->insnsi; 12626 struct bpf_insn_aux_data *aux; 12627 int i, class; 12628 12629 for (i = 0; i < env->prog->len; i++) { 12630 class = BPF_CLASS(insn[i].code); 12631 if (class != BPF_LDX && class != BPF_STX) 12632 continue; 12633 aux = &env->insn_aux_data[i]; 12634 if (aux->seen != env->pass_cnt) 12635 continue; 12636 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 12637 } 12638 } 12639 12640 static int do_check_common(struct bpf_verifier_env *env, int subprog) 12641 { 12642 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12643 struct bpf_verifier_state *state; 12644 struct bpf_reg_state *regs; 12645 int ret, i; 12646 12647 env->prev_linfo = NULL; 12648 env->pass_cnt++; 12649 12650 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 12651 if (!state) 12652 return -ENOMEM; 12653 state->curframe = 0; 12654 state->speculative = false; 12655 state->branches = 1; 12656 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 12657 if (!state->frame[0]) { 12658 kfree(state); 12659 return -ENOMEM; 12660 } 12661 env->cur_state = state; 12662 init_func_state(env, state->frame[0], 12663 BPF_MAIN_FUNC /* callsite */, 12664 0 /* frameno */, 12665 subprog); 12666 12667 regs = state->frame[state->curframe]->regs; 12668 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 12669 ret = btf_prepare_func_args(env, subprog, regs); 12670 if (ret) 12671 goto out; 12672 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 12673 if (regs[i].type == PTR_TO_CTX) 12674 mark_reg_known_zero(env, regs, i); 12675 else if (regs[i].type == SCALAR_VALUE) 12676 mark_reg_unknown(env, regs, i); 12677 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 12678 const u32 mem_size = regs[i].mem_size; 12679 12680 mark_reg_known_zero(env, regs, i); 12681 regs[i].mem_size = mem_size; 12682 regs[i].id = ++env->id_gen; 12683 } 12684 } 12685 } else { 12686 /* 1st arg to a function */ 12687 regs[BPF_REG_1].type = PTR_TO_CTX; 12688 mark_reg_known_zero(env, regs, BPF_REG_1); 12689 ret = btf_check_subprog_arg_match(env, subprog, regs); 12690 if (ret == -EFAULT) 12691 /* unlikely verifier bug. abort. 12692 * ret == 0 and ret < 0 are sadly acceptable for 12693 * main() function due to backward compatibility. 12694 * Like socket filter program may be written as: 12695 * int bpf_prog(struct pt_regs *ctx) 12696 * and never dereference that ctx in the program. 12697 * 'struct pt_regs' is a type mismatch for socket 12698 * filter that should be using 'struct __sk_buff'. 12699 */ 12700 goto out; 12701 } 12702 12703 ret = do_check(env); 12704 out: 12705 /* check for NULL is necessary, since cur_state can be freed inside 12706 * do_check() under memory pressure. 12707 */ 12708 if (env->cur_state) { 12709 free_verifier_state(env->cur_state, true); 12710 env->cur_state = NULL; 12711 } 12712 while (!pop_stack(env, NULL, NULL, false)); 12713 if (!ret && pop_log) 12714 bpf_vlog_reset(&env->log, 0); 12715 free_states(env); 12716 if (ret) 12717 /* clean aux data in case subprog was rejected */ 12718 sanitize_insn_aux_data(env); 12719 return ret; 12720 } 12721 12722 /* Verify all global functions in a BPF program one by one based on their BTF. 12723 * All global functions must pass verification. Otherwise the whole program is rejected. 12724 * Consider: 12725 * int bar(int); 12726 * int foo(int f) 12727 * { 12728 * return bar(f); 12729 * } 12730 * int bar(int b) 12731 * { 12732 * ... 12733 * } 12734 * foo() will be verified first for R1=any_scalar_value. During verification it 12735 * will be assumed that bar() already verified successfully and call to bar() 12736 * from foo() will be checked for type match only. Later bar() will be verified 12737 * independently to check that it's safe for R1=any_scalar_value. 12738 */ 12739 static int do_check_subprogs(struct bpf_verifier_env *env) 12740 { 12741 struct bpf_prog_aux *aux = env->prog->aux; 12742 int i, ret; 12743 12744 if (!aux->func_info) 12745 return 0; 12746 12747 for (i = 1; i < env->subprog_cnt; i++) { 12748 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 12749 continue; 12750 env->insn_idx = env->subprog_info[i].start; 12751 WARN_ON_ONCE(env->insn_idx == 0); 12752 ret = do_check_common(env, i); 12753 if (ret) { 12754 return ret; 12755 } else if (env->log.level & BPF_LOG_LEVEL) { 12756 verbose(env, 12757 "Func#%d is safe for any args that match its prototype\n", 12758 i); 12759 } 12760 } 12761 return 0; 12762 } 12763 12764 static int do_check_main(struct bpf_verifier_env *env) 12765 { 12766 int ret; 12767 12768 env->insn_idx = 0; 12769 ret = do_check_common(env, 0); 12770 if (!ret) 12771 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 12772 return ret; 12773 } 12774 12775 12776 static void print_verification_stats(struct bpf_verifier_env *env) 12777 { 12778 int i; 12779 12780 if (env->log.level & BPF_LOG_STATS) { 12781 verbose(env, "verification time %lld usec\n", 12782 div_u64(env->verification_time, 1000)); 12783 verbose(env, "stack depth "); 12784 for (i = 0; i < env->subprog_cnt; i++) { 12785 u32 depth = env->subprog_info[i].stack_depth; 12786 12787 verbose(env, "%d", depth); 12788 if (i + 1 < env->subprog_cnt) 12789 verbose(env, "+"); 12790 } 12791 verbose(env, "\n"); 12792 } 12793 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 12794 "total_states %d peak_states %d mark_read %d\n", 12795 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 12796 env->max_states_per_insn, env->total_states, 12797 env->peak_states, env->longest_mark_read_walk); 12798 } 12799 12800 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 12801 { 12802 const struct btf_type *t, *func_proto; 12803 const struct bpf_struct_ops *st_ops; 12804 const struct btf_member *member; 12805 struct bpf_prog *prog = env->prog; 12806 u32 btf_id, member_idx; 12807 const char *mname; 12808 12809 if (!prog->gpl_compatible) { 12810 verbose(env, "struct ops programs must have a GPL compatible license\n"); 12811 return -EINVAL; 12812 } 12813 12814 btf_id = prog->aux->attach_btf_id; 12815 st_ops = bpf_struct_ops_find(btf_id); 12816 if (!st_ops) { 12817 verbose(env, "attach_btf_id %u is not a supported struct\n", 12818 btf_id); 12819 return -ENOTSUPP; 12820 } 12821 12822 t = st_ops->type; 12823 member_idx = prog->expected_attach_type; 12824 if (member_idx >= btf_type_vlen(t)) { 12825 verbose(env, "attach to invalid member idx %u of struct %s\n", 12826 member_idx, st_ops->name); 12827 return -EINVAL; 12828 } 12829 12830 member = &btf_type_member(t)[member_idx]; 12831 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 12832 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 12833 NULL); 12834 if (!func_proto) { 12835 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 12836 mname, member_idx, st_ops->name); 12837 return -EINVAL; 12838 } 12839 12840 if (st_ops->check_member) { 12841 int err = st_ops->check_member(t, member); 12842 12843 if (err) { 12844 verbose(env, "attach to unsupported member %s of struct %s\n", 12845 mname, st_ops->name); 12846 return err; 12847 } 12848 } 12849 12850 prog->aux->attach_func_proto = func_proto; 12851 prog->aux->attach_func_name = mname; 12852 env->ops = st_ops->verifier_ops; 12853 12854 return 0; 12855 } 12856 #define SECURITY_PREFIX "security_" 12857 12858 static int check_attach_modify_return(unsigned long addr, const char *func_name) 12859 { 12860 if (within_error_injection_list(addr) || 12861 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 12862 return 0; 12863 12864 return -EINVAL; 12865 } 12866 12867 /* list of non-sleepable functions that are otherwise on 12868 * ALLOW_ERROR_INJECTION list 12869 */ 12870 BTF_SET_START(btf_non_sleepable_error_inject) 12871 /* Three functions below can be called from sleepable and non-sleepable context. 12872 * Assume non-sleepable from bpf safety point of view. 12873 */ 12874 BTF_ID(func, __add_to_page_cache_locked) 12875 BTF_ID(func, should_fail_alloc_page) 12876 BTF_ID(func, should_failslab) 12877 BTF_SET_END(btf_non_sleepable_error_inject) 12878 12879 static int check_non_sleepable_error_inject(u32 btf_id) 12880 { 12881 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 12882 } 12883 12884 int bpf_check_attach_target(struct bpf_verifier_log *log, 12885 const struct bpf_prog *prog, 12886 const struct bpf_prog *tgt_prog, 12887 u32 btf_id, 12888 struct bpf_attach_target_info *tgt_info) 12889 { 12890 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 12891 const char prefix[] = "btf_trace_"; 12892 int ret = 0, subprog = -1, i; 12893 const struct btf_type *t; 12894 bool conservative = true; 12895 const char *tname; 12896 struct btf *btf; 12897 long addr = 0; 12898 12899 if (!btf_id) { 12900 bpf_log(log, "Tracing programs must provide btf_id\n"); 12901 return -EINVAL; 12902 } 12903 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 12904 if (!btf) { 12905 bpf_log(log, 12906 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 12907 return -EINVAL; 12908 } 12909 t = btf_type_by_id(btf, btf_id); 12910 if (!t) { 12911 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 12912 return -EINVAL; 12913 } 12914 tname = btf_name_by_offset(btf, t->name_off); 12915 if (!tname) { 12916 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 12917 return -EINVAL; 12918 } 12919 if (tgt_prog) { 12920 struct bpf_prog_aux *aux = tgt_prog->aux; 12921 12922 for (i = 0; i < aux->func_info_cnt; i++) 12923 if (aux->func_info[i].type_id == btf_id) { 12924 subprog = i; 12925 break; 12926 } 12927 if (subprog == -1) { 12928 bpf_log(log, "Subprog %s doesn't exist\n", tname); 12929 return -EINVAL; 12930 } 12931 conservative = aux->func_info_aux[subprog].unreliable; 12932 if (prog_extension) { 12933 if (conservative) { 12934 bpf_log(log, 12935 "Cannot replace static functions\n"); 12936 return -EINVAL; 12937 } 12938 if (!prog->jit_requested) { 12939 bpf_log(log, 12940 "Extension programs should be JITed\n"); 12941 return -EINVAL; 12942 } 12943 } 12944 if (!tgt_prog->jited) { 12945 bpf_log(log, "Can attach to only JITed progs\n"); 12946 return -EINVAL; 12947 } 12948 if (tgt_prog->type == prog->type) { 12949 /* Cannot fentry/fexit another fentry/fexit program. 12950 * Cannot attach program extension to another extension. 12951 * It's ok to attach fentry/fexit to extension program. 12952 */ 12953 bpf_log(log, "Cannot recursively attach\n"); 12954 return -EINVAL; 12955 } 12956 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 12957 prog_extension && 12958 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 12959 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 12960 /* Program extensions can extend all program types 12961 * except fentry/fexit. The reason is the following. 12962 * The fentry/fexit programs are used for performance 12963 * analysis, stats and can be attached to any program 12964 * type except themselves. When extension program is 12965 * replacing XDP function it is necessary to allow 12966 * performance analysis of all functions. Both original 12967 * XDP program and its program extension. Hence 12968 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 12969 * allowed. If extending of fentry/fexit was allowed it 12970 * would be possible to create long call chain 12971 * fentry->extension->fentry->extension beyond 12972 * reasonable stack size. Hence extending fentry is not 12973 * allowed. 12974 */ 12975 bpf_log(log, "Cannot extend fentry/fexit\n"); 12976 return -EINVAL; 12977 } 12978 } else { 12979 if (prog_extension) { 12980 bpf_log(log, "Cannot replace kernel functions\n"); 12981 return -EINVAL; 12982 } 12983 } 12984 12985 switch (prog->expected_attach_type) { 12986 case BPF_TRACE_RAW_TP: 12987 if (tgt_prog) { 12988 bpf_log(log, 12989 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 12990 return -EINVAL; 12991 } 12992 if (!btf_type_is_typedef(t)) { 12993 bpf_log(log, "attach_btf_id %u is not a typedef\n", 12994 btf_id); 12995 return -EINVAL; 12996 } 12997 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 12998 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 12999 btf_id, tname); 13000 return -EINVAL; 13001 } 13002 tname += sizeof(prefix) - 1; 13003 t = btf_type_by_id(btf, t->type); 13004 if (!btf_type_is_ptr(t)) 13005 /* should never happen in valid vmlinux build */ 13006 return -EINVAL; 13007 t = btf_type_by_id(btf, t->type); 13008 if (!btf_type_is_func_proto(t)) 13009 /* should never happen in valid vmlinux build */ 13010 return -EINVAL; 13011 13012 break; 13013 case BPF_TRACE_ITER: 13014 if (!btf_type_is_func(t)) { 13015 bpf_log(log, "attach_btf_id %u is not a function\n", 13016 btf_id); 13017 return -EINVAL; 13018 } 13019 t = btf_type_by_id(btf, t->type); 13020 if (!btf_type_is_func_proto(t)) 13021 return -EINVAL; 13022 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13023 if (ret) 13024 return ret; 13025 break; 13026 default: 13027 if (!prog_extension) 13028 return -EINVAL; 13029 fallthrough; 13030 case BPF_MODIFY_RETURN: 13031 case BPF_LSM_MAC: 13032 case BPF_TRACE_FENTRY: 13033 case BPF_TRACE_FEXIT: 13034 if (!btf_type_is_func(t)) { 13035 bpf_log(log, "attach_btf_id %u is not a function\n", 13036 btf_id); 13037 return -EINVAL; 13038 } 13039 if (prog_extension && 13040 btf_check_type_match(log, prog, btf, t)) 13041 return -EINVAL; 13042 t = btf_type_by_id(btf, t->type); 13043 if (!btf_type_is_func_proto(t)) 13044 return -EINVAL; 13045 13046 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13047 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13048 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13049 return -EINVAL; 13050 13051 if (tgt_prog && conservative) 13052 t = NULL; 13053 13054 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13055 if (ret < 0) 13056 return ret; 13057 13058 if (tgt_prog) { 13059 if (subprog == 0) 13060 addr = (long) tgt_prog->bpf_func; 13061 else 13062 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13063 } else { 13064 addr = kallsyms_lookup_name(tname); 13065 if (!addr) { 13066 bpf_log(log, 13067 "The address of function %s cannot be found\n", 13068 tname); 13069 return -ENOENT; 13070 } 13071 } 13072 13073 if (prog->aux->sleepable) { 13074 ret = -EINVAL; 13075 switch (prog->type) { 13076 case BPF_PROG_TYPE_TRACING: 13077 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13078 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13079 */ 13080 if (!check_non_sleepable_error_inject(btf_id) && 13081 within_error_injection_list(addr)) 13082 ret = 0; 13083 break; 13084 case BPF_PROG_TYPE_LSM: 13085 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13086 * Only some of them are sleepable. 13087 */ 13088 if (bpf_lsm_is_sleepable_hook(btf_id)) 13089 ret = 0; 13090 break; 13091 default: 13092 break; 13093 } 13094 if (ret) { 13095 bpf_log(log, "%s is not sleepable\n", tname); 13096 return ret; 13097 } 13098 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13099 if (tgt_prog) { 13100 bpf_log(log, "can't modify return codes of BPF programs\n"); 13101 return -EINVAL; 13102 } 13103 ret = check_attach_modify_return(addr, tname); 13104 if (ret) { 13105 bpf_log(log, "%s() is not modifiable\n", tname); 13106 return ret; 13107 } 13108 } 13109 13110 break; 13111 } 13112 tgt_info->tgt_addr = addr; 13113 tgt_info->tgt_name = tname; 13114 tgt_info->tgt_type = t; 13115 return 0; 13116 } 13117 13118 static int check_attach_btf_id(struct bpf_verifier_env *env) 13119 { 13120 struct bpf_prog *prog = env->prog; 13121 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13122 struct bpf_attach_target_info tgt_info = {}; 13123 u32 btf_id = prog->aux->attach_btf_id; 13124 struct bpf_trampoline *tr; 13125 int ret; 13126 u64 key; 13127 13128 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13129 prog->type != BPF_PROG_TYPE_LSM) { 13130 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13131 return -EINVAL; 13132 } 13133 13134 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13135 return check_struct_ops_btf_id(env); 13136 13137 if (prog->type != BPF_PROG_TYPE_TRACING && 13138 prog->type != BPF_PROG_TYPE_LSM && 13139 prog->type != BPF_PROG_TYPE_EXT) 13140 return 0; 13141 13142 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13143 if (ret) 13144 return ret; 13145 13146 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13147 /* to make freplace equivalent to their targets, they need to 13148 * inherit env->ops and expected_attach_type for the rest of the 13149 * verification 13150 */ 13151 env->ops = bpf_verifier_ops[tgt_prog->type]; 13152 prog->expected_attach_type = tgt_prog->expected_attach_type; 13153 } 13154 13155 /* store info about the attachment target that will be used later */ 13156 prog->aux->attach_func_proto = tgt_info.tgt_type; 13157 prog->aux->attach_func_name = tgt_info.tgt_name; 13158 13159 if (tgt_prog) { 13160 prog->aux->saved_dst_prog_type = tgt_prog->type; 13161 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13162 } 13163 13164 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13165 prog->aux->attach_btf_trace = true; 13166 return 0; 13167 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13168 if (!bpf_iter_prog_supported(prog)) 13169 return -EINVAL; 13170 return 0; 13171 } 13172 13173 if (prog->type == BPF_PROG_TYPE_LSM) { 13174 ret = bpf_lsm_verify_prog(&env->log, prog); 13175 if (ret < 0) 13176 return ret; 13177 } 13178 13179 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13180 tr = bpf_trampoline_get(key, &tgt_info); 13181 if (!tr) 13182 return -ENOMEM; 13183 13184 prog->aux->dst_trampoline = tr; 13185 return 0; 13186 } 13187 13188 struct btf *bpf_get_btf_vmlinux(void) 13189 { 13190 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13191 mutex_lock(&bpf_verifier_lock); 13192 if (!btf_vmlinux) 13193 btf_vmlinux = btf_parse_vmlinux(); 13194 mutex_unlock(&bpf_verifier_lock); 13195 } 13196 return btf_vmlinux; 13197 } 13198 13199 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 13200 union bpf_attr __user *uattr) 13201 { 13202 u64 start_time = ktime_get_ns(); 13203 struct bpf_verifier_env *env; 13204 struct bpf_verifier_log *log; 13205 int i, len, ret = -EINVAL; 13206 bool is_priv; 13207 13208 /* no program is valid */ 13209 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13210 return -EINVAL; 13211 13212 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13213 * allocate/free it every time bpf_check() is called 13214 */ 13215 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13216 if (!env) 13217 return -ENOMEM; 13218 log = &env->log; 13219 13220 len = (*prog)->len; 13221 env->insn_aux_data = 13222 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13223 ret = -ENOMEM; 13224 if (!env->insn_aux_data) 13225 goto err_free_env; 13226 for (i = 0; i < len; i++) 13227 env->insn_aux_data[i].orig_idx = i; 13228 env->prog = *prog; 13229 env->ops = bpf_verifier_ops[env->prog->type]; 13230 is_priv = bpf_capable(); 13231 13232 bpf_get_btf_vmlinux(); 13233 13234 /* grab the mutex to protect few globals used by verifier */ 13235 if (!is_priv) 13236 mutex_lock(&bpf_verifier_lock); 13237 13238 if (attr->log_level || attr->log_buf || attr->log_size) { 13239 /* user requested verbose verifier output 13240 * and supplied buffer to store the verification trace 13241 */ 13242 log->level = attr->log_level; 13243 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13244 log->len_total = attr->log_size; 13245 13246 ret = -EINVAL; 13247 /* log attributes have to be sane */ 13248 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13249 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13250 goto err_unlock; 13251 } 13252 13253 if (IS_ERR(btf_vmlinux)) { 13254 /* Either gcc or pahole or kernel are broken. */ 13255 verbose(env, "in-kernel BTF is malformed\n"); 13256 ret = PTR_ERR(btf_vmlinux); 13257 goto skip_full_check; 13258 } 13259 13260 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13261 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13262 env->strict_alignment = true; 13263 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13264 env->strict_alignment = false; 13265 13266 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13267 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13268 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13269 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13270 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13271 env->bpf_capable = bpf_capable(); 13272 13273 if (is_priv) 13274 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13275 13276 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13277 ret = bpf_prog_offload_verifier_prep(env->prog); 13278 if (ret) 13279 goto skip_full_check; 13280 } 13281 13282 env->explored_states = kvcalloc(state_htab_size(env), 13283 sizeof(struct bpf_verifier_state_list *), 13284 GFP_USER); 13285 ret = -ENOMEM; 13286 if (!env->explored_states) 13287 goto skip_full_check; 13288 13289 ret = add_subprog_and_kfunc(env); 13290 if (ret < 0) 13291 goto skip_full_check; 13292 13293 ret = check_subprogs(env); 13294 if (ret < 0) 13295 goto skip_full_check; 13296 13297 ret = check_btf_info(env, attr, uattr); 13298 if (ret < 0) 13299 goto skip_full_check; 13300 13301 ret = check_attach_btf_id(env); 13302 if (ret) 13303 goto skip_full_check; 13304 13305 ret = resolve_pseudo_ldimm64(env); 13306 if (ret < 0) 13307 goto skip_full_check; 13308 13309 ret = check_cfg(env); 13310 if (ret < 0) 13311 goto skip_full_check; 13312 13313 ret = do_check_subprogs(env); 13314 ret = ret ?: do_check_main(env); 13315 13316 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13317 ret = bpf_prog_offload_finalize(env); 13318 13319 skip_full_check: 13320 kvfree(env->explored_states); 13321 13322 if (ret == 0) 13323 ret = check_max_stack_depth(env); 13324 13325 /* instruction rewrites happen after this point */ 13326 if (is_priv) { 13327 if (ret == 0) 13328 opt_hard_wire_dead_code_branches(env); 13329 if (ret == 0) 13330 ret = opt_remove_dead_code(env); 13331 if (ret == 0) 13332 ret = opt_remove_nops(env); 13333 } else { 13334 if (ret == 0) 13335 sanitize_dead_code(env); 13336 } 13337 13338 if (ret == 0) 13339 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13340 ret = convert_ctx_accesses(env); 13341 13342 if (ret == 0) 13343 ret = do_misc_fixups(env); 13344 13345 /* do 32-bit optimization after insn patching has done so those patched 13346 * insns could be handled correctly. 13347 */ 13348 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13349 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13350 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13351 : false; 13352 } 13353 13354 if (ret == 0) 13355 ret = fixup_call_args(env); 13356 13357 env->verification_time = ktime_get_ns() - start_time; 13358 print_verification_stats(env); 13359 13360 if (log->level && bpf_verifier_log_full(log)) 13361 ret = -ENOSPC; 13362 if (log->level && !log->ubuf) { 13363 ret = -EFAULT; 13364 goto err_release_maps; 13365 } 13366 13367 if (ret) 13368 goto err_release_maps; 13369 13370 if (env->used_map_cnt) { 13371 /* if program passed verifier, update used_maps in bpf_prog_info */ 13372 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13373 sizeof(env->used_maps[0]), 13374 GFP_KERNEL); 13375 13376 if (!env->prog->aux->used_maps) { 13377 ret = -ENOMEM; 13378 goto err_release_maps; 13379 } 13380 13381 memcpy(env->prog->aux->used_maps, env->used_maps, 13382 sizeof(env->used_maps[0]) * env->used_map_cnt); 13383 env->prog->aux->used_map_cnt = env->used_map_cnt; 13384 } 13385 if (env->used_btf_cnt) { 13386 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13387 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13388 sizeof(env->used_btfs[0]), 13389 GFP_KERNEL); 13390 if (!env->prog->aux->used_btfs) { 13391 ret = -ENOMEM; 13392 goto err_release_maps; 13393 } 13394 13395 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13396 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13397 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13398 } 13399 if (env->used_map_cnt || env->used_btf_cnt) { 13400 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13401 * bpf_ld_imm64 instructions 13402 */ 13403 convert_pseudo_ld_imm64(env); 13404 } 13405 13406 adjust_btf_func(env); 13407 13408 err_release_maps: 13409 if (!env->prog->aux->used_maps) 13410 /* if we didn't copy map pointers into bpf_prog_info, release 13411 * them now. Otherwise free_used_maps() will release them. 13412 */ 13413 release_maps(env); 13414 if (!env->prog->aux->used_btfs) 13415 release_btfs(env); 13416 13417 /* extension progs temporarily inherit the attach_type of their targets 13418 for verification purposes, so set it back to zero before returning 13419 */ 13420 if (env->prog->type == BPF_PROG_TYPE_EXT) 13421 env->prog->expected_attach_type = 0; 13422 13423 *prog = env->prog; 13424 err_unlock: 13425 if (!is_priv) 13426 mutex_unlock(&bpf_verifier_lock); 13427 vfree(env->insn_aux_data); 13428 err_free_env: 13429 kfree(env); 13430 return ret; 13431 } 13432